Instant Help for C# 5.0 Programmers

Joseph Albabari
O, RE I LLY® & Ben Albahari

www.it-ebooks.info

http://www.it-ebooks.info/

C# 5.0 Pocket Reference

C# is a general-purpose, type-safe, object-oriented programming language. The goal of
the language is programmer productivity. To this end, the language balances simplicity,
expressiveness, and performance. The C# language is platform-neutral, but it was written
to work well with the Microsoft .NET Framework. C# 5.0 targets NET Framework 4.5.

The programs and code snippets in this book mirror those in Chapters 2-4 of
C# 5.0 in a Nutshell and are all available as interactive samples in LINQPad.
Working through these samples in conjunction with the book accelerates
learning in that you can edit the samples and instantly see the results without
needing to set up projects and solutions in Visual Studio.

To download the samples, click the Samples tab in LINQPad and click
“Download more samples”. LINQPad is free—go to www.lingpad.net.

A First C# Program

Here is a program that multiplies 12 by 30, and prints the result, 360, to the screen. The
double forward slash indicates that the remainder of a line is a comment.

using System; // Importing namespace
class Test // Class declaration
{
static void Main () // Method declaration
{
int x = 12 * 30; // Statement 1
Console.WriteLine (x); // Statement 2
} // End of method
} // End of class

At the heart of this program lies two statements. Statements in C# execute sequentially
and are terminated by a semicolon. The first statement computes the expression 12 * 30
and stores the result in a local variable, named x, which is an integer type. The second
statement calls the Console class’s WriteLine method, to print the variable x to a
text window on the screen.

A method performs an action in a series of statements, called a statement block—a pair of
braces containing zero or more statements. We defined a single method named Ma in.

www.it-ebooks.info

http://www.linqpad.net/
http://www.it-ebooks.info/

Writing higher-level functions that call upon lower-level functions simplifies a program.
We can refactor our program with a reusable method that multiplies an integer by 12 as
follows:

using System;

class Test

{

static void Main ()
{
Console.WritelLine (FeetToInches (30)); // 360
Console.WritelLine (FeetToInches (100)); // 1200
}

static int FeetToInches (int feet)
{
int inches = feet * 12;
return inches;
}
}

A method can receive input data from the caller by specifying parameters and output data
back to the caller by specifying a return type. We defined a method called
FeetToInches that has a parameter for inputting feet, and a return type for outputting
inches, both of type int (integer).

The literals 30 and 100 are the arguments passed to the Feet ToInches method. The
Main method in our example has empty parentheses because it has no parameters, and is
void because it doesn’t return any value to its caller. C# recognizes a method called
Main as signaling the default entry point of execution. The Ma in method may optionally
return an integer (rather than void) in order to return a value to the execution
environment. The Ma in method can also optionally accept an array of strings as a
parameter (that will be populated with any arguments passed to the executable). For
example:

| static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of elements of a
particular type (see “Arrays”).

Methods are one of several kinds of functions in C#. Another kind of function we used
was the * operator, used to perform multiplication. There are also constructors,
properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function
members and data members to form an object-oriented building block. The Console
class groups members that handle command-line input/output functionality, such as the
WriteLine method. Our Test class groups two methods—the Ma in method and the
FeetToInches method. A class is a kind of type, which we will examine in “Type
Basics”.

At the outermost level of a program, types are organized into namespaces. The using
directive was used to make the System namespace available to our application, to use
the Console class. We could define all our classes within the TestPrograms
namespace, as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

using System;

namespace TestPrograms
{
class Test {...}
class Test2 {...}

}

The .NET Framework is organized into nested namespaces. For example, this is the
namespace that contains types for handling text:

|using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully
qualified name, which is the type name prefixed with its namespace, such as
System.Text.StringBuilder.

Compilation

The C# compiler compiles source code, specified as a set of files with the .cs extension,
into an assembly. An assembly is the unit of packaging and deployment in NET. An
assembly can be either an application or a library. A normal console or Windows ohas a
Main method and is an file. A library is a .d!| and is equivalent to an without an
entry point. Its purpose is to be called upon (referenced) by an application or by other
libraries. The .NET Framework is a set of libraries.

The name of the C# compiler is . You can either use an IDE such as Visual Studio
to compile, or call csc manually from the command line. To compile manually, first
save a program to a file such as , and then go to the command line
and invoke csc (located under

where is your Windows directory) as follows:

|csc MyFirstProgram.cs
This produces an application named
To produce a library (.c!l), do the following:

|csc /target:library MyFirstProgram.cs

Syntax

CH# syntax is inspired by C and C++ syntax. In this section, we will describe C#’s
elements of syntax, using the following program:

using System;

class Test
{
static void Main ()
{
int x = 12 * 30;
Console.WriteLine (x);

www.it-ebooks.info

http://www.it-ebooks.info/

Identifiers and Keywords
Identifiers are names that programmers choose for their classes, methods, variables, and
so on. These are the identifiers in our example program, in the order they appear:

|System, Test Main x Console TWriteLine

An identifier must be a whole word, essentially made up of Unicode characters starting
with a letter or underscore. C# identifiers are case-sensitive. By convention, parameters,
local variables, and private fields should be in camel case (e.g., myVariable), and all
other identifiers should be in Pascal case (e.g., MyMethod).

Keywords are names reserved by the compiler that you can’t use as identifiers. These are
the keywords in our example program:

|using class static wvoid int

Here is the full list of C# keywords:

abstract enum long stackalloc
as event namespace static
base explicit new string
bool extern null struct
break false object switch
byte finally operator this

case fixed out throw
catch float override true

char for params try
checked foreach private typeof
class goto protected uint
const if public ulong
continue implicit readonly unchecked
decimal in ref unsafe
default int return ushort
delegate interface sbyte using

do internal sealed virtual
double is short void

else lock sizeof while

Avoiding conflicts

If you really want to use an identifier that clashes with a keyword, you can do so by
qualifying it with the @ prefix. For instance:

class class {...} // Illegal
class @class {...} // Legal

The @ symbol doesn’t form part of the identifier itself. So @myVariable is the same as
myVariable.

Contextual keywords

Some keywords are contextual, meaning they can also be used as identifiers—without an
@ symbol. These are:

add equals join set
ascending from let value

www.it-ebooks.info

http://www.it-ebooks.info/

async get on var

await global orderby where
by group partial yield
descending in remove
dynamic into select

With contextual keywords, ambiguity cannot arise within the context in which they are
used.

Literals, Punctuators, and Operators

Literals are primitive pieces of data lexically embedded into the program. The literals in
our example program are 12 and 30. Punctuators help demarcate the structure of the
program. The punctuators in our program are {, } and ;.

The braces group multiple statements into a statement block. The semicolon terminates a
(non-block) statement. Statements can wrap multiple lines:

Console.WritelLine
1+2+3+4+5+6+7+8+ 9+ 10);

An operator transforms and combines expressions. Most operators in C# are denoted
with a symbol, such as the multiplication operator, *. The operators in our program are:

|‘ 0 * =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are used
when the method accepts no arguments. The equals sign performs assignment (the double
equals, ==, performs equality comparison).

Comments

C# offers two different styles of source-code documentation: single-line comments and
multiline comments. A single-line comment begins with a double forward slash and
continues until the end of the line. For example:

|int x = 3; // Comment about assigning 3 to x
A multiline comment begins with /* and ends with * /. For example:

int x = 3; /* This is a comment that
spans two lines */

Comments may embed XML documentation tags (see “XML Documentation™).

Type Basics

A type defines the blueprint for a value. . In our example, we used two literals of type
int with values 12 and 30. We also declared a variable of type int whose name was x.

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later).

All values in C# are an instance of a specific type. The meaning of a value, and the set of
possible values a variable can have, is determined by its type.

www.it-ebooks.info

http://www.it-ebooks.info/

Predefined Type Examples

Predefined types (also called built-in types) are types that are specially supported by the
compiler. The int type is a predefined type for representing the set of integers that fit

into 32 bits of memory, from 23140 231-1. We can perform functions such as
arithmetic with instances of the int type as follows:
| int x = 12 * 30;

Another predefined C# type is st ring. The string type represents a sequence of
characters, such as “NET” or “http://oreilly.com”. We can work with strings by calling
functions on them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper () ;
Console.WritelLine (upperMessage); // HELLO WORLD

int x = 2012;
message = message + x.ToString() ;
Console.WritelLine (message); // Hello world2012

The predefined boo1l type has exactly two possible values: t rue and false. The
bool type is commonly used to conditionally branch execution flow with an if
statement. For example:

bool simpleVar = false;
if (simpleVar)
Console.WritelLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WritelLine ("This will print");

The System namespace in the NET Framework contains many important
types that are not predefined by C# (e.g., DateTime).

Custom Type Examples

Just as we can build complex functions from simple functions, we can build complex
types from primitive types. In this example, we will define a custom type named
UnitConverter—a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter

{
int ratio; // Field

public UnitConverter (int unitRatio) // Constructor

{
ratio = unitRatio;

}

public int Convert (int unit) // Method
{

www.it-ebooks.info

http://www.it-ebooks.info/

return unit * ratio;
}
}

class Test
{
static void Main ()
{
UnitConverter feetToInches = new UnitConverter (12);
UnitConverter milesToFeet = new UnitConverter (5280);

Console.Write (feetToInches.Convert (30)); // 360

Console.Write (feetToInches.Convert (100)); // 1200

Console.Write (feetToInches.Convert
(milesToFeet.Convert(l))); // 63360

}

Members of a type

A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of
UnitConverter are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom types have few differences.
The predefined int type serves as a blueprint for integers. It holds data—32 bits—and
provides function members that use that data, such as ToString. Similarly, our custom
UnitConverter type acts as a blueprint for unit conversions. It holds data—the
ratio—and provides function members to use that data.

Constructors and instantiation

Data is created by instantiating a type. Predefined types can be instantiated simply by
using a literal such as 12 or "Hello, world".

The new operator creates instances of a custom type. We started our Ma in method by
creating two instances of the UnitConverter type. Immediately after the new
operator instantiates an object, the object’s constructor is called to perform initialization.
A constructor is defined like a method, except that the method name and return type are
reduced to the name of the enclosing type:

public UnitConverter (int unitRatio) // Constructor

{

ratio = unitRatio;

}

Instance versus static members

The data members and function members that operate on the instance of the type are
called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are instance
members.

Data members and function members that don’t operate on the instance of the type, but
rather on the type itself, must be marked as static. The Test.Main and

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine methods are static methods. The Console class is actually a
static class, which means all its members are static. You never actually create instances
of a Console—one console is shared across the whole application.

To contrast instance versus static members, the instance field Name pertains to an
instance of a particular Panda, whereas Population pertains to the set of all Panda
instances:

public class Panda

{
public string Name; // Instance field
public static int Population; // Static field

public Panda (string n) // Constructor
{
Name = nj; // Assign instance field
Population = Population+l; // Increment static field
}

}

The following code creates two instances of the Panda, prints their names, and then
prints the total population:

Panda pl = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (pl.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah
Console.WritelLine (Panda.Population) ; // 2

The public keyword

The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not public, the Test class could not access it. Marking a member
public is how a type communicates: “Here is what I want other types to see—
everything else is my own private implementation details.” In object-oriented terms, we
say that the public members encapsulate the private members of the class.

Conversions

C# can convert between instances of compatible types. A conversion always creates a
new value from an existing one. Conversions can be either implicit or explicit: implicit
conversions happen automatically whereas explicit conversions require a cast. In the
following example, we implicitly convert an int to a 1ong type (which has twice the
bitwise capacity of an int) and explicitly cast an int to a short type (which has half
the bitwise capacity of an int):

int x = 12345; // int is a 32-bit integer

long y = x; // Implicit conversion to 64-bit int

short z = (short)x; // Explicit conversion to 16-bit int

In general, implicit conversions are allowed when the compiler can guarantee they will
always succeed without loss of information. Otherwise, you must perform an explicit cast
to convert between compatible types.

www.it-ebooks.info

http://www.it-ebooks.info/

Value Types Versus Reference Types

C# types can be divided into value types and reference types.

Value types comprise most built-in types (specifically, all numeric types, the char type,
and the bool type) as well as custom struct and enum types. Reference types
comprise all class, array, delegate, and interface types.

The fundamental difference between value types and reference types is how they are
handled in memory.

Value types

The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the st ruct keyword (see Figure 1):

|public struct Point { public int X, Y; }

Point Struct

——————— } Value / Instance

Figure 1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

Point pl = new Point();
pl.X = 7;

Point p2 = pl; // Assignment causes copy

Console.WriteLine (pl.X); // 7
Console.WriteLine (p2.X); // 17

pl.Xx = 9; // Change pl.X
Console.WritelLine (pl.X); // 9
Console.WriteLine (p2.X); // 7

Figure 2 shows that p1 and p2 have independent storage.

Point Struct

p1 p2
9 7
0 i

Figure 2. Assignment copies a value-type instance

Reference types

A reference type is more complex than a value type, having two parts: an object and the
reference to that object. The content of a reference-type variable or constant is a
reference to an object that contains the value. Here is the Point type from our previous
example rewritten as a class (see Figure 3):

www.it-ebooks.info

http://www.it-ebooks.info/

public class Point { public int X, Y; }

Point Class
Reference Object
| Reference I -
Object
Metadata
X
——*;——— Value / Instance

Figure 3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance. This
allows multiple variables to refer to the same object—something not ordinarily possible
with value types. If we repeat the previous example, but with Point now a class, an
operation via p1 affects p2:

Point pl = new Point();
pl.X = 7;

Point p2 = pl; // Copies pl reference

Console.WritelLine (pl.X); // 7
Console.WriteLine (p2.X); // 7

pl.Xx = 9; // Change pl.X
Console.lWritelLine (pl.X); // 9
Console.WriteLine (p2.X); // 9

Figure 4 shows that p1 and p2 are two references that point to the same object.

Point Class
p1
| Reference I
Object
Metadata
p2 9

Figure 4. Assignment copies a reference
Null

A reference can be assigned the literal nul1, indicating that the reference points to no
object. Assuming Point is a class:

Point p = null;
Console.WriteLine (p == null); // True

Accessing a member of a null reference generates a runtime error:
| Console.WriteLine (p.X); // NullReferenceException

In contrast, a value type cannot ordinarily have a null value:

www.it-ebooks.info

http://www.it-ebooks.info/

struct Point {...}

Point p = null; // Compile-time error
int x = null; // Compile-time error

C# has a special construct called nullable types for representing value-type
nulls (see “Nullable Types™).

Predefined Type Taxonomy

The predefined types in C# are:
Value types
e Numeric
—Signed integer (sbyte, short, int, long)
—Unsigned integer (byte, ushort, uint, ulong)
—Real number (float, double, decimal)
e Logical (bool)
e Character (char)
Reference types
e String (string)
e Object (object)

Predefined types in C# alias Framework types in the System namespace. There is only a
syntactic difference between these two statements:

int i = 5;
System.Int32 i = 5;

The set of predefined value types excluding decimal are known as primitive types in
the Common Language Runtime (CLR). Primitive types are so called because they are
supported directly via instructions in compiled code, which usually translates to direct
support on the underlying processor.

Numeric Types

C# has the following predefined numeric types:

C# type System type Suffi Size Range

X
Integral—
signed
sbyte SByte 8 bits 2710271
short Intle 16 bits 21545215
int Int32 32 bits 231452314

www.it-ebooks.info

http://www.it-ebooks.info/

long Inte4 L 64 bits 063152631

Integral—

unsigned

byte Byte 8 bits 0to 28-1

ushort UIntle 16 bits 0to216_1

uint UInt32 U 32 bits 010 232-1

ulong UInte64 UL 64 bits 0 to 264_1

Real

float Single F 32 bits i(~10‘45t01038)
double Double D 64 bits i(~10’324t010308)
decimal Decimal M 128 bits + (N10728 to 1028)

Of the integral types, int and 1ong are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or when
space efficiency is paramount.

Of the real number types, f1oat and double are called floating-point types and are
typically used for scientific calculations. The decimal type is typically used for
financial calculations, where base-10-accurate arithmetic and high precision are required.
(Technically, decimal is a floating-point type too, although it’s not generally referred
to as such.)

Numeric Literals

Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted with
the Ox prefix (for example, Ox 7 £ is equivalent to 127). Real literals may use decimal or
exponential notation such as 1E06.

Numeric literal type inference

By default, the compiler infers a numeric literal to be either double or an integral type:

e Ifthe literal contains a decimal point or the exponential symbol (E), itis a double.

e Otherwise, the literal’s type is the first type in this list that can fit the literal’s value:
int,uint, long, and ulong.

For example:

Console.Write
Console.Write
Console.Write
Console.Write

1.0.GetType()); // Double (double)

1E06.GetType()); // Double (double)
1.GetType()); // Int32 (int)

0)

(
(
(
(0xF0000000.GetType ()); // UInt32 (uint)

Numeric suffixes

The numeric suffixes listed in the preceding table explicitly define the type of a literal:

|decimal d = 3.5M; // M = decimal (case-insensitive)

www.it-ebooks.info

http://www.it-ebooks.info/

The suffixes U and L are rarely necessary, because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

|long i=25; // Implicit conversion from int to long

The D suffix is technically redundant, in that all literals with a decimal point are inferred
to be double (and you can always add a decimal point to a numeric literal). The F and M
suffixes are the most useful and are mandatory when specifying fractional f1oat or
decimal literals. Without suffixes, the following would not compile, because 4.5 would
be inferred to be of type double, which has no implicit conversion to f1oat or
decimal:

float f = 4.5F; // Won't compile without suffix
decimal d = -1.23M; // Won't compile without suffix

Numeric Conversions

Integral to integral conversions

Integral conversions are implicit when the destination type can represent every possible
value of the source type. Otherwise, an explicit conversion is required. For example:

int x = 12345; // int is a 32-bit integral
long y = x; // Implicit conversion to 64-bit int
short z = (short)x; // Explicit conversion to 16-bit int

Real to real conversions

A float can be implicitly converted to a double, since a double can represent every
possible £ 1oat value. The reverse conversion must be explicit.

Conversions between decimal and other real types must be explicit.

Real to integral conversions

Conversions from integral types to real types are implicit whereas the reverse must be
explicit. Converting from a floating-point to an integral truncates any fractional portion;
to perform rounding conversions, use the static System.Convert class.

A caveat is that implicitly converting a large integral type to a floating-point type
preserves magnitude but may occasionally lose precision:

int 11 = 100000001;
float £ = i1; // Magnitude preserved, precision lost
int 12 = (int)f; // 100000000

Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types. The % operator evaluates the remainder after division.

Increment and Decrement Operators

The increment and decrement operators (++, —-) increment and decrement numeric types
by 1. The operator can either precede or follow the variable, depending on whether you
want the variable to be updated before or after the expression is evaluated. For example:

www.it-ebooks.info

http://www.it-ebooks.info/

int x = 0;

Console.Writeline (x++); // Outputs 0; x is now 1
Console.Writeline (++x); // Outputs 2; x is now 2
Console.WriteLine (--x); // Outputs 1; x is now 1

Specialized Integral Operations

Integral division

Division operations on integral types always truncate remainders (round towards zero).
Dividing by a variable whose value is zero generates a runtime error (a
DivideByZeroException). Dividing by the literal or constant 0 generates a
compile-time error.

Integral overflow

At runtime, arithmetic operations on integral types can overflow. By default, this happens
silently—no exception is thrown and the result exhibits wraparound behavior, as though
the computation was done on a larger integer type and the extra significant bits discarded.
For example, decrementing the minimum possible int value results in the maximum
possible int value:

int a = int.MinValue; a--;

Console.WriteLine (a == int.MaxValue); // True

The checked and unchecked operators

The checked operator tells the runtime to generate an Over f lowException rather
than overflowing silently when an integral expression or statement exceeds the arithmetic
limits of that type. The checked operator affects expressions with the ++, ——, (unary)
-, +, -, *, /, and explicit conversion operators between integral types.

checked can be used around either an expression or a statement block. For example:

int a = 1000000, b = 1000000;

int ¢ = checked (a * b); // Checks just the expression
checked // Checks all expressions
{ // in statement block.

You can make arithmetic overflow checking the default for all expressions in a program
by compiling with the /checked+ command-line switch (in Visual Studio, go to
Advanced Build Settings). If you then need to disable overflow checking just for specific
expressions or statements, you can do so with the unchecked operator.

Bitwise operators

C# supports the following bitwise operations:

Operator Meaning Sample expression Result
~ Complement ~0xfU Oxfffff££0U
& And 0xf0 & 0x33 0x30

www.it-ebooks.info

http://www.it-ebooks.info/

Or 0xf0 | 0x33 0x£3

A

” Exclusive Or 0xf£00 ~ 0xO0ff0 0x£0£0
<< Shift left 0x20 << 2 0x80
>> Shift right 0x20 >> 1 0x10

8- and 16-Bit Integrals

The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types as
required. This can cause a compilation error when trying to assign the result back to a
small integral type:

short x =1, v = 1;
short z = x + y; // Compile-time error

In this case, x and y are implicitly converted to int so that the addition can be
performed. This means the result is also an int, which cannot be implicitly cast back to
a short (because it could cause loss of data). To make this compile, we must add an
explicit cast:

|short z = (short) (x + y); // OK

Special Float and Double Values

Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (Not a Number), +o0, —o0, and —0. The float
and double classes have constants for NaN, +oo and —oo (as well as other values
including MaxValue, MinValue, and Epsilon). For example:

|Console.Write (double.NegativeInfinity) ; // -Infinity

Dividing a nonzero number by zero results in an infinite value:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (-1.0 / 0.0); // -Infinity
Console.Writeline (1.0 / -0.0); // —Infinity
Console.WriteLine (-1.0 / -0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN:

Console.Write (0.0 / 0.0); // NaN
Console.Write ((1.0 / 0.0) — (1.0 / 0.0)); // NaN

When using ==, a NaN value is never equal to another value, even another NaN value.
To test whether a value is NaN, you must use the f1oat.IsNaN or double.IsNaN
method:

Console.WriteLine (0.0 / 0.0 == double.NaN); // False
Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True

When using object.Equals, however, two NaN values are equal:

|bool isTrue = object.Equals (0.0/0.0, double.NaN);

www.it-ebooks.info

http://www.it-ebooks.info/

double Versus decimal

double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather
than the result of real-world measurements. Here's a summary of the differences:

Feature double decimal

Internal Base 2 Base 10

representation

Precision 15-16 significant figures ~ 28-29 significant figures

Range +(~10324 10 ~10308) (<1028 t0 ~1028)

Special values +0, —0, +o0, —o0 and NaN None

Speed Native to processor Nonnative to processor
(about 10 times slower
than double)

Real Number Rounding Errors

float and double internally represent numbers in base 2. For this reason, most literals
with a fractional component (which are in base 10) will not be represented precisely:
float tenth = 0.1f; // Not quite 0.1

float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why f1loat and double are bad for financial calculations. In contrast,
decimal works in base 10 and so can precisely represent fractional numbers such as 0.1
(whose base 10 representation is non-recurring).

Boolean Type and Operators

C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one byte
of memory, since this is the minimum chunk that the runtime and processor can
efficiently work with. To avoid space-inefficiency in the case of arrays, the Framework
provides a BitArray class inthe System.Collections namespace that is
designed to use just one bit per Boolean value.

Equality and Comparison Operators
== and ! = test for equality and inequality of any type, and always return a boo1l value.
Value types typically have a very simple notion of equality:

intx=1, yv=2, z =1;
Console.WriteLine (x == y); // False
Console.WriteLine (x == z); // True

www.it-ebooks.info

http://www.it-ebooks.info/

For reference types, equality, by default, is based on reference, as opposed to the actual
value of the underlying object. Therefore, two instances of an object with identical data
are not considered equal unless the == operator for that type is specially overloaded to
that effect (see “The object Type” and “Operator Overloading”).

The equality and comparison operators, ==, ! =, <, >, >=, and <=, work for all numeric
types, but should be used with caution with real numbers (see “Real Number Rounding
Errors” in the previous section). The comparison operators also work on enum type
members, by comparing their underlying integral values.

Conditional Operators

The && and | | operators test for and and or conditions. They are frequently used in

conjunction with the ! operator, which expresses not. In this example, the

UseUmbrella method returns t rue if it’s rainy or sunny (to protect us from the rain

or the sun), as long as it’s not also windy (since umbrellas are useless in the wind):
static bool UseUmbrella (bool rainy, bool sunny,

bool windy)
{

return !windy && (rainy || sunny);

}

The && and | | operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy | | sunny) is not even evaluated.
Short-circuiting is essential in allowing expressions such as the following to run without
throwing a Nul1ReferenceException:

| if (sb != null && sb.Length > 0)
The & and | operators also test for and and or conditions:
|return 'windy & (rainy | sunny);

The difference is that they do not short-circuit. For this reason, they are rarely used in
place of conditional operators.

The ternary conditional operator (simply called the conditional operator) has the form g
? a : b, where if condition g is true, a is evaluated, else b is evaluated. For example:

static int Max (int a, int b)

{
return (a > b) ? a : b;

}

The conditional operator is particularly useful in LINQ queries.

Strings and Characters

C#’s char type (aliasing the System. Char type) represents a Unicode character and
occupies two bytes. A char literal is specified inside single quotes:

| char ¢ = 'a'; // Simple character

www.it-ebooks.info

http://www.it-ebooks.info/

Escape sequences express characters that cannot be expressed or interpreted literally. An
escape sequence is a backslash followed by a character with a special meaning. For
example:

char newLine = '\n';
char backSlash = "\\';

The escape sequence characters are:

Char Meaning Value

\! Single quote 0x0027
\" Double quote 0%0022
\\ Backslash 0x005C
\O Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

The \u (or \ x) escape sequence lets you specify any Unicode character via its four-digit
hexadecimal code.

char copyrightSymbol = '\uO0A9';
char omegaSymbol = '"\u03a9"';
char newLine "\uOOOA"';

An implicit conversion from a char to a numeric type works for the numeric types that
can accommodate an unsigned short. For other numeric types, an explicit conversion is
required.

