
www.it-ebooks.info

http://www.it-ebooks.info/


 

C# 5.0 Pocket Reference 

C# is a general-purpose, type-safe, object-oriented programming language. The goal of 
the language is programmer productivity. To this end, the language balances simplicity, 
expressiveness, and performance. The C# language is platform-neutral, but it was written 
to work well with the Microsoft .NET Framework. C# 5.0 targets .NET Framework 4.5. 

The programs and code snippets in this book mirror those in Chapters 2-4 of 
C# 5.0 in a Nutshell and are all available as interactive samples in LINQPad. 
Working through these samples in conjunction with the book accelerates 
learning in that you can edit the samples and instantly see the results without 
needing to set up projects and solutions in Visual Studio. 

To download the samples, click the Samples tab in LINQPad and click 
“Download more samples”. LINQPad is free—go to www.linqpad.net. 

A First C# Program 
Here is a program that multiplies 12 by 30, and prints the result, 360, to the screen. The 
double forward slash indicates that the remainder of a line is a comment. 

using System;                 // Importing namespace 
 
class Test                    // Class declaration 
{ 
  static void Main()          // Method declaration 
  { 
    int x = 12 * 30;          // Statement 1 
    Console.WriteLine (x);    // Statement 2 
  }                           // End of method 
}                             // End of class 

At the heart of this program lies two statements. Statements in C# execute sequentially 
and are terminated by a semicolon. The first statement computes the expression 12 * 30 
and stores the result in a local variable, named x, which is an integer type. The second 
statement calls the Console class’s WriteLine method, to print the variable x to a 
text window on the screen. 

A method performs an action in a series of statements, called a statement block—a pair of 
braces containing zero or more statements. We defined a single method named Main. 

 

 
 

 
 

www.it-ebooks.info

http://www.linqpad.net/
http://www.it-ebooks.info/


 

Writing higher-level functions that call upon lower-level functions simplifies a program. 
We can refactor our program with a reusable method that multiplies an integer by 12 as 
follows: 

using System; 
 
class Test 
{ 
  static void Main() 
  { 
    Console.WriteLine (FeetToInches (30));    // 360 
    Console.WriteLine (FeetToInches (100));   // 1200 
  } 
 
  static int FeetToInches (int feet)  
  { 
    int inches = feet * 12; 
    return inches; 
  } 
} 

A method can receive input data from the caller by specifying parameters and output data 
back to the caller by specifying a return type. We defined a method called 
FeetToInches that has a parameter for inputting feet, and a return type for outputting 
inches, both of type int (integer). 

The literals 30 and 100 are the arguments passed to the FeetToInches method. The 
Main method in our example has empty parentheses because it has no parameters, and is 
void because it doesn’t return any value to its caller. C# recognizes a method called 
Main as signaling the default entry point of execution. The Main method may optionally 
return an integer (rather than void) in order to return a value to the execution 
environment. The Main method can also optionally accept an array of strings as a 
parameter (that will be populated with any arguments passed to the executable). For 
example: 

static int Main (string[] args) {...} 

An array (such as string[]) represents a fixed number of elements of a 
particular type (see “Arrays”). 

Methods are one of several kinds of functions in C#. Another kind of function we used 
was the * operator, used to perform multiplication. There are also constructors, 
properties, events, indexers, and finalizers. 

In our example, the two methods are grouped into a class. A class groups function 
members and data members to form an object-oriented building block. The Console 
class groups members that handle command-line input/output functionality, such as the 
WriteLine method. Our Test class groups two methods—the Main method and the 
FeetToInches method. A class is a kind of type, which we will examine in “Type 
Basics”. 

At the outermost level of a program, types are organized into namespaces. The using 
directive was used to make the System namespace available to our application, to use 
the Console class. We could define all our classes within the TestPrograms 
namespace, as follows: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

using System; 
 
namespace TestPrograms 
{ 
  class Test  {...} 
  class Test2 {...} 
} 

The .NET Framework is organized into nested namespaces. For example, this is the 
namespace that contains types for handling text: 

using System.Text; 

The using directive is there for convenience; you can also refer to a type by its fully 
qualified name, which is the type name prefixed with its namespace, such as 
System.Text.StringBuilder. 

Compilation 
The C# compiler compiles source code, specified as a set of files with the .cs extension, 
into an assembly. An assembly is the unit of packaging and deployment in .NET. An 
assembly can be either an application or a library. A normal console or Windows ohas a 
Main method and is an .exe file. A library is a .dll and is equivalent to an .exe without an 
entry point. Its purpose is to be called upon (referenced) by an application or by other 
libraries. The .NET Framework is a set of libraries. 

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual Studio 
to compile, or call csc manually from the command line. To compile manually, first 
save a program to a file such as MyFirstProgram.cs, and then go to the command line 
and invoke csc (located under %SystemRoot%\Microsoft.NET\Framework\<framework-
version> where %SystemRoot% is your Windows directory) as follows: 

csc MyFirstProgram.cs 

This produces an application named MyFirstProgram.exe. 

To produce a library (.dll), do the following:  
csc /target:library MyFirstProgram.cs 

Syntax 
C# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s 
elements of syntax, using the following program: 

using System; 
 
class Test 
{ 
  static void Main() 
  { 
    int x = 12 * 30; 
    Console.WriteLine (x); 
  } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Identifiers and Keywords 
Identifiers are names that programmers choose for their classes, methods, variables, and 
so on. These are the identifiers in our example program, in the order they appear: 

System   Test   Main   x   Console   WriteLine 

An identifier must be a whole word, essentially made up of Unicode characters starting 
with a letter or underscore. C# identifiers are case-sensitive. By convention, parameters, 
local variables, and private fields should be in camel case (e.g., myVariable ), and all 
other identifiers should be in Pascal case (e.g., MyMethod ). 

Keywords are names reserved by the compiler that you can’t use as identifiers. These are 
the keywords in our example program: 

using   class   static   void   int 

Here is the full list of C# keywords: 

abstract 
as 
base 
bool 
break 
byte 
case 
catch 
char 
checked 
class 
const 
continue 
decimal 
default 
delegate 
do 
double 
else 

enum 
event 
explicit 
extern 
false 
finally 
fixed 
float 
for 
foreach 
goto 
if 
implicit 
in 
int 
interface 
internal 
is 
lock 

long 
namespace 
new 
null 
object 
operator 
out 
override 
params 
private 
protected 
public 
readonly 
ref 
return 
sbyte 
sealed 
short 
sizeof 

stackalloc 
static 
string 
struct 
switch 
this 
throw 
true 
try 
typeof 
uint 
ulong 
unchecked 
unsafe 
ushort 
using 
virtual 
void 
while 

Avoiding conflicts 

If you really want to use an identifier that clashes with a keyword, you can do so by 
qualifying it with the @ prefix. For instance: 

class class  {...}      // Illegal 
class @class {...}      // Legal 

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as 
myVariable. 

Contextual keywords 

Some keywords are contextual, meaning they can also be used as identifiers—without an 
@ symbol. These are: 

add 
ascending 

equals 
from 

join  
let 

set  
value 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

async 
await 
by 
descending 
dynamic 

get 
global 
group 
in 
into 

on 
orderby 
partial 
remove 
select 

var 
where 
yield 

With contextual keywords, ambiguity cannot arise within the context in which they are 
used. 

Literals, Punctuators, and Operators 
Literals are primitive pieces of data lexically embedded into the program. The literals in 
our example program are 12 and 30. Punctuators help demarcate the structure of the 
program. The punctuators in our program are {, } and ;. 

The braces group multiple statements into a statement block. The semicolon terminates a 
(non-block) statement. Statements can wrap multiple lines: 

Console.WriteLine 
  (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10); 

An operator transforms and combines expressions. Most operators in C# are denoted 
with a symbol, such as the multiplication operator, *. The operators in our program are: 

.  ()   *   = 

A period denotes a member of something (or a decimal point with numeric literals). 
Parentheses are used when declaring or calling a method; empty parentheses are used 
when the method accepts no arguments. The equals sign performs assignment (the double 
equals, ==, performs equality comparison). 

Comments 
C# offers two different styles of source-code documentation: single-line comments and 
multiline comments. A single-line comment begins with a double forward slash and 
continues until the end of the line. For example: 

int x = 3;   // Comment about assigning 3 to x 

A multiline comment begins with /* and ends with */. For example: 

int x = 3;   /* This is a comment that 
                spans two lines */ 

Comments may embed XML documentation tags (see “XML Documentation”). 

Type Basics 
A type defines the blueprint for a value. . In our example, we used two literals of type 
int with values 12 and 30. We also declared a variable of type int whose name was x. 

A variable denotes a storage location that can contain different values over time. In 
contrast, a constant always represents the same value (more on this later). 

All values in C# are an instance of a specific type. The meaning of a value, and the set of 
possible values a variable can have, is determined by its type. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Predefined Type Examples 
Predefined types (also called built-in types) are types that are specially supported by the 
compiler. The int type is a predefined type for representing the set of integers that fit 
into 32 bits of memory, from −231 to 231−1. We can perform functions such as 
arithmetic with instances of the int type as follows: 

int x = 12 * 30; 

Another predefined C# type is string. The string type represents a sequence of 
characters, such as “.NET” or “http://oreilly.com”. We can work with strings by calling 
functions on them as follows: 

string message = "Hello world"; 
string upperMessage = message.ToUpper(); 
Console.WriteLine (upperMessage);      // HELLO WORLD 
 
int x = 2012; 
message = message + x.ToString(); 
Console.WriteLine (message);         // Hello world2012 

The predefined bool type has exactly two possible values: true and false. The 
bool type is commonly used to conditionally branch execution flow with an if 
statement. For example: 

bool simpleVar = false; 
if (simpleVar) 
  Console.WriteLine ("This will not print"); 
 
int x = 5000; 
bool lessThanAMile = x < 5280; 
if (lessThanAMile) 
  Console.WriteLine ("This will print"); 

The System namespace in the .NET Framework contains many important 
types that are not predefined by C# (e.g., DateTime). 

Custom Type Examples 
Just as we can build complex functions from simple functions, we can build complex 
types from primitive types. In this example, we will define a custom type named 
UnitConverter—a class that serves as a blueprint for unit conversions: 

using System; 
 
public class UnitConverter 
{                        
  int ratio;                             // Field 
 
  public UnitConverter (int unitRatio)   // Constructor 
  { 
    ratio = unitRatio; 
  } 
 
  public int Convert (int unit)          // Method 
  { 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

    return unit * ratio; 
  } 
}                                            
 
class Test  
{ 
  static void Main() 
  { 
    UnitConverter feetToInches = new UnitConverter(12); 
    UnitConverter milesToFeet = new UnitConverter(5280); 
 
    Console.Write (feetToInches.Convert(30));   // 360 
    Console.Write (feetToInches.Convert(100));  // 1200 
    Console.Write (feetToInches.Convert 
                    (milesToFeet.Convert(1)));  // 63360 
  } 
} 

Members of a type 

A type contains data members and function members. The data member of 
UnitConverter is the field called ratio. The function members of 
UnitConverter are the Convert method and the UnitConverter’s constructor. 

Symmetry of predefined types and custom types 

A beautiful aspect of C# is that predefined types and custom types have few differences. 
The predefined int type serves as a blueprint for integers. It holds data—32 bits—and 
provides function members that use that data, such as ToString. Similarly, our custom 
UnitConverter type acts as a blueprint for unit conversions. It holds data—the 
ratio—and provides function members to use that data. 

Constructors and instantiation 

Data is created by instantiating a type. Predefined types can be instantiated simply by 
using a literal such as 12 or "Hello, world". 

The new operator creates instances of a custom type. We started our Main method by 
creating two instances of the UnitConverter type. Immediately after the new 
operator instantiates an object, the object’s constructor is called to perform initialization. 
A constructor is defined like a method, except that the method name and return type are 
reduced to the name of the enclosing type: 

public UnitConverter (int unitRatio)   // Constructor 
{ 
  ratio = unitRatio;  
} 

Instance versus static members 

The data members and function members that operate on the instance of the type are 
called instance members. The UnitConverter’s Convert method and the int’s 
ToString method are examples of instance members. By default, members are instance 
members. 

Data members and function members that don’t operate on the instance of the type, but 
rather on the type itself, must be marked as static. The Test.Main and 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Console.WriteLine methods are static methods. The Console class is actually a 
static class, which means all its members are static. You never actually create instances 
of a Console—one console is shared across the whole application. 

To contrast instance versus static members, the instance field Name pertains to an 
instance of a particular Panda, whereas Population pertains to the set of all Panda 
instances: 

public class Panda 
{ 
  public string Name;           // Instance field 
  public static int Population; // Static field 
 
  public Panda (string n)       // Constructor 
  { 
    Name = n;                   // Assign instance field 
    Population = Population+1;  // Increment static field 
  } 
} 

The following code creates two instances of the Panda, prints their names, and then 
prints the total population: 

Panda p1 = new Panda ("Pan Dee"); 
Panda p2 = new Panda ("Pan Dah"); 
 
Console.WriteLine (p1.Name);      // Pan Dee 
Console.WriteLine (p2.Name);      // Pan Dah 
 
Console.WriteLine (Panda.Population);   // 2 

The public keyword 

The public keyword exposes members to other classes. In this example, if the Name 
field in Panda was not public, the Test class could not access it. Marking a member 
public is how a type communicates: “Here is what I want other types to see—
everything else is my own private implementation details.” In object-oriented terms, we 
say that the public members encapsulate the private members of the class. 

Conversions 
C# can convert between instances of compatible types. A conversion always creates a 
new value from an existing one. Conversions can be either implicit or explicit: implicit 
conversions happen automatically whereas explicit conversions require a cast. In the 
following example, we implicitly convert an int to a long type (which has twice the 
bitwise capacity of an int) and explicitly cast an int to a short type (which has half 
the bitwise capacity of an int): 

int x = 12345;       // int is a 32-bit integer 
long y = x;          // Implicit conversion to 64-bit int 
short z = (short)x;  // Explicit conversion to 16-bit int 

In general, implicit conversions are allowed when the compiler can guarantee they will 
always succeed without loss of information. Otherwise, you must perform an explicit cast 
to convert between compatible types. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Value Types Versus Reference Types 
C# types can be divided into value types and reference types. 

Value types comprise most built-in types (specifically, all numeric types, the char type, 
and the bool type) as well as custom struct and enum types. Reference types 
comprise all class, array, delegate, and interface types. 

The fundamental difference between value types and reference types is how they are 
handled in memory. 

Value types 

The content of a value type variable or constant is simply a value. For example, the 
content of the built-in value type, int, is 32 bits of data. 

You can define a custom value type with the struct keyword (see Figure 1): 
public struct Point { public int X, Y; } 

 

Figure 1. A value-type instance in memory 

The assignment of a value-type instance always copies the instance. For example: 
Point p1 = new Point(); 
p1.X = 7; 
 
Point p2 = p1;             // Assignment causes copy 
 
Console.WriteLine (p1.X);  // 7 
Console.WriteLine (p2.X);  // 7 
 
p1.X = 9;                  // Change p1.X 
Console.WriteLine (p1.X);  // 9 
Console.WriteLine (p2.X);  // 7 

Figure 2 shows that p1 and p2 have independent storage. 

 

Figure 2. Assignment copies a value-type instance 

Reference types 

A reference type is more complex than a value type, having two parts: an object and the 
reference to that object. The content of a reference-type variable or constant is a 
reference to an object that contains the value. Here is the Point type from our previous 
example rewritten as a class (see Figure 3): 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

public class Point { public int X, Y; } 

 

Figure 3. A reference-type instance in memory 

Assigning a reference-type variable copies the reference, not the object instance. This 
allows multiple variables to refer to the same object—something not ordinarily possible 
with value types. If we repeat the previous example, but with Point now a class, an 
operation via p1 affects p2: 

Point p1 = new Point(); 
p1.X = 7; 
 
Point p2 = p1;             // Copies p1 reference 
 
Console.WriteLine (p1.X);  // 7 
Console.WriteLine (p2.X);  // 7 
 
p1.X = 9;                  // Change p1.X 
Console.WriteLine (p1.X);  // 9 
Console.WriteLine (p2.X);  // 9 

Figure 4 shows that p1 and p2 are two references that point to the same object. 

 

Figure 4. Assignment copies a reference 

Null 

A reference can be assigned the literal null, indicating that the reference points to no 
object. Assuming Point is a class: 

Point p = null; 
Console.WriteLine (p == null);   // True 

Accessing a member of a null reference generates a runtime error: 
Console.WriteLine (p.X);   // NullReferenceException 

In contrast, a value type cannot ordinarily have a null value: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

struct Point {...} 
... 
Point p = null;  // Compile-time error 
int x = null;    // Compile-time error 

C# has a special construct called nullable types for representing value-type 
nulls (see “Nullable Types”). 

Predefined Type Taxonomy 
The predefined types in C# are: 

Value types 
• Numeric 

—Signed integer (sbyte, short, int, long) 
—Unsigned integer (byte, ushort, uint, ulong) 
—Real number (float, double, decimal) 

• Logical (bool) 

• Character (char) 

Reference types 

• String (string) 

• Object (object) 

Predefined types in C# alias Framework types in the System namespace. There is only a 
syntactic difference between these two statements: 

int i = 5; 
System.Int32 i = 5; 

The set of predefined value types excluding decimal are known as primitive types in 
the Common Language Runtime (CLR). Primitive types are so called because they are 
supported directly via instructions in compiled code, which usually translates to direct 
support on the underlying processor. 

Numeric Types 
C# has the following predefined numeric types: 

C# type System type Suffi
x 

Size Range 

Integral—
signed 
sbyte SByte  8 bits –27 to 27–1 
short Int16  16 bits –215 to 215–1 
int Int32  32 bits –231 to 231–1 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

long Int64 L 64 bits –263 to 263–1 
Integral—
unsigned 
byte Byte  8 bits 0 to 28–1 
ushort UInt16  16 bits 0 to 216–1 
uint UInt32 U 32 bits 0 to 232–1 
ulong UInt64 UL 64 bits 0 to 264–1 
Real 
float Single F 32 bits ± (~10–45 to 1038) 
double Double D 64 bits ± (~10–324 to 10308) 
decimal Decimal M 128 bits ± (~10–28 to 1028) 

Of the integral types, int and long are first-class citizens and are favored by both C# 
and the runtime. The other integral types are typically used for interoperability or when 
space efficiency is paramount. 

Of the real number types, float and double are called floating-point types and are 
typically used for scientific calculations. The decimal type is typically used for 
financial calculations, where base-10-accurate arithmetic and high precision are required. 
(Technically, decimal is a floating-point type too, although it’s not generally referred 
to as such.) 

Numeric Literals 
Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted with 
the 0x prefix (for example, 0x7f is equivalent to 127). Real literals may use decimal or 
exponential notation such as 1E06. 

Numeric literal type inference 

By default, the compiler infers a numeric literal to be either double or an integral type: 

• If the literal contains a decimal point or the exponential symbol (E), it is a double. 

• Otherwise, the literal’s type is the first type in this list that can fit the literal’s value: 
int, uint, long, and ulong. 

For example: 
Console.Write (       1.0.GetType());  // Double (double) 
Console.Write (      1E06.GetType());  // Double (double) 
Console.Write (         1.GetType());  // Int32  (int) 
Console.Write (0xF0000000.GetType());  // UInt32 (uint) 

Numeric suffixes 

The numeric suffixes listed in the preceding table explicitly define the type of a literal: 
decimal d = 3.5M;   // M = decimal (case-insensitive) 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The suffixes U and L are rarely necessary, because the uint, long, and ulong types 
can nearly always be either inferred or implicitly converted from int: 

long i = 5;     // Implicit conversion from int to long 

The D suffix is technically redundant, in that all literals with a decimal point are inferred 
to be double (and you can always add a decimal point to a numeric literal). The F and M 
suffixes are the most useful and are mandatory when specifying fractional float or 
decimal literals. Without suffixes, the following would not compile, because 4.5 would 
be inferred to be of type double, which has no implicit conversion to float or 
decimal: 

float f = 4.5F;       // Won't compile without suffix 
decimal d = -1.23M;   // Won't compile without suffix 

Numeric Conversions 
Integral to integral conversions 

Integral conversions are implicit when the destination type can represent every possible 
value of the source type. Otherwise, an explicit conversion is required. For example: 

int x = 12345;       // int is a 32-bit integral 
long y = x;          // Implicit conversion to 64-bit int 
short z = (short)x;  // Explicit conversion to 16-bit int 

Real to real conversions 

A float can be implicitly converted to a double, since a double can represent every 
possible float value. The reverse conversion must be explicit. 

Conversions between decimal and other real types must be explicit. 

Real to integral conversions 

Conversions from integral types to real types are implicit whereas the reverse must be 
explicit. Converting from a floating-point to an integral truncates any fractional portion; 
to perform rounding conversions, use the static System.Convert class. 

A caveat is that implicitly converting a large integral type to a floating-point type 
preserves magnitude but may occasionally lose precision: 

int i1 = 100000001; 
float f = i1;      // Magnitude preserved, precision lost 
int i2 = (int)f;   // 100000000 

Arithmetic Operators 
The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8- 
and 16-bit integral types. The % operator evaluates the remainder after division. 

Increment and Decrement Operators 
The increment and decrement operators (++, --) increment and decrement numeric types 
by 1. The operator can either precede or follow the variable, depending on whether you 
want the variable to be updated before or after the expression is evaluated. For example: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

int x = 0; 
Console.WriteLine (x++);   // Outputs 0; x is now 1 
Console.WriteLine (++x);   // Outputs 2; x is now 2 
Console.WriteLine (--x);   // Outputs 1; x is now 1 

Specialized Integral Operations 
Integral division 

Division operations on integral types always truncate remainders (round towards zero). 
Dividing by a variable whose value is zero generates a runtime error (a 
DivideByZeroException). Dividing by the literal or constant 0 generates a 
compile-time error. 

Integral overflow 

At runtime, arithmetic operations on integral types can overflow. By default, this happens 
silently—no exception is thrown and the result exhibits wraparound behavior, as though 
the computation was done on a larger integer type and the extra significant bits discarded. 
For example, decrementing the minimum possible int value results in the maximum 
possible int value: 

int a = int.MinValue; a--; 
Console.WriteLine (a == int.MaxValue); // True 

The checked and unchecked operators 

The checked operator tells the runtime to generate an OverflowException rather 
than overflowing silently when an integral expression or statement exceeds the arithmetic 
limits of that type. The checked operator affects expressions with the ++, −−, (unary) 
−, +, −, *, /, and explicit conversion operators between integral types. 

checked can be used around either an expression or a statement block. For example: 

int a = 1000000, b = 1000000; 
 
int c = checked (a * b);   // Checks just the expression 
 
checked                    // Checks all expressions 
{                          // in statement block. 
   c = a * b; 
   ... 
} 

You can make arithmetic overflow checking the default for all expressions in a program 
by compiling with the /checked+ command-line switch (in Visual Studio, go to 
Advanced Build Settings). If you then need to disable overflow checking just for specific 
expressions or statements, you can do so with the unchecked operator. 

Bitwise operators 

C# supports the following bitwise operations: 

Operator Meaning Sample expression Result 
~ Complement ~0xfU 0xfffffff0U 

& And 0xf0 & 0x33 0x30 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

| Or 0xf0 | 0x33 0xf3 

^ Exclusive Or 0xff00 ^ 0x0ff0 0xf0f0 

<< Shift left 0x20 << 2 0x80 

>> Shift right 0x20 >> 1 0x10 

8- and 16-Bit Integrals 
The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types 
lack their own arithmetic operators, so C# implicitly converts them to larger types as 
required. This can cause a compilation error when trying to assign the result back to a 
small integral type: 

short x = 1, y = 1; 
short z = x + y;          // Compile-time error 

In this case, x and y are implicitly converted to int so that the addition can be 
performed. This means the result is also an int, which cannot be implicitly cast back to 
a short (because it could cause loss of data). To make this compile, we must add an 
explicit cast: 

short z = (short) (x + y);   // OK 

Special Float and Double Values 
Unlike integral types, floating-point types have values that certain operations treat 
specially. These special values are NaN (Not a Number), +∞, −∞, and −0. The float 
and double classes have constants for NaN, +∞ and −∞ (as well as other values 
including MaxValue, MinValue, and Epsilon). For example: 

Console.Write (double.NegativeInfinity);   // -Infinity 

Dividing a nonzero number by zero results in an infinite value: 
Console.WriteLine ( 1.0 /  0.0);   //  Infinity 
Console.WriteLine (−1.0 /  0.0);   // -Infinity 
Console.WriteLine ( 1.0 / −0.0);   // -Infinity 
Console.WriteLine (−1.0 / −0.0);   //  Infinity 
 

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN: 
Console.Write ( 0.0 / 0.0);                 //  NaN 
Console.Write ((1.0 / 0.0) − (1.0 / 0.0));  //  NaN 

When using ==, a NaN value is never equal to another value, even another NaN value. 
To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN 
method: 

Console.WriteLine (0.0 / 0.0 == double.NaN);    // False 
Console.WriteLine (double.IsNaN (0.0 / 0.0));   // True 

When using object.Equals, however, two NaN values are equal: 

bool isTrue = object.Equals (0.0/0.0, double.NaN); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

double Versus decimal 
double is useful for scientific computations (such as computing spatial coordinates). 
decimal is useful for financial computations and values that are “man-made” rather 
than the result of real-world measurements. Here's a summary of the differences: 

Feature double decimal 
Internal 
representation 

Base 2 Base 10 

Precision 15-16 significant figures 28-29 significant figures 
Range ±(~10−324 to ~10308) ±(~10−28 to ~1028) 
Special values +0, −0, +∞, −∞ and NaN None 
Speed Native to processor Nonnative to processor 

(about 10 times slower 
than double) 

Real Number Rounding Errors 
float and double internally represent numbers in base 2. For this reason, most literals 
with a fractional component (which are in base 10) will not be represented precisely: 

float tenth = 0.1f;                     // Not quite 0.1 
float one   = 1f; 
Console.WriteLine (one - tenth * 10f);  // -1.490116E-08 

This is why float and double are bad for financial calculations. In contrast, 
decimal works in base 10 and so can precisely represent fractional numbers such as 0.1 
(whose base 10 representation is non-recurring). 

Boolean Type and Operators 
C#’s bool type (aliasing the System.Boolean type) is a logical value that can be 
assigned the literal true or false. 

Although a Boolean value requires only one bit of storage, the runtime will use one byte 
of memory, since this is the minimum chunk that the runtime and processor can 
efficiently work with. To avoid space-inefficiency in the case of arrays, the Framework 
provides a BitArray class in the System.Collections namespace that is 
designed to use just one bit per Boolean value. 

Equality and Comparison Operators 
== and != test for equality and inequality of any type, and always return a bool value. 
Value types typically have a very simple notion of equality: 

int x = 1, y = 2, z = 1; 
Console.WriteLine (x == y);      // False 
Console.WriteLine (x == z);      // True 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

For reference types, equality, by default, is based on reference, as opposed to the actual 
value of the underlying object. Therefore, two instances of an object with identical data 
are not considered equal unless the == operator for that type is specially overloaded to 
that effect (see “The object Type” and “Operator Overloading”). 

The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric 
types, but should be used with caution with real numbers (see “Real Number Rounding 
Errors” in the previous section). The comparison operators also work on enum type 
members, by comparing their underlying integral values.  

Conditional Operators 
The && and || operators test for and and or conditions. They are frequently used in 
conjunction with the ! operator, which expresses not. In this example, the 
UseUmbrella method returns true if it’s rainy or sunny (to protect us from the rain 
or the sun), as long as it’s not also windy (since umbrellas are useless in the wind): 

static bool UseUmbrella (bool rainy, bool sunny, 
                         bool windy) 
{ 
  return !windy && (rainy || sunny); 
} 

The && and || operators short-circuit evaluation when possible. In the preceding 
example, if it is windy, the expression (rainy || sunny) is not even evaluated. 
Short-circuiting is essential in allowing expressions such as the following to run without 
throwing a NullReferenceException: 

if (sb != null && sb.Length > 0) ... 

The & and | operators also test for and and or conditions: 

return !windy & (rainy | sunny); 

The difference is that they do not short-circuit. For this reason, they are rarely used in 
place of conditional operators. 

The ternary conditional operator (simply called the conditional operator) has the form q 
? a : b, where if condition q is true, a is evaluated, else b is evaluated. For example: 

static int Max (int a, int b) 
{ 
  return (a > b) ? a : b; 
} 

The conditional operator is particularly useful in LINQ queries. 

