O'REILLY"

In a Nutshell

THE DEFINITIVE REFERENCE

Joseph Albahari & Ben Albahari

www.it-ebooks.info

http://www.it-ebooks.info/

O'REILLY"

C# 6.0 in a Nutshell

When you have questions about C# 6.0 or the
NET CLR and its core Framework assemblies, this
bestselling guide has the answers you need. C# has
become a language of unusual flexibility and breadth
since its premiere in 2000, but this continual growth
means there’s still much more to learn.

Organized around concepts and use cases,
this thoroughly updated sixth edition provides
intermediate and advanced programmers with a
concise map of C# and .NET knowledge. Dive in and
discover why this Nutshell guide is considered the
definitive reference on C#.

m Get up to speed with all aspects of the
C# language, from the basics of syntax
and variables, to advanced topics such
as pointers and operator overloading

m Dig deep into LINQ via three chapters
dedicated to the topic

m Learn about dynamic, asynchronous, and
parallel programming

m Work with .NET features, including XML,
networking, serialization, reflection,
security, application domains, and code
contracts

m Explore the new C# 6.0 compiler-as-a-
service, Roslyn

“C#6.0in a Nutshell is
one of the few books
[keep on my desk as

a quick reference.”

—Scott Guthrie
Microsoft

“Novices and experts
alike will find the latest
techniques in C#

programming here.”

—EricLippert
C#MVP

Joseph Albahari, author of C#
5.0ina Nutshell, C# 5.0 Pocket
Reference, and LINQ Pocket
Reference, also wrote LINQPad,
the popular code scratchpad and
LINQ querying utility..

Ben Albahari, a former program
manager at Microsoft, is cofounder
of Auditionist, a casting website
for actors in the UK.

C#/MICROSOFT .NET

US $59.99 CAN $68.99
ISBN: 978-1-491-92706-9

WRTINOR o
Nl [=

781491927069
www.it-ebooks.info

Twitter: @oreillymedia
facebook.com/oreilly

http://www.it-ebooks.info/

(#6.0

IN A NUTSHELL

Joseph Albahari ¢ Ben Albahari

Beijing + Boston « Farnham - Sebastopol - Tokyo [KON{={|HMNE

www.it-ebooks.info

http://www.it-ebooks.info/

(#6.0in a Nutshell
by Joseph Albahari and Ben Albahari

Copyright © 2016 Joseph Albahari and Ben Albahari. All rights reserved.
Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more information,
contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian MacDonald Interior Designer: David Futato
Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Proofreader: Amanda Kersey lllustrator: Rebecca Demarest

Indexer: Angela Howard
December 2015: Sixth Edition

Revision History for the Sixth Edition
2015-11-03: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491927069 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. C# 6.0 in a Nutshell, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa-
tion and instructions contained in this work are accurate, the publisher and the authors dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol-
ogy this work contains or describes is subject to open source licenses or the intellectual prop-
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

978-1-491-92706-9
(M]

www.it-ebooks.info

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491927069
http://www.it-ebooks.info/

Table of Contents

Preface......oooineeiii Xi
1. Introducing C# and the .NET Framework...................cooiien, 1
Object Orientation 1
Type Safety 2
Memory Management 3
Platform Support 3
C#’s Relationship with the CLR 3
The CLR and .NET Framework 3
C# and Windows Runtime 5
What's New in C# 6.0 6
What Was New in C# 5.0 8
What Was New in C# 4.0 8
What Was New in C# 3.0 9
2. (#LlanguageBasics.ovvviiviiiiiiiiiiiiiiiiiiiii i eaeaas n
A First C# Program 11
Syntax 14
Type Basics 17
Numeric Types 26
Boolean Type and Operators 33
Strings and Characters 35
Arrays 38
Variables and Parameters 42
Expressions and Operators 51
Null Operators 55
Statements 56
Namespaces 65
3. Creating TypesinCH. ..ovoveiiiiiii ittt it i nenenns 73

www.it-ebooks.info

http://www.it-ebooks.info/

Classes
Inheritance

The object Type
Structs

Access Modifiers
Interfaces
Enums

Nested Types
Generics

CAdvanCed (o oo e

Delegates

Events

Lambda Expressions
Anonymous Methods

try Statements and Exceptions
Enumeration and Iterators
Nullable Types

Operator Overloading
Extension Methods
Anonymous Types
Dynamic Binding
Attributes

Caller Info Attributes (C# 5)
Unsafe Code and Pointers
Preprocessor Directives
XML Documentation

Framework Overview.ocovviiiiiiniinnnenennnns

The CLR and Core Framework
Applied Technologies

Framework Fundamentals...........c.ccovvviiinnnne...

String and Text Handling

Dates and Times

Dates and Time Zones

Formatting and Parsing

Standard Format Strings and Parsing Flags
Other Conversion Mechanisms
Globalization

Working with Numbers

Enums

73
88
97
101
102
104
109
113
114

127
127
136
143
147
148
156
162
168
171
174
175
183
185
187
190
193

199
202
206

213
213
226
234
240
246
253
257
258
262

iv

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Tuples 266

The Guid Struct 267
Equality Comparison 267
Order Comparison 278
Utility Classes 281

7. Collections.oovvviiiiiiiiiiiiiiiiiii 285
Enumeration 285
The ICollection and IList Interfaces 293
The Array Class 297
Lists, Queues, Stacks, and Sets 305
Dictionaries 314
Customizable Collections and Proxies 321
Plugging in Equality and Order 327

8. LINQQUEES. ..ovviiiiiiiiiiiiiiiiiiii i 335
Getting Started 335
Fluent Syntax 337
Query Expressions 344
Deferred Execution 348
Subqueries 355
Composition Strategies 358
Projection Strategies 362
Interpreted Queries 364
LINQ to SQL and Entity Framework 371
Building Query Expressions 385

9. LINQOPerators.cuveueereeteeineeieeeeneenereneeneenesnannnns 391
Overview 393
Filtering 396
Projecting 400
Joining 412
Ordering 420
Grouping 423
Set Operators 426
Conversion Methods 427
Element Operators 430
Aggregation Methods 432
Quantifiers 437
Generation Methods 438
10, LINQEOXML. ..t i 441
Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

1.

12.

13.

Architectural Overview
X-DOM Overview
Instantiating an X-DOM
Navigating and Querying
Updating an X-DOM
Working with Values
Documents and Declarations
Names and Namespaces
Annotations

Projecting into an X-DOM

Other XML Technologies.ooviuiiinnieniieiinriinrenneennnes
XmlReader

XmlWriter

Patterns for Using XmlReader/XmlWriter

XSD and Schema Validation

XSLT

Disposal and Garbage Collection.c.ccovvviviiiienniennnnen.
IDisposable, Dispose, and Close

Automatic Garbage Collection

Finalizers

How the Garbage Collector Works

Managed Memory Leaks

Weak References

Diagnostics and Code Contracts.cvvvnieenieeiieeenneennnns
Conditional Compilation

Debug and Trace Classes

Code Contracts Overview

Preconditions

Postconditions

Assertions and Object Invariants

Contracts on Interfaces and Abstract Methods
Dealing with Contract Failure

Selectively Enforcing Contracts

Static Contract Checking

Debugger Integration

Processes and Process Threads

StackTrace and StackFrame

Windows Event Logs

Performance Counters

441
442
446
448
453
456
459
463
468
469

477
478
487
489
493
496

499
499
505
507
512
516
520

525
525
529
532
537
541
543
545
546
548
549
551
552
553
555
557

vi

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

14.

15.

16.

17.

The Stopwatch Class

Concurrency and Asynchrony.oovvviiiiiiiiieinnnniennnn.

Introduction

Threading

Tasks

Principles of Asynchrony
Asynchronous Functions in C#
Asynchronous Patterns
Obsolete Patterns

Streamsand 1/0. ..o vvvneii ittt e e i e

Stream Architecture

Using Streams

Stream Adapters
Compression Streams
Working with ZIP Files

File and Directory Operations
File I/O in Windows Runtime
Memory-Mapped Files
Isolated Storage

NEtWOrKING. ..o oeeeee ettt iie e e eee e aannans
Network Architecture
Addresses and Ports

URIs

Client-Side Classes

Working with HTTP

Writing an HTTP Server

Using FTP

Using DNS

Sending Mail with SmtpClient
Using TCP

Receiving POP3 Mail with TCP
TCP in Windows Runtime

SeHAliZAtION. . o vttt e e e

Serialization Concepts

The Data Contract Serializer
Data Contracts and Collections
Extending Data Contracts

The Binary Serializer

562

563
563
564
581
589
594
610
618

623
623
625
639
647
649
650
661
663
666

673
673
675
676
679
692
698
701
703
703
704
708
709

713
713
717
727
730
733

Table of Contents

www.it-ebooks.info

vii

http://www.it-ebooks.info/

18.

19.

20.

21.

Binary Serialization Attributes
Binary Serialization with ISerializable
XML Serialization

ASSEMBIIES. oottt e e e aeeas

What's in an Assembly

Strong Names and Assembly Signing
Assembly Names

Authenticode Signing

The Global Assembly Cache

Resources and Satellite Assemblies

Resolving and Loading Assemblies

Deploying Assemblies Outside the Base Folder
Packing a Single-File Executable

Working with Unreferenced Assemblies

Reflectionand Metadata...........ccovvvvnvninnnnennnn..

Reflecting and Activating Types
Reflecting and Invoking Members
Reflecting Assemblies

Working with Attributes

Dynamic Code Generation

Emitting Assemblies and Types
Emitting Type Members

Emitting Generic Methods and Types
Awkward Emission Targets

Parsing IL

DynamicProgramming...........ccovviiiiiiiiiiiinninnns

The Dynamic Language Runtime
Numeric Type Unification

Dynamic Member Overload Resolution
Implementing Dynamic Objects
Interoperating with Dynamic Languages

YT T 137

Permissions

Code Access Security (CAS)
Allowing Partially Trusted Callers
The Transparency Model
Sandboxing Another Assembly
Operating System Security

735
738
742

753
753
758
761
764
768
770
779
784
785
787

789
790
797
810
812
818
825
828
834
836
840

847
847
849
850
856
859

863
863
868
871
873
881
885

viii

| Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Identity and Role Security 888
Cryptography Overview 889
Windows Data Protection 890
Hashing 891
Symmetric Encryption 892
Public Key Encryption and Signing 897

22. Advanced Threading.........ccovviiiiiiieniieiiiriineenneenneens 903
Synchronization Overview 904
Exclusive Locking 904
Locking and Thread Safety 912
Nonexclusive Locking 918
Signaling with Event Wait Handles 923
The Barrier Class 932
Lazy Initialization 933
Thread-Local Storage 936
Interrupt and Abort 938
Suspend and Resume 939
Timers 940

23. Parallel Programming.coveeinerinnrenneenneennereneeennnes 945
Why PFX? 945
PLINQ 948
The Parallel Class 961
Task Parallelism 968
Working with AggregateException 978
Concurrent Collections 980
BlockingCollection<T> 983

24. ApplicationDomains.covviiiiiiiiiiiiiiieiieieieenaas 989
Application Domain Architecture 989
Creating and Destroying Application Domains 990
Using Multiple Application Domains 992
Using DoCallBack 994
Monitoring Application Domains 995
Domains and Threads 995
Sharing Data Between Domains 997

25. Interoperability.........cooiiiiiiiii i e 1003
Calling into Native DLLs 1003
Type Marshaling 1004
Callbacks from Unmanaged Code 1007
Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

26.

27.

Simulating a C Union

Shared Memory

Mapping a Struct to Unmanaged Memory
COM Interoperability

Calling a COM Component from C#
Embedding Interop Types

Primary Interop Assemblies

Exposing C# Objects to COM

Regular EXpressions.c.oovviiviiiiiiiienniennnes

Regular Expression Basics

Quantifiers

Zero-Width Assertions

Groups

Replacing and Splitting Text

Cookbook Regular Expressions

Regular Expressions Language Reference

The Roslyn Compiler.........coovvvviiiiiinennnn.n.

Roslyn Architecture
Syntax Trees
Compilations and Semantic Models

1007
1008
1011
1015
1017
1020
1021
1022

1023
1024
1028
1029
1032
1033
1035
1038

1043
1044
1045
1060

X

Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

C# 6.0 represents the fifth major update to Microsoft’s flagship programming lan-
guage, positioning C# as a language with unusual flexibility and breadth. At one
end, it offers high-level abstractions such as query expressions and asynchronous
continuations; while at the other end, it allows low-level efficiency through con-
structs such as custom value types and the optional use of pointers.

The price of this growth is that there’s more than ever to learn. Although tools such
as Microsoft’s IntelliSense—and online references—are excellent in helping you on
the job, they presume an existing map of conceptual knowledge. This book provides
exactly that map of knowledge in a concise and unified style—free of clutter and
long introductions.

Like the past three editions, C# 6.0 in a Nutshell is organized around concepts and
use cases, making it friendly both to sequential reading and to random browsing. It
also plumbs significant depths while assuming only basic background knowledge—
making it accessible to intermediate as well as advanced readers.

This book covers C#, the CLR, and the core Framework assemblies. We've chosen
this focus to allow space for difficult topics such as concurrency, security, and appli-
cation domains—without compromising depth or readability. Features new to C#
6.0 and the associated Framework are flagged so that you can also use this book as a
C# 5.0 reference.

Intended Audience

This book targets intermediate to advanced audiences. No prior knowledge of C# is
required, but some general programming experience is necessary. For the beginner,
this book complements, rather than replaces, a tutorial-style introduction to pro-
gramming.

If you're already familiar with C# 5.0, you’ll find updated language sections, and a
new chapter on “Roslyn,” the compiler-as-a-service.

Xi

www.it-ebooks.info

http://www.it-ebooks.info/

This book is an ideal companion to any of the vast array of books that focus on an
applied technology such as WPE, ASPNET, or WCE. The areas of the language
and .NET Framework that such books omit, C# 6.0 in a Nutshell covers in detail—
and vice versa.

If youre looking for a book that skims every .NET Framework technology, this is
not for you. This book is also unsuitable if you want to learn about APIs specific to
tablet or Windows Phone development.

How This Book Is Organized

The first three chapters after the introduction concentrate purely on C#, starting
with the basics of syntax, types, and variables, and finishing with advanced topics
such as unsafe code and preprocessor directives. If youre new to the language, you
should read these chapters sequentially.

The remaining chapters cover the core NET Framework, including such topics as
LINQ, XML, collections, code contracts, concurrency, I/O and networking, memory
management, reflection, dynamic programming, attributes, security, application
domains, and native interoperability. You can read most of these chapters randomly,
except for Chapters 6 and 7, which lay a foundation for subsequent topics. The three
chapters on LINQ are also best read in sequence, and some chapters assume some
knowledge of concurrency, which we cover in Chapter 14.

What You Need to Use This Book

The examples in this book require a C# 6.0 compiler and Microsoft .NET Frame-
work 4.6. You will also find Microsoft’s NET documentation useful to look up indi-
vidual types and members (which is available online).

While it’s possible to write source code in Notepad and invoke the compiler from
the command line, you'll be much more productive with a code scratchpad for
instantly testing code snippets, plus an integrated development environment (IDE)
for producing executables and libraries.

For a code scratchpad, download LINQPad 5 or later from http://www.linqpad.net
(free). LINQPad fully supports C# 6.0 and is maintained by one of the authors.

For an IDE, download Microsoft Visual Studio 2015: any edition, except the free
express edition, is suitable for what’s taught in this book.

All code listings for Chapters 2 through 10, plus the chapters
on concurrency, parallel programming, and dynamic pro-
gramming are available as interactive (editable) LINQPad
samples. You can download the whole lot in a single click: go
to LINQPad’s Sample Libraries page and choose “C# 6.0 in a
Nutshell”

xii | Preface

www.it-ebooks.info

http://www.linqpad.net
http://www.linqpad.net/RichClient/SampleLibraries.aspx
http://www.it-ebooks.info/

Conventions Used in This Book

The book uses basic UML notation to illustrate relationships between types, as
shown in Figure P-1. A slanted rectangle means an abstract class; a circle means an
interface. A line with a hollow triangle denotes inheritance, with the triangle point-
ing to the base type. A line with an arrow denotes a one-way association; a line
without an arrow denotes a two-way association.

(i)lnterface
Base type
T / Abstract class /
Subtype
Referencing type (Unidirf?c;‘(’on)al
association
Property ,| Referenced type
Referencing type (Bidirectional Referencing type
association)
Property Property

Figure P-1. Sample diagram

The following typographical conventions are used in this book:

Italic
Indicates new terms, URIs, filenames, and directories

Constant width
Indicates C# code, keywords and identifiers, and program output

Constant width bold
Shows a highlighted section of code

Constant width italic
Shows text that should be replaced with user-supplied values

Preface | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
LINQPad’s Sample Libraries page: choose “C# 6.0 in a Nutshell”

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You do
not need to contact us for permission unless you're reproducing a significant por-
tion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a question by
citing this book and quoting example code does not require permission. Incorporat-
ing a significant amount of example code from this book into your products docu-
mentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C# 6.0 in a Nutshell by Joseph Alba-
hari and Ben Albahari (O’'Reilly). Copyright 2016 Joseph Albahari and Ben Alba-
hari, 978-1-491-92706-9”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
‘ \) d library that delivers expert content in both book

and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

xiv | Preface

www.it-ebooks.info

http://www.linqpad.net/RichClient/SampleLibraries.aspx
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
http://www.it-ebooks.info/

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’'Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/c-sharp6_nutshell.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Joseph Albahari

First, I want to thank my brother, Ben Albahari, for persuading me to take on C# 3.0
in a Nutshell, whose success has spawned three subsequent editions. Ben shares my
willingness to question conventional wisdom and tenacity to pull things apart until
it becomes clear how they really work.

It's been an honor to have superb technical reviewers on the team. In this edition,
we had invaluable and extensive feedback from Jared Parsons, Stephen Toub, Mat-
thew Groves, Dixin Yan, Lee Coward, Bonnie DeWitt, Wonseok Chae, Lori Lalonde
and James Montemagno.

Preface | xv

www.it-ebooks.info

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/c-sharp6_nutshell
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

The book was built on previous editions, whose technical reviewers I owe a similar
honor: Eric Lippert, Jon Skeet, Stephen Toub, Nicholas Paldino, Chris Burrows,
Shawn Farkas, Brian Grunkemeyer, Maoni Stephens, David DeWinter, Mike Bar-
nett, Melitta Andersen, Mitch Wheat, Brian Peek, Krzysztof Cwalina, Matt Warren,
Joel Pobar, Glyn Griffiths, Ion Vasilian, Brad Abrams, Sam Gentile, and Adam
Nathan.

I appreciate that many of the technical reviewers are accomplished individuals at
Microsoft, and I particularly thank you for taking out time to raise this book to the
next quality bar.

Finally, I want to thank the O’Reilly team, including my best ever editor, Brian Mac-
Donald, and extend personal thanks to Miri and Sonia.

Ben Albahari

Because my brother wrote his acknowledgments first, you can infer most of what I
want to say. :) We've actually both been programming since we were kids (we shared
an Apple Ile; he was writing his own operating system while I was writing Hang-
man), so it’s cool that were now writing books together. I hope the enriching experi-
ence we had writing the book will translate into an enriching experience for you
reading the book.

I'd also like to thank my former colleagues at Microsoft. Many smart people work
there, not just in terms of intellect but also in a broader emotional sense, and I miss
working with them. In particular, I learned a lot from Brian Beckman, to whom I
am indebted.

xvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing C# and
the .NET Framework

C# is a general-purpose, type-safe, object-oriented programming language. The goal
of the language is programmer productivity. To this end, the language balances sim-
plicity, expressiveness, and performance. The chief architect of the language since
its first version is Anders Hejlsberg (creator of Turbo Pascal and architect of Del-
phi). The C# language is platform-neutral, but it was written to work well with the
Microsoft NET Framework.

Object Orientation

C# is a rich implementation of the object-orientation paradigm, which includes
encapsulation, inheritance, and polymorphism. Encapsulation means creating a
boundary around an object, to separate its external (public) behavior from its inter-
nal (private) implementation details. The distinctive features of C# from an object-
oriented perspective are:

Unified type system
The fundamental building block in C# is an encapsulated unit of data and
functions called a type. C# has a unified type system, where all types ulti-
mately share a common base type. This means that all types, whether they
represent business objects or are primitive types such as numbers, share the
same basic set of functionality. For example, an instance of any type can be
converted to a string by calling its ToString method.

Classes and interfaces
In a traditional object-oriented paradigm, the only kind of type is a class. In
C#, there are several other kinds of types, one of which is an interface. An
interface is like a class, except that it only describes members. The imple-
mentation for those members comes from types that implement the inter-
face. Interfaces are particularly useful in scenarios where multiple inheri-

www.it-ebooks.info

http://www.it-ebooks.info/

tance is required (unlike languages such as C++ and Eiffel, C# does not
support multiple inheritance of classes).

Properties, methods, and events
In the pure object-oriented paradigm, all functions are methods (this is the
case in Smalltalk). In C#, methods are only one kind of function member,
which also includes properties and events (there are others, too). Properties
are function members that encapsulate a piece of an object’s state, such as a
button’s color or a label’s text. Events are function members that simplify
acting on object state changes.

While C# is primarily an object-oriented language, it also borrows from the func-
tional programming paradigm. Specifically:

Functions can be treated as values
Through the use of delegates, C# allows functions to be passed as values to
and from other functions.

C# supports patterns for purity
Core to functional programming is avoiding the use of variables whose val-
ues change, in favor of declarative patterns. C# has key features to help with
those patterns, including the ability to write unnamed functions on the fly
that “capture” variables (lambda expressions) and the ability to perform list
or reactive programming via query expressions. C# 6.0 also includes read-
only auto-properties to help with writing immutable (read-only) types.

Type Safety

C# is primarily a type-safe language, meaning that instances of types can interact
only through protocols they define, thereby ensuring each types internal consis-
tency. For instance, C# prevents you from interacting with a string type as though it
were an infeger type.

More specifically, C# supports static typing, meaning that the language enforces type
safety at compile time. This is in addition to type safety being enforced at runtime.

Static typing eliminates a large class of errors before a program is even run. It shifts
the burden away from runtime unit tests onto the compiler to verify that all the
types in a program fit together correctly. This makes large programs much easier to
manage, more predictable, and more robust. Furthermore, static typing allows tools
such as IntelliSense in Visual Studio to help you write a program, since it knows for

a given variable what type it is, and hence what methods you can call on that vari-
able.

C# also allows parts of your code to be dynamically typed via
the dynamic keyword (introduced in C# 4.0). However, C#
remains a predominantly statically typed language.

2 | Chapter 1: Introducing C# and the .NET Framework

www.it-ebooks.info

http://www.it-ebooks.info/

C# is also called a strongly typed language because its type rules (whether enforced
statically or at runtime) are very strict. For instance, you cannot call a function that’s
designed to accept an integer with a floating-point number, unless you first explicitly
convert the floating-point number to an integer. This helps prevent mistakes.

Strong typing also plays a role in enabling C# code to run in a sandbox—an envi-
ronment where every aspect of security is controlled by the host. In a sandbox, it is
important that you cannot arbitrarily corrupt the state of an object by bypassing its
type rules.

Memory Management

C# relies on the runtime to perform automatic memory management. The Com-
mon Language Runtime has a garbage collector that executes as part of your pro-
gram, reclaiming memory for objects that are no longer referenced. This frees pro-
grammers from explicitly deallocating the memory for an object, eliminating the
problem of incorrect pointers encountered in languages such as C++.

C# does not eliminate pointers: it merely makes them unnecessary for most pro-
gramming tasks. For performance-critical hotspots and interoperability, pointers
may be used, but they are permitted only in blocks that are explicitly marked
unsafe.

Platform Support

Historically, C# was used almost entirely for writing code to run on Windows plat-
forms. Recently, however, Microsoft and other companies have invested in other
platforms, including Mac OS X and iOS, and Android. Xamarin™ allows cross-
platform C# development for mobile applications, and Portable Class Libraries are
becoming increasingly widespread. Microsofts ASPNET 5 is a new web hosting
framework that can run either on the NET Framework or on .NET Core, a new
small, fast, open source, cross-platform runtime.

(#'s Relationship with the CLR

C# depends on a runtime equipped with a host of features such as automatic mem-
ory management and exception handling. The design of C# closely maps to the
design of Microsoft's Common Language Runtime (CLR), which provides these run-
time features (although C# is technically independent of the CLR). Furthermore, the
C# type system maps closely to the CLR type system (e.g., both share the same defi-
nitions for predefined types).

The CLR and .NET Framework

The .NET Framework consists of the CLR plus a vast set of libraries. The libraries
consist of core libraries (which this book is concerned with) and applied libraries,

Memory Management | 3

www.it-ebooks.info

—
u
o
3
o
3
o
9
=

(= d
=2
(]
r4
m
-

(2]
#®
)
3
Q

http://www.it-ebooks.info/

which depend on the core libraries. Figure 1-1 is a visual overview of those libraries
(and also serves as a navigational aid to the book).

Aﬁplied)
Technologies Windows Forms

System.d11 GDI+
System.Xml.d1l1l

System.Core.dll

Core
Framework

Windows
Presentation
Foundation

ADO.NET

Windows Regular
Communication
Foundation Workﬂa_w
Foundation
€
Web Chapters yE)Parallelism
Services 1-4
CardSpace
ASPNET
Web Forms
) Managed
Networking Dynamic Extensibgity
ASPNET (System.Dynamic.dll) Framework

Mvc

Managed
Add-In Framework

The Nutshell

Figure 1-1. Topics covered in this book and the chapters in which they are
found. Topics not covered are shown outside the large circle.

The CLR is the runtime for executing managed code. C# is one of several managed
languages that get compiled into managed code. Managed code is packaged into an
assembly, in the form of either an executable file (an .exe) or a library (a .dll), along
with type information, or metadata.

Managed code is represented in intermediate language or IL. When the CLR loads
an assembly, it converts the IL into the native code of the machine, such as x86. This
conversion is done by the CLR’s JIT (just-in-time) compiler. An assembly retains
almost all of the original source language constructs, which makes it easy to inspect
and even generate code dynamically.

You can examine and decompile the contents of an IL assem-
bly with tools such as ILSpy, dotPeek (JetBrains) or Reflector
(Red Gate).

When writing Windows Store apps, you also now have the option of generating
native code directly (“NET Native”). This improves startup performance and mem-

4 | (Chapter1:Introducing G and the .NET Framework

www.it-ebooks.info

http://www.it-ebooks.info/

ory usage (which is particularly beneficial on mobile devices) and also runtime per-
formance through static linking and other optimizations.

The CLR performs as a host for numerous runtime services. Examples of these serv-
ices include memory management, the loading of libraries, and security services.
The CLR is language-neutral, allowing developers to build applications in multiple
languages (e.g., C#, F#, Visual Basic .NET and Managed C++).

The NET Framework contains libraries for writing just about any Windows- or
web-based application. Chapter 5 gives an overview of the .NET Framework libra-
ries.

(# and Windows Runtime

C# also interoperates with Windows Runtime (WinRT) libraries. WinRT is an execu-
tion interface and runtime environment for accessing libraries in a language-neutral
and object-oriented fashion. It ships with Windows 8 and newer and is (in part) an
enhanced version of Microsoft’s Component Object Model or COM (see Chapter 25).

Windows 8 and newer ship with a set of unmanaged WinRT libraries that serve as a
framework for touch-enabled applications delivered through Microsofts application
store. (The term WinRT also refers to these libraries.) Being WinRT, the libraries
can easily be consumed not only from C# and VB, but C++ and JavaScript.

'@~ | Some WinRT libraries can also be consumed in normal non-

) tablet applications. However, taking a dependency on WinRT

. gives your application a minimum OS requirement of Win-
dows 8.

The WinRT libraries support the new “modern” user interface (for writing immer-
sive touch-first applications), mobile device-specific features (sensors, text messag-
ing and so on), and a range of core functionality that overlaps with parts of
the .NET Framework. Because of this overlap, Visual Studio includes a reference pro-
file (a set of NET reference assemblies) for Windows Store projects that hides the
portions of the NET Framework that overlap with WinRT. This profile also hides
large portions of the NET Framework considered unnecessary for tablet apps (such
as accessing a database). Microsoft’s application store, which controls the distribu-
tion of software to consumer devices, rejects any program that attempts to access a
hidden type.

A reference assembly exists purely to compile against and may
have a restricted set of types and members. This allows devel-
opers to install the full NET Framework on their machines
while coding certain projects as though they had only a subset.
The actual functionality comes at runtime from assemblies in
the global assembly cache (see Chapter 18) that may superset
the reference assemblies.

Hiding most of the .NET Framework eases the learning curve for developers new to
the Microsoft platform, although there are two more important goals:

C#and Windows Runtime | 5

www.it-ebooks.info

—
u
o
3
o
3
o
9
>

[=d
=2
o

r4
m
-

0
#®
)
3
Q

http://www.it-ebooks.info/

o It sandboxes applications (restricts functionality to reduce the impact of mal-
ware). For instance, arbitrary file access is forbidden, and there the ability to
start or communicate with other programs on the computer is extremely
restricted.

o It allows low-powered Windows RT-only tablets to ship with a reduced .NET
Framework, lowering the OS footprint.

What distinguishes WinRT from ordinary COM is that WinRT projects its libraries
into a multitude of languages, namely C#, VB, C++ and JavaScript, so that each lan-
guage sees WinRT types (almost) as though they were written especially for it. For
example, WinRT will adapt capitalization rules to suit the standards of the target
language, and will even remap some functions and interfaces. WinRT assemblies
also ship with rich metadata in .winmd files, which have the same format as .NET
assembly files, allowing transparent consumption without special ritual. In fact, you
might even be unaware that youre using WinRT rather than .NET types, aside of
namespace differences. Another clue is that WinRT types are subject to COM-style
restrictions; for instance, they offer limited support for inheritance and generics.

WinRT does not supersede the full NET Framework. The lat-
ter is still recommended (and necessary) for standard desktop
and server-side development, and has the following advan-
tages:

o Programs are not restricted to running in a sandbox.

« Programs can use the entire NET Framework and any
third-party library.

Application distribution does not rely on the Windows
Store.

o Applications can target the latest Framework version
without requiring users to have the latest OS version.

What's New in (# 6.0

C# 6.0’s biggest new feature is that the compiler has been completely rewritten in
C#. Known as project “Roslyn,” the new compiler exposes the entire compilation
pipeline via libraries, allowing you to perform code analysis on arbitrary source
code (see Chapter 27). The compiler itself is open source, and the source code is
available at github.com/dotnet/roslyn.

In addition, C# 6.0 features a number of minor but significant enhancements, aimed
primarily at reducing code clutter.

The null-conditional (“Elvis”) operator (see “Null Operators” on page 55, Chapter 2)
avoids having to explicitly check for null before calling a method or accessing a type
member. In the following example, result evaluates to null instead of throwing a
NullReferenceException:

6 | Chapter 1:Introducing C# and the .NET Framework

www.it-ebooks.info

http://github.com/dotnet/roslyn
http://www.it-ebooks.info/

System.Text.StringBuilder sb = null;
string result = sb?2.ToString(); // result is null

Expression-bodied functions (see “Methods” on page 74, Chapter 3) allow methods,
properties, operators, and indexers that comprise a single expression to be written
more tersely, in the style of a lambda expression:

public int TimesTwo (int x) => x * 2;
public string SomeProperty => "Property value";

Property initializers (Chapter 3) let you assign an initial value to an automatic prop-
erty:

public DateTime Created { get; set; } = DateTime.Now;
Initialized properties can also be read-only:

public DateTime Created { get; } = DateTime.Now;

Read-only properties can also be set in the constructor, making it easier to create
immutable (read-only) types.

Index initializers (Chapter 4) allow single-step initialization of any type that exposes
an indexer:

new Dictionary<int,string>()
{

[3] = "three",

[10] = "ten"
}

String interpolation (see “String Type” on page 36, Chapter 2) offers a succinct alter-
native to string.Format:

string s = $"It is {DateTime.Now.DayOfWeek} today";

Exception filters (see “try Statements and Exceptions” on page 148, Chapter 4) let
you apply a condition to a catch block:

try

{
new WebClient().DownloadString("http://asef");

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{
L

The using static (see “Namespaces” on page 65, Chapter 2) directive lets you
import all the static members of a type, so that you can use those members unquali-

fied:

using static System.Console;

WriteLine ("Hello, world"); // WriteLine instead of Console.WritelLine

What'sNew in(#6.0 | 7

www.it-ebooks.info

—
u
o
3
o
3
o
9
>

[=d
=2
o

r4
m
-

0
#®
)
3
Q

http://www.it-ebooks.info/

The nameof (Chapter 3) operator returns the name of a variable, type or other sym-
bol as a string. This avoids breaking code when you rename a symbol in Visual Stu-
dio:

int capacity = 123;
string x = nameof (capacity); // x is "capacity"
string y = nameof (Uri.Host); // y is "Host"

And finally, youre now allowed to await inside catch and finally blocks.

What Was New in (# 5.0

C# 5.0’ big new feature was support for asynchronous functions via two new key-
words, async and await. Asynchronous functions enable asynchronous continua-
tions, which make it easier to write responsive and thread-safe, rich-client applica-
tions. They also make it easy to write highly concurrent and efficient I/O-bound
applications that don't tie up a thread resource per operation.

We cover asynchronous functions in detail in Chapter 14.

What Was New in (# 4.0

The features new to C# 4.0 were:

 Dynamic binding
« Optional parameters and named arguments
o Type variance with generic interfaces and delegates

« COM interoperability improvements

Dynamic binding (Chapters 4 and 20) defers binding—the process of resolving types
and members—from compile time to runtime and is useful in scenarios that would
otherwise require complicated reflection code. Dynamic binding is also useful when
interoperating with dynamic languages and COM components.

Optional parameters (Chapter 2) allow functions to specify default parameter values
so that callers can omit arguments, and named arguments allow a function caller to
identify an argument by name rather than position.

Type variance rules were relaxed in C# 4.0 (Chapters 3 and 4), such that type param-
eters in generic interfaces and generic delegates can be marked as covariant or con-
travariant, allowing more natural type conversions.

COM interoperability (Chapter 25) was enhanced in C# 4.0 in three ways. First,
arguments can be passed by reference without the ref keyword (particularly useful
in conjunction with optional parameters). Second, assemblies that contain COM
interop types can be linked rather than referenced. Linked interop types support type
equivalence, avoiding the need for Primary Interop Assemblies and putting an end to
versioning and deployment headaches. Third, functions that return COM-Variant

8 | Chapter 1:Introducing C# and the .NET Framework

www.it-ebooks.info

http://www.it-ebooks.info/

types from linked interop types are mapped to dynamic rather than object, elimi-
nating the need for casting.

What Was New in (# 3.0

The features added to C# 3.0 were mostly centered on Language Integrated Query
capabilities, or LINQ for short. LINQ enables queries to be written directly within a
C# program and checked statically for correctness, and to query both local collec-
tions (such as lists or XML documents) or remote data sources (such as a database).
The C# 3.0 features added to support LINQ comprised implicitly typed local vari-
ables, anonymous types, object initializers, lambda expressions, extension methods,
query expressions, and expression trees.

Implicitly typed local variables (var keyword, Chapter 2) let you omit the variable
type in a declaration statement, allowing the compiler to infer it. This reduces clut-
ter as well as allowing anonymous types (Chapter 4), which are simple classes cre-
ated on the fly that are commonly used in the final output of LINQ queries. Arrays
can also be implicitly typed (Chapter 2).

Object initializers (Chapter 3) simplify object construction by allowing properties to
be set inline after the constructor call. Object initializers work with both named and
anonymous types.

Lambda expressions (Chapter 4) are miniature functions created by the compiler on
the fly and are particularly useful in “fluent” LINQ queries (Chapter 8).

Extension methods (Chapter 4) extend an existing type with new methods (without
altering the type’s definition), making static methods feel like instance methods.
LINQ’s query operators are implemented as extension methods.

Query expressions (Chapter 8) provide a higher-level syntax for writing LINQ quer-
ies that can be substantially simpler when working with multiple sequences or range
variables.

Expression trees (Chapter 8) are miniature code DOMs (Document Object Models)
that describe lambda expressions assigned to the special type Expression<TDele
gate>. Expression trees make it possible for LINQ queries to execute remotely (e.g.,
on a database server) because they can be introspected and translated at runtime
(e.g., into a SQL statement).

C# 3.0 also added automatic properties and partial methods.

Automatic properties (Chapter 3) cut the work in writing properties that simply
get/set a private backing field by having the compiler do that work automatically.
Partial methods (Chapter 3) let an auto-generated partial class provide customizable
hooks for manual authoring which “melt away” if unused.

What WasNewinC#3.0 | 9

www.it-ebooks.info

—
u
o
3
o
3
o
9
>

[=d
=2
(]

r4
m
-

0
*
)
3
Q

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

C# Language Basics

w
1]
Q.
o
0

abenbue
#D

In this chapter, we introduce the basics of the C# language.

All programs and code snippets in this and the following two
chapters are available as interactive samples in LINQPad.
Working through these samples in conjunction with the book
accelerates learning in that you can edit the samples and
instantly see the results without needing to set up projects and
solutions in Visual Studio.

To download the samples, go to LINQPad’s Sample Libraries
page and choose “C# 6.0 in a Nutshell” LINQPad is free—go
to http://www.linqpad.net.

A First CG# Program

Here is a program that multiplies 12 by 30 and prints the result, 360, to the screen.
The double forward slash indicates that the remainder of a line is a comment:

using System; // Importing namespace
class Test // Class declaration
{
static void Main() // Method declaration
{
int x = 12 * 30; // Statement 1
Console.WriteLine (x); /] Statement 2
} // End of method
} // End of class

At the heart of this program lie two statements:

int x = 12 * 30;
Console.WriteLine (x);

Statements in C# execute sequentially and are terminated by a semicolon (or a code
block, as we'll see later). The first statement computes the expression 12 * 30 and

C#Language Basics | 11

www.it-ebooks.info

http://www.linqpad.net/RichClient/SampleLibraries.aspx
http://www.linqpad.net/RichClient/SampleLibraries.aspx
http://www.linqpad.net
http://www.it-ebooks.info/

stores the result in a local variable, named x, which is an integer type. The second
statement calls the Console class’s WriteLine method, to print the variable x to a text
window on the screen.

A method performs an action in a series of statements, called a statement block—a
pair of braces containing zero or more statements. We defined a single method
named Matin:

static void Main()

{
L

Writing higher-level functions that call upon lower-level functions simplifies a pro-
gram. We can refactor our program with a reusable method that multiplies an inte-
ger by 12 as follows:

using System;

class Test
{
static void Main()
{
Console.WriteLine (FeetToInches (30)); /] 360
Console.WriteLine (FeetToInches (100)); // 1200
}

static int FeetToInches (int feet)

{
int inches = feet * 12;
return inches;
}
3
A method can receive input data from the caller by specifying parameters and output
data back to the caller by specifying a return type. We defined a method called Feet
ToInches that has a parameter for inputting feet, and a return type for outputting
inches:

static int FeetToInches (int feet) {...}

The literals 30 and 100 are the arguments passed to the FeetToInches method. The
Main method in our example has empty parentheses because it has no parameters,
and is void because it doesn’t return any value to its caller:

static void Main()

C# recognizes a method called Main as signaling the default entry point of execu-
tion. The Main method may optionally return an integer (rather than void) in order
to return a value to the execution environment (where a nonzero value typically
indicates an error). The Main method can also optionally accept an array of strings

12 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

as a parameter (that will be populated with any arguments passed to the executable).
For example:

static int Main (string[] args) {...}

An array (such as string[]) represents a fixed number of ele-
ments of a particular type. Arrays are specified by placing
square brackets after the element type and are described in
“Arrays” on page 38.

Methods are one of several kinds of functions in C#. Another kind of function we
used in our example program was the * operator, which performs multiplication.
There are also constructors, properties, events, indexers, and finalizers.

In our example, the two methods are grouped into a class. A class groups function
members and data members to form an object-oriented building block. The Con
sole class groups members that handle command-line input/output functionality,
such as the WriteLine method. Our Test class groups two methods—the Main
method and the FeetToInches method. A class is a kind of type, which we will
examine in “Type Basics” on page 17.

At the outermost level of a program, types are organized into namespaces. The
using directive was used to make the System namespace available to our applica-
tion, to use the Console class. We could define all our classes within the TestPro
grams namespace, as follows:

using System;

namespace TestPrograms

{
class Test {...}
class Test2 {...}

}

The .NET Framework is organized into nested namespaces. For example, this is the
namespace that contains types for handling text:

using System.Text;

The using directive is there for convenience; you can also refer to a type by its fully
qualified name, which is the type name prefixed with its namespace, such as Sys
tem.Text.StringBuilder.

Compilation

The C# compiler compiles source code, specified as a set of files with the .cs exten-
sion, into an assembly. An assembly is the unit of packaging and deployment
in .NET. An assembly can be either an application or a library. A normal console or
Windows application has a Main method and is an .exe file. A library is a .dll and is
equivalent to an .exe without an entry point. Its purpose is to be called upon (refer-

AFirstC#Program | 13

www.it-ebooks.info

W
]
@
0
0

abenbue

#D

http://www.it-ebooks.info/

enced) by an application or by other libraries. The .NET Framework is a set of libra-
ries.

The name of the C# compiler is csc.exe. You can either use an IDE such as Visual
Studio to compile, or call csc manually from the command line. (The compiler is
also available as a library; see Chapter 27.) To compile manually, first save a pro-
gram to a file such as MyFirstProgram.cs, and then go to the command line and
invoke csc (located in %ProgramFiles(X86)%\msbuild\14.0\bin) as follows:

csc MyFirstProgram.cs
This produces an application named MyFirstProgram.exe.
Peculiarly, NET Framework 4.6 ships with the C# 5 compiler.
To obtain the C# 6 command-line compiler, you must install
/ Visual Studio or MSBuild 14.
To produce a library (.dll), do the following:

csc /[target:library MyFirstProgram.cs

We explain assemblies in detail in Chapter 18.

Syntax

C# syntax is inspired by C and C++ syntax. In this section, we will describe C#s ele-
ments of syntax, using the following program:

using System;

class Test

{

static void Main()
{
int x = 12 * 30;
Console.WriteLine (x);
}
}

Identifiers and Keywords

Identifiers are names that programmers choose for their classes, methods, variables,
and so on. These are the identifiers in our example program, in the order they
appear:

System Test Main x Console WritelLine

An identifier must be a whole word, essentially made up of Unicode characters
starting with a letter or underscore. C# identifiers are case-sensitive. By convention,
parameters, local variables, and private fields should be in camel case (e.g., myvaria
ble), and all other identifiers should be in Pascal case (e.g., MyMethod).

14 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Keywords are names that mean something special to the compiler. These are the
keywords in our example program:

using

class

static

void

int

Most keywords are reserved, which means that you can’t use them as identifiers.
Here is the full list of C# reserved keywords:

abstract do in public try

as double int readonly typeof
base else interface ref uint
bool enum internal return ulong
break event is sbyte unchecked
byte explicit lock sealed unsafe
case extern longnamespace short ushort
catch false new sizeof using
char finally null stackalloc virtual
checked fixed object static void
class float operator string volatile
const for out struct while
continue foreach override switch

decimal goto params this

default 1if private throw

delegate 1implicit protected true

Avoiding conflicts

If you really want to use an identifier that clashes with a reserved keyword, you can
do so by qualifying it with the @ prefix. For instance:

class class {...}
class @class {...}

// Illegal
// Legal

The @ symbol doesn’'t form part of the identifier itself. So @myVvariable is the same as
myVariable.

The @ prefix can be useful when consuming libraries written
in other .NET languages that have different keywords.

Contextual keywords

Some keywords are contextual, meaning they can also be used as identifiers—
without an @ symbol. These are:

Syntax | 15

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

add dynamic 1in orderby var
ascending equals 1into partial when

async from join remove where
await get let select yield
by global nameof set
descending group on value

With contextual keywords, ambiguity cannot arise within the context in which they
are used.

Literals, Punctuators, and Operators

Literals are primitive pieces of data lexically embedded into the program. The liter-
als we used in our example program are 12 and 30.

Punctuators help demarcate the structure of the program. These are the punctuators
we used in our example program:

{ 3 3

The braces group multiple statements into a statement block.

The semicolon terminates a statement. (Statement blocks, however, do not require a
semicolon.) Statements can wrap multiple lines:

Console.WriteLine
(1+2+3+4+5+6+7+8+9+10);

An operator transforms and combines expressions. Most operators in C# are deno-
ted with a symbol, such as the multiplication operator, *. We will discuss operators

in more detail later in this chapter. These are the operators we used in our example
program:

O * =

A period denotes a member of something (or a decimal point with numeric literals).
Parentheses are used when declaring or calling a method; empty parentheses are
used when the method accepts no arguments. (Parentheses also have other purposes
that we'll see later in this chapter.) An equals sign performs assignment. (The double
equals sign, ==, performs equality comparison, as we'll see later.)

Comments

C# offers two different styles of source-code documentation: single-line comments
and multiline comments. A single-line comment begins with a double forward slash
and continues until the end of the line. For example:

int x = 3; // Comment about assigning 3 to x

A multiline comment begins with /* and ends with */. For example:

16 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

int x = 3; /* This is a comment that
spans two lines */

Comments may embed XML documentation tags, explained in “XML Documenta-
tion” on page 193 in Chapter 4.

Type Basics

A type defines the blueprint for a value. In our example, we used two literals of type
int with values 12 and 30. We also declared a variable of type int whose name was
X:

static void Main()

{
int x = 12 * 30;
Console.WriteLine (x);

}

A variable denotes a storage location that can contain different values over time. In
contrast, a constant always represents the same value (more on this later):

const int y = 360;

All values in C# are instances of a type. The meaning of a value, and the set of possi-
ble values a variable can have, is determined by its type.

Predefined Type Examples

Predefined types are types that are specially supported by the compiler. The int
type is a predefined type for representing the set of integers that fit into 32 bits of
memory, from 2% to 2311, and is the default type for numeric literals within this
range. We can perform functions such as arithmetic with instances of the int type
as follows:

int x = 12 * 30;

Another predefined C# type is string. The string type represents a sequence of
characters, such as “NET” or “http://oreilly.com” We can work with strings by call-
ing functions on them as follows:

string message = "Hello world";
string upperMessage = message.ToUpper();

Console.WriteLine (upperMessage); // HELLO WORLD
int x = 2015;

message = message + x.ToString();

Console.WriteLine (message); // Hello world2015

The predefined bool type has exactly two possible values: true and false. The bool
type is commonly used to conditionally branch execution flow based with an if
statement. For example:

bool simplevar = false;
if (simplevar)

Type Basics | 17

www.it-ebooks.info

W
]
=,
0
0

abenbue]

#D

http://oreilly.com
http://www.it-ebooks.info/

Console.WriteLine ("This will not print");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
Console.WriteLine ("This will print");

In C#, predefined types (also referred to as built-in types) are
recognized with a C# keyword. The System namespace in
the NET Framework contains many important types that are
not predefined by C# (e.g., DateTime).

Custom Type Examples

Just as we can build complex functions from simple functions, we can build com-
plex types from primitive types. In this example, we will define a custom type
named UnitConverter—a class that serves as a blueprint for unit conversions:

using System;

public class UnitConverter

{
int ratio; // Field
public UnitConverter (int unitRatio) {ratio = unitRatio; } // Constructor
public int Convert (int unit) {return unit * ratio; } // Method
}
class Test
{
static void Main()
{
UnitConverter feetToInchesConverter = new UnitConverter (12);
UnitConverter milesToFeetConverter = new UnitConverter (5280);
Console.WriteLine (feetToInchesConverter.Convert(30)); /] 360
Console.WriteLine (feetToInchesConverter.Convert(100)); // 1200
Console.WriteLine (feetToInchesConverter.Convert(
milesToFeetConverter.Convert(1))); // 63360
}
}
Members of a type

A type contains data members and function members. The data member of
UnitConverter is the field called ratio. The function members of UnitConverter
are the Convert method and the UnitConverter’s constructor.

Symmetry of predefined types and custom types

A beautiful aspect of C# is that predefined types and custom types have few differ-
ences. The predefined int type serves as a blueprint for integers. It holds data—32
bits—and provides function members that use that data, such as ToString. Simi-

18 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

larly, our custom UnitConverter type acts as a blueprint for unit conversions. It
holds data—the ratio—and provides function members to use that data.

Constructors and instantiation

Data is created by instantiating a type. Predefined types can be instantiated simply
by using a literal such as 12 or "Hello world". The new operator creates instances of
a custom type. We created and declared an instance of the UnitConverter type with
this statement:

UnitConverter feetToInchesConverter = new UnitConverter (12);

Immediately after the new operator instantiates an object, the object’s constructor is
called to perform initialization. A constructor is defined like a method, except that
the method name and return type are reduced to the name of the enclosing type:

public class UnitConverter

{

public UnitConverter (int unitRatio) { ratio = unitRatio; }

Instance versus static members

The data members and function members that operate on the instance of the type
are called instance members. The UnitConverter’s Convert method and the int’s
ToString method are examples of instance members. By default, members are
instance members.

Data members and function members that don’t operate on the instance of the type,
but rather on the type itself, must be marked as static. The Test.Main and Con
sole.WritelLine methods are static methods. The Console class is actually a static
class, which means all its members are static. You never actually create instances of a
Console—one console is shared across the whole application.

Let’s contrast instance from static members. In the following code, the instance field
Name pertains to an instance ofa particular Panda, whereas Population pertains to
the set of all Panda instances:

public class Panda

{
public string Name; // Instance field
public static int Population; // Static field

public Panda (string n) // Constructor
{
Name = n; // Assign the instance field
Population = Population + 1; // Increment the static Population field
}
}

TypeBasics | 19

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

The following code creates two instances of the Panda, prints their names, and then
prints the total population:

using System;

class Test
{
static void Main()
{
Panda p1 = new Panda ("Pan Dee");
Panda p2 = new Panda ("Pan Dah");

Console.WriteLine (pl.Name); // Pan Dee
Console.WriteLine (p2.Name); // Pan Dah

Console.WriteLine (Panda.Population); // 2
}
}

Attempting to evaluate p1.Population or Panda.Name will generate a compile-time
error.

The public keyword

The public keyword exposes members to other classes. In this example, if the Name
field in Panda was not marked as public, it would be private, and the Test class
could not access it. Marking a member public is how a type communicates: “Here
is what I want other types to see—everything else is my own private implementation
details” In object-oriented terms, we say that the public members encapsulate the
private members of the class.

Conversions

C# can convert between instances of compatible types. A conversion always creates
a new value from an existing one. Conversions can be either implicit or explicit:
implicit conversions happen automatically, and explicit conversions require a cast.
In the following example, we implicitly convert an int to a long type (which has
twice the bitwise capacity of an int) and explicitly cast an int to a short type
(which has half the capacity of an int):

int x = 12345; // int is a 32-bit integer
long y = x; // Implicit conversion to 64-bit integer
short z = (short)x; // Explicit conversion to 16-bit integer

20 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Implicit conversions are allowed when both of the following are true:

o The compiler can guarantee they will always succeed.

« No information is lost in conversion.!
Conversely, explicit conversions are required when one of the following is true:

 The compiler cannot guarantee they will always succeed.

« Information may be lost during conversion.

(If the compiler can determine that a conversion will always fail, both kinds of con-
version are prohibited. Conversions that involve generics can also fail in certain
conditions—see “Type Parameters and Conversions” on page 121 in Chapter 3.)

The numeric conversions that we just saw are built into the lan-
guage. C# also supports reference conversions and boxing con-
versions (see Chapter 3) as well as custom conversions (see
“Operator Overloading” on page 168 in Chapter 4). The com-
piler doesn’t enforce the aforementioned rules with custom
conversions, so it’s possible for badly designed types to behave
otherwise.

Value Types Versus Reference Types
All C# types fall into the following categories:

« Value types
« Reference types
 Generic type parameters

« Pointer types

In this section, we'll describe value types and reference types.
WEe'll cover generic type parameters in “Generics” on page 114
in Chapter 3, and pointer types in “Unsafe Code and Pointers”
on page 187 in Chapter 4.

Value types comprise most built-in types (specifically, all numeric types, the char
type, and the bool type), as well as custom struct and enum types.

Reference types comprise all class, array, delegate, and interface types. (This includes
the predefined string type.)

The fundamental difference between value types and reference types is how they are
handled in memory.

1 A minor caveat is that very large long values lose some precision when converted to double.

Type Basics | 21

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

Value types

The content of a value type variable or constant is simply a value. For example, the
content of the built-in value type, int, is 32 bits of data.

You can define a custom value type with the struct keyword (see Figure 2-1):
public struct Point { public int X; public int Y; }
or more tersely:

public struct Point { public int X, VY; }

Point struct

X
Y

}- Value / instance

Figure 2-1. A value-type instance in memory

The assignment of a value-type instance always copies the instance. For example:

static void Main()

{
Point pl = new Point();
pl.X = 7;
Point p2 = pi1; // Assignment causes copy

Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7

pl.X = 9; // Change p1.X

Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 7
}

Figure 2-2 shows that p1 and p2 have independent storage.

Point struct

p1 p2
9 7
0 0

Figure 2-2. Assignment copies a value-type instance

Reference types

A reference type is more complex than a value type, having two parts: an object and
the reference to that object. The content of a reference-type variable or constant is a

22 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

reference to an object that contains the value. Here is the Point type from our previ-
ous example rewritten as a class, rather than a struct (shown in Figure 2-3):

public class Point { public int X, Y; }

Point class
Reference Object -
| Reference I > -]
Object 62
metadata ®
X .
v Value / instance

Figure 2-3. A reference-type instance in memory

Assigning a reference-type variable copies the reference, not the object instance.
This allows multiple variables to refer to the same object—something not ordinarily
possible with value types. If we repeat the previous example, but with Point now a
class, an operation to p1 affects p2:

static void Main()

{
Point pl = new Point();
pl.X = 7;
Point p2 = pi1; // Copies pl reference
Console.WriteLine (p1.X); // 7
Console.WriteLine (p2.X); // 7
pl1.X = 9; // Change p1l.X
Console.WriteLine (p1.X); // 9
Console.WriteLine (p2.X); // 9
}
Figure 2-4 shows that p1 and p2 are two references that point to the same object.
Point class
p1
Reference > -
Object
metadata
p2 5
Reference 5

Figure 2-4. Assignment copies a reference

TypeBasics | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Null

A reference can be assigned the literal null, indicating that the reference points to
no object:

class Point {...}

Point p = null;
Console.WriteLine (p == null); // True

// The following line generates a runtime error
// (a NullReferenceException is thrown):
Console.WriteLine (p.X);

In contrast, a value type cannot ordinarily have a null value:

struct Point {...}

Point p = null; // Compile-time error
int x = null; // Compile-time error

C# also has a construct called nullable types for representing
value-type nulls (see “Nullable Types” on page 162 in Chap-
ter 4).

Storage overhead

Value-type instances occupy precisely the memory required to store their fields. In
this example, Point takes eight bytes of memory:

struct Point

{
int x; // 4 bytes
int y; // 4 bytes
}

Technically, the CLR positions fields within the type at an
address thats a multiple of the fields’ size (up to a maximum
of eight bytes). Thus, the following actually consumes 16 bytes
of memory (with the seven bytes following the first field “was-
ted”):

struct A { byte b; long 1; }

You can override this behavior with the StructlLayout
attribute (see “Mapping a Struct to Unmanaged Memory” on
page 1011 in Chapter 25).

24 | Chapter 2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Reference types require separate allocations of memory for the reference and object.
The object consumes as many bytes as its fields, plus additional administrative over-
head. The precise overhead is intrinsically private to the implementation of
the .NET runtime, but at minimum, the overhead is eight bytes, used to store a key
to the object’s type, as well as temporary information such as its lock state for multi-
threading and a flag to indicate whether it has been fixed from movement by the
garbage collector. Each reference to an object requires an extra four or eight bytes,
depending on whether the .NET runtime is running on a 32- or 64-bit platform.

Predefined Type Taxonomy
The predefined types in C# are:

Value types
o Numeric

—Signed integer (sbyte, short, int, long)
—Unsigned integer (byte, ushort, uint, ulong)
—Real number (float, double, decimal)

o Logical (bool)

o Character (char)

Reference types
o String (string)

 Object (object)

Predefined types in C# alias Framework types in the System namespace. There is
only a syntactic difference between these two statements:

int 1 = 5;

System.Int32 1 = 5;
The set of predefined value types, excluding decimal, are known as primitive types
in the CLR. Primitive types are so called because they are supported directly via

instructions in compiled code, and this usually translates to direct support on the
underlying processor. For example:

// Underlying hexadecimal representation

int 1 =7; /] ox7
bool b = true; /] ox1
char c = 'A'; /] 0x41

float f = 0.5f; // uses IEEE floating-point encoding

The System.IntPtr and System.UIntPtr types are also primitive (see Chapter 25).

Type Basics | 25

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

Numeric Types

C# has the predefined numeric types shown in Table 2-1.

Table 2-1. Predefined numeric types in C#

(i type System type Suffix Size
Integral—signed

sbyte SByte 8 bits
short Inti16 16 bits
int Int32 32 bits
long Int64 L 64 bits
Integral—unsigned

byte Byte 8 bits
ushort UInt16 16 bits
uint UInt32 u 32 bits
ulong UInt64 uL 64 bits
Real

float Single F 32 bits
double Double D 64 bits
decimal Decimal M 128 bits

Range

-2"t02-1

-2M 10 2%-1
-22110 221
2281 2651

010 281
010261
0to 2221
0to 2641

+ (~107* t0 10%)
+(~107% 10 10°%)

+(~10"% t0 10%)

Of the integral types, int and long are first-class citizens and are favored by both C#
and the runtime. The other integral types are typically used for interoperability or

when space efficiency is paramount.

Of the real number types, float and double are called floating-point types® and are
typically used for scientific and graphical calculations. The decimal type is typically
used for financial calculations, where base-10-accurate arithmetic and high preci-

sion are required.

Numeric Literals

Integral literals can use decimal or hexadecimal notation; hexadecimal is denoted

with the 0x prefix. For example:

int x = 127;
long y = OX7F;

Real literals can use decimal and/or exponential notation. For example:

2 Technically, decimal is a floating-point type too, although it’s not referred to as such in the C#

language specification.

26 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

double d = 1.5;
double million = 1E06;

Numeric literal type inference
By default, the compiler infers a numeric literal to be either double or an integral

type:

o If the literal contains a decimal point or the exponential symbol (E), it is a
double.

W
]
@
(2]
0

abenbue
#D

o Otherwise, the literal’s type is the first type in this list that can fit the literal’s
value: int, uint, long, and ulong.

For example:

Console.WriteLine (1.0.GetType()); // Double (double)
Console.WriteLine (1E06.GetType()); // Double (double)
Console.WriteLine (1.GetType()); // Int32 (int)
Console.WriteLine (OxFOOOOOOO.GetType()); // UInt32 (uint)
Console.WriteLine (0x100000000.GetType()); // Int64 (long)

Numeric suffixes

Numeric suffixes explicitly define the type of a literal. Suffixes can be either lower- or
uppercase, and are as follows:

Category Ci type Example

F float float f = 1.0F;
D double double d = 1D;

M decimal decimal d = 1.0M;
u uint uint 1 = 1U;

L long long 1 = 1L;

uL ulong ulong i1 = 1UL;

The suffixes U and L are rarely necessary, because the uint, long, and ulong types
can nearly always be either inferred or implicitly converted from int:

long 1 = 5; // Implicit lossless conversion from int literal to long

The D suffix is technically redundant, in that all literals with a decimal point are
inferred to be double. And you can always add a decimal point to a numeric literal:

double x = 4.0;

The F and M suffixes are the most useful and should always be applied when specify-
ing float or decimal literals. Without the F suffix, the following line would not
compile, because 4.5 would be inferred to be of type double, which has no implicit
conversion to float:

NumericTypes | 27

www.it-ebooks.info

http://www.it-ebooks.info/

float f = 4.5F;
The same principle is true for a decimal literal:
decimal d = -1.23M; // Will not compile without the M suffix.

We describe the semantics of numeric conversions in detail in the following section.

Numeric Conversions

Integral to integral conversions

Integral conversions are implicit when the destination type can represent every pos-
sible value of the source type. Otherwise, an explicit conversion is required. For
example:

int x = 12345; // int is a 32-bit integral
long y = x; // Implicit conversion to 64-bit integral
short z = (short)x; // Explicit conversion to 16-bit integral

Floating-point to floating-point conversions

A float can be implicitly converted to a double, since a double can represent every
possible value of a float. The reverse conversion must be explicit.

Floating-point to integral conversions
All integral types may be implicitly converted to all floating-point types:

int 1

= 1;
float f =

i
The reverse conversion must be explicit:
int 12 = (int)f;

When you cast from a floating-point number to an integral,
any fractional portion is truncated; no rounding is performed.
The static class System.Convert provides methods that round
while converting between various numeric types (see Chap-
ter 6).

Implicitly converting a large integral type to a floating-point type preserves magni-
tude but may occasionally lose precision. This is because floating-point types always
have more magnitude than integral types, but may have less precision. Rewriting
our example with a larger number demonstrates this:

int 11 = 100000001;
float f = i1; // Magnitude preserved, precision lost
int 12 = (int)f; // 100000000

28 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Decimal conversions

All integral types can be implicitly converted to the decimal type, since a decimal
can represent every possible C# integral value. All other numeric conversions to and
from a decimal type must be explicit.

Arithmetic Operators

The arithmetic operators (+, -, *, /, %) are defined for all numeric types except the 8-
and 16-bit integral types:

+ Addition

Subtraction
* Multiplication
/ Division
% Remainder after division

Increment and Decrement Operators

The increment and decrement operators (++, - -) increment and decrement numeric
types by 1. The operator can either follow or precede the variable, depending on
whether you want its value before or after the increment/decrement. For example:

int x =0, y = 0;

Console.WriteLine (x++); // Outputs 0; x is now 1

Console.WriteLine (++y); // Outputs 1; y is now 1

Specialized Integral Operations

Integral division

Division operations on integral types always truncate remainders (round toward
zero). Dividing by a variable whose value is zero generates a runtime error (a Divid
eByZeroException):

inta=2/3; /] 0
int b = 0;
int c =5/ b; // throws DivideByZeroException

Dividing by the literal or constant 0 generates a compile-time error.

Integral overflow

At runtime, arithmetic operations on integral types can overflow. By default, this
happens silently—no exception is thrown, and the result exhibits “wraparound”
behavior, as though the computation was done on a larger integer type and the extra
significant bits discarded. For example, decrementing the minimum possible int
value results in the maximum possible int value:

int a = int.MinValue;

a--;

Console.WriteLine (a == int.MaxValue); // True

NumericTypes | 29

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

Integral arithmetic overflow check operators

The checked operator tells the runtime to generate an OverflowException rather
than overflowing silently when an integral expression or statement exceeds the
arithmetic limits of that type. The checked operator affects expressions with the ++,
--, +, - (binary and unary), *, /, and explicit conversion operators between integral

types.

The checked operator has no effect on the double and float
types (which overflow to special “infinite” values, as well see
soon) and no effect on the decimal type (which is always
checked).

checked can be used around either an expression or a statement block. For example:

int a = 1000000;
int b = 1000000;

int ¢ = checked (a * b); // Checks just the expression.
checked // Checks all expressions
{ // in statement block.
<= a b
}

You can make arithmetic overflow checking the default for all expressions in a pro-
gram by compiling with the /checked+ command-line switch (in Visual Studio, go
to Advanced Build Settings). If you then need to disable overflow checking just for
specific expressions or statements, you can do so with the unchecked operator. For
example, the following code will not throw exceptions—even if compiled
with /checked+:

int x = int.MaxValue;
int y = unchecked (x + 1);
unchecked { int z = x + 1; }

Overflow checking for constant expressions

Regardless of the /checked compiler switch, expressions evaluated at compile time
are always overflow-checked—unless you apply the unchecked operator:

int x = int.MaxValue + 1; // Compile-time error
int y = unchecked (int.MaxValue + 1); // No errors

Bitwise operators

C# supports the following bitwise operators:

30 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Operator Meaning Sample expression Result

~ Complement ~0xfU oxfffffffou
& And oxfo & 0x33 0x30

| or 0xfo | 0x33 oxf3

" Exclusive Or Oxffoo ~ 0x0ffe 0Oxfofo

<< Shift left 0x20 << 2 0x80

>> Shiftright ~ 0x20 >> 1 0x10

8- and 16-Bit Integrals

The 8- and 16-bit integral types are byte, sbyte, short, and ushort. These types
lack their own arithmetic operators, so C# implicitly converts them to larger types
as required. This can cause a compile-time error when trying to assign the result
back to a small integral type:

short x = 1, y = 1;

short z = x + y; // Compile-time error
In this case, x and y are implicitly converted to int so that the addition can be per-
formed. This means the result is also an int, which cannot be implicitly cast back to
a short (because it could cause loss of data). To make this compile, we must add an
explicit cast:

short z = (short) (x +y); // OK

Special Float and Double Values

Unlike integral types, floating-point types have values that certain operations treat
specially. These special values are NaN (not a number), +eo, —co, and —0. The float
and double classes have constants for NaN, +o0, and —oo, as well as other values (Max
Value, MinValue, and Epsilon). For example:

Console.WriteLine (double.NegativeInfinity); // -Infinity

The constants that represent special values for double and float are as follows:

Special value Double constant Float constant

NaN double.NaN float.NaN

+oo double.PositiveInfinity float.PositiveInfinity
—oo double.NegativeInfinity float.NegativeInfinity
-0 -0.0 -0.0f

Dividing a nonzero number by zero results in an infinite value. For example:

Console.WriteLine (1.0 / 0.0); // Infinity
Console.WriteLine (-1.0 / 0.0); // -Infinity

NumericTypes | 31

www.it-ebooks.info

W
]
&
[2]
0

abenbue

#D

http://www.it-ebooks.info/

Console.WriteLine
Console.WriteLine

// -Infinity

(1.0 / -0.0);
(-1.0 / -0.0); // Infinity

Dividing zero by zero, or subtracting infinity from infinity, results in a NaN. For
example:

Console.WriteLine (0.0 / 0.0); // NaN
Console.WriteLine ((1.0 / 0.0) - (1.0 / 0.0)); // NaN
When using ==, a NaN value is never equal to another value, even another NaN

value:
Console.WriteLine (0.0 / 0.0 == double.NaN); // False

To test whether a value is NaN, you must use the float.IsNaN or double.IsNaN
method:

Console.WriteLine (double.IsNaN (0.0 / 0.0)); // True
When using object.Equals, however, two NaN values are equal:
Console.WriteLine (object.Equals (0.0 / 0.0, double.NaN)); /] True

NaNs are sometimes useful in representing special values. In
WPE, double.NaN represents a measurement whose value is
“Automatic”. Another way to represent such a value is with a
nullable type (Chapter 4); another is with a custom struct that
wraps a numeric type and adds an additional field (Chapter 3).

float and double follow the specification of the IEEE 754 format types, supported
natively by almost all processors. You can find detailed information on the behavior
of these types at http://www.ieee.org.

double Versus decimal

double is useful for scientific computations (such as computing spatial coordinates).
decimal is useful for financial computations and values that are “man-made” rather
than the result of real-world measurements. Here’s a summary of the differences:

Category double decimal

Internal representation Base 2 Base 10

Decimal precision 15-16 significant figures ~ 28-29 significant figures

Range +(~1073%to ~10%%) +(~10"2t0 ~10%)

Special values +0, —0, 400, —oo, and NaN None

Speed Native to processor Non-native to processor (about 10 times slower than
double)

Real-Number Rounding Errors

float and double internally represent numbers in base 2. For this reason, only
numbers expressible in base 2 are represented precisely. Practically, this means most

32 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.ieee.org
http://www.it-ebooks.info/

literals with a fractional component (which are in base 10) will not be represented
precisely. For example:

float tenth = 0.1f; // Not gquite 0.1
float one = 1f;
Console.WriteLine (one - tenth * 10f); // -1.490116E-08

This is why float and double are bad for financial calculations. In contrast, deci
mal works in base 10 and so can precisely represent numbers expressible in base 10
(as well as its factors, base 2 and base 5). Since real literals are in base 10, decimal
can precisely represent numbers such as 0.1. However, neither double nor decimal
can precisely represent a fractional number whose base 10 representation is recur-
ring:

decimal m = 1M / 6M; /] 0.1666666666666666666666666667M

double d =1.0 / 6.0; /] 0.16666666666666666

This leads to accumulated rounding errors:

decimal notQuiteWholeM = m+m+m+m+m+m; // 1.0000000000000000000000000002M
double notQuiteWholeD = d+d+d+d+d+d; // 0.99999999999999989

which breaks equality and comparison operations:

Console.WriteLine (notQuiteWholeM == 1M); // False
Console.WriteLine (notQuiteWholeD < 1.0); /] True

Boolean Type and Operators

C#’s bool type (aliasing the System.Boolean type) is a logical value that can be
assigned the literal true or false.

Although a Boolean value requires only one bit of storage, the runtime will use one
byte of memory, since this is the minimum chunk that the runtime and processor
can efficiently work with. To avoid space inefficiency in the case of arrays, the
Framework provides a BitArray class in the System.Collections namespace that
is designed to use just one bit per Boolean value.

Bool Conversions

No casting conversions can be made from the bool type to numeric types or vice
versa.

Equality and Comparison Operators

== and != test for equality and inequality of any type, but always return a bool
value.? Value types typically have a very simple notion of equality:

3 It’s possible to overload these operators (Chapter 4) such that they return a non-bool type, but
this is almost never done in practice.

Boolean Type and Operators | 33

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

int x = 1;

int y = 2;
int z = 1;
Console.WriteLine (x == y); /] False
Console.WriteLine (x == z); /] True

For reference types, equality, by default, is based on reference, as opposed to the
actual value of the underlying object (more on this in Chapter 6):

public class Dude

{

public string Name;

public Dude (string n) { Name = n; }
}

Dude d1 = new Dude ("John");
Dude d2 = new Dude ("John");

Console.WriteLine (d1 == d2); /] False
Dude d3 = di;
Console.WriteLine (d1 == d3); /] True
The equality and comparison operators, ==, !=, <, >, >=, and <=, work for all numeric

types, but should be used with caution with real numbers (as we saw in “Real-
Number Rounding Errors” on page 32). The comparison operators also work on
enum type members, by comparing their underlying integral values. We describe this
in “Enums” on page 109 in Chapter 3.

We explain the equality and comparison operators in greater detail in “Operator
Overloading” on page 168 in Chapter 4, and in “Equality Comparison” on page 267
and “Order Comparison” on page 278 in Chapter 6.

Conditional Operators

The && and | | operators test for and and or conditions. They are frequently used in
conjunction with the ! operator, which expresses not. In this example, the UseUm
brella method returns true if it’s rainy or sunny (to protect us from the rain or the
sun), as long as it’s not also windy (since umbrellas are useless in the wind):

static bool UseUmbrella (bool rainy, bool sunny, bool windy)

{
return !windy && (rainy || sunny);
}
The && and || operators short-circuit evaluation when possible. In the preceding
example, if it is windy, the expression (rainy || sunny) is not even evaluated.

Short-circuiting is essential in allowing expressions such as the following to run
without throwing a NullReferenceException:

if (sb != null && sb.Length > 0) ...
The & and | operators also test for and and or conditions:

return !windy & (rainy | sunny);

34 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

The difference is that they do not short-circuit. For this reason, they are rarely used
in place of conditional operators.

Unlike in C and C++, the & and | operators perform (non-
short-circuiting) Boolean comparisons when applied to bool
expressions. The & and | operators perform bitwise operations
only when applied to numbers.

Conditional operator (ternary operator)

W
]
@
0
0

abenbue
#D

The conditional operator (more commonly called the ternary operator, as it’s the only
operator that takes three operands) has the form q ? a : b, where if condition q is
true, a is evaluated, else b is evaluated. For example:

static int Max (int a, int b)

{

return (a > b) 2 a : b;

}
The conditional operator is particularly useful in LINQ queries (Chapter 8).

Strings and Characters

C#’s char type (aliasing the System.Char type) represents a Unicode character and
occupies 2 bytes. A char literal is specified inside single quotes:

char c = 'A'; // Simple character

Escape sequences express characters that cannot be expressed or interpreted literally.
An escape sequence is a backslash followed by a character with a special meaning.
For example:

char newLine = '\n';
char backSlash = "\\';

The escape sequence characters are shown in Table 2-2.

Table 2-2. Escape sequence characters

Char Meaning Value

\' Singlequote 0x0027
\" Double quote 0x0022

\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007

\b Backspace 0x0008
\f Form feed 0x000C

Strings and Characters | 35

www.it-ebooks.info

http://www.it-ebooks.info/

Char Meaning Value

\n Newline Ox000A
\r (Carriage return 0x000D
\t Horizontal tab ©x0009
\v Vertical tab 0x0008B

The \u (or \x) escape sequence lets you specify any Unicode character via its four-
digit hexadecimal code:

char copyrightSymbol = '\uGOA9';
char omegaSymbol "\Uue3A9';
char newLine "\UBOOA';

Char Conversions

An implicit conversion from a char to a numeric type works for the numeric types
that can accommodate an unsigned short. For other numeric types, an explicit con-
version is required.

String Type

C#’s string type (aliasing the System.String type, covered in depth in Chapter 6)
represents an immutable sequence of Unicode characters. A string literal is specified
inside double quotes:

string a = "Heat";

string is a reference type, rather than a value type. Its equality
operators, however, follow value-type semantics:

string a = "test";

string b = "test";

Console.Write (a == b); // True

The escape sequences that are valid for char literals also work inside strings:
string a = "Here's a tab:\t";

The cost of this is that whenever you need a literal backslash, you must write it
twice:

string a1 = "\\\\server\\fileshare\\helloworld.cs";

To avoid this problem, C# allows verbatim string literals. A verbatim string literal is
prefixed with @ and does not support escape sequences. The following verbatim
string is identical to the preceding one:

string a2 = @ "\\server\fileshare\helloworld.cs";
A verbatim string literal can also span multiple lines:

string escaped = "First Line\r\nSecond Line";
string verbatim = @"First Line

36 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Second Line";

// True if your IDE uses CR-LF line separators:
Console.WriteLine (escaped == verbatim);

You can include the double-quote character in a verbatim literal by writing it twice:

string xml = @"<customer id=""123""></customer>";

String concatenation
The + operator concatenates two strings:
string s = "a" + "b";
One of the operands may be a nonstring value, in which case ToString is called on

that value. For example:

string s = "a" + 5; // a5

Using the + operator repeatedly to build up a string is inefficient: a better solution is
to use the System.Text.StringBuilder type (described in Chapter 6).

String interpolation (C# 6)

A string preceded with the $ character is called an interpolated string. Interpolated
strings can include expressions inside braces:

int x = 4;

Console.Write ($"A square has {x} sides"); // Prints: A square has 4 sides
Any valid C# expression of any type can appear within the braces, and C# will con-
vert the expression to a string by calling its ToString method or equivalent. You can
change the formatting by appending the expression with a colon and a format string
(format strings are described in “Formatting and parsing” on page 233 in Chap-
ter 6):

string s = $"255 in hex is {byte.MaxValue:X2}"; // X2 = 2-digit Hexadecimal
// Evaluates to "255 in hex is FF"

Interpolated strings must complete on a single line, unless you also specify the ver-
batim string operator. Note that the $ operator must come before @:

int x = 2;
string s = $@"this spans {
x} lines";

To include a brace literal in an interpolated string, repeat the desired brace charac-
ter.
String comparisons

string does not support < and > operators for comparisons. You must use the
string’s CompareTo method, described in Chapter 6.

Strings and Characters | 37

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

Arrays

An array represents a fixed number of variables (called elements) of a particular
type. The elements in an array are always stored in a contiguous block of memory,
providing highly efficient access.

An array is denoted with square brackets after the element type. For example:
char[] vowels = new char[5]; // Declare an array of 5 characters

Square brackets also index the array, accessing a particular element by position:

vowels[0] = 'a';
vowels[1] = 'e';
vowels[2] = 'i';
vowels[3] = 'o';
vowels[4] = 'u';
Console.WriteLine (vowels[1]); /] e

« »

This prints “¢” because array indexes start at 0. We can use a for loop statement to
iterate through each element in the array. The for loop in this example cycles the
integer 1 from 0 to 4:
for (int 1 = 0; 1 < vowels.Length; i++)
Console.Write (vowels[i]); // aeiou
The Length property of an array returns the number of elements in the array. Once
an array has been created, its length cannot be changed. The System.Collection

namespace and subnamespaces provide higher-level data structures, such as
dynamically sized arrays and dictionaries.

An array initialization expression lets you declare and populate an array in a single
step:

char[] vowels = new char[] {'a','e','i','0",'u"'};
or simply:

char[] vowels = {'a','e','i','0','u'};

All arrays inherit from the System.Array class, providing common services for all
arrays. These members include methods to get and set elements regardless of the
array type, and are described in “The Array Class” on page 297 in Chapter 7.

Default Element Initialization

Creating an array always preinitializes the elements with default values. The default
value for a type is the result of a bitwise zeroing of memory. For example, consider
creating an array of integers. Since int is a value type, this allocates 1,000 integers in
one contiguous block of memory. The default value for each element will be 0:

int[] a = new int[1000];
Console.Write (a[123]); /] ©

38 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Value types versus reference types

Whether an array element type is a value type or a reference type has important per-
formance implications. When the element type is a value type, each element value is
allocated as part of the array. For example:

public struct Point { public int X, VY; }

Point[] a = new Point[1000];
int x = a[500].X; /10

Had Point been a class, creating the array would have merely allocated 1,000 null
references:

public class Point { public int X, Y; }

Point[] a = new Point[1000];
int x = a[500].X; // Runtime error, NullReferenceException

To avoid this error, we must explicitly instantiate 1,000 Points after instantiating the
array:

Point[] a = new Point[1000];
for (int 1 = 0; 1 < a.Length; i++) // Iterate 1 from 0 to 999
a[i] = new Point(); // Set array element 1 with new point

An array itself is always a reference type object, regardless of the element type. For
instance, the following is legal:

int[] a = null;

Multidimensional Arrays

Multidimensional arrays come in two varieties: rectangular and jagged. Rectangular
arrays represent an n-dimensional block of memory, and jagged arrays are arrays of
arrays.

Rectangular arrays

Rectangular arrays are declared using commas to separate each dimension. The fol-
lowing declares a rectangular two-dimensional array, where the dimensions are
3x3:

int[,] matrix = new int[3,3];

The GetLength method of an array returns the length for a given dimension (start-
ing at 0):
for (int 1 = 0; 1 < matrix.GetLength(0); i++)

for (int j = 0; j < matrix.GetLength(1); j++)
matrix[i,j] = 1 * 3 + j;

Arrays | 39

www.it-ebooks.info

o
1]
@,
o
0

abenbue]

#D

http://www.it-ebooks.info/

A rectangular array can be initialized as follows (to create an array identical to the
previous example):

int[,] matrix = new int[,]
{

{011)2})

{314)5})

{6,7,8}
¥

Jagged arrays

Jagged arrays are declared using successive square brackets to represent each
dimension. Here is an example of declaring a jagged two-dimensional array, where
the outermost dimension is 3:

int[][] matrix = new int[3][];

Interestingly, this is new int[3][] and not new int[][3].
Eric Lippert has written an excellent article on why this is so:
see http://albahari.com/jagged.

The inner dimensions aren’t specified in the declaration because, unlike a rectangu-
lar array, each inner array can be an arbitrary length. Each inner array is implicitly
initialized to null rather than an empty array. Each inner array must be created
manually:

for (int 1 = 0; 1 < matrix.Length; i++)
{
matrix[i] = new int[3]; // Create inner array
for (int j = 0; j < matrix[i].Length; j++)
matrix[1][j] = 1 * 3 + J;

A jagged array can be initialized as follows (to create an array identical to the previ-
ous example with an additional element at the end):

int[][] matrix = new int[][]

new int[] {0,1,2},

new int[] {3,4,5},

new int[] {6,7,8,9}
1

Simplified Array Initialization Expressions

There are two ways to shorten array initialization expressions. The first is to omit
the new operator and type qualifications:

char[] vowels = {'a',"'e",'i','0",'u'};

int[,] rectangularMatrix =
{

{0,1,2},

{3.,4,5},

40 | Chapter2: C# Language Basics

www.it-ebooks.info

http://albahari.com/jagged
http://www.it-ebooks.info/

{6,7,8}
b

int[][] jaggedMatrix =

{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8}

¥

The second approach is to use the var keyword, which tells the compiler to implic-
itly type a local variable:

var 1 = 3; // 1 is implicitly of type int
var s = "sausage"; // s is implicitly of type string

// Therefore:

var rectMatrix = new int[,] /] rectMatrix is implicitly of type int[,]
{

{0,1,2},

{3,4,5},

{6,7,8}
b

var jaggedMat = new int[][] // jaggedMat is implicitly of type int[][]
{
new int[] {0,1,2},
new int[] {3,4,5},
new int[] {6,7,8}
b
Implicit typing can be taken one stage further with arrays: you can omit the type
qualifier after the new keyword and have the compiler infer the array type:

var vowels = new[] {'a','e','i','0",'u'}; // Compiler infers char[]

For this to work, the elements must all be implicitly convertible to a single type (and
at least one of the elements must be of that type, and there must be exactly one best
type). For example:

var x = new[] {1,10000000000}; // all convertible to long

Bounds Checking

All array indexing is bounds-checked by the runtime. An IndexOutOfRangeExcep
tion is thrown if you use an invalid index:

int[] arr = new int[3];
arr[3] = 1; // IndexOutOfRangeException thrown

As with Java, array bounds checking is necessary for type safety and simplifies
debugging.

Arays | 41

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

Generally, the performance hit from bounds checking is
minor, and the JIT (just-in-time) compiler can perform opti-
mizations, such as determining in advance whether all indexes
will be safe before entering a loop, thus avoiding a check on
each iteration. In addition, C# provides “unsafe” code that can
explicitly bypass bounds checking (see “Unsafe Code and
Pointers” on page 187 in Chapter 4).

Variables and Parameters

A variable represents a storage location that has a modifiable value. A variable can
be a local variable, parameter (value, ref, or out), field (instance or static), or array
element.

The Stack and the Heap

The stack and the heap are the places where variables and constants reside. Each has
very different lifetime semantics.

Stack

The stack is a block of memory for storing local variables and parameters. The stack
logically grows and shrinks as a function is entered and exited. Consider the follow-
ing method (to avoid distraction, input argument checking is ignored):

static int Factorial (int x)

{
if (x == 0) return 1;
return x * Factorial (x-1);

}

This method is recursive, meaning that it calls itself. Each time the method is
entered, a new int is allocated on the stack, and each time the method exits, the int
is deallocated.

Heap

The heap is a block of memory in which objects (i.e., reference-type instances)
reside. Whenever a new object is created, it is allocated on the heap, and a reference
to that object is returned. During a program’s execution, the heap starts filling up as
new objects are created. The runtime has a garbage collector that periodically deal-
locates objects from the heap, so your program does not run out of memory. An
object is eligible for deallocation as soon as it’s not referenced by anything that’s
itself “alive”

In the following example, we start by creating a StringBuilder object referenced by
the variable ref1, and then write out its content. That StringBuilder object is then
immediately eligible for garbage collection, because nothing subsequently uses it.

42 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Then, we create another StringBuilder referenced by variable ref2, and copy that
reference to ref3. Even though ref2 is not used after that point, ref3 keeps the
same StringBuilder object alive—ensuring that it doesn’'t become eligible for col-
lection until we've finished using ref3:

using System;
using System.Text;

class Test
{
static void Main()
{
StringBuilder refl = new StringBuilder ("object1");
Console.WriteLine (ref1l);
// The StringBuilder referenced by refl is now eligible for GC.
StringBuilder ref2 = new StringBuilder ("object2");
StringBuilder ref3 = ref2;
// The StringBuilder referenced by ref2 is NOT yet eligible for GC.
Console.WriteLine (ref3); // object2
}
}

Value-type instances (and object references) live wherever the variable was declared.
If the instance was declared as a field within a class type, or as an array element, that
instance lives on the heap.

You can't explicitly delete objects in C#, as you can in C++. An
unreferenced object is eventually collected by the garbage col-
lector.

The heap also stores static fields. Unlike objects allocated on the heap (which can
get garbage-collected), these live until the application domain is torn down.

Definite Assignment

C# enforces a definite assignment policy. In practice, this means that outside of an
unsafe context, it's impossible to access uninitialized memory. Definite assignment
has three implications:

o Local variables must be assigned a value before they can be read.

o Function arguments must be supplied when a method is called (unless marked
as optional—see “Optional parameters” on page 48).

o All other variables (such as fields and array elements) are automatically initial-
ized by the runtime.

For example, the following code results in a compile-time error:

Variables and Parameters | 43

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

static void Main()

{
int x;
Console.WriteLine (x); // Compile-time error

}

Fields and array elements are automatically initialized with the default values for
their type. The following code outputs 0, because array elements are implicitly
assigned to their default values:

static void Main()

{
int[] ints = new int[2];
Console.WriteLine (ints[0]); // 0
}

The following code outputs 0, because fields are implicitly assigned a default value:

class Test

{
static int x;
static void Main() { Console.WriteLine (x); } // ©

}

Default Values

All type instances have a default value. The default value for the predefined types is
the result of a bitwise zeroing of memory:

Type Default value

All reference types null
All numeric and enum types 0
char type "\o'
bool type false

You can obtain the default value for any type with the default keyword (in practice,
this is useful with generics which we'll cover in Chapter 3):

decimal d = default (decimal);

The default value in a custom value type (i.e., struct) is the same as the default
value for each field defined by the custom type.

Parameters

A method has a sequence of parameters. Parameters define the set of arguments
that must be provided for that method. In this example, the method Foo has a single
parameter named p, of type int:

static voild Foo (int p)

{
p=p+1; // Increment p by 1

44 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine (p); // Write p to screen

}
static void Main()
{
Foo (8); // Call Foo with an argument of 8
}
=
You can control how parameters are passed with the ref and out modifiers: w2
e 0
ag®
Parameter modifier Passed by Variable must be definitely assigned @ ™
(None) Value Going in
ref Reference Going in
out Reference Going out

Passing arguments by value

By default, arguments in C# are passed by value, which is by far the most common
case. This means a copy of the value is created when passed to the method:

class Test
{
static void Foo (int p)
{
p=p+1; // Increment p by 1
Console.WriteLine (p); /] Write p to screen
}
static void Main()
{
int x = 8;
Foo (x); // Make a copy of x
Console.WriteLine (x); /] x will still be 8
}
}

Assigning p a new value does not change the contents of x, since p and x reside in
different memory locations.

Passing a reference-type argument by value copies the reference, but not the object.
In the following example, Foo sees the same StringBuilder object that Main instan-
tiated, but has an independent reference to it. In other words, sb and fooSB are sepa-
rate variables that reference the same StringBuilder object:

class Test
{
static void Foo (StringBuilder fooSB)
{
fooSB.Append ("test");
fooSB = null;

}

Variables and Parameters | 45

www.it-ebooks.info

http://www.it-ebooks.info/

static void Main()

{

StringBuilder sb = new StringBuilder();

Foo (sb);

Console.WriteLine (sb.ToString()); /] test
}

}

Because fooSB is a copy of a reference, setting it to null doesn’t make sb null. (If,
however, fooSB was declared and called with the ref modifier, sb would become

null.)
The ref modifier

To pass by reference, C# provides the ref parameter modifier. In the following
example, p and x refer to the same memory locations:

class Test
{
static void Foo (ref int p)
{
p=p+1; // Increment p by 1
Console.WritelLine (p); // Write p to screen
}
static void Main()
{
int x = 8;
Foo (ref x); // Ask Foo to deal directly with x
Console.WriteLine (x); // x is now 9
}

}

Now assigning p a new value changes the contents of x. Notice how the ref modifier
is required both when writing and when calling the method.* This makes it very
clear what’s going on.

The ref modifier is essential in implementing a swap method (later, in “Generics”
on page 114 in Chapter 3, we will show how to write a swap method that works with

any type):

class Test
{
static void Swap (ref string a, ref string b)
{
string temp = a;
a = b;
b = temp;
}

4 An exception to this rule is when calling COM methods. We discuss this in Chapter 25.

46 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

static void Main()

{
string x = "Penn";
string y = "Teller";
Swap (ref x, ref y);
Console.WriteLine (x); /] Teller
Console.WriteLine (y); // Penn

} &
W
) 289
A parameter can be passed by reference or by value, regardless a2
of whether the parameter type is a reference type or a value o
type.
The out modifier

An out argument is like a ref argument, except it:

« Need not be assigned before going into the function

o Must be assigned before it comes out of the function

The out modifier is most commonly used to get multiple return values back from a
method. For example:

class Test
{
static voild Split (string name, out string firstNames,
out string lastName)

{
int 1 = name.LastIndexOf (' ');
firstNames = name.Substring (0, i);
lastName = name.Substring (i + 1);
}

static voild Main()

{
string a, b;
Split ("Stevie Ray Vaughan", out a, out b);
Console.WriteLine (a); // Stevie Ray
Console.WriteLine (b); // Vaughan

}

}

Like a ref parameter, an out parameter is passed by reference.

Implications of passing by reference

When you pass an argument by reference, you alias the storage location of an exist-
ing variable rather than create a new storage location. In the following example, the
variables x and y represent the same instance:

class Test

{

Variables and Parameters | 47

www.it-ebooks.info

http://www.it-ebooks.info/

static int x;
static void Main() { Foo (out x); }

static voild Foo (out int y)

{
Console.WriteLine (x); /] x is 0
y = 1; // Mutate y
Console.WriteLine (x); /] x is 1
}
}
The params modifier

The params parameter modifier may be specified on the last parameter of a method
so that the method accepts any number of arguments of a particular type. The
parameter type must be declared as an array. For example:

class Test

{

static int Sum (params int[] ints)

{
int sum = 0;
for (int 1 = 0; 1 < ints.Length; i++)

sum += ints[i]; // Increase sum by ints[1i]
return sum;
}
static void Main()
{
int total = Sum (1, 2, 3, 4);
Console.WriteLine (total); // 10
}

}

You can also supply a params argument as an ordinary array. The first line in Main is
semantically equivalent to this:

int total = Sum (new int[] { 1, 2, 3, 4});

Optional parameters

From C# 4.0, methods, constructors, and indexers (Chapter 3) can declare optional
parameters. A parameter is optional if it specifies a default value in its declaration:

void Foo (int x = 23) { Console.WriteLine (x); }
Optional parameters may be omitted when calling the method:
Foo(); /] 23

The default argument of 23 is actually passed to the optional parameter x—the com-
piler bakes the value 23 into the compiled code at the calling side. The preceding call
to Foo is semantically identical to:

Foo (23);

48 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

because the compiler simply substitutes the default value of an optional parameter
wherever it is used.

Adding an optional parameter to a public method that’s called
from another assembly requires recompilation of both assem-
blies—just as though the parameter were mandatory.

The default value of an optional parameter must be specified by a constant expres-
sion, or a parameterless constructor of a value type. Optional parameters cannot be
marked with ref or out.

Mandatory parameters must occur before optional parameters in both the method
declaration and the method call (the exception is with params arguments, which still
always come last). In the following example, the explicit value of 1 is passed to x,
and the default value of 0 is passed to y:

void Foo (int x = 0, int y = 0) { Console.WriteLine (x + ", " + y); }

void Test()

{
Foo(1); /] 1, 0
}

To do the converse (pass a default value to x and an explicit value to y), you must
combine optional parameters with named arguments.

Named arguments

Rather than identifying an argument by position, you can identify an argument by
name. For example:

void Foo (int x, int y) { Console.WriteLine (x + ", " +vy); }
voild Test()

{
Foo (x:1, y:2); // 1, 2
}

Named arguments can occur in any order. The following calls to Foo are semanti-
cally identical:

Foo (x:1, y:2);
Foo (y:2, x:1);

A subtle difference is that argument expressions are evaluated
in the order in which they appear at the calling site. In general,
this makes a difference only with interdependent side-
effecting expressions such as the following, which writes 6, 1:

int a = 0;

Foo (y: ++a, x: --a); [/ ++a is evaluated first
Of course, you would almost certainly avoid writing such code
in practice!

Variables and Parameters | 49

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

You can mix named and positional arguments:
Foo (1, y:2);

However, there is a restriction: positional arguments must come before named
arguments. So we couldn’t call Foo like this:

Foo (x:1, 2); // Compile-time error

Named arguments are particularly useful in conjunction with optional parameters.
For instance, consider the following method:

void Bar (int a =0, int b =0, intc =0, intd=0) { ... }
We can call this supplying only a value for d as follows:
Bar (d:3);

This is particularly useful when calling COM APIs, and is discussed in detail in
Chapter 25.

var—Implicitly Typed Local Variables

It is often the case that you declare and initialize a variable in one step. If the com-
piler is able to infer the type from the initialization expression, you can use the key-
word var (introduced in C# 3.0) in place of the type declaration. For example:

var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

This is precisely equivalent to:

string x = "hello";
System.Text.StringBuilder y = new System.Text.StringBuilder();
float z = (float)Math.PI;

Because of this direct equivalence, implicitly typed variables are statically typed. For
example, the following generates a compile-time error:

var x = 5;
x = "hello"; // Compile-time error; x is of type int

var can decrease code readability in the case when you can’t
deduce the type purely by looking at the variable declaration.
For example:

Random r = new Random();
var x = r.Next();

What type is x?

In “Anonymous Types” on page 174 in Chapter 4, we will describe a scenario where
the use of var is mandatory.

50 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Expressions and Operators

An expression essentially denotes a value. The simplest kinds of expressions are con-
stants and variables. Expressions can be transformed and combined using opera-
tors. An operator takes one or more input operands to output a new expression.

Here is an example of a constant expression:
12

We can use the * operator to combine two operands (the literal expressions 12 and
30), as follows:

12 * 30

Complex expressions can be built because an operand may itself be an expression,
such as the operand (12 * 30) in the following example:

1+ (12 * 30)
Operators in C# can be classed as unary, binary, or ternary—depending on the
number of operands they work on (one, two, or three). The binary operators always
use infix notation, where the operator is placed between the two operands.

Primary Expressions

Primary expressions include expressions composed of operators that are intrinsic to
the basic plumbing of the language. Here is an example:

Math.Log (1)
This expression is composed of two primary expressions. The first expression per-
forms a member-lookup (with the . operator), and the second expression performs
a method call (with the () operator).
Void Expressions
A void expression is an expression that has no value. For example:
Console.WriteLine (1)

A void expression, since it has no value, cannot be used as an operand to build more
complex expressions:

1 + Console.WriteLine (1) // Compile-time error

Assignment Expressions

An assignment expression uses the = operator to assign the result of another expres-
sion to a variable. For example:

XxX=x%*5

Expressions and Operators | 51

www.it-ebooks.info

W
]
=,
0
0

abenbue]

#D

http://www.it-ebooks.info/

An assignment expression is not a void expression—it has a value of whatever was
assigned, and so can be incorporated into another expression. In the following
example, the expression assigns 2 to x and 10 to y:

y=5%*(x=2)
This style of expression can be used to initialize multiple values:
a=b=c=d=0

The compound assignment operators are syntactic shortcuts that combine assign-
ment with another operator. For example:

X *= 2 // equivalent to x = x * 2
X <<= 1 /] equivalent to x = x << 1

(A subtle exception to this rule is with events, which we describe in Chapter 4: the
+= and -= operators here are treated specially and map to the event’s add and remove
accessors.)

Operator Precedence and Associativity

When an expression contains multiple operators, precedence and associativity deter-
mine the order of their evaluation. Operators with higher precedence execute before
operators of lower precedence. If the operators have the same precedence, the oper-
ator’s associativity determines the order of evaluation.

Precedence
The following expression:
1+2*3
is evaluated as follows because * has a higher precedence than +:

1+ (2 *3)

Left-associative operators

Binary operators (except for assignment, lambda, and null-coalescing operators) are
left-associative; in other words, they are evaluated from left to right. For example,
the following expression:

8/4/2
is evaluated as follows due to left associativity:
(8/4)/2 /1
You can insert parentheses to change the actual order of evaluation:

8/Ca/2) /4

52 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Right-associative operators

The assignment operators, lambda, null-coalescing, and conditional operator are
right-associative; in other words, they are evaluated from right to left. Right associa-
tivity allows multiple assignments such as the following to compile:

X =y =3;

This first assigns 3 to y, and then assigns the result of that expression (3) to x.

W
]
i
(2]
0

abenbue
#D

Operator Table

Table 2-3 lists C#’s operators in order of precedence. Operators in the same category
have the same precedence. We explain user-overloadable operators in “Operator
Overloading” on page 168 in Chapter 4.

Table 2-3. C# operators (categories in order of precedence)

Category Operator Operator name Example User-
symbol overloadable
Primary . Member access X.y No
-> (unsafe) Pointer to struct X->y No
O Function call x() No
[] Array/index a[x] Via indexer
++ Post-increment X++ Yes
- Post-decrement X—— Yes
new (reate instance new Foo() No
stackalloc Unsafe stack stackalloc(10) No
allocation
typeof Get type from typeof(int) No
identifier
nameof Get name of nameof(x) No
identifier
checked Integral overflow checked(x) No
check on
unchecked Integral overflow unchecked(x) No
check off
default Default value default(char) No
Unary awatit Await await myTask No
sizeof Get size of struct sizeof(int) No
7. Null-conditional x?.y No
+ Positive value of +X Yes
- Negative value of -X Yes
! Not X Yes
Expressions and Operators | 53

www.it-ebooks.info

http://www.it-ebooks.info/

Category Operator Operator name Example User-

symbol overloadable
~ Bitwise complement ~x Yes
++ Pre-increment ++X Yes
- Pre-decrement --X Yes
O Cast (int)x No
* (unsafe) Value at address *X No
& (unsafe) Address of value &x No
Multiplicative * Multiply X *y Yes
/ Divide x /[y Yes
% Remainder X%y Yes
Additive + Add X +y Yes
- Subtract X -y Yes
Shift << Shift left X << 1 Yes
>> Shift right x >> 1 Yes
Relational < Less than X <y Yes
> Greater than X >y Yes
<= Lessthanorequalto x <=y Yes
>= Greater than orequal x >= y Yes
to
is Typeisorissubclass x is y No
of
as Type conversion X as 'y No
Equality == Equals X ==y Yes
1= Not equals X l=y Yes
Logical And & And X &y Yes
Logical Xor " Exclusive Or XNy Yes
Logical Or | or x|y Yes
Conditional And && Conditional And X && 'y Via &
Conditional Or | Conditional Or x ||y Via |
Null-coalescing 22 Null-coalescing X 2?7y No
Conditional ?: Conditional isTrue ? thenThis No
Value : elseThis
Value
Assignment& = Assign X =y No
Lambda
*= Multiply self by X *= 2 Via *

54 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Category Operator Operator name Example User-

symbol overloadable
/= Divide self by X [=2 Via /

+= Add to self X += 2 Via +

-= Subtract from self X -= 2 Via -

<<= Shift self left by X <<= 2 Via <<

>>= Shift self right by X >>= 2 Via >>

&= And self by X &= 2 Via &

A= Exclusive-Orselfby ~ x ~= 2 Via »

= Or self by X |=2 Via |

= Lambda X =X+ 1 No

Null Operators

C# provides two operators to make it easier to work with nulls: the null-coalescing
operator and the null-conditional operator.

Null-Coalescing Operator

The ?? operator is the null-coalescing operator. It says “If the operand is non-null,
give it to me; otherwise, give me a default value” For example:

null;
sl ?? "nothing"; // s2 evaluates to "nothing"

string si1
string s2

If the left-hand expression is non-null, the right-hand expression is never evaluated.
The null-coalescing operator also works with nullable value types (see “Nullable
Types” on page 162 in Chapter 4).

Null-conditional operator (C# 6)

The ?. operator is the null-conditional or “Elvis” operator, and is new to C# 6. It
allows you to call methods and access members just like the standard dot operator,
except that if the operand on the left is null, the expression evaluates to null instead
of throwing a NullReferenceException:

System.Text.StringBuilder sb = null;
string s = sb?2.ToString(); // No error; s instead evaluates to null

The last line is equivalent to:
string s = (sb == null ? null : sb.ToString());

Upon encountering a null, the Elvis operator short-circuits the remainder of the
expression. In the following example, s evaluates to null, even with a standard dot
operator between ToString() and ToUpper():

Null Operators | 55

www.it-ebooks.info

W
]
=,
(2]
0

abenbue

#D

http://www.it-ebooks.info/

System.Text.StringBuilder sb = null;
string s = sb?2.ToString().ToUpper(); // s evaluates to null without error

Repeated use of Elvis is necessary only if the operand immediately to its left may be
null. The following expression is robust to both x being null and x.y being null:

x?.y?.z
and is equivalent to the following (except that x.y is evaluated only once):

x == null ? null
¢ (x.y == null ? null : x.y.z)

The final expression must be capable of accepting a null. The following is illegal:

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; // Illegal : int cannot be null

We can fix this with the use of nullable value types (see “Nullable Types” on page
162 in Chapter 4): If you're already familiar with nullable types, here’s a preview:

int? length = sb?.ToString().Length; // OK : int? can be null
You can also use the null-conditional operator to call a void method:
someObject?.SomeVoidMethod();

If someObject is null, this becomes a “no-operation” rather than throwing a NullRe
ferenceException.

The null-conditional operator can be used with the commonly used type members
that we describe in Chapter 3, including methods, fields, properties and indexers. It
also combines well with the null-coalescing operator:

System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing"; // s evaluates to "nothing"

The last line is equivalent to:

string s = (sb == null ? "nothing" : sb.ToString());

Statements

Functions comprise statements that execute sequentially in the textual order in
which they appear. A statement block is a series of statements appearing between
braces (the {} tokens).

Declaration Statements

A declaration statement declares a new variable, optionally initializing the variable
with an expression. A declaration statement ends in a semicolon. You may declare
multiple variables of the same type in a comma-separated list. For example:

string someWord = "rosebud";
int someNumber = 42;
bool rich = true, famous = false;

56 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

A constant declaration is like a variable declaration, except that it cannot be
changed after it has been declared, and the initialization must occur with the decla-
ration (see “Constants” on page 83 in Chapter 3):

const double ¢ = 2.99792458E08;
c += 10; // Compile-time Error
Local variables

The scope of a local variable or local constant extends throughout the current block.
You cannot declare another local variable with the same name in the current block
or in any nested blocks. For example:

static void Main()

{
int x;
{
int y;
int x; // Error - x already defined
}
{
int y; // OK - y not in scope
}
Console.Write (y); // Error - y is out of scope
}

A variable’s scope extends in both directions throughout its
code block. This means that if we moved the initial declara-
tion of x in this example to the bottom of the method, wed get
the same error. This is in contrast to C++ and is somewhat
peculiar, given that it's not legal to refer to a variable or con-
stant before it’s declared.

Expression Statements

Expression statements are expressions that are also valid statements. An expression
statement must either change state or call something that might change state.
Changing state essentially means changing a variable. The possible expression state-
ments are:

« Assignment expressions (including increment and decrement expressions)

o Method call expressions (both void and nonvoid)

« Object instantiation expressions

Here are some examples:

// Declare variables with declaration statements:
string s;

int x, y;

System.Text.StringBuilder sb;

/] Expression statements

Statements | 57

www.it-ebooks.info

W
]
=,
0
0

abenbue

#D

http://www.it-ebooks.info/

x =14+ 2; // Assignment expression

X++; // Increment expression

y = Math.Max (x, 5); // Assignment expression
Console.WriteLine (y); // Method call expression

sb = new StringBuilder(); // Assignment expression

new StringBuilder(); // Object instantiation expression

When you call a constructor or a method that returns a value, youre not obliged to
use the result. However, unless the constructor or method changes state, the state-
ment is completely useless:

new StringBuilder(); // Legal, but useless

new string ('c', 3); // Legal, but useless

x.Equals (y); // Legal, but useless
Selection Statements

C# has the following mechanisms to conditionally control the flow of program exe-
cution:

o Selection statements (1f, switch)

o Conditional operator (?:)

o Loop statements (while, do..while, for, foreach)

This section covers the simplest two constructs: the if-else statement and the
switch statement.

The if statement
An if statement executes a statement if a bool expression is true. For example:

if (5 <2 *3)
Console.WriteLine ("true"); /] true

The statement can be a code block:

if (5 <2 * 3)

{
Console.WriteLine ("true");
Console.WriteLine ("Let's move on!");

}
The else clause
An if statement can optionally feature an else clause:
if (2 + 2 == 5)
Console.WriteLine ("Does not compute");

else
Console.WriteLine ("False"); // False

Within an else clause, you can nest another if statement:

58 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

if (2 + 2 == 5)
Console.WriteLine ("Does not compute");
else
if (2 +2==24)
Console.WriteLine ("Computes"); // Computes

Changing the flow of execution with braces

An else clause always applies to the immediately preceding if statement in the
statement block. For example:

if (true)
if (false)
Console.WriteLine();
else
Console.WriteLine ("executes");

This is semantically identical to:

if (true)
{
if (false)
Console.WriteLine();
else
Console.WriteLine ("executes");

}

We can change the execution flow by moving the braces:

if (true)
{
if (false)
Console.WriteLine();

3

else
Console.WriteLine ("does not execute");

With braces, you explicitly state your intention. This can improve the readability of
nested if statements—even when not required by the compiler. A notable exception
is with the following pattern:

static void TellMeWhatICanDo (int age)
{
if (age >= 35)
Console.WriteLine ("You can be president!");
else if (age >= 21)
Console.WriteLine ("You can drink!");
else if (age >= 18)
Console.WriteLine ("You can vote!");
else
Console.WriteLine ("You can wait!");

}

Here, we've arranged the if and else statements to mimic the “elseif” construct of
other languages (and C#s #elif preprocessor directive). Visual Studios auto-
formatting recognizes this pattern and preserves the indentation. Semantically,

Statements | 59

www.it-ebooks.info

W
]
=,
0
0

abenbue]

#D

http://www.it-ebooks.info/

though, each if statement following an else statement is functionally nested within
the else clause.

The switch statement

switch statements let you branch program execution based on a selection of possi-
ble values that a variable may have. switch statements may result in cleaner code
than multiple if statements, since switch statements require an expression to be
evaluated only once. For instance:

static void ShowCard(int cardNumber)
{
switch (cardNumber)
{
case 13:
Console.WriteLine ("King");
break;
case 12:
Console.WriteLine ("Queen");
break;
case 11:
Console.WriteLine ("Jack");
break;
case -1: // Joker is -1
goto case 12; // In this game joker counts as queen
default: /] Executes for any other cardNumber
Console.WriteLine (cardNumber);
break;
}
}

You can only switch on an expression of a type that can be statically evaluated,
which restricts it to the built-in integral types, bool, and enum types (and nullable
versions of these—see Chapter 4), and string type.

At the end of each case clause, you must say explicitly where execution is to go next,
with some kind of jump statement. Here are the options:

o break (jumps to the end of the switch statement)

o goto case x (jumps to another case clause)

o goto default (jumps to the default clause)

« Any other jump statement—namely, return, throw, continue, or goto label

When more than one value should execute the same code, you can list the common
cases sequentially:

switch (cardNumber)
{

case 13:

case 12:

case 11:

60 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine ("Face card");
break;

default:
Console.WriteLine ("Plain card");
break;

}

This feature of a switch statement can be pivotal in terms of producing cleaner
code than multiple 1f-else statements.

Iteration Statements

C# enables a sequence of statements to execute repeatedly with the while, do-while,
for, and foreach statements.

while and do-while loops

while loops repeatedly execute a body of code while a bool expression is true. The
expression is tested before the body of the loop is executed. For example:

int 1 = 0;

while (1 < 3)

{
Console.WriteLine (1i);
1++;

}

OUTPUT:
0
1
2

do-while loops differ in functionality from while loops only in that they test the
expression after the statement block has executed (ensuring that the block is always
executed at least once). Here’s the preceding example rewritten with a do-while
loop:

int 1 = 0;

do

{
Console.WriteLine (i);
1++;

}

while (1 < 3);

for loops

for loops are like while loops with special clauses for initialization and iteration of a
loop variable. A for loop contains three clauses as follows:

for (initialization-clause; condition-clause; iteration-clause)
statement-or-statement-block

Statements | 61

www.it-ebooks.info

W
]
=,
[2]
0

abenbue

#D

http://www.it-ebooks.info/

Initialization clause
Executed before the loop begins; used to initialize one or more iteration
variables

Condition clause
The bool expression that, while true, will execute the body

Iteration clause
Executed after each iteration of the statement block; used typically to
update the iteration variable

For example, the following prints the numbers 0 through 2:

for (int 1 = 0; 1 < 3; i++)
Console.WriteLine (i);

The following prints the first 10 Fibonacci numbers (where each number is the sum
of the previous two):

for (int 1 = 0, prevFib = 1, curFib = 1; 1 < 10; i++)
{

Console.WriteLine (prevFib);

int newFib = prevFib + curFib;

prevFib = curFib; curFib = newFib;

}

Any of the three parts of the for statement may be omitted. One can implement an
infinite loop such as the following (though while(true) may be used instead):

for (53)
Console.WriteLine ("interrupt me");

foreach loops

The foreach statement iterates over each element in an enumerable object. Most of
the types in C# and the NET Framework that represent a set or list of elements are
enumerable. For example, both an array and a string are enumerable. Here is an
example of enumerating over the characters in a string, from the first character
through to the last:

foreach (char c¢ in "beer") // c is the iteration variable
Console.WriteLine (c);

OUTPUT:
b

e
e
r

We define enumerable objects in “Enumeration and Iterators” on page 156 in Chap-
ter 4.

62 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Jump Statements
The C# jump statements are break, continue, goto, return, and throw.

Jump statements obey the reliability rules of try statements
(see “try Statements and Exceptions” on page 148 in Chap-
ter 4). This means that:

o A jump out of a try block always executes the try’s
finally block before reaching the target of the jump.

W
]
=,
0
0

abenbue
#D

o A jump cannot be made from the inside to the outside of
a finally block (except via throw).

The break statement

The break statement ends the execution of the body of an iteration or switch
statement:

int x = 0;
while (true)

if (x++ > 5)
break ; // break from the loop
}

// execution continues here after break

The continue statement

The continue statement forgoes the remaining statements in a loop and makes an
early start on the next iteration. The following loop skips even numbers:

for (int 1 = 0; 1 < 10; i++)

{
if ((1 % 2) == 0) // If 1 is even,
continue; // continue with next iteration
Console.Write (1 + " ");
}

OUTPUT: 13579

The goto statement

The goto statement transfers execution to another label within a statement block.
The form is as follows:

goto statement-label;
Or, when used within a switch statement:

goto case case-constant;

Statements | 63

www.it-ebooks.info

http://www.it-ebooks.info/

A label is a placeholder in a code block that precedes a statement, denoted with a
colon suftix. The following iterates the numbers 1 through 5, mimicking a for loop:
int 1 = 1;
startLoop:
if (1 <= 5)
{
Console.Write (1 + " ");
1++;
goto startLoop;
}

OUTPUT: 123 45

The goto case case-constant transfers execution to another case in a switch
block (see “The switch statement” on page 60).

The return statement

The return statement exits the method and must return an expression of the meth-
od’s return type if the method is nonvoid:

static decimal AsPercentage (decimal d)

{

decimal p = d * 100m;

return p; // Return to the calling method with value
}

A return statement can appear anywhere in a method (except in a finally block).

The throw statement

The throw statement throws an exception to indicate an error has occurred (see “try
Statements and Exceptions” on page 148 in Chapter 4):

if (w == null)
throw new ArgumentNullException (...);

Miscellaneous Statements

The using statement provides an elegant syntax for calling Dispose on objects that
implement IDisposable, within a finally block (see “try Statements and Excep-
tions” on page 148 in Chapter 4 and “IDisposable, Dispose, and Close” on page 499
in Chapter 12).

C# overloads the using keyword to have independent mean-
ings in different contexts. Specifically, the using directive is
different from the using statement.

The lock statement is a shortcut for calling the Enter and Exit methods of the Mont
tor class (see Chapter 14 and Chapter 23).

64 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Namespaces

A namespace is a domain for type names. Types are typically organized into hier-
archical namespaces, making them easier to find and avoiding conflicts. For exam-
ple, the RSA type that handles public key encryption is defined within the following
namespace:

System.Security.Cryptography

A namespace forms an integral part of a type’s name. The following code calls RSA’s
Create method:

System.Security.Cryptography.RSA rsa =
System.Security.Cryptography.RSA.Create();

Namespaces are independent of assemblies, which are units of
deployment such as an .exe or .dll (described in Chapter 18).

Namespaces also have no impact on member visibility—pub
lic, internal, private, and so on.

The namespace keyword defines a namespace for types within that block. For exam-
ple:

namespace Outer.Middle.Inner

{
class Class1 {}
class Class2 {}

}

The dots in the namespace indicate a hierarchy of nested namespaces. The code that
follows is semantically identical to the preceding example:

namespace Outer

{

namespace Middle

{

namespace Inner
{
class Class1 {}
class Class2 {}
}
}
}

You can refer to a type with its fully qualified name, which includes all namespaces
from the outermost to the innermost. For example, we could refer to Class1 in the
preceding example as Outer .Middle.Inner.Class1.

Types not defined in any namespace are said to reside in the global namespace. The
global namespace also includes top-level namespaces, such as Outer in our example.

Namespaces | 65

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

The using Directive

The using directive imports a namespace, allowing you to refer to types without
their fully qualified names. The following imports the previous example’s Outer.Mid
dle.Inner namespace:

using Outer.Middle.Inner;

class Test
{
static void Main()
{
Classl c; // Don't need fully qualified name
}
}

It’s legal (and often desirable) to define the same type name in
different namespaces. However, youd typically do so only if it
was unlikely for a consumer to want to import both namespa-
ces at once. A good example, from the .NET Framework, is
the TextBox class which is defined both in System.Win
dows.Controls (WPF) and System.Web.UI.WebControls
(ASPNET).

using static (C# 6)

From C# 6, you can import not just a namespace, but a specific type, with the using
static directive. All static members of that type can then be used without being
qualified with the type name. In the following example, we call the Console class’s
static WriteLine method:

using static System.Console;

class Test

{
static void Main() { WriteLine ("Hello"); }

}

The using static directive imports all accessible static members of the type,
including fields, properties and nested types (Chapter 3). You can also apply this
directive to enum types (Chapter 3), in which case their members are imported. So,
if we import the following enum type:

using static System.Windows.Visibility;
we can specify Hidden instead of Visibility.Hidden:
var textBox = new TextBox { Visibility = Hidden }; // XAML-style

Should an ambiguity arise between multiple static imports, the C# compiler is not
smart enough to infer the correct type from the context, and will generate an error.