String Type

C#’s string type (aliasing the System. St ring type) represents an immutable sequence
of Unicode characters. A string literal is specified inside double quotes:

| string a = "Heat";

string is a reference type, rather than a value type. Its equality operators,
however, follow value-type semantics:

string a = "test", b = "test";
Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:
|string a = "Here's a tab:\t";
The cost of this is that whenever you need a literal backslash, you must write it twice:

|string al = "\\\\server\\fileshare\\helloworld.cs";

www.it-ebooks.info

http://www.it-ebooks.info/

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is
prefixed with @ and does not support escape sequences. The following verbatim string is
identical to the preceding one:

|string a2 = @"\\server\fileshare\helloworld.cs";

A verbatim string literal can also span multiple lines. You can include the double-quote
character in a verbatim literal by writing it twice.

String concatenation
The + operator concatenates two strings:
| Strlng S e "aH + "b";

One of the operands may be a non-string value, in which case ToString is called on
that value. For example:

| string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string can be inefficient: a better solution is
to use the System.Text.StringBuilder type—this represents a mutable
(editable) string, and has methods to efficiently Append, Insert, Remove and
Replace substrings.

String comparisons

string does not support < and > operators for comparisons. You must instead use
string’s CompareTo method, which returns a positive number, a negative number, or
zero, depending on whether the first value comes after, before, or alongside the second
value:

Console.Write ("Boston".CompareTo ("Austin")); // 1
Console.Write ("Boston".CompareTo ("Boston")); // 0
Console.Write ("Boston".CompareTo ("Chicago")); // -1

Searching within strings
string’s indexer returns a character at a specified position:
| Console.Write ("word"[2]); // r

The Index0Of/LastIndexOf methods search for a character within the string; the
Contains, StartsWith and EndsWith methods search for a substring within the
string.

Manipulating strings

Because string is immutable, all the methods that “manipulate” a string return a new
one, leaving the original untouched:

e Substring extracts a portion of a string.
e TInsert and Remove insert and remove characters at a specified position.
e PadLeft and PadRight add whitespace.

e TrimStart, TrimEnd and Trim remove whitespace.

www.it-ebooks.info

http://www.it-ebooks.info/

The string class also defines ToUpper and ToLower methods for changing case, a
Split method to split a string into substrings (based on supplied delimiters), and a static
Join method to join substrings back into a string.

Arrays

An array represents a fixed number of elements of a particular type. The elements in an
array are always stored in a contiguous block of memory, providing highly efficient
access.

An array is denoted with square brackets after the element type. The following declares
an array of 5 characters:

|char[} vowels = new char[5];

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a'; vowels[l] = 'e'; vowels[2] = "1i';
vowels[3] = 'o'; vowels[4] = 'u';
Console.WriteLine (vowels [1]); // e

This prints “e” because array indexes start at 0. We can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the integer
i from O to 4:

for (int i = 0; i < vowels.Length; i++)
Console.Write (vowels [i]); // aeiou

Arrays also implement TEnumerable<T> (see “Enumeration and Iterators™), so you
can also enumerate members with the foreach statement:

|foreach (char ¢ in vowels) Console.Write (c); // aeiou

All array indexing is bounds-checked by the runtime. An
IndexOutOfRangeException is thrown if you use an invalid index:

|vowels[5] ='y'; // Runtime error

The Length property of an array returns the number of elements in the array. Once an
array has been created, its length cannot be changed. The System.Collection
namespace and subnamespaces provide higher-level data structures, such as dynamically
sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single step:

|char[} vowels = new char[] {'a','e','i','o','u'};
or simply:
|char[] vowels = {'a','e','i','0o','u'};

All arrays inherit from the System.Array class, which defines common methods and
properties for all arrays. This includes instance properties such as Length and Rank,
and static methods to:

e Dynamically create an array (CreateInstance)

e Get and set elements regardless of the array type (GetValue/SetValue)

www.it-ebooks.info

http://www.it-ebooks.info/

e Search a sorted array (BinarySearch) or an unsorted array (IndexOf,
LastIndexOf, Find, FindIndex, FindLastIndex)

e Sortan array (Sort)

e Copy an array (Copy)

Default Element Initialization

Creating an array always pre-initializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Since int is a value type, this allocates 1,000 integers in
one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[l123]); // 0

With reference-type elements, the default value is null.

An array itself is always a reference type object, regardless of element type. For instance,
the following is legal:

| int[] a = null;

Multidimensional Arrays

Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an N -dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays

Rectangular arrays are declared using commas to separate each dimension. The following
declares a rectangular two-dimensional array, where the dimensions are 3 x 3:

|int[,} matrix = new int [3, 3];

The GetLength method of an array returns the length for a given dimension (starting at
0):

for (int 1 = 0; 1 < matrix.GetLength(0); i++)
for (int j = 0; j < matrix.GetLength(l); Jj++)
matrix [i, J] =1 * 3 + 3j;

A rectangular array can be initialized as follows (to create an array identical to the
previous example):

int[,] matrix = new int[,]
{

{0,1,2},

{3,4,5},

{6,7,8}
i

(The code shown in boldface can be omitted in declaration statements such as the above.)

www.it-ebooks.info

http://www.it-ebooks.info/

Jagged arrays

Jagged arrays are declared using successive square brackets to represent each dimension.
Here is an example of declaring a jagged two-dimensional array, where the outermost
dimension is 3:

| int (][] matrix = new int[3][];

The inner dimensions aren’t specified in the declaration because, unlike a rectangular
array, each inner array can be an arbitrary length. Each inner array is implicitly initialized
to null rather than an empty array. Each inner array must be created manually:

for (int i = 0; i < matrix.Length; i++)

{

matrix[i] = new int [3]; // Create inner array
for (int j = 0; Jj < matrix[i].Length; j++)
matrix[i][J] =1 * 3 + 3J;

}

A jagged array can be initialized as follows (to create an array identical to the previous
example, but with an additional element at the end):

int[]1[] matrix = new Int[][]
{

new int[] {0,1,2},

new int[] {3,4,5},

new int[] {6,7,8,9}
i

(The code shown in boldface can be omitted in declaration statements such as the above.)

Simplified Array Initialization Expressions

We've already seen how to simplify array initialization expressions by omitting the new
keyword and type declaration:

char[] vowels = new char[]
char[] vowels =

s
s 1

{'a','e','i','o','u'};
{lalrlel ,lolrlul};

Another approach is to omit the type name after the new keyword, and have the compiler
infer the array type. This is a useful shortcut when passing arrays as arguments. For
example, consider the following method:

| void Foo (char[] data) { ... }
We can call this method with an array that we create on the fly as follows:

Foo (new char[] {"a","e","i","0","u"}); // Longhand
Foo (new[] {"a","e","i","0","u"}); // Shortcut

This shortcut is essential in creating arrays of anonymous types, as we’ll see later.

Variables and Parameters

A variable represents a storage location that has a modifiable value. A variable can be a
local variable, parameter (value, ref, or out), field (instance or static), or array element.

www.it-ebooks.info

http://www.it-ebooks.info/

The Stack and the Heap

The stack and the heap are the places where variables and constants reside. Each has very
different lifetime semantics.

Stack

The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a function is entered and exited. Consider the following
method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)
{
if (x == 0) return 1;
return x * Factorial (x-1);

}

This method is recursive, meaning that it calls itself. Each time the method is entered, a
new int is allocated on the stack, and each time the method exits, the int is
deallocated.

Heap

The heap is a block of memory in which objects (i.e., reference-type instances) reside.
Whenever a new object is created, it is allocated on the heap, and a reference to that
object is returned. During a program’s execution, the heap starts filling up as new objects
are created. The runtime has a garbage collector that periodically deallocates objects from
the heap, so your computer does not run out of memory. An object is eligible for
deallocation as soon as it’s not referenced by anthing that’s itself alive.

Value-type instances (and object references) live wherever the variable was declared. If
the instance was declared as a field within an object, or as an array element, that instance
lives on the heap.

You can’t explicitly delete objects in C#, as you can in C++. An unreferenced
object is eventually collected by the garbage collector.

The heap also stores static fields and constants. Unlike objects allocated on the heap
(which can get garbage-collected), these live until the application domain is torn down.

Definite Assignment

C# enforces a definite assignment policy. In practice, this means that outside of an
unsafe context, it’s impossible to access uninitialized memory. Definite assignment has
three implications:

e Local variables must be assigned a value before they can be read.

e Function arguments must be supplied when a method is called (unless marked
optional—see “Optional Parameters”).

e All other variables (such as fields and array elements) are automatically initialized
by the runtime.

For example, the following code results in a compile-time error:

|Static void Main ()

www.it-ebooks.info

http://www.it-ebooks.info/

{
int x;
Console.WriteLine (x); // Compile-time error

}

However, if x were instead a field of the containing class, this would be legal and would
print 0.

Default Values

All type instances have a default value. The default value for the predefined types is the
result of a bitwise zeroing of memory, and is null for reference types, O for numeric
and enum types, ' \0 ' for the char type and false for the bool type.

You can obtain the default value for any type using the default keyword (in practice,
this is useful with generics, as we’ll see later). The default value in a custom value type
(i.e., struct) is the same as the default value for each field defined by the custom type.

Parameters

A method has a sequence of parameters. Parameters define the set of arguments that must
be provided for that method. In this example, the method Foo has a single parameter
named p, of type int:

static void Foo (int p) // p is a parameter
{

}
static void Main() { Foo (8); } // 8 is an argument

You can control how parameters are passed with the re f and out modifiers:

Parameter Passed by Variable must be definitely
modifier assigned

None Value Going in

Ref Reference Going in

out Reference Going out

Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common case.
This means a copy of the value is created when passed to the method:

static void Foo (int p)
{
p=p+1; // Increment p by 1
Console.WriteLine (p); // Write p to screen
}
static void Main()
{
int x = 8;
Foo (x); // Make a copy of x
Console.WriteLine (x); // x will still be 8

www.it-ebooks.info

http://www.it-ebooks.info/

Assigning p a new value does not change the contents of x, since p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference, but not the object. In
the following example, Foo sees the same St ringBuilder object that Main
instantiated, but has an independent reference to it. In other words, sb and fooSB are
separate variables that reference the same St ringBuilder object:

static void Foo (StringBuilder fooSB)
{
fooSB.Append ("test");
fooSB = null;
}
static void Main()
{
StringBuilder sb = new StringBuilder();
Foo (sb);
Console.WritelLine (sb.ToString()); // test

}

Because fooSB is a copy of a reference, setting it to nul1 doesn’t make sb null. (If,
however, fooSB was declared and called with the re £ modifier, sb would become
null.)

The ref modifier

To pass by reference, C# provides the re f parameter modifier. In the following
example, p and x refer to the same memory locations:

static void Foo (ref int p)
{
p=p+1;
Console.WriteLine (p);
}
static void Main()
{
int x = 8;
Foo (ref x); // Pass x by reference
Console.WritelLine (x); // x is now 9

}

Now assigning p a new value changes the contents of x. Notice how the re f modifier is
required both when writing and when calling the method. This makes it very clear what’s
going on.

A parameter can be passed by reference or by value, regardless of whether the
parameter type is a reference type or a value type.

The out modifier
An out argument is like a re f argument, except it:

e Need not be assigned before going into the function

e Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a
method.

www.it-ebooks.info

http://www.it-ebooks.info/

The params modifier

The params parameter modifier may be specified on the last parameter of a method so
that the method accepts any number of parameters of a particular type. The parameter
type must be declared as an array. For example:

static int Sum (params int[] ints)
{
int sum = 0O;
for (int i =
return sum;

}

0; 1 < ints.Length; i++) sum += ints[i];

We can call this as follows:

|Console.WriteLine (Sum (1, 2, 3, 4)); // 10

You can also supply a params argument as an ordinary array. The preceding call is
semantically equivalent to:

|Console.WriteLine (new intf[] { 1, 2, 3, 4});

Optional parameters (C# 4.0)

From C# 4.0, methods, constructors and indexers can declare optional parameters. A
parameter is optional if it specifies a default value in its declaration:

|void Foo (int X = 23) { Console.Writeline (x); }
Optional parameters may be omitted when calling the method:
| Foo () ; // 23

The default argument of 23 is actually passed to the optional parameter x—the compiler
bakes the value 23 into the compiled code at the calling side. The preceding call to Foo
is semantically identical to:

| Foo (23);

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called from another
assembly requires recompilation of both assemblies—just as though the
parameter were mandatory.

The default value of an optional parameter must be specified by a constant expression, or
a parameterless constructor of a value type. Optional parameters cannot be marked with
ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and method call (the exception is with params arguments, which still always
come last). In the following example, the explicit value of 1 is passed to x, and the
default value of 0 is passed to v:

void Foo (int x = 0, int y = 0)
{

Console.Writeline (x + ", " + y);

}

www.it-ebooks.info

http://www.it-ebooks.info/

void Test ()
{

Foo (1) ; // 1, 0
}

To do the converse (pass a default value to x and an explicit value to y) you must
combine optional parameters with named arguments.

Named arguments (C# 4.0)

Rather than identifying an argument by position, you can identify an argument by name.
For example:

void Foo (int x, int vy)

{ Console.WritelLine (x + ", " + vy);
ioid Test ()

{ Foo (x:1, y:2); // 1, 2

}

Named arguments can occur in any order. The following calls to Foo are semantically
identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

You can mix named and positional parameters, as long as the named arguments appear
last:

|Foo (1, y:2);

Named arguments are particularly useful in conjunction with optional parameters. For
instance, consider the following method:

| void Bar (int a=0, int b=0, int c=0, int d=0) { ... }
We can call this supplying only a value for d as follows:
|Bar (d:3);

This is particularly useful when calling COM APIs.

var—Implicitly Typed Local Variables

It is often the case that you declare and initialize a variable in one step. If the compiler is
able to infer the type from the initialization expression, you can use the word var in
place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder () ;
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y =

new System.Text.StringBuilder();
float z = (float)Math.PI;

www.it-ebooks.info

http://www.it-ebooks.info/

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

In the section “Anonymous Types”, we describe a scenario where the use of var is
mandatory.

Expressions and Operators

An expression essentially denotes a value. The simplest kinds of expressions are
constants (such as 12 3) and variables (such as x). Expressions can be transformed and
combined using operators. An operator takes one or more input operands to output a new
expression:

|12 * 30 // * is an operator; 12 and 30 are operands.

Complex expressions can be built because an operand may itself be an expression, such
as the operand (12 * 30) in the following example:

|1+ (12 * 30)

Operators in C# can be classed as unary, binary, or ternary—depending on the number of
operands they work on (one, two, or three). The binary operators always use infix
notation, where the operator is placed between the two operands.

Operators that are intrinsic to the basic plumbing of the language are called primary; an
example is the method call operator. An expression that has no value is called a void
expression:

|Console.WriteLine (1)

Since a void expression has no value, it cannot be used as an operand to build more
complex expressions:

|1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions
An assignment expression uses the = operator to assign the result of another expression to
a variable. For example:
|x =x *5
An assignment expression is not a void expression. It actually carries the assignment

value, and so can be incorporated into another expression. In the following example, the
expression assigns 2 to x and 10 to y:

|y =5 * (x =2)
This style of expression can be used to initialize multiple values:
|a =b=c=d=0

The compound assignment operators are syntactic shortcuts that combine assignment
with another operator. For example:

|x *= 2 // equivalent to x = x * 2

www.it-ebooks.info

http://www.it-ebooks.info/

|x <<= 1 // equivalent to x = x << 1

(A subtle exception to this rule is with events which we describe later: the += and -=
operators here are treated specially and map to the event’s add and remove accessors).

Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity determine
the order of their evaluation. Operators with higher precedence execute before operators
of lower precedence. If the operators have the same precedence, the operator’s
associativity determines the order of evaluation.

Precedence

The expression 1 + 2 * 3 is evaluated as 1 + (2 * 3) because * has a higher precedence
than +.

Left-associative operators

Binary operators (except for assignment, lambda and null coalescing operators) are left-
associative; in other words, they are evaluated from left to right. For example, the
expression 8/4 /2 is evaluated as (8/4) /2 due to left associativity. Of course, you can
insert your own parentheses to change evaluation order.

Right-associative operators

The assignment operators, lambda, null coalescing and conditional operator are right-
associative; in other words, they are evaluated from right to left. Right associativity
allows multiple assignments such as x=y=3 to compile: it works by first assigning 3 to
v, and then assigning the result of that expression (3) to x.

Operator Table

The following table lists C#’s operators in order of precedence. Operators listed under the
same subheading have the same precedence. We explain user-overloadable operators in
the section “Operator Overloading”.

Operator Operator name Example Overloadab
symbol le
Primary (highest precedence)
Member access x.y No
-> Pointer to struct (unsafe) X->Yy No
0 Function call x() No
(1 Array/index a [x] Via indexer
++ Post-increment X++ Yes
- Post-decrement X-- Yes
new Create instance new Foo() No
stackalloc Unsafe stack allocation stackalloc(10) No

www.it-ebooks.info

http://www.it-ebooks.info/

typeof
checked

unchecked

default
await
Unary
sizeof

+

Multiplicative

*

/

o\°

Additive
+

Shift

<<

>>

Relational

Equality

Get type from identifier

Integral overflow check
on

Integral overflow check
off

Default value
Await

Get size of struct
Positive value of
Negative value of

Not

Bitwise complement
Pre-increment
Post-increment

Cast

Value at address (unsafe)

Address of value (unsafe)

Multiply
Divide

Remainder

Add
Subtract

Shift left
Shift right

Less than

Greater than

Less than or equal to
Greater than or equal to
Type is or is subclass of

Type conversion

Equals
Not equals

typeof (int)
checked (x)

unchecked (x)

default (char)

await mytask

sizeof (int)

+X

++X

(int)x

*X

x >> 1

X << 1

»
H
0]
NN OXK K

www.it-ebooks.info

Yes
Yes
Yes

Yes
Yes

Yes
Yes

Yes
Yes

http://www.it-ebooks.info/

Logical And

& And x &y Yes
Logical Xor

" Exclusive Or x "y Yes
Logical Or

| Or x |y Yes
Conditional And

&& Conditional And X && y Via &

Conditional Or

[| Conditional Or x ||y Via |
Conditional
? o Conditional isTrue ? thenThis No
: elseThis

Assignment and lambda (lowest precedence)
= Assign X =Y No
*= Multiply self by X *= 2 Via *
/= Divide self by x /=2 Via /
+= Add to self X += 2 Via +
-= Subtract from self x -=2 Via -
<<= Shift self left by X <<= 2 Via <<
>>= Shift self right by X >>= 2 Via >>
&= And self by X &= 2 Via &
"= Exclusive-Or self by x "= 2 Via »

= Or self by x |= 2 Via |
=> Lambda X =>x+1 No

Statements

Functions comprise statements that execute sequentially in the textual order in which they
appear. A statement block is a series of statements appearing between braces (the { }
tokens).

Declaration Statements

A declaration statement declares a new variable, optionally initializing the variable with
an expression. A declaration statement ends in a semicolon. You may declare multiple
variables of the same type in a comma-separated list. For example:

|bool rich = true, famous = false;

www.it-ebooks.info

http://www.it-ebooks.info/

A constant declaration is like a variable declaration, except that it cannot be changed after
it has been declared, and the initialization must occur with the declaration (more on this
in “Constants™):

| const double c = 2.99792458E08;

Local variable scope

The scope of a local variable or local constant variable extends throughout the current
block. You cannot declare another local variable with the same name in the current block
or in any nested blocks.

Expression Statements

Expression statements are expressions that are also valid statements. In practice, this
means expressions that “do” something; in other words, expressions that:

e Assign or modify a variable

e Instantiate an object

e (Call a method

Expressions that do none of these are not valid statements:

string s = "foo";
s.Length; // Illegal statement: does nothing!

When you call a constructor or a method that returns a value, you’re not obliged to use
the result. However, unless the constructor or method changes state, the statement is
useless:

new StringBuilder(); // Legal, but useless
x.Equals (y); // Legal, but useless

Selection Statements
Selection statements conditionally control the flow of program execution.

The if statement

An if statement executes a statement or if a bool expression is true. For example:

if (5 < 2 * 3)
Console.WriteLine ("true"); // true

The statement can be a code block:

if (5 < 2 * 3)

{
Console.WritelLine ("true"); // true
Console.WriteLine ("...")

}

The else clause

An if statement can optionally feature an e1se clause:

if (2 + 2 == 5)
Console.WritelLine ("Does not compute");

www.it-ebooks.info

http://www.it-ebooks.info/

else
Console.WriteLine ("False"); // False

Within an e 1 se clause, you can nest another i f statement:

if (2 + 2 == 5)
Console.WritelLine ("Does not compute");
else

if2+2=24)
Console_WriteLine (‘'‘Computes™); // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding i f statement in the
statement block. For example:

if (true)
if (false)
Console.WriteLine();
else
Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
if (false)
Console.WriteLine() ;
else
Console.WriteLine ("executes");

}
We can change the execution flow by moving the braces:

if (true)
{
if (false)
Console.WriteLine();
}
else
Console.WritelLine ("does not execute");

C# has no “elseif” keyword; however the following pattern achieves the same result:

static void TellMeWhatICanDo (int age)
{
if (age >= 35)
Console.WriteLine ("You can be president!");
else If (age >= 21)
Console.WritelLine ("You can drink!");
else if (age >= 18)
Console.WritelLine ("You can vote!");
else
Console.WritelLine ("You can wait!");

}
The switch statement

switch statements let you branch program execution based on a selection of possible
values that a variable may have. switch statements may result in cleaner code than

www.it-ebooks.info

http://www.it-ebooks.info/

multiple i f statements, since switch statements require an expression to be evaluated
only once. For instance:

static void ShowCard (int cardNumber)
{
switch (cardNumber)
{
case 13:
Console.WriteLine ("King");
break;
case 12:
Console.WriteLine ("Queen");
break;
case 11:
Console.WriteLine ("Jack");
break;
default: // Any other cardNumber
Console.WriteLine (cardNumber) ;
break;
}
}

You can only switch on an expression of a type that can be statically evaluated, which
restricts it to the st ring type, the built-in integral types, the enum types, and nullable
versions of these (see “Nullable Types”). At the end of each case clause, you must say
explicitly where execution is to go next, with some kind of jump statement. Here are the
options:

e Dbreak (jumps to the end of the switch statement)
e goto case X (jumps to another case clause)
e gotodefault (jumps tothe default clause)

e Any other jump statement—namely, return, throw, continue, or goto
label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{
case 13:
case 12:
case 11:
Console.WriteLine ("Face card");
break;
default:
Console.WritelLine ("Plain card");
break;

}

This feature of a switch statement can be pivotal in terms of producing cleaner code
than multiple i f-e1lse statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Iteration Statements

C# enables a sequence of statements to execute repeatedly with the while, do-while,
for and foreach statements.

while and do-while loops

while loops repeatedly execute a body of code while a boo1 expression is true. The
expression is tested before the body of the loop is executed. For example, the following
writes 012:
int i = 0;
while (1 < 3)
{ // Braces here are optional
Console.Write (i++);

}

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while loop:

int i = 0;

do

{

Console.WriteLine (i++);

}

while (i < 3);
for loops

for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (init-clause; condition-clause; iteration-clause)
statement-or-statement-block

The init-clause executes before the loop begins, and typically initializes one or more
iteration variables.

The condition-clause is a bool expression which is tested before each loop iteration.
The body executes while this condition is true.

The iteration-clause is executed after each iteration of the body. It's typically used to
update the iteration variable.

For example, the following prints the numbers 0 through 2:

for (int i = 0; 1 < 3; i++)
Console.WritelLine (1i);

The following prints the first 10 Fibonacci numbers (where each number is the sum of the
previous two):

for (int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{

Console.Writeline (prevFib);

int newFib = prevFib + curFib;

prevFib = curFib; curFib = newFib;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Any of the three parts of the for statement may be omitted. One can implement an
infinite loop such as the following (though while (true) may be used instead):

|for (;7) Console.WriteLine ("interrupt me");
foreach loops

The foreach statement iterates over each element in an enumerable object. Most of the
types in C# and the NET Framework that represent a set or list of elements are

enumerable. For example, both an array and a string are enumerable. Here is an example
of enumerating over the characters in a string, from the first character through to the last:

foreach (char ¢ in "beer")
Console.WriteLine (¢ + " "); // beer

We define enumerable objects in “Enumeration and Iterators”.

Jump Statements

The C# jump statements are break, continue, goto, return, and throw. We
cover the throw keyword in “try Statements and Exceptions”.

The break statement

The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)

{
if (x++ > 5) break; // break from the loop

}

// execution continues here after break

The continue statement

The continue statement forgoes the remaining statements in the loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int i = 0; 1 < 10; i++)
{

if ((1 % 2) == 0) continue;

Console.Write (1 + " "); // 13579
}

The goto statement

The goto statement transfers execution to a label (denoted with a colon suffix) within a
statement block. The following iterates the numbers 1 through 5, mimicking a for loop:

int 1 = 1;

startlLoop:

if (1 <= 5)

{
Console.Write (1 + " "); // 123405
i++;
goto startLoop;

}

www.it-ebooks.info

http://www.it-ebooks.info/

The return statement

The return statement exits the method and must return an expression of the method’s
return type if the method is nonvoid:

static decimal AsPercentage (decimal d)
{
decimal p = d * 100m;
return p; // Return to calling method with value

}

A return statement can appear anywhere in a method (except in a finally block).

Namespaces

A namespace is a domain within which type names must be unique. Types are typically
organized into hierarchical namespaces—both to avoid naming conflicts and to make
type names easier to find. For example, the RSA type that handles public key encryption
is defined within the following namespace:

|SystemdSecurity.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa
System.Security.Cryptography.RSA.Create() ;

Namespaces are independent of assemblies, which are units of deployment
such as an or

Namespaces also have no impact on member accessibility—public,
internal, private, and so on.