Strings and Characters 
C#’s char type (aliasing the System.Char type) represents a Unicode character and 
occupies two bytes. A char literal is specified inside single quotes: 

char c = 'A';       // Simple character 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Escape sequences express characters that cannot be expressed or interpreted literally. An 
escape sequence is a backslash followed by a character with a special meaning. For 
example: 

char newLine = '\n'; 
char backSlash = '\\'; 

The escape sequence characters are: 

Char Meaning Value 
\' Single quote 0x0027 

\" Double quote 0x0022 

\\ Backslash 0x005C 

\0 Null 0x0000 

\a Alert 0x0007 

\b Backspace 0x0008 

\f Form feed 0x000C 

\n New line 0x000A 

\r Carriage return 0x000D 

\t Horizontal tab 0x0009 

\v Vertical tab 0x000B 

The \u (or \x) escape sequence lets you specify any Unicode character via its four-digit 
hexadecimal code. 

char copyrightSymbol = '\u00A9'; 
char omegaSymbol     = '\u03A9'; 
char newLine         = '\u000A'; 

An implicit conversion from a char to a numeric type works for the numeric types that 
can accommodate an unsigned short. For other numeric types, an explicit conversion is 
required. 

String Type 
C#’s string type (aliasing the System.String type) represents an immutable sequence 
of Unicode characters. A string literal is specified inside double quotes: 

string a = "Heat"; 

string is a reference type, rather than a value type. Its equality operators, 
however, follow value-type semantics: 

string a = "test", b = "test"; 
Console.Write (a == b);  // True 

The escape sequences that are valid for char literals also work inside strings: 
string a = "Here's a tab:\t"; 

The cost of this is that whenever you need a literal backslash, you must write it twice: 
string a1 = "\\\\server\\fileshare\\helloworld.cs"; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is 
prefixed with @ and does not support escape sequences. The following verbatim string is 
identical to the preceding one: 

string a2 = @"\\server\fileshare\helloworld.cs"; 

A verbatim string literal can also span multiple lines. You can include the double-quote 
character in a verbatim literal by writing it twice. 

String concatenation 

The + operator concatenates two strings: 

string s = "a" + "b"; 

One of the operands may be a non-string value, in which case ToString is called on 
that value. For example: 

string s = "a" + 5;  // a5 

Using the + operator repeatedly to build up a string can be inefficient: a better solution is 
to use the System.Text.StringBuilder type—this represents a mutable 
(editable) string, and has methods to efficiently Append, Insert, Remove and 
Replace substrings. 

String comparisons 

string does not support < and > operators for comparisons. You must instead use 
string’s CompareTo method, which returns a positive number, a negative number, or 
zero, depending on whether the first value comes after, before, or alongside the second 
value: 

Console.Write ("Boston".CompareTo ("Austin"));   // 1 
Console.Write ("Boston".CompareTo ("Boston"));   // 0 
Console.Write ("Boston".CompareTo ("Chicago"));  // -1 

Searching within strings 

string’s indexer returns a character at a specified position: 

Console.Write ("word"[2]);   // r 

The IndexOf/LastIndexOf methods search for a character within the string; the 
Contains, StartsWith and EndsWith methods search for a substring within the 
string. 

Manipulating strings 

Because string is immutable, all the methods that “manipulate” a string return a new 
one, leaving the original untouched: 

• Substring extracts a portion of a string. 

• Insert and Remove insert and remove characters at a specified position. 

• PadLeft and PadRight add whitespace. 

• TrimStart, TrimEnd and Trim remove whitespace. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The string class also defines ToUpper and ToLower methods for changing case, a 
Split method to split a string into substrings (based on supplied delimiters), and a static 
Join method to join substrings back into a string. 

Arrays 
An array represents a fixed number of elements of a particular type. The elements in an 
array are always stored in a contiguous block of memory, providing highly efficient 
access. 

An array is denoted with square brackets after the element type. The following declares 
an array of 5 characters: 

char[] vowels = new char[5]; 

Square brackets also index the array, accessing a particular element by position: 
vowels[0] = 'a'; vowels[1] = 'e'; vowels[2] = 'i'; 
vowels[3] = 'o'; vowels[4] = 'u'; 
 
Console.WriteLine (vowels [1]);      // e 

This prints “e” because array indexes start at 0. We can use a for loop statement to 
iterate through each element in the array. The for loop in this example cycles the integer 
i from 0 to 4: 

for (int i = 0; i < vowels.Length; i++) 
  Console.Write (vowels [i]);            // aeiou 

Arrays also implement IEnumerable<T> (see “Enumeration and Iterators”), so you 
can also enumerate members with the foreach statement: 

foreach (char c in vowels) Console.Write (c);  // aeiou 

All array indexing is bounds-checked by the runtime. An 
IndexOutOfRangeException is thrown if you use an invalid index: 

vowels[5] = 'y';   // Runtime error 

The Length property of an array returns the number of elements in the array. Once an 
array has been created, its length cannot be changed. The System.Collection 
namespace and subnamespaces provide higher-level data structures, such as dynamically 
sized arrays and dictionaries. 

An array initialization expression lets you declare and populate an array in a single step: 
char[] vowels = new char[] {'a','e','i','o','u'}; 

or simply: 
char[] vowels = {'a','e','i','o','u'}; 

All arrays inherit from the System.Array class, which defines common methods and 
properties for all arrays. This includes instance properties such as Length and Rank, 
and static methods to: 

• Dynamically create an array (CreateInstance) 

• Get and set elements regardless of the array type (GetValue/SetValue) 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

• Search a sorted array (BinarySearch) or an unsorted array (IndexOf, 
LastIndexOf, Find, FindIndex, FindLastIndex) 

• Sort an array (Sort) 

• Copy an array (Copy)    

Default Element Initialization 
Creating an array always pre-initializes the elements with default values. The default 
value for a type is the result of a bitwise zeroing of memory. For example, consider 
creating an array of integers. Since int is a value type, this allocates 1,000 integers in 
one contiguous block of memory. The default value for each element will be 0: 

int[] a = new int[1000]; 
Console.Write (a[123]);            // 0 

With reference-type elements, the default value is null. 

An array itself is always a reference type object, regardless of element type. For instance, 
the following is legal: 

int[] a = null; 

Multidimensional Arrays 
Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular 
arrays represent an n -dimensional block of memory, and jagged arrays are arrays of 
arrays. 

Rectangular arrays 

Rectangular arrays are declared using commas to separate each dimension. The following 
declares a rectangular two-dimensional array, where the dimensions are 3 × 3: 

int[,] matrix = new int [3, 3]; 

The GetLength method of an array returns the length for a given dimension (starting at 
0): 

for (int i = 0; i < matrix.GetLength(0); i++) 
  for (int j = 0; j < matrix.GetLength(1); j++) 
    matrix [i, j] = i * 3 + j; 

A rectangular array can be initialized as follows (to create an array identical to the 
previous example): 

int[,] matrix = new int[,] 
{ 
  {0,1,2}, 
  {3,4,5}, 
  {6,7,8} 
}; 

(The code shown in boldface can be omitted in declaration statements such as the above.) 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Jagged arrays 

Jagged arrays are declared using successive square brackets to represent each dimension. 
Here is an example of declaring a jagged two-dimensional array, where the outermost 
dimension is 3: 

int[][] matrix = new int[3][]; 

The inner dimensions aren’t specified in the declaration because, unlike a rectangular 
array, each inner array can be an arbitrary length. Each inner array is implicitly initialized 
to null rather than an empty array. Each inner array must be created manually: 

for (int i = 0; i < matrix.Length; i++) 
{ 
  matrix[i] = new int [3];       // Create inner array 
  for (int j = 0; j < matrix[i].Length; j++) 
    matrix[i][j] = i * 3 + j; 
} 

A jagged array can be initialized as follows (to create an array identical to the previous 
example, but with an additional element at the end): 

int[][] matrix = new int[][] 
{ 
  new int[] {0,1,2}, 
  new int[] {3,4,5}, 
  new int[] {6,7,8,9} 
}; 

(The code shown in boldface can be omitted in declaration statements such as the above.) 

Simplified Array Initialization Expressions 
We've already seen how to simplify array initialization expressions by omitting the new 
keyword and type declaration: 

char[] vowels = new char[] {'a','e','i','o','u'}; 
char[] vowels =            {'a','e','i','o','u'}; 

Another approach is to omit the type name after the new keyword, and have the compiler 
infer the array type. This is a useful shortcut when passing arrays as arguments. For 
example, consider the following method: 

void Foo (char[] data) { ... } 

We can call this method with an array that we create on the fly as follows: 
Foo ( new char[] {'a','e','i','o','u'} );   // Longhand 
Foo ( new[]      {'a','e','i','o','u'} );   // Shortcut 

This shortcut is essential in creating arrays of anonymous types, as we’ll see later. 

Variables and Parameters 
A variable represents a storage location that has a modifiable value. A variable can be a 
local variable, parameter (value, ref, or out), field (instance or static), or array element. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The Stack and the Heap 
The stack and the heap are the places where variables and constants reside. Each has very 
different lifetime semantics. 

Stack 

The stack is a block of memory for storing local variables and parameters. The stack 
logically grows and shrinks as a function is entered and exited. Consider the following 
method (to avoid distraction, input argument checking is ignored): 

static int Factorial (int x) 
{ 
  if (x == 0) return 1; 
  return x * Factorial (x-1); 
} 

This method is recursive, meaning that it calls itself. Each time the method is entered, a 
new int is allocated on the stack, and each time the method exits, the int is 
deallocated. 

Heap 

The heap is a block of memory in which objects (i.e., reference-type instances) reside. 
Whenever a new object is created, it is allocated on the heap, and a reference to that 
object is returned. During a program’s execution, the heap starts filling up as new objects 
are created. The runtime has a garbage collector that periodically deallocates objects from 
the heap, so your computer does not run out of memory. An object is eligible for 
deallocation as soon as it’s not referenced by anthing that’s itself alive. 

Value-type instances (and object references) live wherever the variable was declared. If 
the instance was declared as a field within an object, or as an array element, that instance 
lives on the heap. 

You can’t explicitly delete objects in C#, as you can in C++. An unreferenced 
object is eventually collected by the garbage collector. 

The heap also stores static fields and constants. Unlike objects allocated on the heap 
(which can get garbage-collected), these live until the application domain is torn down. 

Definite Assignment 
C# enforces a definite assignment policy. In practice, this means that outside of an 
unsafe context, it’s impossible to access uninitialized memory. Definite assignment has 
three implications: 

• Local variables must be assigned a value before they can be read. 
• Function arguments must be supplied when a method is called (unless marked 

optional—see “Optional Parameters”). 
• All other variables (such as fields and array elements) are automatically initialized 

by the runtime. 

For example, the following code results in a compile-time error: 
static void Main() 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

{ 
  int x; 
  Console.WriteLine (x);        // Compile-time error 
} 

However, if x were instead a field of the containing class, this would be legal and would 
print 0. 

Default Values 
All type instances have a default value. The default value for the predefined types is the 
result of a bitwise zeroing of memory, and is null for reference types, 0 for numeric 
and enum types, '\0' for the char type and false for the bool type. 

You can obtain the default value for any type using the default keyword (in practice, 
this is useful with generics, as we’ll see later). The default value in a custom value type 
(i.e., struct) is the same as the default value for each field defined by the custom type. 

Parameters 
A method has a sequence of parameters. Parameters define the set of arguments that must 
be provided for that method. In this example, the method Foo has a single parameter 
named p, of type int: 

static void Foo (int p)   // p is a parameter 
{ 
  ... 
} 
static void Main() { Foo (8); }   // 8 is an argument 

You can control how parameters are passed with the ref and out modifiers: 

Parameter 
modifier 

Passed by Variable must be definitely 
assigned 

None Value Going in 
Ref Reference Going in 
out Reference Going out 

Passing arguments by value 

By default, arguments in C# are passed by value, which is by far the most common case. 
This means a copy of the value is created when passed to the method: 

static void Foo (int p) 
{ 
  p = p + 1;                // Increment p by 1 
  Console.WriteLine (p);    // Write p to screen 
} 
static void Main() 
{ 
  int x = 8; 
  Foo (x);                  // Make a copy of x 
  Console.WriteLine (x);    // x will still be 8 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Assigning p a new value does not change the contents of x, since p and x reside in 
different memory locations. 

Passing a reference-type argument by value copies the reference, but not the object. In 
the following example, Foo sees the same StringBuilder object that Main 
instantiated, but has an independent reference to it. In other words, sb and fooSB are 
separate variables that reference the same StringBuilder object: 

static void Foo (StringBuilder fooSB) 
{ 
  fooSB.Append ("test"); 
  fooSB = null; 
} 
static void Main() 
{ 
  StringBuilder sb = new StringBuilder(); 
  Foo (sb); 
  Console.WriteLine (sb.ToString());    // test 
} 

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If, 
however, fooSB was declared and called with the ref modifier, sb would become 
null.) 

The ref modifier 

To pass by reference, C# provides the ref parameter modifier. In the following 
example, p and x refer to the same memory locations: 

static void Foo (ref int p) 
{ 
  p = p + 1; 
  Console.WriteLine (p); 
} 
static void Main() 
{ 
  int x 8;  = 
  Foo (ref x);             // Pass x by reference 
  Console.WriteLine (x);   // x is now 9 
} 

Now assigning p a new value changes the contents of x. Notice how the ref modifier is 
required both when writing and when calling the method. This makes it very clear what’s 
going on. 

A parameter can be passed by reference or by value, regardless of whether the 
parameter type is a reference type or a value type. 

The out modifier 

An out argument is like a ref argument, except it: 

• Need not be assigned before going into the function 
• Must be assigned before it comes out of the function 

The out modifier is most commonly used to get multiple return values back from a 
method. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The params modifier 

The params parameter modifier may be specified on the last parameter of a method so 
that the method accepts any number of parameters of a particular type. The parameter 
type must be declared as an array. For example: 

static int Sum (params int[] ints) 
{ 
  int sum = 0; 
  for (int i = 0; i < ints.Length; i++) sum += ints[i]; 
  return sum; 
} 

We can call this as follows: 
Console.WriteLine (Sum (1, 2, 3, 4));    // 10 

You can also supply a params argument as an ordinary array. The preceding call is 
semantically equivalent to: 

Console.WriteLine (new int[] { 1, 2, 3, 4 } ); 

Optional parameters (C# 4.0) 

From C# 4.0, methods, constructors and indexers can declare optional parameters. A 
parameter is optional if it specifies a default value in its declaration:  

void Foo (int x = 23) { Console.WriteLine (x); } 

Optional parameters may be omitted when calling the method: 
Foo();     // 23 

The default argument of 23 is actually passed to the optional parameter x—the compiler 
bakes the value 23 into the compiled code at the calling side. The preceding call to Foo 
is semantically identical to: 

Foo (23);  

because the compiler simply substitutes the default value of an optional parameter 
wherever it is used. 

Adding an optional parameter to a public method that’s called from another 
assembly requires recompilation of both assemblies—just as though the 
parameter were mandatory. 

The default value of an optional parameter must be specified by a constant expression, or 
a parameterless constructor of a value type. Optional parameters cannot be marked with 
ref or out. 

Mandatory parameters must occur before optional parameters in both the method 
declaration and method call (the exception is with params arguments, which still always 
come last). In the following example, the explicit value of 1 is passed to x, and the 
default value of 0 is passed to y:  

void Foo (int x = 0, int y = 0) 
{ 
  Console.WriteLine (x + ", " + y); 
} 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

void Test() 
{ 
  Foo(1);    // 1, 0 
} 

To do the converse (pass a default value to x and an explicit value to y) you must 
combine optional parameters with named arguments. 

Named arguments (C# 4.0) 

Rather than identifying an argument by position, you can identify an argument by name. 
For example: 

void Foo (int x, int y) 
{ 
  Console.WriteLine (x + ", " + y); 
} 
void Test() 
{ 
  Foo (x:1, y:2);  // 1, 2 
} 

Named arguments can occur in any order. The following calls to Foo are semantically 
identical: 

Foo (x:1, y:2); 
Foo (y:2, x:1); 

You can mix named and positional parameters, as long as the named arguments appear 
last: 

Foo (1, y:2); 

Named arguments are particularly useful in conjunction with optional parameters. For 
instance, consider the following method: 

void Bar (int a=0, int b=0, int c=0, int d=0) { ... } 

We can call this supplying only a value for d as follows: 

Bar (d:3); 

This is particularly useful when calling COM APIs. 

var—Implicitly Typed Local Variables 
It is often the case that you declare and initialize a variable in one step. If the compiler is 
able to infer the type from the initialization expression, you can use the word var in 
place of the type declaration. For example: 

var x = "hello"; 
var y = new System.Text.StringBuilder(); 
var z = (float)Math.PI; 

This is precisely equivalent to: 
string x = "hello"; 
System.Text.StringBuilder y =  
  new System.Text.StringBuilder(); 
float z = (float)Math.PI; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Because of this direct equivalence, implicitly typed variables are statically typed. For 
example, the following generates a compile-time error: 

var x = 5; 
x = "hello";    // Compile-time error; x is of type int 

In the section “Anonymous Types”, we describe a scenario where the use of var is 
mandatory. 

Expressions and Operators 
An expression essentially denotes a value. The simplest kinds of expressions are 
constants (such as 123) and variables (such as x). Expressions can be transformed and 
combined using operators. An operator takes one or more input operands to output a new 
expression: 

12 * 30   // * is an operator; 12 and 30 are operands. 

Complex expressions can be built because an operand may itself be an expression, such 
as the operand (12 * 30) in the following example: 

1 + (12 * 30) 

Operators in C# can be classed as unary, binary, or ternary—depending on the number of 
operands they work on (one, two, or three). The binary operators always use infix 
notation, where the operator is placed between the two operands. 

Operators that are intrinsic to the basic plumbing of the language are called primary; an 
example is the method call operator. An expression that has no value is called a void 
expression: 

Console.WriteLine (1) 

Since a void expression has no value, it cannot be used as an operand to build more 
complex expressions: 

1 + Console.WriteLine (1)      // Compile-time error 

Assignment Expressions 
An assignment expression uses the = operator to assign the result of another expression to 
a variable. For example: 

x = x * 5 

An assignment expression is not a void expression. It actually carries the assignment 
value, and so can be incorporated into another expression. In the following example, the 
expression assigns 2 to x and 10 to y: 

y = 5 * (x = 2) 

This style of expression can be used to initialize multiple values: 
a = b = c = d = 0 

The compound assignment operators are syntactic shortcuts that combine assignment 
with another operator. For example: 

x *= 2    // equivalent to x = x * 2 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

x <<= 1   // equivalent to x = x << 1 

(A subtle exception to this rule is with events which we describe later: the += and -= 
operators here are treated specially and map to the event’s add and remove accessors). 

Operator Precedence and Associativity 
When an expression contains multiple operators, precedence and associativity determine 
the order of their evaluation. Operators with higher precedence execute before operators 
of lower precedence. If the operators have the same precedence, the operator’s 
associativity determines the order of evaluation. 

Precedence 

The expression 1 + 2 * 3 is evaluated as 1 + (2 * 3) because * has a higher precedence 
than +. 

Left-associative operators 

Binary operators (except for assignment, lambda and null coalescing operators) are left-
associative; in other words, they are evaluated from left to right. For example, the 
expression 8/4/2 is evaluated as (8/4)/2 due to left associativity. Of course, you can 
insert your own parentheses to change evaluation order. 

Right-associative operators 

The assignment operators, lambda, null coalescing and conditional operator are right-
associative; in other words, they are evaluated from right to left. Right associativity 
allows multiple assignments such as x=y=3 to compile: it works by first assigning 3 to 
y, and then assigning the result of that expression (3) to x. 

Operator Table 
The following table lists C#’s operators in order of precedence. Operators listed under the 
same subheading have the same precedence. We explain user-overloadable operators in 
the section “Operator Overloading”. 

 

Operator 
symbol 

Operator name Example Overloadab
le 

Primary (highest precedence) 
. Member access x.y No 
-> Pointer to struct (unsafe) x->y No 
() Function call x() No 
[] Array/index a[x] Via indexer 
++ Post-increment x++ Yes 
-- Post-decrement x-- Yes 
new Create instance new Foo() No 
stackalloc Unsafe stack allocation stackalloc(10) No 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

typeof Get type from identifier typeof(int) No 
checked Integral overflow check 

on 
checked(x) No 

unchecked Integral overflow check 
off 

unchecked(x) No 

default Default value default(char) No 
await Await await mytask No 
Unary 
sizeof Get size of struct sizeof(int) No 
+ Positive value of +x Yes 
- Negative value of -x Yes 
! Not !x Yes 
~ Bitwise complement ~x Yes 
++ Pre-increment ++x Yes 
-- Post-increment --x Yes 
() Cast (int)x No 
* Value at address (unsafe) *x No 
& Address of value (unsafe) &x No 
Multiplicative 
* Multiply x * y Yes 
/ Divide x / y Yes 
% Remainder x % y Yes 
Additive 
+    Add x + y Yes 
- Subtract x - y Yes 
Shift 
<<    Shift left x >> 1 Yes 
>> Shift right x << 1 Yes 
Relational 
< Less than x < y Yes 
> Greater than x > y Yes 
<= Less than or equal to x <= y Yes 
>= Greater than or equal to x >= y Yes 
is Type is or is subclass of x is y No 
as Type conversion x as y No 
Equality 
== Equals x == y Yes 
!= Not equals x != y Yes 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Logical And 
& And x & y Yes 
Logical Xor 
^ Exclusive Or x ^ y Yes 
Logical Or 
| Or x | y Yes 
Conditional And 
&& Conditional And x && y Via & 
Conditional Or 
|| Conditional Or x || y Via | 
Conditional 
? : Conditional isTrue ? thenThis 

: elseThis 
No 

Assignment and lambda (lowest precedence) 
= Assign x = y No 
*= Multiply self by x *= 2 Via * 
/= Divide self by x /= 2 Via / 
+= Add to self x += 2 Via + 
-= Subtract from self x -= 2 Via - 
<<= Shift self left by x <<= 2 Via << 
>>= Shift self right by x >>= 2 Via >> 
&= And self by x &= 2 Via & 
^= Exclusive-Or self by x ^= 2 Via ^ 
|= Or self by x |= 2 Via | 
=> Lambda x => x + 1 No 

Statements 
Functions comprise statements that execute sequentially in the textual order in which they 
appear. A statement block is a series of statements appearing between braces (the {} 
tokens). 

Declaration Statements 
A declaration statement declares a new variable, optionally initializing the variable with 
an expression. A declaration statement ends in a semicolon. You may declare multiple 
variables of the same type in a comma-separated list. For example: 

bool rich = true, famous = false; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

A constant declaration is like a variable declaration, except that it cannot be changed after 
it has been declared, and the initialization must occur with the declaration (more on this 
in “Constants”): 

const double c = 2.99792458E08; 

Local variable scope 

The scope of a local variable or local constant variable extends throughout the current 
block. You cannot declare another local variable with the same name in the current block 
or in any nested blocks. 

Expression Statements 
Expression statements are expressions that are also valid statements. In practice, this 
means expressions that “do” something; in other words, expressions that: 

• Assign or modify a variable 
• Instantiate an object 
• Call a method 

Expressions that do none of these are not valid statements: 
string s = "foo"; 
s.Length;          // Illegal statement: does nothing! 

When you call a constructor or a method that returns a value, you’re not obliged to use 
the result. However, unless the constructor or method changes state, the statement is 
useless: 

new StringBuilder();     // Legal, but useless 
x.Equals (y);            // Legal, but useless 

Selection Statements 
Selection statements conditionally control the flow of program execution. 

The if statement 

An if statement executes a statement or if a bool expression is true. For example: 

if (5 < 2 * 3) 
  Console.WriteLine ("true");       // true 

The statement can be a code block: 
if (5 < 2 * 3) 
{ 
  Console.WriteLine ("true");       // true 
  Console.WriteLine ("...") 
} 

The else clause 

An if statement can optionally feature an else clause: 

if (2 + 2 == 5) 
  Console.WriteLine ("Does not compute"); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

else 
  Console.WriteLine ("False");        // False 

Within an else clause, you can nest another if statement: 

if (2 + 2 == 5) 
  Console.WriteLine ("Does not compute"); 
else 
  if (2 + 2 == 4) 
    Console.WriteLine ("Computes");    // Computes 

Changing the flow of execution with braces 

An else clause always applies to the immediately preceding if statement in the 
statement block. For example: 

if (true) 
  if (false) 
    Console.WriteLine(); 
  else 
    Console.WriteLine ("executes"); 

This is semantically identical to: 
if (true) 
{ 
  if (false) 
    Console.WriteLine(); 
  else 
    Console.WriteLine ("executes"); 
} 

We can change the execution flow by moving the braces: 
if (true) 
{ 
  if (false) 
    Console.WriteLine(); 
} 
else 
  Console.WriteLine ("does not execute"); 

C# has no “elseif” keyword; however the following pattern achieves the same result: 
static void TellMeWhatICanDo (int age) 
{ 
  if (age >= 35) 
    Console.WriteLine ("You can be president!"); 
  else if (age >= 21) 
  le.WriteLine ("You can drink!");   Conso
  else if (age >= 18) 
    Console.WriteLine ("You can vote!"); 
  else 
    Console.WriteLine ("You can wait!"); 
} 

The switch statement 

switch statements let you branch program execution based on a selection of possible 
values that a variable may have. switch statements may result in cleaner code than 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

multiple if statements, since switch statements require an expression to be evaluated 
only once. For instance: 

static void ShowCard (int cardNumber) 
{ 
  switch (cardNumber) 
  { 
    case 13: 
      Console.WriteLine ("King"); 
      break; 
    case 12: 
      Console.WriteLine ("Queen"); 
      break; 
    case 11: 
      Console.WriteLine ("Jack"); 
      break; 
    default:    // Any other cardNumber 
      Console.WriteLine (cardNumber); 
      break; 
  } 
} 

You can only switch on an expression of a type that can be statically evaluated, which 
restricts it to the string type, the built-in integral types, the enum types, and nullable 
versions of these (see “Nullable Types”). At the end of each case clause, you must say 
explicitly where execution is to go next, with some kind of jump statement. Here are the 
options: 

• break (jumps to the end of the switch statement) 

• goto case x (jumps to another case clause) 

• goto default (jumps to the default clause) 

• Any other jump statement—namely, return, throw, continue, or goto 
label 

When more than one value should execute the same code, you can list the common 
cases sequentially: 

switch (cardNumber) 
{ 
  case 13: 
  case 12: 
  case 11: 
    Console.WriteLine ("Face card"); 
    break; 
  default: 
    Console.WriteLine ("Plain card"); 
    break; 
} 

This feature of a switch statement can be pivotal in terms of producing cleaner code 
than multiple if-else statements. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Iteration Statements 
C# enables a sequence of statements to execute repeatedly with the while, do-while, 
for and foreach statements. 

while and do-while loops 

while loops repeatedly execute a body of code while a bool expression is true. The 
expression is tested before the body of the loop is executed. For example, the following 
writes 012: 

int i = 0; 
while (i < 3) 
{                         // Braces here are optional 
  Console.Write (i++); 
} 

do-while loops differ in functionality from while loops only in that they test the 
expression after the statement block has executed (ensuring that the block is always 
executed at least once). Here’s the preceding example rewritten with a do-while loop: 

int i = 0; 
do 
{ 
  Console.WriteLine (i++); 
} 
while (i < 3); 

for loops 

for loops are like while loops with special clauses for initialization and iteration of a 
loop variable. A for loop contains three clauses as follows: 

for (init-clause; condition-clause; iteration-clause) 
  statement-or-statement-block 

The init-clause executes before the loop begins, and typically initializes one or more 
iteration variables. 

The condition-clause is a bool expression which is tested before each loop iteration. 
The body executes while this condition is true. 

The iteration-clause is executed after each iteration of the body. It's typically used to 
update the iteration variable. 

For example, the following prints the numbers 0 through 2: 
for (int i = 0; i < 3; i++) 
  Console.WriteLine (i); 

The following prints the first 10 Fibonacci numbers (where each number is the sum of the 
previous two): 

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++) 
{ 
  Console.WriteLine (prevFib); 
  int newFib = prevFib + curFib; 
  prevFib = curFib; curFib = newFib; 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Any of the three parts of the for statement may be omitted. One can implement an 
infinite loop such as the following (though while(true) may be used instead): 

for (;;) Console.WriteLine ("interrupt me"); 

foreach loops 

The foreach statement iterates over each element in an enumerable object. Most of the 
types in C# and the .NET Framework that represent a set or list of elements are 
enumerable. For example, both an array and a string are enumerable. Here is an example 
of enumerating over the characters in a string, from the first character through to the last: 

foreach (char c in "beer") 
  Console.WriteLine (c + " ");   // b e e r 

We define enumerable objects in “Enumeration and Iterators”. 