66 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

Rules Within a Namespace

Name scoping

Names declared in outer namespaces can be used unqualified within inner name-
spaces. In this example, Class1 does not need qualification within Inner:

namespace Outer

{
class Classi {}

namespace Inner

{
class Class2 : Class1 {}

}
}

If you want to refer to a type in a different branch of your namespace hierarchy, you
can use a partially qualified name. In the following example, we base SalesReport
on Common.ReportBase:

namespace MyTradingCompany

{

namespace Common

{
class ReportBase {}

}

namespace ManagementReporting

{

class SalesReport : Common.ReportBase {}
}
}

Name hiding

If the same type name appears in both an inner and an outer namespace, the inner
name wins. To refer to the type in the outer namespace, you must qualify its name.
For example:

namespace Outer
class Foo { }

namespace Inner

{

class Foo { }

class Test

{
Foo f1; // = Outer.Inner.Foo
Outer.Foo f2; // = Outer.Foo

}

Namespaces | 67

www.it-ebooks.info

w
1]
@,
o
0

abenbuen]

#D

http://www.it-ebooks.info/

}
All type names are converted to fully qualified names at com-
pile time. Intermediate language (IL) code contains no unqua-
lified or partially qualified names.
Repeated namespaces

You can repeat a namespace declaration, as long as the type names within the name-
spaces don't conflict:

namespace Outer.Middle.Inner

{
class Classi1 {}

}

namespace Outer.Middle.Inner

{
class Class2 {}

}

We can even break the example into two source files such that we could compile
each class into a different assembly.

Source file 1:

namespace Outer.Middle.Inner

{
class Class1 {}

}

Source file 2:

namespace Outer.Middle.Inner

{
class Class2 {}

}

Nested using directive

You can nest a using directive within a namespace. This allows you to scope the
using directive within a namespace declaration. In the following example, Class1 is
visible in one scope, but not in another:

namespace N1

{
class Class1 {}

}

namespace N2

{

using N1;

class Class2 : Classi1 {}

68 | Chapter2: C# Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

}

namespace N2

{
class Class3 : Classl {} // Compile-time error

}

Aliasing Types and Namespaces

Importing a namespace can result in type-name collision. Rather than importing
the whole namespace, you can import just the specific types you need, giving each
type an alias. For example:

using PropertyInfo2 = System.Reflection.PropertyInfo;
class Program { PropertyInfo2 p; }

An entire namespace can be aliased, as follows:

using R = System.Reflection;
class Program { R.PropertyInfo p; }

Advanced Namespace Features

Extern

Extern aliases allow your program to reference two types with the same fully quali-
fied name (i.e., the namespace and type name are identical). This is an unusual sce-
nario and can occur only when the two types come from different assemblies. Con-
sider the following example.

Library 1:
// csc target:library /out:Widgets1l.dll widgetsvi.cs

namespace Widgets

{
public class Widget {}

3
Library 2:

// csc target:library /out:Widgets2.dll widgetsv2.cs

namespace Widgets

{
public class Widget {}

}

Application:
// csc [r:Widgets1.dll /r:Widgets2.dll application.cs
using Widgets;

class Test

{

Namespaces | 69

www.it-ebooks.info

W
]
@,
(2]
0

abenbue

#D

http://www.it-ebooks.info/

static void Main()

{
Widget w = new Widget();

}
}

The application cannot compile, because Widget is ambiguous. Extern aliases can
resolve the ambiguity in our application:

// csc [r:Wi=Widgets1.dll /r:W2=Widgets2.dll application.cs

extern alias Wi;
extern alias W2;

class Test
{
static void Main()
{
W1l.Widgets.Widget wl = new W1.Widgets.Widget();
W2.Widgets.Widget w2 = new W2.Widgets.Widget();
}
}

Namespace alias qualifiers

As we mentioned earlier, names in inner namespaces hide names in outer namespa-
ces. However, sometimes even the use of a fully qualified type name does not resolve
the conflict. Consider the following example:

namespace N

{
class A
{
public class B {} // Nested type
static void Main() { new A.B(); } // Instantiate class B
}
}
namespace A
{
class B {}
}

The Main method could be instantiating either the nested class B, or the class B
within the namespace A. The compiler always gives higher precedence to identifiers
in the current namespace; in this case, the nested B class.

70 | Chapter2: G Language Basics

www.it-ebooks.info

http://www.it-ebooks.info/

To resolve such conflicts, a namespace name can be qualified, relative to one of the
following:

o The global namespace—the root of all namespaces (identified with the contex-
tual keyword global)

o The set of extern aliases

The :: token is used for namespace alias qualification. In this example, we qualify
using the global namespace (this is most commonly seen in auto-generated code to
avoid name conflicts):

namespace N

{

class A

{
static void Main()
{
System.Console.WriteLine (new A.B());
System.Console.WriteLine (new global::A.B());
}

public class B {}
}
}

namespace A
{

class B {}
}

Here is an example of qualifying with an alias (adapted from the example in
“Extern” on page 69):

extern alias Wi1;
extern alias W2;
class Test
{
static void Main()
{
W1::Widgets.Widget wl = new W1::Widgets.Widget();
W2::Widgets.Widget w2 = new W2::Widgets.Widget();
}
}

Namespaces | 71

www.it-ebooks.info

W
]
@,
0
0

abenbue

#D

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Types in C#

In this chapter, we will delve into types and type members.

Classes

A class is the most common kind of reference type. The simplest possible class dec-
laration is as follows:

class YourClassName
{
}

A more complex class optionally has the following:

Preceding the keyword class Attributes and class modifiers. The non-nested class modifiers are public,
internal, abstract, sealed, static, unsafe, and partial

Following YourClassName Generic type parameters, a base class, and interfaces

Within the braces Class members (these are methods, properties, indexers, events, fields,
constructors, overloaded operators, nested types, and a finalizer)

This chapter covers all of these constructs except attributes, operator functions, and
the unsafe keyword, which are covered in Chapter 4. The following sections enu-
merate each of the class members.

73

www.it-ebooks.info

http://www.it-ebooks.info/

Fields

A field is a variable that is a member of a class or struct. For example:

class Octopus

{

string name;

public int Age = 10;
}

Fields allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifier new

Unsafe code modifier unsafe

Read-only modifier ~ readonly

Threading modifier ~ volatile

The readonly modifier

The readonly modifier prevents a field from being modified after construction. A
read-only field can be assigned only in its declaration or within the enclosing type’s
constructor.

Field initialization

Field initialization is optional. An uninitialized field has a default value (@, \0, null,
false). Field initializers run before constructors:

public int Age = 10;

Declaring multiple fields together

For convenience, you may declare multiple fields of the same type in a comma-
separated list. This is a convenient way for all the fields to share the same attributes
and field modifiers. For example:

static readonly int legs
eyes

8,
2;

Methods

A method performs an action in a series of statements. A method can receive input
data from the caller by specifying parameters and output data back to the caller by
specifying a return type. A method can specify a void return type, indicating that it

74 | Chapter3: Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

doesn’t return any value to its caller. A method can also output data back to the
caller via ref/out parameters.

A method’s signature must be unique within the type. A method’s signature compri-
ses its name and parameter types (but not the parameter names, nor the return

type).
Methods allow the following modifiers:

Static modifier static

Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed
Partial method modifier partial

Unmanaged code modifiers unsafe extern

-
<
]
(0]
0
=
(2]
*

puneald

Asynchronous code modifier async

Expression-bodied methods (C# 6)
A method that comprises a single expression, such as the following:
int Foo (int x) { return x * 2; }

can be written more tersely as an expression-bodied method. A fat arrow replaces the
braces and return keyword:

int Foo (int x) => x * 2;
Expression-bodied functions can also have a void return type:

void Foo (int x) => Console.WriteLine (x);

Overloading methods

A type may overload methods (have multiple methods with the same name), as long
as the signatures are different. For example, the following methods can all coexist in
the same type:

void Foo (int x) {...}

void Foo (double x) {...}

void Foo (int x, float y) {...}
void Foo (float x, int y) {...}

However, the following pairs of methods cannot coexist in the same type, since the
return type and the params modifier are not part of a method’s signature:

voild Foo (int x) {...}
float Foo (int x) {...} // Compile-time error

vold Goo (int[] x) {...}
vold Goo (params int[] x) {...} // Compile-time error

Classes | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Pass-by-value versus pass-by-reference

Whether a parameter is pass-by-value or pass-by-reference is also part of the signa-
ture. For example, Foo(int) can coexist with either Foo(ref int) or Foo(out
int). However, Foo(ref int) and Foo(out int) cannot coexist:

void Foo (int x) {...}

void Foo (ref int x) {...} // OK so far
void Foo (out int x) {...} // Compile-time error
Instance Constructors

Constructors run initialization code on a class or struct. A constructor is defined
like a method, except that the method name and return type are reduced to the
name of the enclosing type:

public class Panda

{
string name; // Define field
public Panda (string n) // Define constructor
{
name = n; // Initialization code (set up field)
}

}

Panda p = new Panda ("Petey"); // Call constructor

Instance constructors allow the following modifiers:

Access modifiers public internal private protected

Unmanaged code modifiers unsafe extern

Overloading constructors

A class or struct may overload constructors. To avoid code duplication, one con-
structor may call another, using the this keyword:

using System;

public class Wine

{
public decimal Price;
public int Year;
public Wine (decimal price) { Price = price; }
public Wine (decimal price, int year) : this (price) { Year = year; }

}

When one constructor calls another, the called constructor executes first.
You can pass an expression into another constructor as follows:

public Wine (decimal price, DateTime year) : this (price, year.Year) { }

76 | Chapter3: Creating Types in G

www.it-ebooks.info

http://www.it-ebooks.info/

The expression itself cannot make use of the this reference, for example, to call an
instance method. (This is enforced because the object has not been initialized by the
constructor at this stage, so any methods that you call on it are likely to fail.) It can,
however, call static methods.

Implicit parameterless constructors

For classes, the C# compiler automatically generates a parameterless public con-
structor if and only if you do not define any constructors. However, as soon as you
define at least one constructor, the parameterless constructor is no longer automati-
cally generated.

Constructor and field initialization order

We saw previously that fields can be initialized with default values in their declara-
tion:

class Player

{
int shields = 50; // Initialized first
int health = 100; // Initialized second

}

Field initializations occur before the constructor is executed and in the declaration
order of the fields.

Nonpublic constructors

Constructors do not need to be public. A common reason to have a nonpublic con-
structor is to control instance creation via a static method call. The static method
could be used to return an object from a pool rather than necessarily creating a new
object, or return various subclasses based on input arguments:

public class Classi1

Class1() {} /] Private constructor
public static Classl Create (...)
{
// Perform custom logic here to return an instance of Classil
}
}

Object Initializers

To simplify object initialization, any accessible fields or properties of an object can
be set via an object initializer directly after construction. For example, consider the
following class:

public class Bunny

{
public string Name;
public bool LikesCarrots;

Classes | 77

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

public bool LikesHumans;

public Bunny () {}
public Bunny (string n) { Name = n; }
}

Using object initializers, you can instantiate Bunny objects as follows:

/] Note parameterless constructors can omit empty parentheses
Bunny bl = new Bunny { Name="Bo", LikesCarrots=true, LikesHumans=false };
Bunny b2 = new Bunny ("Bo") { LikesCarrots=true, LikesHumans=false };

The code to construct b1 and b2 is precisely equivalent to:

Bunny templ = new Bunny(); // templ is a compiler-generated name
templ.Name = "Bo";

templ.LikesCarrots = true;

templ.LikesHumans = false;

Bunny bl = tempi;

Bunny temp2 = new Bunny ("Bo");
temp2.LikesCarrots = true;
temp2.LikesHumans = false;
Bunny b2 = temp2;

The temporary variables are to ensure that if an exception is thrown during initiali-
zation, you can’t end up with a half-initialized object.

Object initializers were introduced in C# 3.0.

Object Initializers Versus Optional Parameters

Instead of using object initializers, we could make Bunny’s constructor accept
optional parameters:

public Bunny (string name,
bool likesCarrots = false,
bool likesHumans = false)

{

Name = name;
LikesCarrots = likesCarrots;
LikesHumans = likesHumans;

}
This would allow us to construct a Bunny as follows:

Bunny b1l = new Bunny (name: "Bo",
likesCarrots: true);

An advantage of this approach is that we could make Bunny’s fields (or properties, as
we'll explain shortly) read-only if we choose. Making fields or properties read-only
is good practice when there’s no valid reason for them to change throughout the life
of the object.

78 | Chapter3: Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

The disadvantage in this approach is that each optional parameter value is baked
into the calling site. In other words, C# translates our constructor call into this:

Bunny bl = new Bunny ("Bo", true, false);

This can be problematic if we instantiate the Bunny class from another assembly and
later modify Bunny by adding another optional parameter—such as likesCats.
Unless the referencing assembly is also recompiled, it will continue to call the (now
nonexistent) constructor with three parameters and fail at runtime. (A subtler prob-
lem is that if we changed the value of one of the optional parameters, callers in other
assemblies would continue to use the old optional value until they were recom-
piled.)

Hence, you should exercise caution with optional parameters in public functions if
you want to offer binary compatibility between assembly versions.

puneald

-
<
]
(0]
7
=
(2]
*

The this Reference

The this reference refers to the instance itself. In the following example, the Marry
method uses this to set the partner’s mate field:

public class Panda

{
public Panda Mate;

public voild Marry (Panda partner)

{
Mate = partner;
partner.Mate = this;

}
}

The this reference also disambiguates a local variable or parameter from a field.
For example:

public class Test

{
string name;
public Test (string name) { this.name = name; }

}

The this reference is valid only within nonstatic members of a class or struct.

Properties

Properties look like fields from the outside, but internally they contain logic, like
methods do. For example, you can't tell by looking at the following code whether

CurrentPrice is a field or a property:

Classes | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Stock msft = new Stock();

msft.CurrentPrice = 30;

msft.CurrentPrice -= 3;

Console.WriteLine (msft.CurrentPrice);
A property is declared like a field, but with a get/set block added. Here’s how to
implement CurrentPrice as a property:

public class Stock

{
decimal currentPrice; // The private "backing" field
public decimal CurrentPrice // The public property
{
get { return currentPrice; }
set { currentPrice = value; }
}
}

get and set denote property accessors. The get accessor runs when the property is
read. It must return a value of the property’s type. The set accessor runs when the
property is assigned. It has an implicit parameter named value of the property’s
type that you typically assign to a private field (in this case, currentPrice).

Although properties are accessed in the same way as fields, they differ in that they
give the implementer complete control over getting and setting its value. This con-
trol enables the implementer to choose whatever internal representation is needed,
without exposing the internal details to the user of the property. In this example, the
set method could throw an exception if value was outside a valid range of values.

Throughout this book, we use public fields extensively to keep
the examples free of distraction. In a real application, you
would typically favor public properties over public fields, in
order to promote encapsulation.

Properties allow the following modifiers:

Static modifier static
Access modifiers public internal private protected
Inheritance modifiers new virtual abstract override sealed

Unmanaged code modifiers unsafe extern

Read-only and calculated properties

A property is read-only if it specifies only a get accessor, and it is write-only if it
specifies only a set accessor. Write-only properties are rarely used.

A property typically has a dedicated backing field to store the underlying data.
However, a property can also be computed from other data. For example:

80 | Chapter3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

decimal currentPrice, sharesOwned;

public decimal Worth
{

get { return currentPrice * sharesOwned; }

}

Expression-bodied properties (C# 6)

From C# 6, you can declare a read-only property, such as the preceding one, more
tersely as an expression-bodied property. A fat arrow replaces all the braces and the
get and return keywords:

public decimal Worth => currentPrice * sharesOwned;

Automatic properties

The most common implementation for a property is a getter and/or setter that sim-
ply reads and writes to a private field of the same type as the property. An automatic
property declaration instructs the compiler to provide this implementation. We can
improve the first example in this section by declaring CurrentPrice as an automatic

property:

public class Stock
{

public decimal CurrentPrice { get; set; }

}

The compiler automatically generates a private backing field of a compiler-
generated name that cannot be referred to. The set accessor can be marked private
or protected if you want to expose the property as read-only to other types. Auto-
matic properties were introduced in C# 3.0.

Property initializers (C# 6)

From C# 6, you can add a property initializer to automatic properties, just as with
fields:

public decimal CurrentPrice { get; set; } = 123;

This gives CurrentPrice an initial value of 123. Properties with an initializer can be
read-only:

public int Maximum { get; } = 999;

Just as with read-only fields, read-only automatic properties can also be assigned in
the type’s constructor. This is useful in creating immutable (read-only) types.

Classes | 81

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

get and set accessibility

The get and set accessors can have different access levels. The typical use case for
this is to have a public property with an internal or private access modifier on
the setter:

public class Foo

{
private decimal x;
public decimal X

{
get { return x; }
private set { x = Math.Round (value, 2); }
}
}

Notice that you declare the property itself with the more permissive access level
(public, in this case) and add the modifier to the accessor you want to be less acces-
sible.

CLR property implementation
C# property accessors internally compile to methods called get_XXX and set_xxx:

public decimal get_CurrentPrice {...}
public void set_CurrentPrice (decimal value) {...}

Simple nonvirtual property accessors are inlined by the JIT (just-in-time) compiler,
eliminating any performance difference between accessing a property and a field.
Inlining is an optimization in which a method call is replaced with the body of that
method.

With WinRT properties, the compiler assumes the put_XXX naming convention
rather than set_XXxX.

Indexers

Indexers provide a natural syntax for accessing elements in a class or struct that
encapsulate a list or dictionary of values. Indexers are similar to properties but are
accessed via an index argument rather than a property name. The string class has
an indexer that lets you access each of its char values via an int index:

string s = "hello";
Console.WriteLine (s[0]); // 'h'
Console.WriteLine (s[3]); // 'U’

The syntax for using indexers is like that for using arrays, except that the index
argument(s) can be of any type(s).

Indexers have the same modifiers as properties (see “Properties” on page 79) and
can be called null-conditionally by inserting a question mark before the square
bracket (see “Null Operators” on page 55 in Chapter 2):

82 | Chapter3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

string s = null;
Console.WriteLine (s?[0]); // Writes nothing; no error.

Implementing an indexer

To write an indexer, define a property called this, specifying the arguments in
square brackets. For instance:

class Sentence

{
string[] words = "The quick brown fox".Split();

public string this [int wordNum] // indexer
{ '?n
get { return words [wordNum]; } 'g 5
set { words [wordNum] = value; } ¢ g
} 52
} g
*

Here’s how we could use this indexer:

Sentence s = new Sentence();

Console.WriteLine (s[3]); /] fox
s[3] = "kangaroo";
Console.WriteLine (s[3]); // kangaroo

A type may declare multiple indexers, each with parameters of different types. An
indexer can also take more than one parameter:

public string this [int argl, string arg2]
{

get { ...} set { ...}
}

If you omit the set accessor, an indexer becomes read-only, and expression-bodied
syntax may be used in C# 6 to shorten its definition:

public string this [int wordNum] => words [wordNum];

(LR indexer implementation

Indexers internally compile to methods called get_Item and set_Item, as follows:

public string get_Item (int wordNum) {...}
public voild set_Item (int wordNum, string value) {...}

Constants

A constant is a static field whose value can never change. A constant is evaluated
statically at compile time, and the compiler literally substitutes its value whenever
used (rather like a macro in C++). A constant can be any of the built-in numeric
types, bool, char, string, or an enum type.

Classes | 83

www.it-ebooks.info

http://www.it-ebooks.info/

A constant is declared with the const keyword and must be initialized with a value.
For example:

public class Test

{

public const string Message = "Hello World";

}

A constant is much more restrictive than a static readonly field—both in the
types you can use and in field initialization semantics. A constant also differs from a
static readonly field in that the evaluation of the constant occurs at compile time.
For example:

public static double Circumference (double radius)

{

return 2 * System.Math.PI * radius;

}

is compiled to:

public static double Circumference (double radius)

{
return 6.2831853071795862 * radius;

}

It makes sense for PI to be a constant, since it can never change. In contrast, a
static readonly field can have a different value per application.

A static readonly field is also advantageous when exposing
to other assemblies a value that might change in a later ver-
sion. For instance, suppose assembly X exposes a constant as
follows:

public const decimal ProgramVersion = 2.3;

If assembly Y references X and uses this constant, the value 2.3
will be baked into assembly Y when compiled. This means that
if X is later recompiled with the constant set to 2.4, Y will still
use the old value of 2.3 until Y is recompiled. A static
readonly field avoids this problem.

Another way of looking at this is that any that value that might
change in the future is not constant by definition, and so
should not be represented as one.

Constants can also be declared local to a method. For example:

static void Main()

{
const double twoPI = 2 * System.Math.PI;

84 | Chapter3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

Non-local constants allow the following modifiers:

Access modifiers public internal private protected

Inheritance modifier new

Static Constructors

A static constructor executes once per type, rather than once per instance. A type
can define only one static constructor, and it must be parameterless and have the
same name as the type:

class Test >
o)
¢ o
static Test() { Console.WriteLine ("Type Initialized"); } " g
} 5 3
nQ

-4

The runtime automatically invokes a static constructor just prior to the type being
used. Two things trigger this:

« Instantiating the type

o Accessing a static member in the type

The only modifiers allowed by static constructors are unsafe and extern.

If a static constructor throws an unhandled exception (Chap-
| ter 4), that type becomes unusable for the life of the applica-
4 tion.

Static constructors and field initialization order

Static field initializers run just before the static constructor is called. If a type has no
static constructor, field initializers will execute just prior to the type being used—or
anytime earlier at the whim of the runtime.

Static field initializers run in the order in which the fields are declared. The follow-
ing example illustrates this—X is initialized to 0 and Y is initialized to 3:

class Foo

{

public static int X = Y; /] ©
public static int Y ;

I
w
-
~
~

w

}

If we swap the two field initializers around, both fields are initialized to 3. The next
example prints 0 followed by 3 because the field initializer that instantiates a Foo
executes before X is initialized to 3:

class Program

{
static void Main() { Console.WriteLine (Foo.X); } // 3

}

Classes | 85

www.it-ebooks.info

http://www.it-ebooks.info/

class Foo

{

public static Foo Instance = new Foo();
public static int X = 3;

Foo() { Console.WriteLine (X); } // ©
}

If we swap the two lines in boldface, the example prints 3 followed by 3.

Static Classes

A class can be marked static, indicating that it must be composed solely of static
members and cannot be subclassed. The System.Console and System.Math classes
are good examples of static classes.

Finalizers

Finalizers are class-only methods that execute before the garbage collector reclaims
the memory for an unreferenced object. The syntax for a finalizer is the name of the
class prefixed with the ~ symbol:

class Classl

{
~Class1()

{

}
}

This is actually C# syntax for overriding Object’s Finalize method, and the com-
piler expands it into the following method declaration:

protected override void Finalize()

{

base.Finalize();
}

We discuss garbage collection and finalizers fully in Chapter 12.

Finalizers allow the following modifier:

Unmanaged code modifier unsafe

Partial Types and Methods

Partial types allow a type definition to be split—typically across multiple files. A
common scenario is for a partial class to be auto-generated from some other source
(such as a Visual Studio template or designer) and for that class to be augmented
with additional hand-authored methods. For example:

86 | Chapter3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

// PaymentFormGen.cs - auto-generated
partial class PaymentForm { ... }

// PaymentForm.cs - hand-authored
partial class PaymentForm { ... }

Each participant must have the partial declaration; the following is illegal:

partial class PaymentForm {}
class PaymentForm {}

Participants cannot have conflicting members. A constructor with the same param-
eters, for instance, cannot be repeated. Partial types are resolved entirely by the
compiler, which means that each participant must be available at compile time and
must reside in the same assembly.

You can specify a base class on one or more partial class declarations, as long as the
base class, if specified, is the same. In addition, each participant can independently
specify interfaces to implement. We cover base classes and interfaces in “Inheri-
tance” on page 88 and “Interfaces” on page 104.

The compiler makes no guarantees with regard field initialization order between
partial type declarations.

Partial methods

A partial type may contain partial methods. These let an auto-generated partial type
provide customizable hooks for manual authoring. For example:

partial class PaymentForm // In auto-generated file
{

partial void ValidatePayment (decimal amount);
}
partial class PaymentForm // In hand-authored file
{

partial void ValidatePayment (decimal amount)

{

if (amount > 100)

}

}

A partial method consists of two parts: a definition and an implementation. The defi-
nition is typically written by a code generator, and the implementation is typically
manually authored. If an implementation is not provided, the definition of the par-
tial method is compiled away (as is the code that calls it). This allows auto-generated
code to be liberal in providing hooks, without having to worry about bloat. Partial
methods must be void and are implicitly private.

Partial methods were introduced in C# 3.0.

Classes | 87

www.it-ebooks.info

-
<
T
(0]
7]
=
0
*

Buieald

http://www.it-ebooks.info/

The nameof operator (C# 6)

The nameof operator returns the name of any symbol (type, member, variable, and
so on) as a string:

int count = 123;
string name = nameof (count); // name is "count"

Its advantage over simply specifying a string is that of static type checking. Tools
such as Visual Studio can understand the symbol reference, so if you rename the
symbol in question, all its references will be renamed, too.

To specify the name of a type member such as a field or property, include the type as
well. This works with both static and instance members:

string name = nameof (StringBuilder.Length);

This evaluates to “Length”. To return “StringBuilder.Length”, you would do this:

nameof (StringBuilder) + + nameof (StringBuilder.Length);

Inheritance

A class can inherit from another class to extend or customize the original class.
Inheriting from a class lets you reuse the functionality in that class instead of build-
ing it from scratch. A class can inherit from only a single class but can itself be
inherited by many classes, thus forming a class hierarchy. In this example, we start
by defining a class called Asset:

public class Asset

{

public string Name;

}

Next, we define classes called Stock and House, which will inherit from Asset.
Stock and House get everything an Asset has, plus any additional members that
they define:

public class Stock : Asset // inherits from Asset

{
public long SharesOwned;

}

public class House : Asset // inherits from Asset

{

public decimal Mortgage;

}

Here’s how we can use these classes:

Stock msft = new Stock { Name="MSFT",
SharesOwned=1000 };

Console.WriteLine (msft.Name); /] MSFT
Console.WriteLine (msft.SharesOwned); // 1000

88 | Chapter 3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

House mansion = new House { Name="Mansion",
Mortgage=250000 };

Console.WriteLine (mansion.Name); // Mansion

Console.WriteLine (mansion.Mortgage); // 250000
The derived classes, Stock and House, inherit the Name property from the base class,
Asset.
A derived class is also called a subclass.

A base class is also called a superclass.

Polymorphism

References are polymorphic. This means a variable of type x can refer to an object
that subclasses x. For instance, consider the following method:

puneald

-
<
]
(0]
0
=
(2]
*

public static void Display (Asset asset)
{

System.Console.WriteLine (asset.Name);

3
This method can display both a Stock and a House, since they are both Assets:

Stock msft = new Stock ... ;
House mansion = new House ... ;

Display (msft);

Display (mansion);
Polymorphism works on the basis that subclasses (Stock and House) have all the
features of their base class (Asset). The converse, however, is not true. If Display
was modified to accept a House, you could not pass in an Asset:

static void Main() { Display (new Asset()); } // Compile-time error
public static void Display (House house) // Will not accept Asset

{

System.Console.WriteLine (house.Mortgage);

}
Casting and Reference Conversions

An object reference can be:

o Implicitly upcast to a base class reference
o Explicitly downcast to a subclass reference
Upcasting and downcasting between compatible reference types performs reference

conversions: a new reference is (logically) created that points to the same object. An
upcast always succeeds; a downcast succeeds only if the object is suitably typed.

Inheritance | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Upcasting

An upcast operation creates a base class reference from a subclass reference. For
example:

Stock msft = new Stock();
Asset a = msft; // Upcast

After the upcast, variable a still references the same Stock object as variable msft.
The object being referenced is not itself altered or converted:

Console.WritelLine (a == msft); /] True

Although a and msft refer to the identical object, a has a more restrictive view on
that object:

Console.WriteLine (a.Name); /] OK
Console.WriteLine (a.SharesOwned); // Error: SharesOwned undefined

The last line generates a compile-time error because the variable a is of type Asset,
even though it refers to an object of type Stock. To get to its SharesOwned field, you
must downcast the Asset to a Stock.

Downcasting

A downcast operation creates a subclass reference from a base class reference. For
example:

Stock msft = new Stock();

Asset a = msft; // Upcast
Stock s = (Stock)a; // Downcast
Console.WriteLine (s.SharesOwned); // <No error>
Console.WriteLine (s == a); /] True
Console.WriteLine (s == msft); /] True

As with an upcast, only references are affected—not the underlying object. A down-
cast requires an explicit cast because it can potentially fail at runtime:

House h = new House();
Asset a = h; // Upcast always succeeds
Stock s = (Stock)a; // Downcast fails: a is not a Stock

If a downcast fails, an InvalidCastException is thrown. This is an example of run-
time type checking (we will elaborate on this concept in “Static and Runtime Type
Checking” on page 99).

The as operator

The as operator performs a downcast that evaluates to null (rather than throwing
an exception) if the downcast fails:

Asset a = new Asset();
Stock s = a as Stock; // s is null; no exception thrown

90 | Chapter 3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

This is useful when youre going to subsequently test whether the result is nul1l:
if (s != null) Console.WriteLine (s.SharesOwned);

Without such a test, a cast is advantageous, because if it fails, a
more helpful exception is thrown. We can illustrate by com-
paring the following two lines of code:

((Stock)a).SharesOwned; /] Approach #1
(a as Stock).SharesOwned; // Approach #2

int shares
int shares

If a is not a Stock, the first line throws an InvalidCastExcep
tion, which is an accurate description of what went wrong.
The second line throws a NullReferenceException, which is
ambiguous. Was a not a Stock or was a null?

Another way of looking at it is that with the cast operator,
youre saying to the compiler: “I'm certain of a value’s type; if
I'm wrong, there’s a bug in my code, so throw an exception!”
Whereas with the as operator, you're uncertain of its type and
want to branch according to the outcome at runtime.

The as operator cannot perform custom conversions (see “Operator Overloading” on
page 168 in Chapter 4) and it cannot do numeric conversions:

long x = 3 as long; // Compile-time error

The as and cast operators will also perform upcasts, although
this is not terribly useful because an implicit conversion will
do the job.

The is operator

The is operator tests whether a reference conversion would succeed; in other
words, whether an object derives from a specified class (or implements an inter-
face). It is often used to test before downcasting:
if (a is Stock)
Console.WriteLine (((Stock)a).SharesOwned);

The is operator also evaluates to true if an unboxing conversion would succeed (see
“The object Type” on page 97). However, it does not consider custom or numeric
conversions.

Virtual Function Members

A function marked as virtual can be overridden by subclasses wanting to provide a
specialized implementation. Methods, properties, indexers, and events can all be
declared virtual:

public class Asset

{

public string Name;

Inheritance | 91

www.it-ebooks.info

-
<
°]
(0]
7
=
(2}
*

Buieald

http://www.it-ebooks.info/

public virtual decimal Liability => 0; // Expression-bodied property

}

(Liability => @isashortcut for { get { return 0; } }.See “Expression-bodied
properties (C# 6)” on page 81 for more details on this syntax.)

A subclass overrides a virtual method by applying the override modifier:

public class Stock : Asset

{
public long SharesOwned;

3

public class House : Asset

{
public decimal Mortgage;
public override decimal Liability => Mortgage;

3

By default, the Liability of an Asset is 0. A Stock does not need to specialize this
behavior. However, the House specializes the Liability property to return the value
of the Mortgage:

House mansion = new House { Name="McMansion", Mortgage=250000 };
Asset a = mansion;

Console.WriteLine (mansion.Liability); // 250000
Console.WriteLine (a.Liability); // 2560000

The signatures, return types, and accessibility of the virtual and overridden methods
must be identical. An overridden method can call its base class implementation via
the base keyword (we will cover this in “The base Keyword” on page 94).

Calling virtual methods from a constructor is potentially dan-
gerous because authors of subclasses are unlikely to know,
when overriding the method, that they are working with a
partially initialized object. In other words, the overriding
method may end up accessing methods or properties which
rely on fields not yet initialized by the constructor.

Abstract Classes and Abstract Members

A class declared as abstract can never be instantiated. Instead, only its concrete sub-
classes can be instantiated.

Abstract classes are able to define abstract members. Abstract members are like vir-
tual members, except they don’t provide a default implementation. That implemen-
tation must be provided by the subclass, unless that subclass is also declared
abstract:

public abstract class Asset
{

// Note empty implementation

public abstract decimal NetValue { get; }
}

92 | Chapter 3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

public class Stock : Asset

{
public long SharesOwned;

public decimal CurrentPrice;

// Override like a virtual method.
public override decimal NetValue => CurrentPrice * SharesOwned;

}
Hiding Inherited Members

A base class and a subclass may define identical members. For example:

public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }

The Counter field in class B is said to hide the Counter field in class A. Usually, this
happens by accident, when a member is added to the base type after an identical
member was added to the subtype. For this reason, the compiler generates a warn-
ing, and then resolves the ambiguity as follows:

Buieald

-
<
]
(0]
0
=
0
*

o References to A (at compile time) bind to A.Counter.
o References to B (at compile time) bind to B.Counter.
Occasionally, you want to hide a member deliberately, in which case you can apply

the new modifier to the member in the subclass. The new modifier does nothing more
than suppress the compiler warning that would otherwise result:

public class A { public int Counter =
public class B : A { public new int Counter

CH
2;}
The new modifier communicates your intent to the compiler—and other program-
mers—that the duplicate member is not an accident.

C# overloads the new keyword to have independent meanings
in different contexts. Specifically, the new operator is different
from the new member modifier.

new versus override
Consider the following class hierarchy:

public class Base(Class

{

public virtual void Foo() { Console.WriteLine ("BaseClass.Foo"); }

}

public class Overrider : Base(Class

{

public override void Foo() { Console.WriteLine ("Overrider.Foo"); }

}

public class Hider : BaseClass

Inheritance | 93

www.it-ebooks.info

http://www.it-ebooks.info/

{

public new void Foo() { Console.WriteLine ("Hider.Foo"); 1}

}

The differences in behavior between Overrider and Hider are demonstrated in the
following code:

Overrider over = new Overrider();

BaseClass bl = over;

over.Foo(); // Overrider.Foo
b1.Foo(); // Overrider.Foo

Hider h = new Hider();

BaseClass b2 = h;

h.Foo(); // Hider.Foo
b2.Foo(); // BaseClass.Foo

Sealing Functions and Classes

An overridden function member may seal its implementation with the sealed key-
word to prevent it from being overridden by further subclasses. In our earlier vir-
tual function member example, we could have sealed House’s implementation of Lia
bility, preventing a class that derives from House from overriding Liability, as
follows:

public sealed override decimal Liability { get { return Mortgage; } }

You can also seal the class itself, implicitly sealing all the virtual functions, by apply-
ing the sealed modifier to the class itself. Sealing a class is more common than seal-
ing a function member.

Although you can seal against overriding, you can’t seal a member against being

hidden.

The base Keyword

The base keyword is similar to the this keyword. It serves two essential purposes:

o Accessing an overridden function member from the subclass

o Calling a base-class constructor (see the next section)
In this example, House uses the base keyword to access Asset’s implementation of
Liability:

public class House : Asset

{

public override decimal Liability => base.Liability + Mortgage;

}

94 | Chapter 3: Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

With the base keyword, we access Asset’s Liability property nonvirtually. This
means we will always access Asset’s version of this property—regardless of the
instance’s actual runtime type.

The same approach works if Liability is hidden rather than overridden. (You can
also access hidden members by casting to the base class before invoking the func-
tion.)

Constructors and Inheritance

A subclass must declare its own constructors. The base class’s constructors are acces-
sible to the derived class but are never automatically inherited. For example, if we
define Baseclass and Subclass as follows:

public class Baseclass

{
public int X;
public Baseclass () { }
public Baseclass (int x) { this.X = x; }

}

public class Subclass : Baseclass { }
the following is illegal:
Subclass s = new Subclass (123);

Subclass must hence “redefine” any constructors it wants to expose. In doing so,
however, it can call any of the base class’s constructors with the base keyword:

public class Subclass : Baseclass

{
public Subclass (int x) : base (x) { }

}

The base keyword works rather like the this keyword, except that it calls a con-
structor in the base class.

Base-class constructors always execute first; this ensures that base initialization
occurs before specialized initialization.

Implicit calling of the parameterless base-class constructor

If a constructor in a subclass omits the base keyword, the base type’s parameterless
constructor is implicitly called:

public class BaseClass

{

public int X;

public BaseClass() { X = 1; }
}

public class Subclass : BaseClass

{

Inheritance | 95

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

public Subclass() { Console.WriteLine (X); } // 1
}

If the base class has no accessible parameterless constructor, subclasses are forced to
use the base keyword in their constructors.

Constructor and field initialization order

When an object is instantiated, initialization takes place in the following order:

1. From subclass to base class:

a. Fields are initialized.

b. Arguments to base-class constructor calls are evaluated.
2. From base class to subclass:

a. Constructor bodies execute.

The following code demonstrates:

public class B

{
int x = 1; // Executes 3rd
public B (int x)
{
.. // Executes 4th
}
}
public class D : B
{
inty = 1; // Executes 1st

public D (int x)
: base (x + 1) // Executes 2nd

{
// Executes 5th

}
}

Overloading and Resolution

Inheritance has an interesting impact on method overloading. Consider the follow-
ing two overloads:

static void Foo (Asset a) { }
static void Foo (House h) { }

When an overload is called, the most specific type has precedence:

House h = new House (...);
Foo(h); // Calls Foo(House)

96 | Chapter 3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

The particular overload to call is determined statically (at compile time) rather than
at runtime. The following code calls Foo(Asset), even though the runtime type of a
is House:

Asset a = new House (...);
Foo(a); // Calls Foo(Asset)

If you cast Asset to dynamic (Chapter 4), the decision as to
which overload to call is deferred until runtime and is then
based on the object’s actual type:

Asset a = new House (...);
Foo ((dynamic)a); // Calls Foo(House)

The object Type

object (System.Object) is the ultimate base class for all types. Any type can be
upcast to object.

To illustrate how this is useful, consider a general-purpose stack. A stack is a data
structure based on the principle of LIFO—“last in, first out” A stack has two opera-
tions: push an object on the stack, and pop an object off the stack. Here is a simple
implementation that can hold up to 10 objects:

public class Stack
{

int position;

object[] data = new object[10];

public void Push (object obj) { data[position++] = obj; }

public object Pop() { return data[--position]; }
}

Because Stack works with the object type, we can Push and Pop instances of any
type to and from the Stack:

Stack stack = new Stack();
stack.Push ("sausage");
string s = (string) stack.Pop(); // Downcast, so explicit cast is needed

Console.WriteLine (s); // sausage

object is a reference type, by virtue of being a class. Despite this, value types, such
as int, can also be cast to and from object, and so be added to our stack. This fea-
ture of C# is called type unification and is demonstrated here:

stack.Push (3);
int three = (int) stack.Pop();

When you cast between a value type and object, the CLR must perform some spe-
cial work to bridge the difference in semantics between value and reference types.
This process is called boxing and unboxing.

The object Type | 97

www.it-ebooks.info

-
<
°]
(0]
0
=
0
*

Buieald

http://www.it-ebooks.info/

In “Generics” on page 114, we'll describe how to improve our
Stack class to better handle stacks with same-typed elements.

Boxing and Unboxing

Boxing is the act of converting a value-type instance to a reference-type instance.
The reference type may be either the object class or an interface (which we will
visit later in the chapter).! In this example, we box an int into an object:

int x = 9;
object obj = x; // Box the int

Unboxing reverses the operation by casting the object back to the original value
type:

int y = (int)obj; // Unbox the int
Unboxing requires an explicit cast. The runtime checks that the stated value type
matches the actual object type and throws an InvalidCastException if the check

fails. For instance, the following throws an exception, because long does not exactly
match int:

object obj = 9; // 9 is inferred to be of type int
long x = (long) obj; // InvalidCastException

The following succeeds, however:

object obj = 9;
long x = (int) obj;

As does this:

object obj = 3.5; // 3.5 is inferred to be of type double
int x = (int) (double) obj; // x is now 3

In the last example, (double) performs an unboxing, and then (int) performs a
numeric conversion.

Boxing conversions are crucial in providing a unified type sys-
tem. The system is not perfect, however: we'll see in “Gener-
ics” on page 114 that variance with arrays and generics sup-
ports only reference conversions and not boxing conversions:

object[] a1
object[] a2

new string[3]; // Legal
new int[3]; /] Error

1 The reference type may also be System.ValueType or System.Enum (Chapter 6).

98 | Chapter 3:Creating Types in C#

www.it-ebooks.info

http://www.it-ebooks.info/

Copying semantics of boxing and unboxing

Boxing copies the value-type instance into the new object, and unboxing copies the
contents of the object back into a value-type instance. In the following example,
changing the value of 1 doesn’'t change its previously boxed copy:

int 1 = 3;
object boxed = 1i;
i=75;

Console.WriteLine (boxed); // 3

Static and Runtime Type Checking

C# programs are type-checked both statically (at compile time) and at runtime (by
the CLR).

Static type checking enables the compiler to verify the correctness of your program
without running it. The following code will fail because the compiler enforces static

typing:
int x = "5";

Runtime type checking is performed by the CLR when you downcast via a reference
conversion or unboxing. For example:

object y = "5";
int z = (int) y; // Runtime error, downcast failed

Runtime type checking is possible because each object on the heap internally stores
a little type token. This token can be retrieved by calling the GetType method of
object.
The GetType Method and typeof Operator
All types in C# are represented at runtime with an instance of System.Type. There
are two basic ways to get a System. Type object:

o Call GetType on the instance.

o Use the typeof operator on a type name.
GetType is evaluated at runtime; typeof is evaluated statically at compile time

(when generic type parameters are involved, it’s resolved by the just-in-time com-
piler).

System.Type has properties for such things as the type’s name, assembly, base type,
and so on. For example:

using System;
public class Point { public int X, Y; }

class Test

{

The object Type | 99

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

static void Main()

{
Point p = new Point();
Console.WriteLine (p.GetType().Name); // Point
Console.WriteLine (typeof (Point).Name); // Point
Console.WriteLine (p.GetType() == typeof(Point)); // True
Console.WriteLine (p.X.GetType().Name); // Int32
Console.WriteLine (p.Y.GetType().FullName); // System.Int32
}

}

System.Type also has methods that act as a gateway to the runtime’s reflection
model, described in Chapter 19.

The ToString Method

The ToString method returns the default textual representation of a type instance.
This method is overridden by all built-in types. Here is an example of using the int
type’s ToString method:

int x = 1;
string s = x.ToString(); /] s is "1"

You can override the ToString method on custom types as follows:

public class Panda

{
public string Name;
public override string ToString() => Name;

}

Panda p = new Panda { Name = "Petey" };
Console.WriteLine (p); /] Petey

If you don’t override ToString, the method returns the type name.

When you call an overridden object member such as
ToString directly on a value type, boxing doesn’'t occur. Box-
ing then occurs only if you cast:

int x = 1;

string s1 = x.ToString(); // Calling on nonboxed value
object box = x;

string s2 = box.ToString(); // Calling on boxed value

Object Member Listing
Here are all the members of object:

public class Object

{
public Object();

public extern Type GetType();

100 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

public virtual bool Equals (object obj);
public static bool Equals (object objA, object objB);
public static bool ReferenceEquals (object objA, object objB);

public virtual int GetHashCode();
public virtual string ToString();

protected virtual void Finalize();
protected extern object MemberwiseClone();

}

We describe the Equals, ReferenceEquals, and GetHashCode methods in “Equality
Comparison” on page 267 in Chapter 6.

Structs

A struct is similar to a class, with the following key differences:

o A struct is a value type, whereas a class is a reference type.

o A struct does not support inheritance (other than implicitly deriving from
object, or more precisely, System.ValueType).

A struct can have all the members a class can, except the following:

o A parameterless constructor

o Field initializers

o A finalizer

o Virtual or protected members
A struct is appropriate when value-type semantics are desirable. Good examples of
structs are numeric types, where it is more natural for assignment to copy a value
rather than a reference. Because a struct is a value type, each instance does not
require instantiation of an object on the heap; this incurs a useful savings when cre-

ating many instances of a type. For instance, creating an array of value type requires
only a single heap allocation.

Struct Construction Semantics

The construction semantics of a struct are as follows:

A parameterless constructor that you can’t override implicitly exists. This per-
forms a bitwise-zeroing of its fields.

« When you define a struct constructor, you must explicitly assign every field.

(And you can't have field initializers.) Here is an example of declaring and calling
struct constructors:

Structs | 101

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

public struct Point

{

int x, y;

public Point (int x, int y) { this.x = x; this.y = y; }
}
Point pl = new Point (); // pl.x and pl.y will be 0

Point p2 = new Point (1, 1); // pl.x and pl.y will be 1
The next example generates three compile-time errors:

public struct Point

{
int x = 1; // Illegal: field initializer
int y;
public Point() {3} // Illegal: parameterless constructor

public Point (int x) {this.x = x;} // Illegal: must assign field y
}

Changing struct to class makes this example legal.

Access Modifiers

To promote encapsulation, a type or type member may limit its accessibility to other
types and other assemblies by adding one of five access modifiers to the declaration:

public
Fully accessible. This is the implicit accessibility for members of an enum
or interface.

internal
Accessible only within the containing assembly or friend assemblies. This is
the default accessibility for non-nested types.

private
Accessible only within the containing type. This is the default accessibility
for members of a class or struct.

protected
Accessible only within the containing type or subclasses.

protected internal
The union of protected and internal accessibility. Eric Lippert explains it
as follows: Everything is as private as possible by default, and each modifier
makes the thing more accessible. So something that is protected internal
is made more accessible in two ways.

The CLR has the concept of the intersection of protected and
internal accessibility, but C# does not support this.

102 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

Examples
Class2 is accessible from outside its assembly; Class1 is not:

class Class1 {} // Class1 is internal (default)
public class Class2 {}

ClassB exposes field x to other types in the same assembly; ClassA does not:

class ClassA { int x; } // x is private (default)
class ClassB { internal int x; }

Functions within Subclass can call Bar but not Foo:

class BaseClass -
{ 30
void Foo() {3 /] Foo is private (default) oo
protected void Bar() {} 5
} gm

class Subclass : BaseClass

{

void Test1() { Foo(); } // Error - cannot access Foo
void Test2() { Bar(); } /] OK
}

Friend Assemblies

In advanced scenarios, you can expose internal members to other friend assem-
blies by adding the System.Runtime.CompilerServices.InternalsVisibleTo
assembly attribute, specifying the name of the friend assembly as follows:

[assembly: InternalsVisibleTo ("Friend")]
If the friend assembly has a strong name (see Chapter 18), you must specify its full
160-byte public key:

[assembly: InternalsVisibleTo ("StrongFriend, PublicKey=0024f000048c...")]

You can extract the full public key from a strongly named assembly with a LINQ
query (we explain LINQ in detail in Chapter 8):

string key = string.Join ("",
Assembly.GetExecutingAssembly().GetName().GetPublicKey()
.Select (b => b.ToString ("x2")));

The companion sample in LINQPad invites you to browse to
an assembly and then copies the assembly’s full public key to
the clipboard.

Accessibility Capping

A type caps the accessibility of its declared members. The most common example of
capping is when you have an internal type with public members. For example:

class C { public void Foo() {} }

Access Modifiers | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Cs (default) internal accessibility caps Foo’s accessibility, effectively making Foo
internal. A common reason Foo would be marked public is to make for easier
refactoring, should C later be changed to public.

Restrictions on Access Modifiers

When overriding a base class function, accessibility must be identical on the over-
ridden function. For example:

class BaseClass { protected virtual void Foo() {} }
class Subclassl : BaseClass { protected override void Foo() {} } // OK
class Subclass2 : BaseClass { public override void Foo() {} } // Error

(An exception is when overriding a protected internal method in another assem-
bly, in which case the override must simply be protected.)

The compiler prevents any inconsistent use of access modifiers. For example, a sub-
class itself can be less accessible than a base class, but not more:

internal class A {}
public class B : A {} // Error

Interfaces

An interface is similar to a class, but it provides a specification rather than an imple-
mentation for its members. An interface is special in the following ways:

o Interface members are all implicitly abstract. In contrast, a class can provide
both abstract members and concrete members with implementations.

o A class (or struct) can implement multiple interfaces. In contrast, a class can
inherit from only a single class, and a struct cannot inherit at all (aside from
deriving from System.ValueType).

An interface declaration is like a class declaration, but it provides no implementa-
tion for its members, since all its members are implicitly abstract. These members
will be implemented by the classes and structs that implement the interface. An
interface can contain only methods, properties, events, and indexers, which non-
coincidentally are precisely the members of a class that can be abstract.

Here is the definition of the IEnumerator interface, defined in System.Collec
tions:

public interface IEnumerator
{
bool MoveNext();
object Current { get; }
voild Reset();

}

104 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

Interface members are always implicitly public and cannot declare an access modi-
fier. Implementing an interface means providing a public implementation for all its
members:

internal class Countdown : IEnumerator
{
int count = 11;
public bool MoveNext() => count-- > 0;
public object Current => count;
public void Reset() { throw new NotSupportedException(); }

3
You can implicitly cast an object to any interface that it implements. For example:
IEnumerator e = new Countdown();

while (e.MoveNext())
Console.Write (e.Current); // 109876543210

Buieald

-

<

]
(0]
7
=
0
*

Even though Countdown is an internal class, its members that
implement IEnumerator can be called publicly by casting an
instance of Countdown to IEnumerator. For instance, if a pub-
lic type in the same assembly defined a method as follows:

public static class Util
{

public static object GetCountDown() => new CountDown();
}
a caller from another assembly could do this:

IEnumerator e = (IEnumerator) Util.GetCountDown();
e.MoveNext();

If IEnumerator was itself defined as internal, this wouldn’t
be possible.

Extending an Interface
Interfaces may derive from other interfaces. For instance:

public interface IUndoable { void Undo(); }

public interface IRedoable : IUndoable { void Redo(); }
IRedoable “inherits” all the members of IUndoable. In other words, types that
implement IRedoable must also implement the members of IUndoable.

Explicit Interface Implementation

Implementing multiple interfaces can sometimes result in a collision between mem-
ber signatures. You can resolve such collisions by explicitly implementing an inter-
face member. Consider the following example:

interface I1 { void Foo(); }
interface I2 { int Foo(); }

public class Widget : I1, I2

{
public void Foo()

Interfaces | 105

www.it-ebooks.info

http://www.it-ebooks.info/

{

Console.WriteLine ("Widget's implementation of I1.Foo");

}

int I2.Foo()
{
Console.WriteLine ("Widget's implementation of I2.Foo");
return 42;
}
}

Because both I1 and I2 have conflicting Foo signatures, Widget explicitly imple-
ments I2’s Foo method. This lets the two methods coexist in one class. The only way
to call an explicitly implemented member is to cast to its interface:

Widget w = new Widget();

w.Foo(); // Widget's implementation of I1.Foo
((I1)w).Foo(); // Widget's implementation of I1.Foo
((I2)w).Foo(); // Widget's implementation of I2.Foo

Another reason to explicitly implement interface members is to hide members that
are highly specialized and distracting to a type’s normal use case. For example, a
type that implements ISerializable would typically want to avoid flaunting its
ISerializable members unless explicitly cast to that interface.

Implementing Interface Members Virtually

An implicitly implemented interface member is, by default, sealed. It must be
marked virtual or abstract in the base class in order to be overridden. For exam-

ple:
public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{

public virtual void Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox

{

public override void Undo() => Console.WriteLine ("RichTextBox.Undo");

}

Calling the interface member through either the base class or the interface calls the
subclass’s implementation:

RichTextBox r = new RichTextBox();

r.undo(); // RichTextBox.Undo
((IUndoable)r).Undo(); // RichTextBox.Undo
((TextBox)r).uUndo(); // RichTextBox.Undo

An explicitly implemented interface member cannot be marked virtual, nor can it
be overridden in the usual manner. It can, however, be reimplemented.

106 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

Reimplementing an Interface in a Subclass

A subclass can reimplement any interface member already implemented by a base
class. Reimplementation hijacks a member implementation (when called through
the interface) and works whether or not the member is virtual in the base class. It
also works whether a member is implemented implicitly or explicitly—although it
works best in the latter case, as we will demonstrate.

In the following example, TextBox implements IUndoable.Undo explicitly, and so it
cannot be marked as virtual. In order to “override” it, RichTextBox must re-
implement IUndoable’s Undo method:

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable

{
void IUndoable.Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox, IUndoable

{
public void Undo() => Console.WriteLine ("RichTextBox.Undo");

3
Calling the reimplemented member through the interface calls the subclass’s imple-
mentation:

RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).Undo(); // RichTextBox.Undo Case 2
Assuming the same RichTextBox definition, suppose that TextBox implemented
Undo implicitly:

public class TextBox : IUndoable
{

public void Undo() => Console.WriteLine ("TextBox.Undo");

}

This would give us another way to call Undo, which would “break” the system, as
shown in Case 3:

RichTextBox r = new RichTextBox();

r.Undo(); // RichTextBox.Undo Case 1
((IUndoable)r).uUndo(); // RichTextBox.Undo Case 2
((TextBox)r).Undo(); // TextBox.Undo Case 3

Case 3 demonstrates that reimplementation hijacking is effective only when a mem-
ber is called through the interface and not through the base class. This is usually
undesirable as it can mean inconsistent semantics. This makes reimplementation
most appropriate as a strategy for overriding explicitly implemented interface mem-
bers.

Interfaces | 107

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

Alternatives to interface reimplementation

Even with explicit member implementation, interface reimplementation is problem-
atic for a couple of reasons:

o The subclass has no way to call the base class method.

o The base class author may not anticipate that a method be reimplemented and
may not allow for the potential consequences.

Reimplementation can be a good last resort when subclassing hasn't been anticipa-
ted. A better option, however, is to design a base class such that reimplementation
will never be required. There are two ways to achieve this:

o When implicitly implementing a member, mark it virtual if appropriate.

o When explicitly implementing a member, use the following pattern if you
anticipate that subclasses might need to override any logic:

public class TextBox : IUndoable

{
void IUndoable.Undo() => Undo(); // Calls method below
protected virtual void Undo() => Console.WriteLine ("TextBox.Undo");

}

public class RichTextBox : TextBox

{

protected override void Undo() => Console.WriteLine("RichTextBox.Undo");

}

If you don’t anticipate any subclassing, you can mark the class as sealed to preempt
interface reimplementation.
Interfaces and Boxing

Converting a struct to an interface causes boxing. Calling an implicitly implemented
member on a struct does not cause boxing:

interface I { void Foo(); }
struct S : I { public void Foo() {3} }

S s = new S();

s.Foo(); // No boxing.
I1i1=s; // Box occurs when casting to interface.
i.Foo();

108 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

Writing a Class Versus an Interface

As a guideline:

« Use classes and subclasses for types that naturally share an implementation.

o Use interfaces for types that have independent implementations.

Consider the following classes:

abstract class Animal {}

abstract class Bird : Animal {}

. -
abstract class Insect : Animal {} <n
abstract class FlyingCreature : Animal {} 33 o
abstract class Carnivore ¢ Animal {} “g

35
(@]
£

// Concrete classes:

class Ostrich : Bird {}

class Eagle : Bird, FlyingCreature, Carnivore {} // Illegal
class Bee : Insect, FlyingCreature {} /] Illegal
class Flea : Insect, Carnivore {} /] Illegal

The Eagle, Bee, and Flea classes do not compile because inheriting from multiple
classes is prohibited. To resolve this, we must convert some of the types to inter-
faces. The question then arises, which types? Following our general rule, we could
say that insects share an implementation, and birds share an implementation, so
they remain classes. In contrast, flying creatures have independent mechanisms for
flying, and carnivores have independent strategies for eating animals, so we would
convert FlyingCreature and Carnivore to interfaces:

interface IFlyingCreature {}
interface ICarnivore {}

In a typical scenario, Bird and Insect might correspond to a Windows control and a
web control; FlyingCreature and Carnivore might correspond to IPrintable and
IUndoable.

Enums

An enum is a special value type that lets you specify a group of named numeric con-
stants. For example:

public enum BorderSide { Left, Right, Top, Bottom }
We can use this enum type as follows:

BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true

Enums | 109

www.it-ebooks.info

http://www.it-ebooks.info/

Each enum member has an underlying integral value. By default:

« Underlying values are of type int.
o The constants 0, 1, 2... are automatically assigned, in the declaration order of
the enum members.
You may specify an alternative integral type, as follows:
public enum BorderSide : byte { Left, Right, Top, Bottom }
You may also specify an explicit underlying value for each enum member:
public enum BorderSide : byte { Left=1, Right=2, Top=10, Bottom=11 }

The compiler also lets you explicitly assign some of the enum
members. The unassigned enum members keep incrementing
from the last explicit value. The preceding example is equiva-
lent to the following:

public enum BorderSide : byte
{ Left=1, Right, Top=10, Bottom }

Enum Conversions

You can convert an enum instance to and from its underlying integral value with an
explicit cast:

int 1 = (int) BorderSide.Left;
BorderSide side = (BorderSide) 1;
bool leftOrRight = (int) side <= 2;

You can also explicitly cast one enum type to another. Suppose HorizontalAlign
ment is defined as follows:

public enum HorizontalAlignment

{
Left = BorderSide.Left,

Right = BorderSide.Right,
Center

3

A translation between the enum types uses the underlying integral values:

HorizontalAlignment h = (HorizontalAlignment) BorderSide.Right;
/] same as:
HorizontalAlignment h = (HorizontalAlignment) (int) BorderSide.Right;

The numeric literal 0 is treated specially by the compiler in an enum expression and
does not require an explicit cast:

BorderSide b = 0; // No cast required
if (b ==0) ...

110 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

There are two reasons for the special treatment of 0:

o The first member of an enum is often used as the “default” value.

o For combined enum types, 0 means “no flags”

Flags Enums

You can combine enum members. To prevent ambiguities, members of a combina-
ble enum require explicitly assigned values, typically in powers of two. For example:

[Flags]

public enum BorderSides { None=0, Left=1, Right=2, Top=4, Bottom=8 }
To work with combined enum values, you use bitwise operators, such as | and &.
These operate on the underlying integral values:

BorderSides leftRight = BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
Console.WriteLine ("Includes Left"); // Includes Left

string formatted = leftRight.ToString(); // "Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine (s == leftRight); // True

s ~= BorderSides.Right; // Toggles BorderSides.Right
Console.WriteLine (s); /] Left

By convention, the Flags attribute should always be applied to an enum type when
its members are combinable. If you declare such an enum without the Flags
attribute, you can still combine members, but calling ToString on an enum instance
will emit a number rather than a series of names.

By convention, a combinable enum type is given a plural rather than singular name.

For convenience, you can include combination members within an enum declara-
tion itself:

[Flags]

public enum BorderSides

{
None=0,
Left=1, Right=2, Top=4, Bottom=8,
LeftRight = Left | Right,
TopBottom = Top | Bottom,
All LeftRight | TopBottom

Enums | 1M

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

Enum Operators
The operators that work with enums are:

= == I= < > <= >= + - A& ~
+= -= 4+ -- sizeof

The bitwise, arithmetic, and comparison operators return the result of processing
the underlying integral values. Addition is permitted between an enum and an inte-
gral type, but not between two enums.

Type-Safety Issues
Consider the following enum:
public enum BorderSide { Left, Right, Top, Bottom }

Since an enum can be cast to and from its underlying integral type, the actual value
it may have may fall outside the bounds of a legal enum member. For example:

BorderSide b = (BorderSide) 12345;
Console.WriteLine (b); // 12345

The bitwise and arithmetic operators can produce similarly invalid values:

BorderSide b = BorderSide.Bottom;
b++; // No errors

An invalid BorderSide would break the following code:

void Draw (BorderSide side)

{
if (side == BorderSide.Left) {...
else if (side == BorderSide.Right) {...
else if (side == BorderSide.Top) {...
else {...

}

One solution is to add another else clause:

(SO U U}

// Assume BorderSide.Bottom

else if (side == BorderSide.Bottom) ...
else throw new ArgumentException ("Invalid BorderSide:

+ side, "side");
Another workaround is to explicitly check an enum value for validity. The static

Enum. IsDefined method does this job:

BorderSide side = (BorderSide) 12345;

Console.WriteLine (Enum.IsDefined (typeof (BorderSide), side)); // False
Unfortunately, Enum.IsDefined does not work for flagged enums. However, the fol-
lowing helper method (a trick dependent on the behavior of Enum.ToString())
returns true if a given flagged enum is valid:

112 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

static bool IsFlagDefined (Enum e)
{
decimal d;
return !decimal.TryParse(e.ToString(), out d);

}

[Flags]
public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }
static void Main()

{
for (int 1 = 0; 1 <= 16; i++)
{
BorderSides side = (BorderSides)i;
Console.WriteLine (IsFlagDefined (side) + " " + side); ;?
0
! 23
0
35
naQ
-4

Nested Types
A nested type is declared within the scope of another type. For example:

public class TopLevel

{
public class Nested { } // Nested class
public enum Color { Red, Blue, Tan } // Nested enum

3
A nested type has the following features:

o It can access the enclosing types private members and everything else the
enclosing type can access.

o It can be declared with the full range of access modifiers, rather than just pub
lic and internal.

o The default accessibility for a nested type is private rather than internal.

Accessing a nested type from outside the enclosing type requires qualification
with the enclosing type’s name (like when accessing static members).

For example, to access Color.Red from outside our TopLevel class, wed have to do
this:

TopLevel.Color color = TopLevel.Color.Red;

All types (classes, structs, interfaces, delegates and enums) can be nested inside
either a class or a struct.

Here is an example of accessing a private member of a type from a nested type:

public class TopLevel

{
static int x;
class Nested

{

Nested Types | 113

www.it-ebooks.info

http://www.it-ebooks.info/

static void Foo() { Console.WriteLine (TopLevel.x); }
}
}

Here is an example of applying the protected access modifier to a nested type:

public class TopLevel

{
protected class Nested { }
}
public class SubTopLevel : TopLevel
{
static void Foo() { new TopLevel.Nested(); }
}

Here is an example of referring to a nested type from outside the enclosing type:

public class TopLevel

{
public class Nested { }

}

class Test

{
TopLevel.Nested n;

}

Nested types are used heavily by the compiler itself when it generates private classes
that capture state for constructs such as iterators and anonymous methods.

If the sole reason for using a nested type is to avoid cluttering
a namespace with too many types, consider using a nested
namespace instead. A nested type should be used because of
its stronger access control restrictions, or when the nested
class must access private members of the containing class.

Generics

C# has two separate mechanisms for writing code that is reusable across different
types: inheritance and generics. Whereas inheritance expresses reusability with a
base type, generics express reusability with a “template” that contains “placeholder”
types. Generics, when compared to inheritance, can increase type safety and reduce
casting and boxing.

C# generics and C++ templates are similar concepts, but they
work differently. We explain this difference in “C# Generics
Versus C++ Templates” on page 126.

Generic Types

A generic type declares type parameters—placeholder types to be filled in by the
consumer of the generic type, which supplies the type arguments. Here is a generic

114 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

type Stack<T>, designed to stack instances of type T. Stack<T> declares a single type
parameter T:

public class Stack<T>
{

int position;
T[] data = new T[100];
public void Push (T obj) => data[position++] = obj;
public T Pop() => data[--position];
}

We can use Stack<T> as follows:

var stack = new Stack<int>();

stack.Push (5); %' 0
stack.Push (10); o o
int x = stack.Pop(); // x is 10 - &
int y = stack.Pop(); //y is 5 P
]

Stack<int> fills in the type parameter T with the type argument int, implicitly cre-
ating a type on the fly (the synthesis occurs at runtime). Attempting to push a string
onto our Stack<int> would, however, produce a compile-time error. Stack<int>
effectively has the following definition (substitutions appear in bold, with the class
name hashed out to avoid confusion):

public class ###
{

int position;
int[] data;
public void Push (int obj) => data[position++] = obj;
public int Pop() => data[--position];
}

Technically, we say that Stack<T> is an open type, whereas Stack<int> is a closed
type. At runtime, all generic type instances are closed—with the placeholder types
filled in. This means that the following statement is illegal:

var stack = new Stack<T>(); // Illegal: What is T?
unless inside a class or method which itself defines T as a type parameter:

public class Stack<T>

{
[;l:ll;lic Stack<T> Clone()
{ Stack<T> clone = new Stack<T>(); // Legal
.-
}
Why Generics Exist

Generics exist to write code that is reusable across different types. Suppose we
needed a stack of integers, but we didn’t have generic types. One solution would be

Generics | 115

www.it-ebooks.info

http://www.it-ebooks.info/

to hardcode a separate version of the class for every required element type (e.g.,
IntStack, StringStack, etc.). Clearly, this would cause considerable code duplica-
tion. Another solution would be to write a stack that is generalized by using object
as the element type:

public class ObjectStack
{
int position;
object[] data = new object[10];
public void Push (object obj) => data[position++] = obj;
public object Pop() => data[--position];
}

An ObjectStack, however, wouldnt work as well as a hardcoded IntStack for
specifically stacking integers. Specifically, an ObjectStack would require boxing
and downcasting that could not be checked at compile time:

// Suppose we just want to store integers here:
ObjectStack stack = new ObjectStack();

stack.Push ("s"); // Wrong type, but no error!
int 1 = (int)stack.Pop(); // Downcast - runtime error

What we need is both a general implementation of a stack that works for all element
types, and a way to easily specialize that stack to a specific element type for
increased type safety and reduced casting and boxing. Generics give us precisely
this, by allowing us to parameterize the element type. Stack<T> has the benefits of
both ObjectStack and IntStack. Like ObjectStack, Stack<T> is written once to
work generally across all types. Like IntStack, Stack<T> is specialized for a particu-
lar type—the beauty is that this type is T, which we substitute on the fly.

ObjectStack is functionally equivalent to Stack<objects.

Generic Methods
A generic method declares type parameters within the signature of a method.

With generic methods, many fundamental algorithms can be implemented in a
general-purpose way only. Here is a generic method that swaps the contents of two
variables of any type T:

static voild Swap<T> (ref T a, ref T b)

Swap<T> can be used as follows:

116 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

int x = 5;

int y = 10;

Swap (ref x, ref y);
Generally, there is no need to supply type arguments to a generic method, because
the compiler can implicitly infer the type. If there is ambiguity, generic methods can
be called with the type arguments as follows:

Swap<int> (ref x, ref y);

Within a generic type, a method is not classed as generic unless it introduces type
parameters (with the angle bracket syntax). The Pop method in our generic stack
merely uses the type’s existing type parameter, T, and is not classed as a generic
method.

Methods and types are the only constructs that can introduce type parameters.
Properties, indexers, events, fields, constructors, operators, and so on cannot
declare type parameters, although they can partake in any type parameters already
declared by their enclosing type. In our generic stack example, for instance, we
could write an indexer that returns a generic item:
public T this [int index] => data [index];

Similarly, constructors can partake in existing type parameters, but not introduce
them:

public Stack<T>() { } // Illegal

Declaring Type Parameters

Type parameters can be introduced in the declaration of classes, structs, interfaces,
delegates (covered in Chapter 4), and methods. Other constructs, such as proper-
ties, cannot introduce a type parameter, but can use one. For example, the property
Value uses T:

public struct Nullable<T>

{
public T Value { get; }

}
A generic type or method can have multiple parameters. For example:
class Dictionary<TKey, TValue> {...}
To instantiate:
Dictionary<int,string> myDic = new Dictionary<int,string>();
Or:
var myDic = new Dictionary<int,string>();

Generic type names and method names can be overloaded as long as the number of
type parameters is different. For example, the following three type names do not
conflict:

Generics | 117

www.it-ebooks.info

-
<
]
(0]
0
=
(2]
*

puneald

http://www.it-ebooks.info/

class A {3
class A<T> {3
class A<T1,T2> {}

By convention, generic types and methods with a single type
parameter typically name their parameter T, as long as the
intent of the parameter is clear. When using multiple type
parameters, each parameter is prefixed with T, but has a more
descriptive name.

typeof and Unbound Generic Types

Open generic types do not exist at runtime: open generic types are closed as part of
compilation. However, it is possible for an unbound generic type to exist at runtime
—purely as a Type object. The only way to specify an unbound generic type in C# is
with the typeof operator:

class A<T> {}
class A<T1,T2> {}

Type al = typeof (A<>); // Unbound type (notice no type arguments).
Type a2 = typeof (A<,>); // Use commas to indicate multiple type args.

Open generic types are used in conjunction with the Reflection API (Chapter 19).
You can also use the typeof operator to specify a closed type:

Type a3 = typeof (A<int,int>);
or an open type (which is closed at runtime):

class B<T> { void X() { Type t = typeof (T); } }

The default Generic Value

The default keyword can be used to get the default value for a generic type param-
eter. The default value for a reference type is null, and the default value for a value
type is the result of bitwise-zeroing the value type’s fields:

static void Zap<T> (T[] array)
{
for (int 1 = 0; 1 < array.Length; i++)
array[i] = default(T);
}

Generic Constraints

By default, a type parameter can be substituted with any type whatsoever. Con-
straints can be applied to a type parameter to require more specific type arguments.
These are the possible constraints:

where T : base-class [/ Base-class constraint
where T : interface // Interface constraint
where T : class // Reference-type constraint

118 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

where T : struct // Value-type constraint (excludes Nullable types)
where T : new() // Parameterless constructor constraint
where U : T // Naked type constraint

In the following example, GenericClass<T,U> requires T to derive from (or be iden-
tical to) SomeClass and implement Interfacel, and requires U to provide a parame-
terless constructor:

class SomeClass {}
interface Interfacel {3}

class GenericClass<T,U> where T : SomeClass, Interfacel
where U : new()

...}
Constraints can be applied wherever type parameters are defined, in both methods
and type definitions.

A base-class constraint specifies that the type parameter must subclass (or match) a
particular class; an interface constraint specifies that the type parameter must imple-
ment that interface. These constraints allow instances of the type parameter to be
implicitly converted to that class or interface. For example, suppose we want to
write a generic Max method, which returns the maximum of two values. We can take
advantage of the generic interface defined in the framework called IComparable<T>:

public interface IComparable<T> // Simplified version of interface

{
int CompareTo (T other);

}

CompareTo returns a positive number if this is greater than other. Using this inter-
face as a constraint, we can write a Max method as follows (to avoid distraction, null
checking is omitted):

static T Max <T> (T a, T b) where T : IComparable<T>
{

return a.CompareTo (b) >0 ? a : b;

}
The Max method can accept arguments of any type implementing IComparable<T>
(which includes most built-in types such as int and string):

int z = Max (5, 10); // 10

string last = Max ("ant", "zoo"); // zoo
The class constraint and struct constraint specify that T must be a reference type or
(non-nullable) value type. A great example of the struct constraint is the Sys

tem.Nullable<T> struct (we will discuss this class in depth in “Nullable Types” on
page 162 in Chapter 4):

struct Nullable<T> where T : struct {...}

The parameterless constructor constraint requires T to have a public parameterless
constructor. If this constraint is defined, you can call new() on T:

Generics | 119

www.it-ebooks.info

-
<
]
(0]
0
=
(9
*

Buieald

http://www.it-ebooks.info/

static voild Initialize<T> (T[] array) where T : new()

{
for (int 1 = 0; 1 < array.Length; i++)
array[i] = new T();

3
The naked type constraint requires one type parameter to derive from (or match)
another type parameter. In this example, the method FilteredStack returns
another Stack, containing only the subset of elements where the type parameter U is
of the type parameter T:

class Stack<T>

{
Stack<U> FilteredStack<U>() where U : T {...}

}
Subclassing Generic Types

A generic class can be subclassed just like a nongeneric class. The subclass can leave
the base class’s type parameters open, as in the following example:

class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Or the subclass can close the generic type parameters with a concrete type:
class IntStack : Stack<int> {...}
A subtype can also introduce fresh type arguments:

class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Technically, all type arguments on a subtype are fresh: you
could say that a subtype closes and then reopens the base type
arguments. This means that a subclass can give new (and
potentially more meaningful) names to the type arguments it
reopens:

class List<T> {...}
class KeyedList<TElement,TKey> : List<TElement> {...}

Self-Referencing Generic Declarations
A type can name itself as the concrete type when closing a type argument:

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
public string Color { get; set; }
public int CC { get; set; }

public bool Equals (Balloon b)
{
if (b == null) return false;
return b.Color == Color && b.CC == CC;

120 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

}
}

The following are also legal:

class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }
Static Data

Static data is unique for each closed type:

class Bob<T> { public static int Count; }

-
class Test § a
{ ® o
static void Main() v e
{ 25
. . . nQ
Console.WritelLine (++Bob<int>.Count); /] 1 £
Console.WritelLine (++Bob<int>.Count); /] 2
Console.WriteLine (++Bob<string>.Count); // 1
Console.WriteLine (++Bob<object>.Count); // 1
}
}

Type Parameters and Conversions

C#’s cast operator can perform several kinds of conversion, including:

o Numeric conversion
» Reference conversion
 Boxing/unboxing conversion

« Custom conversion (via operator overloading; see Chapter 4)

The decision as to which kind of conversion will take place happens at compile time,
based on the known types of the operands. This creates an interesting scenario with
generic type parameters, because the precise operand types are unknown at compile
time. If this leads to ambiguity, the compiler generates an error.

The most common scenario is when you want to perform a reference conversion:

StringBuilder Foo<T> (T arg)

{
if (arg is StringBuilder)
return (StringBuilder) arg; // Will not compile

}...

Without knowledge of T’s actual type, the compiler is concerned that you might
have intended this to be a custom conversion. The simplest solution is to instead use
the as operator, which is unambiguous because it cannot perform custom conver-
sions:

Generics | 121

www.it-ebooks.info

http://www.it-ebooks.info/

StringBuilder Foo<T> (T arg)
{

StringBuilder sb = arg as StringBuilder;
if (sb != null) return sb;

}...

A more general solution is to first cast to object. This works because conversions
to/from object are assumed not to be custom conversions, but reference or boxing/
unboxing conversions. In this case, StringBuilder is a reference type, so it has to
be a reference conversion:

return (StringBuilder) (object) arg;

Unboxing conversions can also introduce ambiguities. The following could be an
unboxing, numeric, or custom conversion:

int Foo<T> (T x) => (int) x; // Compile-time error

The solution, again, is to first cast to object and then to int (which then unambig-
uously signals an unboxing conversion in this case):

int Foo<T> (T x) => (int) (object) x;

Covariance

Assuming A is convertible to B, X has a covariant type parameter if X<A> is converti-
ble to X.

With C#’s notion of covariance (and contravariance), “conver-
tible” means convertible via an implicit reference conversion—
such as A subclassing B, or A implementing B. Numeric conver-
sions, boxing conversions and custom conversions are not
included.

For instance, type IFoo<T> has a covariant T if the following is legal:

IFoo<string> s = ...;
IFoo<object> b = s;

From C# 4.0, interfaces permit covariant type parameters (as do delegates—see
Chapter 4), but classes do not. Arrays also allow covariance (A[] can be converted
to B[] if A has an implicit reference conversion to B), and are discussed here for
comparison.

Covariance and contravariance (or simply “variance”) are
advanced concepts. The motivation behind introducing and
enhancing variance in C# was to allow generic interface and
generic types (in particular, those defined in the Framework,
such as IEnumerable<T>) to work more as youd expect. You
can benefit from this without understanding the details
behind covariance and contravariance.

122 | Chapter3: Creating Types in G#

www.it-ebooks.info

http://www.it-ebooks.info/

Variance is not automatic

To ensure static type safety, type parameters are not automatically variant. Consider
the following:

class Animal {}
class Bear : Animal {}
class Camel : Animal {}

public class Stack<T> // A simple Stack implementation
{
int position;
T[] data = new T[100];
public void Push (T obj) => data[position++] = obj;
public T Pop() => data[--position];
}

The following fails to compile:

puneald

-
<
°]
(0]
0
=
(2]
*

Stack<Bear> bears = new Stack<Bear>();
Stack<Animal> animals = bears; // Compile-time error

That restriction prevents the possibility of runtime failure with the following code:

animals.Push (new Camel()); // Trying to add Camel to bears

Lack of covariance, however, can hinder reusability. Suppose, for instance, we
wanted to write a method to Wash a stack of animals:

public class ZooCleaner

{

public static voild Wash (Stack<Animal> animals) {...}

3
Calling Wash with a stack of bears would generate a compile-time error. One work-

around is to redefine the Wash method with a constraint:

class ZooCleaner

{

public static void Wash<T> (Stack<T> animals) where T : Animal { ... }

}

We can now call Wash as follows:

Stack<Bear> bears = new Stack<Bear>();
ZooCleaner.Wash (bears);

Another solution is to have Stack<T> implement an interface with a covariant type
parameter, as we'll see shortly.

Arrays

For historical reasons, array types support covariance. This means that B[] can be
cast to A[] if B subclasses A (and both are reference types). For example:

Bear[] bears = new Bear[3];
Animal[] animals = bears; // OK

Generics | 123

www.it-ebooks.info

http://www.it-ebooks.info/

The downside of this reusability is that element assignments can fail at runtime:

animals[0] = new Camel(); // Runtime error

Declaring a covariant type parameter

As of C# 4.0, type parameters on interfaces and delegates can be declared covariant
by marking them with the out modifier. This modifier ensures that, unlike with
arrays, covariant type parameters are fully type-safe.

We can illustrate this with our Stack<T> class by having it implement the following
interface:

public interface IPoppable<out T> { T Pop(); }

The out modifier on T indicates that T is used only in output positions (e.g., return
types for methods). The out modifier flags the type parameter as covariant and
allows us to do this:

var bears = new Stack<Bear>();

bears.Push (new Bear());

// Bears implements IPoppable<Bear>. We can convert to IPoppable<Animal>:
IPoppable<Animal> animals = bears; // Legal

Animal a = animals.Pop();

The conversion from bears to animals is permitted by the compiler—by virtue of
the type parameter being covariant. This is type-safe because the case the compiler
is trying to avoid—pushing a Camel onto the stack—can’t occur as there’s no way to
feed a Camel into an interface where T can appear only in output positions.

Covariance (and contravariance) in interfaces is something
that you typically consume: its less common that you need to
write variant interfaces.

Curiously, method parameters marked as out are not eligible
for covariance, due to a limitation in the CLR.

We can leverage the ability to cast covariantly to solve the reusability problem
described earlier:

public class ZooCleaner

{
public static void Wash (IPoppable<Animal> animals) { ... }

}

The IEnumerator<T> and IEnumerable<T> interfaces
described in Chapter 7 have a covariant T. This allows you to
cast IEnumerable<string> to IEnumerable<objects>, for
instance.

The compiler will generate an error if you use a covariant type parameter in an
input position (e.g., a parameter to a method or a writable property).

124 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

Covariance (and contravariance) works only for elements with
reference conversions—not boxing conversions. (This applies
both to type parameter variance and array variance.) So, if you
wrote a method that accepted a parameter of type IPoppa
ble<object>, you could call it with IPoppable<string>, but
not IPoppable<ints>.

Contravariance

We previously saw that, assuming that A allows an implicit reference conversion to
B, a type X has a covariant type parameter if X<A> allows a reference conversion to
X. Contravariance is when you can convert in the reverse direction—from X
to X<A>. This is supported if the type parameter appears only in input positions, and
is designated with the in modifier. Extending our previous example, if the Stack<T>
class implements the following interface:

Buieald

-
<
]
(0]
0
=
(2
*

public interface IPushable<in T> { void Push (T obj); }
we can legally do this:

IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; // Legal
bears.Push (new Bear());

No member in IPushable outputs a T, so we can't get into trouble by casting ani
mals to bears (theres no way to Pop, for instance, through that interface).

Our Stack<T> class can implement both IPushable<T> and
IPoppable<T>—despite T having opposing variance annota-
tions in the two interfaces! This works because you must exer-
cise variance through the interface and not the class; therefore,
you must commit to the lens of either IPoppable or IPusha
ble before performing a variant conversion. This lens then
restricts you to the operations that are legal under the appro-
priate variance rules.

This also illustrates why classes do not allow variant type
parameters: concrete implementations typically require data
to flow in both directions.

To give another example, consider the following interface, defined as part of
the NET Framework:

public interface IComparer<in T>

{

// Returns a value indicating the relative ordering of a and b
int Compare (T a, T b);
}
Because the interface has a contravariant T, we can use an IComparer<object> to
compare two strings:

Generics | 125

www.it-ebooks.info

http://www.it-ebooks.info/

var objectComparer = Comparer<object>.Default;

// objectComparer implements IComparer<object>
IComparer<string> stringComparer = objectComparer;

int result = stringComparer.Compare ("Brett", "Jemaine");

Mirroring covariance, the compiler will report an error if you try to use a contravar-
iant type parameter in an output position (e.g., as a return value, or in a readable
property).

C# Generics Versus (++ Templates

C# generics are similar in application to C++ templates, but they work very differ-
ently. In both cases, a synthesis between the producer and consumer must take
place, where the placeholder types of the producer are filled in by the consumer.
However, with C# generics, producer types (i.e., open types such as List<T>) can be
compiled into a library (such as mscorlib.dll). This works because the synthesis
between the producer and the consumer that produces closed types doesn't actually
happen until runtime. With C++ templates, this synthesis is performed at compile
time. This means that in C++ you don’t deploy template libraries as .dlls—they exist
only as source code. It also makes it difficult to dynamically inspect, let alone create,
parameterized types on the fly.

To dig deeper into why this is the case, consider the Max method in C#, once more:

static T Max <T> (T a, T b) where T : IComparable<T>
=> a.CompareTo (b) >0 ? a : b;

Why couldn’t we have implemented it like this?

static T Max <T> (T a, T b)
=> (a>b ?a:b); // Compile error
The reason is that Max needs to be compiled once and work for all possible values of
T. Compilation cannot succeed, because there is no single meaning for > across all
values of T—in fact, not every T even has a > operator. In contrast, the following
code shows the same Max method written with C++ templates. This code will be
compiled separately for each value of T, taking on whatever semantics > has for a
particular T, failing to compile if a particular T does not support the > operator:

template <class T> T Max (T a, T b)
{

return a>b ? a: b;

}

126 | Chapter3: Creating Typesin G#

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced (#

In this chapter, we cover advanced C# topics that build on concepts explored in
Chapters 2 and 3. You should read the first four sections sequentially; you can read
the remaining sections in any order.

Delegates

A delegate is an object that knows how to call a method.

A delegate type defines the kind of method that delegate instances can call. Specifi-
cally, it defines the method’s return type and its parameter types. The following
defines a delegate type called Transformer:

delegate int Transformer (int x);

Transformer is compatible with any method with an int return type and a single
int parameter, such as this:

static int Square (int x) { return x * x; }
or more tersely:
static int Square (int x) => x * x;
Assigning a method to a delegate variable creates a delegate instance:
Transformer t = Square;
which can be invoked in the same way as a method:
int answer = t(3); // answer is 9
Here’s a complete example:

delegate int Transformer (int x);

class Test

{

static void Main()

127

www.it-ebooks.info

http://www.it-ebooks.info/

Transformer t = Square; /] Create delegate instance
int result = t(3); // Invoke delegate
Console.WriteLine (result); /] 9

}

static int Square (int x) => x * x;

}

A delegate instance literally acts as a delegate for the caller: the caller invokes the
delegate, and then the delegate calls the target method. This indirection decouples
the caller from the target method.

The statement:
Transformer t = Square;
is shorthand for:
Transformer t = new Transformer (Square);

Technically, we are specifying a method group when we refer to
Square without brackets or arguments. If the method is over-
loaded, C# will pick the correct overload based on the signa-
ture of the delegate to which it’s being assigned.

The expression:
t(3)

is shorthand for:
t.Invoke(3)

A delegate is similar to a callback, a general term that captures
constructs such as C function pointers.

Writing Plug-in Methods with Delegates

A delegate variable is assigned a method at runtime. This is useful for writing plug-
in methods. In this example, we have a utility method named Transform that
applies a transform to each element in an integer array. The Transform method has
a delegate parameter, for specifying a plug-in transform.

public delegate int Transformer (int x);

class Util
{

public static void Transform (int[] values, Transformer t)
{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t (values[i]);
}
}

class Test

128 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

static void Main()

{
int[] values = { 1, 2, 3 };
Util.Transform (values, Square); // Hook in the Square method
foreach (int i1 in values)

Console.Write (1 + " "); //1 4 9
}
static int Square (int x) => x * x;
}
Multicast Delegates

All delegate instances have multicast capability. This means that a delegate instance
can reference not just a single target method, but also a list of target methods. The +
and += operators combine delegate instances. For example:

SomeDelegate d = SomeMethodi;
d += SomeMethod?2;

The last line is functionally the same as:
d = d + SomeMethod2;

Invoking d will now call both SomeMethod1 and SomeMethod2. Delegates are invoked
in the order they are added.

The - and -= operators remove the right delegate operand from the left delegate
operand. For example:

d -= SomeMethod1;
Invoking d will now cause only SomeMethod2 to be invoked.

Calling + or += on a delegate variable with a null value works, and it is equivalent to
assigning the variable to a new value:

SomeDelegate d = null;

d += SomeMethod1; // Equivalent (when d is null) to d = SomeMethodi;
Similarly, calling -= on a delegate variable with a single target is equivalent to
assigning null to that variable.

Delegates are immutable, so when you call += or -=, you're in
fact creating a new delegate instance and assigning it to the
existing variable.

If a multicast delegate has a nonvoid return type, the caller receives the return value
from the last method to be invoked. The preceding methods are still called, but their
return values are discarded. In most scenarios in which multicast delegates are used,
they have void return types, so this subtlety does not arise.

Delegates | 129

www.it-ebooks.info

>
s
(e)
"3
a
o
o

http://www.it-ebooks.info/

All delegate types implicitly derive from System.MulticastDe
legate, which inherits from System.Delegate. C# compiles +,
-, +=, and -= operations made on a delegate to the static Com
bine and Remove methods of the System.Delegate class.

Multicast delegate example

Suppose you wrote a method that took a long time to execute. That method could
regularly report progress to its caller by invoking a delegate. In this example, the
HardWork method has a ProgressReporter delegate parameter, which it invokes to
indicate progress:

public delegate void ProgressReporter (int percentComplete);

public class Util

{
public static void HardWork (ProgressReporter p)
{
for (int 1 = 0; 1 < 10; i++)
{
p (1 * 10); // Invoke delegate
System.Threading.Thread.Sleep (100); // Simulate hard work
}
}
}

To monitor progress, the Main method creates a multicast delegate instance p, such
that progress is monitored by two independent methods:

class Test

{

static void Main()

{

ProgressReporter p = WriteProgressToConsole;
p += WriteProgressToFile;
Util.HardWork (p);

}

static void WriteProgressToConsole (int percentComplete)
=> Console.WriteLine (percentComplete);

static voild WriteProgressToFile (int percentComplete)
=> System.I0.File.WriteAllText ("progress.txt",
percentComplete.ToString());

}
Instance Versus Static Method Targets

When an instance method is assigned to a delegate object, the latter must maintain a
reference not only to the method, but also to the instance to which the method
belongs. The System.Delegate class’s Target property represents this instance (and
will be null for a delegate referencing a static method). For example:

130 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

public delegate void ProgressReporter (int percentComplete);

class Test
{
static void Main()
{
X x = new X();
ProgressReporter p = x.InstanceProgress;

p(99); /] 99
Console.WriteLine (p.Target == x); /] True
Console.WriteLine (p.Method); // Void InstanceProgress(Int32)
}
}
class X
{

public voild InstanceProgress (int percentComplete)
=> Console.WriteLine (percentComplete);

}
Generic Delegate Types

A delegate type may contain generic type parameters. For example:

>
S
(e)
"3
a
o
o

public delegate T Transformer<T> (T arg);

With this definition, we can write a generalized Transform utility method that
works on any type:

public class Util
{

public static void Transform<T> (T[] values, Transformer<T> t)

{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t (values[i]);
}
}

class Test

{

static void Main()

{
int[] values = { 1, 2, 3 };
Util.Transform (values, Square); // Hook in Square
foreach (int 1 in values)
Console.Write (1 + " "); //1 4 9

}

static int Square (int x) => x * x;

}
The Func and Action Delegates

With generic delegates, it becomes possible to write a small set of delegate types that
are so general they can work for methods of any return type and any (reasonable)
number of arguments. These delegates are the Func and Action delegates, defined in

Delegates | 131

www.it-ebooks.info

http://www.it-ebooks.info/

the System namespace (the in and out annotations indicate variance, which we will
cover shortly):

delegate TResult Func <out TResult> 0);

delegate TResult Func <in T, out TResult> (T arg);

delegate TResult Func <in T1, in T2, out TResult> (T1 argl, T2 arg2);
. and so on, up to T16

delegate void Action (OF

delegate void Action <in T> (T arg);

delegate void Action <in T1, in T2> (T1 argl, T2 arg2);
. and so on, up to T16

These delegates are extremely general. The Transformer delegate in our previous
example can be replaced with a Func delegate that takes a single argument of type T
and returns a same-typed value:

public static void Transform<T> (T[] values, Func<T,T> transformer)

{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = transformer (values[i]);

}

The only practical scenarios not covered by these delegates are ref/out and pointer
parameters.

Prior to Framework 2.0, the Func and Action delegates did
not exist (because generics did not exist). It’s for this historical
reason that much of the Framework uses custom delegate
types rather than Func and Action.

Delegates Versus Interfaces

A problem that can be solved with a delegate can also be solved with an interface.
For instance, we can rewrite our original example with an interface called ITrans
former instead of a delegate:

public interface ITransformer

{
int Transform (int x);
}
public class Util
{
public static void TransformAll (int[] values, ITransformer t)
{
for (int 1 = 0; 1 < values.Length; i++)
values[i] = t.Transform (values[i]);
}
}
class Squarer : ITransformer
{
public int Transform (int x) => x * x;
}

132 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

static void Main()

{
int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Squarer());
foreach (int i1 in values)
Console.WriteLine (1);

3
A delegate design may be a better choice than an interface design if one or more of
these conditions are true:

o The interface defines only a single method.
o Multicast capability is needed.

o The subscriber needs to implement the interface multiple times.

In the ITransformer example, we don’t need to multicast. However, the interface
defines only a single method. Furthermore, our subscriber may need to implement
ITransformer multiple times, to support different transforms, such as square or
cube. With interfaces, we're forced into writing a separate type per transform, since
Test can implement ITransformer only once. This is quite cumbersome:

>
S
(e)
T3
a
o
o

class Squarer : ITransformer

{
public int Transform (int x) => x * x;
}
class Cuber : ITransformer
{
public int Transform (int x) => x * x * x;
}

static void Main()

{
int[] values = { 1, 2, 3 };
Util.TransformAll (values, new Cuber());
foreach (int i1 in values)
Console.WriteLine (1);

}
Delegate Compatibility

Type compatibility
Delegate types are all incompatible with one another, even if their signatures are the
same:

delegate void D1();
delegate void D2();

Delegates | 133

www.it-ebooks.info

http://www.it-ebooks.info/

D1 d1
D2 d2

Method1;
di; // Compile-time error

The following, however, is permitted:

D2 d2 = new D2 (d1);

Delegate instances are considered equal if they have the same method targets:

delegate void D();

D d1 = Method1;
D d2 = Method1;
Console.WriteLine (d1 == d2); /] True

Multicast delegates are considered equal if they reference the same methods in the
same order.

Parameter compatibility

When you call a method, you can supply arguments that have more specific types
than the parameters of that method. This is ordinary polymorphic behavior. For
exactly the same reason, a delegate can have more specific parameter types than its
method target. This is called contravariance.

Here’s an example:

delegate void StringAction (string s);

class Test

{

static void Main()

{
StringAction sa = new StringAction (ActOnObject);
sa ("hello");

}

static void ActOnObject (object o) => Console.WritelLine (0); // hello
}

(As with type parameter variance, delegates are variant only for reference conver-
sions.)

A delegate merely calls a method on someone else’s behalf. In this case, the String
Action is invoked with an argument of type string. When the argument is then
relayed to the target method, the argument gets implicitly upcast to an object.

The standard event pattern is designed to help you leverage
contravariance through its use of the common EventArgs base
class. For example, you can have a single method invoked by
two different delegates, one passing a MouseEventArgs and the
other passing a KeyEventArgs.

134 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Return type compatibility

If you call a method, you may get back a type that is more specific than what you
asked for. This is ordinary polymorphic behavior. For exactly the same reason, a
delegate’s target method may return a more specific type than described by the dele-
gate. This is called covariance. For example:

delegate object ObjectRetriever();

class Test

{

static void Main()

{

ObjectRetriever o = new ObjectRetriever (RetrieveString);
object result = o();
Console.WriteLine (result); // hello

}

static string RetrieveString() => "hello";

}

ObjectRetriever expects to get back an object, but an object subclass will also do:
delegate return types are covariant.

Generic delegate type parameter variance

In Chapter 3, we saw how generic interfaces support covariant and contravariant
type parameters. The same capability exists for delegates too (from C# 4.0 onward).

If you're defining a generic delegate type, it’s good practice to:

o Mark a type parameter used only on the return value as covariant (out).

o Mark any type parameters used only on parameters as contravariant (in).
Doing so allows conversions to work naturally by respecting inheritance relation-
ships between types.

The following delegate (defined in the System namespace) has a covariant TResult:
delegate TResult Func<out TResult>();
allowing:

Func<string> x = ...;
Func<object> y = x;

The following delegate (defined in the System namespace) has a contravariant T:
delegate void Action<in T> (T arg);

allowing:

Action<object> x = ...;
Action<string> y

n
s
<.

Delegates | 135

www.it-ebooks.info

(2]
*

pasueApy

http://www.it-ebooks.info/

Events

When using delegates, two emergent roles commonly appear: broadcaster and sub-
scriber.

The broadcaster is a type that contains a delegate field. The broadcaster decides
when to broadcast by invoking the delegate.

The subscribers are the method target recipients. A subscriber decides when to start
and stop listening by calling += and -= on the broadcaster’s delegate. A subscriber
does not know about, or interfere with, other subscribers.

Events are a language feature that formalizes this pattern. An event is a construct
that exposes just the subset of delegate features required for the broadcaster/
subscriber model. The main purpose of events is to prevent subscribers from interfer-
ing with one another.

The easiest way to declare an event is to put the event keyword in front of a delegate
member:

// Delegate definition

public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);

public class Broadcaster

{
// Event declaration
public event PriceChangedHandler PriceChanged;

}

Code within the Broadcaster type has full access to PriceChanged and can treat it
as a delegate. Code outside of Broadcaster can only perform += and -= operations
on the PriceChanged event.

How Do Events Work on the Inside?
Three things happen under the covers when you declare an event as follows:

public class Broadcaster

{

public event PriceChangedHandler PriceChanged;

}

First, the compiler translates the event declaration into something close to the fol-
lowing:

PriceChangedHandler priceChanged; // private delegate
public event PriceChangedHandler PriceChanged

{
add { priceChanged += value; }
remove { priceChanged -= value; }

}

The add and remove keywords denote explicit event accessors—which act rather like
property accessors. We'll describe how to write these later.

136 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Second, the compiler looks within the Broadcaster class for references to Price
Changed that perform operations other than += or -= and redirects them to the
underlying priceChanged delegate field.

Third, the compiler translates += and -= operations on the event to calls to the
event’s add and remove accessors. Interestingly, this makes the behavior of += and -=
unique when applied to events: unlike in other scenarios, it’s not simply a shortcut
for + and - followed by an assignment.

Consider the following example. The Stock class fires its PriceChanged event every
time the Price of the Stock changes:

public delegate void PriceChangedHandler (decimal oldPrice,
decimal newPrice);

public class Stock

{

string symbol;
decimal price;

public Stock (string symbol) { this.symbol = symbol; }

>
s
0o
"3
a
1]
o

public event PriceChangedHandler PriceChanged;

public decimal Price

{
get { return price; }
set
{
if (price == value) return; // Exit if nothing has changed
decimal oldPrice = price;
price = value;
if (PriceChanged != null) // If invocation list not
PriceChanged (oldPrice, price); // empty, fire event.
}
}

}

If we remove the event keyword from our example so that PriceChanged becomes
an ordinary delegate field, our example would give the same results. However,
Stock would be less robust, in that subscribers could do the following things to
interfere with each other:

o Replace other subscribers by reassigning PriceChanged (instead of using the +=
operator).

o Clear all subscribers (by setting PriceChanged to null).

o Broadcast to other subscribers by invoking the delegate.

Events | 137

www.it-ebooks.info

http://www.it-ebooks.info/

WinRT events have slightly different semantics in that attach-
ing to an event returns a token which is required to detach
from the event. The compiler transparently bridges this gap
(by maintaining an internal dictionary of tokens) so that you
can consume WinRT events as though they were ordinary
CLR events.

Standard Event Pattern

The .NET Framework defines a standard pattern for writing events. Its purpose is to
provide consistency across both Framework and user code. At the core of the stan-
dard event pattern is System.EventArgs, a predefined Framework class with no
members (other than the static Empty property). EventArgs is a base class for con-
veying information for an event. In our Stock example, we would subclass Even
tArgs to convey the old and new prices when a PriceChanged event is fired:

public class PriceChangedEventArgs : System.EventArgs
{

public readonly decimal LastPrice;
public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)
{
LastPrice = lastPrice;
NewPrice = newPrice;
}
}

For reusability, the EventArgs subclass is named according to the information it
contains (rather than the event for which it will be used). It typically exposes data as
properties or as read-only fields.

With an EventArgs subclass in place, the next step is to choose or define a delegate
for the event. There are three rules:

o It must have a void return type.

o It must accept two arguments: the first of type object, and the second a sub-
class of EventArgs. The first argument indicates the event broadcaster, and the
second argument contains the extra information to convey.

o Its name must end with EventHandler.
The Framework defines a generic delegate called System.EventHandler<> that sat-
isfies these rules:

public delegate void EventHandler<TEventArgs>
(object source, TEventArgs e) where TEventArgs : EventArgs;

138 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Before generics existed in the language (prior to C# 2.0), we
would have had to instead write a custom delegate as follows:

public delegate void PriceChangedHandler
(object sender, PriceChangedEventArgs e);

For historical reasons, most events within the Framework use
delegates defined in this way.

The next step is to define an event of the chosen delegate type. Here, we use the
generic EventHandler delegate:

public class Stock
{

public event EventHandler<PriceChangedEventArgs> PriceChanged;

}

Finally, the pattern requires that you write a protected virtual method that fires the
event. The name must match the name of the event, prefixed with the word On, and

then accept a single EventArgs argument:

public class Stock
{

public event EventHandler<PriceChangedEventArgs> PriceChanged;

protected virtual void OnPriceChanged (PriceChangedEventArgs e)

{
if (PriceChanged != null) PriceChanged (this, e);

}
}

In multithreaded scenarios (Chapter 14), you need to assign
the delegate to a temporary variable before testing and invok-
ing it to avoid a thread-safety error:

var temp = PriceChanged;
if (temp != null) temp (this, e);

We can achieve the same functionality without the temp vari-
able from C# 6 with the null-conditional operator:

PriceChanged?.Invoke (this, e);

Being both thread-safe and succinct, this is now the best gen-
eral way to invoke events.

This provides a central point from which subclasses can invoke or override the
event (assuming the class is not sealed).

Here’s the complete example:
using System;
public class PriceChangedEventArgs : EventArgs

{

public readonly decimal LastPrice;

Events | 139

www.it-ebooks.info

>

s
09
"3
a
1]
o

http://www.it-ebooks.info/

public readonly decimal NewPrice;

public PriceChangedEventArgs (decimal lastPrice, decimal newPrice)

{

LastPrice = lastPrice; NewPrice = newPrice;

}
}

public class Stock
{

string symbol;
decimal price;
public Stock (string symbol) {this.symbol = symbol;}

public event EventHandler<PriceChangedEventArgs> PriceChanged;

protected virtual void OnPriceChanged (PriceChangedEventArgs e)

{
PriceChanged?.Invoke (this, e);
}
public decimal Price
{
get { return price; }
set
{
if (price == value) return;
decimal oldPrice = price;
price = value;
OnPriceChanged (new PriceChangedEventArgs (oldPrice, price));
}
}
}
class Test
{
static void Main()
{
Stock stock = new Stock ("THPW");
stock.Price = 27.10M;
// Register with the PriceChanged event
stock.PriceChanged += stock_PriceChanged;
stock.Price = 31.59M;
}

static voild stock_PriceChanged (object sender, PriceChangedEventArgs e)

if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
Console.WriteLine ("Alert, 10% stock price increase!");

140 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

The predefined nongeneric EventHandler delegate can be used when an event
doesn’t carry extra information. In this example, we rewrite Stock such that the Pri
ceChanged event is fired after the price changes, and no information about the event
is necessary, other than it happened. We also make use of the EventArgs.Empty
property in order to avoid unnecessarily instantiating an instance of EventArgs.

public class Stock
{

string symbol;
decimal price;

public Stock (string symbol) { this.symbol = symbol; }
public event EventHandler PriceChanged;

protected virtual void OnPriceChanged (EventArgs e)

{

PriceChanged?.Invoke (this, e);

}

public decimal Price

{
get { return price; }
set
{
if (price == value) return;
price = value;
OnPriceChanged (EventArgs.Empty);
}
}
}

Event Accessors

An event’s accessors are the implementations of its += and -= functions. By default,
accessors are implemented implicitly by the compiler. Consider this event declara-
tion:

public event EventHandler PriceChanged;

The compiler converts this to the following:

o A private delegate field

o A public pair of event accessor functions (add_PriceChanged and remove_Pri
ceChanged), whose implementations forward the += and -= operations to the
private delegate field

You can take over this process by defining explicit event accessors. Here’s a manual
implementation of the PriceChanged event from our previous example:

private EventHandler priceChanged; // Declare a private delegate

public event EventHandler PriceChanged

Events | 141

www.it-ebooks.info

(2}
*

posueApy

http://www.it-ebooks.info/

{
add { priceChanged += value; }
remove { priceChanged -= value; }

}

This example is functionally identical to C#’s default accessor implementation
(except that C# also ensures thread safety around updating the delegate via a lock-
free compare-and-swap algorithm—see http://albahari.com/threading). By defining
event accessors ourselves, we instruct C# not to generate default field and accessor
logic.

With explicit event accessors, you can apply more complex strategies to the storage
and access of the underlying delegate. There are three scenarios where this is useful:

o When the event accessors are merely relays for another class that is broadcast-
ing the event.

o When the class exposes a large number of events, where most of the time very
few subscribers exist, such as a Windows control. In such cases, it is better to
store the subscriber’s delegate instances in a dictionary, since a dictionary will
contain less storage overhead than dozens of null delegate field references.

o When explicitly implementing an interface that declares an event.

Here is an example that illustrates the last point:

public interface IFoo { event EventHandler Ev; }

class Foo : IFoo

{

private EventHandler ev;

event EventHandler IFoo.Ev
{
add { ev += value; }
remove { ev -= value; }
}
}

The add and remove parts of an event are compiled to add_xxx
and remove_XXX methods.

Event Modifiers

Like methods, events can be virtual, overridden, abstract, or sealed. Events can also
be static:

public class Foo

{
public static event EventHandler<EventArgs> StaticEvent;
public virtual event EventHandler<EventArgs> VirtualEvent;

}

142 | Chapter4: Advanced C#

www.it-ebooks.info

http://albahari.com/threading
http://www.it-ebooks.info/

Lambda Expressions

A lambda expression is an unnamed method written in place of a delegate instance.
The compiler immediately converts the lambda expression to either:
o A delegate instance.

o An expression tree, of type Expression<TDelegate>, representing the code
inside the lambda expression in a traversable object model. This allows the
lambda expression to be interpreted later at runtime (see “Building Query
Expressions” on page 385 in Chapter 8).

Given the following delegate type:
delegate int Transformer (int i);
we could assign and invoke the lambda expression x => x * x as follows:

Transformer sqr = x => x * x;
Console.WriteLine (sqr(3)); /]9

Internally, the compiler resolves lambda expressions of this
type by writing a private method, and moving the expression’s
code into that method.

A lambda expression has the following form:
(parameters) => expression-or-statement-block

For convenience, you can omit the parentheses if and only if there is exactly one
parameter of an inferable type.

In our example, there is a single parameter, x, and the expression is x * x:
X => X * X;

Each parameter of the lambda expression corresponds to a delegate parameter, and
the type of the expression (which may be void) corresponds to the return type of
the delegate.

In our example, x corresponds to parameter i, and the expression x * x corre-
sponds to the return type int, therefore being compatible with the Transformer
delegate:

delegate int Transformer (int i);

A lambda expression’s code can be a statement block instead of an expression. We
can rewrite our example as follows:

x => { return x * x; };

Lambda expressions are used most commonly with the Func and Action delegates,
so you will most often see our earlier expression written as follows:

Func<int,int> sqr = x => x * Xx;

Lambda Expressions | 143

www.it-ebooks.info

>
s
(e)
"3
a
o
o

http://www.it-ebooks.info/

Here’s an example of an expression that accepts two parameters:

Func<string,string,int> totalLength = (s1, s2) => sl.Length + s2.Length;
int total = totalLength ("hello", "world"); // total is 10;

Lambda expressions were introduced in C# 3.0.

Explicitly Specifying Lambda Parameter Types

The compiler can usually infer the type of lambda parameters. When this is not the
case, you must specify the type of each parameter explicitly. Consider the following
two methods:

void Foo<T> (T x) {}

void Bar<T> (Action<T> a) {}
The following code will fail to compile because the compiler cannot infer the type of
X:

Bar (x => Foo (x)); // What type is x?
We can fix this by explicitly specify xs type as follows:
Bar ((int x) => Foo (x));
This particular example is simple enough that it can be fixed in two other ways:

Bar<int> (x => Foo (x)); // Specify type parameter for Bar
Bar<int> (Foo); // As above, but with method group

Capturing Outer Variables

A lambda expression can reference the local variables and parameters of the method
in which it’s defined (outer variables). For example:

static void Main()

{
int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WriteLine (multiplier (3)); /] 6
}

Outer variables referenced by a lambda expression are called captured variables. A
lambda expression that captures variables is called a closure.

Captured variables are evaluated when the delegate is actually invoked, not when the
variables were captured:

int factor = 2;

Func<int, int> multiplier = n => n * factor;

factor = 10;

Console.WriteLine (multiplier (3)); // 30

144 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Lambda expressions can themselves update captured variables:

int seed = 0;
Func<int> natural = () => seed++;

Console.WriteLine (natural()); /] 0
Console.WriteLine (natural()); /] 1
Console.WriteLine (seed); /] 2

Captured variables have their lifetimes extended to that of the delegate. In the fol-
lowing example, the local variable seed would ordinarily disappear from scope
when Natural finished executing. But because seed has been captured, its lifetime is
extended to that of the capturing delegate, natural:

static Func<int> Natural()

{
int seed = 0;
return () => seed++; /] Returns a closure

}

static void Main()

(>

_ o

Func<int> natural = Natural(); 05
Console.WriteLine (natural()); /] © #* g
Console.WriteLine (natural()); /] 1 3

}

A local variable instantiated within a lambda expression is unique per invocation of
the delegate instance. If we refactor our previous example to instantiate seed within
the lambda expression, we get a different (in this case, undesirable) result:

static Func<int> Natural()

‘ return() => { int seed = 0; return seed++; };
}
static voild Main()
{
Func<int> natural = Natural();
Console.WriteLine (natural()); /] @
Console.WriteLine (natural()); /] @
}

Capturing is internally implemented by “hoisting” the cap-
tured variables into fields of a private class. When the method
is called, the class is instantiated and lifetime-bound to the
delegate instance.

(Capturing iteration variables

When you capture the iteration variable of a for loop, C# treats that variable as
though it was declared outside the loop. This means that the same variable is cap-
tured in each iteration. The following program writes 333 instead of writing 012:

Lambda Expressions | 145

www.it-ebooks.info

http://www.it-ebooks.info/

Action[] actions = new Action[3];

for (int 1 = 0; 1 < 3; 1++)
actions [1] = () => Console.Write (i);

foreach (Action a in actions) a(); // 333

Each closure (shown in boldface) captures the same variable, i. (This actually makes
sense when you consider that 1 is a variable whose value persists between loop itera-
tions; you can even explicitly change 1 within the loop body if you want.) The con-
sequence is that when the delegates are later invoked, each delegate sees s value at
the time of invocation—which is 3. We can illustrate this better by expanding the
for loop as follows:

Action[] actions = new Action[3];

int 1 = 0;

actions[0] = () => Console.Write (i);

i=1;

actions[1] = () => Console.Write (i);

i=2;

actions[2] = () => Console.Write (i);

i=3;

foreach (Action a in actions) a(); /] 333

The solution, if we want to write 012, is to assign the iteration variable to a local
variable that’s scoped inside the loop:

Action[] actions = new Action[3];
for (int 1 = 0; 1 < 3; 1++)
{
int loopScopedi = i;
actions [1] = () => Console.Write (loopScopedi);

}
foreach (Action a in actions) a(); /] 012

Because loopScopedt is freshly created on every iteration, each closure captures a

different variable.

Prior to C# 5.0, foreach loops worked in the same way:

Action[] actions = new Action[3];
int 1 = 0;

foreach (char c in "abc")
actions [1++] = () => Console.Write (c);

foreach (Action a in actions) a(); /] ccc in C# 4.0

This caused considerable confusion: unlike with a for loop,
the iteration variable in a foreach loop is immutable, and so
one would expect it to be treated as local to the loop body. The
good news is that it’s been fixed since C# 5.0, and the example
above now writes “abc”

146 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Technically, this is a breaking change because recompiling a
C# 4.0 program in C# 5.0 could create a different result. In
general, the C# team tries to avoid breaking changes; however
in this case, a “break” would almost certainly indicate an
undetected bug in the C# 4.0 program rather than intentional
reliance on the old behavior.

Anonymous Methods

Anonymous methods are a C# 2.0 feature that has been mostly subsumed by C# 3.0
lambda expressions. An anonymous method is like a lambda expression, but it lacks
the following features:

o Implicitly typed parameters.
o Expression syntax (an anonymous method must always be a statement block).
o The ability to compile to an expression tree by assigning to Expression<T>.
To write an anonymous method, you include the delegate keyword followed

(optionally) by a parameter declaration and then a method body. For example, given
this delegate:

delegate int Transformer (int i);
we could write and call an anonymous method as follows:

Transformer sqr = delegate (int x) {return x * x;};
Console.WriteLine (sqr(3)); /] 9

The first line is semantically equivalent to the following lambda expression:

Transformer sqr = (int x) => {return x * x;};
or simply:
Transformer sqr = X => X * x;

Anonymous methods capture outer variables in the same way lambda expressions

do.

A unique feature of anonymous methods is that you can omit
the parameter declaration entirely—even if the delegate
expects it. This can be useful in declaring events with a default
empty handler:

public event EventHandler Clicked = delegate { };

This avoids the need for a null check before firing the event.
The following is also legal:

// Notice that we omit the parameters:
Clicked += delegate { Console.WriteLine ("clicked"); };

Anonymous Methods | 147

www.it-ebooks.info

>
s
(e)
"3
a
®
o

http://www.it-ebooks.info/

try Statements and Exceptions

A try statement specifies a code block subject to error-handling or cleanup code.
The try block must be followed by a catch block, a finally block, or both. The
catch block executes when an error occurs in the try block. The finally block exe-
cutes after execution leaves the try block (or if present, the catch block) to perform
cleanup code, whether or not an error occurred.

A catch block has access to an Exception object that contains information about
the error. You use a catch block to either compensate for the error or rethrow the
exception. You rethrow an exception if you merely want to log the problem or if you
want to rethrow a new, higher-level exception type.

A finally block adds determinism to your program: the CLR endeavors to always
execute it. It’s useful for cleanup tasks such as closing network connections.

A try statement looks like this:

try
{
... /] exception may get thrown within execution of this block
}
catch (ExceptionA ex)
{
... // handle exception of type ExceptionA
}
catch (ExceptionB ex)
{
... // handle exception of type ExceptionB
}
finally
{
... /] cleanup code
}
Consider the following program:
class Test
{

static int Calc (int x) => 10 / x;

static void Main()
{
int y = Calc (0);
Console.WriteLine (y);
}
}

Because x is zero, the runtime throws a DivideByZeroException, and our program
terminates. We can prevent this by catching the exception as follows:

148 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

class Test

{
static int Calc (int x) => 10 / x;

static void Main()

{
try

{
int y = Calc (0);
Console.WriteLine (y);

}

catch (DivideByZeroException ex)

{

Console.WriteLine ("x cannot be zero");

}

Console.WriteLine ("program completed");

}
}

OUTPUT:
X cannot be zero
program completed

This is a simple example to illustrate exception handling. We
could deal with this particular scenario better in practice by
checking explicitly for the divisor being zero before calling
Calc.

>
s
(e)
"3
a
o
o

Checking for preventable errors is preferable to relying on
try/catch blocks because exceptions are relatively expensive
to handle, taking hundreds of clock cycles or more.

When an exception is thrown, the CLR performs a test: Is execution currently within
a try statement that can catch the exception?

o If so, execution is passed to the compatible catch block. If the catch block suc-
cessfully finishes executing, execution moves to the next statement after the try
statement (if present, executing the finally block first).

o If not, execution jumps back to the caller of the function, and the test is
repeated (after executing any finally blocks that wrap the statement).

If no function takes responsibility for the exception, an error dialog box is displayed
to the user, and the program terminates.
The catch Clause

A catch clause specifies what type of exception to catch. This must either be Sys
tem.Exception or a subclass of System.Exception.

Catching System. Exception catches all possible errors. This is useful when:

try Statements and Exceptions | 149

www.it-ebooks.info

http://www.it-ebooks.info/

« Your program can potentially recover regardless of the specific exception type.
« You plan to rethrow the exception (perhaps after logging it).

« Your error handler is the last resort, prior to termination of the program.

More typically, though, you catch specific exception types, in order to avoid having to
deal with circumstances for which your handler wasn't designed (e.g., an OutOfMe
moryException).

You can handle multiple exception types with multiple catch clauses (again, this
example could be written with explicit argument checking rather than exception
handling):

class Test

{

static vold Main (string[] args)

{
try

byte b = byte.Parse (args[0]);
Console.WriteLine (b);

catch (IndexOutOfRangeException ex)
{

Console.WriteLine ("Please provide at least one argument");

}

catch (FormatException ex)

{

Console.WriteLine ("That's not a number!");

}

catch (OverflowException ex)

{

Console.WriteLine ("You've given me more than a byte!");
}
}
}

Only one catch clause executes for a given exception. If you want to include a safety
net to catch more general exceptions (such as System.Exception), you must put the
more specific handlers first.