The namepace keyword defines a namespace for types within that block. For example:

namespace Outer.Middle.Inner
{

class Classl {}

class Class2 {}
}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example.

namespace Outer
{ namespace Middle
{ namespace Inner
{ class Classl {}
class Class2 {}

}

www.it-ebooks.info

http://www.it-ebooks.info/

You can refer to a type with its fully qualified name, which includes all namespaces from
the outermost to the innermost. For example, we could refer to C1ass1 in the preceding
example as Outer.Middle.Inner.Classl.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example

The using Directive

The using directive imports a namespace and is a convenient way to refer to types
without their fully qualified names. For example, we can refer to Class1 in the
preceding example as follows:

using Outer.Middle.Inner;

class Test // Test is in the global namespace
{
static void Main ()

{
Classl c; // Don’t need fully qualified name

A using directive can be nested within a namespace itself, to limit the scope of the
directive.

Rules Within a Namespace

Name scoping

Names declared in outer namespaces can be used unqualified within inner namespaces. In
this example, the names Middle and Class1 are implicitly imported into Inner:

namespace Outer
{
namespace Middle

{

class Classl {}

namespace Inner
{
class Class2 : Classl {}
}
}
}

If you want to refer to a type in a different branch of your namespace hierarchy, you can
use a partially qualified name. In the following example, we base SalesReport on
Common .ReportBase:

namespace MyTradingCompany

{

namespace Common

{

class ReportBase {}

www.it-ebooks.info

http://www.it-ebooks.info/

}

namespace ManagementReporting

{
class SalesReport : Common.ReportBase {}

}
}

Name hiding

If the same type name appears in both an inner and outer namespace, the inner name
wins. To refer to the type in the outer namespace, you must qualify its name.

All type names are converted to fully qualified names at compile-time.
Intermediate Language (IL) code contains no unqualified or partially qualified
names.

Repeated namespaces

You can repeat a namespace declaration, as long as the type names within the
namespaces don’t conflict:

namespace Outer.Middle.Inner { class Classl {} }
namespace Outer.Middle.Inner { class Class2 {} }

The classes can even span source files and assemblies.

The global:: qualifier

Occasionally, a fully qualified type name may conflict with an inner name. You can force
CH# to use the fully qualified type name by prefixing it with global: : as follows:

| global - :System.Text.StringBuilder sb;

Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing the
whole namespace, you can import just the specific types you need, giving each type an
alias. For example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Classes

A class is the most common kind of reference type. The simplest possible class
declaration is as follows:

class Foo
{
}

A more complex class optionally has the following:

www.it-ebooks.info

http://www.it-ebooks.info/

Preceding the keyword Attributes and class modifiers. The non-

class nested class modifiers are public,
internal, abstract, sealed,
static,unsafe,and partial

Following Generic type parameters, a base class, and
YourClassName interfaces
Within the braces Class members (these are methods,

properties, indexers, events, fields,
constructors, overloaded operators, nested
types, and a finalizer)

Fields

A field is a variable that is a member of a class or struct. For example:

class Octopus
{

string name;

public int Age = 10;
}

A field may have the readonly modifier to prevent it from being modified after
construction. A read-only field can be assigned only in its declaration or within the
enclosing type’s constructor.

Field initialization is optional. An uninitialized field has a default value (0, \0, null,
false). Field initializers run before constructors, in the order in which they appear.

For convenience, you may declare multiple fields of the same type in a comma-separated
list. This is a convenient way for all the fields to share the same attributes and field
modifiers. For example:

|static readonly int legs = 8, eyes = 2;

Methods

A method performs an action in a series of statements. A method can receive input data
from the caller by specifying parameters and output data back to the caller by specifying
a return type. A method can specify a void return type, indicating that it doesn’t return
any value to its caller. A method can also output data back to the caller via ref/out
parameters.

A method’s signature must be unique within the type. A method’s signature comprises its
name and parameter types (but not the parameter names, nor the return type).

Overloading methods

A type may overload methods (have multiple methods with the same name), as long as
the parameter types are different. For example, the following methods can all coexist in
the same type:

void Foo (int x);
void Foo (double x);
void Foo (int x, float vy);

www.it-ebooks.info

http://www.it-ebooks.info/

|void Foo (float x, int vy);

Instance Constructors

Constructors run initialization code on a class or struct. A constructor is defined like a
method, except that the method name and return type are reduced to the name of the
enclosing type:

public class Panda
{
string name; // Define field
public Panda (string n) // Define constructor
{
name = n; // Initialization code
}
}
Panda p = new Panda ("Petey"); // Call constructor

A class or struct may overload constructors. One overload may call another, using the
this keyword:

public class Wine

{

public Wine (decimal price) {...}

public Wine (decimal price, int year)
- this (price) {...}
}

When one constructor calls another, the called constructor executes first.
You can pass an expression into another constructor as follows:

public Wine (decimal price, DateTime year)
: this (price, year.Year) {...}

The expression itself cannot make use of the this reference, for example, to call an
instance method. It can, however, call static methods.

Implicit parameterless constructors

For classes, the C# compiler automatically generates a parameterless public constructor if
and only if you do not define any constructors. However, as soon as you define at least
one constructor, the parameterless constructor is no longer automatically generated.

For structs, a parameterless constructor is intrinsic to the struct; therefore, you cannot
define your own. The role of a struct’s implicit parameterless constructor is to initialize
each field with default values.

Nonpublic constructors

Constructors do not need to be public. A common reason to have a nonpublic constructor
is to control instance creation via a static method call. The static method could be used to
return an object from a pool rather than creating a new object, or return a specialized
subclass chosen based on input arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Object Initializers

To simplify object initialization, the accessible fields or properties of an object can be
initialized via an object initializer directly after construction. For example, consider the
following class:

public class Bunny
{
public string Name;
public bool LikesCarrots, LikesHumans;

public Bunny () {}
public Bunny (string n) { Name = n; }

}
Using object initializers, you can instantiate Bunny objects as follows:

Bunny bl = new Bunny {
Name="Bo",
LikesCarrots = true,
LikesHumans = false

}i

Bunny b2 = new Bunny ("Bo") {
LikesCarrots = true,
LikesHumans = false

}i

The this Reference

The this reference refers to the instance itself. In the following example, the Marry
method uses this to set the partner’s mate field:

public class Panda

{
public Panda Mate;

public void Marry (Panda partner)
{
Mate = partner;
partner.Mate = this;
}
}

The this reference also disambiguates a local variable or parameter from a field. For
example:

public class Test

{
string name;
public Test (string name) { this.name = name; }

}

The thi s reference is valid only within nonstatic members of a class or struct.

www.it-ebooks.info

http://www.it-ebooks.info/

Properties

Properties look like fields from the outside, but internally they contain logic, like
methods do. For example, you can’t tell by looking at the following code whether
CurrentPrice is a field or a property:

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WritelLine (msft.CurrentPrice);

A property is declared like a field, but with a get/set block added. Here’s how to
implement CurrentPrice as a property:

public class Stock
{

decimal currentPrice; // The private "backing" field

public decimal CurrentPrice // The public property
{
get { return currentPrice; }
set { currentPrice = value; }
}
}

get and set denote property accessors. The get accessor runs when the property is
read. It must return a value of the property’s type. The set accessor runs when the
property is assigned. It has an implicit parameter named value of the property’s type
that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they give
the implementer complete control over getting and setting its value. This control enables
the implementer to choose whatever internal representation is needed, without exposing
the internal details to the user of the property. In this example, the set method could
throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields to keep the examples free of
distraction. In a real application, you would typically favor public properties
over public fields to promote encapsulation.

A property is read-only if it specifies only a get accessor, and it is write-only if it
specifies only a set accessor. Write-only properties are rarely used. A property typically
has a dedicated backing field to store the underlying data. However, it need not—it may
instead return a value computed from other data.

Automatic properties

The most common implementation for a property is a getter and/or setter that simply
reads and writes to a private field of the same type as the property. An automatic
property declaration instructs the compiler to provide this implementation. We can
redeclare the first example in this section as follows:

public class Stock
{

public decimal CurrentPrice { get; set; }

}

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler automatically generates a private backing field of a compiler-generated
name that cannot be referred to. The set accessor can be marked private if you want
to expose the property as read-only to other types.

get and set accessibility

The get and set accessors can have different access levels. The typical use case for this
is to have a pub1ic property with an internal or private access modifier on the
setter:

private decimal x;
public decimal X
{

get { return x; }
private set { x = Math.Round (value, 2); }
}

Notice that you declare the property itself with the more permissive access level
(public, in this case), and add the modifier to the accessor you want to be less
accessible.

Indexers

Indexers provide a natural syntax for accessing elements in a class or struct that
encapsulate a list or dictionary of values. Indexers are similar to properties, but are
accessed via an index argument rather than a property name. The st ring class has an
indexer that lets you access each of its char values via an int index:

string s = "hello";

Console.WriteLine (s[0]); // 'h'

Console.WritelLine (s[3]); // '1'

The syntax for using indexers is like that for using arrays, except that the index
argument(s) can be of any type(s).
Implementing an indexer

To write an indexer, define a property called this, specifying the arguments in square
brackets. For instance:

class Sentence

{

string[] words = "The quick brown fox".Split();
public string this [int wordNum] // indexer
{

get { return words [wordNum]; 3}
set { words [wordNum] = value; }

}
)

Here’s how we could use this indexer:

Sentence s = new Sentence();

Console.WriteLine (s[3]); // fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

www.it-ebooks.info

http://www.it-ebooks.info/

A type may declare multiple indexers, each with parameters of different types. An
indexer can also take more than one parameter:

public string this [int argl, string arg2?]
{

get { ... } set { ...}
}

If you omit the set accessor, an indexer becomes read-only.

Constants

A constant is a static field whose value can never change. A constant is evaluated
statically at compile time and the compiler literally substitutes its value whenever used
(rather like a macro in C++). A constant can be any of the built-in numeric types, bool,
char, string, or an enum type.

A constant is declared with the const keyword and must be initialized with a value. For
example:

public class Test

{
public const string Message = "Hello World";

}

A constant is much more restrictive than a static readonly field—both in the types
you can use and in field initialization semantics. A constant also differs froma static
readonly field in that the evaluation of the constant occurs at compile time. Constants
can also be declared local to a method:

static void Main()

{
const double twoPI = 2 * System.Math.PI;

Static Constructors

A static constructor executes once per type, rather than once per instance. A type can
define only one static constructor, and it must be parameterless and have the same name
as the type:

class Test

{
static Test () { Console.Write ("Type Initialized"); }

}

The runtime automatically invokes a static constructor just prior to the type being used.
Two things trigger this: instantiating the type, and accessing a static member in the type.

If a static constructor throws an unhandled exception, that type becomes
unusable for the life of the application.

Static field initializers run just before the static constructor is called. If a type has no
static constructor, field initializers will execute just prior to the type being used—or
anytime earlier at the whim of the runtime. (This means that the presence of a static

www.it-ebooks.info

http://www.it-ebooks.info/

constructor may cause field initializers to execute later in the program than they would
otherwise.)

Static Classes

A class can be marked static, indicating that it must be composed solely of static
members and cannot be subclassed. The System.Console and System.Math
classes are good examples of static classes.

Finalizers

Finalizers are class-only methods that execute before the garbage collector reclaims the
memory for an unreferenced object. The syntax for a finalizer is the name of the class
prefixed with the ~ symbol:

class Classl

{
~Classl() { ... }

}

C# translates a finalizer into a method that overrides the Finalize method in the
object class. We discuss garbage collection and finalizers fully in Chapter 12 of C# 5.0
in a Nutshell.

Partial Types and Methods

Partial types allow a type definition to be split—typically across multiple files. A
common scenario is for a partial class to be auto-generated from some other source (e.g.,
a Visual Studio template), and for that class to be augmented with additional hand-
authored methods. For example:

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration.

Participants cannot have conflicting members. A constructor with the same parameters,
for instance, cannot be repeated. Partial types are resolved entirely by the compiler,
which means that each participant must be available at compile time and must reside in
the same assembly.

A base class may be specified on a single participant or on all participants. In addition,
each participant can independently specify interfaces to implement. We cover base
classes and interfaces in “Inheritance” and “Interfaces.”

Partial methods

A partial type may contain partial methods. These let an auto-generated partial type
provide customizable hooks for manual authoring. For example:

partial class PaymentForm // In auto-generated file

{

www.it-ebooks.info

http://www.it-ebooks.info/

partial void ValidatePayment (decimal amount);
}

partial class PaymentForm // In hand-authored file
{
partial void ValidatePayment (decimal amount)

if (amount > 100) Console.Write (“'Expensive!'");

}
}

A partial method consists of two parts: a definition and an implementation. The definition
is typically written by a code generator, and the implementation is typically manually
authored. If an implementation is not provided, the definition of the partial method is
compiled away (as is the code that calls it). This allows auto-generated code to be liberal
in providing hooks, without having to worry about bloat. Partial methods must be void
and are implicitly private.

Inheritance

A class can inherit from another class to extend or customize the original class. Inheriting
from a class lets you reuse the functionality in that class instead of building it from
scratch. A class can inherit from only a single class, but can itself be inherited by many
classes, thus forming a class hierarchy. In this example, we start by defining a class called
Asset:

|public class Asset { public string Name; }

Next, we define classes called Stock and House, which will inherit from Asset.

Stock and House get everything an Asset has, plus any additional members that they
define:

public class Stock - Asset // inherits from Asset
{

public long SharesOwned;
}

public class House - Asset // inherits from Asset
{

public decimal Mortgage;
}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
SharesOwned=1000 };

Console.WritelLine (msft.Name); // MSET
Console.WritelLine (msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
Mortgage=250000 };

Console.WritelLine (mansion.Name); // Mansion
Console.WriteLine (mansion.Mortgage); // 250000

www.it-ebooks.info

http://www.it-ebooks.info/

The subclasses, Stock and House, inherit the Name property from the base class,
Asset.

Subclasses are also called derived classes.

Polymorphism
References are polymorphic. This means a variable of type X can refer to an object that
subclasses X. For instance, consider the following method:

public static void Display (Asset asset)
{

System.Console.WriteLine (asset.Name) ;

}

This method can display both a Stock and a House, since they are both Assets.
Polymorphism works on the basis that subclasses (Stock and House) have all the
features of their base class (Asset). The converse, however, is not true. If Display
was rewritten to accept a House, you could not pass in an Asset.

Casting and Reference Conversions

An object reference can be:

e Implicitly upcast to a base class reference
e Explicitly downcast to a subclass reference

Upcasting and downcasting between compatible reference types performs reference
conversions: a new reference is created that points to the same object. An upcast always
succeeds; a downcast succeeds only if the object is suitably typed.

Upcasting

An upcast operation creates a base class reference from a subclass reference. For
example:

Stock msft = new Stock(); // From previous example
Asset a = msft; // Upcast

After the upcast, variable a still references the same Stock object as variable msft.
The object being referenced is not itself altered or converted:

|Console.WriteLine (a == msft); // True

Although a and msft refer to the identical object, 2 has a more restrictive view on that
object:

Console.WriteLine (a.Name); // OK
Console.WritelLine (a.SharesOwned) ; // Error

The last line generates a compile-time error because the variable a is of type Asset,
even though it refers to an object of type Stock. To get to its SharesOwned field, you
must downcast the Asset to a Stock.

www.it-ebooks.info

http://www.it-ebooks.info/

Downcasting

A downcast operation creates a subclass reference from a base class reference. For
example:

Stock msft = new Stock();

Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned) ; // <No error>
Console.WriteLine (s == a); // True
Console.WriteLine (s == msft); // True

As with an upcast, only references are affected—not the underlying object. A downcast
requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of
runtime type checking (see “Static and Runtime Type Checking”).

The as operator

The as operator performs a downcast that evaluates to null (rather than throwing an
exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown

This is useful when you’re going to subsequently test whether the result is nul1:

| if (s != null) Console.WriteLine (s.SharesOwned);

The as operator cannot perform custom conversions (see “Operator Overloading”) and it
cannot do numeric conversions.

The is operator

The i s operator tests whether a reference conversion would succeed; in other words,
whether an object derives from a specified class (or implements an interface). It is often
used to test before downcasting:

|if (a 1s Stock) Console.Write (((Stock)a).SharesOwned) ;

The i s operator does not consider custom or numeric conversions, but it does consider
unboxing conversions (see “The object Type”).

Virtual Function Members

A function marked as virtual can be overridden by subclasses wanting to provide a
specialized implementation. Methods, properties, indexers, and events can all be declared
virtual:

public class Asset

{
public string Name;
public virtual decimal Liability { get { return 0; } }

}

www.it-ebooks.info

http://www.it-ebooks.info/

A subclass overrides a virtual method by applying the override modifier:

public class House : Asset

{
public decimal Mortgage;

public override decimal Liability
{ get { return Mortgage; } }
}

By default, the Liability ofan Asset is 0. A Stock does not need to specialize this
behavior. However, the House specializes the Liability property to return the value
of the Mortgage:

House mansion = new House { Name="Mansion",
Mortgage=250000 };

Asset a = mansion;

Console.WriteLine (mansion.Liability); // 250000

Console.WritelLine (a.Liability); // 250000

The signatures, return types, and accessibility of the virtual and overridden methods must
be identical. An overridden method can call its base class implementation via the base
keyword (see “The base Keyword”).

Abstract Classes and Abstract Members

A class declared as abstract can never be instantiated. Instead, only its concrete
subclasses can be instantiated.

Abstract classes are able to define abstract members. Abstract members are like virtual
members, except they don’t provide a default implementation. That implementation must
be provided by the subclass, unless that subclass is also declared abstract:

public abstract class Asset

{
// Note empty implementation
public abstract decimal NetValue { get; }

}

Subclasses override abstract members just as though they were virtual.

Hiding Inherited Members

A base class and a subclass may define identical members. For example:

public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this
happens by accident, when a member is added to the base type after an identical member
was added to the subtype. For this reason, the compiler generates a warning, and then
resolves the ambiguity as follows:

e References to A (at compile time) bind to A. Counter.

e References to B (at compile time) bind to B. Counter.

www.it-ebooks.info

http://www.it-ebooks.info/

Occasionally, you want to hide a member deliberately, in which case you can apply the
new modifier to the member in the subclass. The new modifier does nothing more than
suppress the compiler warning that would otherwise result:

public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }

The new modifier communicates your intent to the compiler—and other programmers—
that the duplicate member is not an accident.

Sealing Functions and Classes

An overridden function member may seal its implementation with the sealed keyword
to prevent it from being overridden by further subclasses. In our earlier virtual function
member example, we could have sealed House’s implementation of Liability,
preventing a class that derives from House from overriding Liability, as follows:

|public sealed override decimal Liability { get { ... } }

You can also seal the class itself, implicitly sealing all the virtual functions, by applying
the sealed modifier to the class itself.

The base Keyword

The base keyword is similar to the this keyword. It serves two essential purposes:
accessing an overridden function member from the subclass, and calling a base-class
constructor (see next section).

In this example, House uses the base keyword to access Asset’s implementation of
Liability:
public class House : Asset

{

public override decimal Liability
{
get { return base.lLiability + Mortgage; }
}
}

With the base keyword, we access Asset’s Liability property nonvirtually. This
means we will always access Asset’s version of this property—regardless of the
instance’s actual runtime type.

The same approach works if Liabi1l1ity is hidden rather than overridden. (You can
also access hidden members by casting to the base class before invoking the function.)

Constructors and Inheritance

A subclass must declare its own constructors. For example, if we define Baseclass
and Subclass as follows:

public class Baseclass

{
public int X;

www.it-ebooks.info

http://www.it-ebooks.info/

public Baseclass () { }
public Baseclass (int x) { this.X = x; }

}

public class Subclass : Baseclass { }

the following is illegal:

|Subclass s = new Subclass (123);
Subclass must “redefine” any constructors it wants to expose. In doing so, it can call
any of the base class’s constructors with the base keyword:

public class Subclass : Baseclass

{
public Subclass (int x) : base (X) { ... }

}

The base keyword works rather like the thi s keyword, except that it calls a
constructor in the base class. Base-class constructors always execute first; this ensures
that base initialization occurs before specialized initialization.

If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called (if the base class has no accessible parameterless
constructor, the compiler generates an error).

Constructor and field initialization order
When an object is instantiated, initialization takes place in the following order:
1. From subclass to base class:
a) Fields are initialized.
b) Arguments to base-class constructor calls are evaluated.
2. From base class to subclass:

a) Constructor bodies execute.

Overloading and Resolution

Inheritance has an interesting impact on method overloading. Consider the following two
overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo (h) ; // Calls Foo (House)

The particular overload to call is determined statically (at compile time) rather than at
runtime. The following code calls Foo (Asset), even though the runtime type of a is
House:

Asset a = new House (...);
Foo (a); // Calls Foo (Asset)

www.it-ebooks.info

http://www.it-ebooks.info/

If you cast Asset to dynamic (see “Dynamic Binding”), the decision as to
which overload to call is deferred until runtime and is based on the object’s
actual type.

The object Type

object (System.Object) is the ultimate base class for all types. Any type can be
implicitly upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data
structure based on the principle of LIFO—*Last-In First-Out.” A stack has two
operations: push an object on the stack, and pop an object off the stack. Here is a simple
implementation that can hold up to 10 objects:

public class Stack
{
int position;
object[] data = new object[10];
public void Push (object o) { data[position++] = o; }
public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any type
to and from the Stack:

Stack stack = new Stack();

stack.Push ("sausage");

string s = (string) stack.Pop(); // Downcast
Console.WriteLine (s); // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such as
int, can also be cast to and from object. To make this possible, the CLR must
perform some special work to bridge the underlying differences between value and
reference types. This process is called boxing and unboxing.

In “Generics”, we’ll describe how to improve our Stack class to better
handle stacks with same-typed elements.

Boxing and Unboxing

Boxing is the act of casting a value-type instance to a reference-type instance. The
reference type may be either the object class or an interface (see “Interfaces”). In this
example, we box an int into an object:

int x = 9;
object obj = x; // Box the int

Unboxing reverses the operation, by casting the object back to the original value type:
|int y = (int)obj; // Unbox the int

Unboxing requires an explicit cast. The runtime checks that the stated value type matches
the actual object type, and throws an InvalidCastException if the check fails. For
instance, the following throws an exception, because 1ong does not exactly match int:

www.it-ebooks.info

http://www.it-ebooks.info/

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:
object obj = 3.5; // 3.5 inferred to be type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing and then (int) performs a
numeric conversion.

Boxing copies the value-type instance into the new object, and unboxing copies the
contents of the object back into a value-type instance:

int 1 = 3;

object boxed = 1i;

i=25;

Console.WriteLine (boxed) ; // 3

Static and Runtime Type Checking

C# checks types both statically (at compile time) and at runtime.

Static type checking enables the compiler to verify the correctness of your program
without running it. The following code will fail because the compiler enforces static

typing:
|int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference
conversion or unboxing:

object y = "5";

int z = (int) y; // Runtime error, downcast failed
Runtime type checking is possible because each object on the heap internally stores a
little type token. This token can be retrieved by calling the Get Type method of
object.

The GetType Method and typeof Operator

All types in C# are represented at runtime with an instance of System. Type. There are
two basic ways to get a System. Type object: call Get Type on the instance, or use the
typeof operator on a type name. Get Type is evaluated at runtime; typeof is
evaluated statically at compile time.

System. Type has properties for such things as the type’s name, assembly, base type,
and so on. For example:

int x = 3;

Console.Write (x.GetType () .Name) ; // Int32
Console.Write (typeof (int) .Name) ; // Int32
Console.Write (x.GetType () .FullName) ; // System.Int32

www.it-ebooks.info

http://www.it-ebooks.info/

|Console.Write (x.GetType () == typeof (int)); // True

System. Type also has methods that act as a gateway to the runtime’s reflection model.
For detailed information, see Chapter 19 of C# 5.0 in a Nutshell.

Object Member Listing

Here are all the members of object:

public extern Type GetType () ;

public virtual bool Equals (object obj);

public static bool Equals (object objA, object objB);

public static bool ReferenceEquals (object objAa,
object objB);

public virtual int GetHashCode () ;

public virtual string ToString() ;

protected override void Finalize();

protected extern object MemberwiseClone () ;

Equals, ReferenceEquals, and GetHashCode

The Equals method in the object class is similar to the == operator, except that
Equals is virtual, whereas == is static. The following example illustrates the difference:
object x = 3;
object y = 3;
Console.WriteLine (x == y); // False
Console.lWriteline (x.Equals (y)); // True

Because x and v have been cast to the object type, the compiler statically binds to
object’s == operator, which uses reference-type semantics to compare two instances.
(And because x and y are boxed, they are represented in separate memory locations, and
so are unequal.) The virtual Equals method, however, defers to the ITnt32 type’s
Equals method, which uses value-type semantics in comparing two values.

The static object . Equals method simply calls the virtual Equals method on the
first argument—after checking that the arguments are not null:
object x = null, y = 3;

bool error = x.Equals (y); // Runtime error!
bool ok = object.Equals (%, y); // OK (false)

ReferenceEquals forces a reference-type equality comparison (this is occasionally
useful on reference types where the == operator has been overloaded to do otherwise).

GetHashCode emits a hash code suitable for use with hashtable-based dictionaries,
namely System.Collections.Generic.Dictionary and
System.Collections.Hashtable.