Jump Statements 
The C# jump statements are break, continue, goto, return, and throw. We 
cover the throw keyword in “try Statements and Exceptions”. 

The break statement 

The break statement ends the execution of the body of an iteration or switch 
statement: 

int x = 0; 
while (true) 
{ 
  if (x++ > 5) break;      // break from the loop 
} 
// execution continues here after break 
... 

The continue statement 

The continue statement forgoes the remaining statements in the loop and makes an 
early start on the next iteration. The following loop skips even numbers: 

for (int i = 0; i < 10; i++) 
{ 
  if ((i % 2) == 0) continue; 
  Console.Write (i + " ");      // 1 3 5 7 9 
} 

The goto statement 

The goto statement transfers execution to a label (denoted with a colon suffix) within a 
statement block. The following iterates the numbers 1 through 5, mimicking a for loop: 

int i = 1; 
startLoop: 
if (i <= 5) 
{ 
  Console.Write (i + " ");   // 1 2 3 4 5 
  i++; 
  goto startLoop; 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The return statement 

The return statement exits the method and must return an expression of the method’s 
return type if the method is nonvoid: 

static decimal AsPercentage (decimal d) 
{ 
  decimal p = d * 100m; 
  return p;     // Return to calling method with value 
} 

A return statement can appear anywhere in a method (except in a finally block). 

Namespaces 
A namespace is a domain within which type names must be unique. Types are typically 
organized into hierarchical namespaces—both to avoid naming conflicts and to make 
type names easier to find. For example, the RSA type that handles public key encryption 
is defined within the following namespace: 

System.Security.Cryptography 

A namespace forms an integral part of a type’s name. The following code calls RSA’s 
Create method: 

System.Security.Cryptography.RSA rsa = 
  System.Security.Cryptography.RSA.Create(); 

Namespaces are independent of assemblies, which are units of deployment 
such as an .exe or .dll. 

Namespaces also have no impact on member accessibility—public, 
internal, private, and so on. 

The namepace keyword defines a namespace for types within that block. For example: 

namespace Outer.Middle.Inner 
{ 
  class Class1 {} 
  class Class2 {} 
} 

The dots in the namespace indicate a hierarchy of nested namespaces. The code that 
follows is semantically identical to the preceding example. 

namespace Outer 
{ 
  namespace Middle 
  { 
    namespace Inner 
    { 
      class Class1 {} 
      class Class2 {} 
    } 
  } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

You can refer to a type with its fully qualified name, which includes all namespaces from 
the outermost to the innermost. For example, we could refer to Class1 in the preceding 
example as Outer.Middle.Inner.Class1. 

Types not defined in any namespace are said to reside in the global namespace. The 
global namespace also includes top-level namespaces, such as Outer in our example 

The using Directive 
The using directive imports a namespace and is a convenient way to refer to types 
without their fully qualified names. For example, we can refer to Class1 in the 
preceding example as follows: 

using Outer.Middle.Inner; 
 
class Test    // Test is in the global namespace 
{ 
  static void Main() 
  { 
    Class1 c;    // Don’t need fully qualified name 
    ... 
  } 
} 

A using directive can be nested within a namespace itself, to limit the scope of the 
directive. 

Rules Within a Namespace 
Name scoping 

Names declared in outer namespaces can be used unqualified within inner namespaces. In 
this example, the names Middle and Class1 are implicitly imported into Inner: 

namespace Outer 
{ 
  namespace Middle 
  { 
    class Class1 {} 
 
    namespace Inner 
    { 
      class Class2 : Class1 {} 
    } 
  } 
} 

If you want to refer to a type in a different branch of your namespace hierarchy, you can 
use a partially qualified name. In the following example, we base SalesReport on 
Common.ReportBase: 

namespace MyTradingCompany 
{ 
  namespace Common 
  { 
    class ReportBase {} 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  } 
  namespace ManagementReporting 
  { 
    class SalesReport : Common.ReportBase {} 
  } 
} 

Name hiding 

If the same type name appears in both an inner and outer namespace, the inner name 
wins. To refer to the type in the outer namespace, you must qualify its name. 

All type names are converted to fully qualified names at compile-time. 
Intermediate Language (IL) code contains no unqualified or partially qualified 
names. 

Repeated namespaces 

You can repeat a namespace declaration, as long as the type names within the 
namespaces don’t conflict: 

namespace Outer.Middle.Inner { class Class1 {} } 
namespace Outer.Middle.Inner { class Class2 {} } 

The classes can even span source files and assemblies. 

The global:: qualifier 

Occasionally, a fully qualified type name may conflict with an inner name. You can force 
C# to use the fully qualified type name by prefixing it with global:: as follows: 

global::System.Text.StringBuilder sb; 

Aliasing Types and Namespaces 
Importing a namespace can result in type-name collision. Rather than importing the 
whole namespace, you can import just the specific types you need, giving each type an 
alias. For example: 

using PropertyInfo2 = System.Reflection.PropertyInfo; 
class Program { PropertyInfo2 p; } 

An entire namespace can be aliased, as follows: 
using R = System.Reflection; 
class Program { R.PropertyInfo p; } 

Classes 
A class is the most common kind of reference type. The simplest possible class 
declaration is as follows: 

class Foo 
{ 
} 

A more complex class optionally has the following: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Preceding the keyword 
class 

Attributes and class modifiers. The non-
nested class modifiers are public, 
internal, abstract, sealed, 
static, unsafe, and partial 

Following 
YourClassName 

Generic type parameters, a base class, and 
interfaces 

Within the braces Class members (these are methods, 
properties, indexers, events, fields, 
constructors, overloaded operators, nested 
types, and a finalizer) 

Fields 
A field is a variable that is a member of a class or struct. For example: 

class Octopus 
{ 
  string name; 
  public int Age = 10; 
} 

A field may have the readonly modifier to prevent it from being modified after 
construction. A read-only field can be assigned only in its declaration or within the 
enclosing type’s constructor.  

Field initialization is optional. An uninitialized field has a default value (0, \0, null, 
false). Field initializers run before constructors, in the order in which they appear. 

For convenience, you may declare multiple fields of the same type in a comma-separated 
list. This is a convenient way for all the fields to share the same attributes and field 
modifiers. For example: 

static readonly int legs = 8, eyes = 2; 

Methods 
A method performs an action in a series of statements. A method can receive input data 
from the caller by specifying parameters and output data back to the caller by specifying 
a return type. A method can specify a void return type, indicating that it doesn’t return 
any value to its caller. A method can also output data back to the caller via ref/out 
parameters. 

A method’s signature must be unique within the type. A method’s signature comprises its 
name and parameter types (but not the parameter names, nor the return type). 

Overloading methods 

A type may overload methods (have multiple methods with the same name), as long as 
the parameter types are different. For example, the following methods can all coexist in 
the same type: 

void Foo (int x); 
void Foo (double x); 
void Foo (int x, float y); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

void Foo (float x, int y); 

Instance Constructors 
Constructors run initialization code on a class or struct. A constructor is defined like a 
method, except that the method name and return type are reduced to the name of the 
enclosing type: 

public class Panda 
{ 
  string name;              // Define field 
  public Panda (string n)   // Define constructor 
  { 
    name = n;               // Initialization code 
  } 
} 
... 
Panda p = new Panda ("Petey");   // Call constructor 

A class or struct may overload constructors. One overload may call another, using the 
this keyword: 

public class Wine 
{ 
  public Wine (decimal price) {...} 
 
  public Wine (  int year)  decimal price,
               : this (price) {...} 
} 

When one constructor calls another, the called constructor executes first. 

You can pass an expression into another constructor as follows: 
public Wine (decimal price, DateTime year) 
             : this (price, year.Year) {...} 

The expression itself cannot make use of the this reference, for example, to call an 
instance method. It can, however, call static methods. 

Implicit parameterless constructors 

For classes, the C# compiler automatically generates a parameterless public constructor if 
and only if you do not define any constructors. However, as soon as you define at least 
one constructor, the parameterless constructor is no longer automatically generated. 

For structs, a parameterless constructor is intrinsic to the struct; therefore, you cannot 
define your own. The role of a struct’s implicit parameterless constructor is to initialize 
each field with default values. 

Nonpublic constructors 

Constructors do not need to be public. A common reason to have a nonpublic constructor 
is to control instance creation via a static method call. The static method could be used to 
return an object from a pool rather than creating a new object, or return a specialized 
subclass chosen based on input arguments. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Object Initializers 
To simplify object initialization, the accessible fields or properties of an object can be 
initialized via an object initializer directly after construction. For example, consider the 
following class: 

public class Bunny 
{ 
  public string Name; 
  public bool LikesCarrots, LikesHumans; 
 
  public Bunny () {} 
  public Bunny (string n) { Name = n; } 
} 

Using object initializers, you can instantiate Bunny objects as follows: 

Bunny b1 = new Bunny { 
                       Name="Bo", 
                       LikesCarrots = true, 
                       LikesHumans = false 
                     }; 
 
Bunny b2 = new Bunny ("Bo") { 
                              LikesCarrots = true, 
                              LikesHumans = false 
                            }; 

The this Reference 
The this reference refers to the instance itself. In the following example, the Marry 
method uses this to set the partner’s mate field: 

public class Panda 
{ 
  public Panda Mate; 
 
  public void Marry (Panda partner) 
  { 
    Mate = partner; 
    partner.Mate = this; 
  } 
} 

The this reference also disambiguates a local variable or parameter from a field. For 
example: 

public class Test 
{ 
  string name; 
  public Test (string name) { this.name = name; } 
} 

The this reference is valid only within nonstatic members of a class or struct. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Properties 
Properties look like fields from the outside, but internally they contain logic, like 
methods do. For example, you can’t tell by looking at the following code whether 
CurrentPrice is a field or a property: 

Stock msft = new Stock(); 
msft.CurrentPrice = 30; 
msft.CurrentPrice -= 3; 
Console.WriteLine (msft.CurrentPrice); 

A property is declared like a field, but with a get/set block added. Here’s how to 
implement CurrentPrice as a property: 

public class Stock 
{ 
  decimal currentPrice;  // The private "backing" field 
 
  public decimal CurrentPrice    // The public property 
  { 
     get { return currentPrice; } 
     set { currentPrice = value; } 
  } 
} 

get and set denote property accessors. The get accessor runs when the property is 
read. It must return a value of the property’s type. The set accessor runs when the 
property is assigned. It has an implicit parameter named value of the property’s type 
that you typically assign to a private field (in this case, currentPrice). 

Although properties are accessed in the same way as fields, they differ in that they give 
the implementer complete control over getting and setting its value. This control enables 
the implementer to choose whatever internal representation is needed, without exposing 
the internal details to the user of the property. In this example, the set method could 
throw an exception if value was outside a valid range of values. 

Throughout this book, we use public fields to keep the examples free of 
distraction. In a real application, you would typically favor public properties 
over public fields to promote encapsulation. 

A property is read-only if it specifies only a get accessor, and it is write-only if it 
specifies only a set accessor. Write-only properties are rarely used. A property typically 
has a dedicated backing field to store the underlying data. However, it need not—it may 
instead return a value computed from other data. 

Automatic properties 

The most common implementation for a property is a getter and/or setter that simply 
reads and writes to a private field of the same type as the property. An automatic 
property declaration instructs the compiler to provide this implementation. We can 
redeclare the first example in this section as follows: 

public class Stock 
{ 
  public decimal CurrentPrice { get; set; } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The compiler automatically generates a private backing field of a compiler-generated 
name that cannot be referred to. The set accessor can be marked private if you want 
to expose the property as read-only to other types. 

get and set accessibility 

The get and set accessors can have different access levels. The typical use case for this 
is to have a public property with an internal or private access modifier on the 
setter: 

private decimal x; 
public decimal X 
{ 
  get         { return x;  } 
  private set { x = Math.Round (value, 2); } 
} 

Notice that you declare the property itself with the more permissive access level 
(public, in this case), and add the modifier to the accessor you want to be less 
accessible. 

Indexers 
Indexers provide a natural syntax for accessing elements in a class or struct that 
encapsulate a list or dictionary of values. Indexers are similar to properties, but are 
accessed via an index argument rather than a property name. The string class has an 
indexer that lets you access each of its char values via an int index: 

string s = "hello"; 
Console.WriteLine (s[0]); // 'h' 
Console.WriteLine (s[3]); // 'l' 

The syntax for using indexers is like that for using arrays, except that the index 
argument(s) can be of any type(s).  

Implementing an indexer 

To write an indexer, define a property called this, specifying the arguments in square 
brackets. For instance: 

class Sentence 
{ 
  string[] words = "The quick brown fox".Split(); 
 
  public string this [int wordNum]      // indexer 
  {  
    get { return words [wordNum];  } 
    set { words [wordNum] = value; } 
  } 
} 

Here’s how we could use this indexer: 
Sentence s = new Sentence(); 
Console.WriteLine (s[3]);       // fox 
s[3] = "kangaroo"; 
Console.WriteLine (s[3]);       // kangaroo 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

A type may declare multiple indexers, each with parameters of different types. An 
indexer can also take more than one parameter:  

public string this [int arg1, string arg2] 
{ 
  get { ... }  set { ... } 
} 

If you omit the set accessor, an indexer becomes read-only. 

Constants 
A constant is a static field whose value can never change. A constant is evaluated 
statically at compile time and the compiler literally substitutes its value whenever used 
(rather like a macro in C++). A constant can be any of the built-in numeric types, bool, 
char, string, or an enum type. 

A constant is declared with the const keyword and must be initialized with a value. For 
example: 

public class Test 
{ 
  public const string Message = "Hello World"; 
} 

A constant is much more restrictive than a static readonly field—both in the types 
you can use and in field initialization semantics. A constant also differs from a static 
readonly field in that the evaluation of the constant occurs at compile time. Constants 
can also be declared local to a method: 

static void Main() 
{ 
  const double twoPI = 2 * System.Math.PI; 
  ... 
} 

Static Constructors 
A static constructor executes once per type, rather than once per instance. A type can 
define only one static constructor, and it must be parameterless and have the same name 
as the type: 

class Test 
{ 
  static Test() { Console.Write ("Type Initialized"); } 
} 

The runtime automatically invokes a static constructor just prior to the type being used. 
Two things trigger this: instantiating the type, and accessing a static member in the type. 

If a static constructor throws an unhandled exception, that type becomes 
unusable for the life of the application. 

Static field initializers run just before the static constructor is called. If a type has no 
static constructor, field initializers will execute just prior to the type being used—or 
anytime earlier at the whim of the runtime. (This means that the presence of a static 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

constructor may cause field initializers to execute later in the program than they would 
otherwise.) 

Static Classes 
A class can be marked static, indicating that it must be composed solely of static 
members and cannot be subclassed. The System.Console and System.Math 
classes are good examples of static classes. 

Finalizers 
Finalizers are class-only methods that execute before the garbage collector reclaims the 
memory for an unreferenced object. The syntax for a finalizer is the name of the class 
prefixed with the ~ symbol: 

class Class1 
{ 
  ~Class1() { ... } 
} 

C# translates a finalizer into a method that overrides the Finalize method in the 
object class. We discuss garbage collection and finalizers fully in Chapter 12 of C# 5.0 
in a Nutshell. 

Partial Types and Methods 
Partial types allow a type definition to be split—typically across multiple files. A 
common scenario is for a partial class to be auto-generated from some other source (e.g., 
a Visual Studio template), and for that class to be augmented with additional hand-
authored methods. For example: 

// PaymentFormGen.cs - auto-generated 
partial class PaymentForm { ... } 
 
// PaymentForm.cs - hand-authored 
partial class PaymentForm { ... } 

Each participant must have the partial declaration. 

Participants cannot have conflicting members. A constructor with the same parameters, 
for instance, cannot be repeated. Partial types are resolved entirely by the compiler, 
which means that each participant must be available at compile time and must reside in 
the same assembly. 

A base class may be specified on a single participant or on all participants. In addition, 
each participant can independently specify interfaces to implement. We cover base 
classes and interfaces in “Inheritance” and “Interfaces.” 

Partial methods 

A partial type may contain partial methods. These let an auto-generated partial type 
provide customizable hooks for manual authoring. For example: 

partial class PaymentForm    // In auto-generated file 
{ 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  partial void ValidatePayment (decimal amount); 
} 
 
partial class PaymentForm    // In hand-authored file 
{ 
  partial void ValidatePayment (decimal amount) 
  { 
    if (amount > 100) Console.Write ("Expensive!"); 
  } 
} 

A partial method consists of two parts: a definition and an implementation. The definition 
is typically written by a code generator, and the implementation is typically manually 
authored. If an implementation is not provided, the definition of the partial method is 
compiled away (as is the code that calls it). This allows auto-generated code to be liberal 
in providing hooks, without having to worry about bloat. Partial methods must be void 
and are implicitly private. 

Inheritance 
A class can inherit from another class to extend or customize the original class. Inheriting 
from a class lets you reuse the functionality in that class instead of building it from 
scratch. A class can inherit from only a single class, but can itself be inherited by many 
classes, thus forming a class hierarchy. In this example, we start by defining a class called 
Asset: 

public class Asset { public string Name; } 

Next, we define classes called Stock and House, which will inherit from Asset. 
Stock and House get everything an Asset has, plus any additional members that they 
define: 

public class Stock : Asset   // inherits from Asset 
{ 
  public long SharesOwned; 
} 
 
public class House : Asset   // inherits from Asset 
{ 
  public decimal Mortgage; 
} 

Here’s how we can use these classes: 
Stock msft = new Stock { Name="MSFT", 
                         SharesOwned=1000 }; 
 
Console.WriteLine (msft.Name);         // MSFT 
Console.WriteLine (msft.SharesOwned);  // 1000 
 
House mansion = new House { Name="Mansion", 
                            Mortgage=250000 }; 
 
Console.WriteLine (mansion.Name);      // Mansion 
Console.WriteLine (mansion.Mortgage);  // 250000 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The subclasses, Stock and House, inherit the Name property from the base class, 
Asset. 

Subclasses are also called derived classes. 

Polymorphism 
References are polymorphic. This means a variable of type x can refer to an object that 
subclasses x. For instance, consider the following method: 

public static void Display (Asset asset) 
{ 
  System.Console.WriteLine (asset.Name); 
} 

This method can display both a Stock and a House, since they are both Assets. 
Polymorphism works on the basis that subclasses (Stock and House) have all the 
features of their base class (Asset). The converse, however, is not true. If Display 
was rewritten to accept a House, you could not pass in an Asset. 

Casting and Reference Conversions 
An object reference can be: 

• Implicitly upcast to a base class reference 
• Explicitly downcast to a subclass reference 

Upcasting and downcasting between compatible reference types performs reference 
conversions: a new reference is created that points to the same object. An upcast always 
succeeds; a downcast succeeds only if the object is suitably typed. 

Upcasting 

An upcast operation creates a base class reference from a subclass reference. For 
example: 

Stock msft = new Stock();    // From previous example 
Asset a = msft;              // Upcast 

After the upcast, variable a still references the same Stock object as variable msft. 
The object being referenced is not itself altered or converted: 

Console.WriteLine (a == msft);        // True 

Although a and msft refer to the identical object, a has a more restrictive view on that 
object: 

Console.WriteLine (a.Name);           // OK 
Console.WriteLine (a.SharesOwned);    // Error 

The last line generates a compile-time error because the variable a is of type Asset, 
even though it refers to an object of type Stock. To get to its SharesOwned field, you 
must downcast the Asset to a Stock. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Downcasting 

A downcast operation creates a subclass reference from a base class reference. For 
example: 

Stock msft = new Stock(); 
Asset a = msft;                      // Upcast 
Stock s = (Stock)a;                  // Downcast 
Console.WriteLine (s.SharesOwned);   // <No error> 
Console.WriteLine (s == a);          // True 
Console.WriteLine (s == msft);       // True 

As with an upcast, only references are affected—not the underlying object. A downcast 
requires an explicit cast because it can potentially fail at runtime: 

House h = new House(); 
Asset a = h;          // Upcast always succeeds 
Stock s = (Stock)a;   // Downcast fails: a is not a Stock 

If a downcast fails, an InvalidCastException is thrown. This is an example of 
runtime type checking (see “Static and Runtime Type Checking”). 

The as operator 

The as operator performs a downcast that evaluates to null (rather than throwing an 
exception) if the downcast fails: 

Asset a = new Asset(); 
Stock s = a as Stock;   // s is null; no exception thrown 

This is useful when you’re going to subsequently test whether the result is null: 
if (s != null) Console.WriteLine (s.SharesOwned); 

The as operator cannot perform custom conversions (see “Operator Overloading”) and it 
cannot do numeric conversions. 

The is operator 

The is operator tests whether a reference conversion would succeed; in other words, 
whether an object derives from a specified class (or implements an interface). It is often 
used to test before downcasting: 

if (a is Stock) Console.Write (((Stock)a).SharesOwned); 

The is operator does not consider custom or numeric conversions, but it does consider 
unboxing conversions (see “The object Type”). 

Virtual Function Members 
A function marked as virtual can be overridden by subclasses wanting to provide a 
specialized implementation. Methods, properties, indexers, and events can all be declared 
virtual: 

public class Asset 
{ 
  public string Name; 
  public virtual decimal Liability { get { return 0; } } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

A subclass overrides a virtual method by applying the override modifier: 

public class House : Asset 
{ 
  public decimal Mortgage; 
 
  public override decimal Liability  
    { get { return Mortgage; } } 
} 

By default, the Liability of an Asset is 0. A Stock does not need to specialize this 
behavior. However, the House specializes the Liability property to return the value 
of the Mortgage: 

House mansion = new House { Name="Mansion", 
                            Mortgage=250000 }; 
Asset a = mansion; 
Console.WriteLine (mansion.Liability);  // 250000 
Console.WriteLine (a.Liability);        // 250000 

The signatures, return types, and accessibility of the virtual and overridden methods must 
be identical. An overridden method can call its base class implementation via the base 
keyword (see “The base Keyword”). 

Abstract Classes and Abstract Members 
A class declared as abstract can never be instantiated. Instead, only its concrete 
subclasses can be instantiated. 

Abstract classes are able to define abstract members. Abstract members are like virtual 
members, except they don’t provide a default implementation. That implementation must 
be provided by the subclass, unless that subclass is also declared abstract: 

public abstract class Asset 
{ 
  // Note empty implementation 
  public abstract decimal NetValue { get; } 
} 

Subclasses override abstract members just as though they were virtual. 

Hiding Inherited Members 
A base class and a subclass may define identical members. For example: 

public class A      { public int Counter = 1; } 
public class B : A  { public int Counter = 2; } 

The Counter field in class B is said to hide the Counter field in class A. Usually, this 
happens by accident, when a member is added to the base type after an identical member 
was added to the subtype. For this reason, the compiler generates a warning, and then 
resolves the ambiguity as follows: 

• References to A (at compile time) bind to A.Counter. 

• References to B (at compile time) bind to B.Counter. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Occasionally, you want to hide a member deliberately, in which case you can apply the 
new modifier to the member in the subclass. The new modifier does nothing more than 
suppress the compiler warning that would otherwise result: 

public class A     { public  int Counter = 1; }    
public class B : A { public new int Counter = 2; } 

The new modifier communicates your intent to the compiler—and other programmers—
that the duplicate member is not an accident.  

Sealing Functions and Classes 
An overridden function member may seal its implementation with the sealed keyword 
to prevent it from being overridden by further subclasses. In our earlier virtual function 
member example, we could have sealed House’s implementation of Liability, 
preventing a class that derives from House from overriding Liability, as follows: 

public sealed override decimal Liability { get { ... } } 

You can also seal the class itself, implicitly sealing all the virtual functions, by applying 
the sealed modifier to the class itself. 

The base Keyword 
The base keyword is similar to the this keyword. It serves two essential purposes: 
accessing an overridden function member from the subclass, and calling a base-class 
constructor (see next section). 

In this example, House uses the base keyword to access Asset’s implementation of 
Liability: 

public class House : Asset 
{ 
  ... 
  public override decimal Liability 
  { 
    get { return base.Liability + Mortgage; } 
  } 
} 

With the base keyword, we access Asset’s Liability property nonvirtually. This 
means we will always access Asset’s version of this property—regardless of the 
instance’s actual runtime type. 

The same approach works if Liability is hidden rather than overridden. (You can 
also access hidden members by casting to the base class before invoking the function.) 

Constructors and Inheritance 
A subclass must declare its own constructors. For example, if we define Baseclass 
and Subclass as follows: 

public class Baseclass 
{ 
  public int X; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  public Baseclass () { } 
  public Baseclass (int x) { this.X = x; } 
} 
public class Subclass : Baseclass { } 

the following is illegal: 
Subclass s = new Subclass (123); 

Subclass must “redefine” any constructors it wants to expose. In doing so, it can call 
any of the base class’s constructors with the base keyword: 

public class Subclass : Baseclass 
{ 
  public Subclass (int x) : base (x) { ... } 
} 

The base keyword works rather like the this keyword, except that it calls a 
constructor in the base class. Base-class constructors always execute first; this ensures 
that base initialization occurs before specialized initialization. 

If a constructor in a subclass omits the base keyword, the base type’s parameterless 
constructor is implicitly called (if the base class has no accessible parameterless 
constructor, the compiler generates an error). 

Constructor and field initialization order 

When an object is instantiated, initialization takes place in the following order: 

1. From subclass to base class: 
a) Fields are initialized. 
b) Arguments to base-class constructor calls are evaluated. 

2. From base class to subclass: 
a) Constructor bodies execute. 

Overloading and Resolution 
Inheritance has an interesting impact on method overloading. Consider the following two 
overloads: 

static void Foo (Asset a) { } 
static void Foo (House h) { } 

When an overload is called, the most specific type has precedence: 
House h = new House (...); 
Foo(h);                      // Calls Foo(House) 

The particular overload to call is determined statically (at compile time) rather than at 
runtime. The following code calls Foo(Asset), even though the runtime type of a is 
House: 

Asset a = new House (...); 
Foo(a);                      // Calls Foo(Asset) 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

If you cast Asset to dynamic (see “Dynamic Binding”), the decision as to 
which overload to call is deferred until runtime and is based on the object’s 
actual type. 

The object Type 
object (System.Object) is the ultimate base class for all types. Any type can be 
implicitly upcast to object. 

To illustrate how this is useful, consider a general-purpose stack. A stack is a data 
structure based on the principle of LIFO—“Last-In First-Out.” A stack has two 
operations: push an object on the stack, and pop an object off the stack. Here is a simple 
implementation that can hold up to 10 objects: 

public class Stack 
{ 
  int position; 
  object[] data = new object[10]; 
  public void Push (object o) { data[position++] = o; } 
  public object Pop() { return data[--position]; } 
} 

Because Stack works with the object type, we can Push and Pop instances of any type 
to and from the Stack: 

Stack stack = new Stack(); 
stack.Push ("sausage"); 
string s = (string) stack.Pop();   // Downcast 
Console.WriteLine (s);             // sausage 

object is a reference type, by virtue of being a class. Despite this, value types, such as 
int, can also be cast to and from object. To make this possible, the CLR must 
perform some special work to bridge the underlying differences between value and 
reference types. This process is called boxing and unboxing. 

In “Generics”, we’ll describe how to improve our Stack class to better 
handle stacks with same-typed elements. 

Boxing and Unboxing 
Boxing is the act of casting a value-type instance to a reference-type instance. The 
reference type may be either the object class or an interface (see “Interfaces”). In this 
example, we box an int into an object: 

int x = 9; 
object obj = x;           // Box the int 

Unboxing reverses the operation, by casting the object back to the original value type: 
int y = (int)obj;         // Unbox the int 

Unboxing requires an explicit cast. The runtime checks that the stated value type matches 
the actual object type, and throws an InvalidCastException if the check fails. For 
instance, the following throws an exception, because long does not exactly match int: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

object obj = 9;       // 9 is inferred to be of type int 
long x = (long) obj;  // InvalidCastException 

The following succeeds, however: 
object obj = 9; 
long x = (int) obj; 

As does this: 
object obj = 3.5;      // 3.5 inferred to be type double 
int x = (int) (double) obj;    // x is now 3 

In the last example, (double) performs an unboxing and then (int) performs a 
numeric conversion. 