An exception can be caught without specifying a variable if you don’t need to access
its properties:

catch (OverflowException) // no variable

{
3
Furthermore, you can omit both the variable and the type (meaning that all excep-

tions will be caught):

catch { ... }

150 | Chapter4: Advanced G#

www.it-ebooks.info

http://www.it-ebooks.info/

Exception filters (C# 6)

From C# 6.0, you can specify an exception filter in a catch clause by adding a when
clause:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)
{
}

If a WebException is thrown in this example, the Boolean expression following the
when keyword is then evaluated. If the result is false, the catch block in question is
ignored, and any subsequent catch clauses are considered. With exception filters, it
can be meaningful to catch the same exception type again:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{...}

catch (WebException ex) when (ex.Status == WebExceptionStatus.SendFailure)

{...}

The Boolean expression in the when clause can be side-effecting, such as a method
that logs the exception for diagnostic purposes.

The finally Block

A finally block always executes—whether or not an exception is thrown and
whether or not the try block runs to completion. finally blocks are typically used
for cleanup code.

A finally block executes either:

o After a catch block finishes

o After control leaves the try block because of a jump statement (e.g., return or
goto)

o After the try block ends

The only things that can defeat a finally block are an infinite loop or the process
ending abruptly.

A finally block helps add determinism to a program. In the following example, the
file that we open always gets closed, regardless of whether:

o The try block finishes normally
o Execution returns early because the file is empty (EndOfStream)
o An IOException is thrown while reading the file

static void ReadFile()
{

StreamReader reader = null; // In System.IO namespace
try

try Statements and Exceptions | 151

www.it-ebooks.info

>
s
(e)
"3
a
]
o

http://www.it-ebooks.info/

{
reader = File.OpenText ("file.txt");
if (reader.EndOfStream) return;
Console.WriteLine (reader.ReadToEnd());

}
finally

{

if (reader != null) reader.Dispose();
}
3
In this example, we closed the file by calling Dispose on the StreamReader. Calling
Dispose on an object within a finally block is a standard convention throughout
the NET Framework and is supported explicitly in C# through the using statement.

The using statement

Many classes encapsulate unmanaged resources, such as file handles, graphics han-
dles, or database connections. These classes implement System. IDisposable, which
defines a single parameterless method named Dispose to clean up these resources.
The using statement provides an elegant syntax for calling Dispose on an IDisposa
ble object within a finally block.

The following:
using (StreamReader reader = File.OpenText ("file.txt"))
{
}
is precisely equivalent to:
{
StreamReader reader = File.OpenText ("file.txt");
try
{
}
finally
{
if (reader != null)
((IDisposable)reader).Dispose();
}
}

We cover the disposal pattern in more detail in Chapter 12.

Throwing Exceptions

Exceptions can be thrown either by the runtime or in user code. In this example,
Display throws a System.ArgumentNullException:

class Test

{

static voild Display (string name)

152 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

{
if (name == null)
throw new ArgumentNullException (nameof (name));

Console.WriteLine (name);

}

static void Main()

{
try { Display (null); }
catch (ArgumentNullException ex)
{

Console.WriteLine ("Caught the exception");

}

}

}

Rethrowing an exception

You can capture and rethrow an exception as follows:

try { ... }
catch (Exception ex)
{

// Log error

throw; // Rethrow same exception
}
If we replaced throw with throw ex, the example would still

work, but the StackTrace property of the newly propagated
exception would no longer reflect the original error.

Rethrowing in this manner lets you log an error without swallowing it. It also lets
you back out of handling an exception should circumstances turn out to be outside

what you expected:

using System.Net; /] (See Chapter 16)

string s = null;
using (WebClient wc = new WebClient())
try { s = wc.DownloadString ("http://www.albahari.com/nutshell/"); 1}

catch (WebException ex)

{

if (ex.Status == WebExceptionStatus.Timeout)
Console.WriteLine ("Timeout");

else
throw; // Can't handle other sorts of WebException, so rethrow

}

From C# 6.0, this can be written more tersely with an exception filter:

catch (WebException ex) when (ex.Status == WebExceptionStatus.Timeout)

{

try Statements and Exceptions | 153

www.it-ebooks.info

>
s
(e)
"3
a
]
o

http://www.it-ebooks.info/

Console.WriteLine ("Timeout");

}

The other common scenario is to rethrow a more specific exception type. For
example:

try
{
... [/ Parse a DateTime from XML element data
}
catch (FormatException ex)
{
throw new XmlException ("Invalid DateTime", ex);
}

Notice that when we constructed XmlException, we passed in the original excep-
tion, ex, as the second argument. This argument populates the InnerException
property of the new exception and aids debugging. Nearly all types of exception
offer a similar constructor.

Rethrowing a less specific exception is something you might do when crossing a
trust boundary so as not to leak technical information to potential hackers.

Key Properties of System.Exception

The most important properties of System.Exception are the following:

StackTrace
A string representing all the methods that are called from the origin of the
exception to the catch block.

Message
A string with a description of the error.

InnerException
The inner exception (if any) that caused the outer exception. This, itself,
may have another InnerException.

All exceptions in C# are runtime exceptions—there is no
equivalent to Java’s compile-time checked exceptions.

Common Exception Types

The following exception types are used widely throughout the CLR and .NET
Framework. You can throw these yourself or use them as base classes for deriving
custom exception types.

System.ArgumentException
Thrown when a function is called with a bogus argument. This generally
indicates a program bug.

154 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

System.ArgumentNullException
Subclass of ArgumentException that’s thrown when a function argument is
(unexpectedly) null.

System.ArgumentOutOfRangeException
Subclass of ArgumentException that’s thrown when a (usually numeric)
argument is too big or too small. For example, this is thrown when passing
a negative number into a function that accepts only positive values.

System.InvalidOperationException
Thrown when the state of an object is unsuitable for a method to success-
fully execute, regardless of any particular argument values. Examples
include reading an unopened file or getting the next element from an enu-
merator where the underlying list has been modified partway through the
iteration.

System.NotSupportedException
Thrown to indicate that a particular functionality is not supported. A good
example is calling the Add method on a collection for which IsReadOnly
returns true.

System.NotImplementedException
Thrown to indicate that a function has not yet been implemented.

System.ObjectDisposedException
Thrown when the object upon which the function is called has been
disposed.

Another commonly encountered exception type is NullReferenceException. The
CLR throws this exception when you attempt to access a member of an object
whose value is null (indicating a bug in your code). You can throw a NullReferen
ceException directly (for testing purposes) as follows:

throw null;

The TryXXX Method Pattern

When writing a method, you have a choice, when something goes wrong, to return
some kind of failure code or throw an exception. In general, you throw an exception
when the error is outside the normal workflow—or if you expect that the immediate
caller won't be able to cope with it. Occasionally, though, it can be best to offer both
choices to the consumer. An example of this is the int type, which defines two ver-
sions of its Parse method:

public int Parse (string input);
public bool TryParse (string input, out int returnvalue);

If parsing fails, Parse throws an exception; TryParse returns false.

try Statements and Exceptions | 155

www.it-ebooks.info

>
s
(e)
"3
a
o
o

http://www.it-ebooks.info/

You can implement this pattern by having the XXX method call the TryXXX method
as follows:

public return-type XXX (input-type input)
{
return-type returnValue;
if (!TryXXX (input, out returnvalue))
throw new YYYException (...)
return returnValue;

}
Alternatives to Exceptions

As with int.TryParse, a function can communicate failure by sending an error
code back to the calling function via a return type or parameter. Although this can
work with simple and predictable failures, it becomes clumsy when extended to all
errors, polluting method signatures and creating unnecessary complexity and clut-
ter. It also cannot generalize to functions that are not methods, such as operators
(e.g., the division operator) or properties. An alternative is to place the error in a
common place where all functions in the call stack can see it (e.g., a static method
that stores the current error per thread). This, though, requires each function to
participate in an error-propagation pattern that is cumbersome and, ironically, itself
error-prone.

Enumeration and Iterators

Enumeration

An enumerator is a read-only, forward-only cursor over a sequence of values. An
enumerator is an object that implements either of the following interfaces:

o System.Collections.IEnumerator

e System.Collections.Generic.IEnumerator<T>

Technically, any object that has a method named MoveNext
and a property called Current is treated as an enumerator.
This relaxation was introduced in C# 1.0 to avoid the boxing/
unboxing overhead when enumerating value type elements
but was made redundant when generics were introduced in
C#2.

The foreach statement iterates over an enumerable object. An enumerable object is
the logical representation of a sequence. It is not itself a cursor, but an object that
produces cursors over itself. An enumerable object either:

o Implements IEnumerable or IEnumerable<T>

o Has a method named GetEnumerator that returns an enumerator

156 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

IEnumerator and IEnumerable are defined in System.Collec
tions. IEnumerator<T> and IEnumerable<T> are defined in
System.Collections.Generic.

The enumeration pattern is as follows:

class Enumerator [/ Typically implements IEnumerator or IEnumerator<T>
{

public IteratorVariableType Current { get {...} }

public bool MoveNext() {...}

}
class Enumerable [/ Typically implements IEnumerable or IEnumerable<T>
{
public Enumerator GetEnumerator() {...}
}

Here is the high-level way of iterating through the characters in the word beer using
a foreach statement:

foreach (char c in "beer")
Console.WriteLine (c);

Here is the low-level way of iterating through the characters in beer without using a
foreach statement:

>
s
(e)
"3
a
1]
o

using (var enumerator = "beer".GetEnumerator())
while (enumerator.MoveNext())

{

var element = enumerator.Current;
Console.WriteLine (element);

}

If the enumerator implements IDisposable, the foreach statement also acts as a
using statement, implicitly disposing the enumerator object.

Chapter 7 explains the enumeration interfaces in further detail.

Collection Initializers
You can instantiate and populate an enumerable object in a single step. For example:

using System.Collections.Generic;

List<int> list = new List<int> {1, 2, 3};
The compiler translates this to the following:

using System.Collections.Generic;

List<int> list = new List<int>();
list.Add (1);
list.Add (2);
list.Add (3);

Enumeration and lterators | 157

www.it-ebooks.info

http://www.it-ebooks.info/

This requires that the enumerable object implements the System.Collec
tions.IEnumerable interface and that it has an Add method that has the appropriate
number of parameters for the call. You can similarly initialize dictionaries (see “Dic-
tionaries” on page 314 in Chapter 4) as follows:

var dict = new Dictionary<int, string>()

{
{5, "five" },
{ 10, "ten" }
1
Or, as of C# 6:
var dict = new Dictionary<int, string>()
{
[3] = "three",
[10] = "ten"
1

The latter is valid not only with dictionaries, but with any type for which an indexer
exists.

Iterators

Whereas a foreach statement is a consumer of an enumerator, an iterator is a pro-
ducer of an enumerator. In this example, we use an iterator to return a sequence of
Fibonacci numbers (where each number is the sum of the previous two):

using System;
using System.Collections.Generic;

class Test
{
static void Main()
{
foreach (int fib in Fibs(6))
Console.Write (fib + " ");
}
static IEnumerable<int> Fibs (int fibCount)
{
for (int 1 = 0, prevFib = 1, curFib = 1; 1 < fibCount; i++)
{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;
}
}
}

OuUTPUT: 1 1 2 3 5 8

Whereas a return statement expresses “Here’s the value you asked me to return
from this method,” a yield return statement expresses “Here’s the next element

158 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

you asked me to yield from this enumerator” On each yield statement, control is
returned to the caller, but the callee’s state is maintained so that the method can con-
tinue executing as soon as the caller enumerates the next element. The lifetime of
this state is bound to the enumerator such that the state can be released when the
caller has finished enumerating.

The compiler converts iterator methods into private classes
that implement IEnumerable<T> and/or IEnumerator<T>. The
logic within the iterator block is “inverted” and spliced into
the MoveNext method and Current property on the compiler-
written enumerator class. This means that when you call an
iterator method, all youre doing is instantiating the compiler-
written class; none of your code actually runs! Your code runs
only when you start enumerating over the resultant sequence,
typically with a foreach statement.

Iterator Semantics

An iterator is a method, property, or indexer that contains one or more yield state-
ments. An iterator must return one of the following four interfaces (otherwise, the
compiler will generate an error):

>
s
(e)
"3
a
o
o

// Enumerable interfaces
System.Collections.IEnumerable
System.Collections.Generic.IEnumerable<T>

// Enumerator interfaces
System.Collections.IEnumerator
System.Collections.Generic.IEnumerator<T>

An iterator has different semantics, depending on whether it returns an enumerable
interface or an enumerator interface. We describe this in Chapter 7.

Multiple yield statements are permitted. For example:

class Test
{
static void Main()
{
foreach (string s in Foo())
Console.WriteLine(s); // Prints "One","Two","Three"

}

static IEnumerable<string> Foo()
{
yield return "One";
yield return "Two";
yield return "Three";
}
}

Enumeration and Iterators | 159

www.it-ebooks.info

http://www.it-ebooks.info/

yield break

The yield break statement indicates that the iterator block should exit early
without returning more elements. We can modify Foo as follows to demonstrate:

static IEnumerable<string> Foo (bool breakEarly)

{
yield return "One";
yield return "Two";

if (breakEarly)
yield break;

yield return "Three";

}

A return statement is illegal in an iterator block—you must
use a yield break instead.

Iterators and try/catch/finally blocks
A yield return statement cannot appear in a try block that has a catch clause:

IEnumerable<string> Foo()

{
try { yield return "One"; } // Illegal
catch { ... }

}

Nor can yield return appear in a catch or finally block. These restrictions are
due to the fact that the compiler must translate iterators into ordinary classes with
MoveNext, Current, and Dispose members, and translating exception handling
blocks would create excessive complexity.

You can, however, yield within a try block that has (only) a finally block:

IEnumerable<string> Foo()

{
try { yield return "One"; } // OK
finally { ... }

3

The code in the finally block executes when the consuming enumerator reaches
the end of the sequence or is disposed. A foreach statement implicitly disposes the
enumerator if you break early, making this a safe way to consume enumerators.
When working with enumerators explicitly, a trap is to abandon enumeration early
without disposing it, circumventing the finally block. You can avoid this risk by
wrapping explicit use of enumerators in a using statement:

160 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

string firstElement = null;
var sequence = Foo();
using (var enumerator = sequence.GetEnumerator())
if (enumerator.MoveNext())
firstElement = enumerator.Current;

Composing Sequences

Iterators are highly composable. We can extend our example, this time to output
even Fibonacci numbers only:

using System;
using System.Collections.Generic;

class Test
{
static void Main()
{
foreach (int fib in EvenNumbersOnly (Fibs(6)))
Console.WriteLine (fib);

}

static IEnumerable<int> Fibs (int fibCount)
{
for (int 1 = 0, prevFib = 1, curFib = 1; 1 < fibCount; i++)
{
yield return prevFib;
int newFib = prevFib+curFib;
prevFib = curFib;
curFib = newFib;
}
}

>
s
(e)
"3
a
o
o

static IEnumerable<int> EvenNumbersOnly (IEnumerable<int> sequence)

{

foreach (int x in sequence)
if ((x % 2) == 0)
yield return x;

}
}

Each element is not calculated until the last moment—when requested by a Move
Next() operation. Figure 4-1 shows the data requests and data output over time.

Enumeration and Iterators | 161

www.it-ebooks.info

http://www.it-ebooks.info/

¢— next

<4— next
1 —>
<4— next
11—
<€— next
2 —>

2 —P
[€&— next

Jauwinsuo)

<4— next
33—
<€— next
5 —»
<€— next
8§ —»

10)DIUINUA UAAT
<—Execution

10}piawinua bdbUoql4

8§ —»

<— Pulling data —
— Yielding data —p>

Figure 4-1. Composing sequences

The composability of the iterator pattern is extremely useful in LINQ; we discuss
the subject again in Chapter 8.

Nullable Types

Reference types can represent a nonexistent value with a null reference. Value types,
however, cannot ordinarily represent null values. For example:

string s = null; // OK, Reference Type
int 1 = null; // Compile Error, Value Type cannot be null

To represent null in a value type, you must use a special construct called a nullable
type. A nullable type is denoted with a value type followed by the ? symbol:

int? 1 = null; // OK, Nullable Type
Console.WriteLine (i1 == null); // True
Nullable<T> struct

T? translates into System.Nullable<T>, which is a lightweight immutable structure,
having only two fields, to represent Value and HasValue. The essence of System.Nul
lable<T> is very simple:

public struct Nullable<T> where T : struct
{

public T Value {get;}

public bool HasValue {get;}

162 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

public T GetValueOrDefault();
public T GetValueOrDefault (T defaultValue);

} ..
The code:

int? 1 = null;
Console.WriteLine (i == null); /] True

translates to:

Nullable<int> 1 = new Nullable<int>();
Console.WriteLine (! i.HasValue); /] True

Attempting to retrieve Value when HasValue is false throws an InvalidOperatio
nException. GetValueOrDefault() returns Value if HasValue is true; otherwise, it
returns new T() or a specified custom default value.

The default value of T2 is null.

Implicit and explicit nullable conversions
The conversion from T to T? is implicit, and from T? to T is explicit. For example:

int? x = 5; // implicit
int y = (int)x; // explicit

The explicit cast is directly equivalent to calling the nullable object’s Value property.
Hence, an InvalidOperationException is thrown if HasValue is false.

Boxing and unboxing nullable values

When T? is boxed, the boxed value on the heap contains T, not T?. This optimiza-
tion is possible because a boxed value is a reference type that can already express
null.

C# also permits the unboxing of nullable types with the as operator. The result will
be null if the cast fails:
object o = "string";

int? x = o as int?;
Console.WriteLine (x.HasValue); /] False

Operator Lifting

The Nullable<T> struct does not define operators such as <, >, or even ==. Despite
this, the following code compiles and executes correctly:

int? x = 5;
int? y = 10;
bool b = x < y; /] true

Nullable Types | 163

www.it-ebooks.info

>
S
(e)
"3
a
]
o

http://www.it-ebooks.info/

This works because the compiler borrows, or “lifts,” the less-than operator from the
underlying value type. Semantically, it translates the preceding comparison expres-
sion into this:

bool b = (x.HasValue && y.HasValue) ? (x.Value < y.Value) : false;

In other words, if both x and y have values, it compares via int’s less-than operator;
otherwise, it returns false.

Operator lifting means you can implicitly use T’s operators on T?. You can define
operators for T? in order to provide special-purpose null behavior, but in the vast
majority of cases, it’s best to rely on the compiler automatically applying systematic
nullable logic for you. Here are some examples:

int? x = 5;
int? vy = null;

// Equality operator examples
Console.WriteLine (x == y); // False
Console.WriteLine (x == null); // False
Console.WriteLine (x == 5); // True
Console.WriteLine (y == null); // True
Console.WriteLine (y == 5); // False
Console.WriteLine (y != 5); // True

// Relational operator examples

Console.WriteLine (x < 6); /] True
Console.WriteLine (y < 6); // False
Console.WriteLine (y > 6); /] False

// ALl other operator examples
Console.WriteLine (x + 5); // 10
Console.WriteLine (x + y); // null (prints empty line)

The compiler performs null logic differently depending on the category of operator.
The following sections explain these different rules.

Equality operators (==and !=)

Lifted equality operators handle nulls just like reference types do. This means two
null values are equal:

Console.WriteLine (null == null); // True
Console.WriteLine ((bool?)null == (bool?)null); // True

Further:

o If exactly one operand is null, the operands are unequal.

o If both operands are non-null, their Values are compared.

164 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Relational operators (<, <=, >=, >)

The relational operators work on the principle that it is meaningless to compare null
operands. This means comparing a null value to either a null or a non-null value
returns false:

bool b = x < y; // Translation:

bool b = (x.HasValue && y.HasValue)
? (x.value < y.value)
. false;

// b is false (assuming x is 5 and y is null)

All other operators (+, —, *,/,%, & |, A, <<, >>, +, ++, -, 1, ~)

These operators return null when any of the operands are null. This pattern should
be familiar to SQL users:

int? ¢ = x +y; // Translation:

int? ¢ = (x.HasValue && y.HasValue)
? (int?) (x.value + y.Value)
: null;

>
s
(e)
"3
a
]
o

// c is null (assuming x is 5 and y is null)

An exception is when the & and | operators are applied to bool?, which we will dis-
cuss shortly.

Mixing nullable and non-nullable operators

You can mix and match nullable and non-nullable types (this works because there is
an implicit conversion from T to T?):
int? a = null;

int b = 2;
int? c=a+b; // c is null - equivalent to a + (int?)b

bool? with & and | Operators

When supplied operands of type bool? the & and | operators treat null as an
unknown value. So, null | true is true, because:

o If the unknown value is false, the result would be true.

o If the unknown value is true, the result would be true.

Similarly, null & false is false. This behavior would be familiar to SQL users. The
following example enumerates other combinations:

bool? n = null;
bool? f = false;
bool? t = true;

Nullable Types | 165

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine (n |
Console.WriteLine (n |
Console.WriteLine (n | t); /] True

Console.WriteLine (n & n); /] (null)
Console.WriteLine (n & f); // False
Console.WriteLine (n & t); /] (null)

n); /] (null)
) /] (null)

Nullable Types & Null Operators

Nullable types work particularly well with the ?? operator (see “Null-Coalescing
Operator” on page 55) in Chapter 2. For example:

int? x = null;
inty = x ?2?2 5; /]y is 5

int? a =null, b =1, c = 2;
Console.WriteLine (a ?? b 2?2 ¢); [/ 1 (first non-null value)

Using ?? on a nullable value type is equivalent to calling GetValueOrDefault with
an explicit default value, except that the expression for the default value is never
evaluated if the variable is not null.

Nullable types also work well with the null-conditional operator (see “Null-
conditional operator (C# 6)” on page 55 in Chapter 2). In the following example,
length evaluates to null:

System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

We can combine this with the null-coalescing operator to evaluate to zero instead of
null:

int length = sb?.ToString().Length ?? 0; // Evaluates to 0@ if sb is null

Scenarios for Nullable Types

One of the most common scenarios for nullable types is to represent unknown val-
ues. This frequently occurs in database programming, where a class is mapped to a
table with nullable columns. If these columns are strings (e.g., an EmailAddress col-
umn on a Customer table), there is no problem, as string is a reference type in the
CLR, which can be null. However, most other SQL column types map to CLR struct
types, making nullable types very useful when mapping SQL to the CLR. For exam-
ple:

// Maps to a Customer table in a database
public class Customer

{

public decimal? AccountBalance;

}

166 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

A nullable type can also be used to represent the backing field of what’s sometimes
called an ambient property. An ambient property, if null, returns the value of its par-
ent. For example:

public class Row

{

Grid parent;
Color? color;

public Color Color
{

get { return color ?? parent.Color; }
set { color = value == parent.Color ? (Color?)null : value; }

}
}

Alternatives to Nullable Types

Before nullable types were part of the C# language (i.e., before C# 2.0), there were
many strategies to deal with nullable value types, examples of which still appear in
the .NET Framework for historical reasons. One of these strategies is to designate a
particular non-null value as the “null value”; an example is in the string and array
classes. String.IndexOf returns the magic value of -1 when the character is not
found:

int 1 = "Pink".Index0f ('b');
Console.WriteLine (i); /] -1
However, Array. IndexOf returns -1 only if the index is 0-bounded. The more gen-

eral formula is that IndexOf returns 1 less than the lower bound of the array. In the
next example, IndexOf returns @ when an element is not found:

/] Create an array whose lower bound is 1 instead of 0:

Array a = Array.Createlnstance (typeof (string),
new int[] {2}, new int[] {1});
a.SetValue ("a", 1);
a.SetValue ("b", 2);
Console.WriteLine (Array.IndexOf (a, "c")); // ©

Nominating a “magic value” is problematic for several reasons:

o It means that each value type has a different representation of null. In contrast,
nullable types provide one common pattern that works for all value types.

o There may be no reasonable designated value. In the previous example, -1
could not always be used. The same is true for our earlier example representing
an unknown account balance.

Nullable Types | 167

www.it-ebooks.info

>
s
(e)
"3
a
1]
o

http://www.it-ebooks.info/

o Forgetting to test for the magic value results in an incorrect value that may go
unnoticed until later in execution—when it pulls an unintended magic trick.
Forgetting to test HasValue on a null value, however, throws an InvalidOpera
tionException on the spot.

o The ability for a value to be null is not captured in the type. Types communi-
cate the intention of a program, allow the compiler to check for correctness,
and enable a consistent set of rules enforced by the compiler.

Operator Overloading

Operators can be overloaded to provide more natural syntax for custom types.
Operator overloading is most appropriately used for implementing custom structs
that represent fairly primitive data types. For example, a custom numeric type is an
excellent candidate for operator overloading.

The following symbolic operators can be overloaded:

+(unary) - (unary) !~ ++
.- + - %
% & |~ <<
>> == = > <
>= <=

The following operators are also overloadable:

o Implicit and explicit conversions (with the implicit and explicit keywords)

o The true and false operators (not literals).
The following operators are indirectly overloaded:

 The compound assignment operators (e.g., +=, /=) are implicitly overridden by
overriding the noncompound operators (e.g., +, /).

o The conditional operators && and || are implicitly overridden by overriding
the bitwise operators & and |.

Operator Functions

An operator is overloaded by declaring an operator function. An operator function
has the following rules:

o The name of the function is specified with the operator keyword followed by
an operator symbol.

168 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

o The operator function must be marked static and public.
o The parameters of the operator function represent the operands.
o The return type of an operator function represents the result of an expression.

o At least one of the operands must be the type in which the operator function is
declared.

In the following example, we define a struct called Note representing a musical note
and then overload the + operator:

public struct Note
{

int value;
public Note (int semitonesFromA) { value = semitonesFromA; }
public static Note operator + (Note x, int semitones)

{

return new Note (x.value + semitones);

}
}

This overload allows us to add an int to a Note:

Note B = new Note (2);
Note CSharp = B + 2;

Overloading an operator automatically overloads the corresponding compound
assignment operator. In our example, since we overrode +, we can use += too:

CSharp += 2;

Just as with methods and properties, C# 6 allows operator functions comprising a
single expression to be written more tersely with expression-bodied syntax:

public static Note operator + (Note x, int semitones)
=> new Note (x.value + semitones);

Overloading Equality and Comparison Operators

Equality and comparison operators are sometimes overridden when writing structs
and in rare cases, when writing classes. Special rules and obligations come with
overloading the equality and comparison operators, which we explain in Chapter 6.
A summary of these rules is as follows:

Pairing
The C# compiler enforces operators that are logical pairs to both be
defined. These operators are (== !=), (< >), and (<= >=).

Equals and GetHashCode
In most cases, if you overload (==) and (!=), you will usually need to over-
ride the Equals and GetHashCode methods defined on object in order to
get meaningful behavior. The C# compiler will give a warning if you do not

Operator Overloading | 169

www.it-ebooks.info

>
s
(e)
"3
a
®
o

http://www.it-ebooks.info/

do this. (See “Equality Comparison” on page 267 in Chapter 6 for more
details.)

IComparable and IComparable<T>
If you overload (< >) and (<= >=), you should implement IComparable and
IComparable<Ts.

Custom Implicit and Explicit Conversions

Implicit and explicit conversions are overloadable operators. These conversions are
typically overloaded to make converting between strongly related types (such as
numeric types) concise and natural.

To convert between weakly related types, the following strategies are more suitable:

o Write a constructor that has a parameter of the type to convert from.

o Write ToXXX and (static) FromXXX methods to convert between types.

As explained in the discussion on types, the rationale behind implicit conversions is
that they are guaranteed to succeed and not lose information during the conversion.
Conversely, an explicit conversion should be required either when runtime circum-
stances will determine whether the conversion will succeed or if information may be
lost during the conversion.

In this example, we define conversions between our musical Note type and a double
(which represents the frequency in hertz of that note):

// Convert to hertz
public static implicit operator double (Note x)
=> 440 * Math.Pow (2, (double) x.value / 12);

// Convert from hertz (accurate to the nearest semitone)
public static explicit operator Note (double x)
=> new Note ((int) (0.5 + 12 * (Math.Log (x/440) / Math.Log(2))));

Note n

= (Note)554.37; // explicit conversion
double x =

n; // implicit conversion

Following our own guidelines, this example might be better
implemented with a ToFrequency method (and a static From
Frequency method) instead of implicit and explicit operators.

Custom conversions are ignored by the as and is operators:

Console.WriteLine (554.37 is Note); /] False
Note n = 554.37 as Note; /| Error

170 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Overloading true and false

The true and false operators are overloaded in the extremely rare case of types
that are Boolean “in spirit” but do not have a conversion to bool. An example is a
type that implements three-state logic: by overloading true and false, such a type
can work seamlessly with conditional statements and operators—namely, if, do,
while, for, &&, ||, and ?:. The System.Data.SqlTypes.SqlBoolean struct provides
this functionality. For example:

SqlBoolean a = SglBoolean.Null;

if (a)
Console.WriteLine ("True");
else if (!a)
Console.WriteLine ("False");
else

Console.WriteLine ("Null");

OUTPUT:
Null

The following code is a reimplementation of the parts of SqlBoolean necessary to
demonstrate the true and false operators:

public struct SqlBoolean

{
public static bool operator true (SqlBoolean x)
=> x.m_value == True.m_value;
public static bool operator false (SqlBoolean x)
=> x.m_value == False.m_value;
public static SqlBoolean operator ! (SqlBoolean x)
{
if (x.m_value == Null.m_value) return Null;
if (x.m_value == False.m_value) return True;
return False;
}
public static readonly SqlBoolean Null = new SqlBoolean(0);
public static readonly SqlBoolean False = new SqlBoolean(1);
public static readonly SqlBoolean True = new SqlBoolean(2);
private SqlBoolean (byte value) { m_value = value; }
private byte m_value;
}
Extension Methods

Extension methods allow an existing type to be extended with new methods without
altering the definition of the original type. An extension method is a static method
of a static class, where the this modifier is applied to the first parameter. The type
of the first parameter will be the type that is extended. For example:

Extension Methods | 171

www.it-ebooks.info

>
S
(e)
"3
a
o
o

http://www.it-ebooks.info/

public static class StringHelper

{
public static bool IsCapitalized (this string s)

{
if (string.IsNullOrEmpty(s)) return false;
return char.IsUpper (s[0]);
}
}

The IsCapitalized extension method can be called as though it were an instance
method on a string, as follows:

Console.WriteLine ("Perth".IsCapitalized());

An extension method call, when compiled, is translated back into an ordinary static
method call:

Console.WriteLine (StringHelper.IsCapitalized ("Perth"));
The translation works as follows:

arg0.Method (argl, arg2, ...); // Extension method call
StaticClass.Method (arg®, argl, arg2, ...); // Static method call

Interfaces can be extended, too:

public static T First<T> (this IEnumerable<T> sequence)

{
foreach (T element in sequence)
return element;

throw new InvalidOperationException ("No elements!");

}

Console.WriteLine ("Seattle".First()); /]S

Extension methods were added in C# 3.0.

Extension Method Chaining

Extension methods, like instance methods, provide a tidy way to chain functions.
Consider the following two functions:

public static class StringHelper

{
public static string Pluralize (this string s) {...}
public static string Capitalize (this string s) {...}
}

x and y are equivalent and both evaluate to "Sausages", but x uses extension meth-
ods, whereas y uses static methods:

string x = "sausage".Pluralize().Capitalize();
string y = StringHelper.Capitalize (StringHelper.Pluralize ("sausage"));

172 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Ambiguity and Resolution

Namespaces

An extension method cannot be accessed unless its class is in scope, typically by its
namespace being imported. Consider the extension method IsCapitalized in the
following example:

using System;

namespace Utils

{

public static class StringHelper

{
public static bool IsCapitalized (this string s)

{
if (string.IsNullOrEmpty(s)) return false;

return char.IsUpper (s[0]);
}
}
}

To use IsCapitalized, the following application must import Utils in order to
avoid a compile-time error:

>
s
(e)
"3
a
o
o

namespace MyApp
{

using Utils;

class Test

{

static void Main() => Console.WriteLine ("Perth".IsCapitalized());

}
}

Extension methods versus instance methods

Any compatible instance method will always take precedence over an extension
method. In the following example, Test’s Foo method will always take precedence—
even when called with an argument x of type int:

class Test
{
public void Foo (object x) { } // This method always wins
}
static class Extensions
{
public static void Foo (this Test t, int x) { }
}

The only way to call the extension method in this case is via normal static syntax; in
other words, Extensions.Foo(...).

Extension Methods | 173

www.it-ebooks.info

http://www.it-ebooks.info/

Extension methods versus extension methods

If two extension methods have the same signature, the extension method must be
called as an ordinary static method to disambiguate the method to call. If one exten-
sion method has more specific arguments, however, the more specific method takes
precedence.

To illustrate, consider the following two classes:

static class StringHelper

{

public static bool IsCapitalized (this string s) {...}
}
static class ObjectHelper
{

public static bool IsCapitalized (this object s) {...}
}

The following code calls StringHelper’s IsCapitalized method:
bool testl = "Perth".IsCapitalized();

Classes and structs are considered more specific than interfaces.

Anonymous Types

An anonymous type is a simple class created by the compiler on the fly to store a set
of values. To create an anonymous type, use the new keyword followed by an object
initializer, specifying the properties and values the type will contain. For example:

var dude = new { Name = "Bob", Age = 23 };
The compiler translates this to (approximately) the following:

internal class AnonymousGeneratedTypeName

{
private string name; // Actual field name is irrelevant
private int age; // Actual field name is irrelevant

public AnonymousGeneratedTypeName (string name, int age)

{

this.name = name; this.age = age;

}

public string Name { get { return name; } }
public int Age { get { return age; 1} }

// The Equals and GetHashCode methods are overridden (see Chapter 6).
// The ToString method is also overridden.

var dude = new AnonymousGeneratedTypeName ("Bob", 23);

174 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

You must use the var keyword to reference an anonymous type because it doesn't
have a name.

The property name of an anonymous type can be inferred from an expression that
is itself an identifier (or ends with one). For example:

int Age = 23;
var dude = new { Name

"Bob", Age, Age.ToString().Length };
is equivalent to:
var dude = new { Name = "Bob", Age = Age, Length = Age.ToString().Length };

Two anonymous type instances declared within the same assembly will have the
same underlying type if their elements are named and typed identically:

var al =new { X =2, Y=41};
var a2 =new { X =2, Y =41%;
Console.WriteLine (al.GetType() == a2.GetType()); // True

Additionally, the Equals method is overridden to perform equality comparisons:

Console.WriteLine (a1l == a2); // False
Console.WriteLine (al.Equals (a2)); // True

You can create arrays of anonymous types as follows:

var dudes = new[]

{
new { Name = "Bob", Age = 30 },

new { Name = "Tom", Age = 40 }
¥

Anonymous types are used primarily when writing LINQ queries (see Chapter 8),
and were added in C# 3.0.

Dynamic Binding

Dynamic binding defers binding—the process of resolving types, members, and
operations—from compile time to runtime. Dynamic binding is useful when at
compile time you know that a certain function, member, or operation exists, but the
compiler does not. This commonly occurs when you are interoperating with
dynamic languages (such as IronPython) and COM and in scenarios when you
might otherwise use reflection.

A dynamic type is declared with the contextual keyword dynamic:

dynamic d = GetSomeObject();
d.Quack();

A dynamic type tells the compiler to relax. We expect the runtime type of d to have a
Quack method. We just can’t prove it statically. Since d is dynamic, the compiler
defers binding Quack to d until runtime. To understand what this means requires
distinguishing between static binding and dynamic binding.

DynamicBinding | 175

www.it-ebooks.info

>
s
(e)
"3
a
o
o

http://www.it-ebooks.info/

Static Binding Versus Dynamic Binding

The canonical binding example is mapping a name to a specific function when
compiling an expression. To compile the following expression, the compiler needs
to find the implementation of the method named Quack:

d.Quack();
Let’s suppose the static type of d is Duck:

Duck d = ...
d.Quack();

In the simplest case, the compiler does the binding by looking for a parameterless
method named Quack on Duck. Failing that, the compiler extends its search to meth-
ods taking optional parameters, methods on base classes of Duck, and extension
methods that take Duck as its first parameter. If no match is found, you’ll get a com-
pilation error. Regardless of what method gets bound, the bottom line is that the
binding is done by the compiler, and the binding utterly depends on statically
knowing the types of the operands (in this case, d). This makes it static binding.

Now let’s change the static type of d to object:

object d = ...
d.Quack();

Calling Quack gives us a compilation error, because although the value stored in d
can contain a method called Quack, the compiler cannot know it since the only
information it has is the type of the variable, which in this case is object. But let’s
now change the static type of d to dynamic:

dynamic d = ...
d.Quack();

A dynamic type is like object—it’s equally nondescriptive about a type. The differ-
ence is that it lets you use it in ways that aren’t known at compile time. A dynamic
object binds at runtime based on its runtime type, not its compile-time type. When
the compiler sees a dynamically bound expression (which in general is an expres-
sion that contains any value of type dynamic), it merely packages up the expression
such that the binding can be done later at runtime.

At runtime, if a dynamic object implements IDynamicMetaObjectProvider, that
interface is used to perform the binding. If not, binding occurs in almost the same
way as it would have had the compiler known the dynamic object’s runtime type.
These two alternatives are called custom binding and language binding.

COM interop can be considered to use a third kind of
dynamic binding (see Chapter 25).

176 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Custom Binding

Custom binding occurs when a dynamic object implements IDynamicMetaObject
Provider (IDMOP). Although you can implement IDMOP on types that you write
in C#, and that is useful to do, the more common case is that you have acquired an
IDMOP object from a dynamic language that is implemented in .NET on the DLR,
such as IronPython or IronRuby. Objects from those languages implicitly imple-
ment IDMOP as a means by which to directly control the meanings of operations
performed on them.

We will discuss custom binders in greater detail in Chapter 20, but we will write a
simple one now to demonstrate the feature:

using System;
using System.Dynamic;

public class Test

{
static void Main()
{ >
Q
dynamic d = new Duck(); 0s
d.Quack(); // Quack method was called ® 3
d.Waddle(); // Waddle method was called gi
}
}

public class Duck : DynamicObject
{

public override bool TryInvokeMember (
InvokeMemberBinder binder, object[] args, out object result)

{

Console.WriteLine (binder.Name + " method was called");
result = null;
return true;

}
}

The Duck class doesn’t actually have a Quack method. Instead, it uses custom bind-
ing to intercept and interpret all method calls.

Language Binding

Language binding occurs when a dynamic object does not implement IDynamicMe
taObjectProvider. Language binding is useful when working around imperfectly
designed types or inherent limitations in the .NET type system (we'll explore more
scenarios in Chapter 20). A typical problem when using numeric types is that they
have no common interface. We have seen that methods can be bound dynamically;
the same is true for operators:

DynamicBinding | 177

www.it-ebooks.info

http://www.it-ebooks.info/

static dynamic Mean (dynamic x, dynamic y) => (x +vy) / 2;

static void Main()

{
int x = 3, y = 4;
Console.WriteLine (Mean (x, y));

}
The benefit is obvious—you don’t have to duplicate code for each numeric type.
However, you lose static type safety, risking runtime exceptions rather than
compile-time errors.

Dynamic binding circumvents static type safety, but not run-
time type safety. Unlike with reflection (Chapter 19), you can’t
circumvent member accessibility rules with dynamic binding.

By design, language runtime binding behaves as similarly as possible to static bind-
ing, had the runtime types of the dynamic objects been known at compile time. In
our previous example, the behavior of our program would be identical if we hardco-
ded Mean to work with the int type. The most notable exception in parity between
static and dynamic binding is for extension methods, which we discuss in “Uncalla-
ble Functions” on page 182.

Dynamic binding also incurs a performance hit. Because of
the DLR’s caching mechanisms, however, repeated calls to the
same dynamic expression are optimized—allowing you to effi-
ciently call dynamic expressions in a loop. This optimization
brings the typical overhead for a simple dynamic expression
on today’s hardware down to less than 100 ns.

RuntimeBinderException

If a member fails to bind, a RuntimeBinderException is thrown. You can think of
this like a compile-time error at runtime:

dynamic d = 5;
d.Hello(); // throws RuntimeBinderException

The exception is thrown because the int type has no Hello method.

Runtime Representation of Dynamic

There is a deep equivalence between the dynamic and object types. The runtime
treats the following expression as true:

typeof (dynamic) == typeof (object)
This principle extends to constructed types and array types:

typeof (List<dynamic>) == typeof (List<object>)
typeof (dynamic[]) == typeof (object[])

Like an object reference, a dynamic reference can point to an object of any type
(except pointer types):

178 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

dynamic x = "hello";

Console.WriteLine (x.GetType().Name); // String
x = 123; // No error (despite same variable)
Console.WriteLine (x.GetType().Name); // Int32

Structurally, there is no difference between an object reference and a dynamic refer-
ence. A dynamic reference simply enables dynamic operations on the object it
points to. You can convert from object to dynamic to perform any dynamic opera-
tion you want on an object:

object o = new System.Text.StringBuilder();
dynamic d = o;

d.Append ("hello");

Console.WriteLine (o); // hello

Reflecting on a type exposing (public) dynamic members
reveals that those members are represented as annotated
objects. For example:

public class Test

{

public dynamic Foo;

}
is equivalent to:

>
S
(e)
"3
a
o
o

public class Test

{

[System.Runtime.CompilerServices.DynamicAttribute]
public object Foo;

}

This allows consumers of that type to know that Foo should be
treated as dynamic, while allowing languages that don't sup-
port dynamic binding to fall back to object.

Dynamic Conversions
The dynamic type has implicit conversions to and from all other types:

int 1 = 7;

dynamic d = i;

long j = d; // No cast required (implicit conversion)
For the conversion to succeed, the runtime type of the dynamic object must be
implicitly convertible to the target static type. The preceding example worked
because an int is implicitly convertible to a long.

The following example throws a RuntimeBinderException because an int is not
implicitly convertible to a short:

i;

dynamic d =
d; // throws RuntimeBinderException

int 1 = 7;
short j =

DynamicBinding | 179

www.it-ebooks.info

http://www.it-ebooks.info/

var Versus dynamic

The var and dynamic types bear a superficial resemblance, but the difference is
deep:

o var says, “Let the compiler figure out the type”

o dynamic says, “Let the runtime figure out the type”

To illustrate:

dynamic x = "hello"; // Static type is dynamic, runtime type is string
var y = "hello"; // Static type is string, runtime type is string
int 1 = x; // Runtime error (cannot convert string to int)
int j =vy; // Compile-time error (cannot convert string to int)

The static type of a variable declared with var can be dynamic:

dynamic x = "hello";

var y = x; // Static type of y is dynamic
int z = y; // Runtime error (cannot convert string to int)
Dynamic Expressions

Fields, properties, methods, events, constructors, indexers, operators, and conver-
sions can all be called dynamically.

Trying to consume the result of a dynamic expression with a void return type is
prohibited—just as with a statically typed expression. The difference is that the
error occurs at runtime:

dynamic list = new List<int>();
var result = list.Add (5); // RuntimeBinderException thrown

Expressions involving dynamic operands are typically themselves dynamic, since
the effect of absent type information is cascading:

dynamic x = 2;

var y = x * 3; // Static type of y is dynamic
There are a couple of obvious exceptions to this rule. First, casting a dynamic
expression to a static type yields a static expression:

dynamic x = 2;

var y = (int)x; // Static type of y is int
Second, constructor invocations always yield static expressions—even when called

with dynamic arguments. In this example, x is statically typed to a StringBuilder:

dynamic capacity = 10;

var x = new System.Text.StringBuilder (capacity);
In addition, there are a few edge cases where an expression containing a dynamic
argument is static, including passing an index to an array and delegate creation
expressions.

180 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic Calls Without Dynamic Receivers

The canonical use case for dynamic involves a dynamic receiver. This means that a
dynamic object is the receiver of a dynamic function call:

dynamic x = ...;
x.Foo(); /] x is the receiver

However, you can also call statically known functions with dynamic arguments.
Such calls are subject to dynamic overload resolution and can include:

« Static methods
« Instance constructors
o Instance methods on receivers with a statically known type

In the following example, the particular Foo that gets dynamically bound is depen-
dent on the runtime type of the dynamic argument:

class Program >
Q
{ 05
static void Foo (int x) { Console.WriteLine ("1"); } %t S
static voild Foo (string x) { Console.WriteLine ("2"); } §-
static void Main()
{
dynamic x = 5;
dynamic y = "watermelon";
Foo (x); /] 1
Foo (y); /12
}
}

Because a dynamic receiver is not involved, the compiler can statically perform a
basic check to see whether the dynamic call will succeed. It checks that a function
with the right name and number of parameters exists. If no candidate is found, you
get a compile-time error. For example:

class Program

{
static voild Foo (int x) { Console.WriteLine ("1"); }
static voild Foo (string x) { Console.WriteLine ()}

static void Main()

{
dynamic x = 5;
Foo (x, X); // Compiler error - wrong number of parameters
Fook (x); // Compiler error - no such method name

}

}

DynamicBinding | 181

www.it-ebooks.info

http://www.it-ebooks.info/

Static Types in Dynamic Expressions

It’s obvious that dynamic types are used in dynamic binding. It's not so obvious that
static types are also used—wherever possible—in dynamic binding. Consider the
following:

class Program

{
static void Foo (object x, object y) { Console.WriteLine ("oo");
static void Foo (object x, string y) { Console.WriteLine ("os");
static void Foo (string x, object y) { Console.WriteLine ("so");
static void Foo (string x, string y) { Console.WriteLine ("ss");

}
}
}
}

static void Main()
{
object o = "hello";
dynamic d = "goodbye";
Foo (o, d); /] os
}
}

The call to Foo(o,d) is dynamically bound because one of its arguments, d, is
dynamic. But since o is statically known, the binding—even though it occurs
dynamically—will make use of that. In this case, overload resolution will pick the
second implementation of Foo due to the static type of o and the runtime type of d.
In other words, the compiler is “as static as it can possibly be”

Uncallable Functions

Some functions cannot be called dynamically. You cannot call:

o Extension methods (via extension method syntax)
o Members of an interface, if you need to cast to that interface to do so

« Base members hidden by a subclass

Understanding why this is so is useful in understanding dynamic binding.

Dynamic binding requires two pieces of information: the name of the function to
call, and the object upon which to call the function. However, in each of the three
uncallable scenarios, an additional type is involved, which is known only at compile
time. As of C# 6, there’s no way to specify these additional types dynamically.

When calling extension methods, that additional type is implicit. It’s the static class
on which the extension method is defined. The compiler searches for it given the
using directives in your source code. This makes extension methods compile-time-
only concepts, since using directives melt away upon compilation (after they've
done their job in the binding process in mapping simple names to namespace-
qualified names).

182 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

When calling members via an interface, you specify that additional type via an
implicit or explicit cast. There are two scenarios where you might want to do this:
when calling explicitly implemented interface members and when calling interface
members implemented in a type internal to another assembly. We can illustrate the
former with the following two types:

interface IFoo { voild Test(); }
class Foo : IFoo { void IFoo.Test() {} }

To call the Test method, we must cast to the IFoo interface. This is easy with static
typing:

IFoo f = new Foo(); // Implicit cast to interface
f.Test();

Now consider the situation with dynamic typing:

IFoo f = new Foo();

dynamic d = f;

d.Test(); // Exception thrown
The implicit cast shown in bold tells the compiler to bind subsequent member calls
on f to IFoo rather than Foo—in other words, to view that object through the lens
of the IFoo interface. However, that lens is lost at runtime, so the DLR cannot com-
plete the binding. The loss is illustrated as follows:

Console.WriteLine (f.GetType().Name); /] Foo

A similar situation arises when calling a hidden base member: you must specify an
additional type via either a cast or the base keyword—and that additional type is
lost at runtime.

Attributes

You're already familiar with the notion of attributing code elements of a program
with modifiers, such as virtual or ref. These constructs are built into the language.
Attributes are an extensible mechanism for adding custom information to code ele-
ments (assemblies, types, members, return values, parameters, and generic type
parameters). This extensibility is useful for services that integrate deeply into the
type system, without requiring special keywords or constructs in the C# language.

A good scenario for attributes is serialization—the process of converting arbitrary
objects to and from a particular format. In this scenario, an attribute on a field can
specify the translation between C#’s representation of the field and the format’s rep-
resentation of the field.

Attribute Classes

An attribute is defined by a class that inherits (directly or indirectly) from the
abstract class System.Attribute. To attach an attribute to a code element, specify
the attribute’s type name in square brackets, before the code element. For example,
the following attaches the ObsoleteAttribute to the Foo class:

Attributes | 183

www.it-ebooks.info

(2]
#

posueApy

http://www.it-ebooks.info/

[ObsoleteAttribute]
public class Foo {...}

This attribute is recognized by the compiler and will cause compiler warnings if a
type or member marked obsolete is referenced. By convention, all attribute types

end in the word Attribute. C# recognizes this and allows you to omit the suftix when
attaching an attribute:

[Obsolete]
public class Foo {...}

ObsoleteAttribute is a type declared in the System namespace as follows (simpli-
tied for brevity):

public sealed class ObsoleteAttribute : Attribute {...}

The C# language and the NET Framework include a number of predefined
attributes. We describe how to write your own attributes in Chapter 19.

Named and Positional Attribute Parameters

Attributes may have parameters. In the following example, we apply XmlElementAt
tribute to a class. This attribute tells XML serializer (in System.Xml.Serializa
tion) how an object is represented in XML and accepts several attribute parameters.
The following attribute maps the CustomerEntity class to an XML element named
Customer, belonging to the http://oreilly.com namespace:

[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Attribute parameters fall into one of two categories: positional or named. In the pre-
ceding example, the first argument is a positional parameter; the second is a named
parameter. Positional parameters correspond to parameters of the attribute type’s
public constructors. Named parameters correspond to public fields or public prop-
erties on the attribute type.

When specifying an attribute, you must include positional parameters that corre-
spond to one of the attribute’s constructors. Named parameters are optional.

In Chapter 19, we describe the valid parameter types and rules for their evaluation.

Attribute Targets

Implicitly, the target of an attribute is the code element it immediately precedes,
which is typically a type or type member. You can also attach attributes, however, to
an assembly. This requires that you explicitly specify the attribute’s target.

Here is an example of using the CLSCompliant attribute to specify CLS compliance
for an entire assembly:

[assembly:CLSCompliant(true)]

184 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Specifying Multiple Attributes

Multiple attributes can be specified for a single code element. Each attribute can be
listed either within the same pair of square brackets (separated by a comma) or in
separate pairs of square brackets (or a combination of the two). The following three
examples are semantically identical:

[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

[Serializable, Obsolete]
[CLSCompliant(false)]
public class Bar {...}

Caller Info Attributes (C# 5)

From C# 5, you can tag optional parameters with one of three caller info attributes,
which instruct the compiler to feed information obtained from the caller’s source

code into the parameter’s default value:

>
s
(e)
"3
a
o
o

o [CallerMemberName] applies the caller’s member name
o [CallerFilePath] applies the path to caller’s source code file

o [CallerLineNumber] applies the line number in caller’s source code file

The Foo method in the following program demonstrates all three:

using System;
using System.Runtime.CompilerServices;

class Program

{

static void Main() => Foo();

static void Foo (
[CallerMemberName] string memberName = null,
[CallerFilePath] string filePath = null,
[CallerLineNumber] int lineNumber = 0)

{
Console.WriteLine (memberName);
Console.WriteLine (filePath);
Console.WriteLine (lineNumber);

}

}

Assuming our program resides in c:\source\test\Program.cs, the output would

be:

Caller Info Attributes (C#5) | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Main
c:\source\test\Program.cs
6

As with standard optional parameters, the substitution is done at the calling site.
Hence, our Main method is syntactic sugar for this:

static void Main() => Foo ("Main", @"c:\source\test\Program.cs", 6);

Caller info attributes are useful for logging—and for implementing patterns such as
firing a single change notification event whenever any property on an object
changes. In fact, there’s a standard interface in the .NET Framework for this called
INotifyPropertyChanged (in System.ComponentModel):

public interface INotifyPropertyChanged
{

event PropertyChangedEventHandler PropertyChanged;
}

public delegate void PropertyChangedEventHandler
(object sender, PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs

{
public PropertyChangedEventArgs (string propertyName);
public virtual string PropertyName { get; }

}

Notice that PropertyChangedEventArgs requires the name of the property that
changed. By applying the [CallerMemberName] attribute, however, we can imple-
ment this interface and invoke the event without ever specifying property names:

public class Foo : INotifyPropertyChanged
{
public event PropertyChangedEventHandler PropertyChanged = delegate { };

void RaisePropertyChanged ([CallerMemberName] string propertyName = null)
{

PropertyChanged (this, new PropertyChangedEventArgs (propertyName));
}

string customerName;
public string CustomerName
{
get { return customerName; }
set
{
if (value == customerName) return;
customerName = value;
RaisePropertyChanged();
// The compiler converts the above line to:
// RaisePropertyChanged ("CustomerName");

186 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Unsafe Code and Pointers

C# supports direct memory manipulation via pointers within blocks of code
marked unsafe and compiled with the /unsafe compiler option. Pointer types are
primarily useful for interoperability with C APIs but may also be used for accessing
memory outside the managed heap or for performance-critical hotspots.

Pointer Basics

For every value type or pointer type V, there is a corresponding pointer type V*. A
pointer instance holds the address of a variable. Pointer types can be (unsafely) cast
to any other pointer type. The main pointer operators are:

Operator Meaning

& The address-of operator returns a pointer to the address of a variable
* The dereference operator returns the variable at the address of a pointer
-> The pointer-to-member operator is a syntactic shortcut, in which x- >y is equivalent to (*x) .y E_
<
98
Unsafe Code 8

By marking a type, type member, or statement block with the unsafe keyword,
youre permitted to use pointer types and perform C++ style pointer operations on
memory within that scope. Here is an example of using pointers to quickly process a
bitmap:

unsafe voild BlueFilter (int[,] bitmap)

{
int length = bitmap.Length;
fixed (int* b = bitmap)
{
int* p = b;
for (int 1 = 0; 1 < length; i++)
*p++ &= OXFF;
}
}

Unsafe code can run faster than a corresponding safe implementation. In this case,
the code would have required a nested loop with array indexing and bounds check-
ing. An unsafe C# method may also be faster than calling an external C function,
since there is no overhead associated with leaving the managed execution environ-
ment.

The fixed Statement

The fixed statement is required to pin a managed object, such as the bitmap in the
previous example. During the execution of a program, many objects are allocated
and deallocated from the heap. In order to avoid unnecessary waste or fragmenta-
tion of memory, the garbage collector moves objects around. Pointing to an object is

Unsafe Code and Pointers | 187

www.it-ebooks.info

http://www.it-ebooks.info/

futile if its address could change while referencing it, so the fixed statement tells
the garbage collector to “pin” the object and not move it around. This may have an
impact on the efficiency of the runtime, so fixed blocks should be used only briefly,
and heap allocation should be avoided within the fixed block.

Within a fixed statement, you can get a pointer to any value type, an array of value
types, or a string. In the case of arrays and strings, the pointer will actually point to
the first element, which is a value type.

Value types declared inline within reference types require the reference type to be
pinned, as follows:

class Test
{
int x;
static void Main()
{
Test test = new Test();
unsafe
{
fixed (int* p = &test.x) // Pins test
{
p=9;
}
System.Console.WriteLine (test.x);
}
}
}

We describe the fixed statement further in “Mapping a Struct to Unmanaged Mem-
ory” on page 1011 in Chapter 25.

The Pointer-to-Member Operator

In addition to the & and * operators, C# also provides the C++ style -> operator,
which can be used on structs:

struct Test
{
int x;
unsafe static void Main()
{
Test test = new Test();
Test* p = &test;
p->x = 9;
System.Console.WriteLine (test.x);
}
}

188 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays

The stackalloc keyword

Memory can be allocated in a block on the stack explicitly using the stackalloc
keyword. Since it is allocated on the stack, its lifetime is limited to the execution of
the method, just as with any other local variable (whose life hasn’t been extended by
virtue of being captured by a lambda expression, iterator block, or asynchronous
function). The block may use the [] operator to index into memory:

int* a = stackalloc int [10];
for (int 1 = 0; 1 < 10; ++1)
Console.WriteLine (a[i]); // Print raw memory

Fixed-size buffers

The fixed keyword has another use, which is to create fixed-size buffers within
structs:

unsafe struct UnsafeUnicodeString

{
public short Length;

public fixed byte Buffer[30]; // Allocate block of 30 bytes
}

unsafe class UnsafeClass

{

UnsafeUnicodeString uus;

public UnsafeClass (string s)

{
uus.Length = (short)s.Length;

fixed (byte* p = uus.Buffer)
for (int 1 = 0; 1 < s.Length; i++)
p[i] = (byte) s[i];
}
}

class Test

{

static void Main() { new UnsafeClass ("Christian Troy"); }

}

The fixed keyword is also used in this example to pin the object on the heap that
contains the buffer (which will be the instance of UnsafeClass). Hence, fixed
means two different things: fixed in size and fixed in place. The two are often used
together, in that a fixed-size buffer must be fixed in place to be used.

void*
A void pointer (void*) makes no assumptions about the type of the underlying data
and is useful for functions that deal with raw memory. An implicit conversion exists

Unsafe Code and Pointers | 189

www.it-ebooks.info

>
s
(e)
"3
a
®
o

http://www.it-ebooks.info/

from any pointer type to void*. A void* cannot be dereferenced, and arithmetic
operations cannot be performed on void pointers. For example:

class Test

{

unsafe static void Main()

short[] a = {1,1,2,3,5,8,13,21,34,55};
fixed (short* p = a)

//sizeof returns size of value-type in bytes
Zap (p, a.Length * sizeof (short));
}

foreach (short x in a)
System.Console.WriteLine (x); // Prints all zeros

}

unsafe static void Zap (void* memory, int byteCount)

byte* b = (byte*) memory;
for (int 1 = 0; 1 < byteCount; i++)
*b++ = 0;
}
}

Pointers to Unmanaged Code

Pointers are also useful for accessing data outside the managed heap (such as when
interacting with C DLLs or COM) or when dealing with data not in the main mem-
ory (such as graphics memory or a storage medium on an embedded device).

Preprocessor Directives

Preprocessor directives supply the compiler with additional information about
regions of code. The most common preprocessor directives are the conditional
directives, which provide a way to include or exclude regions of code from compila-
tion. For example:

#define DEBUG
class MyClass
{
int x;
void Foo()
{
#i1f DEBUG
Console.WriteLine ("Testing: x = {0}", Xx);
#endif
}

}...

In this class, the statement in Foo is compiled as conditionally dependent upon the
presence of the DEBUG symbol. If we remove the DEBUG symbol, the statement is not

190 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

compiled. Preprocessor symbols can be defined within a source file (as we have
done), and they can be passed to the compiler with the /define:symbol command-
line option.

With the #if and #elif directives, you can use the ||, &&, and ! operators to per-
form or, and, and not operations on multiple symbols. The following directive
instructs the compiler to include the code that follows if the TESTMODE symbol is
defined and the DEBUG symbol is not defined:

#if TESTMODE && !DEBUG

Bear in mind, however, that youre not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

The #error and #warning symbols prevent accidental misuse of conditional direc-
tives by making the compiler generate a warning or error given an undesirable set of
compilation symbols. Table 4-1 lists the preprocessor directives.

Table 4-1. Preprocessor directives

Preprocessor directive Action

#define symbol Defines symbol

#undef symbol Undefines symbol

#1f symbol [operator symbol2]... symbol to test
operatorsare ==, !=,&&, and | | followed hy
#else, #elif, and #endif

#else Executes code to subsequent #endif

#elif symbol [operator symbol2] Combines #else branch and #1f test

#endif Ends conditional directives

#warning text text of the warning to appear in compiler output

#error text text of the error to appear in compiler output

#pragma warning [disable | restore] Disables/restores compiler warning(s)

#line [number ["file"] | hidden] number specifies the line in source code; fileis the
filename to appear in computer output; hidden
instructs debuggers to skip over code from this point
until the next #11ine directive

#region name Marks the beginning of an outline

#endregion Ends an outline region

Conditional Attributes

An attribute decorated with the Conditional attribute will be compiled only if a
given preprocessor symbol is present. For example:

Preprocessor Directives | 191

www.it-ebooks.info

(¢]
#

posueApy

http://www.it-ebooks.info/

/] filel.cs

#define DEBUG

using System;

using System.Diagnostics;
[Conditional("DEBUG")]

public class TestAttribute : Attribute {}

/] file2.cs
#define DEBUG
[Test]

class Foo

{
[Test]
string s;
3
The compiler will only incorporate the [Test] attributes if the DEBUG symbol is in
scope for file2.cs.

Pragma Warning

The compiler generates a warning when it spots something in your code that seems
unintentional. Unlike errors, warnings don't ordinarily prevent your application
from compiling.

Compiler warnings can be extremely valuable in spotting bugs. Their usefulness,
however, is undermined when you get false warnings. In a large application, main-
taining a good signal-to-noise ratio is essential if the “real” warnings are to get
noticed.

To this effect, the compiler allows you to selectively suppress warnings with the
#pragma warning directive. In this example, we instruct the compiler not to warn us
about the field Message not being used:

public class Foo

{
static void Main() { }

#pragma warning disable 414
static string Message = "Hello";
#pragma warning restore 414

}

Omitting the number in the #pragma warning directive disables or restores all
warning codes.

If you are thorough in applying this directive, you can compile with the /warnaser
ror switch—this tells the compiler to treat any residual warnings as errors.

192 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

XML Documentation

A documentation comment is a piece of embedded XML that documents a type or
member. A documentation comment comes immediately before a type or member
declaration and starts with three slashes:

//] <summary>Cancels a running query.</summary>
public void Cancel() { ... }

Multiline comments can be done either like this:

/// <summary>
/// Cancels a running query

//] </summary>
public void Cancel() { ... }

or like this (notice the extra star at the start):

/**

<summary> Cancels a running query. </summary>
*/
public void Cancel() { ... }
If you compile with the /doc directive (in Visual Studio, go to the Build tab of
Project Properties), the compiler extracts and collates documentation comments into
a single XML file. This has two main uses:

o If placed in the same folder as the compiled assembly, Visual Studio (and
LINQPad) automatically read the XML file and use the information to provide
IntelliSense member listings to consumers of the assembly of the same name.

o Third-party tools (such as Sandcastle and NDoc) can transform the XML file
into an HTML help file.

Standard XML Documentation Tags

Here are the standard XML tags that Visual Studio and documentation generators
recognize:

<summary>
<summary>...</summary>

Indicates the tool tip that IntelliSense should display for the type or mem-
ber; typically a single phrase or sentence.

<remarks>
<remarks>...</remarks>

Additional text that describes the type or member. Documentation genera-
tors pick this up and merge it into the bulk of a type or member’s descrip-
tion.

XML Documentation | 193

www.it-ebooks.info

(2]
*

pasueApy

http://www.it-ebooks.info/

<param>
<param name="name">...</param>

Explains a parameter on a method.

<returns>
<returns>...</returns>

Explains the return value for a method.

<exception>
<exception [cref="type"]>...</exception>

Lists an exception that a method may throw (cref refers to the exception
type).

<permission>
<permission [cref="type"]>...</permission>

Indicates an IPermission type required by the documented type or mem-
ber.

<example>
<example>...</example>

Denotes an example (used by documentation generators). This usually
contains both description text and source code (source code is typically
within a <c> or <code> tag).

<C>

<c>...</c>

Indicates an inline code snippet. This tag is usually used inside an <exam
ple> block.

<code>
<code>...</code>

Indicates a multiline code sample. This tag is usually used inside an <exam
ple> block.

<see>
<see cref="member">...</see>

Inserts an inline cross-reference to another type or member. HTML docu-
mentation generators typically convert this to a hyperlink. The compiler
emits a warning if the type or member name is invalid. To refer to generic
types, use curly braces; for example, cref="Foo{T,U}".

194 | Chapter4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

<seealso>
<seealso cref="member">...</seealso>

Cross-references another type or member. Documentation generators typi-
cally write this into a separate “See Also” section at the bottom of the page.

<paramref>
<paramref name="name" />

References a parameter from within a <summary> or <remarks> tag.

<list>
<list type=[bullet | number | table]>
<listheader>
<term>...</term>
<description>...</description>
</listheader>
<item>
<term>...</term>
<description>...</description>
</item>
</list>
Instructs documentation generators to emit a bulleted, numbered, or table-
style list.

<para>
<para>...</para>

Instructs documentation generators to format the contents into a separate
paragraph.

<include>
<include file='filename' path='tagpath[@name="1d"]"'>...</include>

Merges an external XML file that contains documentation. The path
attribute denotes an XPath query to a specific element in that file.

User-Defined Tags

Little is special about the predefined XML tags recognized by the C# compiler, and
you are free to define your own. The only special processing done by the compiler is
on the <param> tag (in which it verifies the parameter name and that all the parame-
ters on the method are documented) and the cref attribute (in which it verifies that
the attribute refers to a real type or member and expands it to a fully qualified type
or member ID). The cref attribute can also be used in your own tags and is verified
and expanded just as it is in the predefined <exception>, <permission>, <see>, and
<seealso> tags.

XML Documentation | 195

www.it-ebooks.info

(2]
*

posueApy

http://www.it-ebooks.info/

Type or Member Cross-References

Type names and type or member cross-references are translated into IDs that
uniquely define the type or member. These names are composed of a prefix that
defines what the ID represents and a signature of the type or member. The member
prefixes are:

XML type prefix 1D prefixes applied to...

m =X ©W mMm - =

Namespace

Type (class, struct, enum, interface, delegate)
Field

Property (includes indexers)

Method (includes special methods)

Event

Error

The rules describing how the signatures are generated are well documented,
although fairly complex.

Here is an example of a type and the IDs that are generated:

// Namespaces do not have independent signatures
namespace NS

{

//] T:NS.MyClass
class MyClass

{

/// F:NS.MyClass.aField
string aField;

/// P:NS.MyClass.aProperty
short aProperty {get {...} set {...}}

/// T:NS.MyClass.NestedType
class NestedType {...};

/// M:NS.MyClass.X()
void X() {...}

/// M:NS.MyClass.Y(System.Int32,System.Double@,System.Decimal@)
void Y(int p1, ref double p2, out decimal p3) {...}

/// M:NS.MyClass.Z(System.Char[],System.Single[0:,0:])
void Z(char[] 1, float[,] p2) {...}

/// M:NS.MyClass.op_Addition(NS.MyClass,NS.MyClass)
public static MyClass operator+(MyClass c1l, MyClass c2) {...}

/// M:NS.MyClass.op_Implicit(NS.MyClass)~System.Int32
public static implicit operator int(MyClass c) {...}

196

Chapter 4: Advanced C#

www.it-ebooks.info

http://www.it-ebooks.info/

/// M:NS.MyClass.#ctor
MyClass() {...}

/// M:NS.MyClass.Finalize
~MyClass() {...}

/// M:NS.MyClass.#cctor
static MyClass() {...}

>
S
Og
T3
a
o
o

XML Documentation | 197

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Framework Overview

Almost all the capabilities of the NET Framework are exposed via a vast set of man-
aged types. These types are organized into hierarchical namespaces and packaged
into a set of assemblies, which together with the CLR comprise the NET platform.

Some of the .NET types are used directly by the CLR and are essential for the man-
aged hosting environment. These types reside in an assembly called mscorlib.dll and
include C#’s built-in types, as well as the basic collection classes, types for stream
processing, serialization, reflection, threading, and native interoperability (“mscor-
lib” is an abbreviation for Multi-language Standard Common Object Runtime
Library).

At a level above this are additional types that “flesh out” the CLR-level functionality,
providing features such as XML, networking, and LINQ. These reside in System.dll,
System.Xml.dll, and System.Core.dll, and together with mscorlib, they provide a rich
programming environment upon which the rest of the Framework is built. This
“core framework” largely defines the scope of the rest of this book.

The remainder of the NET Framework consists of applied APIs, most of which
cover three areas of functionality:

o User interface technologies
« Backend technologies

o Distributed system technologies

Table 5-1 shows the history of compatibility between each version of C#, the CLR,
and the NET Framework. C# 6.0 targets CLR 4.6, which is a “patched” version of
CLR 4.0 (an in-place update). This means that applications targeting CLR 4.0 will
actually run on CLR 4.6 after you install the latter; hence Microsoft has taken
extreme care to ensure backward compatibility.

199

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-1. C#, CLR, and .NET Framework versions

Ci# version CLR version Framework versions

1.0 1.0 1.0
1.2 1.1 1.1
20 20 2.0,3.0
30 2.0 (SP2) 35
4.0 4.0 4.0
5.0 4.5 (Patched CLR 4.0) 4.5
6.0 4.6 (Patched (LR 4.0) 4.6

This chapter skims all key areas of the .NET Framework—starting with the core
types covered in this book and finishing with an overview of the applied technolo-
gies.

What's New in .NET Framework 4.6

» The Garbage Collector offers more control over when (not) to collect via new
methods on the GC class. There are also more fine-tuning options when call-
ing GC.Collect.

o There’s a brand-new faster 64-bit JIT compiler.

o The System.Numerics namespace now includes hardware-accelerated matrix
and vector types.

o There’s a new System.AppContext class, designed to give library authors a con-
sistent mechanism for letting consumers switch new API features in or out.

o Tasks now pick up the current thread’s culture and UI culture when created.

» More collection types now implement IReadOnlyCollection<T>.

o WPF has further improvements, including better touch and high-DPI han-
dling.

o ASPNET now supports HTTP/2 and the Token Binding Protocol in Windows
10.

The release of Framework 4.6 is also timed with ASPNET 5 and MVC 6, available
on NuGet. ASPNET 5 features a lighter-weight modular architecture, with the abil-
ity to self-host in a custom process, cross-platform interoperability, and an open-
source license. Unlike its predecessors, ASPNET 5 is not dependent on System.Web
and its historical baggage.

200 | Chapter5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

Assemblies and namespaces in the NET Framework cross-cut.
The most extreme examples are mscorlib.dll and Sys-
tem.Core.dll, both defining types in dozens of namespaces,
none of which is prefixed with mscorlib or System.Core. The
less obvious cases are the more confusing ones, however, such
as the types in System.Security.Cryptography. Most types
in this namespace reside in System.dll, except for a handful,
which reside in System.Security.dll. The books companion
website contains a complete mapping of Framework namespa-
ces to assemblies.

Many of the core types are defined in the following assemblies: mscorlib.dll, Sys-
tem.dll, and System.Core.dll. The first of these, mscorlib.dll, comprises the types
required by the runtime environment itself; System.dll and System.Core.dll contain
additional core types required by you as a programmer. The reason the latter two
are separate is historical: when Microsoft introduced Framework 3.5, they made it
additive insofar as it ran as a layer over the existing CLR 2.0. Therefore, almost all
new core types (such as the classes supporting LINQ) went into a new assembly that
Microsoft called System.Core.dll.

What's New in .NET Framework 4.5

New features of Framework 4.5 included:

Extensive support for asynchrony through Task-returning methods

Support for the ZIP compression protocol (Chapter 15)

Improved HTTP support through the new HttpClient class (Chapter 16)

« Performance improvements to the garbage collector and assembly resource
retrieval

 Support for WinRT interoperability and APIs for building Windows Store
mobile apps

They also added a new TypeInfo class (Chapter 19) and the ability to specify time-
outs when matching regular expression timeouts (Chapter 26).

In the Parallel Computing space, a specialized new library was added called Data-
flow for building producer/consumer-style networks.

There were also improvements to the WPE, WCE, and WF (Workflow Foundation)
libraries.

Framework Overview | 201

www.it-ebooks.info

MBOIAIDAO

—
u
o
3
o
3
o
9
=

http://www.albahari.com/nutshell/NamespaceReference.aspx
http://www.albahari.com/nutshell/NamespaceReference.aspx
http://www.it-ebooks.info/

The CLR and Core Framework
System Types

The most fundamental types live directly in the System namespace. These include
C#’s built-in types, the Exception base class, the Enum, Array, and Delegate base
classes, and Nullable, Type, DateTime, TimeSpan, and Guid. The System namespace
also includes types for performing mathematical functions (Math), generating ran-
dom numbers (Random), and converting between various types (Convert and Bit
Converter).

Chapter 6 describes these types—as well as the interfaces that define standard pro-
tocols used across the .NET Framework for such tasks as formatting (IFormatta
ble) and order comparison (IComparable).

The System namespace also defines the IDisposable interface and the GC class for
interacting with the garbage collector. These topics are saved for Chapter 12.

Text Processing

The System.Text namespace contains the StringBuilder class (the editable or
mutable cousin of string) and the types for working with text encodings, such as
UTF-8 (Encoding and its subtypes). We cover this in Chapter 6.

The System.Text.RegularExpressions namespace contains types that perform
advanced pattern-based search-and-replace operations; these are described in
Chapter 26.

Collections

The .NET Framework offers a variety of classes for managing collections of items.
These include both list- and dictionary-based structures, and work in conjunction
with a set of standard interfaces that unify their common characteristics. All collec-
tion types are defined in the following namespaces, covered in Chapter 7:

System.Collections // Nongeneric collections

System.Collections.Generic // Generic collections

System.Collections.Specialized // Strongly typed collections

System.Collections.ObjectModel // Bases for your own collections

System.Collections.Concurrent // Thread-safe collection (Chapter 23)
Queries

Language Integrated Query (LINQ) was added in Framework 3.5. LINQ allows you
to perform type-safe queries over local and remote collections (e.g., SQL Server
tables) and is described in Chapters 8 through 10. A big advantage of LINQ is that it
presents a consistent querying API across a variety of domains. The types for
resolving LINQ queries reside in these namespaces:

202 | Chapter5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

System.Ling // LINQ to Objects and PLINQ
System.Ling.Expressions // For building expressions manually
System.Xml.Ling // LINQ to XML

The full .NET profile also includes the following:

System.Data.Ling // LINQ to SQL
System.Data.Entity // LINQ to Entities (Entity Framework)

(The Windows Store profile excludes the entire System.Data.* namespace.)

The LINQ to SQL and Entity Framework APIs leverage lower-level ADO.NET types
in the System.Data namespace.

XML

XML is used widely within the .NET Framework and so is supported extensively.
Chapter 10 focuses entirely on LINQ to XML—a lightweight XML document object
model that can be constructed and queried through LINQ. Chapter 11 describes the
older W3C DOM, as well as the performant low-level reader/writer classes and the
FrameworK’s support for XML schemas, stylesheets, and XPath. The XML namespa-
ces are:

System.Xml // XmlReader, XmlWriter + the old W3C DOM
System.Xml.Ling // The LINQ to XML DOM
System.Xml.Schema // Support for XSD

System.Xml.Serialization // Declarative XML serialization for .NET types

The following namespaces are available in the desktop .NET profiles (not Windows
Store):

System.Xml.XPath // XPath query language
System.Xml.Xsl // Stylesheet support

Diagnostics and Code Contracts

In Chapter 13, we cover .NET’s logging and assertion facilities and the code con-
tracts system that was introduced in Framework 4.0. We also describe how to inter-
act with other processes, write to the Windows event log, and use performance
counters for monitoring. The types for this are defined in and under System.Diag
nostics.

Concurrency and Asynchrony

Most modern applications need to deal with more than one thing happening at a
time. Since C# 5.0, this has become easier through asynchronous functions and
high-level constructs such as tasks and task combinators. Chapter 14 explains all of
this in detail, after starting with the basics of multithreading. Types for working
with threads and asynchronous operations are in the System.Threading and Sys
tem.Threading.Tasks namespaces.

The CLR and Core Framework | 203

www.it-ebooks.info

MDOIAIDAO

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

Streams and 1/0

The Framework provides a stream-based model for low-level input/output. Streams
are typically used to read and write directly to files and network connections, and
can be chained or wrapped in decorator streams to add compression or encryption
functionality. Chapter 15 describes .NET’s stream architecture, as well as the specific
support for working with files and directories, compression, isolated storage, pipes,
and memory-mapped files. The .NET Stream and I/O types are defined in and
under the System.I0 namespace, and the WinRT types for file I/O are in and under
Windows.Storage.

Networking

You can directly access standard network protocols such as HT'TP, FTP, TCP/IP, and
SMTP via the types in System.Net. In Chapter 16, we demonstrate how to commu-
nicate using each of these protocols, starting with simple tasks such as downloading
from a web page, and finishing with using TCP/IP directly to retrieve POP3 email.
Here are the namespaces we cover:

System.Net

System.Net.Http // HttpClient
System.Net.Mail // For sending mail via SMTP
System.Net.Sockets // TCP, UDP, and IP

The latter two namespaces are not available to Windows Store applications, which
must instead use third-party libraries for sending mail, and the WinRT types in Win
dows .Networking. Sockets for working with sockets.

Serialization

The Framework provides several systems for saving and restoring objects to a
binary or text representation. Such systems are required for distributed application
technologies, such as WCF, Web Services, and Remoting, and also to save and
restore objects to a file. In Chapter 17, we cover all three serialization engines: the
data contract serializer, the binary serializer, and the XML serializer. The types for
serialization reside in the following namespaces:

System.Runtime.Serialization
System.Xml.Serialization

The Windows Store profile excludes the binary serialization engine.

Assemblies, Reflection, and Attributes

The assemblies into which C# programs compile comprise executable instructions
(stored as intermediate language or IL) and metadata, which describes the program’s
types, members, and attributes. Through reflection, you can inspect this metadata at
runtime and do such things as dynamically invoke methods. With Reflec
tion.Emit, you can construct new code on the fly.

204 | Chapter 5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

In Chapter 18, we describe the makeup of assemblies and how to sign them, use the
global assembly cache and resources, and resolve file references. In Chapter 19, we
cover reflection and attributes—describing how to inspect metadata, dynamically
invoke functions, write custom attributes, emit new types, and parse raw IL. The
types for using reflection and working with assemblies reside in the following
namespaces:

System
System.Reflection
System.Reflection.Emit (Desktop only)

Dynamic Programming

In Chapter 20, we look at some of the patterns for dynamic programming and lever-
aging the Dynamic Language Runtime, which has been a part of the CLR since
Framework 4.0. We describe how to implement the Visitor pattern, write custom
dynamic objects, and interoperate with IronPython. The types for dynamic pro-
gramming are in System.Dynamic.

Security

The .NET Framework provides its own security layer, allowing you to both sandbox
other assemblies and be sandboxed yourself. In Chapter 21, we cover code access,
role, and identity security, and the transparency model introduced in CLR 4.0. We
then describe cryptography in the Framework, covering encryption, hashing, and
data protection. The types for this are defined in:

System.Security
System.Security.Permissions
System.Security.Policy
System.Security.Cryptography

Only System.Security is available to Windows Store apps; cryptography is handled
instead in the WinRT types in Windows.Security.Cryptography.

Advanced Threading

C#’s asynchronous functions make concurrent programming significantly easier
because they lessen the need for lower-level techniques. However, there are still
times when you need signaling constructs, thread-local storage, reader/writer locks,
and so on. Chapter 22 explains this in depth. Threading types are in the Sys
tem.Threading namespace.

Parallel Programming

In Chapter 23, we cover in detail the libraries and types for leveraging multicore
processors, including APIs for task parallelism, imperative data parallelism, and
functional parallelism (PLINQ).

The CLR and Core Framework | 205

www.it-ebooks.info

MDOIAIDAO

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Application Domains

The CLR provides an additional level of isolation within a process, called an applica-
tion domain. In Chapter 24, we examine the properties of an application domain
with which you can interact, and demonstrate how to create and use additional
application domains within the same process for such purposes as unit testing. We
also describe how to use Remoting to communicate with these application domains.
The AppDomatin type defined in the System namespace is not applicable to Windows
Store apps.

Native and COM Interoperability

You can interoperate with both native and COM code. Native interoperability allows
you to call functions in unmanaged DLLs, register callbacks, map data structures,
and interoperate with native data types. COM interoperability allows you to call
COM types and expose .NET types to COM. The types that support these functions
are in System.Runtime.InteropServices, and we cover them in Chapter 25.

Applied Technologies

User Interface Technologies

User-interface-based applications can be divided into two categories: thin client,
which amounts to a website, and rich client, which is a program the end user must
download and install on a computer or mobile device.

For thin-client applications, NET provides the ASP.NET library.

For rich-client applications that target Windows desktop, .NET provides the WPF
and Windows Forms APIs. For rich-client apps that target mobile devices, you have
the option of Windows RT (Windows Store apps only), or Xamarin™ for cross-
platform apps.

Finally, there’s a hybrid technology called Silverlight, which has been largely aban-
doned since the rise of HTMLS5.

ASP.NET
Applications written using ASPNET host under Windows IIS (or a custom process
with ASPNET 5) and can be accessed from any web browser. Here are the advan-
tages of ASPNET over rich-client technologies:

o There is zero deployment at the client end.

o Clients can run a non-Windows platform.

« Updates are easily deployed.

Further, because most of what you write in an ASPNET application runs on the
server, you design your data access layer to run in the same application domain—

206 | Chapter5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

without limiting security or scalability. In contrast, a rich client that does the same is
not generally as secure or scalable. (The solution, with the rich client, is to insert a
middle tier between the client and database. The middle tier runs on a remote appli-
cation server [often alongside the database server] and communicates with the rich
clients via WCE, Web Services, or Remoting.)

In writing your web pages, you can choose between the traditional Web Forms and
the newer MVC (Model-View-Controller) API. Both build on the ASPNET infra-
structure. Web Forms has been part of the Framework since its inception; MVC was
written much later in response to the success of Ruby on Rails and MonoRail. It
provides, in general, a better programming abstraction than Web Forms; it also
allows more control over the generated HTML. What you lose over Web Forms is a
designer. This makes Web Forms still a good choice for web pages with predomi-
nately static content.

The limitations of ASPNET are largely a reflection of the limitations of thin-client
systems in general:

o While a web browser can offer a rich compelling interface with HTML5 and
AJAX, it’s still inferior to a native rich-client API such as WPF in capability and
performance.

o Maintaining state on the client—or on behalf of the client—can be cumber-
some.

The types for writing ASPNET applications are in the System.Web.UI namespace
and its subnamespaces and are in the System. Web.dll assembly. ASPNET 5 is avail-
able on NuGet.

Windows Presentation Foundation (WPF)

WPF was introduced in Framework 3.0 for writing rich-client applications. The
benefits of WPF over its predecessor, Windows Forms, are as follows:

o It supports sophisticated graphics, such as arbitrary transformations, 3D ren-
dering, and true transparency.

o Its primary measurement unit is not pixel-based, so applications display cor-
rectly at any DPI (dots per inch) setting.

o It has extensive dynamic layout support, which means you can localize an
application without danger of elements overlapping.

« Rendering uses DirectX and is fast, taking good advantage of graphics hard-
ware acceleration.

o User interfaces can be described declaratively in XAML files that can be main-
tained independently of the “code-behind” files—this helps to separate appear-
ance from functionality.

WPF’s size and complexity, however, make for a steep learning curve.

Applied Technologies | 207

www.it-ebooks.info

MDOIAIDAO

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

The types for writing WPF applications are in the System.Windows namespace and
all subnamespaces except for System.Windows.Forms.

Windows Forms

Windows Forms is a rich-client API that’s as old as the .NET Framework. Compared
to WPE, Windows Forms is a relatively simple technology that provides most of the
features you need in writing a typical Windows application. It also has significant
relevancy in maintaining legacy applications. It has a number of drawbacks, though,
compared to WPF:

« Controls are positioned and sized in pixels, making it easy to write applications
that break on clients whose DPI settings differ from the developer’s.

o The API for drawing nonstandard controls is GDI+, which, although reasona-
bly flexible, is slow in rendering large areas (and without double buffering, may
flicker).

« Controls lack true transparency.

« Dynamic layout is difficult to get right reliably.

The last point is an excellent reason to favor WPF over Windows Forms—even if
you're writing a business application that needs just a user interface and not a “user
experience” The layout elements in WPE, such as Grid, make it easy to assemble
labels and text boxes such that they always align—even after language-changing
localization—without messy logic and without any flickering. Further, you don't
have to bow to the lowest common denominator in screen resolution—WPF layout
elements have been designed from the outset to adapt properly to resizing.

On the positive side, Windows Forms is relatively simple to learn and still has a
wealth of support in third-party controls.

The Windows Forms types are in the System.Windows.Forms (in System.Win-
dows.Forms.dll) and System.Drawing (in System.Drawing.dll) namespaces. The lat-
ter also contains the GDI+ types for drawing custom controls.

Windows RT and Xamarin

Also not technically part of the NET Framework, Windows 8 and higher includes
Windows Runtime for writing touch-first user interfaces aimed at mobile devices
(see “C# and Windows Runtime” on page 5 in Chapter 1). Its rich-client API was
inspired by WPF and uses XAML for layout, and applications that you write with
this API are deployed via the Window Store (hence “Windows Store” apps). The
namespaces are Windows.UI and Windows.UI.Xaml.

Another popular solution for mobile application development is Xamarin™. With
this third-party product, you can write mobile apps in C# that target iOS and
Android, as well as Windows Phone.

208 | Chapter5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

Silverlight

Silverlight is not part of the main .NET Framework: it’s a separate Framework that
includes a subset of the Framework’s core features—plus the ability to run as a web
browser plug-in. Its graphics model is essentially a subset of WPE, and this allows
you to leverage existing knowledge in developing Silverlight applications. Silverlight
is available as a small cross-platform download for web browsers—much like Mac-
romedia’s Flash.

With the rise of HTML 5, Microsoft’s focus has shifted away from Silverlight.
Backend Technologies

ADO.NET

ADO.NET is the managed data access API. Although the name is derived from the
1990s-era ADO (ActiveX Data Objects), the technology is completely different.
ADO.NET contains two major low-level components:

Provider layer
The provider model defines common classes and interfaces for low-level
access to database providers. These interfaces comprise connections, com-
mands, adapters, and readers (forward-only, read-only cursors over a data-
base). The Framework ships with native support for Microsoft SQL Server,
and numerous third-party drivers are available for other databases.

DataSet model

A DataSet is a structured cache of data. It resembles a primitive in-memory
database, which defines SQL constructs such as tables, rows, columns, rela-
tionships, constraints, and views. By programming against a cache of data,
you can reduce the number of trips to the server, increasing server scalabil-
ity and the responsiveness of a rich-client user interface. DataSets are seri-
alizable and are designed to be sent across the wire between client and
server applications.

Sitting above the provider layer are two APIs that offer the ability to query databases
via LINQ:

« Entity Framework (introduced in Framework 3.5 SP1)

o LINQ to SQL (introduced in Framework 3.5)

Both technologies include object/relational mappers (ORMs), meaning they auto-
matically map objects (based on classes that you define) to rows in the database.
This allows you to query those objects via LINQ (instead of writing SQL select
statements)—and update them without manually writing SQL insert/delete/
update statements. This cuts the volume of code in an application’s data access layer
(particularly the “plumbing” code) and provides strong static type safety. These
technologies also avoid the need for DataSets as receptacles of data—although Data-

Applied Technologies | 209

www.it-ebooks.info

MBOIAISAQO

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

Sets still provide the unique ability to store and serialize state changes (something
particularly useful in multitier applications). You can use Entity Framework or
LINQ to SQL in conjunction with DataSets, although the process is somewhat
clumsy and DataSets are inherently ungainly. In other words, there’s no straightfor-
ward out-of-the-box solution for writing n-tier applications with Microsofts ORMs
as yet.

LINQ to SQL is simpler and faster than Entity Framework, and has historically pro-
duced better SQL (although Entity Framework has benefited from numerous
updates). Entity Framework is more flexible in that you can create elaborate map-
pings between the database and the classes that you query, and offers a model that
allows third-party support for databases other than SQL Server.

Windows Workflow

Windows Workflow is a framework for modeling and managing potentially long-
running business processes. Workflow targets a standard runtime library, providing
consistency and interoperability. Workflow also helps reduce coding for dynami-
cally controlled decision-making trees.

Windows Workflow is not strictly a backend technology—you can use it anywhere
(an example is page flow, in the UI).

Workflow came originally with .NET Framework 3.0, with its types defined in the
System.WorkFlow namespace. Workflow was substantially revised in Framework
4.0; the new types live in and under the System.Activities namespace.

COM+ and MSMQ

The Framework allows you to interoperate with COM+ for services such as dis-
tributed transactions, via types in the System.EnterpriseServices namespace. It
also supports MSMQ (Microsoft Message Queuing) for asynchronous, one-way
messaging through types in System.Messaging.

Distributed System Technologies

Windows Communication Foundation (WCF)

WCEF is a sophisticated communications infrastructure introduced in Framework
3.0. WCEF is flexible and configurable enough to make both of its predecessors—
Remoting and (.LASMX) Web Services—mostly redundant.

WCE, Remoting, and Web Services are all alike in that they implement the following
basic model in allowing a client and server application to communicate:
« On the server, you indicate what methods youd like remote client applications
to be able to call.

+ On the client, you specify or infer the signatures of the server methods youd
like to call.

210 | Chapter5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

o On both the server and the client, you choose a transport and communication
protocol (in WCE, this is done through a binding).

o The client establishes a connection to the server.

o The client calls a remote method, which executes transparently on the server.

WCF further decouples the client and server through service contracts and data
contracts. Conceptually, the client sends an (XML or binary) message to an end-
point on a remote service, rather than directly invoking a remote method. One of the
benefits of this decoupling is that clients have no dependency on the .NET platform
or on any proprietary communication protocols.

WCEF is highly configurable and provides the most extensive support for standar-
dized messaging protocols, including WS-*. This lets you communicate with parties
running different software—possibly on different platforms—while still supporting
advanced features such as encryption. In practice however, the complexity of these
protocols has limited their adoption across other platforms, and the best option
right now for interoperable messaging is REST over HTTP, which Microsoft sup-
ports through the Web API layer over ASP.NET.

For .NET-to-.NET communication, however, WCF offers richer serialization and
better tooling than with REST APIs. It’s also potentially faster as its not tied to
HTTP and can use binary serialization.

The types for communicating with WCF are in, and below, the System.ServiceMo
del namespace.

Web API

Web API runs over ASPNET and is architecturally similar to Microsofts MVC API,
except that it’s designed to expose services and data instead of web pages. Its advan-
tage over WCF is in allowing you to follow popular REST-over-HTTP conventions,
offering easy interoperability with the widest range of platforms.

REST implementations are internally simpler than the SOAP and WS- protocols
that WCEF relies on for interoperability. REST APIs are also architecturally more ele-
gant for loosely-coupled systems, building on de-facto standards and making excel-
lent use of what HT'TP already provides.

Remoting and .ASMX Web Services

Remoting and .ASMX Web Services are WCF’s predecessors. Remoting is almost
redundant in WCF’s wake, and .ASMX Web Services has become entirely redun-
dant.

Remoting’s remaining niche is in communicating between application domains
within the same process (see Chapter 24). Remoting is geared toward tightly cou-
pled applications. A typical example is when the client and server are both .NET
applications written by the same company (or companies sharing common assem-
blies). Communication typically involves exchanging potentially complex cus-

Applied Technologies | 211

www.it-ebooks.info

MBOIAIDAQO

—
U
o
3
®
2
o
9
=

http://www.it-ebooks.info/

tom .NET objects that the Remoting infrastructure serializes and deserializes
without needing intervention.

The types for Remoting are in or under System.Runtime.Remoting; the types for
Web Services are under System.Web.Services.

212 | Chapter 5: Framework Overview

www.it-ebooks.info

http://www.it-ebooks.info/

Framework Fundamentals

Many of the core facilities that you need when programming are provided not by
the C# language, but by types in the .NET Framework. In this chapter, we cover the
FrameworK’s role in fundamental programming tasks, such as virtual equality com-
parison, order comparison, and type conversion. We also cover the basic Frame-
work types, such as String, DateTime, and Enum.

The types in this section reside in the System namespace, with the following excep-
tions:

o StringBuilder is defined in System.Text, as are the types for text encodings.

o CultureInfo and associated types are defined in System.Globalization.

o XmlConvert is defined in System.Xml.

String and Text Handling
Char

A C# char represents a single Unicode character and aliases the System.Char struct.
In Chapter 2, we described how to express char literals. For example:

char c = 'A";

char newLine = '\n';
System.Char defines a range of static methods for working with characters, such as

ToUpper, ToLower, and IsWhiteSpace. You can call these through either the Sys
tem.Char type or its char alias:

Console.WriteLine (System.Char.ToUpper ('c')); /] C
Console.WriteLine (char.IsWhiteSpace ('\t')); /] True

213

www.it-ebooks.info

http://www.it-ebooks.info/

ToUpper and ToLower honor the end user’s locale, which can lead to subtle bugs.
The following expression evaluates to false in Turkey:

char.ToUpper ('i') == 'I

because in Turkey, char.ToUpper ('i')is 'I' (notice the dot on top!). To avoid
this problem, System.Char (and System.String) also provides culture-invariant
versions of ToUpper and ToLower ending with the word Invariant. These always
apply English culture rules:

Console.WriteLine (char.ToUpperInvariant ('i')); /]I
This is a shortcut for:

Console.WriteLine (char.ToUpper ('i', CultureInfo.InvariantCulture))
For more on locales and culture, see “Formatting and parsing” on page 233.

Most of char’s remaining static methods are related to categorizing characters and
are listed in Table 6-1.

Table 6-1. Static methods for categorizing characters

Static method Characters included Unicode categories included
IslLetter A-Z, a-z, and letters of other alphabets UpperCaseletter
LowerCaselLetter
TitleCaseletter
ModifierLetter
OtherLetter
IsUpper Uppercase letters UpperCaseletter
IsLower Lowercase letters LowerCaseLetter
IsDigit 0-9 plus digits of other alphabets DecimalDigitNumber
IsLetterOrDigit Letters plus digits (IsLetter, IsDigit)
IsNumber All digits plus Unicode fractions and DecimalDigitNumber
Roman numeral symbols LetterNumber
OtherNumber
IsSeparator Space plus all Unicode separator characters LineSeparator
ParagraphSeparator
IsWhiteSpace All separators plus \n, \r, \t, \f, and LineSeparator
\v ParagraphSeparator
IsPunctuation Symbols used for punctuation in Westem DashPunctuation
and other alphabets ConnectorPunctuation
InitialQuotePunctuation
FinalQuotePunctuation
IsSymbol Most other printable symbols MathSymbol
ModifierSymbol
OtherSymbol
214 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Static method Characters included Unicode categories included

IsControl Nonprintable “control” characters below (None)
0x20, suchas \r, \n, \'t, \0, and
characters between 0x7F and 0x9A

For more granular categorization, char provides a static method called GetUnicode
Category; this returns a UnicodeCategory enumeration whose members are shown
in the rightmost column of Table 6-1.

By explicitly casting from an integer, it's possible to produce a
char outside the allocated Unicode set. To test a character’s
validity, call char.GetUnicodeCategory: if the result is Unico
deCategory.OtherNotAssigned, the character is invalid.

A char is 16 bits wide—enough to represent any Unicode character in the Basic
Multilingual Plane. To go outside this, you must use surrogate pairs: we describe the
methods for doing this in “Text Encodings and Unicode” on page 223.

String

A C# string (== System.String) is an immutable (unchangeable) sequence of
characters. In Chapter 2, we described how to express string literals, perform equal-
ity comparisons, and concatenate two strings. This section covers the remaining
functions for working with strings, exposed through the static and instance mem-
bers of the System.String class.

Constructing strings

The simplest way to construct a string is to assign a literal, as we saw in Chapter 2:

string s1 = "Hello";
string s2 = "First Line\r\nSecond Line";
string s3 = @"\\server\fileshare\helloworld.cs";

To create a repeating sequence of characters, you can use string’s constructor:
Console.Write (new string ('*', 10)); [FREEEERRER

You can also construct a string from a char array. The ToCharArray method does
the reverse:

char[] ca = "Hello".ToCharArray();
string s = new str'lng (ca); // s = "Hello"

string’s constructor is also overloaded to accept various (unsafe) pointer types, in
order to create strings from types such as char*.

String and Text Handling | 215

www.it-ebooks.info

m
c
S
Q.
)
3
[}
-]
-
o
0

T
-
o
3
[}
3
o
=
x

http://www.it-ebooks.info/

Null and empty strings

An empty string has a length of zero. To create an empty string, you can use either a
literal or the static string.Empty field; to test for an empty string, you can either
perform an equality comparison or test its Length property:

wu,
B

string empty =

Console.WriteLine (empty == ""); /] True
Console.WriteLine (empty == string.Empty); /] True
Console.WriteLine (empty.Length == 0); // True

Because strings are reference types, they can also be null:

string nullString = null;

Console.WriteLine (nullString == null); // True

Console.WriteLine (nullString == ""); // False
Console.WriteLine (nullString.Length == 0); // NullReferenceException

The static string.IsNullOrEmpty method is a useful shortcut for testing whether a
given string is either null or empty.

Accessing characters within a string

A string’s indexer returns a single character at the given index. As with all functions
that operate on strings, this is zero-indexed:

string str = "abcde";
char letter = str[1]; // letter == 'b'

string also implements IEnumerable<char>, so you can foreach over its charac-
ters:

foreach (char c¢ in "123") Console.Write (c + ","); /] 1,2,3,

Searching within strings

The simplest methods for searching within strings are StartsWith, EndsWith and
Contatins. These all return true or false:

Console.WriteLine ("quick brown fox".EndsWith ("fox")); /] True
Console.WriteLine ("quick brown fox".Contains ("brown")); /] True

StartsWith and EndsWith are overloaded to let you specify a StringComparison
enum or a CultureInfo object to control case and culture sensitivity (see “Ordinal
versus culture comparison” on page 220). The default is to perform a case-sensitive
match using rules applicable to the current (localized) culture. The following
instead performs a case-insensitive search using the invariant culture’s rules:

"abcdef".StartsWith ("abc", StringComparison.InvariantCultureIgnoreCase)

The Contains method doesn’t offer the convenience of this overload, although you
can achieve the same result with the Index0f method.

IndexOf is more powerful: it returns the first position of a given character or sub-
string (or -1 if the substring isn’t found):

216 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Console.WriteLine ("abcde".IndexOf ("cd")); /] 2

IndexOf is also overloaded to accept a startPosition (an index from which to
begin searching), as well as a StringComparison enum:

Console.WriteLine ("abcde abcde".IndexOf ("CD", 6,
StringComparison.CurrentCultureIgnoreCase)); // 8

LastIndexof is like IndexOf but works backward through the string.
IndexOfAny returns the first matching position of any one of a set of characters:

Console.Write ("ab,cd ef".IndexOfAny (new char[] {' ', ','})); /] 2
Console.Write ("pas5wOrd".IndexOfAny ("0123456789".ToCharArray())); // 3

LastIndexOfAny does the same in the reverse direction.

Manipulating strings

Because String is immutable, all the methods that “manipulate” a string return a
new one, leaving the original untouched (the same goes for when you reassign a
string variable).

Substring extracts a portion of a string:

string left3 = "12345".Substring (0, 3); /] left3 = "123";
string mid3 = "12345".Substring (1, 3); // mid3 = "234";

If you omit the length, you get the remainder of the string:
string end3 = "12345".Substring (2); // end3 = "345";
Insert and Remove insert or remove characters at a specified position:

string s1 = "helloworld".Insert (5, ", "); // s1 = "hello, world"
string s2 = s1.Remove (5, 2); // s2 = "helloworld";

PadLeft and PadRight pad a string to a given length with a specified character (or a
space if unspecified):

Console.WriteLine ("12345".PadLeft (9, '*')); [/ ****12345
Console.WriteLine ("12345".PadLeft (9)); // 12345

If the input string is longer than the padding length, the original string is returned
unchanged.

TrimStart and TrimEnd remove specified characters from the beginning or end of a
string; Trim does both. By default, these functions remove whitespace characters
(including spaces, tabs, new lines, and Unicode variations of these):

Console.WriteLine (" abc \t\r\n ".Trim().Length); // 3

Replace replaces all (nonoverlapping) occurrences of a particular character or sub-
string:

Console.WriteLine ("to be done".Replace (" ", " | ")); // to | be | done
Console.WriteLine ("to be done".Replace (" ", "")); // tobedone

String and Text Handling | 217

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

ToUpper and ToLower return upper- and lowercase versions of the input string. By
default, they honor the user’s current language settings; ToUpperInvariant and ToL
owerInvariant always apply English alphabet rules.

Splitting and joining strings
Split divides a string up into pieces:
string[] words = "The quick brown fox".Split();

foreach (string word in words)
Console.Write (word + "|"); // The|guick|brown|fox|

By default, Split uses whitespace characters as delimiters; its also overloaded to
accept a paranms array of char or string delimiters. Split also optionally accepts a
StringSplitOptions enum, which has an option to remove empty entries: this is
useful when words are separated by several delimiters in a row.

The static Join method does the reverse of Split. It requires a delimiter and string
array:

string[] words = "The quick brown fox".Split();
string together = string.Join (" ", words); // The quick brown fox

The static Concat method is similar to Join but accepts only a params string array
and applies no separator. Concat is exactly equivalent to the + operator (the com-
piler, in fact, translates + to Concat):

string sentence = string.Concat ("The", " quick", " brown", " fox");
string sameSentence = "The" + " quick" + " brown" + " fox";

String.Format and composite format strings

The static Format method provides a convenient way to build strings that embed
variables. The embedded variables (or values) can be of any type; the Format simply
calls ToString on them.

The master string that includes the embedded variables is called a composite format
string. When calling String.Format, you provide a composite format string fol-
lowed by each of the embedded variables. For example:

string composite = "It's {0} degrees in {1} on this {2} morning";
string s = string.Format (composite, 35, "Perth", DateTime.Now.DayOflWeek);

// s == "It's 35 degrees in Perth on this Friday morning"
(And that’s Celsius!)

From C# 6, we can use interpolated string literals to the same effect (see “String
Type” on page 36 in Chapter 2). Just precede the string with the $ symbol and put
the expressions in braces:

string s = $"It's hot this {DateTime.Now.DayOfWeek} morning";

218 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Each number in curly braces is called a format item. The number corresponds to the
argument position and is optionally followed by:

o A comma and a minimum width to apply

o A colon and a format string
The minimum width is useful for aligning columns. If the value is negative, the data
is left-aligned; otherwise, it’s right-aligned. For example:

string composite = "Name={0,-20} Credit Limit={1,15:C}";

Console.WriteLine (string.Format (composite, "Mary", 500));
Console.WriteLine (string.Format (composite, "Elizabeth", 20000));

Here’s the result:

Name=Mary Credit Limit= $500.00
Name=Elizabeth Credit Limit= $20,000.00

The equivalent without using string.Format is this:

string s = "Name=" + "Mary".PadRight (20) +
" Credit Limit=" + 500.ToString ("C").PadLeft (15);

The credit limit is formatted as currency by virtue of the "C" format string. We
describe format strings in detail in “Formatting and parsing” on page 233.

Comparing Strings

In comparing two values, the NET Framework differentiates the concepts of equal-
ity comparison and order comparison. Equality comparison tests whether two instan-
ces are semantically the same; order comparison tests which of two (if any) instan-
ces comes first when arranging them in ascending or descending sequence.

Equality comparison is not a subset of order comparison; the
two systems have different purposes. It’s legal, for instance, to
have two unequal values in the same ordering position. We
resume this topic in “Equality Comparison” on page 267.

For string-equality comparison, you can use the == operator or one of string’s
Equals methods. The latter are more versatile because they allow you to specify
options such as case insensitivity.

Another difference is that == does not work reliably on strings
if the variables are cast to the object type. We explain why
this is so in “Equality Comparison” on page 267.

For string order comparison, you can use either the CompareTo instance method or
the static Compare and CompareOrdinal methods: these return a positive or negative
number—or zero—depending on whether the first value comes before, after, or
alongside the second.

String and Text Handling | 219

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

Before going into the details of each, we need to examine .NET’s underlying string-
comparison algorithms.

Ordinal versus culture comparison

There are two basic algorithms for string comparison: ordinal and culture-sensitive.
Ordinal comparisons interpret characters simply as numbers (according to their
numeric Unicode value); culture-sensitive comparisons interpret characters with
reference to a particular alphabet. There are two special cultures: the “current cul-
ture,” which is based on settings picked up from the computer’s control panel; and
the “invariant culture,” which is the same on every computer (and closely matches
American culture).

For equality comparison, both ordinal and culture-specific algorithms are useful.
For ordering, however, culture-specific comparison is nearly always preferable: to
order strings alphabetically, you need an alphabet. Ordinal relies on the numeric
Unicode point values, which happen to put English characters in alphabetical order
—but even then not exactly as you might expect. For example, assuming case sensi-
tivity, consider the strings “Atom’, “atom”, and “Zamia”. The invariant culture puts
them in the following order:

"Atom", "atom", "Zamia"
Ordinal arranges them instead as follows:
"Atom", "Zamia", "atom"

This is because the invariant culture encapsulates an alphabet, which considers
uppercase characters adjacent to their lowercase counterparts (aAbBcCdD...). The
ordinal algorithm, however, puts all the uppercase characters first, and then all low-
ercase characters (A...Z, a...z). This is essentially a throwback to the ASCII character
set invented in the 1960s.

String equality comparison

Despite ordinal’s limitations, string’s == operator always performs ordinal case-
sensitive comparison. The same goes for the instance version of string.Equals
when called without arguments; this defines the “default” equality-comparison
behavior for the string type.

The ordinal algorithm was chosen for string’s == and Equals
functions because it’s both highly efficient and deterministic.
String-equality comparison is considered fundamental and is
performed far more frequently than order comparison.

A “strict” notion of equality is also consistent with the general
use of the == operator.

The following methods allow culture-aware or case-insensitive comparisons:

public bool Equals(string value, StringComparison comparisonType);

220 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

public static bool Equals (string a, string b,
StringComparison comparisonType);

The static version is advantageous in that it still works if one or both of the strings
are null. StringComparison is an enum defined as follows:

public enum StringComparison

{
CurrentCulture, // Case-sensitive
CurrentCultureIgnoreCase,
InvariantCulture, // Case-sensitive
InvariantCultureIgnoreCase,
Ordinal, // Case-sensitive
OrdinalIgnoreCase

}

For example:

Console.WriteLine (string.Equals ("foo", "F00",
StringComparison.OrdinalIgnoreCase)); // True

Console.WriteLine (0" == "G"); // False

Console.Writeline (string.Equals ("0", "@",
StringComparison.CurrentCulture)); YT

(The result of the third example is determined by the computer’s current language
settings.)

String-order comparison

String’s CompareTo instance method performs culture-sensitive, case-sensitive order
comparison. Unlike the == operator, CompareTo does not use ordinal comparison:
for ordering, a culture-sensitive algorithm is much more useful.

Here’s the method’s definition:

g
5T
o
v 3
30
53
S
(7]

public int CompareTo (string strB);

The CompareTo instance method implements the generic ICom
parable interface, a standard comparison protocol used
across the .NET Framework. This means string’s CompareTo
defines the default ordering behavior of strings, in such appli-
cations as sorted collections, for instance. For more informa-
tion on IComparable, see “Order Comparison” on page 278.

For other kinds of comparison, you can call the static Compare and CompareOrdinal
methods:

public static int Compare (string strA, string strB,
StringComparison comparisonType);

public static int Compare (string strA, string strB, bool ignoreCase,
CultureInfo culture);

Stringand Text Handling | 221

www.it-ebooks.info

http://www.it-ebooks.info/

public static int Compare (string strA, string strB, bool ignoreCase);

public static int CompareOrdinal (string strA, string strB);
The last two methods are simply shortcuts for calling the first two methods.

All of the order-comparison methods return a positive number, a negative number,
or zero, depending on whether the first value comes after, before, or alongside the
second value:

Console.WriteLine ("Boston".CompareTo ("Austin")); /] 1
Console.WriteLine ("Boston".CompareTo ("Boston")); /] ©
Console.WriteLine ("Boston".CompareTo ("Chicago")); /] -1
Console.WriteLine ("ﬁ".CompareTo "a")); // ©
Console.WriteLine ("foo".CompareTo ("F00")); /] -1

The following performs a case-insensitive comparison using the current culture:
Console.WriteLine (string.Compare ("foo", "FOO", true)); // ©
By supplying a CultureInfo object, you can plug in any alphabet:

// CultureInfo is defined in the System.Globalization namespace

CultureInfo german = CultureInfo.GetCultureInfo ("de-DE");
int 1 = string.Compare ("Midller", "Muller", false, german);

StringBuilder

The StringBuilder class (System.Text namespace) represents a mutable (editable)
string. With a StringBuilder, you can Append, Insert, Remove, and Replace sub-
strings without replacing the whole StringButilder.

StringBuilder’s constructor optionally accepts an initial string value, as well as a
starting size for its internal capacity (default is 16 characters). If you go above this,
StringBuilder automatically resizes its internal structures to accommodate (at a
slight performance cost) up to its maximum capacity (default is int.MaxValue).

A popular use of StringBuilder is to build up a long string by repeatedly calling
Append. This approach is much more efficient than repeatedly concatenating ordi-
nary string types:

StringBuilder sb = new StringBuilder();
for (int 1 = 0; 1 < 50; i1++) sb.Append (1 + ",");

To get the final result, call ToString():

Console.WriteLine (sb.ToString());

9,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25, 26,
27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

222 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

In our example, the expression 1 + "," means that were still
repeatedly concatenating strings. However, this incurs only a
small performance cost in that the strings in question are
small and don’t grow with each loop iteration. For maximum
performance, however, we could change the loop body to this:

{ sb.Append (i); sb.Append (","); }

AppendLine performs an Append that adds a new line sequence ("\r\n" in Win-
dows). AppendFormat accepts a composite format string, just like String.Format.

As well as the Insert, Remove, and Replace methods (Replace works like string’s
Replace), StringBuilder defines a Length property and a writable indexer for get-
ting/setting individual characters.

To clear the contents of a StringBuilder, either instantiate a new one or set its
Length to zero.

Setting a StringBuilder’s Length to zero doesn’t shrink its
internal capacity. So, if the StringBuilder previously con-

| tained one million characters, it will continue to occupy
around 2 MB of memory after zeroing its Length. If you want
to release the memory, you must create a new StringBuilder
and allow the old one to drop out of scope (and be garbage-
collected).

Text Encodings and Unicode

A character set is an allocation of characters, each with a numeric code or code point.
There are two character sets in common use: Unicode and ASCII. Unicode has an
address space of approximately one million characters, of which about 100,000 are
currently allocated. Unicode covers most spoken world languages, as well as some
historical languages and special symbols. The ASCII set is simply the first 128 char-
acters of the Unicode set, which covers most of what you see on a US-style key-
board. ASCII predates Unicode by 30 years and is still sometimes used for its sim-
plicity and efficiency: each character is represented by one byte.

The .NET type system is designed to work with the Unicode character set. ASCII is
implicitly supported, though, by virtue of being a subset of Unicode.

A text encoding maps characters from their numeric code point to a binary repre-
sentation. In .NET, text encodings come into play primarily when dealing with text
files or streams. When you read a text file into a string, a text encoder translates the
file data from binary into the internal Unicode representation that the char and
string types expect. A text encoding can restrict what characters can be repre-
sented, as well as impacting storage efficiency.

There are two categories of text encoding in .NET:

String and Text Handling | 223

www.it-ebooks.info

m
c
S
Qo
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

o Those that map Unicode characters to another character set

o Those that use standard Unicode encoding schemes

The first category contains legacy encodings such as IBM’s EBCDIC and 8-bit char-
acter sets with extended characters in the upper-128 region that were popular prior
to Unicode (identified by a code page). The ASCII encoding is also in this category:
it encodes the first 128 characters and drops everything else. This category contains
the nonlegacy GB18030 as well, which is the mandatory standard for applications
written in China—or sold to China—since 2000.

In the second category are UTF-8, UTF-16, and UTF-32 (and the obsolete UTE-7).
Each differs in space efficiency. UTF-8 is the most space-efficient for most kinds of
text: it uses between 1 and 4 bytes to represent each character. The first 128 charac-
ters require only a single byte, making it compatible with ASCII. UTF-8 is the most
popular encoding for text files and streams (particularly on the Internet), and it is
the default for stream I/O in .NET (in fact, it’s the default for almost everything that
implicitly uses an encoding).

UTF-16 uses one or two 16-bit words to represent each character and is what NET
uses internally to represent characters and strings. Some programs also write files in
UTEF-16.

UTF-32 is the least space-efficient: it maps each code point directly to 32 bits, so
every character consumes 4 bytes. UTF-32 is rarely used for this reason. It does,
however, make random access very easy because every character takes an equal
number of bytes.

Obtaining an Encoding object

The Encoding class in System.Text is the common base type for classes that encap-
sulate text encodings. There are several subclasses—their purpose is to encapsulate
families of encodings with similar features. The easiest way to instantiate a correctly
configured class is to call Encoding.GetEncoding with a standard IJANA (Internet
Assigned Numbers Authority) Character Set name:

Encoding utf8 = Encoding.GetEncoding ("utf-8");
Encoding chinese = Encoding.GetEncoding ("GB18030");

The most common encodings can also be obtained through dedicated static proper-
ties on Encoding:

Encoding name Static property on Encoding

UTF-8 Encoding.UTF8
UTF-16 Encoding.Unicode (not UTF16)
UTF-32 Encoding.UTF32
ASCIl Encoding.ASCII
224 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

The static GetEncodings method returns a list of all supported encodings, with their
standard JANA names:

foreach (EncodingInfo info in Encoding.GetEncodings())
Console.WriteLine (info.Name);

The other way to obtain an encoding is to directly instantiate an encoding class.
Doing so allows you to set various options via constructor arguments, including:

o Whether to throw an exception if an invalid byte sequence is encountered
when decoding. The default is false.

o Whether to encode/decode UTF-16/UTF-32 with the most significant bytes
first (big endian) or the least significant bytes first (little endian). The default is
little endian, the standard on the Windows operating system.

o Whether to emit a byte-order mark (a prefix that indicates endianness).

Encoding for file and stream 1/0

The most common application for an Encoding object is to control how text is read
and written to a file or stream. For example, the following writes “Testing..” to a file
called data.txt in UTF-16 encoding:

System.IO0.File.WriteAllText ("data.txt", "Testing...", Encoding.Unicode);

If you omit the final argument, WriteAllText applies the ubiquitous UTF-8 encod-
ing.

UTF-8 is the default text encoding for all file and stream I/O.

We resume this subject in Chapter 15, in “Stream Adapters” on page 639.