To customize a type’s equality semantics, you must at a minimum override Equals and
GetHashCode. You would also usually overload the == and ! = operators. For an
example on how to do both, see “Operator Overloading”.

www.it-ebooks.info

http://www.it-ebooks.info/

The ToString Method
The ToString method returns the default textual representation of a type instance. The
ToString method is overridden by all built-in types:

string sl = 1.ToString(); // sl is "1"
string s2 = true.ToString(); // s2 is "True"

You can override the ToSt ring method on custom types as follows:

|public override string ToString() { return "Foo"; }

Structs

A struct is similar to a class, with the following key differences:

e A struct is a value type, whereas a class is a reference type.

e A struct does not support inheritance (other than implicitly deriving from object,
or more precisely, System.ValueType).

A struct can have all the members a class can, except a parameterless constructor, a
finalizer, and virtual members.

A struct is used instead of a class when value-type semantics are desirable. Good
examples are numeric types, where it is more natural for assignment to copy a value
rather than a reference. Because a struct is a value type, each instance does not require
instantiation of an object on the heap; this can incur a useful saving when creating many
instances of a type. For instance, creating an array of value type requires only a single
heap allocation.

Struct Construction Semantics

The construction semantics of a struct are as follows:

e A parameterless constructor that you can’t override implicitly exists. This performs a
bitwise-zeroing of its fields.

e When you define a struct constructor (with parameters), you must explicitly assign
every field.

e You can’t have field initializers in a struct.

Access Modifiers

To promote encapsulation, a type or type member may limit its accessibility to other
types and other assemblies by adding one of five access modifiers to the declaration:

public

Fully accessible. This is the implicit accessibility for members of an enum or
interface.

www.it-ebooks.info

http://www.it-ebooks.info/

internal

Accessible only within containing assembly or friend assemblies. This is default
accessibility for non-nested types.

private

Accessible only within containing type. This is the default accessibility members of a
class or struct.

protected
Accessible only within containing type or subclasses.
protected internal

The union of protected and internal accessibility (this is more permissive
than protected or internal alone, in that it makes a member more accessible
in two ways).
In the following example, C1ass? is accessible from outside its assembly; Class1 is
not:

class Classl {} // Classl is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x; } // x is private
class ClassB { internal int x; }

When overriding a base class function, accessibility must be identical on the overridden
function. The compiler prevents any inconsistent use of access modifiers—for example, a
subclass itself can be less accessible than a base class, but not more.

Friend Assemblies

In advanced scenarios, you can expose internal members to other friend assemblies
by adding the System.Runtime.CompilerServices.InternalsVisibleTo
assembly attribute, specifying the name of the friend assembly as follows:

|[assembly: InternalsVisibleTo ("Friend")]

If the friend assembly is signed with a strong name, you must specify its full 160-byte
public key. You can extract this key via a LINQ query—an interactive example is given
in LINQPad's free sample library for C# 5.0 in a Nutshell.

Accessibility Capping
A type caps the accessibility of its declared members. The most common example of
capping is when you have an internal type with public members. For example:

| class C { public void Foo() {} }

C’s (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked publi c is to make for easier
refactoring, should C later be changed to public.

www.it-ebooks.info

http://www.it-ebooks.info/

Interfaces

An interface is similar to a class, but it provides a specification rather than an
implementation for its members. An interface is special in the following ways:

e Interface members are all implicitly abstract. In contrast, a class can provide both
abstract members and concrete members with implementations.

e A class (or struct) can implement multiple interfaces. In contrast, a class can inherit
from only a single class, and a struct cannot inherit at all (aside from deriving from
System.ValueType).

An interface declaration is like a class declaration, but it provides no implementation for
its members, since all its members are implicitly abstract. These members will be
implemented by the classes and structs that implement the interface. An interface can
contain only methods, properties, events, and indexers, which noncoincidentally are
precisely the members of a class that can be abstract.

Here is a slightly simplified version of the TEnumerator interface, defined in
System.Collections:

public interface IEnumerator

{

bool MoveNext () ;

object Current { get; }
}

Interface members are always implicitly public and cannot declare an access modifier.
Implementing an interface means providing a pub1ic implementation for all its
members:

internal class Countdown : IEnumerator

{
int count = 11;
public bool MoveNext () { return count-- > 0 ; }
public object Current { get { return count; } }

}
You can implicitly cast an object to any interface that it implements:

IEnumerator e = new Countdown () ;
while (e.MoveNext ())
Console.Write (e.Current); // 109876543210

Extending an Interface

Interfaces may derive from other interfaces. For instance:

public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

IRedoable “inherits” all the members of TUndoable.

www.it-ebooks.info

http://www.it-ebooks.info/

Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a collision between member
signatures. You can resolve such collisions by explicitly implementing an interface
member. For example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : Il1, I2
{
public void Foo () // Implicit implementation
{
Console.Write ("Widget's implementation of Il.Foo");

}

int 12.Foo() // Explicit implementation of I2.Foo
{
Console.Write ("Widget's implementation of I2.Foo");
return 42;
}
}

Because both T1 and I2 have conflicting Foo signatures, Widget explicitly
implements I2’s Foo method. This lets the two methods coexist in one class. The only
way to call an explicitly implemented member is to cast to its interface:

Widget w = new Widget () ;

w.Foo () ; // Widget's implementation of I1.Foo
((I1)w) .Foo(); // Widget's implementation of I1l.Foo
((I2)w) .Foo(); // Widget's implementation of 12.Foo

Another reason to explicitly implement interface members is to hide members that are
highly specialized and distracting to a type’s normal use case. For example, a type that
implements ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed. It must be marked
virtual or abstract in the base class in order to be overridden: calling the interface
member through either the base class or the interface then calls the subclass’s
implementation.

An explicitly implemented interface member cannot be marked virtual, nor can it be
overridden in the usual manner. It can, however, be reimplemented.

Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already implemented by a base class.
Reimplementation hijacks a member implementation (when called through the interface)
and works whether or not the member is virtual in the base class.

www.it-ebooks.info

http://www.it-ebooks.info/

In the following example, TextBox implements TUndo . Undo explicitly, and so it
cannot be marked as virtual. In order to “override” it, RichTextBox must
reimplement TUndo’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
void IUndoable.Undo ()
{ Console.WriteLine ("TextBox.Undo"); }

}

public class RichTextBox : TextBox, IUndoable
{

public new void Undo ()
{ Console.WritelLine ("RichTextBox.Undo"); }

}

Calling the reimplemented member through the interface calls the subclass’s
implementation:
RichTextBox r = new RichTextBox();

r.Undo () ; // RichTextBox.Undo
((IUndoable)r) .Undo () ; // RichTextBox.Undo

In this case, Undo is implemented explicitly. Implicitly implemented members can also
be reimplemented, but the effect is nonpervasive in that calling the member through the
base class invokes the base implementation.

Enums

An enum is a special value type that lets you specify a group of named numeric
constants. For example:

|public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top) ; // true

Each enum member has an underlying integral value. By default, the underlying values
are of type int, and the enum members are assigned the constants 0, 1, 2... (in their
declaration order). You may specify an alternative integral type, as follows:

|public enum BorderSide : byte { Left,Right, Top,Bottom }
You may also specify an explicit integral value for each member:

public enum BorderSide : byte
{ Left=1l, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum members. The unassigned
enum members keep incrementing from the last explicit value. The preceding example is
equivalent to:

public enum BorderSide : byte
{ Left=1, Right, Top=10, Bottom }

www.it-ebooks.info

http://www.it-ebooks.info/

Enum Conversions
You can convert an enum instance to and from its underlying integral value with an
explicit cast:

int i = (int) BorderSide.Left;
BorderSide side = (BorderSide) 1i;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another; the translation then uses the
members' underlying integral values.

The numeric literal 0 is treated specially in that it does not require an explicit cast:

BorderSide b = 0; // No cast required
if (b = 0)

In this particular example, BorderSide has no member with an integral value of 0.
This does not generate an error: a limitation of enums is that the compiler and CLR do
not prevent the assignment of integrals whose values fall outside the range of members:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345

Flags Enums

You can combine enum members. To prevent ambiguities, members of a combinable
enum require explicitly assigned values, typically in powers of two. For example:
[Flags]

public enum BorderSides
{ None=0, Left=1, Right=2, Top=4, Bottom=8 }

By convention, a combinable enum type is given a plural rather than singular name. To
work with combined enum values, you use bitwise operators, such as | and &. These
operate on the underlying integral values:
BorderSides leftRight =

BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"
BorderSides s = BorderSides.Left;

s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

The Flags attribute should be applied to combinable enum types; if you fail to do this,
calling ToString on an enum instance emits a number rather than a series of names.

For convenience, you can include combination members within an enum declaration
itself:

[Flags] public enum BorderSides

{
None=0,
Left=1, Right=2, Top=4, Bottom=8,

www.it-ebooks.info

http://www.it-ebooks.info/

LeftRight
TopBottom
All

Left | Right,
Top | Bottom,
LeftRight | TopBottom

Enum Operators

The operators that work with enums are:

= = Il= < > <= > + - "~ & |
+= -= ++ - sizeof

The bitwise, arithmetic, and comparison operators return the result of processing the
underlying integral values. Addition is permitted between an enum and an integral type,
but not between two enums.

Nested Types

A nested type is declared within the scope of another type. For example:

public class TopLevel

{
public class Nested { } // Nested class
public enum Color { Red, Blue, Tan } // Nested enum

}
A nested type has the following features:

e It can access the enclosing type’s private members and everything else the enclosing
type can access.

e It can be declared with the full range of access modifiers, rather than just public
and internal.

e The default accessibility for a nested type is private rather than internal.

e Accessing a nested type from outside the enclosing type requires qualification with
the enclosing type’s name (like when accessing static members).

For example, to access Color . Red from outside our TopLevel class, we’d have to do
this:

|TopLevel.Color color = TopLevel.Color.Red;

All types can be nested; however, only classes and structs can nest.

Generics

C# has two separate mechanisms for writing code that is reusable across different types:
inheritance and generics. Whereas inheritance expresses reusability with a base type,
generics express reusability with a “template” that contains “placeholder” types.
Generics, when compared to inheritance, can increase type safety and reduce casting and
boxing.

www.it-ebooks.info

http://www.it-ebooks.info/

Generic Types

A generic type declares type parameters—placeholder types to be filled in by the
consumer of the generic type, which supplies the type arguments. Here is a generic type,
Stack<T>, designed to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{
int position;
T[] data = new T[100];
public void Push (T obj) { datal[position++] = obj; }
public T Pop () { return data[--position]; }
}

We can use Stack<T> as follows:

Stack<int> stack = new Stack<int>();
stack.Push(5);

stack.Push (10) ;

int x = stack.Pop(); // x is 10
int y = stack.Pop(); // y is 5

Notice that no downcasts are required in the last two lines, avoiding the
possibility of runtime error and eliminating the overhead of boxing/unboxing.
This makes our generic stack superior to a nongeneric stack that uses
object in place of T (see “The object Type” for an example).

Stack<int> fills in the type parameter T with the type argument int, implicitly
creating a type on the fly (the synthesis occurs at runtime). Stack<int> effectively has
the following definition (substitutions appear in bold, with the class name hashed out to
avoid confusion):

public class ###
{

int position;

int[] data;
public void Push (int obj) { data[position++] = obj; }
public Int Pop () { return data[--position]; }

}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed
type. At runtime, all generic type instances are closed—with the placeholder types filled
in.

Generic Methods

A generic method declares type parameters within the signature of a method. With
generic methods, many fundamental algorithms can be implemented in a general-purpose
way only. Here is a generic method that swaps two the contents of two variables of any

type T:

static void Swap<T> (ref T a, ref T b)

{
T temp = a; a = b; b = temp;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Swap<T> can be used as follows:

int x = 5, y = 10;
Swap (ref x, ref y);

Generally, there is no need to supply type arguments to a generic method, because the
compiler can implicitly infer the type. If there is ambiguity, generic methods can be
called with the type arguments as follows:

|Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces type
parameters (with the angle bracket syntax). The Pop method in our generic stack merely
consumes the type’s existing type parameter, T, and is not classed as a generic method.

Methods and types are the only constructs that can introduce type parameters. Properties,
indexers, events, fields, constructors, operators, and so on cannot declare type
parameters, although they can partake in any type parameters already declared by their
enclosing type. In our generic stack example, for instance, we could write an indexer that
returns a generic item:

|public T this [int index] { get { return datal[index]; } }

Similarly, constructors can partake in existing type parameters, but not introduce them.

Declaring Type Parameters

Type parameters can be introduced in the declaration of classes, structs, interfaces,
delegates (see “Delegates”), and methods. A generic type or method can have multiple
parameters:

|class Dictionary<TKey, TValue> {...}
To instantiate:
|var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of type
parameters differs. For example, the following two type names do not conflict:

class A<T> {}
class A<T1,T2> {}

By convention, generic types and methods with a single type parameter name
their parameter T, as long as the intent of the parameter is clear. With multiple
type parameters, each parameter has a more descriptive name (prefixed by T).

typeof and Unbound Generic Types

Open generic types do not exist at runtime: open generic types are closed as part of
compilation. However, it is possible for an unbound generic type to exist at runtime—
purely as a Type object. The only way to specify an unbound generic type in C# is with
the typeof operator:

class A<T> {}
class A<T1,T2> {}

www.it-ebooks.info

http://www.it-ebooks.info/

Type al = typeof (A<>); // Unbound type
Type a2 = typeof (A<,>); // Indicates 2 type args
Console.Write (a2.GetGenericArguments().Count()); // 2

You can also use the t ypeof operator to specify a closed type:
|Type a3 = typeof (A<int,int>);
or an open type (which is closed at runtime):

| class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value

The default keyword can be used to get the default value given a generic type
parameter. The default value for a reference type is null, and the default value for a
value type is the result of bitwise-zeroing the type’s fields:

static void Zap<T> (T[] array)
{
for (int 1 = 0; 1 < array.Length; i++)
array[i] default (T) ;

Generic Constraints

By default, a type parameter can be substituted with any type whatsoever. Constraints
can be applied to a type parameter to require more specific type arguments. There are six
kinds of constraint:

where T : base-class // Base-class constraint

where T : interface // Interface constraint

where T : class // Reference-type constraint

where T : struct // Value-type constraint

where T : new() // Parameterless constructor
// constraint

where U : T // Naked type constraint

In the following example, GenericClass<T, U> requires T to derive from (or be
identical to) SomeClass and implement Interfacel, and requires U to provide a
parameterless constructor:

class SomeClass {}
interface Interfacel {}

class GenericClass<T,U> where T : SomeClass, Interfacel
where U : new ()

{ ...}

Constraints can be applied wherever type parameters are defined, whether in methods or
type definitions.

A base-class constraint specifies that the type parameter must subclass (or match) a
particular class; an interface constraint specifies that the type parameter must implement
that interface. These constraints allow instances of the type parameter to be implicitly
converted to that class or interface.

www.it-ebooks.info

http://www.it-ebooks.info/

The class constraint and struct constraint specify that T must be a reference type or a
(non-nullable) value type, respectively. The parameterless constructor constraint
requires T to have a public parameterless constructor and allows you to call new () on T:

static void Initialize<T> (T[] array) where T : new()
{
for (int i = 0; i < array.Length; i++)
array[i] = new TQ;
}

The naked type constraint requires one type parameter to derive from (or match) another
type parameter.

Subclassing Generic Types
A generic class can be subclassed just like a nongeneric class. The subclass can leave the
base class’s type parameters open, as in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a concrete type:

|class IntStack : Stack<int> {...}

A subtype can also introduce fresh type arguments:

class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Self-Referencing Generic Declarations

A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>

{
public bool Equals (Balloon b) { ... }
}

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }
Static Data

Static data is unique for each closed type:

class Bob<T> { public static int Count; }

Console.WriteLine
Console.WriteLine
Console.WriteLine
Console.WriteLine

++Bob<int>.Count) ; // 1
++Bob<int>.Count) ; // 2
++Bob<string>.Count); //
++Bob<object>.Count); // 1

=

(
(
(
(

www.it-ebooks.info

http://www.it-ebooks.info/

Covariance (C# 4.0)

Covariance and contravariance are advanced concepts. The motivation behind
their introduction into C# was to allow generic interfaces and generics (in
particular, those defined in the Framework, such as ITEnumerable<T>) to
work more as you’d expect. You can benefit from this without understanding
the details behind covariance and contravariance.

Assuming A is convertible to B, X is covariant if X<A> is convertible to X.

(With C#’s notion of variance , “convertible” means convertible via an implicit reference
conversion—such as A subclassing B, or A implementing B. Numeric conversions, boxing
conversions and custom conversions are not included.)

For instance, type TFoo<T> is covariant for T if the following is legal:

IFoo<string> s
IFoo<object> b

.7

S;

As of C# 4.0, generic interfaces permit covariance for type parameters marked with the
out modifier (as do generic delegates). To illustrate, suppose that the Stack<T> class
that we wrote at the start of this section implements the following interface:

|public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return types
for methods). The out modifier flags the interface as covariant and allows us to do this:

// Assuming that Bear subclasses Animal:
var bears = new Stack<Bear>();
bears.Push (new Bear());

// Because bears implements IPoppable<Bear>,
// we can convert it to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal
Animal a = animals.Pop();

The cast from bears to animals is permitted by the compiler—by virtue of the
interface being covariant.

The IEnumerator<T> and IEnumerable<T> interfaces (see
“Enumeration and Iterators”) are marked as covariant from Framework 4.0.
This allows you to cast IEnumerable<string> to
IEnumerable<object>, for instance.

The compiler will generate an error if you use a covariant type parameter in an input
position (e.g., a parameter to a method or a writable property). The purpose of this
limitation is to guarantee compile-time type safety. For instance, it prevents us from
adding a Push (T) method to that interface which consumers could abuse with the
seemingly benign operation of pushing a camel onto an TPoppable<Animal>
(remember that the underlying type in our example is a stack of bears). In order to define
a Push (T) method, T must in fact be contravariant.

C# supports covariance (and contravariance) only for elements with reference
conversions—not boxing conversions. So, if you wrote a method that accepted

www.it-ebooks.info

http://www.it-ebooks.info/

a parameter of type IPoppable<object>, you could call it with
IPoppable<string>, butnot IPoppable<int>.

Contravariance (C# 4.0)

We previously saw that, assuming that A allows an implicit reference conversion to B, a
type X is covariant if X<A> allows a reference conversion to X. A type is
contravariant when you can convert in the reverse direction—from X to X<A>. This
is supported on interfaces and delegates when the type parameter only appears in input
positions, designated with the in modifier. Extending our previous example, if the
Stack<T> class implements the following interface:

|public interface IPushable<in T> { void Push (T obj); }

we can legally do this:

TPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

Mirroring covariance, the compiler will report an error if you try to use a contravariant
type parameter in an output position (e.g., as a return value, or in a readable property).

Delegates

A delegate wires up a method caller to its target method at runtime. There are two aspects
to a delegate: type and instance. A delegate type defines a protocol to which the caller
and target will conform, comprising a list of parameter types and a return type. A
delegate instance is an object that refers to one (or more) target methods conforming to
that protocol.

A delegate instance literally acts as a delegate for the caller: the caller invokes the
delegate, and then the delegate calls the target method. This indirection decouples the
caller from the target method.

A delegate type declaration is preceded by the keyword delegate, but otherwise it
resembles an (abstract) method declaration. For example:

|delegate int Transformer (int x);

To create a delegate instance, you can assign a method to a delegate variable:

class Test
{
static void Main ()
{
Transformer t = Square; // Create delegate instance
int result = t(3); // Invoke delegate
Console.Write (result); // 9
}
static int Square (int x) { return x * x; }

}

Invoking a delegate is just like invoking a method (since the delegate’s purpose is merely
to provide a level of indirection):

www.it-ebooks.info

http://www.it-ebooks.info/

| £(3):

The statement Transformer t = Square is shorthand for:
|Transformer t = new Transformer (Square);

And t (3) is shorthand for:
|t.Invoke (3) s

A delegate is similar to a callback, a general term that captures constructs such as C
function pointers.

Writing Plug-in Methods with Delegates

A delegate variable is assigned a method at runtime. This is useful for writing plug-in
methods. In this example, we have a utility method named Trans form that applies a
transform to each element in an integer array. The Transform method has a delegate
parameter, for specifying a plug-in transform.

public delegate int Transformer (int x);

class Test
{
static void Main ()
{
int[] values = { 1, 2, 3 };
Transform (values, Square);
foreach (int i in wvalues)
Console.Write (1 + " "); // 149
}

static void Transform (int[] values, Transformer t)

{
for (int i = 0; i < values.Length; i++)
values[i] = t (values[i]):;

}

static int Square (int x) { return x * x; }

}

Multicast Delegates

All delegate instances have multicast capability. This means that a delegate instance can
reference not just a single target method, but also a list of target methods. The + and +=
operators combine delegate instances. For example:

SomeDelegate d = SomeMethodl;
d += SomeMethod2;

The last line is functionally the same as:

|d = d + SomeMethod2;

Invoking d will now call both SomeMethodl and SomeMethod?2. Delegates are
invoked in the order they are added.

www.it-ebooks.info

http://www.it-ebooks.info/

The - and -= operators remove the right delegate operand from the left delegate operand.
For example:

|d —-= SomeMethodl;
Invoking d will now cause only SomeMethod?2 to be invoked.

Calling + or += on a delegate variable with a nul1l value is legal, as is calling -=on a
delegate variable with a single target (which will result in the delegate instance being
null).

Delegates are immutable, so when you call += or —=, you’re in fact creating a
new delegate instance and assigning it to the existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value from
the last method to be invoked. The preceding methods are still called, but their return
values are discarded. In most scenarios in which multicast delegates are used, they have
void return types, so this subtlety does not arise.

All delegate types implicitly derive from System.MulticastDelegate, which
inherits from System.Delegate. C# compiles +, —, += and —= operations made on a
delegate to the static Combine and Remove methods of the System.Delegate
class.

Instance vs. Static Method Targets

When an instance method is assigned to delegate object, the latter must maintain a
reference not only to the method, but also to the instance to which the method belongs.
The System.Delegate class’s Target property represents this instance (and will be
null for a delegate referencing a static method).

Generic Delegate Types

A delegate type may contain generic type parameters. For example:
|public delegate T Transformer<T> (T arqg);
Here’s how we could use this delegate type:

static double Square (double x) { return x * x; }

static void Main()

{
Transformer<double> s = Square;

Console.WriteLine (s (3.3)); // 10.89

The Func and Action Delegates

With generic delegates, it becomes possible to write a small set of delegate types that are
so general they can work for methods of any return type and any (reasonable) number of
arguments. These delegates are the Func and Action delegates, defined in the System
namespace (the in and out annotations indicate variance, which we will cover shortly):

|delegate TResult Func <out TResult> ();

www.it-ebooks.info

http://www.it-ebooks.info/

delegate TResult Func <in T, out TResult> (T arq);

delegate TResult Func <in T1, in T2, out TResult>
(T1 argl, T2 arg2);

... and so on, up to T16

delegate void Action ();

delegate void Action <in T> (T arg);

delegate void Action <in T1, in T2> (Tl argl, T2 arg2);
... and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous
example can be replaced with a Func delegate that takes a single argument of type T and
returns a same-typed value:

public static void Transform<T> (
T[] values, Func<T,T> transformer)
{
for (int i = 0; i < values.Length; i++)
values[i1] = transformer (values[i]);

}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

Delegate Compatibility

Delegate types are all incompatible with each other, even if their signatures are the same:

delegate void D1(); delegate void D2();

D1 dl = Methodl;
D2 d2 = di; // Compile-time error

The following, however, is permitted:

| D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same type and method target(s).
For multicast delegates, the order of the method targets is significant.

Return type variance

When you call a method, you may get back a type that is more specific than what you
asked for. This is ordinary polymorphic behavior. In keeping with this, a delegate target
method may return a more specific type than described by the delegate. This is
covariance, and has been supported since C# 2.0:

delegate object ObjectRetriever();

static void Main()

{
ObjectRetriever o = new ObjectRetriever (GetString);
object result = o();
Console.WriteLine (result); // hello

}

static string GetString() { return "hello"; }

The ObjectRetriever expects to get back an object, but an object subclass
will also do because delegate return types are covariant.

www.it-ebooks.info

http://www.it-ebooks.info/

Parameter variance

When you call a method, you can supply arguments that have more specific types than
the parameters of that method. This is ordinary polymorphic behavior. In keeping with
this, a delegate target method may have less specific parameter types than described by
the delegate. This is called contravariance:

delegate void StringAction (string s);

ééétic void Main ()

{ StringAction sa = new StringAction (ActOnObject) ;
sa ("hello");

;tatic void ActOnObject (object o)

{ Console.WriteLine (o) ; // hello

}

The standard event pattern is designed to help you leverage delegate
parameter contravariance through its use of the common EventArgs base
class. For example, you can have a single method invoked by two different
delegates, one passing a MouseEventArgs and the other passing a
KeyEventArgs.

Type parameter variance for generic delegates (C# 4.0)

We saw in “Generics” how type parameters can be covariant and contravariant for
generic interfaces. The same capability also exists for generic delegates from C# 4.0. If
you're defining a generic delegate type, it's good practice to:

e Mark a type parameter used only on the return value as covariant (out).
e Mark any type parameters used only on parameters as contravariant (in).

Doing so allows conversions to work naturally by respecting inheritance relationships
between types. The following delegate (defined in the Sy stem namespace) is covariant
for TResult:

|delegate TResult Func<out TResult>();
allowing:

Func<string> x = ...;
Func<object> y X;

The following delegate (defined in the Sy stem namespace) is contravariant for T:
|delegate void Action<in T> (T arg);
allowing:

Action<object> x = ...;
Action<string> y = x;

www.it-ebooks.info

http://www.it-ebooks.info/

Events

When using delegates, two emergent roles commonly appear: broadcaster and
subscriber. The broadcaster is a type that contains a delegate field. The broadcaster
decides when to broadcast, by invoking the delegate. The subscribers are the method
target recipients. A subscriber decides when to start and stop listening, by calling += and
-= on the broadcaster’s delegate. A subscriber does not know about, or interfere with,
other subscribers.