Boxing copies the value-type instance into the new object, and unboxing copies the 
contents of the object back into a value-type instance: 

int i = 3; 
object boxed = i; 
i = 5; 
Console.WriteLine (boxed);    // 3 

Static and Runtime Type Checking 
C# checks types both statically (at compile time) and at runtime. 

Static type checking enables the compiler to verify the correctness of your program 
without running it. The following code will fail because the compiler enforces static 
typing: 

int x = "5"; 

Runtime type checking is performed by the CLR when you downcast via a reference 
conversion or unboxing: 

object y = "5"; 
int z = (int) y;       // Runtime error, downcast failed 

Runtime type checking is possible because each object on the heap internally stores a 
little type token. This token can be retrieved by calling the GetType method of 
object. 

The GetType Method and typeof Operator 
All types in C# are represented at runtime with an instance of System.Type. There are 
two basic ways to get a System.Type object: call GetType on the instance, or use the 
typeof operator on a type name. GetType is evaluated at runtime; typeof is 
evaluated statically at compile time. 

System.Type has properties for such things as the type’s name, assembly, base type, 
and so on. For example: 

int x = 3; 
 
Console.Write (x.GetType().Name);               // Int32 
Console.Write (typeof(int).Name);               // Int32 
Console.Write (x.GetType().FullName);    // System.Int32 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Console.Write (x.GetType() == typeof(int));     // True 

System.Type also has methods that act as a gateway to the runtime’s reflection model. 
For detailed information, see Chapter 19 of C# 5.0 in a Nutshell. 

Object Member Listing 
Here are all the members of object: 

public extern Type GetType(); 
public virtual bool Equals (object obj); 
public static bool Equals (object objA, object objB); 
public static bool ReferenceEquals (object objA, 
                                    object objB); 
public virtual int GetHashCode(); 
public virtual string ToString(); 
protected override void Finalize(); 
protected extern object MemberwiseClone(); 

Equals, ReferenceEquals, and GetHashCode 
The Equals method in the object class is similar to the == operator, except that 
Equals is virtual, whereas == is static. The following example illustrates the difference: 

object x = 3; 
object y = 3; 
Console.WriteLine (x == y);        // False 
Console.WriteLine (x.Equals (y));  // True 

Because x and y have been cast to the object type, the compiler statically binds to 
object’s == operator, which uses reference-type semantics to compare two instances. 
(And because x and y are boxed, they are represented in separate memory locations, and 
so are unequal.) The virtual Equals method, however, defers to the Int32 type’s 
Equals method, which uses value-type semantics in comparing two values. 

The static object.Equals method simply calls the virtual Equals method on the 
first argument—after checking that the arguments are not null:  

object x = null, y = 3; 
bool error = x.Equals (y);        // Runtime error! 
bool ok = object.Equals (x, y);   // OK (false) 

ReferenceEquals forces a reference-type equality comparison (this is occasionally 
useful on reference types where the == operator has been overloaded to do otherwise). 

GetHashCode emits a hash code suitable for use with hashtable-based dictionaries, 
namely System.Collections.Generic.Dictionary and 
System.Collections.Hashtable. 

To customize a type’s equality semantics, you must at a minimum override Equals and 
GetHashCode. You would also usually overload the == and != operators. For an 
example on how to do both, see “Operator Overloading”. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The ToString Method 
The ToString method returns the default textual representation of a type instance. The 
ToString method is overridden by all built-in types: 

string s1 = 1.ToString();      // s1 is "1" 
string s2 = true.ToString();   // s2 is "True" 

You can override the ToString method on custom types as follows: 

public override string ToString() { return "Foo"; } 

Structs 
A struct is similar to a class, with the following key differences: 

• A struct is a value type, whereas a class is a reference type. 

• A struct does not support inheritance (other than implicitly deriving from object, 
or more precisely, System.ValueType). 

A struct can have all the members a class can, except a parameterless constructor, a 
finalizer, and virtual members. 

A struct is used instead of a class when value-type semantics are desirable. Good 
examples are numeric types, where it is more natural for assignment to copy a value 
rather than a reference. Because a struct is a value type, each instance does not require 
instantiation of an object on the heap; this can incur a useful saving when creating many 
instances of a type. For instance, creating an array of value type requires only a single 
heap allocation. 

Struct Construction Semantics 
The construction semantics of a struct are as follows: 

• A parameterless constructor that you can’t override implicitly exists. This performs a 
bitwise-zeroing of its fields. 

• When you define a struct constructor (with parameters), you must explicitly assign 
every field. 

• You can’t have field initializers in a struct. 

Access Modifiers 
To promote encapsulation, a type or type member may limit its accessibility to other 
types and other assemblies by adding one of five access modifiers to the declaration: 

public 

Fully accessible. This is the implicit accessibility for members of an enum or 
interface. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

internal 

Accessible only within containing assembly or friend assemblies. This is default 
accessibility for non-nested types. 

private 

Accessible only within containing type. This is the default accessibility members of a 
class or struct. 

protected 

Accessible only within containing type or subclasses. 

protected internal 

The union of protected and internal accessibility (this is more permissive 
than protected or internal alone, in that it makes a member more accessible 
in two ways). 

In the following example, Class2 is accessible from outside its assembly; Class1 is 
not: 

class Class1 {}         // Class1 is internal (default) 
public class Class2 {} 

ClassB exposes field x to other types in the same assembly; ClassA does not: 

class ClassA {         }  // x is private int x;  
class ClassB { internal int x; } 

When overriding a base class function, accessibility must be identical on the overridden 
function. The compiler prevents any inconsistent use of access modifiers—for example, a 
subclass itself can be less accessible than a base class, but not more. 

Friend Assemblies 
In advanced scenarios, you can expose internal members to other friend assemblies 
by adding the System.Runtime.CompilerServices.InternalsVisibleTo 
assembly attribute, specifying the name of the friend assembly as follows: 

[assembly: InternalsVisibleTo ("Friend")] 

If the friend assembly is signed with a strong name, you must specify its full 160-byte 
public key. You can extract this key via a LINQ query—an interactive example is given 
in LINQPad's free sample library for C# 5.0 in a Nutshell. 

Accessibility Capping 
A type caps the accessibility of its declared members. The most common example of 
capping is when you have an internal type with public members. For example: 

class C { public void Foo() {} } 

C’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo 
internal. A common reason Foo would be marked public is to make for easier 
refactoring, should C later be changed to public. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Interfaces 
An interface is similar to a class, but it provides a specification rather than an 
implementation for its members. An interface is special in the following ways: 

•  Interface members are all implicitly abstract. In contrast, a class can provide both 
abstract members and concrete members with implementations. 

• A class (or struct) can implement multiple interfaces. In contrast, a class can inherit 
from only a single class, and a struct cannot inherit at all (aside from deriving from 
System.ValueType). 

An interface declaration is like a class declaration, but it provides no implementation for 
its members, since all its members are implicitly abstract. These members will be 
implemented by the classes and structs that implement the interface. An interface can 
contain only methods, properties, events, and indexers, which noncoincidentally are 
precisely the members of a class that can be abstract. 

Here is a slightly simplified version of the IEnumerator interface, defined in 
System.Collections: 

public interface IEnumerator 
{ 
  bool MoveNext(); 
  object Current { get; } 
} 

Interface members are always implicitly public and cannot declare an access modifier. 
Implementing an interface means providing a public implementation for all its 
members: 

internal class Countdown : IEnumerator 
{ 
  int count = 11; 
  public bool MoveNext()  { return count-- > 0 ;  } 
  public object Current   { get { return count; } } 
} 

You can implicitly cast an object to any interface that it implements: 
IEnumerator e = new Countdown(); 
while (e.MoveNext()) 
  Console.Write (e.Current);      // 109876543210 

Extending an Interface 
Interfaces may derive from other interfaces. For instance: 

public interface IUndoable             { void Undo(); } 
public interface IRedoable : IUndoable { void Redo(); } 

IRedoable “inherits” all the members of IUndoable. 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Explicit Interface Implementation 
Implementing multiple interfaces can sometimes result in a collision between member 
signatures. You can resolve such collisions by explicitly implementing an interface 
member. For example: 

interface I1 { void Foo(); } 
interface I2 { int Foo();  } 
 
public class Widget : I1, I2 
{ 
  public void Foo()   // Implicit implementation 
  { 
    Console.Write ("Widget's implementation of I1.Foo"); 
  } 
 
  int I2.Foo()   // Explicit implementation of I2.Foo 
  { 
    Console.Write ("Widget's implementation of I2.Foo"); 
    return 42; 
  } 
} 

Because both I1 and I2 have conflicting Foo signatures, Widget explicitly 
implements I2’s Foo method. This lets the two methods coexist in one class. The only 
way to call an explicitly implemented member is to cast to its interface: 

Widget w = new Widget(); 
w.Foo();           // Widget's implementation of I1.Foo 
((I1)w).Foo();     // Widget's implementation of I1.Foo 
((I2)w).Foo();     // Widget's implementation of I2.Foo 

Another reason to explicitly implement interface members is to hide members that are 
highly specialized and distracting to a type’s normal use case. For example, a type that 
implements ISerializable would typically want to avoid flaunting its 
ISerializable members unless explicitly cast to that interface. 

Implementing Interface Members Virtually 
An implicitly implemented interface member is, by default, sealed. It must be marked 
virtual or abstract in the base class in order to be overridden: calling the interface 
member through either the base class or the interface then calls the subclass’s 
implementation. 

An explicitly implemented interface member cannot be marked virtual, nor can it be 
overridden in the usual manner. It can, however, be reimplemented. 

Reimplementing an Interface in a Subclass 
A subclass can reimplement any interface member already implemented by a base class. 
Reimplementation hijacks a member implementation (when called through the interface) 
and works whether or not the member is virtual in the base class. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

In the following example, TextBox implements IUndo.Undo explicitly, and so it 
cannot be marked as virtual. In order to “override” it, RichTextBox must 
reimplement IUndo’s Undo method: 

public interface IUndoable { void Undo(); } 
 
public class TextBox : IUndoable 
{ 
  void IUndoable.Undo() 
   { Console.WriteLine ("TextBox.Undo"); } 
} 
 
public class RichTextBox : TextBox, IUndoable 
{ 
  public new void Undo() 
   { Console.WriteLine ("RichTextBox.Undo"); } 
} 

Calling the reimplemented member through the interface calls the subclass’s 
implementation: 

RichTextBox r = new RichTextBox(); 
r.Undo();                 // RichTextBox.Undo 
((IUndoable)r).Undo();    // RichTextBox.Undo 

In this case, Undo is implemented explicitly. Implicitly implemented members can also 
be reimplemented, but the effect is nonpervasive in that calling the member through the 
base class invokes the base implementation. 

Enums 
An enum is a special value type that lets you specify a group of named numeric 
constants. For example: 

public enum BorderSide { Left, Right, Top, Bottom } 

We can use this enum type as follows: 
BorderSide topSide = BorderSide.Top; 
bool isTop = (topSide == BorderSide.Top);   // true 

Each enum member has an underlying integral value. By default, the underlying values 
are of type int, and the enum members are assigned the constants 0, 1, 2... (in their 
declaration order). You may specify an alternative integral type, as follows: 

public enum BorderSide : byte { Left,Right,Top,Bottom } 

You may also specify an explicit integral value for each member: 
public enum Bord Side yte er : b
 { Left=1, Right=2, Top=10, Bottom=11 } 

The compiler also lets you explicitly assign some of the enum members. The unassigned 
enum members keep incrementing from the last explicit value. The preceding example is 
equivalent to: 

public enum BorderSide : byte 
 { Left=1, Right, Top=10, Bottom } 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Enum Conversions 
You can convert an enum instance to and from its underlying integral value with an 
explicit cast: 

int i = (int) BorderSide.Left; 
BorderSide side = (BorderSide) i; 
bool leftOrRight = (int) side <= 2; 

You can also explicitly cast one enum type to another; the translation then uses the 
members' underlying integral values. 

The numeric literal 0 is treated specially in that it does not require an explicit cast: 

BorderSide b = 0;    // No cast required 
if (b == 0) ... 

In this particular example, BorderSide has no member with an integral value of 0. 
This does not generate an error: a limitation of enums is that the compiler and CLR do 
not prevent the assignment of integrals whose values fall outside the range of members: 

BorderSide b = (BorderSide) 12345; 
Console.WriteLine (b);              // 12345 

Flags Enums 
You can combine enum members. To prevent ambiguities, members of a combinable 
enum require explicitly assigned values, typically in powers of two. For example: 

[Flags] 
public enum BorderSides 
 { None=0, Left=1, Right=2, Top=4, Bottom=8 } 

By convention, a combinable enum type is given a plural rather than singular name. To 
work with combined enum values, you use bitwise operators, such as | and &. These 
operate on the underlying integral values: 

BorderSides leftRight = 
  BorderSides.Left | BorderSides.Right; 
 
if ((leftRight & BorderSides.Left) != 0) 
  Console.WriteLine ("Includes Left");   // Includes Left 
 
string formatted = leftRight.ToString(); // "Left, Right" 
 
BorderSides s = BorderSides.Left; 
s |= BorderSides.Right; 
Console.WriteLine (s == leftRight);      // True 

The Flags attribute should be applied to combinable enum types; if you fail to do this, 
calling ToString on an enum instance emits a number rather than a series of names. 

For convenience, you can include combination members within an enum declaration 
itself: 

[Flags] public enum BorderSides 
{ 
  None=0, 
  Left=1, Right=2, Top=4, Bottom=8, 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  LeftRight = Left | Right,  
  TopBottom = Top  | Bottom, 
  All       = LeftRight | TopBottom 
} 

Enum Operators 
The operators that work with enums are: 

=   ==   !=   <   >   <=   >=   +   -   ^  &  |   ˜ 
+=  -=   ++   -   sizeof 

The bitwise, arithmetic, and comparison operators return the result of processing the 
underlying integral values. Addition is permitted between an enum and an integral type, 
but not between two enums. 

Nested Types 
A nested type is declared within the scope of another type. For example: 

public class TopLevel 
{ 
  public class Nested { }               // Nested class 
  public enum Color { Red, Blue, Tan }  // Nested enum 
} 

A nested type has the following features: 

• It can access the enclosing type’s private members and everything else the enclosing 
type can access. 

• It can be declared with the full range of access modifiers, rather than just public 
and internal. 

• The default accessibility for a nested type is private rather than internal. 

• Accessing a nested type from outside the enclosing type requires qualification with 
the enclosing type’s name (like when accessing static members). 

For example, to access Color.Red from outside our TopLevel class, we’d have to do 
this: 

TopLevel.Color color = TopLevel.Color.Red; 

All types can be nested; however, only classes and structs can nest. 

Generics 
C# has two separate mechanisms for writing code that is reusable across different types: 
inheritance and generics. Whereas inheritance expresses reusability with a base type, 
generics express reusability with a “template” that contains “placeholder” types. 
Generics, when compared to inheritance, can increase type safety and reduce casting and 
boxing. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Generic Types 
A generic type declares type parameters—placeholder types to be filled in by the 
consumer of the generic type, which supplies the type arguments. Here is a generic type, 
Stack<T>, designed to stack instances of type T. Stack<T> declares a single type 
parameter T: 

public class Stack<T> 
{ 
  int position; 
  T[] data = new T[100]; 
  public void Push (T obj) { data[position++] = obj;  } 
  public T Pop()           { return data[--position]; } 
} 

We can use Stack<T> as follows: 
Stack<int> stack = new Stack<int>(); 
stack.Push(5); 
stack.Push(10); 
int x = stack.Pop();        // x is 10 
int y = stack.Pop();        // y is 5 

Notice that no downcasts are required in the last two lines, avoiding the 
possibility of runtime error and eliminating the overhead of boxing/unboxing. 
This makes our generic stack superior to a nongeneric stack that uses 
object in place of T (see “The object Type” for an example). 

Stack<int> fills in the type parameter T with the type argument int, implicitly 
creating a type on the fly (the synthesis occurs at runtime). Stack<int> effectively has 
the following definition (substitutions appear in bold, with the class name hashed out to 
avoid confusion): 

public class ### 
{ 
  int position; 
  int[] data; 
  public void Push (int obj) { data[position++] = obj;  } 
  public int Pop()           { return data[--position]; } 
} 

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed 
type. At runtime, all generic type instances are closed—with the placeholder types filled 
in. 

Generic Methods 
A generic method declares type parameters within the signature of a method. With 
generic methods, many fundamental algorithms can be implemented in a general-purpose 
way only. Here is a generic method that swaps two the contents of two variables of any 
type T: 

static void Swap<T> (ref T a, ref T b) 
{ 
  T temp = a; a = b; b = temp; 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Swap<T> can be used as follows: 

int x = 5, y = 10; 
Swap (ref x, ref y); 

Generally, there is no need to supply type arguments to a generic method, because the 
compiler can implicitly infer the type. If there is ambiguity, generic methods can be 
called with the type arguments as follows: 

Swap<int> (ref x, ref y); 

Within a generic type, a method is not classed as generic unless it introduces type 
parameters (with the angle bracket syntax). The Pop method in our generic stack merely 
consumes the type’s existing type parameter, T, and is not classed as a generic method. 

Methods and types are the only constructs that can introduce type parameters. Properties, 
indexers, events, fields, constructors, operators, and so on cannot declare type 
parameters, although they can partake in any type parameters already declared by their 
enclosing type. In our generic stack example, for instance, we could write an indexer that 
returns a generic item: 

public T this [int index] { get { return data[index]; } } 

Similarly, constructors can partake in existing type parameters, but not introduce them. 

Declaring Type Parameters 
Type parameters can be introduced in the declaration of classes, structs, interfaces, 
delegates (see “Delegates”), and methods. A generic type or method can have multiple 
parameters: 

class Dictionary<TKey, TValue> {...} 

To instantiate: 
var myDic = new Dictionary<int,string>(); 

Generic type names and method names can be overloaded as long as the number of type 
parameters differs. For example, the following two type names do not conflict: 

class A<T> {} 
class A<T1,T2> {} 

By convention, generic types and methods with a single type parameter name 
their parameter T, as long as the intent of the parameter is clear. With multiple 
type parameters, each parameter has a more descriptive name (prefixed by T). 

typeof and Unbound Generic Types 
Open generic types do not exist at runtime: open generic types are closed as part of 
compilation. However, it is possible for an unbound generic type to exist at runtime—
purely as a Type object. The only way to specify an unbound generic type in C# is with 
the typeof operator: 

class A<T> {} 
class A<T1,T2> {} 
... 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 
Type a1 = typeof (A<>);   // Unbound type 
Type a2 = typeof (A<,>);  // Indicates 2 type args 
Console.Write (a2.GetGenericArguments().Count());  // 2 

You can also use the typeof operator to specify a closed type: 

Type a3 = typeof (A<int,int>); 

or an open type (which is closed at runtime): 
class B<T> { void X() { Type t = typeof (T); } } 

The default Generic Value 
The default keyword can be used to get the default value given a generic type 
parameter. The default value for a reference type is null, and the default value for a 
value type is the result of bitwise-zeroing the type’s fields: 

static void Zap<T> (T[] array) 
{ 
  for (int i = 0; i < array.Length; i++) 
    array[i] = default(T); 
} 

Generic Constraints 
By default, a type parameter can be substituted with any type whatsoever. Constraints 
can be applied to a type parameter to require more specific type arguments. There are six 
kinds of constraint: 

where T : base-class   // Base-class constraint 
where T : interface    // Interface constraint 
where T : class        // Reference-type constraint 
where T : struct       // Value-type constraint 
where T : new()        // Parameterless constructor 
                       // constraint 
where U : T            // Naked type constraint 

In the following example, GenericClass<T,U> requires T to derive from (or be 
identical to) SomeClass and implement Interface1, and requires U to provide a 
parameterless constructor: 

class     SomeClass {} 
interface Interface1 {} 
 
class GenericClass<T,U> where T : SomeClass, Interface1 
                        where U : new() 
{ ... } 

Constraints can be applied wherever type parameters are defined, whether in methods or 
type definitions. 

A base-class constraint specifies that the type parameter must subclass (or match) a 
particular class; an interface constraint specifies that the type parameter must implement 
that interface. These constraints allow instances of the type parameter to be implicitly 
converted to that class or interface.  

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The class constraint and struct constraint specify that T must be a reference type or a 
(non-nullable) value type, respectively. The parameterless constructor constraint 
requires T to have a public parameterless constructor and allows you to call new() on T: 

static void Initialize<T> (T[] array) where T : new() 
{ 
  for (int i = 0; i < array.Length; i++) 
    array[i] = new T(); 
} 

The naked type constraint requires one type parameter to derive from (or match) another 
type parameter. 

Subclassing Generic Types 
A generic class can be subclassed just like a nongeneric class. The subclass can leave the 
base class’s type parameters open, as in the following example: 

class Stack<T>                   {...} 
class SpecialStack<T> : Stack<T> {...} 

Or the subclass can close the generic type parameters with a concrete type: 
class IntStack : Stack<int>  {...} 

A subtype can also introduce fresh type arguments: 
class List<T>                     {...} 
class KeyedList<T,TKey> : List<T> {...} 

Self-Referencing Generic Declarations 
A type can name itself as the concrete type when closing a type argument: 

public interface IEquatable<T> { bool Equals (T obj); } 
 
public class Balloon : IEquatable<Balloon> 
{ 
  public bool Equals (Balloon b) { ... } 
} 

The following are also legal: 
class Foo<T> where T : IComparable<T> { ... } 
class Bar<T> where T : Bar<T> { ... } 

Static Data 
Static data is unique for each closed type: 

class Bob<T> { public static int Count; } 
... 
Console.WriteLine (++Bob<int>.Count);     // 1 
Console.WriteLine (++Bob<int>.Count);     // 2 
Console.WriteLine (++Bob<string>.Count);  // 1 
Console.WriteLine (++Bob<object>.Count);  // 1 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Covariance (C# 4.0) 

Covariance and contravariance are advanced concepts. The motivation behind 
their introduction into C# was to allow generic interfaces and generics (in 
particular, those defined in the Framework, such as IEnumerable<T>) to 
work more as you’d expect. You can benefit from this without understanding 
the details behind covariance and contravariance. 

Assuming A is convertible to B, X is covariant if X<A> is convertible to X<B>. 

(With C#’s notion of variance , “convertible” means convertible via an implicit reference 
conversion—such as A subclassing B, or A implementing B. Numeric conversions, boxing 
conversions and custom conversions are not included.) 

For instance, type IFoo<T> is covariant for T if the following is legal: 

IFoo<string> s = ...; 
IFoo<object> b = s; 

As of C# 4.0, generic interfaces permit covariance for type parameters marked with the 
out modifier (as do generic delegates). To illustrate, suppose that the Stack<T> class 
that we wrote at the start of this section implements the following interface: 

public interface IPoppable<out T> { T Pop(); } 

The out modifier on T indicates that T is used only in output positions (e.g., return types 
for methods). The out modifier flags the interface as covariant and allows us to do this: 

// Assuming that Bear subclasses Animal: 
var bears = new Stack<Bear>(); 
bears.Push (new Bear()); 
 
// Because bears implements IPoppable<Bear>, 
// we can convert it to IPoppable<Animal>: 
IPoppable<Animal> animals = bears;   // Legal 
Animal a = animals.Pop(); 

The cast from bears to animals is permitted by the compiler—by virtue of the 
interface being covariant. 

The IEnumerator<T> and IEnumerable<T> interfaces (see 
“Enumeration and Iterators”) are marked as covariant from Framework 4.0. 
This allows you to cast IEnumerable<string> to 
IEnumerable<object>, for instance. 

The compiler will generate an error if you use a covariant type parameter in an input 
position (e.g., a parameter to a method or a writable property). The purpose of this 
limitation is to guarantee compile-time type safety. For instance, it prevents us from 
adding a Push(T) method to that interface which consumers could abuse with the 
seemingly benign operation of pushing a camel onto an IPoppable<Animal> 
(remember that the underlying type in our example is a stack of bears). In order to define 
a Push(T) method, T must in fact be contravariant. 

C# supports covariance (and contravariance) only for elements with reference 
conversions—not boxing conversions. So, if you wrote a method that accepted 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

a parameter of type IPoppable<object>, you could call it with 
IPoppable<string>, but not IPoppable<int>. 

Contravariance (C# 4.0) 
We previously saw that, assuming that A allows an implicit reference conversion to B, a 
type X is covariant if X<A> allows a reference conversion to X<B>. A type is 
contravariant when you can convert in the reverse direction—from X<B> to X<A>. This 
is supported on interfaces and delegates when the type parameter only appears in input 
positions, designated with the in modifier. Extending our previous example, if the 
Stack<T> class implements the following interface: 

public interface IPushable<in T> { void Push (T obj); } 

we can legally do this: 
IPushable<Animal> animals = new Stack<Animal>(); 
IPushable<Bear> bears = animals;    // Legal 
bears.Push (new Bear()); 

Mirroring covariance, the compiler will report an error if you try to use a contravariant 
type parameter in an output position (e.g., as a return value, or in a readable property). 

Delegates 
A delegate wires up a method caller to its target method at runtime. There are two aspects 
to a delegate: type and instance. A delegate type defines a protocol to which the caller 
and target will conform, comprising a list of parameter types and a return type. A 
delegate instance is an object that refers to one (or more) target methods conforming to 
that protocol. 

A delegate instance literally acts as a delegate for the caller: the caller invokes the 
delegate, and then the delegate calls the target method. This indirection decouples the 
caller from the target method. 

A delegate type declaration is preceded by the keyword delegate, but otherwise it 
resembles an (abstract) method declaration. For example: 

delegate int Transformer (int x); 

To create a delegate instance, you can assign a method to a delegate variable: 
class Test 
{ 
  static void Main() 
  { 
    Transformer t = Square;  // Create delegate instance 
    int result = t(3);       // Invoke delegate 
    Console.Write (result);  // 9 
  } 
  static int Square (int x) { return x * x; } 
} 

Invoking a delegate is just like invoking a method (since the delegate’s purpose is merely 
to provide a level of indirection): 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

t(3); 

The statement Transformer t = Square is shorthand for: 

Transformer t = new Transformer (Square); 

And t(3) is shorthand for: 

t.Invoke (3); 

A delegate is similar to a callback, a general term that captures constructs such as C 
function pointers. 

Writing Plug-in Methods with Delegates 
A delegate variable is assigned a method at runtime. This is useful for writing plug-in 
methods. In this example, we have a utility method named Transform that applies a 
transform to each element in an integer array. The Transform method has a delegate 
parameter, for specifying a plug-in transform. 

public delegate int Transformer (int x); 
 
class Test 
{ 
  static void Main() 
  { 
    int[] values = { 1, 2, 3 }; 
    Transform (values, Square); 
    foreach (int i in values) 
      Console.Write (i + " ");    // 1 4 9 
  } 
 
  static void Transform (int[] values, Transformer t) 
  { 
    for (int i = 0; i < values.Length; i++) 
      values[i] = t (values[i]); 
  } 
 
  static int Square (int x) { return x * x; } 
} 

Multicast Delegates 
All delegate instances have multicast capability. This means that a delegate instance can 
reference not just a single target method, but also a list of target methods. The + and += 
operators combine delegate instances. For example: 

SomeDelegate d = SomeMethod1; 
d += SomeMethod2; 

The last line is functionally the same as: 
d = d + SomeMethod2; 

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are 
invoked in the order they are added. 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The - and -= operators remove the right delegate operand from the left delegate operand. 
For example: 

d -= SomeMethod1; 

Invoking d will now cause only SomeMethod2 to be invoked. 

Calling + or += on a delegate variable with a null value is legal, as is calling -= on a 
delegate variable with a single target (which will result in the delegate instance being 
null). 

Delegates are immutable, so when you call += or -=, you’re in fact creating a 
new delegate instance and assigning it to the existing variable. 

If a multicast delegate has a nonvoid return type, the caller receives the return value from 
the last method to be invoked. The preceding methods are still called, but their return 
values are discarded. In most scenarios in which multicast delegates are used, they have 
void return types, so this subtlety does not arise. 

All delegate types implicitly derive from System.MulticastDelegate, which 
inherits from System.Delegate. C# compiles +, -, += and -= operations made on a 
delegate to the static Combine and Remove methods of the System.Delegate 
class. 

Instance vs. Static Method Targets 
When an instance method is assigned to delegate object, the latter must maintain a 
reference not only to the method, but also to the instance to which the method belongs. 
The System.Delegate class’s Target property represents this instance (and will be 
null for a delegate referencing a static method). 