Encoding to byte arrays

You can also use an Encoding object to go to and from a byte array. The GetBytes
method converts from string to byte[] with the given encoding; GetString con-
verts from byte[] to string:

byte[] utf8Bytes = System.Text.Encoding.UTF8.GetBytes ("0123456789");
byte[] utfi6Bytes = System.Text.Encoding.Unicode.GetBytes ("0123456789");
byte[] utf32Bytes = System.Text.Encoding.UTF32.GetBytes ("0123456789");

Console.WriteLine (utf8Bytes.Length); // 10
Console.WriteLine (utfi6Bytes.Length); // 20
Console.WriteLine (utf32Bytes.Length); // 40

string originall = System.Text.Encoding.UTF8.GetString (utf8Bytes);
string original2 = System.Text.Encoding.Unicode.GetString (utfi6Bytes);
string original3 = System.Text.Encoding.UTF32.GetString (utf32Bytes);

String and Text Handling | 225

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

Console.WriteLine (originall); /] 0123456789
Console.WriteLine (original2); /] 0123456789
Console.WriteLine (original3); /] 0123456789

UTF-16 and surrogate pairs

Recall that .NET stores characters and strings in UTF-16. Because UTF-16 requires
one or two 16-bit words per character, and a char is only 16 bits in length, some
Unicode characters require two chars to represent. This has a couple of conse-
quences:

o A string’s Length property may be greater than its real character count.

o A single char is not always enough to fully represent a Unicode character.

Most applications ignore this, because nearly all commonly used characters fit into a
section of Unicode called the Basic Multilingual Plane (BMP) which requires only
one 16-bit word in UTF-16. The BMP covers several dozen world languages and
includes more than 30,000 Chinese characters. Excluded are characters of some
ancient languages, symbols for musical notation, and some less common Chinese
characters.

If you need to support two-word characters, the following static methods in char
convert a 32-bit code point to a string of two chars, and back again:

string ConvertFromUtf32 (int utf32)
int ConvertToUtf32 (char highSurrogate, char lowSurrogate)

Two-word characters are called surrogates. They are easy to spot because each word

is in the range 0xD800 to 0xDFFE You can use the following static methods in char
to assist:

bool IsSurrogate (char c)
bool IsHighSurrogate (char c)
bool IsLowSurrogate (char c)
bool IsSurrogatePair (char highSurrogate, char lowSurrogate)

The StringInfo class in the System.Globalization namespace also provides a
range of methods and properties for working with two-word characters.

Characters outside the BMP typically require special fonts and have limited operat-
ing system support.

Dates and Times

Three immutable structs in the System namespace do the job of representing dates
and times: DateTime, DateTimeOffset, and TimeSpan. C# doesn’t define any special
keywords that map to these types.

226 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

TimeSpan

A TimeSpan represents an interval of time—or a time of the day. In the latter role, it’s
simply the “clock” time (without the date), which is equivalent to the time since
midnight, assuming no daylight saving transition. A TimeSpan has a resolution of
100 ns, has a maximum value of about 10 million days, and can be positive or nega-
tive.

There are three ways to construct a TimeSpan:

« Through one of the constructors
o By calling one of the static From... methods

o By subtracting one DateTime from another

Here are the constructors:

public TimeSpan (int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds);
public TimeSpan (int days, int hours, int minutes, int seconds,

int milliseconds);
public TimeSpan (long ticks); // Each tick = 100ns

The static From... methods are more convenient when you want to specify an inter-
val in just a single unit, such as minutes, hours, and so on:

public static TimeSpan FromDays (double value);

public static TimeSpan FromHours (double value);

public static TimeSpan FromMinutes (double value);
public static TimeSpan FromSeconds (double value);
public static TimeSpan FromMilliseconds (double value);

For example:

Console.WriteLine (new TimeSpan (2, 30, 0)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (2.5)); // 02:30:00
Console.WriteLine (TimeSpan.FromHours (-2.5)); /] -02:30:00

TimeSpan overloads the < and > operators, as well as the + and - operators. The fol-
lowing expression evaluates to a TimeSpan of 2.5 hours:

TimeSpan.FromHours(2) + TimeSpan.FromMinutes(30);
The next expression evaluates to one second short of 10 days:
TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1); // 9.23:59:59

Using this expression, we can illustrate the integer properties Days, Hours, Minutes,
Seconds, and Milliseconds:

TimeSpan nearlyTenDays = TimeSpan.FromDays(10) - TimeSpan.FromSeconds(1);

Console.WriteLine (nearlyTenDays.Days); /] 9
Console.WriteLine (nearlyTenDays.Hours); /] 23
Console.WriteLine (nearlyTenDays.Minutes); // 59

Datesand Times | 227

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Console.WriteLine (nearlyTenDays.Seconds); /] 59
Console.WriteLine (nearlyTenDays.Milliseconds); // 0

In contrast, the Total... properties return values of type double describing the entire
time span:

Console.WriteLine (nearlyTenDays.TotalDays); /] 9.99998842592593
Console.WriteLine (nearlyTenDays.TotalHours); /] 239.999722222222
Console.WriteLine (nearlyTenDays.TotalMinutes); // 14399.9833333333
Console.WriteLine (nearlyTenDays.TotalSeconds); // 863999

Console.WriteLine (nearlyTenDays.TotalMilliseconds); // 863999000

The static Parse method does the opposite of ToString, converting a string to a
TimeSpan. TryParse does the same but returns false rather than throwing an
exception if the conversion fails. The XmlConvert class also provides TimeSpan/
string-conversion methods that follow standard XML formatting protocols.

The default value for a TimeSpan is TimeSpan.Zero.

TimeSpan can also be used to represent the time of the day (the elapsed time since
midnight). To obtain the current time of day, call DateTime.Now.TimeOfDay.

DateTime and DateTimeOffset

DateTime and DateTimeOffset are immutable structs for representing a date, and
optionally, a time. They have a resolution of 100 ns and a range covering the years
0001 through 9999.

DateTimeOffset was added in Framework 3.5 and is functionally similar to Date
Time. Its distinguishing feature is that it also stores a UTC offset; this allows more
meaningful results when comparing values across different time zones.

An excellent article on the rationale behind the introduction
of DateTimeOffset is available on the MSDN BCL blogs. The
title is “A Brief History of DateTime,” by Anthony Moore.

Choosing between DateTime and DateTimeOffset
DateTime and DateTimeOffset differ in how they handle time zones. A DateTime
incorporates a three-state flag indicating whether the DateTime is relative to:

o The local time on the current computer

o UTC (the modern equivalent of Greenwich Mean Time)

o Unspecified

A DateTimeOffset is more specific—it stores the offset from UTC as a TimeSpan:
July 01 2007 03:00:00 -06:00

This influences equality comparisons, which is the main factor in choosing between
DateTime and DateTimeOffset. Specifically:

228 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

o DateTime ignores the three-state flag in comparisons and considers two values
equal if they have the same year, month, day, hour, minute, and so on.

o DateTimeOffset considers two values equal if they refer to the same point in
time.

Daylight saving time can make this distinction important even
if your application doesn’t need to handle multiple geographic
/ time zones.

So, DateTime considers the following two values different, whereas DateTimeOffset
considers them equal:

July 01 2007 09:00:00 +00:00 (GMT)
July 01 2007 03:00:00 -06:00 (local time, Central America)

In most cases, DateTimeOffset’s equality logic is preferable. For example, in calcu-
lating which of two international events is more recent, a DateTimeOffset implicitly
gives the right answer. Similarly, a hacker plotting a distributed denial of service
attack would reach for a DateTimeOffset! To do the same with DateTime requires
standardizing on a single time zone (typically UTC) throughout your application.
This is problematic for two reasons:

o To be friendly to the end user, UTC DateTimes require explicit conversion to
local time prior to formatting.

o It’s easy to forget and incorporate a local DateTime.

DateTime is better, though, at specifying a value relative to the local computer at
runtime—for example, if you want to schedule an archive at each of your interna-
tional offices for next Sunday, at 3 A.M. local time (when there’s least activity). Here,
DateTime would be more suitable because it would respect each site’s local time.

Internally, DateTimeOffset uses a short integer to store the
UTC offset in minutes. It doesn't store any regional informa-
tion, so there’s nothing present to indicate whether an offset of
+08:00, for instance, refers to Singapore time or Perth time.

We revisit time zones and equality comparison in more depth in “Dates and Time
Zones” on page 234.

SQL Server 2008 introduced direct support for DateTimeOff
set through a new data type of the same name.

Constructing a DateTime

DateTime defines constructors that accept integers for the year, month, and day—
and optionally, the hour, minute, second, and millisecond:

Datesand Times | 229

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

public DateTime (int year, int month, int day);

public DateTime (int year, int month, int day,
int hour, int minute, int second, int millisecond);

If you specify only a date, the time is implicitly set to midnight (0:00).

The DateTime constructors also allow you to specify a DateTimeKind—an enum
with the following values:

Unspecified, Local, Utc

This corresponds to the three-state flag described in the preceding section. Unspect
fied is the default, and it means that the DateTime is time-zone-agnostic. Local
means relative to the local time zone on the current computer. A local DateTime
does not include information about which particular time zone it refers to, nor,
unlike DateTimeOffset, the numeric offset from UTC.

A DateTime’s Kind property returns its DateTimeKind.

DateTime’s constructors are also overloaded to accept a Calendar object as well—
this allows you to specify a date using any of the Calendar subclasses defined in
System.Globalization. For example:

DateTime d = new DateTime (5767, 1, 1,
new System.Globalization.HebrewCalendar());

Console.WriteLine (d); /] 12/12/2006 12:00:00 AM

(The formatting of the date in this example depends on your computer’s control
panel settings.) A DateTime always uses the default Gregorian calendar—this exam-
ple, a one-time conversion, takes place during construction. To perform computa-
tions using another calendar, you must use the methods on the Calendar subclass
itself.

You can also construct a DateTime with a single ticks value of type long, where ticks
is the number of 100 ns intervals from midnight 01/01/0001.

For interoperability, DateTime provides the static FromFileTime and FromFileTi
meUtc methods for converting from a Windows file time (specified as a long) and
FromOADate for converting from an OLE automation date/time (specified as a dou
ble).

To construct a DateTime from a string, call the static Parse or ParseExact method.
Both methods accept optional flags and format providers; ParseExact also accepts a
format string. We discuss parsing in greater detail in “Formatting and parsing” on
page 233.

Constructing a DateTimeOffset

DateTimeOffset has a similar set of constructors. The difference is that you also
specify a UTC offset as a TimeSpan:

230 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second,
TimeSpan offset);

public DateTimeOffset (int year, int month, int day,
int hour, int minute, int second, int millisecond,

TimeSpan offset);

The TimeSpan must amount to a whole number of minutes, or an exception is
thrown.

DateTimeOffset also has constructors that accept a Calendar object, a long ticks
value, and static Parse and ParseExact methods that accept a string.

You can construct a DateTimeOffset from an existing DateTime either by using
these constructors:

public DateTimeOffset (DateTime dateTime);
public DateTimeOffset (DateTime dateTime, TimeSpan offset);

or with an implicit cast:
DateTimeOffset dt = new DateTime (2000, 2, 3);

The implicit cast from DateTime to DateTimeOffset is handy
because most of the .NET Framework supports DateTime—
not DateTimeOffset.

If you don't specify an offset, it’s inferred from the DateTime value using these rules:

o Ifthe DateTime has a DateTimeKind of Utc, the offset is zero.

o If the DateTime has a DateTimeKind of Local or Unspecified (the default), the
offset is taken from the current local time zone.

To convert in the other direction, DateTimeOffset provides three properties that
return values of type DateTime:

o The UtcDateTime property returns a DateTime in UTC time.

o The LocalDateTime property returns a DateTime in the current local time zone
(converting it if necessary).

o The DateTime property returns a DateTime in whatever zone it was specified,
with a Kind of Unspecified (i.e., it returns the UTC time plus the offset).

The current DateTime/DateTimeOffset

Both DateTime and DateTimeOffset have a static Now property that returns the cur-
rent date and time:

Console.WriteLine (DateTime.Now); // 11/11/2015 1:23:45 PM
Console.WriteLine (DateTimeOffset.Now); // 11/11/2015 1:23:45 PM -06:00

Datesand Times | 231

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

DateTime also provides a Today property that returns just the date portion:
Console.WriteLine (DateTime.Today); // 11/11/2015 12:00:00 AM
The static UtcNow property returns the current date and time in UTC:

Console.WriteLine (DateTime.UtcNow); // 11/11/2015 7:23:45 AM
Console.WriteLine (DateTimeOffset.UtcNow); // 11/11/2015 7:23:45 AM +00:00

The precision of all these methods depends on the operating system and is typically
in the 10-20 ms region.

Working with dates and times

DateTime and DateTimeOffset provide a similar set of instance properties that
return various date/time elements:

DateTime dt = new DateTime (2000, 2, 3,
10, 20, 30);

Console.WriteLine (dt.Year); // 2000
Console.WriteLine (dt.Month); /] 2
Console.WriteLine (dt.Day); // 3

Console.WriteLine (dt.DayOfWeek); // Thursday
Console.WriteLine (dt.DayOfYear); // 34

Console.WriteLine (dt.Hour); // 10
Console.WriteLine (dt.Minute); /] 20
Console.WriteLine (dt.Second); // 30
Console.WriteLine (dt.Millisecond); // O
Console.WriteLine (dt.Ticks); // 630851700300000000

Console.WriteLine (dt.TimeOfDay); // 10:20:30 (returns a TimeSpan)
DateTimeOffset also has an Offset property of type TimeSpan.

Both types provide the following instance methods to perform computations (most
accept an argument of type double or int):

AddYears AddMonths AddDays
AddHours AddMinutes AddSeconds AddMilliseconds AddTicks

These all return a new DateTime or DateTimeOffset, and they take into account
such things as leap years. You can pass in a negative value to subtract.

The Add method adds a TimeSpan to a DateTime or DateTimeOffset. The + operator
is overloaded to do the same job:

TimeSpan ts = TimeSpan.FromMinutes (90);
Console.WriteLine (dt.Add (ts));
Console.WriteLine (dt + ts); // same as above

You can also subtract a TimeSpan from a DateTime/DateTimeOffset and subtract
one DateTime/DateTimeOffset from another. The latter gives you a TimeSpan:

232 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

DateTime thisYear = new DateTime (2015, 1, 1);
DateTime nextYear = thisYear.AddYears (1);
TimeSpan oneYear = nextYear - thisYear;

Formatting and parsing

Calling ToString on a DateTime formats the result as a short date (all numbers) fol-
lowed by a long time (including seconds). For example:

11/11/2015 11:50:30 AM

The operating system’s control panel, by default, determines such things as whether
the day, month, or year comes first, the use of leading zeros, and whether 12- or 24-
hour time is used.

Calling ToString on a DateTimeOffset is the same, except that the offset is
returned also:

11/11/2015 11:50:30 AM -06:00

The ToShortDateString and ToLongDateString methods return just the date por-
tion. The long date format is also determined by the control panel; an example is
“Wednesday, 11 November 2015”. ToShortTimeString and TolLongTimeString
return just the time portion, such as 17:10:10 (the former excludes seconds).

These four methods just described are actually shortcuts to four different format
strings. ToString is overloaded to accept a format string and provider, allowing you
to specify a wide range of options and control how regional settings are applied. We
describe this in “Formatting and parsing” on page 233.

DateTimes and DateTimeOffsets can be misparsed if the cul-

! ture settings differ from those in force when formatting takes
/ place. You can avoid this problem by using ToString in con-
junction with a format string that ignores culture settings

« »

(such as “0”):

DateTime dtl = DateTime.Now;

string cannotBeMisparsed = dtl.ToString ("o");

DateTime dt2 = DateTime.Parse (cannotBeMisparsed);
The static Parse/TryParse and ParseExact/TryParseExact methods do the reverse
of ToString, converting a string to a DateTime or DateTimeOffset. These methods
are also overloaded to accept a format provider. The Try* methods return false
instead of throwing a FormatException.

Null DateTime and DateTimeOffset values

Because DateTime and DateTimeOffset are structs, they are not intrinsically nulla-
ble. When you need nullability, there are two ways around this:

o Use aNullable type (i.e., DateTime? or DateTimeOffset?).

Datesand Times | 233

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-+
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

o Use the static field DateTime.MinValue or DateTimeOffset.MinValue (the
default values for these types).

A nullable type is usually the best approach because the compiler helps to prevent
mistakes. DateTime.MinValue is useful for backward compatibility with code writ-
ten prior to C# 2.0 (when nullable types were introduced).

‘ Calling ToUniversalTime or ToLocalTime on a DateTime.Min

Value can result in it no longer being DateTime.MinValue

(depending on which side of GMT you are on). If you're right

on GMT (England, outside daylight saving), the problem

won't arise at all because local and UTC times are the same.
This is your compensation for the English winter!

Dates and Time Zones

In this section, we examine in more detail how time zones influence DateTime and
DateTimeOffset. We also look at the TimeZone and TimeZoneInfo types, which pro-
vide information on time zone offsets and daylight saving time.

DateTime and Time Zones

DateTime is simplistic in its handling of time zones. Internally, it stores a DateTime
using two pieces of information:

o A 62-bit number, indicating the number of ticks since 1/1/0001

A 2-bit enum, indicating the DateTimeKind (Unspecified, Local, or Utc)

When you compare two DateTime instances, only their ticks values are compared;
their DateTimeKinds are ignored:

DateTime dtl = new DateTime (2015, 1, 1, 10, 20, 30, DateTimeKind.Local);
DateTime dt2 = new DateTime (2015, 1, 1, 10, 20, 30, DateTimeKind.Utc);
Console.WriteLine (dtl == dt2); /] True

DateTime local = DateTime.Now;

DateTime utc = local.ToUniversalTime();

Console.WriteLine (local == utc); // False

The instance methods ToUniversalTime/ToLocalTime convert to universal/local
time. These apply the computer’s current time zone settings and return a new Date
Time with a DateTimeKind of Utc or Local. No conversion happens if you call Tount
versalTime on a DateTime that’s already Utc, or ToLocalTime on a DateTime that’s
already Local. You will get a conversion, however, if you call TouniversalTime or
ToLocalTime on a DateTime that’s Unspecified.

You can construct a DateTime that differs from another only in Kind with the static
DateTime.SpecifyKind method:

234 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

DateTime d = new DateTime (2015, 12, 12); // Unspecified
DateTime utc = DateTime.SpecifyKind (d, DateTimeKind.Utc);
Console.WriteLine (utc); [/ 12/12/2015 12:00:00 AM

DateTimeOffset and Time Zones

Internally, DateTimeOffset comprises a DateTime field whose value is always in
UTC and a 16-bit integer field for the UTC offset in minutes. Comparisons look
only at the (UTC) DateTime; the Of fset is used primarily for formatting.

The ToUniversalTime/ToLocalTime methods return a DateTimeOffset represent-
ing the same point in time, but with a UTC or local offset. Unlike with DateTime,
these methods don't affect the underlying date/time value, only the offset:

DateTimeOffset local = DateTimeOffset.Now;
DateTimeOffset utc = local.ToUniversalTime();

Console.WriteLine (local.Offset); /] -06:00:00 (in Central America)
Console.WriteLine (utc.Offset); // 00:00:00

Console.WriteLine (local == utc); // True
To include the Of fset in the comparison, you must use the EqualsExact method:

Console.WriteLine (local.EqualsExact (utc)); // False

TimeZone and TimeZonelnfo

The TimeZone and TimeZoneInfo classes provide information on time zone names,
UTC offsets, and daylight saving time rules. TimeZoneInfo is the more powerful of
the two and was introduced in Framework 3.5.

The biggest difference between the two types is that TimeZone lets you access only
the current local time zone, whereas TimeZoneInfo provides access to all the world’s
time zones. Further, TimeZoneInfo exposes a richer (although at times, more awk-
ward) rules-based model for describing daylight saving time.

TimeZone

The static TimeZone.CurrentTimeZone method returns a TimeZone object based on
the current local settings. The following demonstrates the result if run in California:

TimeZone zone = TimeZone.CurrentTimeZone;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

The IsDaylightSavingTime and GetUtcOffset methods work as follows:

DateTime dtl = new DateTime (2015, 1, 1);
DateTime dt2 = new DateTime (2015, 6, 1);

Console.WriteLine (zone.IsDaylightSavingTime (dt1)); /] True
Console.WriteLine (zone.IsDaylightSavingTime (dt2)); // False
Console.WriteLine (zone.GetUtcOffset (dt1)); // 08:00:00
Console.WriteLine (zone.GetUtcOffset (dt2)); // 09:00:00
Datesand Time Zones | 235

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

The GetDaylightChanges method returns specific daylight saving time information
for a given year:

DaylightTime day = zone.GetDaylightChanges (2015);

Console.WriteLine (day.Start.ToString ("M")); // 08 March
Console.WriteLine (day.End.ToString ("M")); // 01 November
Console.WriteLine (day.Delta); // 01:00:00

TimeZonelnfo

The TimeZoneInfo class works in a similar manner. TimeZoneInfo.Local returns
the current local time zone:

TimeZoneInfo zone = TimeZoneInfo.Local;
Console.WriteLine (zone.StandardName); // Pacific Standard Time
Console.WriteLine (zone.DaylightName); // Pacific Daylight Time

TimeZoneInfo also provides IsDaylightSavingTime and GetUtcOffset methods—
the difference is that they accept either a DateTime or a DateTimeOffset.

You can obtain a TimeZoneInfo for any of the world’s time zones by calling FindSys
temTimeZoneById with the zone ID. This feature is unique to TimeZoneInfo, as is
everything else that we demonstrate from this point on. We'll switch to Western
Australia for reasons that will soon become clear:

TimeZoneInfo wa = TimeZoneInfo.FindSystemTimeZoneById
("W. Australia Standard Time");

Console.WriteLine (wa.Id); // W. Australia Standard Time
Console.WriteLine (wa.DisplayName); // (GMT+08:00) Perth
Console.WriteLine (wa.BaseUtcOffset); // 08:00:00
Console.WriteLine (wa.SupportsDaylightSavingTime); /] True

The Id property corresponds to the value passed to FindSystemTimeZoneById. The
static GetSystemTimeZones method returns all world time zones; hence, you can list
all valid zone ID strings as follows:

foreach (TimeZoneInfo z in TimeZoneInfo.GetSystemTimeZones())
Console.WriteLine (z.Id);

You can also create a custom time zone by calling TimeZo
neInfo.CreateCustomTimeZone. Because TimeZoneInfo is
immutable, you must pass in all the relevant data as method
arguments.

You can serialize a predefined or custom time zone to a (semi)
human-readable string by calling ToSerializedString—and
deserialize it by calling TimeZoneInfo.FromSerialized
String.

The static ConvertTime method converts a DateTime or DateTimeOffset from one
time zone to another. You can include either just a destination TimeZoneInfo, or
both source and destination TimeZoneInfo objects. You can also convert directly
from or to UTC with the methods ConvertTimeFromUtc and ConvertTimeToUtc.

236 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

For working with daylight saving time, TimeZoneInfo provides the following addi-
tional methods:

o IsInvalidTime returns true if a DateTime is within the hour (or delta) that’s
skipped when the clocks move forward.

o IsAmbiguousTime returns true if a DateTime or DateTimeOffset is within the
hour (or delta) that’s repeated when the clocks move back.

o GetAmbiguousTimeOffsets returns an array of TimeSpans representing the
valid offset choices for an ambiguous DateTime or DateTimeOffset.

Unlike with TimeZone, you can’t obtain simple dates from a TimeZoneInfo indicat-
ing the start and end of daylight saving time. Instead, you must call GetAdjustmen
tRules, which returns a declarative summary of all daylight saving rules that apply
to all years. Each rule has a DateStart and DateEnd indicating the date range within
which the rule is valid:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Western Australia first introduced daylight saving time in 2006, midseason (and
then rescinded it in 2009). This required a special rule for the first year; hence, there
are two rules:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM

Each AdjustmentRule has a DaylightDelta property of type TimeSpan (this is one
hour in almost every case) and properties called DaylightTransitionStart and
DaylightTransitionEnd. The latter two are of type TimeZoneInfo.Transition
Time, which has the following properties:

public bool IsFixedDateRule { get; }
public DayOfWeek DayOfWeek { get; }
public int Week { get; }

public int Day { get; }

public int Month { get; }

public DateTime TimeOfDay { get; }

A transition time is somewhat complicated in that it needs to represent both fixed

and floating dates. An example of a floating date is “the last Sunday in March.” Here
are the rules for interpreting a transition time:

1. If, for an end transition, IsFixedDateRule is true, Day is 1, Month is 1, and
TimeOfDay is DateTime.MinValue, there is no end to daylight saving time in
that year (this can happen only in the southern hemisphere, upon the initial
introduction of daylight saving time to a region).

2. Otherwise, if IsFixedDateRule is true, the Month, Day, and TimeOfDay proper-
ties determine the start or end of the adjustment rule.

Datesand Time Zones | 237

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

3. Otherwise, if IsFixedDateRule is false, the Month, DayOfiWeek, Week, and Time
0fDay properties determine the start or end of the adjustment rule.

In the last case, Week refers to the week of the month, with “5” meaning the last
week. We can demonstrate this by enumerating the adjustment rules for our wa time
zone:

foreach (TimeZoneInfo.AdjustmentRule rule in wa.GetAdjustmentRules())

{
Console.WriteLine ("Rule: applies from " + rule.DateStart +
" to " + rule.DateEnd);

Console.WriteLine (" Delta: " + rule.DaylightDelta);

Console.WriteLine (" Start: " + FormatTransitionTime
(rule.DaylightTransitionStart, false));
" + FormatTransitionTime
(rule.DaylightTransitionEnd, true));

Console.WriteLine (" End:

Console.WriteLine();

}

In FormatTransitionTime, we honor the rules just described:

static string FormatTransitionTime (TimeZoneInfo.TransitionTime tt,
bool endTime)
{
if (endTime && tt.IsFixedDateRule
&& tt.Day == 1 && tt.Month == 1
&& tt.TimeOfDay == DateTime.MinValue)

n_on,
B

return

string s;
if (tt.IsFixedDateRule)
s = tt.Day.ToString();

else
s = "The " +
"first second third fourth last".Split() [tt.Week - 1] +
" " + tt.DayOfWeek + " in";
return s + " " + DateTimeFormatInfo.CurrentInfo.MonthNames [tt.Month-1]

+ " at " + tt.TimeOfDay.TimeOfDay;
}

The result with Western Australia is interesting in that it demonstrates both fixed
and floating date rules—as well as an absent end date:

Rule: applies from 1/01/2006 12:00:00 AM to 31/12/2006 12:00:00 AM
Delta: 01:00:00
Start: 3 December at 02:00:00
End: -

Rule: applies from 1/01/2007 12:00:00 AM to 31/12/2009 12:00:00 AM
Delta: 01:00:00

238 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Start: The last Sunday in October at 02:00:00
End: The last Sunday in March at 03:00:00

Western Australia is actually unique in this regard. Here’s how
we found it:

from zone in TimeZoneInfo.GetSystemTimeZones()
let rules = zone.GetAdjustmentRules()
where
rules.Any
(r => r.DaylightTransitionEnd.IsFixedDateRule) &&

rules.Any
(r => !r.DaylightTransitionEnd.IsFixedDateRule)
select zone

Daylight Saving Time and DateTime

If you use a DateTimeOffset or a UTC DateTime, equality comparisons are unimpe-
ded by the effects of daylight saving time. But with local DateTimes, daylight saving
can be problematic.

The rules can be summarized as follows:

« Daylight saving impacts local time but not UTC time.

o When the clocks turn back, comparisons that rely on time moving forward will
break if (and only if) they use local DateTimes.

 You can always reliably round-trip between UTC and local times (on the same
computer)—even as the clocks turn back.

The IsDaylightSavingTime tells you whether a given local DateTime is subject to
daylight saving time. UTC times always return false:

Console.Write (DateTime.Now.IsDaylightSavingTime()); // True or False
Console.Write (DateTime.UtcNow.IsDaylightSavingTime()); // Always False

Assuming dto is a DateTimeOffset, the following expression does the same:

dto.LocalDateTime.IsDaylightSavingTime

The end of daylight saving time presents a particular complication for algorithms
that use local time. When the clocks go back, the same hour (or more precisely,
Delta) repeats itself. We can demonstrate this by instantiating a DateTime right in
the “twilight zone” on your computer, and then subtracting Delta (this example
requires that you practice daylight saving time to be interesting!):

DaylightTime changes = TimeZone.CurrentTimeZone.GetDaylightChanges (2010);
TimeSpan halfDelta = new TimeSpan (changes.Delta.Ticks / 2);

DateTime utcl = changes.End.ToUniversalTime() - halfDelta;

DateTime utc2 = utcl - changes.Delta;

Converting these variables to local times demonstrates why you should use UTC
and not local time if your code relies on time moving forward:

DateTime locl = utcl.TolLocalTime(); // (Pacific Standard Time)
DateTime loc2 = utc2.TolLocalTime();

Datesand Time Zones | 239

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-+
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Console.WriteLine (locl); // 2/11/2010 1:30:00 AM
Console.WriteLine (loc2); // 2/11/2010 1:30:00 AM
Console.WriteLine (locl == loc2); /] True

Despite locl and loc2 reporting as equal, they are different inside. DateTime
reserves a special bit for indicating on which side of the twilight zone an ambiguous
local date lies! This bit is ignored in comparison—as we just saw—but comes into
play when you format the DateTime unambiguously:

Console.Write (locl.ToString ("0")); // 2010-11-02T02:30:00.0000000-08:00
Console.Write (loc2.ToString ("0")); // 2010-11-02T02:30:00.0000000-07:00

This bit also is read when you convert back to UTC, ensuring perfect round-
tripping between local and UTC times:

Console.WriteLine (locl.ToUniversalTime() == utcl); // True
Console.WriteLine (loc2.ToUniversalTime() == utc2); // True

You can reliably compare any two DateTimes by first calling
ToUniversalTime on each. This strategy fails if (and only if)
exactly one of them has a DateTimeKind of Unspecified. This
potential for failure is another reason for favoring DateTi
meOffset.

Formatting and Parsing

Formatting means converting fo a string; parsing means converting from a string.
The need to format or parse arises frequently in programming, in a variety of situa-
tions. Hence, the .NET Framework provides a variety of mechanisms:

ToString and Parse
These methods provide default functionality for many types.

Format providers
These manifest as additional ToString (and Parse) methods that accept a
format string and/or a format provider. Format providers are highly flexible
and culture-aware. The .NET Framework includes format providers for the
numeric types and DateTime/DateTimeOffset.

XmlConvert
This is a static class with methods that format and parse while honoring
XML standards. XmlConvert is also useful for general-purpose conversion
when you need culture independence or you want to preempt misparsing.
XmlConvert supports the numeric types, bool, DateTime, DateTimeOffset,
TimeSpan, and Guid.

Type converters
These target designers and XAML parsers.

240 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

In this section, we discuss the first two mechanisms, focusing particularly on format
providers. In the section following, we describe XmlConvert and type converters, as
well as other conversion mechanisms.

ToString and Parse

The simplest formatting mechanism is the ToString method. It gives meaningful
output on all simple value types (bool, DateTime, DateTimeOffset, TimeSpan, Guid,
and all the numeric types). For the reverse operation, each of these types defines a
static Parse method. For example:

true.ToString(); /] s = "True"

string s =
= bool.Parse (s); // b = true

bool b
If the parsing fails, a FormatException is thrown. Many types also define a Try
Parse method, which returns false if the conversion fails, rather than throwing an
exception:

int i;

bool failure = int.TryParse ("qwerty", out i);

bool success = int.TryParse ("123", out i);

If you anticipate an error, calling TryParse is faster and more elegant than calling
Parse in an exception handling block.

The Parse and TryParse methods on DateTime(Offset) and the numeric types
respect local culture settings; you can change this by specifying a CultureInfo
object. Specifying invariant culture is often a good idea. For instance, parsing
“1.234” into a double gives us 1234 in Germany:

Console.WriteLine (double.Parse ("1.234")); // 1234 (In Germany)

This is because in Germany, the period indicates a thousands separator rather than a
decimal point. Specifying invariant culture fixes this:

double x = double.Parse ("1.234", CultureInfo.InvariantCulture);
The same applies when calling ToString():

string x = 1.234.ToString (CultureInfo.InvariantCulture);

Format Providers

Sometimes you need more control over how formatting and parsing take place.
There are dozens of ways to format a DateTime(0ffset), for instance. Format pro-
viders allow extensive control over formatting and parsing, and are supported for
numeric types and date/times. Format providers are also used by user interface con-
trols for formatting and parsing.

The gateway to using a format provider is IFormattable. All numeric types—and
DateTime(Offset)—implement this interface:

Formatting and Parsing | 241

www.it-ebooks.info

m
c
S
Q.
)
3
(]
-]
-
o
0

—
u
o
3
o
3
o
g
=

http://www.it-ebooks.info/

public interface IFormattable

{

string ToString (string format, IFormatProvider formatProvider);

}

The first argument is the format string; the second is the format provider. The format
string provides instructions; the format provider determines how the instructions
are translated. For example:

NumberFormatInfo f = new NumberFormatInfo();
f.CurrencySymbol = "$$%";
Console.WriteLine (3.ToString ("C", f)); // $$ 3.00

Here, "C" is a format string that indicates currency, and the NumberFormatInfo
object is a format provider that determines how currency—and other numeric rep-
resentations—are rendered. This mechanism allows for globalization.

All format strings for numbers and dates are listed in “Stan-
dard Format Strings and Parsing Flags” on page 246.

If you specify a null format string or provider, a default is applied. The default for-
mat provider is CultureInfo.CurrentCulture, which, unless reassigned, reflects
the computer’s runtime control panel settings. For example, on this computer:

Console.WriteLine (10.3.ToString ("C", null)); // $10.30

For convenience, most types overload ToString such that you can omit a null pro-
vider:

Console.WriteLine (10.3.ToString ("C")); // $10.30

Console.WriteLine (10.3.ToString ("F4")); // 10.3000 (Fix to 4 D.P.)

Calling ToString on a DateTime(Offset) or a numeric type with no arguments is
equivalent to using a default format provider, with an empty format string.

The NET Framework defines three format providers (all of which implement IFor
matProvider):

NumberFormatInfo
DateTimeFormatInfo
CulturelInfo

All enum types are also formattable, though there’s no special
IFormatProvider class.

Format providers and Culturelnfo

Within the context of format providers, CultureInfo acts as an indirection mecha-
nism for the other two format providers, returning a NumberFormatInfo or DateTi
meFormatInfo object applicable to the culture’s regional settings.

242 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

In the following example, we request a specific culture (english language in Great
Britain):

CultureInfo uk = CultureInfo.GetCultureInfo ("en-GB");

Console.WriteLine (3.ToString ("C", uk)); /] £3.00

This executes using the default NumberFormatInfo object applicable to the en-GB
culture.

The next example formats a DateTime with invariant culture. Invariant culture is
always the same, regardless of the computer’s settings:

DateTime dt = new DateTime (2000, 1, 2);

CultureInfo iv = CultureInfo.InvariantCulture;

Console.WriteLine (dt.ToString (iv)); // 01/02/2000 00:00:00
Console.WriteLine (dt.ToString ("d", iv)); // 01/02/2000

Invariant culture is based on American culture, with the fol-
lowing differences:

 The currency symbol is #* instead of $.

o Dates and times are formatted with leading zeros
(though still with the month first).

o Time uses the 24-hour format rather than an AM/PM
designator.

Using NumberFormatinfo or DateTimeFormatinfo

In the next example, we instantiate a NumberFormatInfo and change the group sepa-
rator from a comma to a space. We then use it to format a number to three decimal
places:

NumberFormatInfo f = new NumberFormatInfo ();

f.NumberGroupSeparator = " ";
Console.Writeline (12345.6789.ToString ("N3", f)); // 12 345.679

g
5T
o
v 3
30
53
S
(7]

The initial settings for a NumberFormatInfo or DateTimeFormatInfo are based on
the invariant culture. Sometimes, however, it's more useful to choose a different
starting point. To do this, you can Clone an existing format provider:

NumberFormatInfo f = (NumberFormatInfo)
CultureInfo.CurrentCulture.NumberFormat.Clone();

A cloned format provider is always writable—even if the original was read-only.

Composite formatting

Composite format strings allow you to combine variable substitution with format
strings. The static string.Format method accepts a composite format string—we
illustrated this in “String.Format and composite format strings” on page 218:

string composite = "Credit={0:C}";
Console.WriteLine (string.Format (composite, 500)); // Credit=$500.00

Formattingand Parsing | 243

www.it-ebooks.info

http://www.it-ebooks.info/

The Console class itself overloads its Write and WriteLine methods to accept com-
posite format strings, allowing us to shorten this example slightly:

Console.WriteLine ("Credit={0:C}", 500); // Credit=$500.00

You can also append a composite format string to a StringBuilder (via AppendFor
mat), and to a TextWriter for I/O (see Chapter 15).

string.Format accepts an optional format provider. A simple application for this is
to call ToString on an arbitrary object while passing in a format provider. For
example:

string s = string.Format (CultureInfo.InvariantCulture, "{0}", someObject);
This is equivalent to:

string s;
if (someObject is IFormattable)
s = ((IFormattable)someObject).ToString (null,
CultureInfo.InvariantCulture);
else if (someObject == null)
s=""
else
s = someObject.ToString();

Parsing with format providers

There’s no standard interface for parsing through a format provider. Instead, each
participating type overloads its static Parse (and TryParse) method to accept a for-
mat provider, and optionally, a NumberStyles or DateTimeStyles enum.

NumberStyles and DateTimeStyles control how parsing work: they let you specify
such things as whether parentheses or a currency symbol can appear in the input
string. (By default, the answer to both of these questions is no.) For example:

int error = int.Parse ("(2)"); // Exception thrown

int minusTwo = int.Parse ("(2)", NumberStyles.Integer |
NumberStyles.AllowParentheses); // OK

decimal fivePointTwo = decimal.Parse ("£5.20", NumberStyles.Currency,
CultureInfo.GetCultureInfo ("en-GB"));

The next section lists all NumberStyles and DateTimeStyles members—as well as
the default parsing rules for each type.

IFormatProvider and ICustomFormatter
All format providers implement IFormatProvider:
public interface IFormatProvider { object GetFormat (Type formatType); }

The purpose of this method is to provide indirection—this is what allows Cultur
eInfo to defer to an appropriate NumberFormatInfo or DateTimeInfo object to do
the work.

244 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

By implementing IFormatProvider—along with ICustomFormatter—you can also
write your own format provider that works in conjunction with existing types. ICus
tomFormatter defines a single method as follows:

string Format (string format, object arg, IFormatProvider formatProvider);
The following custom format provider writes numbers as words:

// Program can be downloaded from http://www.albahari.com/nutshell/

public class WordyFormatProvider : IFormatProvider, ICustomFormatter
{
static readonly string[] _numberWords =
"zero one two three four five six seven eight nine minus point".Split();

IFormatProvider _parent; // Allows consumers to chain format providers

public WordyFormatProvider () : this (CultureInfo.CurrentCulture) { }
public WordyFormatProvider (IFormatProvider parent)

{

_parent = parent;

}

public object GetFormat (Type formatType)

{
if (formatType == typeof (ICustomFormatter)) return this;

return null;

}

public string Format (string format, object arg, IFormatProvider prov)
{
// If it's not our format string, defer to the parent provider:
if (arg == null || format != "W")
return string.Format (_parent, "{0:" + format + "}", arg);

StringBuilder result = new StringBuilder();
string digitlList = string.Format (Culturelnfo.InvariantCulture,
"{e}", arg);
foreach (char digit in digitList)
{
int 1 = "0123456789-.".Index0f (digit);
if (1 == -1) continue;
if (result.Length > 0) result.Append (' ');
result.Append (_numberWords[i]);
}

return result.ToString();

}

T
-
o
3
o
3
o
=
x

m
c
S
Qo
o
3
(]
-]
-
o
0

}

Notice that in the Format method, we used string.Format to convert the input
number to a string—with InvariantCulture. It would have been much simpler just
to call ToString() on arg, but then CurrentCulture would have been used instead.
The reason for needing the invariant culture is evident a few lines later:

int 1 = "0123456789-.".Index0f (digit);

Formattingand Parsing | 245

www.it-ebooks.info

http://www.it-ebooks.info/

It’s critical here that the number string comprises only the characters 0123456789- .
and not any internationalized versions of these.

Here’s an example of using WordyFormatProvider:

double n = -123.45;
IFormatProvider fp = new WordyFormatProvider();
Console.WriteLine (string.Format (fp, "{0:C} in words is {0:W}", n));

// -$123.45 in words is minus one two three point four five

Custom format providers can be used only in composite format strings.

Standard Format Strings and Parsing Flags

The standard format strings control how a numeric type or DateTime/DateTimeOff
set is converted to a string. There are two kinds of format strings:

Standard format strings
With these, you provide general guidance. A standard format string con-
sists of a single letter, followed, optionally, by a digit (whose meaning
depends on the letter). An example is "C" or "F2".

Custom format strings
With these, you micromanage every character with a template. An example
is "0:#.000E+00".

Custom format strings are unrelated to custom format providers.

Numeric Format Strings

Table 6-2 lists all standard numeric format strings.

Table 6-2. Standard numeric format strings

Letter Meaning Sample input Result Notes
Gorg “General” 1.2345, "G" 1.2345 Switches to exponential notation for
0.00001, "G" 1E-05 small or large numbers
0.00001, "g" le-05 G3 limits precision to three digits in
1.2345, "G3" 1.23 total (before + after point)
12345, "G3" 1.23E04
F Fixed point 2345.678, "F2" 2345.68 F2 rounds to two decimal places
2345.6, "F2" 2345.60
N Fixed point with 2345.678, "N2" 2,345.68 As above, with group (1,0005)
group separator - 2345.6, "N2" 2,345.60 separator (details from format
(“Numeric”) provider)
D Pad with 123, "D5" 00123 For integral types only
leading zeros 123, "D1" 123 D5 pads left to five digits; does not
truncate
246 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Letter Meaning Sample input Result Notes

Eore Force 56789, "E" 5.678900E+004 Six-digit default precision
exponential 56789, "e" 5.678900e+004
notation 56789, "E2" 5.68E+004
C Currency 1.2, "C" $1.20 C with no digit uses default number
1.2, "c4" $1.2000 of D.P. from format provider
P Percent .503, "P" 50.30 % Uses symbol and layout from format
.503, "PO" 50 % provider
Decimal places can optionally be
overridden
Xorx Hexadecimal 47, "X" 2F X for uppercase hex digits; x for
47, "x" 2f lowercase hex digits
47, "X4" 002F Integrals only
R Round-trip if / 3f, "R" 0.333333343 For the float and double types,

R or G17 squeeze out all digits to
ensure exact round-tripping

Supplying no numeric format string (or a null or blank string) is equivalent to using
the "G" standard format string followed by no digit. This exhibits the following
behavior:

« Numbers smaller than 10~ or larger than the type’s precision are expressed in
exponential (scientific) notation.

o The two decimal places at the limit of float or double’s precision are rounded
away to mask the inaccuracies inherent in conversion to decimal from their
underlying binary form.

The automatic rounding just described is usually beneficial
and goes unnoticed. However, it can cause trouble if you need
to round-trip a number; in other words, convert it to a string
and back again (maybe repeatedly) while preserving value
equality. For this reason, the "R" and "G17" format strings
exist to circumvent this implicit rounding.

In Framework 4.6, "R" and "G17" do the same thing; in prior
Frameworks, "R" is essentially a buggy version of "G17" and
should not be used.

Table 6-3 lists custom numeric format strings.

Standard Format Strings and Parsing Flags | 247

www.it-ebooks.info

m
c
S
Qo
o
3
[}
-]
-
o
0

T
-
o
3
[}
3
o
=
x

http://www.it-ebooks.info/

Table 6-3. Custom numeric format strings

Specifier Meaning Sample input Result Notes
Digit 12.345, ".##" 12.35 Limits digits after D.P.
placeholder 12.345, " ####t" 12.345
0 Lero 12.345, ".00" 12.35 As above, but also pads with
placeholder 12.345, ".0000" 12.3450 zeros before and after D.P.
99, "000.00" 099.00
Decimal point Indicates D.P.
Actual symbol comes from
NumberFormatInfo
s Group 1234, 1,234 Symbol comes from Number
separator "4, b 0,001,234 FormatInfo
1234,
"0,000,000"
, Multiplier 1000000, "#," 1000 If comma is at end or before
(as above) 1000000, "#,, 1 D.P, it acts as a multiplier—
dividing result by 1,000,
1,000,000, etc.
% Percent 0.6, "00%" 60% First multiplies by 100 and
notation then substitutes percent
symbol obtained from Num
berFormatInfo
EO, 0, Exponent 1234, "OEQ" 1E3
E+0, e+0 notation 1234, "OE+0" 1E+3
E-0, e-0 1234, "0.00E00" 1.23E03
1234, "0.00e00" 1.23e03
\ Literal 50, @"\#0" #50 Use in conjunction with an @
character quote prefix on the string—or use
\\
"xx' ' xx' Literal string 50, "0 '...'" 50 ...
quote
3 Section 15, "#;(#);zero" 15 (If positive)
separator
-5, "#;(#);zero" (5) (If negative)
0, "#;(#);zero" zero (If zero)
Any other char Literal 35.2, "$0 . @0c" $35 . 20c
NumberStyles

Each numeric type defines a static Parse method that accepts a NumberStyles argu-
ment. NumberStyles is a flags enum that lets you determine how the string is read as
it’s converted to a numeric type. It has the following combinable members:

248 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

AllowLeadingWhite AllowTrailingWhite

AllowLeadingSign AllowTrailingSign
AllowParentheses AllowDecimalPoint
AllowThousands AllowExponent

AllowCurrencySymbol AllowHexSpecifier
NumberStyles also defines these composite members:
None Integer Float Number HexNumber Currency Any

Except for None, all composite values include AllowLeadingWhite and AllowTrat
linghhite. Their remaining makeup is shown in Figure 6-1, with the most useful
three emphasized.

N
N o /& NS
S/ /S
SIS LTS
S/ &/ S/ S/E/S
STV EININLIES
SANSNGES
/YYD
Integer |V
Float v v v
Number V|V V|V
HexNumber v
Currency VIV IVIVIV v
Any vivivIivViVIiVIvV

Figure 6-1. Composite NumberStyles

When you call Parse without specifying any flags, the defaults in Figure 6-2 are
applied.

S N $ é@\
S/ /S L
S S SS/E
S NI ETELL
< &/ S/S S/ S/S/S/E
N N/LY/S/S//S/X
& SIS/SISIS/SIS/S
< NAVAVATVA VA TAVAS
Integral types Integer v
Float |
doubleand float |)77 ' 4s [V v IV IV
decimal Number v IV v IV

Figure 6-2. Default parsing flags for numeric types

Standard Format Strings and Parsing Flags | 249

www.it-ebooks.info

m
c
S
Q.
o
3
[}
-]
-+
o
0

m
=
[
3
(]
2
o
=
=

http://www.it-ebooks.info/

If you don’t want the defaults shown in Figure 6-2, you must explicitly specify Num
berStyles:

int thousand = int.Parse ("3E8", NumberStyles.HexNumber);

int minusTwo = int.Parse ("(2)", NumberStyles.Integer
NumberStyles.AllowParentheses);

double aMillion = double.Parse ("1,000,000", NumberStyles.Any);

decimal threeMillion = decimal.Parse ("3e6", NumberStyles.Any);

decimal fivePointTwo = decimal.Parse ("$5.20", NumberStyles.Currency);

Because we didn’t specify a format provider, this example works with your local cur-
rency symbol, group separator, decimal point, and so on. The next example is hard-
coded to work with the euro sign and a blank group separator for currencies:

NumberFormatInfo ni = new NumberFormatInfo();
ni.CurrencySymbol = "€";

ni.CurrencyGroupSeparator =
double million = double.Parse ("€1 000 000", NumberStyles.Currency, ni);

nony,
B

Date/Time Format Strings

Format strings for DateTime/DateTimeOffset can be divided into two groups, based
on whether they honor culture and format provider settings. Those that do are lis-
ted in Table 6-4; those that don’t are listed in Table 6-5. The sample output comes

from formatting the following DateTime (with invariant culture, in the case of
Table 6-4):

new DateTime (2000, 1, 2, 17, 18, 19);

Table 6-4. Culture-sensitive date/time format strings

d Short date 01/02/2000

D Long date Sunday, 02 January 2000

t Short time 17:18

T Long time 17:18:19

f Long date + short time Sunday, 02 January 2000 17:18
F Long date + long time ~ Sunday, 02 January 2000 17:18:19
g Short date + short time 01/02/2000 17:18

G (default) Short date + long time 01/02/2000 17:18:19

m, M Month and day 02 January

y, Y Year and month January 2000

250 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Table 6-5. Culture-insensitive date/time format strings

Format Meaning Sample output Notes

string

0 Round- 2000-01-02T17:18:19.0000000 Will append time zone information unless
trippable DateTimeKind is Unspecified

r,R RFC1123 Sun, 02 Jan 2000 17:18:19 You must explicitly convert to UTC with
standard GMT DateTime.ToUniversalTime

s Sortable; 2000-01-02T17:18:19 Compatible with text-based sorting
150 8601

u “Universal” 2000-01-02 17:18:19Z Similar to above; must explicitly convert to
sortable utc

u UTC Sunday, 02 January 2000 Long date + short time, converted to UTC

17:18:19

The format strings "r", "R", and "u" emit a suffix that implies UTC; yet they don’t
automatically convert a local to a UTC DateTime (so you must do the conversion
yourself). Ironically, "U" automatically converts to UTC but doesn't write a time
zone suffix! In fact, "o" is the only format specifier in the group that can write an
unambiguous DateTime without intervention.

DateTimeFormatInfo also supports custom format strings: these are analogous to
numeric custom format strings. The list is fairly exhaustive, and you can find it in
the MSDN. An example of a custom format string is:

yyyy-MM-dd HH:mm:ss

Parsing and misparsing DateTimes

Strings that put the month or day first are ambiguous and can easily be misparsed—
particularly if you or any of your customers live outside the United States. This is
not a problem in user-interface controls because the same settings are in force when
parsing as when formatting. But when writing to a file, for instance, day/month
misparsing can be a real problem. There are two solutions:

o Always state the same explicit culture when formatting and parsing (e.g., invar-
iant culture).

o Format DateTime and DateTimeOffsets in a manner independent of culture.

The second approach is more robust—particularly if you choose a format that puts
the four-digit year first: such strings are much harder to misparse by another party.
Further, strings formatted with a standards-compliant year-first format (such as "o")
can parse correctly alongside locally formatted strings—rather like a “universal

donor” (Dates formatted with "s" or "u" have the further benefit of being sortable.)

To illustrate, suppose we generate a culture-insensitive DateTime string s as follows:

Standard Format Strings and Parsing Flags | 251

www.it-ebooks.info

m
c
S
Q.
o
3
[}
-]
-
o
0

M
=
[
3
(]
3
o
=
=

http://www.it-ebooks.info/

string s = DateTime.Now.ToString ("o0");

The "o" format string includes milliseconds in the output.
The following custom format string gives the same result as
"0", but without milliseconds:

yyyy-MM-ddTHH:mm:ss K

We can reparse this in two ways. ParseExact demands strict compliance with the
specified format string:

DateTime dtl = DateTime.ParseExact (s, "o", null);

(You can achieve a similar result with XmlConvert’s ToString and ToDateTime
methods.)

Parse, however, implicitly accepts both the "o" format and the CurrentCulture
format:

DateTime dt2 = DateTime.Parse (s);

This works with both DateTime and DateTimeOffset.

ParseExact is usually preferable if you know the format of the
string that you're parsing. It means that if the string is incor-
rectly formatted, an exception will be thrown—which is usu-
ally better than risking a misparsed date.

DateTimeStyles

DateTimeStyles is a flags enum that provides additional instructions when calling
Parse on a DateTime(Offset). Here are its members:

None,

AllowLeadingWhite, AllowTrailingWhite, AllowInnerWhite,
AssumelLocal, AssumeUniversal, AdjustToUniversal,
NoCurrentDateDefault, RoundTripKind

There is also a composite member, AllowWhiteSpaces:
AllowhhiteSpaces = AllowLeadingWhite | AllowTrailingWhite | AllowInnerWhite

The default is None. This means that extra whitespace is normally prohibited (white-
space that’s part of a standard DateTime pattern is exempt).

AssumeLocal and AssumeUniversal apply if the string doesn’t have a time zone suf-
fix (such as Z or +9:00). AdjustToUniversal still honors time zone suffixes but then
converts to UTC using the current regional settings.

If you parse a string comprising a time but no date, today’s date is applied by
default. If you apply the NoCurrentDateDefault flag, however, it instead uses 1st
January 0001.

252 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Enum Format Strings

In “Enums” in Chapter 3, we describe formatting and parsing enum values.
Table 6-6 lists each format string and the result of applying it to the following
expression:

Console.WriteLine (System.ConsoleColor.Red.ToString (formatString));

Table 6-6. Enum format strings

Format string Meaning Sample output Notes

Gorg “General” Red Default

Forf Treat as though Flags Red Works on combined members even if
attribute were present enum has no Flags attribute

Dord Decimal value 12 Retrieves underlying integral value

Xorx Hexadecimal value 0000000C Retrieves underlying integral value

Other Conversion Mechanisms

In the previous two sections, we covered format providers— NET’s primary mecha-
nism for formatting and parsing. Other important conversion mechanisms are scat-
tered through various types and namespaces. Some convert to and from string,
and some do other kinds of conversions. In this section, we discuss the following
topics:
o The Convert class and its functions:
— Real to integral conversions that round rather than truncate
— Parsing numbers in base 2, 8, and 16
— Dynamic conversions
— Base 64 translations
o XmlConvert and its role in formatting and parsing for XML

 Type converters and their role in formatting and parsing for designers and
XAML

« BitConverter, for binary conversions

Convert
The .NET Framework calls the following types base types:

» bool, char, string, System.DateTime, and System.DateTimeOffset

o All of the C# numeric types

Other Conversion Mechanisms | 253

www.it-ebooks.info

m
c
S
Q.
o
3
[}
-]
-
o
0

m
=
[
3
(]
3
o
=
x

http://www.it-ebooks.info/

The static Convert class defines methods for converting every base type to every
other base type. Unfortunately, most of these methods are useless: either they throw
exceptions or they are redundant alongside implicit casts. Among the clutter, how-
ever, are some useful methods, listed in the following sections.

All base types (explicitly) implement IConvertible, which
defines methods for converting to every other base type. In
most cases, the implementation of each of these methods sim-
ply calls a method in Convert. On rare occasions, it can be
useful to write a method that accepts an argument of type
IConvertible.

Rounding real-to-integral conversions
In Chapter 2, we saw how implicit and explicit casts allow you to convert between
numeric types. In summary:

« Implicit casts work for nonlossy conversions (e.g., int to double).

« Explicit casts are required for lossy conversions (e.g., double to int).
Casts are optimized for efficiency; hence, they truncate data that won't fit. This can
be a problem when converting from a real number to an integer, because often you

want to round rather than truncate. Convert’s numerical conversion methods
address just this issue; they always round:

double d = 3.9;
int i1 = Convert.ToInt32 (d); /] 1 ==4

Convert uses banker’s rounding, which snaps midpoint values to even integers (this
avoids positive or negative bias). If bankers rounding is a problem, first call
Math.Round on the real number: this accepts an additional argument that allows you
to control midpoint rounding.

Parsing numbers in base 2, 8, and 16

Hidden among the To(integral-type) methods are overloads that parse numbers
in another base:

int thirty = Convert.ToInt32 ("1E", 16); // Parse in hexadecimal
uint five = Convert.ToUInt32 ("101", 2); // Parse in binary

The second argument specifies the base. It can be any base you like—as long as it’s 2,
8, 10, or 16!

Dynamic conversions

Occasionally, you need to convert from one type to another—but you don’t know
what the types are until runtime. For this, the Convert class provides a ChangeType
method:

public static object ChangeType (object value, Type conversionType);

254 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

The source and target types must be one of the “base” types. ChangeType also
accepts an optional IFormatProvider argument. Here’s an example:

Type targetType = typeof (int);
object source = "42";

object result = Convert.ChangeType (source, targetType);

Console.WriteLine (result); /] 42

Console.WriteLine (result.GetType()); // System.Int32
An example of when this might be useful is in writing a deserializer that can work
with multiple types. It can also convert any enum to its integral type (see “Enums”
on page 109 in Chapter 3).

A limitation of ChangeType is that you cannot specify a format string or parsing flag.

Base 64 conversions

Sometimes you need to include binary data such as a bitmap within a text docu-
ment such as an XML file or email message. Base 64 is a ubiquitous means of
encoding binary data as readable characters, using 64 characters from the ASCII set.

Convert’s ToBase64String method converts from a byte array to base 64; From
Base64String does the reverse.

XmiConvert

If you're dealing with data that’s originated from or destined for an XML file, XmlCon
vert (in the System.Xml namespace) provides the most suitable methods for for-
matting and parsing. The methods in XmlConvert handle the nuances of XML for-
matting without needing special format strings. For instance, true in XML is “true”
and not “True” The NET Framework internally uses XmlConvert extensively.
XmlConvert is also good for general-purpose, culture-independent serialization.

The formatting methods in XmlConvert are all provided as overloaded ToString
methods; the parsing methods are called ToBoolean, ToDateTime, and so on. For
example:

string s = XmlConvert.ToString (true); /] s = "true"
bool isTrue = XmlConvert.ToBoolean (s);

The methods that convert to and from DateTime accept an XmlDateTimeSerializa
tionMode argument. This is an enum with the following values:

Unspecified, Local, Utc, RoundtripKind

Local and Utc cause a conversion to take place when formatting (if the DateTime is
not already in that time zone). The time zone is then appended to the string:

2010-02-22T714:08:30.9375 // Unspecified
2010-02-22T14:07:30.9375+09:00 // Local
2010-02-22T05:08:30.9375Z /] Utc

Other Conversion Mechanisms | 255

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Unspecified strips away any time zone information embedded in the DateTime
(i.e., DateTimeKind) before formatting. RoundtripKind honors the DateTime’s Date
TimeKind—so when it’s reparsed, the resultant DateTime struct will be exactly as it
was originally.

Type Converters

Type converters are designed to format and parse in design-time environments.
They also parse values in XAML (Extensible Application Markup Language) docu-
ments—as used in Windows Presentation Foundation and Workflow Foundation.

In the NET Framework, there are more than 100 type converters—covering such
things as colors, images, and URIs. In contrast, format providers are implemented
for only a handful of simple value types.

Type converters typically parse strings in a variety of ways—without needing hints.
For instance, in an ASP.NET application in Visual Studio, if you assign a control a
BackColor by typing "Beige" into the property window, Color’s type converter fig-
ures out that you're referring to a color name and not an RGB string or system
color. This flexibility can sometimes make type converters useful in contexts outside
of designers and XAML documents.

All type converters subclass TypeConverter in System.ComponentModel. To obtain a
TypeConverter, call TypeDescriptor.GetConverter. The following obtains a Type

Converter for the Color type (in the System.Drawing namespace, System.Draw-
ing.dll):

TypeConverter cc = TypeDescriptor.GetConverter (typeof (Color));

Among many other methods, TypeConverter defines methods to ConvertToString
and ConvertFromString. We can call these as follows:

Color beige = (Color) cc.ConvertFromString ("Beige");

Color purple = (Color) cc.ConvertFromString ("#800080");

Color window = (Color) cc.ConvertFromString ("Window");
By convention, type converters have names ending in Converter and are usually in
the same namespace as the type they’re converting. A type links to its converter via a
TypeConverterAttribute, allowing designers to pick up converters automatically.

Type converters can also provide design-time services such as generating standard
value lists for populating a drop-down list in a designer or assisting with code serial-
ization.

BitConverter

Most base types can be converted to a byte array by calling BitConverter.GetBytes:

foreach (byte b in BitConverter.GetBytes (3.5))
Console.Write (b + " "); // ©0 0000 12 64

256 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

BitConverter also provides methods, such as ToDouble, for converting in the other
direction.

The decimal and DateTime(Offset) types are not supported by BitConverter. You
can, however, convert a decimal to an int array by calling decimal.GetBits. To go
the other way around, decimal provides a constructor that accepts an int array.

In the case of DateTime, you can call ToBinary on an instance—this returns a long
(upon which you can then use BitConverter). The static DateTime.FromBinary
method does the reverse.

Globalization

There are two aspects to internationalizing an application: globalization and localiza-
tion.

Globalization is concerned with three tasks (in decreasing order of importance):

1. Making sure that your program doesn’t break when run in another culture

2. Respecting a local culture’s formatting rules—for instance, when displaying
dates

3. Designing your program so that it picks up culture-specific data and strings
from satellite assemblies that you can later write and deploy

Localization means concluding that last task by writing satellite assemblies for spe-
cific cultures. This can be done after writing your program—we cover the details in
“Resources and Satellite Assemblies” on page 770 in Chapter 18.

The .NET Framework helps you with the second task by applying culture-specific
rules by default. We've already seen how calling ToString on a DateTime or number
respects local formatting rules. Unfortunately, this makes it easy to fail the first task
and have your program break because you're expecting dates or numbers to be for-
matted according to an assumed culture. The solution, as we've seen, is either to
specify a culture (such as the invariant culture) when formatting and parsing, or to
use culture-independent methods such as those in XmlConvert.

Globalization Checklist

We've already covered the important points in this chapter. Here’s a summary of the
essential work required:

« Understand Unicode and text encodings (see “Text Encodings and Unicode” on
page 223).

o Be mindful that methods such as ToUpper and ToLower on char and string are
culture-sensitive: use ToUpperInvariant/ToLowerInvariant unless you want
culture sensitivity.

Globalization | 257

www.it-ebooks.info

m
c
S
Q.
)
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

o Favor culture-independent formatting and parsing mechanisms for DateTime
and DateTimeOffsets such as ToString("o") and XmlConvert.

o Otherwise, specify a culture when formatting/parsing numbers or date/times
(unless you want local-culture behavior).

Testing

You can test against different cultures by reassigning Thread’s CurrentCulture
property (in System.Threading). The following changes the current culture to
Turkey:

Thread.CurrentThread.CurrentCulture = CultureInfo.GetCultureInfo ("tr-TR");

Turkey is a particularly good test case because:

o "{".ToUpper() !'= "I"and "I".ToLower() != "{".
o Dates are formatted as day.month.year (note the period separator).

o The decimal-point indicator is a comma instead of a period.

You can also experiment by changing the number and date formatting settings in
the Windows Control Panel: these are reflected in the default culture (Cultur
eInfo.CurrentCulture).

CultureInfo.GetCultures() returns an array of all available cultures.

Thread and CultureInfo also support a CurrentUICulture
property. This is concerned more with localization: we cover
this in Chapter 18.

Working with Numbers

Conversions

We covered numeric conversions in previous chapters and sections; Table 6-7 sum-
marizes all the options.

Table 6-7. Summary of numeric conversions

Task Functions Examples
Parsing base 10 Parse double d = double.Parse ("3.5");
numbers TryParse int i;

bool ok = int.TryParse ("3", out i);

Parsing from base 2, Convert.ToIntegral int i = Convert.ToInt32 ("1E", 16);
8,0r16

Formatting to ToString ("X") string hex = 45.ToString ("X");
hexadecimal
258 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Task Functions Examples

Lossless numeric Implicit cast int 1 = 23;

conversion double d = i;

Truncating numeric Explicit cast double d = 23.5;

conversion int 1 = (int) d;

Rounding numeric Convert.ToIntegral double d = 23.5;

conversion (real to int 1 = Convert.ToInt32 (d);
integral)

Math

Table 6-8 lists the members of the static Math class. The trigonometric functions
accept arguments of type double; other methods such as Max are overloaded to
operate on all numeric types. The Math class also defines the mathematical constants
E (e) and PI.

Table 6-8. Methods in the static Math class

Category Methods

Rounding Round, Truncate, Floor, Ceiling
Maximum/minimum Max, Min

Absolute value and sign Abs, Sign

Square root Sqrt

Raising to a power Pow, Exp
Logarithm Log, Log10
Trigonometric Sin, Cos, Tan

Sinh, Cosh, Tanh
Asin, Acos, Atan

The Round method lets you specify the number of decimal places with which to
round, as well as how to handle midpoints (away from zero, or with banker’s round-
ing). Floor and Ceiling round to the nearest integer: Floor always rounds down,
and Ceiling always rounds up—even with negative numbers.

Max and Min accept only two arguments. If you have an array or sequence of num-
bers, use the Max and Min extension methods in System.Linq.Enumerable.
BigInteger

The BigInteger struct is a specialized numeric type introduced in .NET Framework
4.0. It lives in the new System.Numerics namespace in System.Numerics.dll and
allows you to represent an arbitrarily large integer without any loss of precision.

Working with Numbers | 259

www.it-ebooks.info

m
c
S
Q.
o
3
[}
-]
-
o
0

m
=
[}
3
(]
3
o
=
x

http://www.it-ebooks.info/

C# doesn’t provide native support for BigInteger, so there’s no way to represent
BigInteger literals. You can, however, implicitly convert from any other integral
type to a BigInteger. For instance:

BigInteger twentyFive = 25; // implicit conversion from integer

To represent a bigger number, such as one googol (10'%°), you can use one of BigIn
teger’s static methods, such as Pow (raise to the power):

BigInteger googol = BigInteger.Pow (10, 100);
Alternatively, you can Parse a string:

BigInteger googol = BigInteger.Parse ("1".PadRight (100, '0'));
Calling ToString() on this prints every digit:

Console.WriteLine (googol.ToString()); // 10000000000000000000000000000
000

You can perform potentially lossy conversions between BigInteger and the stan-
dard numeric types with the explicit cast operator:

double g2 = (double) googol; // Explicit cast
BigInteger g3 = (BigInteger) g2; // Explicit cast
Console.WriteLine (g3);

The output from this demonstrates the loss of precision:
9999999999999999673361688041166912. ..

BigInteger overloads all the arithmetic operators including remainder (%), as well
as the comparison and equality operators.

You can also construct a BigInteger from a byte array. The following code gener-
ates a 32-byte random number suitable for cryptography and then assigns it to a
BigInteger:

// This uses the System.Security.Cryptography namespace:
RandomNumberGenerator rand = RandomNumberGenerator.Create();

byte[] bytes = new byte [32];

rand.GetBytes (bytes);

var bigRandomNumber = new BigInteger (bytes); // Convert to BigInteger

The advantage of storing such a number in a BigInteger over a byte array is that
you get value-type semantics. Calling ToByteArray converts a BigInteger back to a
byte array.

Complex

The Complex struct is another specialized numeric type new to Framework 4.0 and
is for representing complex numbers with real and imaginary components of type
double. Complex resides in the System.Numerics.dll assembly (along with BigIn
teger).

260 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

To use Complex, instantiate the struct, specifying the real and imaginary values:

var c1 = new Complex (2, 3.5);
var c2 = new Complex (3, 0);

There are also implicit conversions from the standard numeric types.

The Complex struct exposes properties for the real and imaginary values, as well as
the phase and magnitude:

Console.WriteLine (cl1.Real); /] 2
Console.WriteLine (ci1.Imaginary); // 3.5
Console.WriteLine (c1.Phase); // 1.05165021254837

Console.WriteLine (cl.Magnitude); // 4.03112887414927

You can also construct a Complex number by specifying magnitude and phase:
Complex c3 = Complex.FromPolarCoordinates (1.3, 5);

The standard arithmetic operators are overloaded to work on Complex numbers:

Console.WriteLine (c1 + c2); // (5, 3.5)
Console.WriteLine (c1 * c2); // (6, 10.5)

The Complex struct exposes static methods for more advanced functions, including:

« Trigonometric (Sin, Asin, Sinh, Tan, etc.)
o Logarithms and exponentiations

e Conjugate

Random

The Random class generates a pseudorandom sequence of random bytes, integers,
or doubles.

To use Random, you first instantiate it, optionally providing a seed to initiate the ran-
dom number series. Using the same seed guarantees the same series of numbers (if
run under the same CLR version), which is sometimes useful when you want repro-
ducibility:

Random r1 = new Random (1);

Random r2 = new Random (1);

Console.WriteLine (ri.Next (100) + ", " + rl.Next (100)); /] 24, 11
Console.WriteLine (r2.Next (100) + ", " + r2.Next (100)); /] 24, 11

If you don’t want reproducibility, you can construct Random with no seed—then it
uses the current system time to make one up.

Working with Numbers | 261

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Because the system clock has limited granularity, two Random
instances created close together (typically within 10 ms) will
yield the same sequence of values. A common trap is to
instantiate a new Random object every time you need a random
number, rather than reusing the same object.

A good pattern is to declare a single static Random instance. In
multithreaded scenarios, however, this can cause trouble
because Random objects are not thread-safe. We describe a
workaround in “Thread-Local Storage” on page 936 in Chap-
ter 22.

Calling Next(n) generates a random integer between 0 and n-1. NextDouble gener-
ates a random double between 0 and 1. NextBytes fills a byte array with random
values.

Random is not considered random enough for high-security applications, such as
cryptography. For this, the NET Framework provides a cryptographically strong ran-
dom number generator, in the System.Security.Cryptography namespace. Here’s
how it’s used:

var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
byte[] bytes = new byte [32];
rand.GetBytes (bytes); // Fill the byte array with random numbers.

The downside is that it’s less flexible: filling a byte array is the only means of obtain-
ing random numbers. To obtain an integer, you must use BitConverter:

byte[] bytes = new byte [4];
rand.GetBytes (bytes);
int 1 = BitConverter.ToInt32 (bytes, 0);

Enums

In Chapter 3, we described C#’s enum type, and showed how to combine members,
test equality, use logical operators, and perform conversions. The Framework
extends C#’s support for enums through the System.Enum type. This type has two
roles:

o Providing type unification for all enum types

o Defining static utility methods
Type unification means you can implicitly cast any enum member to a System.Enum

instance:

enum Nut { Walnut, Hazelnut, Macadamia }
enum Size { Small, Medium, Large }

static void Main()

{
Display (Nut.Macadamia); // Nut.Macadamia
Display (Size.lLarge); /] Size.lLarge
262 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

}

static voild Display (Enum value)

{

Console.WriteLine (value.GetType().Name +

}

The static utility methods on System.Enum are primarily related to performing con-
versions and obtaining lists of members.

+ value.ToString());

Enum Conversions

There are three ways to represent an enum value:

 Asan enum member
o Asits underlying integral value

o Asastring

In this section, we describe how to convert between each.

Enum to integral conversions

Recall that an explicit cast converts between an enum member and its integral value.
An explicit cast is the correct approach if you know the enum type at compile time:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

int 1 = (int) BorderSides.Top; /] 1L ==4

BorderSides side = (BorderSides) i; // side == BorderSides.Top
You can cast a System.Enum instance to its integral type in the same way. The trick is
to first cast to an object, and then the integral type:

static int GetIntegralvalue (Enum anyEnum)

{

return (int) (object) anyEnum;
3
This relies on you knowing the integral type: the method we just wrote would crash
if passed an enum whose integral type was long. To write a method that works with
an enum of any integral type, you can take one of three approaches. The first is to call
Convert.ToDecimal:

static decimal GetAnyIntegralValue (Enum anyEnum)

{

return Convert.ToDecimal (anyEnum);

}
This works because every integral type (including ulong) can be converted to deci-
mal without loss of information. The second approach is to call Enum.GetUnder
lyingType in order to obtain the enum’s integral type, and then call Convert.Change
Type:

Enums | 263

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

static object GetBoxedIntegralValue (Enum anyEnum)

{
Type integralType = Enum.GetUnderlyingType (anyEnum.GetType());

return Convert.ChangeType (anyEnum, integralType);
}

This preserves the original integral type, as the following example shows:

object result = GetBoxedIntegralValue (BorderSides.Top);
Console.WriteLine (result); /] 4
Console.WriteLine (result.GetType()); // System.Int32

Our GetBoxedIntegralType method in fact performs no value
conversion; rather, it reboxes the same value in another type. It
translates an integral value in enum-type clothing to an inte-
gral value in integral-type clothing. We describe this further in
“How Enums Work” on page 265.

The third approach is to call Format or ToString specifying the "d" or "D" format
string. This gives you the enum’s integral value as a string, and it is useful when writ-
ing custom serialization formatters:

static string GetIntegralValueAsString (Enum anyEnum)
{

return anyEnum.ToString ("D"); // returns something like "4"
}
Integral-to-enum conversions
Enum.ToObject converts an integral value to an enum instance of the given type:

object bs = Enum.ToObject (typeof (BorderSides), 3);
Console.WriteLine (bs); // Left, Right

This is the dynamic equivalent of this:
BorderSides bs = (BorderSides) 3;

ToObject is overloaded to accept all integral types, as well as object. (The latter
works with any boxed integral type.)

String conversions

To convert an enum to a string, you can either call the static Enum.Format method or
call ToString on the instance. Each method accepts a format string, which can be
"G" for default formatting behavior, "D" to emit the underlying integral value as a
string, "X" for the same in hexadecimal, or "F" to format combined members of an
enum without the Flags attribute. We listed examples of these in “Standard Format
Strings and Parsing Flags” on page 246.

Enum.Parse converts a string to an enum. It accepts the enum type and a string that
can include multiple members:

BorderSides leftRight = (BorderSides) Enum.Parse (typeof (BorderSides),
"Left, Right");

264 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

An optional third argument lets you perform case-insensitive parsing. An Argumen
tException is thrown if the member is not found.

Enumerating Enum Values
Enum.GetValues returns an array comprising all members of a particular enum type:

foreach (Enum value in Enum.GetValues (typeof (BorderSides)))
Console.WriteLine (value);

Composite members such as LeftRight = Left | Right are included, too.
Enum.GetNames performs the same function but returns an array of strings.

Internally, the CLR implements GetValues and GetNames by
reflecting over the fields in the enum’s type. The results are
cached for efficiency.

How Enums Work

The semantics of enums are enforced largely by the compiler. In the CLR, there’s no
runtime difference between an enum instance (when unboxed) and its underlying
integral value. Further, an enum definition in the CLR is merely a subtype of Sys
tem. Enum with static integral-type fields for each member. This makes the ordinary
use of an enum highly efficient, with a runtime cost matching that of integral con-
stants.

The downside of this strategy is that enums can provide static but not strong type
safety. We saw an example of this in Chapter 3:

public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

BorderSides b = BorderSides.Left;

b += 1234; // No error!
When the compiler is unable to perform validation (as in this example), there’s no
backup from the runtime to throw an exception.

What we said about there being no runtime difference between an enum instance
and its integral value might seem at odds with the following:

[Flags] public enum BorderSides { Left=1, Right=2, Top=4, Bottom=8 }

Console.WriteLine (BorderSides.Right.ToString()); // Right
Console.WriteLine (BorderSides.Right.GetType().Name); // BorderSides
Given the nature of an enum instance at runtime, youd expect this to print 2 and
Int32! The reason for its behavior is down to some more compile-time trickery. C#
explicitly boxes an enum instance before calling its virtual methods—such as
ToString or GetType. And when an enum instance is boxed, it gains a runtime wrap-

ping that references its enum type.

Enums | 265

www.it-ebooks.info

m
c
S
Q.
)
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

Tuples

Framework 4.0 introduced a new set of generic classes for holding a set of differ-
ently typed elements. These are called tuples:

public class Tuple <T1>

public class Tuple <T1, T2>

public class Tuple <T1, T2, T3>

public class Tuple <T1, T2, T3, T4>

public class Tuple <T1, T2, T3, T4, T5>

public class Tuple <T1, T2, T3, T4, T5, T6>

public class Tuple <T1, T2, T3, T4, T5, T6, T7>

public class Tuple <T1, T2, T3, T4, T5, T6, T7, TRest>
Each has read-only properties called Iteml, Item2, and so on (one for each type
parameter).

You can instantiate a tuple either via its constructor:
var t = new Tuple<int,string> (123, "Hello");
or via the static helper method Tuple.Create:
Tuple<int,string> t = Tuple.Create (123, "Hello");
The latter leverages generic type inference. You can combine this with implicit typ-
ing:
var t = Tuple.Create (123, "Hello");
You can then access the properties as follows (notice that each is statically typed):

Console.WriteLine (t.Iteml * 2); /] 246
Console.WriteLine (t.Item2.ToUpper()); // HELLO

Tuples are convenient in returning more than one value from a method—or creat-
ing collections of value pairs (we'll cover collections in the following chapter).

An alternative to tuples is to use an object array. However, you then lose static type
safety, incur the cost of boxing/unboxing for value types, and require clumsy casts
that cannot be validated by the compiler:

object[] items = { 123, "Hello" };
Console.WriteLine (((int) items[0]) * 2) /] 246
Console.WriteLine (((string) items[1]).ToUpper()); // HELLO

Comparing Tuples

Tuples are classes (and therefore reference types). In keeping with this, comparing
two distinct instances with the equality operator returns false. However, the
Equals method is overridden to compare each individual element instead:

var tl1 = Tuple.Create (123, "Hello");
var t2 = Tuple.Create (123, "Hello");

Console.WriteLine (t1 == t2); /] False
Console.WriteLine (t1.Equals (t2)); /] True
266 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

You can also pass in a custom equality comparer (by virtue of tuples implementing
IStructuralEquatable). We cover equality and order comparison later in this
chapter.

The Guid Struct

The Guid struct represents a globally unique identifier: a 16-byte value that, when
generated, is almost certainly unique in the world. Guids are often used for keys of
various sorts—in applications and databases. There are 22 or 3.4 x 10*® unique
Guids.

The static Guid.NewGuid method generates a unique Guid:

Guid g = Guid.NewGuid ();

Console.WriteLine (g.ToString()); // 0d57629c-7d6e-4847-97cb-9e2fc25083fe
To instantiate an existing value, you use one of the constructors. The two most use-
ful constructors are:

public Guid (byte[] b); // Accepts a 16-byte array

public Guid (string g); /] Accepts a formatted string
When represented as a string, a Guid is formatted as a 32-digit hexadecimal number,

with optional hyphens after the 8th, 12th, 16th, and 20th digits. The whole string
can also be optionally wrapped in brackets or braces:

Guid g1 = new Guid ("{0d57629c-7d6e-4847-97cb-9e2fc25083fe}");

Guid g2 = new Guid ("0d57629c7d6e484797cb9e2fc25083fe");

Console.WriteLine (g1 == g2); [/ True
Being a struct, a Guid honors value-type semantics; hence, the equality operator
works in the preceding example.

The ToByteArray method converts a Guid to a byte array.

The static Guid.Empty property returns an empty Guid (all zeros). This is often used
in place of null.

Equality Comparison

Until now, we've assumed that the == and != operators are all there is to equality
comparison. The issue of equality, however, is more complex and subtler, sometimes
requiring the use of additional methods and interfaces. This section explores the
standard C# and .NET protocols for equality, focusing particularly on two ques-
tions:

o When are == and != adequate—and inadequate—for equality comparison, and
what are the alternatives?

o How and when should you customize a type’s equality logic?

The Guid Struct | 267

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

But before exploring the details of equality protocols and how to customize them,
we must first look at the preliminary concept of value versus referential equality.

Value Versus Referential Equality

There are two kinds of equality:

Value equality
Two values are equivalent in some sense.

Referential equality
Two references refer to exactly the same object.

By default:

o Value types use value equality.

« Reference types use referential equality.

Value types, in fact, can only use value equality (unless boxed). A simple demonstra-
tion of value equality is to compare two numbers:

int x = 5, y = 5;
Console.WriteLine (x ==y); // True (by virtue of value equality)

A more elaborate demonstration is to compare two DateTimeOffset structs. The
following prints True because the two DateTimeOffsets refer to the same point in
time and so are considered equivalent:

var dtl = new DateTimeOffset (2010, 1, 1, 1, 1, 1, TimeSpan.FromHours(8));
var dt2 = new DateTimeOffset (2010, 1, 1, 2, 1, 1, TimeSpan.FromHours(9));
Console.WriteLine (dtl == dt2); /] True

DateTimeOffset is a struct whose equality semantics have
been tweaked. By default, structs exhibit a special kind of
value equality called structural equality, where two values are
considered equal if all of their members are equal. (You can
see this by creating a struct and calling its Equals method;
more on this later.)

Reference types exhibit referential equality by default. In the following example, f1
and f2 are not equal—despite their objects having identical content:

class Foo { public int X; }

Foo f1 = new Foo { X = 5 };
Foo f2 = new Foo { X = 5 };
Console.WriteLine (f1 == f2); // False

In contrast, f3 and f1 are equal because they reference the same object:

Foo f3 = f1;
Console.WriteLine (f1 == f3); // True

268 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

We'll explain later in this section how reference types can be customized to exhibit
value equality. An example of this is the Uri class in the System namespace:

Uri uril = new Uri ("http://www.lingpad.net");
Uri uri2 = new Uri ("http://www.lingpad.net");
Console.WriteLine (uril == uri2); /] True

Standard Equality Protocols

There are three standard protocols that types can implement for equality compari-
son:

o The ==and != operators
o The virtual Equals method in object
o The IEquatable<T> interface

In addition, there are the pluggable protocols and the IStructuralEquatable inter-
face that we describe in Chapter 7.

==and!=

We've already seen in many examples how the standard == and != operators per-
form equality/inequality comparisons. The subtleties with == and != arise because
they are operators and so are statically resolved (in fact, they are implemented as
static functions). So, when you use == or !=, C# makes a compile-time decision as
to which type will perform the comparison, and no virtual behavior comes into
play. This is normally desirable. In the following example, the compiler hard-wires
== to the int type because x and y are both int:

int x = 5;
int y = 5;
Console.WriteLine (x == y); /] True

But in the next example, the compiler wires the == operator to the object type:

object x = 5;

object y = 5;

Console.WriteLine (x ==y); // False
Because object is a class (and so a reference type), object’s == operator uses refer-
ential equality to compare x and y. The result is false, because x and y each refer to
different boxed objects on the heap.

The virtual Object.Equals method

To correctly equate x and y in the preceding example, we can use the virtual Equals
method. Equals is defined in System.Object and so is available to all types:

object x = 5;
object y = 5;
Console.WriteLine (x.Equals (y)); /] True

Equality Comparison | 269

www.it-ebooks.info

m
c
S
Qo
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

Equals is resolved at runtime—according to the object’s actual type. In this case, it
calls Int32’s Equals method, which applies value equality to the operands, returning
true. With reference types, Equals performs referential equality comparison by
default; with structs, Equals performs structural comparison by calling Equals on
each of its fields.

Why the Complexity?

You might wonder why the designers of C# didn't avoid the problem by making ==
virtual, and so functionally identical to Equals. There are three reasons for this:

o If the first operand is null, Equals fails with a NullReferenceException; a static
operator does not.

o Because the == operator is statically resolved, it executes extremely quickly.
This means that you can write computationally intensive code without penalty
—and without needing to learn another language such as C++.

» Sometimes it can be useful to have == and Equals apply different definitions of
equality. We describe this scenario later in this section.

Essentially, the complexity of the design reflects the complexity of the situation: the
concept of equality covers a multitude of scenarios.

Hence, Equals is suitable for equating two objects in a type-agnostic fashion. The
following method equates two objects of any type:

public static bool AreEqual (object objl, object obj2)
=> objl.Equals (obj2);
There is one case, however, in which this fails. If the first argument is null, you get
a NullReferenceException. Here’s the fix:

public static bool AreEqual (object objl, object obj2)

{
if (obj1l == null) return obj2 == null;
return objl.Equals (obj2);

}

Or more succinctly:
public static bool AreEqual (object objl, object obj2)
=> objl == null ? obj2 == null : objl.Equals (obj2);
The static object.Equals method

The object class provides a static helper method that does the work of AreEqual in
the preceding example. Its name is Equals—just like the virtual method—but there’s
no conflict because it accepts two arguments:

public static bool Equals (object objA, object objB)

270 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

This provides a null-safe equality comparison algorithm for when the types are
unknown at compile time. For example:

object x = 3, y = 3;
Console.WriteLine (object.Equals (x, y)); /] True

x = null;
Console.WriteLine (object.Equals (x, y)); // False
y = null;

Console.WriteLine (object.Equals (x, y)); /] True

A useful application is when writing generic types. The following code will not com-
pile if object.Equals is replaced with the == or != operator:

class Test <T>

{
T _value;
public void SetValue (T newValue)
{
if (!object.Equals (newValue, _value))
{
_value = newValue;
OnValueChanged();
}
}
protected virtual void OnValueChanged() { ... }
}

Operators are prohibited here because the compiler cannot bind to the static
method of an unknown type.

A more elaborate way to implement this comparison is with
the EqualityComparer<T> class. This has the advantage of
avoiding boxing:

if (!EqualityComparer<T>.Default.Equals (newValue, _value))

We discuss EqualityComparer<T> in more detail in Chapter 7
(see “Plugging in Equality and Order” on page 327).

T
-
o
3
o
3
o
=
x

m
c
S
Q.
o
3
(]
-]
-
o
0

The static object.ReferenceEquals method

Occasionally, you need to force referential equality comparison. The static
object.ReferenceEquals method does just this:

class Widget { ... }

class Test
{
static void Main()
{
Widget wl = new Widget();
Widget w2 = new Widget();
Console.WriteLine (object.ReferenceEquals (wl, w2)); /| False
}
}

Equality Comparison | 271

www.it-ebooks.info

http://www.it-ebooks.info/

You might want to do this because it’s possible for Widget to override the virtual
Equals method, such that wi.Equals(w2) would return true. Further, it’s possible
for Widget to overload the == operator so that wl==w2 would also return true. In
such cases, calling object.ReferenceEquals guarantees normal referential equality
semantics.

Another way to force referential equality comparison is to cast
the values to object and then apply the == operator.

The IEquatable<T> interface

A consequence of calling object.Equals is that it forces boxing on value types. This
is undesirable in highly performance-sensitive scenarios because boxing is relatively
expensive compared to the actual comparison. A solution was introduced in C# 2.0,
with the IEquatable<T> interface:

public interface IEquatable<T>

{
bool Equals (T other);

}

The idea is that IEquatable<T>, when implemented, gives the same result as calling
object’s virtual Equals method—but more quickly. Most basic .NET types imple-
ment IEquatable<T>. You can use IEquatable<T> as a constraint in a generic type:

class Test<T> where T : IEquatable<T>

{
public bool IskEqual (T a, T b)
{
return a.Equals (b); // No boxing with generic T
}
}

If we remove the generic constraint, the class would still compile, but a.Equals(b)
would instead bind to the slower object.Equals (slower assuming T was a value
type).

When Equals and == are not equal

We said earlier that it's sometimes useful for == and Equals to apply different defini-
tions of equality. For example:

double x = double.NaN;
Console.WriteLine (x == x); // False
Console.WriteLine (x.Equals (x)); /] True

The double type’s == operator enforces that one NaN can never equal anything else
—even another NaN. This is most natural from a mathematical perspective, and it
reflects the underlying CPU behavior. The Equals method, however, is obliged to
apply reflexive equality; in other words:

272 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

x.Equals (x) must always return true.

Collections and dictionaries rely on Equals behaving this way; otherwise, they
could not find an item they previously stored.

Having Equals and == apply different definitions of equality is actually quite rare
with value types. A more common scenario is with reference types and happens
when the author customizes Equals so that it performs value equality while leaving
== to perform (default) referential equality. The StringBuilder class does exactly
this:

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); /| False (referential equality)
Console.WriteLine (sbl.Equals (sb2)); // True (value equality)

Let’s now look at how to customize equality.

Equality and Custom Types

Recall default equality comparison behavior:

o Value types use value equality.

o Reference types use referential equality.
Further:

o A structs Equals method applies structural value equality by default (ie., it
compares each field in the struct).

Sometimes it makes sense to override this behavior when writing a type. There are
two cases for doing so:

o To change the meaning of equality

o To speed up equality comparisons for structs

Changing the meaning of equality

Changing the meaning of equality makes sense when the default behavior of == and
Equals is unnatural for your type and is not what a consumer would expect. An
example is DateTimeOffset, a struct with two private fields: a UTC DateTime and a
numeric integer offset. If you were writing this type, youd probably want to ensure
that equality comparisons considered only the UTC DateTime field and not the off-
set field. Another example is numeric types that support NaN values such as float
and double. If you were implementing such types yourself, youd want to ensure
that NaN-comparison logic was supported in equality comparisons.

Equality Comparison | 273

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

With classes, it's sometimes more natural to offer value equality as the default
instead of referential equality. This is often the case with small classes that hold a
simple piece of data—such as System.Uri (or System.String).

Speeding up equality comparisons with structs

The default structural equality comparison algorithm for structs is relatively slow.
Taking over this process by overriding Equals can improve performance by a factor
of five. Overloading the == operator and implementing IEquatable<T> allows
unboxed equality comparisons, and this can speed things up by a factor of five
again.

Overriding equality semantics for reference types doesn’t ben-
efit performance. The default algorithm for referential equal-
ity comparison is already very fast because it simply compares
two 32- or 64-bit references.

There’s actually another, rather peculiar case for customizing equality, and that’s to
improve a struct’s hashing algorithm for better performance in a hashtable. This
comes of the fact that equality comparison and hashing are joined at the hip. We'll
examine hashing in a moment.

How to override equality semantics

Here is a summary of the steps:

1. Override GetHashCode() and Equals().
2. (Optionally) overload !=and ==.
3. (Optionally) implement IEquatable<T>.

Overriding GetHashCode

It might seem odd that System.Object—with its small footprint of members—
defines a method with a specialized and narrow purpose. GetHashCode is a virtual
method in Object that fits this description—it exists primarily for the benefit of just
the following two types:

System.Collections.Hashtable
System.Collections.Generic.Dictionary<TKey,TValue>

These are hashtables—collections where each element has a key used for storage and
retrieval. A hashtable applies a very specific strategy for efficiently allocating ele-
ments based on their key. This requires that each key have an Int32 number, or
hash code. The hash code need not be unique for each key but should be as varied as
possible for good hashtable performance. Hashtables are considered important
enough that GetHashCode is defined in System.0Object—so that every type can emit
a hash code.

274 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

We describe hashtables in detail in “Dictionaries” on page 314
in Chapter 7.

Both reference and value types have default implementations of GetHashCode,
meaning you don’t need to override this method—unless you override Equals. (And
if you override GetHashCode, you will almost certainly want to also override
Equals.)

Here are the other rules for overriding object.GetHashCode:

o It must return the same value on two objects for which Equals returns true
(hence, GetHashCode and Equals are overridden together).

o It must not throw exceptions.

o It must return the same value if called repeatedly on the same object (unless the
object has changed).

For maximum performance in hashtables, GetHashCode should be written so as to
minimize the likelihood of two different values returning the same hashcode. This
gives rise to the third reason for overriding Equals and GetHashCode on structs,
which is to provide a more efficient hashing algorithm than the default. The default
implementation for structs is at the discretion of the runtime and may be based on
every field in the struct.

In contrast, the default GetHashCode implementation for classes is based on an inter-
nal object token, which is unique for each instance in the CLR’s current implemen-

tation.
If an object’s hashcode changes after it’s been added as a key to
a dictionary, the object will no longer be accessible in the dic-
[tionary. You can preempt this by basing hashcode calculations
on immutable fields.

A complete example illustrating how to override GetHashCode is listed shortly.

Overriding Equals

The axioms for object.Equals are as follows:

« An object cannot equal null (unless it’s a nullable type).

o Equality is reflexive (an object equals itself).

o Equality is commutative (if a.Equals(b), then b.Equals(a)).

o Equality is transitive (if a.Equals(b) and b.Equals(c), then a.Equals(c)).

o Equality operations are repeatable and reliable (they don’t throw exceptions).

Equality Comparison | 275

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-+
o
0

—
u
o
3
o
3
o
9
=

http://www.it-ebooks.info/

Overloading ==and !=

In addition to overriding Equals, you can optionally overload the equality and
inequality operators. This is nearly always done with structs, because the conse-
quence of not doing so is that the == and != operators will simply not work on your
type.

With classes, there are two ways to proceed:

o Leave == and != alone—so that they apply referential equality.

o Overload == and !=in line with Equals.

The first approach is most common with custom types—especially mutable types. It
ensures that your type follows the expectation that == and != should exhibit referen-
tial equality with reference types and this avoids confusing consumers. We saw an
example earlier:

var sbl = new StringBuilder ("foo");

var sb2 = new StringBuilder ("foo");

Console.WriteLine (sbl == sb2); /| False (referential equality)
Console.WriteLine (sb1l.Equals (sb2)); // True (value equality)

The second approach makes sense with types for which a consumer would never

want referential equality. These are typically immutable—such as the string and
System.Ur1i classes—and are sometimes good candidates for structs.

Although it’s possible to overload != such that it means some-
thing other than ! (==), this is almost never done in practice,
except in cases such as comparing float.NaN.

Implementing IEquatable<T>

For completeness, its also good to implement IEquatable<T> when overriding
Equals. Its results should always match those of the overridden object’s Equals
method. Implementing IEquatable<T> comes at no programming cost if you struc-
ture your Equals method implementation, as in the following example.

An example: The Area struct

Imagine we need a struct to represent an area whose width and height are inter-
changeable. In other words, 5 x 10 is equal to 10 x 5. (Such a type would be suitable
in an algorithm that arranges rectangular shapes.)

Here’s the complete code:

public struct Area : IEquatable <Area>

{
public readonly int Measurel;
public readonly int Measure2;

public Area (int m1, int m2)

276 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

{
Measurel = Math.Min (m1, m2);

Measure2 = Math.Max (m1, m2);
}

public override bool Equals (object other)
{

if (!(other is Area)) return false;
return Equals ((Area) other); // Calls method below

}

public bool Equals (Area other) // Implements IEquatable<Area>
=> Measurel == other.Measurel && Measure2 == other.Measure2;

public override int GetHashCode()
=> Measure2 * 31 + Measurel; // 31 = some prime number

public static bool operator == (Area al, Area a2) => al.Equals (a2);

public static bool operator != (Area al, Area a2) => !al.Equals (a2);

Here’s another way to implement the Equals method, leverag-
ing nullable types:

Area? otherArea = other as Area?;
return otherArea.HasValue && Equals (otherArea.Value);

In implementing GetHashCode, we've helped to improve the likelihood of unique-
ness by multiplying the larger measure by some prime number (ignoring any over-
flow) before adding the two together. When there are more than two fields, the fol-
lowing pattern, suggested by Josh Bloch, gives good results while being performant:

int hash = 17; // 17 = some prime number
hash = hash * 31 + fieldl.GetHashCode(); // 31 = another prime number
hash = hash * 31 + field2.GetHashCode();

hash = hash * 31 + field3.GetHashCode();

g
5T
o
v 3
30
53
S
(7]

;ééurn hash;
(See http://albahari.com/hashprimes for a link to a discussion on primes and
hashcodes.)

Here’s a demo of the Area struct:

Area al = new Area (5, 10);
Area a2 = new Area (10, 5);
Console.WriteLine (al.Equals (a2)); /] True
Console.WriteLine (al == a2); /] True

Pluggable equality comparers

If you want a type to take on different equality semantics just for a particular sce-
nario, you can use a pluggable IEqualityComparer. This is particularly useful in

Equality Comparison | 277

www.it-ebooks.info

http://albahari.com/hashprimes
http://www.it-ebooks.info/

conjunction with the standard collection classes, and we describe it in the following
chapter, in “Plugging in Equality and Order” on page 327.

Order Comparison

As well as defining standard protocols for equality, C# and .NET define standard
protocols for determining the order of one object relative to another. The basic pro-
tocols are:

o The IComparable interfaces (IComparable and IComparable<T>)

o The > and < operators

The IComparable interfaces are used by general-purpose sorting algorithms. In the
following example, the static Array.Sort method works because System.String
implements the IComparable interfaces:

string[] colors = { "Green", "Red", "Blue" };
Array.Sort (colors);
foreach (string c in colors) Console.Write (c + " "); // Blue Green Red

The < and > operators are more specialized, and they are intended mostly for
numeric types. Because they are statically resolved, they can translate to highly effi-
cient bytecode, suitable for computationally intensive algorithms.

The .NET Framework also provides pluggable ordering protocols, via the ICom
parer interfaces. We describe these in the final section of Chapter 7.

IComparable

The IComparable interfaces are defined as follows:
public interface IComparable { int CompareTo (object other); }
public interface IComparable<in T> { int CompareTo (T other); }

The two interfaces represent the same functionality. With value types, the generic
type-safe interface is faster than the nongeneric interface. In both cases, the Compar
eTo method works as follows:

o If a comes after b, a.CompareTo(b) returns a positive number.

o If ais the same as b, a.CompareTo(b) returns 0.

o If a comes before b, a.CompareTo(b) returns a negative number.

For example:

Console.WriteLine ("Beck".CompareTo ("Anne")); /] 1

Console.WriteLine ("Beck".CompareTo ("Beck")); /] 0

Console.WriteLine ("Beck".CompareTo ("Chris")); /] -1
278 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Most of the base types implement both IComparable interfaces. These interfaces are
also sometimes implemented when writing custom types. An example is given
shortly.

IComparable versus Equals

Consider a type that both overrides Equals and implements the IComparable inter-
faces. Youd expect that when Equals returns true, CompareTo should return 0. And
youd be right. But here’s the catch:

o When Equals returns false, CompareTo can return what it likes (as long as it’s
internally consistent)!

In other words, equality can be “fussier” than comparison, but not vice versa (vio-
late this and sorting algorithms will break). So, CompareTo can say “All objects are
equal” while Equals says “But some are more equal than others!”

A great example of this is System.String. String’s Equals method and == operator
use ordinal comparison, which compares the Unicode point values of each charac-
ter. Its CompareTo method, however, uses a less fussy culture-dependent comparison.
On most computers, for instance, the strings “U” and “0” are different according to
Equals, but the same according to CompareTo.

In Chapter 7, we discuss the pluggable ordering protocol, IComparer, which allows
you to specify an alternative ordering algorithm when sorting or instantiating a sor-
ted collection. A custom IComparer can further extend the gap between CompareTo
and Equals—a case-insensitive string comparer, for instance, will return 0 when
comparing "A" and "a". The reverse rule still applies, however: CompareTo can
never be fussier than Equals.

When implementing the IComparable interfaces in a custom
type, you can avoid running afoul of this rule by writing the
first line of CompareTo as follows:

if (Equals (other)) return 0;

After that, it can return what it likes, as long as it’s consistent!

<and >

Some types define < and > operators. For instance:
bool after2010 = DateTime.Now > new DateTime (2010, 1, 1);

You can expect the < and > operators, when implemented, to be functionally consis-
tent with the IComparable interfaces. This is standard practice across the .NET
Framework.

It’s also standard practice to implement the IComparable interfaces whenever < and
> are overloaded, although the reverse is not true. In fact, most .NET types that

Order Comparison | 279

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

implement IComparable do not overload < and >. This differs from the situation
with equality, where it's normal to overload == when overriding Equals.

Typically, > and < are overloaded only when:
« A type has a strong intrinsic concept of “greater than” and “less than” (versus
IComparable’s broader concepts of “comes before” and “comes after”).
o There is only one way or context in which to perform the comparison.
o The result is invariant across cultures.
System.String doesn’t satisfy the last point: the results of string comparisons can
vary according to language. Hence, string doesn’t support the > and < operators:

bool error = "Beck" > "Anne"; // Compile-time error

Implementing the IComparable Interfaces

In the following struct, representing a musical note, we implement the IComparable
interfaces, as well as overloading the < and > operators. For completeness, we also
override Equals/GetHashCode and overload == and !=:

public struct Note : IComparable<Note>, IEquatable<Note>, IComparable
{

int _semitonesFromA;
public int SemitonesFromA { get { return _semitonesFromA; } }

public Note (int semitonesFromA)

{
_semitonesFromA = semitonesFromA;
}
public int CompareTo (Note other) // Generic IComparable<T>
{

if (Equals (other)) return 0; // Fail-safe check
return _semitonesFromA.CompareTo (other._semitonesFromA);

}

int IComparable.CompareTo (object other) // Nongeneric IComparable

{
if (!(other is Note))
throw new InvalidOperationException ("CompareTo: Not a note");
return CompareTo ((Note) other);

}

public static bool operator < (Note n1, Note n2)
=> nl.CompareTo (n2) < 0;

public static bool operator > (Note n1, Note n2)
=> nl.CompareTo (n2) > 0;

public bool Equals (Note other) // for IEquatable<Note>
=> _semitonesFromA == other._semitonesFromA;

280 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

public override bool Equals (object other)

if (!(other is Note)) return false;
return Equals ((Note) other);
}

public override int GetHashCode() => _semitonesFromA.GetHashCode();
public static bool operator == (Note n1, Note n2) => nl.Equals (n2);

public static bool operator != (Note n1, Note n2) => !(nl == n2);
}

Utility Classes

Console

The static Console class handles standard input/output for console-based applica-
tions. In a command-line (console) application, the input comes from the keyboard
via Read, ReadKey, and ReadLine, and the output goes to the text window via Write
and WriteLine. You can control the window’s position and dimensions with the
properties WindowLeft, WindowTop, WindowHeight, and WindowWidth. You can also
change the BackgroundColor and ForegroundColor properties and manipulate the
cursor with the CursorLeft, CursorTop, and CursorSize properties:

Console.WindowWidth = Console.LargestWindowWidth;
Console.ForegroundColor = ConsoleColor.Green;
Console.Write ("test... 50%");

Console.CursorLeft -= 3;

Console.Write ("90%"); /] test... 90%

The Write and WriteLine methods are overloaded to accept a composite format
string (see String.Format in “String and Text Handling” on page 213). However,
neither method accepts a format provider, so youre stuck with CultureInfo.Cur
rentCulture. (The workaround, of course, is to explicitly call string.Format.)

The Console.Out property returns a TextWriter. Passing Console.Out to a method
that expects a TextWriter is a useful way to get that method to write to the Console
for diagnostic purposes.

You can also redirect the Console’s input and output streams via the SetIn and Set
Out methods:

// First save existing output writer:
System.IO.TextWriter oldOut = Console.Out;

// Redirect the console's output to a file:
using (System.IO.TextWriter w = System.IO0.File.CreateText
("e:\\output.txt"))

{
Console.SetOut (w);

Utility Classes | 281

www.it-ebooks.info

m
c
S
Q.
o
3
(]
-]
-
o
0

—
u
o
3
o
3
o
9
>

http://www.it-ebooks.info/

Console.WriteLine ("Hello world");

}

// Restore standard console output
Console.SetOut (oldOut);

// Open the output.txt file in Notepad:
System.Diagnostics.Process.Start ("e:\\output.txt");

In Chapter 15, we describe how streams and text writers work.

When running WPF or Windows Forms applications under
Visual Studio, the Console’s output is automatically redirected
to Visual Studios output window (in debug mode). This can
make Console.Write useful for diagnostic purposes; although
in most cases, the Debug and Trace classes in the System.Diag
nostics namespace are more appropriate (see Chapter 13).

Environment

The static System.Environment class provides a range of useful properties:

Files and folders
CurrentDirectory, SystemDirectory, CommandLine

Computer and operating system
MachineName, ProcessorCount, OSVersion, NewLine

User logon

UserName, UserInteractive, UserDomainName
Diagnostics

TickCount, StackTrace, WorkingSet, Version

You can obtain additional folders by calling GetFolderPath; we describe this in
“File and Directory Operations” on page 650 in Chapter 15.

You can access OS environment variables (what you see when you type “set” at the
command prompt) with the following three methods: GetEnvironmentVariable,
GetEnvironmentVariables, and SetEnvironmentVariable.

The ExitCode property lets you set the return code, for when your program is called
from a command or batch file, and the FailFast method terminates a program
immediately, without performing cleanup.

The Environment class available to Windows Store apps offers just a limited number
of members (ProcessorCount, NewLine, and FailFast).

Process

The Process class in System.Diagnostics allows you to launch a new process.

282 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

The static Process.Start method has a number of overloads; the simplest accepts a
simple filename with optional arguments:

Process.Start ("notepad.exe");
Process.Start ("notepad.exe", "e:\\file.txt");

You can also specify just a filename, and the registered program for its extension
will be launched:

Process.Start ("e:\\file.txt");

The most flexible overload accepts a ProcessStartInfo instance. With this, you can
capture and redirect the launched process’s input, output, and error output (if you
set UseShellExecute to false). The following captures the output of calling ipcon
fig:

ProcessStartInfo psi = new ProcessStartInfo

{

FileName = "cmd.exe",
Arguments = "/c ipconfig /all",
RedirectStandardOutput = true,
UseShellExecute = false
¥
Process p = Process.Start (psi);
string result = p.StandardOutput.ReadToEnd();
Console.WriteLine (result);

You can do the same to invoke the csc compiler, if you set Filename to the follow-
ing:
psi.FileName = System.IO.Path.Combine (

System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory(),
"csc.exe");

If you don’t redirect output, Process.Start executes the program in parallel to the
caller. If you want to wait for the new process to complete, you can call WaitForExit
on the Process object, with an optional timeout.

The Process class also allows you to query and interact with other processes run-
ning on the computer (see Chapter 13).

For security reasons, the Process class is not available to Win-
! dows Store apps, and you cannot start arbitrary processes.

/ Instead, you must use the Windows.System.Launcher class to
“launch” a URI or file to which you have access, e.g.:

Launcher.LaunchUriAsync (new Uri ("http://albahari.com"));

var file = awalt KnownFolders.DocumentsLibrary
.GetFileAsync ("foo.txt");
Launcher.LaunchFileAsync (file);
This opens the URI or file, using whatever program is associ-
ated with the URI scheme or file extension. Your program
must be in the foreground for this to work.

Utility Classes | 283

www.it-ebooks.info

m
c
S
Qo
)
3
(]
-]
-
o
0

T
-
o
3
o
3
o
=
x

http://www.it-ebooks.info/

AppContext

The System.AppContext class is new to Framework 4.6. It provides a global string-
keyed dictionary of Boolean values and is intended to offer library writers a stan-
dard mechanism for allowing consumers to switch new features on or off. This
untyped approach makes sense with experimental features that you want to keep
undocumented to the majority of users.

The consumer of a library requests that a feature be enabled as follows:
AppContext.SetSwitch ("MyLibrary.SomeBreakingChange", true);
Code inside that library can then check for that switch as follows:

bool isDefined, switchValue;
isDefined = AppContext.TryGetSwitch ("MyLibrary.SomeBreakingChange",
out switchValue);

TryGetSwitch returns false if the switch is undefined; this lets you distinguish an
undefined switch from one whose value is set to false, should this be necessary.

Ironically, the design of TryGetSwitch illustrates how not to
write APIs. The out parameter is unnecessary, and the method
should instead return a nullable bool whose value is true,
false, or null for undefined. This would then enable the fol-
lowing use:

bool switchvValue = AppContext.GetSwitch ("...") ?? false;

284 | Chapter 6: Framework Fundamentals

www.it-ebooks.info

http://www.it-ebooks.info/

Collections

The .NET Framework provides a standard set of types for storing and managing
collections of objects. These include resizable lists, linked lists, sorted and unsorted
dictionaries as well as arrays. Of these, only arrays form part of the C# language; the
remaining collections are just classes you instantiate like any other.

The types in the Framework for collections can be divided into the following
categories:

o Interfaces that define standard collection protocols

 Ready-to-use collection classes (lists, dictionaries, etc.)

o Base classes for writing application-specific collections

This chapter covers each of these categories, with an additional section on the types
used in determining element equality and order.

The collection namespaces are as follows:

Namespace Contains

System.Collections Nongeneric collection classes and interfaces
System.Collections.Specialized Strongly typed nongeneric collection classes
System.Collections.Generic Generic collection classes and interfaces
System.Collections.ObjectModel Proxies and bases for custom collections

System.Collections.Concurrent Thread-safe collections (see Chapter 23)

Enumeration

In computing, there are many different kinds of collections, ranging from simple
data structures, such as arrays or linked lists, to more complex ones, such as red/
black trees and hashtables. Although the internal implementation and external char-

285

www.it-ebooks.info

http://www.it-ebooks.info/

acteristics of these data structures vary widely, the ability to traverse the contents of
the collection is an almost universal need. The Framework supports this need via a
pair of interfaces (IEnumerable, IEnumerator, and their generic counterparts) that
allow different data structures to expose a common traversal API. These are part of
a larger set of collection interfaces, illustrated in Figure 7-1.

|[Enumerator O<t———O |Enumerator<T>

[Enumerable [Enumerable<T> Enumeration only

Nongeneric { Generic

*ICollection<T> has added functionality

Figure 7-1. Collection interfaces

IEnumerable and IEnumerator

The IEnumerator interface defines the basic low-level protocol by which elements
in a collection are traversed—or enumerated—in a forward-only manner. Its decla-
ration is as follows:

public interface IEnumerator

{
bool MoveNext();
object Current { get; }
void Reset();

}

MoveNext advances the current element or “cursor” to the next position, returning
false if there are no more elements in the collection. Current returns the element
at the current position (usually cast from object to a more specific type). MoveNext
must be called before retrieving the first element—this is to allow for an empty col-
lection. The Reset method, if implemented, moves back to the start, allowing the
collection to be enumerated again. Reset exists mainly for COM interop; calling it
directly is generally avoided because it’s not universally supported (and is unneces-
sary in that it’s usually just as easy to instantiate a new enumerator.)

Collections do not usually implement enumerators; instead, they provide enumera-
tors, via the interface IEnumerable:

286 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

public interface IEnumerable

{

IEnumerator GetEnumerator();

}

By defining a single method retuning an enumerator, IEnumerable provides flexibil-
ity in that the iteration logic can be farmed off to another class. Moreover, it means
that several consumers can enumerate the collection at once without interfering
with each other. IEnumerable can be thought of as “IEnumeratorProvider;” and it is
the most basic interface that collection classes implement.

The following example illustrates low-level use of IEnumerable and IEnumerator:
string s = "Hello";

// Because string implements IEnumerable, we can call GetEnumerator():
IEnumerator rator = s.GetEnumerator();

while (rator.MoveNext())
{

char ¢ = (char) rator.Current;
Console.Write (c + ".");

}

// Output: H.e.l.l.o.

However, it’s rare to call methods on enumerators directly in this manner, because
C# provides a syntactic shortcut: the foreach statement. Here’s the same example
rewritten using foreach:

string s = "Hello"; // The String class implements IEnumerable

foreach (char c in s)
Console.Write (c + ".");

IEnumerable<T> and I[Enumerator<T>

IEnumerator and IEnumerable are nearly always implemented in conjunction with
their extended generic versions:

public interface IEnumerator<T> : IEnumerator, IDisposable

{
T Current { get; }

}

public interface IEnumerable<T> : IEnumerable

{

IEnumerator<T> GetEnumerator();

3
By defining a typed version of Current and GetEnumerator, these interfaces
strengthen static type safety, avoid the overhead of boxing with value-type elements,
and are more convenient to the consumer. Arrays automatically implement IEnumer
able<T> (where T is the member type of the array).

Enumeration | 287

www.it-ebooks.info

0
o
)
a
=
o
3
(7]

http://www.it-ebooks.info/

Thanks to the improved static type safety, calling the following method with an
array of characters will generate a compile-time error:

void Test (IEnumerable<int> numbers) { ... }

Its a standard practice for collection classes to publicly expose IEnumerable<T>
while “hiding” the nongeneric IEnumerable through explicit interface implementa-
tion. This is so that if you directly call GetEnumerator (), you get back the type-safe
generic IEnumerator<T>. There are times, though, when this rule is broken for rea-
sons of backward compatibility (generics did not exist prior to C# 2.0). A good
example is arrays—these must return the nongeneric (the nice way of putting it is
“classic”) IEnumerator to avoid breaking earlier code. In order to get a generic
IEnumerator<T>, you must cast to expose the explicit interface:

int[] data = { 1, 2, 3 };
var rator = ((IEnumerable <int>)data).GetEnumerator();

Fortunately, you rarely need to write this sort of code, thanks to the foreach state-
ment.

IEnumerable<T> and IDisposable

IEnumerator<T> inherits from IDisposable. This allows enumerators to hold refer-
ences to resources such as database connections—and ensure that those resources
are released when enumeration is complete (or abandoned partway through). The
foreach statement recognizes this detail and translates this:

foreach (var element in somethingEnumerable) { ... }
into the logical equivalent of this:

using (var rator = somethingEnumerable.GetEnumerator())
while (rator.MoveNext())
{

var element = rator.Current;

}...

The using block ensures disposal—more on IDisposable in Chapter 12.

When to Use the Nongeneric Interfaces

Given the extra type safety of the generic collection interfaces such as IEnumera
ble<T>, the question arises: do you ever need to use the nongeneric IEnumerable (or
ICollection or IList)?

In the case of IEnumerable, you must implement this interface in conjunction with
IEnumerable<T>—because the latter derives from the former. However, it’s very rare
that you actually implement these interfaces from scratch: in nearly all cases, you
can take the higher-level approach of using iterator methods, Collection<T>, and
LINQ.

288 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

So, what about as a consumer? In nearly all cases, you can manage entirely with the
generic interfaces. The nongeneric interfaces are still occasionally useful, though, in
their ability to provide type unification for collections across all element types. The
following method, for instance, counts elements in any collection recursively:

public static int Count (IEnumerable e)

{
int count = 0;
foreach (object element in e)

{

var subCollection = element as IEnumerable;
if (subCollection != null)

count += Count (subCollection);
else

count++;

}

return count;
3
Because C# offers covariance with generic interfaces, it might seem valid to have
this method instead accept IEnumerable<object>. This, however, would fail with
value-type elements and with legacy collections that don’t implement IEnumera
ble<T>— an example is ControlCollection in Windows Forms.

(On a slight tangent, you might have noticed a potential bug in our example: cyclic
references will cause infinite recursion and crash the method. We could fix this most
easily with the use of a HashSet (see “HashSet<T> and SortedSet<T>" on page 312.)

Implementing the Enumeration Interfaces

You might want to implement IEnumerable or IEnumerable<T> for one or more of
the following reasons:

o To support the foreach statement
« To interoperate with anything expecting a standard collection
o To meet the requirements of a more sophisticated collection interface

o To support collection initializers

To implement IEnumerable/IEnumerable<T>, you must provide an enumerator. You
can do this in one of three ways:

o If the class is “wrapping” another collection, by returning the wrapped collec-
tion’s enumerator

 Via an iterator using yield return

« By instantiating your own IEnumerator/IEnumerator<T>implementation

Enumeration | 289

www.it-ebooks.info

0
o
o
o
=
(o)
3
(7]

http://www.it-ebooks.info/

You can also subclass an existing collection: Collection<T> is
designed just for this purpose (see “Customizable Collections
and Proxies” on page 321). Yet another approach is to use the
LINQ query operators that we'll cover in the next chapter.

Returning another collection’s enumerator is just a matter of calling GetEnumerator
on the inner collection. However, this is viable only in the simplest scenarios, where
the items in the inner collection are exactly what are required. A more flexible
approach is to write an iterator, using C#’s yield return statement. An iterator is a
C# language feature that assists in writing collections, in the same way the foreach
statement assists in consuming collections. An iterator automatically handles the
implementation of IEnumerable and IEnumerator—or their generic versions. Here’s
a simple example:

public class MyCollection : IEnumerable

{
int[] data = { 1, 2, 3 };

public IEnumerator GetEnumerator()
{
foreach (int 1 in data)
yield return i;
}
}

Notice the “black magic”: GetEnumerator doesn’t appear to return an enumerator at
all! Upon parsing the yield return statement, the compiler writes a hidden nested
enumerator class behind the scenes and then refactors GetEnumerator to instantiate
and return that class. Iterators are powerful and simple (and are used extensively in
the implementation of LINQ-to-Object’s standard query operators).