Events are a language feature that formalizes this pattern. An event is a construct that
exposes just the subset of delegate features required for the broadcaster/subscriber model.
The main purpose of events is to prevent subscribers from interfering with each other.

The easiest way to declare an event is to put the event keyword in front of a delegate
member:

public class Broadcaster

{
public event ProgressReporter Progress;

}

Code within the Broadcaster type has full access to Progress and can treat it as a
delegate. Code outside of Broadcaster can only perform += and —= operations on the
Progress event.

In the following example, the Stock class fires its PriceChanged event every time
the Price of the Stock changes:

public delegate void PriceChangedHandler
(decimal oldPrice, decimal newPrice);

public class Stock
{

string symbol; decimal price;
public Stock (string symbol) { this.symbol = symbol; }
public event PriceChangedHandler PriceChanged;

public decimal Price
{
get { return price; }
set
{
if (price == value) return;
// Fire event if invocation list isn't empty:
if (PriceChanged !'= null)
PriceChanged (price, value);
price = value;

}

If we remove the event keyword from our example so that PriceChanged becomes
an ordinary delegate field, our example would give the same results. However, Stock

www.it-ebooks.info

http://www.it-ebooks.info/

would be less robust, in that subscribers could do the following things to interfere with
each other:

e Replace other subscribers by reassigning PriceChanged (instead of using the +=
operator).

e Clear all subscribers (by setting PriceChanged to null).
e Broadcast to other subscribers by invoking the delegate.

Events can be virtual, overridden, abstract, or sealed. They can also be static.

Standard Event Pattern

The .NET Framework defines a standard pattern for writing events. Its purpose is to
provide consistency across both Framework and user code. Here’s the preceding example
refactored with this pattern:

public class PriceChangedEventArgs : EventArgs
{

public readonly decimal LastPrice, NewPrice;

public PriceChangedEventArgs (decimal lastPrice,
decimal newPrice)
{
LastPrice = lastPrice; NewPrice = newPrice;
}
}

public class Stock
{

string symbol; decimal price;

public Stock (string symbol) { this.symbol = symbol; }

public event EventHandler<PriceChangedEventArgs>
PriceChanged;

protected virtual void OnPriceChanged
(PriceChangedEventArgs e)
{
if (PriceChanged != null) PriceChanged (this, e);
}

public decimal Price
{

get { return price; }

set
{
if (price == value) return;
OnPriceChanged (new PriceChangedEventArgs (price,

value));
price = value;

}

www.it-ebooks.info

http://www.it-ebooks.info/

At the core of the standard event pattern is System.EventArgs: a predefined
Framework class with no members (other than the static Empty property). EventArgs
is a base class for conveying information for an event. In this example, we subclass
EventArgs to convey the old and new prices when a PriceChanged event is fired.

The generic System.EventHandler delegate is also part of the .NET Framework
and is defined as follows:

public delegate void EventHandler<TEventArgs>
(object source, TEventArgs e)
where TEventArgs : EventArgs;

Before C# 2.0 (when generics were added to the language) the solution was to
instead write a custom event handling delegate for each EventArgs type as
follows:

delegate void PriceChangedHandler
(object sender,
PriceChangedEventArgs e) ;

For historical reasons, most events within the Framework use delegates
defined in this way.

A protected virtual method, named On-event-name, centralizes firing of the event. This
allows subclasses to fire the event (which is usually desirable) and also allows subclasses
to insert code before and after the event is fired.

Here’s how we could use our Stock class:

static void Main ()

{
Stock stock = new Stock ("THPW");
stock.Price = 27.10M;

stock.PriceChanged += stock PriceChanged;
stock.Price = 31.59M;
}

static void stock PriceChanged
(object sender, PriceChangedEventArgs e)
{
if ((e.NewPrice - e.lastPrice) / e.LastPrice > 0.1M)
Console.WritelLine ("Alert, 10% price increase!");

}

For events that don’t carry additional information, the Framework also provides a
nongeneric EventHandler delegate. We can demonstrate this by rewriting our Stock
class such that the PriceChanged event fires after the price changes. This means that
no additional information need be transmitted with the event:

public class Stock
{
string symbol; decimal price;

public Stock (string symbol) {this.symbol = symbol;}

public event EventHandler PriceChanged;

www.it-ebooks.info

http://www.it-ebooks.info/

protected virtual void OnPriceChanged (EventArgs e)

if (PriceChanged = null) PriceChanged (this, e);
}

public decimal Price
{
get { return price; }
set
{
if (price == value) return;
price = value;
OnPriceChanged (EventArgs.Empty);
}

}

Note that we also used the EventArgs . Empty property—this saves instantiating an
instance of EventArgs.

Event Accessors

An event’s accessors are the implementations of its += and —= functions. By default,
accessors are implemented implicitly by the compiler. Consider this event declaration:

|public event EventHandler PriceChanged;
The compiler converts this to the following:
e A private delegate field.

e A public pair of event accessor functions, whose implementations forward the +=
and -= operations to the private delegate field.

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

EventHandler priceChanged; // Private delegate
public event EventHandler PriceChanged
{
add { _priceChanged += value; }
remove { _priceChanged -= value; }
}

This example is functionally identical to C#’s default accessor implementation (except
that C# also ensures thread safety around updating the delegate). By defining event
accessors ourselves, we instruct C# not to generate default field and accessor logic.

With explicit event accessors, you can apply more complex strategies to the storage and
access of the underlying delegate. This is useful when the event accessors are merely
relays for another class that is broadcasting the event, or when explicitly implementing an
interface that declares an event:

public interface IFoo { event EventHandler Ev; }
class Foo : IFoo

{

EventHandler ev;

www.it-ebooks.info

http://www.it-ebooks.info/

event EventHandler IFoo.Ev

{
add { ev += value; } remove { ev -= value; }

}

Lambda Expressions

A lambda expression is an unnamed method written in place of a delegate instance. The
compiler immediately converts the lambda expression to either:

e A delegate instance.

e Anexpression tree, of type Expression<TDelegate>, representing the code
inside the lambda expression in a traversable object model. This allows the lambda
expression to be interpreted later at runtime (we describe the process in Chapter 8 of
C# 5.0 in a Nutshell).

Given the following delegate type:
|delegate int Transformer (int 1i);
we could assign and invoke the lambda expression x => x * x as follows:

Transformer sqr = X => X * X;
Console.WriteLine (sqr(3)); // 9

Internally, the compiler resolves lambda expressions of this type by writing a
private method, and moving the expression’s code into that method.

A lambda expression has the following form:

| (parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one
parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x * x:
|x = X * x;

Each parameter of the lambda expression corresponds to a delegate parameter, and the
type of the expression (which may be void) corresponds to the return type of the
delegate.

In our example, x corresponds to parameter i, and the expression x * x corresponds to
the return type int, therefore being compatible with the Transformer delegate.

A lambda expression’s code can be a statement block instead of an expression. We can
rewrite our example as follows:

|x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates, so
you will most often see our earlier expression written as follows:

|Func<int,int> sgqr = X => X * x;

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler can usually infer the type of lambda parameters contextually. When this is
not the case, you can specify parameter types explicitly:

|Func<int,int> sgr = (Int x) => x * x;
Here’s an example of an expression that accepts two parameters:
Func<string,string,int> totallength =

(sl, s2) => sl.Length + s2.Length;

int total = totallength ("hello", "world"); // total=10;

Assuming C1icked is an event of type EventHandler, the following attaches an
event handler via a lambda expression:

|obj.Clicked += (sender,args) => Console.Write ("Click");

Capturing Outer Variables

A lambda expression can reference the local variables and parameters of the method in
which it’s defined (outer variables). For example:

static void Main()
{
int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WritelLine (multiplier (3)); // 6
}

Outer variables referenced by a lambda expression are called captured variables. A
lambda expression that captures variables is called a closure. Captured variables are
evaluated when the delegate is actually invoked, not when the variables were captured:

int factor = 2;

Func<int, int> multiplier = n => n * factor;

factor = 10;

Console.WriteLine (multiplier (3)); // 30

Lambda expressions can themselves update captured variables:

int seed = 0;

Func<int> natural = () => seed++;

Console.WriteLine (natural()); // 0
Console.WriteLine (natural()); // 1
Console.WriteLine (seed); // 2

Captured variables have their lifetimes extended to that of the delegate. In the following
example, the local variable seed would ordinarily disappear from scope when
Natural finished executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural ()
{
int seed = 0;
return () => seed++; // Returns a closure
}
static void Main()
{
Func<int> natural = Natural():;
Console.WriteLine (natural()); // 0

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine (natural()); // 1

}
Capturing iteration variables

When you capture an iteration variable in a for loop, C# treats the iteration variables as
though it was declared outside the loop. This means that the same variable is captured in
each iteration. The following program writes 333 instead of writing 012:

Action[] actions = new Action[3];

for (int 1 = 0; 1 < 3; i++)
actions [i] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes
sense when you consider that i is a variable whose value persists between loop iterations;
you can even explicitly change 1 within the loop body if you want.) The consequence is
that when the delegates are later invoked, each delegate sees i’s value at the time of
invocation—which is 3. The solution, if we want to write 012, is to assign the iteration
variable to a local variable that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int i = 0; 1 < 3; i++)
{
int loopScopedi = i;
actions [i] = () => Console.Write (loopScopedi) ;
}

foreach (Action a in actions) a(); // 012

This causes the closure to capture a different variable on each iteration.

foreach loops used to work in the same way but the rules have since
changed. From C# 5.0, you can safely close over a foreach loop's iteration
variable without needing a temporary variable.

Anonymous Methods

Anonymous methods are a C# 2.0 feature that has been mostly subsumed by lambda
expressions. An anonymous method is like a lambda expression, except that it lacks
implicitly typed parameters, expression syntax (an anonymous method must always be a
statement block), and the ability to compile to an expression tree.

To write an anonymous method, you include the delegate keyword followed
(optionally) by a parameter declaration and then a method body. For example, given this
delegate:

|delegate int Transformer (int 1);

we could write and call an anonymous method as follows:

Transformer sgr = delegate (int x) {return X * X;};
Console.WriteLine (sqr(3)); // 9

The first line is semantically equivalent to the following lambda expression:

www.it-ebooks.info

http://www.it-ebooks.info/

| Transformer sqr (nt x) = {return x * x;};

Or simply:
|Transformer sqgr = X = X*X;

A unique feature of anonymous methods is that you can omit the parameter declaration
entirely—even if the delegate expects them. This can be useful in declaring events with a
default empty handler:

|public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event. The following is also legal
(notice the lack of parameters):

|Clicked += delegate { Console.Write ("clicked"); };

Anonymous methods capture outer variables in the same way lambda expressions do.

try Statements and Exceptions

A try statement specifies a code block subject to error-handling or cleanup code. The
try block must be followed by a catch block, a finally block, or both. The catch
block executes when an error occurs in the t ry block. The finally block executes
after execution leaves the t ry block (or if present, the catch block), to perform
cleanup code, whether or not an error occurred.

A catch block has access to an Exception object that contains information about the
error. You use a catch block to either compensate for the error or rethrow the
exception. You rethrow an exception if you merely want to log the problem, or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program, by always executing no matter
what. It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{
. // exception may get thrown within execution of
// this block
}
catch (ExceptionA ex)
{
. // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
. // handle exception of type ExceptionB
}
finally
{

. // clean-up code

}
Consider the following code:

|int x =3, y=0;

www.it-ebooks.info

http://www.it-ebooks.info/

|Console.WriteLine (x / vy);

Because v is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:
try
{
int x =3, v = 0;
Console.WriteLine (x / y);

catch (DivideByZeroException ex)

{
¥

// Execution resumes here after exception...

Console.Write ("y cannot be zero. ");

This is a simple example to illustrate exception handling. We could deal with
this particular scenario better in practice by checking explicitly for the divisor
being zero before calling Calc.

Exceptions are relatively expensive to handle, taking hundreds of clock
cycles.

When an exception is thrown, the CLR performs a test:

Is execution currently within a t ry statement that can catch the exception?

e Ifso, execution is passed to the compatible catch block. If the catch block
successfully finishes executing, execution moves to the next statement after the try
statement (if present, executing the finally block first).

e Ifnot, execution jumps back to the caller of the function, and the test is repeated
(after executing any £inally blocks that wrap the statement).

If no function in the call stack takes responsibility for the exception, an error dialog is
displayed to the user, and the program terminates.

The catch Clause

A catch clause specifies what type of exception to catch. This must either be
System.Exception ora subclass of System.Exception. Catching
System.Exception catches all possible errors. This is useful when:

Your program can potentially recover regardless of the specific exception type.
You plan to rethrow the exception (perhaps after logging it).

Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types, in order to avoid having to
deal with circumstances for which your handler wasn’t designed (e.g., an
OutOfMemoryException).

You can handle multiple exception types with multiple catch clauses:

try
{
DoSomething () ;

www.it-ebooks.info

http://www.it-ebooks.info/

}

catch (IndexOutOfRangeException ex) { ... }
catch (FormatException ex) { ...}
catch (OverflowException ex) { ...}

Only one catch clause executes for a given exception. If you want to include a safety
net to catch more general exceptions (such as System.Exception) you must put the
more specific handlers first.

An exception can be caught without specifying a variable, if you don’t need to access its
properties:

catch (StackOverflowException) // no variable

{ ..

Furthermore, you can omit both the variable and the type (meaning that all exceptions
will be caught):

|catch { ...}

The finally Block

A finally block always executes—whether or not an exception is thrown and whether
or not the t ry block runs to completion. £inally blocks are typically used for cleanup
code.

A finally block executes either:

e After a catch block finishes

e After control leaves the t ry block because of a jump statement (e.g., return or
goto)

e After the try block ends

A finally block helps add determinism to a program. In the following example, the
file that we open always gets closed, regardless of whether:

e The try block finishes normally.
e Execution returns early because the file is empty (EndOfStream).
e An IOException is thrown while reading the file.

For example:

static void ReadFile ()
{
StreamReader reader = null; // In System.IO namespace
try
{
reader = File.OpenText ("file.txt");
if (reader.EndOfStream) return;
Console.WritelLine (reader.ReadToEnd());
}
finally
{
if (reader != null) reader.Dispose();
}
}

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, we closed the file by calling Dispose on the St reamReader. Calling
Dispose on an object, within a finally block, is a standard convention throughout
the NET Framework and is supported explicitly in C# through the using statement.

The using statement

Many classes encapsulate unmanaged resources, such as file handles, graphics handles, or
database connections. These classes implement System. IDisposable, which

defines a single parameterless method named Dispose to clean up these resources. The
using statement provides an elegant syntax for calling Dispose on an

IDisposable object withina finally block.

The following:

using (StreamReader reader = File.OpenText ("file.txt"))
{

}
is precisely equivalent to:

StreamReader reader = File.OpenText ("file.txt");
try
{

}
finally

{

if (reader != null) ((IDisposable)reader) .Dispose/();

}

Throwing Exceptions

Exceptions can be thrown either by the runtime or in user code. In this example,
Display throws a System.ArgumentNullException:

static void Display (string name)

{
if (name == null)
throw new ArgumentNullException ('name™);

Console.WriteLine (name);

}
Rethrowing an exception

You can capture and rethrow an exception as follows:

try { ... }
catch (Exception ex)

{

// Log error

ﬂ.u.'ow; // Rethrow same exception
}

www.it-ebooks.info

http://www.it-ebooks.info/

Rethrowing in this manner lets you log an error without swallowing it. It also lets you
back out of handling an exception should circumstances turn out to be outside what you
expected.

If we replaced throw with throw ex, the example would still work, but the
StackTrace property of the exception would no longer reflect the original
error.

The other common scenario is to rethrow a more specific or meaningful exception type:

try
{
. // parse a date of birth from XML element data

}

catch (FormatException ex)

{

throw new XmlException ("Invalid date of birth", ex);

}

When rethrowing a different exception, you can populate the InnerException
property with the original exception to aid debugging. Nearly all types of exceptions
provide a constructor for this purpose (such as in our example).

Key Properties of System.Exception

The most important properties of System.Exception are the following:

StackTrace

A string representing all the methods that are called from the origin of the exception
to the catch block.

Message
A string with a description of the error.
InnerException

The inner exception (if any) that caused the outer exception. This, itself, may have
another InnerException.

Common Exception Types

The following exception types are used widely throughout the CLR and .NET
Framework. You can throw these yourself or use them as base classes for deriving
custom exception types.

System.ArgumentException

Thrown when a function is called with a bogus argument. This generally indicates a
program bug.

System.ArgumentNullException

Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) null.

www.it-ebooks.info

http://www.it-ebooks.info/

System.ArgumentOutOfRangeException

Subclass of ArgumentException that’s thrown when a (usually numeric)
argument is too big or too small. For example, this is thrown when passing a
negative number into a function that accepts only positive values.

System.InvalidOperationException

Thrown when the state of an object is unsuitable for a method to successfully
execute, regardless of any particular argument values. Examples include reading an
unopened file or getting the next element from an enumerator where the underlying
list has been modified partway through the iteration.

System.NotSupportedException

Thrown to indicate that a particular functionality is not supported. A good example is
calling the Add method on a collection for which TsReadOnly returns true.

System.NotImplementedException
Thrown to indicate that a function has not yet been implemented.
System.ObjectDisposedException

Thrown when the object upon which the function is called has been disposed.

Code contracts eliminate the need for ArgumentException (and its
subclasses). Code contracts are covered in Chapter 13 of C# 5.0 in a Nutshell.

Enumeration and Iterators

Enumeration

An enumerator is a read-only, forward-only cursor over a sequence of values. An
enumerator is an object that implements System.Collections.IEnumerator or
System.Collections.Generic.IEnumerator<T>.

The foreach statement iterates over an enumerable object. An enumerable object is the
logical representation of a sequence. It is not itself a cursor, but an object that produces
cursors over itself. An enumerable either implements
IEnumerable/IEnumerable<T> or has a method named GetEnumerator that
returns an enumerator.

The enumeration pattern is as follows:

class Enumerator // Typically implements IEnumerator<T>

{ public lIteratorVariableType Current { get {...} }
public bool MoveNext () {...}

<}:lass Enumerable // Typically implements IEnumerable<T>

{ public Enumerator GetEnumerator() {...}

}

www.it-ebooks.info

http://www.it-ebooks.info/

Here is the high-level way of iterating through the characters in the word beer using a
foreach statement:

|foreach (char ¢ in "beer") Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a
foreach statement:

using (var enumerator = "beer".GetEnumerator())
while (enumerator.MoveNext())
{
var element = enumerator.Current;
Console.WriteLine (element);

}

If the enumerator implements TDisposable, the foreach statement also acts as a
using statement, implicitly disposing the enumerator object.

Collection Initializers

You can instantiate and populate an enumerable object in a single step. For example:

using System.Collections.Generic;

List<int> list = new List<int> {1, 2, 3};

The compiler translates the last line into the following:

List<int> list = new List<int>();
list.Add (1); list.Add (2); list.Add (3);

This requires that the enumerable object implements the
System.Collections.IEnumerable interface, and that it has an Add method
that has the appropriate number of parameters for the call.

Iterators

Whereas a foreach statement is a consumer of an enumerator, an iterator is a producer
of an enumerator. In this example, we use an iterator to return a sequence of Fibonacci
numbers (where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
static void Main ()
{
foreach (int fib in Fibs(6))
Console.Write (fib + " ");

}

static IEnumerable<int> Fibs (int fibCount)
{
for (int i = 0, prevFib = 1, curFib = 1;
i < fibCount;
i++)

www.it-ebooks.info

http://www.it-ebooks.info/

yield return prevFib;

int newFib = prevFib+curFib;
prevFib = curFib;

curFib = newFib;

}
}
OutTPUT: 1 1 2 3 5 8

Whereas a return statement expresses “Here’s the value you asked me to return from
this method,” a yield return statement expresses “Here’s the next element you asked
me to yield from this enumerator.” On each yie1d statement, control is returned to the
caller, but the callee’s state is maintained so that the method can continue executing as
soon as the caller enumerates the next element. The lifetime of this state is bound to the
enumerator, such that the state can be released when the caller has finished enumerating.

The compiler converts iterator methods into private classes that implement
IEnumerable<T> and/or IEnumerator<T>. The logic within the
iterator block is “inverted” and spliced into the MoveNext method and
Current property on the compiler-written enumerator class, which
effectively becomes a state machine. This means that when you call an iterator
method, all you’re doing is instantiating the compiler-written class; none of
your code actually runs! Your code runs only when you start enumerating
over the resultant sequence, typically with a foreach statement.

Iterator Semantics

An iterator is a method, property, or indexer that contains one or more yield
statements. An iterator must return one of the following four interfaces (otherwise, the
compiler will generate an error):

System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.Generic.IEnumerable<T>
System.Collections.Generic.IEnumerator<T>

Iterators that return an enumerator interface tend to be used less often. They’re useful
when writing a custom collection class: typically, you name the iterator
GetEnumerator and have your class implement ITEnumerable<T>.

Iterators that return an enumerable interface are more common—and simpler to use
because you don’t have to write a collection class. The compiler, behind the scenes,
writes a private class implementing TEnumerable<T> (as well as
IEnumerator<T>).

Multiple yield statements
An iterator can include multiple vield statements:

static void Main ()

{
foreach (string s in Foo())
Console.Write (s + " "); // One Two Three

www.it-ebooks.info

http://www.it-ebooks.info/

static IEnumerable<string> Foo ()

{
yield return "One";
yield return "Two";
yield return "Three";

}
yield break

The yield break statement indicates that the iterator block should exit early, without
returning more elements. We can modify Foo as follows to demonstrate:

static IEnumerable<string> Foo (bool breakEarly)
{

yield return "One";

yield return "Two";

if (breakkarly) yield break;

yield return "Three";

A return statement is illegal in an iterator block—you must use yield
break instead.

Composing Sequences

Iterators are highly composable. We can extend our Fibonacci example by adding the
following method to the class:

static IEnumerable<int> EvenNumbersOnly (
IEnumerable<int> sequence)

{

foreach (int x in sequence)
if ((x %5 2) = 0)
yield return x;
}
We can then output even Fibonacci numbers as follows:

foreach (int fib in EvenNumbersOnly (Fibs (6)))
Console.Write (fib + " "); // 2 8

Each element is not calculated until the last moment—when requested by a
MoveNext () operation. Figure 5 shows the data requests and data output over time.

www.it-ebooks.info

http://www.it-ebooks.info/

JauWinsuo)
-d— execution

—8—>

<f—pulling data——
——vielding data—pm

Figure 5. Composing sequences

The composability of the iterator pattern is essential in building LINQ queries.

Nullable Types

Reference types can represent a nonexistent value with a null reference. Value types,
however, cannot ordinarily represent null values. For example:

string s = null; // OK - reference type.
int i = null; // Compile error - int cannot be null.

To represent null in a value type, you must use a special construct called a nullable type.
A nullable type is denoted with a value type followed by the ? symbol:

int? i = null; // OK — Nullable Type
Console.WriteLine (i == null); // True

Nullable<T> struct

T? translates into System.Nullable<T> Nullable<T> is a lightweight
immutable structure, having only two fields, to represent Value and HasValue. The
essence of System.Nullable<T> is very simple:

| public struct Nullable<T> where T : struct

www.it-ebooks.info

http://www.it-ebooks.info/

public T Value {get;}

public bool HasValue {get;}

public T GetValueOrDefault () ;

public T GetValueOrDefault (T defaultValue);
}
The code:

int? i = null;
Console.WritelLine (i == null); // True

translates to:

Nullable<int> i = new Nullable<int>();
Console.WritelLine (! i.HasValue); // True

Attempting to retrieve Value when HasValue is false throws an
InvalidOperationException. GetValueOrDefault () returns Value if
HasValue is true; otherwise, it returns new T () or a specified custom default value.

The default value of T? is null.

Nullable Conversions

The conversion from T to T? is implicit, and from T? to T is explicit. For example:

int? x = 5; // implicit
int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property.
Hence, an TnvalidOperationException is thrown if HasValue is false.

Boxing/Unboxing Nullable Values

When T? is boxed, the boxed value on the heap contains T, not T 2. This optimization is
possible because a boxed value is a reference type that can already express null.

CH# also permits the unboxing of nullable types with the as operator. The result will be
null if the cast fails:

object o = "string";

int? x = o as int?;

Console.WriteLine (x.HasValue); // False

Operator Lifting

The Nullable<T> struct does not define operators such as <, >, or even ==. Despite
this, the following code compiles and executes correctly:

int? x = 5;

int? y = 10;

bool b = x < y; // true

This works because the compiler steals or “lifts” the less-than operator from the
underlying value type. Semantically, it translates the preceding comparison expression
into this:

www.it-ebooks.info

http://www.it-ebooks.info/

bool b = (x.HasValue && y.HasValue)
? (x.Value < y.Value)
: false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false.

Operator lifting means you can implicitly use T’s operators on T?. You can define
operators for T2 in order to provide special-purpose null behavior, but in the vast
majority of cases, it’s best to rely on the compiler automatically applying systematic
nullable logic for you.

The compiler performs null logic differently depending on the category of operator.
Equality operators (== and !=)

Lifted equality operators handle nulls just like reference types do. This means two null
values are equal:

Console.WriteLine (null == null); // True
Console.WriteLine ((bool?)null == (bool?)null); // True
Further:

e Ifexactly one operand is null, the operands are unequal.

e Ifboth operands are non-null, their Values are compared.