Generic Delegate Types 
A delegate type may contain generic type parameters. For example: 

public delegate T Transformer<T> (T arg); 

Here’s how we could use this delegate type: 
static double Square (double x) { return x * x; } 
 
static void Main()   
{ 
  Transformer<double> s = Square; 
  Console.WriteLine (s (3.3));        // 10.89 
} 

The Func and Action Delegates 
With generic delegates, it becomes possible to write a small set of delegate types that are 
so general they can work for methods of any return type and any (reasonable) number of 
arguments. These delegates are the Func and Action delegates, defined in the System 
namespace (the in and out annotations indicate variance, which we will cover shortly): 

delegate TResult Func <out TResult> (); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

delegate TResult Func <in T, out TResult> (T arg); 
delegate TResult Func <in T1, in T2, out TResult> 
 (T1 arg1, T2 arg2); 
... and so on, up to T16 
 
delegate void Action (); 
delegate void Action <in T> (T arg); 
delegate void Action <in T1, in T2> (T1 arg1, T2 arg2); 
... and so on, up to T16 

These delegates are extremely general. The Transformer delegate in our previous 
example can be replaced with a Func delegate that takes a single argument of type T and 
returns a same-typed value: 

public static void Transform<T> ( 
  T[] values, Func<T,T> transformer) 
{ 
  for (int i = 0; i < values.Length; i++) 
    values[i] = transformer (values[i]); 
} 

The only practical scenarios not covered by these delegates are ref/out and pointer 
parameters. 

Delegate Compatibility 
Delegate types are all incompatible with each other, even if their signatures are the same: 

delegate void D1(); delegate void D2(); 
... 
D1 d1 = Method1; 
D2 d2 = d1;            // Compile-time error 

The following, however, is permitted: 
D2 d2 = new D2 (d1); 

Delegate instances are considered equal if they have the same type and method target(s). 
For multicast delegates, the order of the method targets is significant. 

Return type variance 

When you call a method, you may get back a type that is more specific than what you 
asked for. This is ordinary polymorphic behavior. In keeping with this, a delegate target 
method may return a more specific type than described by the delegate. This is 
covariance, and has been supported since C# 2.0: 

delegate object ObjectRetriever(); 
... 
static void Main() 
{ 
  ObjectRetriever o = new ObjectRetriever (GetString); 
  object result = o(); 
  Console.WriteLine (result);      // hello 
} 
static string GetString() { return "hello"; } 

The ObjectRetriever expects to get back an object, but an object subclass 
will also do because delegate return types are covariant. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Parameter variance 

When you call a method, you can supply arguments that have more specific types than 
the parameters of that method. This is ordinary polymorphic behavior. In keeping with 
this, a delegate target method may have less specific parameter types than described by 
the delegate. This is called contravariance: 

delegate void StringAction (string s); 
... 
static void Main() 
{ 
  StringAction sa = new StringAction (ActOnObject); 
  sa ("hello"); 
} 
static void ActOnObject (object o) 
{ 
  Console.WriteLine (o);   // hello 
}      

The standard event pattern is designed to help you leverage delegate 
parameter contravariance through its use of the common EventArgs base 
class. For example, you can have a single method invoked by two different 
delegates, one passing a MouseEventArgs and the other passing a 
KeyEventArgs. 

Type parameter variance for generic delegates (C# 4.0) 

We saw in “Generics” how type parameters can be covariant and contravariant for 
generic interfaces. The same capability also exists for generic delegates from C# 4.0. If 
you're defining a generic delegate type, it's good practice to: 

• Mark a type parameter used only on the return value as covariant (out). 

• Mark any type parameters used only on parameters as contravariant (in). 

Doing so allows conversions to work naturally by respecting inheritance relationships 
between types. The following delegate (defined in the System namespace) is covariant 
for TResult: 

delegate TResult Func<out TResult>(); 

allowing: 
Func<string> x = ...; 
Func<object> y = x; 

The following delegate (defined in the System namespace) is contravariant for T: 
delegate void Action<in T> (T arg); 

allowing: 
Action<object> x = ...; 
Action<string> y = x; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Events 
When using delegates, two emergent roles commonly appear: broadcaster and 
subscriber. The broadcaster is a type that contains a delegate field. The broadcaster 
decides when to broadcast, by invoking the delegate. The subscribers are the method 
target recipients. A subscriber decides when to start and stop listening, by calling += and 
-= on the broadcaster’s delegate. A subscriber does not know about, or interfere with, 
other subscribers. 

Events are a language feature that formalizes this pattern. An event is a construct that 
exposes just the subset of delegate features required for the broadcaster/subscriber model. 
The main purpose of events is to prevent subscribers from interfering with each other. 

The easiest way to declare an event is to put the event keyword in front of a delegate 
member: 

public class Broadcaster 
{ 
  public event ProgressReporter Progress; 
} 

Code within the Broadcaster type has full access to Progress and can treat it as a 
delegate. Code outside of Broadcaster can only perform += and -= operations on the 
Progress event. 

In the following example, the Stock class fires its PriceChanged event every time 
the Price of the Stock changes: 

public delegate void PriceChangedHandler 
 (decimal oldPrice, decimal newPrice); 
 
public class Stock 
{ 
  string symbol; decimal price; 
 
  public Stock (string symbol) { this.symbol = symbol; } 
 
  public event PriceChangedHandler PriceChanged; 
 
  public decimal Price 
  { 
    get { return price; } 
    set 
    { 
      if (price == value) return; 
      // Fire event if invocation list isn't empty: 
      if (PriceChanged != null) 
        PriceChanged (price, value); 
      price = value; 
    } 
  } 
} 

If we remove the event keyword from our example so that PriceChanged becomes 
an ordinary delegate field, our example would give the same results. However, Stock 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

would be less robust, in that subscribers could do the following things to interfere with 
each other: 

• Replace other subscribers by reassigning PriceChanged (instead of using the += 
operator). 

• Clear all subscribers (by setting PriceChanged to null). 

• Broadcast to other subscribers by invoking the delegate. 

Events can be virtual, overridden, abstract, or sealed. They can also be static. 

Standard Event Pattern 
The .NET Framework defines a standard pattern for writing events. Its purpose is to 
provide consistency across both Framework and user code. Here’s the preceding example 
refactored with this pattern: 

public class PriceChangedEventArgs : EventArgs 
{ 
  public readonly decimal LastPrice, NewPrice; 
 
  public PriceChangedEventArgs (decimal lastPrice, 
                                decimal newPrice) 
  { 
    LastPrice = lastPrice; NewPrice = newPrice; 
  } 
} 
 
public class Stock 
{ 
  string symbol; decimal price; 
 
  public Stock (string symbol) { this.symbol = symbol; } 
 
  public event EventHandler<PriceChangedEventArgs> 
               PriceChanged; 
 
  protected virtual void OnPriceChanged 
                        (PriceChangedEventArgs e) 
  { 
    if (PriceChanged != null) PriceChanged (this, e); 
  } 
   
  public decimal Price 
  { 
    get { return price; } 
    set 
    { 
      if (price == value) return; 
      OnPriceChanged (new PriceChangedEventArgs (price, 
                                                 value)); 
      price = value; 
    }   
  } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

At the core of the standard event pattern is System.EventArgs: a predefined 
Framework class with no members (other than the static Empty property). EventArgs 
is a base class for conveying information for an event. In this example, we subclass 
EventArgs to convey the old and new prices when a PriceChanged event is fired. 

The generic System.EventHandler delegate is also part of the .NET Framework 
and is defined as follows: 

public delegate void EventHandler<TEventArgs> 
  (object source, TEventArgs e) 
   where TEventArgs : EventArgs; 

Before C# 2.0 (when generics were added to the language) the solution was to 
instead write a custom event handling delegate for each EventArgs type as 
follows: 

delegate void PriceChangedHandler 
  (object sender, 
   PriceChangedEventArgs e); 

For historical reasons, most events within the Framework use delegates 
defined in this way. 

A protected virtual method, named On-event-name, centralizes firing of the event. This 
allows subclasses to fire the event (which is usually desirable) and also allows subclasses 
to insert code before and after the event is fired. 

Here’s how we could use our Stock class: 

static void Main() 
{ 
  Stock stock = new Stock ("THPW"); 
  stock.Price = 27.10M; 
 
  stock.PriceChanged += stock_PriceChanged; 
  stock.Price = 31.59M; 
} 
 
static void stock_PriceChanged 
  (object sender, PriceChangedEventArgs e) 
{ 
  if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M) 
    Console.WriteLine ("Alert, 10% price increase!"); 
} 

For events that don’t carry additional information, the Framework also provides a 
nongeneric EventHandler delegate. We can demonstrate this by rewriting our Stock 
class such that the PriceChanged event fires after the price changes. This means that 
no additional information need be transmitted with the event: 

public class Stock 
{ 
  string symbol; decimal price; 
 
  public Stock (string symbol) {this.symbol = symbol;} 
 
  public event EventHandler PriceChanged; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 
  protected virtual void OnPriceChanged (EventArgs e) 
  { 
    if (PriceChanged != null) PriceChanged (this, e); 
  } 
   
  public decimal Price 
  { 
    get { return price; } 
    set 
    { 
      if (price == value) return; 
      price = value; 
      OnPriceChanged (EventArgs.Empty);       
    }   
  } 
} 

Note that we also used the EventArgs.Empty property—this saves instantiating an 
instance of EventArgs. 

Event Accessors 
An event’s accessors are the implementations of its += and -= functions. By default, 
accessors are implemented implicitly by the compiler. Consider this event declaration: 

public event EventHandler PriceChanged; 

The compiler converts this to the following: 

• A private delegate field. 

• A public pair of event accessor functions, whose implementations forward the += 
and -= operations to the private delegate field. 

You can take over this process by defining explicit event accessors. Here’s a manual 
implementation of the PriceChanged event from our previous example: 

EventHandler _priceChanged;   // Private delegate 
public event EventHandler PriceChanged 
{ 
  add    { _priceChanged += value; } 
  remove { _priceChanged -= value; } 
} 

This example is functionally identical to C#’s default accessor implementation (except 
that C# also ensures thread safety around updating the delegate). By defining event 
accessors ourselves, we instruct C# not to generate default field and accessor logic. 

With explicit event accessors, you can apply more complex strategies to the storage and 
access of the underlying delegate. This is useful when the event accessors are merely 
relays for another class that is broadcasting the event, or when explicitly implementing an 
interface that declares an event: 

public interface IFoo { event EventHandler Ev; } 
class Foo : IFoo 
{ 
  EventHandler ev; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  event EventHandler IFoo.Ev 
  { 
    add { ev += value; } remove { ev -= value; } 
  } 
} 

Lambda Expressions 
A lambda expression is an unnamed method written in place of a delegate instance. The 
compiler immediately converts the lambda expression to either: 

• A delegate instance. 

• An expression tree, of type Expression<TDelegate>, representing the code 
inside the lambda expression in a traversable object model. This allows the lambda 
expression to be interpreted later at runtime (we describe the process in Chapter 8 of 
C# 5.0 in a Nutshell). 

Given the following delegate type: 
delegate int Transformer (int i); 

we could assign and invoke the lambda expression x => x * x as follows: 
Transformer sqr = x => x * x; 
Console.WriteLine (sqr(3));    // 9 

Internally, the compiler resolves lambda expressions of this type by writing a 
private method, and moving the expression’s code into that method. 

A lambda expression has the following form: 
(parameters) => expression-or-statement-block 

For convenience, you can omit the parentheses if and only if there is exactly one 
parameter of an inferable type. 

In our example, there is a single parameter, x, and the expression is x * x: 

x => x * x; 

Each parameter of the lambda expression corresponds to a delegate parameter, and the 
type of the expression (which may be void) corresponds to the return type of the 
delegate. 

In our example, x corresponds to parameter i, and the expression x * x corresponds to 
the return type int, therefore being compatible with the Transformer delegate. 

A lambda expression’s code can be a statement block instead of an expression. We can 
rewrite our example as follows: 

x => { return x * x; }; 

Lambda expressions are used most commonly with the Func and Action delegates, so 
you will most often see our earlier expression written as follows: 

Func<int,int> sqr = x => x * x; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The compiler can usually infer the type of lambda parameters contextually. When this is 
not the case, you can specify parameter types explicitly: 

Func<int,int> sqr = (int x) => x * x; 

Here’s an example of an expression that accepts two parameters: 
Func<string,string,int> totalLength =  
 (s1, s2) => s1.Length + s2.Length; 
 
int total = totalLength ("hello", "world");  // total=10; 

Assuming Clicked is an event of type EventHandler, the following attaches an 
event handler via a lambda expression: 

obj.Clicked += (sender,args) => Console.Write ("Click"); 

Capturing Outer Variables 
A lambda expression can reference the local variables and parameters of the method in 
which it’s defined (outer variables). For example: 

static void Main() 
{ 
  int factor = 2; 
  Func<int, int> multiplier = n => n * factor; 
  Console.WriteLine (multiplier (3));           // 6 
} 

Outer variables referenced by a lambda expression are called captured variables. A 
lambda expression that captures variables is called a closure. Captured variables are 
evaluated when the delegate is actually invoked, not when the variables were captured: 

int factor = 2; 
Func<int, int> multiplier = n => n * factor; 
factor = 10; 
Console.WriteLine (multiplier (3));           // 30 

Lambda expressions can themselves update captured variables: 
int seed = 0; 
Func<int> natural = () => seed++; 
Console.WriteLine (natural());           // 0 
Console.WriteLine (natural());           // 1 
Console.WriteLine (seed);                // 2 

Captured variables have their lifetimes extended to that of the delegate. In the following 
example, the local variable seed would ordinarily disappear from scope when 
Natural finished executing. But because seed has been captured, its lifetime is 
extended to that of the capturing delegate, natural: 

static Func<int> Natural() 
{ 
  int seed = 0; 
  return () => seed++;      // Returns a closure 
} 
static void Main() 
{ 
  Func<int> natural = Natural(); 
  Console.WriteLine (natural());      // 0 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  Console.WriteLine (natural());      // 1 
} 

Capturing iteration variables 

When you capture an iteration variable in a for loop, C# treats the iteration variables as 
though it was declared outside the loop. This means that the same variable is captured in 
each iteration. The following program writes 333 instead of writing 012: 

Action[] actions = new Action[3]; 
 
for (int i = 0; i < 3; i++) 
  actions [i] = () => Console.Write (i); 
 
foreach (Action a in actions) a();     // 333 

Each closure (shown in boldface) captures the same variable, i. (This actually makes 
sense when you consider that i is a variable whose value persists between loop iterations; 
you can even explicitly change i within the loop body if you want.) The consequence is 
that when the delegates are later invoked, each delegate sees i’s value at the time of 
invocation—which is 3. The solution, if we want to write 012, is to assign the iteration 
variable to a local variable that’s scoped inside the loop: 

Action[] actions = new Action[3]; 
for (int i = 0; i < 3; i++) 
{ 
  int loopScopedi = i; 
  actions [i] = () => Console.Write (loopScopedi); 
} 
foreach (Action a in actions) a();     // 012 

This causes the closure to capture a different variable on each iteration. 

foreach loops used to work in the same way but the rules have since 
changed. From C# 5.0, you can safely close over a foreach loop's iteration 
variable without needing a temporary variable. 

Anonymous Methods 
Anonymous methods are a C# 2.0 feature that has been mostly subsumed by lambda 
expressions. An anonymous method is like a lambda expression, except that it lacks 
implicitly typed parameters, expression syntax (an anonymous method must always be a 
statement block), and the ability to compile to an expression tree. 

To write an anonymous method, you include the delegate keyword followed 
(optionally) by a parameter declaration and then a method body. For example, given this 
delegate: 

delegate int Transformer (int i); 

we could write and call an anonymous method as follows: 
Transformer sqr = delegate (int x) {return x * x;}; 
Console.WriteLine (sqr(3));         // 9 

The first line is semantically equivalent to the following lambda expression: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Transformer sqr =       (int x) => {return x * x;}; 

Or simply: 
Transformer sqr =            x  => x * x; 

A unique feature of anonymous methods is that you can omit the parameter declaration 
entirely—even if the delegate expects them. This can be useful in declaring events with a 
default empty handler: 

public event EventHandler Clicked = delegate { }; 

This avoids the need for a null check before firing the event. The following is also legal 
(notice the lack of parameters): 

Clicked += delegate { Console.Write ("clicked"); }; 

Anonymous methods capture outer variables in the same way lambda expressions do. 

try Statements and Exceptions 
A try statement specifies a code block subject to error-handling or cleanup code. The 
try block must be followed by a catch block, a finally block, or both. The catch 
block executes when an error occurs in the try block. The finally block executes 
after execution leaves the try block (or if present, the catch block), to perform 
cleanup code, whether or not an error occurred. 

A catch block has access to an Exception object that contains information about the 
error. You use a catch block to either compensate for the error or rethrow the 
exception. You rethrow an exception if you merely want to log the problem, or if you 
want to rethrow a new, higher-level exception type. 

A finally block adds determinism to your program, by always executing no matter 
what. It’s useful for cleanup tasks such as closing network connections. 

A try statement looks like this: 

try 
{ 
  ... // exception may get thrown within execution of 
      // this block 
} 
catch (ExceptionA ex) 
{ 
  ... // handle exception of type ExceptionA 
} 
catch (ExceptionB ex) 
{ 
  ... // handle exception of type ExceptionB 
} 
finally 
{ 
  ... // clean-up code 
} 

Consider the following code: 
int x = 3, y = 0; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Console.WriteLine (x / y); 

Because y is zero, the runtime throws a DivideByZeroException, and our program 
terminates. We can prevent this by catching the exception as follows: 

try 
{ 
  int x = 3, y = 0; 
  Console.WriteLine (x / y); 
} 
catch (DivideByZeroException ex) 
{ 
  Console.Write ("y cannot be zero. "); 
} 
// Execution resumes here after exception... 

This is a simple example to illustrate exception handling. We could deal with 
this particular scenario better in practice by checking explicitly for the divisor 
being zero before calling Calc. 

Exceptions are relatively expensive to handle, taking hundreds of clock 
cycles. 

When an exception is thrown, the CLR performs a test: 

Is execution currently within a try statement that can catch the exception? 

• If so, execution is passed to the compatible catch block. If the catch block 
successfully finishes executing, execution moves to the next statement after the try 
statement (if present, executing the finally block first). 

• If not, execution jumps back to the caller of the function, and the test is repeated 
(after executing any finally blocks that wrap the statement). 

If no function in the call stack takes responsibility for the exception, an error dialog is 
displayed to the user, and the program terminates. 

The catch Clause 
A catch clause specifies what type of exception to catch. This must either be 
System.Exception or a subclass of System.Exception. Catching 
System.Exception catches all possible errors. This is useful when: 

• Your program can potentially recover regardless of the specific exception type. 
• You plan to rethrow the exception (perhaps after logging it). 
• Your error handler is the last resort, prior to termination of the program. 

More typically, though, you catch specific exception types, in order to avoid having to 
deal with circumstances for which your handler wasn’t designed (e.g., an 
OutOfMemoryException). 

You can handle multiple exception types with multiple catch clauses: 

try 
{ 
  DoSomething(); 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

} 
catch (IndexOutOfRangeException ex) { ... } 
catch (FormatException ex)          { ... } 
catch (OverflowException ex)        { ... } 

Only one catch clause executes for a given exception. If you want to include a safety 
net to catch more general exceptions (such as System.Exception) you must put the 
more specific handlers first. 

An exception can be caught without specifying a variable, if you don’t need to access its 
properties: 

catch (StackOverflowException)   // no variable 
 { ... } 

Furthermore, you can omit both the variable and the type (meaning that all exceptions 
will be caught): 

catch { ... } 

The finally Block 
A finally block always executes—whether or not an exception is thrown and whether 
or not the try block runs to completion. finally blocks are typically used for cleanup 
code. 

A finally block executes either: 

• After a catch block finishes 

• After control leaves the try block because of a jump statement (e.g., return or 
goto) 

• After the try block ends 

A finally block helps add determinism to a program. In the following example, the 
file that we open always gets closed, regardless of whether: 

• The try block finishes normally. 

• Execution returns early because the file is empty (EndOfStream). 

• An IOException is thrown while reading the file. 

For example: 
static void ReadFile() 
{ 
  StreamReader reader = null;  // In System.IO namespace 
  try 
  { 
    reader = File.OpenText ( t"); "file.tx
    if (reader.EndOfStream) return; 
    Console.WriteLine (reader.ReadToEnd()); 
  } 
  finally 
  { 
    if (reader != null) reader.Dispose(); 
  } 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

In this example, we closed the file by calling Dispose on the StreamReader. Calling 
Dispose on an object, within a finally block, is a standard convention throughout 
the .NET Framework and is supported explicitly in C# through the using statement. 

The using statement 

Many classes encapsulate unmanaged resources, such as file handles, graphics handles, or 
database connections. These classes implement System.IDisposable, which 
defines a single parameterless method named Dispose to clean up these resources. The 
using statement provides an elegant syntax for calling Dispose on an 
IDisposable object within a finally block. 

The following: 
using (StreamReader reader = File.OpenText ("file.txt")) 
{ 
  ... 
} 

is precisely equivalent to: 
StreamReader reader = File.OpenText ("file.txt"); 
try 
{ 
  ... 
} 
finally 
{ 
  if (reader != null) ((IDisposable)reader).Dispose(); 
} 

Throwing Exceptions 
Exceptions can be thrown either by the runtime or in user code. In this example, 
Display throws a System.ArgumentNullException: 

static void Display (string name) 
{ 
  if (name == null) 
    throw new ArgumentNullException ("name"); 
 
  Console.WriteLine (name); 
} 

Rethrowing an exception 

You can capture and rethrow an exception as follows: 
try {  ...  } 
catch (Exception ex) 
{ 
  // Log error 
  ... 
  throw;          // Rethrow same exception 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Rethrowing in this manner lets you log an error without swallowing it. It also lets you 
back out of handling an exception should circumstances turn out to be outside what you 
expected. 

If we replaced throw with throw ex, the example would still work, but the 
StackTrace property of the exception would no longer reflect the original 
error. 

The other common scenario is to rethrow a more specific or meaningful exception type: 
try 
{ 
  ... // parse a date of birth from XML element data 
} 
catch (FormatException ex) 
{ 
  throw new XmlException ("Invalid date of birth", ex); 
} 

When rethrowing a different exception, you can populate the InnerException 
property with the original exception to aid debugging. Nearly all types of exceptions 
provide a constructor for this purpose (such as in our example). 

Key Properties of System.Exception 
The most important properties of System.Exception are the following: 

StackTrace 

A string representing all the methods that are called from the origin of the exception 
to the catch block. 

Message 

A string with a description of the error. 

InnerException 

The inner exception (if any) that caused the outer exception. This, itself, may have 
another InnerException. 

Common Exception Types 
The following exception types are used widely throughout the CLR and .NET 
Framework. You can throw these yourself or use them as base classes for deriving 
custom exception types. 

System.ArgumentException 

Thrown when a function is called with a bogus argument. This generally indicates a 
program bug. 

System.ArgumentNullException 

Subclass of ArgumentException that’s thrown when a function argument is 
(unexpectedly) null. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

System.ArgumentOutOfRangeException 

Subclass of ArgumentException that’s thrown when a (usually numeric) 
argument is too big or too small. For example, this is thrown when passing a 
negative number into a function that accepts only positive values. 

System.InvalidOperationException 

Thrown when the state of an object is unsuitable for a method to successfully 
execute, regardless of any particular argument values. Examples include reading an 
unopened file or getting the next element from an enumerator where the underlying 
list has been modified partway through the iteration. 

System.NotSupportedException 

Thrown to indicate that a particular functionality is not supported. A good example is 
calling the Add method on a collection for which IsReadOnly returns true. 

System.NotImplementedException 

Thrown to indicate that a function has not yet been implemented. 

System.ObjectDisposedException 

Thrown when the object upon which the function is called has been disposed. 

Code contracts eliminate the need for ArgumentException (and its 
subclasses). Code contracts are covered in Chapter 13 of C# 5.0 in a Nutshell. 

Enumeration and Iterators 
Enumeration 
An enumerator is a read-only, forward-only cursor over a sequence of values. An 
enumerator is an object that implements System.Collections.IEnumerator or 
System.Collections.Generic.IEnumerator<T>. 

The foreach statement iterates over an enumerable object. An enumerable object is the 
logical representation of a sequence. It is not itself a cursor, but an object that produces 
cursors over itself. An enumerable either implements 
IEnumerable/IEnumerable<T> or has a method named GetEnumerator that 
returns an enumerator. 

The enumeration pattern is as follows: 
class Enumerator   // Typically implements IEnumerator<T> 
{ 
  public IteratorVariableType Current { get {...} } 
  public bool MoveNext() {...} 
} 
class Enumerable   // Typically implements IEnumerable<T> 
{ 
  public Enumerator GetEnumerator() {...} 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Here is the high-level way of iterating through the characters in the word beer using a 
foreach statement: 

foreach (char c in "beer") Console.WriteLine (c); 

Here is the low-level way of iterating through the characters in beer without using a 
foreach statement: 

using (var enumerator = "beer".GetEnumerator()) 
  while (enumerator.MoveNext()) 
  { 
    var element = enumerator.Current; 
    Console.WriteLine (element); 
  } 

If the enumerator implements IDisposable, the foreach statement also acts as a 
using statement, implicitly disposing the enumerator object. 

Collection Initializers 
You can instantiate and populate an enumerable object in a single step. For example: 

using System.Collections.Generic; 
... 
 
List<int> list = new List<int> {1, 2, 3}; 

The compiler translates the last line into the following: 
List<int> list = new List<int>(); 
list.Add (1); list.Add (2); list.Add (3); 

This requires that the enumerable object implements the 
System.Collections.IEnumerable interface, and that it has an Add method 
that has the appropriate number of parameters for the call. 

Iterators 
Whereas a foreach statement is a consumer of an enumerator, an iterator is a producer 
of an enumerator. In this example, we use an iterator to return a sequence of Fibonacci 
numbers (where each number is the sum of the previous two): 

using System; 
using System.Collections.Generic; 
 
class Test 
{ 
  static void Main() 
  { 
    foreach (int fib in Fibs(6)) 
      Console.Write (fib + "  "); 
  } 
 
  static IEnumerable<int> Fibs(int fibCount) 
  { 
    for (int i = 0, prevFib = 1, curFib = 1; 
         i < fibCount; 
         i++)  

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

    { 
      yield return prevFib; 
      int newFib = prevFib+curFib; 
      prevFib = curFib; 
      curFib = newFib; 
    } 
  } 
} 
OUTPUT: 1  1  2  3  5  8 

Whereas a return statement expresses “Here’s the value you asked me to return from 
this method,” a yield return statement expresses “Here’s the next element you asked 
me to yield from this enumerator.” On each yield statement, control is returned to the 
caller, but the callee’s state is maintained so that the method can continue executing as 
soon as the caller enumerates the next element. The lifetime of this state is bound to the 
enumerator, such that the state can be released when the caller has finished enumerating. 

The compiler converts iterator methods into private classes that implement 
IEnumerable<T> and/or IEnumerator<T>. The logic within the 
iterator block is “inverted” and spliced into the MoveNext method and 
Current property on the compiler-written enumerator class, which 
effectively becomes a state machine. This means that when you call an iterator 
method, all you’re doing is instantiating the compiler-written class; none of 
your code actually runs! Your code runs only when you start enumerating 
over the resultant sequence, typically with a foreach statement.  

Iterator Semantics 
An iterator is a method, property, or indexer that contains one or more yield 
statements. An iterator must return one of the following four interfaces (otherwise, the 
compiler will generate an error): 

System.Collections.IEnumerable 
System.Collections.IEnumerator 
System.Collections.Generic.IEnumerable<T> 
System.Collections.Generic.IEnumerator<T> 

Iterators that return an enumerator interface tend to be used less often. They’re useful 
when writing a custom collection class: typically, you name the iterator 
GetEnumerator and have your class implement IEnumerable<T>.  

Iterators that return an enumerable interface are more common—and simpler to use 
because you don’t have to write a collection class. The compiler, behind the scenes, 
writes a private class implementing IEnumerable<T> (as well as 
IEnumerator<T>). 

Multiple yield statements 

An iterator can include multiple yield statements: 

static void Main() 
{ 
  foreach (string s in Foo()) 
    Console.Write (s + " ");    // One Two Three 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 
static IEnumerable<string> Foo() 
{ 
  yield return "One"; 
  yield return "Two"; 
  yield return "Three"; 
} 

yield break 

The yield break statement indicates that the iterator block should exit early, without 
returning more elements. We can modify Foo as follows to demonstrate: 

static IEnumerable<string> Foo (bool breakEarly) 
{ 
  yield return "One"; 
  yield return "Two"; 
  if (breakEarly) yield break; 
  yield return "Three"; 
} 

A return statement is illegal in an iterator block—you must use yield 
break instead. 