Keeping with this approach, we can also implement the generic interface IEnumera
ble<T>:

public class MyGenCollection : IEnumerable<int>

{
int[] data = { 1, 2, 3 };

public IEnumerator<int> GetEnumerator()
{
foreach (int 1 in data)
yield return i;

}
IEnumerator IEnumerable.GetEnumerator() // Explicit implementation
{ // keeps it hidden.
return GetEnumerator();
}
}

Because IEnumerable<T> inherits from IEnumerable, we must implement both the
generic and the nongeneric versions of GetEnumerator. In accordance with stan-
dard practice, we've implemented the nongeneric version explicitly. It can simply

290 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

call the generic GetEnumerator because IEnumerator<T> inherits from IEnumera
tor.

The class we've just written would be suitable as a basis from which to write a more
sophisticated collection. However, if we need nothing above a simple IEnumera
ble<T> implementation, the yield return statement allows for an easier variation.
Rather than writing a class, you can move the iteration logic into a method return-
ing a generic IEnumerable<T> and let the compiler take care of the rest. Here’s an
example:

public class Test

{

public static IEnumerable <int> GetSomeIntegers()
{
yield return 1;
yield return 2;
yield return 3;
}
}

Here’s our method in use:

foreach (int 1 in Test.GetSomelIntegers())
Console.WriteLine (1i);

// Output
1
2
3

The final approach in writing GetEnumerator is to write a class that implements
IEnumerator directly. This is exactly what the compiler does behind the scenes, in
resolving iterators. (Fortunately, it’s rare that you’ll need to go this far yourself.) The
following example defines a collection that’s hardcoded to contain the integers 1, 2,
and 3:

public class MyIntList : IEnumerable

{
int[] data = { 1, 2, 3 };

public IEnumerator GetEnumerator()

{

return new Enumerator (this);

}

0
o
)
a
&
o
3
(7]

class Enumerator : IEnumerator // Define an inner class
{ // for the enumerator.
MyIntList collection;
int currentIndex = -1;

public Enumerator (MyIntList collection)

{

this.collection = collection;

}

Enumeration | 291

www.it-ebooks.info

http://www.it-ebooks.info/

public object Current

{
get
{
if (currentIndex == -1)
throw new InvalidOperationException ("Enumeration not started!");
if (currentIndex == collection.data.Length)
throw new InvalidOperationException ("Past end of list!");
return collection.data [currentIndex];
}
}

public bool MoveNext()
{

if (currentIndex >= collection.data.Length - 1) return false;
return ++currentIndex < collection.data.Length;

}

public void Reset() { currentIndex = -1; }
}
}

Implementing Reset is optional—you can instead throw a Not
SupportedException.

Note that the first call to MoveNext should move to the first (and not the second)
item in the list.

To get on par with an iterator in functionality, we must also implement IEnumera
tor<T>. Here’s an example with bounds checking omitted for brevity:

class MyIntList : IEnumerable<int>

{
int[] data = { 1, 2, 3 };

// The generic enumerator is compatible with both IEnumerable and
// IEnumerable<T>. We implement the nongeneric GetEnumerator method
// explicitly to avoid a naming conflict.

public IEnumerator<int> GetEnumerator() { return new Enumerator(this); }
IEnumerator IEnumerable.GetEnumerator() { return new Enumerator(this); }

class Enumerator : IEnumerator<int>

{
int currentIndex = -1;
MyIntList collection;

public Enumerator (MyIntList collection)
{

this.collection = collection;

}

public int Current => collection.data [currentIndex];

292 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

object IEnumerator.Current => Current;
public bool MoveNext() => ++currentIndex < collection.data.Length;
public void Reset() => currentIndex = -1;

// Given we don't need a Dispose method, it's good practice to
// implement it explicitly, so it's hidden from the public interface.
void IDisposable.Dispose() {}
}
}

The example with generics is faster because IEnumerator<int>.Current doesn’t
require casting from int to object, and so avoids the overhead of boxing.

The ICollection and IList Interfaces

Although the enumeration interfaces provide a protocol for forward-only iteration
over a collection, they don’t provide a mechanism to determine the size of the col-
lection, access a member by index, search, or modify the collection. For such func-
tionality, the .NET Framework defines the ICollection, IList, and IDictionary
interfaces. Each comes in both generic and nongeneric versions; however, the non-
generic versions exist mostly for legacy support.

The inheritance hierarchy for these interfaces was shown in Figure 7-1. The easiest
way to summarize them is as follows:

IEnumerable<T> (and IEnumerable)
Provides minimum functionality (enumeration only)

ICollection<T> (and ICollection)
Provides medium functionality (e.g., the Count property)

IList <T>/IDictionary <K,V> and their nongeneric versions
Provide maximum functionality (including “random” access by index/key)

Its rare that you'll need to implement any of these interfaces.
In nearly all cases when you need to write a collection class,
you can instead subclass Collection<T> (see “Customizable
Collections and Proxies” on page 321). LINQ provides yet
another option that covers many scenarios.

The generic and nongeneric versions differ in ways over and above what you might
expect, particularly in the case of ICollection. The reasons for this are mostly his-
torical: because generics came later, the generic interfaces were developed with the
benefit of hindsight, leading to a different (and better) choice of members. For this
reason, ICollection<T> does not extend ICollection, IList<T> does not extend
IList, and IDictionary<TKey, TValue> does not extend IDictionary. Of course,
a collection class itself is free to implement both versions of an interface if beneficial
(which it often is).

The ICollection and IList Interfaces | 293

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

Another, subtler reason for IList<T> not extending IList is
that casting to IList<T> would then return an interface with
both Add(T) and Add(object) members. This would effec-
tively defeat static type safety, because you could call Add with
an object of any type.

This section covers ICollection<T>, IList<T>, and their nongeneric versions;
“Dictionaries” on page 314 covers the dictionary interfaces.

There is no consistent rationale in the way the words collection
and list are applied throughout the NET Framework. For
instance, since IList<T> is a more functional version of ICol
lection<T>, you might expect the class List<T> to be corre-
spondingly more functional than the class Collection<T>.
This is not the case. It’s best to consider the terms collection
and list as broadly synonymous, except when a specific type is
involved.

ICollection<T> and ICollection

ICollection<T> is the standard interface for countable collections of objects. It pro-
vides the ability to determine the size of a collection (Count), determine whether an
item exists in the collection (Contatins), copy the collection into an array (ToArray),
and determine whether the collection is read-only (IsReadOnly). For writable col-
lections, you can also Add, Remove, and Clear items from the collection. And since it
extends IEnumerable<T>, it can also be traversed via the foreach statement:

public interface ICollection<T> : IEnumerable<T>, IEnumerable

{
int Count { get; }

bool Contains (T item);
void CopyTo (T[] array, int arrayIndex);
bool IsReadOnly { get; }

voild Add(T item);
bool Remove (T item);
void Clear();

}

The nongeneric ICollection is similar in providing a countable collection but
doesn’t provide functionality for altering the list or checking for element member-

ship:

public interface ICollection : IEnumerable

{

int Count { get; }

bool IsSynchronized { get; }

object SyncRoot { get; }

voild CopyTo (Array array, int index);
}

294 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

The nongeneric interface also defines properties to assist with synchronization
(Chapter 14)—these were dumped in the generic version because thread safety is no
longer considered intrinsic to the collection.

Both interfaces are fairly straightforward to implement. If implementing a read-only
ICollection<T>, the Add, Remove, and Clear methods should throw a NotSupporte
dException.

These interfaces are usually implemented in conjunction with either the IList or
the IDictionary interface.

IList<T> and IList

IList<T> is the standard interface for collections indexable by position. In addition
to the functionality inherited from ICollection<T> and IEnumerable<T>, it pro-
vides the ability to read or write an element by position (via an indexer) and insert/
remove by position:

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable

{
T this [int index] { get; set; }
int IndexOf (T item);
voild Insert (int index, T item);
void RemoveAt (int index);

}

The Index0f methods perform a linear search on the list, returning -1 if the speci-
fied item is not found.

The nongeneric version of IList has more members because it inherits less from
ICollection:

public interface IList : ICollection, IEnumerable
{
object this [int index] { get; set }
bool IsFixedSize { get; }
bool IsReadOnly { get; }
int Add (object value);
voild Clear();
bool Contains (object value);
int IndexOf (object value);
void Insert (int index, object value);
void Remove (object value);
voild RemoveAt (int index);

}

The Add method on the nongeneric IList interface returns an integer—this is the
index of the newly added item. In contrast, the Add method on ICollection<T> has
avoid return type.

The general-purpose List<T> class is the quintessential implementation of both
IList<T> and IList. C# arrays also implement both the generic and nongeneric

The ICollection and IList Interfaces | 295

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

ILists (although the methods that add or remove elements are hidden via explicit
interface implementation and throw a NotSupportedException if called).

An ArgumentException is thrown if you try to access a multi-
dimensional array via IList’s indexer. This is a trap when
’ writing methods such as the following:

public object FirstOrNull (IList list)

¢ if (list == null || list.Count == 0) return null;
return list[0];
}
This might appear bulletproof, but it will throw an exception
if called with a multidimensional array. You can test for a mul-
tidimensional array at runtime with this expression (more on
this in Chapter 19):

list.GetType().IsArray && list.GetType().GetArrayRank()>1

IReadOnlyList<T>

In order to interoperate with read-only Windows Runtime collections, Framework
4.5 introduced a new collection interface called IReadOnlyList<T>. This interface is
useful in and of itself and can be considered a cut-down version of IList<T>, expos-
ing just the members required for read-only operations on lists:

public interface IReadOnlyList<out T> : IEnumerable<T>, IEnumerable

{ int Count { get; }
T this[int index] { get; }
}
Because its type parameter is used only in output positions, it's marked as covariant.
This allows a list of cats, for instance, to be treated as a read-only list of animals. In
contrast, T is not marked as covariant with IList<T>, because T is used in both
input and output positions.

IReadOnlyList<T> represents a read-only view of a list. It
doesn’t necessarily imply that the underlying implementation
is read-only.

It would be logical for IList<T> to derive from IReadOnlylList<T>. However,
Microsoft was unable to make this change because doing so would require moving
members from IList<T> to IReadOnlyList<T>, which would introduce a breaking
change into CLR 4.5 (consumers would need to recompile their programs to avoid
runtime errors). Instead, implementers of IList<T> need to manually add IReadOn
lyList<T> to their list of implemented interfaces.

IReadOnlyList<T> maps to the Windows Runtime type IVectorView<T>.

296 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

The Array Class

The Array class is the implicit base class for all single and multidimensional arrays,
and it is one of the most fundamental types implementing the standard collection
interfaces. The Array class provides type unification, so a common set of methods is
available to all arrays, regardless of their declaration or underlying element type.

Since arrays are so fundamental, C# provides explicit syntax for their declaration
and initialization, described in Chapters 2 and 3. When an array is declared using
C#’s syntax, the CLR implicitly subtypes the Array class—synthesizing a pseudotype
appropriate to the array’s dimensions and element types. This pseudotype imple-
ments the typed generic collection interfaces, such as IList<string>.

The CLR also treats array types specially upon construction, assigning them a con-
tiguous space in memory. This makes indexing into arrays highly efficient but pre-
vents them from being resized later on.

Array implements the collection interfaces up to IList<T> in both their generic and
nongeneric forms. IList<T> itself is implemented explicitly, though, to keep Array’s
public interface clean of methods such as Add or Remove, which throw an exception
on fixed-length collections such as arrays. The Array class does actually offer a static
Resize method, although this works by creating a new array and then copying over
each element. As well as being inefficient, references to the array elsewhere in the
program will still point to the original version. A better solution for resizable collec-
tions is to use the List<T> class (described in the following section).

An array can contain value-type or reference-type elements. Value type elements are
stored in place in the array, so an array of three long integers (each 8 bytes) will
occupy 24 bytes of contiguous memory. A reference type element, however, occu-
pies only as much space in the array as a reference (4 bytes in a 32-bit environment
or 8 bytes in a 64-bit environment). Figure 7-2 illustrates the effect, in memory, of
the following program:

StringBuilder[] builders = new StringBuilder [5];
builders [0] = new StringBuilder ("builder1");
builders [1] = new StringBuilder ("builder2");
builders [2] = new StringBuilder ("builder3");

long[] numbers = new long [3];
numbers [0] = 12345;
numbers [1] = 54321;

The Array Class | 297

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

Stack i Heap
32 or 64 bits
<+—>
null|null
builders
«— o on
~ (& [
(5} [} (]
o B~} =}
— — —
~ o —
> > >
e e e
12345 54321 0
numbers
64 bits

Figure 7-2. Arrays in memory

Because Array is a class, arrays are always (themselves) reference types—regardless
of the array’s element type. This means that the statement arrayB = arrayA results
in two variables that reference the same array. Similarly, two distinct arrays will
always fail an equality test—unless you use a custom equality comparer. Framework
4.0 introduced one for the purpose of comparing elements in arrays or tuples which
you can access via the StructuralComparisons type:

object[] a1l = { "string", 123, true };
object[] a2 = { "string", 123, true };

Console.WriteLine (a1l == a2); // False
Console.WriteLine (al.Equals (a2)); // False

IStructuralEquatable sel = ai;
Console.WriteLine (sel.Equals (a2,
StructuralComparisons.StructuralEqualityComparer)); /] True

Arrays can be duplicated with the Clone method: arrayB = arrayA.Clone(). How-
ever, this results in a shallow clone, meaning that only the memory represented by
the array itself is copied. If the array contains value type objects, the values them-
selves are copied; if the array contains reference type objects, just the references are
copied (resulting in two arrays whose members reference the same objects).
Figure 7-3 demonstrates the effect of adding the following code to our example:

StringBuilder[] builders2 = builders;
StringBuilder[] shallowClone = (StringBuilder[]) builders.Clone();

298 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Stack i Heap
J null|null
builders /;l
/ « ~ f2a)
~ ~ ~
(5] (5} (5}
a=} a=} a=}
builders2 2= l=
> > >
S =) L=
null|null
shallowClone

Figure 7-3. Shallow-cloning an array

To create a deep copy—where reference type subobjects are duplicated—you must
loop through the array and clone each element manually. The same rules apply to
other .NET collection types.

Although Array is designed primarily for use with 32-bit indexers, it also has limi-
ted support for 64-bit indexers (allowing an array to theoretically address up to 2%
elements) via several methods that accept both Int32 and Int64 parameters. These
overloads are useless in practice because the CLR does not permit any object—
including arrays—to exceed 2 GB in size (whether running on a 32- or 64-bit envi-
ronment).

Many of the methods on the Array class that you expect to be

instance methods are in fact static methods. This is an odd
/ design decision and means you should check for both static

and instance methods when looking for a method on Array.

Construction and Indexing
The easiest way to create and index arrays is through C#’s language constructs:

int[] myArray = { 1, 2, 3 };
int first = myArray [0];
int last = myArray [myArray.Length - 1];

Alternatively, you can instantiate an array dynamically by calling Array.CreateIn
stance. This allows you to specify element type and rank (number of dimensions)
at runtime—as well as allowing nonzero-based arrays through specifying a lower
bound. Nonzero-based arrays are not CLS (Common Language Specification)-
compliant.

The Array Class | 299

www.it-ebooks.info

0
o
o
o
=
o
3
(7]

http://www.it-ebooks.info/

The GetValue and SetValue methods let you access elements in a dynamically cre-
ated array (they also work on ordinary arrays):

/] Create a string array 2 elements in length:
Array a = Array.CreateInstance (typeof(string), 2);

a.SetvValue ("hi", 0); /] > a[0] = "hi";
a.SetValue ("there", 1); // > a[1] = "there";
string s = (string) a.GetValue (0); /] = s = a[0];

// We can also cast to a C# array as follows:
string[] cSharpArray = (string[]) a;
string s2 = cSharpArray [0];

Zero-indexed arrays created dynamically can be cast to a C# array of a matching or
compatible type (compatible by standard array-variance rules). For example, if
Apple subclasses Fruit, Apple[] can be cast to Fruit[]. This leads to the issue of
why object[] was not used as the unifying array type rather the Array class. The
answer is that object[] is incompatible with both multidimensional and value-type
arrays (and non-zero-based arrays). An int[] array cannot be cast to object[].
Hence, we require the Array class for full type unification.

GetValue and SetValue also work on compiler-created arrays, and they are useful
when writing methods that can deal with an array of any type and rank. For multi-
dimensional arrays, they accept an array of indexers:

public object GetValue (params int[] indices)
public void SetValue (object value, params int[] indices)

The following method prints the first element of any array, regardless of rank:

void WriteFirstValue (Array a)

{

Console.Write (a.Rank + "-dimensional; ");

// The indexers array will automatically initialize to all zeros, so
// passing it into GetValue or SetValue will get/set the zero-based
/] (i.e., first) element in the array.

int[] indexers = new int[a.Rank];
Console.WriteLine ("First value is

}

+ a.GetValue (indexers));

void Demo()

{
int[] oned = {1, 2, 3 };
int[,] twoD = { {5,6}, {8,9} };

WriteFirstValue (oneD); // 1-dimensional; first value is 1
WriteFirstValue (twoD); // 2-dimensional; first value is 5

}

300 | Chapter7:Collections

www.it-ebooks.info

http://www.it-ebooks.info/

For working with arrays of unknown type but known rank,
generics provide an easier and more efficient solution:

voild WriteFirstValue<T> (T[] array)
{
Console.WriteLine (array[0]);

}

SetValue throws an exception if the element is of an incompatible type for the
array.

When an array is instantiated, whether via language syntax or Array.Createln
stance, its elements are automatically initialized. For arrays with reference type ele-
ments, this means writing nulls; for arrays with value type elements, this means call-
ing the value type’s default constructor (effectively “zeroing” the members). The
Array class also provides this functionality on demand via the Clear method:

public static void Clear (Array array, int index, int length);
This method doesn’t affect the size of the array. This is in contrast to the usual use of
Clear (such as in ICollection<T>.Clear), where the collection is reduced to zero
elements.

Enumeration

Arrays are easily enumerated with a foreach statement:
int[] myArray = { 1, 2, 3};
foreach (int val in myArray)
Console.WriteLine (val);
You can also enumerate using the static Array.ForEach method, defined as follows:
public static void ForEach<T> (T[] array, Action<T> action);
This uses an Action delegate, with this signature:
public delegate void Action<T> (T obj);

Here’s the first example rewritten with Array.ForEach:

Array.ForEach (new[] { 1, 2, 3 }, Console.WriteLine);

Length and Rank
Array provides the following methods and properties for querying length and rank:

public int GetLength (int dimension);
public long GetLongLength (int dimension);

public int Length { get; }
public long LongLength { get; }

public int GetLowerBound (int dimension);
public int GetUpperBound (int dimension);

public int Rank { get; } // Returns number of dimensions in array

TheArray Class | 301

www.it-ebooks.info

0
o
)
a
=
o
3
(7]

http://www.it-ebooks.info/

GetLength and GetLongLength return the length for a given dimension (0@ for a
single-dimensional array), and Length and LongLength return the total number of
elements in the array—all dimensions included.

GetLowerBound and GetUpperBound are useful with nonzero indexed arrays. GetUp
perBound returns the same result as adding GetLowerBound to GetLength for any
given dimension.

Searching

The Array class offers a range of methods for finding elements within a one-
dimensional array:

BinarySearch methods
For rapidly searching a sorted array for a particular item

Index0f / LastIndex methods
For searching unsorted arrays for a particular item

Find / FindLast /FindIndex /FindLastIndex / FindAll/Exists / TrueForAll
For searching unsorted arrays for item(s) that satisfy a given Predicate<T>

None of the array searching methods throws an exception if the specified value is
not found. Instead, if an item is not found, methods returning an integer return -1
(assuming a zero-indexed array), and methods returning a generic type return the
type’s default value (e.g., © for an int, or null for a string).

The binary search methods are fast, but they work only on sorted arrays and require
that the elements be compared for order rather than simply equality. To this effect,
the binary search methods can accept an IComparer or IComparer<T> object to arbi-
trate on ordering decisions (see the section “Plugging in Equality and Order” on
page 327 later in this chapter). This must be consistent with any comparer used in
originally sorting the array. If no comparer is provided, the type’s default ordering
algorithm will be applied, based on its implementation of IComparable / ICompara
ble<T>.

The IndexOf and LastIndexOf methods perform a simple enumeration over the
array, returning the position of the first (or last) element that matches the given
value.

The predicate-based searching methods allow a method delegate or lambda expres-
sion to arbitrate on whether a given element is a “match” A predicate is simply a
delegate accepting an object and returning true or false:

public delegate bool Predicate<T> (T object);

In the following example, we search an array of strings for a name containing the

« »

letter “a”:

302 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

static void Main()

{
string[] names = { "Rodney", "Jack", "Jill" };

string match = Array.Find (names, ContainsA);
Console.WriteLine (match); // Jack
}

static bool ContainsA (string name) { return name.Contains ("a"); }
Here’s the same code shortened with an anonymous method:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, delegate (string name)
{ return name.Contains ("a"); });

A lambda expression shortens it further:

string[] names = { "Rodney", "Jack", "Jill" };
string match = Array.Find (names, n => n.Contains ("a")); // Jack

FindAll returns an array of all items satisfying the predicate. In fact, it's equivalent
to Enumerable.Where in the System.Ling namespace, except that FindAll returns
an array of matching items rather than an IEnumerable<T> of the same.

Exists returns true if any array member satisfies the given predicate and is equiva-
lent to Any in System.Linq.Enumerable.

TrueForAll returns true if all items satisfy the predicate, and is equivalent to All in
System.Ling.Enumerable.

Sorting

Array has the following built-in sorting methods:

// For sorting a single array:

public static void Sort<T> (T[] array);
public static void Sort (Array array);

// For sorting a pair of arrays:

0
public static void Sort<TKey,TValue> (TKey[] keys, TValue[] items); g
public static void Sort (Array keys, Array items); 3
Each of these methods is additionally overloaded to also accept: g
int index // Starting index at which to begin sorting
int length // Number of elements to sort
IComparer<T> comparer // Object making ordering decisions

Comparison<T> comparison // Delegate making ordering decisions
The following illustrates the simplest use of Sort:

int[] numbers = { 3, 2, 1 };
Array.Sort (numbers); // Array is now { 1, 2, 3 }

The Array Class | 303

www.it-ebooks.info

http://www.it-ebooks.info/

The methods accepting a pair of arrays work by rearranging the items of each array
in tandem, basing the ordering decisions on the first array. In the next example,
both the numbers and their corresponding words are sorted into numerical order:

int[] numbers = { 3, 2, 1 };
string[] words = { "three", "two", "one" };
Array.Sort (numbers, words);

// numbers array is now { 1, 2, 3 }
// words array is now { "one", "two", "three" }

Array.Sort requires that the elements in the array implement IComparable (see the
section “Order Comparison” on page 278 in Chapter 6). This means that most built-
in C# types (such as integers, as in the preceding example) can be sorted. If the ele-
ments are not intrinsically comparable, or you want to override the default order-
ing, you must provide Sort with a custom comparison provider that reports on the
relative position of two elements. There are ways to do this:

« Via a helper object that implements IComparer /IComparer<T> (see the section
“Plugging in Equality and Order” on page 327 later in this chapter)

o Via a Comparison delegate:

public delegate int Comparison<T> (T x, T y);

The Comparison delegate follows the same semantics as IComparer<T>.CompareTo:
if x comes before y, a negative integer is returned; if x comes after y, a positive inte-
ger is returned; if x and y have the same sorting position, 0 is returned.

In the following example, we sort an array of integers such that the odd numbers
come first:

int[] numbers = { 1, 2, 3, 4, 5 };
Array.Sort (numbers, (x, y) => x %2 ==y %220 : x%2==127?-1:1);

// numbers array is now { 1, 3, 5, 2, 4 }

As an alternative to calling Sort, you can use LINQ’s OrderBy
and ThenBy operators. Unlike Array.Sort, the LINQ opera-
tors don't alter the original array, instead emitting the sorted
result in a fresh IEnumerable<T> sequence.

Reversing Elements

The following Array methods reverse the order of all—or a portion of—elements in
an array:

public static void Reverse (Array array);
public static void Reverse (Array array, int index, int length);

304 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Copying
Array provides four methods to perform shallow copying: Clone, CopyTo, Copy and

ConstrainedCopy. The former two are instance methods; the latter two are static
methods.

The Clone method returns a whole new (shallow-copied) array. The CopyTo and
Copy methods copy a contiguous subset of the array. Copying a multidimensional
rectangular array requires you to map the multidimensional index to a linear index.
For example, the middle square (position[1,1]) in a 3 x 3 array is represented
with the index 4, from the calculation: 1*3 + 1. The source and destination ranges
can overlap without causing a problem.

ConstrainedCopy performs an atomic operation: if all of the requested elements
cannot be successfully copied (due to a type error, for instance), the operation is rol-
led back.

Array also provides a AsReadOnly method that returns a wrapper that prevents ele-
ments from being reassigned.

Converting and Resizing

Array.ConvertAll creates and returns a new array of element type TOutput, calling
the supplied Converter delegate to copy over the elements. Converter is defined as
follows:

public delegate TOutput Converter<TInput,TOutput> (TInput input)
The following converts an array of floats to an array of integers:

float[] reals = { 1.3f, 1.5f, 1.8f };
int[] wholes = Array.ConvertAll (reals, r => Convert.ToInt32 (r));

// wholes array is { 1, 2, 2 }

The Resize method works by creating a new array and copying over the elements,
returning the new array via the reference parameter. However, any references to the
original array in other objects will remain unchanged.

The System.Linq namespace offers an additional buffet of
extension methods suitable for array conversion. These meth-
ods return an IEnumerable<T>, which you can convert back to
an array via Enumerable ’s ToArray method.

Lists, Queues, Stacks, and Sets

The Framework provides a basic set of concrete collection classes that implement
the interfaces described in this chapter. This section concentrates on the list-like col-
lections (versus the dictionary-like collections covered in “Dictionaries” on page
314). As with the interfaces we discussed previously, you usually have a choice of
generic or nongeneric versions of each type. In terms of flexibility and performance,

Lists, Queues, Stacks, and Sets | 305

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

the generic classes win, making their nongeneric counterparts redundant except for
backward compatibility. This differs from the situation with collection interfaces,
where the nongeneric versions are still occasionally useful.

Of the classes described in this section, the generic List class is the most commonly
used.

List<T> and ArrayList

The generic List and nongeneric ArrayList classes provide a dynamically sized
array of objects and are among the most commonly used of the collection classes.
ArrayList implements IList, whereas List<T> implements both IList and
IList<T> (and the new read-only version, IReadOnlyList<T>). Unlike with arrays,
all interfaces are implemented publicly, and methods such as Add and Remove are
exposed and work as you would expect.

Internally, List<T>and ArrayList work by maintaining an internal array of objects,
replaced with a larger array upon reaching capacity. Appending elements is efficient
(since there is usually a free slot at the end), but inserting elements can be slow
(since all elements after the insertion point have to be shifted to make a free slot). As
with arrays, searching is efficient if the BinarySearch method is used on a list that
has been sorted, but is otherwise inefficient because each item must be individually
checked.

List<T> is up to several times faster than ArrayList if T is a
value type because List<T> avoids the overhead of boxing and
unboxing elements.

List<T> and ArrayList provide constructors that accept an existing collection of
elements: these copy each element from the existing collection into the new List<T>
or ArraylList:

public class List<T> : IList<T>, IReadOnlyList<T>

{
public List ();
public List (IEnumerable<T> collection);
public List (int capacity);

// Add+Insert

public void Add (T item);
public void AddRange (IEnumerable<T> collection);
public void Insert (int index, T item);

public void InsertRange (int index, IEnumerable<T> collection);

// Remove
public bool Remove (T item);
public void RemoveAt (int index);

public void RemoveRange (int index, int count);
public int RemoveAll (Predicate<T> match);

// Indexing
public T this [int index] { get; set; }

306 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

public List<T> GetRange (int index, int count);
public Enumerator<T> GetEnumerator();

// Exporting, copying and converting:

public T[] ToArray();

public void CopyTo (T[] array);

public void CopyTo (T[] array, int arrayIndex);

public void CopyTo (int index, T[] array, int arrayIndex, int count);
public ReadOnlyCollection<T> AsReadOnly();

public List<TOutput> ConvertAll<TOutput> (Converter <T,TOutput>

converter);
// Other:
public void Reverse(); // Reverses order of elements in list.
public int Capacity { get;set; } // Forces expansion of internal array.
public voild TrimExcess(); // Trims internal array back to size.
public void Clear(); // Removes all elements, so Count=0.

}

public delegate TOutput Converter <TInput, TOutput> (TInput input);

In addition to these members, List<T> provides instance versions of all of Array’s
searching and sorting methods.

The following code demonstrates List’s properties and methods. See “The Array
Class” on page 297 for examples on searching and sorting:

List<string> words = new List<string>(); // New string-typed list

words.Add ("melon");

words.Add ("avocado");

words.AddRange (new[] { "banana", "plum" });

words.Insert (0, "lemon"); // Insert at start
words.InsertRange (0, new[] { "peach", "nashi" }); // Insert at start

words.Remove ("melon");
words.RemoveAt (3); // Remove the 4th element
words.RemoveRange (0, 2); // Remove first 2 elements

// Remove all strings starting in 'n':

words.RemoveAll (s => s.StartsWith ("n")); E?
o

Console.WriteLine (words [0]); // first word 8

Console.WriteLine (words [words.Count - 1]); // last word g

foreach (string s in words) Console.WriteLine (s); // all words @

List<string> subset = words.GetRange (1, 2); // 2nd->3rd words

string[] wordsArray = words.ToArray(); /] Creates a new typed array

// Copy first two elements to the end of an existing array:
string[] existing = new string [1000];
words.CopyTo (0, existing, 998, 2);

List<string> upperCastWords = words.ConvertAll (s => s.ToUpper());
List<int> lengths = words.ConvertAll (s => s.Length);

Lists, Queues, Stacks, and Sets | 307

www.it-ebooks.info

http://www.it-ebooks.info/

The nongeneric ArrayList class is used mainly for backward compatibility with
Framework 1.x code and requires clumsy casts—as the following example demon-
strates:

ArrayList al = new ArrayList();

al.Add ("hello");

string first = (string) al [0];

string[] strArr = (string[]) al.ToArray (typeof (string));

Such casts cannot be verified by the compiler; the following compiles successfully
but then fails at runtime:

int first = (int) al [0]; // Runtime exception

An ArraylList is functionally similar to List<object>. Both
are useful when you need a list of mixed-type elements that
share no common base type (other than object). A possible
advantage of choosing an ArrayList, in this case, would be if
you need to deal with the list using reflection (Chapter 19).
Reflection is easier with a nongeneric ArrayList than a
List<object>.

If you import the System.Ling namespace, you can convert an ArraylList to a
generic List by calling Cast and then ToList:

ArrayList al = new ArraylList();
al.AddRange (new[] { 1, 5, 9 });
List<int> list = al.Cast<int>().TolList();

Cast and TolL1ist are extension methods in the System.Ling.Enumerable class.

LinkedList<T>

LinkedList<T> is a generic doubly linked list (see Figure 7-4). A doubly linked list
is a chain of nodes in which each references the node before, the node after, and the
actual element. Its main benefit is that an element can always be inserted efficiently
anywhere in the list, since it just involves creating a new node and updating a few
references. However, finding where to insert the node in the first place can be slow,
as there’s no intrinsic mechanism to index directly into a linked list; each node must
be traversed, and binary-chop searches are not possible.

LinkedList<T> implements IEnumerable<T> and ICollection<T> (and their non-
generic versions), but not IList<T>, since access by index is not supported. List
nodes are implemented via the following class:

public sealed class LinkedListNode<T>

{
public LinkedList<T> List { get; }
public LinkedListNode<T> Next { get; }
public LinkedListNode<T> Previous { get; }
public T value { get; set; }

308 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

LinkedList
First
Last
null| Previous Previous Previous Previous
Next |« Next |e¢ Next |e¢ Next null
Value Value Value Value
LinkedListNode LinkedListNode LinkedListNode LinkedListNode

Figure 7-4. LinkedList<T>

When adding a node, you can specify its position either relative to another node or
at the start/end of the list. LinkedList<T> provides the following methods for this:

public void AddFirst(LinkedListNode<T> node);
public LinkedListNode<T> AddFirst (T value);

public void AddLast (LinkedListNode<T> node);
public LinkedListNode<T> AddLast (T value);

public void AddAfter (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddAfter (LinkedListNode<T> node, T value);

public void AddBefore (LinkedListNode<T> node, LinkedListNode<T> newNode);
public LinkedListNode<T> AddBefore (LinkedListNode<T> node, T value);

Similar methods are provided to remove elements:

public void Clear();

public void RemoveFirst();
public void Removelast();

public bool Remove (T value);

public void Remove (LinkedListNode<T> node);
LinkedList<T> has internal fields to keep track of the number of elements in the
list, as well as the head and tail of the list. These are exposed in the following public
properties:

public int Count { get; } /] Fast
public LinkedListNode<T> First { get; } /] Fast
public LinkedListNode<T> Last { get; } /] Fast

LinkedList<T> also supports the following searching methods (each requiring that
the list be internally enumerated):

Lists, Queues, Stacks, and Sets | 309

www.it-ebooks.info

0
o
o
a
=
o
3
(7]

http://www.it-ebooks.info/

public bool Contains (T value);
public LinkedListNode<T> Find (T value);
public LinkedListNode<T> FindLast (T value);

Finally, LinkedList<T> supports copying to an array for indexed processing and
obtaining an enumerator to support the foreach statement:

public void CopyTo (T[] array, int index);
public Enumerator<T> GetEnumerator();

Here’s a demonstration on the use of LinkedList<string>:

var tune = new LinkedList<string>();

tune.AddFirst ("do"); // do

tune.AddLast ("so"); /] do - so

tune.AddAfter (tune.First, "re"); // do - re- so
tune.AddAfter (tune.First.Next, "mi"); // do - re - mi- so
tune.AddBefore (tune.Last, "fa"); // do - re - mi - fa- so
tune.RemoveFirst(); /] re - mi - fa - so
tune.Removelast(); // re - mi - fa

LinkedListNode<string> miNode = tune.Find ("mi");
tune.Remove (miNode); /] re - fa
tune.AddFirst (miNode); // mi- re - fa

foreach (string s in tune) Console.WriteLine (s);

Queue<T> and Queue

Queue<T> and Queue are first-in, first-out (FIFO) data structures, providing meth-
ods to Enqueue (add an item to the tail of the queue) and Dequeue (retrieve and
remove the item at the head of the queue). A Peek method is also provided to return
the element at the head of the queue without removing it, and a Count property
(useful in checking that elements are present before dequeuing).

Although queues are enumerable, they do not implement IList<T>/IList, since
members cannot be accessed directly by index. A ToArray method is provided,
however, for copying the elements to an array where they can be randomly accessed:

public class Queue<T> : IEnumerable<T>, ICollection, IEnumerable
{
public Queue();
public Queue (IEnumerable<T> collection); /| Copies existing elements
public Queue (int capacity); // To lessen auto-resizing
public void Clear();
public bool Contains (T item);
public void CopyTo (T[] array, int arrayIndex);
public int Count { get; }
public T Dequeue();
public void Enqueue (T item);
public Enumerator<T> GetEnumerator(); // To support foreach
public T Peek();

310 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

public T[] ToArray();
public voild TrimExcess();

}

The following is an example of using Queue<int>:

var q = new Queue<int>();
q.Enqueue (10);
q.Enqueue (20);

int[] data = q.ToArray(); // Exports to an array
Console.WriteLine (g.Count); /] 2"
Console.WriteLine (qg.Peek()); // "10"

Console.WriteLine (qg.Dequeue()); // "10"
Console.WriteLine (qg.Dequeue()); // "20"
Console.WriteLine (qg.Dequeue()); // throws an exception (queue empty)

Queues are implemented internally using an array that’s resized as required—much
like the generic List class. The queue maintains indexes that point directly to the
head and tail elements; therefore, enqueuing and dequeuing are extremely quick
operations (except when an internal resize is required).

Stack<T> and Stack

Stack<T> and Stack are last-in, first-out (LIFO) data structures, providing methods
to Push (add an item to the top of the stack) and Pop (retrieve and remove an ele-
ment from the top of the stack). A nondestructive Peek method is also provided, as
is a Count property and a ToArray method for exporting the data for random access:

public class Stack<T> : IEnumerable<T>, ICollection, IEnumerable
{
public Stack();
public Stack (IEnumerable<T> collection); // Copies existing elements
public Stack (int capacity); // Lessens auto-resizing
public void Clear();
public bool Contains (T item);
public void CopyTo (T[] array, int arrayIndex);
public int Count { get; }
public Enumerator<T> GetEnumerator(); // To support foreach
public T Peek();
public T Pop();
public void Push (T item);
public T[] ToArray();
public void TrimExcess();

}

The following example demonstrates Stack<int>:

var s = new Stack<int>();

s.Push (1); // Stack = 1
s.Push (2); // Stack = 1,2
s.Push (3); // Stack = 1,2,3
Console.WriteLine (s.Count); // Prints 3
Console.WriteLine (s.Peek()); // Prints 3, Stack = 1,2,3
Console.WriteLine (s.Pop()); // Prints 3, Stack = 1,2

Lists, Queues, Stacks, and Sets | 311

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

Console.WriteLine (s.Pop()); // Prints 2, Stack =1
Console.WriteLine (s.Pop()); // Prints 1, Stack = <empty>
Console.WriteLine (s.Pop()); // throws exception

Stacks are implemented internally with an array that’s resized as required, as with
Queue<T>and List<T>.

BitArray

A BitArray is a dynamically sized collection of compacted bool values. It is more
memory-efficient than both a simple array of bool and a generic List of bool,
because it uses only one bit for each value, whereas the bool type otherwise occu-
pies one byte for each value.

BitArray’s indexer reads and writes individual bits:

var bits = new BitArray(2);
bits[1] = true;

There are four bitwise operator methods (And, Or, Xor and Not). All but the last
accept another BitArray:

bits.Xor (bits); // Bitwise exclusive-OR bits with itself
Console.WriteLine (bits[1]); /] False

HashSet<T> and SortedSet<T>

HashSet<T> and SortedSet<T> are generic collections new to Framework 3.5 and
4.0, respectively. Both have the following distinguishing features:

o Their Contains methods execute quickly using a hash-based lookup.

o They do not store duplicate elements and silently ignore requests to add dupli-
cates.

 You cannot access an element by position.

SortedSet<T> keeps elements in order, whereas HashSet<T> does not.

The commonality of these types is captured by the interface
ISet<T>.

For historical reasons, HashSet<T> lives in System.Core.dll
(whereas SortedSet<T> and ISet<T> live in System.dll).

HashSet<T> is implemented with a hashtable that stores just keys; SortedSet<T> is
implemented with a red/black tree.

Both collections implement ICollection<T> and offer methods that you would
expect, such as Contatins, Add, and Remove. In addition, there’s a predicate-based
removal method called Removelhere.

312 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

The following constructs a HashSet<char> from an existing collection, tests for
membership, and then enumerates the collection (notice the absence of duplicates):

var letters = new HashSet<char> ("the quick brown fox");

Console.WriteLine (letters.Contains ('t')); /] true
Console.WriteLine (letters.Contains ('j')); /] false

foreach (char c in letters) Console.Write (c); // the quickbrownfx

(The reason we can pass a string into HashSet<char>’s constructor is because
string implements IEnumerable<char>.)

The really interesting methods are the set operations. The following set operations
are destructive, in that they modify the set:

public void UnionWith (IEnumerable<T> other); // Adds
public void IntersectWith (IEnumerable<T> other); // Removes
public void ExceptWith (IEnumerable<T> other); // Removes

public void SymmetricExceptWith (IEnumerable<T> other); // Removes

whereas the following methods simply query the set and so are nondestructive:

public bool IsSubsetOf (IEnumerable<T> other);
public bool IsProperSubsetOf (IEnumerable<T> other);
public bool IsSupersetOf (IEnumerable<T> other);
public bool IsProperSupersetOf (IEnumerable<T> other);
public bool Overlaps (IEnumerable<T> other);
public bool SetEquals (IEnumerable<T> other);

UnionWith adds all the elements in the second set to the original set (excluding
duplicates). IntersectWith removes the elements that are not in both sets. We can
extract all the vowels from our set of characters as follows:

var letters = new HashSet<char> ("the quick brown fox");
letters.IntersectWith ("aeiou");
foreach (char c in letters) Console.Write (c); // euio

ExceptWith removes the specified elements from the source set. Here, we strip all
vowels from the set:

var letters = new HashSet<char> ("the quick brown fox");
letters.ExceptWith ("aeilou");
foreach (char c in letters) Console.Write (c); // th qckbrwnfx

0
o
)
o
=
o
3
(7]

SymmetricExceptWith removes all but the elements that are unique to one set or the
other:

var letters = new HashSet<char> ("the quick brown fox");
letters.SymmetricExceptWith ("the lazy brown fox");
foreach (char c in letters) Console.Write (c); // quicklazy

Note that because HashSet<T> and SortedSet<T> implement IEnumerable<T>, you
can use another type of set (or collection) as the argument to any of the set opera-
tion methods.

Lists, Queues, Stacks, and Sets | 313

www.it-ebooks.info

http://www.it-ebooks.info/

SortedSet<T> offers all the members of HashSet<T>, plus the following:

public virtual SortedSet<T> GetViewBetween (T lowerValue, T upperValue)
public IEnumerable<T> Reverse()

public T Min { get; }

public T Max { get; }

SortedSet<T> also accepts an optional IComparer<T> in its constructor (rather than
an equality comparer).

Here’s an example of loading the same letters into a SortedSet<char>:

var letters = new SortedSet<char> ("the quick brown fox");
foreach (char c in letters) Console.Write (c); // bcefhiknogrtuwx

Following on from this, we can obtain the letters between fand j as follows:

foreach (char c¢ in letters.GetViewBetween ('f', 'j'))
Console.Write (c); // fhi

Dictionaries

A dictionary is a collection in which each element is a key/value pair. Dictionaries
are most commonly used for lookups and sorted lists.

The Framework defines a standard protocol for dictionaries, via the interfaces IDic
tionary and IDictionary <TKey, TValue>, as well as a set of general-purpose dic-
tionary classes. The classes each differ in the following regard:

o Whether or not items are stored in sorted sequence

o Whether or not items can be accessed by position (index) as well as by key

o Whether generic or nongeneric

Whether it’s fast or slow to retrieve items by key from a large dictionary

Table 7-1 summarizes each of the dictionary classes and how they differ in these
respects. The performance times are in milliseconds, to perform 50,000 operations
on a dictionary with integer keys and values, on a 1.5 GHz PC. (The differences in
performance between generic and nongeneric counterparts using the same underly-
ing collection structure are due to boxing, and show up only with value-type ele-
ments.)

314 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-1. Dictionary classes

Internal Retrieve Memory Speed: Speed: Speed:
structure by overhead random sequential retrieval
index? (avg. insertion insertion by key
bytes per
item)
Unsorted
Dictionary <K,V> Hashtable No 22 30 30 20
Hashtable Hashtable No 38 50 50 30
ListDictionary Linked list No 36 50,000 50,000 50,000
OrderedDictionary Hashtable Yes 59 70 70 40
+ array
Sorted
SortedDictionary <K,V> Red/black No 20 130 100 120
tree
SortedList <K,V> 2xArray Yes 2 3,300 30 40
SortedList 2xArray Yes 27 4,500 100 180

In big-O notation, retrieval time by key is:

o O(1) for Hashtable, Dictionary, and OrderedDictionary
o O(log n) for SorteddDictionary and SortedList

o O(n) for ListDictionary (and nondictionary types such as List<T>)
where n is the number of elements in the collection.

IDictionary<TKey, TValue>

IDictionary<TKey,TValue> defines the standard protocol for all key/value-based
collections. It extends ICollection<T> by adding methods and properties to access
elements based on a key of arbitrary type:

0
o
o
Q
=
[e]
3
(7]

public interface IDictionary <TKey, TValue> :
ICollection <KeyValuePair <TKey, TValue>>, IEnumerable
{
bool ContainsKey (TKey key);
bool TryGetValue (TKey key, out TValue value);
void Add (TKey key, Tvalue value);
bool Remove (TKey key);

Tvalue this [TKey key] { get; set; } // Main indexer - by key
ICollection <TKey> Keys { get; } // Returns just keys
ICollection <TValue> Values { get; } // Returns just values

Dictionaries | 315

www.it-ebooks.info

http://www.it-ebooks.info/

From Framework 4.5, there’s also an interface called IReadOn
lyDictionary<TKey,TValue>, which defines the read-only
subset of dictionary members. This maps to the Windows
Runtime type IMapView<K,V> and was introduced primarily
for that reason.

To add an item to a dictionary, you either call Add or use the index’s set accessor—
the latter adds an item to the dictionary if the key is not already present (or updates
the item if it is present). Duplicate keys are forbidden in all dictionary implementa-
tions, so calling Add twice with the same key throws an exception.

To retrieve an item from a dictionary, use either the indexer or the TryGetValue
method. If the key doesn't exist, the indexer throws an exception, whereas TryGet
Value returns false. You can test for membership explicitly by calling Contain
sKey; however, this incurs the cost of two lookups if you then subsequently retrieve
the item.

Enumerating directly over an IDictionary<TKey,TValue> returns a sequence of
KeyValuePatir structs:

public struct KeyValuePair <TKey, TValue>

{
public TKey Key { get; }
public Tvalue Value { get; }
}

You can enumerate over just the keys or values via the dictionary’s Keys/Values
properties.

We demonstrate the use of this interface with the generic Dictionary class in the
following section.

IDictionary

The nongeneric IDictionary interface is the same in principle as IDiction
ary<TKey,TValue>, apart from two important functional differences. It's important
to be aware of these differences, since IDictionary appears in legacy code (includ-
ing the NET Framework itself in places):

o Retrieving a nonexistent key via the indexer returns null (rather than throwing
an exception).

« Contains tests for membership rather than ContainsKey.

Enumerating over a nongeneric IDictionary returns a sequence of DictionaryEn
try structs:

public struct DictionaryEntry

{
public object Key { get; set; }
public object Value { get; set; }
}

316 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Dictionary<TKey,TValue> and Hashtable

The generic Dictionary class is one of the most commonly used collections (along
with the List<T> collection). It uses a hashtable data structure to store keys and val-
ues, and it is fast and efficient.

The nongeneric version of Dictionary<TKey,TValue> is
called Hashtable; there is no nongeneric class called Dictio
nary. When we refer simply to Dictionary, we mean the
generic Dictionary<TKey, TValue> class.

Dictionary implements both the generic and nongeneric IDictionary interfaces,
the generic IDictionary being exposed publicly. Dictionary is, in fact, a “textbook”
implementation of the generic IDictionary.

Here’s how to use it:

var d = new Dictionary<string, int>();

d.Add("One", 1);

d["Two"] = // adds to dictionary because "two" not already present
d["Two"] = 2 // updates dictionary because "two" is now present
d["Three']:

Console.WriteLine (d["Two"]); // Prints "22"
Console.WriteLine (d.ContainsKey ("One")); // true (fast operation)
Console.WriteLine (d.ContainsValue (3)); // true (slow operation)

int val = 0;
if (!d.TryGetvValue ("onE", out val))
Console.WriteLine ("No val"); // "No val" (case sensitive)

/] Three different ways to enumerate the dictionary:

foreach (KeyValuePair<string, int> kv in d) // One ; 1
Console.WriteLine (kv.Key + "; " + kv.Value); /] Two ; 22
/] Three ; 3
foreach (string s in d.Keys) Console.Write (s); // OneTwoThree
Console.WriteLine();
foreach (int 1 in d.values) Console.Write (1); /] 1223

Its underlying hashtable works by converting each element’s key into an integer
hashcode—a pseudounique value—and then applying an algorithm to convert the
hashcode into a hash key. This hash key is used internally to determine which
“bucket” an entry belongs to. If the bucket contains more than one value, a linear
search is performed on the bucket. A good hash function does not strive to return
strictly unique hashcodes (which would usually be impossible); it strives to return
hashcodes that are evenly distributed across the 32-bit integer space. This avoids the
scenario of ending up with a few very large (and inefficient) buckets.

A dictionary can work with keys of any type, providing it’s able to determine equal-
ity between keys and obtain hashcodes. By default, equality is determined via the
key’s object.Equals method, and the pseudounique hashcode is obtained via the

Dictionaries | 317

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

key’s GetHashCode method. This behavior can be changed, either by overriding
these methods or by providing an IEqualityComparer object when constructing the
dictionary. A common application of this is to specify a case-insensitive equality
comparer when using string keys:

var d = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);
We discuss this further in “Plugging in Equality and Order” on page 327.

As with many other types of collections, the performance of a dictionary can be
improved slightly by specifying the collections expected size in the constructor,
avoiding or lessening the need for internal resizing operations.

The nongeneric version is named Hashtable and is functionally similar apart from
differences stemming from it exposing the nongeneric IDictionary interface dis-
cussed previously.

The downside to Dictionary and Hashtable is that the items are not sorted. Fur-
thermore, the original order in which the items were added is not retained. As with
all dictionaries, duplicate keys are not allowed.

When the generic collections were introduced in Framework
2.0, the CLR team chose to name them according to what they
represent (Dictionary, List) rather than how they are inter-
nally implemented (Hashtable, ArrayList). While this is
good because it gives them the freedom to later change the
implementation, it also means that the performance contract
(often the most important criteria in choosing one kind of col-
lection over another) is no longer captured in the name.

OrderedDictionary

An OrderedDictionary is a nongeneric dictionary that maintains elements in the
same order that they were added. With an OrderedDictionary, you can access ele-
ments both by index and by key.

An OrderedDictionary is not a sorted dictionary.

An OrderedDictionary is a combination of a Hashtable and an ArraylList. This
means it has all the functionality of a Hashtable, plus functions such as RemoveAt,
as well as an integer indexer. It also exposes Keys and Values properties that return
elements in their original order.

This class was introduced in .NET 2.0, yet peculiarly, there’s no generic version.

ListDictionary and HybridDictionary

ListDictionary uses a singly linked list to store the underlying data. It doesn’t pro-
vide sorting, although it does preserve the original entry order of the items. ListDic

318 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

tionary is extremely slow with large lists. Its only real “claim to fame” is its effi-
ciency with very small lists (fewer than 10 items).

HybridDictionary is a ListDictionary that automatically converts to a Hashtable
upon reaching a certain size, to address ListDictionary’s problems with perfor-
mance. The idea is to get a low memory footprint when the dictionary is small, and
good performance when the dictionary is large. However, given the overhead in
converting from one to the other—and the fact that a Dictionary is not excessively
heavy or slow in either scenario—you wouldn’t suffer unreasonably by using a Dic
tionary to begin with.

Both classes come only in nongeneric form.

Sorted Dictionaries

The Framework provides two dictionary classes internally structured such that their
content is always sorted by key:

e SortedDictionary<TKey,TValue>
o SortedList<TKey,TValue>!

(In this section, we will abbreviate <TKey, TValue> to <,>.)

SortedDictionary<,> uses a red/black tree: a data structure designed to perform
consistently well in any insertion or retrieval scenario.

SortedList<,> is implemented internally with an ordered array pair, providing fast
retrieval (via a binary-chop search) but poor insertion performance (because exist-
ing values have to be shifted to make room for a new entry).

SortedDictionary<,> is much faster than SortedList<,> at inserting elements in a
random sequence (particularly with large lists). SortedList<,>, however, has an
extra ability: to access items by index as well as by key. With a sorted list, you can go
directly to the nth element in the sorting sequence (via the indexer on the Keys/val
ues properties). To do the same with a SortedDictionary<,>, you must manually
enumerate over # items. (Alternatively, you could write a class that combines a sor-
ted dictionary with a list class.)

None of the three collections allows duplicate keys (as is the case with all dictionar-
ies).

The following example uses reflection to load all the methods defined in Sys
tem.Object into a sorted list keyed by name, and then enumerates their keys and
values:

1 There’s also a functionally identical nongeneric version of this called SortedList.

Dictionaries | 319

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

// MethodInfo is in the System.Reflection namespace
var sorted = new SortedList <string, MethodInfo>();

foreach (MethodInfo m in typeof (object).GetMethods())
sorted [m.Name] = m;

foreach (string name in sorted.Keys)
Console.WriteLine (name);

foreach (MethodInfo m in sorted.Values)
Console.WriteLine (m.Name + " returns a

+ m.ReturnType);
Here’s the result of the first enumeration:

Equals
GetHashCode
GetType
ReferenceEquals
ToString

Here’s the result of the second enumeration:

Equals returns a System.Boolean
GetHashCode returns a System.Int32
GetType returns a System.Type
ReferenceEquals returns a System.Boolean
ToString returns a System.String

Notice that we populated the dictionary through its indexer. If we instead used the
Add method, it would throw an exception because the object class upon which
we're reflecting overloads the Equals method, and you can’t add the same key twice
to a dictionary. By using the indexer, the later entry overwrites the earlier entry, pre-
venting this error.

You can store multiple members of the same key by making
each value element a list:

SortedList <string, List<MethodInfo>>

Extending our example, the following retrieves the MethodInfo whose key is
"GetHashCode", just as with an ordinary dictionary:

Console.WriteLine (sorted ["GetHashCode"]); // Int32 GetHashCode()

So far, everything we've done would also work with a SortedDictionary<,>. The
following two lines, however, which retrieve the last key and value, work only with a
sorted list:

Console.WriteLine (sorted.Keys [sorted.Count - 1]); // ToString
Console.WriteLine (sorted.Values[sorted.Count - 1].IsVirtual); // True

320 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Customizable Collections and Proxies

The collection classes discussed in previous sections are convenient in that they can
be directly instantiated, but they don’t allow you to control what happens when an
item is added to or removed from the collection. With strongly typed collections in
an application, you sometimes need this control—for instance:

o To fire an event when an item is added or removed
« To update properties because of the added or removed item

o To detect an “illegal” add/remove operation and throw an exception (for exam-
ple, if the operation violates a business rule)

The NET Framework provides collection classes for this exact purpose, in the Sys
tem.Collections.ObjectModel namespace. These are essentially proxies or wrap-
pers that implement IList<T> or IDictionary<,> by forwarding the methods
through to an underlying collection. Each Add, Remove, or Clear operation is routed
via a virtual method that acts as a “gateway” when overridden.

Customizable collection classes are commonly used for publicly exposed collec-
tions; for instance, a collection of controls exposed publicly on a System.Win
dows.Form class.

Collection<T> and CollectionBase
The Collection<T> class is a customizable wrapper for List<T>.

As well as implementing IList<T> and IList, it defines four additional virtual
methods and a protected property as follows:

public class Collection<T> :

IList<T>, ICollection<T>, IEnumerable<T>, IList, ICollection, IEnumerable
{

/] ...

protected virtual void ClearItems();

protected virtual void InsertItem (int index, T item);
protected virtual void Removeltem (int index);
protected virtual void SetItem (int index, T item);

protected IList<T> Items { get; }
}

The virtual methods provide the gateway by which you can “hook in” to change or
enhance the list’s normal behavior. The protected Items property allows the imple-
menter to directly access the “inner list”—this is used to make changes internally
without the virtual methods firing.

The virtual methods need not be overridden; they can be left alone until there’s a
requirement to alter the list’s default behavior. The following example demonstrates
the typical “skeleton” use of Collection<T>:

Customizable Collections and Proxies | 321

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

public class Animal

{
public string Name;
public int Popularity;

public Animal (string name, int popularity)
{
Name = name; Popularity = popularity;
}
}

public class AnimalCollection : Collection <Animal>

{
// AnimalCollection is already a fully functioning list of animals.
// No extra code is required.

}

public class Zoo // The class that will expose AnimalCollection.
{ // This would typically have additional members.

public readonly AnimalCollection Animals = new AnimalCollection();

}

class Program

{

static void Main()
{
Zoo zoo = new Zoo();
zoo.Animals.Add (new Animal ("Kangaroo", 10));
zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
foreach (Animal a in zoo.Animals) Console.WriteLine (a.Name);
}
}

As it stands, AnimalCollection is no more functional than a simple List<Animal>;
its role is to provide a base for future extension. To illustrate, we'll now add a Zoo
property to Animal so it can reference the Zoo in which it lives and override each of
the virtual methods in Collection<Animal> to maintain that property automati-
cally:

public class Animal
{
public string Name;
public int Popularity;
public Zoo Zoo { get; internal set; }
public Animal(string name, int popularity)

{
Name = name; Popularity = popularity;
}
}
public class AnimalCollection : Collection <Animal>
{
Z00 z00;

public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

322 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

protected override voild InsertItem (int index, Animal item)

{

base.InsertItem (index, item);
item.Zoo = zoo;

}

protected override voild SetItem (int index, Animal item)

{

base.SetItem (index, item);
item.Zoo = zoo;

}

protected override void RemoveItem (int index)

{
this [index].Zoo = null;
base.Removeltem (index);

}

protected override void ClearItems()

{

foreach (Animal a in this) a.Zoo = null;
base.ClearItems();
}
}

public class Zoo

{

public readonly AnimalCollection Animals;
public Zoo() { Animals = new AnimalCollection (this); }

}

Collection<T> also has a constructor accepting an existing IList<T>. Unlike with
other collection classes, the supplied list is proxied rather than copied, meaning that
subsequent changes will be reflected in the wrapping Collection<T> (although
without Collection<T>’s virtual methods firing). Conversely, changes made via the
Collection<T> will change the underlying list.

CollectionBase

CollectionBase is the nongeneric version of Collection<T> introduced in Frame-
work 1.0. This provides most of the same features as Collection<T> but is clumsier
to use. Instead of the template methods InsertItem, RemoveItem SetItem, and
ClearItem, CollectionBase has “hook” methods that double the number of meth-
ods required: OnInsert, OnInsertComplete, OnSet, OnSetComplete, OnRemove, OnRe
moveComplete, OnClear, and OnClearComplete. Because CollectionBase is nonge-
neric, you must also implement typed methods when subclassing it—at a minimum,
a typed indexer and Add method.

KeyedCollection<TKey, TItem> and DictionaryBase

KeyedCollection<TKey,TItem> subclasses Collection<TItem>. It both adds and
subtracts functionality. What it adds is the ability to access items by key, much like
with a dictionary. What it subtracts is the ability to proxy your own inner list.

Customizable Collections and Proxies | 323

www.it-ebooks.info

0
o
o
o
=
o
3
(7]

http://www.it-ebooks.info/

A keyed collection has some resemblance to an OrderedDictionary in that it com-
bines a linear list with a hashtable. However, unlike OrderedDictionary, it doesn’t
implement IDictionary and doesn’t support the concept of a key/value pair. Keys
are obtained instead from the items themselves: via the abstract GetKeyForItem
method. This means enumerating a keyed collection is just like enumerating an
ordinary list.

KeyedCollection<TKey,TItem> is best thought of as Collection<TItem> plus fast
lookup by key.

Because it subclasses Collection<>, a keyed collection inherits all of Collec
tion<>’s functionality, except for the ability to specify an existing list in construc-
tion. The additional members it defines are as follows:

public abstract class KeyedCollection <TKey, TItem> : Collection <TItem>

/...

protected abstract TKey GetKeyForItem(TItem item);
protected void ChangeItemKey(TItem item, TKey newKey);

// Fast lookup by key - this is in addition to lookup by index.
public TItem this[TKey key] { get; }

protected IDictionary<TKey, TItem> Dictionary { get; }
}

GetKeyForItem is what the implementer overrides to obtain an item’s key from the
underlying object. The ChangeItemKey method must be called if the item’s key prop-
erty changes in order to update the internal dictionary. The Dictionary property
returns the internal dictionary used to implement the lookup, which is created when
the first item is added. This behavior can be changed by specifying a creation
threshold in the constructor, delaying the internal dictionary from being created
until the threshold is reached (in the interim, a linear search is performed if an item
is requested by key). A good reason not to specify a creation threshold is that having
a valid dictionary can be useful in obtaining an ICollection<> of keys, via the Dic
tionary’s Keys property. This collection can then be passed on to a public property.

The most common use for KeyedCollection<,> is in providing a collection of
items accessible both by index and by name. To demonstrate this, we’ll revisit the
zoo, this time implementing AnimalCollection as a KeyedCollection<string,Ani
mal>:

public class Animal
{
string name;
public string Name
{
get { return name; }
set {
if (Zoo != null) Zoo.Animals.NotifyNameChange (this, value);
name = value;

324 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

}

}
public int Popularity;
public Zoo Zoo { get; internal set; }

public Animal (string name, int popularity)

{ Name = name; Popularity = popularity;

}
}
public class AnimalCollection : KeyedCollection <string, Animal>
{

Z00 z00;

public AnimalCollection (Zoo zoo) { this.zoo = zoo; }

internal void NotifyNameChange (Animal a, string newName)

{
this.ChangeItemKey (a, newName);
}
protected override string GetKeyForItem (Animal item)
{
return item.Name;
}

// The following methods would be implemented as in the previous example
protected override void InsertItem (int index, Animal item)...

protected override void SetItem (int index, Animal item)...

protected override void RemoveItem (int index)...

protected override void ClearItems()...

}

public class Zoo

{
public readonly AnimalCollection Animals;
public Zoo() { Animals = new AnimalCollection (this); }

}
0
class Program o
{ 2
static void Main() (=
t
Zoo zoo = new Zoo();
zoo.Animals.Add (new Animal ("Kangaroo", 10));
zoo.Animals.Add (new Animal ("Mr Sea Lion", 20));
Console.WriteLine (zoo.Animals [0].Popularity); // 10
Console.WriteLine (zoo.Animals ["Mr Sea Lion"].Popularity); // 20
zoo.Animals ["Kangaroo"].Name = "Mr Roo";
Console.WriteLine (zoo.Animals ["Mr Roo"].Popularity); // 10
}
}
Customizable Collections and Proxies | 325

www.it-ebooks.info

http://www.it-ebooks.info/

DictionaryBase

The nongeneric version of KeyedCollection is called DictionaryBase. This legacy
class takes very different in its approach: it implements IDictionary and uses
clumsy hook methods like CollectionBase : OnInsert, OnInsertComplete, OnSet,
OnSetComplete, OnRemove, OnRemoveComplete, OnClear, and OnClearComplete (and
additionally, OnGet). The primary advantage of implementing IDictionary over
taking the KeyedCollection approach is that you don't need to subclass it in order
to obtain keys. But since the very purpose of DictionaryBase is to be subclassed, it’s
no advantage at all. The improved model in KeyedCollection is almost certainly
due to the fact that it was written some years later, with the benefit of hindsight.
DictilonaryBase is best considered useful for backward compatibility.

ReadOnlyCollection<T>

ReadOnlyCollection<T> is a wrapper, or proxy, that provides a read-only view of a
collection. This is useful in allowing a class to publicly expose read-only access to a
collection that the class can still update internally.

A read-only collection accepts the input collection in its constructor, to which it
maintains a permanent reference. It doesn't take a static copy of the input collection,
so subsequent changes to the input collection are visible through the read-only
wrapper.

To illustrate, suppose your class wants to provide read-only public access to a list of
strings called Names:

public class Test

{

public List<string> Names { get; private set; }

}

This does only half the job. Although other types cannot reassign the Names prop-
erty, they can still call Add, Remove, or Clear on the list. The ReadOnlyCollec
tion<T> class resolves this:

public class Test

{
List<string> names;
public ReadOnlyCollection<string> Names { get; private set; }

public Test()
{

names = new List<string>();
Names = new ReadOnlyCollection<string> (names);

}

public void AddInternally() { names.Add ("test"); }
}

Now, only members within the Test class can alter the list of names:

326 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

Test t = new Test();

Console.WriteLine (t.Names.Count); /] ©
t.AddInternally();

Console.WriteLine (t.Names.Count); /] 1

t.Names.Add ("test"); // Compiler error

((IList<string>) t.Names).Add ("test"); // NotSupportedException

Plugging in Equality and Order

In the sections “Equality Comparison” on page 267 and “Order Comparison” on
page 278 in Chapter 6, we described the standard .NET protocols that make a type
equatable, hashable, and comparable. A type that implements these protocols can
function correctly in a dictionary or sorted list “out of the box” More specifically:

« A type for which Equals and GetHashCode return meaningful results can be
used as a key in a Dictionary or Hashtable.

« A type that implements IComparable /IComparable<T> can be used as a key in
any of the sorted dictionaries or lists.

A type’s default equating or comparison implementation typically reflects what is
most “natural” for that type. Sometimes, however, the default behavior is not what
you want. You might need a dictionary whose string -type key is treated case-
insensitively. Or you might want a sorted list of customers, sorted by each custom-
er’s postcode. For this reason, the NET Framework also defines a matching set of
“plug-in” protocols. The plug-in protocols achieve two things:

« They allow you to switch in alternative equating or comparison behavior.
o They allow you to use a dictionary or sorted collection with a key type thats

not intrinsically equatable or comparable.

The plug-in protocols consist of the following interfaces:
IEqualityComparer and IEqualityComparer<T>
o Performs plug-in equality comparison and hashing

« Recognized by Hashtable and Dictionary

IComparer and IComparer<T>
o Performs plug-in order comparison

 Recognized by the sorted dictionaries and collections; also, Array. Sort

Each interface comes in both generic and nongeneric forms. The IEqualityCom
parer interfaces also have a default implementation in a class called EqualityCom
parer.

Plugging in Equality and Order | 327

www.it-ebooks.info

0
o
)
o
=
o
3
(7]

http://www.it-ebooks.info/

In addition, in Framework 4.0 we got two new interfaces called IStructuralEquata
ble and IStructuralComparable that allow for the option of structural compari-
sons on classes and arrays.

IEqualityComparer and EqualityComparer

An equality comparer switches in nondefault equality and hashing behavior, pri-
marily for the Dictionary and Hashtable classes.

Recall the requirements of a hashtable-based dictionary. It needs answers to two
questions for any given key:

o Is it the same as another?

o What is its integer hashcode?

An equality comparer answers these questions by implementing the IEqualityCom
parer interfaces:

public interface IEqualityComparer<T>

{
bool Equals (T x, T y);
int GetHashCode (T obj);

}

public interface IEqualityComparer // Nongeneric version

{
bool Equals (object x, object y);
int GetHashCode (object obj);

}

To write a custom comparer, you implement one or both of these interfaces (imple-
menting both gives maximum interoperability). As this is somewhat tedious, an
alternative is to subclass the abstract EqualityComparer class, defined as follows:

public abstract class EqualityComparer<T> : IEqualityComparer,
IEqualityComparer<T>

{
public abstract bool Equals (T x, T y);
public abstract int GetHashCode (T obj);

bool IEqualityComparer.Equals (object x, object y);
int IEqualityComparer.GetHashCode (object obj);

public static EqualityComparer<T> Default { get; }
}

EqualityComparer implements both interfaces; your job is simply to override the
two abstract methods.

The semantics for Equals and GetHashCode follow the same rules for
object.Equals and object.GetHashCode, described in Chapter 6. In the following

328 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

example, we define a Customer class with two fields, and then write an equality
comparer that matches both the first and last names:

public class Customer

{
public string LastName;
public string FirstName;

public Customer (string last, string first)
{
LastName = last;
FirstName = first;
}
}

public class LastFirstEqComparer : EqualityComparer <Customer>

{
public override bool Equals (Customer x, Customer y)
=> X.LastName == y.LastName && x.FirstName == y.FirstName;

public override int GetHashCode (Customer obj)
=> (obj.LastName + ";" + obj.FirstName).GetHashCode();

}

To illustrate how this works, we'll create two customers:

Customer c1 = new Customer ("Bloggs", "Joe");
Customer c2 = new Customer ("Bloggs", "Joe");

Because we've not overridden object.Equals, normal reference type equality
semantics apply:

Console.WriteLine (c1 == c2); // False
Console.WriteLine (cl.Equals (c2)); // False

The same default equality semantics apply when using these customers in a Dictio
nary without specifying an equality comparer:

var d = new Dictilonary<Customer, string>();
d [c1] = "Joe";
Console.WriteLine (d.ContainsKey (c2)); /] False

Now with the custom equality comparer:

var eqComparer = new LastFirstEqComparer();

var d = new Dictionary<Customer, string> (eqComparer);
d [c1] = "Joe";

Console.WriteLine (d.ContainsKey (c2)); /] True

0
o
)
o
=
o
3
(7]

In this example, we would have to be careful not to change the customer’s First
Name or LastName while it was in use in the dictionary. Otherwise, its hashcode
would change and the Dictionary would break.

EqualityComparer<T>.Default

Calling EqualityComparer<T>.Default returns a general-purpose equality com-
parer that can be used as an alternative to the static object.Equals method. The

Plugging in Equality and Order | 329

www.it-ebooks.info

http://www.it-ebooks.info/

advantage is that first checks if T implements IEquatable<T> and if so, calls that
implementation instead, avoiding the boxing overhead. This is particularly useful in
generic methods:

static bool Foo<T> (T x, T y)

{
bool same = EqualityComparer<T>.Default.Equals (x, y);

IComparer and Comparer

Comparers are used to switch in custom ordering logic for sorted dictionaries and
collections.

Note that a comparer is useless to the unsorted dictionaries such as Dictionary and
Hashtable—these require an IEqualityComparer to get hashcodes. Similarly, an
equality comparer is useless for sorted dictionaries and collections.

Here are the IComparer interface definitions:

public interface IComparer

{

int Compare(object x, object y);

}

public interface IComparer <in T>

{
int Compare(T x, T y);

}

As with equality comparers, there’s an abstract class you can subtype instead of
implementing the interfaces:

public abstract class Comparer<T> : IComparer, IComparer<T>

{
public static Comparer<T> Default { get; }

public abstract int Compare (T x, T y); // Implemented by you
int IComparer.Compare (object x, object y); // Implemented for you
}

The following example illustrates a class that describes a wish and a comparer that
sorts wishes by priority:

class Wish

{
public string Name;
public int Priority;

public Wish (string name, int priority)
{
Name = name;
Priority = priority;
}
}

330 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

class PriorityComparer : Comparer <Wish>

{

public override int Compare (Wish x, Wish y)

{
if (object.Equals (x, y)) return 0; // Fail-safe check

return x.Priority.CompareTo (y.Priority);

}
}

The object.Equals check ensures that we can never contradict the Equals method.
Calling the static object.Equals method in this case is better than calling x.Equals
because it still works if x is null!

Here’s how our PriorityComparer is used to sort a List:

var wishList = new List<Wish>();

wishList.Add (new Wish ("Peace", 2));
wishList.Add (new Wish ("Wealth", 3));
wishList.Add (new Wish ("Love", 2));
wishList.Add (new Wish ("3 more wishes", 1));

wishList.Sort (new PriorityComparer());
foreach (Wish w in wishList) Console.Write (w.Name + " | ");

// OUTPUT: 3 more wishes | Love | Peace | Wealth |

In the next example, SurnameComparer allows you to sort surname strings in an
order suitable for a phonebook listing:

class SurnameComparer : Comparer <string>

{

string Normalize (string s)

{
s = s.Trim().ToUpper();
if (s.StartsWith ("MC")) s = "MAC" + s.Substring (2);
return s;

}

public override int Compare (string x, string y)
=> Normalize (x).CompareTo (Normalize (y));

}

Here’s SurnameComparer in use in a sorted dictionary:

0
o
)
a
=
o
3
(7]

var dic = new SortedDictionary<string,string> (new SurnameComparer());
dic.Add ("MacPhail", "second!");

dic.Add ("MacWilliam", "third!");

dic.Add ("McDonald", "first!");

foreach (string s in dic.Values)
Console.Write (s + " "); // first! second! third!

Plugging in Equality and Order | 331

www.it-ebooks.info

http://www.it-ebooks.info/

StringComparer

StringComparer is a predefined plug-in class for equating and comparing strings,
allowing you to specify language and case sensitivity. StringComparer implements
both IEqualityComparer and IComparer (and their generic versions), so it can be
used with any type of dictionary or sorted collection:

// CultureInfo is defined in System.Globalization

public abstract class StringComparer : IComparer, IComparer <string>,
IEqualityComparer,
IEqualityComparer <string>

public abstract int Compare (string x, string y);
public abstract bool Equals (string x, string y);
public abstract int GetHashCode (string obj);

public static StringComparer Create (CultureInfo culture,
bool ignoreCase);
public static StringComparer CurrentCulture { get; }
public static StringComparer CurrentCultureIgnoreCase { get; }
public static StringComparer InvariantCulture { get; }
public static StringComparer InvariantCultureIgnoreCase { get; }
public static StringComparer Ordinal { get; }
public static StringComparer OrdinalIgnoreCase { get; }

}

Because StringComparer is abstract, you obtain instances via its static methods and
properties. StringComparer.Ordinal mirrors the default behavior for string-
equality comparison and StringComparer.CurrentCulture for order comparison.

In the following example, an ordinal case-insensitive dictionary is created, such that
dict["Joe"] and dict["JOE"] mean the same thing:

var dict = new Dictionary<string, int> (StringComparer.OrdinalIgnoreCase);

In the next example, an array of names is sorted, using Australian English:

string[] names = { "Tom", "HARRY", "sheila" };
CultureInfo ci = new CultureInfo ("en-AU");
Array.Sort<string> (names, StringComparer.Create (ci, false));

The final example is a culture-aware version of the SurnameComparer we wrote in
the previous section (to compare names suitable for a phonebook listing):

class SurnameComparer : Comparer <string>

{

StringComparer strCmp;

public SurnameComparer (CultureInfo ci)

{
// Create a case-sensitive, culture-sensitive string comparer
strCmp = StringComparer.Create (ci, false);

}

332 | Chapter7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

string Normalize (string s)

{
s = s.Trim();
if (s.ToUpper().StartsWith ("MC")) s = "MAC" + s.Substring (2);
return s;

}

public override int Compare (string x, string y)

{

// Directly call Compare on our culture-aware StringComparer
return strCmp.Compare (Normalize (x), Normalize (y));

}
}

IStructuralEquatable and IStructuralComparable

As we said in the previous chapter, structs implement structural comparison by
default: two structs are equal if all of their fields are equal. Sometimes, however,
structural equality and order comparison are useful as plug-in options on other
types as well—such as arrays and tuples. Framework 4.0 introduced two new inter-
faces to help with this:

public interface IStructuralEquatable
{

bool Equals (object other, IEqualityComparer comparer);
int GetHashCode (IEqualityComparer comparer);

}

public interface IStructuralComparable

{

int CompareTo (object other, IComparer comparer);

}

The IEqualityComparer/IComparer that you pass in are applied to each individual
element in the composite object. We can demonstrate this using arrays and tuples,
both of which implement these interfaces. In the following example, we compare
two arrays for equality, first using the default Equals method, then using IStructur
alEquatable’s version:

int[] a1 ={1, 2, 3};

int[l] a2 ={1, 2, 3 };

IStructuralEquatable sel = ai;

Console.Write (al.Equals (a2)); // False
Console.Write (sel.Equals (a2, EqualityComparer<int>.Default)); // True

0
o
o
o
=
o
3
(7]

Here’s another example:

string[] a1l = "the quick brown fox".Split();

string[] a2 = "THE QUICK BROWN FOX".Split();

IStructuralEquatable sel = ai;

bool isTrue = sel.Equals (a2, StringComparer.InvariantCultureIgnoreCase);

Plugging in Equality and Order | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Tuples work in the same way:

var t1 = Tuple.Create (1, "foo");

var t2 = Tuple.Create (1, "F00");

IStructuralEquatable sel = t1;

bool isTrue = sel.Equals (t2, StringComparer.InvariantCultureIgnoreCase);
IStructuralComparable scl = ti1;

int zero = scl.CompareTo (t2, StringComparer.InvariantCultureIgnoreCase);

The difference with tuples, though, is that their default equality and order compari-
son implementations also apply structural comparisons:

var t1 = Tuple.Create (1, "F00");
var t2 = Tuple.Create (1, "F00");
Console.WriteLine (tl1.Equals (t2)); // True

334

Chapter 7: Collections

www.it-ebooks.info

http://www.it-ebooks.info/

LINQ Queries

LINQ, or Language Integrated Query, is a set of language and framework features
for writing structured type-safe queries over local object collections and remote data
sources. LINQ was introduced in C# 3.0 and Framework 3.5.

LINQ enables you to query any collection implementing IEnumerable<T>, whether
an array, list, or XML DOM, as well as remote data sources, such as tables in a SQL
Server database. LINQ offers the benefits of both compile-time type checking and
dynamic query composition.

This chapter describes the LINQ architecture and the fundamentals of writing quer-
ies. All core types are defined in the System.Linq and System.Ling.Expressions
namespaces.

The examples in this and the following two chapters are pre-
loaded into an interactive querying tool called LINQPad. You
can download LINQPad from www.lingpad.net.

Getting Started

The basic units of data in LINQ are sequences and elements. A sequence is any object
that implements IEnumerable<T> and an element is each item in the sequence. In
the following example, names is a sequence, and "Tom", "Dick", and "Harry" are ele-
ments:

string[] names = { "Tom", "Dick", "Harry" };

We call this a local sequence because it represents a local collection of objects in
memory.

A query operator is a method that transforms a sequence. A typical query operator
accepts an input sequence and emits a transformed output sequence. In the Enumera
ble class in System.Ling, there are around 40 query operators—all implemented as
static extension methods. These are called standard query operators.

335

www.it-ebooks.info

http://www.linqpad.net
http://www.it-ebooks.info/

Queries that operate over local sequences are called local quer-
ies or LINQ-to-objects queries.

LINQ also supports sequences that can be dynamically fed
from a remote data source, such as a SQL Server database.
These sequences additionally implement the IQueryable<T>
interface and are supported through a matching set of stan-
dard query operators in the Queryable class. We discuss this
further in the section “Interpreted Queries” on page 364 later
in this chapter.

A query is an expression that, when enumerated, transforms sequences with query
operators. The simplest query comprises one input sequence and one operator. For
instance, we can apply the Where operator on a simple array to extract those whose
length is at least four characters as follows:

string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames = System.Linq.Enumerable.Where
(names, n => n.Length >= 4);
foreach (string n in filteredNames)
Console.WriteLine (n);

Dick
Harry

Because the standard query operators are implemented as extension methods, we
can call Where directly on names—as though it were an instance method:

IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);

For this to compile, you must import the System.Linq namespace. Here’s a com-
plete example:

using System;

usign System.Collections.Generic;

using System.Ling;

class LingDemo

{
static void Main()
{
string[] names = { "Tom", "Dick", "Harry" };
IEnumerable<string> filteredNames = names.Where (n => n.Length >= 4);
foreach (string name in filteredNames) Console.WriteLine (name);
}
}
Dick
Harry

336 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

We could further shorten our code by implicitly typing filter
edNames:

var filteredNames = names.Where (n => n.Length >= 4);

This can hinder readability, however, particularly outside of
an IDE, where there are no tool tips to help.

In this chapter, we avoid implicitly typing query results except
when it's mandatory (as we'll see later, in the section “Projec-
tion Strategies” on page 362.), or when a query’s type is irrele-
vant to an example.

Most query operators accept a lambda expression as an argument. The lambda
expression helps guide and shape the query. In our example, the lambda expression
is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argu-
ment n represents each name in the array and is of type string. The Where operator
requires that the lambda expression return a bool value, which if true, indicates
that the element should be included in the output sequence. Here’s its signature:

public static IEnumerable<TSource> Where<TSource>
(this IEnumerable<TSource> source, Func<TSource,bool> predicate)

The following query extracts all names that contain the letter “a”:

IEnumerable<string> filteredNames = names.Where (n => n.Contains ("a"));

foreach (string name in filteredNames)
Console.WriteLine (name); // Harry

So far, we've built queries using extension methods and lambda expressions. As we'll
see shortly, this strategy is highly composable in that it allows the chaining of query
operators. In the book, we refer to this as fluent syntax.! C# also provides another
syntax for writing queries, called query expression syntax. Here’s our preceding
query written as a query expression:

IEnumerable<string> filteredNames = from n in names
where n.Contains ("a")
select n;

Fluent syntax and query syntax are complementary. In the following two sections,
we explore each in more detail.

Fluent Syntax

Fluent syntax is the most flexible and fundamental. In this section, we describe how
to chain query operators to form more complex queries—and show why extension

2r
%z
G
(7]

1 The term is based on Eric Evans & Martin Fowler’s work on fluent interfaces.

FluentSyntax | 337

www.it-ebooks.info

http://www.it-ebooks.info/

methods are important to this process. We also describe how to formulate lambda
expressions for a query operator and introduce several new query operators.

Chaining Query Operators

In the preceding section, we showed two simple queries, each comprising a single
query operator. To build more complex queries, you append additional query oper-
ators to the expression, creating a chain. To illustrate, the following query extracts

all strings containing the letter “a”, sorts them by length, and then converts the
results to uppercase:

using System;

using System.Collections.Generic;

using System.Ling;

class LingDemo

{
static void Main()
{
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query = names
.Where (n => n.Contains ("a"))
.OrderBy (n => n.Length)
.Select (n => n.ToUpper());
foreach (string name in query) Console.WriteLine (name);
}
}
JAY
MARY
HARRY

The variable, n, in our example, is privately scoped to each of
the lambda expressions. We can reuse the identifier n for the
same reason we can reuse the identifier ¢ in the following
method:

void Test()

{
foreach (char c in "stringl") Console.Write (c);
foreach (char c in "string2") Console.Write (c);
foreach (char c in "string3") Console.Write (c);

}

Where, OrderBy, and Select are standard query operators that resolve to extension
methods in the Enumerable class (if you import the System.Linq namespace).

We already introduced the Where operator, which emits a filtered version of the
input sequence. The OrderBy operator emits a sorted version of its input sequence;
the Select method emits a sequence where each input element is transformed or
projected with a given lambda expression (n.ToUpper(), in this case). Data flows

338 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

from left to right through the chain of operators, so the data is first filtered, then
sorted, then projected.

A query operator never alters the input sequence; instead, it
returns a new sequence. This is consistent with the functional
programming paradigm, from which LINQ was inspired.

Here are the signatures of each of these extension methods (with the OrderBy signa-
ture simplified slightly):

public static IEnumerable<TSource> Where<TSource>
(this IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IEnumerable<TSource> OrderBy<TSource,TKey>
(this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

public static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source, Func<TSource,TResult> selector)

When query operators are chained as in this example, the output sequence of one
operator is the input sequence of the next. The complete query resembles a produc-
tion line of conveyor belts, as illustrated in Figure 8-1.

n => n=> n =>
n.Contains ("a") n.Length n.ToUpper ()
4 4 4

=T oo § =
B35S EE
Filter Sorter Projector
.Where() .OrderBy .Select

Figure 8-1. Chaining query operators

We can construct the identical query progressively, as follows:

// You must import the System.Linq namespace for this to compile:

IEnumerable<string> filtered = names .Where (n => n.Contains ("a"));
IEnumerable<string> sorted = filtered.OrderBy (n => n.Length);
IEnumerable<string> finalQuery = sorted .Select (n => n.ToUpper());

finalQuery is compositionally identical to the query we had constructed previously.
Further, each intermediate step also comprises a valid query that we can execute:

foreach (string name in filtered)
Console.Write (name + "|"); // Harry|Mary|Jay|

Console.WriteLine();
foreach (string name in sorted)
Console.Write (name + "|"); // Jay|Mary|Harry|

FluentSyntax | 339

www.it-ebooks.info

o
[=
(]
=3
(]
0

ONI1

http://www.it-ebooks.info/

Console.WriteLine();
foreach (string name in finalQuery)
Console.Write (name + "|"); // JAY|MARY |HARRY |

Why extension methods are important

Instead of using extension method syntax, you can use conventional static method
syntax to call the query operators. For example:

IEnumerable<string> filtered = Enumerable.Where (names,
n => n.Contains ("a"));
IEnumerable<string> sorted = Enumerable.OrderBy (filtered, n => n.Length);
IEnumerable<string> finalQuery = Enumerable.Select (sorted,
n => n.ToUpper());

This is, in fact, how the compiler translates extension method calls. Shunning exten-
sion methods comes at a cost, however, if you want to write a query in a single state-
ment as we did earlier. Let’s revisit the single-statement query—first in extension
method syntax:

IEnumerable<string> query = names.Where (n => n.Contains ("a"))
.0OrderBy (n => n.Length)
.Select (n => n.ToUpper());

Its natural linear shape reflects the left-to-right flow of data, as well as keeping
lambda expressions alongside their query operators (infix notation). Without exten-
sion methods, the query loses its fluency:

IEnumerable<string> query =
Enumerable.Select (
Enumerable.OrderBy (
Enumerable.Where (
names, n => n.Contains ("a")
), n => n.Length
), n => n.ToUpper()
);

Composing Lambda Expressions

In previous examples, we fed the following lambda expression to the Where opera-
tor:

n => n.Contains ("a") // Input type=string, return type=bool.

A lambda expression that takes a value and returns a bool is
called a predicate.

The purpose of the lambda expression depends on the particular query operator.
With the Where operator, it indicates whether an element should be included in the
output sequence. In the case of the OrderBy operator, the lambda expression maps
each element in the input sequence to its sorting key. With the Select operator, the
lambda expression determines how each element in the input sequence is trans-
formed before being fed to the output sequence.

340 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

A lambda expression in a query operator always works on
individual elements in the input sequence—not the sequence
as a whole.

The query operator evaluates your lambda expression upon demand—typically
once per element in the input sequence. Lambda expressions allow you to feed your
own logic into the query operators. This makes the query operators versatile—as
well as being simple under the hood. Here’s a complete implementation of Enumera
ble.Where, exception handling aside:

public static IEnumerable<TSource> Where<TSource>
(this IEnumerable<TSource> source, Func<TSource,bool> predicate)

{

foreach (TSource element in source)
if (predicate (element))
yield return element;

}
Lambda expressions and Func signatures

The standard query operators utilize generic Func delegates. Func is a family of
general-purpose generic delegates in the System namespace, defined with the fol-
lowing intent:

The type arguments in Func appear in the same order they do in lambda
expressions.

Hence, Func<TSource,bool> matches a TSource=>bool lambda expression: one that
accepts a TSource argument and returns a bool value.

Similarly, Func<TSource,TResult> matches a TSource=>TResult lambda expres-
sion.

The Func delegates are listed in the section “Lambda Expressions” on page 143 in
Chapter 4.

Lambda expressions and element typing

The standard query operators use the following type parameter names:

Generic type letter Meaning

TSource Element type for the input sequence
TResult Element type for the output sequence—if different from TSource
TKey Element type for the key used in sorting, grouping, or joining

TSource is determined by the input sequence. TResult and TKey are typically infer-
red from your lambda expression.

For example, consider the signature of the Select query operator:

FluentSyntax | 341

www.it-ebooks.info

ONI1

[»]
c
[}
=
(]
0

http://www.it-ebooks.info/

public static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source, Func<TSource,TResult> selector)

Func<TSource, TResult> matches a TSource=>TResult lambda expression: one that
maps an input element to an output element. TSource and TResult can be different
types, so the lambda expression can change the type of each element. Further, the
lambda expression determines the output sequence type. The following query uses
Select to transform string type elements to integer type elements:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<int> query = names.Select (n => n.Length);

foreach (int length in query)
Console.Write (length + "|"); /] 3141514]3]|

The compiler can infer the type of TResult from the return value of the lambda
expression. In this case, n.Length returns an int value, so TResultis inferred to be
of type int.

The Where query operator is simpler and requires no type inference for the output,
since input and output elements are of the same type. This makes sense because the
operator merely filters elements; it does not transform them:

public static IEnumerable<TSource> Where<TSource>
(this IEnumerable<TSource> source, Func<TSource,bool> predicate)

Finally, consider the signature of the OrderBy operator:

// Slightly simplified:
public static IEnumerable<TSource> OrderBy<TSource,TKey>
(this IEnumerable<TSource> source, Func<TSource,TKey> keySelector)

Func<TSource, TKey> maps an input element to a sorting key. TKey is inferred from
your lambda expression and is separate from the input and output element types.
For instance, we could choose to sort a list of names by length (int key) or alpha-
betically (string key):

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> sortedByLength, sortedAlphabetically;
sortedByLength = names.OrderBy (n => n.Length); // int key
sortedAlphabetically = names.OrderBy (n => n); // string key

You can call the query operators in Enumerable with tradi-
tional delegates that refer to methods instead of lambda
expressions. This approach is effective in simplifying certain
kinds of local queries—particularly with LINQ to XML—and
is demonstrated in Chapter 10. It doesn't work with
IQueryable<T>-based sequences, however (e.g., when query-
ing a database), because the operators in Queryable require
lambda expressions in order to emit expression trees. We dis-
cuss this later in the section “Interpreted Queries” on page
364.

342 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Natural Ordering

The original ordering of elements within an input sequence is significant in LINQ.
Some query operators rely on this ordering, such as Take, Skip, and Reverse.

The Take operator outputs the first x elements, discarding the rest:

int[] numbers = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take (3);

// {10, 9, 8}
The Skip operator ignores the first x elements and outputs the rest:

IEnumerable<int> lastTwo = numbers.Skip (3); /] {7, 6}
Reverse does exactly as it says:

IEnumerable<int> reversed = numbers.Reverse(); // {6, 7,8,9, 10 }

With local queries (LINQ-to-objects), operators such as Where and Select preserve
the original ordering of the input sequence (as do all other query operators, except
for those that specifically change the ordering).

Other Operators

Not all query operators return a sequence. The element operators extract one ele-
ment from the input sequence; examples are First, Last, and ElementAt:

int[] numbers

={10,9,8,7,61;

int firstNumber numbers.First(); // 10
int lastNumber numbers.Last(); /] 6
int secondNumber = numbers.ElementAt(1); /] 9
int secondLowest = numbers.OrderBy(n=>n).Skip(1).First(); // 7

The aggregation operators return a scalar value; usually of numeric type:

int count = numbers.Coun
int min = numbers.Min();

t(); /15;

/] 6;

The quantifiers return a bool value:

bool hasTheNumberNine = numbers.Contains (9); // true
bool hasMoreThanZeroElements = numbers.Any(); // true
bool hasAnOddElement = numbers.Any (n =>n % 2 != 0); // true

Because these operators return a single element, you don’t usually call further query
operators on their result unless that element itself is a collection.

Some query operators accept two input sequences. Examples are Concat, which
appends one sequence to another, and Union, which does the same but with dupli-

cates removed:

int[] seq1i = { 1, 2, 3
int[] seq2 = { 3, 4, 5
IEnumerable<int> concat
IEnumerable<int> union

}
}

>

= seqgl.Concat (seq2);
= seqgl.Union (seq2);

=
%z
G
(7]

www.it-ebooks.info

FluentSyntax | 343

http://www.it-ebooks.info/

The joining operators also fall into this category. Chapter 9 covers all the query
operators in detail.

Query Expressions

C# provides a syntactic shortcut for writing LINQ queries, called query expressions.
Contrary to popular belief, a query expression is not a means of embedding SQL
into C#. In fact, the design of query expressions was inspired primarily by list com-
prehensions from functional programming languages such as LISP and Haskell,
although SQL had a cosmetic influence.

In this book, we refer to query expression syntax simply as
“query syntax.”

In the preceding section, we wrote a fluent-syntax query to extract strings contain-

ing the letter “a”, sorted by length and converted to uppercase. Here’s the same thing
in query syntax:

using System;

using System.Collections.Generic;

using System.Ling;

class LingDemo

{
static void Main()
{
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query =
from n in names
where n.Contains ("a") // Filter elements
orderby n.Length // Sort elements
select n.ToUpper(); // Translate each element (project)
foreach (string name in query) Console.WriteLine (name);
}
}
JAY
MARY
HARRY

Query expressions always start with a from clause and end with either a select or
group clause. The from clause declares a range variable (in this case, n), which you
can think of as traversing the input sequence—rather like foreach. Figure 8-2 illus-
trates the complete syntax as a railroad diagram.

344 | Chapter8:LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

To read this diagram, start at the left and then proceed along
the track as if you were a train. For instance, after the manda-
tory from clause, you can optionally include an orderby,
where, let or join clause. After that, you can either continue
with a select or group clause, or go back and include another
from, orderby, where, let or join clause.

from - identiﬁer) in (enumerable-expr]
i

74
— ascendin \
ing —

orderby expr
A Ldescending—f

b

boolean-expr expr

e 7 3 : "
query continuation
' &
= orderby- =
= clause 3
b5
Y] o
- =
where select =

group-

let identifier
clause

.. _l ;
Join "use group by

v

join [inner] in [inner] on [outer] equals
identifi k ki
identifier expr ey ey into

Figure 8-2. Query syntax

The compiler processes a query expression by translating it into fluent syntax. It
does this in a fairly mechanical fashion—much like it translates foreach statements
into calls to GetEnumerator and MoveNext. This means that anything you can write
in query syntax you can also write in fluent syntax. The compiler (initially) trans-
lates our example query into the following:

IEnumerable<string> query = names.Where (n => n.Contains ("a"))

.0rderBy (n => n.Length)
.Select (n => n.ToUpper());

Query Expressions | 345

www.it-ebooks.info

o
c
(]
=
(]
0

ONI1

http://www.it-ebooks.info/

The Where, OrderBy, and Select operators then resolve using the same rules that
would apply if the query were written in fluent syntax. In this case, they bind to
extension methods in the Enumerable class, since the System.Ling namespace is
imported and names implements IEnumerable<string>. The compiler doesn’t
specifically favor the Enumerable class, however, when translating query expres-
sions. You can think of the compiler as mechanically injecting the words “Where,”
“OrderBy,” and “Select” into the statement, and then compiling it as though youd
typed the method names yourself. This offers flexibility in how they resolve. The
operators in the database queries that we'll write in later sections, for instance, will
bind instead to extension methods in Queryable.

If we remove the using System.Ling directive from our pro-
gram, the query would not compile, since the Where, OrderBy,
and Select methods would have nowhere to bind. Query
expressions cannot compile unless you import System.Ling or
another namespace with an implementation of these query
methods.

Range Variables

The identifier immediately following the from keyword syntax is called the range
variable. A range variable refers to the current element in the sequence that the
operation is to be performed on.

In our examples, the range variable n appears in every clause in the query. And yet,
the variable actually enumerates over a different sequence with each clause:

from n in names // n is our range variable

where n.Contains ("a") // n = directly from the array
orderby n.Length // n = subsequent to being filtered
select n.ToUpper() // n = subsequent to being sorted

This becomes clear when we examine the compiler’s mechanical translation to flu-
ent syntax:

names.Where (n => n.Contains ("a")) // Locally scoped n
.0rderBy (n => n.Length) // Locally scoped n
.Select (n => n.ToUpper()) // Locally scoped n

As you can see, each instance of n is scoped privately to its own lambda expression.
Query expressions also let you introduce new range variables, via the following
clauses:

o let

» into

« An additional from clause

e join

346 | Chapter8:LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

We cover these later in this chapter in the section “Composition Strategies” on page
358, and also in Chapter 9, in the sections “Projecting” on page 394 and “Joining”
on page 394.

Query Syntax Versus SQL Syntax

Query expressions look superficially like SQL, yet the two are very different. A
LINQ query boils down to a C# expression, and so follows standard C# rules. For
example, with LINQ, you cannot use a variable before you declare it. In SQL, you
can reference a table alias in the SELECT clause before defining it in a FROM clause.

A subquery in LINQ is just another C# expression and so requires no special syntax.
Subqueries in SQL are subject to special rules.

With LINQ, data logically flows from left to right through the query. With SQL, the
order is less well-structured with regard data flow.

A LINQ query comprises a conveyor belt, or pipeline, of operators that accept and
emit sequences whose element order can matter. A SQL query comprises a network
of clauses that work mostly with unordered sets.

Query Syntax Versus Fluent Syntax

Query and fluent syntax each have advantages.

Query syntax is simpler for queries that involve any of the following:

« A let clause for introducing a new variable alongside the range variable

o SelectMany, Join, or GroupJoin, followed by an outer range variable reference

(We describe the let clause in the later section, “Composition Strategies” on page
358; we describe SelectMany, Join, and GroupJoin in Chapter 9.)

The middle ground is queries that involve the simple use of Where, OrderBy, and
Select. Either syntax works well; the choice here is largely personal.

For queries that comprise a single operator, fluent syntax is shorter and less clut-
tered.

Finally, there are many operators that have no keyword in query syntax. These
require that you use fluent syntax—at least in part. This means any operator outside
of the following:

Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

Query Expressions | 347

www.it-ebooks.info

o
c
(]
=
(]
0

ONI1

http://www.it-ebooks.info/

Mixed-Syntax Queries

If a query operator has no query-syntax support, you can mix query syntax and flu-
ent syntax. The only restriction is that each query-syntax component must be com-
plete (i.e., start with a from clause and end with a select or group clause).

Assuming this array declaration:
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
the following example counts the number of names containing the letter “a”:

int matches = (from n in names where n.Contains ("a") select n).Count();

/13

The next query obtains the first name in alphabetical order:
string first = (from n in names orderby n select n).First(); // Dick

The mixed-syntax approach is sometimes beneficial in more complex queries. With
these simple examples, however, we could stick to fluent syntax throughout without
penalty:

int matches = names.Where (n => n.Contains ("a")).Count(); /] 3
string first = names.OrderBy (n => n).First(); /] Dick

There are times when mixed-syntax queries offer by far the
highest “bang for the buck” in terms of function and simplic-
ity. It's important not to unilaterally favor either query or flu-
ent syntax; otherwise, you’ll be unable to write mixed-syntax
queries without feeling a sense of failure!

Where applicable, the remainder of this chapter will show key concepts in both flu-
ent and query syntax.

Deferred Execution

An important feature of most query operators is that they execute not when con-
structed, but when enumerated (in other words, when MoveNext is called on its enu-
merator). Consider the following query:

var numbers = new List<int>();
numbers.Add (1);

IEnumerable<int> query = numbers.Select (n => n * 10); // Build query
numbers.Add (2); // Sneak in an extra element

foreach (int n in query)
Console.Write (n + "|"); /] 10]20]

The extra number that we sneaked into the list after constructing the query is
included in the result, since it’s not until the foreach statement runs that any filter-
ing or sorting takes place. This is called deferred or lazy execution and is the same as
what happens with delegates:

348 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Action a = () => Console.WriteLine ("Foo");
// We've not written anything to the Console yet. Now let's run it:
a(); // Deferred execution!

All standard query operators provide deferred execution, with the following excep-
tions:

o Operators that return a single element or scalar value, such as First or Count
o The following conversion operators:

ToArray, TolList, ToDictionary, TolLookup

These operators cause immediate query execution because their result types have no
mechanism for providing deferred execution. The Count method, for instance,
returns a simple integer, which doesn’t then get enumerated. The following query is
executed immediately:

int matches = numbers.Where (n => n < 2).Count(); /] 1

Deferred execution is important because it decouples query construction from query
execution. This allows you to construct a query in several steps, as well as making
database queries possible.

Subqueries provide another level of indirection. Everything in
a subquery is subject to deferred execution—including aggre-
gation and conversion methods. We describe this in the sec-
tion “Subqueries” on page 355 later in this chapter.

Reevaluation

Deferred execution has another consequence: a deferred execution query is reevalu-
ated when you re-enumerate:

var numbers = new List<int>() {1, 2 };

IEnumerable<int> query = numbers.Select (n => n * 10);
foreach (int n in query) Console.Write (n + "|"); // 10]|20]|

numbers.Clear();
foreach (int n in query) Console.Write (n + "|"); // <nothing>

There are a couple of reasons why reevaluation is sometimes disadvantageous:

« Sometimes you want to “freeze” or cache the results at a certain point in time.

 Some queries are computationally intensive (or rely on querying a remote data-
base), so you don’t want to unnecessarily repeat them.

2
%z
G
(7]

You can defeat reevaluation by calling a conversion operator, such as ToArray or
ToList. ToArray copies the output of a query to an array; ToList copies to a generic
List<T>:

Deferred Execution | 349

www.it-ebooks.info

http://www.it-ebooks.info/

var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
.Select (n => n * 10)

.ToList(); // Executes immediately into a List<int>

numbers.Clear();
Console.WriteLine (timesTen.Count); // Still 2

Captured Variables

If your query’s lambda expressions capture outer variables, the query will honor the
value of those variables at the time the query runs:

int[] numbers = { 1, 2 };

int factor = 10;

IEnumerable<int> query = numbers.Select (n => n * factor);
factor = 20;

foreach (int n in query) Console.Write (n + "|"); // 20]40]|

This can be a trap when building up a query within a for loop. For example, sup-
pose we wanted to remove all vowels from a string. The following, although ineffi-
cient, gives the correct result:

IEnumerable<char> query = "Not what you might expect";
query = query.Where (c => c != 'a');
query = query.Where (c => c != 'e');
query = query.Where (c => c != 'i');
query = query.Where (c => c != '0');
query = query.Where (c => c != 'u');

foreach (char c in query) Console.Write (c); // Nt wht y mght xpct
Now watch what happens when we refactor this with a for loop:

IEnumerable<char> query = "Not what you might expect";
string vowels = "aeilou";

for (int 1 = 0; 1 < vowels.Length; i++)
query = query.Where (c => c != vowels[i]);

foreach (char c in query) Console.Write (c);

An IndexOutOfRangeException is thrown upon enumerating the query, because as
we saw in Chapter 4 (see “Capturing Outer Variables” on page 144), the compiler
scopes the iteration variable in the for loop as if it was declared outside the loop.
Hence each closure captures the same variable (1) whose value is 5 when the query
is actually enumerated. To solve this, you must assign the loop variable to another
variable declared inside the statement block:

350 | Chapter8: LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

for (int 1 = 0; 1 < vowels.Length; i++)

{

char vowel = vowels[i];
query = query.Where (c => c != vowel);

}

This forces a fresh local variable to be captured on each loop iteration.

From C# 5.0, another way to solve the problem is to replace
the for loop with a foreach loop:

foreach (char vowel in vowels)
query = query.Where (c => c != vowel);

This works in C# 5.0 but fails in earlier versions of C# for the
reasons we described in Chapter 4.

How Deferred Execution Works
Query operators provide deferred execution by returning decorator sequences.

Unlike a traditional collection class, such as an array or linked list, a decorator
sequence (in general) has no backing structure of its own to store elements. Instead,
it wraps another sequence that you supply at runtime, to which it maintains a per-
manent dependency. Whenever you request data from a decorator, it in turn must
request data from the wrapped input sequence.

The query operator’s transformation constitutes the “decora-
tion” If the output sequence performed no transformation, it
would be a proxy rather than a decorator.

Calling Where merely constructs the decorator wrapper sequence, holding a refer-
ence to the input sequence, the lambda expression, and any other arguments sup-
plied. The input sequence is enumerated only when the decorator is enumerated.

Figure 8-3 illustrates the composition of the following query:

IEnumerable<int> lessThanTen = new int[] { 5, 12, 3 }.Where (n => n < 10);

Where
Array decorator
—
9 PN <«—lessThanTen o
12 n < 10 5
°Z
3 o ©
predicate

Figure 8-3. Decorator sequence

Deferred Execution | 351

www.it-ebooks.info

http://www.it-ebooks.info/

When you enumerate lessThanTen, you're, in effect, querying the array through the
Where decorator.

The good news—if you ever want to write your own query operator—is that imple-
menting a decorator sequence is easy with a C# iterator. Here’s how you can write
your own Select method:

public static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source, Func<TSource,TResult> selector)

{
foreach (TSource element in source)
yield return selector (element);

}

This method is an iterator by virtue of the yield return statement. Functionally,
it’s a shortcut for the following:

public static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source, Func<TSource,TResult> selector)

{

return new SelectSequence (source, selector);

}

where SelectSequence is a (compiler-written) class whose enumerator encapsulates
the logic in the iterator method.

Hence, when you call an operator such as Select or Where, youre doing nothing
more than instantiating an enumerable class that decorates the input sequence.

Chaining Decorators

Chaining query operators creates a layering of decorators. Consider the following
query:

IEnumerable<int> query = new int[] { 5, 12, 3 }.Where (n => n < 10)
.0rderBy (n => n)
.Select (n =>n * 10);

Each query operator instantiates a new decorator that wraps the previous sequence
(rather like a Russian nesting doll). The object model of this query is illustrated in
Figure 8-4. Note that this object model is fully constructed prior to any enumera-
tion.

When you enumerate query, youre querying the original array, transformed
through a layering or chain of decorators.

Adding ToList onto the end of this query would cause the
preceding operators to execute right away, collapsing the
whole object model into a single list.

352 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Requests for data

 EEE—
Where OrderBy Select
Array decorator decorator decorator
[a— —
5 n => n =>
12 n < 10 n * 10
3
predicate keySelector selector
—
Data

v

Lambda
expressions
compiled to

delegates

Figure 8-4. Layered decorator sequences

Figure 8-5 shows the same object composition in UML syntax. Select’s decorator
references the OrderBy decorator, which references Where’s decorator, which refer-
ences the array. A feature of deferred execution is that you build the identical object

model if you compose the query progressively:

(n =>n < 10),

IEnumerable<int>
source = new int[] { 5, 12, 3 },
filtered = source .Where
sorted

= filtered .OrderBy (n => n),

query = sorted .Select (n =>n * 10);
Select decorator g aICs%
.OrderBy decorator oo source
Nl;r:;g;rs Where decorator 3 source selector
5 <= source keySelector
12 -
3 predicate
v
i Lambda —
i expressions
i compiledto [n =>n < 10
i delegates

Figure 8-5. UML decorator composition

www.it-ebooks.info

Deferred Execution |

2r
L =
50
(7]

http://www.it-ebooks.info/

How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query) Console.WritelLine (n);

30
50

Behind the scenes, the foreach calls GetEnumerator on Select’s decorator (the last
or outermost operator), which kicks everything off. The result is a chain of enumer-
ators that structurally mirrors the chain of decorator sequences. Figure 8-6 illus-
trates the flow of execution as enumeration proceeds.

<4— Next— %
<— Next— S
<— Next— 3
<— Next—
— |
— 5 —>
= = le—Net— § o
3 [Next— g @ Y I~
12—, g ~+ 2
2 [+ Net—1 £ 3 s 3
R : -
g gr—3—>z2 8
a g —3—»|=
—30—>
<4— Next—
<— Next—
- 5—»
—— 50—
Data —» <«— Requests for data

Figure 8-6. Execution of a local query

In the first section of this chapter, we depicted a query as a production line of con-
veyor belts. Extending this analogy, we can say a LINQ query is a lazy production
line where the conveyor belts roll elements only upon demand. Constructing a
query constructs a production line—with everything in place—but with nothing
rolling. Then when the consumer requests an element (enumerates over the query),
the rightmost conveyor belt activates; this in turn triggers the others to roll—as and
when input sequence elements are needed. LINQ follows a demand-driven pull
model, rather than a supply-driven push model. This is important—as we’ll see later
—in allowing LINQ to scale to querying SQL databases.

354 | Chapter8: LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Subqueries

A subquery is a query contained within another query’s lambda expression. The fol-
lowing example uses a subquery to sort musicians by their last name:

string[] musos =
{ "David Gilmour", "Roger Waters", "Rick Wright", "Nick Mason" };

IEnumerable<string> query = musos.OrderBy (m => m.Split().Last());

m.Split converts each string into a collection of words, upon which we then call the
Last query operator. m.Split().Last is the subquery; query references the outer
query.

Subqueries are permitted because you can put any valid C# expression on the right-
hand side of a lambda. A subquery is simply another C# expression. This means
that the rules for subqueries are a consequence of the rules for lambda expressions
(and the behavior of query operators in general).

The term subquery, in the general sense, has a broader mean-
ing. For the purpose of describing LINQ, we use the term only
for a query referenced from within the lambda expression of
another query. In a query expression, a subquery amounts to a
query referenced from an expression in any clause except the
from clause.

A subquery is privately scoped to the enclosing expression and is able to reference
parameters in the outer lambda expression (or range variables in a query expres-
sion).

m.Split().Last is a very simple subquery. The next query retrieves all strings in an
array whose length matches that of the shortest string:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> outerQuery = names
.Where (n => n.Length == names.OrderBy (n2 => n2.Length)
.Select (n2 => n2.Length).First());

Tom, Jay
Here’s the same thing as a query expression:

IEnumerable<string> outerQuery =
from n in names
where n.Length ==
(from n2 in names orderby n2.Length select n2.Length).First()
select n;

Because the outer range variable (n) is in scope for a subquery, we cannot reuse n as
the subquery’s range variable.

Subqueries | 355

www.it-ebooks.info

2rc
%z
2 O
(7]

http://www.it-ebooks.info/

A subquery is executed whenever the enclosing lambda expression is evaluated.
This means a subquery is executed upon demand, at the discretion of the outer
query. You could say that execution proceeds from the outside in. Local queries fol-
low this model literally; interpreted queries (e.g., database queries) follow this
model conceptually.

The subquery executes as and when required, to feed the outer query. In our exam-
ple, the subquery (the top conveyor belt in Figure 8-7) executes once for every outer
loop iteration. This is illustrated in Figures 8-7 and 8-8.

n2 => n2 =>
n2.Length n2.Length Subquery
A A

fer
fepy
f11ey
»a

JFirst()
.OrderBy .Select

Outer
query

fer
woj

—
Q)
<

.Where()

Figure 8-7. Subquery composition

356 | Chapter8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

({
Select decorator | NI/
.OrderBy decorator source

— source selector

keySelector

Lambda
n2 => n2 => expressions
compiled to

n2.Length n2.Length elcgates

Quter query

; .Select decorator Query
om
Dick .Where decorator source

——> Harry ¢— source selector
Mary -
redicate
Jane P

Lambda
expressions
compiled to

delegates

\ J

Figure 8-8. UML subquery composition

We can express our preceding subquery more succinctly as follows:

IEnumerable<string> query =
from n in names
where n.Length == names.OrderBy (n2 => n2.Length).First().Length
select n;

With the Min aggregation function, we can simplify the query further:

IEnumerable<string> query =

from n in names [»] =

where n.Length == names.Min (n2 => n2.Length) ¢=|> Z
W

select n; oo
(7]

In “Interpreted Queries” on page 364, we'll describe how remote sources such as
SQL tables can be queried. Our example makes an ideal database query, since it
would be processed as a unit, requiring only one round trip to the database server.
This query, however, is inefficient for a local collection because the subquery is

Subqueries | 357

www.it-ebooks.info

http://www.it-ebooks.info/

recalculated on each outer loop iteration. We can avoid this inefficiency by running
the subquery separately (so that it’s no longer a subquery):

int shortest = names.Min (n => n.Length);

IEnumerable<string> query = from n in names
where n.Length == shortest
select n;

Factoring out subqueries in this manner is nearly always
desirable when querying local collections. An exception is
when the subquery is correlated, meaning that it references the
outer range variable. We explore correlated subqueries in
“Projecting” on page 394 in Chapter 9.

Subqueries and Deferred Execution

An element or aggregation operator such as First or Count in a subquery doesn't
force the outer query into immediate execution—deferred execution still holds for
the outer query. This is because subqueries are called indirectly—through a delegate
in the case of a local query, or through an expression tree in the case of an inter-
preted query.

An interesting case arises when you include a subquery within a Select expression.
In the case of a local query, you're actually projecting a sequence of queries—each
itself subject to deferred execution. The effect is generally transparent, and it serves
to further improve efficiency. We revisit Select subqueries in some detail in Chap-
ter 9.

Composition Strategies

In this section, we describe three strategies for building more complex queries:

» Progressive query construction
o Using the into keyword
» Wrapping queries

All are chaining strategies and produce identical runtime queries.

Progressive Query Building

At the start of the chapter, we demonstrated how you could build a fluent query
progressively:

var filtered = names .Where (n => n.Contains ("a"));
var sorted = filtered .OrderBy (n => n);
var query = sorted .Select (n => n.ToUpper());

Because each of the participating query operators returns a decorator sequence, the
resultant query is the same chain or layering of decorators that you would get from

358 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

a single-expression query. There are a couple of potential benefits, however, to
building queries progressively:

o It can make queries easier to write.

 You can add query operators conditionally. For example:

if (includeFilter) query = query.Where (...)
This is more efficient than:
query = query.Where (n => !includeFilter || <expression>)
because it avoids adding an extra query operator if includeFilter is false.

A progressive approach is often useful in query comprehensions. To illustrate,
imagine we want to remove all vowels from a list of names and then present in
alphabetical order those whose length is still more than two characters. In fluent
syntax, we could write this query as a single expression—by projecting before we
filter:

IEnumerable<string> query = names
.Select (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", ""))
.Where (n => n.Length > 2)
.0rderBy (n => n);

RESULT: { "Dck", "Hrry", "Mry" }

Rather than calling string’s Replace method five times, we
could remove vowels from a string more efficiently with a reg-
ular expression:

n => Regex.Replace (n, "[aelou]", "")

string’s Replace method has the advantage, though, of also
working in database queries.

Translating this directly into a query expression is troublesome because the select
clause must come after the where and orderby clauses. And if we rearrange the
query so as to project last, the result would be different:

IEnumerable<string> query =

from n in names
where n.Length > 2
orderby n

).Replace ("e", "").Replace ("i", "")
).Replace ("u", "");

select n.Replace ("a",
.Replace ("o",

2
%z
G
(7]

RESULT: { "Dck", "Hrry", "Jy", "Mry", "Tm" }

Fortunately, there are a number of ways to get the original result in query syntax.
The first is by querying progressively:

IEnumerable<string> query =
from n in names

Composition Strategies | 359

www.it-ebooks.info

http://www.it-ebooks.info/

select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;

RESULT: { "Dck", "Hrry", "Mry" }

The into Keyword

The into keyword is interpreted in two very different ways by
query expressions, depending on context. The meaning were
describing now is for signaling query continuation (the other is
for signaling a GroupJotin).

The into keyword lets you “continue” a query after a projection and is a shortcut for
progressively querying. With into, we can rewrite the preceding query as:

IEnumerable<string> query =
from n in names
select n.Replace ("a",).Replace ("e", "").Replace ("i", "")

.Replace ("o", "").Replace ("u", "")
into noVowel

where noVowel.Length > 2 orderby noVowel select noVowel;

The only place you can use into is after a select or group clause. into “restarts” a
query, allowing you to introduce fresh where, orderby, and select clauses.

Although it’s easiest to think of into as restarting a query
from the perspective of a query expression, its all one query
when translated to its final fluent form. Hence, there’s no
intrinsic performance hit with into. Nor do you lose any
points for its use!

The equivalent of into in fluent syntax is simply a longer chain of operators.