Relational operators (<, <=, >=,>)

The relational operators work on the principle that it is meaningless to compare null
operands. This means comparing a null value to either a null or a non-null value returns
false.

bool b = x < y; // Translation:

bool b = (x == null || y == null)
? false
(x.Value < y.Value);

// b is false (assuming x is 5 and y is null)
All other operators (+,—, *, /, %, &, |, *, <<, >>, +, ++, --, |, ~)

These operators return null when any of the operands are null. This pattern should be
familiar to SQL users.

int? ¢ = x + y; // Translation:
int? ¢ = (x == null || y == null)
? null

(int?) (x.Value + y.Value);

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we will discuss
shortly.

www.it-ebooks.info

http://www.it-ebooks.info/

Mixing nullable and non-nullable operators

You can mix and match nullable and non-nullable types (this works because there is an
implicit conversion from T to T ?):

int? a = null;
int b = 2;
int? ¢ = a + b; // ¢ is null - equivalent to a + (int?)b

bool? with & and | Operators

When supplied operands of type boo1? the & and | operators treat null as an unknown
value. So, null | true is true, because:

e Ifthe unknown value is false, the result would be true.
e [If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior would be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null, £ = false, t = true;
Console.Writeline (n | n); // (null)
Console.Writeline (n | f); // (null)
Console.WriteLine (n | t); // True
Console.Writeline (n & n); // (null)
Console.WriteLine (n & f); // False
Console.WriteLine (n & t); // (null)

Null Coalescing Operator

The 2 ? operator is the null coalescing operator, and it can be used with both nullable
types and reference types. It says “If the operand is non-null, give it to me; otherwise,
give me a default value.” For example:

int? x = null;
int y = x ?? 5; // y is 5

int? a = null, b =1, ¢ = 2;
Console.Write (a ?? b 2?2 ¢); // 1 (First non-null value)

The 2 ? operator is equivalent to calling GetValueOrDefault with an explicit default
value, except that the expression passed to GetValueOrDefault is never evaluated if
the variable is not null.

Operator Overloading

Operators can be overloaded to provide more natural syntax for custom types. Operator
overloading is most appropriately used for implementing custom structs that represent
fairly primitive data types. For example, a custom numeric type is an excellent candidate
for operator overloading.

The following symbolic operators can be overloaded:

* /== ! ~ % & | .
= I= < << >> >

www.it-ebooks.info

http://www.it-ebooks.info/

Implicit and explicit conversions can also be overridden (with the implicit and
explicit keywords) as can the literals t rue and false, and the unary + and -
operators.

The compound assignment operators (e.g., +=, /=) are automatically overridden when
you override the noncompound operators (e.g., +, /).

Operator Functions

An operator is overloaded by declaring an operator function. An operator function must
be static, and at least one of the operands must be the type in which the operator function
is declared.

In the following example, we define a struct called Note representing a musical note,
and then overload the + operator:

public struct Note
{

int value;

public Note (int semitonesFromA)
{ value = semitonesFromA; }

public static Note operator + (Note x, int semitones)
{

return new Note (x.value + semitones);
}
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Since we overrode +, we can use += t0o:

| csharp += 2;

Overloading Equality and Comparison Operators

Equality and comparison operators are often overridden when writing structs, and in rare
cases with classes. Special rules and obligations come with overloading these operators:

Pairing

The C# compiler enforces that operators that are logical pairs are both defined. These
operators are (== ! =), (< >), and (<= >=).

Equals and GetHashCode

If you overload == and ! =, you will usually need to override object’s Equals
and GetHashCode methods so that collections and hashtables will work reliably
with the type.

www.it-ebooks.info

http://www.it-ebooks.info/

IComparable and IComparable<T>

If you overload < and >, you would also typically implement IComparable and
IComparable<T>.

Extending the previous example, here’s how we could overload Note’s equality
operators:

public static bool operator == (Note nl, Note n2)
{ return nl.value == n2.value;
E)ublic static bool operator !'= (Note nl, Note n2)
{ return ! (nl.value == n2.value);
;ublic override bool Egquals (object otherNote)
{ if (! (otherNote is Note)) return false;
return this == (Note)otherNote;
éublic override int GetHashCode ()
{

return value.GetHashCode () ; // Use value’s hashcode

}

Custom Implicit and Explicit Conversions

Implicit and explicit conversions are overloadable operators. These conversions are
typically overloaded to make converting between strongly related types (such as numeric
types) concise and natural.

As explained in the discussion on types, the rationale behind implicit conversions is that
they should always succeed and not lose information during conversion. Otherwise,
explicit conversions should be defined.

In the following example, we define conversions between our musical Note type and a
double (which represents the frequency in hertz of that note):

// Convert to hertz
public static implicit operator double (Note X)
{
return 440 * Math.Pow (2, (double) x.value / 12);
}

// Convert from hertz (accurate to nearest semitone)
public static explicit operator Note (double X)
{
return new Note ((int) (0.5 + 12 * (Math.Log (x/440)
/ Math.Log(2))));

Note n =(Note)554.37; // explicit conversion
double x = n; // implicit conversion

www.it-ebooks.info

http://www.it-ebooks.info/

This example is somewhat contrived: in real life, these conversions might be
better implemented with a ToFrequency method and a (static)
FromFrequency method.

Custom conversions are ignored by the as and is operators.

Extension Methods

Extension methods allow an existing type to be extended with new methods, without
altering the definition of the original type. An extension method is a static method of a
static class, where the this modifier is applied to the first parameter. The type of the
first parameter will be the type that is extended. For example:

public static class StringHelper
{
public static bool IsCapitalized (this string s)
{
if (string.IsNullOrEmpty (s)) return false;
return char.IsUpper (s[0]);

}

}

The IsCapitalized extension method can be called as though it were an instance
method on a string, as follows:

|Console.Write ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static
method call:

|Console.Write (StringHelper.IsCapitalized ("Perth"));

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)
{
foreach (T element in sequence)
return element;
throw new InvalidOperationException ("No elements!");

}

Console.WritelLine ("Seattle".First()); // S

Extension Method Chaining

Extension methods, like instance methods, provide a tidy way to chain functions.
Consider the following two functions:

public static class StringHelper
{

public static string Pluralize (this string s) {...}
public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "Sausages", but x uses extension
methods, whereas v uses static methods:

www.it-ebooks.info

http://www.it-ebooks.info/

string x = "sausage".Pluralize() .Capitalize();

string y = StringHelper.Capitalize
(StringHelper.Pluralize ("sausage"));

Ambiguity and Resolution

Namespaces

An extension method cannot be accessed unless the namespace is in scope (typically
imported with a using statement).

Extension methods versus instance methods

Any compatible instance method will always take precedence over an extension
method—even when the extension method’s parameters are more specifically type-
matched.

Extension methods versus extension methods

If two extension methods have the same signature, the extension method must be called
as an ordinary static method to disambiguate the method to call. If one extension method
has more specific arguments, however, the more specific method takes precedence.

Anonymous Types

An anonymous type is a simple class created on the fly to store a set of values. To create
an anonymous type, you use the new keyword followed by an object initializer,
specifying the properties and values the type will contain. For example:

|var dude = new { Name = "Bob", Age =1 };
The compiler resolves this by writing a private nested type with read-only properties for

Name (type string) and Age (type int). You must use the var keyword to reference
an anonymous type, because the type’s name is compiler-generated.

The property name of an anonymous type can be inferred from an expression that is itself
an identifier. For example:

int Age = 1;
var dude = new { Name = "Bob", Age };

is equivalent to:
|var dude = new { Name = "Bob", Age = Age };
You can create arrays of anonymous types as follows:

var dudes = new]|]
{
new { Name = "Bob", Age = 30 },
new { Name = "Mary", Age = 40 }
}i

Anonymous types are used primarily when writing LINQ queries.

www.it-ebooks.info

http://www.it-ebooks.info/

LINQ

LINQ, or Language Integrated Query, allows you to write structured type-safe queries
over local object collections and remote data sources.

LINQ lets you query any collection implementing ITEnumerable<>, whether an array,
list, XML DOM, or remote data source (such as a table in SQL Server). LINQ offers the
benefits of both compile-time type checking and dynamic query composition.

A good way to experiment with LINQ is to download LINQPad, at
www.lingpad.net. LINQPad lets you interactively query local collections and
SQL databases in LINQ without any setup and is preloaded with numerous
examples.

LINQ Fundamentals

The basic units of data in LINQ are sequences and elements. A sequence is any object
that implements the generic TEnumerable interface, and an element is each item in the
sequence. In the following example, names is a sequence, and Tom, Dick, and Harry
are elements:

|string[} names = { "Tom", "Dick", "Harry" };

A sequence such as this we call a local sequence because it represents a local collection
of objects in memory.

A query operator is a method that transforms a sequence. A typical query operator
accepts an input sequence and emits a transformed output sequence. In the
Enumerable class in System. Ling, there are around 40 query operators; all
implemented as static extension methods. These are called standard query operators.

LINQ also supports sequences that can be dynamically fed from a remote data
source such as a SQL Server. These sequences additionally implement the
IQueryable<> interface and are supported through a matching set of
standard query operators in the Queryable class.

A simple query

A query is an expression that transforms sequences with one or more query operators.
The simplest query comprises one input sequence and one operator. For instance, we can
apply the Where operator on a simple array to extract those whose length is at least four
characters as follows:

string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames =

System.Ling.Enumerable.Where (
names, n => n.Length >= 4);

foreach (string n in filteredNames)
Console.Write (n + "|"); // Dick|Harry|

Because the standard query operators are implemented as extension methods, we can call
Where directly on name s—as though it were an instance method:

www.it-ebooks.info

http://www.it-ebooks.info/

IEnumerable<string> filteredNames =
names.Where (n => n.Length >= 4);

(For this to compile, you must import the System.Ling namespace with a using
directive.) The Where method in System.Ling.Enumerable has the following
signature:

static IEnumerable<TSource> Where<TSource> (

this IEnumerable<TSource> source,
Func<TSource,bool> predicate)

source is the input sequence; predicate is a delegate that is invoked on each input
element. Whe re method includes all elements in the output sequence, for which the
delegate returns true. Internally, it’s implemented with an iterator—here’s its source
code:

foreach (TSource element in source)
if (predicate (element))
yield return element;

Projecting

Another fundamental query operator is the Select method. This transforms (projects)
each element in the input sequence with a given lambda expression:

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> upperNames =
names.Select (n => n.ToUpper(Q));

foreach (string n in upperNames)
Console.Write (n + "|"); // TOM|DICK |HARRY |

A query can project into an anonymous type:

var query = names.Select (n => new {
Name = n,
Length = n.Length
1) 7
foreach (var row in query)
Console.WriteLine (row);

Here’s the result:

{ Name = Tom, Length = 3 }
{ Name = Dick, Length = 4 }
{ Name = Harry, Length = 5 }

Take and Skip

The original ordering of elements within an input sequence is significant in LINQ. Some
query operators rely on this behavior, such as Take, Skip, and Reverse. The Take
operator outputs the first x elements, discarding the rest:

int[] numbers = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);
// firstThree is { 10, 9, 8 }

The Skip operator ignores the first x elements, and outputs the rest:

|IEnumerable<int> lastTwo = numbers.Skip (3);

www.it-ebooks.info

http://www.it-ebooks.info/

Element operators

Not all query operators return a sequence. The element operators extract one element
from the input sequence; examples are First, Last, Single, and ElementAt:

int[] numbers = {10, 9, 8, 7, 6 };

int firstNumber = numbers.First(); // 10
int lastNumber = numbers.Last(); // 6
int secondNumber = numbers.ElementAt (2); // 8
int firstOddNum = numbers.First (n => n%2 == 1); // 9

All of these operators throw an exception if no elements are present. To get a null/empty
return value instead of an exception, use FirstOrDefault, LastOrDefault,
SingleOrDefault or ElementAtOrDefault

The Single and SingleOrDefault methods are equivalent to First and
FirstOrDefault except that they throw an exception if there’s more than one match.
This behavior is useful when querying a database table for a row by primary key.
Aggregation operators

The aggregation operators return a scalar value; usually of numeric type. The most
commonly used aggregation operators are Count, Min, Max and Average:

int[] numbers = { 10, 9, 8, 7, 6 };

int count = numbers.Count () ; // 5
int min = numbers.Min () ; // 6
int max = numbers.Max () ; // 10
double avg = numbers.Average () ; // 8

Count accepts an optional predicate, which indicates whether to include a given
element. The following counts all even numbers:

o)

|int evenNums = numbers.Count (n =>n % 2 == 0); // 3

The Min, Max and Average operators accept an optional argument that transforms each
element prior to it being aggregated:

int maxRemainderAfterDivBy5 = numbers.Max
(n=>n % 5); // 4

The following calculates the root-mean-square of numbers:
|double rms = Math.Sgrt (numbers.Average (n => n * n));
Quantifiers

The quantifiers return a boo1 value. The quantifiers are Contains, Any, A11 and
SequenceEquals (which compares two sequences):

int[] numbers = { 10, 9, 8, 7, 6 };

bool hasTheNumberNine = numbers.Contains (9); // true
bool hasMoreThanZeroElements = numbers.Any () ; // true
bool hasOddNum = numbers.Any (n =>n % 2 == 1); // true

bool alloddNums = numbers.All (n =>n % 2 == 1); // false

www.it-ebooks.info

http://www.it-ebooks.info/

Set operators

The set operators accept two same-typed input sequences. Concat appends one
sequence to another; Union does the same but with duplicates removed:

int[] seql = {1, 2, 3}, seq2 = { 3, 4, 5 };

IEnumerable<int>
concat = seqgl.Concat (seq2), // {1, 2, 3, 3, 4, 5}
union = seql.Union (seq2), // {1, 2, 3, 4, 5}

The other two operators in this category are Intersect and Except:

IEnumerable<int>
commonality = seql.Intersect (seq2), /0 {3}
differencel = seql.Except (seq?), /{1, 2}
difference2 = seq2.Except (seql); // {4, 5}

Deferred Execution

An important feature of many query operators is that they execute not when constructed,
but when enumerated (in other words, when MoveNext is called on its enumerator).
Consider the following query:

var numbers = new List<int> { 1 };
numbers.Add (1);

IEnumerable<int> query = numbers.Select (n =>n * 10);
numbers.Add (2); // Sneak in an extra element

foreach (int n in query)
Console.Write (n + "|"); // 10120]|

The extra number that we sneaked into the list after constructing the query is included in
the result, because it’s not until the foreach statement runs that any filtering or sorting
takes place. This is called deferred or lazy evaluation. Deferred execution decouples
query construction from query execution, allowing you to construct a query in several
steps, as well as making it possible to query a database without retrieving all the rows to
the client. All standard query operators provide deferred execution, with the following
exceptions:

e Operators that return a single element or scalar value (the element operators,
aggregation operators and quantifiers)

e The following conversion operators:

ToArray, ToList, ToDictionary, ToLookup

The conversion operators are useful, in part, because they defeat lazy evaluation. This can
be useful to “freeze” or cache the results at a certain point in time, to avoid re-executing a
computationally intensive or remotely sourced query such as a LINQ to SQL table. (A
side-effect of lazy evaluation is that the query gets re-evaluated should you later re-
enumerate it).

The following example illustrates the ToList operator:

var numbers = new List<int>() { 1, 2 };

www.it-ebooks.info

http://www.it-ebooks.info/

List<int> timesTen = numbers
.Select (n =>n * 10)
-ToList(); // Executes immediately into a List<int>

numbers.Clear () ;
Console.WritelLine (timesTen.Count); // Still 2

Subqueries provide another level of indirection. Everything in a subquery is
subject to deferred execution—including aggregation and conversion
methods, because the subquery is itself executed only lazily upon demand.
Assuming names is a string array, a subquery looks like this:

names .Where (
n => n.Length ==
names.Min (n2 => n2.Length))

Standard Query Operators

The standard query operators (as implemented in the System.Ling.Enumerable
class) can be divided into 12 categories, summarized in Table 1.

Table 1. Query operator categories

Category Description Deferred
execution?
Filtering Returns a subset of elements that satisfy ~ Yes
a given condition
Projecting Transforms each element with a lambda Yes
function, optionally expanding
subsequences
Joining Meshes elements of one collection with ~ Yes
another, using a time-efficient lookup
strategy
Ordering Returns a reordering of a sequence Yes
Grouping Groups a sequence into subsequences. Yes
Set Accepts two same-typed sequences, and Yes
returns their commonality, sum or
difference
Element Picks a single element from a sequence ~ No
Aggregation Performs a computation over a No
sequence, returning a scalar value
(typically a number)
Quantifiers Performs a computation over a No
sequence, returning true or false
Conversion: Converts a nongeneric sequence to a Yes
Import (queryable) generic sequence
Conversion: ~ Converts a sequence to an array, list, No
Export dictionary or lookup, forcing immediate

www.it-ebooks.info

http://www.it-ebooks.info/

Generation

evaluation

Manufactures a simple sequence Yes

Tables 2-13 summarize each of the query operators. The operators shown in bold have
special support in C# (see “Query Expressions”).

Table 2. Filtering operators

Method Description
Where Returns a subset of elements that satisfy a given
condition
Take Returns the first x elements, and discards the rest
Skip Ignores the first x elements, and returns the rest
TakeWhile Emits elements from the input sequence until the given
predicate is true
SkipwWhile Ignores elements from the input sequence until the
given predicate is true, and then emits the rest
Distinct Returns a collection that excludes duplicates
Table 3. Projection operators
Method Description
Select Transforms each input element with a given lambda
expression
SelectMany Transforms each input element, then flattens and
concatenates the resultant subsequences
Table 4. Joining operators
Method Description
Join Applies a lookup strategy to match elements from two
collections, emitting a flat result set
GroupJoin As above, but emits a hierarchical result set
Zip Enumerates two sequences in step, returning a sequence
that applies a function over each element pair
Table 5. Ordering operators
Method Description
OrderBy, ThenBy Returns the elements sorted in ascending
order
OrderByDescending, Returns the elements sorted in descending
ThenByDescending order
Reverse Returns the elements in reverse order

Table 6. Grouping operators

www.it-ebooks.info

http://www.it-ebooks.info/

Method

Description

GroupBy Groups a sequence into subsequences
Table 7. Set operators
Method Description
Concat Concatenates two sequences
Union Concatenates two sequences, removing duplicates
Intersect Returns elements present in both sequences
Except Returns elements present in the first, but not the second
sequence
Table 8. Element operators
Method Description
First, Returns the first element in the sequence,
FirstOrDefault or the first element satisfying a given
predicate
Last, Returns the last element in the sequence,
LastOrDefault or the last element satisfying a given
predicate
Single, Equivalent to
SingleOrDefault First/FirstOrDefault, but throws
an exception if there is more than one
match
ElementAt, Returns the element at the specified
ElementAtOrDefault position
DefaultIfEmpty Returns null or default (TSource) if
the sequence has no elements
Table 9. Aggregation operators
Method Description
Count, Returns the total number of elements in the input
LongCount gequence, or the number of elements satisfying a given
predicate
Min, Max Returns the smallest or largest element in the sequence
Sum, Calculates a numeric sum or average over elements in
Average the sequence
Aggregate Performs a custom aggregation
Table 10. Qualifiers
Method Description
Contains

Returns t rue if the input sequence contains the
given element

www.it-ebooks.info

http://www.it-ebooks.info/

Any Returns t rue if any elements satisfy the given
predicate

All Returns t rue if all elements satisfy the given
predicate

SequenceEqual Returns true if the second sequence has identical
elements to the input sequence

Table 11. Conversion operators (import)
Method Description

OfType Converts IEnumerable to IEnumerable<T>,
discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>,
throwing an exception if there are any wrongly typed
elements

Table 12. Table Conversion operators (export)

Method Description
ToArray Converts IEnumerable<T>to T[]
ToList Converts ITEnumerable<T> to List<T>

ToDictionary Converts ITEnumerable<T> to
Dictionary<TKey, TValue>

ToLookup Converts TEnumerable<T> to
ILookup<TKey, TElement>

AsEnumerable Downcasts to IEnumerable<T>

AsQueryable Casts or converts to IQueryable<T>

Table 13. Generation operators

Method Description

Empty Creates an empty sequence

Repeat Creates a sequence of repeating elements
Range Creates a sequence of integers

Chaining Query Operators

To build more complex queries, you chain query operators together. For example, the
following query extracts all strings containing the letter “a”, sorts them by length, and
then converts the results to uppercase:

string[] names = { "Tom","Dick","Harry", "Mary", "Jay" };
IEnumerable<string> query = names
.Where (n => n.Contains ("a"))

.OrderBy (n => n.Length)
.Select (n => n.ToUpper()):;

www.it-ebooks.info

http://www.it-ebooks.info/

foreach (string name in query)
Console.Write (name + "|");

// RESULT: JAY|MARY | HARRY |

Where, OrderBy, and Select are all standard query operators that resolve to
extension methods in the Enumerable class. The Where operator emits a filtered
version of the input sequence; OrderBy emits a sorted version of its input sequence;
Select emits a sequence where each input element is transformed or projected with a
given lambda expression (n. ToUpper (), in this case). Data flows from left to right
through the chain of operators, so the data is first filtered, then sorted, then projected. The
end result resembles a production line of conveyor belts, as illustrated in Figure 6.

n =>» n =» n =>
n.Contains ("a") n.Length n.ToUpper ()
4 A 4+
[['
L] 1] L]
¥ ¥ ¥

Rep
faepy
fuey
Hla
AYHYH
AHYN
Avr

O Fiter WO Sorter (YD Projector

.Where () .OrderBy .Select

Figure 6. Chaining query operators

Deferred execution is honored throughout with operators, so no filtering, sorting or
projecting takes place until the query is actually enumerated.

Query Expressions

So far, we’ve written queries by calling extension methods in the Enumerable class. In
this book, we describe this as fluent syntax. C# also provides special language support for
writing queries, called query expressions. Here’s the preceding query expressed as a
query expression:
IEnumerable<string> query =
from n in names
where n.Contains ("a")

orderby n.Length
select n.ToUpper () ;

A query expression always starts with a £ rom clause, and ends with either a select or
group clause. The from clause declares an range variable (in this case, n) which you
can think of as traversing the input collection—rather like foreach. Figure 7 illustrates
the complete syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

f H identifier) in (enumerable-expr
rome ifier) in (_ pr)
i ascending]
orderby expr {_ }
descending

query continuation

orderby-
clause

SelectMany

where
boolean-expr

from-
clouse

A

T

group-

let identifier
clause

= expr

join-clause

group by

. inner :
o) % o equals @ i i ifi
identifier into (identifier

Figure 7. Query expression syntax

If you’re familiar with SQL, LINQ’s query expression syntax—with the
from clause first and the select clause last—might look bizarre. Query
expression syntax is actually more logical because the clauses appear in the
order they’re executed. This allows Visual Studio to prompt you with
Intellisense as you type, as well as simplifying the scoping rules for
subqueries.

The compiler processes query expressions by translating them to fluent syntax. It does
this in a fairly mechanical fashion—much like it translates foreach statements into
calls to GetEnumerator and MoveNext:

IEnumerable<string> query = names
.Where (n => n.Contains ("a"))
.OrderBy (n => n.Length)

.Select (n => n.ToUpper()):;

The Where, OrderBy, and Select operators then resolve using the same rules that
would apply if the query were written in fluent syntax. In this case, they bind to extension
methods in the Enumerable class (assuming you’ve import the System.Ling
namespace) because names implements IEnumerable<string>. The compiler
doesn’t specifically favor the Enumerable class, however, when translating query
syntax. You can think of the compiler as mechanically injecting the words “Where,”
“OrderBy,” and “Select” into the statement, and then compiling it as though you’d typed
the method names yourself. This offers flexibility in how they resolve—the operators in
LINQ to SQL and Entity Framework queries, for instance, bind instead to the extension
methods in the Queryable class.

www.it-ebooks.info

http://www.it-ebooks.info/

Query expressions versus fluent queries
Query expressions and fluent queries each have advantages.

Query expressions support only a small subset of query operators, namely:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

For queries that use other operators, you must either write entirely in fluent syntax or
construct mixed-syntax queries, for instance:

string[] names = { "Tom","Dick","Harry", "Mary", "Jay" };

IEnumerable<string> query =
from n in names
where n.Length == names.Min (n2 => n2.Length)
select n;

This query returns names whose length matches that of the shortest (“Tom” and “Jay”).
The subquery (in bold) calculates the minimum length of each name, and evaluates to 3.
We have to use fluent syntax for the subquery, because the Min operator has no support
in query expression syntax. We can, however, still use query syntax for the outer query.

The main advantage of query syntax is that it can radically simplify queries that involve
the following:

e A let clause for introducing a new variable alongside the range variable
e Multiple generators (SelectMany) followed by an outer range variable reference

e A Joinor GroupJoin equivalent, followed by an outer range variable reference

The let Keyword

The 1let keyword introduces a new variable alongside the range variable. For instance,
suppose we want to list all names, whose length without vowels, is greater than two
characters:

string[] names = { "Tom","Dick","Harry", "Mary", "Jay" };

IEnumerable<string> query =
from n in names
let vowelless = Regex.Replace (n, "'[aeiou]™, '"")
where vowelless.Length > 2
orderby vowelless
select n + " - " + vowelless;

The output from enumerating this query is:

Dick - Dck
Harry - Hrry
Mary - Mry

The let clause performs a calculation on each element, without losing the original
element. In our query, the subsequent clauses (where, orderby and select) have
access to both n and vowelless. A query can include any multiple 1et clauses, and
they can be interspersed with additional where and join clauses.

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler translates the 1et keyword by projecting into temporary anonymous type
that contains both the original and transformed elements:

IEnumerable<string> query = names
.Select (n => new
{
n =n,
vowelless = Regex.Replace (n, "[aeiou]", "")
}
)
.Where (temp0 => (tempO.vowelless.Length > 2))
.OrderBy (tempO => tempO.vowelless)
.Select (tempO => ((tempO.n + " - ") + tempO.vowelless))

Query Continuations
If you want to add clauses after a select or group clause, you must use the into
keyword to “continue” the query. For instance:

from ¢ in "The quick brown tiger".Split()
select c.ToUpper () into upper

where upper.StartsWith ("T")

select upper

// RESULT: "THE", "TIGER"
Following an into clause, the previous range variable is out of scope.

The compiler translates queries with an into keyword simply into a longer chain of
operators:

"The quick brown tiger".Split()
.Select (c => c.ToUpper ())
.Where (upper => upper.StartsWith ("T"))

(It omits the final Select (upper=>upper) because it’s redundant).

Multiple Generators

A query can include multiple generators (f rom-clauses). For example:
int[] numbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
from 1 in letters
select n.ToString() + 1;

The result is a cross product, rather like you’d get with nested foreach loops:

| Hlall’ Hlb", "2all, "2b", "3a", ll3b"
When there’s more than one £ rom clause in a query, the compiler emits a call to
SelectMany:

IEnumerable<string> query = numbers.SelectMany (
n = letters,
(n, D = (n.ToString(+ 1));

www.it-ebooks.info

http://www.it-ebooks.info/

SelectMany performs nested looping. It enumerates every element in the source
collection (numbers), transforming each element with the first lambda expression
(letters). This generates a sequence of subsequences, which it then enumerates. The
final output elements are determined by the second lambda expression

(n.ToString () +1).

If you subsequently apply a whe re clause, you can filter the cross product and project a
result akin to a join:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query =
from namel in players
from name? in players
where namel.CompareTo (name2) < O
orderby namel, name2
select namel + " vs " + name2;

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The translation of this query into fluent syntax is more complex, requiring a temporary
anonymous projection. The ability to perform this translation automatically is one of the
key benefits of query expressions.

The expression in the second generator is allowed to use the first range variable:

string[] fullNames =
{ "Anne Williams", "John Fred Smith", "Sue Green" };

IEnumerable<string> query =
from fullName in fullNames
from name in FullName.Split()
select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith

This works because the expression fullName.Split emits a sequence (an array of
strings).

Multiple generators are used extensively in database queries, to flatten parent-child
relationships and to perform manual joins.

Joining

LINQ provides three joining operators, the main ones being Join and GroupJoin
which perform keyed lookup-based joins. Join and GroupJoin support only a subset
of the functionality you get with multiple generators/Se lectMany, but are more
performant with local queries because they use a hashtable-based lookup strategy rather
than performing nested loops. (With LINQ to SQL and Entity Framework queries, the
joining operators have no advantage over multiple generators).

Join and GroupJoin support equi-joins only (i.e., the joining condition must use the
equality operator). There are two methods: Join and GroupJoin. Join emits a flat
result set whereas GroupJoin emits a hierarchical result set.

www.it-ebooks.info

http://www.it-ebooks.info/

The query expression syntax for a flat join is:

from outer-var in outer-seguence
join Enner-var in inner-sequence
on outer-key-expr equals inner-key-expr

For example, given the following collections:

var customers = newl]

{

new { ID = 1, Name = "Tom" },
new { ID = 2, Name = "Dick" },
new { ID = 3, Name = "Harry" }

}i

var purchases = newl]

{
new { CustomerID = 1, Product = "House" },
new { CustomerID = 2, Product = "Boat" },
new { CustomerID = 2, Product = "Car" },
new { CustomerID = 3, Product = "Holiday" }

i
we could perform a join as follows:

IEnumerable<string> query =
from c In customers
join p in purchases on c.ID equals p.CustomeriD
select c.Name + " bought a " + p.Product;

The compiler translates this to:

customers.Join (// outer collection
purchases, // inner collection
c => c.ID, // outer key selector
p => p-CustomerlD, // inner key selector
(c, p) => // result selector

c.Name + " bought a " + p.Product
)i

Here’s the result:

Tom bought a House
Dick bought a Boat
Dick bought a Car
Harry bought a Holiday

With local sequences, Join and GroupJoin are more efficient at processing large
collections than SelectMany because they first preload the inner sequence into a keyed
hashtable-based lookup. With a database query, however, you could achieve the same
result equally efficiently as follows:

from c In customers

from p in purchases

where c.ID == p.CustomerID

select c.Name + " bought a " + p.Product;

GroupJoin

GroupJoin does the same work as Join, but instead of yielding a flat result, it yields a
hierarchical result, grouped by each outer element.

www.it-ebooks.info

http://www.it-ebooks.info/

The query expression syntax for GroupJoin is the same as for Join, but is followed
by the into keyword. Here’s a basic example, using the customers and purchases
collections we set up in the previous section:

IEnumerable<IEnumerable<Purchase>> query =
from ¢ in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select custPurchases; // custPurchases is a sequence

An into clause translates to GroupJoin only when it appears directly after
a join clause. After a select or group clause it means query
continuation. The two uses of the into keyword are quite different, although
they have one feature in common: they both introduce a new query variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
foreach (Purchase p in purchaseSequence)
Console.WritelLine (p.Description);

This isn’t very useful, however, because outerSeq has no reference to the outer
customer. More commonly, you’d reference the outer range variable in the projection:

from ¢ in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

We could obtain the same result (but less efficiently, for local queries) by projecting into
an anonymous type which included a subquery:

from ¢ in customers
select new
{
CustName = c.Name,
custPurchases =
purchases.Where (p => c¢.ID == p.CustomerID)

}
Zip
71p is the simplest joining operator. It enumerates two sequences in step (like a zipper),

returning a sequence based on applying a function over each element pair. For example:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip =

numbers.Zip (words, (n, w) =>n + =" + w);

produces a sequence with the following elements:
3=three

5=five

7=seven

Extra elements in either input sequence are ignored. Zip is not supported when querying
a database

www.it-ebooks.info

http://www.it-ebooks.info/

Ordering
The orderby keyword sorts a sequence. You can specify any number of expressions
upon which to sort:

string[] names = { "Tom","Dick","Harry", "Mary","Jay" };

IEnumerable<string> query = from n in names
orderby n.Length, n
select n;

This sorts first by length, then name, so the result is:
|Jay, Tom, Dick, Mary, Harry

The compiler translates the first orde rby expression to a call to OrderBy, and
subsequent expressions to a call to ThenBy:

IEnumerable<string> query = names
.OrderBy (n => n.Length)
.ThenBy (n => n)

The ThenBy operator refines rather than replaces, the previous sorting.

You can include the descending keyword after any of the orderby expressions:

| orderby n.Length descending, n

This translates to:

|.OrderByDescending (n => n.Length) .ThenBy (n => n)

The ordering operators return an extended type of IEnumerable<T> called
IOrderedEnumerble<T>. This interface defines the extra functionality
required by the ThenBy operators.

Grouping
GroupBy organizes a flat input sequence into sequences of groups. For example, the
following groups a sequence of names by their length:

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

var query = from name in names
group name by name.Length;

The compiler translates this query into:

IEnumerable<IGrouping<int, string>> query =
names.GroupBy (name => name.Length) ;

Here’s how to enumerate the result:

foreach (IGrouping<int,string> grouping in query)

{

Console.Write ("\r\n Length=" + grouping.Key + ":");
foreach (string name in grouping)
Console.Write (" " + name);

www.it-ebooks.info

http://www.it-ebooks.info/

Length=3: Tom Jay
Length=4: Dick Mary
Length=5: Harry

Enumerable.GroupBy works by reading the input elements into a temporary
dictionary of lists so that all elements with the same key end up in the same sublist. It
then emits a sequence of groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey, TElement>
IEnumerable<TElement>, IEnumerable

{

// Key applies to the subsequence as a whole
TKey Key { get; }
}

By default, the elements in each grouping are untransformed input elements, unless you
specify an e lement Selector argument. The following projects each input element to
uppercase:

from name in names
group name.ToUpper () by name.Length

which translates to this:

names .GroupBy (
name => name.Length,
name => name.ToUpper ())

The subcollections are not emitted in order of key. GroupBy does no sorting (in fact, it
preserves the original ordering.) To sort, you must add an OrderBy operator (which
means first adding an into clause, because group by ordinarily ends a query):

from name in names

group name.ToUpper () by name.Length into grouping
orderby grouping.Key

select grouping

Query continuations are often used in a group by query. The next query filters out
groups that have exactly two matches in them:

from name in names

group name.ToUpper () by name.Length into grouping
where grouping.Count() ==

select grouping

A where after a group by is equivalent to HAVING in SQL. It applies to
each subsequence or grouping as a whole, rather than the individual elements.

OfType and Cast

OfType and Cast accept a nongeneric IEnumerable collection and emit a generic
IEnumerable<T> sequence that you can subsequently query:

var classicList = new System.Collections.ArrayList();
classiclList.AddRange (new int[] { 3, 4, 5});
IEnumerable<int> sequencel = classiclList.Cast<int>();

www.it-ebooks.info

http://www.it-ebooks.info/

This is useful because it allows you to query collections written prior to C# 2.0 (when
IEnumerable<T> was introduced), such as ControlCollection in
System.Windows.Forms.

Cast and OfType differ in their behavior when encountering an input element that’s of
an incompatible type: Cast throws an exception whereas Of Type ignores the
incompatible element.

The rules for element compatibility follow those of C#’s i s operator. Here’s the internal
implementation of Cast:

public static IEnumerable<TSource> Cast <TSource>
(IEnumerable source)
{
foreach (object element in source)
yield return (TSource)element;

}

CH# supports the Cast operator in query expressions: simply insert the element type
immediately after the £ rom keyword:

|from int x in classiclist ...
This translates to:

| from x in classicList.Cast <int>() ...

Dynamic Binding (C# 4.0)

Dynamic binding defers binding—the process of resolving types, members, and
operations—from compile time to runtime. Dynamic binding is useful when at compile
time you know that a certain function, member, or operation exists, but the compiler does
not. This commonly occurs when you are interoperating with dynamic languages (such as
IronPython) and COM and in scenarios when you might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject () ;
d.Quack () ;

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a
Quack method. We just can't prove it statically. Since d is dynamic, the compiler defers
binding Quack to d until runtime. To understand what this means requires distinguishing
between static binding and dynamic binding.

Static Binding Versus Dynamic Binding

The canonical binding example is mapping a name to a specific function when compiling
an expression. To compile the following expression, the compiler needs to find the
implementation of the method named Quack:

| d.Quack () ;
Let's suppose the static type of d is Duck:

| uck d = ...

www.it-ebooks.info

http://www.it-ebooks.info/

| d.ouack () ;

In the simplest case, the compiler does the binding by looking for a parameterless method
named Quack on Duck. Failing that, the compiler extends its search to methods taking
optional parameters, methods on base classes of Duck, and extension methods that take
Duck as its first parameter. If no match is found, you'll get a compilation error.
Regardless of what method gets bound, the bottom line is that the binding is done by the
compiler, and the binding utterly depends on statically knowing the types of the operands
(in this case, d). This makes it static binding.

Now let's change the static type of d to object:

object d = ...
d.Quack () ;

Calling Quack gives us a compilation error, because although the value stored in d can
contain a method called Quack, the compiler cannot know it since the only information
it has is the type of the variable, which in this case is object. But let's now change the
static type of d to dynamic:

dynamic d = ...
d.Quack () ;

A dynamic type is like object—it's equally nondescriptive about a type. The
difference is that it lets you use it in ways that aren't known at compile time. A dynamic
object binds at runtime based on its runtime type, not its compile-time type. When the
compiler sees a dynamically bound expression (which in general is an expression that
contains any value of type dynamic), it merely packages up the expression such that the
binding can be done later at runtime.

At runtime, if a dynamic object implements TDynamicMetaObjectProvider, that
interface is used to perform the binding. If not, binding occurs in almost the same way as
it would have had the compiler known the dynamic object's runtime type. These two
alternatives are called custom binding and language binding.

Custom Binding

Custom binding occurs when a dynamic object implements
IDynamicMetaObjectProvider (IDMOP). Although you can implement IDMOP
on types that you write in C#, and that is useful to do, the more common case is that you
have acquired an IDMOP object from a dynamic language that is implemented in .NET
on the Dynamic Language Runtime (DLR), such as IronPython or IronRuby. Objects
from those languages implicitly implement IDMOP as a means to directly control the
meanings of operations performed on them. Here's a simple example:

using System;
using System.Dynamic;

public class Test
{
static void Main ()
{
dynamic d = new Duck() ;
d.Quack () ; // Quack was called
d.Waddle () ; // Waddle was called

www.it-ebooks.info

http://www.it-ebooks.info/

}
}
public class Duck : DynamicObject
{
public override bool TryInvokeMember (
InvokeMemberBinder binder, object[] args,
out object result)
{
Console.WriteLine (binder.Name + " was called");
result = null;
return true;

}

}

The Duck class doesn't actually have a Quack method. Instead, it uses custom binding
to intercept and interpret all method calls.

We discuss custom binders in greater detail in Chapter 20 of C# 5.0 in a Nutshell.

Language Binding

Language binding occurs when a dynamic object does not implement
IDynamicMetaObjectProvider. Language binding is useful when working around
imperfectly designed types or inherent limitations in the NET type system. A typical
problem when using numeric types is that they have no common interface. We have seen
that methods can be bound dynamically; the same is true for operators:

static dynamic Mean (dynamic x, dynamic y)
{
return (x +vy) / 2;
}
static void Main()
{
int x = 3, y = 4;
Console.WritelLine (Mean (x, Vy));

}

The benefit is obvious—you don't have to duplicate code for each numeric type.
However, you lose static type safety, risking runtime exceptions rather than compile-time
errors.

Dynamic binding circumvents static type safety, but not runtime type safety.
Unlike with reflection, you cannot circumvent member accessibility rules with
dynamic binding.

By design, language runtime binding behaves as similarly as possible to static binding,
had the runtime types of the dynamic objects been known at compile time. In our
previous example, the behavior of our program would be identical if we hardcoded Mean
to work with the int type. The most notable exception in parity between static and
dynamic binding is for extension methods, which we discuss in “Uncallable Functions.”

Dynamic binding also incurs a performance hit. Because of the DLR’s
caching mechanisms, however, repeated calls to the same dynamic expression
are optimized—allowing you to efficiently call dynamic expressions in a loop.

www.it-ebooks.info

http://www.it-ebooks.info/

This optimization brings the typical overhead for a simple dynamic expression
on today’s hardware down to less than 100 ns.

RuntimeBinderException

If a member fails to bind, a Runt imeBinderException is thrown. You can think of
this like a compile-time error at runtime:

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no Hel1lo method.

Runtime Representation of dynamic

There is a deep equivalence between the dynamic and object types. The runtime
treats the following expression as true:

|typeof (dynamic) == typeof (object)
This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type (except
pointer types):

dynamic x = "hello";
Console.WritelLine (x.GetType().Name); // String

x = 123; // No error (despite same variable)
Console.Writeline (x.GetType ().Name); // Int32

Structurally, there is no difference between an object reference and a dynamic reference.
A dynamic reference simply enables dynamic operations on the object it points to. You
can convert from object to dynamic to perform any dynamic operation you want on
an object:

object o = new System.Text.StringBuilder();
dynamic d = o;

d.Append ("hello");

Console.WriteLine (o) ; // hello

Dynamic Conversions

The dynamic type has implicit conversions to and from all other types. For a conversion
to succeed, the runtime type of the dynamic object must be implicitly convertible to the
target static type.

The following example throws a Runt imeBinderException because an int is not
implicitly convertible to a short:

int i = 7;

dynamic d = i;

long 1 = d; // OK - implicit conversion works

short j = d; // throws RuntimeBinderException

www.it-ebooks.info

http://www.it-ebooks.info/

var Versus dynamic

The var and dynami c types bear a superficial resemblance, but the difference is deep:
var says, “Let the compiler figure out the type.”
dynamic says, “Let the runtime figure out the type.”

To illustrate:

dynamic x = "hello"; // Static type is dynamic

var y = "hello"; // Static type is string
int 1 = x; // Runtime error
int § = y; // Compile-time error

Dynamic Expressions

Fields, properties, methods, events, constructors, indexers, operators, and conversions can
all be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is
prohibited—just as with a statically typed expression. The difference is that the error
occurs at runtime.

Expressions involving dynamic operands are typically themselves dynamic, since the
effect of absent type information is cascading:

dynamic x = 2;
var y = x * 3; // Static type of y is dynamic

There are a couple of obvious exceptions to this rule. First, casting a dynamic expression
to a static type yields a static expression. Second, constructor invocations always yield
static expressions—even when called with dynamic arguments.

In addition, there are a few edge cases where an expression containing a dynamic
argument is static, including passing an index to an array and delegate-creation
expressions.

Dynamic Member Overload Resolution

The canonical use case for dynamic involves a dynamic receiver. This means that a
dynamic object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo (123); // x is the receiver

However, dynamic binding is not limited to receivers: the method arguments are also
eligible for dynamic binding. The effect of calling a function with dynamic arguments is
to defer overload resolution from compile-time to runtime:

class Program

{
static void Foo (int x) { Console.WriteLine ("1
static void Foo (string x) { Console.WriteLine ("2"); }

static void Main ()

{

dynamic x = 5;

www.it-ebooks.info

http://www.it-ebooks.info/

dynamic y = "watermelon";

Foo (x); // 1
Foo (vy); // 2
}
}

Runtime overload resolution is also called multiple dispatch and is useful in
implementing design patterns such as visitor.

If a dynamic receiver is not involved, the compiler can statically perform a basic check to
see whether the dynamic call will succeed: it checks that a function with the right name
and number of parameters exists. If no candidate is found, you get a compile-time error.

If a function is called with a mixture of dynamic and static arguments, the final choice of
method will reflect a mixture of dynamic and static binding decisions:

static void X (object x, object y) {Console.Write("oo");}
static void X (object x, string y) {Console.Write("os");}
static void X(string x, object y) {Console.Write("so");}
static void X (string x, string y) {Console.Write("ss");}

static void Main ()
{

object o = "hello";

dynamic d = "goodbye";

X (o, d); // os
}

The call to X (o, d) is dynamically bound because one of its arguments, d, is dynamic.
But since o is statically known, the binding—even though it occurs dynamically—will
make use of that. In this case, overload resolution will pick the second implementation of
X due to the static type of o and the runtime type of d. In other words, the compiler is “as
static as it can possibly be.”

Uncallable Functions

Some functions cannot be called dynamically. You cannot call:

e Extension methods (via extension method syntax)
e Any member of an interface (via the interface)

e Base members hidden by a subclass

This is because dynamic binding requires two pieces of information: the name of the
function to call, and the object upon which to call the function. However, in each of the
three uncallable scenarios, an additional type is involved, which is known only at
compile time. As of C# 5.0, there's no way to specify these additional types dynamically.

When calling extension methods, that additional type is an extension class, chosen
implicitly by virtue of us ing directives in your source code (which disappear after
compilation). When calling members via an interface, the additional type is
communicated via an implicit or explicit cast. (With explicit implementation, it’s in fact
impossible to call a member without casting to the interface). A similar situation arises
when calling a hidden base member: you must specify an additional type via either a cast
or the base keyword—and that additional type is lost at runtime.

www.it-ebooks.info

http://www.it-ebooks.info/

Attributes

You’re already familiar with the notion of attributing code elements of a program with
modifiers, such as virtual or ref. These constructs are built into the language.
Attributes are an extensible mechanism for adding custom information to code elements
(assemblies, types, members, return values, and parameters). This extensibility is useful
for services that integrate deeply into the type system, without requiring special keywords
or constructs in the C# language.

A good scenario for attributes is serialization—the process of converting arbitrary objects
to and from a particular format. In this scenario, an attribute on a field can specify the
translation between C#’s representation of the field and the format’s representation of the
field.

Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the abstract
class System.Attribute. To attach an attribute to a code element, specify the
attribute’s type name in square brackets, before the code element. For example, the
following attaches the ObsoleteAttribute to the Foo class:

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause compiler warnings if a type or
member marked obsolete is referenced. By convention, all attribute types end in the word
Attribute. C# recognizes this and allows you to omit the suffix when attaching an
attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the Sy stem namespace as follows
(simplified for brevity):

|public sealed class ObsoleteAttribute : Attribute {...}

Named and Positional Attribute Parameters

Attributes may have parameters. In the following example, we apply
XmlElementAttribute to a class. This attribute tells XML serializer (in
System.Xml.Serialization)how an object is represented in XML and accepts
several attribute parameters. The following attribute maps the CustomerEntity class
to an XML element named Customer, belonging to the http://oreilly.com
namespace:

[XmIElement (*'Customer'’, Namespace="http://oreilly.com™)]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional or named. In the preceding
example, the first argument is a positional parameter; the second is a named parameter.
Positional parameters correspond to parameters of the attribute type’s public constructors.
Named parameters correspond to public fields or public properties on the attribute type.

www.it-ebooks.info

http://www.it-ebooks.info/

When specifying an attribute, you must include positional parameters that correspond to
one of the attribute’s constructors. Named parameters are optional.

Attribute Targets

Implicitly, the target of an attribute is the code element it immediately precedes, which is
typically a type or type member. You can also attach attributes, however, to an assembly.
This requires that you explicitly specify the attribute’s target.

Here is an example of using the CLSCompliant attribute to specify Common
Language Specification (CLS) compliance for an entire assembly:

|[assembly:CLSCompliant(true)]

Specifying Multiple Attributes

Multiple attributes can be specified for a single code element. Each attribute can be listed
either within the same pair of square brackets (separated by a comma) or in separate pairs
of square brackets (or a combination of the two). The following two examples are
semantically identical:

[Serializable, Obsolete, CLSCompliant (false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant (false)]
public class Bar {...}

Writing Custom Attributes

You can define your own attributes by subclassing System.Attribute. For example,
we could use the following custom attribute for flagging a method for unit testing:

[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{

public int Repetitions;

public string FailureMessage;

public TestAttribute () : this (1) { }
public TestAttribute (int repetitions)
{
Repetitions = repetitions;
}
}

Here’s how we could apply the attribute:

class Foo

{

[Test]

public void Methodl () { ... }
[Test (20)]

public void Method2 () { ... }

[Test (20, FailureMessage="Debugging Time!")]

www.it-ebooks.info

http://www.it-ebooks.info/

public void Method3() { ... }
}

AttributeUsage is itself an attribute that indicates the construct (or combination of
constructs) that the custom attribute can be applied to. The AttributeTargets enum
includes such members as Class, Method, Parameter, Constructor (and A11,
which combines all targets).

Retrieving Attributes at Runtime
There are two standard ways to retrieve attributes at runtime:

e C(Call GetCustomAttributes onany Type or MemberInfo object.

e CallAttribute.GetCustomAttribute or
Attribute.GetCustomAttributes.

These latter two methods are overloaded to accept any reflection object that corresponds
to a valid attribute target (Type, Assembly, Module, MemberInfo, or
ParameterInfo).

Here’s how we can enumerate each method in the preceding Foo class that has a
TestAttribute:

foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
TestAttribute att = (TestAttribute)
Attribute.GetCustomAttribute
(mi, typeof (TestAttribute));

if (att != null)
Console.WriteLine (
"{0} will be tested; reps={1l}; msg={2}",
mi.Name, att.Repetitions, att.FailureMessage);

}
Here’s the output:

Methodl will be tested; reps=1l; msg=
Method2 will be tested; reps=20; msg=
Method3 will be tested; reps=20; msg=Debugging Time!

Caller Info Attributes (C# 5.0)

From C# 5.0, you can tag optional parameters with one of three caller info attributes,
which instruct the compiler to feed information obtained from the caller’s source code
into the parameter’s default value:

e [CallerMemberName] applies the caller’s member name

e [CallerFilePath] applies the path to caller’s source code file

° [CallerLineNumber] applies the line number in caller’s source code file
The Foo method in the following program demonstrates all three:

|using System;

www.it-ebooks.info

http://www.it-ebooks.info/

using System.Runtime.CompilerServices;

class Program
{
static void Main ()
{
Foo () ;
}

static void Foo (
[CallerMemberName] string memberName = null,
[CallerFilePath] string filePath = null,
[CallerLineNumber] int lineNumber = 0)

Console.WritelLine (memberName) ;

Console.WriteLine (filePath);
Console.WritelLine (lineNumber) ;

}

Assuming our program resides in ¢ : \source\test\Program. cs, the output would
be:

Main

c:\source\test\Program.cs

8

As with standard optional parameters, the substitution is done at the calling site. Hence,
our Ma in method is syntactic sugar for this:

static void Main()

{

Foo ("Main", @"c:\source\test\Program.cs", 8);

}

Caller info attributes are useful for writing logging functions, and for implementing
change notification patterns. For instance, a method such as the following can be called
from inside a property’s set accessor—without having to specify the property’s name:

void RaisePropertyChanged (
[CallerMemberName] string propertyName = null)

{
}

Asynchronous Functions (C# 5.0)

C# 5.0 introduces the await and async keywords to support asynchronous
programming, a style of programming where long-running functions do most or all of
their work after returning to the caller. This is in contrast to normal synchronous
programming, where long-running functions block the caller until the operation is
complete. Asynchronous programming implies concurrency, since the long-running
operation continues in parallel to the caller. The implementer of an asynchronous
function initiates this concurrency either through multithreading (for compute-bound
operations), or via a callback mechanism (for I/O-bound operations).

www.it-ebooks.info

http://www.it-ebooks.info/

Multithreading, concurrency and asynchronous programming are large topics.
We dedicate two chapters to them in C# 5.0 in a Nutshell, and discuss them
online at http://albahari.com/threading.

For instance, consider the following synchronous method, which is long-running and
compute-bound:

int ComplexCalculation ()
{
double x = 2;
for (int 1 = 1; 1 < 100000000; i++)
X += Math.Sqgrt (x) / i;
return (int)x;

}

This method blocks the caller for a few seconds while it runs. The result of the
calculation is then returned to the caller:

int result = ComplexCalculation();
// Some time later:
Console.WritelLine (result); // 116

The CLR defines a class called Task<TResult> (in System.Threading. Tasks)
to encapsulate the concept of an operation that completes in the future. You can generate
a Task<TResult> for a compute-bound operation by calling Task . Run, which tells

the CLR to run the specified delegate on a separate thread that executes in parallel to the

caller:

Task<int> ComplexCalculationAsync ()

{
return Task.Run (() => ComplexCalculation());

}

This method is asynchronous because it returns immediately to the caller while it
executes concurrently. However, we need some mechanism to allow the caller to specify
what should happen when the operation finishes and the result becomes available.
Task<TResult> solves this by exposing a GetAwaiter method which lets the caller
attach a continuation:

Task<int> task = ComplexCalculationAsync () ;
var awaiter = task.GetAwaiter ();
awaiter.OnCompleted (() => // Continuation
{
int result = awaiter.GetResult();
Console.WriteLine (result); // 116
1)

This says to the operation, “When you finish, execute the specified delegate”. Our
continuation first calls GetResult which returns the result of the calculation. (Or, if the
task faulted [threw an exception], calling GetResult re-throws that exception.) Our
continuation then writes out the result via Console.WriteLine.

The await and async keywords

The await keyword simplifies the attaching of continuations. Starting with a basic
scenario, the compiler expands:

www.it-ebooks.info

http://www.it-ebooks.info/

var result = awalt expression;
statement(s);

into something functionally similar to:

var awaiter = expression.GetAwaiter () ;
awaiter.OnCompleted (() =>

{

var result = awaiter.GetResult ();
statement(s);

);

The compiler also emits code to optimize the scenario of the operation
completing synchronously (immediately). The most common reason for an
asynchronous operation completing immediately is if it implements an
internal caching mechanism, and the result is already cached.

Hence, we can call the ComplexCalculationAsync method we defined previously,
like this:

int result = awailt ComplexCalculationAsync();
Console.WritelLine (result);

In order to compile, we need to add the async modifier to the containing method:

async void Test ()

{
int result = awalt ComplexCalculationAsync () ;
Console.WritelLine (result);

}

The async modifier tells the compiler to treat awa it as a keyword rather than an
identifier should an ambiguity arise within that method (this ensures that code written
prior to C# 5.0 that might use awa it as an identifier will still compile without error).
The async modifier can be applied only to methods (and lambda expressions) that
return void or (as we’ll see later) a Task or Task<TResult>.

The async modifier is similar to the unsafe modifier in that it has no effect
on a method’s signature or public metadata; it affects only what happens
inside the method.

Methods with the async modifier are called asynchronous functions, because they
themselves are typically asynchronous. To see why, let’s look at how execution proceeds
through an asynchronous function.

Upon encountering an awa it expression, execution (normally) returns to the caller—
rather like with yield return in an iterator. But before returning, the runtime attaches
a continuation to the awaited task, ensuring that when the task completes, execution
jumps back into the method and continues where it left off. If the task faults, its exception
is rethrown (by virtue of calling GetResult), otherwise its return value is assigned to
the await expression.

The CLR's implementation of a task awaiter's OnCompleted method
ensures that by default, continuations are posted through the current
synchronization context, if one is present. In practice, this means that in rich-

www.it-ebooks.info

http://www.it-ebooks.info/

client UI scenarios (WPF, Metro, Silverlight and Windows Forms), if you
await on a Ul thread, your code will continue on that same thread. This
simplifies thread-safety.

The expression upon which you await is typically a task; however any object with a
GetAwaiter method that returns an awaitable object—implementing
INotifyCompletion.OnCompleted and with an appropriately typed
GetResult method (and a bool IsCompleted property which tests for synchronous
completion) —will satisfy the compiler.

Notice that our awa it expression evaluates to an int type; this is because the
expression that we awaited was a Task<int> (whose
GetAwaiter () .GetResult () method returns an int).

Awaiting a nongeneric task is legal and generates a void expression:

await Task.Delay (5000);
Console.WritelLine ("Five seconds passed!");

Task.Delay is a static method that returns a Ta sk that completes in the specified
number of milliseconds. The synchronous equivalent of Task.Delay is
Thread.Sleep.

Task is the nongeneric base class of Task<TResult> and is functionally equivalent to
Task<TResult> except that it has no result.

Capturing Local State

The real power of await expressions is that they can appear almost anywhere in code.
Specifically, an awa it expression can appear in place of any expression (within an
asynchronous function) except for inside a catch or finally block, 1ock expression,
unsafe context or an executable’s entry point (main method).

In the following example, we await inside a loop:

async void Test ()
{
for (int i = 0; 1 < 10; i++)
{
int result = await ComplexCalculationAsync () ;
Console.WritelLine (result);

}

Upon first executing ComplexCalculationAsync, execution returns to the caller by
virtue of the awa it expression. When the method completes (or faults), execution
resumes where it left off, with the values of local variables and loop counters preserved.
The compiler achieves this by translating such code into a state machine, like it does with
iterators.

Without the awa it keyword, the manual use of continuations means that you must write
something equivalent to a state machine. This is traditionally what makes asynchronous
programming difficult.

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Asynchronous Functions

With any asynchronous function, you can replace the void return type with a Task to
make the method itself usefully asynchronous (and awa i table). No further changes are
required:

async Task PrintAnswerToLife ()
{
await Task.Delay (5000);
int answer = 21 * 2;
Console.WriteLine (answer);

}

Notice that we don’t explicitly return a task in the method body. The compiler
manufactures the task, which it signals upon completion of the method (or upon an
unhandled exception). This makes it easy to create asynchronous call chains:

async Task Go ()

{
await PrintAnswerToLife () ;
Console.WriteLine ("Done");

}

(And because Go returns a Task, Go itself is awaitable.) The compiler expands
asynchronous functions that return tasks into code that (indirectly) leverages
TaskCompletionSource to create a task that it then signals or faults.

TaskCompletionSource is a CLR type that lets you create tasks that you
manually control, signaling them as complete with a result (or as faulted with
an exception). Unlike Task.Run, TaskCompletionSource doesn’t tie
up a thread for the duration of the operation. It’s also used for writing 1/O-
bound task-returning methods (such as Task.Delay).

The aim is to ensure that when task-returning asynchronous method finishes, execution
can jump back to whoever awaited it, via a continuation.

Returning Task<TResult>

You can return a Task<TResult> if the method body returns TResult:

async Task<int> GetAnswerTolife ()
{
await Task.Delay (5000);
int answer = 21 * 2;
// answer is INt so our method returns Task<int>
return answer;
}

We can demonstrate Get AnswerToLi fe by calling it from PrintAnswerToLife
(which is turn, called from Go):

async Task Go ()

{
await PrintAnswerToLife () ;
Console.WritelLine ("Done");

}
async Task PrintAnswerToLife ()

www.it-ebooks.info

http://www.it-ebooks.info/

{

int answer = awalt GetAnswerToLife();
Console.WriteLine (answer);

}
async Task<int> GetAnswerToLife ()

{
await Task.Delay (5000);

int answer = 21 * 2;
return answer;

}

Asynchronous functions make asynchronous programming similar to synchronous
programming. Here’s the synchronous equivalent of our call graph, for which calling
Go () gives the same result after blocking for five seconds:

void Go ()
{
PrintAnswerToLife () ;
Console.WritelLine ("Done");
}
void PrintAnswerToLife ()
{
int answer = GetAnswerTolLife ();
Console.WriteLine (answer);
}
int GetAnswerToLife ()
{
Thread.Sleep (5000);
int answer = 21 * 2;
return answer;

}

This also illustrates the basic principle of how to design with asynchronous functions in
C#, which is to write your methods synchronously, and then replace synchronous method
calls with asynchronous method calls, and awa it them.

Parallelism

We’ve just demonstrated the most common pattern, which is to awai t task-returning
functions right after calling them. This results in sequential program flow that’s logically
similar to the synchronous equivalent.

Calling an asynchronous method without awaiting it allows the code that follows to
execute in parallel. For example, the following executes PrintAnswerToLife twice
concurrently:

var taskl = PrintAnswerToLife();

var task2 = PrintAnswerToLife ()
await taskl; await task2;

By awaiting both operations afterward, we “end” the parallelism at that point (and re-
throw any exceptions from those tasks). The Task class provides a static method called
WhenAll to achieve the same result slightly more efficiently. WhenA11 returns a task
that completes when all of the tasks that you pass to it complete:

await Task.WhenAll (PrintAnswerToLife(),
PrintAnswerToLife());

www.it-ebooks.info

http://www.it-ebooks.info/

WhenAll is a called task combinator. (The Task class also provides a task combinator
called WhenAny, which completes when any of the tasks provided to it complete.) We
cover the task combinators in detail in C# 5.0 in a Nutshell.

Asynchronous Lambda Expressions

Just as ordinary named methods can be asynchronous:

async Task NamedMethod ()

{
await Task.Delay (1000);
Console.WriteLine ("Foo");

}

so can unnamed methods (lambda expressions and anonymous methods), if preceded by

th

A

e async keyword:

Func<Task> unnamed = async () =>
{
await Task.Delay (1000);
Console.WriteLine ("Foo");
}i

We can call and await these in the same way:

await NamedMethod () ;
await unnamed() ;

synchronous lambda expressions can be used when attaching event handlers:

myButton.Click += async (sender, args) =>
{
await Task.Delay (1000);
myButton.Content = "Done";

}i

This is more succinct than the following, which has the same effect:

myButton.Click += ButtonHandler;

async void ButtonHander (object sender, EventArgs args)

{
await Task.Delay (1000);
myButton.Content = "Done";

i
synchronous lambda expressions can also return Task<TResult>:

Func<Task<int>> unnamed = async () =>
{

await Task.Delay (1000);

return 123;
}i

int answer = await unnamed() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Unsafe Code and Pointers

CH# supports direct memory manipulation via pointers within blocks of code marked
unsafe and compiled with the /unsafe compiler option. Pointer types are primarily
useful for interoperability with C APIs, but may also be used for accessing memory
outside the managed heap or for performance-critical hotspots.

Pointer Basics

For every value type or pointer type V, there is a corresponding pointer type V*. A
pointer instance holds the address of a value. This is considered to be of type V, but
pointer types can be (unsafely) cast to any other pointer type. The main pointer operators
are:

Operator Meaning

& The address-of operator returns a pointer to the
address of a value

* The dereference operator returns the value at the
address of a pointer

-> The pointer-to-member operator is a syntactic
shortcut, in which x->v is equivalentto (*x) .y

Unsafe Code

By marking a type, type member, or statement block with the unsafe keyword, you’re
permitted to use pointer types and perform C++ style pointer operations on memory
within that scope. Here is an example of using pointers to quickly process a bitmap:

unsafe void BlueFilter (int[,] bitmap)
{
int length = bitmap.Length;
fixed (int* b = bitmap)
{
int* p = b;
for (int i = 0; i < length; i++)
*pt+ &= OxFF;
}
}

Unsafe code can run faster than a corresponding safe implementation. In this case, the
code would have required a nested loop with array indexing and bounds checking. An
unsafe C# method may also be faster than calling an external C function, since there is no
overhead associated with leaving the managed execution environment.

The fixed Statement

The fixed statement is required to pin a managed object, such as the bitmap in the
previous example. During the execution of a program, many objects are allocated and
deallocated from the heap. In order to avoid unnecessary waste or fragmentation of
memory, the garbage collector moves objects around. Pointing to an object is futile if its
address could change while referencing it, so the £ ixed statement tells the garbage

www.it-ebooks.info

http://www.it-ebooks.info/

collector to “pin” the object and not move it around. This may have an impact on the
efficiency of the runtime, so fixed blocks should be used only briefly, and heap allocation
should be avoided within the fixed block.

Within a £ixed statement, you can get a pointer to a value type, an array of value types,
or a string. In the case of arrays and strings, the pointer will actually point to the first
element, which is a value type.

Value types declared inline within reference types require the reference type to be pinned,
as follows:

class Test
{
int x;
unsafe static void Main ()
{
Test test = new Test():;
fixed (int* p = &test.x) // Pins test

System.Console.WritelLine (test.x);

The Pointer-to-Member Operator

In addition to the & and * operators, C# also provides the C++ style —> operator, which
can be used on structs:

struct Test
{
int x;
unsafe static void Main ()
{
Test test = new Test():;
Test* p = &test;
p—>x = 9;
System.Console.WriteLine (test.x);

Arrays

The stackalloc keyword

Memory can be allocated in a block on the stack explicitly using the stackalloc
keyword. Since it is allocated on the stack, its lifetime is limited to the execution of the
method, just as with any other local variable. The block may use the [] operator to index
into memory:

int* a = stackalloc int [10];
for (int i = 0; 1 < 10; ++1)
Console.WritelLine (a[i]); // Print raw memory

www.it-ebooks.info

http://www.it-ebooks.info/

Fixed-size buffers

Memory can be allocated in a block within a struct using the £ixed keyword:

unsafe struct UnsafeUnicodeString
{

public short Length;

public Fixed byte Buffer[30];
}

unsafe class UnsafeClass
{

UnsafeUnicodeString uus;

public UnsafeClass (string s)
{
uus.Length = (short)s.Length;
fixed (byte* p = uus.Buffer)
for (int i = 0; i < s.Length; i++)
pli] = (byte) s[i];

}

The fixed keyword is also used in this example to pin the object on the heap that
contains the buffer (which will be the instance of UnsafeClass).

void*

A void pointer (void*) makes no assumptions about the type of the underlying data and
is useful for functions that deal with raw memory. An implicit conversion exists from any
pointer type to void*. A void* cannot be dereferenced, and arithmetic operations
cannot be performed on void pointers. For example:

unsafe static void Main()
{
short[] a = {1,1,2,3,5,8,13,21,34,55};
fixed (short* p = a)
{
//sizeof returns size of value-type in bytes
Zap (p, a.Length * sizeof (short));
}
foreach (short x in a)
System.Console.WriteLine (x); // Prints all zeros

}

unsafe static void Zap (void* memory, int byteCount)
{
byte* b = (byte*) memory;
for (int i = 0; i < byteCount; i++)
*pbt+ = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Preprocessor Directives

Preprocessor directives supply the compiler with additional information about regions of
code. The most common preprocessor directives are the conditional directives, which
provide a way to include or exclude regions of code from compilation. For example:

#define DEBUG
class MyClass
{
int x;
void Foo ()
{
if DEBUG
Console.WritelLine ("Testing: x = {0}", x);
endif
¥

}

In this class, the statement in Foo is compiled as conditionally dependent upon the
presence of the DERUG symbol. If we remove the DEBUG symbol, the statement is not
compiled. Preprocessor symbols can be defined within a source file (as we have done),
and they can be passed to the compiler with the /define :symbol command-line
option.

With the #1if and #el1if directives, you can use the | |, &&, and ! operators to perform
or, and, and not operations on multiple symbols. The following directive instructs the
compiler to include the code that follows if the TESTMODE symbol is defined and the
DEBUG symbol is not defined:

#if TESTMODE && !DEBUG

Bear in mind, however, that you’re not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static or
otherwise.

The #error and #warning symbols prevent accidental misuse of conditional
directives by making the compiler generate a warning or error given an undesirable set of
compilation symbols.

Here's a complete list of preprocessor directives:

Preprocessor directive Action

#define symbol Defines symbol
#undef symbol Undefines symbol
#if symbol [operator symbol to test
symbol2] ...

operatorsare ==, !=, &&,and | |
followed by #else, #elif, and

#endif
#else Executes code to subsequent #endif
#elif symbol Combines #else branch and #1 £ test

www.it-ebooks.info

http://www.it-ebooks.info/

[operator symbol2]

#endif Ends conditional directives

#warning text text of the warning to appear in
compiler output

#ferror text text of the error to appear in compiler
output

#line [number number specifies the line in source

["£ile"] | hidden] code; Tile is the filename to appear in

computer output; hidden instructs
debuggers to skip over code from this
point until the next #1ine directive

#region name Marks the beginning of an outline
#endregion Ends an outline region
#pragma warning See below

Pragma Warning

The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don’t ordinarily prevent your application from
compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness,
however, is undermined when you get false warnings. In a large application, maintaining
a good signal-to-noise ratio is essential if the “real” warnings are to get noticed.

To this effect, the compiler allows you to selectively suppress warnings with the
#pragma warning directive. In this example, we instruct the compiler not to warn us
about the field Message not being used:

public class Foo

{

static void Main() { }

#pragma warning disable 414
static string Message = "Hello";
#pragma warning restore 414

}

Omitting the number in the #pragma warning directive disables or restores all
warning codes.

If you are thorough in applying this directive, you can compile with the
/warnaserror switch—this tells the compiler to treat any residual warnings as errors.

XML Documentation

A documentation comment is a piece of embedded XML that documents a type or
member. A documentation comment comes immediately before a type or member
declaration, and starts with three slashes:

| 77/ <summary>Cancels a running query.</summary>

www.it-ebooks.info

http://www.it-ebooks.info/

|public void Cancel() { ... }

Multiline comments can be done either like this:

/// <summary>
/// Cancels a running query
/// </summary>
public void Cancel() { ... }

or like this (notice the extra star at the start):

/**

<summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }

If you compile with the /doc directive, the compiler extracts and collates documentation
comments into a single XML file. This has two main uses:

e Ifplaced in the same folder as the compiled assembly, Visual Studio automatically
reads the XML file and uses the information to provide IntelliSense member listings
to consumers of the assembly of the same name.

e Third-party tools (such as Sandcastle and NDoc) can transform an XML file into an
HTML help file.

Standard XML Documentation Tags

Here are the standard XML tags that Visual Studio and documentation generators
recognize:

<summary>
|<summary>._-</summary>

Indicates the tool tip that IntelliSense should display for the type or member.
Typically a single phrase or sentence.

<remarks>
| <remarks>...</remarks>

Additional text that describes the type or member. Documentation generators pick
this up and merge it into the bulk of a type or member’s description.

<param>
|<param name="name">. . .</param>

Explains a parameter on a method.

<returns>
|<returns>_._</returns>

Explains the return value for a method.

<exception>
|<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception type).

<permission>
|<permission [cref="type"]>...</permission>

www.it-ebooks.info

http://www.it-ebooks.info/

Indicates an TPermission type required by the documented type or member.

<example>
|<example>._.</example>

Denotes an example (used by documentation generators). This usually contains both
description text and source code (source code is typically within a <c> or <code>

tags).

<c>
| <c>...</c>

Indicates an inline code snippet. This tag is usually used inside an <example>
block.

<code>
|<code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <example>
block.

<see>
| <see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML documentation
generators typically convert this to a hyperlink. The compiler emits a warning if the
type or member name is invalid.

<seealso>
| <seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typically write
this into a separate “See Also” section at the bottom of the page.

<paramref>
| <paramref name="name"/>

References a parameter from within a <summary> or <remarks> tag.

<list>
<list type=[bullet | number | table]>
<listheader>
<term>...</term>
<description>...</description>
</listheader>
<item>
<term>...</term>
<description>...</description>
</item>
</list>

Instructs documentation generators to emit a bulleted, numbered, or table-style list.

<para>
|<para>...</para>

Instructs documentation generators to format the contents into a separate paragraph.

www.it-ebooks.info

http://www.it-ebooks.info/

<include>

Merges an external XML file that contains documentation. The path attribute denotes
an XPath query to a specific element in that file.

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	A First C# Program
	Compilation

	Syntax
	Identifiers and Keywords
	Avoiding conflicts
	Contextual keywords

	Literals, Punctuators, and Operators
	Comments

	Type Basics
	Predefined Type Examples
	Custom Type Examples
	Members of a type
	Symmetry of predefined types and custom types
	Constructors and instantiation
	Instance versus static members
	The public keyword

	Conversions
	Value Types Versus Reference Types
	Value types
	Reference types
	Null

	Predefined Type Taxonomy

	Numeric Types
	Numeric Literals
	Numeric literal type inference
	Numeric suffixes

	Numeric Conversions
	Integral to integral conversions
	Real to real conversions
	Real to integral conversions

	Arithmetic Operators
	Increment and Decrement Operators
	Specialized Integral Operations
	Integral division
	Integral overflow
	The checked and unchecked operators
	Bitwise operators

	8- and 16-Bit Integrals
	Special Float and Double Values
	double Versus decimal
	Real Number Rounding Errors

	Boolean Type and Operators
	Equality and Comparison Operators
	Conditional Operators

	Strings and Characters
	String Type
	String concatenation
	String comparisons
	Searching within strings
	Manipulating strings

	Arrays
	Default Element Initialization
	Multidimensional Arrays
	Rectangular arrays
	Jagged arrays

	Simplified Array Initialization Expressions

	Variables and Parameters
	The Stack and the Heap
	Stack
	Heap

	Definite Assignment
	Default Values
	Parameters
	Passing arguments by value
	The ref modifier
	The out modifier
	The params modifier
	Optional parameters (C# 4.0)
	Named arguments (C# 4.0)

	var—Implicitly Typed Local Variables

	Expressions and Operators
	Assignment Expressions
	Operator Precedence and Associativity
	Precedence
	Left-associative operators
	Right-associative operators

	Operator Table

	Statements
	Declaration Statements
	Local variable scope

	Expression Statements
	Selection Statements
	The if statement
	The else clause
	Changing the flow of execution with braces
	The switch statement

	Iteration Statements
	while and do-while loops
	for loops
	foreach loops

	Jump Statements
	The break statement
	The continue statement
	The goto statement
	The return statement

	Namespaces
	The using Directive
	Rules Within a Namespace
	Name scoping
	Name hiding
	Repeated namespaces
	The global:: qualifier

	Aliasing Types and Namespaces

	Classes
	Fields
	Methods
	Overloading methods

	Instance Constructors
	Implicit parameterless constructors
	Nonpublic constructors

	Object Initializers
	The this Reference
	Properties
	Automatic properties
	get and set accessibility

	Indexers
	Implementing an indexer

	Constants
	Static Constructors
	Static Classes
	Finalizers
	Partial Types and Methods
	Partial methods

	Inheritance
	Polymorphism
	Casting and Reference Conversions
	Upcasting
	Downcasting
	The as operator
	The is operator

	Virtual Function Members
	Abstract Classes and Abstract Members
	Hiding Inherited Members
	Sealing Functions and Classes
	The base Keyword
	Constructors and Inheritance
	Constructor and field initialization order

	Overloading and Resolution

	The object Type
	Boxing and Unboxing
	Static and Runtime Type Checking
	The GetType Method and typeof Operator
	Object Member Listing
	Equals, ReferenceEquals, and GetHashCode
	The ToString Method

	Structs
	Struct Construction Semantics

	Access Modifiers
	Friend Assemblies
	Accessibility Capping

	Interfaces
	Extending an Interface
	Explicit Interface Implementation
	Implementing Interface Members Virtually
	Reimplementing an Interface in a Subclass

	Enums
	Enum Conversions
	Flags Enums
	Enum Operators

	Nested Types
	Generics
	Generic Types
	Generic Methods
	Declaring Type Parameters
	typeof and Unbound Generic Types
	The default Generic Value
	Generic Constraints
	Subclassing Generic Types
	Self-Referencing Generic Declarations
	Static Data
	Covariance (C# 4.0)
	Contravariance (C# 4.0)

	Delegates
	Writing Plug-in Methods with Delegates
	Multicast Delegates
	Instance vs. Static Method Targets
	Generic Delegate Types
	The Func and Action Delegates
	Delegate Compatibility
	Return type variance
	Parameter variance
	Type parameter variance for generic delegates (C# 4.0)

	Events
	Standard Event Pattern
	Event Accessors

	Lambda Expressions
	Capturing Outer Variables
	Capturing iteration variables

	Anonymous Methods
	try Statements and Exceptions
	The catch Clause
	The finally Block
	The using statement

	Throwing Exceptions
	Rethrowing an exception

	Key Properties of System.Exception
	Common Exception Types

	Enumeration and Iterators
	Enumeration
	Collection Initializers
	Iterators
	Iterator Semantics
	Multiple yield statements
	yield break

	Composing Sequences

	Nullable Types
	Nullable<T> struct
	Nullable Conversions
	Boxing/Unboxing Nullable Values
	Operator Lifting
	Equality operators (== and !=)
	Relational operators (<, <=, >=, >)
	All other operators (+, −, *, /, %, &, |, ^, <<, >>, +, ++, --, !, ~)
	Mixing nullable and non-nullable operators

	bool? with & and | Operators
	Null Coalescing Operator

	Operator Overloading
	Operator Functions
	Overloading Equality and Comparison Operators
	Custom Implicit and Explicit Conversions

	Extension Methods
	Extension Method Chaining
	Ambiguity and Resolution
	Namespaces
	Extension methods versus instance methods
	Extension methods versus extension methods

	Anonymous Types
	LINQ
	LINQ Fundamentals
	A simple query
	Projecting
	Take and Skip
	Element operators
	Aggregation operators
	Quantifiers
	Set operators

	Deferred Execution
	Standard Query Operators
	Chaining Query Operators
	Query Expressions
	Query expressions versus fluent queries

	The let Keyword
	Query Continuations
	Multiple Generators
	Joining
	GroupJoin
	Zip

	Ordering
	Grouping
	OfType and Cast

	Dynamic Binding (C# 4.0)
	Static Binding Versus Dynamic Binding
	Custom Binding
	Language Binding
	RuntimeBinderException
	Runtime Representation of dynamic
	Dynamic Conversions
	var Versus dynamic
	Dynamic Expressions
	Dynamic Member Overload Resolution
	Uncallable Functions

	Attributes
	Attribute Classes
	Named and Positional Attribute Parameters
	Attribute Targets
	Specifying Multiple Attributes
	Writing Custom Attributes
	Retrieving Attributes at Runtime

	Caller Info Attributes (C# 5.0)
	Asynchronous Functions (C# 5.0)
	The await and async keywords
	Capturing Local State
	Writing Asynchronous Functions
	Returning Task<TResult>

	Parallelism
	Asynchronous Lambda Expressions

	Unsafe Code and Pointers
	Pointer Basics
	Unsafe Code
	The fixed Statement
	The Pointer-to-Member Operator
	Arrays
	The stackalloc keyword
	Fixed-size buffers

	void*

	Preprocessor Directives
	Pragma Warning

	XML Documentation
	Standard XML Documentation Tags