Composing Sequences 
Iterators are highly composable. We can extend our Fibonacci example by adding the 
following method to the class: 

static IEnumerable<int> EvenNumbersOnly ( 
  IEnumerable<int> sequence) 
  { 
    foreach (int x in sequence) 
      if ((x % 2) == 0) 
        yield return x; 
  } 
} 

We can then output even Fibonacci numbers as follows: 
foreach (int fib in EvenNumbersOnly (Fibs (6))) 
  Console.Write (fib + " ");   // 2 8 

Each element is not calculated until the last moment—when requested by a 
MoveNext() operation. Figure 5 shows the data requests and data output over time. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 

Figure 5. Composing sequences 

The composability of the iterator pattern is essential in building LINQ queries. 

Nullable Types 
Reference types can represent a nonexistent value with a null reference. Value types, 
however, cannot ordinarily represent null values. For example: 

string s = null;   // OK - reference type. 
int i = null;      // Compile error - int cannot be null. 

To represent null in a value type, you must use a special construct called a nullable type. 
A nullable type is denoted with a value type followed by the ? symbol: 

int? i = null;                     // OK - Nullable Type 
Console.WriteLine (i == null);     // True 

Nullable<T> struct 
T? translates into System.Nullable<T>. Nullable<T> is a lightweight 
immutable structure, having only two fields, to represent Value and HasValue. The 
essence of System.Nullable<T> is very simple: 

public struct Nullable<T> where T : struct 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

{ 
  public T Value {get;} 
  public bool HasValue {get;} 
  public T GetValueOrDefault(); 
  public T GetValueOrDefault (T defaultValue); 
  ... 
} 

The code: 
int? i = null; 
Console.WriteLine (i == null);              // True 

translates to: 
Nullable<int> i = new Nullable<int>(); 
Console.WriteLine (! i.HasValue);           // True 

Attempting to retrieve Value when HasValue is false throws an 
InvalidOperationException. GetValueOrDefault() returns Value if 
HasValue is true; otherwise, it returns new T() or a specified custom default value. 

The default value of T? is null. 

Nullable Conversions 
The conversion from T to T? is implicit, and from T? to T is explicit. For example: 

int? x = 5;        // implicit 
int y = (int)x;    // explicit 

The explicit cast is directly equivalent to calling the nullable object’s Value property. 
Hence, an InvalidOperationException is thrown if HasValue is false. 

Boxing/Unboxing Nullable Values 
When T? is boxed, the boxed value on the heap contains T, not T?. This optimization is 
possible because a boxed value is a reference type that can already express null. 

C# also permits the unboxing of nullable types with the as operator. The result will be 
null if the cast fails: 

object o = "string"; 
int? x = o as int?; 
Console.WriteLine (x.HasValue);   // False 

Operator Lifting 
The Nullable<T> struct does not define operators such as <, >, or even ==. Despite 
this, the following code compiles and executes correctly: 

int? x = 5; 
int? y = 10; 
bool b = x < y;      // true 

This works because the compiler steals or “lifts” the less-than operator from the 
underlying value type. Semantically, it translates the preceding comparison expression 
into this: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

bool b = (x.HasValue && y.HasValue) 
          ? (x.Value < y.Value) 
          : false; 

In other words, if both x and y have values, it compares via int’s less-than operator; 
otherwise, it returns false. 

Operator lifting means you can implicitly use T’s operators on T?. You can define 
operators for T? in order to provide special-purpose null behavior, but in the vast 
majority of cases, it’s best to rely on the compiler automatically applying systematic 
nullable logic for you. 

The compiler performs null logic differently depending on the category of operator. 

Equality operators (== and !=) 

Lifted equality operators handle nulls just like reference types do. This means two null 
values are equal: 

Console.WriteLine (       null ==        null);  // True 
Console.WriteLine ((bool?)null == (bool?)null);  // True 

Further: 

• If exactly one operand is null, the operands are unequal. 

• If both operands are non-null, their Values are compared. 

Relational operators (<, <=, >=, >) 

The relational operators work on the principle that it is meaningless to compare null 
operands. This means comparing a null value to either a null or a non-null value returns 
false. 

bool b = x < y;    // Translation: 
 
bool b = (x == null || y == null) 
  ? false  
  : (x.Value < y.Value); 
 
// b is false (assuming x is 5 and y is null) 

All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)  

These operators return null when any of the operands are null. This pattern should be 
familiar to SQL users. 

int? c = x + y;   // Translation: 
 
int? c = (x == null || y == null) 
         ? null  
         : (int?) (x.Value + y.Value); 
 
// c is null (assuming x is 5 and y is null) 

An exception is when the & and | operators are applied to bool?, which we will discuss 
shortly. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Mixing nullable and non-nullable operators 

You can mix and match nullable and non-nullable types (this works because there is an 
implicit conversion from T to T?): 

int? a = null; 
int b = 2; 
int? c = a + b;   // c is null - equivalent to a + (int?)b 

bool? with & and | Operators 
When supplied operands of type bool? the & and | operators treat null as an unknown 
value. So, null | true is true, because: 

• If the unknown value is false, the result would be true. 
• If the unknown value is true, the result would be true. 

Similarly, null & false is false. This behavior would be familiar to SQL users. The 
following example enumerates other combinations: 

bool? n = null, f = false, t = true; 
Console.WriteLine (n | n);    // (null) 
Console.WriteLine (n | f);    // (null) 
Console.WriteLine (n | t);    // True 
Console.WriteLine (n & n);    // (null) 
Console.WriteLine (n & f);    // False 
Console.WriteLine (n & t);    // (null) 

Null Coalescing Operator 
The ?? operator is the null coalescing operator, and it can be used with both nullable 
types and reference types. It says “If the operand is non-null, give it to me; otherwise, 
give me a default value.” For example: 

int? x = null; 
int y = x ?? 5;        // y is 5 
 
int? a = null, b = 1, c = 2; 
Console.Write (a ?? b ?? c);  // 1 (first non-null value) 

The ?? operator is equivalent to calling GetValueOrDefault with an explicit default 
value, except that the expression passed to GetValueOrDefault is never evaluated if 
the variable is not null. 

Operator Overloading 
Operators can be overloaded to provide more natural syntax for custom types. Operator 
overloading is most appropriately used for implementing custom structs that represent 
fairly primitive data types. For example, a custom numeric type is an excellent candidate 
for operator overloading. 

The following symbolic operators can be overloaded: 
+   -   *   /   ++   --   !   ~   %   &   |   ^ 
==  !=  <   <<  >>   >  

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Implicit and explicit conversions can also be overridden (with the implicit and 
explicit keywords) as can the literals true and false, and the unary + and - 
operators. 

The compound assignment operators (e.g., +=, /=) are automatically overridden when 
you override the noncompound operators (e.g., +, /). 

Operator Functions 
An operator is overloaded by declaring an operator function. An operator function must 
be static, and at least one of the operands must be the type in which the operator function 
is declared. 

In the following example, we define a struct called Note representing a musical note, 
and then overload the + operator: 

public struct Note 
{ 
  int value; 
 
  public Note (int semitonesFromA) 
   { value = semitonesFromA; } 
 
  public static Note operator + (Note x, int semitones) 
  { 
    return new Note (x.value + semitones); 
  } 
} 

This overload allows us to add an int to a Note: 

Note B = new Note (2); 
Note CSharp = B + 2; 

Since we overrode +, we can use += too: 

CSharp += 2; 

Overloading Equality and Comparison Operators 
Equality and comparison operators are often overridden when writing structs, and in rare 
cases with classes. Special rules and obligations come with overloading these operators: 

Pairing 

The C# compiler enforces that operators that are logical pairs are both defined. These 
operators are (== !=), (< >), and (<= >=). 

Equals and GetHashCode 

If you overload == and !=, you will usually need to override object’s Equals 
and GetHashCode methods so that collections and hashtables will work reliably 
with the type. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

IComparable and IComparable<T> 

If you overload < and >, you would also typically implement IComparable and 
IComparable<T>. 

Extending the previous example, here’s how we could overload Note’s equality 
operators: 

public static bool operator == (Note n1, Note n2) 
{ 
  return n1.value == n2.value; 
} 
public static bool operator != (Note n1, Note n2) 
{ 
  return !(n1.value == n2.value); 
} 
public override bool Equals (object otherNote) 
{ 
  if (!(otherNote is Note)) return false; 
  return this == (Note)otherNote; 
} 
public override int GetHashCode() 
{ 
  return value.GetHashCode();   // Use value’s hashcode 
} 

Custom Implicit and Explicit Conversions 
Implicit and explicit conversions are overloadable operators. These conversions are 
typically overloaded to make converting between strongly related types (such as numeric 
types) concise and natural. 

As explained in the discussion on types, the rationale behind implicit conversions is that 
they should always succeed and not lose information during conversion. Otherwise, 
explicit conversions should be defined. 

In the following example, we define conversions between our musical Note type and a 
double (which represents the frequency in hertz of that note): 

... 
// Convert to hertz 
public static implicit operator double (Note x) 
{ 
  return 440 * Math.Pow (2,(double) x.value / 12 ); 
} 
   
// Convert from hertz (accurate to nearest semitone) 
public static explicit operator Note (double x) 
{ 
  return new Note ((int) (0.5 + 12 * (Math.Log(x/440) 
                  / Math.Log(2)) )); 
} 
... 
   
Note n =(Note)554.37;  // explicit conversion 
double x = n;          // implicit conversion 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

This example is somewhat contrived: in real life, these conversions might be 
better implemented with a ToFrequency method and a (static) 
FromFrequency method. 

Custom conversions are ignored by the as and is operators. 

Extension Methods 
Extension methods allow an existing type to be extended with new methods, without 
altering the definition of the original type. An extension method is a static method of a 
static class, where the this modifier is applied to the first parameter. The type of the 
first parameter will be the type that is extended. For example: 

public static class StringHelper 
{ 
  public static bool IsCapitalized (this string s) 
  { 
    if (string.IsNullOrEmpty (s)) return false; 
    return char.IsUpper (s[0]); 
  } 
} 

The IsCapitalized extension method can be called as though it were an instance 
method on a string, as follows: 

Console.Write ("Perth".IsCapitalized()); 

An extension method call, when compiled, is translated back into an ordinary static 
method call: 

Console.Write (StringHelper.IsCapitalized ("Perth")); 

Interfaces can be extended, too: 
public static T First<T> (this IEnumerable<T> sequence) 
{ 
  foreach (T element in sequence) 
    return element; 
  throw new InvalidOperationException ("No elements!"); 
} 
... 
Console.WriteLine ("Seattle".First());   // S 

Extension Method Chaining 
Extension methods, like instance methods, provide a tidy way to chain functions. 
Consider the following two functions: 

public static class StringHelper 
{ 
  public static string Pluralize (this string s) {...} 
  public static string Capitalize (this string s) {...} 
} 

x and y are equivalent and both evaluate to "Sausages", but x uses extension 
methods, whereas y uses static methods: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

string x = "sausage".Pluralize().Capitalize(); 
 
string y = StringHelper.Capitalize 
           (StringHelper.Pluralize ("sausage")); 

Ambiguity and Resolution 
Namespaces 

An extension method cannot be accessed unless the namespace is in scope (typically 
imported with a using statement). 

Extension methods versus instance methods 

Any compatible instance method will always take precedence over an extension 
method—even when the extension method’s parameters are more specifically type-
matched. 

Extension methods versus extension methods 

If two extension methods have the same signature, the extension method must be called 
as an ordinary static method to disambiguate the method to call. If one extension method 
has more specific arguments, however, the more specific method takes precedence. 

Anonymous Types 
An anonymous type is a simple class created on the fly to store a set of values. To create 
an anonymous type, you use the new keyword followed by an object initializer, 
specifying the properties and values the type will contain. For example: 

var dude = new { Name = "Bob", Age = 1 }; 

The compiler resolves this by writing a private nested type with read-only properties for 
Name (type string) and Age (type int). You must use the var keyword to reference 
an anonymous type, because the type’s name is compiler-generated. 

The property name of an anonymous type can be inferred from an expression that is itself 
an identifier. For example: 

int Age = 1; 
var dude = new { Name = "Bob", Age }; 

is equivalent to: 
var dude = new { Name = "Bob", Age = Age }; 

You can create arrays of anonymous types as follows: 
var dudes = new[] 
{ 
  new { Name = "Bob", Age = 30 }, 
  new { Name = "Mary", Age = 40 } 
}; 

Anonymous types are used primarily when writing LINQ queries. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

LINQ 
LINQ, or Language Integrated Query, allows you to write structured type-safe queries 
over local object collections and remote data sources. 

LINQ lets you query any collection implementing IEnumerable<>, whether an array, 
list, XML DOM, or remote data source (such as a table in SQL Server). LINQ offers the 
benefits of both compile-time type checking and dynamic query composition. 

A good way to experiment with LINQ is to download LINQPad, at 
www.linqpad.net. LINQPad lets you interactively query local collections and 
SQL databases in LINQ without any setup and is preloaded with numerous 
examples. 

LINQ Fundamentals 
The basic units of data in LINQ are sequences and elements. A sequence is any object 
that implements the generic IEnumerable interface, and an element is each item in the 
sequence. In the following example, names is a sequence, and Tom, Dick, and Harry 
are elements: 

string[] names = { "Tom", "Dick", "Harry" }; 

A sequence such as this we call a local sequence because it represents a local collection 
of objects in memory. 

A query operator is a method that transforms a sequence. A typical query operator 
accepts an input sequence and emits a transformed output sequence. In the 
Enumerable class in System.Linq, there are around 40 query operators; all 
implemented as static extension methods. These are called standard query operators. 

LINQ also supports sequences that can be dynamically fed from a remote data 
source such as a SQL Server. These sequences additionally implement the 
IQueryable<> interface and are supported through a matching set of 
standard query operators in the Queryable class. 

A simple query 

A query is an expression that transforms sequences with one or more query operators. 
The simplest query comprises one input sequence and one operator. For instance, we can 
apply the Where operator on a simple array to extract those whose length is at least four 
characters as follows: 

string[] names = { "Tom", "Dick", "Harry" }; 
 
IEnumerable<string> filteredNames = 
  System.Linq.Enumerable.Where ( 
    names, n => n.Length >= 4); 
 
foreach (string n in filteredNames) 
  Console.Write (n + "|");            // Dick|Harry| 

Because the standard query operators are implemented as extension methods, we can call 
Where directly on names—as though it were an instance method: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

IEnumerable<string> filteredNames = 
  names.Where (n => n.Length >= 4); 

(For this to compile, you must import the System.Linq namespace with a using 
directive.) The Where method in System.Linq.Enumerable has the following 
signature: 

static IEnumerable<TSource> Where<TSource> ( 
  this IEnumerable<TSource> source, 
  Func<TSource,bool> predicate) 

source is the input sequence; predicate is a delegate that is invoked on each input 
element. Where method includes all elements in the output sequence, for which the 
delegate returns true. Internally, it’s implemented with an iterator—here’s its source 
code: 

foreach (TSource element in source) 
  if (predicate (element)) 
    yield return element; 

Projecting 

Another fundamental query operator is the Select method. This transforms (projects) 
each element in the input sequence with a given lambda expression: 

string[] names = { "Tom", "Dick", "Harry" }; 
 
IEnumera ring> u  ble<st pperNames =
  names.Select (n => n.ToUpper()); 
 
foreach (string n in upperNames) 
  Console.Write (n + "|");       // TOM|DICK|HARRY| 

A query can project into an anonymous type: 
var query = names.Select (n => new {  
                                     Name = n, 
                                     Length = n.Length 
                                   }); 
foreach (var row in query) 
  Console.WriteLine (row); 

Here’s the result: 
{ Name = Tom, Length = 3 } 
{ Name = Dick, Length = 4 } 
{ Name = Harry, Length = 5 } 

Take and Skip 

The original ordering of elements within an input sequence is significant in LINQ. Some 
query operators rely on this behavior, such as Take, Skip, and Reverse. The Take 
operator outputs the first x elements, discarding the rest: 

int[] numbers  = { 10, 9, 8, 7, 6 }; 
IEnumerable<int> firstThree = numbers.Take (3); 
// firstThree is { 10, 9, 8 } 

The Skip operator ignores the first x elements, and outputs the rest: 

IEnumerable<int> lastTwo = numbers.Skip (3); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Element operators 

Not all query operators return a sequence. The element operators extract one element 
from the input sequence; examples are First, Last, Single, and ElementAt: 

int[] numbers    = { 10, 9, 8, 7, 6 }; 
int firstNumber  = numbers.First();                // 10 
int lastNumber   = numbers.Last();                 // 6 
int secondNumber = numbers.ElementAt (2);          // 8 
int firstOddNum  = numbers.First (n => n%2 == 1);  // 9 

All of these operators throw an exception if no elements are present. To get a null/empty 
return value instead of an exception, use FirstOrDefault, LastOrDefault, 
SingleOrDefault or ElementAtOrDefault. 

The Single and SingleOrDefault methods are equivalent to First and 
FirstOrDefault except that they throw an exception if there’s more than one match. 
This behavior is useful when querying a database table for a row by primary key. 

Aggregation operators 

The aggregation operators return a scalar value; usually of numeric type. The most 
commonly used aggregation operators are Count, Min, Max and Average: 

int[] numbers = { 10, 9, 8, 7, 6 }; 
int count     = numbers.Count();             // 5 
int min       = numbers.Min();               // 6 
int max       = numbers.Max();               // 10 
double avg    = numbers.Average();           // 8 

Count accepts an optional predicate, which indicates whether to include a given 
element. The following counts all even numbers: 

int evenNums = numbers.Count (n => n % 2 == 0);   // 3 

The Min, Max and Average operators accept an optional argument that transforms each 
element prior to it being aggregated: 

int maxRemainderAfterDivBy5 = numbers.Max 
                              (n => n % 5);       // 4 

 The following calculates the root-mean-square of numbers: 

double rms = Math.Sqrt (numbers.Average (n => n * n)); 

Quantifiers 

The quantifiers return a bool value. The quantifiers are Contains, Any, All and 
SequenceEquals (which compares two sequences): 

int[] numbers = { 10, 9, 8, 7, 6 }; 
 
bool hasTheNumberNine = numbers.Contains (9);    // true 
bool hasMoreThanZeroElements = numbers.Any();    // true 
bool hasOddNum = numbers.Any (n => n % 2 == 1);  // true 
bool allOddNums = numbers.All (n => n % 2 == 1); // false 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Set operators 

The set operators accept two same-typed input sequences. Concat appends one 
sequence to another; Union does the same but with duplicates removed: 

int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 }; 
 
IEnumerable<int> 
  concat = seq1.Concat (seq2),   // { 1, 2, 3, 3, 4, 5 } 
  union  = seq1.Union  (seq2),   // { 1, 2, 3, 4, 5 } 

The other two operators in this category are Intersect and Except: 

IEnumerable<int> 
  commonality = seq1.Intersect (seq2),    //  { 3 } 
  difference1 = seq1.Except    (seq2),    //  { 1, 2 } 
  difference2 = seq2.Except    (seq1);    //  { 4, 5 } 

Deferred Execution 
An important feature of many query operators is that they execute not when constructed, 
but when enumerated (in other words, when MoveNext is called on its enumerator). 
Consider the following query: 

var numbers = new List<int> { 1 }; 
numbers.Add (1); 
 
IEnumerable<int> query = numbers.Select (n => n * 10);  
numbers.Add (2);    // Sneak in an extra element 
 
foreach (int n in query) 
  Console.Write (n + "|");          // 10|20| 

The extra number that we sneaked into the list after constructing the query is included in 
the result, because it’s not until the foreach statement runs that any filtering or sorting 
takes place. This is called deferred or lazy evaluation. Deferred execution decouples 
query construction from query execution, allowing you to construct a query in several 
steps, as well as making it possible to query a database without retrieving all the rows to 
the client. All standard query operators provide deferred execution, with the following 
exceptions: 

• Operators that return a single element or scalar value (the element operators, 
aggregation operators and quantifiers) 

• The following conversion operators: 
ToArray, ToList, ToDictionary, ToLookup 

The conversion operators are useful, in part, because they defeat lazy evaluation. This can 
be useful to “freeze” or cache the results at a certain point in time, to avoid re-executing a 
computationally intensive or remotely sourced query such as a LINQ to SQL table. (A 
side-effect of lazy evaluation is that the query gets re-evaluated should you later re-
enumerate it). 

The following example illustrates the ToList operator: 
var numbers = new List<int>() { 1, 2 }; 
 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

List<int> timesTen = numbers 
  .Select (n => n * 10)  
  .ToList();    // Executes immediately into a List<int> 
 
numbers.Clear(); 
Console.WriteLine (timesTen.Count);      // Still 2 

Subqueries provide another level of indirection. Everything in a subquery is 
subject to deferred execution—including aggregation and conversion 
methods, because the subquery is itself executed only lazily upon demand. 
Assuming names is a string array, a subquery looks like this: 

names.Where ( 
  n => n.Length == 
    names.Min (n2 => n2.Length)) 

Standard Query Operators 
The standard query operators (as implemented in the System.Linq.Enumerable 
class) can be divided into 12 categories, summarized in Table 1. 

Table 1. Query operator categories 

Category Description Deferred 
execution? 

Filtering Returns a subset of elements that satisfy 
a given condition  

Yes 

Projecting Transforms each element with a lambda 
function, optionally expanding 
subsequences 

Yes 

Joining Meshes elements of one collection with 
another, using a time-efficient lookup 
strategy 

Yes 

Ordering Returns a reordering of a sequence Yes 
Grouping Groups a sequence into subsequences. Yes 
Set Accepts two same-typed sequences, and 

returns their commonality, sum or 
difference 

Yes 

Element Picks a single element from a sequence No 
Aggregation Performs a computation over a 

sequence, returning a scalar value 
(typically a number) 

No 

Quantifiers Performs a computation over a 
sequence, returning true or false  

No 

Conversion: 
Import 

Converts a nongeneric sequence to a 
(queryable) generic sequence 

Yes 

Conversion: 
Export 

Converts a sequence to an array, list, 
dictionary or lookup, forcing immediate 

No 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

evaluation 
Generation Manufactures a simple sequence Yes 

Tables 2-13 summarize each of the query operators. The operators shown in bold have 
special support in C# (see “Query Expressions”). 

Table 2. Filtering operators 

Method Description 
Where Returns a subset of elements that satisfy a given 

condition  
Take Returns the first x elements, and discards the rest 
Skip Ignores the first x elements, and returns the rest 
TakeWhile Emits elements from the input sequence until the given 

predicate is true 
SkipWhile Ignores elements from the input sequence until the 

given predicate is true, and then emits the rest 
Distinct Returns a collection that excludes duplicates 

Table 3. Projection operators 

Method Description 
Select Transforms each input element with a given lambda 

expression 
SelectMany Transforms each input element, then flattens and 

concatenates the resultant subsequences 

Table 4. Joining operators 

Method Description 
Join Applies a lookup strategy to match elements from two 

collections, emitting a flat result set 
GroupJoin As above, but emits a hierarchical result set 
Zip Enumerates two sequences in step, returning a sequence 

that applies a function over each element pair 

Table 5. Ordering operators 

Method Description 
OrderBy, ThenBy Returns the elements sorted in ascending 

order 
OrderByDescending, 
ThenByDescending 

Returns the elements sorted in descending 
order 

Reverse Returns the elements in reverse order 

Table 6. Grouping operators 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Method Description 
GroupBy Groups a sequence into subsequences 

Table 7. Set operators 

Method Description 
Concat Concatenates two sequences 
Union Concatenates two sequences, removing duplicates 
Intersect Returns elements present in both sequences 
Except Returns elements present in the first, but not the second 

sequence 

Table 8. Element operators 

Method Description 
First, 
FirstOrDefault 

Returns the first element in the sequence, 
or the first element satisfying a given 
predicate 

Last, 
LastOrDefault 

Returns the last element in the sequence, 
or the last element satisfying a given 
predicate 

Single, 
SingleOrDefault 

Equivalent to 
First/FirstOrDefault, but throws 
an exception if there is more than one 
match 

ElementAt, 
ElementAtOrDefault 

Returns the element at the specified 
position 

DefaultIfEmpty Returns null or default(TSource) if 
the sequence has no elements 

Table 9. Aggregation operators 

Method Description 
Count, 
LongCount 

Returns the total number of elements in the input 
sequence, or the number of elements satisfying a given 
predicate 

Min, Max Returns the smallest or largest element in the sequence 
Sum, 
Average 

Calculates a numeric sum or average over elements in 
the sequence 

Aggregate Performs a custom aggregation 

Table 10. Qualifiers 

Method Description 
Contains Returns true if the input sequence contains the 

given element 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Any Returns true if any elements satisfy the given 
predicate  

All Returns true if all elements satisfy the given 
predicate 

SequenceEqual Returns true if the second sequence has identical 
elements to the input sequence 

Table 11. Conversion operators (import) 

Method Description 
OfType Converts IEnumerable to IEnumerable<T>, 

discarding wrongly typed elements 
Cast Converts IEnumerable to IEnumerable<T>, 

throwing an exception if there are any wrongly typed 
elements 

Table 12. Table Conversion operators (export) 

Method Description 
ToArray Converts IEnumerable<T> to T[] 
ToList Converts IEnumerable<T> to List<T> 
ToDictionary Converts IEnumerable<T> to 

Dictionary<TKey,TValue> 
ToLookup Converts IEnumerable<T> to 

ILookup<TKey,TElement> 
AsEnumerable Downcasts to IEnumerable<T> 
AsQueryable Casts or converts to IQueryable<T> 

Table 13. Generation operators 

Method Description 
Empty Creates an empty sequence 
Repeat Creates a sequence of repeating elements 
Range Creates a sequence of integers 

Chaining Query Operators 
To build more complex queries, you chain query operators together. For example, the 
following query extracts all strings containing the letter “a”, sorts them by length, and 
then converts the results to uppercase: 

string[] names = { "Tom","Dick","Harry","Mary","Jay" }; 
 
IEnumerable<string> query = names 
  .Where   (n => n.Contains ("a")) 
  .OrderBy (n => n.Length) 
  .Select  (n => n.ToUpper()); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 
foreach (string name in query) 
  Console.Write (name + "|"); 
 
// RESULT: JAY|MARY|HARRY| 

Where, OrderBy, and Select are all standard query operators that resolve to 
extension methods in the Enumerable class. The Where operator emits a filtered 
version of the input sequence; OrderBy emits a sorted version of its input sequence; 
Select emits a sequence where each input element is transformed or projected with a 
given lambda expression (n.ToUpper(), in this case). Data flows from left to right 
through the chain of operators, so the data is first filtered, then sorted, then projected. The 
end result resembles a production line of conveyor belts, as illustrated in Figure 6. 

 

Figure 6. Chaining query operators 

Deferred execution is honored throughout with operators, so no filtering, sorting or 
projecting takes place until the query is actually enumerated.  

Query Expressions 
So far, we’ve written queries by calling extension methods in the Enumerable class. In 
this book, we describe this as fluent syntax. C# also provides special language support for 
writing queries, called query expressions. Here’s the preceding query expressed as a 
query expression: 

IEnumerable<string> query = 
  from n in names 
  where n.Contains ("a") 
  orderby n.Length 
  select n.ToUpper(); 

A query expression always starts with a from clause, and ends with either a select or 
group clause. The from clause declares an range variable (in this case, n) which you 
can think of as traversing the input collection—rather like foreach. Figure 7 illustrates 
the complete syntax. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 

Figure 7. Query expression syntax 

If you’re familiar with SQL, LINQ’s query expression syntax—with the 
from clause first and the select clause last—might look bizarre. Query 
expression syntax is actually more logical because the clauses appear in the 
order they’re executed. This allows Visual Studio to prompt you with 
Intellisense as you type, as well as simplifying the scoping rules for 
subqueries.  

The compiler processes query expressions by translating them to fluent syntax. It does 
this in a fairly mechanical fashion—much like it translates foreach statements into 
calls to GetEnumerator and MoveNext: 

IEnumerable<string> query = names 
  .Where   (n => n.Contains ("a")) 
  .OrderBy (n => n.Length) 
  .Select  (n => n.ToUpper()); 

 The Where, OrderBy, and Select operators then resolve using the same rules that 
would apply if the query were written in fluent syntax. In this case, they bind to extension 
methods in the Enumerable class (assuming you’ve import the System.Linq 
namespace) because names implements IEnumerable<string>. The compiler 
doesn’t specifically favor the Enumerable class, however, when translating query 
syntax. You can think of the compiler as mechanically injecting the words “Where,” 
“OrderBy,” and “Select” into the statement, and then compiling it as though you’d typed 
the method names yourself. This offers flexibility in how they resolve—the operators in 
LINQ to SQL and Entity Framework queries, for instance, bind instead to the extension 
methods in the Queryable class. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Query expressions versus fluent queries 

Query expressions and fluent queries each have advantages. 