Scoping rules

All range variables are out of scope following an into keyword. The following will
not compile:

var query =
from n1 in names
select nl.ToUpper()

into n2 // Only n2 is visible from here on.
where ni.Contains ("x") // Illegal: n1 is not in scope.
select n2;

To see why, consider how this maps to fluent syntax:

var query = names
.Select (n1 => n1.ToUpper())
.Where (n2 => ni.Contains ("x")); // Error: n1 no longer in scope

360 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

The original name (n1) is lost by the time the Where filter runs. Where’s input
sequence contains only uppercase names, so it cannot filter based on n1.

Wrapping Queries

A query built progressively can be formulated into a single statement by wrapping
one query around another. In general terms:

var tempQuery = tempQueryExpr
var finalQuery = from ... in tempQuery ...

can be reformulated as:
var finalQuery = from ... in (tempQueryExpr)

Wrapping is semantically identical to progressive query building or using the into
keyword (without the intermediate variable). The end result in all cases is a linear
chain of query operators. For example, consider the following query:

IEnumerable<string> query =
from n in names
select n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", "");

query = from n in query where n.Length > 2 orderby n select n;
Reformulated in wrapped form, it’s the following:

IEnumerable<string> query =
from n1 in

(
from n2 in names
select n2.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", "")

)
where nl.Length > 2 orderby n1 select ni;

When converted to fluent syntax, the result is the same linear chain of operators as
in previous examples:

IEnumerable<string> query = names
.Select (n => n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", ""))
.Where (n => n.Length > 2)
.OrderBy (n => n);

(The compiler does not emit the final .Select (n => n) because it’s redundant.)

Wrapped queries can be confusing because they resemble the subqueries we wrote
earlier. Both have the concept of an inner and outer query. When converted to flu-
ent syntax, however, you can see that wrapping is simply a strategy for sequentially
chaining operators. The end result bears no resemblance to a subquery, which
embeds an inner query within the lambda expression of another.

2
%z
G
(7]

Composition Strategies | 361

www.it-ebooks.info

http://www.it-ebooks.info/

Returning to a previous analogy: when wrapping, the “inner” query amounts to the
preceding conveyor belts. In contrast, a subquery rides above a conveyor belt and is
activated upon demand through the conveyor belt’s lambda worker (as illustrated in
Figure 8-7).

Projection Strategies

Object Initializers

So far, all our select clauses have projected scalar element types. With C# object
initializers, you can project into more complex types. For example, suppose, as a
first step in a query, we want to strip vowels from a list of names while still retaining
the original versions alongside, for the benefit of subsequent queries. We can write
the following class to assist:

class TempProjectionItem

{
public string Original; // Original name
public string Vowelless; // Vowel-stripped name

}

and then project into it with object initializers:
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<TempProjectionItem> temp =
from n in names
select new TempProjectionItem
{
Ooriginal = n,
Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", "")

};

The result is of type IEnumerable<TempProjectionItem>, which we can subse-
quently query:

IEnumerable<string> query = from 1item in temp
where 1item.Vowelless.Length > 2
select item.Original;

Dick

Harry

Mary

Anonymous Types

Anonymous types allow you to structure your intermediate results without writing
special classes. We can eliminate the TempProjectionItem class in our previous
example with anonymous types:

var intermediate = from n in names

select new

362 | Chapter8:LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

{
Original = n,
Vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("0"’ llll).Rep‘Lace (Ilull’ llll)

b

IEnumerable<string> query = from 1item in intermediate
where 1item.Vowelless.Length > 2
select item.Original;

This gives the same result as the previous example, but without needing to write a
one-off class. The compiler does the job instead, generating a temporary class with
fields that match the structure of our projection. This means, however, that the
intermediate query has the following type:

IEnumerable <random-compiler-generated-name>

The only way we can declare a variable of this type is with the var keyword. In this
case, var is more than just a clutter reduction device; it’s a necessity.

We can write the whole query more succinctly with the into keyword:

var query = from n in names
select new
{
Original = n,
Vowelless = n.Replace ("a",).Replace ("e", "").Replace ("i", "")

.Replace ("o", "").Replace ("u", "")

}

into temp

where temp.Vowelless.Length > 2
select temp.Original;

Query expressions provide a shortcut for writing this kind of query: the let key-
word.

The let Keyword
The let keyword introduces a new variable alongside the range variable.

With let, we can write a query extracting strings whose length, excluding vowels,
exceeds two characters, as follows:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query =
from n in names
let vowelless = n.Replace ("a", "").Replace ("e", "").Replace ("i", "")
.Replace ("o", "").Replace ("u", "")
where vowelless.Length > 2
orderby vowelless
select n; // Thanks to let, n is still in scope.

2r
%z
G
(7]

Projection Strategies | 363

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler resolves a let clause by projecting into a temporary anonymous type
that contains both the range variable and the new expression variable. In other
words, the compiler translates this query into the preceding example.

let accomplishes two things:

o It projects new elements alongside existing elements.

« It allows an expression to be used repeatedly in a query without being rewrit-
ten.

The let approach is particularly advantageous in this example because it allows the
select clause to project either the original name (n) or its vowel-removed version
(vowelless).

You can have any number of let statements, before or after a where statement (see
Figure 8-2). A let statement can reference variables introduced in earlier let state-
ments (subject to the boundaries imposed by an into clause). let reprojects all exist-
ing variables transparently.

A let expression need not evaluate to a scalar type: sometimes it’s useful to have it
evaluate to a subsequence, for instance.

Interpreted Queries

LINQ provides two parallel architectures: local queries for local object collections,
and interpreted queries for remote data sources. So far, we've examined the architec-
ture of local queries, which operate over collections implementing IEnumerable<T>.
Local queries resolve to query operators in the Enumerable class (by default), which
in turn resolve to chains of decorator sequences. The delegates that they accept—
whether expressed in query syntax, fluent syntax, or traditional delegates—are fully
local to Intermediate Language (IL) code, just like any other C# method.

By contrast, interpreted queries are descriptive. They operate over sequences that
implement IQueryable<T>, and they resolve to the query operators in the Querya
ble class, which emit expression trees that are interpreted at runtime.

The query operators in Enumerable can actually work with
IQueryable<T> sequences. The difficulty is that the resultant
queries always execute locally on the client—this is why a sec-
ond set of query operators is provided in the Queryable class.

There are two IQueryable<T> implementations in the NET Framework:

« LINQ to SQL
o Entity Framework (EF)

364 | Chapter8:LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

These LINQ-to-db technologies are very similar in their LINQ support: the LINQ-
to-db queries in this book will work with both LINQ to SQL and EF unless other-
wise specified.

Its also possible to generate an IQueryable<T> wrapper around an ordinary enu-
merable collection by calling the AsQueryable method. We describe AsQueryable in
the section “Building Query Expressions” on page 385 later in this chapter.

In this section, we'll use LINQ to SQL to illustrate interpreted query architecture
because LINQ to SQL lets us query without having to first write an Entity Data
Model. The queries that we write, however, work equally well with Entity Frame-
work (and also many third-party products).

IQueryable<T> is an extension of IEnumerable<T> with addi-
tional methods for constructing expression trees. Most of the
time, you can ignore the details of these methods; theyre
called indirectly by the Framework. “Building Query Expres-
sions” on page 385 covers IQueryable<T> in more detail.

Suppose we create a simple customer table in SQL Server and populate it with a few
names using the following SQL script:

create table Customer
(

ID int not null primary key,

Name varchar(30)
)
insert Customer values (1, 'Tom')
insert Customer values (2, 'Dick')
insert Customer values (3, 'Harry')
insert Customer values (4, 'Mary')
insert Customer values (5, 'Jay')

With this table in place, we can write an interpreted LINQ query in C# to retrieve

« »

customers whose name contains the letter “a” as follows:

using System;

using System.Ling;

using System.Data.Ling; // in System.Data.Ling.dll
using System.Data.Ling.Mapping;

[Table] public class Customer

{

[Column(IsPrimaryKey=true)] public int ID;

[Column] public string Name; o
} .

%z

class Test i o
{

static void Main()

{

DataContext dataContext = new DataContext ("connection string");
Table<Customer> customers = dataContext.GetTable <Customer>();

Interpreted Queries | 365

www.it-ebooks.info

http://www.it-ebooks.info/

IQueryable<string> query = from c in customers
where c.Name.Contains ("a")
orderby c.Name.Length
select c.Name.ToUpper();

foreach (string name in query) Console.WriteLine (name);

}
}

LINQ to SQL translates this query into the following SQL:

SELECT UPPER([tO].[Name]) AS [value]
FROM [Customer] AS [t0O]

WHERE [t0].[Name] LIKE @pO

ORDER BY LEN([t0].[Name])

with the following end result:

JAY
MARY
HARRY

How Interpreted Queries Work
Let’s examine how the preceding query is processed.

First, the compiler converts query syntax to fluent syntax. This is done exactly as
with local queries:

IQueryable<string> query = customers.Where (n => n.Name.Contains ("a"))
.OrderBy (n => n.Name.Length)
.Select (n => n.Name.ToUpper());

Next, the compiler resolves the query operator methods. Here’s where local and
interpreted queries differ—interpreted queries resolve to query operators in the
Queryable class instead of the Enumerable class.

To see why, we need to look at the customers variable, the source upon which the
whole query builds. customers is of type Table<T>, which implements IQuerya
ble<T> (a subtype of IEnumerable<T>). This means the compiler has a choice in
resolving Where: it could call the extension method in Enumerable or the following
extension method in Queryable:

public static IQueryable<TSource> Where<TSource> (this
IQueryable<TSource> source, Expression <Func<TSource,bool>> predicate)

The compiler chooses Queryable.Where because its signature is a more specific
match.

Queryable.Where accepts a predicate wrapped in an Expression<TDelegate> type.
This instructs the compiler to translate the supplied lambda expression—in other
words, n=>n.Name.Contains("a")—to an expression tree rather than a compiled
delegate. An expression tree is an object model based on the types in Sys
tem.Ling.Expressions that can be inspected at runtime (so that LINQ to SQL or
EF can later translate it to a SQL statement).

366 | Chapter8: LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

Because Queryable.Where also returns IQueryable<T>, the same process follows
with the OrderBy and Select operators. The end result is illustrated in Figure 8-9.
In the shaded box, there is an expression tree describing the entire query that can be

traversed at runtime.

Query

DataQuery<string>

Expression

O IQueryable<string>

Empty
shells

Table<Customer>

QO IQueryable<Customer>

Expressions

"Select" expression

A Expression

(Customer ¢)=>
¢.Name.ToUpper()

"OrderBy" expression

v

4 X |

A Expression

(Customer ¢)=>
¢.Name.Length

"Where" expression

|
v

Method call expressions

A Expression

(Customer ¢)=>
c.Name.Contains ("A")

Lambda expressions

Figure 8-9. Interpreted query composition

Execution

Interpreted queries follow a deferred execution model—just like local queries. This
means that the SQL statement is not generated until you start enumerating the
query. Further, enumerating the same query twice results in the database being

queried twice.

Under the covers, interpreted queries differ from local queries in how they execute.
When you enumerate over an interpreted query, the outermost sequence runs a
program that traverses the entire expression tree, processing it as a unit. In our
example, LINQ to SQL translates the expression tree to a SQL statement, which it
then executes, yielding the results as a sequence.

www.it-ebooks.info

Interpreted Queries

367

o
c
(]
=3
(]
0

ONI1

http://www.it-ebooks.info/

To work, LINQ to SQL needs some clues as to the schema of
the database. The Table and Column attributes that we applied
to the Customer class serve just this function. The section
“LINQ to SQL and Entity Framework” on page 371, later in
this chapter, describes these attributes in more detail. Entity
Framework is similar except that it also requires an Entity
Data Model (EDM)—an XML file describing the mapping
between database and entities.

We said previously that a LINQ query is like a production line. When you enumer-
ate an IQueryable conveyor belt, though, it doesn't start up the whole production
line, like with a local query. Instead, just the IQueryable belt starts up, with a special
enumerator that calls upon a production manager. The manager reviews the entire
production line—which consists not of compiled code, but of dummies (method call
expressions) with instructions pasted to their foreheads (expression trees). The man-
ager then traverses all the expressions, in this case transcribing them to a single
piece of paper (a SQL statement), which it then executes, feeding the results back to
the consumer. Only one belt turns; the rest of the production line is a network of
empty shells, existing just to describe what has to be done.

This has some practical implications. For instance, with local queries, you can write
your own query methods (fairly easily, with iterators) and then use them to supple-
ment the predefined set. With remote queries, this is difficult, and even undesirable.
If you wrote a MyWhere extension method accepting IQueryable<T>, it would be like
putting your own dummy into the production line. The production manager
wouldn't know what to do with your dummy. Even if you intervened at this stage,
your solution would be hard-wired to a particular provider, such as LINQ to SQL,
and would not work with other IQueryable implementations. Part of the benefit of
having a standard set of methods in Queryable is that they define a standard
vocabulary for querying any remote collection. As soon as you try to extend the
vocabulary, youre no longer interoperable.

Another consequence of this model is that an IQueryable provider may be unable
to cope with some queries—even if you stick to the standard methods. LINQ to SQL
and EF are both limited by the capabilities of the database server; some LINQ quer-
ies have no SQL translation. If you're familiar with SQL, you'll have a good intuition
for what these are, although at times you have to experiment to see what causes a
runtime error; it can be surprising what does work!

Combining Interpreted and Local Queries

A query can include both interpreted and local operators. A typical pattern is to
have the local operators on the outside and the interpreted components on the
inside; in other words, the interpreted queries feed the local queries. This pattern
works well with LINQ-to-database queries.

For instance, suppose we write a custom extension method to pair up strings in a
collection:

368 | Chapter8: LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

public static IEnumerable<string> Pair (this IEnumerable<string> source)
{
string firstHalf = null;
foreach (string element in source)
if (firstHalf == null)
firstHalf = element;
else

{

yield return firstHalf + ", + element;
firstHalf = null;
}
}

We can use this extension method in a query that mixes LINQ to SQL and local
operators:

DataContext dataContext = new DataContext ("connection string");
Table<Customer> customers = dataContext.GetTable <Customer>();

IEnumerable<string> q = customers
.Select (c => c.Name.ToUpper())
.0OrderBy (n => n)
.Pair() // Local from this point on.
.Select ((n, 1) => "Pair " + 1.ToString() + " = " + n);

foreach (string element in q) Console.WriteLine (element);

Pair 0 = HARRY, MARY
Pair 1 = TOM, DICK

Because customers is of a type implementing IQueryable<T>, the Select operator
resolves to Queryable.Select. This returns an output sequence also of type IQuery
able<T>, so the OrderBy operator similarly resolves to Queryable.OrderBy. But the
next query operator, Pair, has no overload accepting IQueryable<T>—only the less
specific IEnumerable<T>. So, it resolves to our local Pair method—wrapping the
interpreted query in a local query. Pair also returns IEnumerable, so the Select
that follows resolves to another local operator.

On the LINQ to SQL side, the resulting SQL statement is equivalent to:
SELECT UPPER (Name) FROM Customer ORDER BY UPPER (Name)
The remaining work is done locally. In effect, we end up with a local query (on the

outside), whose source is an interpreted query (the inside).

AsEnumerable

[»]
[=
(]
=3
(]
»

Enumerable.AsEnumerable is the simplest of all query operators. Here’s its complete
definition:

public static IEnumerable<TSource> AsEnumerable<TSource>
(this IEnumerable<TSource> source)

{

return source;

}

Interpreted Queries | 369

www.it-ebooks.info

ONI1

http://www.it-ebooks.info/

Its purpose is to cast an IQueryable<T> sequence to IEnumerable<T>, forcing subse-
quent query operators to bind to Enumerable operators instead of Queryable opera-
tors. This causes the remainder of the query to execute locally.

To illustrate, suppose we had a MedicalArticles table in SQL Server and wanted to
use LINQ to SQL or EF to retrieve all articles on influenza whose abstract contained
less than 100 words. For the latter predicate, we need a regular expression:

Regex wordCounter = new Regex (@"\b(\w|[-'1)+\b");

var query = dataContext.MedicalArticles
.Where (article => article.Topic == "influenza" &&
wordCounter.Matches (article.Abstract).Count < 100);

The problem is that SQL Server doesn’t support regular expressions, so the LINQ-
to-db providers will throw an exception, complaining that the query cannot be
translated to SQL. We can solve this by querying in two steps: first retrieving all arti-
cles on influenza through a LINQ to SQL query, and then filtering locally for
abstracts of less than 100 words:

Regex wordCounter = new Regex (@"\b(\w|[-'1)+\b");

IEnumerable<MedicalArticle> sqlQuery = dataContext.MedicalArticles
.Where (article => article.Topic == "influenza");

IEnumerable<MedicalArticle> localQuery = sqlQuery
.Where (article => wordCounter.Matches (article.Abstract).Count < 100);

Because sqlQuery is of type IEnumerable<MedicalArticle>, the second query
binds to the local query operators, forcing that part of the filtering to run on the
client.

With AsEnumerable, we can do the same in a single query:

Regex wordCounter = new Regex (@"\b(\w|[-'1)+\b");

var query = dataContext.MedicalArticles
.Where (article => article.Topic == "influenza")

.AsEnumerable()
.Where (article => wordCounter.Matches (article.Abstract).Count < 100);

An alternative to calling AsEnumerable is to call ToArray or ToList. The advantage
of AsEnumerable is that it doesn’t force immediate query execution, nor does it cre-
ate any storage structure.

Moving query processing from the database server to the cli-
ent can hurt performance, especially if it means retrieving
more rows. A more efficient (though more complex) way to
solve our example would be to use SQL CLR integration to
expose a function on the database that implemented the regu-
lar expression.

We demonstrate combined interpreted and local queries further in Chapter 10.

370 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

LINQ to SQL and Entity Framework

Throughout this and the following chapter, we use LINQ to SQL (L2S) and Entity
Framework (EF) to demonstrate interpreted queries. We'll now examine the key fea-
tures of these technologies.

If you're already familiar with L2S, take an advance look at
Table 8-1 (at the end of this section) for a summary of the API
differences with respect to querying.

LINQ to SQL Versus Entity Framework

Both LINQ to SQL and Entity Framework are LINQ-enabled object-relational map-
pers. The essential difference is that EF allows for stronger decoupling between the
database schema and the classes that you query. Instead of querying classes that
closely represent the database schema, you query a higher-level abstraction
described by an Entity Data Model. This offers extra flexibility but incurs a cost in
both performance and simplicity.

L2S was written by the C# team and was released with Framework 3.5; EF was writ-
ten by the ADO.NET team and was released later as part of Service Pack 1. L2S has
since been taken over by the ADO.NET team. This has resulted in the product
receiving only minor subsequent improvements, with the team concentrating more
on EE.

EF has improved considerably in later versions, although each technology still has
unique strengths. L2S’s strengths are ease of use, simplicity, performance, and the
quality of its SQL translations. EF’s strength is its flexibility in creating sophisticated
mappings between the database and entity classes. EF also allows for databases other
than SQL Server via a provider model (L2S also features a provider model, but this
was made internal to encourage third parties to focus on EF instead).

L2S is excellent for learning how to query databases in LINQ—because it keeps the
object-relational side of things simple while you learn querying principles that also
work with EE

LINQ to SQL Entity Classes

L2S allows you to use any class to represent data, as long as you decorate it with
appropriate attributes. Here’s a simple example:

[Table] g C
public class Customer g. Z
{ 2 °

[Column(IsPrimaryKey=true)]
public int ID;

[Column]
public string Name;

LINQ to SQL and Entity Framework | 371

www.it-ebooks.info

http://www.it-ebooks.info/

The [Table] attribute, in the System.Data.Ling.Mapping namespace, tells L2S that
an object of this type represents a row in a database table. By default, it assumes the
table name matches the class name; if this is not the case, you can specify the table
name as follows:

[Table (Name="Customers")]

A class decorated with the [Table] attribute is called an entity in L2S. To be useful,
its structure must closely—or exactly—match that of a database table, making it a
low-level construct.

The [Column] attribute flags a field or property that maps to a column in a table. If
the column name differs from the field or property name, you can specify the col-
umn name as follows:

[Column (Name="FullName")]
public string Name;

The IsPrimaryKey property in the [Column] attribute indicates that the column
partakes in the table’s primary key and is required for maintaining object identity, as
well as allowing updates to be written back to the database.

Instead of defining public fields, you can define public properties in conjunction
with private fields. This allows you to write validation logic into the property acces-
sors. If you take this route, you can optionally instruct L2S to bypass your property
accessors and write to the field directly when populating from the database:

string _name;

[Column (Storage="_name")]
public string Name { get { return _name; } set { _name = value; } }

Column(Storage="_name") tells L2S to write directly to the _name field (rather than
the Name property) when populating the entity. L2S’s use of reflection allows the field
to be private—as in this example.

You can generate entity classes automatically from a database
using either Visual Studio (add a new “LINQ to SQL Classes”
project item) or with the SqIMetal command-line tool.

Entity Framework Entity Classes

As with L2S, EF lets you use any class to represent data (although you have to
implement special interfaces if you want functionality such as navigation proper-
ties).

The following entity class, for instance, represents a customer that ultimately maps
to a customer table in the database:

// You'll need to reference System.Data.Entity.dll

[EdmEntityType (NamespaceName = "NutshellModel", Name = "Customer")]
public partial class Customer

372 | Chapter8: LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

[EdmScalarPropertyAttribute (EntityKeyProperty=true, IsNullable=false)]
public int ID { get; set; }

[EdmScalarProperty (EntityKeyProperty = false, IsNullable = false)]
public string Name { get; set; }
3

Unlike with L2S, however, a class such as this is not enough on its own. Remember
that with EF, youre not querying the database directly—youre querying a higher-
level model called the Entity Data Model (EDM). There needs to be some way to
describe the EDM, and this is most commonly done via an XML file with an .edmx
extension, which contains three parts:

o The conceptual model, which describes the EDM in isolation of the database

o The store model, which describes the database schema

o The mapping, which describes how the conceptual model maps to the store
The easiest way to create an .edmx file is to add an “ADO.NET Entity Data Model”

project item in Visual Studio and then follow the wizard for generating entities from
a database. This creates not only the .edmx file, but the entity classes as well.

The entity classes in EF map to the conceptual model. The
types that support querying and updating the conceptual
model are collectively called Object Services.

The designer assumes that you initially want a simple 1:1 mapping between tables
and entities. You can enrich this, however, by tweaking the EDM either with the
designer or by editing the underlying .edmx file that it creates for you. Here are
some of the things you can do:

o Map several tables into one entity.
o Map one table into several entities.

o Map inherited types to tables using the three standard kinds of strategies popu-
lar in the ORM world.

The three kinds of inheritance strategies are:

Table per hierarchy
A single table maps to a whole class hierarchy. The table contains a dis-
criminator column to indicate which type each row should map to.

Table per type
A single table maps to one type, meaning that an inherited type maps to
several tables. EF generates a SQL JOIN when you query an entity, to
merge all its base types together.

LINQ to SQL and Entity Framework | 373

www.it-ebooks.info

o
[=
(]
=3
(]
0

ONI1

http://www.it-ebooks.info/

Table per concrete type
A separate table maps to each concrete type. This means that a base type
maps to several tables and EF generates a SQL UNION when you query for
entities of a base type.

(In contrast, L2S supports only table per hierarchy.)

The EDM is complex: a thorough discussion can fill hundreds
of pages! A good book that describes this in detail is Julia Ler-
man’s Programming Entity Framework.

EF also lets you query through the EDM without LINQ—using a textual language
called Entity SQL (ESQL). This can be useful for dynamically constructed queries.

DataContext and ObjectContext

Once you've defined entity classes (and an EDM in the case of EF), you can start
querying. The first step is to instantiate a DataContext (L2S) or ObjectContext
(EF), specifying a connection string:

var 12sContext = new DataContext ("database connection string");
var efContext = new ObjectContext ("entity connection string");

Instantiating a DataContext/ObjectContext directly is a low-
level approach and is good for demonstrating how the classes
work. More typically, though, you instantiate a typed context
(a subclassed version of these classes), a process we'll describe
shortly.

With L2S, you pass in the database connection string; with EE, you must pass an
entity connection string, which incorporates the database connection string plus
information on how to find the EDM. (If you've created an EDM in Visual Studio,
you can find the entity connection string for your EDM in the app.config file.)

You can then obtain a queryable object by calling GetTable (L2S) or CreateObject
Set (EF). The following example uses the Customer class that we defined earlier:

var context = new DataContext ("database connection string");
Table<Customer> customers = context.GetTable <Customer>();

Console.WriteLine (customers.Count()); // # of rows in table.

Customer cust = customers.Single (c => c.ID == 2); // Retrieves Customer
// with ID of 2.

Here’s the same thing with EF:

var context = new ObjectContext ("entity connection string");
context.DefaultContainerName = "NutshellEntities";
ObjectSet<Customer> customers = context.CreateObjectSet<Customer>();

Console.WriteLine (customers.Count()); // # of rows in table.

374 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://oreilly.com/catalog/9780596520298/
http://www.it-ebooks.info/

Customer cust = customers.Single (c => c.ID == 2); // Retrieves Customer
// with ID of 2.

The Single operator is ideal for retrieving a row by primary
key. Unlike First, it throws an exception if more than one ele-
ment is returned.

A DataContext/ObjectContext object does two things. First, it acts as a factory for
generating objects that you can query. Second, it keeps track of any changes that you
make to your entities so that you can write them back. We can continue our previ-
ous example to update a customer with L2S as follows:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SubmitChanges();

With EEF the only difference is that you call SaveChanges instead:

Customer cust = customers.OrderBy (c => c.Name).First();
cust.Name = "Updated Name";
context.SaveChanges();

Typed contexts

Having to call GetTable<Customer>() or CreateObjectSet<Customer>() all the
time is awkward. A better approach is to subclass DataContext/ObjectContext for a
particular database, adding properties that do this for each entity. This is called a
typed context:

class NutshellContext : DataContext // For LINQ to SQL
{

public Table<Customer> Customers => GetTable<Customer>();
// ... and so on, for each table in the database

3
Here’s the same thing for EF:

class NutshellContext : ObjectContext // For Entity Framework

public ObjectSet<Customer> Customers => CreateObjectSet<Customer>();
// ... and so on, for each entity in the conceptual model

3
You can then simply do this:

var context = new NutshellContext ("connection string");
Console.WriteLine (context.Customers.Count());

If you use Visual Studio to create a “LINQ to SQL Classes” or “ADO.NET Entity
Data Model” project item, it builds a typed context for you automatically. The
designers can also do additional work such as pluralizing identifiers—in this exam-
ple, it’s context.Customers and not context.Customer, even though the SQL table
and entity class are both called Customer.

2r
%z
G
(7]

LINQ to SQL and Entity Framework | 375

www.it-ebooks.info

http://www.it-ebooks.info/

Disposing DataContext/ObjectContext

Although DataContext/ObjectContext implement IDisposable, you can (in general)
get away without disposing instances. Disposing forces the context’s connection to
dispose—but this is usually unnecessary because L2S and EF close connections
automatically whenever you finish retrieving results from a query.

Disposing a context can actually be problematic because of lazy evaluation. Con-
sider the following:

IQueryable<Customer> GetCustomers (string prefix)

{

using (var dc = new NutshellContext ("connection string"))
return dc.GetTable<Customer>()
.Where (c => c.Name.StartsWith (prefix));

}

foreach (Customer c in GetCustomers ("a"))
Console.WriteLine (c.Name);

This will fail because the query is evaluated when we enumerate it—which is after
disposing its DataContext.

There are some caveats, though, on not disposing contexts:

o It relies on the connection object releasing all unmanaged resources on the
Close method. While this holds true with SqlConnection, it’s theoretically pos-
sible for a third-party connection to keep resources open if you call Close but
not Dispose (though this would arguably violate the contract defined by IDbCon
nection.Close).

o If you manually call GetEnumerator on a query (instead of using foreach) and
then fail to either dispose the enumerator or consume the sequence, the con-
nection will remain open. Disposing the DataContext/ObjectContext provides
a backup in such scenarios.

» Some people feel that it’s tidier to dispose contexts (and all objects that imple-
ment IDisposable).

If you want to explicitly dispose contexts, you must pass a DataContext/ObjectCon
text instance into methods such as GetCustomers to avoid the problem described.

Object tracking

A DataContext/ObjectContext instance keeps track of all the entities it instantiates,
so it can feed the same ones back to you whenever you request the same rows in a
table. In other words, a context in its lifetime will never emit two separate entities
that refer to the same row in a table (where a row is identified by primary key).

376 | Chapter8: LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

You can disable this behavior in L2S by setting ObjectTrackin
gEnabled to false on the DataContext object. In EE, you can
disable change tracking on a per-type basis:

context.Customers.MergeOption = MergeOption.NoTracking;

Disabling object tracking also prevents you from submitting
updates to the data.

To illustrate object tracking, suppose the customer whose name is alphabetically
first also has the lowest ID. In the following example, a and b will reference the same
object:

var context = new NutshellContext ("connection string");

Customer a = context.Customers.OrderBy (c => c.Name).First();
Customer b = context.Customers.OrderBy (c => c.ID).First();

This has a couple of interesting consequences. First, consider what happens when
L2S or EF encounters the second query. It starts by querying the database—and
obtaining a single row. It then reads the primary key of this row and performs a
lookup in the contexts entity cache. Seeing a match, it returns the existing object
without updating any values. So, if another user had just updated that customer’s
Name in the database, the new value would be ignored. This is essential for avoiding
unexpected side effects (the Customer object could be in use elsewhere) and also for
managing concurrency. If you had altered properties on the Customer object and
not yet called SubmitChanges/SaveChanges, you wouldnt want your properties
automatically overwritten.

To get fresh information from the database, you must either
instantiate a new context or call its Refresh method, passing
in the entity or entities that you want refreshed.

The second consequence is that you cannot explicitly project into an entity type—to
select a subset of the row’s columns—without causing trouble. For example, if you
want to retrieve only a customer’s name, any of the following approaches is valid:

customers.Select (c => c.Name);
customers.Select (c => new { Name = c.Name });
customers.Select (c => new MyCustomType { Name = c.Name });

The following, however, is not:
customers.Select (c => new Customer { Name = c.Name });

This is because the Customer entities will end up partially populated. So, the next
time you perform a query that requests all customer columns, you get the same

2r
%z
G
0

cached Customer objects with only the Name property populated.

LINQ to SQL and Entity Framework | 377

www.it-ebooks.info

http://www.it-ebooks.info/

In a multitier application, you cannot use a single static
instance of a DataContext or ObjectContext in the middle
tier to handle all requests, because contexts are not thread-
safe. Instead, middle-tier methods must create a fresh context
per client request. This is actually beneficial because it shifts
the burden in handling simultaneous updates to the database
server, which is properly equipped for the job. A database
server, for instance, will apply transaction isolation-level
semantics.

Associations

The entity generation tools perform another useful job. For each relationship
defined in your database, they generate properties on each side that allow you to
query that relationship. For example, suppose we define customer and purchase
tables in a one-to-many relationship:

create table Customer

(
ID int not null primary key,
Name varchar(30) not null

)

create table Purchase

(
ID int not null primary key,
CustomerID int references Customer (ID),
Description varchar(30) not null,
Price decimal not null

)

With automatically generated entity classes, we can write queries such as this:

var context = new NutshellContext ("connection string");
// Retrieve all purchases made by the first customer (alphabetically):

Customer custl = context.Customers.OrderBy (c => c.Name).First();
foreach (Purchase p in custi.Purchases)
Console.WriteLine (p.Price);

/] Retrieve the customer who made the lowest value purchase:

Purchase cheapest = context.Purchases.OrderBy (p => p.Price).First();
Customer cust2 = cheapest.Customer;

Further, if custl and cust2 happened to refer to the same customer, c1 and c2
would refer to the same object: custl==cust2 would return true.

Let’s examine the signature of the automatically generated Purchases property on
the Customer entity. With L2S:

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

378 | Chapter 8: LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

With EF:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK...", "Purchase")]
public EntityCollection<Purchase> Purchases { get {...} set {...} }

An EntitySet or EntityCollection is like a predefined query, with a built-in
Where clause that extracts related entities. The [Association] attribute gives L2S
the information it needs to formulate the SQL query; the [EdmRelationshipNaviga
tionProperty] attribute tells EF where to look in the EDM for information about
that relationship.

As with any other type of query, you get deferred execution. With L2S, an Entity
Set is populated when you enumerate over it; with EF, an EntityCollection is
populated when you explicitly call its Load method.

Here’s the Purchases.Customer property, on the other side of the relationship, with
L2S:

[Association (Storage="_Customer",ThisKey="CustomerID",IsForeignKey=true)]
public Customer Customer { get {...} set {...} }

Although the property is of type Customer, its underlying field (_Customer) is of
type EntityRef. The EntityRef type implements deferred loading, so the related
Customer is not retrieved from the database until you actually ask for it.

EF works in the same way, except that it doesn’t populate the property simply by you
accessing it: you must call Load on its EntityReference object. This means EF con-
texts must expose properties for both the actual parent object and its EntityRefer
ence wrapper:

[EdmRelationshipNavigationProperty ("NutshellModel", "FK..., "Customer")]
public Customer Customer { get {...} set {...} }

public EntityReference<Customer> CustomerReference { get; set; }

You can make EF behave like L2S and have it populate Entity
Collections and EntityReferences simply by virtue of their
properties being accessed as follows:

context.ContextOptions.DeferredLoadingEnabled = true;

Deferred Execution with L2S and EF

L2S and EF queries are subject to deferred execution, just like local queries. This
allows you to build queries progressively. There is one aspect, however, in which
L2S/EF have special deferred execution semantics, and that is when a subquery
appears inside a Select expression:

« With local queries, you get double deferred execution, because from a func-
tional perspective, you're selecting a sequence of queries. So, if you enumerate
the outer result sequence, but never enumerate the inner sequences, the sub-
query will never execute.

LINQ to SQL and Entity Framework | 379

www.it-ebooks.info

o
=
(]
=
(]
0

ONI1

http://www.it-ebooks.info/

o With L2S/EE, the subquery is executed at the same time as the main outer
query. This avoids excessive round-tripping.

For example, the following query executes in a single round trip upon reaching the
first foreach statement:

var context = new NutshellContext ("connection string");

var query = from c in context.Customers
select
from p in c.Purchases
select new { c.Name, p.Price };

foreach (var customerPurchaseResults in query)
foreach (var namePrice in customerPurchaseResults)
Console.WriteLine (namePrice.Name + " spent " + namePrice.Price);

Any EntitySets/EntityCollections that you explicitly project are fully populated
in a single round trip:

var query = from c in context.Customers
select new { c.Name, c.Purchases };

foreach (var row in query)
foreach (Purchase p in row.Purchases) // No extra round-tripping
Console.WriteLine (row.Name + " spent " + p.Price);

But if we enumerate EntitySet/EntityCollection properties without first having
projected, deferred execution rules apply. In the following example, L2S and EF exe-
cute another Purchases query on each loop iteration:

context.ContextOptions.DeferredLoadingEnabled = true; // For EF only.

foreach (Customer c in context.Customers)
foreach (Purchase p in c.Purchases) // Another SQL round-trip
Console.WriteLine (c.Name + " spent " + p.Price);

This model is advantageous when you want to selectively execute the inner loop,
based on a test that can be performed only on the client:

foreach (Customer c in context.Customers)
if (myWebService.HasBadCreditHistory (c.ID))
foreach (Purchase p in c.Purchases) // Another SQL round trip
Console.WriteLine (...);

(In Chapter 9, we explore Select subqueries in more detail, in “Projecting” on page
394.)

We've seen that you can avoid round-tripping by explicitly projecting associations.
L2S and EF offer other mechanisms for this, too, which we cover in the following
two sections.

380 | Chapter8: LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

DataLoadOptions
The DataLoadOptions class is specific to L2S. It has two distinct uses:
o It lets you specify, in advance, a filter for EntitySet associations (Associate
With).

o It lets you request that certain EntitySets be eagerly loaded, to lessen round-
tripping (LoadWith).

Specifying a filter in advance
Let’s refactor our previous example as follows:

foreach (Customer c in context.Customers)
if (myWebService.HasBadCreditHistory (c.ID))
ProcessCustomer (c);

WEe'll define ProcessCustomer like this:

void ProcessCustomer (Customer c)

{
Console.WriteLine (c.ID + " " + c.Name);
foreach (Purchase p in c.Purchases)
Console.WriteLine (" - purchased a " + p.Description);
}

Now suppose we want to feed ProcessCustomer only a subset of each customer’s
purchases; say, the high-value ones. Here’s one solution:

foreach (Customer c in context.Customers)
if (myWebService.HasBadCreditHistory (c.ID))
ProcessCustomer (c.ID,
c.Name,
c.Purchases.Where (p => p.Price > 1000));

voild ProcessCustomer (int custID, string custName,
IEnumerable<Purchase> purchases)
{
Console.WriteLine (custID + + custName);
foreach (Purchase p in purchases)
Console.WriteLine (" - purchased a

+ p.Description);

}

This is messy. It would get messier still if ProcessCustomer required more Customer
fields. A better solution is to use DatalLoadOptions’s AssociateWith method:

2r
W =
G
(7]

DatalLoadOptions options = new DatalLoadOptions();
options.AssociateWith <Customer>

(c => c.Purchases.Where (p => p.Price > 1000));
context.LoadOptions = options;

LINQ to SQL and Entity Framework | 381

www.it-ebooks.info

http://www.it-ebooks.info/

This instructs our DataContext instance always to filter a Customer’s Purchases
using the given predicate. We can now use the original version of ProcessCustomer.

AssociateWith doesn’t change deferred execution semantics. When a particular
relationship is used, it simply instructs to implicitly add a particular filter to the
equation.

Eager loading

The second use for a DataLoadOptions is to request that certain EntitySets be
eagerly loaded with their parent. For instance, suppose you want to load all custom-
ers and their purchases in a single SQL round trip. The following does exactly this:

DataLoadOptions options = new DatalLoadOptions();
options.LoadWith <Customer> (c => c.Purchases);
context.LoadOptions = options;

foreach (Customer c in context.Customers) // One round trip:
foreach (Purchase p in c.Purchases)
Console.WriteLine (c.Name + " bought a

+ p.Description);

This instructs that whenever a Customer is retrieved, its Purchases should also be
retrieved at the same time. You can combine LoadWith with AssociateWith. The
following instructs that whenever a customer is retrieved, its high-value purchases
should be retrieved in the same round trip:

options.LoadWith <Customer> (c => c.Purchases);
options.AssociateWith <Customer>
(c => c.Purchases.Where (p => p.Price > 1000));

Eager Loading in Entity Framework

You can request in EF that associations be eagerly loaded with the Include method.
The following enumerates over each customer’s purchases—while generating just
one SQL query:

foreach (Customer c in context.Customers.Include ("Purchases"))

foreach (Purchase p in c.Purchases)
Console.WriteLine (p.Description);

Include can be used with arbitrary breadth and depth. For example, if each Pur
chase also had PurchaseDetails and SalesPersons navigation properties, the
entire nested structure could be eagerly loaded as follows:

context.Customers.Include ("Purchases.PurchaseDetails")
.Include ("Purchases.SalesPersons")

Updates

L2S and EF also keep track of changes that you make to your entities and allow you
to write them back to the database by calling SubmitChanges on the DataContext
object, or SaveChanges on the ObjectContext object.

382 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

L2S’s Table<T> class provides InsertOnSubmit and DeleteOnSubmit methods for
inserting and deleting rows in a table; EF’s ObjectSet<T> class provides AddObject
and DeleteObject methods to do the same thing. Here’s how to insert a row:

var context = new NutshellContext ("connection string");

Customer cust = new Customer { ID=1000, Name="Bloggs" };
context.Customers.InsertOnSubmit (cust); // AddObject with EF
context.SubmitChanges(); // SaveChanges with EF

We can later retrieve that row, update it, and then delete it:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1000);
cust.Name = "Bloggs2";
context.SubmitChanges(); // Updates the customer

context.Customers.DeleteOnSubmit (cust); // DeleteObject with EF
context.SubmitChanges(); // Deletes the customer

SubmitChanges/SaveChanges gathers all the changes that were made to its entities
since the context’s creation (or the last save) and then executes a SQL statement to
write them to the database. Any TransactionScope is honored; if none is present, it
wraps all statements in a new transaction.

You can also add new or existing rows to an EntitySet/EntityCollection by call-
ing Add. L2S and EF automatically populate the foreign keys when you do this (after
calling SubmitChanges or SaveChanges):

Purchase pl = new Purchase { ID=100, Description="Bike", Price=500 };
Purchase p2 = new Purchase { ID=101, Description="Tools", Price=100 };

Customer cust = context.Customers.Single (c => c.ID == 1);

cust.Purchases.Add (pl);
cust.Purchases.Add (p2);

context.SubmitChanges(); // (or SaveChanges with EF)

If you don’t want the burden of allocating unique keys, you
can use either an auto-incrementing field (IDENTITY in SQL
Server) or a Guid for the primary key.

In this example, L2S/EF automatically writes 1 into the CustomerID column of each
of the new purchases (L2S knows to do this because of the association attribute that
we defined on the Purchases property; EF knows to do this because of information
in the EDM):

[Association (Storage="_Purchases", OtherKey="CustomerID")]
public EntitySet <Purchase> Purchases { get {...} set {...} }

If the Customer and Purchase entities were generated by the Visual Studio designer
or the SqlMetal command-line tool, the generated classes would include further

LINQ to SQL and Entity Framework | 383

www.it-ebooks.info

2
%z
G
(7]

http://www.it-ebooks.info/

code to keep the two sides of each relationship in sync. In other words, assigning
the Purchase. Customer property would automatically add the new customer to the
Customer.Purchases entity set—and vice versa. We can illustrate this by rewriting
the preceding example as follows:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);
new Purchase { ID=100, Description="Bike", Price=500, Customer=cust };
new Purchase { ID=101, Description="Tools", Price=100, Customer=cust };

context.SubmitChanges(); // (SaveChanges with EF)

When you remove a row from an EntitySet/EntityCollection, its foreign key
field is automatically set to null. The following disassociates our two recently added
purchases from their customer:

var context = new NutshellContext ("connection string");

Customer cust = context.Customers.Single (c => c.ID == 1);
cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 100));
cust.Purchases.Remove (cust.Purchases.Single (p => p.ID == 101));

context.SubmitChanges(); // Submit SQL to database (SaveChanges in EF)

Because this tries to set each purchase’s CustomerID field to null, Purchase.Custom
erID must be nullable in the database; otherwise, an exception is thrown. (Further,
the CustomerID field or property in the entity class must be a nullable type.)

To delete child entities entirely, remove them from the Table<T> or ObjectSet<T>
instead (this means you much retrieve them first). With L2S:

var ¢ = context;

c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteOnSubmit (c.Purchases.Single (p => p.ID == 101));
c.SubmitChanges(); // Submit SQL to database

With EF:

var ¢ = context;

c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 100));
c.Purchases.DeleteObject (c.Purchases.Single (p => p.ID == 101));
c.SaveChanges(); // Submit SQL to database

API Differences Between L2S and EF

As we've seen, L2S and EF are similar in the aspect of querying with LINQ and per-
forming updates. Table 8-1 summarizes the API differences.

384 | Chapter8:LINQQueries

www.it-ebooks.info

http://www.it-ebooks.info/

Table 8-1. API differences between L2S and EF

Purpose LINQ to SQL Entity Framework
Gatekeeper class for all CRUD operations DataContext ObjectContext
Method to (lazily) retrieve all entities of a given ~ GetTable CreateObjectSet
type from the store

Type returned by the above method Table<T> ObjectSet<T>
Method to update the store with any additions, ~ SubmitChanges SaveChanges
modifications, or deletions to entity objects

Method to add a new entity to the store when InsertOnSubmit AddObject

the context is updated

Method to delete an entity from the store when ~ DeleteOnSubmit DeleteObject

the context is updated

Type to represent one side of a relationship EntitySet<T> EntityCollection<T>
property, when that side has a multiplicity of

many

Type to represent one side of a relationship EntityRef<T> EntityReference<T>
property, when that side has a multiplicity of

one

Default strategy for loading relationship Lazy Explicit

properties

Construct that enables eager loading DataloadOptions .Include()
Building Query Expressions

So far in this chapter, when we've needed to dynamically compose queries, we've
done so by conditionally chaining query operators. Although this is adequate in
many scenarios, sometimes you need to work at a more granular level and dynami-
cally compose the lambda expressions that feed the operators.

In this section, we'll assume the following Product class:

[Table] public partial class P
{
[Column(IsPrimaryKey=true)]
[Column]
[Column]
[Column]

roduct

public int ID;

public string Description;
public bool Discontinued;
public DateTime LastSale;

2r
L =
G
(7]

www.it-ebooks.info

Building Query Expressions | 385

http://www.it-ebooks.info/

Delegates Versus Expression Trees
Recall that:

o Local queries, which use Enumerable operators, take delegates.

o Interpreted queries, which use Queryable operators, take expression trees.

We can see this by comparing the signature of the Where operator in Enumerable
and Queryable:

public static IEnumerable<TSource> Where<TSource> (this
IEnumerable<TSource> source, Func<TSource,bool> predicate)

public static IQueryable<TSource> Where<TSource> (this
IQueryable<TSource> source, Expression<Func<TSource,bool>> predicate)

When embedded within a query, a lambda expression looks identical whether it
binds to Enumerable’s operators or Queryable’s operators:

IEnumerable<Product> q1 = localProducts.Where (p => !p.Discontinued);
IQueryable<Product> q2 = sqlProducts.Where (p => !p.Discontinued);

When you assign a lambda expression to an intermediate variable, however, you
must be explicit on whether to resolve to a delegate (i.e., Func<>) or an expression
tree (i.e., Expression<Func<>>). In the following example, predicatel and predi
cate? are not interchangeable:

Func <Product, bool> predicatel = p => !p.Discontinued;
IEnumerable<Product> q1 = localProducts.Where (predicatel);

Expression <Func <Product, bool>> predicate2 = p => !p.Discontinued;
IQueryable<Product> q2 = sqlProducts.Where (predicate2);

Compiling expression trees

You can convert an expression tree to a delegate by calling Compile. This is of par-
ticular value when writing methods that return reusable expressions. To illustrate,
we'll add a static method to the Product class that returns a predicate evaluating to
true if a product is not discontinued and has sold in the past 30 days:

public partial class Product

{

public static Expression<Func<Product, bool>> IsSelling()

{
return p => !p.Discontinued && p.LastSale > DateTime.Now.AddDays (-30);

}
}

(We've defined this in a separate partial class to avoid being overwritten by an auto-
matic DataContext generator such as Visual Studio’s code generator.)

386 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

The method just written can be used both in interpreted and in local queries as fol-
lows:

voild Test()
{

var dataContext = new NutshellContext ("connection string");
Product[] localProducts = dataContext.Products.ToArray();

IQueryable<Product> sqlQuery =
dataContext.Products.Where (Product.IsSelling());

IEnumerable<Product> localQuery =
localProducts.Where (Product.IsSelling.Compile());

}
NET does not provide an API to convert in the reverse direc-
tion, from a delegate to an expression tree. This makes expres-
sion trees more versatile.
AsQueryable

The AsQueryable operator lets you write whole gueries that can run over either local
or remote sequences:

IQueryable<Product> FilterSortProducts (IQueryable<Product> input)

{
return from p in input
where ...
order by ...
select p;
}

void Test()

{
var dataContext = new NutshellContext ("connection string");
Product[] localProducts = dataContext.Products.ToArray();

var sqlQuery FilterSortProducts (dataContext.Products);
var localQuery = FilterSortProducts (localProducts.AsQueryable());

3
AsQueryable wraps IQueryable<T> clothing around a local sequence so that subse-
quent query operators resolve to expression trees. When you later enumerate over

the result, the expression trees are implicitly compiled (at a small performance cost),
and the local sequence enumerates as it would ordinarily.

2
%z
2 O
(7]

Expression Trees

We said previously that an implicit conversion from a lambda expression to Expres
sion<TDelegate> causes the C# compiler to emit code that builds an expression
tree. With some programming effort, you can do the same thing manually at run-
time—in other words, dynamically build an expression tree from scratch. The result

Building Query Expressions | 387

www.it-ebooks.info

http://www.it-ebooks.info/

can be cast to an Expression<TDelegate> and used in LINQ-to-db queries or com-
piled into an ordinary delegate by calling Compile.

The Expression DOM

An expression tree is a miniature code DOM. Each node in the tree is represented
by a type in the System.Linq.Expressions namespace; these types are illustrated in
Figure 8-10.

From Framework 4.0, this namespace features additional
expression types and methods to support language constructs
that can appear in code blocks. These are for the benefit of the
DLR and not lambda expressions. In other words, code-block-
style lambdas still cannot be converted to expression trees:

Expression<Func<Customer,bool>> invalid =
c => { return true; } // Code blocks not permitted
The base class for all nodes is the (nongeneric) Expression class. The generic
Expression<TDelegate> class actually means “typed lambda expression” and might
have been named LambdaExpression<TDelegate> if it wasn’t for the clumsiness of
this:

LambdaExpression<Func<Customer,bool>> f = ...

Expression<T>’s base type is the (nongeneric) LambdaExpression class. LamdbaEx
pression provides type unification for lambda expression trees: any typed Expres
sion<T> can be cast to a LambdaExpression.

The thing that distinguishes LambdaExpressions from ordinary Expressions is that
lambda expressions have parameters.

Expression

/\

Conditional ||| Invocation ListInit Memberlnit ||| NewArray [|| Parameter Unary
expression ||| expression ||| expressionf|| expression [[| expression||| expression||| expression

Binary Constant Lambda Member | | MethodCall New TypeBinary
expression expression| | expression| | expressionf | expression | | expression| | expression

T

Expression< TDelegate>

Figure 8-10. Expression types

To create an expression tree, don’t instantiate node types directly; rather, call static
methods provided on the Expression class. Here are all the methods:

388 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.it-ebooks.info/

Add ElementInit MakeMemberAccess Or

AddChecked Equal MakeUnary OrElse

And ExclusiveOr MemberBind Parameter
AndAlso Field MemberInit Power
ArrayIndex GreaterThan Modulo Property
ArrayLength GreaterThanOrEqual Multiply PropertyOrField
Bind Invoke MultiplyChecked Quote

Call Lambda Negate RightShift
Coalesce LeftShift NegateChecked Subtract
Condition LessThan New SubtractChecked
Constant LessThanOrEqual NewArrayBounds TypeAs

Convert ListBind NewArrayInit Typels
ConvertChecked ListInit Not UnaryPlus
Divide MakeBinary NotEqual

Figure 8-11 shows the expression tree that the following assignment creates:

Expression<Func<string, bool>> f = s => s.Length < 5;

LambdaExpression
Type = Func<string, bool>

Parameters Body

ParameterCollection BinaryExpression
Parameters[0] NodeType = LessThan

Left Right

MemberExpression ConstantExpression

Member.Name = “Length” Value =5
Type = System.Int32

Expression

ParameterExpression

Name ="s"
Type = System.String

Figure 8-11. Expression tree

We can demonstrate this as follows:

Console.WriteLine (f.Body.NodeType); // LessThan
Console.WriteLine (((BinaryExpression) f.Body).Right); // 5

2rc
%z
G
(7]

Let’s now build this expression from scratch. The principle is that you start from the
bottom of the tree and work your way up. The bottommost thing in our tree is a

« »

ParameterExpression, the lambda expression parameter called “s” of type string:

ParameterExpression p = Expression.Parameter (typeof (string), "s");

Building Query Expressions | 389

www.it-ebooks.info

http://www.it-ebooks.info/

The next step is to build the MemberExpression and ConstantExpression. In the
former case, we need to access the Length property of our parameter, “s™:

MemberExpression stringlLength = Expression.Property (p, "Length");
ConstantExpression five = Expression.Constant (5);

Next is the LessThan comparison:
BinaryExpression comparison = Expression.LessThan (stringLength, five);

The final step is to construct the lambda expression, which links an expression Body
to a collection of parameters:

Expression<Func<string, bool>> lambda
= Expression.Lambda<Func<string, bool>> (comparison, p);

A convenient way to test our lambda is by compiling it to a delegate:

Func<string, bool> runnable = lambda.Compile();

Console.WriteLine (runnable ("kangaroo")); // False
Console.WriteLine (runnable ("dog")); /] True

The easiest way to figure out which expression type to use is to
examine an existing lambda expression in the Visual Studio

debugger.

We continue this discussion online, at http://www.albahari.com/expressions/.

390 | Chapter 8:LINQ Queries

www.it-ebooks.info

http://www.albahari.com/expressions/
http://www.it-ebooks.info/

LINQ Operators

This chapter describes each of the LINQ query operators. As well as serving as a ref-
erence, two of the sections, “Projecting” on page 394 and “Joining” on page 394,
cover a number of conceptual areas:

o Projecting object hierarchies

« Joining with Select, SelectMany, Join, and GroupJoin

 Query expressions with multiple range variables

All of the examples in this chapter assume that a names array is defined as follows:
string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

Examples that query a database assume that a variable called dataContext is instan-
tiated as follows:

var dataContext = new NutshellContext ("connection string...");

public class NutshellContext : DataContext

{
public NutshellContext (string cxString) : base (cxString) {3}

public Table<Customer> Customers { get { return GetTable<Customer>(); } }
public Table<Purchase> Purchases { get { return GetTable<Purchase>(); } }

}

[Table] public class Customer

{
[Column(IsPrimaryKey=true)] public int ID;
[Column] public string Name;

[Association (OtherKey="CustomerID")]
public EntitySet<Purchase> Purchases = new EntitySet<Purchase>();

391

www.it-ebooks.info

http://www.it-ebooks.info/

}

[Table] public class Purchase

{
[Column(IsPrimaryKey=true)] public int ID;
[Column] public int? CustomerID;
[Column] public string Description;
[Column] public decimal Price;
[Column] public DateTime Date;

EntityRef<Customer> custRef;

[Association (Storage="custRef",ThisKey="CustomerID",IsForeignKey=true)]
public Customer Customer

{
get { return custRef.Entity; } set { custRef.Entity = value; }

}
}

All the examples in this chapter are preloaded into LINQPad,
along with a sample database with a matching schema. You
can download LINQPad from http://www.lingpad.net.

The entity classes shown are a simplified version of what LINQ to SQL tools typi-
cally produce and do not include code to update the opposing side in a relationship
when their entities have been reassigned.

Here are the corresponding SQL table definitions:

create table Customer

(
ID int not null primary key,
Name varchar(30) not null

)

create table Purchase

(
ID int not null primary key,
CustomerID int references Customer (ID),
Description varchar(30) not null,
Price decimal not null

All examples will also work with Entity Framework, except
where otherwise indicated. You can build an Entity Frame-
work ObjectContext from these tables by creating a new
Entity Data Model in Visual Studio, and then dragging the
tables on to the designer surface.

392 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.linqpad.net
http://www.it-ebooks.info/

Overview

In this section, we provide an overview of the standard query operators.

The standard query operators fall into three categories:

« Sequence in, sequence out (sequence-to-sequence)
o Sequence in, single element or scalar value out
« Nothing in, sequence out (generation methods)

We first present each of the three categories and the query operators they include,
and then we take up each individual query operator in detail.

Sequence—Sequence

Most query operators fall into this category—accepting one or more sequences as
input and emitting a single output sequence. Figure 9-1 illustrates those operators
that restructure the shape of the sequences.

Flat

Relational —— Select-subquery or GroupJoin — Hierarchical

Select-subquery

Figure 9-1. Shape-changing operators

Filtering
IEnumerable<TSource> —IEnumerable<TSource>
Returns a subset of the original elements:

Where, Take, TakeWhile, Skip, SkipWhile, Distinct

0
=
4
g0
)
(2]

Overview | 393

www.it-ebooks.info

http://www.it-ebooks.info/

Projecting
IEnumerable<TSource> —IEnumerable<TResult>

Transforms each element with a lambda function. SelectMany flattens nested
sequences; Select and SelectMany perform inner joins, left outer joins, cross joins,
and non-equi joins with LINQ to SQL and EF:

Select, SelectMany
Joining
IEnumerable<TOuter>, IEnumerable<TInner>—> IEnumerable<TResult>

Meshes elements of one sequence with another. Join and GroupJoin operators are
designed to be efficient with local queries and support inner and left outer joins.
The Zip operator enumerates two sequences in step, applying a function over each
element pair. Rather than naming the type arguments TOuter and TInner, the Zip
operator names them TFirst and TSecond:

IEnumerable<TFirst>, IEnumerable<TSecond>—> IEnumerable<TResult>

Join, GroupJoin, Zip

Ordering
IEnumerable<TSource> —>I0rderedEnumerable<TSource>
Returns a reordering of a sequence:

OrderBy, ThenBy, Reverse

Grouping
IEnumerable<TSource> —IEnumerable<IGrouping<TKey,TElement>>
Groups a sequence into subsequences:

GroupBy

Set operators
IEnumerable<TSource>, IEnumerable<TSource>—> IEnumerable<TSource>
Takes two same-typed sequences and returns their commonality, sum, or difference:

Concat, Union, Intersect, Except

Conversion methods: Import
IEnumerable—>IEnumerable<TResult>

0fType, Cast

394 | Chapter9: LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Conversion methods: Export
IEnumerable<TSource> —>An array, list, dictionary, lookup, or sequence:

ToArray, TolList, ToDictionary, ToLookup, AsEnumerable, AsQueryable

Sequence—Element or Value

The following query operators accept an input sequence and emit a single element
or value.

Element operators

IEnumerable<TSource> —>TSource

Picks a single element from a sequence:

First, FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, DefaultIfEmpty

Aggregation methods
IEnumerable<TSource> —>scalar

Performs a computation across a sequence, returning a scalar value (typically a
number):

Aggregate, Average, Count, LongCount, Sum, Max, Min

Quantifiers
IEnumerable<TSource> —>bool
An aggregation returning true or false:

All, Any, Contains, SequenceEqual

Void—Sequence

In the third and final category are query operators that produce an output sequence
from scratch.

Generation methods

void—>IEnumerable<TResult>

Manufactures a simple sequence:

Empty, Range, Repeat

0
(=
o Z
g0
8
(2]

Overview | 395

www.it-ebooks.info

http://www.it-ebooks.info/

Filtering

IEnumerable<TSource>—> IEnumerable<TSource>

Method Description SQL equivalents
Where Returns a subset of elements that satisfya ~ WHERE
given condition
Take Returns the first count elements and WHERE ROW_NUMBER()...
discards the rest or TOP nsubquery
Skip Ignores the first count elements and WHERE ROW_NUMBER()...
returns the rest orNOT IN (SELECT TOP n...)
TakeWhile Emits elements from the input sequence Exception thrown
until the predicate is false
SkipWhile Ignores elements from the input sequence Exception thrown
until the predicate is false, and then emits
the rest
Distinct Returns a sequence that excludes SELECT DISTINCT...
duplicates

The “SQL equivalents” column in the reference tables in this
chapter do not necessarily correspond to what an IQueryable
implementation such as LINQ to SQL will produce. Rather, it
indicates what youd typically use to do the same job if you
were writing the SQL query yourself. Where there is no simple
translation, the column is left blank. Where there is no trans-
lation at all, the column reads “Exception thrown”.

Enumerable implementation code, when shown, excludes
checking for null arguments and indexing predicates.

With each of the filtering methods, you always end up with either the same number
or fewer elements than you started with. You can never get more! The elements are
also identical when they come out; they are not transformed in any way.

Where

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => bool or (TSource,int) => bool

Query syntax

where bool-expression

396 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Enumerable.Where implementation

The internal implementation of Enumerable.Where, null checking aside, is function-
ally equivalent to the following:

public static IEnumerable<TSource> Where<TSource>
(this IEnumerable<TSource> source, Func <TSource, bool> predicate)

{

foreach (TSource element in source)
if (predicate (element))
yield return element;

Overview
Where returns the elements from the input sequence that satisfy the given predicate.
For instance:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };
IEnumerable<string> query = names.Where (name => name.EndsWith ("y"));

/] Result: { "Harry", "Mary", "Jay" }
In query syntax:

IEnumerable<string> query = from n in names
where n.EndsWith ("y")
select n;

A where clause can appear more than once in a query and be interspersed with let,
orderby and join clauses:

from n in names

where n.Length > 3

let u = n.ToUpper()

where u.EndsWith ("Y")

select u; // Result: { "HARRY", "MARY" }

Standard C# scoping rules apply to such queries. In other words, you cannot refer
to a variable prior to declaring it with a range variable or a let clause.

Indexed filtering

Where’s predicate optionally accepts a second argument, of type int. This is fed with
the position of each element within the input sequence, allowing the predicate to
use this information in its filtering decision. For example, the following skips every
second element:

IEnumerable<string> query = names.Where ((n, 1) => 1 % 2 == 0);

// Result: { "Tom", "Harry", "Jay" }

An exception is thrown if you use indexed filtering in LINQ to SQL or EE.

Filtering | 397

www.it-ebooks.info

(®]
T
o
=
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

SQL LIKE comparisons in LINQ to SQL and EF
The following methods on string translate to SQLs LIKE operator:
Contains, StartsWith, EndsWith

For instance, c.Name.Contains ("abc") translates to customer.Name LIKE '%abc
%' (or more accurately, a parameterized version of this). Contains lets you compare
only against a locally evaluated expression; to compare against another column, you
must use the SqlMethods. Like method:

. where SqlMethods.Like (c.Description, "%" + c.Name + "%")

SqlMethods.Like also lets you perform more complex comparisons (e.g., LIKE
'abc%def%"').

< and > string comparisons in LINQ to SQL and EF

You can perform order comparison on strings with string’s CompareTo method; this
maps to SQLs < and > operators:

dataContext.Purchases.Where (p => p.Description.CompareTo ("C") < 0)

WHEREX IN (..., ..., ...) in LINQ to SQL and EF

With LINQ to SQL and EF, you can apply the Contains operator to a local collec-
tion within a filter predicate. For instance:

string[] chosenOnes = { "Tom", "Jay" };
from c in dataContext.Customers
where chosenOnes.Contains (c.Name)

This maps to SQLs IN operator—in other words:

WHERE customer.Name IN ("Tom", "Jay")

If the local collection is an array of entities or nonscalar types, LINQ to SQL or EF
may instead emit an EXISTS clause.

Take and Skip

Argument Type

Source sequence IEnumerable<TSource>

Number of elements to take or skip int

Take emits the first n elements and discards the rest; Skip discards the first n ele-
ments and emits the rest. The two methods are useful together when implementing
a web page allowing a user to navigate through a large set of matching records. For
instance, suppose a user searches a book database for the term “mercury;” and there
are 100 matches. The following returns the first 20:

398 | Chapter9: LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

IQueryable<Book> query = dataContext.Books
.Where (b => b.Title.Contains ("mercury"))
.OrderBy (b => b.Title)

.Take (20);

The next query returns books 21 to 40:

IQueryable<Book> query = dataContext.Books
.Where (b => b.Title.Contains ("mercury"))
.0rderBy (b => b.Title)

.Skip (20).Take (20);

LINQ to SQL and EF translate Take and Skip to the ROW_NUMBER function in SQL
Server 2005, or a TOP n subquery in earlier versions of SQL Server.

TakeWhile and SkipWhile

Argument Type

Source sequence IEnumerable<TSource>

Predicate TSource => boolor (TSource,int) => bool

TakeWhile enumerates the input sequence, emitting each item, until the given pred-
icate is false. It then ignores the remaining elements:

int[] numbers ={3,5,2, 234, 4, 1};
var takeWhileSmall = numbers.TakeWhile (n => n < 100); [/ {3, 5, 2 }

SkipWhile enumerates the input sequence, ignoring each item until the given predi-
cate is false. It then emits the remaining elements:

int[] numbers ={3,5,2, 234, 4, 11};
var skipWhileSmall = numbers.SkipWhile (n => n < 100); /] { 234, 4, 1}

TakeWhile and SkipWhile have no translation to SQL and throws an exception if

used in a LINQ-to-db query.

Distinct

Distinct returns the input sequence, stripped of duplicates. You can optionally pass
in a custom equality comparer. The following returns distinct letters in a string:

char[] distinctLetters = "HelloWorld".Distinct().ToArray();
string s = new string (distinctLetters); // HeloWrd

We can call LINQ methods directly on a string, because string implements IEnu
merable<char>.

Filtering | 399

www.it-ebooks.info

(o]
T
o
=
o
-
(]
-
(2]

ONIT

http://www.it-ebooks.info/

Projecting

IEnumerable<TSource>—> IEnumerable<TResult>

Method Description SQL equivalents

Select Transforms each input element with the SELECT
given lambda expression

SelectMany Transforms each input element and then INNER JOIN,
flattens and concatenates the resultant LEFT OUTER JOIN,
subsequences CROSS JOIN

When querying a database, Select and SelectMany are the
most versatile joining constructs; for local queries, Join and
GroupJotin are the most efficient joining constructs.

Select

Argument Type

Source sequence IEnumerable<TSource>

Result selector ~ TSource => TResultor (TSource,int) => TResult

Query syntax

select projection-expression

Enumerable implementation

public static IEnumerable<TResult> Select<TSource,TResult>
(this IEnumerable<TSource> source, Func<TSource,TResult> selector)

{

foreach (TSource element in source)
yield return selector (element);

Overview

With Select, you always get the same number of elements that you started with.
Each element, however, can be transformed in any manner by the lambda function.

The following selects the names of all fonts installed on the computer (from Sys
tem.Drawing):

IEnumerable<string> query = from f in FontFamily.Families
select f.Name;

foreach (string name in query) Console.WriteLine (name);

400 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

In this example, the select clause converts a FontFamily object to its name. Here’s
the lambda equivalent:

IEnumerable<string> query = FontFamily.Families.Select (f => f.Name);
Select statements are often used to project into anonymous types:

var query =
from f in FontFamily.Families
select new { f.Name, LineSpacing = f.GetLineSpacing (FontStyle.Bold) };

A projection with no transformation is sometimes used with query syntax, in order
to satisfy the requirement that the query end in a select or group clause. The fol-
lowing selects fonts supporting strikeout:

IEnumerable<FontFamily> query =
from f in FontFamily.Families
where f.IsStyleAvailable (FontStyle.Strikeout)
select f;

foreach (FontFamily ff in query) Console.WriteLine (ff.Name);

In such cases, the compiler omits the projection when translating to fluent syntax.

Indexed projection

The selector expression can optionally accept an integer argument, which acts as
an indexer, providing the expression with the position of each input in the input
sequence. This works only with local queries:

string[] names = { "Tom", "Dick", "Harry", "Mary", "Jay" };

IEnumerable<string> query = names
.Select ((s,1) => 1 + "=" + s); // { "e=Tom", "1=Dick", ... }

Select subqueries and object hierarchies

You can nest a subquery in a select clause to build an object hierarchy. The follow-
ing example returns a collection describing each directory under D:\source, with a
subcollection of files under each directory:

DirectoryInfo[] dirs = new DirectoryInfo (@"d:\source").GetDirectories();

var query =
from d in dirs
where (d.Attributes & FileAttributes.System) ==
select new
{
DirectoryName = d.FullName,
Created = d.CreationTime,

Files = from f in d.GetFiles()
where (f.Attributes & FileAttributes.Hidden) ==
select new { FileName = f.Name, f.Length, }
b

Projecting | 401

www.it-ebooks.info

(*]
T
o
=~
o
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

foreach (var dirFiles in query)
{
Console.WriteLine ("Directory: + dirFiles.DirectoryName);
foreach (var file in dirFiles.Files)
Console.WriteLine (" " + file.FileName + " Len: " + file.Length);

}

The inner portion of this query can be called a correlated subquery. A subquery is
correlated if it references an object in the outer query—in this case, it references d,
the directory being enumerated.

A subquery inside a Select allows you to map one object
hierarchy to another, or map a relational object model to a
hierarchical object model.

With local queries, a subquery within a Select causes double-deferred execution. In
our example, the files don't get filtered or projected until the inner foreach state-
ment enumerates.

Subgqueries and joins in LINQ to SQL and EF

Subquery projections work well in LINQ to SQL and EF and can be used to do the
work of SQL-style joins. Here’s how we retrieve each customer’s name along with
their high-value purchases:

var query =
from c in dataContext.Customers
select new {
c.Name,
Purchases = from p in dataContext.Purchases
where p.CustomerID == c.ID && p.Price > 1000
select new { p.Description, p.Price }

I

foreach (var namePurchases in query)
{
Console.WriteLine ("Customer: + namePurchases.Name);
foreach (var purchaseDetail in namePurchases.Purchases)
Console.WriteLine (" - $$$: " + purchaseDetail.Price);

This style of query is ideally suited to interpreted queries. The
outer query and subquery are processed as a unit, avoiding
unnecessary round-tripping. With local queries, however, it’s
inefficient because every combination of outer and inner ele-
ments must be enumerated to get the few matching combina-
tions. A better choice for local queries is Join or GroupJoin,
described in the following sections.

This query matches up objects from two disparate collections, and it can be thought
of as a “Join”. The difference between this and a conventional database join (or sub-

402 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

query) is that were not flattening the output into a single two-dimensional result
set. We're mapping the relational data to hierarchical data, rather than to flat data.

Here’s the same query simplified by using the Purchases association property on
the Customer entity:

from c in dataContext.Customers
select new

{
c.Name,
Purchases = from p in c.Purchases // Purchases is EntitySet<Purchase>
where p.Price > 1000
select new { p.Description, p.Price }
IH
Both queries are analogous to a left outer join in SQL in the sense that we get all
customers in the outer enumeration, regardless of whether they have any purchases.
To emulate an inner join—where customers without high-value purchases are
excluded—we would need to add a filter condition on the purchases collection:

from ¢ in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select new {
c.Name,
Purchases = from p in c.Purchases
where p.Price > 1000
select new { p.Description, p.Price }

1

This is slightly untidy, however, in that we've written the same predicate (Price >
1000) twice. We can avoid this duplication with a let clause:

from c in dataContext.Customers
let highValueP = from p in c.Purchases
where p.Price > 1000
select new { p.Description, p.Price }
where highValueP.Any()
select new { c.Name, Purchases = highValueP };

This style of query is flexible. By changing Any to Count, for instance, we can modify
the query to retrieve only customers with at least two high-value purchases:

where highValueP.Count() >= 2
select new { c.Name, Purchases = highValueP };

Projecting into concrete types

Projecting into anonymous types is useful in obtaining intermediate results, but not
so useful if you want to send a result set back to a client, for instance, because
anonymous types can exist only as local variables within a method. An alternative is
to use concrete types for projections, such as DataSets or custom business entity
classes. A custom business entity is simply a class that you write with some proper-
ties, similar to a LINQ to SQL [Table] annotated class or an EF Entity, but designed

Projecting | 403

www.it-ebooks.info

(®]
T
o
=
o
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

to hide lower-level (database-related) details. You might exclude foreign key fields

from business entity classes, for instance. Assuming we wrote custom entity classes

called CustomerEntity and PurchaseEntity, here’s how we could project into them:
IQueryable<CustomerEntity> query =

from ¢ in dataContext.Customers
select new CustomerEntity

{
Name = c.Name,
Purchases =
(from p in c.Purchases
where p.Price > 1000
select new PurchaseEntity {
Description = p.Description,
Value = p.Price
}
).ToList()
b

/] Force query execution, converting output to a more convenient List:
List<CustomerEntity> result = query.TolList();

Notice that so far, we've not had to use a Join or SelectMany statement. This is
because we’re maintaining the hierarchical shape of the data, as illustrated in
Figure 9-2. With LINQ, you can often avoid the traditional SQL approach of flatten-
ing tables into a two-dimensional result set.

Customer CustomerEntity
Purchase PurchaseEntity
Purchase PurchaseEntity
Customer CustomerEntity
Purchase PurchaseEntity
Purchase PurchaseEntity
LINQ to SQL types Custom types

Figure 9-2. Projecting an object hierarchy

SelectMany

Argument Type

Source sequence IEnumerable<TSource>

Result selector ~ TSource => IEnumerable<TResult>
or (TSource,int) => IEnumerable<TResult>

404 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Query syntax

from identifier1l in enumerable-expressionl
from identifier2 in enumerable-expression2

Enumerable implementation

public static IEnumerable<TResult> SelectMany<TSource,TResult>
(IEnumerable<TSource> source,
Func <TSource,IEnumerable<TResult>> selector)

{
foreach (TSource element in source)
foreach (TResult subElement in selector (element))
yield return subElement;

Overview
SelectMany concatenates subsequences into a single, flat output sequence.

Recall that for each input element, Select yields exactly one output element. In
contrast, SelectMany yields 0..n output elements. The 0..n elements come from a
subsequence or child sequence that the lambda expression must emit.

SelectMany can be used to expand child sequences, flatten nested collections, and
join two collections into a flat output sequence. Using the conveyor belt analogy,
SelectMany funnels fresh material onto a conveyor belt. With SelectMany, each
input element is the trigger for the introduction of fresh material. The fresh material
is emitted by the selector lambda expression and must be a sequence. In other
words, the lambda expression must emit a child sequence per input element. The
final result is a concatenation of the child sequences emitted for each input element.

Starting with a simple example, suppose we have an array of names as follows:
string[] fullNames = { "Anne Williams", "John Fred Smith", "Sue Green" };

which we wish to convert to a single flat collection of words—in other words:
"Anne", "Williams", "John", "Fred", "Smith", "Sue", Green"

SelectMany is ideal for this task, because were mapping each input element to a
variable number of output elements. All we must do is come up with a selector
expression that converts each input element to a child sequence. string.Split does
the job nicely: it takes a string and splits it into words, emitting the result as an
array:

string testInputElement = "Anne Williams";
string[] childSequence = testInputElement.Split();

/] childSequence is { "Anne", "Williams" };

So, here’s our SelectMany query and the result:

Projecting | 405

www.it-ebooks.info

O
T
(]
=~
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

IEnumerable<string> query = fullNames.SelectMany (name => name.Split());

foreach (string name in query)
Console.Write (name + "|"); // Anne|Williams|John|Fred|Smith|Sue|Green|

If you replace SelectMany with Select, you get the same
results in hierarchical form. The following emits a sequence of
string arrays, requiring nested foreach statements to enumer-
ate:

IEnumerable<string[]> query =
fullNames.Select (name => name.Split());

foreach (string[] stringArray in query)
foreach (string name in stringArray)
Console.Write (name + "|");

The benefit of SelectMany is that it yields a single flat result
sequence.

SelectMany is supported in query syntax and is invoked by having an additional
generator—in other words, an extra from clause in the query. The from keyword has
two meanings in query syntax. At the start of a query, it introduces the original
range variable and input sequence. Anywhere else in the query, it translates to
SelectMany. Here’s our query in query syntax:

IEnumerable<string> query =
from fullName in fullNames
from name in fullName.Split() // Translates to SelectMany
select name;

Note that the additional generator introduces a new range variable—in this case,
name. The old range variable stays in scope, however, and we can subsequently
access both.

Multiple range variables

In the preceding example, both name and fullName remain in scope until the query
either ends or reaches an into clause. The extended scope of these variables is the
killer scenario for query syntax over fluent syntax.

To illustrate, we can take the preceding query and include fullName in the final
projection:

IEnumerable<string> query =
from fullName in fullNames
from name in fullName.Split()
select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith

406 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

Behind the scenes, the compiler must pull some tricks to let you access both vari-
ables. A good way to appreciate this is to try writing the same query in fluent syntax.
It’s tricky! It gets harder still if you insert a where or orderby clause before projec-
ting:

from fullName in fullNames

from name in fullName.Split()

orderby fullName, name
select name + " came from " + fullName;

The problem is that SelectMany emits a flat sequence of child elements—in our
case, a flat collection of words. The original “outer” element from which it came
(fullName) is lost. The solution is to “carry” the outer element with each child, in a
temporary anonymous type:

from fullName in fullNames

from x in fullName.Split().Select (name => new { name, fullName })
orderby x.fullName, x.name

select x.name + " came from " + x.fullName;

The only change here is that we're wrapping each child element (name) in an anony-
mous type that also contains its fullName. This is similar to how a let clause is
resolved. Here’s the final conversion to fluent syntax:

IEnumerable<string> query = fullNames
.SelectMany (fName => fName.Split()
.Select (name => new { name, fName }))
.0rderBy (x => x.fName)
.ThenBy (x => x.name)
.Select (x => x.name +

came from " + x.fName);

Thinking in query syntax

As we just demonstrated, there are good reasons to use query syntax if you need
multiple range variables. In such cases, it helps not only to use query syntax, but
also to think directly in its terms.

There are two basic patterns when writing additional generators. The first is
expanding and flattening subsequences. To do this, you call a property or method on
an existing range variable in your additional generator. We did this in the previous
example:

from fullName in fullNames
from name in fullName.Split()

Here, we've expanded from enumerating full names to enumerating words. An anal-
ogous LINQ-to-db query is when you expand child association properties. The fol-
lowing query lists all customers along with their purchases:

IEnumerable<string> query = from c in dataContext.Customers
from p in c.Purchases
select c.Name + " bought a

+ p.Description;

Tom bought a Bike

Projecting | 407

www.it-ebooks.info

(®]
T
o
=
o
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

Here, we've expanded each customer into a subsequence of purchases.

The second pattern is performing a cartesian product or cross join—where every ele-
ment of one sequence is matched with every element of another. To do this, intro-
duce a generator whose selector expression returns a sequence unrelated to a
range variable:

int[] numbers = { 1, 2, 3 }; string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
from 1 in letters
select n.ToString() + 1;

RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of SelectMany-style joins.

Joining with SelectMany

You can use SelectMany to join two sequences, simply by filtering the results of a
cross product. For instance, suppose we wanted to match players for a game. We
could start as follows:

string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query = from namel in players
from name2 in players
select namel + " vs

+ name2;

RESULT: { "Tom vs Tom", "Tom vs Jay", "Tom vs Mary",
"Jay vs Tom", "Jay vs Jay", "Jay vs Mary",
"Mary vs Tom", "Mary vs "Jay", "Mary vs Mary" }

The query reads: “For every player, reiterate every player, selecting player 1 versus
player 2 Although we got what we asked for (a cross join), the results are not useful
until we add a filter:

IEnumerable<string> query = from namel in players
from name2 in players
where namel.CompareTo (name2) < 0
orderby namel, name2

select namel + " vs " + name2;

RESULT: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

The filter predicate constitutes the join condition. Our query can be called a non-
equi join, because the join condition doesn’t use an equality operator.

We'll demonstrate the remaining types of joins with LINQ to SQL (they’ll also work
with EF except where we explicitly use a foreign key field).

408 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

SelectMany in LINQ to SQL and EF

SelectMany in LINQ to SQL and EF can perform cross joins, non-equi joins, inner
joins, and left outer joins. You can use SelectMany with both predefined associa-
tions and ad hoc relationships—just as with Select. The difference is that Select
Many returns a flat rather than a hierarchical result set.

A LINQ-to-db cross join is written just as in the preceding section. The following
query matches every customer to every purchase (a cross join):

var query = from c¢ in dataContext.Customers
from p in dataContext.Purchases
select c.Name + " might have bought a

+ p.Description;

More typically, though, youd want to match customers to their own purchases only.
You achieve this by adding a where clause with a joining predicate. This results in a
standard SQL-style equi-join:

var query = from c in dataContext.Customers
from p in dataContext.Purchases
where c.ID == p.CustomerID
select c.Name + " bought a

+ p.Description;

This translates well to SQL. In the next section, we'll see how it
extends to support outer joins. Reformulating such queries
with LINQ’s Join operator actually makes them less extensible
—LINQ is opposite to SQL in this sense.

If you have association properties for relationships in your entities, you can express
the same query by expanding the subcollection instead of filtering the cross prod-
uct:

from c in dataContext.Customers
from p in c.Purchases
select new { c.Name, p.Description };

Entity Framework doesn't expose foreign keys in the entities,
so for recognized relationships, you must use its association
properties rather than joining manually as we did previously.

The advantage is that we've eliminated the joining predicate. We've gone from filter-
ing a cross product to expanding and flattening. Both queries, however, will result
in the same SQL.

You can add where clauses to such a query for additional filtering. For instance, if
we wanted only customers whose names started with “T”, we could filter as follows:

from c in dataContext.Customers
where c.Name.StartsWith ("T")

from p in c.Purchases

select new { c.Name, p.Description };

Projecting | 409

www.it-ebooks.info

O
T
o
=~
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

This LINQ-to-db query would work equally well if the where clause is moved one
line down. If it is a local query, however, moving the where clause down would
make it less efficient. With local queries, you should filter before joining.

You can introduce new tables into the mix with additional from clauses. For
instance, if each purchase had purchase item child rows, you could produce a flat
result set of customers with their purchases, each with their purchase detail lines as
follows:

from c in dataContext.Customers

from p in c.Purchases

from pi in p.PurchaseItems

select new { c.Name, p.Description, pi.DetaillLine };

Each from clause introduces a new child table. To include data from a parent table
(via an association property), you don't add a from clause—you simply navigate to
the property. For example, if each customer has a salesperson whose name you want
to query, just do this:

from c in dataContext.Customers
select new { Name = c.Name, SalesPerson = c.SalesPerson.Name };

You don't use SelectMany in this case because there’s no subcollection to flatten.
Parent association properties return a single item.

Outer joins with SelectMany

We saw previously that a Select subquery yields a result analogous to a left outer
join.
from c¢ in dataContext.Customers
select new {
c.Name,
Purchases = from p in c.Purchases
where p.Price > 1000
select new { p.Description, p.Price }
Y
In this example, every outer element (customer) is included, regardless of whether
the customer has any purchases. But suppose we rewrite this query with Select
Many so we can obtain a single flat collection rather than a hierarchical result set:

from c in dataContext.Customers

from p in c.Purchases

where p.Price > 1000

select new { c.Name, p.Description, p.Price };

In the process of flattening the query, we've switched to an inner join: customers are
now included only for whom one or more high-value purchases exist. To get a left
outer join with a flat result set, we must apply the DefaultIfEmpty query operator
on the inner sequence. This method returns a sequence with a single null element if
its input sequence has no elements.

410 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s such a query, price predicate aside:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new { c.Name, p.Description, Price = (decimal?) p.Price };

This works perfectly with LINQ to SQL and EF, returning all customers, even if they
have no purchases. But if we were to run this as a local query, it would crash,
because when p is null, p.Description and p.Price throw a NullReferenceExcep
tion. We can make our query robust in either scenario as follows:

from c in dataContext.Customers
from p in c.Purchases.DefaultIfEmpty()
select new {

c.Name,
Descript = p == null ? null : p.Description,
Price = p == null ? (decimal?) null : p.Price

b

Let’s now reintroduce the price filter. We cannot use a where clause as we did before,
because it would execute after DefaultIfEmpty:

from ¢ in dataContext.Customers

from p in c.Purchases.DefaultIfEmpty()

where p.Price > 1000...
The correct solution is to splice the Where clause before DefaultIfEmpty with a sub-
query:

from c in dataContext.Customers

from p in c.Purchases.Where (p => p.Price > 1000).DefaultIfEmpty()
select new {

c.Name,
Descript = p == null ? null : p.Description,
Price = p == null ? (decimal?) null : p.Price

¥
LINQ to SQL and EF translate this to a left outer join. This is an effective pattern for
writing such queries.

If youre used to writing outer joins in SQL, you might be
tempted to overlook the simpler option of a Select subquery
for this style of query, in favor of the awkward but familiar
SQL-centric flat approach. The hierarchical result set from a
Select subquery is often better suited to outer join-style quer-
ies because there are no additional nulls to deal with.

Projecting | 41

www.it-ebooks.info

(®]
T
(]
=
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

Joining

Method Description SQL equivalents

Join Applies a lookup strategy to match INNER JOIN
elements from two collections,
emitting a flat result set

GroupJoin As above, but emits a hierarchical INNER JOIN,
result set LEFT OUTER JOIN
Zip Enumerates two sequences in step Exception thrown

(like a zipper), applying a function
over each element pair.

Join and GroupJoin

IEnumerable<TOuter>, IEnumerable<TInner>—>IEnumerable<TResult>

Join arguments

Argument Type

Outer sequence IEnumerable<TOuter>
Inner sequence IEnumerable<TInner>
Outer key selector TOuter => TKey
Inner key selector TInner => TKey

Result selector (TOuter,TInner) => TResult

GroupJoin arguments

Argument Type

Outer sequence IEnumerable<TOuter>
Inner sequence IEnumerable<TInner>
Outer key selector TOuter => TKey
Inner key selector TInner => TKey

Result selector (TOuter,IEnumerable<TInner>) => TResult

Query syntax

from outer-var in outer-enumerable
join inner-var in inner-enumerable on outer-key-expr equals inner-key-expr
[into identifier]

412 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Overview

Join and GroupJoin mesh two input sequences into a single output sequence. Join
emits flat output; GroupJoin emits hierarchical output.

Join and GroupJoin provide an alternative strategy to Select and SelectMany. The
advantage of Join and GroupJoin is that they execute efficiently over local in-
memory collections, since they first load the inner sequence into a keyed lookup,
avoiding the need to repeatedly enumerate over every inner element. The disadvan-
tage is that they offer the equivalent of inner and left outer joins only; cross joins
and non-equi joins must still be done with Select/SelectMany. With LINQ to SQL
and Entity Framework queries, Join and GroupJoin offer no real benefits over
Select and SelectMany.

Table 9-1 summarizes the differences between each of the joining strategies.

Table 9-1. Joining strategies

Strategy Local query Inner Left outer Cross Non-
efficiency joins joins joins equi
joins
Select + SelectMany Flat Bad Yes Yes Yes Yes
Select + Select Nested Bad Yes Yes Yes Yes
Join Flat Good Yes - - -
GroupJoin Nested Good Yes Yes - -
GroupJoin + SelectMany Flat Good Yes Yes - -
Join

The Join operator performs an inner join, emitting a flat output sequence.

Entity Framework hides foreign key fields, so you can’t man-
ually join across natural relationships (instead, you can query
across association properties, as we described in the previous
two sections).

The simplest way to demonstrate Join is with LINQ to SQL. The following query
lists all customers alongside their purchases, without using an association property:

IQueryable<string> query =
from c in dataContext.Customers
join p in dataContext.Purchases on c.ID equals p.CustomerID
select c.Name + " bought a " + p.Description;

The results match what we would get from a SelectMany-style query:

Tom bought a Bike
Tom bought a Holiday
Dick bought a Phone
Harry bought a Car

Joining | 413

www.it-ebooks.info

(o]
T
o
=
o
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

To see the benefit of Join over SelectMany, we must convert this to a local query.
We can demonstrate this by first copying all customers and purchases to arrays and
then querying the arrays:

Customer[] customers = dataContext.Customers.ToArray();
Purchase[] purchases = dataContext.Purchases.ToArray();
var slowQuery = from c in customers
from p in purchases where c.ID == p.CustomerID
select c.Name + " bought a " + p.Description;

var fastQuery = from c in customers
join p in purchases on c.ID equals p.CustomerID
select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Join query is considerably faster
because its implementation in Enumerable preloads the inner collection (purcha
ses) into a keyed lookup.

The query syntax for join can be written in general terms as follows:

join inner-var in inner-sequence on outer-key-expr equals inner-key-expr

Join operators in LINQ differentiate between the outer sequence and inner sequence.
Syntactically:

o The outer sequence is the input sequence (in this case, customers).

o The inner sequence is the new collection you introduce (in this case, purcha
ses).

Join performs inner joins, meaning customers without purchases are excluded
from the output. With inner joins, you can swap the inner and outer sequences in
the query and still get the same results:

from p in purchases // p is now outer
join c in customers on p.CustomerID equals c.ID // c is now inner

You can add further join clauses to the same query. If each purchase, for instance,
has one or more purchase items, you could join the purchase items as follows:

from ¢ in customers
join p in purchases on c.ID equals p.CustomerID // first join
join pi in purchaseItems on p.ID equals pi.PurchaseID // second join

purchases acts as the inner sequence in the first join and as the outer sequence in
the second join. You could obtain the same results (inefficiently) using nested fore
ach statements as follows:

foreach (Customer c in customers)
foreach (Purchase p in purchases)
if (c.ID == p.CustomerID)
foreach (PurchaseItem pi in purchaseltems)

414 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

if (p.ID == pi.PurchaselD)
Console.WriteLine (c.Name +

non won
B

+ p.Price + "," + pi.Detail);

In query syntax, variables from earlier joins remain in scope—just as they do with
SelectMany-style queries. Youre also permitted to insert where and let clauses in
between join clauses.

Joining on multiple keys
You can join on multiple keys with anonymous types as follows:

from x in sequenceX
join y in sequenceY on new { K1 = x.Propl, K2
equals new { K1 = y.Prop3, K2

x.Prop2 }
y.Prop4 }

For this to work, the two anonymous types must be structured identically. The com-
piler then implements each with the same internal type, making the joining keys
compatible.

Joining in fluent syntax
The following query syntax join:

from c in customers
join p in purchases on c.ID equals p.CustomerID
select new { c.Name, p.Description, p.Price };

in fluent syntax is as follows:

customers.Join (// outer collection
purchases, // inner collection
c => c.ID, // outer key selector
p => p.CustomerID, // inner key selector
(c, p) => new
{ c.Name, p.Description, p.Price } // result selector
);

The result selector expression at the end creates each element in the output
sequence. If you have additional clauses prior to projecting, such as orderby in this
example:

from ¢ in customers
join p in purchases on c.ID equals p.CustomerID
orderby p.Price

select c.Name + " bought a

+ p.Description;

you must manufacture a temporary anonymous type in the result selector in fluent
syntax. This keeps both ¢ and p in scope following the join:

customers.Join (// outer collection
purchases, // inner collection
c => c.ID, |/ outer key selector
p => p.CustomerlID, // inner key selector

(c,p) =>new { c, p}) // result selector

Joining | 415

www.it-ebooks.info

O
T
o
=~
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

.OrderBy (x => x.p.Price)
.Select (x => x.c.Name + " bought a

+ X.p.Description);

Query syntax is usually preferable when joining; it’s less fiddly.

GroupJoin

GroupJoin does the same work as Join, but instead of yielding a flat result, it yields
a hierarchical result, grouped by each outer element. It also allows left outer joins.

The query syntax for GroupJotin is the same as for Join but is followed by the into
keyword.

Here’s the most basic example:

IEnumerable<IEnumerable<Purchase>> query =
from ¢ in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select custPurchases; // custPurchases is a sequence

An 1into clause translates to GroupJoin only when it appears
directly after a join clause. After a select or group clause, it
means query continuation. The two uses of the into keyword
are quite different, although they have one feature in com-
mon: they both introduce a new range variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (IEnumerable<Purchase> purchaseSequence in query)
foreach (Purchase p in purchaseSequence)
Console.WriteLine (p.Description);

This isn't very useful, however, because purchaseSequence has no reference to the
customer. More commonly, youd do this:

from ¢ in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

This gives the same results as the following (inefficient) Select subquery:

from c in customers

select new
{

CustName = c.Name,

custPurchases = purchases.Where (p => c.ID == p.CustomerID)
b

By default, GroupJoin does the equivalent of a left outer join. To get an inner join—
where customers without purchases are excluded—you need to filter on custPurcha
ses:

from c in customers join p in purchases on c.ID equals p.CustomerID
into custPurchases

416 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

where custPurchases.Any()
select ...

Clauses after a group-join into operate on subsequences of inner child elements, not
individual child elements. This means that to filter individual purchases, youd have
to call Where before joining:

from c in customers

join p in purchases.Where (p2 => p2.Price > 1000)
on c.ID equals p.CustomerID

into custPurchases ...

You can construct lambda queries with GroupJoin as you would with Join.

Flat outer joins

You run into a dilemma if you want both an outer join and a flat result set. Group
Join gives you the outer join; Join gives you the flat result set. The solution is to
first call GroupJoin, and then DefaultIfEmpty on each child sequence, and then
finally SelectMany on the result:

from ¢ in customers

join p in purchases on c.ID equals p.CustomerID into custPurchases
from cp in custPurchases.DefaultIfEmpty()

select new
{

CustName = c.Name,

Price = cp == null ? (decimal?) null : cp.Price
b

DefaultIfEmpty emits a sequence with a single null value if a subsequence of pur-
chases is empty. The second from clause translates to SelectMany. In this role, it
expands and flattens all the purchase subsequences, concatenating them into a single
sequence of purchase elements.

Joining with lookups

The Join and GroupJoin methods in Enumerable work in two steps. First, they load
the inner sequence into a lookup. Second, they query the outer sequence in combi-
nation with the lookup.

A lookup is a sequence of groupings that can be accessed directly by key. Another
way to think of it is as a dictionary of sequences—a dictionary that can accept many
elements under each key (sometimes called a multidictionary). Lookups are read-
only and defined by the following interface:

public interface ILookup<TKey,TElement> :
IEnumerable<IGrouping<TKey,TElement>>, IEnumerable
{
int Count { get; }
bool Contains (TKey key);
IEnumerable<TElement> this [TKey key] { get; }
}

Joining | 417

www.it-ebooks.info

O
T
o
=~
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

The joining operators—like other sequence-emitting opera-
tors—honor deferred or lazy execution semantics. This means
the lookup is not built until you begin enumerating the output
sequence (and then the entire lookup is built right then).

You can create and query lookups manually as an alternative strategy to using the
joining operators, when dealing with local collections. There are a couple of benefits
in doing so:

« You can reuse the same lookup over multiple queries—as well as in ordinary
imperative code.

o Querying a lookup is an excellent way of understanding how Join and Group
Join work.

The ToLookup extension method creates a lookup. The following loads all purchases
into a lookup—keyed by their CustomerID:

ILookup<int?,Purchase> purchLookup =
purchases.ToLookup (p => p.CustomerID, p => p);

The first argument selects the key; the second argument selects the objects that are
to be loaded as values into the lookup.

Reading a lookup is rather like reading a dictionary, except that the indexer returns
a sequence of matching items, rather than a single matching item. The following
enumerates all purchases made by the customer whose ID is 1:

foreach (Purchase p in purchLookup [1])
Console.WriteLine (p.Description);

With a lookup in place, you can write SelectMany/Select queries that execute as
efficiently as Join/GroupJoin queries. Join is equivalent to using SelectMany on a
lookup:

from c in customers
from p in purchLookup [c.ID]
select new { c.Name, p.Description, p.Price };

Tom Bike 500

Tom Holiday 2000
Dick Bike 600
Dick Phone 300

Adding a call to DefaultIfEmpty makes this into an outer join:

from c in customers

from p in purchLookup [c.ID].DefaultIfEmpty()

select new {
c.Name,
Descript = p == null ? null : p.Description,
Price = p == null ? (decimal?) null : p.Price

1

418 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

GroupJoin is equivalent to reading the lookup inside a projection:

from c in customers
select new {
CustName = c.Name,
CustPurchases = purchLookup [c.ID]
b

Enumerable implementations
Here’s the simplest valid implementation of Enumerable. Join, null checking aside:

public static IEnumerable <TResult> Join
<TOuter,TInner,TKey,TResult> (

this IEnumerable <TOuter> outer,
IEnumerable <TInner> inner,
Func <TOuter,TKey> outerKeySelector,
Func <TInner,TKey> innerKeySelector,
Func <TOuter,TInner,TResult> resultSelector)
{
ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
return

from outerItem in outer
from innerItem in lookup [outerKeySelector (outerItem)]
select resultSelector (outerItem, innerItem);

3
GroupJoin’s implementation is like that of Join, but simpler:

public static IEnumerable <TResult> GroupJoin
<TOuter,TInner,TKey,TResult> (

this IEnumerable <TOuter> outer,
IEnumerable <TInner> inner,
Func <TOuter,TKey> outerKeySelector,
Func <TInner,TKey> innerKeySelector,

Func <TOuter,IEnumerable<TInner>,TResult> resultSelector)

ILookup <TKey, TInner> lookup = inner.ToLookup (innerKeySelector);
return
from outerItem in outer
select resultSelector
(outerItem, lookup [outerKeySelector (outerItem)]);
}

The Zip Operator
IEnumerable<TFirst>, IEnumerable<TSecond>—> IEnumerable<TResult>

The Zip operator was added in Framework 4.0. It enumerates two sequences in step
(like a zipper), returning a sequence based on applying a function over each element
pair. For instance, the following:

int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip = numbers.Zip (words, (n, w) => n + "=" + w);

Joining | 419

www.it-ebooks.info

(®]
T
(]
=
o
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

produces a sequence with the following elements:

3=three
5=five
7=seven

Extra elements in either input sequence are ignored. Zip is not supported by EF and
L2S.

Ordering

IEnumerable<TSource>— IOrderedEnumerable<TSource>

Method Description SQL equivalents
OrderBy, ThenBy Sorts a sequence in ascending order ORDER BY ...

OrderByDescending, Sortsasequence in descending order ORDER BY ...DESC
ThenByDescending

Reverse Returns a sequence in reverse order Exception thrown

Ordering operators return the same elements in a different order.
OrderBy, OrderByDescending, ThenBy, and ThenByDescending

OrderBy and OrderByDescending arguments

Argument Type

Input sequence IEnumerable<TSource>

Key selector TSource => TKey

Return type = I0rderedEnumerable<TSource>

ThenBy and ThenByDescending arguments

Argument Type

Input sequence IOrderedEnumerable<TSource>

Key selector TSource => TKey

Query syntax

orderby expressionl [descending] [, expression2 [descending] ...]

420 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

Overview

OrderBy returns a sorted version of the input sequence, using the keySelector
expression to make comparisons. The following query emits a sequence of names in
alphabetical order:

IEnumerable<string> query = names.OrderBy (s => s);
The following sorts names by length:

IEnumerable<string> query = names.OrderBy (s => s.Length);

// Result: { "Jay", "Tom", "Mary", "Dick", "Harry" };

The relative order of elements with the same sorting key (in this case, Jay/Tom and
Mary/Dick) is indeterminate—unless you append a ThenBy operator:

IEnumerable<string> query = names.OrderBy (s => s.Length).ThenBy (s => s);

// Result: { "Jay", "Tom", "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key in the preceding sort.
You can chain any number of ThenBy operators. The following sorts first by length,
then by the second character, and finally by the first character:

names.OrderBy (s => s.Length).ThenBy (s => s[1]).ThenBy (s => s[0]);
The equivalent in query syntax is this:

from s in names
orderby s.Length, s[1], s[0]
select s;

The following variation is incorrect—it will actually order first
by s[1] and then by s.Length (or in the case of a database
query, it will order only by s[1] and discard the former order-
ing):

from s in names

orderby s.Length
orderby s[1]

LINQ also provides OrderByDescending and ThenByDescending operators, which
do the same things, emitting the results in reverse order. The following LINQ-to-db
query retrieves purchases in descending order of price, with those of the same price
listed alphabetically:

dataContext.Purchases.OrderByDescending (p => p.Price)
.ThenBy (p => p.Description);

In query syntax:

from p in dataContext.Purchases
orderby p.Price descending, p.Description
select p;

Ordering | 421

www.it-ebooks.info

O
T
(]
=
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

Comparers and collations

In a local query, the key selector objects themselves determine the ordering algo-
rithm via their default IComparable implementation (see Chapter 7). You can over-
ride the sorting algorithm by passing in an IComparer object. The following per-
forms a case-insensitive sort:

names.OrderBy (n => n, StringComparer.CurrentCultureIgnoreCase);

Passing in a comparer is not supported in query syntax, nor in any way by LINQ to
SQL or EE When querying a database, the comparison algorithm is determined by
the participating column’ collation. If the collation is case-sensitive, you can request
a case-insensitive sort by calling ToUpper in the key selector:

from p in dataContext.Purchases
orderby p.Description.ToUpper()
select p;

I0rderedEnumerable and I0rderedQueryable

The ordering operators return special subtypes of IEnumerable<T>. Those in Enu
merable return IOrderedEnumerable<TSource>; those in Queryable return IOrder
edQueryable<TSource>. These subtypes allow a subsequent ThenBy operator to
refine rather than replace the existing ordering.

The additional members that these subtypes define are not publicly exposed, so they
present like ordinary sequences. The fact that they are different types comes into
play when building queries progressively:

I0rderedEnumerable<string> queryl = names.OrderBy (s => s.Length);
I0rderedEnumerable<string> query2 = queryl.ThenBy (s => s);

If we instead declare query1 of type IEnumerable<string>, the second line would
not compile—ThenBy requires an input of type I0OrderedEnumerable<string>. You
can avoid worrying about this by implicitly typing range variables:

var queryl = names.OrderBy (s => s.Length);

var query2 = queryl.ThenBy (s => s);
Implicit typing can create problems of its own, though. The following will not com-
pile:

var query = names.OrderBy (s => s.Length);
query = query.Where (n => n.Length > 3); // Compile-time error

The compiler infers query to be of type IOrderedEnumerable<string>, based on
OrderBy’s output sequence type. However, the Where on the next line returns an
ordinary IEnumerable<string>, which cannot be assigned back to query. You can

work around this either with explicit typing or by calling AsEnumerable() after
OrderBy:

var query = names.OrderBy (s => s.Length).AsEnumerable();
query = query.Where (n => n.Length > 3); // OK

422 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

The equivalent in interpreted queries is to call AsQueryable.
Grouping
IEnumerable<TSource>— IEnumerable<IGrouping<TKey,TElement>>

Method Description SQL equivalents

GroupBy Groups a sequence into subsequences GROUP BY

GroupBy

Argument Type

Input sequence IEnumerable<TSource>
Key selector TSource => TKey
Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

Query syntax

group element-expression by key-expression

Overview

GroupBy organizes a flat input sequence into sequences of groups. For example, the
following organizes all the files in c:\temp by extension:

string[] files = Directory.GetFiles ("c:\\temp");

IEnumerable<IGrouping<string,string>> query =
files.GroupBy (file => Path.GetExtension (file));

Or if youre comfortable with implicit typing:
var query = files.GroupBy (file => Path.GetExtension (file));

Here’s how to enumerate the result:

foreach (IGrouping<string,string> grouping in query)
{
Console.WriteLine ("Extension: + grouping.Key);
foreach (string filename in grouping)

Console.WriteLine (" - "+ filename);

}

Extension: .pdf
-- chapter03.pdf
-- chapter04.pdf
Extension: .doc
-- todo.doc
-- menu.doc

)
(=
4
)
8
(%]

Grouping | 423

www.it-ebooks.info

http://www.it-ebooks.info/

-- Copy of menu.doc

Enumerable.GroupBy works by reading the input elements into a temporary dictio-
nary of lists so that all elements with the same key end up in the same sublist. It then
emits a sequence of groupings. A grouping is a sequence with a Key property:

public interface IGrouping <TKey,TElement> : IEnumerable<TElement>,
IEnumerable

{
TKey Key { get; } // Key applies to the subsequence as a whole

3
By default, the elements in each grouping are untransformed input elements, unless
you specify an elementSelector argument. The following projects each input ele-
ment to uppercase:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper());

An elementSelector is independent of the keySelector. In our case, this means
that the Key on each grouping is still in its original case:

Extension: .pdf
-- CHAPTERO3.PDF
-- CHAPTERO4.PDF

Extension: .doc
-- TODO.DOC

Note that the subcollections are not emitted in alphabetical order of key. GroupBy
groups only; it does not sort; in fact, it preserves the original ordering. To sort, you
must add an OrderBy operator:

files.GroupBy (file => Path.GetExtension (file), file => file.ToUpper())
.0rderBy (grouping => grouping.Key);

GroupBy has a simple and direct translation in query syntax:
group element-expr by key-expr
Here’s our example in query syntax:

from file in files
group file.ToUpper() by Path.GetExtension (file);

As with select, group “ends” a query—unless you add a query continuation clause:

from file in files

group file.ToUpper() by Path.GetExtension (file) into grouping
orderby grouping.Key

select grouping;

Query continuations are often useful in a group by query. The next query filters out
groups that have fewer than five files in them:

from file in files
group file.ToUpper() by Path.GetExtension (file) into grouping

424 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

where grouping.Count() >= 5
select grouping;

A where after a group by is equivalent to HAVING in SQL. It
applies to each subsequence or grouping as a whole, rather
than the individual elements.

Sometimes youre interested purely in the result of an aggregation on a grouping
and so can abandon the subsequences:

string[] votes = { "Bush", "Gore", "Gore", "Bush", "Bush" };

IEnumerable<string> query = from vote in votes
group vote by vote into g
orderby g.Count() descending
select g.Key;

string winner = query.First(); // Bush

GroupBy in LINQ to SQL and EF

Grouping works in the same way when querying a database. If you have association
properties set up, you'll find, however, that the need to group arises less frequently
than with standard SQL. For instance, to select customers with at least two purcha-
ses, you don't need to group; the following query does the job nicely:

from c in dataContext.Customers
where c.Purchases.Count >= 2
select c.Name + " has made "

+ c.Purchases.Count + " purchases";

An example of when you might use grouping is to list total sales by year:

from p in dataContext.Purchases
group p.Price by p.Date.Year into salesByYear
select new {
Year = salesByYear.Key,
TotalValue = salesByYear.Sum()
¥
LINQ’s grouping is more powerful than SQLs “GROUP BY”. For instance, it’s legal
to fetch all detail rows without any aggregation:

from p in dataContext.Purchases
group p by p.Date.Year

This works well in EE, but in L2S it causes excessive round-tripping. An easy work-
around is to call .AsEnumerable() just before grouping, so that the grouping hap-
pens on the client. This is no less efficient, as long as you perform any filtering
before grouping, so that you only fetch the data you need from the server.

Another departure from traditional SQL comes in there being no obligation to
project the variables or expressions used in grouping or sorting.

Grouping | 425

www.it-ebooks.info

(®]
T
o
=
o
-
o
=
(2]

ONI1

http://www.it-ebooks.info/

Grouping by multiple keys
You can group by a composite key, using an anonymous type:
from n in names
group n by new { FirstLetter = n[0], Length = n.Length };
Custom equality comparers

You can pass a custom equality comparer into GroupBy, in a local query, to change
the algorithm for key comparison. Rarely is this required, though, because changing
the key selector expression is usually sufficient. For instance, the following creates a
case-insensitive grouping:

group name by name. ToUpper()

Set Operators

IEnumerable<TSource>, IEnumerable<TSource>—IEnumerable<TSource>

Method Description SQL equivalents

Concat Returns a concatenation of elements in each of the two UNION ALL
sequences

Union Returns a concatenation of elements in each of the two UNION

sequences, excluding duplicates

Intersect Returns elements present in both sequences WHERE ... IN
(...)
Except Returns elements present in the first, but not the second EXCEPT
sequence or
WHERE ... NOT IN
(...)

Concat and Union

Concat returns all the elements of the first sequence, followed by all the elements of
the second. Union does the same, but removes any duplicates:

int[] seq1 = {1, 2, 3}, seq2 ={ 3, 4, 5 };

IEnumerable<int>
concat = segl.Concat (seq2), /] {1,2,3,3, 4,5}
union = seql.Union (seq2); // {1,2,3,4,5%}

Specifying the type argument explicitly is useful when the sequences are differently
typed, but the elements have a common base type. For instance, with the reflection
API (Chapter 19), methods and properties are represented with MethodInfo and
PropertyInfo classes, which have a common base class called MemberInfo. We can
concatenate methods and properties by stating that base class explicitly when calling
Concat:

426 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

MethodInfo[] methods = typeof (string).GetMethods();
PropertyInfo[] props = typeof (string).GetProperties();
IEnumerable<MemberInfo> both = methods.Concat<MemberInfo> (props);

In the next example, we filter the methods before concatenating:

var methods = typeof (string).GetMethods().Where (m => !m.IsSpecialName);
var props = typeof (string).GetProperties();
var both = methods.Concat<MemberInfo> (props);

This example relies on interface type parameter variance: methods is of type IEnu
merable<MethodInfo>, which requires a covariant conversion to IEnumerable<Mem
berInfo>. It's a good illustration of how variance makes things work more as youd
expect.

Intersect and Except

Intersect returns the elements that two sequences have in common. Except
returns the elements in the first input sequence that are not present in the second:

int[] seqli = {1, 2, 3}, seq2 ={ 3, 4, 5 };

IEnumerable<int>
commonality = seql.Intersect (seq2), /] {3}
differencel = seql.Except (seq2), /] {1, 2}
difference2 = seq2.Except (seql); /] { 4,5}
Enumerable.Except works internally by loading all of the elements in the first col-
lection into a dictionary, then removing from the dictionary all elements present in
the second sequence. The equivalent in SQL is a NOT EXISTS or NOT IN subquery:

SELECT number FROM numbersiTable
WHERE number NOT IN (SELECT number FROM numbers2Table)

Conversion Methods

LINQ deals primarily in sequences—in other words, collections of type IEnumera
ble<T>. The conversion methods convert to and from other types of collections:

0fType Converts IEnumerable to IEnumerable<T>, discarding wrongly typed elements

Cast Converts IEnumerable to IEnumerable<T>, throwing an exception if there are any
wrongly typed elements

ToArray Converts IEnumerable<T>to T[]

TolList Converts IEnumerable<T>to List<T>

ToDictionary Converts IEnumerable<T>toDictionary<TKey,TValue>
ToLookup Converts IEnumerable<T> to ILookup<TKey,TElement>
AsEnumerable Downcasts to IEnumerable<T>

AsQueryable (asts or converts to IQueryable<T>

Conversion Methods | 427

www.it-ebooks.info

O
T
o
=~
o
-
]
=
(2]

ONI1

http://www.it-ebooks.info/

0fType and Cast

OfType and Cast accept a nongeneric IEnumerable collection and emit a generic
IEnumerable<T> sequence that you can subsequently query:

ArrayList classicList = new ArraylList(); // in System.Collections
classicList.AddRange (new int[] { 3, 4, 5});
IEnumerable<int> sequencel = classiclList.Cast<int>();

Cast and 0fType differ in their behavior when encountering an input element that’s
of an incompatible type. Cast throws an exception; 0f Type ignores the incompatible
element. Continuing the preceding example:

DateTime offender = DateTime.Now;

classiclList.Add (offender);

IEnumerable<int>
sequence2 = classiclList.0fType<int>(), // OK - ignores offending DateTime
sequence3 = classiclList.Cast<int>(); // Throws exception

The rules for element compatibility exactly follow those of C#’s is operator, and
therefore consider only reference conversions and unboxing conversions. We can
see this by examining the internal implementation of 0f Type:

public static IEnumerable<TSource> OfType <TSource> (IEnumerable source)

{
foreach (object element in source)
if (element is TSource)
yield return (TSource)element;

}

Cast has an identical implementation, except that it omits the type compatibility
test:

public static IEnumerable<TSource> Cast <TSource> (IEnumerable source)

{
foreach (object element in source)
yield return (TSource)element;

}

A consequence of these implementations is that you cannot use Cast to perform
numeric or custom conversions (for these, you must perform a Select operation
instead). In other words, Cast is not as flexible as C#’s cast operator:

int 1 = 3;
long 1 = ; // Implicit numeric conversion int->long
int 12 = (int) 1; // Explicit numeric conversion long->int

We can demonstrate this by attempting to use OfType or Cast to convert a sequence
of ints to a sequence of longs:

int[] integers = { 1, 2, 3 };

IEnumerable<long> testl = integers.OfType<long>();
IEnumerable<long> test2 = integers.Cast<long>();

428 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

When enumerated, testl emits zero elements and test2 throws an exception.
Examining 0f Type’s implementation, it’s fairly clear why. After substituting TSource,
we get the following expression:

(element is long)

which returns false for an int element, due to the lack of an inheritance relation-
ship.

The reason for test2 throwing an exception, when enumer-
ated, is subtler. Notice in Cast’s implementation that element
is of type object. When TSource is a value type, the CLR
assumes this is an unboxing conversion and synthesizes a
method that reproduces the scenario described in the section
“Boxing and Unboxing” on page 98 in Chapter 3:

int value = 123;
object element = value;
long result = (long) element; // exception

Because the element variable is declared of type object, an
object-to-long cast is performed (an unboxing) rather than
an int-to-long numeric conversion. Unboxing operations
require an exact type match, so the object-to-long unbox
fails when given an int.

As we suggested previously, the solution is to use an ordinary Select:
IEnumerable<long> castlLong = integers.Select (s => (long) s);

OfType and Cast are also useful in downcasting elements in a generic input
sequence. For instance, if you have an input sequence of type IEnumerable<Fruit>,
0fType<Apple> would return just the apples. This is particularly useful in LINQ to
XML (see Chapter 10).

Cast has query syntax support: simply precede the range variable with a type:

from TreeNode node in myTreeView.Nodes

ToArray, ToList, ToDictionary, and ToLookup

ToArray and TolList emit the results into an array or generic list. These operators
force the immediate enumeration of the input sequence (unless indirected via a sub-
query or expression tree). For examples, refer to the section “Deferred Execution”
on page 348 in Chapter 8.

ToDictionary and ToLookup accept the following arguments:

Conversion Methods | 429

www.it-ebooks.info

O
T
o
=~
)
-
o
=
(%]

ONI1

http://www.it-ebooks.info/

Argument Type
Input sequence IEnumerable<TSource>
Key selector TSource => TKey

Element selector (optional) TSource => TElement

Comparer (optional) IEqualityComparer<TKey>

ToDictionary also forces immediate execution of a sequence, writing the results to
a generic Dictionary. The keySelector expression you provide must evaluate to a
unique value for each element in the input sequence; otherwise, an exception is
thrown. In contrast, ToLookup allows many elements of the same key. We describe
lookups in the earlier section “Joining with lookups” on page 417.

AsEnumerable and AsQueryable

AsEnumerable upcasts a sequence to IEnumerable<T>, forcing the compiler to bind
subsequent query operators to methods in Enumerable, instead of Queryable. For
an example, see the section “Combining Interpreted and Local Queries” on page 368
in Chapter 8.

AsQueryable downcasts a sequence to IQueryable<T> if it implements that inter-
face. Otherwise, it instantiates an IQueryable<T> wrapper over the local query.

Element Operators

IEnumerable<TSource>— TSource

Method Description SQL equivalents
First, Returns the first element in the sequence, optionally ~ SELECT TOP 1...
FirstOrDefault satisfying a predicate ORDER BY ...
Last, Returns the last element in the sequence, optionally SELECT TOP 1..
LastOrDefault satisfying a predicate ORDER BY ...DESC
Single, Equivalent to First/FirstOrDefault, but
SingleOrDefault throws an exception if there is more than one match
ElementAt, Returns the element at the specified position Exception thrown
ElementAtOrDefault
DefaultIfEmpty Returns a single-element sequence whose value is OUTER JOIN
default(TSource) if the sequence has no
elements

Methods ending in “OrDefault” return default(TSource) rather than throwing an
exception if the input sequence is empty or if no elements match the supplied predi-
cate.

430 | Chapter9:LINQOperators

www.it-ebooks.info

http://www.it-ebooks.info/

default(TSource) is null for reference type elements, false for the bool type and
zero for numeric types.