Query expressions support only a small subset of query operators, namely: 
Where, Select, SelectMany 
OrderBy, ThenBy, OrderByDescending, ThenByDescending 
GroupBy, Join, GroupJoin 

For queries that use other operators, you must either write entirely in fluent syntax or 
construct mixed-syntax queries, for instance: 

string[] names = { "Tom","Dick","Harry","Mary","Jay" }; 
 
IEnumerable<string> query = 
  from   n in names 
  where  n.Length == names.Min (n2 => n2.Length) 
  select n; 

This query returns names whose length matches that of the shortest (“Tom” and “Jay”). 
The subquery (in bold) calculates the minimum length of each name, and evaluates to 3. 
We have to use fluent syntax for the subquery, because the Min operator has no support 
in query expression syntax. We can, however, still use query syntax for the outer query.  

The main advantage of query syntax is that it can radically simplify queries that involve 
the following: 

• A let clause for introducing a new variable alongside the range variable 

• Multiple generators (SelectMany) followed by an outer range variable reference 

• A Join or GroupJoin equivalent, followed by an outer range variable reference 

The let Keyword 
The let keyword introduces a new variable alongside the range variable. For instance, 
suppose we want to list all names, whose length without vowels, is greater than two 
characters: 

string[] names = { "Tom","Dick","Harry","Mary","Jay" }; 
 
IEnumerable<string> query = 
  from n in names 
  let vowelless = Regex.Replace (n, "[aeiou]", "") 
  where vowelless.Length > 2 
  orderby vowelless 
  select n + " - " + vowelless; 

The output from enumerating this query is: 
Dick - Dck 
Harry - Hrry 
Mary - Mry 

The let clause performs a calculation on each element, without losing the original 
element. In our query, the subsequent clauses (where, orderby and select) have 
access to both n and vowelless. A query can include any multiple let clauses, and 
they can be interspersed with additional where and join clauses. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The compiler translates the let keyword by projecting into temporary anonymous type 
that contains both the original and transformed elements: 

IEnumerable<string> query = names 
 .Select (n => new   
   { 
     n = n,  
     vowelless = Regex.Replace (n, "[aeiou]", "") 
   } 
 ) 
 .Where (temp0 => (temp0.vowelless.Length > 2)) 
 .OrderBy (temp0 => temp0.vowelless) 
 .Select (temp0 => ((temp0.n + " - ") + temp0.vowelless)) 

Query Continuations 
If you want to add clauses after a select or group clause, you must use the into 
keyword to “continue” the query. For instance: 

from c in "The quick brown tiger".Split() 
select c.ToUpper() into upper 
where upper.StartsWith ("T") 
select upper 
 
// RESULT: "THE", "TIGER" 

Following an into clause, the previous range variable is out of scope. 

The compiler translates queries with an into keyword simply into a longer chain of 
operators: 

"The quick brown tiger".Split() 
  .Select (c => c.ToUpper()) 
  .Where (upper => upper.StartsWith ("T")) 

(It omits the final Select(upper=>upper) because it’s redundant). 

Multiple Generators 
A query can include multiple generators (from-clauses). For example: 

int[] numbers = { 1, 2, 3 }; 
string[] letters = { "a", "b" }; 
 
IEnumerable<string> query = from n in numbers 
                            from l in letters 
                            select n.ToString() + l; 

The result is a cross product, rather like you’d get with nested foreach loops: 

"1a", "1b", "2a", "2b", "3a", "3b" 

When there’s more than one from clause in a query, the compiler emits a call to 
SelectMany: 

IEnumerable<string> query = numbers.SelectMany ( 
  n => letters, 
  (n, l) => (n.ToString() + l)); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

SelectMany performs nested looping. It enumerates every element in the source 
collection (numbers), transforming each element with the first lambda expression 
(letters). This generates a sequence of subsequences, which it then enumerates. The 
final output elements are determined by the second lambda expression 
(n.ToString()+l). 

If you subsequently apply a where clause, you can filter the cross product and project a 
result akin to a join: 

string[] players = { "Tom", "Jay", "Mary" }; 
 
IEnumerable<string> query = 
  from name1 in players 
  from name2 in players 
  where name1.CompareTo (name2) < 0 
  orderby name1, name2 
  select name1 + " vs " + name2; 
 
RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" } 

The translation of this query into fluent syntax is more complex, requiring a temporary 
anonymous projection. The ability to perform this translation automatically is one of the 
key benefits of query expressions. 

The expression in the second generator is allowed to use the first range variable: 
string[] fullNames = 
  { "Anne Williams", "John Fred Smith", "Sue Green" }; 
 
IEnumer ing> query = able<str
  from fullName in fullNames 
  from name in fullName.Split() 
  select name + " came from " + fullName; 
 
Anne came from Anne Williams 
Williams came from Anne Williams 
John came from John Fred Smith 

This works because the expression fullName.Split emits a sequence (an array of 
strings). 

Multiple generators are used extensively in database queries, to flatten parent-child 
relationships and to perform manual joins. 

Joining 
LINQ provides three joining operators, the main ones being Join and GroupJoin 
which perform keyed lookup-based joins. Join and GroupJoin support only a subset 
of the functionality you get with multiple generators/SelectMany, but are more 
performant with local queries because they use a hashtable-based lookup strategy rather 
than performing nested loops. (With LINQ to SQL and Entity Framework queries, the 
joining operators have no advantage over multiple generators). 

Join and GroupJoin support equi-joins only (i.e., the joining condition must use the 
equality operator). There are two methods: Join and GroupJoin. Join emits a flat 
result set whereas GroupJoin emits a hierarchical result set. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The query expression syntax for a flat join is: 
from outer-var in outer-sequence 
join inner-var in inner-sequence  
  on outer-key-expr equals inner-key-expr  

For example, given the following collections: 
var customers = new[] 
{ 
  new { ID = 1, Name = "Tom" }, 
  new { ID = 2, Name = "Dick" }, 
  new { ID = 3, Name = "Harry" } 
}; 
var purchases = new[] 
{ 
  new { CustomerID = 1, Product = "House" }, 
  new { CustomerID = 2, Product = "Boat" }, 
  new { CustomerID = 2, Product = "Car" }, 
  new { CustomerID = 3, Product = "Holiday" } 
}; 

we could perform a join as follows: 
IEnumerable<string> query = 
  from c in customers 
  join p in purchases on c.ID equals p.CustomerID 
  select c.Name + " bought a " + p.Product; 

The compiler translates this to: 
customers.Join (                // outer collection 
  purchases,                    // inner collection 
  c => c.ID              // outer key selector ,       
  p => p.CustomerID,            // inner key selector 
  (c, p) =>                     // result selector 
     c.Name + " bought a " + p.Product  
); 

Here’s the result: 
Tom bought a House 
Dick bought a Boat 
Dick bought a Car 
Harry bought a Holiday 

With local sequences, Join and GroupJoin are more efficient at processing large 
collections than SelectMany because they first preload the inner sequence into a keyed 
hashtable-based lookup. With a database query, however, you could achieve the same 
result equally efficiently as follows: 

from c in customers 
from p in purchases 
where c.ID == p.CustomerID 
select c.Name + " bought a " + p.Product; 

GroupJoin 

GroupJoin does the same work as Join, but instead of yielding a flat result, it yields a 
hierarchical result, grouped by each outer element. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

The query expression syntax for GroupJoin is the same as for Join, but is followed 
by the into keyword. Here’s a basic example, using the customers and purchases 
collections we set up in the previous section:  

IEnumerable<IEnumerable<Purchase>> query = 
  from c in customers 
  join p in purchases on c.ID equals p.CustomerID 
  into custPurchases 
  select custPurchases;   // custPurchases is a sequence 

An into clause translates to GroupJoin only when it appears directly after 
a join clause. After a select or group clause it means query 
continuation. The two uses of the into keyword are quite different, although 
they have one feature in common: they both introduce a new query variable. 

The result is a sequence of sequences, which we could enumerate as follows: 
foreach (IEnumerable<Purchase> purchaseSequence in query) 
  foreach (Purchase p in purchaseSequence) 
    Console.WriteLine (p.Description); 

This isn’t very useful, however, because outerSeq has no reference to the outer 
customer. More commonly, you’d reference the outer range variable in the projection: 

from c in customers 
join p in purchases on c.ID equals p.CustomerID 
into custPurchases 
select new { CustName = c.Name, custPurchases }; 

We could obtain the same result (but less efficiently, for local queries) by projecting into 
an anonymous type which included a subquery: 

from c in customers 
select new 
{ 
  CustName = c.Name, 
  custPurchases =  
    purchases.Where (p => c.ID == p.CustomerID) 
} 

Zip 

Zip is the simplest joining operator. It enumerates two sequences in step (like a zipper), 
returning a sequence based on applying a function over each element pair. For example: 

int[] numbers = { 3, 5, 7 }; 
string[] words = { "three", "five", "seven", "ignored" }; 
IEnumerable<string> zip =  
  numbers.Zip (words, (n, w) => n + "=" + w); 

produces a sequence with the following elements: 
3=three 
5=five 
7=seven 

Extra elements in either input sequence are ignored. Zip is not supported when querying 
a database 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Ordering 
The orderby keyword sorts a sequence. You can specify any number of expressions 
upon which to sort: 

string[] names = { "Tom","Dick","Harry","Mary","Jay" }; 
 
IEnumerable<string> query = from n in names 
                            orderby n.Length, n 
                            select n; 

This sorts first by length, then name, so the result is: 
Jay, Tom, Dick, Mary, Harry 

The compiler translates the first orderby expression to a call to OrderBy, and 
subsequent expressions to a call to ThenBy: 

IEnumerable<string> query = names 
  .OrderBy (n => n.Length) 
  .ThenBy (n => n) 

The ThenBy operator refines rather than replaces, the previous sorting. 

You can include the descending keyword after any of the orderby expressions: 
orderby n.Length descending, n 

This translates to: 
.OrderByDescending (n => n.Length).ThenBy (n => n) 

The ordering operators return an extended type of IEnumerable<T> called 
IOrderedEnumerble<T>. This interface defines the extra functionality 
required by the ThenBy operators.  

Grouping 
GroupBy organizes a flat input sequence into sequences of groups. For example, the 
following groups a sequence of names by their length: 

string[] names = { "Tom","Dick","Harry","Mary","Jay" }; 
 
var query = from name in names 
            group name by name.Length; 

The compiler translates this query into: 
IEnumerable<IGrouping<int,string>> query =  
  names.GroupBy (name => name.Length); 

Here’s how to enumerate the result: 
foreach (IGrouping<int,string> grouping in query) 
{ 
  Console.Write ("\r\n Len grouping.Key + ":"); gth=" + 
  foreach (string name in grouping) 
    Console.Write (" " + name); 
} 
 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 Length=3: Tom Jay 
 Length=4: Dick Mary 
 Length=5: Harry 

Enumerable.GroupBy works by reading the input elements into a temporary 
dictionary of lists so that all elements with the same key end up in the same sublist. It 
then emits a sequence of groupings. A grouping is a sequence with a Key property: 

public interface IGrouping <TKey,TElement> 
  : IEnumerable<TElement>, IEnumerable 
{ 
  // Key applies to the subsequence as a whole 
  TKey Key { get; }     
} 

By default, the elements in each grouping are untransformed input elements, unless you 
specify an elementSelector argument. The following projects each input element to 
uppercase: 

from name in names 
group name.ToUpper() by name.Length 

which translates to this: 
names.GroupBy ( 
  name => name.Length,  
  name => name.ToUpper() ) 

The subcollections are not emitted in order of key. GroupBy does no sorting (in fact, it 
preserves the original ordering.) To sort, you must add an OrderBy operator (which 
means first adding an into clause, because group by ordinarily ends a query): 

from name in names 
group name.ToUpper() by name.Length into grouping 
orderby grouping.Key 
select grouping 

Query continuations are often used in a group by query. The next query filters out 
groups that have exactly two matches in them: 

from name in names 
group name.ToUpper() by name.Length into grouping 
where grouping.Count() == 2 
select grouping 

A where after a group by is equivalent to HAVING in SQL. It applies to 
each subsequence or grouping as a whole, rather than the individual elements. 

OfType and Cast 
OfType and Cast accept a nongeneric IEnumerable collection and emit a generic 
IEnumerable<T> sequence that you can subsequently query:  

var classicList = new System.Collections.ArrayList(); 
classicList.AddRange ( new int[] { 3, 4, 5 } ); 
IEnumerable<int> sequence1 = classicList.Cast<int>(); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

This is useful because it allows you to query collections written prior to C# 2.0 (when 
IEnumerable<T> was introduced), such as ControlCollection in 
System.Windows.Forms. 

Cast and OfType differ in their behavior when encountering an input element that’s of 
an incompatible type: Cast throws an exception whereas OfType ignores the 
incompatible element. 

The rules for element compatibility follow those of C#’s is operator. Here’s the internal 
implementation of Cast: 

public static IEnumerable<TSource> Cast <TSource> 
             (IEnumerable source) 
{ 
  foreach (object element in source) 
    yield return (TSource)element; 
} 

C# supports the Cast operator in query expressions: simply insert the element type 
immediately after the from keyword: 

from int x in classicList ... 

This translates to: 
from x in classicList.Cast <int>() ... 

Dynamic Binding (C# 4.0) 
Dynamic binding defers binding—the process of resolving types, members, and 
operations—from compile time to runtime. Dynamic binding is useful when at compile 
time you know that a certain function, member, or operation exists, but the compiler does 
not. This commonly occurs when you are interoperating with dynamic languages (such as 
IronPython) and COM and in scenarios when you might otherwise use reflection. 

A dynamic type is declared with the contextual keyword dynamic: 
dynamic d = GetSomeObject(); 
d.Quack(); 

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a 
Quack method. We just can't prove it statically. Since d is dynamic, the compiler defers 
binding Quack to d until runtime. To understand what this means requires distinguishing 
between static binding and dynamic binding. 

Static Binding Versus Dynamic Binding 
The canonical binding example is mapping a name to a specific function when compiling 
an expression. To compile the following expression, the compiler needs to find the 
implementation of the method named Quack: 

d.Quack(); 

Let's suppose the static type of d is Duck: 

Duck d = ... 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

d.Quack(); 

In the simplest case, the compiler does the binding by looking for a parameterless method 
named Quack on Duck. Failing that, the compiler extends its search to methods taking 
optional parameters, methods on base classes of Duck, and extension methods that take 
Duck as its first parameter. If no match is found, you'll get a compilation error. 
Regardless of what method gets bound, the bottom line is that the binding is done by the 
compiler, and the binding utterly depends on statically knowing the types of the operands 
(in this case, d). This makes it static binding. 

Now let's change the static type of d to object: 

object d = ... 
d.Quack(); 

Calling Quack gives us a compilation error, because although the value stored in d can 
contain a method called Quack, the compiler cannot know it since the only information 
it has is the type of the variable, which in this case is object. But let's now change the 
static type of d to dynamic: 

dynamic d = ... 
d.Quack(); 

A dynamic type is like object—it's equally nondescriptive about a type. The 
difference is that it lets you use it in ways that aren't known at compile time. A dynamic 
object binds at runtime based on its runtime type, not its compile-time type. When the 
compiler sees a dynamically bound expression (which in general is an expression that 
contains any value of type dynamic), it merely packages up the expression such that the 
binding can be done later at runtime. 

At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that 
interface is used to perform the binding. If not, binding occurs in almost the same way as 
it would have had the compiler known the dynamic object's runtime type. These two 
alternatives are called custom binding and language binding. 

Custom Binding 
Custom binding occurs when a dynamic object implements 
IDynamicMetaObjectProvider (IDMOP). Although you can implement IDMOP 
on types that you write in C#, and that is useful to do, the more common case is that you 
have acquired an IDMOP object from a dynamic language that is implemented in .NET 
on the Dynamic Language Runtime (DLR), such as IronPython or IronRuby. Objects 
from those languages implicitly implement IDMOP as a means to directly control the 
meanings of operations performed on them. Here's a simple example: 

using System; 
using System.Dynamic; 
 
public class Test 
{ 
  static void Main() 
  { 
    dynamic d = new Duck(); 
    d.Quack();       // Quack was called 
    d.Waddle();      // Waddle was called 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  } 
} 
public class Duck : DynamicObject 
{ 
  public override bool TryInvokeMember ( 
    InvokeMemberBinder binder, object[] args, 
    out object result) 
  { 
    Console.WriteLine (binder.Name + " was called"); 
    result = null; 
    return true; 
  } 
} 

The Duck class doesn't actually have a Quack method. Instead, it uses custom binding 
to intercept and interpret all method calls. 

We discuss custom binders in greater detail in Chapter 20 of C# 5.0 in a Nutshell. 

Language Binding 
Language binding occurs when a dynamic object does not implement 
IDynamicMetaObjectProvider. Language binding is useful when working around 
imperfectly designed types or inherent limitations in the .NET type system. A typical 
problem when using numeric types is that they have no common interface. We have seen 
that methods can be bound dynamically; the same is true for operators: 

static dynamic Mean (dynamic x, dynamic y) 
{ 
  return (x + y) / 2; 
} 
static void Main() 
{        
  int x = 3, y = 4; 
  Console.WriteLine (Mean (x, y)); 
} 

The benefit is obvious—you don't have to duplicate code for each numeric type. 
However, you lose static type safety, risking runtime exceptions rather than compile-time 
errors. 

Dynamic binding circumvents static type safety, but not runtime type safety. 
Unlike with reflection, you cannot circumvent member accessibility rules with 
dynamic binding. 

By design, language runtime binding behaves as similarly as possible to static binding, 
had the runtime types of the dynamic objects been known at compile time. In our 
previous example, the behavior of our program would be identical if we hardcoded Mean 
to work with the int type. The most notable exception in parity between static and 
dynamic binding is for extension methods, which we discuss in “Uncallable Functions.” 

Dynamic binding also incurs a performance hit. Because of the DLR’s 
caching mechanisms, however, repeated calls to the same dynamic expression 
are optimized—allowing you to efficiently call dynamic expressions in a loop. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

This optimization brings the typical overhead for a simple dynamic expression 
on today’s hardware down to less than 100 ns. 

RuntimeBinderException 
If a member fails to bind, a RuntimeBinderException is thrown. You can think of 
this like a compile-time error at runtime:  

dynamic d = 5; 
d.Hello();       // throws RuntimeBinderException 

The exception is thrown because the int type has no Hello method. 

Runtime Representation of dynamic 
There is a deep equivalence between the dynamic and object types. The runtime 
treats the following expression as true: 

typeof (dynamic) == typeof (object) 

This principle extends to constructed types and array types: 
typeof (List<dynamic>) == typeof (List<object>) 
typeof (dynamic[]) == typeof (object[]) 

Like an object reference, a dynamic reference can point to an object of any type (except 
pointer types): 

dynamic x = "hello"; 
Console.WriteLine (x.GetType().Name);  // String 
 
x = 123;  // No error (despite same variable) 
Console.WriteLine (x.GetType().Name);  // Int32 

Structurally, there is no difference between an object reference and a dynamic reference. 
A dynamic reference simply enables dynamic operations on the object it points to. You 
can convert from object to dynamic to perform any dynamic operation you want on 
an object: 

object o = new System.Text.StringBuilder(); 
dynamic d = o; 
d.Append ("hello"); 
Console.WriteLine (o);   // hello 

Dynamic Conversions 
The dynamic type has implicit conversions to and from all other types. For a conversion 
to succeed, the runtime type of the dynamic object must be implicitly convertible to the 
target static type. 

The following example throws a RuntimeBinderException because an int is not 
implicitly convertible to a short: 

int i = 7; 
dynamic d = i; 
long l = d;       // OK - implicit conversion works 
short j = d;      // throws RuntimeBinderException 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

var Versus dynamic 
The var and dynamic types bear a superficial resemblance, but the difference is deep: 

var says, “Let the compiler figure out the type.” 

dynamic says, “Let the runtime figure out the type.” 

To illustrate: 
dynamic x = "hello";  // Static type is dynamic 
var y = "hello";      // Static type is string 
int i = x;            // Runtime error 
int j = y;            // Compile-time error 

Dynamic Expressions 
Fields, properties, methods, events, constructors, indexers, operators, and conversions can 
all be called dynamically. 

Trying to consume the result of a dynamic expression with a void return type is 
prohibited—just as with a statically typed expression. The difference is that the error 
occurs at runtime. 

Expressions involving dynamic operands are typically themselves dynamic, since the 
effect of absent type information is cascading: 

dynamic x = 2; 
var y = x * 3;       // Static type of y is dynamic 

There are a couple of obvious exceptions to this rule. First, casting a dynamic expression 
to a static type yields a static expression. Second, constructor invocations always yield 
static expressions—even when called with dynamic arguments. 

In addition, there are a few edge cases where an expression containing a dynamic 
argument is static, including passing an index to an array and delegate-creation 
expressions. 

Dynamic Member Overload Resolution 
The canonical use case for dynamic involves a dynamic receiver. This means that a 
dynamic object is the receiver of a dynamic function call: 

dynamic x = ...; 
x.Foo (123);          // x is the receiver 

However, dynamic binding is not limited to receivers: the method arguments are also 
eligible for dynamic binding. The effect of calling a function with dynamic arguments is 
to defer overload resolution from compile-time to runtime: 

class Program 
{ 
  static void Foo (int x)    { Console.WriteLine ("1"); } 
  static void Foo (string x) { Console.WriteLine ("2"); } 
 
  static void Main() 
  { 
    dynamic x = 5; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

    dynamic y = "watermelon"; 
 
    Foo (x);    // 1 
    Foo (y);    // 2 
  } 
} 

Runtime overload resolution is also called multiple dispatch and is useful in 
implementing design patterns such as visitor.  

If a dynamic receiver is not involved, the compiler can statically perform a basic check to 
see whether the dynamic call will succeed: it checks that a function with the right name 
and number of parameters exists. If no candidate is found, you get a compile-time error. 

If a function is called with a mixture of dynamic and static arguments, the final choice of 
method will reflect a mixture of dynamic and static binding decisions: 

static void X(object x, object y) {Console.Write("oo");} 
static void X(object x, string y) {Console.Write("os");} 
static void X(string x, object y) {Console.Write("so");} 
static void X(string x, string y) {Console.Write("ss");} 
 
static void Main() 
{ 
  object o = "hello"; 
  dynamic d = "goodbye"; 
  X (o, d);               // os 
} 

The call to X(o,d) is dynamically bound because one of its arguments, d, is dynamic. 
But since o is statically known, the binding—even though it occurs dynamically—will 
make use of that. In this case, overload resolution will pick the second implementation of 
X due to the static type of o and the runtime type of d. In other words, the compiler is “as 
static as it can possibly be.” 

Uncallable Functions 
Some functions cannot be called dynamically. You cannot call: 

• Extension methods (via extension method syntax) 
• Any member of an interface (via the interface) 
• Base members hidden by a subclass 

This is because dynamic binding requires two pieces of information: the name of the 
function to call, and the object upon which to call the function. However, in each of the 
three uncallable scenarios, an additional type is involved, which is known only at 
compile time. As of C# 5.0, there's no way to specify these additional types dynamically. 

When calling extension methods, that additional type is an extension class, chosen 
implicitly by virtue of using directives in your source code (which disappear after 
compilation). When calling members via an interface, the additional type is 
communicated via an implicit or explicit cast. (With explicit implementation, it’s in fact 
impossible to call a member without casting to the interface). A similar situation arises 
when calling a hidden base member: you must specify an additional type via either a cast 
or the base keyword—and that additional type is lost at runtime. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Attributes 
You’re already familiar with the notion of attributing code elements of a program with 
modifiers, such as virtual or ref. These constructs are built into the language. 
Attributes are an extensible mechanism for adding custom information to code elements 
(assemblies, types, members, return values, and parameters). This extensibility is useful 
for services that integrate deeply into the type system, without requiring special keywords 
or constructs in the C# language. 

A good scenario for attributes is serialization—the process of converting arbitrary objects 
to and from a particular format. In this scenario, an attribute on a field can specify the 
translation between C#’s representation of the field and the format’s representation of the 
field. 

Attribute Classes 
An attribute is defined by a class that inherits (directly or indirectly) from the abstract 
class System.Attribute. To attach an attribute to a code element, specify the 
attribute’s type name in square brackets, before the code element. For example, the 
following attaches the ObsoleteAttribute to the Foo class: 

[ObsoleteAttribute] 
public class Foo {...} 

This attribute is recognized by the compiler and will cause compiler warnings if a type or 
member marked obsolete is referenced. By convention, all attribute types end in the word 
Attribute. C# recognizes this and allows you to omit the suffix when attaching an 
attribute: 

[Obsolete] 
public class Foo {...} 

ObsoleteAttribute is a type declared in the System namespace as follows 
(simplified for brevity): 

public sealed class ObsoleteAttribute : Attribute {...} 

Named and Positional Attribute Parameters 
Attributes may have parameters. In the following example, we apply 
XmlElementAttribute to a class. This attribute tells XML serializer (in 
System.Xml.Serialization) how an object is represented in XML and accepts 
several attribute parameters. The following attribute maps the CustomerEntity class 
to an XML element named Customer, belonging to the http://oreilly.com 
namespace: 

[XmlElement ("Customer", Namespace="http://oreilly.com")] 
public class CustomerEntity { ... } 

Attribute parameters fall into one of two categories: positional or named. In the preceding 
example, the first argument is a positional parameter; the second is a named parameter. 
Positional parameters correspond to parameters of the attribute type’s public constructors. 
Named parameters correspond to public fields or public properties on the attribute type. 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

When specifying an attribute, you must include positional parameters that correspond to 
one of the attribute’s constructors. Named parameters are optional. 

Attribute Targets 
Implicitly, the target of an attribute is the code element it immediately precedes, which is 
typically a type or type member. You can also attach attributes, however, to an assembly. 
This requires that you explicitly specify the attribute’s target. 

Here is an example of using the CLSCompliant attribute to specify Common 
Language Specification (CLS) compliance for an entire assembly: 

[assembly:CLSCompliant(true)] 

Specifying Multiple Attributes 
Multiple attributes can be specified for a single code element. Each attribute can be listed 
either within the same pair of square brackets (separated by a comma) or in separate pairs 
of square brackets (or a combination of the two). The following two examples are 
semantically identical: 

[Serializable, Obsolete, CLSCompliant(false)] 
public class Bar {...} 
 
[Serializable] [Obsolete] [CLSCompliant(false)] 
public class Bar {...} 

Writing Custom Attributes 
You can define your own attributes by subclassing System.Attribute. For example, 
we could use the following custom attribute for flagging a method for unit testing: 

[AttributeUsage (AttributeTargets.Method)] 
public sealed class TestAttribute : Attribute 
{ 
  public int     Repetitions; 
  public string  FailureMessage; 
 
  public TestAttribute () : this (1) { } 
  public TestAttribute (int repetitions) 
  { 
    Repetitions = repetitions; 
  } 
} 

Here’s how we could apply the attribute: 
class Foo 
{ 
  [Test] 
  public void Method1() { ... } 
   
  [Test(20)] 
  public void Method2() { ... } 
   
  [Test(20, FailureMessage="Debugging Time!")] 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

  public void Method3() { ... } 
} 

AttributeUsage is itself an attribute that indicates the construct (or combination of 
constructs) that the custom attribute can be applied to. The AttributeTargets enum 
includes such members as Class, Method, Parameter, Constructor (and All, 
which combines all targets). 

Retrieving Attributes at Runtime 
There are two standard ways to retrieve attributes at runtime: 

• Call GetCustomAttributes on any Type or MemberInfo object. 

• Call Attribute.GetCustomAttribute or 
Attribute.GetCustomAttributes. 

These latter two methods are overloaded to accept any reflection object that corresponds 
to a valid attribute target (Type, Assembly, Module, MemberInfo, or 
ParameterInfo). 