First, Last, and Single

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

The following example demonstrates First and Last:

int[] numbers = { 1, 2, 3, 4, 5 };

int first = numbers.First(); /] 1
int last = numbers.Last(); /] 5
int firstEven = numbers.First (n =>n % 2 == 0); /] 2
int lastEven = numbers.Last (n =>n % 2 == 0); /] 4

The following demonstrates First versus FirstOrDefault:

int firstBigError = numbers.First (n =>n > 10); // Exception
int firstBigNumber = numbers.FirstOrDefault (n => n > 10); /] ©

To avoid an exception, Single requires exactly one matching element; SingleOrDe
fault requires one or zero matching elements:

int onlyDivBy3 = numbers.Single (n =>n % 3 == 0); // 3
int divBy2Err = numbers.Single (n =>n % 2 == 0); // Error: 2 & 4 match

int singleError = numbers.Single (n =>n > 10); /] Error
int noMatches = numbers.SingleOrDefault (n => n > 10); /] 0
int divBy2Error = numbers.SingleOrDefault (n =>n % 2 == 0); // Error

Single is the “fussiest” in this family of element operators. FirstOrDefault and Las
tOrDefault are the most tolerant.

In LINQ to SQL and EFE Single is often used to retrieve a row from a table by pri-
mary key:

Customer cust = dataContext.Customers.Single (c => c.ID == 3);
ElementAt
Argument Type
Source sequence IEnumerable<TSource>

Index of element to return int

ElementAt picks the nth element from the sequence:

int[] numbers = {1, 2, 3, 4, 5};
int third = numbers.ElementAt (2); // 3

Element Operators | 431

www.it-ebooks.info

(%}
T
[
=
o
(=g
o
=
(2]

ONI1

http://www.it-ebooks.info/

int tenthError = numbers.ElementAt (9); // Exception
int tenth = numbers.ElementAtOrDefault (9); /] ©

Enumerable.ElementAt is written such that if the input sequence happens to imple-
ment IList<T>, it calls IList<T>’s indexer. Otherwise, it enumerates n times and
then returns the next element. ElementAt is not supported in LINQ to SQL or EE.

DefaultifEmpty

DefaultIfEmpty returns a sequence containing a single element whose value is
default(TSource) if the input sequence has no elements. Otherwise it returns the
input sequence unchanged. This is used in writing flat outer joins: see the earlier
sections “Outer joins with SelectMany” on page 410 and “Flat outer joins” on page
417.

Aggregation Methods

IEnumerable<TSource>—> scalar

Method Description SQL equivalents

Count, LongCount Returns the number of elements in the input ~ COUNT (...)
sequence, optionally satisfying a predicate

Min, Max Returns the smallest or largest elementinthe MIN (...), MAX (...)
sequence
Sum, Average (alculates a numeric sum or average over SUM (...), AVG (...)

elements in the sequence

Aggregate Performs a custom aggregation Exception thrown

Count and LongCount

Argument Type

Source sequence IEnumerable<TSource>

Predicate (optional) TSource => bool

Count simply enumerates over a sequence, returning the number of items:
int fullCount = new int[] { 5, 6, 7 }.Count(); // 3

The internal implementation of Enumerable.Count tests the input sequence to see
whether it happens to implement ICollection<T>. If it does, it simply calls ICollec
tion<T>.Count. Otherwise, it enumerates over every item, incrementing a counter.

You can optionally supply a predicate:

int digitCount = "pa55wOrd".Count (c => char.IsDigit (c)); // 3

432 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

LongCount does the same job as Count, but returns a 64-bit integer, allowing for
sequences of greater than 2 billion elements.

Min and Max
Argument Type
Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Min and Max return the smallest or largest element from a sequence:

int[] numbers = { 28, 32, 14 };
int smallest = numbers.Min(); // 14;
int largest = numbers.Max(); // 32;

If you include a selector expression, each element is first projected:
int smallest = numbers.Max (n =>n % 10); // 8;

A selector expression is mandatory if the items themselves are not intrinsically
comparable—in other words, if they do not implement IComparable<T>:

Purchase runtimeError = dataContext.Purchases.Min (); /] Error
decimal? lowestPrice = dataContext.Purchases.Min (p => p.Price); // OK

A selector expression determines not only how elements are compared, but also
the final result. In the preceding example, the final result is a decimal value, not a
purchase object. To get the cheapest purchase, you need a subquery:

Purchase cheapest = dataContext.Purchases
.Where (p => p.Price == dataContext.Purchases.Min (p2 => p2.Price))
.FirstOrDefault();

In this case, you could also formulate the query without an aggregation—using an
OrderBy followed by FirstOrDefault.

Sum and Average

Argument Type

Source sequence IEnumerable<TSource>

Result selector (optional) TSource => TResult

Sum and Average are aggregation operators that are used in a similar manner to Min
and Max:

decimal[] numbers = { 3, 4, 8 };
decimal sumTotal = numbers.Sum(); // 15
decimal average = numbers.Average(); // 5 (mean value)

The following returns the total length of each of the strings in the names array:

Aggregation Methods | 433

www.it-ebooks.info

o
T
o
=
o
-
(]
=
(2]

ONI1

http://www.it-ebooks.info/

int combinedLength = names.Sum (s => s.Length); // 19

Sum and Average are fairly restrictive in their typing. Their definitions are hard-
wired to each of the numeric types (int, long, float, double, decimal, and their
nullable versions). In contrast, Min and Max can operate directly on anything that
implements IComparable<T>—such as a string, for instance.

Further, Average always returns either decimal, float or double, according to the
following table:

Selector type Result type

decimal decimal
float float
int, long, double double

This means the following does not compile (“cannot convert double to int”):
int avg = new int[] { 3, 4 }.Average();

But this will compile:
double avg = new int[] { 3, 4 }.Average(); // 3.5

Average implicitly upscales the input values to avoid loss of precision. In this exam-
ple, we averaged integers and got 3.5, without needing to resort to an input element
cast:

double avg = numbers.Average (n => (double) n);

When querying a database, Sum and Average translate to the standard SQL aggrega-
tions. The following query returns customers whose average purchase was more
than $500:

from c in dataContext.Customers
where c.Purchases.Average (p => p.Price) > 500
select c.Name;

Aggregate

Aggregate allows you to specify a custom accumulation algorithm for implement-
ing unusual aggregations. Aggregate is not supported in LINQ to SQL or Entity
Framework and is somewhat specialized in its use cases. The following demon-
strates how Aggregate can do the work of Sum:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate (0, (total, n) => total + n); // 9

The first argument to Aggregate is the seed, from which accumulation starts. The
second argument is an expression to update the accumulated value, given a fresh
element. You can optionally supply a third argument to project the final result value
from the accumulated value.

434 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Most problems for which Aggregate has been designed can be
solved as easily with a foreach loop—and with more familiar
syntax. The advantage of using Aggregate is that with large or
complex aggregations, you can automatically parallelize the
operation with PLINQ (see Chapter 23).

Unseeded aggregations

You can omit the seed value when calling Aggregate, in which case the first element
becomes the implicit seed, and aggregation proceeds from the second element.
Here’s the preceding example, unseeded:

int[] numbers = { 1, 2, 3 };
int sum = numbers.Aggregate ((total, n) => total + n); // 6

This gives the same result as before, but we're actually doing a different calculation.
Before, we were calculating 0+1+2+3; now were calculating 1+2+3. We can better
illustrate the difference by multiplying instead of adding:

int[] numbers = { 1, 2, 3 };
int x = numbers.Aggregate (0, (prod, n) => prod * n); /] 0*1*2*3 = 0
int y = numbers.Aggregate ((prod, n) => prod * n); /] 1*2*3 =6

As we'll see in Chapter 23, unseeded aggregations have the advantage of being paral-
lelizable without requiring the use of special overloads. However, there are some
traps with unseeded aggregations.

Traps with unseeded aggregations

The unseeded aggregation methods are intended for use with delegates that are
commutative and associative. If used otherwise, the result is either unintuitive (with
ordinary queries) or nondeterministic (in the case that you parallelize the query with
PLINQ). For example, consider the following function:

(total, n) => total + n * n

This is neither commutative nor associative. (For example, 1+2*2 != 2+1*1). Lets
see what happens when we use it to sum the square of the numbers 2, 3, and 4:

int[] numbers = { 2, 3, 4 };
int sum = numbers.Aggregate ((total, n) => total + n * n); /] 27

Instead of calculating:
2%2 + 3*3 + 4%4 /] 29
it calculates:
2 + 3%3 + 4%4 /] 27
We can fix this in a number of ways. First, we could include 0 as the first element:

int[] numbers = { 0, 2, 3, 4 };

0
(=
R4
)
8
(2]

Aggregation Methods | 435

www.it-ebooks.info

http://www.it-ebooks.info/

Not only is this inelegant, but it will still give incorrect results if parallelized—
because PLINQ leverages the function’s assumed associativity by selecting multiple
elements as seeds. To illustrate, if we denote our aggregation function as follows:

f(total, n) => total + n * n

then LINQ to Objects would calculate this:
f(f(f(o, 2),3),4)

whereas PLINQ may do this:
f(f(0,2),f(3,4))

with the following result:

First partition: a =0+ 2*2 (= 4)

Second partition: b =3 + 4*4 (= 19)
Final result: a + bxb (= 365)
OR EVEN: b + a*a (= 35)

There are two good solutions. The first is to turn this into a seeded aggregation—
with zero as the seed. The only complication is that with PLINQ, wed need to use a
special overload in order for the query not to execute sequentially (see “Optimizing
PLINQ” on page 956 in Chapter 23).

The second solution is to restructure the query such that the aggregation function is
commutative and associative:

int sum = numbers.Select (n => n * n).Aggregate ((total, n) => total + n);

Of course, in such simple scenarios, you can (and should) use
the Sum operator instead of Aggregate:

int sum = numbers.Sum (n => n * n);

You can actually go quite far just with Sum and Average. For
instance, you can use Average to calculate a root-mean-
square:

Math.Sqrt (numbers.Average (n => n * n))
and even standard deviation:

double mean
double sdev

numbers.Average();
Math.Sqrt (numbers.Average (n =>

double dif = n - mean;
return dif * dif;
DR
Both are safe, efficient and fully parallelizable. In Chapter 23,
well give a practical example of a custom aggregation that
can’t be reduced to Sum or Average.

436 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Quantifiers

IEnumerable<TSource>—> bool

Method Description SQL equivalents

Contains Returns true if the input sequence contains the given WHERE ... IN (...)
element

Any Returns true if any elements satisfy the given predicate WHERE ... IN (...)

All Returns true if all elements satisfy the given predicate ~ WHERE (...)

SequenceEqual Returns true if the second sequence has identical

elements to the input sequence

Contains and Any

The Contains method accepts an argument of type TSource; Any accepts an
optional predicate.

Contatins returns true if the given element is present:
bool hasAThree = new int[] { 2, 3, 4 }.Contains (3); /] true;

Any returns true if the given expression is true for at least one element. We can
rewrite the preceding query with Any as follows:

bool hasAThree = new int[] { 2, 3, 4 }.Any (n => n == 3); // true;
Any can do everything that Contains can do, and more:
bool hasABigNumber = new int[] { 2, 3, 4 }.Any (n => n > 10); // false;

Calling Any without a predicate returns true if the sequence has one or more ele-
ments. Here’s another way to write the preceding query:

bool hasABigNumber = new int[] { 2, 3, 4 }.Where (n => n > 10).Any();

Any is particularly useful in subqueries and is used often when querying databases,
for example:

from c in dataContext.Customers
where c.Purchases.Any (p => p.Price > 1000)
select c

All and SequenceEqual

A1l returns true if all elements satisfy a predicate. The following returns customers
whose purchases are less than $100:

dataContext.Customers.Where (c => c.Purchases.All (p => p.Price < 100));

Quantifiers | 437

www.it-ebooks.info

(o]
T
o
=
o
-
(]
=
(%]

ONI1

http://www.it-ebooks.info/

SequenceEqual compares two sequences. To return true, each sequence must have
identical elements, in the identical order. You can optionally provide an equality
comparer; the default is EqualityComparer<T>.Default.

Generation Methods

voild—IEnumerable<TResult>

Method Description

Empty Creates an empty sequence
Repeat (reates a sequence of repeating elements

Range (reates a sequence of integers

Empty, Repeat, and Range are static (nonextension) methods that manufacture sim-
ple local sequences.

Empty
Empty manufactures an empty sequence and requires just a type argument:

foreach (string s in Enumerable.Empty<string>())
Console.Write (s); // <nothing>

In conjunction with the ?? operator, Empty does the reverse of DefaultIfEmpty. For
example, suppose we have a jagged array of integers, and we want to get all the inte-
gers into a single flat list. The following SelectMany query fails if any of the inner
arrays is null:

int[][] numbers =

{

new int[] { 1, 2, 3 3},

new int[] { 4, 5, 6 },

null // this null makes the query below fail.
3

IEnumerable<int> flat = numbers.SelectMany (innerArray => innerArray);
Empty in conjunction with ?? fixes the problem:

IEnumerable<int> flat = numbers
.SelectMany (innerArray => innerArray ?? Enumerable.Empty <int>());

foreach (int 1 in flat)
Console.Write (1 + " "); // 123456

Range and Repeat
Range accepts a starting index and count (both integers):

foreach (int 1 in Enumerable.Range (5, 3))
Console.Write (1 + " "); /] 567

438 | Chapter9:LINQ Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Repeat accepts an element to repeat, and the number of repetitions:

foreach (bool x in Enumerable.Repeat (true, 3))
Console.Write (x + " "); // True True True

)
=
R4
go
)
(2]

Generation Methods | 439

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

10

LINQ to XML

The NET Framework provides a number of APIs for working with XML data.
From NET Framework 3.5, the primary choice for general-purpose XML docu-
ment processing is LINQ to XML. LINQ to XML comprises a lightweight LINQ-
friendly XML document object model, plus a set of supplementary query operators.

In this chapter, we concentrate entirely on LINQ to XML. In Chapter 11, we cover
the more specialized XML types and APIs, including the forward-only reader/
writer, the types for working with schemas, stylesheets and XPaths, and the legacy
XmlDocument-based DOM.

The LINQ to XML DOM is extremely well designed and
highly performant. Even without LINQ, the LINQ to XML
DOM is valuable as a lightweight facade over the low-level
XmlReader and XmlWriter classes.

Al LINQ to XML types are defined in the System.Xml.Linq namespace.

Architectural Overview

This section starts with a very brief introduction to the concept of a DOM and then
explains the rationale behind LINQ to XMLs DOM.

What Isa DOM?
Consider the following XML file:

<?xml version="1.0" encoding="utf-8"?>
<customer 1d="123" status="archived">
<firstname>Joe</firstname>
<lastname>Bloggs</lastname>
</customer>

M

www.it-ebooks.info

http://www.it-ebooks.info/

As with all XML files, we start with a declaration, and then a root element, whose
name is customer. The customer element has two attributes, each with a name (id
and status) and value ("123" and "archived"). Within customer, there are two
child elements, firstname and lastname, each having simple text content ("Joe"
and "Bloggs").

Each of these constructs—declaration, element, attribute, value, and text content—
can be represented with a class. And if such classes have collection properties for
storing child content, we can assemble a tree of objects to fully describe a document.
This is called a document object model, or DOM.

The LINQ to XML DOM

LINQ to XML comprises two things:

o An XML DOM, which we call the X-DOM

o A set of about 10 supplementary query operators

As you might expect, the X-DOM consists of types such as XDocument, XElement,
and XAttribute. Interestingly, the X-DOM types are not tied to LINQ—you can
load, instantiate, update, and save an X-DOM without ever writing a LINQ query.

Conversely, you could use LINQ to query a DOM created of the older W3C-
compliant types. However, this would be frustrating and limiting. The distinguish-
ing feature of the X-DOM is that it's LINQ-friendly. This means:

o It has methods that emit useful IEnumerable sequences, upon which you can
query.

o Its constructors are designed such that you can build an X-DOM tree through a
LINQ projection.

X-DOM Overview

Figure 10-1 shows the core X-DOM types. The most frequently used of these types
is XElement. XObject is the root of the inheritance hierarchy; XElement and XDocu
ment are roots of the containership hierarchy.

442 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

/ Xobject / -
- | Parent Document f \ E g
7 s
[]
XAttribute XNode /
—— Parent Parent |

7ay
([I 1]

; XProcessing
XContainer Instruction XComment

XDocument

XText Type

[r
X(Data (1

*
|[Enumerable<XNode>

Nodes()

XElement XDocument
N = | Attributes Root Declaration i
|[Enumerable<XAttribute> | XDedlaration
k 1 1)

Figure 10-1. Core X-DOM types

Figure 10-2 shows the X-DOM tree created from the following code:

string xml = @"<customer id='123' status='archived's>
<firstname>Joe</firstname>
<lastname>Bloggs<!--nice name--></lastname>

</customer>";

XElement customer = XElement.Parse (xml);

XElement
Name = "customer"
Attributes Nodes —
XElement
Name = "firstname"
Nodes H—
XAttribute | | XText Value = "Joe" |
Name ="id" XElement
Value = "123" Name = "lastname” IEnumerable<XNode>
Nodes H—
XAttribute IEnumerable<XNode> | XText Value = "Bloggs" |
Name = "status”
Value = "archived" XComment
Value = "nice name"
|[Enumerable<XAttribute> Enumerable<XNode>

Figure 10-2. A simple X-DOM tree

X-DOM Overview | 443

www.it-ebooks.info

http://www.it-ebooks.info/

XObject is the abstract base class for all XML content. It defines a link to the Parent
element in the containership tree as well as an optional XDocument.

XNode is the base class for most XML content excluding attributes. The distinguish-
ing feature of XNode is that it can sit in an ordered collection of mixed-type XNodes.
For instance, consider the following XML:

<data>
Hello world
<subelementl/>
<!--comment-->
<subelement2/>
</data>
Within the parent element <data>, there’s first an XText node (Hello world), then
an XElement node, then an XComment node, and then a second XElement node. In
contrast, an XAttribute will tolerate only other XAttributes as peers.

Although an XNode can access its parent XElement, it has no concept of child nodes:
this is the job of its subclass XContainer. XContainer defines members for dealing
with children and is the abstract base class for XElement and XDocument.

XElement introduces members for managing attributes—as well as a Name and
Value. In the (fairly common) case of an element having a single XText child node,
the Value property on XElement encapsulates this child’s content for both get and
set operations, cutting unnecessary navigation. Thanks to Value, you can mostly
avoid working directly with XText nodes.

XDocument represents the root of an XML tree. More precisely, it wraps the root
XElement, adding an XDeclaration, processing instructions, and other root-level
“fluft” Unlike with the W3C DOM, its use is optional: you can load, manipulate,
and save an X-DOM without ever creating an XDocument! The nonreliance on XDocu
ment also means you can efficiently and easily move a node subtree to another X-
DOM hierarchy.
Loading and Parsing
Both XElement and XDocument provide static Load and Parse methods to build an
X-DOM tree from an existing source:

o Load builds an X-DOM from a file, URI, Stream, TextReader, or XmlReader.

o Parse builds an X-DOM from a string.
For example:
XDocument fromWeb = XDocument.Load ("http://albahari.com/sample.xml");
XElement fromFile = XElement.Load (@"e:\media\somefile.xml");

XElement config = XElement.Parse (
@"<configuration>

444 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

<client enabled="true'>
<timeout>30</timeout>
</client>
</configuration>");

In later sections, we describe how to traverse and update an X-DOM. As a quick
preview, here’s how to manipulate the config element we just populated:

foreach (XElement child in config.Elements())
Console.WriteLine (child.Name); /] client

XElement client = config.Element ("client");

bool enabled = (bool) client.Attribute ("enabled"); // Read attribute

Console.WriteLine (enabled); /] True
client.Attribute ("enabled").SetValue (!enabled); // Update attribute
int timeout = (int) client.Element ("timeout"); // Read element
Console.WriteLine (timeout); // 30

client.Element ("timeout").SetValue (timeout * 2); // Update element
client.Add (new XElement ("retries", 3)); // Add new elememt

Console.WriteLine (config); // Implicitly call config.ToString()
Here’s the result of that last Console.WriteLine:

<configuration>
<client enabled="false">
<timeout>60</timeout>
<retries>3</retries>
</client>
</configuration>

XNode also provides a static ReadFrom method that instantiates
and populates any type of node from an XmlReader. Unlike
Load, it stops after reading one (complete) node, so you can
continue to read manually from the XmlReader afterward.

You can also do the reverse and use an XmlReader or
XmlWriter to read or write an XNode, via its CreateReader and
CreateWriter methods.

We describe XML readers and writers and how to use them
with the X-DOM in Chapter 11.

Saving and Serializing

Calling ToString on any node converts its content to an XML string—formatted
with line breaks and indentation as we just saw. (You can disable the line breaks and
indentation by specifying SaveOptions.DisableFormatting when calling
ToString.)

XElement and XDocument also provide a Save method that writes an X-DOM to a
file, Stream, TextWriter, or XmlWriter. If you specify a file, an XML declaration is

X-DOM Overview | 445

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

automatically written. There is also a WriteTo method defined in the XNode class,
which accepts just an XmlhWriter.

We describe the handling of XML declarations when saving in more detail in the
section “Documents and Declarations” on page 459 later in this chapter.

Instantiating an X-DOM

Rather than using the Load or Parse methods, you can build an X-DOM tree by
manually instantiating objects and adding them to a parent via XContainer’s Add
method.

To construct an XElement and XAttribute, simply provide a name and value:

XElement lastName = new XElement ("lastname", "Bloggs");
lastName.Add (new XComment ("nice name"));

XElement customer = new XElement ("customer");
customer.Add (new XAttribute ("id", 123));
customer.Add (new XElement ("firstname", "Joe"));
customer.Add (lastName);

Console.WriteLine (customer.ToString());
The result:

<customer id="123">
<firstname>Joe</firstname>
<lastname>Bloggs<!--nice name--></lastname>
</customer>

A value is optional when constructing an XElement—you can provide just the ele-
ment name and add content later. Notice that when we did provide a value, a simple
string sufficed—we didn’t need to explicitly create and add an XText child node. The
X-DOM does this work automatically, so you can deal simply with “values”

Functional Construction

In our preceding example, it's hard to glean the XML structure from the code. X-
DOM supports another mode of instantiation, called functional construction (from
functional programming). With functional construction, you build an entire tree in
a single expression:

XElement customer =
new XElement ("customer", new XAttribute ("id", 123),
new XElement ("firstname", "joe"),
new XElement ("lastname", "bloggs",
new XComment ("nice name")
)
);

446 | Chapter10:LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

This has two benefits. First, the code resembles the shape of the XML. Second, it can
be incorporated into the select clause of a LINQ query. For example, the following
LINQ to SQL query projects directly into an X-DOM:

XElement query =
new XElement ("customers",
from c in dataContext.Customers
select
new XElement ("customer", new XAttribute ("id", c.ID),
new XElement ("firstname", c.FirstName),
new XElement ("lastname", c.LastName,
new XComment ("nice name")
)
)
);

More on this later in this chapter, in “Projecting into an X-DOM” on page 469.

Specifying Content
Functional construction is possible because the constructors for XElement (and XDo
cument) are overloaded to accept a params object array:
public XElement (XName name, params object[] content)
The same holds true for the Add method in XContatiner:
public voild Add (params object[] content)

Hence, you can specify any number of child objects of any type when building or
appending an X-DOM. This works because anything counts as legal content. To see
how, we need to examine how each content object is processed internally. Here are
the decisions made by XContatiner, in order:

1. If the object is null, it’s ignored.

2. If the object is based on XNode or XStreamingElement, its added as is to the
Nodes collection.

3. If the object is an XAttribute, it’s added to the Attributes collection.
4. If the object is a string, it gets wrapped in an XText node and added to Nodes.'

5. If the object implements IEnumerable, it’s enumerated, and the same rules are
applied to each element.

6. Otherwise, the object is converted to a string, wrapped in an XText node, and
then added to Nodes.?

1 The X-DOM actually optimizes this step internally by storing simple text content in a string. The
XTEXT node is not actually created until you call Nodes() on the XContatiner.

2 See footnote 1.

Instantiatingan X-DOM | 447

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

Everything ends up in one of two buckets: Nodes or Attributes. Furthermore, any
object is valid content because it can always ultimately call ToString on it and treat
it as an XText node.

Before calling ToString on an arbitrary type, XContatiner first
tests whether it is one of the following types:

float, double, decimal, bool,
DateTime, DateTimeOffset, TimeSpan

If so, it calls an appropriate typed ToString method on the
XmlConvert helper class instead of calling ToString on the
object itself. This ensures that the data is round-trippable and
compliant with standard XML formatting rules.

Automatic Deep Cloning

When a node or attribute is added to an element (whether via functional construc-
tion or an Add method), the node or attribute’s Parent property is set to that ele-
ment. A node can have only one parent element: if you add an already parented
node to a second parent, the node is automatically deep-cloned. In the following
example, each customer has a separate copy of address:

var address = new XElement ("address",
new XElement ("street", "Lawley St"),
new XElement ("town", "North Beach")

var customerl = new XElement ("customerl", address);
var customer2 = new XElement ("customer2", address);

customerl.Element ("address").Element ("street").Value = "Another St";
Console.WriteLine (
customer2.Element ("address").Element ("street").Value); // Lawley St

This automatic duplication keeps X-DOM object instantiation free of side effects—
another hallmark of functional programming.

Navigating and Querying

As you might expect, the XNode and XContatiner classes define methods and proper-
ties for traversing the X-DOM tree. Unlike a conventional DOM, however, these
functions don’t return a collection that implements IList<T>. Instead, they return
either a single value or a sequence that implements IEnumerable<T>—upon which
you are then expected to execute a LINQ query (or enumerate with a foreach). This
allows for advanced queries as well as simple navigation tasks—using familiar LINQ
query syntax.

Element and attribute names are case-sensitive in the X-DOM
—just as they are in XML.

448 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

Child Node Navigation

x 3

Return type Members Works on E g

XNode FirstNode { get; } XContainer ©
LastNode { get; } XContainer
IEnumerable<XNode> Nodes() XContainer*
DescendantNodes() XContainer*

DescendantNodesAndSelf() XElement*

XElement Element (XName) XContainer

IEnumerable<XElement> Elements() XContainer*
Elements (XName) XContainer*
Descendants() XContainer*
Descendants (XName) XContainer*
DescendantsAndSelf() XElement*

DescendantsAndSelf (XName) XElement*
bool HasElements { get; } XElement

Functions marked with an asterisk in the third column of this
and other tables also operate on sequences of the same type.
For instance, you can call Nodes on either an XContainer or a
sequence of XContainer objects. This is possible because of
extension methods defined in System.Xml.Ling—the supple-
mentary query operators we talked about in the overview.

FirstNode, LastNode, and Nodes

FirstNode and LastNode give you direct access to the first or last child node; Nodes
returns all children as a sequence. All three functions consider only direct descend-
ants. For example:

var bench = new XElement ("bench",
new XElement ("toolbox",
new XElement ("handtool", "Hammer"),
new XElement ("handtool", "Rasp")
)s
new XElement ("toolbox",
new XElement ("handtool", "Saw"),
new XElement ("powertool", "Nailgun")
)s
new XComment ("Be careful with the nailgun")
)s
foreach (XNode node in bench.Nodes())
Console.WriteLine (node.ToString (SaveOptions.DisableFormatting) + ".");

This is the output:

Navigating and Querying | 449

www.it-ebooks.info

http://www.it-ebooks.info/

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>.
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>.
<!--Be careful with the nailgun-->.

Retrieving elements
The Elements method returns just the child nodes of type XElement:

foreach (XElement e in bench.Elements())
Console.WriteLine (e.Name + "=" + e.Value); // toolbox=HammerRasp
// toolbox=SawNailgun

The following LINQ query finds the toolbox with the nail gun:

IEnumerable<string> query =
from toolbox in bench.Elements()
where toolbox.Elements().Any (tool => tool.Value == "Nailgun")
select toolbox.Value;

RESULT: { "SawNailgun" }

The next example uses a SelectMany query to retrieve the hand tools in all tool-
boxes:

IEnumerable<string> query =
from toolbox in bench.Elements()
from tool in toolbox.Elements()
where tool.Name == "handtool"
select tool.Value;

RESULT: { "Hammer", "Rasp", "Saw" }

Elements itself is equivalent to a LINQ query on Nodes. Our
preceding query could be started as follows:

from toolbox in bench.Nodes().0fType<XElement>()
where ...

Elements can also return just the elements of a given name. For example:
int x = bench.Elements ("toolbox").Count(); /] 2
This is equivalent to:
int x = bench.Elements().Where (e => e.Name == "toolbox").Count(); // 2

Elements is also defined as an extension method accepting IEnumerable<XCon
tainer> or, more precisely, it accepts an argument of this type:

IEnumerable<T> where T : XContainer

This allows it to work with sequences of elements, too. Using this method, we can
rewrite the query that finds the hand tools in all toolboxes as follows:

from tool in bench.Elements ("toolbox").Elements ("handtool")
select tool.Value.ToUpper();

450 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

The first call to Elements binds to XContainer’s instance method; the second call to
Elements binds to the extension method.

Retrieving a single element

The method Element (singular) returns the first matching element of the given
name. Element is useful for simple navigation, as follows:

XElement settings = XElement.Load ("databaseSettings.xml");
string cx = settings.Element ("database").Element ("connectString").Value;

Element is equivalent to calling Elements() and then applying LINQ’s FirstOrDe
fault query operator with a name-matching predicate. Element returns null if the
requested element doesn’t exist.

Element("xyz").Value will throw a NullReferenceExcep
tion if element xyz does not exist. If youd prefer a null rather
than an exception, cast the XElement to a string instead of
querying its Value property. In other words:

string xyz = (string) settings.Element ("xyz");

This works because XElement defines an explicit string con-
version—just for this purpose!

From C# 6, an alternative is to use the null-conditioner opera-
tor, i.e., Element {"xyz"}?.Value.

Retrieving descendants

XContatiner also provides Descendants and DescendantNodes methods that return
child elements or nodes plus all of their children, and so on (the entire tree).
Descendants accepts an optional element name. Returning to our earlier example,
we can use Descendants to find all the hand tools as follows:

Console.WriteLine (bench.Descendants ("handtool").Count()); // 3
Both parent and leaf nodes are included, as the following example demonstrates:

foreach (XNode node in bench.DescendantNodes())
Console.WriteLine (node.ToString (SaveOptions.DisableFormatting));

<toolbox><handtool>Hammer</handtool><handtool>Rasp</handtool></toolbox>
<handtool>Hammer</handtool>

Hammer

<handtool>Rasp</handtool>

Rasp
<toolbox><handtool>Saw</handtool><powertool>Nailgun</powertool></toolbox>
<handtool>Saw</handtool>

Saw

<powertool>Nailgun</powertool>

Nailgun

<!--Be careful with the nailgun-->

Navigating and Querying | 451

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

The next query extracts all comments anywhere within the X-DOM that contain the
word “careful”:
IEnumerable<string> query =
from ¢ in bench.DescendantNodes().0fType<XComment>()
where c.Value.Contains ("careful")

orderby c.Value
select c.Value;

Parent Navigation

All XNodes have a Parent property and Ancestor XXX methods for parent navigation.
A parent is always an XElement:

Return type Members Works on

XElement Parent { get; } XNode*

Enumerable<XElement> Ancestors() XNode*
Ancestors (XName) XNode*
AncestorsAndSelf() XElement*

AncestorsAndSelf (XName) XElement*

If x is an XElement, the following always prints true:

foreach (XNode child in x.Nodes())
Console.WriteLine (child.Parent == x);

The same is not the case, however, if x is an XDocument. XDocument is peculiar: it can
have children, but can never be anyone’s parent! To access the XDocument, you
instead use the Document property—this works on any object in the X-DOM tree.

Ancestors returns a sequence whose first element is Parent and whose next ele-
ment is Parent.Parent, and so on, until the root element.

You can navigate to the root element with the LINQ query
AncestorsAndSelf().Last().

Another way to achieve the same thing is to call Docu
ment.Root—although this works only if an XDocument is

present.
Peer Node Navigation
Return type Members Defined in
bool IsBefore (XNode node) XNode
IsAfter (XNode node) XNode
XNode PreviousNode { get; } XNode
NextNode { get; } XNode

452 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

Return type Members Defined in

IEnumerable<XNode> NodesBeforeSelf() XNode
NodesAfterSelf() XNode
IEnumerable<XElement> ElementsBeforeSelf() XNode

ElementsBeforeSelf (XName name) XNode
ElementsAfterSelf() XNode
ElementsAfterSelf (XName name) XNode

With PreviousNode and NextNode (and FirstNode/LastNode), you can traverse
nodes with the feel of a linked list. This is noncoincidental: internally, nodes are
stored in a linked list.

XNode internally uses a singly linked list, so PreviousNode is
not performant.

Attribute Navigation

Return type Members Defined in
bool HasAttributes { get; } XElement
XAttribute Attribute (XName name) XElement

FirstAttribute { get; } XElement
LastAttribute { get; } XElement
IEnumerable<XAttribute> Attributes() XElement
Attributes (XName name) XElement

In In addition, XAttribute defines PreviousAttribute and NextAttribute proper-
ties, as well as Parent.

The Attributes method that accepts a name returns a sequence with either zero or
one element; an element cannot have duplicate attribute names in XML.

Updating an X-DOM
You can update elements and attributes in the following ways:

o Call SetValue or reassign the Value property.

o Call SetElementValue or SetAttributeValue.

o Call one of the Remove XXX methods.

o Call one of the AddXXxX or ReplaceXXX methods, specifying fresh content.

Updatingan X-DOM | 453

www.it-ebooks.info

=
§z
=2
o

http://www.it-ebooks.info/

You can also reassign the Name property on XElement objects.

Simple Value Updates

Members Works on

SetValue (object value) XElement, XAttribute
Value { get; set } XElement, XAttribute

The SetValue method replaces an element or attribute’s content with a simple value.
Setting the Value property does the same, but accepts string data only. We describe
both of these functions in detail later in this chapter (see the section “Working with
Values” on page 456).

An effect of calling SetValue (or reassigning Value) is that it replaces all child
nodes:

XElement settings = new XElement ("settings",
new XElement ("timeout", 30)
)
settings.SetValue ("blah");
Console.WriteLine (settings.ToString()); // <settings>blah</settings>

Updating Child Nodes and Attributes

Add Add (params object[] content) XContainer
AddFirst (params object[] content) XContainer

Remove RemoveNodes() XContatiner
RemoveAttributes() XElement
RemoveAll() XElement

Update ReplaceNodes (params object[] content) XContainer

ReplaceAttributes (params object[] content) XElement
ReplaceAll (params object[] content XElement
SetElementValue (XName name, object value) XElement

SetAttributeValue (XName name, object value) XElement

The most convenient methods in this group are the last two: SetElementValue and
SetAttributeValue. They serve as shortcuts for instantiating an XElement or XAt
tribute and then Adding it to a parent, replacing any existing element or attribute
of that name:

XElement settings = new XElement ("settings");
settings.SetElementValue ("timeout", 30); // Adds child node
settings.SetElementValue ("timeout", 60); // Update it to 60

454 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

Add appends a child node to an element or document. AddFirst does the same
thing, but inserts at the beginning of the collection rather than the end.

You can remove all child nodes or attributes in one hit with RemoveNodes or Remov
eAttributes. RemoveAll is equivalent to calling both of these methods.

The ReplaceXXX methods are equivalent to Removing and then Adding. They take a
snapshot of the input, so e.ReplaceNodes(e.Nodes()) works as expected.

Updating Through the Parent

Members Works on

AddBeforeSelf (params object[] content) XNode
AddAfterSelf (params object[] content) XNode
Remove() XNode*, XAttribute*
ReplaceWith (params object[] content) XNode

The methods AddBeforeSelf, AddAfterSelf, Remove, and ReplaceWith don't oper-
ate on the node’s children. Instead, they operate on the collection in which the node
itself is in. This requires that the node have a parent element—otherwise, an excep-
tion is thrown. AddBeforeSelf and AddAfterSelf are useful for inserting a node
into an arbitrary position:

XElement items = new XElement ("items",
new XElement ("one"),
new XElement ("three")
);
items.FirstNode.AddAfterSelf (new XElement ("two"));

Here’s the result:
<items><one /><two /><three /></items>

Inserting into an arbitrary position within a long sequence of elements is actually
quite efficient, because nodes are stored internally in a linked list.

The Remove method removes the current node from its parent. ReplaceWith does
the same—and then inserts some other content at the same position. For instance:

XElement items = XElement.Parse ("<items><one/><two/><three/></items>");
items.FirstNode.ReplaceWith (new XComment ("One was here"));

Here’s the result:

<items><!--one was here--><two /><three /></items>

Removing a sequence of nodes or attributes

Thanks to extension methods in System.Xml.Ling, you can also call Remove on a
sequence of nodes or attributes. Consider this X-DOM:

Updatingan X-DOM | 455

www.it-ebooks.info

=
§z
=2
o

http://www.it-ebooks.info/

XElement contacts = XElement.Parse (

@"<contacts>
<customer name='Mary'/>
<customer name='Chris' archived='true'/>
<supplier name='Susan's>

<phone archived="true'>012345678<!--confidential--></phone>
</supplier>
</contacts>");

The following removes all customers:
contacts.Elements ("customer").Remove();
The next statement removes all archived contacts (so Chris disappears):

contacts.Elements().Where (e => (bool?) e.Attribute ("archived") == true)
.Remove();

If we replaced Elements() with Descendants(), all archived elements throughout
the DOM would disappear, with this result:

<contacts>
<customer name="Mary" />
<supplier name="Susan" />
</contacts>

The next example removes all contacts that feature the comment “confidential” any-
where in their tree:

contacts.Elements().Where (e => e.DescendantNodes()
.0fType<XComment>()
.Any (c => c.Value == "confidential")
).Remove();

This is the result:

<contacts>

<customer name="Mary" />

<customer name="Chris" archived="true" />
</contacts>

Contrast this with the following simpler query, which strips all comment nodes
from the tree:

contacts.DescendantNodes().0fType<XComment>().Remove();

Internally, the Remove methods first read all matching ele-
ments into a temporary list, and then enumerate over the tem-
porary list to perform the deletions. This avoids errors that
could otherwise result from deleting and querying at the same
time.

Working with Values

XElement and XAttribute both have a Value property of type string. If an element
has a single XText child node, XElement’s Value property acts as a convenient short-

456 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

cut to the content of that node. With XAttribute, the Value property is simply the
attribute’s value.

Despite the storage differences, the X-DOM provides a consistent set of operations
for working with element and attribute values.

Setting Values

There are two ways to assign a value: call SetValue or assign the Value property.
SetValue is more flexible because it accepts not just strings, but other simple data
types, too:

var e = new XElement ("date", DateTime.Now);

e.SetValue (DateTime.Now.AddDays(1));
Console.Write (e.Value); // 2007-03-02T716:39:10.734375+09:00

We could have instead just set the elements Value property, but this would mean
manually converting the DateTime to a string. This is more complicated than calling
ToString—it requires the use of XmlConvert for an XML-compliant result.

When you pass a value into XElement or XAttribute’s constructor, the same auto-
matic conversion takes place for nonstring types. This ensures that DateTimes are
correctly formatted; true is written in lowercase, and double.NegativeInfintity is
written as “-INF”.

Getting Values

To go the other way around and parse a Value back to a base type, you simply cast
the XElement or XAttribute to the desired type. It sounds like it shouldn’t work—
but it does! For instance:

XElement e = new XElement ("now", DateTime.Now);
DateTime dt = (DateTime) e;

XAttribute a = new XAttribute ("resolution", 1.234);
double res = (double) a;

An element or attribute doesn’t store DateTimes or numbers natively—theyre
always stored as text and then parsed as needed. It also doesn’t “remember” the orig-
inal type, so you must cast it correctly to avoid a runtime error. To make your code
robust, you can put the cast in a try/catch block, catching a FormatException.

Explicit casts on XElement and XAttribute can parse to the following types:
o All standard numeric types

o string, bool, DateTime, DateTimeOffset, TimeSpan, and Guid

 Nullable<> versions of the aforementioned value types

Casting to a nullable type is useful in conjunction with the Element and Attribute
methods, because if the requested name doesnt exist, the cast still works. For

Working with Values | 457

www.it-ebooks.info

=
éz
2
o

http://www.it-ebooks.info/

instance, if x has no timeout element, the first line generates a runtime error, and
the second line does not:

int timeout = (int) x.Element ("timeout"); /] Error
int? timeout = (int?) x.Element ("timeout"); // OK; timeout is null.

You can factor away the nullable type in the final result with the ?? operator. The
following evaluates to 1.0 if the resolution attribute doesn’t exist:

double resolution = (double?) x.Attribute ("resolution") ?? 1.0;

Casting to a nullable type won’t get you out of trouble, though, if the element or
attribute exists and has an empty (or improperly formatted) value. For this, you
must catch a FormatException.

You can also use casts in LINQ queries. The following returns “John”:

var data = XElement.Parse (
@"<data>
<customer id='1' name='Mary' credit='100' />
<customer id='2' name='John' credit='150"' />
<customer id='3"' name='Anne' />
</data>");

IEnumerable<string> query = from cust in data.Elements()
where (int?) cust.Attribute ("credit") > 100
select cust.Attribute ("name").Value;

Casting to a nullable int avoids a NullReferenceException in the case of Anne,
who has no credit attribute. Another solution would be to add a predicate to the
where clause:

where cust.Attributes ("credit").Any() && (int) cust.Attribute...

The same principles apply in querying element values.

Values and Mixed Content Nodes

Given the value of Value, you might wonder when youd ever need to deal directly
with XText nodes. The answer is when you have mixed content. For example:

<summary>An XAttribute is <bold>not</bold> an XNode</summary>

A simple Value property is not enough to capture summary’s content. The summary
element contains three children: an XText node followed by an XElement, followed
by another XText node. Here’s how to construct it:

XElement summary = new XElement ("summary",
new XText ("An XAttribute is "),
new XElement ("bold", "not"),
new XText (" an XNode")
);

Interestingly, we can still query summary’s Value—without getting an exception.
Instead, we get a concatenation of each child’s value:

458 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

An XAttribute is not an XNode

It’s also legal to reassign summary’s Value, at the cost of replacing all previous chil-
dren with a single new XText node.

Automatic XText Concatenation

When you add simple content to an XElement, the X-DOM appends to the existing
XText child rather than creating a new one. In the following examples, e1 and e2
end up with just one child XText element whose value is HelloWor1d:

var el = new XElement ("test", "Hello"); el.Add ("World");
var e2 = new XElement ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up with multiple children:

var e = new XElement ("test", new XText ("Hello"), new XText ("World"));
Console.WriteLine (e.Value); // HelloWorld
Console.WriteLine (e.Nodes().Count()); // 2

XElement doesn’t concatenate the two XText nodes, so the nodes’ object identities
are preserved.

Documents and Declarations

XDocument

As we said previously, an XDocument wraps a root XElement and allows you to add
an XDeclaration, processing instructions, a document type, and root-level com-
ments. An XDocument is optional and can be ignored or omitted: unlike with the
W3C DOV, it does not serve as glue to keep everything together.

An XDocument provides the same functional constructors as XElement. And because
it’s based on XContatiner, it also supports the AddXXX, RemoveXxXX, and ReplaceXXX
methods. Unlike XElement, however, an XDocument can accept only limited content:

« A single XElement object (the “root”)

« A single XDeclaration object

o A single XDocumentType object (to reference a DTD)
« Any number of XProcessingInstruction objects

« Any number of XComment objects

Of these, only the root XElement is mandatory in order to
have a valid XDocument. The XDeclaration is optional—if
omitted, default settings are applied during serialization.

Documents and Declarations | 459

www.it-ebooks.info

=
éz
2
o

http://www.it-ebooks.info/

The simplest valid XDocument has just a root element:

var doc = new XDocument (
new XElement ("test", "data")
)s

Notice that we didn’t include an XDeclaration object. The file generated by calling
doc.Save would still contain an XML declaration, however, because one is gener-
ated by default.

The next example produces a simple but correct XHTML file, illustrating all the
constructs that an XDocument can accept:

var stylelnstruction = new XProcessingInstruction (
"xml-stylesheet", "href='styles.css' type='text/css'");

var docType = new XDocumentType ("html",
"-//W3C//DTD XHTML 1.0 Strict//EN",
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd", null);

XNamespace ns = "http://www.w3.0rg/1999/xhtml";
var root =
new XElement (ns + "html",
new XElement (ns + "head",
new XElement (ns + "title", "An XHTML page")),
new XElement (ns + "body",
new XElement (ns + "p", "This is the content"))

)s

var doc =
new XDocument (
new XDeclaration ("1.0", "utf-8", "no"),
new XComment ("Reference a stylesheet"),
styleInstruction,
docType,
root);

doc.Save ("test.html");
The resultant test.html reads as follows:

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<!--Reference a stylesheet-->
<?xml-stylesheet href='styles.css' type='text/css'?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>An XHTML page</title>
</head>
<body>
<p>This is the content</p>
</body>
</html>

460 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

XDocument has a Root property that serves as a shortcut for accessing a document’s
single XElement. The reverse link is provided by XObject’s Document property,
which works for all objects in the tree:

Console.WriteLine (doc.Root.Name.LocalName); // html
XElement bodyNode = doc.Root.Element (ns + "body");
Console.WriteLine (bodyNode.Document == doc); /] True

Recall that a document’s children have no Parent:

Console.WriteLine (doc.Root.Parent == null); /] True
foreach (XNode node in doc.Nodes())
Console.Write (node.Parent == null); // TrueTrueTrueTrue

An XDeclaration is not an XNode and does not appear in the
document’s Nodes collection—unlike comments, processing
instructions, and the root element. Instead, it gets assigned to
a dedicated property called Declaration. This is why “True” is
repeated four and not five times in the last example.

XML Declarations
A standard XML file starts with a declaration such as the following:
<?xml version="1.0" encoding="utf-8" standalone="yes"?>

An XML declaration ensures that the file will be correctly parsed and understood by
areader. XElement and XDocument follow these rules in emitting XML declarations:

o Calling Save with a filename always writes a declaration.

o Calling Save with an XmlWriter writes a declaration unless the XmlWriter is
instructed otherwise.

o The ToString method never emits an XML declaration.

You can instruct an XmlWriter not to produce a declaration by
setting the OmitXmlDeclaration and ConformanceLevel
properties of an XmlWriterSettings object when constructing
the XmlWriter. We describe this in Chapter 11.

The presence or absence of an XDeclaration object has no effect on whether an
XML declaration gets written. The purpose of an XDeclaration is instead to hint the
XML serialization—in two ways:

o What text encoding to use

o What to put in the XML declaration’s encoding and standalone attributes
(should a declaration be written)

Documents and Declarations | 461

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

XDeclaration’s constructor accepts three arguments, which correspond to the
attributes version, encoding, and standalone. In the following example, test.xml is
encoded in UTF-16:

var doc = new XDocument (
new XDeclaration ("1.0", "utf-16", "yes"),
new XElement ("test", "data")
)5

doc.Save ("test.xml");

Whatever you specify for the XML version is ignored by the
XML writer: it always writes "1.0".

The encoding must use an IETF code such as "utf-16"—just as it would appear in
the XML declaration.

Writing a declaration to a string

Suppose we want to serialize an XDocument to a string—including the XML decla-
ration. Because ToString doesn’t write a declaration, wed have to use an XmlWriter
instead:

var doc = new XDocument (

new XDeclaration ("1.0", "utf-8", "yes"),

new XElement ("test", "data")

);
var output = new StringBuilder();
var settings = new XmlWriterSettings { Indent = true };
using (XmlWriter xw = XmlWriter.Create (output, settings))
doc.Save (xw);

Console.WriteLine (output.ToString());

This is the result:

<?xml version="1.0" encoding="utf-16" standalone="yes"?>

<test>data</test>
Notice that we got UTF-16 in the output—even though we explicitly requested
UTF-8 in an XDeclaration! This might look like a bug, but in fact, XmlWriter is
being remarkably smart. Because we're writing to a string and not a file or stream,
its impossible to apply any encoding other than UTF-16—the format in which
strings are internally stored. Hence, XmlWriter writes "utf-16"—so as not to lie.

This also explains why the ToString method doesn’t emit an XML declaration.
Imagine that instead of calling Save, you did the following to write an XDocument to
a file:

File.WriteAllText ("data.xml", doc.ToString());

As it stands, data.xml would lack an XML declaration, making it incomplete but still
parsable (you can infer the text encoding). But if ToString() emitted an XML dec-
laration, data.xml would actually contain an incorrect declaration

462 | Chapter10:LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

(encoding="utf-16"), which might prevent it from being read at all, because Write
AllText encodes using UTF-8.

Names and Namespaces

Just as .NET types can have namespaces, so too can XML elements and attributes.

XML namespaces achieve two things. First, rather like namespaces in C#, they help
avoid naming collisions. This can become an issue when you merge data from one
XML file into another. Second, namespaces assign absolute meaning to a name. The
name “nil,” for instance, could mean anything. Within the http://www.w3.0rg/2001/
xmlschema-instance namespace, however, “nil” means something equivalent to null
in C# and comes with specific rules on how it can be applied.

Because XML namespaces are a significant source of confusion, we’ll cover the topic
first in general and then move on to how they’re used in LINQ to XML.

Namespaces in XML

Suppose we want to define a customer element in the namespace OReilly.Nut
shell.CSharp. There are two ways to proceed. The first is to use the xmlns attribute
as follows:

<customer xmlns="OReilly.Nutshell.CSharp"/>
xmlns is a special reserved attribute. When used in this manner, it performs two
functions:
o It specifies a namespace for the element in question.

o It specifies a default namespace for all descendant elements.

This means that in the following example, address and postcode implicitly live in
the OReilly.Nutshell.CSharp namespace:

<customer xmlns="OReilly.Nutshell.CSharp">
<address>
<postcode>02138</postcode>
</address>
</customer>

If we want address and postcode to have no namespace, wed have to do this:

<customer xmlns="OReilly.Nutshell.CSharp">
<address xmlns="">

<postcode>02138</postcode> <!-- postcode now inherits empty ns -->
</address>
</customer>
Names and Namespaces | 463

www.it-ebooks.info

=
§z
2
o

http://www.w3.org/2001/xmlschema-instance
http://www.w3.org/2001/xmlschema-instance
http://www.it-ebooks.info/

Prefixes

The other way to specify a namespace is with a prefix. A prefix is an alias that you
assign to a namespace to save typing. There are two steps in using a prefix—defining
the prefix and using it. You can do both together as follows:

<nut:customer xmlns:nut="OReillly.Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xmlns:nut="..." defines a
prefix called nut and makes it available to this element and all its descendants. On
the left, nut: customer assigns the newly allocated prefix to the customer element.

A prefixed element does not define a default namespace for descendants. In the fol-
lowing XML, firstname has an empty namespace:

<nut:customer xmlns:nut="OReillly.Nutshell.CSharp">
<firstname>Joe</firstname>
</customer>

To give firstname the OReilly.Nutshell.CSharp prefix, we must do this:

<nut:customer xmlns:nut="OReillly.Nutshell.CSharp">
<nut:firstname>Joe</firstname>
</customer>

You can also define a prefix—or prefixes—for the convenience of your descendants,
without assigning any of them to the parent element itself. The following defines
two prefixes, i and z, while leaving the customer element itself with an empty
namespace:

<customer xmlns:i="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:z="http://schemas.microsoft.com/2003/10/Serialization/">

</customer>

If this was the root node, the whole document would have 1 and z at its fingertips.
Prefixes are convenient when elements need to draw from a number of namespaces.

Notice that both namespaces in this example are URIs. Using URIs (that you own) is
standard practice: it ensures namespace uniqueness. So, in real life, our customer
element would more likely be:

<customer xmlns="http://oreilly.com/schemas/nutshell/csharp"/>
or:

<nut:customer xmlns:nut="http://oreilly.com/schemas/nutshell/csharp"/>

Attributes

You can assign namespaces to attributes too. The main difference is that it always
requires a prefix. For instance:

<customer xmlns:nut="OReilly.Nutshell.CSharp" nut:id="123" />

464 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

Another difference is that an unqualified attribute always has an empty namespace:
it never inherits a default namespace from a parent element.

Attributes tend not to need namespaces because their meaning is usually local to the
element. An exception is with general-purpose or metadata attributes, such as the
nil attribute defined by W3C:

<customer xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<firstname>Joe</firstname>
<lastname xsi:nil="true"/>

</customer>

This indicates unambiguously that lastname is nil (null in C#) and not an empty
string. Because we've used the standard namespace, a general-purpose parsing util-
ity could know with certainty our intention.

Specifying Namespaces in the X-DOM

So far in this chapter, we've used just simple strings for XElement and XAttribute
names. A simple string corresponds to an XML name with an empty namespace—
rather like a .NET type defined in the global namespace.

There are a couple of ways to specify an XML namespace. The first is to enclose it in
braces, before the local name. For example:

var e = new XElement ("{http://domain.com/xmlspace}customer", "Bloggs");
Console.WriteLine (e.ToString());

Here’s the resulting XML:
<customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

The second (and more performant) approach is to use the XNamespace and XName
types. Here are their definitions:

public sealed class XNamespace

{
public string NamespaceName { get; }
}
public sealed class XName // A local name with optional namespace
{

public string LocalName { get; }
public XNamespace Namespace { get; } // Optional
}

Both types define implicit casts from string, so the following is legal:

XNamespace ns = "http://domain.com/xmlspace";
XName localName = "customer";
XName fullName "{http://domain.com/xmlspace}customer";

XNamespace also overloads the + operator, allowing you to combine a namespace
and name into an XName without using braces:

Names and Namespaces | 465

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

XNamespace ns = "http://domain.com/xmlspace";
XName fullName = ns + "customer";
Console.WriteLine (fullName); // {http://domain.com/xmlspace}customer

All constructors and methods in the X-DOM that accept an element or attribute
name actually accept an XName object rather than a string. The reason you can sub-
stitute a string—as in all our examples to date—is because of the implicit cast.

Specifying a namespace is the same whether for an element or an attribute:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
new XAttribute (ns + "id", 123)
);

The X-DOM and Default Namespaces

The X-DOM ignores the concept of default namespaces until it comes time to
actually output XML. This means that when you construct a child XElement, you
must give it a namespace explicitly if needed: it will not inherit from the parent:

XNamespace ns = "http://domain.com/xmlspace";

var data = new XElement (ns + "data",
new XElement (ns + "customer", "Bloggs"),
new XElement (ns + "purchase", "Bicycle")

)5

The X-DOM does, however, apply default namespaces when reading and outputting
XML:

Console.WriteLine (data.ToString());

OUTPUT:
<data xmlns="http://domain.com/xmlspace">
<customer>Bloggs</customer>
<purchase>Bicycle</purchase>
</data>

Console.WriteLine (data.Element (ns + "customer").ToString());

OUTPUT:
<customer xmlns="http://domain.com/xmlspace">Bloggs</customer>

If you construct XElement children without specifying namespaces—in other words:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
new XElement ("customer", "Bloggs"),
new XElement ("purchase", "Bicycle")
);
Console.WriteLine (data.ToString());

you get this result instead:

<data xmlns="http://domain.com/xmlspace">
<customer xmlns="">Bloggs</customer>

466 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

<purchase xmlns="">Bicycle</purchase>
</data>

Another trap is failing to include a namespace when navigating an X-DOM:

XNamespace ns = "http://domain.com/xmlspace";
var data = new XElement (ns + "data",
new XElement (ns + "customer", "Bloggs"),
new XElement (ns + "purchase", "Bicycle")
);
XElement x = data.Element (ns + "customer"); /] ok
XElement y = data.Element ("customer"); // null

If you build an X-DOM tree without specifying namespaces, you can subsequently
assign every element to a single namespace as follows:

foreach (XElement e in data.DescendantsAndSelf())
if (e.Name.Namespace == "")
e.Name = ns + e.Name.LocalName;

Prefixes

The X-DOM treats prefixes just as it treats namespaces: purely as a serialization
function. This means you can choose to completely ignore the issue of prefixes—
and get by! The only reason you might want to do otherwise is for efficiency when
outputting to an XML file. For example, consider this:

XNamespace ns1 = "http://domain.com/spacel”;
XNamespace ns2 = "http://domain.com/space2";

var mix = new XElement (ns1 + "data",
new XElement (ns2 + "element", "value"),
new XElement (ns2 + "element", "value"),
new XElement (ns2 + "element", "value")

);
By default, XElement will serialize this as follows:

<data xmlns="http://domain.com/spacel">
<element xmlns="http://domain.com/space2">value</element>
<element xmlns="http://domain.com/space2">value</element>
<element xmlns="http://domain.com/space2">value</element>
</data>

As you can see, there’s a bit of unnecessary duplication. The solution is not to
change the way you construct the X-DOM, but instead to hint the serializer prior to
writing the XML. Do this by adding attributes defining prefixes that you want to see
applied. This is typically done on the root element:

mix.SetAttributeValue (XNamespace.Xmlns + "ns1", ns1);
mix.SetAttributeValue (XNamespace.Xmlns + "ns2", ns2);

This assigns the prefix “ns1” to our XNamespace variable ns1, and “ns2” to ns2. The
X-DOM automatically picks up these attributes when serializing and uses them to
condense the resulting XML. Here's the result now of calling ToString on mix:

Names and Namespaces | 467

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

<nsl:data xmlns:ns1="http://domain.com/spacel"
xmlns:ns2="http://domain.com/space2">
<ns2:element>value</ns2:element>
<ns2:element>value</ns2:element>
<ns2:element>value</ns2:element>
</nsl:data>

Prefixes don’t change the way you construct, query, or update the X-DOM—for
these activities, you ignore the presence of prefixes and continue to use full names.
Prefixes come into play only when converting to and from XML files or streams.

Prefixes are also honored in serializing attributes. In the following example, we
record a customer’s date of birth and credit as "nil" using the W3C-standard
attribute. The highlighted line ensures that the prefix is serialized without unneces-
sary namespace repetition:

XNamespace xsi = "http://www.w3.0rg/2001/XMLSchema-instance";
var nil = new XAttribute (xsi + "nil", true);

var cust = new XElement ("customers",

new XAttribute (XNamespace.Xmlns + "xsi", xsi),

new XElement ("customer",
new XElement ("lastname", "Bloggs"),
new XElement ("dob", nil),
new XElement ("credit", nil)

)

);

This is its XML:

<customers xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<customer>
<lastname>Bloggs</lastname>
<dob xsi:nil="true" />
<credit xsi:nil="true" />
</customer>
</customers>

For brevity, we predeclared the nil XAttribute so that we could use it twice in
building the DOM. You're allowed to reference the same attribute twice because it’s
automatically duplicated as required.

Annotations

You can attach custom data to any XObject with an annotation. Annotations are
intended for your own private use and are treated as black boxes by X-DOM. If
you've ever used the Tag property on a Windows Forms or WPF control, you'll be
familiar with the concept—the difference is that you have multiple annotations, and
your annotations can be privately scoped. You can create an annotation that other
types cannot even see—let alone overwrite.

468 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

The following methods on XObject add and remove annotations:

public void AddAnnotation (object annotation)
public void RemoveAnnotations<T>() where T : class

The following methods retrieve annotations:

public T Annotation<T>() where T : class
public IEnumerable<T> Annotations<T>() where T : class

Each annotation is keyed by its type, which must be a reference type. The following
adds and then retrieves a string annotation:

XElement e = new XElement ("test");
e.AddAnnotation ("Hello");
Console.WriteLine (e.Annotation<string>()); // Hello

You can add multiple annotations of the same type, and then use the Annotations
method to retrieve a sequence of matches.

A public type such as string doesn’t make a great key, however, because code in
other types can interfere with your annotations. A better approach is to use an inter-
nal or (nested) private class:

class X

{

class CustomData { internal string Message; } // Private nested type

static void Test()
{
XElement e = new XElement ("test");
e.AddAnnotation (new CustomData { Message = "Hello" });
Console.Write (e.Annotations<CustomData>().First().Message); // Hello
}
}

To remove annotations, you must also have access to the key’s type:

e.RemoveAnnotations<CustomData>();

Projecting into an X-DOM

So far, we've shown how to use LINQ to get data out of an X-DOM. You can also use
LINQ queries to project into an X-DOM. The source can be anything over which
LINQ can query, such as:

o LINQ to SQL or Entity Framework queries
o Alocal collection
o Another X-DOM
Regardless of the source, the strategy is the same in using LINQ to emit an X-DOM:

first write a functional construction expression that produces the desired X-DOM
shape, and then build a LINQ query around the expression.

ProjectingintoanX-DOM | 469

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

For instance, suppose we want to retrieve customers from a database into the fol-
lowing XML:

<customers>
<customer id="1">
<name>Sue</name>
<buys>3</buys>
</customer>
</customers>

We start by writing a functional construction expression for the X-DOM using sim-
ple literals:

var customers =
new XElement ("customers",
new XElement ("customer", new XAttribute ("id", 1),
new XElement ("name", "Sue"),
new XElement ("buys", 3)
)
);

We then turn this into a projection and build a LINQ query around it:

var customers =
new XElement ("customers",
from c in dataContext.Customers
select
new XElement ("customer", new XAttribute ("id", c.ID),
new XElement ("name", c.Name),
new XElement ("buys", c.Purchases.Count)
)
);

In Entity Framework, you must call . ToList() after retrieving
customers, so that the third line reads:

from ¢ in objectContext.Customers.ToList()

Here’s the result:

<customers>
<customer id="1">
<name>Tom</name>
<buys>3</buys>
</customer>
<customer id="2">
<name>Harry</name>
<buys>2</buys>
</customer>
</customers>

We can see how this works more clearly by constructing the same query in two
steps. First:

470 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

IEnumerable<XElement> sqlQuery =
from ¢ in dataContext.Customers
select
new XElement ("customer", new XAttribute ("id", c.ID),
new XElement ("name", c.Name),
new XElement ("buys", c.Purchases.Count)

)H
This inner portion is a normal LINQ to SQL query that projects into custom types
(from LINQ to SQUs perspective). Here’s the second step:

var customers = new XElement ("customers", sqlQuery);

This constructs the root XElement. The only thing unusual is that the content,
sqlQuery, is not a single XElement but an IQueryable<XElement>—which imple-
ments IEnumerable<XElement>. Remember that in the processing of XML content,
collections are automatically enumerated. So, each XElement gets added as a child
node.

This outer query also defines the line at which the query transitions from being a
database query to a local LINQ to enumerable query. XElement’s constructor doesn’t
know about IQueryable<>, so it forces enumeration of the database query—and
execution of the SQL statement.

Eliminating Empty Elements

Suppose in the preceding example that we also wanted to include details of the cus-
tomer’s most recent high-value purchase. We could do this as follows:

var customers =
new XElement ("customers",
from c in dataContext.Customers
let lastBigBuy = (from p in c.Purchases
where p.Price > 1000
orderby p.Date descending
select p).FirstOrDefault()
select
new XElement ("customer", new XAttribute ("id", c.ID),
new XElement ("name", c.Name),
new XElement ("buys", c.Purchases.Count),
new XElement ("lastBigBuy",
new XElement ("description", lastBigBuy?.Description,
new XElement ("price", lastBigBuy?.Price ?? Om)
)
)
);
This emits empty elements, though, for customers with no high-value purchases. (If
it was a local query rather than a database query, it would throw a NullReferenceEx
ception.) In such cases, it would be better to omit the lastBigBuy node entirely. We
can achieve this by wrapping the constructor for the lastBigBuy element in a con-
ditional operator:

ProjectingintoanX-DOM | 471

www.it-ebooks.info

=
§z
2
o

http://www.it-ebooks.info/

select
new XElement ("customer", new XAttribute ("id", c.ID),

new XElement ("name", c.Name),

new XElement ("buys", c.Purchases.Count),

lastBigBuy == null ? null :

new XElement ("lastBigBuy",

new XElement ("description", lastBigBuy.Description),
new XElement ("price", lastBigBuy.Price)

For customers with no lastBigBuy, a null is emitted instead of an empty XElement.
This is what we want, because null content is simply ignored.

Streaming a Projection

If you're projecting into an X-DOM only to Save it (or call ToString on it), you can
improve memory efficiency through an XStreamingElement. An XStreamingEle
ment is a cut-down version of XElement that applies deferred loading semantics to its
child content. To use it, you simply replace the outer XElements with XStreamin
gElements:

var customers =
new XStreamingElement ('"customers",
from c in dataContext.Customers
select
new XStreamingElement ('"customer", new XAttribute ("id", c.ID),
new XElement ("name", c.Name),
new XElement ("buys", c.Purchases.Count)

)
);
customers.Save ("data.xml");
The queries passed into an XStreamingElement’s constructor are not enumerated
until you call Save, ToString, or WriteTo on the element; this avoids loading the
whole X-DOM into memory at once. The flipside is that the queries are reevaluated,
should you re-Save. Also, you cannot traverse an XStreamingElement’s child con-
tent—it does not expose methods such as Elements or Attributes.

XStreamingElement is not based on XObject—or any other class—because it has
such a limited set of members. The only members it has, besides Save, ToString,
and WriteTo, are:

o An Add method, which accepts content like the constructor

o A Name property
XStreamingElement does not allow you to read content in a streamed fashion—for
this, you must use an XmlReader in conjunction with the X-DOM. We describe how

to do this in the section “Patterns for Using XmlReader/XmlWriter” on page 489 in
Chapter 11.

472 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

Transforming an X-DOM

You can transform an X-DOM by reprojecting it. For instance, suppose we want to
transform an msbuild XML file, used by the C# compiler and Visual Studio to
describe a project, into a simple format suitable for generating a report. An msbuild
file looks like this:

=
§z
2
o

<Project DefaultTargets="Build" xmlns="http://schemas.microsoft.com/dev...>
<PropertyGroup>
<Platform Condition=" 'S$(Platform)' == '' ">AnyCPU</Platform>
<ProductVersion>9.0.11209</ProductVersion>

</PropertyGroup>
<ItemGroup>
<Compile Include="ObjectGraph.cs" />
<Compile Include="Program.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
<Compile Include="Tests\Aggregation.cs" />
<Compile Include="Tests\Advanced\RecursiveXxml.cs" />
</ItemGroup>
<ItemGroup>

</ItemGroup>
</Project>
Let’s say we want to include only files, as follows:

<ProjectReport>
<File>0ObjectGraph.cs</File>
<File>Program.cs</File>
<File>Properties\AssemblyInfo.cs</File>
<File>Tests\Aggregation.cs</File>
<File>Tests\Advanced\RecursiveXml.cs</File>
</ProjectReport>

The following query performs this transformation:

XElement project = XElement.Load ("myProjectFile.csproj");
XNamespace ns = project.Name.Namespace;
var query =
new XElement ("ProjectReport",
from compileltem in
project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
let include = compileltem.Attribute ("Include")
where include != null
select new XElement ("File", include.Value)
);
The query first extracts all ItemGroup elements and then uses the Elements exten-
sion method to obtain a flat sequence of all their Compile subelements. Notice that
we had to specify an XML namespace—everything in the original file inherits the
namespace defined by the Project element—so a local element name such as Item
Group won’t work on its own. Then, we extracted the Include attribute value and
projected its value as an element.

Projectingintoan X-DOM | 473

www.it-ebooks.info

http://www.it-ebooks.info/

Advanced transformations

When querying a local collection such as an X-DOM, you're free to write custom
query operators to assist with more complex queries.

Suppose in the preceding example that we instead wanted a hierarchical output,
based on folders:

<Project>
<File>0ObjectGraph.cs</File>
<File>Program.cs</File>
<Folder name="Properties">
<File>AssemblyInfo.cs</File>
</Folder>
<Folder name="Tests">
<File>Aggregation.cs</File>
<Folder name="Advanced">
<File>RecursiveXml.cs</File>
</Folder>
</Folder>
</Project>

To produce this, we need to process path strings such as Tests\Advanced\Recursi-
veXml.cs recursively. The following method does just this: it accepts a sequence of
path strings and emits an X-DOM hierarchy consistent with our desired output:

static IEnumerable<XElement> ExpandPaths (IEnumerable<string> paths)
{
var brokenUp = from path in paths
let split = path.Split (new char[] { "\\' }, 2)
orderby split[0]
select new
{
name = split[0],
remainder = split.ElementAtOrDefault (1)
b

IEnumerable<XElement> files = from b in brokenUp
where b.remainder == null
select new XElement ("file", b.name);

IEnumerable<XElement> folders = from b in brokenUp
where b.remainder != null
group b.remainder by b.name into grp
select new XElement ("folder",
new XAttribute ("name", grp.Key),
ExpandPaths (grp)
)s
return files.Concat (folders);

}

The first query splits each path string at the first backslash, into a name + remainder:

Tests\Advanced\RecursiveXml.cs -> Tests + Advanced\RecursiveXml.cs

474 | Chapter10: LINQ to XML

www.it-ebooks.info

http://www.it-ebooks.info/

If remainder is null, were dealing with a straight filename. The files query
extracts these cases.

If remainder is not null, we've got a folder. The folders query handles these cases.
Because other files can be in the same folder, it must group by folder name to bring
them all together. For each group, it then executes the same function for the subele-
ments.

The final result is a concatenation of files and folders. The Concat operator pre-
serves order, so all the files come first, alphabetically, then all the folders, alphabeti-
cally.

With this method in place, we can complete the query in two steps. First, we extract
a simple sequence of path strings:

IEnumerable<string> paths =
from compileltem in
project.Elements (ns + "ItemGroup").Elements (ns + "Compile")
let include = compileltem.Attribute ("Include")
where include != null
select include.Value;

Then, we feed this into our ExpandPaths method for the final result:

var query = new XElement ("Project", ExpandPaths (paths));

Projectingintoan X-DOM | 475

www.it-ebooks.info

=
§z
=2
o

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

11

Other XML Technologies

The System.Xml namespace comprises the following namespaces and core classes:
System.Xml.*

XmlReader and XmlWriter
High-performance, forward-only cursors for reading or writing an
XML stream

XmlDocument
Represents an XML document in a W3C-style DOM (obsolete)

System.Xml.XLing
Modern LINQ-centric DOM for working with XML (see Chapter 10)

System.Xml.XmlSchema
Infrastructure and API for (W3C) XSD schemas

System.Xml.Xsl

Infrastructure and API (XslCompiledTransform) for performing (W3C)
XSLT transformations of XML

System.Xml.Serialization
Supports the serialization of classes to and from XML (see Chapter 17)

W3C is an abbreviation for World Wide Web Consortium, where the XML stand-
ards are defined.

XmlConvert, the static class for parsing and formatting XML strings, is covered in
Chapter 6.

471

www.it-ebooks.info

http://www.it-ebooks.info/

XmlReader

XmlReader is a high-performance class for reading an XML stream in a low-level,
forward-only manner.

Consider the following XML file:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer 1d="123" status="archived">
<firstname>Jim</firstname>
<lastname>Bo</lastname>
</customer>

To instantiate an XmlReader, you call the static XmlReader .Create method, passing
in a Stream, a TextReader, or a URI string. For example:

using (XmlReader reader = XmlReader.Create ("customer.xml"))

Because XmlReader lets you read from potentially slow sources
(Streams and URIs), it offers asynchronous versions of most
of its methods so that you can easily write nonblocking code.
We'll cover asynchrony in detail in Chapter 14.

To construct an XmlReader that reads from a string:

XmlReader reader = XmlReader.Create (
new System.IO.StringReader (myString));

You can also pass in an XmlReaderSettings object to control parsing and validation
options. The following three properties on XmlReaderSettings are particularly use-
ful for skipping over superfluous content:

bool IgnoreComments // Skip over comment nodes?
bool IgnoreProcessingInstructions // Skip over processing instructions?
bool IgnoreWhitespace // Skip over whitespace?

In the following example, we instruct the reader not to emit whitespace nodes,
which are a distraction in typical scenarios:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))

Another useful property on XmlReaderSettings is Conformancelevel. Its default
value of Document instructs the reader to assume a valid XML document with a sin-
gle root node. This is a problem if you want to read just an inner portion of XML
containing multiple nodes:

<firstname>Jim</firstname>
<lastname>Bo</lastname>

478 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

To read this without throwing an exception, you must set ConformanceLevel to
Fragment.

XmlReaderSettings also has a property called CloseInput, which indicates whether
to close the underlying stream when the reader is closed (there’s an analogous prop-
erty on XmlWriterSettings called CloseOutput). The default value for CloseInput
and CloseOutput is false.

Reading Nodes

The units of an XML stream are XML nodes. The reader traverses the stream in tex-
tual (depth-first) order. The Depth property of the reader returns the current depth
of the cursor.

The most primitive way to read from an XmlReader is to call Read. It advances to the
next node in the XML stream, rather like MoveNext in IEnumerator. The first call to
Read positions the cursor at the first node. When Read returns false, it means the
cursor has advanced past the last node, at which point the XmlReader should be
closed and abandoned.

In this example, we read every node in the XML stream, outputting each node type
as we go:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader reader = XmlReader.Create ("customer.xml", settings))
while (reader.Read())
{
Console.Write (new string (' ',reader.Depth*2)); // Write indentation
Console.WriteLine (reader.NodeType);

}

The output is as follows:

XmlDeclaration
Element
Element
Text
EndElement
Element
Text
EndElement
EndElement

Attributes are not included in Read-based traversal (see the
section “Reading Attributes” on page 485 later in this chapter).

NodeType is of type XmlNodeType, which is an enum with these members:

XmlReader | 479

www.it-ebooks.info

o
o
>
3
o
(]
Q
(]
(7]

TWX 49410

http://www.it-ebooks.info/

None Comment Document

XmlDeclaration Entity DocumentType

Element EndEntity DocumentFragment
EndElement EntityReference Notation

Text ProcessingInstruction Whitespace

Attribute CDATA SignificantWhitespace

Two string properties on XmlReader provide access to a node’s content: Name and
Value. Depending on the node type, either Name or Value (or both) is populated:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;
settings.DtdProcessing = DtdProcessing.Parse; // Required to read DTDs

using (XmlReader r = XmlReader.Create ("customer.xml", settings))
while (r.Read())
{
Console.Write (r.NodeType.ToString().PadRight (17, '-'));
Console.Write ("> ".PadRight (r.Depth * 3));

switch (r.NodeType)
{
case XmlNodeType.Element:
case XmlNodeType.EndElement:
Console.WriteLine (r.Name); break;

case XmlNodeType.Text:

case XmlNodeType.CDATA:

case XmlNodeType.Comment:

case XmlNodeType.XmlDeclaration:
Console.WriteLine (r.Value); break;

case XmlNodeType.DocumentType:

Console.WriteLine (r.Name + " - " + r.Value); break;

default: break;
}
}

To demonstrate this, we'll expand our XML file to include a document type, entity,
CDATA, and comment:

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE customer [<!ENTITY tc "Top Customer"s]>
<customer 1d="123" status="archived">
<firstname>Jim</firstname>
<lastname>Bo</lastname>
<quote><![CDATA[C#'s operators include: < > &]]></quote>
<notes>Jim Bo is a &tc;</notes>

<!-- That wasn't so bad! -->
</customer>
An entity is like a macro; a CDATA is like a verbatim string (@"...") in C#. Here’s
the result:

480 | Chapter11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

XmlDeclaration---> version="1.0" encoding="utf-8"

DocumentType----- > customer - <!ENTITY tc "Top Customer">
Element---------- > customer

Element---------- > firstname

Text------------- > Jim

EndElement------- > firstname

Element---------- > lastname

Text------nceun--- > Bo

EndElement------- > lastname

Element---------- > quote

CDATA-------mm-- > C#'s operators include: < > &
EndElement------- > quote

Element---------- > notes

Text------------- > Jim Bo is a Top Customer
EndElement------- > notes

Comment---------- > That wasn't so bad!
EndElement------- > customer

XmlReader automatically resolves entities, so in our example, the entity reference
&tc; expands into Top Customer.

Reading Elements

Often, you already know the structure of the XML document that you're reading. To
help with this, XmlReader provides a range of methods that read while presuming a
particular structure. This simplifies your code, as well as performing some valida-
tion at the same time.

XmlReader throws an XmlException if any validation fails.
XmlException has LineNumber and LinePosition properties
indicating where the error occurred—logging this information
is essential if the XML file is large!

ReadStartElement verifies that the current NodeType is Element, and then calls
Read. If you specify a name, it verifies that it matches that of the current element.

ReadEndElement verifies that the current NodeType is EndElement, and then calls
Read.

For instance, we could read this:
<firstname>Jim</firstname>
as follows:

reader .ReadStartElement ("firstname");
Console.WriteLine (reader.Value);
reader.Read();

reader .ReadEndElement();

The ReadElementContentAsString method does all of this in one hit. It reads a start
element, a text node, and an end element, returning the content as a string:

string firstName = reader.ReadElementContentAsString ("firstname", "");

XmlReader | 481

www.it-ebooks.info

TWX 49410

o
o
>
3
o
(]
Q
(]
(7]

http://www.it-ebooks.info/

The second argument refers to the namespace, which is blank in this example.
There are also typed versions of this method, such as ReadElementContentAsInt,
which parse the result. Returning to our original XML document:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<customer 1d="123" status="archived">

<firstname>Jim</firstname>

<lastname>Bo</lastname>

<creditlimit>500.00</creditlimit> <!-- OK, we sneaked this in! -->
</customer>

We could read it in as follows:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("customer.xml", settings))

{

r.MoveToContent(); // Skip over the XML declaration
r.ReadStartElement ("customer");

string firstName = r.ReadElementContentAsString ("firstname", "");
string lastName = r.ReadElementContentAsString ("lastname", "");

decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

r.MoveToContent(); // Skip over that pesky comment
r.ReadEndElement(); // Read the closing customer tag

The MoveToContent method is really useful. It skips over all
the fluff: XML declarations, whitespace, comments, and pro-
cessing instructions. You can also instruct the reader to do
most of this automatically through the properties on XmlRea
derSettings.

Optional elements

In the previous example, suppose that <lastname> was optional. The solution to
this is straightforward:

r.ReadStartElement ("customer");
string firstName = r. ReadElementContentAsString ("firstname", "");
string lastName = r.Name == "lastname"
? r.ReadElementContentAsString() : null;
decimal creditLimit = r.ReadElementContentAsDecimal ("creditlimit", "");

Random element order

The examples in this section rely on elements appearing in the XML file in a set
order. If you need to cope with elements appearing in any order, the easiest solution
is to read that section of the XML into an X-DOM. We describe how to do this later
in the section “Patterns for Using XmlIReader/XmlWriter” on page 489.

482 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Empty elements

The way that XmlReader handles empty elements presents a horrible trap. Consider
the following element:

<customerList></customerList>
In XML, this is equivalent to:
<customerlList/>

And yet, XmlReader treats the two differently. In the first case, the following code
works as expected:

reader .ReadStartElement ("customerList");
reader .ReadEndElement();

In the second case, ReadEndElement throws an exception, because there is no sepa-
rate “end element” as far as XmlReader is concerned. The workaround is to check for
an empty element as follows:

bool isEmpty = reader.IsEmptyElement;

reader .ReadStartElement ("customerList");

if (!isEmpty) reader.ReadEndElement();
In reality, this is a nuisance only when the element in question may contain child
elements (such as a customer list). With elements that wrap simple text (such as
firstname), you can avoid the whole issue by calling a method such as ReadElement
ContentAsString. The ReadElementXXX methods handle both kinds of empty ele-
ments correctly.

Other ReadXXX methods

Table 11-1 summarizes all ReadXXX methods in XmlReader. Most of these are
designed to work with elements. The sample XML fragment shown in bold is the
section read by the method described.

Table 11-1. Read methods

Members Works on Sample XML fragment Input Data
NodeType parameters returned
ReadContentAs XXX Text <a>x X
ReadString Text <a>x X
ReadElementString Element <a>x X
ReadElementContentAsXXX Element <a>x X
ReadInnerXml Element <a>x X
ReadOuterXml Element <a>x <a>x
ReadStartElement Element <a>x
ReadEndElement Element <a>x<fa>

XmlReader | 483

www.it-ebooks.info

Ky
a
>
3
o
(o]
Q
[}
(7]

TWX 49430

http://www.it-ebooks.info/

Members Works on Sample XML fragment Input Data

NodeType parameters returned
ReadSubtree Element <a>x <a>x
ReadToDescendant Element <a>x "b"
ReadToFollowing Element <a>x "b"
ReadToNextSibling Element <a>x "b"
ReadAttributeValue Attribute See“Reading Attributes”
on page 485

The ReadContentAsXXX methods parse a text node into type XXX. Internally, the
XmlConvert class performs the string-to-type conversion. The text node can be
within an element or an attribute.

The ReadElementContentAsXXX methods are wrappers around corresponding Read
ContentAsXXX methods. They apply to the element node, rather than the text node
enclosed by the element.

The typed ReadXxX methods also include versions that read
base 64 and BinHex formatted data into a byte array.

ReadInnerXml is typically applied to an element, and it reads and returns an element
and all its descendants. When applied to an attribute, it returns the value of the
attribute.

ReadOuterXml is the same as ReadInnerXml, except it includes rather than excludes
the element at the cursor position.

ReadSubtree returns a proxy reader that provides a view over just the current ele-
ment (and its descendants). The proxy reader must be closed before the original
reader can be safely read again. At the point the proxy reader is closed, the cursor
position of the original reader moves to the end of the subtree.

ReadToDescendant moves the cursor to the start of the first descendant node with
the specified name/namespace.

ReadToFollowing moves the cursor to the start of the first node—regardless of
depth—with the specified name/namespace.

ReadToNextSibling moves the cursor to the start of the first sibling node with the
specified name/namespace.

ReadString and ReadElementString behave like ReadContentAsString and ReadE
lementContentAsString, except that they throw an exception if there’s more than a
single text node within the element. In general, these methods should be avoided
because they throw an exception if an element contains a comment.

484 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

Reading Attributes

XmlReader provides an indexer giving you direct (random) access to an element’s
attributes—by name or position. Using the indexer is equivalent to calling GetAttri
bute.

Given the following XML fragment:
<customer 1d="123" status="archived"/>

we could read its attributes as follows:

Console.WriteLine (reader ["1d"]); /] 123
Console.WriteLine (reader ["status"]); // archived
Console.WriteLine (reader ["bogus"] == null); // True

The XmlReader must be positioned on a start element in order
v to read attributes. After calling ReadStartElement, the
! attributes are gone forever!

Although attribute order is semantically irrelevant, you can access attributes by
their ordinal position. We could rewrite the preceding example as follows:

Console.WriteLine (reader [0]); // 123
Console.WriteLine (reader [1]); // archived

The indexer also lets you specify the attribute’s namespace—if it has one.

AttributeCount returns the number of attributes for the current node.

Attribute nodes

To explicitly traverse attribute nodes, you must make a special diversion from the
normal path of just calling Read. A good reason to do so is if you want to parse
attribute values into other types, via the ReadContentAs XXX methods.

The diversion must begin from a start element. To make the job easier, the forward-
only rule is relaxed during attribute traversal: you can jump to any attribute (for-
ward or backward) by calling MoveToAttribute.

MoveToElement returns you to the start element from any-
place within the attribute node diversion.

Returning to our previous example:
<customer 1d="123" status="archived"/>
we can do this:

reader.MoveToAttribute ("status");
string status = reader.ReadContentAsString();

reader.MoveToAttribute ("id");
int 1d = reader.ReadContentAsInt();

XmlReader | 485

www.it-ebooks.info

o
o
>
3
o
(]
Q
(]
(7]

TWX 49430

http://www.it-ebooks.info/

MoveToAttribute returns false if the specified attribute doesn't exist.

You can also traverse each attribute in sequence by calling the MoveToFirstAttri
bute and then the MoveToNextAttribute methods:

if (reader.MoveToFirstAttribute())
do
{

Console.WriteLine (reader.Name + "=" + reader.Value);
while (reader.MoveToNextAttribute());
// OUTPUT:

1d=123
status=archived

Namespaces and Prefixes
XmlReader provides two parallel systems for referring to element and attribute
names:

e Name

o NamespaceURI and LocalName
Whenever you read an element’s Name property or call a method that accepts a single
name argument, youre using the first system. This works well if no namespaces or

prefixes are present; otherwise, it acts in a crude and literal manner. Namespaces are
ignored, and prefixes are included exactly as they were written. For example:

Sample fragment Name

<customer ...> customer
<customer xmlns='blah' ...> customer
<X:customer ...> X:customer

The following code works with the first two cases:
reader.ReadStartElement ("customer");

The following is required to handle the third case:
reader.ReadStartElement ("x:customer");

The second system works through two namespace-aware properties: NamespaceURI
and LocalName. These properties take into account prefixes and default namespaces
defined by parent elements. Prefixes are automatically expanded. This means that
NamespaceURI always reflects the semantically correct namespace for the current
element, and LocalName is always free of prefixes.

When you pass two name arguments into a method such as ReadStartElement,
you're using this same system. For example, consider the following XML:

486 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

<customer xmlns="DefaultNamespace" xmlns:other="0therNamespace">
<address>
<other:city>

We could read this as follows:

reader.ReadStartElement ("customer", "DefaultNamespace");
reader.ReadStartElement ("address", "DefaultNamespace");
reader.ReadStartElement ("city", "OtherNamespace");

Abstracting away prefixes is usually exactly what you want. If necessary, you can see
what prefix was used through the Prefix property and convert it into a namespace
by calling LookupNamespace.

XmIWriter

XmlWriter is a forward-only writer of an XML stream. The design of XmlWriter is
symmetrical to XmlReader.

As with XmlTextReader, you construct an XmlWriter by calling Create with an
optional settings object. In the following example, we enable indenting to make
the output more human-readable, and then write a simple XML file:

XmlWriterSettings settings = new XmlWriterSettings();
settings.Indent = true;

using (XmlWriter writer = XmlWriter.Create ("..\\..\\foo.xml", settings))
{

writer.WriteStartElement ("customer");
writer.WriteElementString ("firstname", "Jim");

writer.WriteElementString ("lastname"," Bo");
writer.WriteEndElement();

}

This produces the following document (the same as the file we read in the first
example of XmlReader):

<?xml version="1.0" encoding="utf-8" ?>
<customer>
<firstname>Jim</firstname>
<lastname>Bo</lastname>
</customer>

XmlWriter automatically writes the declaration at the top unless you indicate other-
wise in XmlWriterSettings, by setting OmitXmlDeclaration to true or Conforman
celevel to Fragment. The latter also permits writing multiple root nodes—some-
thing that otherwise throws an exception.

The WriteValue method writes a single text node. It accepts both string and non-
string types such as bool and DateTime, internally calling XmlConvert to perform
XML-compliant string conversions:

XmIWriter | 487

www.it-ebooks.info

o
o
>
3
o
(]
Q
(]
3

TWX 49410

http://www.it-ebooks.info/

writer.WriteStartElement ("birthdate");
writer.WriteValue (DateTime.Now);
writer.WriteEndElement();

In contrast, if we call:
WriteElementString ("birthdate", DateTime.Now.ToString());

the result would be both non-XML-compliant and vulnerable to incorrect parsing.

WriteString is equivalent to calling WriteValue with a string. XmlWriter automati-
cally escapes characters that would otherwise be illegal within an attribute or ele-
ment, such as & < >, and extended Unicode characters.

Writing Attributes

You can write attributes immediately after writing a start element:

writer.WriteStartElement ("customer");
writer.WriteAttributeString ("id", "1");
writer.WriteAttributeString ("status", "archived");

To write nonstring values, call WriteStartAttribute, WriteValue, and then Write
EndAttribute.

Writing Other Node Types

XmlWriter also defines the following methods for writing other kinds of nodes:

WriteBase64 // for binary data
WriteBinHex // for binary data
WriteCData

WriteComment

WriteDocType

WriteEntityRef
WriteProcessingInstruction

WriteRaw

WriteWhitespace

WriteRaw directly injects a string into the output stream. There is also a WriteNode
method that accepts an XmlReader, echoing everything from the given XmlReader.

Namespaces and Prefixes

The overloads for the Write* methods allow you to associate an element or attribute
with a namespace. Let’s rewrite the contents of the XML file in our previous exam-
ple. This time we will associate all the elements with the http://oreilly.com name-
space, declaring the prefix o at the customer element:
writer.WriteStartElement ("o", "customer", "http://oreilly.com");
writer.WriteElementString ("o", "firstname", "http://oreilly.com", "Jim");

writer.WriteElementString ("o", "lastname", "http://oreilly.com", "Bo");
writer.WriteEndElement();

The output is now as follows:

488 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<o:customer xmlns:o='http://oreilly.com'>
<o:firstname>Jim</o:firstname>
<o:lastname>Bo</o0:lastname>

</o:customer>

Notice how for brevity XmlWriter omits the child element’s namespace declarations
when they are already declared by the parent element.

Patterns for Using XmIReader/XmIWriter

o
o
>
3
o
(]
Q
[}
»

TWX 49430

Working with Hierarchical Data
Consider the following classes:

public class Contacts

{

public IList<Customer> Customers = new List<Customer>();
public IList<Supplier> Suppliers = new List<Supplier>();
}

public class Customer { public string FirstName, LastName; }
public class Supplier { public string Name; }

Suppose you want to use XmlReader and XmlWriter to serialize a Contacts object to
XML as in the following:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<contacts>
<customer id="1">
<firstname>Jay</firstname>
<lastname>Dee</lastname>
</customer>
<customer> <!-- we'll assume id is optional -->
<firstname>Kay</firstname>
<lastname>Gee</lastname>
</customer>
<supplier>
<name>X Technologies Ltd</name>
</supplier>
</contacts>

The best approach is not to write one big method, but to encapsulate XML func-
tionality in the Customer and Supplier types themselves by writing ReadXml and
WriteXml methods on these types. The pattern in doing so is straightforward:

o ReadXml and WriteXml leave the reader/writer at the same depth when they
exit.

 ReadXml reads the outer element, whereas WriteXml writes only its inner con-
tent.

Here’s how we would write the Customer type:

Patterns for Using XmIReader/XmIWriter | 489

www.it-ebooks.info

http://www.it-ebooks.info/

public class Customer

{
public const string XmlName = "customer";
public int? ID;
public string FirstName, LastName;

public Customer () { }
public Customer (XmlReader r) { ReadXml (r); }

public void ReadXml (XmlReader r)

{
if (r.MoveToAttribute ("id")) ID = r.ReadContentAsInt();
r.ReadStartElement();
FirstName = r.ReadElementContentAsString ("firstname", "");
LastName = r.ReadElementContentAsString ("lastname", "");
r.ReadEndElement();

}

public voild WriteXml (XmlWriter w)
{
if (ID.HasValue) w.WriteAttributeString ("id", "", ID.ToString());
w.WriteElementString ("firstname", FirstName);
w.WriteElementString ("lastname", LastName);
}
}

Notice that ReadXml reads the outer start and end element nodes. If its caller did this
job instead, Customer couldn’t read its own attributes. The reason for not making
WriteXml symmetrical in this regard is twofold:

o The caller might need to choose how the outer element is named.

o The caller might need to write extra XML attributes, such as the element’s sub-
type (which could then be used to decide which class to instantiate when read-
ing back the element).

Another benefit of following this pattern is that it makes your implementation com-
patible with IXmlSerializable (see Chapter 17).

The Supplier class is analogous:

public class Supplier

{
public const string XmlName = "supplier";
public string Name;

public Supplier () { }
public Supplier (XmlReader r) { ReadXml (r); }

public void ReadXml (XmlReader r)

{
r.ReadStartElement();
Name = r.ReadElementContentAsString ("name", "");
r.ReadEndElement();

490 | Chapter11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

}

public voild WriteXml (XmlWriter w)
{

w.WriteElementString ("name", Name);

}
}

With the Contacts class, we must enumerate the customers element in ReadXml,
checking whether each subelement is a customer or a supplier. We also have to code
around the empty element trap:

o
o
>
3
o
(]
Q
[}
»

WX 49410

public voild ReadXml (XmlReader r)
{
bool isEmpty = r.IsEmptyElement; // This ensures we don't get
r.ReadStartElement(); // snookered by an empty
if (isEmpty) return; /] <contacts/> element!
while (r.NodeType == XmlNodeType.Element)
{
if (r.Name == Customer.XmlName) Customers.Add (new Customer (r));
else if (r.Name == Supplier.XmlName) Suppliers.Add (new Supplier (r));
else
throw new XmlException ("Unexpected node:

+ r.Name);

}
r.ReadEndElement();

}

public void WriteXml (XmlWriter w)
{

foreach (Customer c in Customers)

{
w.WriteStartElement (Customer.XmlName);
c.WriteXml (w);
w.WriteEndElement();

}

foreach (Supplier s in Suppliers)
{
w.WriteStartElement (Supplier.XmlName);
s.WriteXml (w);
w.WriteEndElement();
}
}

Mixing XmIReader/XmIWriter with an X-DOM

You can fly in an X-DOM at any point in the XML tree where XmlReader or
XmlWriter becomes too cumbersome. Using the X-DOM to handle inner elements
is an excellent way to combine X-DOM’s ease of use with the low-memory footprint
of XmlReader and XmlWriter.

Patterns for Using XmIReader/XmIWriter | 491

www.it-ebooks.info

http://www.it-ebooks.info/

Using XmIReader with XElement

To read the current element into an X-DOM, you call XNode.ReadFrom, passing in
the XmlReader. Unlike XElement. Load, this method is not “greedy” in that it doesn’t
expect to see a whole document. Instead, it reads just the end of the current subtree.

For instance, suppose we have an XML logfile structured as follows:

<log>
<logentry id="1">
<date>...</date>
<source>...</source>

</logentry>
</log>
If there were a million logentry elements, reading the whole thing into an X-DOM

would waste memory. A better solution is to traverse each logentry with an
XmlReader, and then use XElement to process the elements individually:

XmlReaderSettings settings = new XmlReaderSettings();
settings.IgnoreWhitespace = true;

using (XmlReader r = XmlReader.Create ("logfile.xml", settings))

{

r.ReadStartElement ("log");

while (r.Name == "logentry")

{
XElement logEntry = (XElement) XNode.ReadFrom (r);
int id = (int) logEntry.Attribute ("id");
DateTime date = (DateTime) logEntry.Element ("date");
string source = (string) logEntry.Element ("source");

}
r.ReadEndElement();

}

If you follow the pattern described in the previous section, you can slot an XElement
into a custom type’s ReadXml or WriteXml method without the caller ever knowing
you've cheated! For instance, we could rewrite Customer’s ReadXml method as fol-
lows:

public void ReadXml (XmlReader r)

{
XElement x = (XElement) XNode.ReadFrom (r);
FirstName = (string) x.Element ("firstname");
LastName = (string) x.Element ("lastname");

}

XElement collaborates with XmlReader to ensure that namespaces are kept intact
and prefixes are properly expanded—even if defined at an outer level. So, if our
XML file read like this:

492 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

<log xmlns="http://loggingspace">
<logentry id="1">

the XElements we constructed at the logentry level would correctly inherit the
outer namespace.

Using XmIWriter with XElement

You can use an XElement just to write inner elements to an XmlWriter. The follow-

o
o
>
3
o
(]
Q
]
(7]

TWX 49430

ing code writes a million logentry elements to an XML file using XElement—
without storing the whole thing in memory:

using (XmlWriter w = XmlWriter.Create ("log.xml"))
{
w.WriteStartElement ("log");
for (int 1 = 0; 1 < 1000000; i++)
{
XElement e = new XElement ("logentry",
new XAttribute ("id", i),
new XElement ("date", DateTime.Today.AddDays (-1)),
new XElement ("source", "test"));
e.WriteTo (w);
}
w.WriteEndElement ();
}

Using an XElement incurs minimal execution overhead. If we amend this example
to use XmlWriter throughout, there’s no measurable difference in execution time.

XSD and Schema Validation

The content of a particular XML document is nearly always domain-specific, such
as a Microsoft Word document, an application configuration document, or a web
service. For each domain, the XML file conforms to a particular pattern. There are
several standards for describing the schema of such a pattern, to standardize and
automate the interpretation and validation of XML documents. The most widely
accepted standard is XSD, short for XML Schema Definition. Its precursors, DTD
and XDR, are also supported by System.Xml.

Consider the following XML document:

<?xml version="1.0"?>
<customers>
<customer id="1" status="active">
<firstname>Jim</firstname>
<lastname>Bo</lastname>
</customer>
<customer id="1" status="archived">
<firstname>Thomas</firstname>
<lastname>Jefferson</lastname>
</customer>
</customers>

XSD and Schema Validation | 493

www.it-ebooks.info

http://www.it-ebooks.info/

We can write an XSD for this document as follows:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="customers">
<xs:complexType>
<Xs:sequence>
<xs:element maxOccurs="unbounded" name="customer">
<xs:complexType>
<Xs:sequence>
<xs:element name="firstname" type="xs:string" />
<xs:element name="lastname" type="xs:string" />
</Xs:sequence>
<xs:attribute name="id" type="xs:int" use="required" />
<xs:attribute name="status" type="xs:string" use="required" />
</xs:complexType>
</xs:element>
</Xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

As you can see, XSD documents are themselves written in XML. Furthermore, an
XSD document is describable with XSD—you can find that definition at http://
www.w3.0rg/2001/xmlschema.xsd.

Performing Schema Validation
You can validate an XML file or document against one or more schemas before
reading or processing it. There are a number of reasons to do so:

 You can get away with less error checking and exception handling.

« Schema validation picks up errors you might otherwise overlook.

o Error messages are detailed and informative.
To perform validation, plug a schema into an XmlReader, an XmlDocument, or an X-
DOM object, and then read or load the XML as you would normally. Schema vali-

dation happens automatically as content is read, so the input stream is not read
twice.

Validating with an XmIReader

Here’s how to plug a schema from the file customers.xsd into an XmlReader:

XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

using (XmlReader r = XmlReader.Create ("customers.xml", settings))

494 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.w3.org/2001/xmlschema.xsd
http://www.w3.org/2001/xmlschema.xsd
http://www.it-ebooks.info/

If the schema is inline, set the following flag instead of adding to Schemas:
settings.ValidationFlags |= XmlSchemaValidationFlags.ProcessInlineSchema;

You then Read as you would normally. If schema validation fails at any point, an
XmlSchemaValidationException is thrown.

Calling Read on its own validates both elements and attributes:
you don’t need to navigate to each individual attribute for it to
be validated.

If you want only to validate the document, you can do this:

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
try { while (r.Read()) ; }
catch (XmlSchemaValidationException ex)

{
}...

XmlSchemaValidationException has properties for the error Message, LineNumber,
and LinePosition. In this case, it only tells you about the first error in the docu-
ment. If you want to report on all errors in the document, you instead must handle
the ValidationEventHandler event:

XmlReaderSettings settings = new XmlReaderSettings();

settings.ValidationType = ValidationType.Schema;

settings.Schemas.Add (null, "customers.xsd");

settings.ValidationEventHandler += ValidationHandler;

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
while (r.Read()) ;

When you handle this event, schema errors no longer throw exceptions. Instead,
they fire your event handler:

static void ValidationHandler (object sender, ValidationEventArgs e)

{

Console.WriteLine ("Error:

}

The Exception property of ValidationEventArgs contains the XmlSchemavalida
tionException that would have otherwise been thrown.

+ e.Exception.Message);

The System.Xml namespace also contains a class called Xmlva
lidatingReader. This was used to perform schema validation
prior to Framework 2.0, and it is now deprecated.

Validating an X-DOM

To validate an XML file or stream while reading into an X-DOM, you create an
XmlReader, plug in the schemas, and then use the reader to load the DOM:
XmlReaderSettings settings = new XmlReaderSettings();

settings.ValidationType = ValidationType.Schema;
settings.Schemas.Add (null, "customers.xsd");

XSD and Schema Validation | 495

www.it-ebooks.info

o
o
>
3
o
(]
Q
]
(7]

WX 49430

http://www.it-ebooks.info/

XDocument doc;

using (XmlReader r = XmlReader.Create ("customers.xml", settings))
try { doc = XDocument.Load (r); }
catch (XmlSchemaValidationException ex) { ... }

You can also validate an XDocument or XElement that’s already in memory by calling
extension methods in System.Xml.Schema. These methods accept an XmlSchemaSet
(a collection of schemas) and a validation event handler:

XDocument doc = XDocument.Load (@"customers.xml");
XmlSchemaSet set = new XmlSchemaSet ();
set.Add (null, @"customers.xsd");
StringBuilder errors = new StringBuilder ();
doc.Validate (set, (sender, args) => { errors.AppendLine
(args.Exception.Message); }
)s

Console.WriteLine (errors.ToString());

XSLT

XSLT stands for Extensible Stylesheet Language Transformations. It is an XML lan-
guage that describes how to transform one XML language into another. The
quintessential example of such a transformation is transforming an XML document
(that typically describes data) into an XHTML document (that describes a formatted
document).

Consider the following XML file:

<customer>
<firstname>Jim</firstname>
<lastname>Bo</lastname>
</customer>

The following XSLT file describes such a transformation:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
version="1.0">
<xsl:template match="/">
<html>
<p><xsl:value-of select="//firstname"/></p>
<p><xsl:value-of select="//lastname"/></p>
</html>
</xsl:template>
</xsl:stylesheet>

The output is as follows:

<html>
<p>Jim</p>
<p>Bo</p>

</html>

496 | Chapter 11: Other XML Technologies

www.it-ebooks.info

http://www.it-ebooks.info/

The System.Xml.Xsl.XslCompiledTransform transform class efficiently performs
XSLT transforms. It renders XmlTransform obsolete. Xs1CompiledTransform works
very simply:

XslCompiledTransform transform = new XslCompiledTransform();

transform.Load ("test.xslt");
transform.Transform ("input.xml", "output.xml");

Generally, its more useful to use the overload of Transform that accepts an
XmlWriter rather than an output file, so you can control the formatting.

XSIT | 497

www.it-ebooks.info

Ky
o
>
3
o
(o]
Q
[}
(7]

TWX 494310

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

12

Disposal and Garbage Collection

Some objects require explicit teardown code to release resources such as open files,
locks, operating system handles, and unmanaged objects. In .NET parlance, this is
called disposal, and it is supported through the IDisposable interface. The managed
memory occupied by unused objects must also be reclaimed at some point; this
function is known as garbage collection and is performed by the CLR.

Disposal differs from garbage collection in that disposal is usually explicitly instiga-
ted; garbage collection is totally automatic. In other words, the programmer takes
care of such things as releasing file handles, locks, and operating system resources
while the CLR takes care of releasing memory.

This chapter discusses both disposal and garbage collection, also describing C#
finalizers and the pattern by which they can provide a backup for disposal. Lastly,
we discuss the intricacies of the garbage collector and other memory management
options.

IDisposable, Dispose, and Close

The .NET Framework defines a special interface for types requiring a tear-down
method:

public interface IDisposable

{

void Dispose();

3

C#’s using statement provides a syntactic shortcut for calling Dispose on objects
that implement IDisposable, using a try/finally block. For example:

using (FileStream fs = new FileStream ("myFile.txt", FileMode.Open))

{
/] ... Write to the file ...

}

499

www.it-ebooks.info

http://www.it-ebooks.info/

The compiler converts this to:

FileStream fs = new FileStream ("myFile.txt", FileMode.Open);
try

{
/] ... Write to the file ...
}
finally
{
if (fs != null) ((IDisposable)fs).Dispose();
}

The finally block ensures that the Dispose method is called even when an excep-
tion is thrown' or the code exits the block early.

In simple scenarios, writing your own disposable type is just a matter of implement-
ing IDisposable and writing the Dispose method:

sealed class Demo : IDisposable

{

public void Dispose()

{

// Perform cleanup / tear-down.

This pattern works well in simple cases and is appropriate for
sealed classes. In “Calling Dispose from a Finalizer” on page
508, we'll describe a more elaborate pattern that can provide a
backup for consumers that forget to call Dispose. With
unsealed types, there’s a strong case for following this latter
pattern from the outset—otherwise, it becomes very messy if
the subtype wants to add such functionality itself.

Standard Disposal Semantics

The Framework follows a de facto set of rules in its disposal logic. These rules are
not hard-wired to the Framework or C# language in any way; their purpose is to
define a consistent protocol to consumers. Here they are:

1.

Once disposed, an object is beyond redemption. It cannot be reactivated, and
calling its methods or properties (other than Dispose) throws an ObjectDispo
sedException.

Calling an object’s Dispose method repeatedly causes no error.

1 In “Interrupt and Abort” in Chapter 22, we describe how aborting a thread can violate the safety
of this pattern. This is rarely an issue in practice because aborting threads is widely discouraged
for precisely this (and other) reasons.

500

| Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

3. If disposable object x “owns” disposable object y, x’s Dispose method automati-
cally calls y’s Dispose method—unless instructed otherwise.

These rules are also helpful when writing your own types, though not mandatory.
Nothing prevents you from writing an “Undispose” method, other than, perhaps,
the flak you might cop from colleagues!

According to rule 3, a container object automatically disposes its child objects. A
good example is a Windows container control such as a Form or Panel. The con-
tainer may host many child controls, yet you don’t dispose every one of them explic-
itly: closing or disposing the parent control or form takes care of the whole lot.
Another example is when you wrap a FileStream in a DeflateStream. Disposing
the DeflateStream also disposes the FileStream—unless you instructed otherwise
in the constructor.

Close and Stop

Some types define a method called Close in addition to Dispose. The Framework is
not completely consistent on the semantics of a Close method, although in nearly
all cases it’s either:

o Functionally identical to Dispose

o A functional subset of Dispose

An example of the latter is IDbConnection: a Closed connection can be re-Opened; a
Disposed connection cannot. Another example is a Windows Form activated with
ShowDialog: Close hides it; Dispose releases its resources.

Some classes define a Stop method (e.g., Timer or HttpListener). A Stop method
may release unmanaged resources, like Dispose, but unlike Dispose, it allows for
re-Starting.

With WinRT, Close is considered identical to Dispose—in fact, the runtime projects
methods called Close into methods called Dispose to make their types friendly to
using statements.

When to Dispose

A safe rule to follow (in nearly all cases) is “if in doubt, dispose” A disposable object
—if it could talk—would say the following:

When you've finished with me, let me know. If simply abandoned, I might cause
trouble for other object instances, the application domain, the computer, the net-
work, or the database!

Objects wrapping an unmanaged resource handle will nearly always require dis-
posal in order to free the handle. Examples include Windows Forms controls, file or
network streams, network sockets, GDI+ pens, brushes, and bitmaps. Conversely, if

IDisposable, Dispose, and Close | 501

www.it-ebooks.info

(o]
o
o
o
=
(]
-]

abeqien

http://www.it-ebooks.info/

a type is disposable, it will often (but not always) reference an unmanaged handle,
directly or indirectly. This is because unmanaged handles provide the gateway to the
“outside world” of operating system resources, network connections, database locks
—the primary means by which objects can create trouble outside of themselves if
improperly abandoned.

There are, however, three scenarios for not disposing:

o When you don’t “own” the object e.g., when obtaining a shared object via a
static field or property

o When an object’s Dispose method does something that you don’t want

o When an object’s Dispose method is unnecessary by design, and disposing that
object would add complexity to your program

The first category is rare. The main cases are in the System.Drawing namespace: the
GDI+ objects obtained through static fields or properties (such as Brushes.Blue)
must never be disposed because the same instance is used throughout the life of the
application. Instances that you obtain through constructors, however (such as new
SolidBrush), should be disposed, as should instances obtained through static meth-
ods (such as Font.FromHdc).

The second category is more common. There are some good examples in the Sys
tem.IO and System.Data namespaces:

Type Disposal function When not to dispose
MemoryStream Prevents further 1/0 When you later need to read/write the
stream
StreamReader, StreamWriter Flushes the reader/ When you want to keep the underlying
writer and closes the stream open (you must instead call
underlying stream FlushonaStreamWriter when

you're done)

IDbConnection Releases a database If you need to re-Open it, you should call
connection and clears Close instead of Dispose
the connection string

DataContext (LINQ to SQL) Prevents further use When you might have lazily evaluated
queries connected to that context

MemoryStreams Dispose method disables only the object; it doesn’t perform any
critical cleanup because a MemoryStream holds no unmanaged handles or other such
resources.

The third category includes the following classes: WebClient, StringReader, String
Writer, and BackgroundWorker (in System.ComponentModel). These types are dis-
posable under the duress of their base class rather than through a genuine need to
perform essential cleanup. If you happen to instantiate and work with such an

502 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

object entirely in one method, wrapping it in a using block adds little inconven-
ience. But if the object is longer-lasting, keeping track of when it’s no longer used so
that you can dispose of it adds unnecessary complexity. In such cases, you can sim-

ply ignore object disposal.

Ignoring disposal can sometimes incur a performance cost
(see “Calling Dispose from a Finalizer” on page 508).

Opt-in Disposal

Because IDisposable makes a type tractable with C#s using construct, theres a
temptation to extend the reach of IDisposable to nonessential activities. For

instance:

public sealed class HouseManager : IDisposable

{

public void Dispose()

{
CheckTheMail();

}
L

The idea is that a consumer of this class can choose to circumvent the nonessential
cleanup—simply by not calling Dispose. This, however, relies on the consumer
knowing what’s inside HouseManager’s Dispose method. It also breaks if essential

cleanup activity is later added:

public void Dispose()

{
CheckTheMail(); // Nonessential

LockTheHouse(); // Essential
}

The solution to this problem is the opt-in disposal pattern:

public sealed class HouseManager : IDisposable

{
public readonly bool CheckMailOnDispose;
public HouseManager (bool checkMailOnDispose)
{
CheckMailonDispose = checkMailOnDispose;
}
public void Dispose()
{
if (CheckMailonDispose) CheckTheMail();
LockTheHouse();
}
}

IDisposable, Dispose, and Close

www.it-ebooks.info

503

(o]
o
o
o
=
o
3

abeqien

http://www.it-ebooks.info/

The consumer can then always call Dispose—providing simplicity and avoiding the
need for special documentation or reflection. An example of where this pattern is
implemented is in the DeflateStream class, in System.I0.Compression. Here's its
constructor:

public DeflateStream (Stream stream, CompressionMode mode, bool leaveOpen)

The nonessential activity is closing the inner stream (the first parameter) upon dis-
posal. There are times when you want to leave the inner stream open and yet still

dispose the DeflateStream to perform its essential tear-down activity (flushing buf-
fered data).

This pattern might look simple, yet until Framework 4.5, it escaped StreamReader
and StreamWriter (in the System.IO namespace). The result is messy: Stream
Writer must expose another method (Flush) to perform essential cleanup for con-
sumers not calling Dispose. (Framework 4.5 now exposes a constructor on these
classes that lets you keep the stream open.) The CryptoStream class in Sys
tem.Security.Cryptography suffers a similar problem and requires that you call
FlushFinalBlock to tear it down while keeping the inner stream open.

You could describe this as an ownership issue. The question
for a disposable object is: do I really own the underlying
resource that 'm using? Or am I just renting it from someone
else who manages both the underlying resource lifetime and,
by some undocumented contract, my lifetime?

Following the opt-in pattern avoids this problem by making
the ownership contract documented and explicit.

Clearing Fields in Disposal

In general, you don't need to clear an object’s fields in its Dispose method. However,
it is good practice to unsubscribe from events that the object has subscribed to
internally over its lifetime (see “Managed Memory Leaks” on page 516 for an exam-
ple). Unsubscribing from such events avoids receiving unwanted event notifications
—and avoids unintentionally keeping the object alive in the eyes of the garbage col-
lector (GC).

A Dispose method itself does not cause (managed) memory
to be released—this can happen only in garbage collection.

Its also worth setting a field to indicate that the object is disposed so that you can
throw an ObjectDisposedException if a consumer later tries to call members on
the object. A good pattern is to use a publicly readable automatic property for this:

public bool IsDisposed { get; private set; }

Although technically unnecessary, it can also be good to clear an object’s own event
handlers (by setting them to null) in the Dispose method. This eliminates the pos-
sibility of those events firing during or after disposal.

504 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

Occasionally, an object holds high-value secrets, such as encryption keys. In these
cases, it can make sense to clear such data from fields during disposal (to avoid dis-
covery by less privileged assemblies or malware). The SymmetricAlgorithm class in
System.Security.Cryptography does exactly this, by calling Array.Clear on the
byte array holding the encryption key.

Automatic Garbage Collection

Regardless of whether an object requires a Dispose method for custom tear-down
logic, at some point, the memory it occupies on the heap must be freed. The CLR
handles this side of it entirely automatically, via an automatic GC. You never deallo-
cate managed memory yourself. For example, consider the following method:

public void Test()

{
byte[] myArray = new byte[1000];

}

When Test executes, an array to hold 1,000 bytes is allocated on the memory heap.
The array is referenced by the variable myArray, stored on the local variable stack.
When the method exits, this local variable myArray pops out of scope, meaning that
nothing is left to reference the array on the memory heap. The orphaned array then
becomes eligible to be reclaimed in garbage collection.

In debug mode with optimizations disabled, the lifetime of an
object referenced by a local variable extends to the end of the
code block to ease debugging. Otherwise, it becomes eligible
for collection at the earliest point at which it’s no longer used.

Garbage collection does not happen immediately after an object is orphaned. Rather
like garbage collection on the street, it happens periodically, although (unlike
garbage collection on the street) not to a fixed schedule. The CLR bases its decision
on when to collect upon a number of factors, such as the available memory, the
amount of memory allocation, and the time since the last collection. This means
that there’s an indeterminate delay between an object being orphaned and being
released from memory. This delay can range from nanoseconds to days.

The GC doesn’t collect all garbage with every collection.
Instead, the memory manager divides objects into generations,
and the GC collects new generations (recently allocated
objects) more frequently than old generations (long-lived
objects). We'll discuss this in more detail in “How the Garbage
Collector Works” on page 512.

Automatic Garbage Collection | 505

www.it-ebooks.info

0
o
o
o
=
o
3

abeqien

http://www.it-ebooks.info/

Garbage Collection and Memory Consumption

The GC tries to strike a balance between the time it spends doing garbage collection
and the application’s memory consumption (working set). Consequently, applica-
tions can consume more memory than they need, particularly if large temporary
arrays are constructed.

You can monitor a process’s memory consumption via the Windows Task Manager
or Resource Monitor—or programmatically by querying a performance counter:

// These types are in System.Diagnostics:
string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter
("Process", "Private Bytes", procName))
Console.WriteLine (pc.NextValue());

This queries the private working set, which gives the best overall indication of your
program’s memory consumption. Specifically, it excludes memory that the CLR has
internally deallocated and is willing to rescind to the operating system should
another process need it.

Roots

A root is something that keeps an object alive. If an object is not directly or indi-
rectly referenced by a root, it will be eligible for garbage collection.

A root is one of the following:

o A local variable or parameter in an executing method (or in any method in its
call stack)

o A static variable

« An object on the queue that stores objects ready for finalization (see next sec-
tion)

It's impossible for code to execute in a deleted object, so if there’s any possibility of
an (instance) method executing, its object must somehow be referenced in one of
these ways.

Note that a group of objects that reference each other cyclically are considered dead
without a root referee (see Figure 12-1). To put it in another way, objects that can-
not be accessed by following the arrows (references) from a root object are unreach-
able—and therefore subject to collection.

506 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

Managed heap

object

A

v
object |

} e e aaaasa®® Ob.e t
} root (while x is in use) I—‘J;ﬂ

v
object |

Unreachable objects subject
to collection

Figure 12-1. Roots

Garbage Collection and WinRT

Windows Runtime relies on COM’s reference-counting mechanism to release mem-
ory instead of depending on an automatic garbage collector. Despite this, WinRT
objects that you instantiate from C# have their lifetime managed by the CLR’s
garbage collector, because the CLR mediates access to the COM object through an
object that it creates behind the scenes called a runtime callable wrapper (Chap-
ter 24).

Finalizers

Prior to an object being released from memory, its finalizer runs, if it has one. A
finalizer is declared like a constructor, but it is prefixed by the ~ symbol:

class Test

{
~Test()

{

// Finalizer logic...

}
}

(Although similar in declaration to a constructor, finalizers cannot be declared as
public or static, cannot have parameters, and cannot call the base class.)

Finalizers are possible because garbage collection works in distinct phases. First, the
GC identifies the unused objects ripe for deletion. Those without finalizers are
deleted right away. Those with pending (unrun) finalizers are kept alive (for now)
and are put onto a special queue.

Finalizers | 507

www.it-ebooks.info

(o]
]
o
a
=
(]
-]

abeqJen

http://www.it-ebooks.info/

At that point, garbage collection is complete, and your program continues execut-
ing. The finalizer thread then kicks in and starts running in parallel to your pro-
gram, picking objects off that special queue and running their finalization methods.
Prior to each object’s finalizer running, it’s still very much alive—that queue acts as a
root object. Once it’s been dequeued and the finalizer executed, the object becomes
orphaned and will get deleted in the next collection (for that object’s generation).

Finalizers can be useful, but they come with some provisos:

« Finalizers slow the allocation and collection of memory (the GC needs to keep
track of which finalizers have run).

o Finalizers prolong the life of the object and any referred objects (they must all
await the next garbage truck for actual deletion).

o It’s impossible to predict in what order the finalizers for a set of objects will be
called.

« You have limited control over when the finalizer for an object will be called.
o If code in a finalizer blocks, other objects cannot get finalized.
o Finalizers may be circumvented altogether if an application fails to unload

cleanly.

In summary, finalizers are somewhat like lawyers—although there are cases in
which you really need them, in general you don’t want to use them unless absolutely
necessary. If you do use them, you need to be 100% sure you understand what they
are doing for you.

Here are some guidelines for implementing finalizers:

o Ensure that your finalizer executes quickly.
« Never block in your finalizer (Chapter 14).
« Don't reference other finalizable objects.

o Don't throw exceptions.

An objects finalizer can get called even if an exception is
thrown during construction. For this reason, it pays not to
assume that fields are correctly initialized when writing a
finalizer.

Calling Dispose from a Finalizer

A popular pattern is to have the finalizer call Dispose. This makes sense when
cleanup is not urgent and hastening it by calling Dispose is more of an optimization
than a necessity.

508 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

Bear in mind that with this pattern, you couple memory deal-
location to resource deallocation—two things with potentially
divergent interests (unless the resource is itself memory). You
also increase the burden on the finalization thread.

This pattern can also be used as a backup for cases when a
consumer simply forgets to call Dispose. However, it’s then a
good idea to log the failure so that you can fix the bug.

There’s a standard pattern for implementing this, as follows:

class Test : IDisposable

{
public void Dispose() // NOT virtual
0
{ 3]
.)
Dispose (true); 0
GC.SuppressFinalize (this); // Prevent finalizer from running. 2’8
} oo
3

protected virtual void Dispose (bool disposing)

{
if (disposing)
{

// Call Dispose() on other objects owned by this instance.
// You can reference other finalizable objects here.

/] ...
}

// Release unmanaged resources owned by (just) this object.

/...
}

~Test()
{

Dispose (false);
}
}
Dispose is overloaded to accept a bool disposing flag. The parameterless version
is not declared as virtual and simply calls the enhanced version with true.

The enhanced version contains the actual disposal logic and is protected and vir
tual; this provides a safe point for subclasses to add their own disposal logic. The
disposing flag means it’s being called “properly” from the Dispose method rather
than in “last-resort mode” from the finalizer. The idea is that when called with dis
posing set to false, this method should not, in general, reference other objects with
finalizers (because such objects may themselves have been finalized and so be in an
unpredictable state). This rules out quite a lot! Here are a couple of tasks it can still
perform in last-resort mode when disposing is false:

o Releasing any direct references to operating system resources (obtained, per-
haps, via a P/Invoke call to the Win32 API)

Finalizers | 509

www.it-ebooks.info

http://www.it-ebooks.info/

o Deleting a temporary file created on construction

To make this robust, any code capable of throwing an exception should be wrapped
in a try/catch block, and the exception, ideally, logged. Any logging should be as
simple and robust as possible.

Notice that we call GC.SuppressFinalize in the parameterless Dispose method—
this prevents the finalizer from running when the GC later catches up with it. Tech-
nically, this is unnecessary, as Dispose methods must tolerate repeated calls. How-
ever, doing so improves performance because it allows the object (and its referenced
objects) to be garbage-collected in a single cycle.

Resurrection

Suppose a finalizer modifies a living object such that it refers back to the dying
object. When the next garbage collection happens (for the object’s generation), the
CLR will see the previously dying object as no longer orphaned—and so it will
evade garbage collection. This is an advanced scenario and is called resurrection.

To illustrate, suppose we want to write a class that manages a temporary file. When
an instance of that class is garbage-collected, wed like the finalizer to delete the tem-
porary file. It sounds easy:

public class TempFileRef

{
public readonly string FilePath;
public TempFileRef (string filePath) { FilePath = filePath; }

~TempFileRef() { File.Delete (FilePath); }
}

Unfortunately, this has a bug: File.Delete might throw an exception (due to a lack
of permissions, perhaps, or the file being in use, or having already been deleted).
Such an exception would take down the whole application (as well as preventing
other finalizers from running). We could simply “swallow” the exception with an
empty catch block, but then wed never know that anything went wrong. Calling
some elaborate error reporting API would also be undesirable because it would bur-
den the finalizer thread, hindering garbage collection for other objects. We want to
restrict finalization actions to those that are simple, reliable, and quick.

A better option is to record the failure to a static collection as follows:

public class TempFileRef
{

static ConcurrentQueue<TempFileRef> _failedDeletions
= new ConcurrentQueue<TempFileRef>();

public readonly string FilePath;
public Exception DeletionError { get; private set; }

public TempFileRef (string filePath) { FilePath = filePath; }

510 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

~TempFileRef ()

{
try { File.Delete (FilePath); }

catch (Exception ex)

{

DeletionError = ex;
_failedDeletions.Enqueue (this); // Resurrection
}
}
}

Enqueuing the object to the static _failedDeletions collection gives the object
another referee, ensuring that it remains alive until the object is eventually
dequeued.

ConcurrentQueue<T> is a thread-safe version of Queue<T> and
is defined in System.Collections.Concurrent (see Chap-
ter 23). There are a couple of reasons for using a thread-safe
collection. First, the CLR reserves the right to execute finaliz-
ers on more than one thread in parallel. This means that when
accessing shared state such as a static collection, we must con-
sider the possibility of two objects being finalized at once. Sec-
ond, at some point were going to want to dequeue items from
_failedDeletions so that we can do something about them.
This also has to be done in a thread-safe fashion, because it
could happen while the finalizer is concurrently enqueuing
another object.

abeqien

0
o
o
o
=
o
-]

GC.ReRegisterForFinalize

A resurrected object’s finalizer will not run a second time—unless you call GC.ReRe
gisterForFinalize.

In the following example, we try to delete a temporary file in a finalizer (as in the
last example). But if the deletion fails, we reregister the object so as to try again in
the next garbage collection:

public class TempFileRef

{
public readonly string FilePath;
int _deleteAttempt;

public TempFileRef (string filePath) { FilePath = filePath; }

~TempFileRef ()

{
try { File.Delete (FilePath); }
catch
{

if (_deleteAttempt++ < 3) GC.ReRegisterForFinalize (this);

}

}

}

Finalizers | 511

www.it-ebooks.info

http://www.it-ebooks.info/

After the third failed attempt, our finalizer will silently give up trying to delete the
file. We could enhance this by combining it with the previous example—in other
words, adding it to the _failedDeletions queue after the third failure.

Be careful to call ReRegisterForFinalize just once in the
finalizer method. If you call it twice, the object will be reregis-
tered twice and will have to undergo two more finalizations!

How the Garbage Collector Works

The standard CLR uses a generational mark-and-compact GC that performs auto-
matic memory management for objects stored on the managed heap. The GC is
considered to be a tracing garbage collector in that it doesn’t interfere with every
access to an object, but rather wakes up intermittently and traces the graph of
objects stored on the managed heap to determine which objects can be considered
garbage and therefore collected.

The GC initiates a garbage collection upon performing a memory allocation (via the
new keyword) either after a certain threshold of memory has been allocated, or at
other times to reduce the application’s memory footprint. This process can also be
initiated manually by calling System.GC.Collect. During a garbage collection, all
threads may by frozen (more on this in the next section).

The GC begins with its root object references and walks the object graph, marking
all the objects it touches as reachable. Once this process is complete, all objects that
have not been marked are considered unused and are subject to garbage collection.

Unused objects without finalizers are immediately discarded; unused objects with
finalizers are enqueued for processing on the finalizer thread after the GC is com-
plete. These objects then become eligible for collection in the next GC for the
object’s generation (unless resurrected).

The remaining “live” objects are then shifted to the start of the heap (compacted),
freeing space for more objects. This compaction serves two purposes: it avoids
memory fragmentation, and it allows the GC to employ a very simple strategy when
allocating new objects, which is to always allocate memory at the end of the heap.
This avoids the potentially time-consuming task of maintaining a list of free mem-
ory segments.

If there is insufficient space to allocate memory for a new object after garbage col-
lection, and the operating system is unable to grant further memory, an OutOfMemor
yException is thrown.

Optimization Techniques

The GC incorporates various optimization techniques to reduce the garbage collec-
tion time.

512 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

Generational collection

The most important optimization is that the GC is generational. This takes advan-
tage of the fact that although many objects are allocated and discarded rapidly, cer-
tain objects are long-lived and thus don’t need to be traced during every collection.

Basically, the GC divides the managed heap into three generations. Objects that
have just been allocated are in Gen0, and objects that have survived one collection
cycle are in Genl; all other objects are in Gen2. Gen0 and Genl are known as
ephemeral (short-lived) generations.

The CLR keeps the Gen0 section relatively small (a maximum of 256 MB on the 64-
bit workstation CLR, with a typical size of a few hundred KB to a few MB). When
the Gen0 section fills up, the GC instigates a Gen0 collection—which happens rela-
tively often. The GC applies a similar memory threshold to Genl (which acts as a
buffer to Gen2), and so Gen1 collections are relatively quick and frequent, too. Full
collections that include Gen2, however, take much longer and so happen infre-
quently. Figure 12-2 shows the effect of a full collection.

Gen2 Gen1 Gen0
A I

A
r hlg hlg Bl

Before
D ! oo op
Live Dead Gen2 Gen1
object object pointer pointer

Gen2 Gen1 Gen0
s A 1(‘&1’_%

Space for new After
AlBl C D |E(F| G object allocations | full GC

Gen2 Genl
pointer pointer

Figure 12-2. Heap generations

To give some very rough ballpark figures, a Gen0 collection might take less than 1
ms, which is not enough to be noticed in a typical application. A full collection,
however, might take as long as 100 ms on a program with large object graphs. These
figures depend on numerous factors and so may vary considerably—particularly in
the case of Gen2, whose size is unbounded (unlike Gen0 and Gen1).

How the Garbage Collector Works | 513

www.it-ebooks.info

0
o
)
o
e
o
3

abeqien

http://www.it-ebooks.info/

The upshot is that short-lived objects are very efficient in their use of the GC. The
StringBuilders created in the following method would almost certainly be collec-
ted in a fast Gen0:

string Foo()

{
var sbl = new StringBuilder ("test");
sb1.Append ("...");
var sb2 = new StringBuilder ("test");
sb2.Append (sb1.ToString());
return sb2.ToString();

}

The large object heap

The GC uses a separate heap called the large object heap (LOH) for objects larger
than a certain threshold (currently 85,000 bytes). This avoids excessive Gen0 collec-
tions—without the LOH, allocating a series of 16 MB objects might trigger a Gen0
collection after every allocation.

By default, the LOH is not subject to compaction, because moving large blocks of
memory during garbage collection would be prohibitively expensive. This has two
consequences:

o Allocations can be slower, because the GC can’t always simply allocate objects
at the end of the heap—it must also look in the middle for gaps, and this
requires maintaining a linked list of free memory blocks.?

o The LOH is subject to fragmentation. This means that the freeing of an object
can create a hole in the LOH that may be hard to fill later. For instance, a hole
left by an 86,000-byte object can be filled only by an object of between 85,000
bytes and 86,000 bytes (unless adjoined by another hole).

In cases where this might cause problems, you can instruct the GC to compact the
LOH in the next collection as follows:

GCSettings.LargeObjectHeapCompactionMode =
GCLargeObjectHeapCompactionMode.CompactOnce;

The large object heap is also nongenerational: all objects are treated as Gen2.

Concurrent and background collection

The GC must freeze (block) your execution threads for periods during a collection.
This includes the entire period during which a Gen0 or Genl1 collection takes place.

The GC makes a special attempt, though, at allowing threads to run during a Gen2
collection as it’s undesirable to freeze an application for a potentially long period.

2 The same thing may occur occasionally in the generational heap due to pinning (see “The fixed
Statement” on page 187 in Chapter 4).

514 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

This optimization applies to the workstation version of the CLR only, which is used
on desktop versions of Windows (and on all versions of Windows with standalone
applications). The rationale is that the latency from a blocking collection is less
likely to be a problem for server applications that don’t have a user interface.

A mitigating factor is that the server CLR leverages all avail-
able cores to perform GCs, so an eight-core server will per-
form a full GC many times faster. In effect, the server GC is
tuned to maximize throughput rather than minimize latency.

The workstation optimization has historically been called concurrent collection.
From CLR 4.0, it'’s been revamped and renamed to background collection. Back-
ground collection removes a limitation whereby a concurrent collection would
cease to be concurrent if the Gen0 section filled up while a Gen2 collection was run-
ning. This means that from CLR 4.0, applications that continually allocate memory
will be more responsive.

GC notifications (server CLR)

The server version of the CLR can notify you just before a full GC will occur. This is
intended for server farm configurations: the idea is that you divert requests to
another server just before a collection. You then instigate the collection immediately
and wait for it to complete before rerouting requests back to that server.

To start notification, call GC.RegisterForFullGCNotification. Then start up
another thread (see Chapter 14) that first calls GC.WaitForFullGCApproach. When
this method returns a GCNotificationStatus indicating that a collection is near,
you can reroute requests to other servers and force a manual collection (see the fol-
lowing section). You then call GC.WaitForFullGCComplete: when this method
returns, GC is complete, and you can again accept requests. You then repeat the
whole cycle.

Forcing Garbage Collection

You can manually force a GC at any time by calling GC.Collect. Calling GC.Col
lect without an argument instigates a full collection. If you pass in an integer value,
only generations to that value are collected, so GC.Collect(0) performs only a fast
GenO collection.

In general, you get the best performance by allowing the GC to decide when to col-
lect: forcing collection can hurt performance by unnecessarily promoting Gen0
objects to Genl (and Genl objects to Gen2). It can also upset the GC’s self-tuning
ability, whereby the GC dynamically tweaks the thresholds for each generation to
maximize performance as the application executes.

There are exceptions, however. The most common case for intervention is when an
application goes to sleep for a while: a good example is a Windows Service that per-
forms a daily activity (checking for updates, perhaps). Such an application might
use a System.Timers.Timer to initiate the activity every 24 hours. After completing

How the Garbage Collector Works | 515

www.it-ebooks.info

0
o
o
o
=
o
-]

abeqien

http://www.it-ebooks.info/

the activity, no further code executes for 24 hours, which means that for this period,
no memory allocations are made and so the GC has no opportunity to activate.
Whatever memory the service consumed in performing its activity, it will continue
to consume for the following 24 hours—even with an empty object graph! The solu-
tion is to call GC.Collect right after the daily activity completes.

To ensure the collection of objects for which collection is delayed by finalizers, you
can take the additional step of calling WaitForPendingFinalizers and re-
collecting:

GC.Collect();
GC.WaitForPendingFinalizers();
GC.Collect();

Often this is done in a loop: the act of running finalizers can free up more objects
that themselves have finalizers.

Another case for calling GC.Collect is when you're testing a class that has a final-
izer.

Tuning Garbage Collection

The static GCSettings.LatencyMode property determines how the GC balances
latency with overall efficiency. Changing this from its default value of Interactive
to LowLatency instructs the CLR to favor quicker (but more frequent) collections.
This is useful if your application needs to respond very quickly to real-time events.

From Framework 4.6, you can also tell the GC to temporarily suspend GC by calling
GC.TryStartNoGCRegion, and resume it with GC.EndNoGCRegion.

Memory Pressure

The runtime decides when to initiate collections based on a number of factors,
including the total memory load on the machine. If your program allocates unman-
aged memory (Chapter 25), the runtime will get an unrealistically optimistic per-
ception of its memory usage, because the CLR knows only about managed memory.
You can mitigate this by telling the CLR to assume a specified quantity of unman-
aged memory has been allocated by calling GC.AddMemoryPressure. To undo this
(when the unmanaged memory is released), call GC.RemoveMemoryPressure.

Managed Memory Leaks

In unmanaged languages such as C++, you must remember to manually deallocate
memory when an object is no longer required; otherwise, a memory leak will result.
In the managed world, this kind of error is impossible due to the CLR’s automatic
garbage collection system.

Nonetheless, large and complex .NET applications can exhibit a milder form of the
same syndrome with the same end result: the application consumes more and more

516 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

memory over its lifetime until it eventually has to be restarted. The good news is
that managed memory leaks are usually easier to diagnose and prevent.

Managed memory leaks are caused by unused objects remaining alive by virtue of
unused or forgotten references. A common candidate is event handlers—these hold
a reference to the target object (unless the target is a static method). For instance,
consider the following classes:

class Host
{
public event EventHandler Click;
}
class Client (01 o
{ 25
Host _host; a o
public Client (Host host) 5'%
{ =
_host = host;
_host.Click += HostClicked;
}
void HostClicked (object sender, EventArgs e) { ... }
}
The following test class contains a method that instantiates 1,000 clients:
class Test
{

static Host _host = new Host();

public static void CreateClients()

{
Client[] clients = Enumerable.Range (0, 1000)
.Select (1 => new Client (_host))
.ToArray();

// Do something with clients ...
}
3
You might expect that after CreateClients finishes executing, the 1,000 Client
objects will become eligible for collection. Unfortunately, each client has another
referee: the _host object whose Click event now references each Client instance.
This may go unnoticed if the Click event doesn’t fire—or if the HostClicked
method doesn’t do anything to attract attention.

One way to solve this is to make Client implement IDisposable, and in the Dis
pose method, unhook the event handler:

public void Dispose() { _host.Click -= HostClicked; }
Consumers of Client then dispose of the instances when they’re done with them:

Array.ForEach (clients, c => c.Dispose());

Managed Memory Leaks | 517

www.it-ebooks.info

http://www.it-ebooks.info/

In “Weak References” on page 520 we'll describe another solu-
tion to this problem, which can be useful in environments
which tend not to use disposable objects (an example is WPF).
In fact, the WPF framework offers a class called WeakEventMan
ager that leverages a pattern employing weak references.

On the topic of WPE, data binding is another common cause
for memory leaks: the issue is described at http://support.micro
soft.com/kb/938416.

Timers

Forgotten timers can also cause memory leaks (we discuss timers in Chapter 22).
There are two distinct scenarios, depending on the kind of timer. Let’s first look at
the timer in the System.Timers namespace. In the following example, the Foo class
(when instantiated) calls the tmr_Elapsed method once every second:

using System.Timers;

class Foo

{

Timer _timer;

Foo()

{
_timer = new System.Timers.Timer { Interval = 1000 };
_timer.Elapsed += tmr_Elapsed;
_timer.Start();

}

void tmr_Elapsed (object sender, ElapsedEventArgs e) { ... }
}

Unfortunately, instances of Foo can never be garbage-collected! The problem is
the NET Framework itself holds references to active timers so that it can fire their
Elapsed events. Hence:

o The NET Framework will keep _timer alive.
o _timer will keep the Foo instance alive, via the tmr_Elapsed event handler.
The solution is obvious when you realize that Timer implements IDisposable. Dis-

posing of the timer stops it and ensures that the NET Framework no longer refer-
ences the object:

class Foo : IDisposable

{

public void Dispose() { _timer.Dispose(); }

}

518 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://support.microsoft.com/kb/938416
http://support.microsoft.com/kb/938416
http://www.it-ebooks.info/

A good guideline is to implement IDisposable yourself if any
field in your class is assigned an object that implements IDis
posable.

The WPF and Windows Forms timers behave in exactly the same way, with respect
to what's just been discussed.

The timer in the System.Threading namespace, however, is special. The .NET
Framework doesn’t hold references to active threading timers; it instead references
the callback delegates directly. This means that if you forget to dispose of a thread-
ing timer, a finalizer can fire which will automatically stop and dispose the timer.
For example:

static void Main()

{
var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000);

GC.Collect();
System.Threading.Thread.Sleep (10000); // Wait 10 seconds

}

static vold TimerTick (object notUsed) { Console.WriteLine ("tick"); }

If this example is compiled in “release” mode (debugging disabled and optimiza-
tions enabled), the timer will be collected and finalized before it has a chance to fire
even once! Again, we can fix this by disposing of the timer when we’re done with it:

using (var tmr = new System.Threading.Timer (TimerTick, null, 1000, 1000))

{
GC.Collect();
System.Threading.Thread.Sleep (10000); // Wait 10 seconds

}

The implicit call to tmr.Dispose at the end of the using block ensures that the tmr
variable is “used” and so not considered dead by the GC until the end of the block.
Ironically, this call to Dispose actually keeps the object alive longer!

Diagnosing Memory Leaks

The easiest way to avoid managed memory leaks is to proactively monitor memory
consumption as an application is written. You can obtain the current memory con-
sumption of a program’s objects as follows (the true argument tells the GC to per-
form a collection first):

long memoryUsed = GC.GetTotalMemory (true);

If you're practicing test-driven development, one possibility is to use unit tests to
assert that memory is reclaimed as expected. If such an assertion fails, you then
have to examine only the changes that you’ve made recently.

If you already have a large application with a managed memory leak, the windbg.exe
tool can assist in finding it. There are also friendlier graphical tools such as Micro-
soft’s CLR Profiler, SciTech’s Memory Profiler, and Red Gate’s ANTS Memory Pro-
filer.

Managed Memory Leaks | 519

www.it-ebooks.info

0
o
o
o
=
o
3

abeqien

http://www.it-ebooks.info/

The CLR also exposes numerous Windows WMI counters to assist with resource
monitoring.

Weak References

Occasionally, it’s useful to hold a reference to an object that’s “invisible” to the GC in
terms of keeping the object alive. This is called a weak reference and is implemented
by the System.WeakReference class.

To use WeakReference, construct it with a target object as follows:

var sb = new StringBuilder ("this is a test");
var weak = new WeakReference (sb);
Console.WriteLine (weak.Target); // This is a test

If a target is referenced only by one or more weak references, the GC will consider
the target eligible for collection. When the target gets collected, the Target property
of the WeakReference will be null:

var weak = new WeakReference (new StringBuilder ("weak"));
Console.WriteLine (weak.Target); // weak

GC.Collect();

Console.WriteLine (weak.Target); // (nothing)

To avoid the target being collected in between testing for it being null and consum-
ing it, assign the target to a local variable:

var weak = new WeakReference (new StringBuilder ("weak"));
var sb = (StringBuilder) weak.Target;
if (sb != null) { /* Do something with sb */ }

Once a target’s been assigned to a local variable, it has a strong root and so cannot
be collected while that variable’s in use.

The following class uses weak references to keep track of all Widget objects that
have been instantiated, without preventing those objects from being collected:

class Widget
{

static List<WeakReference> _allWidgets = new List<WeakReference>();
public readonly string Name;

public Widget (string name)
{
Name = name;
_allWidgets.Add (new WeakReference (this));

}

public static void ListAllWidgets()

{
foreach (WeakReference weak in _allWidgets)
{

Widget w = (Widget)weak.Target;
if (w != null) Console.WriteLine (w.Name);

520 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

}
}
}

The only proviso with such a system is that the static list will grow over time, accu-
mulating weak references with null targets. So you need to implement some cleanup
strategy.

Weak References and Caching

One use for WeakReference is to cache large object graphs. This allows memory-
intensive data to be cached briefly without causing excessive memory consumption:

_weakCache = new WeakReference (...); // _weakCache is a field

var cache = _weakCache.Target;
if (cache == null) { /* Re-create cache & assign it to _weakCache */ }

This strategy may be only mildly effective in practice, because you have little control
over when the GC fires and what generation it chooses to collect. In particular, if
your cache remains in Gen0, it may be collected within microseconds (and remem-
ber that the GC doesn't collect only when memory is low—it collects regularly
under normal memory conditions). So at a minimum, you should employ a two-
level cache whereby you start out by holding strong references that you convert to
weak references over time.

Weak References and Events

We saw earlier how events can cause managed memory leaks. The simplest solution
is to either avoid subscribing in such conditions, or implement a Dispose method to
unsubscribe. Weak references offer another solution.

Imagine a delegate that holds only weak references to its targets. Such a delegate
would not keep its targets alive—unless those targets had independent referees. Of
course, this wouldn’t prevent a firing delegate from hitting an unreferenced target—
in the time between the target being eligible for collection and the GC catching up
with it. For such a solution to be effective, your code must be robust in that sce-
nario. Assuming that is the case, a weak delegate class can be implemented as fol-
lows:

public class WeakDelegate<TDelegate> where TDelegate : class
{
class MethodTarget
{
public readonly WeakReference Reference;
public readonly MethodInfo Method;

public MethodTarget (Delegate d)
{
Reference = new WeakReference (d.Target);
Method = d.Method;
}
}

Weak References | 521

www.it-ebooks.info

(o]
o
o
o
=
o
3

abeqien

http://www.it-ebooks.info/

List<MethodTarget> _targets = new List<MethodTarget>();

public WeakDelegate()
{
if (!typeof (TDelegate).IsSubclassOf (typeof (Delegate)))
throw new InvalidOperationException
("TDelegate must be a delegate type");
}

public void Combine (TDelegate target)

{
if (target == null) return;

foreach (Delegate d in (target as Delegate).GetInvocationList())
_targets.Add (new MethodTarget (d));
}

public void Remove (TDelegate target)
{
if (target == null) return;
foreach (Delegate d in (target as Delegate).GetInvocationList())
{
MethodTarget mt = _targets.Find (w =>
Equals (d.Target, (w.Reference?.Target) &&
Equals (d.Method.MethodHandle, w.Method.MethodHandle));

if (mt != null) _targets.Remove (mt);
}
}

public TDelegate Target

{
get

{
var deadRefs = new List<MethodTarget>();

foreach (MethodTarget mt in _targets.ToArray())
{

WeakReference wr = mt.Reference;

// Static target || alive instance target
if (wr == null || wr.Target != null)
{
var newDelegate = Delegate.CreateDelegate (
typeof(TDelegate), wr?.Target, mt.Method);
combinedTarget = Delegate.Combine (combinedTarget, newDelegate);
}
else
_targets.Remove (mt);

}

return combinedTarget as TDelegate;

}

set

522 | Chapter 12: Disposal and Garbage Collection

www.it-ebooks.info

http://www.it-ebooks.info/

{
_targets.Clear();
Combine (value);
}
}
3
This code illustrates a number of interesting points in C# and the CLR. First, note
that we check that TDelegate is a delegate type in the constructor. This is because of
a limitation in C#—the following type constraint is illegal because C# considers Sys
tem.Delegate a special type for which constraints are not supported:

. where TDelegate : Delegate // Compiler doesn't allow this

Instead, we must choose a class constraint and perform a runtime check in the con-
structor.

In the Combine and Remove methods, we perform the reference conversion from tar
get to Delegate via the as operator rather than the more usual cast operator. This is
because C# disallows the cast operator with this type parameter—because of a
potential ambiguity between a custom conversion and a reference conversion.

We then call GetInvocationList because these methods might be called with multi-
cast delegates—delegates with more than one method recipient.

In the Target property, we build up a multicast delegate that combines all the dele-
gates referenced by weak references whose targets are alive, removing the remaining
(dead) references from the list to avoid the _targets list endlessly growing. (We
could improve our class by doing the same in the Combine method; yet another
improvement would be to add locks for thread safety [Chapter 22]).

The following illustrates how to consume this delegate in implementing an event:

We also allow delegates without a weak reference at all; these represent delegates
whose target is a static method.

public class Foo

{

WeakDelegate<EventHandler> _click = new WeakDelegate<EventHandler>();

public event EventHandler Click
{

add { _click.Combine (value); } remove { _click.Remove (value); }

}

protected virtual void OnClick (EventArgs e)
=> _click.Target?.Invoke (this, e);

Weak References | 523

www.it-ebooks.info

(o]
o
o
o
=
]
-]

abeqien

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

13

Diagnostics and Code Contracts

When things go wrong, it's important that information is available to aid in diagnos-
ing the problem. An IDE or debugger can assist greatly to this effect—but it is usu-
ally available only during development. Once an application ships, the application
itself must gather and record diagnostic information. To meet this requirement,
the NET Framework provides a set of facilities to log diagnostic information, moni-
tor application behavior, detect runtime errors, and integrate with debugging tools if
available.

The NET Framework also allows you to enforce code contracts. Introduced in
Framework 4.0, code contracts allow methods to interact through a set of mutual
obligations and fail early if those obligations are violated.

The types in this chapter are defined primarily in the System.Diagnostics and Sys
tem.Diagnostics.Contracts namespaces.

Conditional Compilation

You can conditionally compile any section of code in C# with preprocessor directives.
Preprocessor directives are special instructions to the compiler that begin with the #
symbol (and, unlike other C# constructs, must appear on a line of their own). Logi-
cally, they execute before the main compilation takes place (although in practice, the
compiler processes them during the lexical parsing phase). The preprocessor direc-
tives for conditional compilation are #1f, #else, #endif, and #elif.

The #if directive instructs the compiler to ignore a section of code unless a speci-
fied symbol has been defined. You can define a symbol with either the #define
directive or a compilation switch. #define applies to a particular file; a compilation
switch applies to a whole assembly:

525

www.it-ebooks.info

http://www.it-ebooks.info/

#define TESTMODE // #define directives must be at top of file
// Symbol names are uppercase by convention.
using System;

class Program

{

static void Main()

{
#if TESTMODE

Console.WriteLine ("in test mode!"); // OUTPUT: in test mode!
#endif

}
}

If we deleted the first line, the program would compile with the Console.WriteLine
statement completely eliminated from the executable, as though it was commented
out.

The #else statement is analogous to C#’s else statement, and #elif is equivalent to
#else followed by #if. The ||, &&, and ! operators can be used to perform or, and,
and not operations:

#1f TESTMODE && !PLAYMODE // if TESTMODE and not PLAYMODE

Bear in mind, however, that youre not building an ordinary C# expression, and the
symbols upon which you operate have absolutely no connection to variables—static
or otherwise.

To define a symbol assembly-wide, specify the /define switch when compiling:
csc Program.cs /define:TESTMODE,PLAYMODE

Visual Studio provides an option to enter conditional compilation symbols under
Project Properties.

If you've defined a symbol at the assembly level and then want to “undefine” it for a
particular file, you can do so with the #undef directive.

Conditional Compilation Versus Static Variable Flags
The preceding example could instead be implemented with a simple static field:

static internal bool TestMode = true;

static void Main()

{

if (TestMode) Console.WriteLine ("in test mode!");

}

This has the advantage of allowing runtime configuration. So, why choose condi-
tional compilation? The reason is that conditional compilation can take you places
variable flags cannot, such as:

526 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

« Conditionally including an attribute
« Changing the declared type of variable

o Switching between different namespaces or type aliases in a using directive—
for example:

using TestType =
#if v2
MyCompany .Widgets.GadgetV2;
#else
MyCompany .Widgets.Gadget;
#endif

You can even perform major refactoring under a conditional compilation directive
so you can instantly switch between old and new versions and write libraries that

can compile against multiple Framework versions, leveraging the latest Framework
features where available.

Another advantage of conditional compilation is that debugging code can refer to
types in assemblies that are not included in deployment.

The Conditional Attribute

The Conditional attribute instructs the compiler to ignore any calls to a particular
class or method, if the specified symbol has not been defined.

To see how this is useful, suppose you write a method for logging status information
as follows:

static void LogStatus (string msg)
{

string logFilePath = ...

System.IO.File.AppendAllText (logFilePath, msg + "\r\n");
}

Now imagine you wanted this to execute only if the LOGGINGMODE symbol is defined.
The first solution is to wrap all calls to LogStatus around an #if directive:

#i1f LOGGINGMODE
LogStatus ("Message Headers: " + GetMsgHeaders());
#endif

This gives an ideal result, but it is tedious. The second solution is to put the #if
directive inside the LogStatus method. This, however, is problematic should LogSta
tus be called as follows:

LogStatus ("Message Headers: " + GetComplexMessageHeaders());

GetComplexMessageHeaders would always get called—which might incur a perfor-
mance hit.

Conditional Compilation | 527

www.it-ebooks.info

sjoeljuod

)
3
o
0
o
Q
(]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

We can combine the functionality of the first solution with the convenience of the
second by attaching the Conditional attribute (defined in System.Diagnostics) to
the LogStatus method:

[Conditional ("LOGGINGMODE")]
static voild LogStatus (string msg)
{

}...

This instructs the compiler to treat calls to LogStatus as though they were wrapped
in an #1f LOGGINGMODE directive. If the symbol is not defined, any calls to LogSta
tus get eliminated entirely in compilation—including their argument evaluation
expressions. (Hence any side-effecting expressions will be bypassed.) This works
even if LogStatus and the caller are in different assemblies.

Another benefit of [Conditional] is that the conditionality
check is performed when the caller is compiled, rather than
when the called method is compiled. This is beneficial because
it allows you to write a library containing methods such as Log
Status—and build just one version of that library.

The Conditional attribute is ignored at runtime—it’s purely an instruction to the
compiler.

Alternatives to the Conditional attribute

The Conditional attribute is useless if you need to dynamically enable or disable
functionality at runtime: instead, you must use a variable-based approach. This
leaves the question of how to elegantly circumvent the evaluation of arguments
when calling conditional logging methods. A functional approach solves this:

using System;
using System.Ling;

class Program

{
public static bool EnablelLogging;

static void LogStatus (Func<string> message)
{
string logFilePath = ...
if (EnableLogging)
System.I0.File.AppendAllText (logFilePath, message() + "\r\n");
}
}

A lambda expression lets you call this method without syntax bloat:
LogStatus (() => "Message Headers: " + GetComplexMessageHeaders());

If EnableLogging is false, GetComplexMessageHeaders is never evaluated.

528 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

Debug and Trace Classes

Debug and Trace are static classes that provide basic logging and assertion capabili-
ties. The two classes are very similar; the main differentiator is their intended use.
The Debug class is intended for debug builds; the Trace class is intended for both
debug and release builds. To this effect:

o All methods of the Debug class are defined with [Conditional("DEBUG")].
o All methods of the Trace class are defined with [Conditional("TRACE")].

This means that all calls that you make to Debug or Trace are eliminated by the
compiler unless you define DEBUG or TRACE symbols. By default, Visual Studio
defines both DEBUG and TRACE symbols in a project’s debug configuration—and just
the TRACE symbol in the release configuration.

Both the Debug and Trace classes provide Write, WriteLine, and WriteIf methods.
By default, these send messages to the debugger’s output window:

Debug.Write ("Data");

Debug.WriteLine (23 * 34);

int x =5, y = 3;

Debug.WriteIf (x >y, "x is greater than y");
The Trace class also provides the methods TraceInformation, TraceWarning, and
TraceError. The difference in behavior between these and the Write methods
depends on the active TraceListeners (we'll cover this in “TraceListener” on page
530).

Fail and Assert

The Debug and Trace classes both provide Fail and Assert methods. Fail sends
the message to each TraceListener in the Debug or Trace class’s Listeners collec-
tion (see the following section), which by default writes the message to the debug
output as well as displaying it in a dialog:

Debug.Fail ("File data.txt does not exist!");

The dialog that appears asks you whether to ignore, abort, or retry. The latter then
lets you attach a debugger, which is useful in instantly diagnosing the problem.

Assert simply calls Fail if the bool argument is false—this is called making an
assertion and indicates a bug in the code if violated. Specifying a failure message is
optional:

Debug.Assert (File.Exists ("data.txt"), "File data.txt does not exist!");
var result = ...
Debug.Assert (result != null);

The Write, Fail, and Assert methods are also overloaded to accept a string cate-
gory in addition to the message, which can be useful in processing the output.

Debug and Trace Classes | 529

www.it-ebooks.info

sjoeljuod

)
3
Q
(o]
o
Q
(]

=)
']
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

An alternative to assertion is to throw an exception if the opposite condition is true.
This is a common practice when validating method arguments:

public voild ShowMessage (string message)

{

if (message == null) throw new ArgumentNullException ("message");

}...

Such “assertions” are compiled unconditionally and are less flexible in that you can’t
control the outcome of a failed assertion via TraceListeners. And technically,
they’re not assertions. An assertion is something that, if violated, indicates a bug in
the current method’s code. Throwing an exception based on argument validation
indicates a bug in the caller’s code.

WEell see soon how code contracts extend the principles of
Fail and Assert, providing more power and flexibility.

TraceListener

The Debug and Trace classes each have a Listeners property, comprising a static
collection of TracelListener instances. These are responsible for processing the
content emitted by the Write, Fail, and Trace methods.

By default, the Listeners collection of each includes a single listener (DefaultTra
ceListener). The default listener has two key features:

o When connected to a debugger such as Visual Studio, messages are written to
the debug output window; otherwise, message content is ignored.

o When the Fail method is called (or an assertion fails), a dialog appears asking
the user whether to continue, abort, or retry (attach/debug)—regardless of
whether a debugger is attached.

You can change this behavior by (optionally) removing the default listener and then
adding one or more of your own. You can write trace listeners from scratch (by sub-
classing TraceListener) or use one of the predefined types:

o TextWriterTracelListener writes to a Stream or TextWriter or appends to a
file.
o EventlLogTracelistener writes to the Windows event log.

o EventProviderTracelListener writes to the Event Tracing for Windows
(ETW) subsystem in Windows Vista and later.

o WebPageTracelistener writes to an ASPNET web page.
TextWriterTracelListener is further subclassed to ConsoleTracelListener, Delimi

tedListTraceListener, XmlWriterTracelListener, and EventSchemaTracelLis
tener.

530 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

None of these listeners display a dialog when Fail is called—
only DefaultTraceListener has this behavior.

The following example clears Trace’s default listener, then adds three listeners—one
that appends to a file, one that writes to the console, and one that writes to the Win-
dows event log:

// Clear the default listener:
Trace.Listeners.Clear();

// Add a writer that appends to the trace.txt file:
Trace.Listeners.Add (new TextWriterTraceListener ("trace.txt"));

// Obtain the Console's output stream, then add that as a listener:
System.IO.TextWriter tw = Console.Out;
Trace.Listeners.Add (new TextWriterTraceListener (tw));

// Set up a Windows Event log source and then create/add listener.
// CreateEventSource requires administrative elevation, so this would
// typically be done in application setup.
if (!EventLog.SourceExists ("DemoApp"))
EventLog.CreateEventSource ("DemoApp", "Application");

Trace.Listeners.Add (new EventLogTracelListener ("DemoApp"));

(It’s also possible to add listeners via the application configuration file; this is handy
in allowing testers to configure tracing after an application has been built—go to
http://albahari.com/traceconfig for the MSDN article.)

In the case of the Windows event log, messages that you write with the Write, Fail,
or Assert method always display as “Information” messages in the Windows event
viewer. Messages that you write via the TraceWarning and TraceError methods,
however, show up as warnings or errors.

TraceListener also has a Filter of type TraceFilter that you can set to control
whether a message gets written to that listener. To do this, you either instantiate one
of the predefined subclasses (EventTypeFilter or SourceFilter), or subclass Trace
Filter and override the ShouldTrace method. You could use this to filter by cate-
gory, for instance.

Tracelistener also defines IndentLevel and IndentSize properties for controlling
indentation and the TraceOutputOptions property for writing extra data:

TextWriterTraceListener tl = new TextWriterTracelListener (Console.Out);
tl.TraceOutputOptions = TraceOptions.DateTime | TraceOptions.Callstack;

TraceOutputOptions are applied when using the Trace methods:

Trace.TraceWarning ("Orange alert");

DiagTest.vshost.exe Warning: @ : Orange alert
DateTime=2007-03-08T05:57:13.6250000Z
Callstack= at System.Environment.GetStackTrace(Exception e, Boolean

Debug and Trace Classes | 531

www.it-ebooks.info

0
o
3
-
=
o
(2]
-
("]

solysoubeiq

http://albahari.com/traceconfig
http://www.it-ebooks.info/

needFileInfo)
at System.Environment.get_StackTrace() at ...

Flushing and Closing Listeners

Some listeners, such as TextWriterTracelListener, ultimately write to a stream that
is subject to caching. This has two implications:

« A message may not appear in the output stream or file immediately.

« You must close—or at least flush—the listener before your application ends;
otherwise, you lose what’s in the cache (up to 4 KB, by default, if you're writing
to a file).

The Trace and Debug classes provide static Close and Flush methods that call Close
or Flush on all listeners (which in turn calls Close or Flush on any underlying writ-
ers and streams). Close implicitly calls Flush, closes file handles, and prevents fur-
ther data from being written.

As a general rule, call Close before an application ends and call Flush anytime you
want to ensure that current message data is written. This applies if youre using
stream- or file-based listeners.

Trace and Debug also provide an AutoFlush property, which, if true, forces a Flush
after every message.

It's a good policy to set AutoFlush to true on Debug and Trace
if you’re using any file- or stream-based listeners. Otherwise,
if an unhandled exception or critical error occurs, the last 4
KB of diagnostic information may be lost.

Code Contracts Overview

We mentioned previously the concept of an assertion, whereby you check that cer-
tain conditions are met throughout your program. If a condition fails, it indicates a
bug, which is typically handled by invoking a debugger (in debug builds) or throw-
ing an exception (in release builds).

Assertions follow the principle that if something goes wrong, its best to fail early
and close to the source of the error. This is usually better than trying to continue
with invalid data—which can result in incorrect results, undesired side-effects, or an
exception later on in the program (all of which are harder to diagnose).

Historically, there have been two ways to enforce assertions:

o By calling the Assert method on Debug or Trace

o By throwing exceptions (such as ArgumentNullException)

532 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

Framework 4.0 introduced a new feature called code contracts, which replaces both
of these approaches with a unified system. That system allows you to make not only
simple assertions but also more powerful contract-based assertions.

Code contracts derive from the principle of “Design by Contract” from the Eiffel
programming language, where functions interact with each other through a system
of mutual obligations and benefits. Essentially, a function specifies preconditions that
must be met by the client (caller) and in return guarantees postconditions that the
client can depend on when the function returns.

The types for code contracts live in the System.Diagnostics.Contracts name-
space.

Although the types that support code contracts are built into
the NET Framework, the binary rewriter and the static check-
ing tools are available as a separate download at the Microsoft
DevLabs site. You must install these tools before you can use
code contracts in Visual Studio.

Why Use Code Contracts?

To illustrate, we'll write a method that adds an item to a list only if it's not already
present—with two preconditions and a postcondition:

public static bool AddIfNotPresent<T> (IList<T> list, T item)
{

Contract.Requires (list != null); // Precondition
Contract.Requires (!list.IsReadOnly); // Precondition
Contract.Ensures (list.Contains (item)); // Postcondition
if (list.Contains(item)) return false;

list.Add (item);

return true;

}

The preconditions are defined by Contract.Requires and are verified when the
method starts. The postcondition is defined by Contract.Ensures and is verified
not where it appears in the code, but when the method exits.

Preconditions and postconditions act like assertions and, in this case, detect the fol-
lowing errors:

« Calling the method with a null or read-only list
o A bug in the method whereby we forgot to add the item to the list

Preconditions and postconditions must appear at the start of
the method. This is conducive to good design: if you fail to
fulfill the contract in subsequently writing the method, the
error will be detected.

Code Contracts Overview | 533

www.it-ebooks.info

0
o
3
-
=1
o
0
-
("]

solysoubeiq

http://msdn.microsoft.com/devlabs
http://msdn.microsoft.com/devlabs
http://www.it-ebooks.info/

Moreover, these conditions form a discoverable contract for that method. AddIfNot
Present advertises to consumers:

o “You must call me with a non-null writable list”

o “When I return, that list will contain the item you specified”

These facts can be emitted into the assembly’s XML documentation file (you can do
this in Visual Studio by going to the Code Contracts tab of the Project Properties
window, enabling the building of a contracts reference assembly, and checking
“Emit Contracts into XML doc file”). Tools such as SandCastle can then incorporate
contract details into documentation files.

Contracts also enable your program to be analyzed for correctness by static contract
validation tools. If you try to call AddIfNotPresent with a list whose value might
be null, for example, a static validation tool could warn you before you even run the
program.

Another benefit of contracts is ease of use. In our example, it’s easier to code the
postcondition upfront than at both exit points. Contracts also support object invari-
ants—which further reduce repetitive coding and make for more reliable enforce-
ment.

Conditions can also be placed on interface members and abstract methods, some-
thing that is impossible with standard validation approaches. And conditions on
virtual methods cannot be accidentally circumvented by subclasses.

Yet another benefit of code contracts is that contract violation behavior can be cus-
tomized easily and in more ways than if you rely on calling Debug.Assert or throw-
ing exceptions. And it’s possible to ensure that contract violations are always recor-
ded—even if contract violation exceptions are swallowed by exception handlers
higher in the call stack.

The disadvantage of using code contracts is that the .NET implementation relies on
a binary rewriter—a tool that mutates the assembly after compilation. This slows the
build process, as well as complicating services that rely on calling the C# compiler
(whether explicitly or via the CSharpCodeProvider class).

The enforcing of code contracts may also incur a runtime performance hit, although
this is easily mitigated by scaling back contract checking in release builds.

Another limitation of code contracts is that you can’t use them
to enforce security-sensitive checks, because they can be cir-
cumvented at runtime (by handling the ContractFailed
event).

Contract Principles

Code contracts comprise preconditions, postconditions, assertions, and object invari-
ants. These are all discoverable assertions. They differ based on when they are veri-
fied:

534 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

o Preconditions are verified when a function starts.
o Postconditions are verified before a function exits.
o Assertions are verified wherever they appear in the code.

o Object invariants are verified after every public function in a class.

Code contracts are defined entirely by calling (static) methods in the Contract class.
This makes contracts language-independent.

Contracts can appear not only in methods, but in other functions as well, such as
constructors, properties, indexers, and operators.

Compilation

Almost all methods in the Contract class are defined with the [Conditional("CON
TRACTS_FULL")] attribute. This means that unless you define the CONTRACTS_FULL
symbol, (most) contract code is stripped out. Visual Studio defines the CON
TRACTS_FULL symbol automatically if you enable contract checking in the Code
Contracts tab of the Project Properties page. (For this tab to appear, you must
download and install the Contracts tools from the Microsoft DevLabs site.)

Removing the CONTRACTS_FULL symbol might seem like an

! easy way to disable all contract checking. However, it doesn’t

/ apply to Requires<TException> conditions (which we'll
describe in detail soon).

The only way to disable contracts in code that uses
Requires<TException> is to enable the CONTRACTS_FULL sym-
bol and then get the binary rewriter to strip out contract code
by choosing an enforcement level of “none”

The binary rewriter

After compiling code that contains contracts, you must call the binary rewriter tool,
ccrewrite.exe (Visual Studio does this automatically if contract checking is enabled).
The binary rewriter moves postconditions (and object invariants) into the right
place, calls any conditions and object invariants in overridden methods, and repla-
ces calls to Contract with calls to a contracts runtime class. Here’s a (simplified) ver-
sion of what our earlier example would look like after rewriting:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{
__ContractsRuntime.Requires (list != null);
__ContractsRuntime.Requires (!list.IsReadOnly);
bool result;
if (list.Contains (item))
result = false;
else
{
list.Add (item);
result = true;

Code Contracts Overview | 535

www.it-ebooks.info

0
o
3
-
S
o
0
-
("]

soljysoubelq

http://www.it-ebooks.info/

}

__ContractsRuntime.Ensures (list.Contains (item)); // Postcondition
return result;

}

If you fail to call the binary rewriter, Contract won’t get replaced with __Contrac
tsRuntime and the former will end up throwing exceptions.

The __ContractsRuntime type is the default contracts runtime
class. In advanced scenarios, you can specify your own con-
tracts runtime class via the /rw switch or Visual Studio’s Code
Contracts tab in Project Properties.

Because __ContractsRuntime is shipped with the binary
rewriter (which is not a standard part of the .NET Frame-
work), the binary rewriter actually injects the __ContractsRun
time class into your compiled assembly. You can examine its
code by disassembling any assembly that enables code con-
tracts.

The binary rewriter also offers switches to strip away some or all contract checking:
we describe these in “Selectively Enforcing Contracts.” You typically enable full con-
tract checking in debug build configurations and a subset of contract checking in
release configurations.

Asserting versus throwing on failure

The binary rewriter also lets you choose between displaying a dialog and throwing a
ContractException upon contract failure. The former is typically used for debug
builds; the latter for release builds. To enable the latter, specify /throwonfailure
when calling the binary rewriter, or uncheck the “Assert on contract failure” check-
box in Visual Studio’s Code Contracts tab in Project Properties.

We'll revisit this topic in more detail in “Dealing with Contract Failure” on page
546.

Purity

All functions that you call from arguments passed to contract methods (Requires,
Assumes, Assert, etc.) must be pure—that is, side-effect-free (they must not alter the
values of fields). You must signal to the binary rewriter that any functions you call
are pure by applying the [Pure] attribute:

[Pure]
public static bool IsValiduri (string uri) { ... }

This makes the following legal:
Contract.Requires (IsValiduri (uri));

The contract tools implicitly assume that all property get accessors are pure, as are
all C# operators (+, *, %, etc.) and members on selected Framework types, including
string, Contract, Type, System.IO.Path, and LINQ’s query operators. It also

536 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

assumes that methods invoked via delegates marked with the [Pure] attribute are
pure (the Comparison<T> and Predicate<T> attributes are marked with this
attribute).

Preconditions

You can define code contract preconditions by calling Contract.Requires, Con
tract.Requires<TException> or Contract.EndContractBlock.

Contract.Requires
Calling Contract.Requires at the start of a function enforces a precondition:

static string ToProperCase (string s)

{
Contract.Requires (!string.IsNullOrEmpty(s));

}...

This is like making an assertion, except that the precondition forms a discoverable
fact about your function that can be extracted from the compiled code and con-
sumed by documentation or static checking tools (so that they can warn you should
they see some code elsewhere in your program that tries to call ToProperCase with a
null or empty string).

A further benefit of preconditions is that subclasses that override virtual methods
with preconditions cannot prevent the base class method’s preconditions from
being checked. And preconditions defined on interface members will be implicitly
woven into the concrete implementations (see “Contracts on Interfaces and Abstract
Methods” on page 545).

Preconditions should access only members that are at least as
accessible as the function itself—this ensures that callers can
make sense of the contract. If you need to read or call less
accessible members, it’s likely that you're validating internal
state rather than enforcing the calling contract, in which case
you should make an assertion instead.

You can call Contract.Requires as many times as necessary at the start of the
method to enforce different conditions.

What Should You Put in Preconditions?

The guideline from the Code Contracts team is that preconditions should:

« Be possible for the client (caller) to easily validate.
« Rely only on data & functions at least as accessible as the method itself.

« Always indicate a bug if violated.

Preconditions | 537

www.it-ebooks.info

0
o
3
-
=
o
(2]
-
("]

solysoubeiq

http://www.it-ebooks.info/

A consequence of the last point is that a client should never specifically “catch” a
contract failure (the ContractException type, in fact, is internal to help enforce that
principle). Instead, the client should call the target properly; if it fails, this indicates
a bug that should be handled via your general exception backstop (which may
include terminating the application). In other words, if you decide control-flow or
do other things based on a precondition failure, it’s not really a contract because you
can continue executing if it fails.

This leads to the following advice when choosing between preconditions and
throwing ordinary exceptions:

« If failure always indicates a bug in the client, favor a precondition.

o If failure indicates an abnormal condition, which may mean a bug in the client,
throw a (catchable) exception instead.

To illustrate, suppose were writing the Int32.Parse function. It’s reasonable to
assume that a null input string always indicates a bug in the caller, so wed enforce
this with a precondition:

public static int Parse (string s)

{

Contract.Requires (s !'= null);

}...

Next, we need to check that the string contains only digits and symbols such as +
and - (in the right place). It would place an unreasonable burden on the caller to
validate this, and so wed enforce it not as a precondition, but a manual check that
throws a (catchable) FormatException if violated.

To illustrate the member accessibility issue, consider the following code, which
often appears in types implementing the IDisposable interface:

public void Foo()
{
if (_isDisposed) // _isDisposed is a private field
throw new ObjectDisposedException ("...");

}...

This check should not be made into a precondition unless we make _isDisposed
accessible to the caller (by refactoring it into a publicly readable property, for
instance).

Finally, consider the File.ReadAllText method. The following would be inappropri-
ate use of a precondition:

public static string ReadAllText (string path)

{
Contract.Requires (File.Exists (path));

538 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

The caller cannot reliably know that the file exists before calling this method (it
could be deleted between making that check and calling the method). So, wed
enforce this in the old-fashioned way—by throwing a catchable FileNotFoundExcep
tion instead.

Contract.Requires<TException>

The introduction of code contracts challenges the following deeply entrenched pat-
tern established in the .NET Framework from version 1.0:

static voild SetProgress (string message, int percent) // Classic approach

{
if (message == null)
throw new ArgumentNullException ("message");

if (percent < 0 || percent > 100)
throw new ArgumentOutOfRangeException ("percent");

}...

static void SetProgress (string message, int percent) // Modern approach
{

Contract.Requires (message != null);

Contract.Requires (percent >= 0 && percent <= 100);

sjoeljuod

o Y
3
8.8
0

o
Q
o0
("]

}...

If you have a large assembly that enforces classic argument checking, writing new
methods with preconditions will create an inconsistent library: some methods will
throw argument exceptions whereas others will throw a ContractException. One
solution is to update all existing methods to use contracts, but this has two prob-
lems:

o It’s time-consuming.

o Callers may have come to depend on an exception type such as ArgumentNul
1Exception being thrown. (This almost certainly indicates bad design, but may
be the reality nonetheless.)

The solution is to call the generic version of Contract.Requires. This lets you spec-
ify an exception type to throw upon failure:

Contract.Requires<ArgumentNullException> (message != null, "message");
Contract.Requires<ArgumentOutOfRangeException>
(percent >= 0 && percent <= 100, "percent");

(The second argument gets passed to the constructor of the exception class).

This results in the same behavior as with old-fashioned argument checking, while
delivering the benefits of contracts (conciseness, support for interfaces, implicit
documentation, static checking, and runtime customization).

Preconditions | 539

www.it-ebooks.info

http://www.it-ebooks.info/

The specified exception is thrown only if you specify /thro
wonfailure when rewriting the assembly (or uncheck the
Assert on Contract Failure checkbox in Visual Studio). Other-
wise, a dialog box appears.

It’s also possible to specify a contract-checking level of ReleaseRequires in the binary
rewriter (see “Selectively Enforcing Contracts” on page 548). Calls to the generic
Contract.Requires<TException> then remain in place while all other checks are
stripped away: this results in an assembly that behaves just as in the past.

Contract.EndContractBlock

The Contract.EndContractBlock method lets you get the benefit of code contracts
with traditional argument-checking code—avoiding the need to refactor code writ-
ten prior to Framework 4.0. All you do is call this method after performing manual
argument checks:

static voild Foo (string name)

{
if (name == null) throw new ArgumentNullException ("name");
Contract.EndContractBlock();

}

The binary rewriter then converts this code into something equivalent to:

static voild Foo (string name)

{

Contract.Requires<ArgumentNullException> (name != null, "name");

}

The code that precedes EndContractBlock must comprise simple statements of the
form:

if <condition> throw <expression>;

You can mix traditional argument checking with code contract calls: simply put the
latter after the former:

static void Foo (string name)

{
if (name == null) throw new ArgumentNullException ("name");
Contract.Requires (name.Length >= 2);

}

Calling any of the contract-enforcing methods implicitly ends the contract block.

The point is to define a region at the beginning of the method where the contract
rewriter knows that every if statement is part of a contract. Calling any of the
contract-enforcing methods implicitly extends the contract block, so you don’t need
to use EndContractBlock if you use another method such as Contract.Ensures.

540 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

Preconditions and Overridden Methods

When overriding a virtual method, you cannot add preconditions, because doing so
would change the contract (by making it more restrictive)—breaking the principles
of polymorphism.

(Technically, the designers could have allowed overridden methods to weaken pre-
conditions; they decided against this because the scenarios weren't sufficiently com-
pelling to justify adding this complexity).

The binary rewriter ensures that a base method’s precondi-
tions are always enforced in subclasses—whether or not the
overridden method calls the base method.

Postconditions

Contract.Ensures

Contract.Ensures enforces a postcondition: something which must be true when
the method exits. We saw an example earlier:

static bool AddIfNotPresent<T> (IList<T> list, T item)
{

Contract.Requires (list != null); // Precondition
Contract.Ensures (list.Contains (item)); // Postcondition
if (list.Contains(item)) return false;

list.Add (item);

return true;

}

The binary rewriter moves postconditions to the exit points of the method. Post-
conditions are checked if you return early from a method (as in this example)—but
not if you return early via an unhandled exception.

Unlike preconditions, which detect misuse by the caller, postconditions detect an
error in the function itself (rather like assertions). Therefore, postconditions may
access private state (subject to the caveat stated shortly, in “Postconditions and
Overridden Methods” on page 543).

Postconditions and Thread Safety

Multithreaded scenarios (Chapter 14) challenge the usefulness of postconditions.
For instance, suppose we wrote a thread-safe wrapper for a List<T> with a method
as follows:

public class ThreadSafelList<T>
{

List<T> _list = new List<T>();
object _locker = new object();

public bool AddIfNotPresent (T item)
{

Postconditions | 541

www.it-ebooks.info

(o]
o
3
-
=
o
(2]
-
("]

apod pue
solysoubeiq

http://www.it-ebooks.info/

Contract.Ensures (_list.Contains (item));
lock (_locker)

if (_list.Contains(item)) return false;
_list.Add (item);
return true;
}
}

public void Remove (T item)

lock (_locker)
_list.Remove (item);
3
3
The postcondition in the AddIfNotPresent method is checked affer the lock is
released—at which point the item may no longer exist in the list if another thread
called Remove right then. There is currently no workaround for this problem, other
than to enforce such conditions as assertions (see “Assertions and Object Invariants”
on page 543) rather than postconditions.

Contract.EnsuresOnThrow<TException>

Occasionally, it’s useful to ensure that a certain condition is true should a particular
type of exception be thrown. The EnsuresOnThrow method does exactly this:

Contract.EnsuresOnThrow<WebException> (this.ErrorMessage != null);

Contract.Result<T> and Contract.ValueAtReturn<T>

Because postconditions are not evaluated until a function ends, it's reasonable to
want to access the return value of a method. The Contract.Result<T> method does
exactly that:

Random _random = new Random();
int GetOddRandomNumber ()

{
Contract.Ensures (Contract.Result<int>() % 2 == 1);
return _random.Next (100) * 2 + 1;

}

The Contract.ValueAtReturn<T> method fulfills the same function—but for ref
and out parameters.

Contract.OldValue<T>

Contract.0ldValue<T> returns the original value of a method parameter. This is
useful with postconditions because the latter are checked at the end of a function.
Therefore, any expressions in postconditions that incorporate parameters will read
the modified parameter values.

For example, the postcondition in the following method will always fail:

542 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

static string Middle (string s)

{
Contract.Requires (s != null && s.Length >= 2);
Contract.Ensures (Contract.Result<string>().Length < s.Length);
s = s.Substring (1, s.Length - 2);
return s.Trim();

}

Here’s how we can correct it:

static string Middle (string s)
{
Contract.Requires (s != null && s.Length >= 2);
Contract.Ensures (Contract.Result<string>().Length <
Contract.0ldValue (s).Length);
s = s.Substring (1, s.Length - 2);
return s.Trim();

)
Postconditions and Overridden Methods

An overridden method cannot circumvent postconditions defined by its base, but it
can add new ones. The binary rewriter ensures that a base method’s postconditions
are always checked—even if the overridden method doesn't call the base implemen-
tation.

For the reason just stated, postconditions on virtual methods
‘ should not access private members. Doing so will result in the
[binary rewriter weaving code into the subclass that will try to
access private members in the base class—causing a runtime
error.

Assertions and Object Invariants

In addition to preconditions and postconditions, the code contracts API lets you
make assertions and define object invariants.

Assertions

Contract.Assert

You can make assertions anywhere in a function by calling Contract.Assert. You
can optionally specify an error message if the assertion fails:

int x = 3;

Contract.Assert (x == 3); // Fail unless x is 3
Contract.Assert (x == 3, "x must be 3");

The binary rewriter doesn’t move assertions around. There are two reasons for
favoring Contract.Assert over Debug.Assert:

Assertions and Object Invariants | 543

www.it-ebooks.info

sjoeljuod

)
3
o
0
o
Q
(]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

o You can leverage the more flexible failure-handling mechanisms offered by
code contracts.

« Static checking tools can attempt to validate Contract.Asserts.

Contract.Assume

Contract.Assume behaves exactly like Contract.Assert at run-time but has slightly
different implications for static checking tools. Essentially, static checking tools
won't challenge an assumption, whereas they may challenge an assertion. This is
useful in that there will always be things a static checker is unable to prove, and this
may lead to it “crying wolf” over a valid assertion. Changing the assertion to an
assumption keeps the static checker quiet.

Object Invariants

For a class, you can specify one or more object invariant methods. These methods
run automatically after every public function in the class and allow you to assert that
the object is in an internally consistent state.

Support for multiple object invariant methods was included to
make object invariants work well with partial classes.

To define an object invariant method, write a parameterless void method and anno-
tate it with the [ContractInvariantMethod] attribute. In that method, call Con
tract.Invariant to enforce each condition that should hold true:

class Test

{

int _x, _y;

[ContractInvariantMethod]

void ObjectInvariant()

{
Contract.Invariant (_x >= 0);
Contract.Invariant (_y >= _x);

}

public int X { get { return _x; } set { _x = value; } }
public void Test1() { _x = -3; }
void Test2() { x=-3;1%

}

The binary rewriter translates the X property, Test1 method and Test2 method to
something equivalent to this:

public void X { get { return _x; } set { _x = value; ObjectInvariant(); } }
public void Test1() { _x = -3; ObjectInvariant(); }
void Test2() { x=-3;} // No change because it's private

544 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

Object invariants don’t prevent an object from entering an
invalid state: they merely detect when that condition has
occurred.

Contract.Invariant is rather like Contract.Assert, except that it can appear only
in a method marked with the [ContractInvariantMethod] attribute. And con-
versely, a contract invariant method can only contain calls to Contract.Invariant.

A subclass can introduce its own object invariant method, too, and this will be
checked in addition to the base class’s invariant method. The caveat, of course, is
that the check will take place only after a public method is called.

Contracts on Interfaces and Abstract Methods

A powerful feature of code contracts is that you can attach conditions to interface
members and abstract methods. The binary rewriter then automatically weaves
these conditions into the members’ concrete implementations.

A special mechanism lets specify a separate contract class for interfaces and abstract
methods, so that you can write method bodies to house the contract conditions.
Here’s how it works:

[ContractClass (typeof (ContractForITest))]
interface ITest

{

int Process (string s);

}

[ContractClassFor (typeof (ITest))]
sealed class ContractForITest : ITest

{
int ITest.Process (string s) // Must use explicit implementation.
{
Contract.Requires (s != null);
return 0; // Dummy value to satisfy compiler.
}
}

Notice that we had to return a value when implementing ITest.Process to satisfy
the compiler. The code that returns 0 will not run, however. Instead, the binary
rewriter extracts just the conditions from that method and weaves them into the
real implementations of ITest.Process. This means that the contract class is never
actually instantiated (and any constructors that you write will not execute).

You can assign a temporary variable within the contract block to make it easier to
reference other members of the interface. For instance, if our ITest interface also
defined a Message property of type string, we could write the following in
ITest.Process:

int ITest.Process (string s)

{
ITest test = this;

Contracts on Interfaces and Abstract Methods | 545

www.it-ebooks.info

sjoeljuod

)
3
Q
(o]
o
Q
(]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

Contract.Requires (s != test.Message);

}
This is easier than:
Contract.Requires (s != ((ITest)this).Message);

(Simply using this.Message won't work because Message must be explicitly imple-
mented.) The process of defining contract classes for abstract classes is exactly the
same, except that the contract class should be marked abstract instead of sealed.

Dealing with Contract Failure

The binary rewriter lets you specify what happens when a contract condition fails,
via the /throwonfailure switch (or the Assert on Contract Failure checkbox in Vis-
ual Studio’s Contracts tab in Project Properties).

If you don’t specify /throwonfailure—or check Assert on Contract Failure—a dia-
log appears upon contract failure, allowing you to abort, debug or ignore the error.

There are a couple of nuances to be aware of:

o If the CLR is hosted (i.e., in SQL Server or Exchange),
the host’s escalation policy is triggered instead of a dialog
appearing.

» Otherwise, if the current process can't pop up a dialog
box to the user, Environment.FailFast is called.

The dialog is useful in debug builds for a couple of reasons:

o It makes it easy to diagnose and debug contract failures on the spot—without
having to re-run the program. This works regardless of whether Visual Studio
is configured to break on first-chance exceptions. And unlike with exceptions
in general, contract failure almost certainly means a bug in your code.

o It lets you know about contract failure—even if a caller higher up in the stack
“swallows” exceptions as follows:

try
{

// Call some method whose contract fails

}
catch { }

The code above is considered an antipattern in most scenarios
because it masks failures, including conditions that the author
never anticipated.

546 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

If you specify the /throwonfailure switch and uncheck Assert on Contract Failure
in Visual Studio—a ContractException is thrown upon failure. This is desirable
for:

o Release builds—where you would let the exception bubble up the stack and be
treated like any other unexpected exception (perhaps by having a top-level
exception handler log the error or invite the user to report it).

o Unit-testing environments— where the process of logging errors is automated.

ContractException cannot appear in a catch block because
this type is not public. The rationale is that there’s no reason
that youd want to specifically catch a ContractException—
youd want to catch it only as part of a general exception back-
stop.

The ContractFailed Event

When a contract fails the static Contract.ContractFailed event fires before any
further action is taken. If you handle this event, you can query the event arguments
object for details of the error. You can also call SetHandled to prevent a ContractEx
ception from being subsequently thrown (or a dialog appearing).

Handling this event is particularly useful when /throwonfailure is specified,
because it lets you log all contract failures—even if code higher in the call stack
swallows exceptions as we described just before. A great example is with automated
unit testing:

Contract.ContractFailed += (sender, args) =>

{
string failureMessage = args.FailureKind + ": " + args.Message;
// Log failureMessage with unit testing framework:
/...
args.SetUnwind();
¥

This handler logs all contract failures while allowing the normal ContractExcep
tion (or contract failure dialog) to run its course after the event handler has fin-
ished. Notice that we also call SetUnwind: this neutralizes the effect of any calls to
SetHandled from other event subscribers. In other words, it ensures that a Contrac
tException (or dialog) will always follow after all event handlers have run.

If you throw an exception from within this handler, any other event handlers will
still execute. The exception that you threw then populates the InnerException
property of the ContractException that’s eventually thrown.

Dealing with Contract Failure | 547

www.it-ebooks.info

0
o
3
-
=
]
(2]
-
("]

solysoubeiq

http://www.it-ebooks.info/

Exceptions Within Contract Conditions

If an exception is thrown within a contract condition itself, then that exception
propagates like any other—regardless of whether /throwonfailure is specified. The
following method throws a NullReferenceException if called with a null string:

string Test (string s)

{
Contract.Requires (s.Length > 0);

3
This precondition is essentially faulty. It should instead be:

Contract.Requires (!string.IsNullOrEmpty (s));

Selectively Enforcing Contracts

The binary rewriter offers two switches that strip away some or all contract check-
ing: /publicsurface and /level. You can control these from Visual Studio via the
Code Contracts tab of Project Properties. The /publicsurface switch tells the
rewriter to check contracts only on public members. The /level switch has the fol-
lowing options:

None (level 0)
Strips out all contract verification

ReleaseRequires (level 1)
Enables only calls to the generic version of Contract.Requires<TExcep
tion>

Preconditions (level 2)
Enables all preconditions (level 1 plus normal preconditions)

Pre and Post (level 3)
Enables level 2 checking plus postconditions

Full (level 4)
Enables level 3 checking plus object invariants and assertions (i.e., every-
thing)

You typically enable full contract checking in debug build configurations.

Contracts in Release Builds

When it comes to making release builds, there are two general philosophies:

o Favor safety and enable full contract checking

« Favor performance and disable all contract checking

548 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

If you're building a library for public consumption, though, the second approach
creates a problem. Imagine that you compile and distribute library L in release
mode with contract checking disabled. A client then builds project C in debug mode
that references library L. Assembly C can then call members of L incorrectly
without contract violations! In this situation, you actually want to enforce the parts
of Ls contract that ensure correct usage of L—in other words, the preconditions in Us
public members.

The simplest way to resolve this is to enable /publicsurface checking in L with a
level of Preconditions or ReleaseRequires. This ensures that the essential precondi-
tions are enforced for the benefit of consumers, while incurring the performance
cost of only those preconditions.

In extreme cases, you might not want to pay even this small performance price—in
which case you can take the more elaborate approach of call-site checking.

(all-Site Checking

Call-site checking moves precondition validation from called methods into calling
methods (call sites). This solves the problem just described—by enabling consumers
of library L to perform Ls precondition validation themselves in debug configura-
tions.

To enable call-site checking, you must first build a separate contracts reference
assembly—a supplementary assembly that contains just the preconditions for the
referenced assembly. To do this, you can either use the ccrefgen command-line tool,
or proceed in Visual Studio as follows:

1. In the release configuration of the referenced library (L), go to the Code Con-
tracts tab of Project Properties and disable runtime contract checking while
ticking “Build a Contract Reference Assembly”. This then generates a supple-
mentary contracts reference assembly (with the suffix .contracts.dll).

2. In the release configuration of the referencing assemblies, disable all contract
checking.

3. In the debug configuration of the referencing assemblies, tick “Call-site Requires
Checking?”

The third step is equivalent to calling ccrewrite with the /callsiterequires switch.
It reads the preconditions from the contracts reference assembly and weaves them
into the calling sites in the referencing assembly.

Static Contract Checking

Code contracts make static contract checking possible, whereby a tool analyzes con-
tract conditions to find potential bugs in your program before it’s run. For example,
statically checking the following code generates a warning:

Static Contract Checking | 549

www.it-ebooks.info

sjoeljuod

)
3
o
0
o
Q
(]

=)
1]
Q
3
o
0
e
0
73

http://www.it-ebooks.info/

static void Main()

{
string message = null;
WriteLine (message); // Static checking tool will generate warning
}
static voild WriteLine (string s)
{
Contract.Requires (s != null);
Console.WriteLine (s);
}

You can run Microsoft’s static contracts tool from the command line via cccheck or
by enabling static contract checking in Visual Studio’s project properties dialog.

For static checking to work, you may need to add preconditions and postconditions
to your methods. To give a simple example, the following will generate a warning:

static voild WriteLine (string s, bool b)

{
if (b)
WriteLine (s); // Warning: requires unproven

}

static voild WriteLine (string s)

{
Contract.Requires (s != null);
Console.WriteLine (s);

}

Because we're calling a method that requires the parameter to be non-null, we must
prove that the argument is non-null. To do this, we can add a precondition to the
first method as follows:

static voild WritelLine (string s, bool b)

{
Contract.Requires (s != null);
if (b)
WriteLine (s); // OK
}

The ContractVerification Attribute

Static checking is easiest if instigated from the beginning of a project’s lifecycle—
otherwise you're likely to get overwhelmed with warnings.

If you do want to apply static contract checking to an existing codebase, it can help
by initially applying it just to selective parts of a program—via the ContractVerifi
cation attribute (in System.Diagnostics.Contracts). This attribute can be applied
at the assembly, type, and member level. If you apply it at multiple levels, the more
granular wins. Therefore, to enable static contract verification just for a particular
class, start by disabling verification at the assembly-level as follows:

[assembly: ContractVerification (false)]

550 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

and then enable it just for the desired class:

[ContractVerification (true)]
class Foo { ... }

Baselines

Another tactic in applying static contract verification to an existing codebase is to
run the static checker with the Baseline option checked in Visual Studio. All the
warnings that are produced are then written to a specified XML file. Next time you
run static verification, all the warnings in that that file are ignored—so you see only
messages generated as a result of new code that you've written.

The SuppressMessage Attribute

You can also tell the static checker to ignore certain types of warnings via the Sup
pressMessage attribute (in System.Diagnostics.CodeAnalysis):

[SuppressMessage ("Microsoft.Contracts", warningFamily)]
where warningFamily is one of the following values:

Requires Ensures Invariant NonNull DivByZero MinValueNegation
ArrayCreation ArrayLowerBound ArrayUpperBound

You can apply this attribute at an assembly or type level.

Debugger Integration

Sometimes it’s useful for an application to interact with a debugger if one is avail-
able. During development, the debugger is usually your IDE (e.g., Visual Studio); in
deployment, the debugger is more likely to be:

« DbgCLR
 One of the lower-level debugging tools, such as WinDbg, Cordbg, or Mdbg

DbgCLR is Visual Studio stripped of everything but the debugger, and it is a free
download with the .NET Framework SDK. It’s the easiest debugging option when
an IDE is not available, although it requires that you download the whole SDK.

Attaching and Breaking

The static Debugger class in System.Diagnostics provides basic functions for inter-
acting with a debugger—namely Break, Launch, Log, and IsAttached.

A debugger must first attach to an application in order to debug it. If you start an
application from within an IDE, this happens automatically, unless you request
otherwise (by choosing “Start without debugging”). Sometimes, though, it’s incon-
venient or impossible to start an application in debug mode within the IDE. An
example is a Windows Service application or (ironically) a Visual Studio designer.
One solution is to start the application normally, and then choose Debug Process in

Debugger Integration | 551

www.it-ebooks.info

sjoeljuod

)
3
Q
(o]
o
Q
(1]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

your IDE. This doesn’t allow you to set breakpoints early in the program’s execution,
however.

The workaround is to call Debugger.Break from within your application. This
method launches a debugger, attaches to it, and suspends execution at that point.
(Launch does the same, but without suspending execution.) Once attached, you can
log messages directly to the debugger’s output window with the Log method. You
can tell whether you're attached to a debugger with the IsAttached property.

Debugger Attributes

The DebuggerStepThrough and DebuggerHidden attributes provide suggestions to
the debugger on how to handle single-stepping for a particular method, constructor,
or class.

DebuggerStepThrough requests that the debugger step through a function without
any user interaction. This attribute is useful in automatically generated methods and
in proxy methods that forward the real work to a method somewhere else. In the
latter case, the debugger will still show the proxy method in the call stack if a break-
point is set within the “real” method—unless you also add the DebuggerHidden
attribute. These two attributes can be combined on proxies to help the user focus on
debugging the application logic rather than the plumbing:

[DebuggerStepThrough, DebuggerHidden]
void DoWorkProxy()

{
// setup...
DoWork();
// teardown...

3

void DoWork() {...} // Real method...

Processes and Process Threads

We described in the last section of Chapter 6 how to launch a new process with
Process.Start. The Process class also allows you to query and interact with other
processes running on the same, or another, computer. Note that the Process class is
unavailable to Windows Store apps.

Examining Running Processes

The Process.GetProcessXXX methods retrieve a specific process by name or pro-
cess ID, or all processes running on the current or nominated computer. This
includes both managed and unmanaged processes. Each Process instance has a
wealth of properties mapping statistics such as name, ID, priority, memory and pro-
cessor utilization, window handles, and so on. The following sample enumerates all
the running processes on the current computer:

552 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

foreach (Process p in Process.GetProcesses())

using (p)
{
Console.WriteLine (p.ProcessName);
Console.WriteLine (" PID: "+ p.Id);
Console.WriteLine (" Memory: " + p.WorkingSet64);
Console.WriteLine (" Threads: " + p.Threads.Count);
}

Process.GetCurrentProcess returns the current process. If you've created addi-
tional application domains, all will share the same process.

You can terminate a process by calling its Ki1l method.

Examining Threads in a Process

You can also enumerate over the threads of other processes, with the Pro
cess.Threads property. The objects that you get, however, are not System.Thread
ing.Thread objects, but rather ProcessThread objects and are intended for admin-
istrative rather than synchronization tasks. A ProcessThread object provides diag-
nostic information about the underlying thread and allows you to control some
aspects of it, such as its priority and processor affinity:

public void EnumerateThreads (Process p)

{
foreach (ProcessThread pt in p.Threads)
{
Console.WriteLine (pt.Id);
Console.WriteLine (" State: " + pt.ThreadState);
Console.WriteLine (" Priority: " + pt.PriorityLevel);
Console.WriteLine (" Started: " + pt.StartTime);
Console.WriteLine (" CPU time: " + pt.TotalProcessorTime);
}
}

StackTrace and StackFrame

The StackTrace and StackFrame classes provide a read-only view of an execution
call stack and are part of the standard desktop .NET Framework. You can obtain
stack traces for the current thread, another thread in the same process, or an Excep
tion object. Such information is useful mostly for diagnostic purposes, though it
can also be used in programming (hacks). StackTrace represents a complete call
stack; StackFrame represents a single method call within that stack.

If you instantiate a StackTrace object with no arguments—or with a bool argument
—you get a snapshot of the current thread’s call stack. The bool argument, if true,
instructs StackTrace to read the assembly .pdb (project debug) files if they are
present, giving you access to filename, line number, and column offset data. Project
debug files are generated when you compile with the /debug switch. (Visual Studio
compiles with this switch unless you request otherwise via Advanced Build Settings.)

StackTrace and StackFrame | 553

www.it-ebooks.info

sjoeljuod

)
3
o
(o]
o
Q
(]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

Once you've obtained a StackTrace, you can examine a particular frame by calling
GetFrame—or obtain the whole lot with GetFrames:

B

static void Main() { A (); }
static void A() {B(O;}
static void B() {CQO; 1}
static void C()

{

StackTrace s = new StackTrace (true);

B

Console.WriteLine ("Total frames:

Console.WriteLine ("Current method:
Console.WriteLine ("Calling method: "
Console.WriteLine ("Entry method: "

s.FrameCount);
s.GetFrame(0).GetMethod().Name);
s.GetFrame(1).GetMethod().Name);
s.GetFrame
(s.FrameCount-1).GetMethod().Name);

Console.WriteLine ("Call Stack:");
foreach (StackFrame f in s.GetFrames())
Console.WriteLine (

" File: " + f.GetFileName() +
" Line: " + f.GetFileLineNumber() +
" Col: " + f.GetFileColumnNumber() +

" Offset: " + f.GetILOffset() +
" Method: " + f.GetMethod().Name);
}

Here’s the output:

Total frames: 4

Current method: C

Calling method: B

Entry method: Main

Call stack:
File: C:\Test\Program.cs Line: 15 Col: 4 Offset: 7 Method: C
File: C:\Test\Program.cs Line: 12 Col: 22 Offset: 6 Method: B
File: C:\Test\Program.cs Line: 11 Col: 22 Offset: 6 Method: A
File: C:\Test\Program.cs Line: 10 Col: 25 Offset: 6 Method: Main

The IL offset indicates the offset of the instruction that will
execute next —not the instruction that’s currently executing.
Peculiarly, though, the line and column number (if a .pdb file
is present) usually indicate the actual execution point.

This happens because the CLR does its best to infer the actual
execution point when calculating the line and column from
the IL offset. The compiler emits IL in such a way as to make
this possible—including inserting nop (no-operation) instruc-
tions into the IL stream.

Compiling with optimizations enabled, however, disables the
insertion of nop instructions, and so the stack trace may show
the line and column number of the next statement to execute.
Obtaining a useful stack trace is further hampered by the fact
that optimization can pull other tricks, including collapsing
entire methods.

554 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

A shortcut to obtaining the essential information for an entire StackTrace is to call
ToString on it. Here’s what the result looks like:

at DebugTest.Program.C() in C:\Test\Program.cs:line 16
at DebugTest.Program.B() in C:\Test\Program.cs:line 12
at DebugTest.Program.A() in C:\Test\Program.cs:line 11
at DebugTest.Program.Main() in C:\Test\Program.cs:line 10

To obtain the stack trace for another thread, pass the other Thread into Stack
Trace’s constructor. This can be a useful strategy for profiling a program, although
you must suspend the thread while obtaining the stack trace. This is actually quite
tricky to do without risking a deadlock—we illustrate a reliable approach in “Sus-
pend and Resume” on page 939 in Chapter 22.

You can also get the stack trace for an Exception object (showing what led up to the
exception being thrown) by passing the Exception into StackTrace’s constructor.

Exception already has a StackTrace property; however, this
property returns a simple string—not a StackTrace object. A
StackTrace object is far more useful in logging exceptions
that occur after deployment—where no .pdb files are available
—because you can log the IL offset in lieu of line and column
numbers. With an IL offset and ildasm, you can pinpoint
where within a method an error occurred.

Windows Event Logs

The Win32 platform provides a centralized logging mechanism, in the form of the
Windows event logs.

The Debug and Trace classes we used earlier write to a Windows event log if you
register an EventLogTracelListener. With the EventLog class, however, you can
write directly to a Windows event log without using Trace or Debug. You can also
use this class to read and monitor event data.

Writing to the Windows event log makes sense in a Windows
Service application, because if something goes wrong, you
can’t pop up a user interface directing the user to some special
file where diagnostic information has been written. Also,
because it's common practice for services to write to the Win-
dows event log, this is the first place an administrator is likely
to look if your service falls over.

The EventLog class is not available to Windows Store apps.
There are three standard Windows event logs, identified by these names:
o Application

o System

 Security

Windows EventLogs | 555

www.it-ebooks.info

0
o
3
-
S
o
0
[od
("]

soljysoubelq

http://www.it-ebooks.info/

The Application log is where most applications normally write.

Writing to the Event Log

To write to a Windows event log:

1. Choose one of the three event logs (usually Application).
2. Decide on a source name and create it if necessary.

3. Call EventLog.WriteEntry with the log name, source name, and message data.

The source name is an easily identifiable name for your application. You must regis-
ter a source name before you use it—the CreateEventSource method performs this
function. You can then call WriteEntry:

const string SourceName = "MyCompany.WidgetServer";

// CreateEventSource requires administrative permissions, so this would
// typically be done in application setup.
if (!EventLog.SourceExists (SourceName))

EventLog.CreateEventSource (SourceName, "Application");

EventLog.WriteEntry (SourceName,
"Service started; using configuration file=...",
EventLogEntryType.Information);

EventLogEntryType can be Information, Warning, Error, SuccessAudit, or Failur
eAudit. Each displays with a different icon in the Windows event viewer. You can
also optionally specify a category and event ID (each is a number of your own
choosing) and provide optional binary data.

CreateEventSource also allows you to specify a machine name: this is to write to
another computer’s event log, if you have sufficient permissions.

Reading the Event Log

To read an event log, instantiate the EventLog class with the name of the log you
wish to access and optionally the name of another computer on which the log
resides. Each log entry can then be read via the Entries collection property:

EventLog log = new EventLog ("Application");
Console.WriteLine ("Total entries: " + log.Entries.Count);

EventLogEntry last = log.Entries [log.Entries.Count - 1];
Console.WriteLine ("Index: " + last.Index);
Console.WriteLine ("Source: " + last.Source);
Console.WriteLine ("Type: last.EntryType);
Console.WriteLine ("Time: last.TimeWritten);
Console.WriteLine ("Message: last.Message);

+
+
+

"+

You can enumerate over all logs for the current (or another) computer with the
static method EventLog.GetEventLogs (this requires administrative privileges):

556 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

foreach (EventLog log in EventlLog.GetEventLogs())
Console.WriteLine (log.LogDisplayName);

This normally prints, at a minimum, Application, Security, and System.

Monitoring the Event Log

You can be alerted whenever an entry is written to a Windows event log, via the
EntryWritten event. This works for event logs on the local computer, and it fires
regardless of what application logged the event.

To enable log monitoring:

1. Instantiate an EventLog and set its EnableRaisingEvents property to true.

2. Handle the EntryWritten event.

For example:

static void Main()

{

using (var log = new EventLog ("Application"))
{
log.EnableRaisingEvents = true;
log.EntryWritten += DisplayEntry;
Console.ReadLine();
}
}

static void DisplayEntry (object sender, EntryWrittenEventArgs e)

{
EventLogEntry entry = e.Entry;
Console.WriteLine (entry.Message);

}

Performance Counters

The logging mechanisms we've discussed to date are useful for capturing informa-
tion for future analysis. However, to gain insight into the current state of an applica-
tion (or the system as a whole), a more real-time approach is needed. The Win32
solution to this need is the performance-monitoring infrastructure, which consists
of a set of performance counters that the system and applications expose, and the
Microsoft Management Console (MMC) snap-ins used to monitor these counters in
real time.

Performance counters are grouped into categories such as “System,” “Processor,”
“NET CLR Memory, and so on. These categories are sometimes also referred to as
“performance objects” by the GUI tools. Each category groups a related set of per-
formance counters that monitor one aspect of the system or application. Examples
of performance counters in the “NET CLR Memory” category include “% Time in
GC,” “# Bytes in All Heaps,” and “Allocated bytes/sec”

Performance Counters | 557

www.it-ebooks.info

sjoejjuod

)
3
Qo
(o]
o
Q
(]

=)
1]
Q
3
o
0
=
0
73

http://www.it-ebooks.info/

Each category may optionally have one or more instances that can be monitored
independently. For example, this is useful in the “% Processor Time” performance
counter in the “Processor” category, which allows one to monitor CPU utilization.
On a multiprocessor machine, this counter supports an instance for each CPU,
allowing one to monitor the utilization of each CPU independently.

The following sections illustrate how to perform commonly needed tasks, such as
determining which counters are exposed, monitoring a counter, and creating your
own counters to expose application status information.

Reading performance counters or categories may require
administrator privileges on the local or target computer,
depending on what is accessed.

Enumerating the Available Counters

The following example enumerates over all of the available performance counters
on the computer. For those that have instances, it enumerates the counters for each
instance:

PerformanceCounterCategory[] cats =
PerformanceCounterCategory.GetCategories();

foreach (PerformanceCounterCategory cat in cats)

{

Console.WriteLine ("Category:

+ cat.CategoryName);

string[] instances = cat.GetInstanceNames();
if (instances.Length == 0)
{
foreach (PerformanceCounter ctr in cat.GetCounters())
Console.WriteLine (" Counter: " + ctr.CounterName);

}

else // Dump counters with instances

foreach (string instance in instances)
{
Console.WriteLine (" Instance:
if (cat.InstanceExists (instance))
foreach (PerformanceCounter ctr in cat.GetCounters (instance))
Console.WriteLine (" Counter: " + ctr.CounterName);

+ instance);

The result is more than 10,000 lines long! It also takes a while
to execute because PerformanceCounterCategory.Instan

K ceExists has an inefficient implementation. In a real system,
youd want to retrieve the more detailed information only on
demand.

The next example uses a LINQ query to retrieve just .NET performance counters,
writing the result to an XML file:

558 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

var x =
new XElement ("counters",
from PerformanceCounterCategory cat in
PerformanceCounterCategory.GetCategories()
where cat.CategoryName.StartsWith (".NET")
let instances = cat.GetInstanceNames()
select new XElement ("category",
new XAttribute ("name", cat.CategoryName),
instances.Length ==
?
from c in cat.GetCounters()
select new XElement ("counter",
new XAttribute ("name", c.CounterName))

from 1 in instances
select new XElement ("instance", new XAttribute ("name", 1),

!cat.InstanceExists (1)
?

null

from c in cat.GetCounters (i)
select new XElement ("counter",
new XAttribute ("name", c.CounterName))

)
)5

x.Save ("counters.xml");

Reading Performance Counter Data

To retrieve the value of a performance counter, instantiate a PerformanceCounter
object and then call the NextValue or NextSample method. NextValue returns a
simple float value; NextSample returns a CounterSample object that exposes a
more advanced set of properties, such as CounterFrequency, TimeStamp, BaseValue,
and Rawvalue.

PerformanceCounter’s constructor takes a category name, counter name, and
optional instance. So, to display the current processor utilization for all CPUs, you
would do the following:

using (PerformanceCounter pc = new PerformanceCounter ("Processor",
"% Processor Time",
"_Total"))
Console.WriteLine (pc.NextValue());

Or to display the “real” (i.e., private) memory consumption of the current process:

string procName = Process.GetCurrentProcess().ProcessName;
using (PerformanceCounter pc = new PerformanceCounter ("Process",
"Private Bytes",
procName))
Console.WriteLine (pc.NextValue());

Performance Counters | 559

www.it-ebooks.info

sjoeljuod

)
3
o
(o]
o
Q
(]

=)
1]
Q
3
[o

0
=
0
73

http://www.it-ebooks.info/

PerformanceCounter doesn't expose a ValueChanged event, so if you want to moni-
tor for changes, you must poll. In the next example, we poll every 200 ms—until
signaled to quit by an EventWaitHandle:

// need to import System.Threading as well as System.Diagnostics

static vold Monitor (string category, string counter, string instance,
EventWaitHandle stopper)
{
if (!PerformanceCounterCategory.Exists (category))
throw new InvalidOperationException ("Category does not exist");

if (!PerformanceCounterCategory.CounterExists (counter, category))
throw new InvalidOperationException ("Counter does not exist");
if (instance == null) instance = "";
if (instance != "" &&
!PerformanceCounterCategory.InstanceExists (instance, category))
throw new InvalidOperationException ("Instance does not exist");

// "" == no instance (not null!)

float lastvValue = of;
using (PerformanceCounter pc = new PerformanceCounter (category,
counter, instance))
while (!stopper.WaitOne (200, false))

{
float value = pc.NextValue();
if (value != lastValue) // Only write out the value
{ // if it has changed.
Console.WriteLine (value);
lastValue = value;
}
}

}

Here’s how we can use this method to simultaneously monitor processor and hard-
disk activity:

static void Main()

{

EventWaitHandle stopper = new ManualResetEvent (false);

new Thread (() =>
Monitor ("Processor", "% Processor Time", "_Total", stopper)
).Start();

new Thread (() =>
Monitor ("LogicalDisk", "% Idle Time", "C:", stopper)
).Start();

Console.WriteLine ("Monitoring - press any key to quit");
Console.ReadKey();
stopper.Set();

560 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

Creating Counters and Writing Performance Data

Before writing performance counter data, you need to create a performance cate-
gory and counter. You must create the performance category along with all the
counters that belong to it in one step, as follows:

string category = "Nutshell Monitoring";

// We'll create two counters in this category:
string eatenPerMin = "Macadamias eaten so far";
string tooHard = "Macadamias deemed too hard";

if (!PerformanceCounterCategory.Exists (category))

{

CounterCreationDataCollection cd = new CounterCreationDataCollection();

cd.Add (new CounterCreationData (eatenPerMin,
"Number of macadamias consumed, including shelling time",
PerformanceCounterType.NumberOfItems32));

cd.Add (new CounterCreationData (tooHard,
"Number of macadamias that will not crack, despite much effort",
PerformanceCounterType.NumberOfItems32));

0
o
3
-
S
o
0
-
("]

apo)D pue
solysoubeiq

PerformanceCounterCategory.Create (category, "Test Category",
PerformanceCounterCategoryType.SingleInstance, cd);

}

The new counters then show up in the Windows performance-monitoring tool
when you choose Add Counters, as shown in Figure 13-1.

Available counters Added counters

Select counters from computer:

<Local computer> v Browse...

Netlogon v
Nutshell Monitoring -~
Macadamias deemed too hard

Macadamias eaten so far

Counter Parent Insta... Computer

m

Objects v
Offline Files v
Paninn File v T

Instances of selected object:

Search

[Show description Help oK l Cancel

Description:

Number of macadamias that will not crack, despite much effort ~

Figure 13-1. Custom performance counter

Performance Counters | 561

www.it-ebooks.info

http://www.it-ebooks.info/

If you later want to define more counters in the same category, you must first delete
the old category by calling Per formanceCounterCategory.Delete.

Creating and deleting performance counters requires admin-
istrative privileges. For this reason, it’s usually done as part of
the application setup.

Once a counter is created, you can update its value by instantiating a Performance
Counter, setting ReadOnly to false, and setting RawValue. You can also use the
Increment and IncrementBy methods to update the existing value:

string category = "Nutshell Monitoring";
string eatenPerMin = "Macadamias eaten so far";

using (PerformanceCounter pc = new PerformanceCounter (category,
eatenPerMin, ""))

{

pc.ReadOnly = false;

pc.RawValue = 1000;

pc.Increment();

pc.IncrementBy (10);

Console.WriteLine (pc.NextValue()); // 1011
}

The Stopwatch Class

The Stopwatch class provides a convenient mechanism for measuring execution
times. Stopwatch uses the highest-resolution mechanism that the operating system
and hardware provide, which is typically less than a microsecond. (In contrast, Date
Time.Now and Environment.TickCount have a resolution of about 15ms).

To use Stopwatch, call StartNew—this instantiates a Stopwatch and starts it ticking.
(Alternatively, you can instantiate it manually and then call Start.) The Elapsed
property returns the elapsed interval as a TimeSpan:

Stopwatch s = Stopwatch.StartNew();
System.IO.File.WriteAllText ("test.txt", new string ('*', 30000000));
Console.WriteLine (s.Elapsed); // 00:00:01.4322661

Stopwatch also exposes an ElapsedTicks property, which returns the number of
elapsed “ticks” as a long. To convert from ticks to seconds, divide by StopWatch.Fre
quency. Theres also an ElapsedMilliseconds property, which is often the most
convenient.

Calling Stop freezes Elapsed and ElapsedTicks. There’s no background activity
incurred by a “running” Stopwatch, so calling Stop is optional.

562 | Chapter 13: Diagnostics and Code Contracts

www.it-ebooks.info

http://www.it-ebooks.info/

14

Concurrency and Asynchrony

Most applications need to deal with more than one thing happening at a time (con-
currency). In this chapter, we start with the essential prerequisites, namely the basics
of threading and tasks, and then describe the principles of asynchrony and C#’s
asynchronous functions in detail.

In Chapter 22, we'll revisit multithreading in greater detail, and in Chapter 23, we'll
cover the related topic of parallel programming.

Introduction

The most common concurrency scenarios are:

Writing a responsive user interface
In WPE mobile, and Windows Forms applications, you must run time-
consuming tasks concurrently with the code that runs your user interface
to maintain responsiveness.

Allowing requests to process simultaneously
On a server, client requests can arrive concurrently and so must be handled
in parallel to maintain scalability. If you use ASPNET, WCE or Web Serv-
ices, the .NET Framework does this for you automatically. However, you
still need to be aware of shared state (for instance, the effect of using static
variables for caching.)

Parallel programming
Code that performs intensive calculations can execute faster on multicore/
multiprocessor computers if the workload is divided between cores (Chap-
ter 23 is dedicated to this).

563

www.it-ebooks.info

http://www.it-ebooks.info/

Speculative execution
On multicore machines, you can sometimes improve performance by pre-
dicting something that might need to be done, and then doing it ahead of
time. LINQPad uses this technique to speed up the creation of new queries.
A variation is to run a number of different algorithms in parallel that all
solve the same task. Whichever one finishes first “wins”—this is effective
when you can’t know ahead of time which algorithm will execute fastest.

The general mechanism by which a program can simultaneously execute code is
called multithreading. Multithreading is supported by both the CLR and operating
system and is a fundamental concept in concurrency. Understanding the basics of
threading, and in particular, the effects of threads on shared state, is therefore essen-
tial.

Threading

A thread is an execution path that can proceed independently of others.

Each thread runs within an operating system process, which provides an isolated
environment in which a program runs. With a single-threaded program, just one
thread runs in the process’s isolated environment, and so that thread has exclusive
access to it. With a multithreaded program, multiple threads run in a single process,
sharing the same execution environment (memory, in particular). This, in part, is
why multithreading is useful: one thread can fetch data in the background, for
instance, while another thread displays the data as it arrives. This data is referred to
as shared state.

Creating a Thread

In Windows Store apps, you cannot create and start threads
directly; instead you must do this via tasks (see “Tasks” on
page 581). Tasks add a layer of indirection that complicates
learning, so the best way to start is with Console applications
(or LINQPad) and create threads directly until youre com-
fortable with how they work.

A client program (Console, WPE, Windows Store, or Windows Forms) starts in a
single thread that’s created automatically by the operating system (the “main”
thread). Here it lives out its life as a single-threaded application, unless you do
otherwise by creating more threads (directly or indirectly).!

You can create and start a new thread by instantiating a Thread object and calling its
Start method. The simplest constructor for Thread takes a ThreadStart delegate: a
parameterless method indicating where execution should begin. For example:

1 The CLR creates other threads behind the scenes for garbage collection and finalization.

564 | Chapter 14: Concurrency and Asynchrony

www.it-ebooks.info

http://www.it-ebooks.info/

// NB: All samples in this chapter assume the following namespace imports:
using System;
using System.Threading;

class ThreadTest

{
static void Main()
{
Thread t = new Thread (WriteY); // Kick off a new thread
t.Start(); // running WriteY()
// Simultaneously, do something on the main thread.
for (int 1 = 0; 1 < 1000; i++) Console.Write ("x");
}
static void WriteY()
{
for (int 1 = 0; 1 < 1000; i++) Console.Write ("y");
}
}

// Typical Output:

XXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
XXYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYXXXXXXXXXXXXXXXXXXXXXX

XXXXXRXXXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
YYYYYYYYYYYYYXXXXXXXXXXXXXXXXXRXKXXXXXXKXXKXX XXX KXXXX XXX

The main thread creates a new thread t on which it runs a method that repeatedly
prints the character y. Simultaneously, the main thread repeatedly prints the charac-
ter x, as shown in Figure 14-1. On a single-core computer, the operating system
must allocate “slices” of time to each thread (typically 20 ms in Windows) to simu-
late concurrency, resulting in repeated blocks of x and y. On a multicore or multi-
processor machine, the two threads can genuinely execute in parallel (subject to
competition by other active processes on the computer), although you still get
repeated blocks of x and y in this example because of subtleties in the mechanism by
which Console handles concurrent requests.

Main thread
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX o o o o XXXXXX
New thread Thread ends roolicat
. pplication

Time—» ends

Start() Thread ends

Worker YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY - - - YYYYYYYY

thread

Figure 14-1. Starting a new thread

Threading | 565

www.it-ebooks.info

>
0
<
3
[2]
=3
=
o
3
<

pue
Kdouaiinduod

http://www.it-ebooks.info/

A thread is said to be preempted at the points where its execu-
tion is interspersed with the execution of code on another
thread. The term often crops up in explaining why something
has gone wrong!

Once started, a thread’s IsAlive property returns true, until the point where the
thread ends. A thread ends when the delegate passed to the Thread’s constructor
finishes executing. Once ended, a thread cannot restart.

Each thread has a Name property that you can set for the benefit of debugging. This
is particularly useful in Visual Studio, since the thread’s name is displayed in the
Threads Window and Debug Location toolbar. You can set a thread’s name just
once; attempts to change it later will throw an exception.

The static Thread.CurrentThread property gives you the currently executing
thread:

Console.WriteLine (Thread.CurrentThread.Name);

Join and Sleep
You can wait for another thread to end by calling its Join method:

static void Main()

{
Thread t = new Thread (Go);

t.Start();
t.Join();
Console.WriteLine ("Thread t has ended!");

}

static void Go() { for (int i = 0; 1 < 1000; i++) Console.Write ("y"); }

« »

This prints “y” 1,000 times, followed by “Thread t has ended!” immediately after-
ward. You can include a timeout when calling Join, either in milliseconds or as a
TimeSpan. It then returns true if the thread ended or false if it timed out.

Thread.Sleep pauses the current thread for a specified period:

Thread.Sleep (TimeSpan.FromHours (1)); // Sleep for 1 hour
Thread.Sleep (500); // Sleep for 500 milliseconds

Thread.Sleep(0) relinquishes the thread’s current time slice immediately, voluntar-
ily handing over the CPU to other threads. Thread.Yield() does the same thing—
except that it relinquishes only to threads running on the same processor.

Sleep(0) or Yield is occasionally useful in production code
for advanced performance tweaks. It’s also an excellent diag-
nostic tool for helping to uncover thread safety issues: if
inserting Thread.Yield() anywhere in your code breaks the
program, you almost certainly have a bug.

While waiting on a Sleep or Join, a thread is blocked.

566 | Chapter 14: Concurrency and Asynchrony

www.it-ebooks.info

http://www.it-ebooks.info/

Blocking

A thread is deemed blocked when its execution is paused for some reason, such as
when Sleeping or waiting for another to end via Join. A blocked thread immedi-
ately yields its processor time slice, and from then on consumes no processor time
until its blocking condition is satisfied. You can test for a thread being blocked via
its ThreadState property:

bool blocked = (someThread.ThreadState & ThreadState.WaitSleepJoin) != 0;

ThreadState is a flags enum, combining three “layers” of data
in a bitwise fashion. Most values, however, are redundant,
unused, or deprecated. The following extension method strips
a ThreadState to one of four useful values: Unstarted, Run
ning, WaitSleepJoin, and Stopped:

public static ThreadState Simplify (this ThreadState ts)

{
return ts & (ThreadState.Unstarted |
ThreadState.WaitSleepJoin |
ThreadState.Stopped);

}
The ThreadState property is useful for diagnostic purposes,
but unsuitable for synchronization because a thread’s state
may change in between testing ThreadState and acting on
that information.

When a thread blocks or unblocks, the operating system performs a context switch.
This incurs a small overhead, typically one or two microseconds.

1/0-bound versus compute-bound

An operation that spends most of its time waiting for something to happen is called
I/O-bound—an example is downloading a web page or calling Console.ReadLine.
(I/O-bound operations typically involve input or output, but this is not a hard
requirement: Thread.Sleep is also deemed I/O-bound.) In contrast, an operation
that spends most of its time performing CPU-intensive work is called compute-

bound.

Blocking versus spinning

An I/0-bound operation works in one of two ways: it either waits synchronously on
the current thread until the operation is complete (such as Console.ReadlLine,
Thread.Sleep, or Thread.Join), or operates asynchronously, firing a callback when
the operation finishes some time later (more on this later).

I/O-bound operations that wait synchronously spend most of their time blocking a
thread. They may also “spin” in a loop periodically:

while (DateTime.Now < nextStartTime)
Thread.Sleep (100);

Threading | 567

www.it-ebooks.info

AuoayduAsy

pue

0
o
3
2]
c
=
=
o
3
3]
<

http://www.it-ebooks.info/

Leaving aside that there are better ways to do this (such as timers or signaling con-
structs), another option is that a thread may spin continuously:

while (DateTime.Now < nextStartTime);

In general, this is very wasteful on processor time: as far as the CLR and operating
system are concerned, the thread is performing an important calculation and so gets
allocated resources accordingly. In effect, we've turned what should be an I/O-
bound operation into a compute-bound operation.

There are a couple of nuances with regard spinning versus
blocking. First, spinning very briefly can be effective when you
expect a condition to be satisfied soon (perhaps within a few
microseconds) because it avoids the overhead and latency of a
context switch. The .NET Framework provides special meth-
ods and classes to assist—see “SpinLock and SpinWait” in
http://albahari.com/threading/.

Second, blocking does not incur a zero cost. This is because
each thread ties up around 1MB of memory for as long as it
lives and causes an ongoing administrative overhead for the
CLR and operating system. For this reason, blocking can be
troublesome in the context of heavily I/O-bound programs
that need to handle hundreds or thousands of concurrent
operations. Instead, such programs need to use a callback-
based approach, rescinding their thread entirely while waiting.
This is (in part) the purpose of the asynchronous patterns that
we'll discuss later.

Local Versus Shared State

The CLR assigns each thread its own memory stack so that local variables are kept
separate. In the next example, we define a method with a local variable, then call the
method simultaneously on the main thread and a newly created thread:

static void Main()

{
new Thread (Go).Start(); // Call Go() on a new thread
Go(); // Call Go() on the main thread
}
static void Go()
{
// Declare and use a local variable - 'cycles'

for (int cycles = 0; cycles < 5; cycles++) Console.Write ('?');

}

A separate copy of the cycles variable is created on each thread’s memory stack,
and so the output is, predictably, 10 question marks.

Threads share data if they have a common reference to the same object instance:

class ThreadTest

{

568 | Chapter 14: Concurrency and Asynchrony

www.it-ebooks.info

http://albahari.com/threading/
http://www.it-ebooks.info/

bool _done;

static void Main()

{
ThreadTest tt = new ThreadTest(); // Create a common instance
new Thread (tt.Go).Start();

tt.Go();
}
void Go() // Note that this is an instance method
{
if (!_done) { _done = true; Console.WriteLine ("Done"); }
}

}

Because both threads call Go() on the same ThreadTest instance, they share the
_done field. This results in “Done” being printed once instead of twice.

Local variables captured by a lambda expression or anonymous delegate are con-
verted by the compiler into fields, and so can also be shared:

class ThreadTest

{
static void Main()
{
bool done = false;
ThreadStart action = () => 5 9
{ < 3
S g 0
if (!done) { done = true; Console.WriteLine ("Done"); } 3,3_5
. = P
’ o
new Thread (action).Start(); = E
action();
}
}

Static fields offer another way to share data between threads:

class ThreadTest
{
static bool _done; // Static fields are shared between all threads
// in the same application domain.
static void Main()

{
new Thread (Go).Start();
Go();
}
static void Go()
{
if (!_done) { _done = true; Console.WriteLine ("Done"); }
}

}

All three examples illustrate another key concept: that of thread safety (or rather,
lack of it!) The output is actually indeterminate: it's possible (though unlikely) that

Threading | 569

www.it-ebooks.info

http://www.it-ebooks.info/

“Done” could be printed twice. If, however, we swap the order of statements in the
Go method, the odds of “Done” being printed twice go up dramatically:

static voild Go()

{

if (!_done) { Console.WriteLine ("Done"); _done = true; }

}

The problem is that one thread can be evaluating the if statement right as the other
thread is executing the WriteLine statement—before it’s had a chance to set done to
true.

Our example illustrates one of many ways that shared writable
state can introduce the kind of intermittent errors for which
multithreading is notorious. We'll see next how to fix our pro-
gram with locking; however it’s better to avoid shared state
altogether where possible. We'll see later how asynchronous
programming patterns help with this.

Locking and Thread Safety

Locking and thread safety are large topics. For a full discus-
sion, see “Exclusive Locking” on page 904 and “Locking and
Thread Safety” on page 570 in Chapter 22.

We can fix the previous example by obtaining an exclusive lock while reading and
writing to the shared field. C# provides the lock statement for just this purpose:

class ThreadSafe

{
static bool _done;
static readonly object _locker = new object();

static void Main()

{
new Thread (Go).Start();

Go();
}

static void Go()

{
lock (_locker)

if (!_done) { Console.WriteLine ("Done"); _done = true; }
}
}
}

When two threads simultaneously contend a lock (which can be upon any
reference-type object, in this case, _locker), one thread waits, or blocks, until the
lock becomes available. In this case, it ensures only one thread can enter its code
block at a time, and “Done” will be printed just once. Code that’s protected in such a
manner—from indeterminacy in a multithreaded context—is called thread-safe.

570 | Chapter 14: Concurrency and Asynchrony

www.it-ebooks.info

http://www.it-ebooks.info/

Even the act of autoincrementing a variable is not thread-safe:
the expression x++ executes on the underlying processor as
distinct read-increment-write operations. So, if two threads
execute x++ at once outside a lock, the variable may end up
getting incremented once rather than twice (or worse, x could
be torn, ending up with a bitwise-mixture of old and new con-
tent, under certain conditions).

Locking is not a silver bullet for thread safety—it’s easy to forget to lock around
accessing a field, and locking can create problems of its own (such as deadlocking).

A good example of when you might use locking is around accessing a shared in-
memory cache for frequently accessed database objects in an ASPNET application.
This kind of application is simple to get right, and there’s no chance of deadlocking.
We give an example in “Thread Safety in Application Servers” on page 916 in Chap-
ter 22.

Passing Data to a Thread

Sometimes you’ll want to pass arguments to the thread’s startup method. The easiest
way to do this is with a lambda expression that calls the method with the desired
arguments:

static void Main()

{
Thread t = new Thread (() => Print ("Hello from t!"));

t.Start();
}

static voild Print (string message) { Console.WriteLine (message); }

With this approach, you can pass in any number of arguments to the method. You
can even wrap the entire implementation in a multistatement lambda:

new Thread (() =>
{

Console.WriteLine ("I'm running on another thread!");
Console.WriteLine ("This is so easy!");
}).start();

Lambda expressions didn’t exist prior to C# 3.0. So you might also come across an
old-school technique, which is to pass an argument into Thread’s Start method:

static void Main()

{
Thread t = new Thread (Print);
t.Start ("Hello from t!");

}

static void Print (object messageObj)

{
string message = (string) messageObj; // We need to cast here
Console.WriteLine (message);

}

Threading | 571

www.it-ebooks.info

0
> 0o
Sea

)

B5c
-‘9-3
°© 35
] o
< <

http://www.it-ebooks.info/

This works because Thread’s constructor is overloaded to accept either of two dele-
gates:

public delegate void ThreadStart();
public delegate void ParameterizedThreadStart (object obj);

The limitation of ParameterizedThreadStart is that it accepts only one argument.
And because it’s of type object, it usually needs to be cast.

Lambda expressions and captured variables

As we saw, a lambda expression is the most convenient and powerful way to pass
data to a thread. However, you must be careful about accidentally modifying cap-
tured variables after starting the thread. For instance, consider the following:

for (int 1 = 0; 1 < 10; 1++)
new Thread (() => Console.Write (i)).Start();

The output is nondeterministic! Here’s a typical result:
0223557799

The problem is that the i variable refers to the same memory location throughout
the loop’s lifetime. Therefore, each thread calls Console.Write on a variable whose
value may change as it is running! The solution is to use a temporary variable as
follows:

for (int 1 = 0; 1 < 10; 1++)
{

int temp = i;

new Thread (() => Console.Write (temp)).Start();
}

Each of the digits 0 to 9 is then written exactly once. (The ordering is still undefined
because threads may start at indeterminate times.)

This is analogous to the problem we described in “Captured
Variables” on page 350 in Chapter 8. The problem is just as
much about C#’s rules for capturing variables in for loops as it
is about multithreading.

This problem also applies to foreach loops prior to C# 5.

Variable temp is now local to each loop iteration. Therefore, each thread captures a
different memory location and there’s no problem. We can illustrate the problem in
the earlier code more simply with the following example:

string text = "t1";
Thread t1 = new Thread (() => Console.WritelLine (text));

text = "t2";
Thread t2 = new Thread (() => Console.WritelLine (text));

t1.Start(); t2.Start();

572 | Chapter 14: Concurrency and Asynchrony

www.it-ebooks.info

http://www.it-ebooks.info/

Because both lambda expressions capture the same text variable, t2 is printed twice.

Exception Handling

Any try/catch/finally blocks in effect when a thread is created are of no relevance
to the thread when it starts executing. Consider the following program:

public static void Main()

{
try
{
new Thread (Go).Start();
}
catch (Exception ex)
{
// We'll never get here!
Console.WriteLine ("Exception!");
}
}

static void Go() { throw null; } // Throws a NullReferenceException

The try/catch statement in this example is ineffective, and the newly created thread
will be encumbered with an unhandled NullReferenceException. This behavior
makes sense when you consider that each thread has an independent execution
path.

The remedy is to move the exception handler into the Go method:

()
> 0o
Sea

[}

B5<
zoz
°© 35
= o
< <

public static void Main()

{
new Thread (Go).Start();

}

static void Go()

{
try

{

throw null; // The NullReferenceException will get caught below

}...

catch (Exception ex)

{
Typically log the exception, and/or signal another thread
that we've come unstuck

.
}

You need an exception handler on all thread entry methods in production applica-
tions—just as you do (usually at a higher level, in the execution stack) on your main

Threading | 573

www.it-ebooks.info

http://www.it-ebooks.info/

thread. An unhandled exception causes the whole application to shut down. With
an ugly dialog box!

In writing such exception handling blocks, rarely would you
ignore the error: typically, youd log the details of the excep-
tion, and then perhaps display a dialog box allowing the user
to automatically submit those details to your web server. You
then might choose to restart the application, because it’s possi-
ble that an unexpected exception might leave your program in
an invalid state.

Centralized exception handling

In WPE Windows Store, and Windows Forms applications, you can subscribe to
“global” exception handling events, Application.DispatcherUnhandledException
and Application.ThreadException, respectively. These fire after an unhandled
exception in any part of your program that’s called via the message loop (this
amounts to all code that runs on the main thread while the Application is active).
This is useful as a backstop for logging and reporting bugs (although it won't fire for
unhandled exceptions on non-UI threads that you create). Handling these events
prevents the program from shutting down, although you may choose to restart the
application to avoid the potential corruption of state that can follow from (or that
led to) the unhandled exception.

AppDomain.CurrentDomain.UnhandledException fires on any unhandled exception
on any thread, but since CLR 2.0, the CLR forces application shutdown after your
event handler completes. However, you can prevent shutdown by adding the follow-
ing to your application configuration file:

<configuration>
<runtime>
<legacyUnhandledExceptionPolicy enabled="1" />
</runtime>
</configuration>

This can be useful in programs that host multiple application domains (Chapter 24):
if an unhandled exception occurs in a nondefault application domain, you can
destroy and recreate the offending domain rather than restarting the whole applica-
tion.

Foreground Versus Background Threads

By default, threads you create explicitly are foreground threads. Foreground threads
keep the application alive for as long as any one of them is running, whereas back-
ground threads do