Here’s how we can enumerate each method in the preceding Foo class that has a 
TestAttribute: 

foreach (MethodInfo mi in typeof (Foo).GetMethods()) 
{ 
  TestAttribute att = (TestAttribute) 
    Attribute.GetCustomAttribute 
     (mi, typeof (TestAttribute)); 
   
  if (att != null) 
    Console.WriteLine ( 
      "{0} will be tested; reps={1}; msg={2}", 
      mi.Name, att.Repetitions, att.FailureMessage); 
} 

Here’s the output: 
Method1 will be tested; reps=1; msg= 
Method2 will be tested; reps=20; msg= 
Method3 will be tested; reps=20; msg=Debugging Time! 

Caller Info Attributes (C# 5.0) 
From C# 5.0, you can tag optional parameters with one of three caller info attributes, 
which instruct the compiler to feed information obtained from the caller’s source code 
into the parameter’s default value: 

• [CallerMemberName] applies the caller’s member name 

• [CallerFilePath] applies the path to caller’s source code file 

• [CallerLineNumber] applies the line number in caller’s source code file 

The Foo method in the following program demonstrates all three: 

using System; 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

using System.Runtime.CompilerServices; 
 
class Program 
{ 
  static void Main() 
  { 
    Foo(); 
  } 
 
  static void Foo ( 
    [CallerMemberName] string memberName = null, 
    [CallerFilePath] string filePath = null, 
    [CallerLineNumber] int lineNumber = 0) 
  { 
    Console.WriteLine (memberName); 
    Console.WriteLine (filePath); 
    Console.WriteLine (lineNumber); 
  } 
} 

Assuming our program resides in c:\source\test\Program.cs, the output would 
be: 

Main 
c:\source\test\Program.cs 
8 

As with standard optional parameters, the substitution is done at the calling site. Hence, 
our Main method is syntactic sugar for this: 

static void Main() 
{ 
  Foo ("Main", @"c:\source\test\Program.cs", 8); 
} 

Caller info attributes are useful for writing logging functions, and for implementing 
change notification patterns. For instance, a method such as the following can be called 
from inside a property’s set accessor—without having to specify the property’s name: 

vo anged ( id RaisePropertyCh
  [CallerMemberName] string propertyName = null) 
  {   
    ... 
  } 

Asynchronous Functions (C# 5.0) 
C# 5.0 introduces the await and async keywords to support asynchronous 
programming, a style of programming where long-running functions do most or all of 
their work after returning to the caller. This is in contrast to normal synchronous 
programming, where long-running functions block the caller until the operation is 
complete. Asynchronous programming implies concurrency, since the long-running 
operation continues in parallel to the caller. The implementer of an asynchronous 
function initiates this concurrency either through multithreading (for compute-bound 
operations), or via a callback mechanism (for I/O-bound operations). 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Multithreading, concurrency and asynchronous programming are large topics. 
We dedicate two chapters to them in C# 5.0 in a Nutshell, and discuss them 
online at http://albahari.com/threading. 

For instance, consider the following synchronous method, which is long-running and 
compute-bound: 

int ComplexCalculation() 
{ 
  double x = 2; 
  for (int i = 1; i < 100000000; i++) 
    x += Math.Sqrt (x) / i;   
  return (int)x; 
} 

This method blocks the caller for a few seconds while it runs. The result of the 
calculation is then returned to the caller: 

int result = ComplexCalculation();  
// Some time later: 
Console.WriteLine (result);   // 116 

The CLR defines a class called Task<TResult> (in System.Threading.Tasks) 
to encapsulate the concept of an operation that completes in the future. You can generate 
a Task<TResult> for a compute-bound operation by calling Task.Run, which tells 
the CLR to run the specified delegate on a separate thread that executes in parallel to the 
caller: 

Task<int> ComplexCalculationAsync() 
{ 
  return Task.Run (() => ComplexCalculation()); 
} 

This method is asynchronous because it returns immediately to the caller while it 
executes concurrently. However, we need some mechanism to allow the caller to specify 
what should happen when the operation finishes and the result becomes available. 
Task<TResult> solves this by exposing a GetAwaiter method which lets the caller 
attach a continuation: 

Task<int> task = Co lationAsync(); mplexCalcu
var awai GetAwaiter(); ter = task.
awaiter.OnCompleted (() =>        // Continuation 
{ 
  int result = awaiter.GetResult(); 
  Console.WriteLine (result);       // 116 
}); 

This says to the operation, “When you finish, execute the specified delegate”. Our 
continuation first calls GetResult which returns the result of the calculation. (Or, if the 
task faulted [threw an exception], calling GetResult re-throws that exception.) Our 
continuation then writes out the result via Console.WriteLine. 

The await and async keywords 
The await keyword simplifies the attaching of continuations. Starting with a basic 
scenario, the compiler expands: 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

var result = await expression; 
statement(s); 

into something functionally similar to: 
var awaiter = expression.GetAwaiter(); 
awaiter.OnCompleted (() =>   
{ 
  var result = awaiter.GetResult(); 
  statement(s); 
); 

The compiler also emits code to optimize the scenario of the operation 
completing synchronously (immediately). The most common reason for an 
asynchronous operation completing immediately is if it implements an 
internal caching mechanism, and the result is already cached. 

Hence, we can call the ComplexCalculationAsync method we defined previously, 
like this: 

int result = await ComplexCalculationAsync(); 
Console.WriteLine (result); 

In order to compile, we need to add the async modifier to the containing method: 
async void Test() 
{ 
  int result = await ComplexCalculationAsync(); 
  Console.WriteLine (result); 
} 

The async modifier tells the compiler to treat await as a keyword rather than an 
identifier should an ambiguity arise within that method (this ensures that code written 
prior to C# 5.0 that might use await as an identifier will still compile without error). 
The async modifier can be applied only to methods (and lambda expressions) that 
return void or (as we’ll see later) a Task or Task<TResult>.  

The async modifier is similar to the unsafe modifier in that it has no effect 
on a method’s signature or public metadata; it affects only what happens 
inside the method. 

Methods with the async modifier are called asynchronous functions, because they 
themselves are typically asynchronous. To see why, let’s look at how execution proceeds 
through an asynchronous function. 

Upon encountering an await expression, execution (normally) returns to the caller—
rather like with yield return in an iterator. But before returning, the runtime attaches 
a continuation to the awaited task, ensuring that when the task completes, execution 
jumps back into the method and continues where it left off. If the task faults, its exception 
is rethrown (by virtue of calling GetResult), otherwise its return value is assigned to 
the await expression. 

The CLR's implementation of a task awaiter's OnCompleted method 
ensures that by default, continuations are posted through the current 
synchronization context, if one is present. In practice, this means that in rich-

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

client UI scenarios (WPF, Metro, Silverlight and Windows Forms), if you 
await on a UI thread, your code will continue on that same thread. This 
simplifies thread-safety. 

The expression upon which you await is typically a task; however any object with a 
GetAwaiter method that returns an awaitable object—implementing 
INotifyCompletion.OnCompleted and with an appropriately typed 
GetResult method (and a bool IsCompleted property which tests for synchronous 
completion) —will satisfy the compiler. 

Notice that our await expression evaluates to an int type; this is because the 
expression that we awaited was a Task<int> (whose 
GetAwaiter().GetResult() method returns an int). 

Awaiting a nongeneric task is legal and generates a void expression: 
await Task.Delay (5000); 
Console.WriteLine ("Five seconds passed!"); 

Task.Delay is a static method that returns a Task that completes in the specified 
number of milliseconds. The synchronous equivalent of Task.Delay is 
Thread.Sleep. 

Task is the nongeneric base class of Task<TResult> and is functionally equivalent to 
Task<TResult> except that it has no result. 

Capturing Local State 
The real power of await expressions is that they can appear almost anywhere in code. 
Specifically, an await expression can appear in place of any expression (within an 
asynchronous function) except for inside a catch or finally block, lock expression, 
unsafe context or an executable’s entry point (main method).  

In the following example, we await inside a loop: 

async void Test() 
{ 
  for (int i = 0; i < 10; i++) 
  { 
    int result = await ComplexCalculationAsync(); 
    Console.WriteLine (result); 
  } 
} 

Upon first executing ComplexCalculationAsync, execution returns to the caller by 
virtue of the await expression. When the method completes (or faults), execution 
resumes where it left off, with the values of local variables and loop counters preserved. 
The compiler achieves this by translating such code into a state machine, like it does with 
iterators. 

Without the await keyword, the manual use of continuations means that you must write 
something equivalent to a state machine. This is traditionally what makes asynchronous 
programming difficult.  

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Writing Asynchronous Functions 
With any asynchronous function, you can replace the void return type with a Task to 
make the method itself usefully asynchronous (and awaitable). No further changes are 
required: 

async Task PrintAnswerToLife() 
{ 
  await Task.Delay (5000); 
  int answer = 21 * 2; 
  Console.WriteLine (answer);   
} 

Notice that we don’t explicitly return a task in the method body. The compiler 
manufactures the task, which it signals upon completion of the method (or upon an 
unhandled exception). This makes it easy to create asynchronous call chains: 

async Task Go() 
{ 
  await PrintAnswerToLife(); 
  Console.WriteLine ("Done"); 
} 

(And because Go returns a Task, Go itself is awaitable.) The compiler expands 
asynchronous functions that return tasks into code that (indirectly) leverages 
TaskCompletionSource to create a task that it then signals or faults. 

TaskCompletionSource is a CLR type that lets you create tasks that you 
manually control, signaling them as complete with a result (or as faulted with 
an exception). Unlike Task.Run, TaskCompletionSource doesn’t tie 
up a thread for the duration of the operation. It’s also used for writing I/O-
bound task-returning methods (such as Task.Delay). 

The aim is to ensure that when task-returning asynchronous method finishes, execution 
can jump back to whoever awaited it, via a continuation. 

Returning Task<TResult> 

You can return a Task<TResult> if the method body returns TResult: 
async Task<int> GetAnswerToLife() 
{ 
  await Task.Delay (5000); 
  int answer = 21 * 2; 
  // answer is int so our method returns Task<int> 
  return answer;     
} 

We can demonstrate GetAnswerToLife by calling it from PrintAnswerToLife 
(which is turn, called from Go): 

async Task Go() 
{ 
  await PrintAnswerToLife(); 
  Console.WriteLine ("Done"); 
} 
async Task PrintAnswerToLife() 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

{ 
  int answer = await GetAnswerToLife(); 
  Console.WriteLine (answer); 
} 
async Task<int> GetAnswerToLife() 
{ 
  await Task.Delay (5000); 
  int answer = 21 * 2; 
  return answer; 
} 

Asynchronous functions make asynchronous programming similar to synchronous 
programming. Here’s the synchronous equivalent of our call graph, for which calling 
Go() gives the same result after blocking for five seconds: 

void Go() 
{ 
  PrintAnswerToLife(); 
  Console.WriteLine ("Done"); 
} 
void PrintAnswerToLife() 
{ 
  int answer = GetAnswerToLife(); 
  Console.WriteLine (answer); 
} 
int GetAnswerToLife() 
{ 
  Thread.Sleep (5000); 
  int answer = 21 * 2; 
  return answer; 
} 

This also illustrates the basic principle of how to design with asynchronous functions in 
C#, which is to write your methods synchronously, and then replace synchronous method 
calls with asynchronous method calls, and await them. 

Parallelism 
We’ve just demonstrated the most common pattern, which is to await task-returning 
functions right after calling them. This results in sequential program flow that’s logically 
similar to the synchronous equivalent. 

Calling an asynchronous method without awaiting it allows the code that follows to 
execute in parallel. For example, the following executes PrintAnswerToLife twice 
concurrently: 

var task1 = PrintAnswerToLife(); 
var task2 = PrintAnswerToLife(); 
await task1; await task2; 

By awaiting both operations afterward, we “end” the parallelism at that point (and re-
throw any exceptions from those tasks). The Task class provides a static method called 
WhenAll to achieve the same result slightly more efficiently. WhenAll returns a task 
that completes when all of the tasks that you pass to it complete: 

await Task.WhenAll (PrintAnswerToLife(), 
                    PrintAnswerToLife()); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

WhenAll is a called task combinator. (The Task class also provides a task combinator 
called WhenAny, which completes when any of the tasks provided to it complete.) We 
cover the task combinators in detail in C# 5.0 in a Nutshell. 

Asynchronous Lambda Expressions 
Just as ordinary named methods can be asynchronous: 

async Task NamedMethod() 
{ 
  await Task.Delay (1000); 
  Console.WriteLine ("Foo"); 
} 

so can unnamed methods (lambda expressions and anonymous methods), if preceded by 
the async keyword: 

Func<Task> unnamed = async () => 
{ 
  await Task.Delay (1000); 
  Console.WriteLine ("Foo"); 
}; 

We can call and await these in the same way: 
await NamedMethod(); 
await unnamed(); 

Asynchronous lambda expressions can be used when attaching event handlers: 
myButton.Click += async (sender, args) => 
{ 
  await Task.Delay (1000); 
  myButton.Content = "Done"; 
}; 

This is more succinct than the following, which has the same effect: 
myButton.Click += ButtonHandler; 
... 
async void ButtonHander (object sender, EventArgs args) 
{ 
  await Task.Delay (1000); 
  myButton.Content = "Done"; 
}; 

Asynchronous lambda expressions can also return Task<TResult>: 
Func<Task<int>> unnamed = async () => 
{ 
  await Task.Delay (1000); 
  return 123; 
}; 
int answer = await unnamed(); 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Unsafe Code and Pointers 
C# supports direct memory manipulation via pointers within blocks of code marked 
unsafe and compiled with the /unsafe compiler option. Pointer types are primarily 
useful for interoperability with C APIs, but may also be used for accessing memory 
outside the managed heap or for performance-critical hotspots. 

Pointer Basics 
For every value type or pointer type V, there is a corresponding pointer type V*. A 
pointer instance holds the address of a value. This is considered to be of type V, but 
pointer types can be (unsafely) cast to any other pointer type. The main pointer operators 
are: 

Operator Meaning 
& The address-of operator returns a pointer to the 

address of a value 
* The dereference operator returns the value at the 

address of a pointer 
-> The pointer-to-member operator is a syntactic 

shortcut, in which x->y is equivalent to (*x).y 

Unsafe Code 
By marking a type, type member, or statement block with the unsafe keyword, you’re 
permitted to use pointer types and perform C++ style pointer operations on memory 
within that scope. Here is an example of using pointers to quickly process a bitmap: 

unsafe void BlueFilter (int[,] bitmap) 
{ 
  int length = bitmap.Length; 
  fixed (int* b = bitmap) 
  { 
    int* p = b; 
    for (int i = 0; i < length; i++) 
      *p++ &= 0xFF; 
  } 
} 

Unsafe code can run faster than a corresponding safe implementation. In this case, the 
code would have required a nested loop with array indexing and bounds checking. An 
unsafe C# method may also be faster than calling an external C function, since there is no 
overhead associated with leaving the managed execution environment. 

The fixed Statement 
The fixed statement is required to pin a managed object, such as the bitmap in the 
previous example. During the execution of a program, many objects are allocated and 
deallocated from the heap. In order to avoid unnecessary waste or fragmentation of 
memory, the garbage collector moves objects around. Pointing to an object is futile if its 
address could change while referencing it, so the fixed statement tells the garbage 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

collector to “pin” the object and not move it around. This may have an impact on the 
efficiency of the runtime, so fixed blocks should be used only briefly, and heap allocation 
should be avoided within the fixed block. 

Within a fixed statement, you can get a pointer to a value type, an array of value types, 
or a string. In the case of arrays and strings, the pointer will actually point to the first 
element, which is a value type. 

Value types declared inline within reference types require the reference type to be pinned, 
as follows: 

class Test 
{ 
  int x; 
  unsafe static void Main() 
  { 
    Test test = new Test(); 
    fixed (int* p = &test.x)   // Pins test 
    { 
      *p = 9; 
    } 
    System.Console.WriteLine (test.x); 
  } 
} 

The Pointer-to-Member Operator 
In addition to the & and * operators, C# also provides the C++ style -> operator, which 
can be used on structs: 

struct Test 
{ 
  int x; 
  unsafe static void Main() 
  { 
    Test test = new Test(); 
    Test* p = &test; 
    p->x = 9; 
    System.Console.WriteLine (test.x); 
  } 
} 

Arrays 
The stackalloc keyword 

Memory can be allocated in a block on the stack explicitly using the stackalloc 
keyword. Since it is allocated on the stack, its lifetime is limited to the execution of the 
method, just as with any other local variable. The block may use the [] operator to index 
into memory: 

int* a = stackalloc int [10]; 
for (int i = 0; i < 10; ++i) 
   Console.WriteLine (a[i]);   // Print raw memory 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Fixed-size buffers 

Memory can be allocated in a block within a struct using the fixed keyword: 

unsafe struct UnsafeUnicodeString 
{ 
  public  Length; short
  public fixed byte Buffer[30]; 
} 
 
unsafe class UnsafeClass 
{ 
  UnsafeUnicodeString uus; 
 
  public UnsafeClass (string s) 
  { 
    uus.Length = (short)s.Length; 
    fixed (byte* p = uus.Buffer) 
      for (int i = 0; i < s.Length; i++) 
        p[i] = (byte) s[i]; 
  } 
} 

The fixed keyword is also used in this example to pin the object on the heap that 
contains the buffer (which will be the instance of UnsafeClass). 

void* 
A void pointer (void*) makes no assumptions about the type of the underlying data and 
is useful for functions that deal with raw memory. An implicit conversion exists from any 
pointer type to void*. A void* cannot be dereferenced, and arithmetic operations 
cannot be performed on void pointers. For example: 

unsafe static void Main() 
{ 
  short[] a = {1,1,2,3,5,8,13,21,34,55}; 
  fixed (short* p = a) 
  { 
    //sizeof returns size of value-type in bytes 
    Zap (p, a.Length * sizeof (short)); 
  } 
  foreach (short x in a) 
    System.Console.WriteLine (x);  // Prints all zeros 
} 
 
unsafe static void Zap (void* memory, int byteCount) 
{ 
  byte* b = (byte*) memory; 
    for (int i = 0; i < byteCount; i++) 
      *b++ = 0; 
} 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Preprocessor Directives 
Preprocessor directives supply the compiler with additional information about regions of 
code. The most common preprocessor directives are the conditional directives, which 
provide a way to include or exclude regions of code from compilation. For example: 

#define DEBUG 
class MyClass 
{ 
  int x; 
  void Foo() 
  { 
    # if DEBUG 
    Console.WriteLine ("Testing: x = {0}", x); 
    # endif 
  } 
  ... 
} 

In this class, the statement in Foo is compiled as conditionally dependent upon the 
presence of the DEBUG symbol. If we remove the DEBUG symbol, the statement is not 
compiled. Preprocessor symbols can be defined within a source file (as we have done), 
and they can be passed to the compiler with the /define:symbol command-line 
option. 

With the #if and #elif directives, you can use the ||, &&, and ! operators to perform 
or, and, and not operations on multiple symbols. The following directive instructs the 
compiler to include the code that follows if the TESTMODE symbol is defined and the 
DEBUG symbol is not defined: 

#if TESTMODE && !DEBUG 
  ...  

Bear in mind, however, that you’re not building an ordinary C# expression, and the 
symbols upon which you operate have absolutely no connection to variables—static or 
otherwise. 

The #error and #warning symbols prevent accidental misuse of conditional 
directives by making the compiler generate a warning or error given an undesirable set of 
compilation symbols. 

Here's a complete list of preprocessor directives: 

Preprocessor directive Action 
#define symbol Defines symbol 
#undef symbol Undefines symbol 
#if symbol [operator 
symbol2]... 

symbol to test 

 operators are ==, !=, &&, and || 
followed by #else, #elif, and 
#endif 

#else Executes code to subsequent #endif 
#elif symbol Combines #else branch and #if test 

 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/


 

[operator symbol2] 

#endif Ends conditional directives 
#warning text text of the warning to appear in 

compiler output 
#error text text of the error to appear in compiler 

output 
#line [number 
["file"] | hidden] 

number specifies the line in source 
code; file is the filename to appear in 
computer output; hidden instructs 
debuggers to skip over code from this 
point until the next #line directive 

#region name Marks the beginning of an outline 
#endregion Ends an outline region 
#pragma warning See below 

Pragma Warning 
The compiler generates a warning when it spots something in your code that seems 
unintentional. Unlike errors, warnings don’t ordinarily prevent your application from 
compiling. 

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness, 
however, is undermined when you get false warnings. In a large application, maintaining 
a good signal-to-noise ratio is essential if the “real” warnings are to get noticed. 

To this effect, the compiler allows you to selectively suppress warnings with the 
#pragma warning directive. In this example, we instruct the compiler not to warn us 
about the field Message not being used: 

public class Foo 
{ 
  static void Main() { } 
 
  #pragma warning disable 414 
  static string Message = "Hello"; 
  #pragma warning restore 414 
} 

Omitting the number in the #pragma warning directive disables or restores all 
warning codes. 

If you are thorough in applying this directive, you can compile with the 
/warnaserror switch—this tells the compiler to treat any residual warnings as errors. 

XML Documentation 
A documentation comment is a piece of embedded XML that documents a type or 
member. A documentation comment comes immediately before a type or member 
declaration, and starts with three slashes: 

/// <summary>Cancels a running query.</summary> 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

public void Cancel() { ... } 

Multiline comments can be done either like this: 
/// <summary> 
/// Cancels a running query 
/// </summary> 
public void Cancel() { ... } 

or like this (notice the extra star at the start): 
/**  
    <summary> Cancels a running query. </summary> 
*/ 
public void Cancel() { ... } 

If you compile with the /doc directive, the compiler extracts and collates documentation 
comments into a single XML file. This has two main uses: 

• If placed in the same folder as the compiled assembly, Visual Studio automatically 
reads the XML file and uses the information to provide IntelliSense member listings 
to consumers of the assembly of the same name. 

• Third-party tools (such as Sandcastle and NDoc) can transform an XML file into an 
HTML help file. 

Standard XML Documentation Tags 
Here are the standard XML tags that Visual Studio and documentation generators 
recognize: 

<summary> 
<summary>...</summary> 

Indicates the tool tip that IntelliSense should display for the type or member. 
Typically a single phrase or sentence. 

<remarks> 
<remarks>...</remarks> 

Additional text that describes the type or member. Documentation generators pick 
this up and merge it into the bulk of a type or member’s description. 

<param> 
<param name="name">...</param> 

Explains a parameter on a method. 

<returns> 
<returns>...</returns> 

Explains the return value for a method. 

<exception> 
<exception [cref="type"]>...</exception> 

Lists an exception that a method may throw (cref refers to the exception type). 

<permission> 
<permission [cref="type"]>...</permission> 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

Indicates an IPermission type required by the documented type or member. 

<example> 
<example>...</example> 

Denotes an example (used by documentation generators). This usually contains both 
description text and source code (source code is typically within a <c> or <code> 
tags). 

<c> 
<c>...</c> 

Indicates an inline code snippet. This tag is usually used inside an <example> 
block. 

<code> 
<code>...</code> 

Indicates a multiline code sample. This tag is usually used inside an <example> 
block. 

<see> 
<see cref="member">...</see> 

Inserts an inline cross-reference to another type or member. HTML documentation 
generators typically convert this to a hyperlink. The compiler emits a warning if the 
type or member name is invalid. 

<seealso> 
<seealso cref="member">...</seealso> 

Cross-references another type or member. Documentation generators typically write 
this into a separate “See Also” section at the bottom of the page. 

<paramref> 
<paramref name="name"/> 

References a parameter from within a <summary> or <remarks> tag. 

<list> 
<list type=[ bullet | number | table ]> 
  <listheader> 
    <term>...</term> 
    <description>...</description> 
  </listheader> 
  <item> 
    <term>...</term> 
    <description>...</description> 
  </item> 
</list> 

Instructs documentation generators to emit a bulleted, numbered, or table-style list. 

<para> 
<para>...</para> 

Instructs documentation generators to format the contents into a separate paragraph. 

 

www.it-ebooks.info

http://www.it-ebooks.info/


 

 

<include> 

Merges an external XML file that contains documentation. The path attribute denotes 
an XPath query to a specific element in that file. 

 
 

 
 

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Avoiding conflicts
	Contextual keywords

	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Members of a type
	Symmetry of predefined types and custom types
	Constructors and instantiation
	Instance versus static members
	The public keyword

	Conversions
	Value Types Versus Reference Types
	Value types
	Reference types
	Null

	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric literal type inference
	Numeric suffixes

	Numeric Conversions
	Integral to integral conversions
	Real to real conversions
	Real to integral conversions

	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	Integral division
	Integral overflow
	The checked and unchecked operators
	Bitwise operators

	8- and 16-Bit Integrals
	Special Float and Double Values
	double Versus decimal
	Real Number Rounding Errors

	Boolean Type and Operators
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	String Type
	String concatenation
	String comparisons
	Searching within strings
	Manipulating strings


	Arrays
	Default Element Initialization
	Multidimensional Arrays
	Rectangular arrays
	Jagged arrays

	Simplified Array Initialization Expressions

	Variables and Parameters
	The Stack and the Heap
	Stack
	Heap

	Definite Assignment
	Default Values
	Parameters
	Passing arguments by value
	The ref modifier
	The out modifier
	The params modifier
	Optional parameters (C# 4.0)
	Named arguments (C# 4.0)

	var—Implicitly Typed Local Variables

	Expressions and Operators
	Assignment Expressions
	Operator Precedence and Associativity
	Precedence
	Left-associative operators
	Right-associative operators

	Operator Table

	Statements
	Declaration Statements
	Local variable scope

	Expression Statements
	Selection Statements
	The if statement
	The else clause
	Changing the flow of execution with braces
	The switch statement

	Iteration Statements
	while and do-while loops
	for loops
	foreach loops

	Jump Statements
	The break statement
	The continue statement
	The goto statement
	The return statement


	Namespaces
	The using Directive
	Rules Within a Namespace
	Name scoping
	Name hiding
	Repeated namespaces
	The global:: qualifier

	Aliasing Types and Namespaces

	Classes
	Fields
	Methods
	Overloading methods

	Instance Constructors
	Implicit parameterless constructors
	Nonpublic constructors

	Object Initializers
	The this Reference
	Properties
	Automatic properties
	get and set accessibility

	Indexers
	Implementing an indexer

	Constants
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	Partial methods


	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Upcasting
	Downcasting
	The as operator
	The is operator

	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Constructor and field initialization order

	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	Object Member Listing
	Equals, ReferenceEquals, and GetHashCode
	The ToString Method

	Structs
	Struct Construction Semantics

	Access Modifiers
	Friend Assemblies
	Accessibility Capping

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators

	Nested Types
	Generics
	Generic Types
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Covariance (C# 4.0)
	Contravariance (C# 4.0)

	Delegates
	Writing Plug-in Methods with Delegates
	Multicast Delegates
	Instance vs. Static Method Targets
	Generic Delegate Types
	The Func and Action Delegates
	Delegate Compatibility
	Return type variance
	Parameter variance
	Type parameter variance for generic delegates (C# 4.0)


	Events
	Standard Event Pattern
	Event Accessors

	Lambda Expressions
	Capturing Outer Variables
	Capturing iteration variables


	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	The using statement

	Throwing Exceptions
	Rethrowing an exception

	Key Properties of System.Exception
	Common Exception Types

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Multiple yield statements
	yield break

	Composing Sequences

	Nullable Types
	Nullable<T> struct
	Nullable Conversions
	Boxing/Unboxing Nullable Values
	Operator Lifting
	Equality operators (== and !=)
	Relational operators (<, <=, >=, >)
	All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~) 
	Mixing nullable and non-nullable operators

	bool? with & and | Operators
	Null Coalescing Operator

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions

	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution
	Namespaces
	Extension methods versus instance methods
	Extension methods versus extension methods


	Anonymous Types
	LINQ
	LINQ Fundamentals
	A simple query
	Projecting
	Take and Skip
	Element operators
	Aggregation operators
	Quantifiers
	Set operators

	Deferred Execution
	Standard Query Operators
	Chaining Query Operators
	Query Expressions
	Query expressions versus fluent queries

	The let Keyword
	Query Continuations
	Multiple Generators
	Joining
	GroupJoin
	Zip

	Ordering
	Grouping
	OfType and Cast

	Dynamic Binding (C# 4.0)
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Member Overload Resolution
	Uncallable Functions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes
	Writing Custom Attributes
	Retrieving Attributes at Runtime

	Caller Info Attributes (C# 5.0)
	Asynchronous Functions (C# 5.0)
	The await and async keywords
	Capturing Local State
	Writing Asynchronous Functions
	Returning Task<TResult>

	Parallelism
	Asynchronous Lambda Expressions

	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	Arrays
	The stackalloc keyword
	Fixed-size buffers

	void*

	Preprocessor Directives
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags


