

C# 9.0
Карманный
справочник

Beijing · Boston · Farnham · Sebastopol · Tokyo

Joseph Albahari
and Ben Albahari

C# 9.0
Pocket Reference

Instant Help for C# 9.0 Programmers

Москва · Санкт-Петербург
2021

C# 9.0
Карманный
справочник

ББК 32.973.26-018.2.75
А45

УДК 004.432
ООО “Диалектика”

Зав. редакцией С.Н. Тригуб
Перевод с английского и редакция канд. техн. наук И.В. Красикова

По общим вопросам обращайтесь в издательство “Диалектика” по адресу:
info.dialektika@gmail.com, http://www.dialektika.com

Албахари, Джозеф, Албахари, Бен.
А45 C# 9.0. Карманный справочник. : Пер. с англ. — СПб. :

ООО “Диалектика”, 2021. — 256 с. : ил. — Парал. тит. англ.
ISBN 978-5-907365-36-0 (рус.)

ББК 32.973.26-018.2.75
Все названия программных продуктов являются зарегистрированными

торговыми марками соответствующих фирм.
Никакая часть настоящего издания ни в каких целях не может быть вос-

произведена в какой бы то ни было форме и какими бы то ни было средствами,
будь то электронные или механические, включая фотокопирование и запись на
магнитный носитель, если на это нет письменного разрешения издательства
O’Reilly Media, Inc.

Authorized Russian translation of the English edition of C# 9.0 Pocket Reference:
Instant Help for C# 9.0 Programmers (ISBN 978-1-098-10113-8) © 2021 Joseph Alba-
hari and Ben Albahari.

Th is translation is published and sold by permission of O’Reilly Media, Inc.,
which owns or controls all rights to publish and sell the same.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without the prior written permission
of the copyright owner and the Publisher.

Научно-популярное издание
Джозеф Албахари, Бен Албахари

C# 9.0. Карманный справочник
Подписано в печать 30.03.2021. Формат 84 108/32

Усл. печ. л. 13,4. Уч.-изд. л. 8,8.
Тираж 500 экз. Заказ № 0000.

Отпечатано в ОАО “Первая Образцовая типография”
Филиал “Чеховский Печатный Двор”

142300, Московская область, г. Чехов, ул. Полиграфистов, д. 1
Сайт: www.chpd.ru, E-mail: sales@chpd.ru, тел. 8 (499) 270-73-59

ООО “Диалектика”, 195027, Санкт-Петербург, Магнитогорская ул., д. 30, лит. А, пом. 848

ISBN 978-5-907365-36-0 (рус.) © 2021 Компьютерное издательство “Диалектика”,
перевод, оформление, макетирование

ISBN 978-1-098-10113-8 (англ.) © 2021 Joseph Albahari and Ben Albahari

Soderg.indd 4 30.03.2021 21:18:33

Содержание 5

Содержание
Об авторах 7
Об изображении на обложке 8
Ждем ваших отзывов! 9

Язык C# 9.0. Карманный справочник 11
Первая программа на C# 11
Синтаксис 14
Типы в C# 17
Числовые типы 28
Логический тип и операторы 35
Строки и символы 37
Массивы 41
Переменные и параметры 47
Выражения и операторы 56
null-операторы 62
Инструкции 64
Пространства имен 74
Классы 78
Наследование 96
Тип object 105
Структуры 109
Модификаторы доступа 111
Интерфейсы 113
Перечисления 118
Вложенные типы 121
Обобщения 122
Делегаты 131
События 137
Лямбда-выражения 143
Анонимные методы 148
Инструкции try и исключения 149
Перечисление и итераторы 157
Типы-значения, допускающие null 162
Расширяющие методы 170
Анонимные типы 172

C#_9.0_Pocket_Reference_Instant.indb 5 30.03.2021 20:40:18

Телеграм канал: https://t.me/it_boooks

Содержание6

Кортежи 173
Записи (C# 9) 175
Сопоставление с образцом 182
LINQ 186
Динамическое связывание 212
Перегрузка операторов 220
Атрибуты 224
Атрибуты информации о вызывающем компоненте 228
Асинхронные функции 229
Небезопасный код и указатели 241
Директивы препроцессора 246
XML-документация 248

Предметный указатель 253

C#_9.0_Pocket_Reference_Instant.indb 6 30.03.2021 20:40:18

 Об авторах

Джозеф Албахари — автор книг C# 8.0 in a Nutshell (C# 8. Спра-
вочник. Полное описание языка) и C# 8.0 Pocket Reference (C# 8.0.
Карманный справочник), а также книги LINQ Pocket Reference. Раз-
работал LINQPad — популярную утилиту для подготовки кода и
проверки запросов LINQ.

Бен Албахари — бывший руководитель проектов в Microsoft ,
где работал над Entity Framework и .NET Compact Framework. Кро-
ме того, соавтор книги C# Essentials, первой книги по языку C# от
издательства O’Reilly, и предыдущих изданий C# in a Nutshell.

C#_9.0_Pocket_Reference_Instant.indb 7 30.03.2021 20:40:18

Об изображении на обложке

Животное на обложке — восточный венценосный журавль
(Ba learica Regulorum). Ареал обитания этой птицы охватывает тер-
ритории Кении и Уганды на востоке и юге Африки. Эти журавли
предпочитают жить на открытой болотистой местности и в лугах.

Взрослые птицы имеют рост около метра и весят около 3,5 ки-
лограмма. Визуально это яркие птицы с серым телом, бледно-се-
рой шеей и бело-золотыми крыльями. На голове у них есть боль-
шой хохолок из жестких золотистых перьев, благодаря которому
птица и получила свое название.

Венценосные журавли могут прожить в дикой природе до
20 лет, тратя большую часть времени бодрствования на хождение
по траве, охоту на мелких животных и насекомых, а также на по-
иск семян и зерен. Это один из двух видов журавлей, которые про-
водят ночь на деревьях, что возможно благодаря цепкому заднему
пальцу, который позволяет им хвататься за ветки. В кладке этих
птиц бывает до четырех яиц; через несколько часов после вылуп-
ления птенцы способны следовать за своими родителями и кор-
миться самостоятельно.

Несмотря на широкий ареал обитания, в настоящее время эти
птицы считаются находящимися под угрозой исчезновения. Сре-
ди основных негативных факторов называют быстрый рост насе-
ления, осушение и сельскохозяйственное использование земель и
применение пестицидов. Свой вклад вносят и браконьеры, охотя-
щиеся за яйцами этих птиц.

Обложка сделана Карен Монтгомери по мотивам черно-белой
гравюры из книги Естественная история Касселя (1896).

C#_9.0_Pocket_Reference_Instant.indb 8 30.03.2021 20:40:18

Ждем ваших отзывов!
Вы, читатель этой книги, и есть главный ее критик. Мы ценим

ваше мнение и хотим знать, что было сделано нами правильно, что
можно было сделать лучше и что еще вы хотели бы увидеть издан-
ным нами. Нам интересны любые ваши замечания в наш адрес.

Мы ждем ваших комментариев и надеемся на них. Вы можете
прислать нам электронное письмо либо просто посетить наш веб-
сайт и оставить свои замечания там. Одним словом, любым удоб-
ным для вас способом дайте нам знать, нравится ли вам эта книга,
а также выскажите свое мнение о том, как сделать наши книги бо-
лее интересными для вас.

Отправляя письмо или сообщение, не забудьте указать назва-
ние книги и ее авторов, а также свой обратный адрес. Мы вни-
мательно ознакомимся с вашим мнением и обязательно учтем его
при отборе и подготовке к изданию новых книг.

Наши электронные адреса:
E-mail: info.dialektika@gmail.com

WWW: http://www.dialektika.com

C#_9.0_Pocket_Reference_Instant.indb 9 30.03.2021 20:40:18

C#_9.0_Pocket_Reference_Instant.indb 10 30.03.2021 20:40:18

Язык C# 9.0.
Карманный справочник

C# является универсальным, безопасным в отношении типов,
объектно-ориентированным языком программирования, целью
которого является обеспечение продуктивности работы програм-
мистов. Для этого в нем соблюдается баланс между простотой, вы-
разительностью и производительностью. Версия C# 9 рассчитана
на работу с исполняемой средой Microsoft .NET 5 (в то время как
C# 8 ориентирован на .NET Core 3, а версия C# 7 — на .NET Core 2
и Microsoft .NET Framework 4.6/4.7/4.8).

ПРИМЕЧАНИЕ
Программы и фрагменты кода в этой книге соответ-
ствуют примерам, рассмотренным в главах 2–4 книги
C# 9.0. Справочник. Полное описание языка и доступным
в виде интерактивных примеров в LINQPad (http://
www.linqpad.net). Проработка примеров в сочетании с
чтением настоящей книги ускоряет процесс изучения, так
как вы можете редактировать код и немедленно видеть
результаты без необходимости настраивать проекты и ре-
шения в среде Visual Studio.

Для загрузки примеров перейдите на вкладку
(Примеры) в окне LINQPad и щелкните на ссылке

 (Загрузить дополнительные приме-
ры). Утилита LINQPad бесплатна и доступна для загрузки
на веб-сайте www.linqpad.net.

Первая программа на C#
Ниже показана программа, которая умножает 12 на 30 и выво-

дит на экран результат — 360. Двойная косая черта указывает на
то, что остаток строки является комментарием :

C#_9.0_Pocket_Reference_Instant.indb 11 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 12

int x = 12 * 30; // 1
System.Console.WriteLine(x); // 2

Наша программа состоит из двух инструкций. Инструкции в
C# выполняются последовательно и завершаются точкой с запя-
той. Первый оператор вычисляет выражение 12*30 и сохраняет
результат в переменной с именем x, тип которой — 32-битное це-
лое число (int). Вторая инструкция вызывает метод WriteLine
класса с именем Console, который определен в пространстве
имен System. Эта инструкция выводит переменную x в текстовое
окно на экране.

Метод выполняет функцию; класс группирует функции-члены
и элементы данных и образует строительный блок объектно-о-
риентированного программирования. Класс Console группиру-
ет члены, которые обрабатывают функциональность ввода-вы-
вода в командной строке, такую, как предоставляемая методом
WriteLine. Класс — это разновидность типа (о типах мы погово-
рим в разделе “Типы в C#”).

На внешнем уровне типы организованы в пространства имен .
Многие часто используемые типы, включая класс Console, на-
ходятся в пространстве имен System. Библиотеки .NET органи-
зованы во вложенные пространства имен. Например, простран-
ство имен System.Text содержит типы для обработки текста,
а System.IO — типы для ввода-вывода.

Упоминание класса Console с указанием пространства имен
System при каждом применении вносит определенный беспоря-
док. Директива using позволяет избежать этого беспорядка, им-
портируя пространство имен :
using System; // System
int x = 12 * 30;
Console.WriteLine(x); // System

Базовая разновидность повторного использования кода —
написание функций более высокого уровня, которые вызыва-
ют функции нижнего уровня. Мы можем рефакторизовать
нашу программу с помощью повторно используемого метода
FeetToInches, который умножает целое значение на 12, как по-
казано ниже:
using System;
Console.WriteLine(FeetToInches(30)); // 360
Console.WriteLine(FeetToInches(100)); // 1200

C#_9.0_Pocket_Reference_Instant.indb 12 30.03.2021 20:40:18

Первая программа на C# 13

int FeetToInches(int feet)
{
 int inches = feet * 12;
 return inches;
}

Наш метод содержит ряд инструкций, окруженных парой фи-
гурных скобок, — эта конструкция называется блоком инструкций .

Метод может получать входные данные от вызывающего метода
через указанные в нем параметры и возвращать данные обратно
вызывающей стороне с помощью указания возвращаемого типа.
В нашем методе FeetToInches имеется входной параметр feet
для ввода числа футов и возвращаемый тип для вывода дюймов:
int FeetToInches(int feet)
...

Литералы 30 и 100 — это аргументы , передаваемые в метод
FeetToInches.

Если метод не получает входные данные, используйте пустые
круглые скобки. Если он ничего не возвращает, используйте клю-
чевое слово void:
using System;
SayHello();

void SayHello()
{
 Console.WriteLine("Hello, world");
}

В C# методы — одна из разновидностей функций. Другая раз-
новидность функций, использованная в нашем примере, — это
оператор *, выполняющий умножение. Кроме того, имеются кон-
структоры, свойства, события, индексаторы и финализаторы.

Компиляция
Компилятор C# компилирует исходный код (набор файлов с

расширением .cs) в сборку, которая представляет собой единицу
упаковки и развертывания в .NET. Сборка может быть либо при-
ложением, либо библиотекой. Обычное консольное приложение
или приложение Windows имеет точку входа, а библиотека — нет.
Предназначение библиотеки — вызовы (обращения) к ней при-

C#_9.0_Pocket_Reference_Instant.indb 13 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 14

ложений или других библиотек. Инфраструктура .NET 5 сама по
себе является набором библиотек (а также средой выполнения).

Каждая из программ в предыдущем разделе начиналась не-
посредственно с ряда инструкций (называемых инструкциями
верхнего уровня). Наличие инструкций верхнего уровня неявно
создает входную точку консольного приложения или приложения
Windows. (Без инструкций верхнего уровня точкой входа в прило-
жение является метод Main; см. раздел “Примеры пользователь-
ских типов”.)

Для вызова компилятора можно использовать интегрирован-
ную среду разработки (IDE), такую как Visual Studio или Visual
Studio Code, либо вызывать его вручную из командной строки.
Чтобы вручную скомпилировать консольное приложение с .NET,
сначала загрузите .NET 5 SDK, а затем создайте новый проект сле-
дующим образом:
dotnet new console -o MyFirstProgram
cd MyFirstProgram

Таким образом создается папка MyFirstProgram, которая со-
держит исходный файл C# с именем Program.cs, который затем
можно редактировать. Для вызова компилятора вызовите dotnet
build (или dotnet run — эта команда скомпилирует, а затем
запустит программу). Вывод компилятора будет записан в под-
каталог bin\debug, где будут находиться MyFirstProgram.dll
(выходная сборка), а также файл MyFirstProgram.exe (который
непосредственно выполняет скомпилированную программу).

Синтаксис
На синтаксис C# оказал влияние синтаксис языков программи-

рования C и C++. В этом разделе мы опишем элементы синтаксиса
C#, применяя в качестве примера следующую программу:
using System;
int x = 12 * 30;

Console.WriteLine(x);

C#_9.0_Pocket_Reference_Instant.indb 14 30.03.2021 20:40:18

Синтаксис 15

Идентификаторы и ключевые слова
Идентификаторы — это имена, которые программисты вы-

бирают для своих классов, методов, переменных и т.д. Ниже пе-
речислены идентификаторы из примера программы в порядке их
появления:
System x Console WriteLine

Идентификатор должен быть единым словом, состоящим из
символов Unicode и начинающимся с буквы или подчеркивания.
Идентификаторы C# чувствительны к регистру. По соглашению
параметры, локальные переменные и закрытые поля должны
именоваться с использованием верблюжьего стиля (например,
myVariable), а все остальные идентификаторы должны быть в
стиле Pascal (например, MyMethod).

Ключевые слова — это имена, которые для компилятора оз-
начают что-то особенное. В нашем примере программы есть два
ключевых слова, using и int.

Большинство ключевых слов зарезервированы, что означает,
что вы не можете использовать их как идентификаторы. Вот пол-
ный список зарезервированных ключевых слов C#:
abstract enum long stackalloc
as event namespace static
base explicit new string
bool extern null struct
break false object switch
byte finally operator this
case fixed out throw
catch float override true
char for params try
checked foreach private typeof
class goto protected uint
const if public ulong
continue implicit readonly unchecked
decimal in ref unsafe
default int return ushort
delegate interface sbyte using
do internal sealed virtual
double is short void
else lock sizeof while

C#_9.0_Pocket_Reference_Instant.indb 15 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 16

Избегание конфликтов
Если вы действительно хотите использовать идентификатор

с именем, которое конфликтует с ключевым словом, то добавьте
к нему префикс @. Например:
class class {...} //
class @class {...} //

Символ @ не является частью самого идентификатора. Таким
образом, @myVariable — то же самое, что и myVariable.

Контекстные ключевые слова
Некоторые ключевые слова являются контекстными , что оз-

начает, что их можно использовать и в качестве идентификаторов
без символа @. Такие ключевые слова перечислены ниже:
add equals nameof set
alias from not unmanaged
and get on value
ascending global or var
async group orderby with
await in partial when
by into record where
descending join remove yield
dynamic let select

Неоднозначность с контекстными ключевыми словами не мо-
жет возникать внутри контекста, в котором они применяются.

Литералы, знаки пунктуации и операт оры
Литералы — это элементарные порции данных, лексически

встраиваемые в программу. В рассматриваемом примере програм-
мы используются литералы 12 и 30. Знаки пунктуации помогают
размечать структуру программы. Примером может служить точка
с запятой, которая завершает инструкцию. Инструкции могут ох-
ватывать несколько строк:
Console.WriteLine
 (1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10);

Оператор преобразует и объединяет выражения. Большин-
ство операторов в C# обозначаются с помощью некоторого сим-

C#_9.0_Pocket_Reference_Instant.indb 16 30.03.2021 20:40:18

Типы в C# 17

вола, например оператор умножения имеет следующий вид: *. Вот
операторы в примере программы:
= * . ()

Точкой обозначается членство (или десятичная точка в число-
вых литералах). Круглые скобки в примере присутствуют там, где
объявляется или вызывается метод; пустые круглые скобки озна-
чают, что метод не принимает аргументов. Знак “равно” выполня-
ет присваивание (двойной знак “равно”, ==, производит сравнение
на равенство).

Комментарии
В C# поддерживаются два разных стиля документирования

исходного кода: однострочные комментарии и многострочные
комментарии. Однострочный комментарий начинается с двойной
косой черты и продолжается до конца строки. Например:
int x = 3; //
 // x 3

Многострочный комментарий начинается с символов /* и за-
канчивается символами */. Например:
int x = 3; /*
 x 3 */

В комментарии можно встраивать XML-дескрипторы доку-
ментации (см. раздел “XML-документация”).

Типы в C#
Тип определяет шаблон значения. В рассматриваемом примере

мы использовали два литерала тип а int со значениями 12 и 30.
Мы также объявляем переменную типа int с именем x.

Переменная обозначает ячейку в памяти, которая с течением
времени может содержать разные значения. Константа , напро-
тив, всегда представляет одно и то же значение (подробнее об этом
будет сказано позже).

Все значения в C# являются экземплярами определенного типа.
Смысл значения и набор возможных значений, которые может
иметь переменная, определяются ее типом.

C#_9.0_Pocket_Reference_Instant.indb 17 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 18

Примеры предопределенных типов
Предопределенные типы (также называемые встроенными

типами) — это типы, которые специально поддерживаются ком-
пилятором. Тип int является предопределенным типом для пред-
ставления набора целых чисел, которые умещаются в 32 бита па-
мяти, от –231 до 231–1. С экземплярами типа int можно выполнять
разные операции, например, арифметические:
int x = 12 * 30;

Еще одним предопределенным типом в C# является string.
Тип string представляет собой последовательность символов,
такую как ".NET" или "http://oreilly.com". Со строками
можно работать, вызывая для них функции следующим образом:
string message = "Hello world";
string upperMessage = message.ToUpper();
Console.WriteLine(upperMessage); // HELLO WORLD

int x = 2021;
message = message + x.ToString();
Console.WriteLine(message); // Hello world2021

Предопределенный тип bool поддерживает ровно два возмож-
ных значения: true и false. Тип bool обычно используется для
разветвления потока выполнения по условию с помощью инструк-
ции if. Например:
bool simpleVar = false;
if (simpleVar)
 Console.WriteLine(" ");

int x = 5000;
bool lessThanAMile = x < 5280;
if (lessThanAMile)
 Console.WriteLine(" ");

Пространство имен System в .NET содержит много важных
типов, которые не являются предопределенными в языке C# (на-
пример, DateTime).

Примеры пользовательских типов
Точно так же, как из простых функций можно строить слож-

ные функции, из элементарных типов можно создавать сложные

C#_9.0_Pocket_Reference_Instant.indb 18 30.03.2021 20:40:18

Типы в C# 19

типы. В следующем примере мы определим пользовательский тип
по имени UnitConverter — класс, который служит шаблоном
для преобразования единиц:
UnitConverter feetToInches = new UnitConverter (12);
UnitConverter milesToFeet = new UnitConverter (5280);

Console.WriteLine(feetToInches.Convert(30)); // 360
Console.WriteLine(feetToInches.Convert(100)); // 1200
Console.WriteLine(feetToInches.Convert
 (milesToFeet.Convert(1))); // 63360

public class UnitConverter
{
 int ratio; //
 public UnitConverter(int unitRatio) //
 {
 ratio = unitRatio;
 }
 public int Convert (int unit) //
 {
 return unit * ratio;
 }
}

Члены типа
 Тип содержит данные-члены и функции-члены. Данными-чле-

нами типа UnitConverter является поле с именем ratio. Функ-
ции-члены типа UnitConverter — это метод Convert() и кон-
структор класса UnitConverter.

Симметрия предопределенных и пользовательских типов
Привлекательный аспект языка C# заключается в том, что меж-

ду предопределенными и специальными типами имеется мало раз-
личий. Предопределенный тип int служит шаблоном для целых
чисел. Он хранит данные — 32 бита — и предоставляет использу-
ющие эти данные функции-члены, такие как ToString(). Анало-
гичным образом наш пользовательский тип UnitConverter дей-
ствует в качестве шаблона для преобразования единиц. Он хранит
данные — коэффициент ratio — и предлагает функции-члены,
использующие эти данные.

C#_9.0_Pocket_Reference_Instant.indb 19 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 20

Конструкторы и создание экземпляров
Данные создаются путем создания экземпляров (инстанци-

рования) типа. Мы можем создавать экземпляры предопределен-
ных типов просто путем применения литерала, такого как 12 или
" ".

Оператор new создает экземпляры пользовательского типа.
Мы начинаем нашу программу с создания двух экземпляров типа
UnitConverter. Непосредственно после создания объекта опера-
тором new вызывается его конструктор для выполнения иници-
ализации. Конструктор определяется так же, как и метод, за ис-
ключением того, что вместо имени метода и возвращаемого типа
указывается имя типа, которому конструктор принадлежит:
public UnitConverter (int unitRatio) //
{
 ratio = unitRatio;
}

Члены экземпляра и статические члены
Данные-члены и функции-члены, которые оперируют экземп-

ля рами типа, называются членами экземпляра. Примерами членов
экземпляра могут служить метод Convert() типа UnitConverter
и метод ToString() типа int. По умолчанию члены являются
членами экземпляра.

Данные-члены и функции-члены, которые имеют дело не с
конкретным экземпляром типа, а с самим типом, должны по-
мечаться как статические (static). Чтобы обратиться к стати-
ческому члену извне его типа, следует указывать имя его типа,
а не экземпляр. Примером является метод WriteLine класса
Console. Поскольку это статический метод, мы вызываем его как
Console.WriteLine(), а не как new Console().WriteLine().

В приведенном далее коде поле экземпляра Name относится к
конкретному экземпляру Panda, в то время как поле Population
принадлежит всему множеству экземпляров класса Panda. Мы
создаем два экземпляра Panda, выводим их имена, а затем общую
численность населения:
Panda p1 = new Panda("Pan Dee");
Panda p2 = new Panda("Pan Dah");

Console.WriteLine(p1.Name); // Pan Dee

C#_9.0_Pocket_Reference_Instant.indb 20 30.03.2021 20:40:18

Типы в C# 21

Console.WriteLine(p2.Name); // Pan Dah
Console.WriteLine(Panda.Population); // 2

public class Panda
{
 public string Name; //
 public static int Population; //
 public Panda (string n) //
 {
 Name = n; //
 Population = Population+1;//
 }
}

Попытки вычисления p1.Population или Panda.Name при-
водят к генерации ошибки времени компиляции.

Ключевое слово public
Ключевое слово public открывает доступ к членам для других

классов. Если бы в рассматриваемом примере поле Name класса
Panda не было помечено как public, то оно оказалось бы закры-
тым и класс Console не смог бы получить к нему доступ. Марки-
ровка члена как открытого (public) означает, что тип разрешает
его видеть всем другим типам, а все остальное будет относиться
к закрытым деталям реализации. В рамках объектно-ориентиро-
ванной терминологии мы говорим, что открытые члены инкапсу-
лируют закрытые члены класса.

Создание пространства имен
Особенно в случае больших программ имеет смысл организа-

ция типов в пространства имен. Вот как определяется класс Panda
внутри пространства имен Animals:
namespace Animals
{
 public class Panda
 {
 ...
 }
}

Детально пространства имен будут рассмотрены позже, в раз-
деле “Пространства имен”.

C#_9.0_Pocket_Reference_Instant.indb 21 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 22

Определение метода Main
До сих пор во всех наших примерах использовались инструк-

ции верхнего уровня (которые являются новой функциональной
возможностью в C# 9). Без инструкций верхнего уровня простое
консольное приложение или приложение Windows выглядит сле-
дующим образом:
using System;

class Program
{
 static void Main() //
 {
 int x = 12 * 30;
 Console.WriteLine(x);
 }
}

В отсутствие инструкций верхнего уровня C# ищет статиче-
ский метод с именем Main, который и становится точкой входа.
Метод Main может быть определен внутри любого класса (при
этом может существовать только один метод Main). Если ваше-
му методу Main требуется доступ к закрытым членам некоторого
класса, определите метод Main внутри этого класса — это может
быть проще, чем использование инструкций верхнего уровня.

Метод Main может (необязательно) возвращать целое число
(а не void), чтобы вернуть значение среде выполнения (где нену-
левое значение обычно указывает на ошибку). Метод Main может
также дополнительно принимать в качестве параметра массив
строк (который будет заполнен аргументами, передаваемыми ис-
полняемому файлу). Например:
static int Main (string[] args) {...}

ПРИМЕЧАНИЕ
Массив (такой, как string[]) представляет фиксирован-
ное количество элементов определенного типа. Массивы
указываются с помощью квадратных скобок после типа
элемента. Мы рассмотрим их позже, в разделе “Массивы”.

C#_9.0_Pocket_Reference_Instant.indb 22 30.03.2021 20:40:18

Типы в C# 23

(Метод Main может также быть объявлен как async и возвра-
щать Task или Task<int> для поддержки асинхронного програм-
мирования; см. раздел “Асинхронные функции”.)

Инструкции верхнего уровня (С# 9)
Инструкции верхнего уровня C# 9 позволяют избежать необ-

ходимости статического метода Main и содержащего его класса.
Файл с инструкциями верхнего уровня состоит из трех частей в
таком порядке.

 1. (Необязательная) директива using.
 2. Ряд инструкций, возможно, перемешанных с объявлениями

методов.
 3. (Необязательные) объявления типов и пространств имен.

Все содержимое части 2 в конечном итоге оказывается внутри
созданного компилятором метода Main класса, созданного компи-
лятором. Это означает, что методы в ваших инструкциях верхне-
го уровня становятся локальными методами (об их тонкостях мы
поговорим позже, в отдельном разделе, посвященном локальным
методам). Инструкции верхнего уровня могут дополнительно воз-
вращать целочисленное значение вызывающему коду и получать
доступ к “магической” переменной args типа string[], соответ-
ствующей переданным программе аргументам командной строки.

Поскольку программа может иметь только одну точку входа,
в проекте C# может быть только один файл с инструкциями верх-
него уровня.

Типы и преобразования
В языке C# возможны преобразования между экземплярами

совместимых типов. Преобразование всегда приводит к созданию
нового значения из существующего. Преобразования могут быть
либо неявными, либо явными: неявные преобразования проис-
ходят автоматически, в то время как явные требуют приведения .
В следующем примере мы неявно преобразовываем int в тип
long (который имеет в два раза больше битов, чем int) и явно
приводим int к типу short (имеющему в два раза меньше битов,
чем int):

C#_9.0_Pocket_Reference_Instant.indb 23 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 24

int x = 12345; // int — 32-
long y = x; // 64
short z = (short)x; // 16

В общем случае неявные преобразования разрешены, ког-
да компилятор в состоянии гарантировать, что они всегда будут
проходить успешно без потери информации. В противном случае
для преобразования между совместимыми типами должно выпол-
няться явное приведение.

Типы-значения и ссылочные типы
Типы в C# можно разделить на типы-значения и ссылочные

типы.
Типы-значения включают большинство встроенных типов

(в частности, все числовые типы, тип char и тип bool), а также
пользовательские типы struct и enum. Ссылочные типы включа-
ют все классы, массивы, делегаты и интерфейсы.

Фундаментальное различие между типами-значениями и ссы-
лочными типами связано с тем, как они поддерживаются в памяти.

Типы-значения
Содержимым переменной или константы, относящейся к ти-

пу-значению, является просто значение. Например, содержимое
встроенного типа-значения int — это 32 бита данных.

С помощью ключевого слова struct можно определить поль-
зовательский тип-значение (рис. 1):

Значение/экземпляр

Структура Point

X

Y

Рис. 1. Экземпляр типа-значения в памяти

Присваивание экземпляра типа-значения всегда копирует эк-
земпляр. Например:
Point p1 = new Point();
p1.X = 7;

Point p2 = p1; //

C#_9.0_Pocket_Reference_Instant.indb 24 30.03.2021 20:40:18

Типы в C# 25

Console.WriteLine(p1.X); // 7
Console.WriteLine(p2.X); // 7

p1.X = 9; // p1.X

Console.WriteLine(p1.X); // 9
Console.WriteLine(p2.X); // 7

На рис. 2 продемонстрировано, что p1 и p2 имеют независи-
мые хранилища.

Структура Point

9

0

7

0

p1 p2

Рис. 2. Присваивание копирует
экземпляр типа-значения

Ссылочные типы
Ссылочный тип сложнее типа-значения из-за наличия двух

частей: самого объекта и ссылки на этот объект. Содержимым
переменной или константы ссылочного типа является ссылка на
объект, который содержит значение. Ниже приведен тип Point из
предыдущего примера, переписанный в виде класса (рис. 3):
public class Point { public int X, Y; }

Класс Point

Ссылка

X

Y

Ссылка Объект

Значение/экземпляр

Метаданные
объекта

Рис. 3. Экземпляр ссылочного типа в памяти

Присваивание переменной ссылочного типа вызывает копиро-
вание ссылки, но не экземпляра объекта. Это позволяет множеству
переменных ссылаться на один и тот же объект, что с типами-зна-

C#_9.0_Pocket_Reference_Instant.indb 25 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 26

чениями обычно невозможно. Если повторить предыдущий при-
мер при условии, что Point теперь представляет собой класс, то
операции с p1 будут воздействовать и на p2:
Point p1 = new Point();
p1.X = 7;

Point p2 = p1; // p1

Console.WriteLine(p1.X); // 7
Console.WriteLine(p2.X); // 7

p1.X = 9; // p1.X
Console.WriteLine(p1.X); // 9
Console.WriteLine(p2.X); // 9

На рис. 4 видно, что p1 и p2 — это две ссылки, которые указы-
вают на один и тот же объект.

Класс Point

Ссылка

9

0

p1

Метаданные
объекта

Ссылка

p2

Рис. 4. Экземпляр ссылочного
типа в памяти

Значение null
Ссылке может быть присвоен литерал null , который отражает

тот факт, что ссылка не указывает на какой-либо объект. Предпо-
ложим, что Point является классом:
Point p = null;
Console.WriteLine(p == null); // True

Обращение к члену нулевой ссылки приводит к ошибке време-
ни выполнения:
Console.WriteLine(p.X); //
NullReferenceException

C#_9.0_Pocket_Reference_Instant.indb 26 30.03.2021 20:40:18

Типы в C# 27

ПРИМЕЧАНИЕ
В разделе “Ссылочные типы, допускающие значение
null” описывается функциональная возможность C#, ко-
торая уменьшает количество случайных ошибок Null
ReferenceException.

В противоположность этому тип-значение обычно не может
иметь значение null:
struct Point {...}
...
Point p = null; //
int x = null; //

Для обхода этого ограничения в C# есть специальная кон-
струкция для представления значения null; см. раздел “Ссылоч-
ные типы, допускающие значение null”.

Классификация предопределенных типов
 Предопределенные типы в C# классифицируются следующим

образом.
Типы-значения

Числовые
Целочисленные со знаком (sbyte, short, int, long)
Целочисленные без знака (byte, ushort, uint, ulong)
Действительные (float, double, decimal)

Логический (bool)
Символьный (char)

Ссылочные типы

Строки (string)
Объекты (object)

Предопределенные типы в C# являются псевдонимами типов
.NET в пространстве имен System. Две показанные ниже инструк-
ции различаются только синтаксисом:
int i = 5;
System.Int32 i = 5;

C#_9.0_Pocket_Reference_Instant.indb 27 30.03.2021 20:40:18

Язык C# 9.0. Карманный справочник 28

Множество предопределенных типов-значений, исключая
decimal, в общеязыковой исполняющей среде (Common Language
Runtime — CLR) известно как примитивные типы. Примитивные
типы называются так потому, что они поддерживаются непосред-
ственно командами в скомпилированном коде, которые обычно
транслируются в непосредственную поддержку процессором.

Числовые типы
 В C# имеются перечисленные в табл. 1 предопределенные чис-

ловые типы.

 1. C#

Тип Тип System Суффикс Размер, битов Диапазон

Целочисленный знаковый

sbyte SByte 8 От –27 до 27–1

short Int16 16 От –215 до 215–1

int Int32 32 От –231 до 231–1

long Int64 L 64 От –263 до 263–1

Целочисленный беззнаковый

byte Byte 8 От 0 до 28–1

ushort UInt16 16 От 0 до 216–1

uint UInt32 U 32 От 0 до 232–1

ulong UInt64 UL 64 От 0 до 264–1

Действительный

float Single F 32 ±(≈ от 10–45 до 1038)

double Double D 64 ±(≈ от 10–324 до 10308)

decimal Decimal M 128 ±(≈ от 10–28 до 1028)

Из всех целочисленных типов int и long являются первоклас-
сными типами, которым обеспечиваются предпочтение и поддерж-
ка как языком C#, так и средой выполнения. Другие целочислен-
ные типы обычно применяются для реализации взаимодействия
или когда на первое место выходят эффективность хранения и
экономия памяти.

C#_9.0_Pocket_Reference_Instant.indb 28 30.03.2021 20:40:18

Числовые типы 29

ПРИМЕЧАНИЕ
В C# 9 имеются два новых целочисленных типа для пред-
ставления целых чисел платформы (native): nint (со зна-
ком) и nuint (без знака). Эти типы предназначены для
взаимодействия в рамках платформы и отображаются во
время выполнения в System.IntPtr и System.UIntPtr
соответственно. Во время компиляции они обеспечивают
дополнительную функциональность, в первую очередь
поддержку стандартных числовых операций.

Среди действительных числовых типов float и double на-
зываются типами с плавающей точкой и обычно используются
в научных и графических вычислениях. Тип decimal применяет-
ся, как правило, в финансовых вычислениях, когда требуются де-
сятичная арифметика и высокая точность. (Технически decimal
также является типом с плавающей точкой, хотя обычно о нем так
не говорят.)

Числовые литералы
Целочисленные литералы могут использовать десятичную,

шест надцатеричную или бинарную форму записи; шестнадцате-
ричная форма записи предусматривает применение префикса 0x
(например, 0x7f эквивалентно десятичному значению 127), а би-
нарная — префикс 0b. В действительных литералах может при-
меняться десятичная или экспоненциальная форма записи, такая
как 1E06. Для улучшения читаемости в числовой литерал могут
вставляться символы подчеркивания (например, 1_000_000).

Вывод типа числового литерала
 По умолчанию компилятор выводит тип числового литерала,

относя его либо к double, либо к какому-то целочисленному типу.

Если литерал содержит десятичную точку или символ экс-
поненты (E), то он получает тип double.
В противном случае типом литерала будет первый тип, в
который может уместиться значение литерала, из следую-
щего списка: int, uint, long и ulong.

C#_9.0_Pocket_Reference_Instant.indb 29 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 30

Например:
Console.Write(1.0.GetType()); // Double (double)
Console.Write(1E06.GetType()); // Double (double)
Console.Write(1.GetType()); // Int32 (int)
Console.Write(0xF0000000.GetType()); // UInt32 (uint)
Console.Write(0x100000000.GetType()); // Int64 (long)

Числовые суффиксы
Числовые суффиксы , указанные в табл. 1, явно определяют тип

литерала:
decimal d = 3.5M; //M=decimal ()

Необходимость в суффиксах U и L возникает редко, поскольку
типы uint, long и ulong почти всегда могут либо выводиться,
либо неявно преобразовываться из int:
long i = 5; // int -> long

Суффикс D технически избыточен, поскольку все литералы с
десятичной точкой выводятся как double (к числовому литералу
всегда можно добавить десятичную точку). Суффиксы F и M наи-
более полезны и обязательны при указании дробных литералов
float или decimal. Без суффиксов приведенный далее код не
скомпилируется, так как литерал 4.5 выводится как тип double,
для которого не предусмотрено неявное преобразование в float
или decimal:
float f = 4.5F; //
decimal d = -1.23M; //

Числовые преобразования
Преобразования целых чисел в целые числа

Целочисленные преобразования являются неявными, когда
целе вой тип в состоянии представить любое возможное значение
исходного типа; в противном случае требуется явное преобразова-
ние. Например:
int x = 12345; // int — 32-
long y = x; //
 // 64- int
short z = (short)x; // 16- int

C#_9.0_Pocket_Reference_Instant.indb 30 30.03.2021 20:40:19

Числовые типы 31

Преобразования чисел с плавающей точкой
в числа с плавающей точкой

Тип float может быть неявно преобразован в тип double,
так как double позволяет представить любое возможное значение
float. Обратное преобразование должно быть явным.

Преобразования между decimal и другими действительными
типами должны быть явными.

Преобразования чисел с плавающей точкой в целые числа
Преобразования целочисленных типов в действительные типы

являются неявными, тогда как обратные преобразования должны
быть явными. Преобразование числа с плавающей точкой в це-
лое число усекает дробную часть; для выполнения преобразова-
ний с округлением следует применять статический класс System.
Convert.

Важно знать, что неявное преобразование большого целочис-
ленного типа в тип с плавающей точкой сохраняет величину, но
иногда может приводить к потере точности:
int i1 = 100000001;
float f = i1; // , -
int i2 = (int)f; // 100000000

Арифметические операторы
Арифметические операторы (+, -, *, /, %) определены для всех

числовых типов, кроме 8- и 16-битных целочисленных типов. Опе-
ратор % вычисляет остаток от деления.

Операторы инкремента и декремента
Операторы инкремента и декремента (соответственно ++ и --)

увеличивают и уменьшают значения числовых типов на 1. Такой
оператор может находиться перед или после переменной, в за-
висимости от того, когда требуется обновить значение перемен-
ной — до или после вычисления выражения. Например:
int x = 0;
Console.WriteLine(x++); // 0; x 1
Console.WriteLine(++x); // 2; x 2
Console.WriteLine(--x); // 1; x 1

C#_9.0_Pocket_Reference_Instant.indb 31 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 32

Специализированные целочисленные операции
Деление

Операции деления для целочисленных типов всегда усекают
остатки (округление в направлении нуля). Деление на перемен-
ную, значение которой равно нулю, приводит к ошибке времени
выполнения (исключению DivideByZeroException). Деление на
литерал или константу, равную нулю, вызывает ошибку времени
компиляции.

Переполнение
 Выполнение арифметических операций с целочисленными

типами может приводить к переполнению. По умолчанию это
происходит без информирования о происшедшем — никакие ис-
ключения не генерируются, а результат демонстрирует поведение
с циклическим возвратом, как если бы вычисление производилось
над большим целочисленным типом с отбрасыванием дополни-
тельных значащих битов. Например, декремент минимально воз-
можного значения типа int дает в результате максимально воз-
можное значение int:
int a = int.MinValue; a--;
Console.WriteLine(a == int.MaxValue); // True

Операторы checked и unchecked
Оператор checked сообщает среде выполнения о том, что вме-

сто “молчаливого” переполнения она должна генерировать исклю-
чение OverflowException, когда целочисленное выражение или
инструкция выходит за арифметические пределы данного типа.
Оператор checked воздействует на выражения с операторами ++,
--, - (унарный), +, -, *, / и операторами явного преобразования
между целочисленными типами. С проверкой переполнения свя-
заны небольшие накладные расходы, влияющие на производи-
тельность.

Оператор checked можно использовать либо с выражением,
либо с блоком инструкций. Например:
int a = 1000000, b = 1000000;
int c = checked(a*b); //
checked //
{ //

C#_9.0_Pocket_Reference_Instant.indb 32 30.03.2021 20:40:19

Числовые типы 33

 c = a * b;
 ...
}

Проверку на арифметическое переполнение можно сделать
обязательной для всех выражений в программе, скомпилировав ее
с аргументом командной строки /checked+ (в Visual Studio это де-
лается на вкладке (Дополнительные па-
раметры сборки)). Если позже понадобится отключить проверку
переполнения для конкретных выражений или операторов, мож-
но применить оператор unchecked .

Побитовые операторы
В C# поддерживаются указанные в табл. 2 побитовые опера-

торы.

 2. C#

Оператор Описание Пример выражения Результат

~ Дополнение ~0xfU 0xfffffff0U

& И 0xf0 & 0x33 0x30

| Или 0xf0 | 0x33 0xf3

^ Исключающее или 0xff00 ^ 0x0ff0 0xf0f0

<< Сдвиг влево 0x20 << 2 0x80

>> Сдвиг вправо 0x20 >> 1 0x10

8- и 16-битные целочисленные типы
К 8- и 16-битным целочисленным типам относятся byte,

sbyte, short и ushort. У таких типов отсутствуют собственные
арифметические операции, поэтому в C# при необходимости они
неявно преобразуются в более крупные типы. Попытка присваи-
вания результата переменной меньшего целочисленного типа мо-
жет вызвать ошибку времени компиляции:
short x = 1, y = 1;
short z = x + y; //

В данном случае для выполнения сложения переменные x и y
неявно преобразуются в тип int. Это означает, что результат так-

C#_9.0_Pocket_Reference_Instant.indb 33 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 34

же будет иметь тип int, который не может быть неявно приве-
ден к типу short (из-за возможной потери информации). Чтобы
приведенный выше код скомпилировался, необходимо добавить
явное приведение:
short z = (short)(x + y); // OK

Специальные значения float и double
В отличие от целочисленных типов типы с плавающей точкой

имеют значения, которые определенные операции трактуют осо-
бым образом. Такими специальными значениями являются NaN
(Not a Number — не число), +∞, –∞ и –0. В классах float и double
предусмотрены константы для NaN, +∞ и –∞ (а также для других
значений, включая MaxValue, MinValue и Epsilon). Например:
Console.Write (double.NegativeInfinity); // -

Деление ненулевого числа на нуль дает в результате бесконеч-
ную величину. Например:
Console.WriteLine(1.0 / 0.0); // +
Console.WriteLine(-1.0 / 0.0); // -
Console.WriteLine(1.0 / -0.0); // -
Console.WriteLine(-1.0 / -0.0); // +

Деление нуля на нуль или вычитание бесконечности из беско-
нечности дает в результате NaN. Например:
Console.Write(0.0 / 0.0); // NaN
Console.Write((1.0 / 0.0) - (1.0 / 0.0)); // NaN

Когда применяется оператор ==, значение NaN никогда не бу-
дет равно другому значению, даже NaN. Для проверки, равно ли
значение специальному значению NaN, должен использоваться
метод float.IsNaN() или double.IsNaN():
Console.WriteLine(0.0 / 0.0 == double.NaN); // False
Console.WriteLine(double.IsNaN (0.0 / 0.0)); // True

Однако в случае применения метода object.Equals() два
значения NaN равны:
bool isTrue = object.Equals(0.0/0.0, double.NaN);

C#_9.0_Pocket_Reference_Instant.indb 34 30.03.2021 20:40:19

Логический тип и операторы 35

Выбор между double и decimal
Тип double удобен в научных вычислениях (таких, как вычис-

ление пространственных координат), а тип decimal — в финан-
совых вычислениях и для представления значений, которые явля-
ются “искусственными”, а не полученными в результате реальных
измерений. В табл. 3 представлена сводка по отличиям между ти-
пами double и decimal.

 3. double decimal

Характеристика double decimal

Внутреннее представление Двоичное Десятичное

Точность 15–16 значащих цифр 28–29 значащих цифр

Диапазон ±(от ≈10–324 до ≈10308) ±(от ≈10–28 до ≈1028)

Специальные значения +0, –0, +∞, –∞ и NaN Нет

Скорость обработки Внутрипроцессорная Код; примерно в 10 раз медлен-
нее double

Ошибки округления вещественных чисел
Типы float и double внутренне представляют собой числа в

бинарном виде. По этой причине большинство литералов с дробной
частью (которые являются десятичными) не могут быть представле-
ны точно, что делает их непригодными для финансовых операций.

В противоположность им тип decimal работает в десятичной
системе счисления и способен точно представлять дробные чис-
ла наподобие 0,1 (десятичное представление которого является
конечным).

Логический тип и операторы
Тип bool в C# (псевдоним типа System.Boolean) представ-

ляет собой логическое значение, которому может быть присвоен
литерал true или false.

Хотя для хранения логического значения достаточно только
одного бита, исполняющая среда будет использовать один байт
памяти, поскольку это минимальное адресуемое количество памя-

C#_9.0_Pocket_Reference_Instant.indb 35 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 36

ти, с которой могут эффективно работать исполняющая среда и
процессор.

Во избежание непродуктивных затрат памяти в случае мас-
сивов инфраструктура .NET предлагает в пространстве имен
System.Collections класс BitArray, который позволяет задей-
ствовать по одному биту для каждого булева значения в массиве.

Операторы эквивалентности и сравнения
Операторы == и != проверяют эквивалентность и неэквива-

лентность значений любого типа и всегда возвращают значение
типа bool. Типы-значения обычно поддерживают очень простое
понятие эквивалентности:
int x = 1, y = 2, z = 1;
Console.WriteLine(x == y); // False
Console.WriteLine(x == z); // True

Для ссылочных типов эквивалентность по умолчанию основа-
на на ссылке, а не на действительном значении объекта. Следова-
тельно, два экземпляра объекта с идентичными данными не будут
считаться равными, если только оператор == специально не был
перегружен для достижения такого эффекта (см. разделы “Тип
object” и “Перегрузка операторов”).

Операторы эквивалентности и сравнения (==, !=, <, >, >= и <=)
работают со всеми числовыми типами, но должны осмотрительно
использоваться с вещественными числами (см. раздел “Ошибки
округления вещественных чисел”). Операторы сравнения работа-
ют также с членами типа enum, сравнивая лежащие в их основе
целочисленные значения.

Условные операторы
 Операторы && и || реализуют условия И и ИЛИ. Они часто

применяются в сочетании с оператором !, который выражает от-
рицание — НЕ. В показанном ниже примере метод UseUmbrella()
(брать ли зонт) возвращает true, если дождливо (rainy) или сол-
нечно (sunny), при условии, что не дует ветер (windy):
static bool UseUmbrella (bool rainy, bool sunny,
 bool windy)
{

C#_9.0_Pocket_Reference_Instant.indb 36 30.03.2021 20:40:19

Строки и символы 37

 return !windy && (rainy || sunny);
}

Когда это возможно, операторы && и || используют сокра-
щенное вычисление . В предыдущем примере, если дует ветер
(windy), то выражение (rainy||sunny) даже не вычисляет-
ся (его значение не влияет на очевидный общий результат). Со-
кращенные вычисления играют важную роль, разрешая выра-
жения, такие как показанное ниже, без генерации исключения
NullReferenceException:
if (sb != null && sb.Length > 0) ...

Операторы & и | также реализуют проверки условий И и ИЛИ:
return !windy & (rainy | sunny);

Их отличие от рассмотренных выше операторов в том, что они
не используют сокращенные вычисления. По этой причине опера-
торы & и | редко используются вместо условных операторов.

Тернарный условный оператор (именуемый просто условным
оператором) имеет вид q?a:b, где, если условие q истинно, вычис-
ляется a, и b — в противном случае. Например:
static int Max(int a, int b)
{
 return (a > b) ? a : b;
}

Условный оператор особенно удобен в запросах LINQ
(Language INtegrated Query — язык интегрированных запросов).

Строки и символы
Тип char в C# (псевдоним типа System.Char) представляет

символ Unicode и занимает 2 байта (UTF-16). Литерал char указы-
вается в одинарных кавычках:
char c = 'A'; //

Управляющие последовательности выражают символы, ко-
торые не могут быть представлены или интерпретированы бук-
вально. Управляющая последовательность состоит из символа об-
ратной косой черты, за которым следует символ со специальным
значением, например:

C#_9.0_Pocket_Reference_Instant.indb 37 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 38

char newLine = \n ; //
char backSlash = \\ ; //

Управляющие последовательности перечислены в табл. 4.

 4.

Последовательность Описание Значение

\' Одинарная кавычка 0x0027

\" Двойные кавычки 0x0022

\\ Обратная косая черта 0x005C

\0 Нулевой символ 0x0000

\a Звуковой сигнал 0x0007

\b Забой 0x0008

\f Перевод страницы 0x000C

\n Новая строка 0x000A

\r Возврат каретки 0x000D

\t Горизонтальная табуляция 0x0009

\v Вертикальная табуляция 0x000B

Управляющая последовательность \u (или \x) позволяет ука-
зывать любой символ Unicode в виде его шестнадцатеричного
кода, состоящего из четырех цифр:
char copyrightSymbol = \u00A9 ;
char omegaSymbol = \u03A9 ;
char newLine = \u000A ;

Неявное преобразование из char в числовой тип работает для
тех числовых типов, которые могут вместить беззнаковый short.
Для других числовых типов требуется явное преобразование.

Строковый тип
Тип string в C# (псевдоним типа System.String) представ-

ляет неизменяемую последовательность символов Unicode. Стро-
ковый литерал указывается в двойных кавычках:
string a = "Heat";

C#_9.0_Pocket_Reference_Instant.indb 38 30.03.2021 20:40:19

Строки и символы 39

ПРИМЕЧАНИЕ
string — тип ссылочный, а не тип-значение. Тем не ме-
нее его операторы эквивалентности следуют семантике
типов-значений:

string a = "test", b = "test";
Console.Write (a == b); // True

Управляющие последовательности, допустимые для литералов
char, работают и внутри строк:
string a = " :\t";

Платой за это является необходимость дублирования символа
обратной косой черты, когда он нужен буквально:
string a1 = "\\\\server\\fileshare\\helloworld.cs";

Чтобы избежать этого, в C# разрешены дословные строковые
литералы. Дословный строковый литерал снабжается префиксом
@ и не поддерживает управляющие последовательности. Следую-
щая дословная строка идентична предыдущей строке:
string a2 = @"\\server\fileshare\helloworld.cs";

Дословный строковый литерал может также занимать не-
сколько строк. Чтобы включить в дословный строковый литерал
символ двойной кавычки, его требуется записать дважды.

Конкатенация строк
 Оператор + выполняет конкатенацию двух строк:

string s = "a" + "b";

Один из операндов может быть нестроковым значением; в
этом случае для него будет вызван метод ToString(). Например:
string s = "a" + 5; // a5

Многократное применение оператора + для построения стро-
ки может оказаться неэффективным; более удачное решение пред-
усматривает использование типа System.Text.StringBuilder,
который представляет изменяемую (редактируемую) строку и рас-

C#_9.0_Pocket_Reference_Instant.indb 39 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 40

полагает методами эффективного добавления, вставки, удаления
и замены подстрок — Append, Insert, Remove и Replace соот-
ветственно.

Интерполяция строк
 Строка, предваренная символом $, называется интерполиро-

ванной строкой. Интерполированные строки могут содержать вы-
ражения, заключенные в фигурные скобки:
int x = 4;
Console.Write($" {x} ");
// : 4

Внутри фигурных скобок может быть указано любое допусти-
мое выражение C# произвольного типа; компилятор C# преоб-
разует это выражение в строку, вызывая метод ToString() или
эквивалентный метод типа выражения. Форматирование можно
изменять путем добавления к выражению двоеточия и строки
формата (строки формата рассматриваются в главе 6 книги C# 9.0.
Справочник. Полное описание языка):
string s = $"{15:X2} – 15 ";
// "0F – 15 "

Интерполированные строки должны находиться в одной стро-
ке кода, если только вы не указываете оператор дословной строки.
Обратите внимание, что оператор $ должен располагаться перед @:
int x = 2;
string s = $@" {
x} ";

Чтобы включить в интерполированную строку литерал фигур-
ной скобки, его следует удвоить.

Сравнения строк
Тип string не поддерживает операторы < и > для сравнения

строк. Вместо них должен применяться метод CompareTo() типа
string, который возвращает положительное или отрицательное
число или нуль в зависимости от того, находится ли лексикографи-
чески первое значение после второго, до него или они совпадают:
Console.Write("Bbb".CompareTo("Aaa")); // 1
Console.Write("Bbb".CompareTo("Bbb")); // 0
Console.Write("Bbb".CompareTo("Ccc")); // -1

C#_9.0_Pocket_Reference_Instant.indb 40 30.03.2021 20:40:19

Массивы 41

Поиск в строках
Индексатор для string возвращает символ в указанной по-

зиции:
Console.Write(" "[3]); //

Методы IndexOf() и LastIndexOf() осуществляют по-
иск символа в строке. Методы Contains(), StartsWith() и
EndsWith() ищут подстроку в строке.

Манипулирование строками
Поскольку тип string является неизменяемым, все методы,

ко торые “манипулируют” строкой, возвращают новую строку,
оставляя исходную нетронутой:

метод Substring() извлекает часть строки;
методы Insert() и Remove() вставляют и удаляют симво-
лы в указанной позиции;
методы PadLeft() и PadRight() добавляют пробельные
символы;
методы TrimStart(), TrimEnd() и Trim() удаляют про-
бельные символы.

В классе string также определены методы ToUpper() и To
Lower() для изменения регистра символов, метод Split() — для
разбиения строки на подстроки (на основе предоставленных раз-
делителей) и статический метод Join() — для объединения под-
строк в строку.

Массивы
Массив представляет фиксированное количество элементов

конкретного типа. Элементы в массиве всегда хранятся в непре-
рывном блоке памяти, обеспечивая высокоэффективный доступ.

Массив обозначается квадратными скобками после типа эле-
ментов. Например, ниже объявлен массив из 5 символов:
char[] vowels = new char[5];

C#_9.0_Pocket_Reference_Instant.indb 41 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 42

С помощью квадратных скобок также указывается индекс в
массиве, позволяющий получать доступ к элементам по их пози-
циям:
vowels[0] = a ; vowels[1] = e ; vowels[2] = i ;
vowels[3] = o ; vowels[4] = u ;
Console.WriteLine(vowels[1]); // e

Этот код приведет к выводу буквы “e”, поскольку массив индек-
сируется, начиная с 0. Инструкцию цикла for можно использо-
вать для прохода по всем элементам массива. Цикл for в следую-
щем примере выполняется для целочисленных значений i от 0 до
4 включительно:
for (int i = 0; i < vowels.Length; i++)
 Console.Write(vowels[i]); // aeiou

Массивы также реализуют интерфейс IEnumerable<T> (см.
раздел “Перечисление и итераторы”), так элементы массива можно
обойти с помощью инструкции цикла foreach:
foreach(char c in vowels) Console.Write(c); // aeiou

Во время выполнения все обращения к индексам массивов про-
веряются на предмет выхода за границы. В случае некорректного
значения индекса генерируется исключение IndexOutOfRange
Exception:
vowels[5] = 'y'; //

Свойство Length массива возвращает количество элементов в
массиве. После создания массива изменить его длину невозмож-
но. Пространство имен System.Collection и вложенные в него
пространства имен предоставляют такие высокоуровневые струк-
туры данных, как массивы с динамически изменяемыми размера-
ми и словари.

Выражение инициализации массива позволяет объявлять и за-
полнять массив единой инструкцией:
char[] vowels = new char[] { a , e , i , o , u };

или проще:
char[] vowels = { a , e , i , o , u };

Все массивы унаследованы от класса System.Array, в котором
определены общие методы и свойства для всех массивов. Сюда
входят свойства экземпляра наподобие Length и Rank и статиче-
ские методы для выполнения следующих действий:

C#_9.0_Pocket_Reference_Instant.indb 42 30.03.2021 20:40:19

Массивы 43

динамическое создание массива (CreateInstance);
извлечени е и установка элементов независимо от типа мас-
сива (GetValue/SetValue);
поиск в отсортированном (BinarySearch) или неотсор-
тированном (IndexOf, LastIndexOf, Find, FindIndex,
FindLastIndex) массиве;
сортировка массива (Sort);
копирование массива (Copy).

Инициализация элементов по умолчанию
 При создании массива всегда происходит инициализация его

элементов значениями по умолчанию. Значение по умолчанию для
типа представляет собой результат побитового обнуления памяти.
Например, предположим, что создается массив целых чисел. По-
скольку типом значения является int, выделится пространство под
1000 целочисленных значений в виде одного непрерывного блока
памяти. Значением по умолчанию для каждого элемента будет 0:
int[] a = new int[1000];
Console.Write(a[123]); // 0

Для элементов ссылочного типа значением по умолчанию яв-
ляется null.

Независимо от типа элементов сам массив всегда является объ-
ектом ссылочного типа. Например, следующая инструкция вполне
допустима:
int[] a = null;

Индексы и диапазоны
Для упрощения работы с элементами или частями массива в

C# 8 были введены индексы и диапазоны.

ПРИМЕЧАНИЕ
Индексы и диапазоны также работают с типами Span<T>
и ReadOnlySpan<T> из CLR, которые предоставляют эф-
фективный низкоуровневый доступ к управляемой или
неуправляемой памяти.

C#_9.0_Pocket_Reference_Instant.indb 43 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 44

Вы также можете создавать собственные типы, работа-
ющие с индексами и диапазонами, путем определения
индексатора типа Index или Range (см. раздел “Индек-
саторы”).

Индексы
Индексы позволяют обращаться к элементам относительно кон-

ца массива с помощью оператора ^. Конструкция ^1 обращается к
последнему элементу, ^2 — ко второму с конца и т.д.:
char[] vowels = new char[] { a , e , i , o , u };
char lastElement = vowels[^1]; // u
char secondToLast = vowels[^2]; // o

(^0 соответствует длине массива, поэтому vowels[^0] приводит
к ошибке.)

Индексы в C# реализованы с помощью типа Index, а потому
можно поступать также следующим образом:
Index first = 0;
Index last = ^1;
char firstElement = vowels[first]; // a
char lastElement = vowels[last]; // u

Диапазоны
Диапазоны дают возможность “нарезать” массив с помощью

оператора ..:
char[] firstTwo = vowels[..2]; // a , e
char[] lastThree = vowels[2..]; // i , o , u
char[] middleOne = vowels[2..3]; // i

Второе число в диапазоне является исключающим, так что ..2
возвращает элементы перед vowels[2].

В диапазонах можно также использовать символ ^. Показан-
ный далее код возвращает последние два элемента:
char[] lastTwo = vowels [^2..^0]; // o , u

(Конструкция ^0 здесь допустима, поскольку второе число в
диапазоне исключающее.)

Диапазоны реализованы в C# с помощью типа Range, поэтому
можно также писать следующим образом:

C#_9.0_Pocket_Reference_Instant.indb 44 30.03.2021 20:40:19

Массивы 45

Range firstTwoRange = 0..2;
char[] firstTwo = vowels [firstTwoRange]; // a , e

Многомерные массивы
Многомерные массивы имеют две разновидности: прямоуголь-

ные и зубчатые. Прямоугольный массив представляет n-мерный
блок памяти, а зубчатый массив — это массив массивов.

Прямоугольные массивы
Прямоугольные массивы объявляются с использованием за-

пятых для отделения каждого измерения одно от другого. Ниже
приведено объявление прямоугольного двумерного массива раз-
мером 3 3:
int[,] matrix = new int [3, 3];

Метод GetLength() массива возвращает длину заданного из-
мерения (начиная с 0):
for (int i = 0; i < matrix.GetLength(0); i++)
 for (int j = 0; j < matrix.GetLength(1); j++)
 matrix [i, j] = i * 3 + j;

Прямоугольный массив может быть инициализирован следу-
ющим образом (для создания массива, идентичного массиву из
предыдущего примера):
int[,] matrix = new int[,]
{
 {0,1,2},
 {3,4,5},
 {6,7,8}
};

(Код, выделенный полужирным шрифтом, может быть опущен.)

Зубчатые массивы
Зубчатые массивы объявляются с применением последова-

тельно идущих пар квадратных скобок для каждого измерения.
Ниже показан пример объявления зубчатого двумерного массива,
в котором самое внешнее измерение равно 3:
int[][] matrix = new int[3][];

C#_9.0_Pocket_Reference_Instant.indb 45 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 46

Внутренние измерения в объявлении не указываются, так как
в отличие от прямоугольного массива каждый внутренний массив
может иметь произвольную длину. Каждый внутренний массив
неявно инициализируется значением null, а не пустым массивом.
Каждый внутренний массив должен создаваться вручную:
for (int i = 0; i < matrix.Length; i++)
{
 matrix[i] = new int[3]; //
 for (int j = 0; j < matrix[i].Length; j++)
 matrix[i][j] = i * 3 + j;
}

Зубчатый массив можно инициализировать следующим обра-
зом (для создания массива, идентичного массиву из предыдущего
примера, но с дополнительным элементом в конце):
int[][] matrix = new int[][]
{
 new int[] {0,1,2},
 new int[] {3,4,5},
 new int[] {6,7,8,9}
};

(Код, выделенный полужирным шрифтом, может быть опущен.)

Упрощенные выражения инициализации массивов
Ранее уже было показано, как упростить выражения инициа-

лизации массивов, опуская ключевое слово new и объявление типа
char[] vowels = new char[] { a , e , i , o , u };
char[] vowels = { a , e , i , o , u };

При другом подходе после ключевого слова new имя типа не
указывается и компилятор должен будет самостоятельно вывести
тип массива. Это удобное сокращение при передаче массивов в ка-
честве аргументов. Например, рассмотрим следующий метод:
void Foo (char[] data) { ... }

Мы можем вызывать метод Foo() с массивом, создаваемым
“на лету”:
Foo(new char[] { a , e , i , o , u }); //
Foo(new[] { a , e , i , o , u }); //

C#_9.0_Pocket_Reference_Instant.indb 46 30.03.2021 20:40:19

Переменные и параметры 47

Как вы увидите позже, такое сокращение жизненно важно для
создания массивов анонимных типов.

Переменные и параметры
Переменная представляет ячейку в памяти, которая содержит

изменяемое значение. Переменная может быть локальной перемен-
ной, параметром (передаваемым по значению, ссылке, входным и
выходным), полем (экземпляра или статическим) или элементом
массива.

Стек и куча
Стек и куча — это места, где располагаются переменные. Стек

и куча имеют существенно различающуюся семантику времени
жизни.

Стек
Стек представляет собой блок памяти для хранения локальных

переменных и параметров. Стек логически увеличивается при вхо-
де в метод или функцию, а после выхода уменьшается. Взгляни-
те на следующий метод (чтобы не отвлекать внимания, проверка
входного аргумента не делается):
static int Factorial (int x)
{
 if (x == 0) return 1;
 return x * Factorial(x-1);
}

Этот метод является рекурсивным , т.е. он вызывает сам себя.
Каждый раз, когда происходит вход в метод, в стеке размещается
новый экземпляр int, а каждый раз, когда метод завершается, па-
мять, выделенная этому экземпляру int, освобождается.

Куча
Куча — это память, в которой располагаются объекты (т.е. эк-

земпляры ссылочного типа). Всякий раз, когда создается новый
объект, он размещается в куче и на него возвращается ссылка. Во
время выполнения программы по мере создания новых объектов

C#_9.0_Pocket_Reference_Instant.indb 47 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 48

куча начинает заполняться. В исполняющей среде предусмотрен
сборщик мусора , который периодически освобождает объекты
из кучи, чтобы программа не столкнулась с нехваткой памяти.
Объект становится пригодным для освобождения, если отсутству-
ют ссылки на него.

Экземпляры типов-значений (и ссылки на объекты) хранятся
там, где были объявлены соответствующие переменные. Если эк-
земпляр был объявлен как поле внутри типа класса или как эле-
мент массива, то такой экземпляр располагается в куче.

ПРИМЕЧАНИЕ
В языке C# нельзя явно удалять объекты, как это делает-
ся в C++. Объект без ссылок со временем уничтожается
сборщиком мусора.

В куче также хранятся статические поля и константы. В отли-
чие от объектов, память для которых выделена в куче (и которые
могут быть обработаны сборщиком мусора), они существуют
до тех пор, пока домен приложения не прекратит свое существо-
вание.

Определенное присваивание
В C# принудительно применяется политика определенного

присваивания. На практике это означает, что за пределами кон-
текста unsafe получить доступ к неинициализированной памяти
невозможно. Определенное присваивание приводит к трем след-
ствиям.

Локальным переменным перед тем, как их можно будет чи-
тать, должны быть присвоены значения.
При вызове метода должны быть предоставлены аргумен-
ты функции (если только они не помечены как необяза-
тельные; см. раздел “Необязательные параметры”).
Все остальные переменные (такие, как поля и элементы
массивов) автоматически инициализируются исполняю-
щей средой.

C#_9.0_Pocket_Reference_Instant.indb 48 30.03.2021 20:40:19

Переменные и параметры 49

Например, следующий код вызывает ошибку времени компи-
ляции:
int x; // x –
Console.WriteLine(x); //

Однако следующий код выводит 0, потому что поля неявно
получают значения по умолчанию (будь то поле экземпляра или
статическое):
Console.WriteLine(Test.X); // 0
class Test { public static int X; } //

Значения по умолчанию
Экземпляры всех типов имеют значения по умолчанию. Значе-

ния по умолчанию для предопределенных типов являются резуль-
татом побитового обнуления памяти и представляют собой null
для ссылочных типов, 0 — для числовых и перечислимых типов,
'\0' — для типа char и false — для типа bool.

Получить значение по умолчанию для любого типа можно с
использованием ключевого слова default (как вы увидите поз-
же, на практике поступать так удобно при работе с обобщениями).
Значение по умолчанию в пользовательском типе-значении (т.е.
struct) — это то же самое, что и значения по умолчанию для всех
полей, определенных данным пользовательским типом.
Console.WriteLine(default(decimal)); // 0
decimal d = default;

Параметры
Метод может принимать последовательность параметров. Па-

раметры определяют набор аргументов, которые должны быть
предоставлены этому методу. В следующем примере метод Foo()
имеет единственный параметр с именем p типа int:
Foo (8); // 8 —
static void Foo (int p) {...} // p —

Управлять способом передачи параметров можно с помощью
модификаторов ref, out и in (табл. 5).

C#_9.0_Pocket_Reference_Instant.indb 49 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 50

 5.

Модификатор
параметра

Способ передачи Когда требуется определенное
присваивание значения переменной

Отсутствует По значению При входе

ref По ссылке При входе

out По ссылке При выходе

in По ссылке (только чтение) При входе

Передача аргументов по значению
По умолчанию аргументы в C# передаются по значению, что,

несомненно, является самым распространенным случаем. Это оз-
начает, что при передаче методу создается копия значения:
int x = 8;
Foo(x); // x
Console.WriteLine(x); // x 8

static void Foo (int p)
{
 p = p + 1; // p 1
 Console.WriteLine(p); // p
}

Присваивание p нового значения не изменяет содержимое x,
потому что p и x находятся в разных ячейках памяти.

Передача по значению аргумента ссылочного типа приводит к
копированию ссылки, но не объекта. В следующем примере метод
Foo() видит тот же объект StringBuilder, который был инстан-
цирован (sb), однако имеет независимую ссылку на него. Другими
словами, sb и fooSB являются отдельными друг от друга перемен-
ными, которые ссылаются на один и тот же объект:
StringBuilder sb = new StringBuilder();
Foo(sb);
Console.WriteLine(sb.ToString()); // test

static void Foo(StringBuilder fooSB)
{
 fooSB.Append("test");
 fooSB = null;
}

C#_9.0_Pocket_Reference_Instant.indb 50 30.03.2021 20:40:19

Переменные и параметры 51

Поскольку fooSB — копия ссылки, установка ее равной null
не приводит к установке в null переменной sb. (Однако если па-
раметр fooSB объявить и вызывать с модификатором ref, то sb
станет равной null.)

Модификатор ref
Для передачи по ссылке в C# предусмотрен модификатор пара-

метра ref . В приведенном ниже примере p и x ссылаются на одну
и ту же ячейку памяти:
int x = 8;
Foo(ref x); // Foo x
Console.WriteLine(x); // x 9

static void Foo(ref int p)
{
 p = p + 1; // p 1
 Console.WriteLine(p); // p
}

Теперь присваивание p нового значения изменяет содержи -
мое x. Обратите внимание, что модификатор ref должен быть
указан как при определении, так и при вызове метода. Это делает
происходящее совершенно ясным.

ПРИМЕЧАНИЕ
Параметр может быть передан по ссылке или по значению
независимо от того, относится он к ссылочному типу или
к типу-значению.

Модификатор out
Аргумент out схож с аргументом ref, за исключением следу-

ющих аспектов:

он не нуждается в присваивании значения перед входом в
функцию;
ему обязательно должно быть присвоено значение перед
выходом из функции.

Модификатор out чаще всего применяется для получения из
метода нескольких возвращаемых значений.

C#_9.0_Pocket_Reference_Instant.indb 51 30.03.2021 20:40:19

Язык C# 9.0. Карманный справочник 52

Переменные out и их отбрасывание
Начиная с версии C# 7, при вызове методов с параметрами out

переменные можно объявлять “на лету”:
int.TryParse ("123", out int x);
Console.WriteLine(x);

Приведенный выше код эквивалентен следующему:
int x;
int.TryParse ("123", out x);
Console.WriteLine(x);

Когда вызываются методы с множеством параметров out,
с помощью символа подчеркивания можно “отбрасывать” любые
параметры, которые не интересуют вызывающий код. Предпо-
лагая, что метод SomeBigMethod() был определен с пятью па-
раметрами out, вот как можно проигнорировать все параметры,
кроме третьего:
SomeBigMethod(out _, out _, out int x, out _, out _);
Console.WriteLine(x);

Модификатор in
Начиная с версии C# 7.2, параметр можно предварять модифи-

катором in , чтобы гарантировать его неизменность внутри мето-
да. В результате у компилятора появляется возможность избежать
накладных расходов по созданию копии аргумента для его пере-
дачи, которые могут оказаться существенными в случае крупных
пользовательских типов значений (см. разде л “Структуры”).

Модификатор params
Модификатор params , когда он применяется к последнему па-

раметру метода, позволяет методу принимать любое количество
аргументов определенного типа. Тип такого параметра должен
быть объявлен как массив. Например:
static int Sum(params int[] ints)
{
 int sum = 0;
 for (int i = 0; i < ints.Length; i++) sum += ints[i];
 return sum;
}

C#_9.0_Pocket_Reference_Instant.indb 52 30.03.2021 20:40:19

Переменные и параметры 53

Вызвать метод Sum() можно так:
Console.WriteLine(Sum(1, 2, 3, 4)); // 10

Аргумент params может быть также предоставлен как обыч-
ный массив. Предыдущий вызов семантически эквивалентен сле-
дующему коду:
Console.WriteLine(Sum(new int[] { 1, 2, 3, 4 }));

Необязательные параметры
В методах, конструкторах и индексаторах можно объявлять

необязательные параметры. Параметр является необязательным,
если в его объявлении указано значение по умолчанию:
void Foo(int x = 23) { Console.WriteLine(x); }

При вызове метода необязательные параметры могут быть
опущены:
Foo(); // 23

В действительности в качестве необязательного параметра x
передается аргумент со значением по умолчанию 23 — компиля-
тор встраивает это значение в скомпилированный вызывающий
код. Показанный выше вызов Foo() семантически эквивалентен
вызову
Foo(23);

потому что компилятор просто подставляет значение по умолча-
нию необязательного параметра.

ПРИМЕЧАНИЕ
Добавление необязательного параметра к открытому ме-
тоду, который вызывается из другой сборки, требует пе-
рекомпиляции обеих сборок — точно так же, как и в слу-
чае, если бы параметр был обязательным.

Значение по умолчанию необязательного параметра должно
быть указано в виде константного выражения или конструктора
без параметров для типа-значения. Необязательные параметры не
могут быть помечены модификатором ref или out.

C#_9.0_Pocket_Reference_Instant.indb 53 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 54

Обязательные параметры должны находиться перед необя-
зательными параметрами в объявлении метода и при его вызове
(исключением являются аргументы params, которые всегда рас-
полагаются последними). В следующем примере для x передается
явное значение 1, а для y — значение по умолчанию 0:
Foo(1); // 1, 0
void Foo(int x = 0, int y = 0)
{
 Console.WriteLine(x + ", " + y);
}

Чтобы сделать иначе (поменять местами значение по умолча-
нию для x и указанное явно значение для y), требуется скомбини-
ровать необязательные параметры с именованными аргументами.

Именованные аргументы
Вместо распознавания аргумента по позиции его можно иден-

тифицировать по имени. Например:
Foo(x:1, y:2); // 1, 2

void Foo(int x, int y)
{
 Console.WriteLine(x + ", " + y);
}

Именованные аргументы могут находиться в любом порядке.
Следующие вызовы Foo() семантически идентичны:
Foo(x:1, y:2);
Foo(y:2, x:1);

Именованные и позиционные аргументы можно смешивать
при условии, что именованные аргументы указаны последними:
Foo (1, y:2);

Именованные аргументы особенно удобны в сочетании с не-
обязательными параметрами. Например, взгляните на такой
метод:
void Bar(int a=0, int b=0, int c=0, int d=0) { ... }

Его можно вызвать, предоставив только значение для d:
Bar(d:3);

Это особенно удобно при работе с API COM.

C#_9.0_Pocket_Reference_Instant.indb 54 30.03.2021 20:40:20

Переменные и параметры 55

Неявно типизированные локальные переменные
Часто случается так, что переменная объявляется и инициа-

лизируется за один шаг. Если компилятор способен вывести тип
из инициализирующего выражения, то на месте объявления типа
можно применять ключевое слово var. Например:
var x = "hello";
var y = new System.Text.StringBuilder();
var z = (float)Math.PI;

Это в точности эквивалентно следующему коду:
string x = "hello";
System.Text.StringBuilder y =
 new System.Text.StringBuilder();
float z = (float)Math.PI;

Из-за такой прямой эквивалентности неявно типизированные
переменные являются статически типизированными. Например,
приведенный ниже код вызовет ошибку времени компиляции:
var x = 5;
x = "hello"; // ; x int

В разделе “Анонимные типы” мы опишем сценарий, в котором
использование ключевого слова var обязательно.

Контекстное определение типа выражения new
Еще одно средство уменьшить лексическое повторение — это

появившаяся в C# 9 возможность контекстного определения типа
выражения new (target-typed new expressions):
StringBuilder sb1 = new();
StringBuilder sb2 = new("Test");

Этот код в точности эквивалентен следующему:
StringBuilder sb1 = new StringBuilder();
StringBuilder sb2 = new StringBuilder("Test");

Принцип заключается в том, что вы можете вызвать new без
указания имени типа, если компилятор может однозначно выве-
сти этот тип. Такие выражения new особенно полезны, когда объ-
явление переменной и инициализация находятся в разных частях

C#_9.0_Pocket_Reference_Instant.indb 55 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 56

вашего кода. Типичный пример — когда вы хотите инициализиро-
вать поле в конструкторе:
class Foo
{
 System.Text.StringBuilder sb;
 public Foo (string initialValue)
 {
 sb = new (initialValue);
 }
}

Эта функциональная возможность полезна и в следующей си-
туации:
MyMethod(new ("test"));
void MyMethod(System.Text.StringBuilder sb) { ... }

Выражения и операторы
Выражение , по сути, описывает значение. Простейшими раз-

новидностями выражений являются константы (наподобие 123)
и переменные (такие, как x). Выражения могут видоизменяться
и комбинироваться с помощью операторов. Оператор принима-
ет один или несколько входных операндов и дает на выходе новое
выражение:
12 * 30 // * - ; 12 30 -

Допускается строить сложные выражения, поскольку операнд
сам по себе может быть выражением, как операнд (12*30) в сле-
дующем примере:
1 + (12 * 30)

Операторы в C# могут быть классифицированы как унарные,
бинарные и тернарные в зависимости от количества операндов,
с которыми они работают (один, два или три). Бинарные опера-
торы всегда используют инфиксную форму записи, при которой
оператор помещается между двумя операндами.

Операторы, которые являются неотъемлемой частью самого
языка, называются основными, или первичными (primary); приме-
ром может служить оператор вызова метода. Выражение, не име-
ющее значения, называется пустым выражением (void expression):

C#_9.0_Pocket_Reference_Instant.indb 56 30.03.2021 20:40:20

Выражения и операторы 57

Console.WriteLine(1)

Поскольку пустое выражение не имеет значения, оно не может
использоваться в качестве операнда при построении более слож-
ных выражений:
1 + Console.WriteLine(1) //

Выражения присваивания
Выражение присваивания применяет оператор = для присва-

ивания переменной результата вычисления другого выражения.
Например:
x = x * 5

Выражение присваивания не является пустым. На самом деле
оно имеет значение, равное присваиваемому, а потому может
встраиваться в другое выражение. В следующем примере выраже-
ние присваивает значение 2 переменной x, и значение 10 — пере-
менной y:
y = 5 * (x = 2)

Такой стиль выражения может использоваться для инициали-
зации нескольких значений:
a = b = c = d = 0

 Составные операторы присваивания представляют собой син-
таксическое сокращение, которое объединяет присваивание с дру-
гим оператором. Например:
x *= 2 // x = x * 2
x <<= 1 // x = x << 1

(Тонкое исключение из этого правила касается событий, кото-
рые рассматриваются позже: операторы += и -= в них трактуются
специальным образом и отображаются на средства доступа add и
remove события.)

Приоритеты и ассоциативность операторов
Когда выражение содержит несколько операторов, порядок их

вычисления определяется приоритетами и ассоциативностью .
Операторы с более высокими приоритетами выполняются перед

C#_9.0_Pocket_Reference_Instant.indb 57 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 58

операторами, приоритеты которых ниже. Если операторы имеют
одинаковые приоритеты, то порядок их выполнения определяется
ассоциативностью.

Приоритеты операторов
Выражение 1+2*3 вычисляется как 1+(2*3), потому что опе-

ратор * имеет более высокий приоритет, чем +.

Левоассоциативные операторы
Бинарные операторы (кроме оператора присваивания, лямбд

и операторов объединения с null) являются левоассоциативны-
ми; другими словами, они вычисляются слева направо. Например,
выражение 8/4/2 вычисляется как (8/4)/2 по причине левоассо-
циативности оператора деления. Разумеется, порядок вычисления
можно изменить, расставив скобки.

Правоассоциативные операторы
Оператор присваивания, лямбда, оператор объединения с

null и условный оператор являются правоассоциативными; дру-
гими словами, они вычисляются справа налево. Правая ассоциа-
тивность обеспечивает возможность множественного присваи-
вания, такого как x=y=3: сначала значение 3 присваивается пере-
менной y, а затем результат этого выражения (3) присваивается
переменной x.

Таблица операторов
В табл. 6 перечислены операторы C# в порядке их приоритета.

О перегрузке операторов будет рассказано позже, в разделе “Пере-
грузка операторов”.

 6. C#

Символ
оператора Название Пример Возможность

перегрузки

Основные (наивысший приоритет)

. Доступ к члену x.y Нет

?. null-условный x?.y Нет

C#_9.0_Pocket_Reference_Instant.indb 58 30.03.2021 20:40:20

Выражения и операторы 59

Символ
оператора Название Пример Возможность

перегрузки

-> Указатель на структу-
ру (небезопасный)

x->y Нет

() Вызов функции x() Нет

[] Массив/индекс a[x] Через индек-
сатор

++ Пост-инкремент x++ Да

-- Пост-декремент x-- Да

new Создание экземпляра new Foo() Нет

stackalloc Небезопасное выделе-
ние памяти в стеке

stackalloc(10) Нет

typeof Получение типа иден-
тификатора

typeof(x) Нет

nameof Получение имени
идентификатора

nameof(x) Нет

checked Проверка целочислен-
ного переполнения

checked(x) Нет

unchecked Отказ от проверки
целочисленного пере-
полнения

unchecked(x) Нет

default Значение по умол-
чанию

default(char) Нет

sizeof Получение размера
структуры

sizeof(in t) Нет

Унарные

await Ожидание await MyTask Нет

+ Положительное зна-
чение

+x Да

- Отрицательное зна-
чение

-x Да

! Не (отрицание) !x Да

Продолжение табл. 6

C#_9.0_Pocket_Reference_Instant.indb 59 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 60

Символ
оператора Название Пример Возможность

перегрузки

~ Побитовое допол-
нение

~x Да

++ Префиксный инкре-
мент

++x Да

-- Префиксный декре-
мент

--x Да

() Приведение типа (int)x Нет

* Значение по адресу
(разыменование)
(небезопасный)

*x Нет

& Адрес значения
(небезопасный)

&x Нет

Мультипликативные

* Умножение x*y Да

/ Деление x/y Да

% Остаток от деления x%y Да

Аддитивные

+ Сложение x+y Да

- Вычитание x-y Да

Сдвиг

<< Сдвиг влево x<<1 Да

>> Сдвиг вправо x>>1 Да

Отношения

< Меньше x<y Да

> Больше x>y Да

<= Меньше или равно x<=y Да

>= Больше или равно x>=y Да

is Принадлежность клас-
су или его подклассу

x is y Нет

Продолжение табл. 6

C#_9.0_Pocket_Reference_Instant.indb 60 30.03.2021 20:40:20

Выражения и операторы 61

Символ
оператора Название Пример Возможность

перегрузки

as Преобразование типа x as y Нет

Равенство

== Равно x==y Да

!= Не равно x!=y Да

Логическое и

& И x&y Да

Логическое исключающее или

^ Исключающее или x^y Да

Логическое или

| Или x|y Да

Условное и

&& Условное и x&&y Через &

Условное или

|| Условное или x||y Через |

Объединение с null

?? Объединение с null x??y Нет

Условный (тернарный)

?: Условный оператор isTrue ? trueThis :
falseThis

Нет

Присваивание и лямбда (наинизший приоритет)

= Присваивание x=y Нет

*= Умножение с присва-
иванием

x*=2 Через *

/= Деление с присваи-
ванием

x/=2 Через /

+= Сложение с присваи-
ванием

x+=2 Через +

Продолжение табл. 6

C#_9.0_Pocket_Reference_Instant.indb 61 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 62

Символ
оператора Название Пример Возможность

перегрузки

-= Вычитание с присваи-
ванием

x-=2 Через -

<<= Сдвиг влево с присва-
иванием

x<<=2 Через <<

>>= Сдвиг вправо с при-
сваиванием

x>>=2 Через >>

&= И с присваиванием x&=2 Через &

^= Исключающее или с
присваиванием

x^=2 Через ^

|= Или с присваиванием x|=2 Через |

=> Лямбда x => x+1 Нет

 null-операторы
В языке C# определены три оператора, предназначенные для

упрощения работы со значениями null: оператор объединения с
null (null coalescing), null-условный оператор (null-conditional)
и оператор присваивания с объединением с null.

Оператор объединения с null
Оператор объединения с null обозначается как ??. Он заклю-

чается в следующем: если операнд слева не равен null, возвраща-
ется его значение, в противном случае возвращается другое значе-
ние. Например:
string s1 = null;
string s2 = s1 ?? "nothing"; // s2 "nothing"

Если левый операнд не равен null, то правый операнд не вы-
числяется. Оператор объединения с null работает также с типа-
ми, допускающими значения null (см. раздел “Типы-значения,
допускающие null”).

Окончание табл. 6

C#_9.0_Pocket_Reference_Instant.indb 62 30.03.2021 20:40:20

null-операторы 63

Оператор присваивания с объединением с null
Оператор ??= выполняет присваивание переменной, только

если ее значение равно null. Таким образом, код
myVariable ??= someDefault;

эквивалентен коду
if (myVariable == null) myVariable = someDefault;

null-условный оператор
null-условный оператор обозначается как ?.. Он позволяет

вызывать методы и получать доступ к членам подобно стандарт-
ному оператору доступа — точке, но с тем отличием, что если нахо-
дящийся слева операнд равен null, то результатом выражения бу-
дет null, а не генерация исключения NullReferenceException:
System.Text.StringBuilder sb = null;
string s = sb?.ToString(); // ; s null

Последняя строка кода эквивалентна строке
string s = (sb == null ? null : sb.ToString());

Столкнувшись со значением null, рассматриваемый оператор
не вычисляет оставшуюся часть выражения. В следующем при-
мере переменная s получает значение null, несмотря на наличие
 стандартного оператора точки между ToString() и ToUpper():
System.Text.StringBuilder sb = null;
string s = sb?.ToString().ToUpper(); //

Многократное использование данного оператора необходимо,
только если находящийся непосредственно слева операнд может
быть равен null. Приведенное ниже выражение надежно работа-
ет в ситуациях, когда и x, и x.y могут быть равны null:
x?.y?.z

Этот код эквивалентен следующему выражению (с тем отличи-
ем, что в нем x.y вычисляется только один раз):
x == null ? null : (x.y == null ? null : x.y.z)

Окончательное выражение должно быть способным прини-
мать значение null. Показанный далее код не является допусти-
мым, так как тип int не может принимать значение null:

C#_9.0_Pocket_Reference_Instant.indb 63 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 64

System.Text.StringBuilder sb = null;
int length = sb?.ToString().Length; //

Исправить ситуацию можно путем применения типа, допуска-
ющего значение null (см. раздел “Типы-значения, допускающие
null”):
int? length = sb?.ToString().Length;
// OK : int? null

null-условный оператор можно также использовать для вызо-
ва void-метода:
someObject?.SomeVoidMethod();

Если переменная someObject равна null, то вместо генера-
ции исключения NullReferenceException этот вызов превра-
щается в “отсутствие операции”.

null-условный оператор может применяться с часто исполь-
зуемыми членами типов, которые описаны в разделе “Классы”,
в том числе с методами, полями, свойствами и индексаторами. Он
также хорошо сочетается с оператором объединения с null:
System.Text.StringBuilder sb = null;
string s = sb?.ToString() ?? "nothing";
// s "nothing"

Инструкции
 Функции состоят из инструкций, которые выполняются по-

следовательно, в порядке их появления внутри программы. Блок
инструкций — это группа инструкций, находящихся между фи-
гурными скобками ({}).

Инструкции объявления
Инструкция объявления объявляет новую переменную с воз-

можностью ее дополнительной инициализации посредством вы-
ражения. Инструкция объявления завершается точкой с запятой.
Можно объявлять несколько переменных одного и того же типа,
указывая их в списке с запятой в качестве разделителя. Например:
bool rich = true, famous = false;

C#_9.0_Pocket_Reference_Instant.indb 64 30.03.2021 20:40:20

Инструкции 65

Объявление константы схоже с объявлением переменной,
с тем отличием, что после объявления константа не может быть
изменена, а объявление обязательно должно сопровождаться ини-
циализацией (см. раздел “Константы”):
const double c = 2.99792458E08;

Область видимости локальной переменной
Областью видимости локальной переменной или локальной

константы является текущий блок. Нельзя объявлять еще одну ло-
кальную переменную с тем же именем в текущем блоке или в лю-
бых вложенных блоках.

Инструкции выражений
Инструкции выражений — это выражения, которые также яв-

ляются корректными инструкциями. На практике такие выраже-
ния что-то “делают”; другими словами, выражения:

присваивают или изменяют значение переменной;
создают экземпляр объекта;
вызывают метод.

Выражения, которые не делают ничего из перечисленного вы-
ше, не являются корректными инструкциями:
string s = "foo";
s.Length; // : !

При вызове конструктора или метода, который возвращает зна-
чение, вы не обязаны использовать результат. Тем не менее, если
только данный конструктор или метод не изменяет состояние, то
такая инструкция бесполезна:
new StringBuilder(); // ,
x.Equals(y); // ,

Инструкции выбора
Инструкции выбора предназначены для управления потоком

выполнения программы на основании выполнения некоторых ус-
ловий.

C#_9.0_Pocket_Reference_Instant.indb 65 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 66

Инструкция if
Инструкция if выполняет некоторую другую инструкцию,

если результатом вычисления логического выражения является
true. Например:
if (5 < 2 * 3)
 Console.WriteLine("true"); // True

Инструкцией может быть блок кода:
if (5 < 2 * 3)
{
 Console.WriteLine("true"); // True
 Console.WriteLine("...")
}

Конструкция else
Инструкция if может дополнительно содержать конструкцию

else:
if (2 + 2 == 5)
 Console.WriteLine(" ");
else
 Console.WriteLine("False"); // False

Внутрь конструкции else можно поместить вложенную ин-
струкцию if:
if (2 + 2 == 5)
 Console.WriteLine(" ");
else
 if (2 + 2 == 4)
 Console.WriteLine(" "); //

Изменение потока выполнения с помощью фигурных скобок
Конструкция else всегда применяется к непосредственно

предшествующей инструкции if в блоке инструкций. Например:
if (true)
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine(" ");

Семантически этот код идентичен следующему:

C#_9.0_Pocket_Reference_Instant.indb 66 30.03.2021 20:40:20

Инструкции 67

if (true)
{
 if (false)
 Console.WriteLine();
 else
 Console.WriteLine(" ");
}

Переместив фигурные скобки, поток выполнения можно изме-
нить:
if (true)
{
 if (false)
 Console.WriteLine();
}
else
 Console.WriteLine(" ");

В языке C# отсутствует аналог ключевого слова elseif; однако
приведенный ниже шаблон позволяет достичь того же результата:
if (age >= 35)
 Console.WriteLine(" !");
else if (age >= 21)
 Console.WriteLine(" !");
else if (age >= 18)
 Console.WriteLine(" !");
else
 Console.WriteLine(" !");

Инструкция switch
Инструкции switch позволяют организовать ветвление пото-

ка выполнения программы на основе выбора из возможных значе-
ний, которые переменная может принимать. Инструкции switch
могут дать в результате более ясный код, чем множество инструк-
ций if, потому что они требуют только одно кратного вычисления
выражения. Например:
static void ShowCard (int cardNumber)
{
 switch (cardNumber)
 {
 case 13:
 Console.WriteLine(" ");
 break;

C#_9.0_Pocket_Reference_Instant.indb 67 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 68

 case 12:
 Console.WriteLine(" ");
 break;
 case 11:
 Console.WriteLine(" ");
 break;
 default: // cardNumber
 Console.WriteLine(cardNumber);
 break;
 }
}

Значения в каждом выражении case должны быть констан-
тами, что ограничивает разрешенные типы встроенными цело-
численными типами, типами bool, char и enum, а также типом
string. В конце каждой конструкции case необходимо явно ука-
зывать, куда выполнение должно передаваться дальше, с помощью
одной из инструкций перехода. Ниже перечислены возможные ва-
рианты:

break (переход в конец инструкции switch);
goto case x (переход к другой конструкции case);
goto default (переход к конструкции default);
любая другая инструкция перехода, например return,
throw, continue или goto .

Если для нескольких значений должен выполняться один и тот
же код, то конструкции case можно записывать последовательно:
switch (cardNumber)
{
 case 13:
 case 12:
 case 11:
 Console.WriteLine(" ");
 break;
 default:
 Console.WriteLine(" ");
 break;
}

Такая особенность инструкции switch может иметь решаю-
щее значение в плане получения более ясного кода, чем в случае
множества инструкций if-else.

C#_9.0_Pocket_Reference_Instant.indb 68 30.03.2021 20:40:20

Инструкции 69

Инструкция switch для типов
Начиная с версии C# 7, инструкция switch может работать с

типами:
static void TellMeTheType(object x)
{
 switch (x)
 {
 case int i:
 Console.WriteLine(" int!");
 break;
 case string s:
 Console.WriteLine(s.Length); // s
 break;
 case bool b when b == true:
 Console.WriteLine("True"); // b - true
 break;
 case null: // null
 Console.WriteLine("null");
 break;
 }
}

(Тип object допускает переменную любого типа; см. разделы
“Наследование” и “Тип object”.)

В каждой конструкции case указываются тип, с которым
должно быть выполнено сопоставление, и переменная, которой
необходимо присвоить типизированное значение в случае успеш-
ного совпадения. В отличие от констант, ограничения на исполь-
зуемые типы отсутствуют. В необязательной конструкции when
указывается условие, которое должно быть удовлетворено, чтобы
совпадение для case было успешным.

При использовании switch с типами порядок следования кон-
струкций case важен (в отличие от случая констант). Исключе-
нием из этого правила является конструкция default, которая
выполняется последней независимо от того, где она находится.

Можно указывать несколько конструкций case подряд. Вызов
Console.WriteLine() в приведенном ниже коде будет выпол-
няться для значения любого типа с плавающей точкой, которое
больше 1000:
switch(x)
{

C#_9.0_Pocket_Reference_Instant.indb 69 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 70

 case float f when f > 1000:
 case double d when d > 1000:
 case decimal m when m > 1000:
 Console.WriteLine("f, m, d ");
 break;

В данном примере компилятор позволяет задействовать пере-
менные f, d и m только в конструкциях when. При вызове метода
Console.WriteLine() неизвестно, какой из трех переменных бу-
дет присвоено значение, поэтому компилятор выносит их за пре-
делы области видимости.

Выражения switch
Начиная с версии C# 8, switch можно использовать в контек-

сте выражения. Ниже представлен пример, в котором предполага-
ется, что cardName имеет тип int:
string cardName = cardNumber switch
{
 13 => " ",
 12 => " ",
 11 => " ",
 _ => " " // default
};

Обратите внимание на то, что ключевое слово switch нахо-
дится после имени переменной, а конструкции case являются
выражениями (заканчивающими запятыми), а не инструкциями.
Переключатель можно организовать и со множественным значе-
нием (кортежем):
int cardNumber = 12; string suite = "spades";
string cardName = (cardNumber, suite) switch
{
 (13, "spades") => " ",
 (13, "clubs") => " ",
 ...
};

Инструкции итераций
 Язык C# позволяет многократно выполнять последовательно-

сти инструкций с помощью инструкций циклов while, do-while,
for и foreach.

C#_9.0_Pocket_Reference_Instant.indb 70 30.03.2021 20:40:20

Инструкции 71

Циклы while и do-while
Циклы while многократно выполняют код своего тела до тех

пор, пока результатом вычисления логического выражения явля-
ется true. Выражение проверяется перед выполнением тела цик-
ла. Например, следующий код выведет 012:
int i = 0;
while (i < 3)
{ //
 Console.Write(i++);
}

Циклы do-while отличаются по функциональности от циклов
while только тем, что логическое выражение в них проверяется
после выполнения блока инструкций (гарантируя, что блок выпол-
няется по крайней мере один раз). Ниже приведен предыдущий
пример, переписанный с использованием цикла do-while:
int i = 0;
do
{
 Console.WriteLine(i++);
}
while (i < 3);

Циклы for
Циклы for схожи с циклами while, но имеют специальные

конструкции для инициализации и итерирования переменной
цикла. Цикл for содержит три части:
for(; ;)
 - - -

 выполняется перед началом цикла и обычно
инициализирует одну или несколько переменных итерации.

 представляет собой логическое выражение, которое
проверяется перед каждой итерацией цикла. Тело цикла выполня-
 ется до тех пор, пока вычисление условия дает true.

 выполняется после каждой итерации цикла. Эта
часть обычно применяется для обновления переменной итерации.

Например, следующий код выводит числа от 0 до 2:
for(int i = 0; i < 3; i++)
 Console.WriteLine(i);

C#_9.0_Pocket_Reference_Instant.indb 71 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 72

Показанный далее код выводит первые 10 чисел Фибоначчи
(каждое число Фибоначчи является суммой двух предшествую-
щих чисел Фибоначчи):
for(int i = 0, prevFib = 1, curFib = 1; i < 10; i++)
{
 Console.WriteLine(prevFib);
 int newFib = prevFib + curFib;
 prevFib = curFib; curFib = newFib;
}

Любая из трех частей инструкции for может быть опущена.
Бесконечный цикл можно реализовать так (можно также исполь-
зовать while(true)):
for (;;) Console.WriteLine(" ");

Циклы foreach
Инструкция foreach обеспечивает проход по всем элементам

в перечислимом объекте. Большинство типов в C# и .NET, которые
представляют набор или список элементов, являются перечисли-
мыми, например массив и строка. Ниже демонстрируется пере-
числение символов в строке от первого до последнего:
foreach (char c in " ")
 Console.WriteLine(c + " "); //

Перечислимые объекты рассматриваются в разделе “Перечис-
ление и итераторы”.

Инструкции перехода
К инструкциям перехода в C# относятся break, continue,

goto, return и throw. Ключевое слово throw рассмотрено в раз-
деле “Инструкции try и исключения”.

Инструкция break
Инструкция break завершает выполнение тела итерации или

инструкции switch:
int x = 0;
while (true)
{
 if (x++ > 5) break; //

C#_9.0_Pocket_Reference_Instant.indb 72 30.03.2021 20:40:20

Инструкции 73

}
// break
...

Инструкция continue
Инструкция continue пропускает оставшиеся инструкции в

теле цикла и начинает следующую итерацию. Показанный далее
цикл пропускает четные числа:
for (int i = 0; i < 10; i++)
{
 if ((i % 2) == 0) continue;
 Console.Write (i + " "); / / 1 3 5 7 9
}

Инструкция goto
Инструкция goto передает выполнение метке (определяемой

с использованием двоеточия после идентификатора) в пределах
блока инструкций. Следующий код выполняет итерацию по чис-
лам от 1 до 5, имитируя поведение цикла for:
int i = 1;
startLoop:
if (i <= 5)
{
 Console.Write (i + " "); // 1 2 3 4 5
 i++;
 goto startLoop;
}

Инструкция return
Инструкция return завершает метод и должна возвращать

выражение, имеющее возвращаемый тип метода, если метод не
является void:
static decimal AsPercentage (decimal d)
{
 decimal p = d * 100m;
 return p; //
}

Инструкция return может находиться в любом месте мето-
да (кроме блока finally) и использоваться более одного раза.

C#_9.0_Pocket_Reference_Instant.indb 73 30.03.2021 20:40:20

Язык C# 9.0. Карманный справочник 74

Пространства имен
Пространство имен — это область, внутри которой имена

типов должны быть уникальными. Типы обычно организуются в
иерархические пространства имен, чтобы устранять конфликты
имен и упрощать поиск имен типов. Например, тип RSA, который
поддерживает шифрование с открытым ключом, определен в про-
странстве имен System.Security.Cryptography.

Пространство имен является неотъемлемой частью име-
ни типа. В показанном далее коде выполняется вызов метода
Create() класса RSA:
System.Security.Cryptography.RSA rsa =
 System.Security.Cryptography.RSA.Create();

ПРИМЕЧАНИЕ
Пространства имен не зависят от сборок, которые пред-
ставляют собой единицы развертывания, такие как .exe
или .dll.

Пространства имен также не влияют на доступность чле-
нов — public, internal, private и т.д.

Ключевое слово namespace определяет пространство имен
для типов внутри данного блока. Например:
namespace Outer.Middle.Inner
{
 class Class1 {}
 class Class2 {}
}

Иерархия вложенных пространств имен отражается с помо-
щью точек. Следующий код семантически идентичен предыдуще-
му примеру:
namespace Outer
{
 namespace Middle
 {
 namespace Inner
 {

C#_9.0_Pocket_Reference_Instant.indb 74 30.03.2021 20:40:21

Пространства имен 75

 class Class1 {}
 class Class2 {}
 }
 }
}

Ссылаться на тип можно с помощью его полностью квалифи-
цированного имени , которое включает все пространства имен, от
самого внешнего до самого внутреннего. Например, вот как мож-
но было бы сослаться на тип Class1 из предыдущего примера:
Outer.Middle.Inner.Class1.

Типы, которые не определены в каком-либо пространстве
имен, находятся в глобальном пространстве имен. Глобальное
пространство имен включает также пространства имен верхнего
уровня, такие как Outer в приведенном выше примере.

Директива using
Директива using импортирует пространство имен и явля-

ется удобным средством для обращения к типам без указания их
полностью квалифицированных имен. Мы можем ссылаться на
Class1 из предыдущего примера следующим образом:
using Outer.Middle.Inner;
Class1 c; //

Для ограничения области действия директива using может
быть вложена в само пространство имен.

Директива using static
Директива using static импортирует тип, а не простран-

ство имен. После нее все статические члены этого типа можно
использовать без полностью квалифицированного имени типа.
В следующем примере мы вызываем статический метод Write
Line класса Console:
using static System.Console;
WriteLine("Hello");

Директива using static импортирует все доступные стати-
ческие члены типа, включая поля, свойства и вложенные типы.
Эту директиву можно также применять к перечислениям (см.
раздел “Перечисления”); в этом случае импортируются их члены.

C#_9.0_Pocket_Reference_Instant.indb 75 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 76

Если между несколькими директивами статического импорта воз-
никает неоднозначность, компилятор C# не может вывести кор-
ректный тип из контекста и сообщает об ошибке.

Правила пространств имен
Область видимости имен

Имена, объявленные во внешних пространствах имен, могут
использоваться во внутренних пространствах имен без допол-
нительного указания пространства имен. В следующем приме-
ре Class1 не нуждается в указании пространства имен внутри
Inner:
namespace Outer
{
 class Class1 {}
 namespace Inner
 {
 class Class2 : Class1 {}
 }
}

Если на тип необходимо ссылаться из другой ветви иерархии
пространств имен, можно применять частично квалифицирован-
ное имя. В приведенном ниже примере класс SalesReport осно-
ван на Common.ReportBase:
namespace MyTradingCompany
{
 namespace Common
 {
 class ReportBase {}
 }
 namespace ManagementReporting
 {
 class SalesReport : Common.ReportBase {}
 }
}

Сокрытие имен
 Если одно и то же имя типа встречается во внутреннем и во

внешнем пространствах имен, то преимущество получает тип из

C#_9.0_Pocket_Reference_Instant.indb 76 30.03.2021 20:40:21

Пространства имен 77

внутреннего пространства имен. Чтобы сослаться на тип во внеш-
нем пространстве имен, имя требуется квалифицировать.

ПРИМЕЧАНИЕ
Все имена типов во время компиляции преобразуются в
полностью квалифицированные имена. В коде на проме-
жуточном языке (Intermediate Language — IL) неполные
или частично квалифицированные имена отсутствуют.

Повторяющиеся пространства имен
Объявление пространства имен можно повторять, если имена

типов в этих пространствах имен не конфликтуют друг с другом:
namespace Outer.Middle.Inner { class Class1 {} }
namespace Outer.Middle.Inner { class Class2 {} }

Классы могут даже охватывать исходные файлы и сборки.

Квалификатор global::
Иногда полностью квалифицированное имя типа может кон-

фликтовать с каким-то внутренним именем. Чтобы заставить
компилятор C# использовать полностью квалифицированное имя
типа, его понадобится снабдить префиксом global:: , как пока-
зано ниже:
global::System.Text.StringBuilder sb;

Псевдонимы типов и пространств имен
Импорт пространства имен может привести к конфликту имен

типов. Вместо полного пространства имен можно импортировать
только конкретные типы и назначать каждому такому типу псев-
доним. Например:
using PropertyInfo2 = System.Reflecti on.PropertyInfo;
class Program { PropertyInfo2 p; }

Псевдоним можно назначить целому пространству имен:
using R = System.Reflection;
class Program { R.PropertyInfo p; }

C#_9.0_Pocket_Reference_Instant.indb 77 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 78

Классы
Класс является наиболее распространенной разновидностью

ссылочного типа. Вот как выглядит объявление простейшего клас-
са из всех возможных:
class Foo
{
}

Более сложный класс может дополнительно иметь перечислен-
ные ниже компоненты.

Перед ключевым словом
class

Атрибуты и модификаторы класса. Модификаторами
невложенных классов являются public, internal,
abstract, sealed, static, unsafe и
partial

После имени класса Параметры обобщенных типов и ограничения, базовый
класс и интерфейсы

Внутри фигурных скобок Члены класса (к ним относятся методы, свойства, индек-
саторы, события, поля, конструкторы, перегруженные
операторы, вложенные типы и финализатор)

Поля
Поле — это переменная, которая является членом класса или

структуры. Например:
class Octopus
{
 string name;
 public int Age = 10;
}

Поле может иметь модификатор readonly , который предот-
вращает его изменение после конструирования. Присваивать
значение полю, допускающему только чтение, можно лишь в его
объявлении или внутри конструктора типа, в котором оно опре-
делено.

Инициализация полей является необязательной. Неинициа-
лизированное поле получает значение типа по умолчанию (0, \0,
null, false). Инициализаторы полей выполняются перед кон-
структорами в порядке, в котором они указаны.

C#_9.0_Pocket_Reference_Instant.indb 78 30.03.2021 20:40:21

Классы 79

Для удобства множество полей одного типа можно объявлять
списком, разделяя запятыми. Это подходящий способ обеспечить
совместное использование всеми полями одних и тех же атрибу-
тов и модификаторов полей. Например:
static readonly int legs = 8, eyes = 2;

Константы
Константа вычисляется статически на этапе компиляции,

и компилятор буквально подставляет ее значение везде, где оно
используется (что очень похоже на макрос в языке программиро-
вания C). Константа может иметь любой встроенный числовой
тип, быть bool, char, string или перечислением.

Константа объявляется с помощью ключевого слова const и
должна быть инициализирована каким-то значением. Например:
public class Test
{
 public const string Message = "Hello";
}

Константа является гораздо более ограничивающей, чем поле
static readonly, как в плане типов, которые можно применять,
так и в плане семантики инициализации полей. Кроме того, кон-
станта отличается от поля static readonly тем, что ее вычис-
ление происходит на этапе компиляции. Константы также могут
объявляться локально в методе:
static void Main()
{
 const double twoPI = 2 * System.Math.PI;
 ...
}

Методы
Метод выполняет действие в форме последовательности ин-

струкций. Он может получать входные данные из вызывающего
кода посредством параметров и возвращать выходные данные об-
ратно вызывающему коду с помощью возвращаемого типа. Метод
может иметь возвращаемый тип void, который указывает на то,

C#_9.0_Pocket_Reference_Instant.indb 79 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 80

что метод ничего не возвращает вызывающему коду. Метод также
может возвращать выходные данные вызывающему коду через па-
раметры, объявленные как ref и out.

Сигнатура метода должна быть уникальной в рамках типа.
Она включает в себя имя метода и типы параметров в указанном в
объявлении порядке (но не содержит имена параметров и возвра-
щаемый тип).

Методы, сжатые до выражений
Метод следующего вида, который состоит из единственного

выражения:
int Foo(int x) { return x * 2; }

можно более кратко записать как метод, сжатый до выражения
(expression-bodied method). Фигурные скобки и ключевое слово
return заменяются комбинацией =>:
int Foo(int x) => x * 2;

Функции, сжатые до выражений, могут также иметь возвраща-
емый тип void:
void Foo(int x) => Console.WriteLine(x);

Локальные методы
Метод может быть определен внутри другого метода:

void WriteCubes()
{
 Console.WriteLine(Cube (3));

 int Cube(int value) => value*value*value;
}

Локальный метод (в данном случае — Cube()) будет видимым
только для охватывающего метода (WriteCubes()). Это упрощает
содержащий метод тип и сигнализирует любому, кто просматри-
вает код, что Cube() больше нигде не применяется. Локальные ме-
тоды могут обращаться к локальным переменным и параметрам
охватывающего метода, что имеет несколько последствий, описан-
ных в разделе “Захват внешних переменных”.

Локальные методы могут появляться внутри функций других
видов, таких как средства доступа к свойствам, конструкторы и

C#_9.0_Pocket_Reference_Instant.indb 80 30.03.2021 20:40:21

Классы 81

так далее, и даже внутри других локальных методов. Локальные
методы могут быть итераторными или асинхронными.

Методы, объявленные в инструкциях верхнего уровня, неявно
являются локальными; мы можем продемонстрировать это следу-
ющим образом:
int x = 3; Foo();
void Foo() => Console.WriteLine(x); // x

Статические локальные методы
 Добавление модификатора static к локальному методу (на-

чиная с C# 8) предотвращает его обращение к локальным перемен-
ным и параметрам охватывающего метода. Это помогает умень-
шить связность и предотвратить локальный метод от случайного
обращения к переменным в охватывающем методе.

Перегрузка методов

ПРИМЕЧАНИЕ
Локальные методы не могут быть перегружены. Это зна-
чит, что методы, объявленные в инструкциях верхнего
уровня (которые рассматриваются как локальные мето-
ды), перегружены быть не могут.

 Тип может перегружать методы (иметь несколько методов с
одним и тем же именем) при условии, что типы параметров раз-
личаются. Например, все перечисленные ниже методы могут сосу-
ществовать внутри одного типа:
void Foo(int x);
void Foo(double x);
void Foo(int x, float y);
void Foo(float x, int y);

Конструкторы экземпляров
Конструкторы выполняют код инициализации класса или

структуры. Конструктор определяется подобно методу, с тем от-
личием, что вместо имени метода и возвращаемого типа указыва-
ется имя типа, к которому относится этот конструктор:

C#_9.0_Pocket_Reference_Instant.indb 81 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 82

Panda p = new Panda("Petey"); //

public class Panda
{
 string name; //
 public Panda (string n) //
 {
 name = n; //
 }
}

Конструкторы с единственной инструкцией могут записывать-
ся как члены, сжатые до выражений:
public Panda (string n) => name = n;

Класс или структура может перегружать конструкторы. Один
перегруженный конструктор способен вызывать другой, исполь-
зуя ключевое слово this:
public class Wine
{
 public Wine(decimal price) {...}

 public Wine(decimal price, int year)
 : this(price) {...}
}

Когда один конструктор вызывает другой, первым выполняет-
ся вызванный конструктор.

Другому конструктору можно передавать выражение следую-
щим образом:
public Wine (decimal price, DateTime year)
 : this (price, year.Year) {...}

В самом выражении не допускается применять ссылку this,
например, для вызова метода экземпляра. Однако вызывать ста-
тическ ие методы разрешено.

Неявные конструкторы без параметров
Компилятор C# автоматически генерирует для класса откры-

тый конструктор без параметров тогда и только тогда, когда в нем
не был определен ни один конструктор. Однако после определения
хотя бы одного конструктора конструктор без параметров автома-
тически не генерируется.

C#_9.0_Pocket_Reference_Instant.indb 82 30.03.2021 20:40:21

Классы 83

Неоткрытые конструкторы
Конструкторы не обязательно должны быть открытыми. Рас-

пространенной причиной наличия неоткрытого конструктора
является управление созданием экземпляров через вызов статиче-
ского метода. Статический метод может использоваться для воз-
вращения объекта из пула вместо создания нового объекта или
для возвращения специализированного подкласса, выбираемого
на основе входных аргументов.

Деконструкторы
В то время как конструктор обычно принимает набор значений

(в виде параметров) и присваивает их полям, деконструктор
(C# 7+) выполняет противоположное и присваивает поля на-
бору переменных. Имя метода деконструктора должно быть
Deconstruct(), а сам метод должен иметь один или более пара-
метров out:
class Rectangle
{
 public readonly float Width, Height;
 public Rectangle(float width, float height)
 {
 Width = width; Height = height;
 }
 public void Deconstruct(out float width,
 out float height)
 {
 width = Width; height = Height;
 }
}

Для вызова деконструктора применяется следующий специ-
альный синтаксис:
var rect = new Rectangle (3, 4);
(float width, float height) = rect;
Console.WriteLine(width + " " + height); // 3 4

Вторая строка представляет собой вызов деконструктора. Она
создает две локальные переменные, а затем обращается к методу
Deconstruct(). Такой вызов деконструктора эквивалентен сле-
дующему коду:
rect.Deconstruct(out var width, out var height);

C#_9.0_Pocket_Reference_Instant.indb 83 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 84

Вызовы деконструктора допускают неявную типизацию, так
что наш вызов можно было бы сократить следующим образом:
(var width, var height) = rect;

Или так:
var (width, height) = rect;

Если переменные, в которые производится деконструкция, уже
определены, то типы не указываются; это называется деконструи-
рующим присваиванием:
(width, height) = rect;

Перегружая метод Deconstruct(), вызывающему коду мож-
но предложить целый набор вариантов деконструкции.

ПРИМЕЧАНИЕ
Метод Deconstruct() может быть расширяющим мето-
дом (см. раздел “Расширяющие методы”). Прием удобен,
если вы хотите деконструировать типы, автором которых
не являетесь.

Инициализаторы объектов
Для упрощения инициализации объекта любые его доступные

поля и свойства могут быть инициализированы с помощью ини-
циализатора объекта непосредственно после создания. Напри-
мер, рассмотрим следующий класс:
public class Bunny
{
 public string Name;
 public bool LikesCarrots, LikesHumans;

 public Bunny() {}
 public Bunny(string n) { Name = n; }
}

Используя инициализаторы объектов, создавать объекты
Bunny можно следующим образом:

C#_9.0_Pocket_Reference_Instant.indb 84 30.03.2021 20:40:21

Классы 85

Bunny b1 = new Bunny {
 Name="Bo",
 LikesCarrots = true,
 LikesHumans = false
};
Bunny b2 = new Bunny ("Bo") {
 LikesCarrots = true,
 LikesHumans = false
};

Ссылка this
Ссылка this указывает на сам экземпляр. В следующем при-

мере метод Marry() использует ссылку this для установки поля
Mate экземпляра partner:
public class Panda
{
 public Panda Mate;

 public void Marry (Panda partner)
 {
 Mate = partner;
 partner.Mate = this;
 }
}

Ссылка this также устраняет неоднозначность между локаль-
ной переменной или параметром и полем. Например:
public class Test
{
 string name;
 public Test (string name) { this.name = name; }
}

Ссылка this допустима только внутри нестатических членов
класса или структуры.

Свойства
Внешне свойства выглядят схожими с полями, но внутренне

они содержат логику подобно методам. Например, взглянув на сле-
дующий код, невозможно сказать, чем является CurrentPrice —
полем или свойством:

C#_9.0_Pocket_Reference_Instant.indb 85 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 86

Stock msft = new Stock();
msft.CurrentPrice = 30;
msft.CurrentPrice -= 3;
Console.WriteLine(msft.CurrentPrice);

Свойство объявляется подобно полю, но с добавлением блока
get/set. Ниже показано, как реализовать CurrentPrice в виде
свойства:
public class Stock
{
 decimal currentPrice; // " "

 public decimal CurrentPrice //
 {
 get { r eturn currentPrice; }
 set { currentPrice = value; }
 }
}

get и set обозначают средства доступа (accessors) к свойству.
Средство доступа get вызывается при чтении свойства. Оно долж-
но возвращать значение, имеющее тип самого свойства. Средство
доступа set выполняется при присваивании свойству значения.
Оно принимает неявный параметр по имени value с типом свой-
ства, который обычно присваивается закрытому полю (в данном
случае полю currentPrice).

Хотя доступ к свойствам осуществляется таким же способом,
как и к полям, свойства отличаются тем, что предоставляют про-
граммисту полный контроль над получением и установкой их зна-
чений. Такой контроль позволяет программисту выбирать любое
необходимое внутреннее представление, не демонстрируя детали
свойства пользователю. В приведенном примере метод set мог бы,
например, генерировать исключение, если значение value выхо-
дит за пределы допустимого диапазона.

ПРИМЕЧАНИЕ
В книге повсеместно применяются открытые поля, что-
бы не усложнять излишне примеры и не отвлекать чита-
теля от сути. В реальном приложении для обеспечения
инкапсуляции предпочтение обычно отдается открытым
свойствам, а не открытым полям.

C#_9.0_Pocket_Reference_Instant.indb 86 30.03.2021 20:40:21

Классы 87

Свойство предназначено только для чтения, если для него ука-
зано одно лишь средство доступа get, и только для записи, если
определено одно лишь средство доступа set. Свойства только для
записи используются редко.

Свойство обычно имеет отдельное поддерживающее поле,
предназначенное для хранения лежащих в основе данных. Тем не
менее это не обязательно — свойство может возвращать значение,
вычисленное на базе других данных. Например:
decimal currentPrice, sharesOwned;

public decimal Worth
{
 get { return currentPrice * sharesOwned; }
}

Свойства, сжатые до выражений
Свойство только для чтения, подобное показанному в преды-

дущем разделе, можно объявлять более кратко как свойство, сжа-
тое до выражения (expression-bodied property). Фигурные скобки,
а также ключевые слова get и return заменяются оператором =>:
public decimal Worth => currentPrice * sharesOwned;

Начиная с версии C# 7, также допускается объявлять сжатыми
до выражения и средства доступа set:
public decimal Worth
{
 get => currentPrice * sharesOwned;
 set => sharesOwned = value / currentPrice;
}

Автоматические свойства
Наиболее распространенная реализация свойства предусма-

тривает наличие средств доступа get и/или set, которые просто
читают и записывают закрытое поле того же типа, что и свойство.
Объявление автоматического свойства указывает компилято-
ру на необходимость предоставления такой реализации. Пер-
вый пример в этом разделе можно усовершенствовать, объявив
CurrentPrice как автоматическое свойство:

C#_9.0_Pocket_Reference_Instant.indb 87 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 88

public class Stock
{
 public decimal CurrentPrice { get; set; }
}

Компилятор автоматически создает закрытое поддерживаю-
щее поле со специальным сгенерированным именем, к которому
невозможно обратиться. Средство доступа set может быть поме-
чено как private или protected, если вы хотите сделать данное
свойство доступным другим типам только для чтения.

Инициализаторы свойств
К автоматическим свойствам можно добавлять инициализато-

ры свойств в точности, как к полям:
public decimal CurrentPrice { get; set; } = 123;

В результате свойство CurrentPrice получает начальное зна-
чение 123. Свойства с инициализаторами могут допускать только
чтение:
public int Maximum { get; } = 999;

Как и поля, предназначенные только для чтения, автоматиче-
ские свойства, допускающие только чтение, могут присваиваться
также в конструкторе типа. Это удобно при создании неизменяе-
мых (доступных только для чтения) типов.

Доступность get и set
Средства доступа get и set могут иметь разные уровни досту-

па. В типичном сценарии может быть свойство public с модифи-
 катором доступа internal или private, указанным для средства
доступа set:
private decimal x;
public decimal X
{
 get { return x; }
 private set { x = Math.Round (value, 2); }
}

Обратите внимание, что само свойство объявлено с более ли-
беральным уровнем доступа (в данном случае — public), а к сред-
ству доступа, которое должно быть менее доступным, добавлен со-
ответствующий модификатор.

C#_9.0_Pocket_Reference_Instant.indb 88 30.03.2021 20:40:21

Классы 89

Инициализирующие установщики (C# 9)
Начиная с C# 9, вы можете объявить средство доступа к свой-

ству с использованием init вместо set:
public class Note
{
 public int Pitch { get; init; } = 20;
 public int Duration { get; init; } = 100;
}

Такие только инициализируемые свойства действуют подобно
свойствам только для чтения, с тем отличием, что их значения мо-
гут быть установлены с использованием инициализатора объекта:
var note = new Note { Pitch = 50 };

После этого свойство не может быть изменено:
note.Pitch = 200; // – init!

Только инициализируемые свойства не могут быть установ-
лены даже внутри своего класса, кроме как через инициализа-
тор свойства, конструктор или другое только инициализируемое
свойство.

Альтернативой только инициализируемым свойствам являют-
ся свойства, доступные только для чтения, которые вы устанавли-
ваете в конструкторе:
public Note (int pitch = 20, int duration = 100)
{
 Pitch = pitch; Duration = duration;
}

Если класс является частью открытой библиотеки, такой под-
ход затрудняет управление версиями, так как добавление необя-
зательного параметра в конструктор позже нарушает бинарную
совместимость с потребителями (тогда как добавление нового
только инициализируемого свойства ничего не нарушает).

ПРИМЕЧАНИЕ
Только инициализируемые свойства имеют еще одно су-
щественное преимущество: они допускают недеструк-
тивное изменение при использовании вместе с записями
(см. раздел “Записи (C# 9)”).

C#_9.0_Pocket_Reference_Instant.indb 89 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 90

Так же, как и обычные средства доступа set, средства доступа
init могут иметь реализации:
public class Point
{
 readonly int _x;
 public int X { get => _x; init => _x = value; }
 ...

Обратите внимание, что поле _x доступно только для чтения:
init может изменять поле, объявленное как readonly, только в
собственном классе. (Без этой возможности поле _x должно было
бы быть доступным и класс не был бы внутренне неизменным.)

Индексаторы
Индексаторы предлагают естественный синтаксис для досту-

па к элементам в классе или структуре, которая инкапсулирует
список либо словарь значений. Индексаторы подобны свойствам,
но предусматривают доступ через индексный аргумент, а не через
имя свойства. Класс string имеет индексатор, который позволяет
получать доступ к каждому значению char в нем с использовани-
ем индекса типа int:
string s = "hello";
Console.WriteLine(s[0]); // h
Console.WriteLine(s[3]); // l

Синтаксис использования индексаторов подобен синтаксису
работы с массивами, с тем отличием, что аргумент (или аргументы)
индекса может быть любого типа. Индексаторы могут вызываться
null-условно с использованием вопросительного знака перед от-
крывающей квадратной скобкой (см. раздел “null-операторы”):
string s = null;
Console.WriteLine(s?[0]); // ;
 // .

Реализация индексатора
Для реализации индексатора необходимо определить свойство

с именем this, указав аргументы в квадратных скобках. Например:
class Sentence
{

C#_9.0_Pocket_Reference_Instant.indb 90 30.03.2021 20:40:21

Классы 91

 string[] words = " ".Split();

 public string this [int wordNum] //
 {
 get { return words [wordNum]; }
 set { words [wordNum] = value; }
 }
}

Ниже показано, как можно применять такой индексатор:
Sentence s = new Sentence();
Console.WriteLine(s[2]); //
s[3] = " ";
Console.WriteLine(s[2]); //

Для типа можно объявлять несколько индексаторов, каждый с
параметрами разных типов. Индексатор также может принимать
более одного параметра:
public string this [int arg1, string arg2]
{
 get { ... } set { ... }
}

Если опустить средство доступа set, то индексатор станет
предназначенным только для чтения, и его определение можно
сократить с использованием синтаксиса, сжатого до выражения:
public string this [int wordNum] => words [wordNum];

Использование индексов и диапазонов с помощью индексаторов
Поддерживать в своих классах индексы и диапазоны (см. раз-

дел “Индексы и диапазоны”) можно с помощью определения ин-
дексатора с типом параметра Index или Range. Мы можем расши-
рить предыдущий пример, добавив в класс Sentence следующие
индексаторы:
public string this [Index index] => words [index];
public string[] this [Range range] => words [range];

Это позволит написать следующий код:
Sentence s = new Sentence();
Console.WriteLine(s[^1]); //
string[] firstTwoWords = s[..2]; // (,)

C#_9.0_Pocket_Reference_Instant.indb 91 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 92

Статические конструкторы
Статический конструктор выполняется однократно для типа,

а не для каждого экземпляра. В типе может быть определен только
один статический конструктор, он не должен принимать параме-
тры и должен иметь то же имя, что и тип:
class Test
{
 static Test(){ Console.Write(" "); }
}

Исполняющая среда автоматически вызывает статический
конструктор непосредственно перед началом использования типа.
Этот вызов инициируется двумя действиями: созданием экзем-
пляра типа и доступом к статическому члену типа.

ПРИМЕЧАНИЕ
Если статический конструктор генерирует необработан-
ное исключение, то тип, к которому он относится, стано-
вится неприменимым в жизненном цикле приложения.

ПРИМЕЧАНИЕ
Начиная с C# 9, вы также можете определять инициали-
заторы модулей , которые выполняются один раз для ка-
ждой сборки (когда сборка впервые загружается). Чтобы
определить инициализатор модуля, напишите статиче-
ский void-метод и примените к нему атрибут [Module
Initializer]:
[System.Runtime.CompilerServices.
ModuleInitializer]
internal static void InitAssembly()
{
...
}

Инициализаторы статических полей выполняются непосред-
ственно перед вызовом статического конструктора. Если тип не

C#_9.0_Pocket_Reference_Instant.indb 92 30.03.2021 20:40:21

Классы 93

имеет статического конструктора, то инициализаторы статиче-
ских полей будут выполняться непосредственно перед началом
использования типа — или в любой момент раньше по прихоти
исполняющей среды.

Статические классы
 Класс может быть помечен как static, что указывает на то,

что он должен состоять исключительно из статических членов и
не допускать создание подклассов. Хорошими примерами стати-
ческих классов могут служить System.Console и System.Math.

Финализаторы
Финализаторы — это методы, предназначенные только для

классов, которые выполняются перед тем, как сборщик мусора ос-
вободит память, занятую объектом с отсутствующими ссылками
на него. Синтаксически финализатор записывается как имя клас-
са, предваренное символом ~:
class Class1
{
 ~Class1() { ... }
}

Компилятор C# транслирует финализатор в метод, который
перекрывает метод Finalize() класса object. Сборка мусора
и финализаторы подробно обсуждаются в главе 12 книги C# 9.0.
Справочник. Полное описание языка.

Финализаторы, состоящие из единственного оператора, могут
быть записаны с помощью синтаксиса сжатия до выражения.

Частичные типы и методы
Частичные типы позволяют расщеплять определение типа,

обычно разнося его по нескольким файлам. Распространенный
сценарий предполагает автоматическую генерацию частичного
класса из какого-то другого источника (например, шаблона Visual
Studio) и последующее его дополнение вручную написанными ме-
тодами. Например:

C#_9.0_Pocket_Reference_Instant.indb 93 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 94

// PaymentFormGen.cs –
partial class PaymentForm { ... }

// PaymentForm.cs –
partial class PaymentForm { ... }

Каждый участник должен иметь объявление partial .
Участники не могут содержать конфликтующие члены. Напри-

мер, нельзя повторять конструктор с одними и теми же параме-
трами. Частичные типы полностью разрешаются компилятором,
а это значит, что каждый участник должен быть доступен на этапе
компиляции и располагаться в одной и той же сборке.

Базовый класс может быть указан как для единственного
участника, так и для множества участников (при условии, что для
каждого из них базовый класс будет одним и тем же). Кроме того,
для каждого участника можно независимо указывать интерфейсы,
подлежащие реализации. Базовые классы и интерфейсы рассма-
триваются в разделах “Наследование” и “Интерфейсы”.

Частичные методы
 Частичный тип может содержать частичные методы. Они по-

зволяют автоматически сгенерированному частичному типу пре-
доставлять настраиваемые точки привязки для ручного написа-
ния кода. Например:
partial class PaymentForm //
{ //
 partial void ValidatePayment (decimal amount);
}

partial class PaymentForm // ,
{ //
 partial void ValidatePayment (decimal amount)
 {
 if (amount > 100) Console.Write (" !");
 }
}

Частичный метод состоит из двух частей: определения и реа-
лизации. Определение обычно записывается генератором кода,
а реализация — вручную. Если реализация не предоставлена, то
определение частичного метода при компиляции удаляется (вме-
сте с кодом его вызова). Это дает автоматически сгенерированно-

C#_9.0_Pocket_Reference_Instant.indb 94 30.03.2021 20:40:21

Классы 95

му коду большую свободу в предоставлении точек привязки, не
заставляя беспокоиться по поводу разбухания кода. Частичные
методы должны быть void-методами, и неявно они являются
private.

Расширенные частичные методы (C# 9)
Расширенные частичные методы предназначены для обратно-

го сценария генерации кода, в котором программист определяет
точки привязки, которые реализует генератор кода. Это может
происходить, например, в генераторах исходных текстов (функ-
циональная возможность Roslyn, позволяющая вам передавать
компилятору сборку, которая автоматически генерирует части ва-
шего кода).

Объявление частичного метода расширенное, если оно начина-
ется с модификатора доступности:
public partial class Test
{
 public partial void M1(); //
 private partial void M2(); //
}

Наличие модификатора доступности влияет не только на до-
ступность: он также сообщает компилятору о том, что данное объ-
явление должно рассматриваться особым образом.

Расширенные частичные методы обязаны иметь реализации.
В приведенном примере и метод M1, и метод M2 должны иметь ре-
ализации, потому что каждый из них имеет модификатор доступа
(public и private соответственно).

Поскольку они не могут быть удалены, расширенные частич-
ные методы могут возвращать любой тип и включать параме-
тры out.

Оператор nameof
Оператор nameof возвращает имя любого символа (типа, чле-

на, переменной и т.д.) в виде строки:
int count = 123;
string name = nameof(count); // name = "count"

C#_9.0_Pocket_Reference_Instant.indb 95 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 96

Преимущество применения данного оператора по сравнению
с про стым указанием строки связано со статической проверкой
типов. Инструменты, подобные Visual Studio, способны воспри-
нимать символические ссылки, так что переименование любого
символа приводит к переименованию его ссылок.

Для указания имени члена типа, такого как поле или свойство,
необходимо включать тип члена. Это работает как со статически-
ми членами, так и с членами экземпляра:
string name = nameof(StringBuilder.Length);

Результатом будет "Length". Чтобы получить "String
Builder.Length", понадобится выражение
nameof(StringBuilder)+"."+nameof(StringBuilder.Length);

Наследование
 Класс может быть унаследован от другого класса с целью рас-

ширения или настройки исходного класса. Наследование от клас-
са позволяет повторно использовать функциональность данного
класса вместо ее построения с нуля. Класс может наследоваться
только от одного класса, но сам он может быть унаследован мно-
жеством классов, формируя иерархию классов. В этом примере мы
начнем с определения класса Asset:
public class Asset { public string Name; }

Далее мы определим классы Stock и House, которые будут
унаследованы от Asset. Классы Stock и House получат все, что
имеется в Asset, плюс любые дополнительные члены, которые в
них будут определены:
public class Stock : Asset // Asset
{
 public long SharesOwned;
}
public class House : Asset // Asset
{
 public decimal Mortgage;
}

Вот как можно работать с данными классами:

C#_9.0_Pocket_Reference_Instant.indb 96 30.03.2021 20:40:21

Наследование 97

Stock msft = new Stock { Name="MSFT",
 SharesOwned=1000 };

Console.WriteLine(msft.Name); // MSFT
Console.WriteLine(msft.SharesOwned); // 1000

House mansion = new House { Name="Mansion",
 Mortgage=250000 };

Console.WriteLine(mansion.Name); // Mansion
Console.WriteLine(mansion.Mortgage); // 250000

Подклассы Stock и House наследуют свойство Name от базово-
го класса Asset.

Подклассы также называются производными классами.

Полиморфизм
 Ссылки являются полиморфными. Это значит, что переменная

типа x может ссылаться на объект, относящийся к подклассу x.
Например, рассмотрим следующий метод:
public static void Display(Asset asset)
{
 System.Console.WriteLine(asset.Name);
}

Метод Display() способен отображать значение свойства
Name объектов Stock и House, так как они оба являются Asset.
В основе работы полиморфизма лежит тот факт, что подклассы
(Stock и House) обладают всеми характеристиками своего базо-
вого класса (Asset). Однако обратное утверждение не будет вер-
ным. Если метод Display() переписать так, чтобы он принимал
объект типа House, то передача ему Asset станет невозможной.

Приведение и преобразования ссылок
Ссылка на объект может быть:

неявно приведена вверх, к ссылке на базовый класс;
явно приведена вниз, к ссылке на подкласс.

Приведения вверх и вниз между совместимыми ссылочными
типами выполняют преобразования ссылок: создается новая ссыл-

C#_9.0_Pocket_Reference_Instant.indb 97 30.03.2021 20:40:21

Язык C# 9.0. Карманный справочник 98

ка, которая указывает на тот же объект. Приведение вверх всегда
успешно; приведение вниз успешно только в случае, когда объект
подходящим образом типизирован.

Приведение вверх
Операция приведения вверх создает ссылку на базовый класс

из ссылки на подкласс. Например:
Stock msft = new Stock(); //
Asset a = msft; //

После приведения вверх переменная a по-прежнему ссыла-
ется на тот же самый объект Stock, что и переменная msft. Сам
объект, на который имеются ссылки, не изменяется и не преобра-
зуется:
Console.WriteLine(a == msft); // True

Хотя переменные a и msft ссылаются на один и тот же объект,
a обеспечивает более ограниченное представление этого объекта:
Console.WriteLine(a.Name); // OK
Console.WriteLine(a.SharesOwned); //
 //

Последняя строка кода вызывает ошибку времени компиля-
ции, поскольку переменная a имеет тип Asset, несмотря на то
что она ссылается на объект типа Stock. Чтобы получить доступ
к полю SharesOwned, требуется приведение Asset вниз, к Stock.

Приведение в низ
Операция приведения вниз создает ссылку на подкласс из

ссылки на базовый класс. Например:
Stock msft = new Stock();
Asset a = msft; //
Stock s = (Stock)a; //
Console.WriteLine(s.SharesOwned); // OK
Console.WriteLine(s == a); // True
Console.WriteLine(s == msft); // True

Как и в случае приведения вверх, затрагиваются только ссыл-
ки, но не лежащий в их основе объект. Приведение вниз требует
явного указания, потому что потенциально оно может не достиг-
нуть успеха во время выполнения:

C#_9.0_Pocket_Reference_Instant.indb 98 30.03.2021 20:40:22

Наследование 99

House h = new House();
Asset a = h; //
Stock s = (Stock)a; // : a Stock

Когда приведение вниз терпит неудачу, генерируется исключе-
ние InvalidCastException. Это пример проверки типов време-
ни выполнения (которая более подробно рассматривается в разде-
ле “Проверка типов — статическая и времени выполнения”).

Оператор as
Оператор as выполняет приведение вниз, которое в случае не-

удачи вычисляется как null (вместо генерации исключения):
Asset a = new Asset();
Stock s = a as Stock; // s == null;

Этот оператор удобен, когда нужно организовать последую-
щую проверку результата на предмет равенства null:
if (s != null) Console.WriteLine(s.SharesOwned);

Оператор as не может выполнять специальные преобразова-
ния (см. раздел “Перегрузка операторов”), равно как и числовые
преобразования.

Оператор is
Оператор is проверяет, будет ли преобразование ссылки ус-

пешным; другими словами, является ли объект производным от
указанного класса (или реализует ли он какой-либо интерфейс).
Он часто применяется при проверке перед приведением вниз:
if (a is Stock) Console.Write(((Stock)a).SharesOwned);

Оператор is возвращает true, также если может успешно
выполниться распаковывающее преобразование (см. раздел “Тип
object”). Однако он не принимает во внимание специальные или
числовые преобразования.

Начиная с версии C# 7, появилась возможность при использо-
вании оператора is вводить переменную:
if (a is Stock s)
 Console.WriteLine(s.SharesOwned);

Введенная переменная доступна для “немедленного” упо-
требления и остается в области видимости за пределами выра-
жения is:

C#_9.0_Pocket_Reference_Instant.indb 99 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 100

if (a is Stock s && s.SharesOwned > 100000)
 Console.WriteLine("Wealthy");
else
 s = new Stock(); // s
Console.WriteLine(s.SharesOwned); // s
 //

Виртуальные функции-члены
Функция , помеченная как виртуальная (virtual), может

быть переопределена в подклассах, где требуется предоставить
ее специализированную реализацию. Объявлять виртуальными
можно методы, свойства, индексаторы и события:
public class Asset
{
 public string Name;
 public virtual decimal Liability => 0;
}

(Конструкция Liability=>0 является сокращенной записью
для { get { return 0; }}. За дополнительной информацией о та-
ком синтаксисе обращайтесь к разделу “Свойства, сжатые до вы-
ражений”.) Подкласс перекрывает виртуальный метод с помощью
модификатора override :
public class House : Asset
{
 public decimal Mortgage;

 public override decimal Liability => Mortgage;
}

По умолчанию свойство Liability класса Asset возвраща-
ет 0. Класс Stock не нуждается в специализации этого поведения.
Однако класс House специализирует свойство Liability так,
чтобы оно возвращало значение Mortgage:
House mansion = new House { Name="Mansion",
 Mortgage=250000 };
Asset a = mansion;
Console.WriteLine(mansion.Liability); // 250000
Console.WriteLine(a.Liability); // 250000

Сигнатуры, возвращаемые типы и доступность виртуального
и перекрытого методов должны быть идентичны. Внутри пере-

C#_9.0_Pocket_Reference_Instant.indb 100 30.03.2021 20:40:22

Наследование 101

крытого метода можно вызвать реализацию метода из базового
класса с помощью ключевого слова base (см. раздел “Ключевое
слово base”).

Ковариантные возвраты (C# 9)
Начиная с C# 9, вы можете перекрыть метод (или средство до-

ступа get свойства) так, чтобы он возвращал более производный
тип (подкласса). Например, вы можете написать метод Clone() в
классе Asset, который возвращает Asset, и перекрыть этот метод
в классе House так, что он возвратит House.

Это разрешено, потому что это не нарушает контракт, по ко-
торому метод Clone() должен вернуть Asset: он возвращает
House, который является Asset.

Абстрактные классы и абстрактные члены
Класс, объявленный как абстрактный (abstract), не может

быть инстанцирован. Можно инстанцировать только его конкрет-
ные подклассы.

В абстрактных классах есть возможность определять аб-
страктные члены. Абстрактные члены схожи с виртуальными
членами, с тем отличием, что они не предоставляют реализацию
по умолчанию. Такая реализация должна обеспечиваться подклас-
сом, если только подкласс также не объявлен как абстрактный:
public abstract class Asset
{
 //
 public abstract decimal NetValue { get; }
}

В подклассах абстрактные члены переопределяются так, как
если бы они были виртуальными.

Сокрытие унаследованных членов
 В базовом классе и подклассах могут быть определены иден-

тичные члены. Например:
public class A { public int Counter = 1; }
public class B : A { public int Counter = 2; }

C#_9.0_Pocket_Reference_Instant.indb 101 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 102

Говорят, что поле Counter в классе B скрывает поле Counter в
классе A. Обычно это происходит случайно, когда к базовому типу
добавляется член после того, как идентичный член уже был добав-
лен к подтипу. В таком случае компилятор генерирует предупре-
ждение, а затем разрешает неоднозначность следующим образом:

ссылки на A (во время компиляции) связываются
с A.Counter;
ссылки на B (во время компиляции) связываются
с B.Counter.

Иногда необходимо преднамеренно скрыть какой-либо член;
тогда к члену в подклассе можно применить ключевое слово new.
Модификатор new не делает ничего сверх того, что просто пода-
вляет выдачу компилятором соответствующего предупреждения:
public class A { public int Counter = 1; }
public class B : A { public new int Counter = 2; }

Модификатор new сообщает компилятору — и программи-
стам — о том, что дублирование члена произошло неслучайно.

Запечатывание функций и классов
С помощью ключевого слова sealed перекрытая функция

может запечатывать свою реализацию, предотвращая ее пе-
рекрытие другими подклассами. В ранее показанном примере
виртуальной функции-члена можно было бы запечатать реали-
зацию Liability в классе House, чтобы запретить перекрытие
Liability в классе, производном от House:
public sealed override decimal Liability { get { ... } }

Можно также применить модификатор sealed к самому клас-
су, запрещая тем самым наследование этого класса подклассами.

Ключевое слово base
Ключевое слово base схоже с ключевым словом this. Оно слу-

жит двум важным целям: для доступа к перекрытой функции-чле-
ну из подкласса и для вызова конструктора базового класса (см.
следующий раздел).

C#_9.0_Pocket_Reference_Instant.indb 102 30.03.2021 20:40:22

Наследование 103

В приведенном ниже примере класса House ключевое слово
base используется для доступа к реализации Liability из Asset:
public c lass House : Asset
{
 ...
 public override decimal Liability
 => base.Liability + Mortgage;
}

С помощью ключевого слова base мы получаем доступ к свой-
ству Liability класса Asset невиртуально. Это значит, что мы
всегда обращаемся к версии данного свойства из Asset, независи-
мо от фактического типа экземпляра во время выполнения.

Тот же подход работает и в ситуации, когда свойство Liability
сокрыто, а не перекрыто. (Доступ к скрытым членам можно полу-
чить путем приведения к базовому классу перед вызовом функции.)

Конструкторы и наследование
В подклассе должны быть объявлены собственные конструк-

торы. Например, если классы Baseclass и Subclass определены
следующим образом:
public class Baseclass
{
 public int X;
 public Baseclass() { }
 public Baseclass(int x) { this.X = x; }
}
public class Subclass : Baseclass { }

то показанный далее код будет некорректным:
Subclass s = new Subclass (123);

В классе Subclass должны быть “повторно определены” лю-
бые необходимые конструкторы. При этом можно вызывать
любой конструктор базового класса с применением ключевого
слова base:
public class Subclass : Baseclass
{
 public Subclass(int x) : base(x) { ... }
}

C#_9.0_Pocket_Reference_Instant.indb 103 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 104

Ключевое слово base работает подобно ключевому слову
this, но вызывает конструктор базового класса. Конструкторы
базовых классов всегда выполняются первыми; это гарантирует
выполнение базовой инициализации перед специализированной
инициализацией.

Если в конструкторе подкласса опустить ключевое слово base,
то будет неявно вызываться конструктор базового класса без па-
раметров (если базовый класс не имеет доступного конструктора
без параметров, то компилятор сообщит об ошибке).

Конструктор и порядок инициализации полей
Когда объект создан, инициализация происходит в следующем

порядке.

 1. От подкласса к базовому классу:
а) инициализируются поля;
б) вычисляются аргументы для вызова конструкторов базо-

вого класса.
 2. От базового класса к подклассу:

а) выполняются тела конструкторов.

Перегрузка и разрешение
Наследование оказывает интересное влияние на перегрузку

методов. Предположим, что есть следующие две перегруженные
версии:
static void Foo (Asset a) { }
static void Foo (House h) { }

При вызове перегруженной версии приоритет получает наибо-
лее специфичный тип:
House h = new House (...);
Foo(h); // Foo(House)

ПРИМЕЧАНИЕ
Если привести Asset к dynamic (см. раздел “Динамиче-
ское связывание”), то решение о том, какая перегружен-

C#_9.0_Pocket_Reference_Instant.indb 104 30.03.2021 20:40:22

Тип object 105

ная версия должна вызываться, откладывается до време-
ни выполнения, и выбор основывается на фактическом
типе объекта.

Тип object
Тип object (System.Object) представляет собой изначаль-

ный базовый класс для всех типов. Любой тип может быть неявно
приведен вверх, к object.

Чтобы проиллюстрировать, насколько это полезно, рассмо-
трим стек общего назначения. Стек является структурой данных,
работа которой основана на принципе LIFO (“Last-In First-Out” —
“последним пришел — первым вышел”). Стек поддерживает две
операции: занесение объекта в стек и снятие объекта со стека.
Ниже показана простая реализация, которая может хранить до
10 объектов:
public class Stack
{
 int position;
 object[] data = new object[10];
 public void Push(object o) { data[position++] = o; }
 public object Pop() { return data[--position]; }
}

Поскольку Stack работает с типом object, методы Push() и
Pop() класса Stack можно использовать с экземплярами любого
типа:
Stack stack = new Stack();
stack.Push(" ");
string s = (string) stack.Pop(); //
Console.WriteLine(s); //

object относится к ссылочным типам в силу того, что пред-
ставляет собой класс. Несмотря на это типы-значения, такие как
int, также можно приводить к object, а object — приводить к
ним. Чтобы сделать это возможным, среда CLR должна выполнить
специальную работу по преодолению внутренних различий меж-
ду типами значений и ссылочными типами. Данный процесс назы-
вается упаковкой (boxing) и распаковкой (unboxing).

C#_9.0_Pocket_Reference_Instant.indb 105 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 106

ПРИМЕЧАНИЕ
В разделе “Обобщения” будет показано, как усовершен-
ствовать класс Stack, чтобы улучшить поддержку стеков
однотипных элементов.

Упаковка и распаковка
Упаковка (boxing) представляет собой действие по приведению

экземпляра типа-значения к экземпляру ссылочного типа. Ссы-
лочным типом может быть либо класс object, либо интерфейс
(см. раздел “Интерфейсы”). В следующем примере мы упаковыва-
ем в объект int:
int x = 9;
object obj = x; // int

Распаковка (unboxing) представляет собой обратную опера-
цию, которая предусматривает приведение объекта к исходному
типу-значению:
int y = (int)obj; // int

Распаковка требует явного приведения. Исполняющая среда
проверяет, соответствует ли указанный тип значения фактиче-
скому объектному типу, и генерирует исключение InvalidCast
Exception, если это не так. Например, показанный ниже код ве-
дет к генерации исключения, поскольку тип long не соответствует
типу int:
object obj = 9; // 9 int
long x = (long) obj; // InvalidCastException

Однако следующий код выполняется успешно:
object obj = 9;
long x = (int)obj;

И этот код также не вызывает ошибки:
object obj = 3.5; // 3.5 double
int x = (int)(double)obj; // x 3

В последнем примере (double) осуществляет распаковку, по-
сле чего (int) выполняет числовое преобразование.

C#_9.0_Pocket_Reference_Instant.indb 106 30.03.2021 20:40:22

Тип object 107

Упаковка копирует экземпляр типа значения в новый объект,
а распаковка копирует содержимое данного объекта обратно в эк-
земпляр типа значения:
int i = 3;
object boxed = i;
i = 5;
Console.WriteLine(boxed); // 3

Проверка типов — статическая
и времени выполнения

В языке C# проверка типов проводится как статически (во вре-
мя компиляции), так и во время выполнения.

Статическая проверка типов позволяет компилятору контро-
лировать корректность программы, не выполняя ее. Показанный
ниже код не скомпилируется, так как компилятор принудительно
применяет статическую проверку типов:
int x = "5";

Проверка типов времени выполнения осуществляется средой
CLR, когда происходит приведение вниз через ссылочное преоб-
разование или распаковку:
object y = "5";
int z = (int)y; //

Проверка типов во время выполнения возможна из-за того, что
каждый объект в куче внутренне хранит небольшой маркер типа.
Такой маркер может быть извлечен с помощью метода GetType()
класса object.

Метод GetType() и оператор typeof
Все типы в C# во время выполнения представлены с помо-

щью экземпляра System.Type. Получить объект System.Type
можно двумя основными способами: вызвать метод GetType()
экземпляра или воспользоваться оператором typeof с именем
типа. Результат GetType() вычисляется во время выполнения,
а typeof — статически во время компиляции.

C#_9.0_Pocket_Reference_Instant.indb 107 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 108

В классе System.Type предусмотрены свойства для таких ве-
щей, как имена типа, сборки, базового типа и т.д. Например:
int x = 3;
Console.Write(x.GetType().Name); // Int32
Console.Write(typeof(int).Name); // Int32
Console.Write(x.GetType().FullName); // System.Int32
Console.Write(x.GetType() == typeof(int)); // True

В System.Type имеются также методы, которые действуют в
качестве шлюза для модели рефлексии времени выполнения. За
подробной информацией обращайтесь к главе 19 книги C# 9.0.
Справочник. Полное описание языка.

Список членов object
Вот список всех членов object:

public extern Type GetType();
public virtual bool Equals(object obj);
public static bool Equals(object A, object B);
public static bool ReferenceEquals(object A, object B);
public virtual int GetHashCode();
public virtual string ToString();
protected virtual void Finalize();
protected extern object MemberwiseClone();

Методы Equals(), ReferenceEquals()
и GetHashCode()

Метод Equals() класса object схож с оператором ==, с тем
отличием, что Equals() является виртуальным методом, а опе-
ратор == — статическим. Разница демонстрируется в следующем
примере:
object x = 3;
object y = 3;
Console.WriteLine(x == y); // False
Console.WriteLine(x.Equals(y)); // True

Поскольку переменные x и y были приведены к типу object,
компилятор выполняет статическую привязку к оператору ==
класса object, которая для сравнения двух экземпляров приме-
няет семантику ссылочного типа. (Из-за того, что x и y упакованы,

C#_9.0_Pocket_Reference_Instant.indb 108 30.03.2021 20:40:22

Структуры 109

они находятся в разных ячейках памяти, и поэтому не равны.) Одна-
ко виртуальный метод Equals() полагается на метод Equals()
типа Int32, который при сравнении двух значений использует се-
мантику типов-значений.

Статический метод object.Equals() просто вызывает вир-
туальный метод Equals() первого аргумента (после проверки, не
равны ли аргументы null):
object x = null, y = 3;
bool error = x.Equals(y); //
bool ok = object.Equals(x,y); // OK (false)

Метод ReferenceEquals() принудительно применяет срав-
нение эквивалентности ссылочных типов (что иногда удобно для
ссылочных типов, в которых оператор == был перегружен для вы-
полнения другого действия).

Метод GetHashCode() выдает хеш-код, который нужен для ис-
пользования со словарями, основанными на хеш-таблицах, а имен-
но — System.Collections.Generic.Dictionary и System.
Collections.Hashtable.

Чтобы настроить семантику эквивалентности типов, требу-
ется как минимум переопределить методы Equals() и GetHash
Code(). Обычно также перегружаются операторы == и !=. При-
мер такой настройки приведен в разделе “Перегрузка операторов”.

Метод ToString()
Метод ToString() возвращает текстовое представление эк-

земпляра типа по умолчанию. Этот метод переопределен во всех
встроенных типах:
string s1 = 1.ToString(); // s1 "1"
string s2 = true.ToString(); // s2 "True"

Переопределить метод ToString() в пользовательских типах
можно следующим образом:
public override string ToString() => "Foo";

Структуры
Структура схожа с классом, но обладает следующими ключе-

выми отличиями.

C#_9.0_Pocket_Reference_Instant.indb 109 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 110

Структура является типом-значением, тогда как класс —
ссылочным типом.
Структура не поддерживает наследование (за исключением
того, что она неявно порождена от object, или, точнее —
от System.ValueType).

Структура может иметь те же члены, что и класс, кроме кон-
структора без параметров, инициализаторов полей, финализатора
и виртуальных или защищенных членов.

Структура подходит там, где желательно иметь семантику
типа-значения. Хорошими примерами могут служить числовые
типы, для которых более естественным способом присваивания
является копирование значения, а не ссылки. Поскольку структу-
ра представляет собой тип значения, каждый экземпляр не тре-
бует инстанцирования в куче (с последующей сборкой мусора);
это дает ощутимую экономию при создании большого количества
экземпляров типа.

Как и любой тип-значение, структура может косвенно оказать-
ся в куче либо из-за упаковки, либо из-за того, что она является
полем класса. Если создать экземпляр показанного ниже класса
SomeClass, то поле Y ссылалось бы на структуру в куче:
struct SomeStruct { public int X; }
class SomeClass { public SomeStruct Y; }

Аналогично, если бы мы объявили массив из элементов типа
SomeStruct, то экземпляр был бы сохранен в куче (так как масси-
вы являются ссылочными типами), хотя весь массив потребовал
бы только одного выделения памяти.

Начиная с версии C# 7.2, к структуре можно применять мо-
дификатор ref, чтобы гарантировать ее использование только
теми способами, которые будут помещать структуру в стек. Та-
кой прием обеспечивает возможность дальнейшей оптимизации
со стороны компилятора, а также применения типа Span<T> (см.
https://bit.ly/2LR2ctm).

Семантика конструирования структуры
Семантика конструирования структуры выглядит следующим

образом.

C#_9.0_Pocket_Reference_Instant.indb 110 30.03.2021 20:40:22

Модификаторы доступа 111

Имеется конструктор без параметров, который нельзя не-
явно переопределить. Он выполняет побитовое обнуление
полей структуры.
При определении конструктора (с параметрами) структуры
каждому полю должно быть явно присвоено значение.
Инициализаторы полей в структуре не предусмотрены.

Структуры и функции только для чтения
Начиная с версии C# 7.2, к структуре можно применять мо-

дификатор readonly , чтобы гарантировать, что все ее поля будут
readonly; такой прием помогает заявить о намерении и предо-
ставляет компилятору большую свободу в плане оптимизации:
readonly struct Point
{
 public readonly int X, Y; // X Y readonly
}

Если модификатор readonly требует применения с большей
степенью детализации, то вы можете, начиная с C# 8, приме-
нять модификатор readonly к функциям структуры. Если такая
функция попытается модифицировать любое поле, сгенерируется
ошибка времени компиляции:
struct Point
{
 public int X, Y;
 public readonly void ResetX() => X = 0; //
}

Если readonly-функция вызывает функцию, не являющуюся
readonly, компилятор выдаст предупреждение (и в качестве защиты
скопирует структуру — во избежание возможности ее изменения).

Модификаторы доступа
Для содействия инкапсуляции тип или член типа может огра-

ничивать свою доступность для других типов и сборок с помощью
добавления к объявлению одного из шести модификаторов досту-
па, описанных ниже.

C#_9.0_Pocket_Reference_Instant.indb 111 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 112

public

Полная доступность. Это неявная доступность для членов
перечислений и интерфейсов.

internal

Доступность только внутри содержащей сборки или в дру-
жественных сборках. Это доступность по умолчанию для
невложенных типов.

private

Доступность только внутри содержащего типа. Это доступ-
ность по умолчанию для членов класса или структуры.

protected

Доступность только внутри содержащего типа или в его
подклассах.

protected internal

Объединение доступностей protected и internal (ме-
нее ограничивающая доступность, чем protected или
internal по отдельности, так как делает член доступнее
двумя путями).

private protected (C# 7.2)

Пересечение доступностей protected и internal (бо-
лее ограничивающа я доступность, чем protected или
internal по отдельности).

В следующем примере класс Class2 доступен вне его сборки,
а класс Class1 — недоступен:
class Class1 {} // Class1 internal
public class Class2 {}

Класс ClassB открывает поле x другим типам в той же сборке,
а класс ClassA — нет:
class ClassA { int x; } // x private
class ClassB { internal int x; }

При переопределении функции базового класса доступность
должна быть такой же, как у переопределяемой функции. Ком-

C#_9.0_Pocket_Reference_Instant.indb 112 30.03.2021 20:40:22

Интерфейсы 113

пилятор препятствует любому несогласованному использованию
модификаторов доступа — например, подкласс может иметь мень-
шую доступность, чем базовый класс, но не большую.

Дружественные сборки
Члены с модификатором internal можно открывать другим дру-

жественным сборкам, добавляя атрибут сборки System.Runtime.
CompilerServices.InternalsVisibleTo, в котором указано
имя дружественной сборки:
[assembly: InternalsVisibleTo("Friend")]

Если дружественная сборка подписана строгим именем, тре-
буется указывать ее полный 160-байтный открытый ключ. Из-
влечь этот ключ можно с помощью запроса LINQ — вы можете
найти интерактивный пример в бесплатной библиотеке примеров
LINQPad для главы 3 книги C# 9.0. Справочник. Полное описание
языка.

Установка верхнего предела доступности
Тип устанавливает верхний предел доступности объявлен-

ных в нем членов. Наиболее распространенным примером такой
установки является ситуация, когда есть тип internal с членами
public. Например:
class C { public void Foo() {} }

Доступность по умолчанию internal класса C устанавливает
верхний предел доступности метода Foo(), по сути, делая Foo()
объявленным как internal. Распространенная причина пометки
Foo() как public связана с облегчением рефакторинга, если поз-
же будет решено изменить доступность класса C на public.

Интерфейсы
Интерфейс схож с классом, но обеспечивает для своих членов

только спецификацию, а не реализацию (хотя, начиная с версии
C# 8.0, интерфейс способен предоставлять реализацию по умол-

C#_9.0_Pocket_Reference_Instant.indb 113 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 114

чанию; см. раздел “Методы интерфейсов по умолчанию”). Интер-
фейс обладает следующими особенностями.

Все члены интерфейса неявно являются абстрактными.
В противоположность этому класс может предоставлять
как абстрактные члены, так и конкретные члены с реализа-
циями.
Класс (или структура) может реализовывать множество
интерфейсов. В отличие от этого класс может быть унасле-
дован только от единственного класса, а структура вообще
не поддерживает наследование (за исключением порожде-
ния от System.ValueType).

Объявление интерфейса схоже с объявлением класса, но ни-
какой реализации для его членов не предоставляется, потому что
все члены интерфейса неявно абстрактные. Такие члены будут ре-
ализованы классами и структурами, реализующими данный ин-
терфейс. Интерфейс может содержать только методы, свойства,
события и индексаторы, что совершенно неслучайно в точности
соответствует членам класса, которые могут быть абстрактными.

Ниже показана упрощенная версия интерфейса IEnumerator,
определенного в пространстве имен System.Collections:
public interface IEnumerator
{
 bool MoveNext();
 object Current { get; }
 void Reset();
}

Члены интерфейса всегда неявно являются public, и для них
нельзя объявлять какие-либо модификаторы доступа. Реализа-
ция интерфейса означает предоставление public-реализации для
всех его членов:
internal class Countdown : IEnumerator
{
 int count = 6;
 public bool MoveNext() => count-- > 0;
 public object Current => count;
 public void Reset() => count = 6;
}

C#_9.0_Pocket_Reference_Instant.indb 114 30.03.2021 20:40:22

Интерфейсы 115

Объект можно неявно приводить к любому интерфейсу, кото-
рый он реализует:
IEnumerator e = new Countdown();
while(e.MoveNext())
 Console.Write(e.Current + " "); // 5 4 3 2 1 0

Расширение интерфейса
 Интерфейсы могут быть производными от других интерфей-

сов. Например:
public interface IUndoable { void Undo(); }
public interface IRedoable : IUndoable { void Redo(); }

Интерфейс IRedoable “наследует” все члены интерфейса
IUndoable.

Явная реализация членов интерфейса
Реализация множества интерфейсов иногда может приводить

к конфликту между сигнатурами членов. Устранить такие кон-
фликты можно с помощью явной реализации члена интерфейса.
Например:
interface I1 { void Foo(); }
interface I2 { int Foo(); }
public class Widget : I1, I2
{
 public void Foo() //
 {
 Console.Write(" I1.Foo() Widget");
 }
 int I2.Foo() // I2.Foo
 {
 Console.Write(" I2.Fo o() Widget");
 return 42;
 }
}

Поскольку интерфейсы I1 и I2 имеют конфликтующие сигна-
туры Foo(), класс Widget явно реализует метод Foo() интерфей-
са I2. Такой прием позволяет этим двум методам сосуществовать

C#_9.0_Pocket_Reference_Instant.indb 115 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 116

в одном классе. Единственный способ вызова явно реализованно-
го метода предусматривает приведение к его интерфейсу:
Widget w = new Widget();
w.Foo(); // I1.Foo() Widget
((I1)w).Foo(); // I1.Foo() Widget
((I2)w).Foo(); // I2.Foo() Widget

Еще одной причиной явной реализации членов интерфей-
са может быть необходимость сокрытия членов, которые явля-
ются узкоспециализированными и нарушающими нормальный
сценарий использования типа. Например, тип, который реали-
зует ISerializable, обычно избегает демонстрации членов
ISerializable, если только не осуществляется явное приведе-
ние к упомянутому интерфейсу.

Реализация виртуальных членов интерфейса
Неявно реализованный член интерфейса по умолчанию явля-

ется запечатанным. Чтобы его можно было перекрыть, он должен
быть помечен в базовом классе как virtual или abstract: вызов
этого члена интерфейса через базовый класс либо интерфейс при-
водит к вызову его реализации из подкласса.

Явно реализованный член интерфейса не может быть помечен
как virtual, как и не может быть перекрыт обычным образом.
Тем не менее он может быть реализован повторно.

Повторная реализация члена
интерфейса в подклассе

Подкласс может повторн о реализовать любой член интерфей-
са, который уже реализован базовым классом. Повторная реали-
зация перехватывает реализацию члена (при вызове через интер-
фейс) и работает вне зависимости от того, является ли член вирту-
альным в базовом классе.

В показанном ниже примере TextBox явно реализует
IUndoable.Undo(), поэтому данный метод не может быть поме-
чен как virtual. Чтобы “перекрыть” его, класс RichTextBox дол-
жен повторно реализовать метод Undo() интерфейса IUndoable:

C#_9.0_Pocket_Reference_Instant.indb 116 30.03.2021 20:40:22

Интерфейсы 117

public interface IUndoable { void Undo(); }

public class TextBox : IUndoable
{
 void IUndoable.Undo()
 => Console.WriteLine("TextBox.Undo()");
}

public class RichTextBox : TextBox, IUndoable
{
 public new void Undo()
 => Console.WriteLine ("RichTextBox.Undo()");
}

Обращение к повторно реализованному методу через интер-
фейс приводит к вызову его реализации из подкласса:
RichTextBox r = new RichTextBox();
r.Undo(); // RichTextBox.Undo()
((IUndoable)r).Undo(); // RichTextBox.Undo()

В данном случае метод Undo() реализован явно. Неявно ре-
ализованные члены также могут быть повторно реализованы, но
эффект не является всепроникающим, так как обращение к члену
через базовый класс приводит к вызову базовой реализации.

Методы интерфейсов по умолчанию
Начиная с версии C# 8, к члену интерфейса можно добавлять

реализацию по умолчанию, делая этот член необязательным для
реализации:
interface ILogger
{
 void Log(string text) => Console.WriteLine(text);
}

Такая возможность полезна, когда требуется добавить член к
интерфейсу, определенному в некоторой популярной библиотеке,
но при этом не нарушить работу (потенциально тысяч) реализаций.

Реализации по умолчанию всегда являются явными, так что
если в классе, реализующем ILogger, отсутствует определение
метода Log(), то вызвать его получится только единственным
способом — через интерфейс:

C#_9.0_Pocket_Reference_Instant.indb 117 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 118

class Logger : ILogger { }
...
((ILogger)new Logger()).Log (" ");

Тем самым решается проблема наследования множества ре-
ализаций: если один и тот же член по умолчанию был добавлен
в два интерфейса, которые реализует класс, то неоднозначность
относительно того, какой член вызывается, никогда не возникнет.

Теперь в интерфейсах можно определять и статические члены
(включая поля), доступ к которым осуществляется из кода внутри
реализаций по умолчанию:
interface ILogger
{
 void Log (string text) =>
 Console.WriteLine(Prefix + text);
 static string Prefix = "";
}

Поскольку члены интерфейсов неявно открыты, получать до-
ступ к статическим членам можно также извне:
ILogger.Prefix = " : ";

Можно ввести ограничение, добавив к статическому члену ин-
терфейса модификатор доступа (такой, как private, protected
или internal).

Поля экземпляров (по-прежнему) запрещены, что соответ-
ствует принципу интерфейсов, предусматривающему определение
ими поведения, но не состояния.

Перечисления
Перечисление — это специальный тип значения, который по-

зволяет указывать группу именованных числовых констант. На-
пример:
public enum BorderSide { Left, Right, Top, Bottom }

Данное перечисление можно применять следующим образом:
BorderSide topSide = BorderSide.Top;
bool isTop = (topSide == BorderSide.Top); // true

Каждый член перечисления имеет лежащее в его основе значе-
ние целочисленного типа. Лежащие в основе значения по умолча-
нию относятся к типу int, а членам перечисления присваиваются

C#_9.0_Pocket_Reference_Instant.indb 118 30.03.2021 20:40:22

Перечисления 119

константные значения 0, 1, 2… (в порядке их объявления). Можно
указать и иной целочисленный тип:
public enum BorderSide : byte { Left,Right,Top,Bottom }

Для каждого члена перечисления можно также указывать яв-
ные значения:
public enum BorderSide : byte
 { Left=1, Right=2, Top=10, Bottom=11 }

Кроме того, компилятор позволяет явно присваивать значения
некоторым членам перечисления. Члены, значения которым при-
своены не были, получают значения на основе последовательного
увеличения последнего явно указанного значения. Предыдущий
пример эквивалентен следующему коду:
public enum BorderSide : byte
 { Left=1, Right, Top=10, Bottom }

Преобразования перечислений
Экземпляр перечисления может быть преобразован в лежащее

в его основе целочисленное значение и из него с помощью явного
приведения:
int i = (int)BorderSide.Left;
BorderSide side = (BorderSide)i;
bool leftOrRight = (int)side <= 2;

Один тип перечисления можно также явно приводить к дру-
гому; при трансляции между типами перечислений используются
лежащие в их основе целочисленные значения.

Числовой литерал 0 трактуется особым образом в том смысле,
что не требует явного приведения:
BorderSide b = 0; //
if (b == 0) ...

В данном конкретном примере BorderSide не имеет членов с
целочисленным значением 0. Но это не приводит к ошибке: огра-
ниченность перечислений в том, что компилятор и среда CLR не
препятствуют присваиванию целых чисел, значения которых вы-
ходят за пределы диапазона членов:
BorderSide b = (BorderSide)12345;
Console.WriteLine(b); // 12345

C#_9.0_Pocket_Reference_Instant.indb 119 30.03.2021 20:40:22

Язык C# 9.0. Карманный справочник 120

Перечисления-флаги
Члены перечислений можно комбинировать. Чтобы предот-

вратить неоднозначности, члены комбинируемого перечисления
требуют явного присваивания значений, обычно являющихся сте-
пенью двойки. Например:
[Flags]
public enum BorderSides
 { None=0, Left=1, Right=2, Top=4, Bottom=8 }

По соглашению типу комбинируемого перечисления назнача-
ется имя во множественном, а не единственном числе. Для работы
со значениями комбинируемого перечисления применяются по-
битовые операции, такие как | и &. Они действуют на целочислен-
ные значения элементов перечисления:
BorderSides leftRight =
 BorderSides.Left | BorderSides.Right;

if ((leftRight & BorderSides.Left) != 0)
 Console.WriteLine (" Left"); // leftRight
 // Lef
string formatted = leftRight.ToString(); //"Left, Right"

BorderSides s = BorderSides.Left;
s |= BorderSides.Right;
Console.WriteLine(s == leftRight); // True

К таким типам комбинируемых перечислений должен быть
применен атрибут Flags, иначе вызов ToString() для экзем-
пляра перечисления возвратит число, а не последовательность
имен.

Для удобства комбинации-члены могут быть помещены в объ-
явление перечисления:
[Flags] public enum BorderSides
{
 None=0, Left=1, Right=2, Top=4, Bottom=8,
 LeftRight = Left | Right,
 TopBottom = Top | Bottom,
 All = LeftRight | TopBottom
}

C#_9.0_Pocket_Reference_Instant.indb 120 30.03.2021 20:40:22

Вложенные типы 121

Операторы для работы с перечислениями
Ниже указаны операторы, которые могут работать с перечис-

лениями:
= == != < > <= >= + - ^
& | ~ += -= ++ - sizeof

Операторы побитовые, арифметические и сравнения возвра-
щают результат обработки целочисленных значений элементов
перечислений. Сложение разрешено для перечисления и целочис-
ленного типа, но не для двух перечислений.

Вложенные типы
Вложенный тип объявляется внутри области видимости неко-

торого другого типа. Например:
public class TopLevel
{
 public class Nested { } //
 public e num Color { Red, Blue, Tan } //
} //

Вложенный тип обладает следующими характеристиками.

Может получать доступ к закрытым членам охватывающе-
го типа и ко всему остальному, к чему имеет доступ охва-
тывающий тип.
Может быть объявлен с полным диапазоном модификато-
ров доступа, а не только public и internal.
Доступностью вложенного типа по умолчанию является
private, а не internal.
Доступ к вложенному типу извне требует указания имени
охватывающего типа (как при обращении к статическим
членам).

Например, получить доступ к члену Color.Red извне класса
TopLevel можно так:
TopLevel.Color color = TopLevel.Color.Red;

Все типы могут быть вложенными, но содержать вложенные
типы могут только классы и структуры.

C#_9.0_Pocket_Reference_Instant.indb 121 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 122

Обобщения
 В C# имеются два отдельных механизма для написания кода,

повторно используемого различными типами: наследование и обоб-
щения (generics). В то время как наследование выражает повторное
использование с помощью базового типа, обобщения делают это
посредством “шаблона”, который содержит “типы-заполнители”.
Обобщения, по сравнению с наследованием, могут увеличивать
безопасность типов, а также сокращать количество приведений
и упаковок.

Обобщенные типы
Обобщенный тип объявляет параметры типа — типы-запол-

нители, предназначенные для замещения пользователем обоб-
щенного типа, которые передаются как аргументы типа. Ниже
показан обобщенный тип Stack<T>, предназначенный для реали-
зации стека экземпляров типа T. В Stack<T> объявлен единствен-
ный параметр типа T:
public class Stack<T>
{
 int position;
 T[] data = new T[100];
 public void Push(T obj) => data[position++] = obj;
 public T Pop() => data[--position];
}

Использовать Stack<T> можно следующим образом:
var stack = new Stack<int>();
stack.Push(5);
stack.Push(10);
int x = stack.Pop(); // x 10
int y = stack.Pop(); // y 5

ПРИМЕЧАНИЕ
Обратите внимание, что в последних двух строках кода
приведение вниз не требуется. Это позволяет избежать
возможной ошибки во время выполнения и устраняет не-
производительные затраты на упаковку/распаковку. В ре-
зультате наш обобщенный стек получает преимущество

C#_9.0_Pocket_Reference_Instant.indb 122 30.03.2021 20:40:23

Обобщения 123

над необобщенным стеком, в котором вместо T использу-
ется тип object (см. пример в разделе “Тип object”).

Класс Stack<int> заменяет параметр типа T аргументом типа
int, неявно создавая тип “на лету” (синтез происходит во время
выполнения). Фактически Stack<int> имеет показанное ниже
определение (подстановки выделены полужирным, а во избежа-
ние путаницы вместо имени класса указано ###):
public class ###
{
 int position;
 int[] data = new int[100];
 public void Push(int obj) => data[position++] = obj;
 public int Pop() => data[--position];
}

Формально мы говорим, что Stack<T> — это открытый (open)
тип, а Stack<int> — закрытый (closed) тип. Во время выполне-
ния все экземпляры обобщенных типов являются закрытыми —
с соответствующей заменой типов-заполнителей.

Обобщенные методы
Обобщенный метод объявляет параметры типа внутри сигна-

туры метода. С помощью обобщенных методов многие фундамен-
тальные алгоритмы могут быть реализованы единственным уни-
версальным способом. Ниже показан обобщенный метод, кото-
рый меняет местами содержимое двух переменных любого типа T:
static void Swap<T>(ref T a, ref T b)
{
 T temp = a; a = b; b = temp;
}

Метод Swap<T> можно использовать следующим образом:
int x = 5, y = 10;
Swap(ref x, ref y);

Как правило, предоставлять аргументы типа обобщенному ме-
тоду нет нужды, поскольку компилятор способен вывести их са-
мостоятельно. Если же имеется неоднозначность, то обобщенные
методы могут быть вызваны с аргументами типа:
Swap<int>(ref x, ref y);

C#_9.0_Pocket_Reference_Instant.indb 123 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 124

Внутри обобщенного типа метод не рассматривается как
обобщенный до тех пор, пока он сам не вводит параметры типа
(посредством синтаксиса с угловыми скобками). Метод Pop() в
нашем обобщенном стеке просто использует существующий па-
раметр типа T, а потому и не классифицируется как обобщенный.

Методы и типы — единственные конструкции, в которых мо-
гут вводиться параметры типа. Свойства, индексаторы, события,
поля, конструкторы, операции и так далее не могут объявлять па-
раметры типа, хотя способны пользоваться любыми параметрами
типа, которые уже объявлены во включающем типе. В примере с
обобщенным стеком можно было бы написать индексатор, кото-
рый возвращает обобщенный элемент:
public T this [int index] { get { return data[index]; } }

Аналогично конструкторы также могут пользоваться суще-
ствующими параметрами типа, но не могут их вводить.

Объявление параметров типа
Параметры типа могут быть введены в объявлениях классов,

структур, интерфейсов, делегатов (см. раздел “Делегаты”) и мето-
дов. Можно указывать несколько параметров типа, разделяя их
запятыми:
class Dictionary<TKey, TValue> {...}

Вот как он инстанцируется:
var myDict = new Dictionary<int,string>();

Имена обобщенных типов и методов могут быть перегружены
при условии, что количество параметров типа у них различается.
Например, показанные ниже три имени типов не конфликтуют
друг с другом:
class A {}
class A<T> {}
class A<T1,T2> {}

ПРИМЕЧАНИЕ
По соглашению обобщенные типы и методы с единствен-
ным параметром типа обычно именуют его как T, если

C#_9.0_Pocket_Reference_Instant.indb 124 30.03.2021 20:40:23

Обобщения 125

назначение параметра очевидно. В случае нескольких па-
раметров типа каждый такой параметр имеет более опи-
сательное имя (с префиксом T).

Оператор typeof и несвязанные
обобщенные типы

Во время выполнения открытых обобщенных типов не суще-
ствует: они закрываются как часть компиляции. Однако во вре-
мя выполнения возможно существование несвязанного (unbound)
обобщенного типа — исключительно как объекта Type. Един-
ственным способом указания несвязанного обобщенного типа в
C# является применение оператора typeof :
class A<T> {}
class A<T1,T2> {}
...
Type a1 = typeof(A<>); //
Type a2 = typeof(A<,>); // 2
Console.Write(a2.GetGenericArguments().Count()); // 2

Оператор typeof можно использовать также для указания за-
крытого типа:
Type a3 = typeof (A<int,int>);

или открытого типа (который закрыт во время выполнения):
class B<T> { void X() { Type t = typeof (T); } }

Обобщенное значение по умолчанию
Ключевое слово default может применяться для получения

значения параметра типа обобщения по умолчанию. Значением по
умолчанию для ссылочного типа является null, а для типа-значе-
ния — результат побитового обнуления полей в этом типе:
static void Zap<T> (T[] array)
{
 for (int i = 0; i < array.Length; i++)
 array[i] = default(T);
}

C#_9.0_Pocket_Reference_Instant.indb 125 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 126

Начиная с версии C# 7.1, аргумент типа можно не указывать в
случаях, когда компилятор способен его вывести самостоятельно:
array[i] = default;

Ограничения обобщений
По умолчанию параметр типа может быть замещен любым ти-

пом. Чтобы затребовать более специфичные аргументы типа, к па-
раметру типа можно применить ограничения . Существуют восемь
видов ограничений:
where T : base-class //
where T : interface // batqcf
where T : class //
where T : class? // (.
 // " , null")
where T : struct // -
where T : unmanaged //
where T : new() //
 //
where U : T //
where T : notnull // - ,
 // null

В следующем примере GenericClass<T,U> требует, чтобы
тип T был производным от класса SomeClass (или идентичен ему)
и реализовывал интерфейс Interface1, а тип U имел конструктор
без параметров:
class SomeClass {}
interface Interface1 {}
class GenericClass<T,U> where T : SomeClass, Interface1
 where U : new()
{ ... }

Ограничения могут применяться везде, где определены пара-
метры типа, как в методах, так и в определениях типов.

Ограничение базового класса указывает, что параметр типа
должен быть подклассом заданного класса (или совпадать с ним);
ограничение интерфейса указывает, что параметр типа должен ре-
ализовывать данный интерфейс. Такие ограничения позволяют
экземплярам параметра типа быть неявно преобразуемыми в этот
класс или интерфейс.

C#_9.0_Pocket_Reference_Instant.indb 126 30.03.2021 20:40:23

Обобщения 127

Ограничение class и ограничение struct указывают, что T должен
быть ссылочным типом или типом-значением (не допускающим
null) соответственно. Ограничение unmanaged является более
сильной версией ограничения struct: тип T должен быть простым
типом-значением или структурой, которая (рекурсивно) не име-
ет ссылочных типов. Ограничение конструктора без параметров
требует, чтобы тип T имел открытый конструктор без параметров
и позволял вызывать операцию new() для T:
static void Initialize<T> (T[] array) where T : new()
{
 for (int i = 0; i < array.Length; i++)
 array[i] = new T();
}

Неприкрытое ограничение типа требует, чтобы один параметр
типа был производным от другого параметра типа (или совпадал
с ним).

Подклассы обобщенных типов
Подклассы для обобщенного класса можно создавать точно

так же, как в случае необобщенного класса. Подкласс может остав-
лять параметры типа базового класса открытыми, как показано
в следующем примере:
class Stack<T> {...}
class SpecialStack<T> : Stack<T> {...}

Либо же подкласс может закрыть параметры обобщенного
типа с помощью конкретного типа:
class IntStack : Stack<int> {...}

Подкласс может также вводить новые аргументы типа:
class List<T> {...}
class KeyedList<T,TKey> : List<T> {...}

Самоссылающиеся обобщенные объявления
При закрытии аргумента типа тип может указывать в качестве

конкретного типа самого себя:

C#_9.0_Pocket_Reference_Instant.indb 127 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 128

public interface IEquatable<T> { bool Equals (T obj); }

public class Balloon : IEquatable<Balloon>
{
public bool Equals (Balloon b) { ... }
}

Следующий код также корректен:
class Foo<T> where T : IComparable<T> { ... }
class Bar<T> where T : Bar<T> { ... }

Статические данные
Статические данные являются уникальными для каждого за-

крытого типа:
class Bob<T> { public static int Count; }
...
Console.WriteLine(++Bob<int>.Count); // 1
Console.WriteLine(++Bob<int>.Count); // 2
Console.WriteLine(++Bob<string>.Count); // 1
Console.WriteLine(++Bob<object>.Count); // 1

Ковариантность

ПРИМЕЧАНИЕ
Ковариантность и контравариантность — сложные кон-
цепции. Мотивация, лежащая в основе их введения в язык
C#, заключалась в том, чтобы позволить обобщенным ин-
терфейсам и обобщениям (в частности, определенным в
.NET, таким как IEnumerable<T>) работать более пред-
сказуемым образом. Вы можете извлечь выгоду из ковари-
антности и контравариантности, даже особо не вникая во
все их детали.

Предполагая, что тип A может быть преобразован в B, тип X
имеет ковариантный параметр типа, если X<A> преобразуется
в X.

(Согласно понятию вариантности в C#, “преобразуется” оз-
начает возможность преобразования через неявное ссылочное

C#_9.0_Pocket_Reference_Instant.indb 128 30.03.2021 20:40:23

Обобщения 129

преобразование — такое, как когда A является подклассом B или
A реализует B. Сюда не входят числовые преобразования, упако-
вывающие преобразования и пользовательские преобразования.)

Например, тип IFoo<T> имеет ковариантный тип T, если кор-
ректен следующий код:
IFoo<string> s = ...;
IFoo<object> b = s;

Интерфейсы (и делегаты) допускают ковариантные параметры
типа. В целях иллюстрации предположим, что класс Stack<T>, ко-
торый был написан в начале настоящего раздела, реализует пока-
занный ниже интерфейс:
public interface IPoppable<out T> { T Pop(); }

Модификатор out для T указывает, что ти п T используется
только в выходных позициях (например, в возвращаемых типах
методов) и помечает параметр типа как ковариантный, разрешая
написание такого кода:
// , Bear Animal:
var bears = new Stack<Bear>();
bears.Push(new Bear());
// bears IPoppable<Bear>,
// IPoppable<Animal>:
IPoppable<Animal> animals = bears; //
Animal a = animals.Pop();

Приведение bears к animals разрешено компилятором —
в силу того, что параметр типа в интерфейсе является ковари-
антным.

ПРИМЕЧАНИЕ
Интерфейсы IEnumerator<T> и IEnumerable<T> (см.
раздел “Перечисление и итераторы”) помечены как имею-
щие ковариантный тип T. Это позволяет, например, при-
водить IEnumerable<string> к IEnumerable<object>.

Компилятор генерирует ошибку, если ковариантный параметр
типа встречается во входной позиции (скажем, в параметре мето-
да или в записываемом свойстве). Цель такого ограничения — га-
рантировать безопасность типов на этапе компиляции. Напри-

C#_9.0_Pocket_Reference_Instant.indb 129 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 130

мер, оно предотвращает добавление к этому интерфейсу метода
Push(T), который пользователи могли бы неправильно приме-
нять для внешне безобидной операции внесения в стек объекта,
представляющего верблюда, в реализацию IPoppable<Animal>
(вспомните, что базовым типом в нашем примере является стек
медведей). Чтобы можно было определить метод Push(T), пара-
метр типа T в действительности должен быть контравариантным.

ПРИМЕЧАНИЕ
В языке C# ковариантность (и контравариантность) под-
держивается только для элементов со ссылочными, но
не упаковывающими преобразованиями. Таким обра-
зом, если имеется метод, который принимает параметр
типа IPoppable<object>, то его можно вызывать с
IPoppable<string>, но не с IPoppable<int>.

Контравариантность
 Как мы видели ранее, если предположить, что A разрешает

неявное ссылочное преобразование в B, то тип X имеет ковари-
антный параметр типа, когда X<A> допускает ссылочное преоб-
разование в X. Тип будет контравариантным, если возможно
преобразование в обратном направлении — из X в X<A>. Кон-
травариантность поддерживается интерфейсами и делегатами,
когда параметр типа встречается только во входных позициях,
обозначаемых с помощью модификатора in. Продолжая предыду-
щий пример, если класс Stack<T> реализует интерфейс
public interface IPushable<in T> { void Push (T obj); }

то вполне корректно поступать так:
IPushable<Animal> animals = new Stack<Animal>();
IPushable<Bear> bears = animals; //
bears.Push (new Bear());

Зеркально отражая ковариантность, компилятор сообщит об
ошибке, если вы попытаетесь использовать контравариантный
параметр типа в выходной позиции (например, в качестве возвра-
щаемого значения или в читаемом свойстве).

C#_9.0_Pocket_Reference_Instant.indb 130 30.03.2021 20:40:23

Делегаты 131

Делегаты
Делегат связывает компонент, который вызывает метод, с его

целевым методом во время выполнения. У делегатов имеется два
аспекта: тип и экземпляр. Тип делегата определяет протокол , ко-
торому будут соответствовать вызывающий компонент и целевой
метод; протокол включает список типов параметров и возвраща-
емый тип. Экземпляр делегата — это объект, который ссылается
на один (или более) целевых методов, удовлетворяющих данному
протоколу.

Экземпляр делегата действует в вызывающем компоненте бук-
вально как посредник: вызывающий компонент вызывает делега-
та, после чего делегат вызывает целевой метод. Такая косвенность
развязывает вызывающий компонент и целевой метод.

Объявление типа делегата предваряется ключевым словом
delegate , но в остальном напоминает объявление (абстрактного)
метода. Например:
delegate int Transformer (int x);

Чтобы создать экземпляр делегата, переменной делегата мож-
но присвоить метод:
Transformer t = Square; //
int result = t(3); //
Console.Write (result); // 9

int Square (int x) => x * x;

Вызов делегата очень схож с вызовом метода (так как целью
делегата является всего лишь обеспечение определенного уровня
косвенности):
t(3);

Инструкция Transformer t = Square; представляет собой
сокращение следующей инструкции:
Transformer t = new Transformer (Square);

Точно так же t(3) — сокращение вызова
t.Invoke (3);

C#_9.0_Pocket_Reference_Instant.indb 131 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 132

Делегат схож с обратным вызовом — общий термин, который
охватывает конструкции, такие как указатели на функции языка
программирования C.

Написание подключаемых методов
с помощью делегатов

Метод присваивается переменной делегата во время выпол-
нения. Это удобно, когда нужно писать подключаемые методы.
В следующем примере присутствует служебный метод по имени
Transform(), который применяет трансформацию к каждому
элементу в целочисленном массиве. Метод Transform() имеет
параметр делегата, предназначенный для указания подключаемой
трансформации.
int[] values = { 1, 2, 3 };
Transform(values, Square); // Square

foreach (int i in values)
 Console.Write (i + " "); // 1 4 9

void Transform(int[] values, Transformer t)
{
 for (int i = 0; i < values.Length; i++)
 values[i] = t (values[i]);
}

int Square (int x) => x * x;

delegate int Transformer(int x);

Целевые методы экземпляра
и целевые статические методы

Целевой метод делегата может быть локальным, статическим
или методом экземпляра.

Когда объекту делегата назначается метод экземпляра, послед-
ний должен поддерживать ссылку не только на метод, но и на экзем-
пляр, которому принадлежит метод. Свойство System.Delegate
класса Target представляет этот экземпляр (и является null для
делегата, ссылающегося на статический метод).

C#_9.0_Pocket_Reference_Instant.indb 132 30.03.2021 20:40:23

Делегаты 133

Групповые делегаты
Все экземпляры делегатов обладают возможностью группово-

го вызова (multicast). Это означает, что экземпляр делегата может
ссылаться не только на одиночный целевой метод, но и на список
целевых методов. Экземпляры делегатов объединяются с помо-
щью операторов + и +=. Например:
SomeDelegate d = SomeMethod1;
d += SomeMethod2;

Последняя строка функционально эквивалентна такой строке:
d = d + SomeMethod2;

Обращение к d теперь приведет к вызову методов Some
Method1() и SomeMethod2(). Делегаты вызываются в порядке,
в котором они добавлялись.

Операторы - и -= удаляют правый операнд делегата из левого
операнда делегата. Например:
d -= SomeMethod1;

Обращение к d теперь приведет к вызову только одного мето-
да — SomeMethod2().

Применение оператора + или += к переменной делегата со зна-
чением null законно, как и применение оператора -= к перемен-
ной делегата с единственным целевым методом (в результате чего
экземпляр делегата получает значение null).

ПРИМЕЧАНИЕ
Делегаты являются неизменяемыми, так что при исполь-
зовании оператора += или -= фактически создается новый
экземпляр делегата, который и присваивается существу-
ющей переменной.

Если групповой делегат имеет возвращаемый тип, отличаю-
щийся от void, то вызывающий компонент получает возвращае-
мое значение от последнего вызванного метода. Предшествующие
методы по-прежнему вызываются, но их возвращаемые значения
игнорируются. В большинстве сценариев групповые делегаты

C#_9.0_Pocket_Reference_Instant.indb 133 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 134

имеют возвращаемые типы void, поэтому в них такая ситуация
не возникает.

Все типы делегатов неявно порождены от класса System.
MulticastDelegate, который унаследован от System.Delegate.
Операторы +, -, += и -=, применяемые к делегату, транслируют-
ся в вызовы статических методов Combine() и Remove() класса
System.Delegate.

Обобщенные типы делегатов
Тип делегата может содержать параметры обобщенного типа.

Например:
public delegate T Transformer<T> (T arg);

Ниже показано, как можно использовать этот тип делегата:
Transformer<double> s = Square;
Console.WriteLine(s(3.3)); // 10.89
double Square(double x) => x * x;

Делегаты Func и Action
Благодаря обобщенным делегатам становится возможным на-

писание небольшого набора типов делегатов, которые являются
настолько универсальными, что способны работать с методами,
имеющими любой возвращаемый тип и любое (приемлемое) коли-
чество аргументов. Такими делегатами являются Func и Action,
определенные в пространстве имен System (модификаторы in
и out указывают вариантность, которая вскоре будет раскрыта в
контексте делегатов):
delegate TResult Func <out TResult> ();
delegate TResult Func <in T, out TResult> (T arg);
delegate TResult Func <in T1, in T2, out TResult>
 (T1 arg1, T2 arg2);
... T16

delegate void Action ();
delegate void Action <in T> (T arg);
delegate void Action <in T1, in T2>
 (T1 arg1, T2 arg2);
... T16

C#_9.0_Pocket_Reference_Instant.indb 134 30.03.2021 20:40:23

Делегаты 135

Представленные делегаты исключительно универсальны. Де-
легат Transformer из предыдущего примера может быть заменен
делегатом Func, который принимает один аргумент типа T и воз-
вращает значение того же самого типа:
public static void Transform<T> (
 T[] values, Func<T,T> transformer)
{
 for (int i = 0; i < values.Length; i++)
 values[i] = transformer (values[i]);
}

Делегаты Func и Action не охватывают лишь те практические
сценарии, которые связаны с параметрами ref/out и параметра-
ми-указателями.

Совместимость делегатов
Все типы делегатов несовместимы друг с другом, даже если

имеют одинаковые сигнатуры:
delegate void D1(); delegate void D2();
...
D1 d1 = Method1;
D2 d2 = d1; //

Тем не менее следующий код разрешен:
D2 d2 = new D2(d1);

Экземпляры делегатов считаются равными, если они имеют
одинаковые типы и целевые методы. Для групповых делегатов ва-
жен порядок следования целевых методов.

Вариантность возвращаемых типов
В результате вызова метода можно получить обратно тип, ко-

торый является более конкретным, чем запрошенный. Это обыч-
ное полиморфное поведение. В соответствии с таким поведением
целевой метод делегата может возвращать более конкретный тип,
чем описанный делегатом. Это ковариантность :
ObjectRetriever o = new ObjectRetriever (RetriveString);
object result = o();
Console.WriteLine(result); // hello

C#_9.0_Pocket_Reference_Instant.indb 135 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 136

string RetriveString() => "hello";
delegate object ObjectRetriever();

Делегат ObjectRetriever ожидает возврата object, но го-
дится также подкласс object, потому что возвращаемые типы де-
легатов являются ковариантными.

Вариантность параметров
При вызове метода можно предоставлять аргументы, которые

имеют более конкретный тип, чем параметры данного метода. Это
обычное полиморфное поведение. В соответствии с таким пове-
дением у целевого метода делегата могут быть менее конкретные
типы параметров, чем описанные самим делегатом. Это контра-
вариантность :
StringAction sa = new StringAction(ActOnObject);
sa ("hello");

void ActOnObject (object o) => Console.WriteLine(o);
delegate void StringAction(string s);

ПРИМЕЧАНИЕ
Стандартный шаблон событий спроектирован так, чтобы
помочь использовать в своих интересах контравариант-
ность параметров делегата за счет применения общего ба-
зового класса EventArgs. Например, можно иметь един-
ственный метод, вызываемый двумя разными делегатами,
одному из которых передается MouseEventArgs, а друго-
му — KeyEventArgs.

Вариантность параметров типа для обобщенных делегатов
В разделе “Обобщения” было указано, что параметры типа для

обобщенных интерфейсов могут быть ковариантными и контра-
вариантными. Аналогичная возможность существует и для обоб-
щенных делегатов. При определении обобщенного типа делегата
рекомендуется поступать следующим образом:

маркировать параметр типа, используемый только в каче-
стве возвращаемого значения, как ковариантный (out);

C#_9.0_Pocket_Reference_Instant.indb 136 30.03.2021 20:40:23

События 137

маркировать любой параметр типа, используемый только в
параметрах, как контравариантный (in).

Это позволяет преобразованиям работать естественным об-
разом, соблюдая отношения наследования между типами. Делегат
delegate TResult Func<out TResult>();

(определенный в пространстве имен System) является ковариант-
ным для TResult, разрешая следующую запись:
Func<string> x = ...;
Func<object> y = x;

Делегат
delegate void Action<in T> (T arg);

(определенный в пространстве имен System) является контрава-
риантным для T, разрешая следующую запись:
Action<object> x = ...;
Action<string> y = x;

События
Когда используются делегаты, обычно возникают две незави-

симые роли: ретранслятор (broadcaster) и подписчик (subscriber).
Ретранслятор — это тип, который содержит поле делегата. Ре-
транслятор решает, когда делать передачу, вызывая делегат. Под-
писчики — это целевые методы-получатели. Подписчик решает,
когда начинать и останавливать прослушивание, применяя опера-
торы += и -= для делегата ретранслятора. Подписчик ничего не
знает о других подписчиках и не вмешивается в их работу.

События являются языковым средством, формализующим
описанный шаблон. Конструкция event открывает только подм-
ножество возможностей делегата, которые требуются для модели
“ретранслятор/подписчик”. Основной замысел событий — пре-
дотвратить влияние подписчиков одного на другой.

Объявить событие проще всего, поместив ключевое слово
event перед членом делегата:
public class Broadcaster
{
 public event ProgressReporter Progress;
}

C#_9.0_Pocket_Reference_Instant.indb 137 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 138

Код внутри типа Broadcaster имеет полный доступ к члену
PriceChanged и может рассматривать его как делегат. Код за пре-
делами Broadcaster может только выполнять операторы += и -=
для события PriceChanged.

В следующем примере класс Stock запускает свое событие
PriceChanged всякий раз, когда изменяется свойство Price дан-
ного класса:
public delegate void PriceChangedHandler(decimal oldPrice,
 decimal newPrice);
public class Stock
{
 string symbol; decimal price;
 public Stock (string symbol) => this.symbol = symbol;
 public event PriceChangedHandler PriceChanged;
 public decimal Price
 {
 get => price;
 set {
 if (price == value) return;
 // ,
 // :
 if (PriceChanged != null)
 PriceChanged (price, value);
 price = value;
 }
 }
}

Если в приведенном выше примере убрать ключевое слово
event, чтобы PriceChanged стало обычным полем делегата, то
результаты окажутся такими же. Однако класс Stock станет менее
надежным в том плане, что подписчики смогут предпринимать
следующие действия, влияя один на другого:

заменять других подписчиков, переустанавливая Price
Changed (вместо применения оператора +=);
очищать всех подписчиков (путем установки PriceChanged
в null);
выполнять групповую рассылку другим подписчикам, вы-
зывая делегат.

События могут быть виртуальными, перекрытыми, абстракт-
ными или запечатанными. Они также могут быть статическими.

C#_9.0_Pocket_Reference_Instant.indb 138 30.03.2021 20:40:23

События 139

Стандартный шаблон событий
Почти во всех случаях, когда события определяются в библио-

теке .NET, их определения придерживаются стандартного шабло-
на, предназначенного для обеспечения согласованности между би-
блиотекой и пользовательским кодом. Ниже показан предыдущий
пример, переделанный с учетом данного шаблона:
public class PriceChangedEventArgs : EventArgs
{
 public readonly decimal LastPrice, NewPrice;
 public PriceChangedEventArgs (decimal lastPrice,
 decimal newPrice)
 {
 LastPrice = lastPrice; NewPrice = newPrice;
 }
}

public class Stock
{
 string symbol; decimal price;
 public Stock (string symbol) => this.symbol = symbol;

 public event EventHandler<PriceChangedEventArgs>
 PriceChanged;

 protected virtual void OnPriceChanged
 (PriceChangedEventArgs e) =>
 // PriceChanged, null:
 PriceChanged?.Invoke(this, e);

 public decimal Price
 {
 get { return price; }
 set
 {
 if (price == value) return;
 OnPriceChanged(new PriceChangedEventArgs(price,
 value));
 price = value;
 }
 }
}

C#_9.0_Pocket_Reference_Instant.indb 139 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 140

В ядре стандартного шаблона событий находится предопреде-
ленный класс .NET System.EventArgs без членов, не считая ста-
тического свойства Empty. EventArgs является базовым классом
для передачи информации событию. В данном примере мы соз-
даем подкласс EventArgs для передачи старых и новых цен при
генерации события PriceChanged.

Обобщенный делегат System.EventHandler также является
частью .NET и определен следующим образом:
public delegate void EventHandler<TEventArgs>
 (object source, TEventArgs e)
 where TEventArgs : EventArgs;

ПРИМЕЧАНИЕ
До выхода версии C# 2.0 (в которой в язык были добав-
лены обобщения) решение предусматривало написание
специального делегата обработки событий для каждого
типа EventArgs следующим образом:
delegate void PriceChangedHandler(object sender,
 PriceChangedEventArgs e);

По историческим причинам большинство событий в би-
блиотеках .NET используют делегаты, определенные по-
добным образом.

Центральным местом генерации событий является защищен-
ный виртуальный метод по имени On- - (). Это по-
зволяет подклассам запускать событие (что обычно желательно),
а также вставлять код до и после генерации события.

Вот как можно было бы применить класс Stock:
static void Main()
{
 Stock stock = new Stock ("THPW");
 stock.Price = 27.10M;

 stock.PriceChanged += stock_PriceChanged;
 stock.Price = 31.59M;
}
static void stock_PriceChanged
 (object sender, PriceChangedEventArgs e)

C#_9.0_Pocket_Reference_Instant.indb 140 30.03.2021 20:40:23

События 141

{
 if ((e.NewPrice - e.LastPrice) / e.LastPrice > 0.1M)
 Console.WriteLine(" , 10%!");
}

Для событий, которые не содержат в себе дополнительную
информацию, в .NET также предлагается необобщенный делегат
EventHandler. Для демонстрации его использования можно пе-
реписать класс Stock так, чтобы событие PriceChanged иници-
ировалось после изменения цены. Это означает, что с событием не
нужно передавать какую-либо дополнительную информацию:
public class Stock
{
 string symbol; decimal price;

 public Stock (string symbol) => this.symbol = symbol;

 public event EventHandler PriceChanged;

 protected virtual void OnPriceChanged(EventArgs e) =>
 PriceChanged?.Invoke (this, e);

 public decimal Price
 {
 get => price;
 set
 {
 if (price == value) return;
 price = value;
 OnPriceChanged(EventArgs.Empty);
 }
 }
}

Обратите внимание на применение свойства EventArgs.Empty,
что позволяет не инстанцировать EventArgs.

Средства доступа к событию
Средства доступа к событию представляют собой реализации

его операторов += и -=. По умолчанию средства доступа неявно
реализуются компилятором. Взгляните на следующее объявление
события:
public event EventHandler PriceChanged;

C#_9.0_Pocket_Reference_Instant.indb 141 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 142

Компилятор преобразует его в перечисленные ниже компо-
ненты:

закрытое поле делегата;
пара открытых функций доступа, реализации которых пе-
ренаправляют операторы += и -= к закрытому полю деле-
гата.

Контроль над этим процессом можно взять на себя, определив
явные средства доступа. Вот как выглядит реализация события
PriceChanged из предыдущего примера вручную:
EventHandler priceChanged; //
public event EventHandler PriceChanged
{
 add { priceChanged += value; }
 remove { priceChanged -= value; }
}

Приведенный пример функционально идентичен реализации
средств доступа C# по умолчанию (с тем отличием , что компиля-
тор C# гарантирует также безопасность в отношении потоков во
время обновления делегата). Определяя средства доступа к со-
бытию самостоятельно, мы указываем, что генерировать поле по
умолчанию и логику средств доступа не требуется.

С помощью явных средств доступа к событию можно реализо-
вать более сложные стратегии хранения и доступа для лежащего
в основе делегата. Это полезно, когда средства доступа к событию
просто поручают передачу события другому классу или когда явно
реализуется интерфейс, в котором объявляется событие:
public interface IFoo { event EventHandler Ev; }

class Foo : IFoo
{
 EventHandler ev;
 event EventHandler IFoo.Ev
 {
 add { ev += value; }
 remove { ev -= value; }
 }
}

C#_9.0_Pocket_Reference_Instant.indb 142 30.03.2021 20:40:23

Лямбда-выражения 143

Лямбда-выражения
Лямбда-выражение представляет собой безымянный метод,

записанный вместо экземпляра делегата. Компилятор немедленно
преобразовывает лямбда-выражение в одну из двух описанных
ниже конструкций.

Экземпляр делегата.
Дерево выражения, которое имеет тип Expression
<TDelegate> и представляет код внутри лямбда-выраже-
ния в виде объектной модели, поддерживающей обход. Это
делает возможной интерпретацию лямбда-выражения поз-
же, во время выполнения (весь процесс подробно описан в
главе 8 книги C# 9.0. Справочник. Полное описание языка).

В следующем примере x => x*x представляет собой лямбда-вы-
ражение:
Transformer sqr = x => x * x;
Console.WriteLine(sqr(3)); // 9

delegate int Transformer(int i);

ПРИМЕЧАНИЕ
Внутренне компилятор преобразует лямбда-выражение
такого типа в закрытый метод и помещает в его тело код
выражения.

Лямбда-выражение имеет следующий вид:
() => - - -

Для удобства круглые скобки можно опускать тогда и только
тогда, когда имеется в точности один параметр выводимого типа.

В нашем примере единственным параметром является x, а вы-
ражением — x*x:
x => x * x;

Каждый параметр лямбда-выражения соответствует параме-
тру делегата, а тип выражения (который может быть void) — воз-
вращаемому типу делегата.

C#_9.0_Pocket_Reference_Instant.indb 143 30.03.2021 20:40:23

Язык C# 9.0. Карманный справочник 144

В нашем примере x соответствует параметру i, а выражение
x*x — возвращаемому типу int и, следовательно, оно совместимо
с делегатом Transformer.

Код лямбда-выражения может быть блоком инструкций, а не
просто выражением. Мы можем переписать пример следующим
образом:
x => { return x * x; };

Лямбда-выражения чаще всего используются с делегатами
Func и Action, поэтому приведенное ранее выражение вы будете
нередко видеть в такой форме:
Func<int,int> sqr = x => x * x;

Обычно компилятор способен вывести тип параметров
лямбда-выражения из контекста. В противном случае типы пара-
метров можно указывать явно:
Func<int,int> sqr = (int x) => x * x;

Ниже приведен пример выражения, принимающего два пара-
метра:
Func<string,string,int> totalLength =
 (s1, s2) => s1.Length + s2.Length;

int total = totalLength ("hello", "world"); // total = 10

Предполагая, что Clicked — это событие типа EventHandler,
следующий код присоединяет обработчик события через лямбда-
выражение:
obj.Clicked += (sender,args) => Console.Write("Click");

Захват внешних переменных
Лямбда-выражение может обращаться к любым переменным,

доступным в момент определения лямбда-выражения. Такие пере-
менные называются внешними переменными и включают локаль-
ные переменные, параметры и поля. Например:
int factor = 2;
Func<int, int> multiplier = n => n * factor;
Console.WriteLine(multiplier(3)); // 6

C#_9.0_Pocket_Reference_Instant.indb 144 30.03.2021 20:40:24

Лямбда-выражения 145

Внешние переменные, к которым обращается лямбда-выраже-
ние, называются захваченными переменными (captured). Лямб да-
выражение, которое захватывает переменные, называется замыка-
нием (closure). Захваченные переменные вычисляются при факти-
ческом вызове делегата, а не в момент захвата:
int factor = 2;
Func<int, int> multiplier = n => n * factor;
factor = 10;
Console.WriteLine(multiplier(3)); // 30

Лямбда-выражения сами могут обновлять захваченные пере-
менные:
int seed = 0;
Func<int> natural = () => seed++;
Console.WriteLine(natural()); // 0
Console.WriteLine(natural()); // 1
Console.WriteLine(seed); // 2

Захваченные переменные имеют собственное время жизни,
расширенное до времени жизни делегата. В следующем примере
локальная переменная seed должна бы покидать область видимо-
сти после того, как выполнение Natural завершено. Но поскольку
переменная seed была захвачена, ее время жизни расширяется до
времени жизни захватившего ее делегата natural:
Func<int> natural = Natural();
Console.WriteLine(natural()); // 0
Console.WriteLine(natural()); // 1

static Func<int> Natural()
{
 int seed = 0;
 return () => seed++; //
}

ПРИМЕЧАНИЕ
Переменные могут также быть захвачены анонимными и
локальными методами. В этих ситуациях правила для за-
хваченных переменных такие же.

C#_9.0_Pocket_Reference_Instant.indb 145 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 146

Статические лямбда-выражения (C# 9)
Начиная с C# 9, можно гарантировать, что лямбда-выражение,

локальная функция или анонимный метод не захватывает состоя-
ние, применяя ключевое слово static. Это может быть полезно в
сценариях микрооптимизации для предотвращения (потенциаль-
но непреднамеренного) выделения памяти и очистки замыкания.
Например, мы можем применить модификатор static к следую-
щему лямбда-выражению:
Func<int,int> multiplier = static n => n * 2;

Если позже мы попытаемся изменить лямбда-выражение так,
чтобы оно захватывало локальную переменную, компилятор сге-
нерирует ошибку. Эта функция более полезна в локальных мето-
дах (поскольку лямбда-выражение само требует выделения па-
мяти). В следующем примере метод Multiply не может получить
доступ к переменной factor:
void Foo ()
{
 int factor = 123;
 static int Multiply (int x) => x * 2;
}

Применение static здесь, возможно, полезно также в каче-
стве инструмента документации, указывающего на пониженный
уровень связывания. Статические лямбда-выражения все еще мо-
гут обращаться к статическим переменным и константам (потому
что они не требуют замыкания).

ПРИМЕЧАНИЕ
Ключевое слово static действует просто как проверка;
оно никак не влияет на код на промежуточном языке,
который генерирует компилятор. Без ключевого слова
static компилятор не генерирует замыкание, если толь-
ко оно не является необходимым (но даже в этом случае у
него есть уловки, позволяющие упростить код и сделать
его менее дорогим).

C#_9.0_Pocket_Reference_Instant.indb 146 30.03.2021 20:40:24

Лямбда-выражения 147

Захват итерационных переменных
Когда захватывается итерационная переменная в цикле for,

она трактуется так, как если бы она была объявлена вне цикла. Это
значит, что в каждой итерации захватывается одна и та же пере-
менная. Приведенный ниже код выводит 333, а не 012:
Action[] actions = new Action[3];

for (int i = 0; i < 3; i++)
 actions [i] = () => Console.Write(i);

foreach (Action a in actions) a(); // 333

Каждое замыкание (выделено полужирным) захватывает одну
и ту же переменную i. (Это действительно имеет смысл, если рас-
сматривать переменную i как переменную, значение которой со-
храняется между итерациями цикла; при желании i можно даже
явно изменять внутри тела цикла.) В результате, когда позже вы-
зываются делегаты, они видят значение i в момент вызова, т.е. 3.
Если же требуется вывести на экран 012, то решение состоит в
присваивании значения итерационной переменной некоторой
локальной переменной с областью видимости внутри цикла:
Action[] actions = new Action[3];
for (int i = 0; i < 3; i++)
{
 int loopScopedi = i;
 actions[i] = () => Console.Write(loopScopedi);
}
foreach (Action a in actions) a(); // 012

В результате замыкание на каждой итерации будет захватывать
другую переменную.

Обратите внимание, что (начиная с C# 5) переменная итерации
в цикле foreach является неявно локальной, поэтому вы можете
безопасно захватывать ее без необходимости прибегать ко времен-
ной переменной.

Сравнение лямбда-выражений
и локальных методов

Функциональность локальных методов (см. раздел “Локальные
методы”) перекрывается с функциональностью лямбда-выраже-

C#_9.0_Pocket_Reference_Instant.indb 147 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 148

ний. Преимущества локальных методов в том, что они допуска-
ют рекурсию и избавляют от беспорядка, связанного с указанием
делегатов. Устранение косвенности, присущей делегатам, также
делает их несколько более эффективными, и они могут получать
доступ к локальным переменным содержащего метода без “пере-
носа” компилятором захваченных переменных внутрь скрытого
класса.

Однако во многих случаях делегат все-таки нужен, чаще всего
при вызове функции более высокого порядка (т.е. метода с параме-
тром, имеющим тип делегата):
public void Foo(Func<int,bool> predicate) { ... }

В сценариях подобного рода в любом случае необходим де-
легат, и они представляют собой в точности те ситуации, когда
лямбда-выражения обычно короче и яснее.

Анонимные методы
Анонимные методы — это функциональная возможность, по-

явившаяся в версии C# 2.0, которая по большей части относится
к лямбда-выражениям. Анонимный метод схож с лямбда-выраже-
нием, с тем отличием, что он лишен неявно типизированных пара-
метров, синтаксиса выражений (анонимный метод всегда должен
быть блоком инструкций) и возможности компиляции в дерево
выражения. Чтобы написать анонимный метод, требуется указать
ключевое слово delegate , затем — (необязательное) объявление
параметра и наконец — тело метода. Например:
Transformer sqr = delegate(int x) {return x * x;};
Console.WriteLine(sqr(3)); // 9

delegate int Transformer(int i);

Первая строка семантически эквивалентна следующему
лямбда-выражению:
Transformer sqr = (int x) => {return x * x;};

Или просто
Transformer sqr = x => x * x;

C#_9.0_Pocket_Reference_Instant.indb 148 30.03.2021 20:40:24

Инструкции try и исключения 149

Уникальная особенность анонимных методов состоит в том,
что можно полностью опускать объявление параметра, даже если
 делегат его ожидает. Поступать так удобно при объявлении собы-
тий с пустым обработчиком по умолчанию:
public event EventHandler Clicked = delegate { };

В итоге устраняется необходимость проверки на равенство
null перед запуском события. Приведенный далее код также до-
пустим (обратите внимание на отсутствие параметров):
Clicked += delegate { Console.Write("clicked"); };

Анонимные методы захватывают внешние переменные тем же
способом, что и лямбда-выражения.

Инструкции try и исключения
Инструкция try определяет блок кода, предназначенный для

обработки ошибок или очистки. За блоком try должен следо-
вать один или несколько блоков catch и/или блок finally. Блок
catch выполняется, когда в блоке try генерируется исключение.
Блок finally выполняется после того, как поток управления по-
кидает блок try (или блок catch, если таковой присутствует),
обеспечивая очистку независимо от того, было сгенерировано ис-
ключение или нет.

Блок catch имеет доступ к объекту Exception, который со-
держит информацию о происшедшей ошибке. Блок catch приме-
няется либо для обработки ошибки, либо для повторной генерации
исключения . Исключение генерируется повторно, если, например,
нужно просто зарегистрировать факт возникновения проблемы в
журнале или если необходимо сгенерировать исключение нового
типа более высокого уровня.

Блок finally увеличивает степень детерминизма программы
тем, что выполняется несмотря ни на что. Он полезен для выпол-
нения задач очистки наподобие закрытия файлов или сетевых
подключений.

Инструкция try выглядит следующим образом:
try
{
 ... //

C#_9.0_Pocket_Reference_Instant.indb 149 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 150

 //
}
catch (ExceptionA ex)
{
 ... // ExceptionA
}
catch (ExceptionB ex)
{
 ... // ExceptionB
}
finally
{
 ... //
}

Рассмотрим следующий код:
int x = 3, y = 0;
Console.WriteLine(x / y);

Поскольку y имеет нулевое значение, исполняющая среда гене-
рирует исключение DivideByZeroException и программа пре-
кращает работу. Чтобы предотвратить такое поведение, мы пере-
хватываем исключение следующим образом:
try
{
 int x = 3, y = 0;
 Console.WriteLine(x / y);
}
catch (DivideByZeroException ex)
{
 Console.Write("y .");
}
// ...

ПРИМЕЧАНИЕ
Целью приведенного простого примера была иллюстра-
ция обработки исключений. На практике лучше явно про-
верять делитель на равенство нулю перед вычислением.
Обработка исключений является относительно затрат-
ной, занимая сотни тактов процессора.

C#_9.0_Pocket_Reference_Instant.indb 150 30.03.2021 20:40:24

Инструкции try и исключения 151

Когда внутри инструкции try сгенерировано исключение, сре-
да CLR выполняет следующую проверку.

Имеет ли инструкция try совместимые с исключением блоки
catch?

Если имеет, то управление переходит соответствующему
блоку catch, затем — блоку finally (при наличии тако-
вого) и далее выполнение продолжается обычным образом.
Если не имеет, управление переходит прямо блоку finally
(при наличии такового), а затем среда CLR ищет в стеке вы-
зовов другие блоки try и в случае их обнаружения повто-
ряет проверку.

Если ни одна функция в стеке вызовов не взяла на себя ответ-
ственность за обработку исключения, то пользователю отобража-
ется диалоговое окно с сообщением об ошибке и программа пре-
кращает работу.

Конструкция catch
Конструкция catch указывает тип исключения, подлежаще-

го перехвату. Этим типом может быть либо System.Exception,
либо какой-то подкласс System.Exception. Перехват
System.Exception обеспечивает отлавливание всех возможных
ошибок, что удобно в перечисленных ниже ситуациях:

программа потенциально может восстановиться независи-
мо от конкретного типа исключения;
планируется повторная генерация исключения (возможно,
после его регистрации в журнале);
обработчик ошибок является последним средством перед
тем, как программа прекратит работу.

Однако более обычной является ситуация, когда перехваты-
ваются исключения конкретных типов, чтобы не иметь дела с
условиями, на которые обработчик не был рассчитан (например,
OutOfMemoryException).

Перехватывать исключения нескольких типов можно с помо-
щью множества конструкций catch:

C#_9.0_Pocket_Reference_Instant.indb 151 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 152

try
{
 DoSomething();
}
catch (IndexOutOfRangeException ex) { ... }
catch (FormatException ex) { ... }
catch (OverflowException ex) { ... }

Для конкретного исключения выполняется только одна кон-
струкция catch. Если вы хотите предусмотреть сетку безопасно-
сти для перехвата общих исключений (типа System.Exception),
размещайте более конкретные обработчики первыми.

Исключение можно перехватывать без указания переменной,
если доступ к свойствам исключения не нужен:
catch (OverflowException) //
{ ... }

Кроме того, можно опускать и переменную, и тип (тогда будут
перехватываться все исключения):
catch { ... }

Фильтры исключений
Начиная с версии C# 6.0, в конструкции catch можно указы-

вать фильтр исключений с помощью конструкции when :
catch (WebException ex)
 when (ex.Status == WebExceptionStatus.Timeout)
{
 ...
}

Если в приведенном примере генерируется исключение
WebException, то вычисляется логическое выражение, находя-
щееся после ключевого слова when. Если результатом вычисле-
ния оказывается false, то данный блок catch игнорируется и
просматриваются (при их наличии) последующие конструкции
catch. Благодаря фильтрам исключений может появиться смысл
в повторном перехвате исключения одного и того же типа:
catch (WebException ex)
 when (ex.Status == -)
{ ... }
catch (WebException ex)

C#_9.0_Pocket_Reference_Instant.indb 152 30.03.2021 20:40:24

Инструкции try и исключения 153

 when (ex.Status == - -)
{ ... }

Логическое выражение в конструкции when может иметь по-
бочные действия, например вызывать метод, который регистри-
рует в журнале сведения об исключении для целей диагностики.

Блок finally
Блок finally выполняется всегда — независимо от того, было

ли сгенерировано исключение и полностью ли был выполнен блок
try. Блоки finally обычно используются для размещения кода
очистки.

Блок finally выполняется в одном из следующих случаев:

после завершения блока catch;
после того, как поток управления покидает блок try из-за
оператора перехода (например, return или goto);
после окончания блока try.

Блок finally повышает детерминизм программы. В приве-
денном далее примере открываемый файл всегда закрывается —
независимо от перечисленных ниже обстоятельств:

блок try завершается нормально;
происходит преждевременный возврат из-за того, что файл
пуст (EndOfStream);
во время чтения файла генерируется исключение
IOException.

Вот пример:
static void ReadFile()
{
 StreamReader reader = null; //
 // System.IO
 try
 {
 reader = File.OpenText ("file.txt");
 if (reader.EndOfStream) return;
 Console.WriteLine(reader.ReadToEnd());
 }

C#_9.0_Pocket_Reference_Instant.indb 153 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 154

 finally
 {
 if (reader != null) reader.Dispose();
 }
}

В этом примере мы закрываем файл с помощью вызова
Dispose() для StreamReader. Вызов Dispose() для объекта
внутри блока finally представляет собой стандартное соглаше-
ние, соблюдаемое повсеместно в .NET, и оно явно поддерживается
в языке C# с использованием инструкции using.

Инструкция using
Многие классы инкапсулируют неуправляемые ресурсы, та-

кие как дескрипторы файлов или графические дескрипторы, или
подключения к базам данных. Классы подобного рода реализуют
интерфейс System.IDisposable, в котором определен един-
ственный метод без параметров с именем Dispose(), предна-
значенный для очистки этих ресурсов. Инструкция using пред-
лагает элегантный синтаксис для вызова Dispose() для объекта
IDisposable внутри блока finally.

Инструкция
using (StreamReader reader = File.OpenText("file.txt"))
{
 ...
}

в точности эквивалентна следующему коду:
{
 StreamReader reader = File.OpenText("file.txt");
 try
 {
 ...
 }
 finally
 {
 if (reader != null) ((IDisposable)reader).Dispose();
 }
}

C#_9.0_Pocket_Reference_Instant.indb 154 30.03.2021 20:40:24

Инструкции try и исключения 155

Объявления using
Если опустить круглые скобки и блок инструкций, следующий

за инструкцией using, то можно получить объявление using. Та-
кой ресурс освобождается, когда поток управления выходит за
пределы охватывающего блока инструкций:
if (File.Exists ("file.txt"))
{
 using var reader = File.OpenText("file.txt");
 Console.WriteLine(reader.ReadLine());
 ...
}

В данном случае reader будет освобожден после того, как по-
ток управления выйдет за пределы блока инструкций if.

Генерация исключений
Исключения могут генерироваться либо исполняющей сре-

дой, либо пользовательским кодом. В приведенном далее приме-
ре метод Display() генерирует исключение System.Argument
NullException:
static void Display (string name)
{
 if (name == null)
 throw new ArgumentNullException(nameof(name));
 Console.WriteLine (name);
 }

Выражения throw
Начиная с версии C# 7, throw может появляться как выраже-

ние в функциях, сжатых до выражения
public string Foo() =>
 throw new NotImplementedException();

Выражение throw может также находиться внутри тернарного
условного оператора:
string ProperCase(string value) =>
 value == null ? throw new ArgumentException("value"):
 value == "" ? "" :
 char.ToUpper(value[0]) + value.Substring(1);

C#_9.0_Pocket_Reference_Instant.indb 155 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 156

Повторная генерация исключения
Исключение можно перехватывать и генерировать повторно:

try { ... }
catch(Exception ex)
{
 // ...
 ...
 throw; //
}

Повторная генерация в подобной манере дает возможность за-
регистрировать в журнале информацию об ошибке, не подавляя
ее. Она позволяет также отказаться от обработки исключения,
если обстоятельства сложились не так, как ожидалось.

ПРИМЕЧАНИЕ
Если throw заменить выражением throw ex, то пример
сохранит работоспособность, но свойство StackTrace
исключения больше не будет отражать информацию об
исходной ошибке.

Еще один распространенный сценарий предусматривает по-
вторную генерацию исключения более конкретного или значаще-
го типа:
try
{
 ... // XML
}
catch(FormatException ex)
{
 throw new XmlException (" ", ex);
}

При повторной генерации другого исключения в свойстве
InnerException можно указать исходное исключение, чтобы по-
мочь в отладке. Почти все типы исключений предоставляют кон-
структор для данной цели (как в рассмотренном примере).

C#_9.0_Pocket_Reference_Instant.indb 156 30.03.2021 20:40:24

Перечисление и итераторы 157

Основные свойства System.Exception
Ниже описаны наиболее важные свойства класса System.

Exception.

StackTrace

Строка, представляющая все методы, которые были вызва-
ны, начиная с источника исключения и заканчивая блоком
catch.

Message

Строка с описанием ошибки.

InnerException

Внутреннее исключение (если таковое имеется), кото-
рое привело к генерации внешнего исключения. Само это
свойство, в свою очередь, может иметь свойство Inner
Exception, отличающееся от данного.

Перечисление и итераторы

Перечисление
Перечислитель — это однонаправленный, предназначенный

только для чтения курсор по последовательности значений. C#
рассматривает тип как перечислитель, если он соответствует од-
ному пункту из следующего списка.

Имеет открытый метод без параметров с именем MoveNext
и свойство с именем Current.
Реализует интерфейс System.Collections.
IEnumerator.
Реализует интерфейс System.Collections.Generic.
IEnumerator<T>.

Инструкция foreach выполняет итерацию по перечислимому
объекту. Перечислимый объект является логическим представ-
лением последовательности. Это не собственно курсор, а объект,
который производит курсор для себя самого. C# рассматривает
тип как перечислимый, если он соответствует любому пункту из

C#_9.0_Pocket_Reference_Instant.indb 157 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 158

следующего списка (проверка соответствия выполняется в ука-
занном порядке).

Имеет открытый метод без параметров с именем Get
Enumerator, который возвращает перечислитель.
Реализует интерфейс System.Collections.Generic.
IEnumerable<T>.
Реализует интерфейс System.Collections.IEnumerable.
(Начиная с C# 9) может быть связан с расширяющим ме-
тодом, названным GetEnumerator, который возвращает
перечислитель (см. раздел “Расширяющие методы”).

Шаблон перечисления выглядит следующим образом:
class Enumerator // IEnumerator<T>
{
 public IteratorVariableType Current { get {...} }
 public bool MoveNext() {...}
}

class Enumerable // IEnumerable<T>
{
 public Enumerator GetEnumerator() {...}
}

Вот как выглядит высокоуровневый способ перебора симво-
лов в слове beer с использованием инструкции foreach:
foreach(char c in "beer") Console.WriteLine(c);

А вот низкоуровневый способ перебора символов в том же
слове без использования инструкции foreach:
using (var enumerator = "beer".GetEnumerator())
while (enumerator.MoveNext())
{
 var element = enumerator.Current;
 Console.WriteLine (element);
}

Если перечислитель реализует интерфейс IDisposable, ин-
струкция foreach действует также как оператор using, неявно
удаляя объект перечислителя.

C#_9.0_Pocket_Reference_Instant.indb 158 30.03.2021 20:40:24

Перечисление и итераторы 159

Инициализаторы коллекций
Перечислимый объект можно создать и заполнить за один шаг.

Например:
using System.Collections.Generic;
...
List<int> list = new List<int> {1, 2, 3};

Компилятор транслирует последнюю строку в следующий код:
List<int> list = new List<int>();
list.Add (1); list.Add (2); list.Add (3);

Для этого требуется, чтобы перечислимый объект реализо-
вывал интерфейс System.Collections.IEnumerable и, таким
образом, имел метод Add(), который принимает подходящее ко-
личество параметров для вызова. Аналогичным способом мож-
но инициализировать словари (типы, реализующие интерфейс
System.Collections.IDictionary):
var dict = new Dictionary<int, string>()
{
 { 5, "five" },
 { 10, "ten" }
};

Или более кратко:
var dict = new Dictionary<int, string>()
{
 [5] = "five",
 [10] = "ten"
};

Второй вариант записи допустим не только со словарями, но и
с любым типом, для которого существует индексатор.

Итераторы
В то время как инструкцию foreach можно рассматривать как

потребитель перечислителя, итератор является производителем
перечислителя. В приведенном ниже примере итератор использу-
ется для возврата последовательности чисел Фибоначчи (в кото-
рой каждое число является суммой двух предыдущих чисел):

C#_9.0_Pocket_Reference_Instant.indb 159 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 160

foreach (int fib in Fibs (6))
 Console.Write (fib + " ");

IEnumerable<int> Fibs(int fibCount)
{
 for (int i=0, prevFib=1, curFib=1; i<fibCount; i++)
 {
 yield return prevFib;
 int newFib = prevFib+curFib;
 prevFib = curFib;
 curFib = newFib;
 }
}

: 1 1 2 3 5 8

В то время как оператор return означает “Вот значение, ко-
торое должно быть возвращено из этого метода”, оператор yield
return означает “Вот следующий элемент, который должен быть
выдан этим перечислителем”. Когда встречается инструкция
yield, управление возвращается вызывающему коду, но состоя-
ние вызываемого метода сохраняется, так что этот метод может
продолжить свое выполнение, как только вызывающий код пе-
реходит к следующему элементу. Жизненный цикл состояния
ограничен перечислителем, поэтому состояние может быть осво-
бождено, когда вызывающий код завершит перечисление.

ПРИМЕЧАНИЕ
Компилятор преобразует методы итератора в закрытые
классы, которые реализуют интерфейсы IEnumerable<T>
и/или IEnumerator<T>. Логика внутри блока итератора
“инвертируется”, после чего соединяется с методом Move
Next() и свойством Current класса перечислителя, сге-
нерированного компилятором. Это означает, что при вы-
зове метода все, что происходит, — это инстанцирование
сгенерированного компилятором класса; никакой напи-
санный вами код в действительности не выполняется!
Ваш код выполняется, только когда начинается перечис-
ление результирующей последовательности, обычно с по-
мощью инструкции foreach.

C#_9.0_Pocket_Reference_Instant.indb 160 30.03.2021 20:40:24

Перечисление и итераторы 161

Семантика итератора
Итератор представляет собой метод, свойство или индекса-

тор, который содержит один или большее количество инструкций
yield. Итератор должен возвращать реализацию одного из следу-
ющих четырех интерфейсов (иначе компилятор сгенерирует сооб-
щение об ошибке):
System.Collections.IEnumerable
System.Collections.IEnumerator
System.Collections.Generic.IEnumerable<T>
System.Collections.Generic.IEnumerator<T>

Итераторы, которые возвращают интерфейс перечислителя,
как правило, используются реже. Они удобны при написании
пользовательского класса коллекции: обычно вы назначаете ите-
ратору имя GetEnumerator и обеспечиваете реализацию классом
интерфейса IEnumerable<T>.

Итераторы, возвращающие интерфейс перечислимого типа,
являются более распространенными и более простыми в исполь-
зовании, так как вам не приходится писать класс коллекции. За
кулисами компилятор генерирует закрытый класс, реализующий
IEnumerable<T> (а также IEnumerator<T>).

Несколько инструкций yield
Итератор может включать несколько инструкций yield:

foreach (string s in Foo())
 Console.Write (s + " "); // One Two Three

IEnumerable<string> Foo()
{
 yield return "One";
 yield return "Two";
 yield return "Three";
}

Инструкция yield break
В блоке итератора return не допускается; взамен вы обязаны

использовать конструкцию yield break, указывающую, что блок
итератора должен быть завершен преждевременно, и больше эле-

C#_9.0_Pocket_Reference_Instant.indb 161 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 162

ментов не возвращать. Чтобы продемонстрировать работу, изме-
ним метод Foo(), как показано ниже:
IEnumerable<string> Foo (bool breakEarly)
{
 yield return "One";
 yield return "Two";
 if (breakEarly) yield break;
 yield return "Three";
}

Компоновка последовательностей
Итераторы в высшей степени компонуемы. Мы можем расши-

рить наш пример с числами Фибоначчи, добавив к классу следую-
щий метод:
static IEnumerable<int> EvenNumbersOnly(
 IEnumerable<int> sequence)
{
 for each (int x in sequence)
 if ((x % 2) == 0)
 yield return x;
}

После этого будут выводиться четные числа Фибоначчи:
foreach (int fib in EvenNumbersOnly(Fibs(6)))
 Console.Write(fib + " "); // 2 8

Каждый элемент не вычисляется вплоть до последнего момен-
та — когда он запрашивается операцией MoveNext(). На рис. 5
показаны запросы данных и их вывод с течением времени.

Возможность компоновки, поддерживаемая шаблоном итера-
тора, крайне важна при построении запросов LINQ.

Типы-значения, допускающие null
Ссылочные типы могут представлять несуществующее значе-

ние с помощью ссылки null. Однако типы-значения не способны
представлять значения null обычным образом. Например:
string s = null; // OK,
int i = null; // –
 // int null

C#_9.0_Pocket_Reference_Instant.indb 162 30.03.2021 20:40:24

Типы-значения, допускающие null 163

следующий

следующий

следующий

следующий

следующий

следующий

следующий

следующий

1

1

2

3

5

8

2

8

Запрос данных

Получение данных

В
ы

по
лн

ен
ие

П
от

ре
би

те
ль

П
ер

еч
ис

ли
те

ль
 ч

ет
ны

х
чи

се
л

П
ер

еч
ис

ли
те

ль
 ч

ис
ел

 Ф
иб

он
ач

чи

Рис. 5. Компоновка последовательностей

Чтобы представить null с помощью типа-значения, необходи-
мо использовать специальную конструкцию, которая называется
типом, допускающим значение null (nullable). Тип, допускающий
значение null, обозначается как тип-значение, за которым следу-
ет символ ?:
int? i = null; // OK, null
Console.WriteLine(i == null); // True

Структура Nullable<T>
Тип T? транслируется в System.Nullable<T>. Тип Nulla

ble<T> является легковесной неизменяемой структурой, которая
имеет только два поля, предназначенные для представления значе-
ния (Value) и признака наличия значения (HasValue). В сущно-
сти, структура System.Nullable<T> очень проста:
public struct Nullable<T> where T : struct
{

C#_9.0_Pocket_Reference_Instant.indb 163 30.03.2021 20:40:24

Язык C# 9.0. Карманный справочник 164

 public T Value {get;}
 public bool HasValue {get;}
 public T GetValueOrDefault();
 public T GetValueOrDefault(T defaultValue);
 ...
}

Код
int? i = null;
Console.WriteLine(i == null); // True

транслируется в
Nullable<int> i = new Nullable<int>();
Console.WriteLine(!i.HasValue); // True

Попытка извлечь значение Value, когда HasValue равно
false, приводит к генерации исключения InvalidOperation
Exception. Метод GetValueOrDefault() возвращает значение
Value, если HasValue равно true, и результат new T() или задан-
ное значение по умолчанию — в противном случае.

Значением T? по умолчанию является null.

Преобразования типов,
допускающих значение null

Преобразование из T в T? является неявным, в то время как из
T? в T — явным. Например:
int? x = 5; //
int y = (int)x; //

Явное приведение полностью эквивалентно вызову свойства
Value объекта типа, допускающего null. Следовательно, если
HasValue равно false, то генерируется исключение Invalid
OperationException.

Упаковка и распаковка типов-
значений, допускающих null

Когда T? упаковывается, упакованное значение в куче содер-
жит T, а не T?. Такая оптимизация возможна из-за того, что упа-
кованное значение относится к ссылочному типу, который уже
способен выражать null.

C#_9.0_Pocket_Reference_Instant.indb 164 30.03.2021 20:40:24

Типы-значения, допускающие null 165

В C# также разрешено распаковывать типы, допускающие
null, с помощью оператора as. Если приведение неуспешно, то
результатом будет null:
object o = "string";
int? x = o as int?;
Console.WriteLine(x.HasValue); // False

Подъем операторов
В структуре Nullable<T> не определены такие операторы, как

<, > или даже ==. Несмотря на это следующий код успешно компи-
лируется и выполняется:
int? x = 5;
int? y = 10;
bool b = x < y; // true

Код работает благодаря тому, что компилятор заимствует,
или “поднимает”, оператор “меньше чем” у лежащего в основе ти-
па-значения. Семантически предыдущее выражение сравнения
транслируется так:
bool b = (x.HasValue && y.HasValue)
 ? (x.Value < y.Value)
 : false;

Другими словами, если x и y имеют значения, то сравнение
производится с помощью оператора “меньше чем” типа int;
в противном случае результатом будет false.

Подъем операторов означает возможность неявного использо-
вания операторов типа T с типом T?. Вы можете определить опе-
раторы для T?, чтобы предоставить специализированное поведе-
ние в отношении null, но в подавляющем большинстве случаев
лучше полагаться на автоматическое применение компилятором
систематической логики работы со значением null.

Компилятор выполняет логику в отношении null в зависимо-
сти от категории оператора.

Операторы эквивалентности (== и !=)
Поднятые операторы эквивалентности обрабатывают значе-

ния null точно так же, как и ссылочные типы. Это означает, что
два значения null равны:

C#_9.0_Pocket_Reference_Instant.indb 165 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 166

Console.WriteLine(null == null); //True
Console.WriteLine((bool?)null == (bool?)null); //True

Кроме того:
если ровно один операнд имеет значение null, то операн-
ды не равны;
если оба операнда отличны от null, то сравниваются их
свойства Value.

Операторы отношения (<, <=, >=, >)
Работа операторов отношения основана на принципе, согласно

которому сравнение операндов null не имеет смысла. Это означа-
ет, что сравнение null либо с null, либо со значением, отличаю-
щимся от null, дает в результате false.
bool b = x < y; // :

bool b = (x == null || y == null)
 ? false
 : (x.Value < y.Value);

Остальные операторы
Остальные операторы (+, -, *, /, %, &, |, ^, <<, >>, +, ++, --, !,

~) возвращают null, когда любой из операндов равен null. Такой
шаблон должен быть хорошо знаком пользователям SQL.
int? c = x + y; // :

int? c = (x == null || y == null)
 ? null
 : (int?) (x.Value + y.Value);

Исключением является ситуация, когда операторы & и | при-
меняются к bool?, что мы вскоре обсудим.

Смешивание в операторах типов, допускающих
и не допускающих null

Типы, допускающие и не допускающие null, можно смеши-
вать (это работает, поскольку существует неявное преобразование
из T в T?):

C#_9.0_Pocket_Reference_Instant.indb 166 30.03.2021 20:40:25

Типы-значения, допускающие null 167

int? a = null;
int b = 2;
int? c = a + b; //c null - a + (int?)b

Тип bool? и операторы & и |
Когда операнды имеют тип bool?, операторы & и | трактуют

null как неизвестное значение. Таким образом, null|true дает
true по следующим причинам:

если неизвестное значение равно false, результатом бу-
дет true;
если неизвестное значение равно true, результатом бу-
дет true.

Аналогично null&false дает false. Подобное поведение
должно быть знакомым пользователям SQL. Ниже приведены дру-
гие комбинации:
bool? n = null, f = false, t = true;
Console.WriteLine(n | n); // (null)
Console.WriteLine(n | f); // (null)
Console.WriteLine(n | t); // True
Console.WriteLine(n & n); // (null)
Console.WriteLine(n & f); // False
Console.WriteLine(n & t); // (null)

Типы, допускающие null,
и операторы для работы с null

Типы, допускающие значение null, особенно хорошо работа-
ют с оператором ?? (см. раздел “Оператор объединения с null”).
Например:
int? x = null;
int y = x ?? 5; // y 5

int? a = null, b = null, c = 123;
Console.WriteLine(a ?? b ?? c); // 123

Использование оператора ?? эквивалентно вызову GetValueOr
Default() с явным значением по умолчанию за исключением

C#_9.0_Pocket_Reference_Instant.indb 167 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 168

того, что выражение для значения по умолчанию никогда не вы-
числяется, если переменная не равна null.

Типы, допускающие значение null, также удобно применять
с null-условным оператором (см. раздел “null-условный опера-
тор”). В следующем примере переменная length получает значе-
ние null:
System.Text.StringBuilder sb = null;
int? length = sb?.ToString().Length;

Скомбинировав этот код и оператор объединения с null, пе-
ременной length можно присвоить значение 0 вместо null:
int length = sb?.ToString().Length ?? 0;

Ссылочные типы, допускающие значение null
В то время как типы-значения, допускающие null, привносят

поддержку null в типы-значения, ссылочные типы, допускающие
значение null (nullable-типы; начиная с C# 8), делают противопо-
ложное и обеспечивают (в определенной степени) поддержку ссы-
лочными типами невозможности значений null, чтобы помочь
избегать исключений NullReferenceException.

Такие ссылочные типы позволяют введение уровня безопас-
ности, который обеспечивается самим компилятором в форме
предупреждений, когда он обнаруживает код, подвергающийся
риску генерации исключения NullReferenceException1.

Чтобы включить в компиляторе ссылочные типы, допуска-
ющие null, можно добавить элемент Nullable в файл проекта
.csproj (если они нужны для всего проекта):
<Nullable>enable</Nullable>

1 Говоря проще, начиная с C# 8 предусмотрена глобальная возможность
заставить ссылочные типы вести себя по отношению к значению null так
же, как и типы-значения, не допуская значений null и у ссылочных типов.
Тем самым становится ненужной проверка на равенство значения ссылоч-
ного типа null. Однако поскольку такое присваивание значения null все
же может оказаться в некоторых ситуациях важным, для этого случая —
возможности присваивания null ссылочным типам при глобальном за-
прете такой возможности — и введены ссылочные типы, допускающие
null. Без такого глобального запрета их существование особого смысла
не имеет. — Примеч. ред.

C#_9.0_Pocket_Reference_Instant.indb 168 30.03.2021 20:40:25

Типы-значения, допускающие null 169

Кроме того, в тех местах кода, где нужны такие типы, можно
использовать следующие директивы:
#nullable enable // nullable- ,
 //
#nullable disable // nullable- ,
 //
#nullable restore //
 // nullable-

После директивы #nullable enable компилятор делает под-
держку запрета значения null принятой по умолчанию: если не-
обходимо, чтобы ссылочный тип получал значения null, к нему
придется применить суффикс ? для указания ссылочного типа,
допускающего null. В показанном ниже примере s1 не допускает
значения null, тогда как s2 допускает:
#nullable enable // nullable- ,
 //

string s1 = null; //
string? s2 = null; // OK: s2 null

ПРИМЕЧАНИЕ
Поскольку ссылочные типы, допускающие null, явля-
ются конструкциями времени компиляции, во время вы-
полнения между string и string? нет никаких разли-
чий. Типы-значения же, допускающие null, привносят в
систему типов нечто конкретное, а именно — структуру
Nullable<T>.

Для приведенного далее кода компилятор также выдаст преду-
преждение из-за отсутствия инициализации x:
class Foo { string x; }

Предупреждение исчезнет, если инициализировать x либо че-
рез инициализатор, либо кодом в конструкторе.

Компилятор предупреждает и в случае разыменования ссы-
лочного типа, допускающего null, если предположительно может
возникнуть исключение NullReferenceException. В следую-
щем примере доступ к свойству Length строки приводит к выдаче
предупреждения:

C#_9.0_Pocket_Reference_Instant.indb 169 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 170

void Foo(string? s) => Console.Write(s.Length);

Чтобы убрать предупреждение, можно использовать null-тер-
пимый (null-forgiving) оператор (!):
void Foo(string? s) => Console.Write(s!.Length);

Подобное применение null-терпимого оператора опасно тем,
что мы можем в итоге получить то же исключение NullReference
Exception, которого в первую очередь пытались избежать. Вот
как можно исправить эту ситуацию:
void Foo (string? s)
{
 if (s != null) Console.Write(s.Length);
}

Обратите внимание, что теперь null-терпимый оператор не
нужен. Дело в том, что компилятор проводит статический анализ
и достаточно интеллектуален для того, чтобы сделать вывод (по
крайней мере, в простых случаях) о том, когда разыменование без-
опасно и исключение NullReferenceException при нем возник-
нуть не может.

Способность компи лятора к обнаружению и предупреждению
отнюдь не безупречна, к тому же существуют пределы того, что
она может охватить. Например, компилятор не имеет возможно-
сти узнать, был ли заполнен массив элементами, а потому показан-
ный ниже код к выдаче предупреждения не приводит:
var strings = new string[10];
Console.WriteLine(strings[0].Length);

Расширяющие методы
Расширяющие методы позволяют расширять существующий

тип новыми методами, не изменяя определение исходного типа.
Расширяющий метод — это статический метод статического клас-
са, в котором к первому параметру применен модификатор this.
Типом первого параметра должен быть тип, подвергающийся рас-
ширению. Например:
public static class StringHelper
{
 public static bool IsCapitalized (this string s)

C#_9.0_Pocket_Reference_Instant.indb 170 30.03.2021 20:40:25

Расширяющие методы 171

 {
 if (string.IsNullOrEmpty (s)) return false;
 return char.IsUpper (s[0]);
 }
}

Расширяющий метод IsCapitalized() может вызываться
так, как если бы он был методом экземпляра класса string:
Console.Write("Kiev".IsCapitalized());

Вызов расширяющего метода при компиляции транслируется
в обычный вызов статического метода:
Console.Write(StringHelper.IsCapitalized("Kiev"));

Интерфейсы также можно расширять:
public static T First<T> (this IEnumerable<T> sequence)
{
 foreach (T element in sequence)
 return element;
 throw new InvalidOperationException(" !");
}
...
Console.WriteLine ("Kiev".First()); // K

Цепочки расширяющих методов
Как и методы экземпляра, расширяющие методы предлагают

аккуратный способ связывания функций в цепочки. Взгляните на
следующие две функции:
public static class StringHelper
{
 public static string Pluralize (this string s) {...}
 public static string Capitalize (this string s) {...}
}

Строковые переменные x и y эквивалентны и получают значе-
ние "Moscow", но x использует расширяющие методы, тогда как
y — статические:
string x = "Moscow".Pluralize().Capitalize();

string y = StringHelper.Capitalize
 (StringHelper.Pluralize ("Moscow"));

C#_9.0_Pocket_Reference_Instant.indb 171 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 172

Неоднозначность и разрешение
Любой совместимый метод экземпляра всегда будет иметь пре-

имущество над расширяющим методом — даже когда параметры
расширяющего метода дают более точное соответствие типам.

Если два расширяющих метода имеют одинаковые сигнатуры,
то расширяющий метод должен вызываться, как обычный стати-
ческий метод, чтобы устранить неоднозначность при вызове. Од-
нако если один расширяющий метод имеет более точно соответ-
ствующие аргументы, то предпочтение будет отдано ему.

Анонимные типы
Анонимный тип — это простой класс, созданный “на лету” с

целью хранения набора значений. Для создания анонимного типа
применяется ключевое слово new с инициализатором объекта,
указывающим свойства и значения, которые будет содержать тип.
Например:
var dude = new { Name = "Bob", Age = 1 };

Компилятор преобразует данное объявление в закрытый вло-
женный тип со свойствами только для чтения с именами Name
(типа string) и Age (типа int). Для ссылки на анонимный тип
должно использоваться ключевое слово var, так как имя этого
типа генерируется компилятором.

Имя свойства анонимного типа может быть выведено из вы-
ражения, которое само по себе является идентификатором. Таким
образом, код
int Age = 1;
var dude = new { Name = "Bob", Age };

эк вивалентен следующему коду:
var dude = new { Name = "Bob", Age = Age };

Можно создавать массивы анонимных типов, как показано
далее:
var dudes = new[]
{
 new { Name = "Bob", Age = 30 },

C#_9.0_Pocket_Reference_Instant.indb 172 30.03.2021 20:40:25

Кортежи 173

 new { Name = "Mary", Age = 40 }
};

Анонимные типы главным образом используются при написа-
нии запросов LINQ.

Кортежи
Подобно анонимным типам кортежи (C# 7+) предлагают про-

стой способ хранения набора значений. Главная цель кортежей —
безопасный возврат множества значений из метода, не прибегая к
параметрам out (то, что невозможно делать с помощью аноним-
ных типов). Простейший способ создать литеральный кортеж —
указать в круглых скобках список желаемых значений. В результа-
те создается кортеж с безымянными элементами:
var bob = ("Bob", 23);
Console.WriteLine(bob.Item1); // Bob
Console.WriteLine(bob.Item2); // 23

В отличие от анонимных типов применять ключевое слово var
необязательно и тип кортежа можно указывать явно:
(string,int) bob = ("Bob", 23);

Это означает, что кортеж можно успешно возвращать из ме-
тода:
(string,int) person = GetPerson();
Console.WriteLine(person.Item1); // Bob
Console.WriteLine(person.Item2); // 23

(string,int) GetPerson() => ("Bob", 23);

Кортежи хорошо сочетаются с обобщениями, так что все сле-
дующие типы корректны:
Task<(string,int)>
Dictionary<(string,int),Uri>
IEnumerable<(int ID, string Name)> //

Кортежи являются типами-значениями с изменяемыми (пред-
назначенными для чтения/записи) элементами. Таким образом,
после создания кортежа можно модифицировать его элементы
Item1, Item2 и т.д.

C#_9.0_Pocket_Reference_Instant.indb 173 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 174

Именование элементов кортежа
При создании литеральных кортежей элементам можно допол-

нительно назначать содержательные имена:
var tuple = (Name:"Bob", Age:23);
Console.WriteLine(tuple.Name); // Bob
Console.WriteLine(tuple.Age); // 23

То же самое разрешено делать при указании типов кортежей:
static (string Name, int Age) GetPerson() => ("Bob",23);

Имена элементов выводятся автоматически из имен свойств
или полей:
var now = DateTime.Now;
var tuple = (now.Day, now.Month, now.Year);
Console.WriteLine(tuple.Day); // OK

ПРИМЕЧАНИЕ
Кортежи представляют собой “синтаксический сахар” для
использования семейства обобщенных структур Value
Tuple<T1> и ValueTuple<T1,T2>, которые имеют
поля с именами Item1, Item2 и т.д. Следовательно,
(string,int) является псевдонимом для ValueTuple
<string,int>. Это означает, что “именованные элемен-
ты” существуют только в исходном коде, а также в вооб-
ражении компилятора, и во время выполнения обычно
исчезают.

Деконструирование кортежей
Кортежи неявно поддерживают шаблон деконструирования

(см. раздел “Деконструкторы”), так что кортеж легко деконструи-
ровать в отдельные переменные. Таким образом, взамен
var bob = ("Bob", 23);
string name = bob.Item1;
int age = bob.Item2;

можно написать
var bob = ("Bob", 23);
(string name, int age) = bob; // bob

C#_9.0_Pocket_Reference_Instant.indb 174 30.03.2021 20:40:25

Записи (C# 9) 175

Console.WriteLine(name); // name age
Console.WriteLine(age);

Синтаксис деконструирования схож с синтаксисом объявле-
ния кортежа с именованными элементами, что может привести к
путанице. Следующий код подчеркивает разницу между ними:
(string name, int age) = bob; //
(string name, int age) bob2 = bob; //

Записи (C# 9)
Запись (record) — это особый класс, созданный для облегчения

работы с неизменяемыми (предназначенными только для чтения)
данными. Его самая полезная функциональная возможность — не-
деструктивное изменение, в то время как обычно, для того чтобы
“модифицировать” неизменяемый объект, вы создаете новый объ-
ект и копируете в него данные, включающие ваши изменения.

Записи полезны также при создании типов, которые просто
объединяют или хранят данные. В простых случаях они исключа-
ют шаблонный код и при этом соблюдают семантику структурно-
го равенства (два объекта являются одинаковыми, если их данные
совпадают), что обычно и требуется при работе с неизменяемыми
типами.

Запись — это конструкция времени компиляции C#. Во время
выполнения CLR видит записи просто как классы (с множеством
дополнительных “синтезированных” членов, добавленных компи-
лятором).

Определение записи
Определение записи схоже с определением класса и может со-

держать те же типы членов, включая поля, свойства, методы и т.д.
Записи могут реализовывать интерфейсы и порождать другие за-
писи (но не классы).

Простая запись может содержать один лишь набор только
инициализируемых свойств и, возможно, конструктор:
record Point
{
 public Point (double x, double y) => (X, Y) = (x, y);

C#_9.0_Pocket_Reference_Instant.indb 175 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 176

 public double X { get; init; }
 public double Y { get; init; }
}

После компиляции C# преобразует определение записи в класс
и выполняет следующие дополнительные шаги.

Создает защищенный копирующий конструктор (и скры-
тый метод клонирования) для облегчения поддержки неде-
структивного изменения.
Перекрывает/перегружает функции, связанные с провер-
кой равенства для реализации семантики структурного
равенства.
Перекрывает метод ToString() (для расширения обще-
доступных свойств записи, как и в случае с анонимными
типами).

Предыдущее объявление записи расширяется до чего-то напо-
добие
class Point
{
 public Point (double x, double y) => (X, Y) = (x, y);

 public double X { get; init; }
 public double Y { get; init; }

 protected Point(Point original) //
 { //
 this.X = original.X; this.Y = original.Y
 }

 //
 public virtual Point <Clone>$() => new Point (this);

 // Equals, ==, !=,
 // GetHashCode, ToString()...
}

Списки параметров
Определение записи может также включать список пара мет-

ров:

C#_9.0_Pocket_Reference_Instant.indb 176 30.03.2021 20:40:25

Записи (C# 9) 177

record Point(double X, double Y)
{
 ...
}

Параметры могут включать модификаторы in и params, но не
out или ref. Если указан список параметров, компилятор выпол-
няет следующие дополнительные шаги.

Создает для каждого параметра только инициализируемое
свойство.
Создает первичный конструктор для заполнения свойств.
Создает деконструктор.

Это означает, что мы можем объявить нашу запись Point про-
сто следующим образом:
record Point(double X, double Y);

В конечном итоге компилятор сгенерирует (почти) именно то,
что мы перечислили в предыдущем расширении. Незначительная
разница в том, что имена параметров в первичном конструкторе в
итоге будут выглядеть как X и Y вместо x и y:
public Point (double X, double Y)
{
 this.X = X; this.Y = Y;
}

ПРИМЕЧАНИЕ
Кроме того, поскольку это первичный конструктор, пара-
метры X и Y волшебным образом становятся доступными
для инициализаторов любого поля или свойства в вашей
записи. Мы подробнее обсудим этот вопрос ниже, в раз-
деле “Первичные конструкторы”.

Еще одно отличие при определении списка параметров заклю-
чается в том, что компилятор генерирует и деконструктор:
public void Deconstruct (out double X, out double Y)
{
 X = this.X; Y = this.Y;
}

C#_9.0_Pocket_Reference_Instant.indb 177 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 178

Записи со списками параметров могут порождать подклассы с
использованием следующего синтаксиса:
record Point3D (double X, double Y, double Z)
 : Point (X, Y);

В этом случае компилятор генерирует следующий первичный
конструктор:
class Point3D : Point
{
 public double Z { get; init; }

 public Point3D (double X, double Y, double Z)
 : base (X, Y)
 => this.Z = Z;
}

ПРИМЕЧАНИЕ
Списки параметров представляют собой удобное сокра-
щение, когда вам нужен класс, который просто группи-
рует набор значений, а также может быть полезным для
прототипирования. Они не так полезны, когда вам нужно
добавить логику к средствам доступа init (например, та-
кую как проверка аргументов).

Недеструктивное изменение
Самое важное, что компилятор выполняет со всеми запися-

ми, — это создание копирующего конструктора (и скрытого ме-
тода клонирования). Они позволяют выполнять недеструктивное
изменение с использованием ключевого слова C# 9 with:
Point p1 = new Point (3, 3);
Point p2 = p1 with { Y = 4 };
Console.WriteLine (p2); // Point { X = 3, Y = 4 }

record Point (double X, double Y);

В этом примере p2 является копией p1, но для его свойства Y
установлено значение 4. Чем больше имеется свойств, тем больше
выгода от данного синтаксиса.

C#_9.0_Pocket_Reference_Instant.indb 178 30.03.2021 20:40:25

Записи (C# 9) 179

Недеструктивное изменение происходит в два этапа.

 1. Сначала копирующий конструктор клонирует запись. По
умолчанию копируется каждое из базовых полей записи,
создавая точную копию и обходя любую логику в средствах
доступа init. Включаются все поля (общедоступные, за-
крытые и скрытые).

 2. Затем каждое свойство в списке инициализаторов членов
обновляется (на этот раз с использованием средств доступа
init).

Таким образом, компилятор транслирует код
Test t2 = t1 with { A = 10, C = 30 };

в нечто, функционально эквивалентное следующему коду:
Test t2 = new Test(t1); // t1
t2.A = 10; // A
t2.C = 30; // C

(Этот код не скомпилировался бы, если бы вы написали его
явно, — потому что A и C доступны только для инициализации.
Кроме того, копирующий конструктор защищен; C# обходит эту
защиту, вызывая его через общедоступный скрыты й метод с име-
нем <Clone>$, который он добавляет в запись.)

При необходимости вы можете определить собственный копи-
рующий конструктор. C# будет в таком случае использовать ваше
определение вместо того, чтобы создавать свое:
protected Point (Point original)
{
 this.X = original.X; this.Y = original.Y;
}

При наследовании другой записи копирующий конструктор
отвечает только за копирование собственных полей. Чтобы ско-
пировать поля базовой записи, выполните ее делегирование кон-
структору:
protected Point (Point original) : base (original)
{
 ...
}

C#_9.0_Pocket_Reference_Instant.indb 179 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 180

Первичные конструкторы
Когда вы определяете запись со списком параметров, компи-

лятор генерирует объявления свойств автоматически, как и пер-
вичный конструктор (primary constructor) и деконструктор. Это
хорошо работает в простых случаях; в более сложных случаях
вы можете опустить список параметров и написать объявления
свойств и конструктор вручную. C# также предлагает умеренно
полезную промежуточную возможность определения списка па-
раметров при самостоятельном написании некоторых или всех
объявлений свойств:
record Student(int ID, string Surname, string FirstName)
{
 public int ID { get; } = ID;
}

В данном случае мы “взяли на себя” определение свойства
ID, определив, что оно доступно только для чтения (а не являет-
ся только инициализируемым), что предотвращает его участие в
недеструктивном изменении. Если вам никогда не потребуется
недеструктивно изменять некоторое конкретное свойство, объя-
вив его доступным только для чтения, вы кешируете вычисленные
данные в записи без необходимости кодировать механизм его об-
новления.

Обратите внимание, что мы обязаны включить инициализа-
тор свойства (полужирный шрифт):
public int ID { get; } = ID;

Взяв на себя объявление свойства, вы становитесь ответствен-
ным за инициализацию его значения; первичный конструктор
больше не делает это автоматически. Обратите внимание, что ID,
выделенный полужирным шрифтом, ссылается не на свойство ID,
а на параметр первичного конструктора. Уникальной особенно-
стью первичных конструкторов является то, что их параметры
(в данно м случае — ID, Surname и FirstName) волшебным обра-
зом видны всем инициализаторам полей и свойств.

Вы также можете взять на себя определение свойства с явными
средствами доступа:
int _id = ID;
public int ID { get => _id; init => _id = value; }

C#_9.0_Pocket_Reference_Instant.indb 180 30.03.2021 20:40:25

Записи (C# 9) 181

Здесь вновь ID, выделенный полужирным шрифтом, ссылается
на параметр первичного конструктора, а не на свойство. (Причи-
на отсутствия неоднозначности заключается в том, что доступ к
свойствам из инициализаторов не разрешен.)

Тот факт, что мы должны инициализировать свойство _id с
помощью ID, делает такой “захват” менее полезным, поскольку
любая логика в средстве доступа init (например, проверка значе-
ний) будет опущена первичным конструктором.

Записи и сравнение на равенство
Как и в случае со структурами, анонимными типами и корте-

жами, записи предоставляют структурное равенство “из коробки”,
а это означает, что две записи равны, если равны их поля (и авто-
матические свойства):
var p1 = new Point(1, 2);
var p2 = new Point(1, 2);
Console.WriteLine(p1.Equals (p2)); // True

record Point(double X, double Y);

Оператор равенства также в состоянии работать с записями
(как и с кортежами):
Console.WriteLine (p1 == p2); // True

В отличие от классов и структур, вы не должны (и не можете)
перекрывать метод object.Equals, если вы хотите настроить по-
ведение проверки на равенство. Вместо этого вы определяете об-
щедоступный метод Equals со следующей сигнатурой:
record Point(double X, double Y)
{
 public virtual bool Equals(Point other) =>
 other != null && X == other.X && Y == other.Y;
}

Метод Equals должен быть virtual (не override!) и должен
быть строго типизирован, чтобы принимать тип фактической
записи (в данном случае — Point, а не object). Как только вы
создадите верную сигнатуру, компилятор автоматически внесет
исправления в ваш метод.

C#_9.0_Pocket_Reference_Instant.indb 181 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 182

Как и в случае с любым другим типом, если вы берете на
себя сравнение на равенство, вы также должны перекрыть
GetHashCode(). Приятная особенность записей заключает-
ся в том, что вы не перегружаете != или == и не реализуете
IEquatable<T>: все это сделано вместо вас. Полностью эта тема
рассматривается в соответствующем разделе главы 6 книги C# 9.0.
Справочник. Полное описание языка.

Сопоставление с образцом
Ранее мы продемонстрировали, как применять оператор is

для проверки, будет ли ссылочное преобразование успешным,
с последующим использованием полученного преобразованного
значения:
if (obj is string s)
 Console.WriteLine(s.Length);

При этом используется разновидность образца (pattern), име-
нуемая образцом типа . Оператор is поддерживает и другие об-
разцы, которые были введены в последние версии C#. Образцы
поддерживаются в следующих контекстах:

после оператора is (is);
в инструкциях switch;
в выражениях switch.

Мы уже рассматривали образец типа в разделах “Инструкция
switch для типов” и “Оператор is”. В этом разделе мы рассмотрим
более сложные образцы, представленные в последних версиях C#.

Некоторые из более специализированных образцов предна-
значены для использования в инструкциях/выражениях switch.
Здесь они уменьшают потребность в конструкциях when, и вы мо-
жете использовать switch там, где вы не могли делать это ранее.

Образец переменной
Образец переменной (var pattern) — это вариант образца типа,

с помощью которого вы замените имя типа ключевым словом var.
Преобразование всегда успешно, поэтому его цель — просто по-
зволить вам повторно использовать переменную:

C#_9.0_Pocket_Reference_Instant.indb 182 30.03.2021 20:40:25

Сопоставление с образцом 183

bool IsJanetOrJohn(string name) =>
 name.ToUpper() is var upper &&
 (upper == "JANET" || upper == "JOHN");

Этот код эквивалентен следующему:
bool IsJanetOrJohn(string name)
{
 string upper = name.ToUpper();
 return upper == "JANET" || upper == "JOHN";
}

Образец константы
Образец константы позволяет вам непосредственно вы-

полнять сопоставление константе и полезен при работе с типом
object:
void Foo(object obj)
{
 if (obj is 3) ...
}

Это выражение (выделенное полужирным шрифтом) эквива-
лентно следующему:
obj is int && (int)obj == 3

Как мы скоро увидим, образец константы шаблон может быть
более полезным с комбинаторами образцов.

Образцы отношений (C# 9)
Начиная с C# 9, в образцах можно использовать операторы <,

>, <= и >=:
if (x is > 100) Console.Write("x 100");

Эта возможность становится очень полезной в инструкции
switch:
string GetWeightCategory(decimal bmi) => bmi switch
{
 < 18.5m => " ",
 < 25m => " ",
 < 30m => " ",
 _ => " "
};

C#_9.0_Pocket_Reference_Instant.indb 183 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 184

Комбинаторы образцов (C# 9)
 Начиная с C# 9, для объединения образцов вы можете исполь-

зовать ключевые слова and, or и not:
bool IsJanetOrJohn (string name)
 => name.ToUpper() is "JANET" or "JOHN";

bool IsVowel (char c)
 => c is a or e or i or o or u ;

bool Between1And9 (int n) => n is >= 1 and <= 9;

bool IsLetter (char c) => c is >= a and <= z
 or >= A and <= Z ;

Как и в случае операторов && и ||, and имеет более высокий
приоритет, чем or, но вы можете использовать скобки. Хороший
трюк — объединение комбинатора not с образцом типа для про-
верки, что объект не является типом:
if (obj is not string) ...

Впрочем, этот код выглядит более красиво, если переписать его
как
if (!(obj is string)) ...

Кортежи и позиционные образцы
Образец кортежа (введенный в C# 8) проверяет соответствие

кортежам:
var p = (2, 3);
Console.WriteLine(p is (2, 3)); // True

Образец кортежа можно рассматривать как частный случай
позиционного образца (C# 8+), который соответствует любому
типу, предоставляющему метод Deconstruct (см. раздел “Декон-
структоры”). В следующем примере мы используем деконструк-
тор, созданный компилятором для записи Point:
var p = new Point(2, 2);
Console.WriteLine(p is (2, 2)); // True

record Point (int X, int Y);

C#_9.0_Pocket_Reference_Instant.indb 184 30.03.2021 20:40:25

Сопоставление с образцом 185

При соответствии можно выполнить деконструкцию, исполь-
зуя следующий синтаксис:
Console.WriteLine(p is (var x, var y) && x == y);

Вот выражение switch, которое объединяет образец типа с по-
зиционным образцом:
string Print (object obj) => obj switch
{
 Point(0, 0) => " ",
 Point(var x, var y) when x == y => " "
 ...
};

Образцы свойств
Образец свойства (C# 8+) соответствует одному или несколь-

ким из значений свойств объекта:
if (obj is string { Length:4 }) ...

Однако это не является большой экономией по сравнению со сле-
дующим кодом:
if (obj is string s && s.Length == 4) ...

С инструкциями и выражениями switch образцы свойств
более полезны. Рассмотрим класс System.Uri, представляющий
некоторый URI. Он имеет такие свойства, как Scheme, Host, Port
и IsLoopback. При написании брандмауэра мы можем решать,
разрешить или заблокировать URI, используя выражение switch ,
которое использует образцы свойств:
bool ShouldAllow(Uri uri) => uri switch
{
 { Scheme: "http", Port: 80 } => true,
 { Scheme: "https", Port: 443 } => true,
 { Scheme: "ftp", Port: 21 } => true,
 { IsLoopback: true } => true,
 _ => false
};

Можно использовать вложенные свойства — следующая кон-
струкция вполне корректна:
{ Scheme: { Length: 4 }, Port: 80 } => true,

C#_9.0_Pocket_Reference_Instant.indb 185 30.03.2021 20:40:25

Язык C# 9.0. Карманный справочник 186

Внутри образцов свойств можно использовать другие образ-
цы, включая образцы отношений:
{ Host: { Length: < 1000 }, Port: > 0 } => true,

Вы можете ввести переменную в конце такой конструкции, а
затем использовать ее в конструкции when:
{ Scheme: "http", Port: 80 } httpUri
 when httpUri.Host.Length < 1000 => true,

Вы также можете ввести переменные на уровне свойств:
{ Scheme: "http", Port: 80, Host: var host }
 when host.Length < 1000 => true,

Однако в таком случае короче и проще написать так:
{ Scheme: "http", Port: 80, Host: { Length: < 1000 } }

LINQ
Язык интегрированных запросов (Language Integrated Query —

LINQ) дает возможность писать структурированные безопас-
ные в отношении типов запросы к локальным коллекциям объ-
ектов и удаленным источникам данных. Язык LINQ позволя-
ет запрашивать любую коллекцию, реализующую интерфейс
IEnumerable<T>, будь то массив, список, DOM-модель XML или
удаленный источник данных (такой, как таблица в базе данных
SQL Server). Язык LINQ обеспечивает преимущества как провер-
ки типов на этапе компиляции, так и составления динамических
запросов.

ПРИМЕЧАНИЕ
Удобно экспериментировать с LINQ, загрузив LINQPad
(https://www.linqpad.net/). Инструмент LINQPad по
зволяет интерактивно запрашивать локальные коллекции
и базы данных SQL с помощью LINQ без какой-либо на-
стройки и сопровождается многочисленными примерами.

C#_9.0_Pocket_Reference_Instant.indb 186 30.03.2021 20:40:26

LINQ 187

Основы LINQ
Базовыми единицами данных в LINQ являются последователь-

ности и элементы. Последовательность представляет собой любой
объект, который реализует обобщенный интерфейс IEnumerable,
а каждый член этой последовательности является элементом.
В следующем примере names является последовательностью, а
"Tom", "Dick" и "Harry" — элементами:
string[] names = { "Tom", "Dick", "Harry" };

Последовательность такого рода называется локальной после-
довательностью, потому что она представляет локальную коллек-
цию объектов в памяти.

Оператор запроса — это метод, который трансформирует по-
следовательность. Типичный оператор запроса принимает вход-
ную последовательность и выдает трансформированную выход-
ную последовательность. В классе Enumerable из пространства
имен System.Linq имеется около 40 операторов запросов, кото-
рые реализованы в виде статических расширяющих методов. Их
называют стандартными операторами запросов.

ПРИМЕЧАНИЕ
Язык LINQ поддерживает также последовательности,
которые могут динамически наполняться из удаленно-
го источника данных, наподобие SQL Server. Такие по-
следовательности дополнительно реализуют интерфейс
IQueryable<> и поддерживаются через соответствую-
щий набор стандартных операторов запросов в классе
Queryable.

Простой запрос
Запрос — это выражение, которое трансформирует последо-

вательности с помощью одного или более операторов запросов.
Простейший запрос состоит из одной входной последовательно-
сти и одного оператора. Например, мы можем применить опера-
тор Where к простому массиву для извлечения элементов длиной
не менее четырех символов:

C#_9.0_Pocket_Reference_Instant.indb 187 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 188

string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> filteredNames =
 System.Linq.Enumerable.Where(
 names, n => n.Length >= 4);

foreach (string n in filteredNames)
 Console.Write(n + "|"); // Dick|Harry|

Поскольку стандартные операторы запросов реализованы в
виде расширяющих методов, мы можем вызывать оператор Where
непосредственно для names — как если бы он был методом экзем-
пляра:
IEnumerable<string> filteredNames =
 names.Where(n => n.Length >= 4);

(Чтобы этот код скомпилировался, потребуется импортиро-
вать пространство имен System.Linq с помощью директивы
using.) Метод Where в System.Linq.Enumerable имеет следу-
ющую сигнатуру:
static IEnumerable<TSource> Where<TSource> (
 this IEnumerable<TSource> source,
 Func<TSource,bool> predicate)

В source указывается входная последовательность, а в
predicate — делегат, который вызывается для каждого входно-
го элемента. Метод Where помещает в выходную последователь-
ность все элементы, для которых делегат возвращает true. Вну-
тренне он реализован посредством итератора — вот как выглядит
исходный текст:
foreach(TSource element in source)
 if (predicate(element))
 yield return element;

Проецирование
 Еще одним фундаментальным оператором запроса являет-

ся метод Select, который трансформирует (проецирует) каж-
дый элемент входной последовательности с помощью заданного
лямбда-выражения:
string[] names = { "Tom", "Dick", "Harry" };

IEnumerable<string> upperNames =
 names.Select (n => n.ToUpper());

C#_9.0_Pocket_Reference_Instant.indb 188 30.03.2021 20:40:26

LINQ 189

foreach (string n in upperNames)
 Console.Write (n + "|"); // TOM|DICK|HARRY|

Запрос может выполнять проецирование в анонимный тип:
var query = names.Select (n => new {
 Name = n,
 Length = n.Length
 });

foreach (var row in query)
 Console.WriteLine(row);

Вот какой вид имеет результат:
{ Name = Tom, Length = 3 }
{ Name = Dick, Length = 4 }
{ Name = Harry, Length = 5 }

Take и Skip
В LINQ важно первоначальное упорядочение элементов вну-

три входной последовательности. На это поведение полагаются
некоторые операторы запросов, такие как Take, Skip и Reverse.
Оператор Take выдает первые x элементов, отбрасывая остальные:
int[] numbers = { 10, 9, 8, 7, 6 };
IEnumerable<int> firstThree = numbers.Take(3);
// firstThree { 10, 9, 8 }

Оператор Skip пропускает первые x элементов и выдает ос-
тальные:
IEnumerable<int> lastTwo = numbers.Skip(3);

Операторы над элементами
Не все операторы запросов возвращают последовательности.

Операторы над элементами извлекают из входной последователь-
ности один элемент; примерами таких операторов служат First,
Last, Single и ElementAt:
int[] numbers = { 10, 9, 8, 7, 6 };
int firstNumber = numbers.First(); // 10
int lastNumber = numbers.Last(); // 6
int secondNumber = numbers.ElementAt(2); // 8
int firstOddNum = numbers.First(n => n%2 == 1); // 9

C#_9.0_Pocket_Reference_Instant.indb 189 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 190

Все указанные выше операторы генерируют исключение, если
элементы отсутствуют. Чтобы избежать исключения, необходи-
мо использовать FirstOrDefault, LastOrDefault, SingleOr
Default или ElementAtOrDefault — когда ни одного элемента
не найдено, они возвращают null (или значение по умолчанию
для соответствующих типов-значений).

Методы Single и SingleOrDefault эквивалентны методам
First и FirstOrDefault, но генерируют исключение при нали-
чии более одного соответствия. Такое поведение полезно при за-
просе строки по первичному ключу из таблицы базы данных.

Операторы агрегации
Операторы агрегации возвращают скалярное значение, обычно

числового типа. Наиболее распространенными операторами агре-
гации являются Count, Min, Max и Average:
int[] numbers = { 10, 9, 8, 7, 6 };
int count = numbers.Count(); // 5
int min = numbers.Min(); // 6
int max = numbers.Max(); // 10
double avg = numbers.Average(); // 8

Оператор Count принимает необязательный предикат, кото-
рый указывает, должен ли включаться указанный элемент. Следу-
ющий код подсчитывает четные числа:
int evenNums = numbers.Count (n => n % 2 == 0); // 3

Операторы Min, Max и Average принимают необязательный
аргумент, который трансформирует каждый элемент до того, как
он будет подвергнут агрегации:
int maxRemainderAfterDivBy5 = numbers.Max(n => n%5); // 4

Приведенный ниже код вычисляет среднеквадратическое зна-
чение последовательности numbers:
double rms = Math.Sqrt(numbers.Average(n => n*n));

Квантификаторы
Квантификаторы возвращают значение типа bool. Кванти-

фикаторами являются операторы Contains, Any и All, а также
SequenceEquals, который сравнивает две последовательности:

C#_9.0_Pocket_Reference_Instant.indb 190 30.03.2021 20:40:26

LINQ 191

int[] numbers = { 10, 9, 8, 7, 6 };
bool hasTheNumberNine = numbers.Contains(9); // true
bool hasMoreThanZeroElements = numbers.Any(); // true
bool hasOddNum = numbers.Any(n => n % 2 == 1); // true
bool allOddNums = numbers.All(n => n % 2 == 1); // false

Операторы над множествами
Операторы над множествами принимают две входные после-

довательности одного и того же типа. Оператор Concat добавляет
одну последовательность в конец другой; Union делает то же са-
мое, но с удалением дубликатов:
int[] seq1 = { 1, 2, 3 }, seq2 = { 3, 4, 5 };

IEnumerable<int>
 concat = seq1.Concat(seq2), // { 1, 2, 3, 3, 4, 5 }
 union = seq1.Union(seq2), // { 1, 2, 3, 4, 5 }

В данной категории есть еще два оператора — Intersect и
Except:
IEnumerable<int>
 commonality = seq1.Intersect(seq2), // { 3 }
 difference1 = seq1.Except(seq2), // { 1, 2 }
 difference2 = seq2.Except(seq1); // { 4, 5 }

Отложенное выполнение
Важная характеристика многих операторов запросов заключа-

ется в том, что они выполняются не тогда, когда создаются, а ког-
да происходит перечисление (другими словами, когда вызывается
метод MoveNext перечислителя). Рассмотрим следующий запрос:
var numbers = new List<int> { 1 };

IEnumerable<int> query = numbers.Select (n => n * 10);
numbers.Add(2); //

foreach (int n in query)
 Console.Write(n + "|"); // 10|20|

Дополнительное число, вставленное в список после констру-
ирования запроса, присутствует в результате, поскольку любая
фильтрация или сортировка не выполняется вплоть до выполне-

C#_9.0_Pocket_Reference_Instant.indb 191 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 192

ния инструкции foreach. Это называется отложенным или лени-
вым выполнением. Отложенное выполнение отвязывает констру-
ирование запроса от его выполнения, позволяя строить запрос на
протяжении нескольких шагов, а также делает возможным запрос
базы данных без извлечения всех строк для клиента. Все стандарт-
ные операторы запросов обеспечивают отложенное выполнение
со следующими исключениями:

операторы, которые возвращают одиночный элемент или
скалярное значение (операторы над элементами, операто-
ры агрегации и квантификаторы);
операторы преобразования ToArray, ToList, ToDictionary,
ToLookup и ToHashSet.

Операторы преобразования отчасти удобны тем, что отменя-
ют отложенное выполнение. Это может быть полезно для “замора-
живания” или кеширования результатов в определенный момент
времени, чтобы избежать повторного выполнения запроса с круп-
ным объемом вычислений или запроса к удаленному источнику,
такому как таблица Entity Framework. (Побочный эффект отло-
женного выполнения заключается в том, что для того, чтобы за-
прос был выполнен повторно, вы должны позже выполнить его
перечисление заново.)

В следующем примере проиллюстрирован оператор ToList:
var numbers = new List<int>() { 1, 2 };

List<int> timesTen = numbers
 .Select (n => n * 10)
 .ToList(); //
 // List<int>
numbers.Clear();
Console.WriteLine(timesTen.Count); // 2

ПРИМЕЧАНИЕ
Подзапросы обеспечивают еще один уровень косвен-
ности. Все, что находится в подзапросе, подпадает под
отложенное выполнение, включая методы агрегации и
преобразования, так как сами подзапросы выполняются
только отложенно, по требованию. В предположении, что

C#_9.0_Pocket_Reference_Instant.indb 192 30.03.2021 20:40:26

LINQ 193

names — строковый массив, подзапрос выглядит пример-
но так:
names.Where(n => n.Length == names.Min(n2 =>
n2.Length))

Стандартные операторы запросов
Стандартные операторы запросов (реализованные в классе

System.Linq.Enumerable) могут быть разделены на 12 катего-
рий, которые кратко подытожены в табл. 7.

 7.

Категория Описание Отложенное
выполнение

Фильтрация Возвращают подмножество элементов, удовлетво-
ряющих заданному условию

Да

Проекция Преобразуют каждый элемент с помощью
лямбда-функции (возможно) с расширением под-
последовательностей

Да

Соединение Объединяют элементы одной коллекции с элемен-
тами другой, используя стратегию поиска, эффек-
тивную по времени

Да

Упорядочение Возвращают переупорядоченную последователь-
ность

Да

Группирование Группируют последовательность в подпоследова-
тельности

Да

Работа с множе-
ствами

Принимают две однотипные последовательности и
возвращают их объединение, сумму или разность

Да

Работа с элемен-
тами

Выбирают один элемент из последовательности Нет

Агрегация Выполняют вычисления над последовательностью,
возвращая скалярное значение (обычно число)

Нет

Квантификация Выполняют вычисления над последовательностью,
возвращая true или false

Нет

Преобразование:
импорт

Преобразуют необобщенную последовательность
в (поддерживающую запросы) обобщенную после-
довательность

Да

C#_9.0_Pocket_Reference_Instant.indb 193 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 194

Категория Описание Отложенное
выполнение

Преобразование:
экспорт

Преобразуют последовательность в массив, список,
словарь, обеспечивая немедленное вычисление

Нет

Генерация Производят простую последовательность Да

В табл. 8 –19 приведены описания всех операторов запросов.
Операторы, выделенные полужирным, имеют специальную под-
держку в языке C# (см. раздел “Выражения запросов”).

 8.

Метод Описание

Where Возвращает подмножество элементов, удовлетворяющих данному
условию

Take Возвращает первые x элементов, отбрасывая остальные

Skip Игнорирует первые x элементов, возвращая остальные

TakeWhile Выдает элементы входной последовательности, пока заданный пре-
дикат возвращает true

SkipWhile Игнорирует элементы входной последовательности, пока заданный
предикат возвращает true, возвращая остальные

Distinct Возвращает коллекцию с удаленными дубликатами

 9.

Метод Описание

Select Преобразует каждый входной элемент с помощью заданного
лямбда-выражения

SelectMany Преобразует каждый входной элемент, а затем выравнивает
и объединяет результирующие подпоследовательности

Окончание табл. 7

C#_9.0_Pocket_Reference_Instant.indb 194 30.03.2021 20:40:26

LINQ 195

 10.

Метод Описание

Join Применяет стратегию поиска для сопоставления элементов из двух
коллекций, выдавая плоский результирующий набор

GroupJoin Подобен Join, но выдает иерархический результирующий набор

Zip Перечисляет две последовательности за один шаг, возвращая по-
следовательность, в которой к каждой паре элементов применена
функция

 11.

Метод Описание

OrderBy, ThenBy Возвращает элементы, отсортированные в возрастаю-
щем порядке

OrderByDescending,
ThenByDescending

Возвращает элементы, отсортированные в убывающем
порядке

Reverse Возвращает элементы в обратном порядке

 12.

Метод Описание

GroupBy Группирует последовательность в подпоследовательности

 13.

Метод Описание

Concat Конкатенация двух последовательностей

Union Конкатенация двух последовательностей с удалением дубликатов

Intersect Возвращает элементы, присутствующие в обоих множествах

Except Возвращает элементы, присутствующие в первом множестве, но не
во втором

C#_9.0_Pocket_Reference_Instant.indb 195 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 196

 14.

Метод Описание

First,
FirstOrDefault

Возвращают первый элемент в последовательности
или первый элемент, удовлетворяющий заданному
предикату

Last, LastOrDefault Возвращают последний элемент в последовательности
или последний элемент, удовлетворяющий заданному
предикату

Single,
SingleOrDefault

Эквивалентны First/FirstOrDefault, но
генерируют исключение при наличии более одного
подходящего элемента

ElementAt,
ElementAtOrDefault

Возвращают элемент в указанной позиции

DefaultIfEmpty Возвращает последовательность из одного эле-
мента, значением которого является null или
default(TSource), если последовательность не
содержит элементов

 15.

Метод Описание

Count,
LongCount

Возвращают общее количество элементов входной последова-
тельности или количество элементов, удовлетворяющих заданно-
му предикату

Min, Max Возвращают наименьший или наибольший элемент последова-
тельности

Sum, Average Подсчитывают числовую сумму или среднее значение элементов
последовательности

Aggregate Выполняет пользовательскую агрегацию

 16.

Метод Описание

Contains Возвращает true, если входная последовательность содержит
заданный элемент

C#_9.0_Pocket_Reference_Instant.indb 196 30.03.2021 20:40:26

LINQ 197

Метод Описание

Any Возвращает true, если существуют элементы входной после-
довательности, удовлетворяющие заданному предикату

All Возвращает true, если все элементы входной последователь-
ности удовлетворяют заданному предикату

SequenceEqual Возвращает true, если вторая последовательность содержит
элементы, идентичные элементам входной последовательности

 17. ()

Метод Описание

OfType Преобразует IEnumerable в IEnumerable<T>, отбрасывая эле-
менты неподходящих типов

Cast Преобразует IEnumerable в IEnumerable<T>, генерируя исклю-
чение при наличии элементов неподходящих типов

 18. ()

Метод Описание

ToArray Преобразует IEnumerable<T> в T[]

ToList Преобразует IEnumerable<T> в List<T>

ToDictionary Преобразует IEnumerable<T> в Dictionary<TKey,
TValue>

ToHashSet Преобразует IEnumerable<T> в HashSet<T>

ToLookup Преобразует IEnumerable<T> в ILookup<TKey,
TElement>

AsEnumerable Приводит вниз, к IEnumerable<T>

AsQueryable Приводит или преобразует в IQueryable<T>

Окончание табл. 16

C#_9.0_Pocket_Reference_Instant.indb 197 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 198

 19.

Метод Описание

Empty Создает пустую последовательность

Repeat Создает последовательность повторяющихся элементов

Range Создает последовательность целых чисел

Цепочки операторов запросов
Для построения более сложных запросов допускается объеди-

нять операторы запросов в цепочки. Например, следующий запрос
извлекает все строки, содержащие букву а, сортирует их по длине,
а затем преобразует результаты в символы верхнего регистра:
string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))
 .OrderBy(n => n.Length)
 .Select (n => n.ToUpper());

foreach (string name in query)
 Console.Write (name + "|");
// : JAY|MARY|HARRY|

Where, OrderBy и Select — это стандартные операторы за-
просов, которые разрешаются в вызовы расширяющих методов
класса Enumerable. Оператор Where выдает отфильтрованную
версию входной последовательности; оператор OrderBy — от-
сортированную версию входной последовательности; оператор
Select — последовательность, в которой каждый входной эле-
мент трансформирован, или проецирован, с помощью заданного
лямбда-выражения (n.ToUpper() в рассмотренном случае). Дан-
ные протекают слева направо через цепочку операторов, поэтому
они сначала фильтруются, затем сортируются и наконец проеци-
руются. Конечный результат напоминает производственную ли-
нию с ленточными конвейерами, показанную на рис. 6.

Отлож енное выполнение соблюдается операторами повсемест-
но, так что ни фильтрация, ни сортировка, ни проецирование не
происходят до тех пор, пока не начнется фактическое перечисле-
ние результатов запроса.

C#_9.0_Pocket_Reference_Instant.indb 198 30.03.2021 20:40:26

LINQ 199

JAY
M

AR
Y

H
AR

R
Y

Tom
D

ick
H

arry M
ary Jay

n =>
n.Contains ("a")

n =>
n.Length

n =>
n.ToUpper()

.Where() .OrderBy .Select

Фильтрация Сортировка Проецирование

Рис. 6. Цепочка операторов запросов

Выражения запросов
До сих пор мы писали запросы, вызывая расширяющие ме-

тоды в классе Enumerable. В настоящей книге мы называем это
текучим синтаксисом (fl uent syntax). В C# также обеспечивается
специальная языковая поддержка для написания запросов, кото-
рая называется выражениями запросов . Вот как предыдущий за-
прос выглядит в форме выражения запроса:
IEnumerable<string> query =
 from n in names
 where n.Contains("a")
 orderby n.Length
 select n.ToUpper();

Выражение запроса всегда начинается с конструкции from
и заканчивается либо конструкцией select, либо конструкци-
ей group. Конструкция from объявляет переменную диапазона
(в данном случае — n), которую можно воспринимать как пере-
менную, предназначенную для обхода входной последовательно-
сти — почти как в цикле foreach. На рис. 7 проиллюстрирован
полный синтаксис выражения запроса.

ПРИМЕЧАНИЕ
Если вы знакомы с языком SQL , то синтаксис выраже-
ний запросов LINQ — с конструкцией from в начале и
конструкцией select в конце — может показаться вам
странным. На самом деле синтаксис выражений запросов
более логичен, поскольку конструкции появляются в по-

C#_9.0_Pocket_Reference_Instant.indb 199 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 200

рядке, в котором они выполняются. Это позволяет среде
Visual Studio с помощью средства IntelliSense предлагать
подсказки по мере набора запроса, а также упрощает пра-
вила установления области видимости для подзапросов.

join
in on equals

into

перечислимое
выражение

конструкция
orderby

логическое
выражение
where

let
идентификатор =

выражение

конструкция
join

выражение
select

конструкция
group

конструкция
from

выражение выражение

имя типа

идентификатор

внутреннее
выражение

внешний
ключ

идентификатор

from

orderby выражение

,

ascending

descending

ид
ен

ти
фи

ка
то

р
in

to

group by

внутренний
ключ

продолжение запроса

Se
lec

tM
an

y

in

внутрен-
ний

идентифи-
катор

Рис. 7. Синтаксис выражения запроса

Компилятор обрабатывает выражения запросов, транслируя
их в текучий синтаксис. Он делает это почти механически — при-
мерно так, как транслирует операторы foreach в вызовы Get
Enumerator() и MoveNext():
IEnumerable<string> query = names
 .Where (n => n.Contains ("a"))

C#_9.0_Pocket_Reference_Instant.indb 200 30.03.2021 20:40:26

LINQ 201

 .OrderBy (n => n.Length)
 .Select (n => n.ToUpper());

Затем операторы Where(), OrderBy() и Select() разреша-
ются с использованием тех же правил, которые применялись бы
к запросу, написанному с помощью текучего синтаксиса. В дан-
ном случае операторы привязываются к расширяющим мето-
дам в классе Enumerable (предполагая импорт пространства
имен System.Linq), потому что names реализует интерфейс
IEnumerable<string>. Однако при трансляции синтаксиса за-
просов компилятор не оказывает специальной поддержки классу
Enumerable. Можно считать, что компилятор механически вво-
дит слова Where, OrderBy и Select внутрь инструкции, после
чего компилирует ее, как если бы вы набирали имена методов
самостоятельно. В итоге обеспечивается гибкость в способе их
разрешения — например, операторы в запросах Entity Framework
привязываются к расширяющим методам в классе Queryable.

Выражения запросов и текучий синтаксис
И синтаксису выражений запросов, и текучему синтаксису

присущи свои преимущества.
Выражения запросов поддерживают только небольшое под-

множество операторов запросов, а именно:
Where, Select, SelectMany
OrderBy, ThenBy, OrderByDescending, ThenByDescending
GroupBy, Join, GroupJoin

Запросы, которые используют другие операторы, придется за-
писывать либо полностью в текучем синтаксисе, либо в смешан-
ном синтаксисе. Например:
string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names
 where n.Length == names.Min(n2 => n2.Length)
 select n;

Приведенный запрос возвращает имена с наименьшей длиной
(“Tom” и “Jay”). Подзапрос (выделенный полужирным) вычисля-
ет минимальную длину имен и получает значение 3. Для данного
подзапроса должен применяться текучий синтаксис, так как опе-
ратор Min в синтаксисе выражений запросов не поддерживается.

C#_9.0_Pocket_Reference_Instant.indb 201 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 202

Однако для внешнего запроса по-прежнему можно использовать
синтаксис выражений запросов.

Главное преимущество синтаксиса выражений запросов за-
ключается в том, что он способен радикально упростить запросы,
в которых задействованы следующие компоненты:

конструкция let для введения новой переменной парал-
лельно с переменной диапазона;
множество генераторов (SelectMany), за которыми следу-
ет ссылка на внешнюю переменную диапазона;
эквивалент оператора Join или GroupJoin, за которым
следует ссылка на внешнюю переменную диапазона.

Ключевое слово let
Ключевое слово let вводит новую переменную параллельно с

переменной диапазона. В качестве примера предположим, что не-
обходимо вывести список имен, длина которых без учета гласных
превышает два символа:
string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query =
 from n in names
 let vowelless = Regex.Replace(n, "[aeiou]", "")
 where vowelless.Length > 2
 orderby vowelless
 select n + " - " + vowelless;

Вот вывод, полученный при перечислении результатов этого
запроса:
Dick - Dck
Harry - Hrry
Mary - Mry

Конструкция let выполняет вычисление для каждого элемен-
та, не утрачивая при этом исходный элемент. В нашем запросе
последующие конструкции (where, orderby и select) имеют до-
ступ как к n, так и к vowelless. Запрос может включать любое
количество конструкций let, и они могут сопровождаться допол-
нительными конструкциями where и join.

C#_9.0_Pocket_Reference_Instant.indb 202 30.03.2021 20:40:26

LINQ 203

Компилятор транслирует ключевое слово let путем проек-
ции во временный анонимный тип, который содержит исходные
и трансформированные элементы:
IEnumerable<string> query = names
 .Select(n => new
 {
 n = n,
 vowelless = Regex.Replace (n, "[aeiou]", "")
 }
)
 .Where(temp0 => (temp0.vowelless.Length > 2))
 .OrderBy(temp0 => temp0.vowelless)
 .Select(temp0 => ((temp0.n+" - ") + temp0.vowelless))

Продолжение запросов
Если необходимо добавить конструкции после конструкции

select или group, то нужно использовать ключевое слово into,
чтобы “продолжить” запрос. Например:
from c in "The quick brown tiger".Split()
select c.ToUpper() into upper
where upper.StartsWith("T")
select upper

// : "THE", "TIGER"

После конструкции into предыдущая переменная диапазона
находится за пределами области видимости.

Компилятор просто транслирует запросы с ключевым словом
into в более длинную цепочку операторов:
"The quick brown tiger".Split()
 .Select (c => c.ToUpper())
 .Where (upper => upper.StartsWith ("T"))

(Компилятор опускает финальную конструкцию Select(up
per=>upper), потому что она избыточна.)

Множество генераторов
Запрос может включать несколько генераторов (конструкций

from). Например:

C#_9.0_Pocket_Reference_Instant.indb 203 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 204

int[] numbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

IEnumerable<string> query = from n in numbers
 from l in letters
 select n.ToString() + l;

Результатом является перекрестное произведение, очень схо-
жее с тем, которое можно было бы получить с помощью вложен-
ных циклов foreach:
"1a", "1b", "2a", "2b", "3a", "3b"

При наличии в запросе более одной конструкции from компи-
лятор генерирует вызов метода SelectMany():
IEnumerable<string> query = numbers.SelectMany(
 n => letters,
 (n, l) => (n.ToString() + l));

Метод SelectMany() выполняет вложенные циклы. Он
проходит по всем элементам в исходной коллекции (numbers),
трансформируя каждый элемент с помощью лямбда-выражения
(letters). В итоге генерируется последовательность подпосле-
довательностей, которая затем подвергается перечислению. Фи-
нальные выходные элементы определяются вторым лямбда-выра-
жением (n.ToString()+l).

Если дополнительно применить конструкцию where, то пере-
крестное произведение можно отфильтровать и спроецировать
результат подобно соединению:
string[] players = { "Tom", "Jay", "Mary" };

IEnumerable<string> query =
 from name1 in players
 from name2 in players
 where name1.CompareTo (name2) < 0
 orderby name1, name2
 select name1 + " vs " + name2;

: { "Jay vs Mary", "Jay vs Tom", "Mary vs Tom" }

Трансляция такого запроса в текучий синтаксис сложнее и тре-
бует временной анонимной проекции. Возможность автоматиче-
ского выполнения такой трансляции является одним из основных
преимуществ выражений запросов.

C#_9.0_Pocket_Reference_Instant.indb 204 30.03.2021 20:40:26

LINQ 205

Выражению во втором генераторе разрешено пользоваться
первой переменной диапазона:
string[] fullNames =
 { "Anne Williams", "John Fred Smith", "Sue Green" };

IEnumerable<string> query =
 from fullName in fullNames
 from name in fullName.Split()
 select name + " came from " + fullName;

Anne came from Anne Williams
Williams came from Anne Williams
John came from John Fred Smith

Запрос работает, поскольку выражение fullName.Split()
выдает последовательность (массив строк).

Множество генераторов широко применяется в запросах к ба-
зам данных для выравнивания отношений “родительский–дочер-
ний” и для выполнения ручных соединений.

Соединение
В LINQ доступны три оператора соединения , из которых глав-

ными являются Join и GroupJoin, выполняющие соединения на
основе ключей поиска. Операторы Join и GroupJoin поддержи-
вают только подмножество функциональности, которую вы по-
лучаете благодаря множеству генераторов или SelectMany, но
они обладают более высокой производительностью при исполь-
зовании в локальных запросах, потому что применяют стратегию
поиска на основе хеш-таблиц, а не выполняют вложенные циклы.
(В случае запросов Entity Framework операторы соединения не
имеют никаких преимуществ перед множеством генераторов.)

Операторы Join и GroupJoin поддерживают только эквисое-
динения (т.е. условие соединения должно использовать оператор
эквивалентности). Существуют два метода: Join и GroupJoin.
Метод Join() выдает плоский результирующий набор, тогда как
метод GroupJoin() — иерархический результирующий набор.

Синтаксис выражений запросов для плоского соединения вы-
глядит следующим образом:
from - in -
join - in -

C#_9.0_Pocket_Reference_Instant.indb 205 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 206

 on - - equals
 - -

Например, рассмотрим следующие коллекции:
var customers = new[]
{
 new { ID = 1, Name = "Tom" },
 new { ID = 2, Name = "Dick" },
 new { ID = 3, Name = "Harry" }
};
var purchases = new[]
{
 new { CustomerID = 1, Product = "House" },
 new { CustomerID = 2, Product = "Boat" },
 new { CustomerID = 2, Product = "Car" },
 new { CustomerID = 3, Product = "Holiday" }
};

Мы можем выполнить их соединение следующим образом:
IEnumerable<string> query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 select c.Name + " bought a " + p.Product;

Компилятор транслирует этот запрос так, как показано ниже:
customers.Join (//
 purchases, //
 c => c.ID, //
 p => p.CustomerID, //
 (c, p) => //
 c.Name + " bought a " + p.Product
);

А вот как выглядит результат:
Tom bought a House
Dick bought a Boat
Dick bought a Car
Harry bought a Holiday

В случае локальных последовательностей при обработке круп-
ных коллекций операторы Join и GroupJoin более эффективны,
чем SelectMany, поскольку они сначала загружают внутреннюю
последовательность в хеш-таблицу поиска по ключу. Однако в слу-
чае запроса к базе данных тот же результат с такой же эффектив-
ностью можно получить следующим образом:

C#_9.0_Pocket_Reference_Instant.indb 206 30.03.2021 20:40:26

LINQ 207

from c in customers
from p in purchases
where c.ID == p.CustomerID
select c.Name + " bought a " + p.Product;

GroupJoin
Оператор GroupJoin делает ту же работу, что и Join, но вме-

сто плоского результата выдает иерархический результат, сгруп-
пированный по каждому внешнему элементу.

Синтаксис выражений запросов для GroupJoin такой же, как
и для Join, но за ним следует ключевое слово into. Ниже при-
веден простейший пример, в котором задействованы коллекции
customers и purchases, подготовленные в предыдущем разделе:
var query =
 from c in customers
 join p in purchases on c.ID equals p.CustomerID
 into custPurchases
 select custPurchases; // custPurchases
 //

ПРИМЕЧАНИЕ
Конструкция into транслируется в GroupJoin, только
когда она появляется непосредственно после конструк-
ции join. При размещении после конструкции select
или group она означает продолжение запроса. Такие два
применения ключевого слова into существенно разли-
чаются, хотя и обладают одной общей характеристикой:
в обоих случаях вводится новая переменная диапазона.

Результатом будет последовательность последовательностей
IEnumerable<IEnumerable<T>>, обход которой можно было бы
организовать следующим образом:
foreach (var purchaseSequence in query)
 foreach (var purchase in purchaseSequence)
 Console.WriteLine (purchase.Product);

Однако это не слишком полезно, так как purchaseSequence
не имеет ссылок на внешнего заказчика из customers. Чаще всего
ссылка на внешнюю переменную диапазона производится в про-
екции:

C#_9.0_Pocket_Reference_Instant.indb 207 30.03.2021 20:40:26

Язык C# 9.0. Карманный справочник 208

from c in customers
join p in purchases on c.ID equals p.CustomerID
into custPurchases
select new { CustName = c.Name, custPurchases };

Тот же самый результат (но менее эффективно, для локальных
запросов) можно было бы получить проецированием в аноним-
ный тип, который включает подзапрос:
from c in customers
select new
{
 CustName = c.Name,
 custPurchases =
 purchases.Where (p => c.ID == p.CustomerID)
}

Zip
Оператор Zip является простейшим оператором соединения.

Он обходит две последовательности одновременно (подобно за-
стежке-молнии (zipper)) и возвращает последовательность, полу-
ченную в результате применения функции к каждой паре элемен-
тов. Так, код
int[] numbers = { 3, 5, 7 };
string[] words = { "three", "five", "seven", "ignored" };
IEnumerable<string> zip =
 numbers.Zip(words, (n, w) => n + "=" + w);

приводит к последовательности с элементами
3=three
5=five
7=seven

Излишние элементы в любой из входных последовательностей
игнорируются. Оператор Zip не поддерживается в запросах к ба-
зам данных.

Упорядочение
Последовательность сортируется с помощью ключевого слова

orderby. Разрешено указывать любое количество выражений, по
которым выполняется сортировка:

C#_9.0_Pocket_Reference_Instant.indb 208 30.03.2021 20:40:27

LINQ 209

string[] names = { "Tom","Dick","Harry","Mary","Jay" };

IEnumerable<string> query = from n in names
 orderby n.Length, n
 select n;

Сначала выполняется сортировка по длине, а затем — по име-
ни, что приводит к следующему результату:
Jay, Tom, Dick, Mary, Harry

Компилятор транслирует первое выражение orderby в вызов
OrderBy(), а последующие выражения — в вызовы ThenBy():
IEnumerable<string> query = names
 .OrderBy (n => n.Length)
 .ThenBy (n => n)

Оператор ThenBy уточняет результаты предшествующей сор-
тировки, а не заменяет их.

После любого выражения orderby можно размещать ключе-
вое слово descending:
orderby n.Length descending, n

Запрос при этом транслируется в
.OrderByDescending(n => n.Length).ThenBy(n => n)

ПРИМЕЧАНИЕ
Операторы упорядочения возвращают расширенный тип
IEnumerable<T> с именем IOrderedEnumerable<T>.
В данном интерфейсе определена дополнительная функ-
циональность, требуемая оператором ThenBy.

Группирование
Оператор GroupBy превращает плоскую входную последова-

тельность в последовательность групп. Например, приведенный
ниже код группирует последовательность имен по их длине:
string[] names = { "Tom","Dick","Harry","Mary","Jay" };

var query = from name in names
 group name by name.Length;

C#_9.0_Pocket_Reference_Instant.indb 209 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 210

Компилятор транслирует этот запрос в
IEnumerable<IGrouping<int,string>> query =
 names.GroupBy (name => name.Length);

Вот как выполнить перечисление результата:
foreach (IGrouping<int,string> grouping in query)
{
 Console.Write ("\r\n Length=" + grouping.Key + ":");
 foreach (string name in grouping)
 Console.Write (" " + name);
}

Length=3: Tom Jay
Length=4: Dick Mary
Length=5: Harry

Метод Enumerable.GroupBy() работает путем чтения вход-
ных элементов во временный словарь списков, так что все элемен-
ты с одинаковыми ключами попадают в один и тот же подсписок.
Затем он выдает последовательность групп. Группа представляет
собой последовательность со свойством Key:
public interface IGrouping <TKey,TElement>
: IEnumerable<TElement>, IEnumerable
{
 //
 TKey Key { get; }
}

По умолчанию элементы в каждой группе являются нетранс-
формированными входными элементами, если только не указан
аргумент elementSelector. Следующий запрос проецирует вход-
ные элементы в верхний регистр:
from name in names
group name.ToUpper() by name.Length

что транслируется в
names.GroupBy(
 name => name.Length,
 name => name.ToUpper())

Подколлекции не выдаются в порядке следования ключей.
Оператор GroupBy не выполняет сортировку (фактически он
сохраняет исходное упорядочение). Для сортировки следует до-

C#_9.0_Pocket_Reference_Instant.indb 210 30.03.2021 20:40:27

LINQ 211

бавить оператор OrderBy (что в первую очередь означает добав-
ление конструкции into, так как group by обычно заканчивает
запрос):
from name in names
group name.ToUpper() by name.Length into grouping
orderby grouping.Key
select grouping

Продолжения запроса часто используются в запросах group
by. Следующий запрос отфильтровывает группы, которые имеют
ровно по два совпадения:
from name in names
group name.ToUpper() by name.Length into grouping
where grouping.Count() == 2
select grouping

ПРИМЕЧАНИЕ
Конструкция where после group by эквивалентна кон-
струкции HAVING в языке SQL. Она применяется к каждой
подпоследовательности или группе как к единому целому,
а не к содержащимся в ней отдельным элементам.

OfType и Cast
OfType и Cast принимают необобщенную коллекцию IEnume

rable и выдают обобщенную последовательность IEnumerable
<T>, которой впоследствии можно отправить запрос:
var classicList = new System.Collections.ArrayList();
classicList.AddRange(new int[] { 3, 4, 5 });
IEnumerable<int> sequence1 = classicList.Cast<int>();

Это полезно тем, что появляется возможность запрашивать
коллекции, разработанные до выхода версии C# 2.0 (в которой
был введен интерфейс IEnumerable<T>), такие как Control
Collection из System.Windows.Forms.

Cast и OfType различаются своим поведением, когда встреча-
ется входной элемент несовместимого типа: Cast генерирует ис-
ключение, а OfType такой элемент игнорирует.

C#_9.0_Pocket_Reference_Instant.indb 211 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 212

Правила совместимости элементов соответствуют аналогич-
ным правилам для оператора is в языке C#. Ниже показана вну-
тренняя реализация Cast:
public static IEnumerable<TSource> Cast <TSource>
 (IEnumerable source)
{
 foreach (object element in source)
 yield return (TSource)element;
}

Язык C# поддерживает оператор Cast в синтаксисе запро-
сов — нужно просто поместить тип элемента непосредственно
после ключевого слова from:
from int x in classicList ...

Это транслируется в
from x in classicList.Cast<int>() ...

 Динамическое связывание
Динамическое связывание откладывает связывание — процесс

разрешения типов, членов и операторов — со времени компиля-
ции до времени выполнения. Динамическое связывание удобно,
когда во время компиляции вы знаете, что определенная функция,
член или оператор существует, но компилятору об этом неизвест-
но. Обычно подобное происходит при взаимодействии с дина-
мическими языками (такими, как IronPython) и COM, а также в
сценариях, в которых в противном случае использовалась бы реф-
лексия.

Динамический тип объявляется с помощью контекстного клю-
чевого слова dynamic :
dynamic d = GetSomeObject();
d.Quack();

Динамический тип предлагает компилятору смягчить требова-
ния. Мы ожидаем, что тип времени выполнения d должен иметь
метод Quack(), но просто не можем проверить это статически.
Поскольку d относится к динамическому типу, компилятор откла-
дывает связывание Quack() с d до времени выполнения. Понима-

C#_9.0_Pocket_Reference_Instant.indb 212 30.03.2021 20:40:27

Динамическое связывание 213

ние смысла такого действия требует понимания различий между
статическим и динамическим связываниями.

Статическое и динамическое связывания
Канонический пример связывания предусматривает при ком-

пиляции выражения отображение имени в конкретную функцию.
Для компиляции следующего выражения компилятор должен
найти реализацию метода с именем Quack():
d.Quack();

Давайте предположим, что статическим типом d является
Duck:
Duck d = ...
d.Quack();

В таком простом случае компилятор осуществляет связыва-
ние за счет поиска в типе Duck метода без параметров по имени
Quack(). Если найти такой метод не удается, компилятор распро-
страняет поиск на методы, принимающие необязательные параме-
тры, методы базовых классов Duck и расширяющие методы, кото-
рые принимают Duck в своем первом параметре. Если совпадений
не обнаружено, генерируется ошибка компиляции. Независимо от
того, с каким методом выполнено связывание, суть заключается
в том, что связывание выполняется компилятором, и оно полно-
стью зависит от статических сведений о типах операндов (в дан-
ном случае — d). Именно поэтому такой процесс называется ста-
тическим связыванием.

Теперь изменим статический тип d на object:
object d = ...
d.Quack();

Вызов Quack() приводит к ошибке времени компиляции, так
как несмотря на то, что хранящееся в d значение может содержать
метод с именем Quack(), компилятор не может об этом знать,
поскольку единственная информация, которой он располагает, —
тип переменной, которым в рассматриваемом случае является
object. Давайте теперь изменим статический тип d на dynamic:
dynamic d = ...
d.Quack();

C#_9.0_Pocket_Reference_Instant.indb 213 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 214

Тип dynamic схож с object — он точно так же не описывает
конкретный тип. Отличие заключается в том, что тип dynamic до-
пускает применение способами, которые во время компиляции не
известны. Динамический объект связывается во время выполне-
ния на основе своего типа времени выполнения, а не типа времени
компиляции. Когда компилятор встречает динамически связыва-
емое выражение (которым в общем случае является выражение,
содержащее любое значение типа dynamic), он просто упаковы-
вает его так, чтобы связывание могло быть произведено позже, во
время выполнения.

Если динамический объект реализует интерфейс IDynamic
MetaObjectProvider, то этот интерфейс используется для свя-
зывания во время выполнения. В противном случае связывание
осуществляется почти так же, как в ситуации, когда компилятору
известен тип динамического объекта времени выполнения. Эти
две альтернативы называются пользовательским связыванием и
языковым связыванием.

Пользовательское связывание
Пользовательское связывание (custom binding) осуществляет-

ся, когда динамический объект реализует интерфейс IDynamic
MetaObjectProvider. Хотя интерфейс IDynamicMetaObject
Provider можно реализовать в типах, которые вы пишете на
языке C#, и поступать так полезно, более распространенный слу-
чай предусматривает запрос объекта, реализующего IDynamic
MetaObjectProvider, из динамического языка, который реали-
зован в .NET с помощью исполняющей среды динамического язы-
ка (Dynamic Language Runtime — DLR), скажем, IronPython или
IronRuby. Объекты из таких языков неявно реализуют интерфейс
IDynamicMetaObjectProvider в качестве средства непосред-
ственного управления смыслом выполняемых над ними операций.
Ниже приведен простой пример:
dynamic d = new Duck();
d.Quack(); // Quack
d.Waddle(); // Waddle
public class Duck : DynamicObject // System.Dynamic
{
 public override bool TryInvokeMember(
 InvokeMemberBinder binder,

C#_9.0_Pocket_Reference_Instant.indb 214 30.03.2021 20:40:27

Динамическое связывание 215

 object[] args, out object result)
 {
 Console.WriteLine(" " + binder.Name);
 result = null;
 return true;
 }
}

Класс Duck в действительности не имеет метода Quack(). Вме-
сто этого он применяет пользовательское связывание для перехва-
та и интерпретации всех вызовов методов. Пользовательское свя-
зывание более подробно обсуждается в книге C# 9.0. Справочник.
Полное описание языка.

Языковое связывание
Языковое связывание осуществляется, когда динамический

объект не реализует интерфейс IDynamicMetaObjectProvider.
Языковое связывание удобно при работе с неудачно спроектиро-
ванными типами или внутренними ограничениями системы ти-
пов .NET. Например, встроенные числовые типы неудачны тем,
что не имеют общего интерфейса. Ранее было показано, что мето-
ды могут быть привязаны динамически; то же самое справедливо
и для операторов:
int x = 3, y = 4;
Console.WriteLine(Mean(x, y));

dynamic Mean(dynamic x, dynamic y) => (x+y) / 2;

Преимущество этого подхода очевидно — не приходится ду-
блировать код для каждого числового типа. Тем не менее утрачи-
вается безопасность типов, из-за чего возрастает риск генерации
исключений во время выполнения вместо получения ошибок вре-
мени компиляции.

ПРИМЕЧАНИЕ
Динамическое связывание обходит систему статической
безопасности типов, но не динамической безопасности.
В отличие от рефлексии с помощью динамического связы-
вания обойти правила доступности членов невозможно.

C#_9.0_Pocket_Reference_Instant.indb 215 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 216

Языковое связывание времени выполнения преднамеренно
ведет себя максимально схоже со статическим связыванием, как
будто типы времени выполнения динамических объектов были
известны еще во время компиляции. В предыдущем примере пове-
дение программы окажется идентичным тому, как если бы метод
Mean() был жестко закодирован для работы с типом int. Наи-
более заметным исключением при проведении аналогии между
статическим и динамическим связываниями являются расширяю-
щие методы, которые рассматриваются в разделе “Невызываемые
функции”.

ПРИМЕЧАНИЕ
Динамическое связывание наносит ущерб производи-
тельности. Однако из-за механизмов кеширования среды
DLR повторяющиеся обращения к одному и тому же ди-
намическому выражению оптимизируются, позволяя эф-
фективно работать с динамическими выражениями в ци-
кле. Такая оптимизация снижает типичные временные из-
держки при выполнении простого динамического выра-
жения на современном оборудовании до менее чем 100 нс.

Исключение RuntimeBinderException
Если привязка к члену не удается, генерируется исключение

RuntimeBinderException. Его можно считать ошибкой времени
компиляции, перенесенной на время выполнения:
dynamic d = 5;
d.Hello(); // RuntimeBinderException

Исключение генерируется из-за того, что тип int не имеет ме-
тода Hello().

Представление dynamic времени выполнения
Между типами dynamic и object имеется глубокая эквива-

лентность. Исполняющая среда трактует следующее выражение
как true:
typeof (dynamic) == typeof (object)

C#_9.0_Pocket_Reference_Instant.indb 216 30.03.2021 20:40:27

Динамическое связывание 217

Данный принцип распространяется также на составные типы
и массивы:
typeof(List<dynamic>) == typeof (List<object>)
typeof(dynamic[]) == typeof (object[])

Подобно объектной ссылке динамическая ссылка может ука-
зывать на объект любого типа (за исключением типов указателей):
dynamic x = "hello";
Console.WriteLine(x.GetType().Name); // String
x = 123; // ()
Console.WriteLine(x.GetType().Name); // Int32

Структурно какие-либо различия между объектной ссылкой
и динамической ссылкой отсутствуют. Динамическая ссылка про-
сто разрешает выполнение динамических операций над объектом,
на который она указывает. Чтобы выполнить любую динамиче-
скую операцию над object, тип object можно преобразовать в
dynamic:
object o = new System.Text.StringBuilder();
dynamic d = o;
d.Append("hello");
Console.WriteLine(o); // hello

Динамические преобразования
Тип dynamic поддерживает неявные преобразования в и из

всех остальных типов. Чтобы преобразование прошло успешно,
тип времени выполнения динамического объекта должен быть не-
явно преобразуемым в целевой статический тип.

В следующем примере генерируется исключение Runtime
BinderException, так как тип int не может быть неявно преоб-
разован в short:
int i = 7;
dynamic d = i;
long l = d; // OK –
short j = d; // RuntimeBinderException

Сравнение var и dynamic
Несмотря на внешнее сходство типов var и dynamic, разница

между ними существенна:

C#_9.0_Pocket_Reference_Instant.indb 217 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 218

var говорит: “пусть компилятор выведет тип”;
dynamic говорит: “пусть исполняющая среда выведет тип”.

Вот иллюстрация сказанного:
dynamic x = "hello"; // - dynamic
var y = "hello"; // - string
int i = x; //
int j = y; //

Динамические выражения
Поля, свойства, методы, события, конструкторы, индексаторы,

операторы и преобразования могут вызываться динамически.
Попытка использования результата динамического выраже-

ния с возвращаемым типом void запрещена — точно так же, как
и в случае статически типизированного выражения. Отличие за-
ключается в том, что возникает ошибка времени выполнения.

Выражения, содержащие динамические операнды, обычно
сами являются динамическими, так как эффект отсутствия ин-
формации о типе имеет каскадный характер:
dynamic x = 2;
var y = x * 3; // y - dynamic

Из этого правила существует пара очевидных исключений.
Во-первых, приведение динамического выражения к статическому
типу дает статическое выражение. Во-вторых, вызовы конструкто-
ров всегда дают статические выражения, даже если они вызывают-
ся с динамическими аргументами.

Кроме того, существует несколько особых случаев, когда вы-
ражение, содержащее динамический аргумент, является статиче-
ским, включая передачу индекса массиву и выражения для созда-
ния делегатов.

Разрешение перегруженных динамических членов
В каноническом сценарии использования dynamic участвует

динамический получатель (receiver). Это означает, что получателем
динамического вызова функции является динамический объект:
dynamic x = ...;
x.Foo (123); // x -

C#_9.0_Pocket_Reference_Instant.indb 218 30.03.2021 20:40:27

Динамическое связывание 219

Однако динамическое связывание не ограничивается получа-
телями: аргументы методов также пригодны для динамического
связывания. Следствием вызова функции с динамическими аргу-
ментами будет откладывание распознавания перегруженных вер-
сий со времени компиляции до времени выполнения:
static void Foo(int x) => Console.WriteLine("int");
static void Foo(string x) => Console.WriteLine("str");
static void Main()
{
 dynamic x = 5;
 dynamic y = "Hello";
 Foo(x); // int
 Foo(y); // str
}

Распознаван ие перегруженных версий во время выполнения
также называется множественной диспетчеризацией и полезно в
реализации паттернов проектирования, таких как “Посетитель”
(Visitor).

Если динамический получатель не задействован, то компиля-
тор может статически выполнить базовую проверку успешности
динамического вызова: он проверяет, существует ли функция с
правильным именем и корректным количеством параметров. Если
кандидаты не найдены, возникает ошибка времени компиляции.

Если функция вызывается с комбинацией динамических и
статических аргументов, то окончательный выбор метода будет
отражать комбинацию решений динамического и статического
связывания:
static void X(object x, object y) => Console.Write("oo");
static void X(object x, string y) => Console.Write("os");
static void X(string x, object y) => Console.Write("so");
static void X(string x, string y) => Console.Write("ss");

static void Main()
{
 object o = "hello";
 dynamic d = "goodbye";
 X(o,d); // os
}

Вызов X(o,d) связывается динамически, потому что один из
его аргументов, d, определен как dynamic. Но поскольку перемен-
ная o известна статически, связывание — хотя оно проис ходит

C#_9.0_Pocket_Reference_Instant.indb 219 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 220

динамически — будет использовать эту статическую информа-
цию. В рассматриваемом примере механизм распознавания пере-
груженных версий выберет вторую реализацию Foo() из-за ста-
тического типа o и типа времени выполнения d. Другими слова-
ми, компилятор является “настолько статическим, насколько он
способен”.

Невызываемые функции
Некоторые функции не могут быть вызваны динамически. Вы-

зывать нельзя:

расширяющие методы (через синтаксис расширяющих ме-
тодов);
любые члены интерфейса (через интерфейс);
члены базового класса, сокрытые подклассом.

Причина в том, что динамическое связывание требует две ча-
сти информации: имя вызываемой функции и объекта, для кото-
рого должна вызываться функция. Однако в каждом из трех не-
вызываемых сценариев участвует дополнительный тип, который
известен только во время компиляции, и нет никакого способа
указать такие дополнительные типы динамически.

При вызове расширяющих методов этот дополнительный тип
представляет собой расширяющий класс, выбранный неявно по-
средством директив using в исходном коде (которые после ком-
пиляции исчезают). При обращении к членам через интерфейс
дополнительный тип сообщается через неявное или явное приве-
дение. (При явной реализации фактически невозможно вызвать
член без приведения к типу интерфейса.) Подобная ситуация воз-
никает при вызове скрытого члена базового класса: дополнитель-
ный тип должен быть указан либо через приведение, либо через
ключевое слово base — а во время выполнения этот дополнитель-
ный тип утрачивается.

Перегрузка операторов
Операторы могут быть перегружены для обеспечения пользо-

вательских типов более естественным синтаксисом. Перегрузку

C#_9.0_Pocket_Reference_Instant.indb 220 30.03.2021 20:40:27

Перегрузка операторов 221

операторов наиболее целесообразно использовать при реализа-
ции пользовательских структур, которые представляют относи-
тельно примитивные типы данных. Например, хорошим кандида-
том на перегрузку операторов может служить пользовательский
числовой тип.

Разрешено перегружать следующие символьные операторы:
+ - * / ++ -- ! ~ %
& | ^ == != < << >> >

Можно также перекрывать явные и неявные преобразования
(с применением ключевых слов explicit и implicit), а также
операторы true и false.

Составные операторы присваивания (например, += и /=) авто-
матически перекрываются при перекрытии обычных операторов
(например, + и /).

Функции операторов
Чтобы перегрузить оператор, следует объявить функцию опе-

ратора . Функция оператора должна быть статической, и по край-
ней мере один из операндов обязан иметь тип, в котором объяв-
лена функция оператора. В следующем примере мы определяем
структуру с именем Note, представляющую музыкальную ноту,
а затем перегружаем оператор +:
public struct Note
{
 int value;

 public Note (int semitonesFromA)
 => value = semitonesFromA;
 public static Note operator + (Note x, int semitones)
 {
 return new Note (x.value + semitones);
 }
}

Перегруженная версия позволяет добавлять к Note значе-
ние int:
Note B = new Note(2);
Note CSharp = B + 2;

C#_9.0_Pocket_Reference_Instant.indb 221 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 222

Поскольку мы перегрузили оператор +, можно использовать
и оператор +=:
CSharp += 2;

Подобно методам и свойствам функции операторов, состоя-
щие из одиночного выражения, разрешено записывать более крат-
ко с помощью синтаксиса функций, сжатых до выражений:
public static Note operator + (Note x, int semitones)
 => new Note (x.value + semitones);

Перегрузка операторов
эквивалентности и сравнения

Операторы эквивалентности и сравнения часто перегружают-
ся при написании структур, и в редких случаях — при написании
классов. При перегрузке операторов эквивалентности и сравнения
должны соблюдаться специальные правила и обязательства.

Парность
Компилятор C# требует, чтобы были определены оба опера-
тора в логической паре — такими парами являются == и !=,
< и >, а также <= и >=.

Equals() и GetHashCode()
При перегрузке операторов == и != для типа обычно необ-
ходимо перекрывать методы Equals() и GetHashCode()
класса object, чтобы коллекции и хеш-таблицы могли на-
дежно работать с данным типом.

IComparable и IComparable<T>
Если перегружаются операторы < и >, то обычно должны
быть реализованы интерфейсы IComparable и ICompa
rable<T>.

Расширим предыдущий пример, чтобы показать, каким об-
разом можно было бы перегрузить операторы эквивалентности
структуры Note:
public static bool operator == (Note n1, Note n2)
 => n1.value == n2.value;

C#_9.0_Pocket_Reference_Instant.indb 222 30.03.2021 20:40:27

Перегрузка операторов 223

public static bool operator != (Note n1, Note n2)
 => !(n1.value == n2.value);

public override bool Equals (object otherNote)
{
 if (!(otherNote is Note)) return false;
 return this == (Note)otherNote;
}
// - - value:
public override int GetHashCode() => value.GetHashCode();

Пользовательские явные
и неявные преобразования

Неявные и явные преобразования являются перегружаемыми
операторами. Как правило, эти операторы перегружаются для того,
чтобы сделать преобразования между тесно связанными типами
(такими, как числовые типы) лаконичными и естественными.

Как объяснялось при обсуждении типов, логическое обосно-
вание неявных преобразований заключается в том, что они долж-
ны всегда выполняться успешно и не приводить к потере инфор-
мации при преобразовании. В противном случае должны быть
определены явные преобразования.

В следующем примере мы определяем преобразования между
типом Note и типом double (с помощью которого представляется
частота в герцах данной ноты):
...
//
public static implicit operator double (Note x)
 => 440 * Math.Pow (2,(double) x.value / 12);
//
// ()
public static explicit operator Note (double x)
 => new Note((int) (0.5 + 12 * (Math.Log(x/440)
 / Math.Log(2))));
...
Note n =(Note)554.37; //
double x = n; //

C#_9.0_Pocket_Reference_Instant.indb 223 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 224

ПРИМЕЧАНИЕ
Данный пример несколько надуманный — в действитель-
ности такие преобразования можно реализовать эффек-
тивнее с помощью метода ToFrequency() и (статическо-
го) метода FromFrequency().

Операторы as и is игнорируют пользовательские преобразо-
вания.

Атрибуты
Вам уже знакомо понятие атрибуции элементов кода в форме

модификаторов, таких как virtual или ref. Эти конструкции
встроены в язык. Атрибуты представляют собой расширяемый
механизм для добавления пользовательской информации к эле-
ментам кода (сборкам, типам, членам, возвращаемым значениям
и параметрам). Такая расширяемость полезна для служб, глубоко
интегрированных в систему типов, и не требует специальных клю-
чевых слов или конструкций языка C#.

Хорошим сценарием применения атрибутов является сериали-
зация — процесс преобразования произвольных объектов в опре-
деленный формат и обратно с целью хранения или передачи. В та-
ком сценарии атрибут поля может определять трансляцию между
представлением поля в C# и его представлением в применяемом
формате.

Классы атрибутов
Атрибут определяется классом, который наследован (непо-

средственно или опосредованно) от абстрактного класса System.
Attribute. Чтобы присоединить атрибут к элементу кода, перед
этим элементом требуется указать имя типа атрибута в квадрат-
ных скобках. Например, в приведенном ниже коде к классу Foo
присоединен атрибут ObsoleteAttribute:
[ObsoleteAttribute]
public class Foo {...}

C#_9.0_Pocket_Reference_Instant.indb 224 30.03.2021 20:40:27

Атрибуты 225

Этот конкретный атрибут распознается компилятором и при-
водит к выдаче компилятором предупреждения, если в коде встре-
тится ссылка на тип или член, помеченный таким атрибутом. По
соглашению имена всех типов атрибутов оканчиваются словом
Attribute. Данное соглашение поддерживается компилятором
C# и позволяет опускать суффикс Attribute при присоединении
атрибута:
[Obsolete]
public class Foo {...}

Тип ObsoleteAttribute объявлен в пространстве имен
System следующим образом (для краткости код упрощен):
public sealed class ObsoleteAttribute : Attribute {...}

Именованные и позиционные
параметры атрибутов

Атрибуты могут иметь параметры. В показанном ниже при-
мере мы применяем к классу атрибут XmlElementAttribute, ко-
торый сообщает классу XmlSerializer (из System.Xml.Seria
lization) о том, что объект представлен в виде XML, и принима-
ет несколько параметров атрибута. В итоге атрибут отображает
класс CustomerEntity на XML-элемент с именем Customer, при-
надлежащий пространству имен http://oreilly.com:
[XmlElement ("Customer", Namespace="http://oreilly.com")]
public class CustomerEntity { ... }

Параметры атрибутов относятся к одной из двух категорий:
позиционные и именованные. В предыдущем примере первый
аргумент является позиционным параметром, а второй — имено-
ванным параметром. Позиционные параметры соответствуют па-
раметрам открытых конструкторов типа атрибута. Именованные
параметры соответствуют открытым полям или открытым свой-
ствам типа атрибута.

При указании атрибута должны включаться позиционные па-
раметры, которые соответствуют одному из конструкторов класса
атрибута. Именованные параметры необязательны.

C#_9.0_Pocket_Reference_Instant.indb 225 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 226

Цели атрибутов
Неявно целью атрибута является элемент кода, находящийся

непосредственно за атрибутом, который обычно представляет со-
бой тип или член типа. Однако атрибуты можно присоединять и к
сборке. При этом требуется явно указывать цель атрибута. Вот как
с помощью атрибута CLSCompliant задать соответствие обще-
языковой спецификации (Common Language Specifi cation — CLS)
для целой сборки:
[assembly:CLSCompliant(true)]

Указание нескольких атрибутов
Для одного элемента кода допускается указывать несколько

атрибутов. Атрибуты могут быть заданы либо внутри единствен-
ной пары квадратных скобок (и разделяться запятыми), либо в от-
дельных парах квадратных скобок (или с помощью комбинации
этих двух способов). Следующие два примера семантически иден-
тичны:
[Serializable, Obsolete, CLSCompliant(false)]
public class Bar {...}

[Serializable] [Obsolete] [CLSCompliant(false)]
public class Bar {...}

Написание пользовательских атрибутов
Путем создания подклассов класса System.Attribute можно

определять собственные атрибуты. Например, можно использо-
вать следующий пользовательский атрибут для пометки метода,
подлежащего модульному тестированию:
[AttributeUsage (AttributeTargets.Method)]
public sealed class TestAttribute : Attribute
{
 public int Repetitions;
 public string FailureMessage;

 public TestAttribute() : this (1) { }
 public TestAttribute(int repetitions)
 => Repetitions = repetitions;
}

C#_9.0_Pocket_Reference_Instant.indb 226 30.03.2021 20:40:27

Атрибуты 227

Вот как можно применить данный атрибут:
class Foo
{
 [Test]
 public void Method1() { ... }

 [Test(20)]
 public void Method2() { ... }

 [Test(20, FailureMessage="Debugging Time!")]
 public void Method3() { ... }
}

Атрибут AttributeUsage определяет конструкцию (или ком-
бинацию конструкций), к которой может быть применен пользо-
вательский атрибут. Перечисление AttributeTargets включа-
ет такие члены, как Class, Method, Parameter и Constructor
(а также All для объединения всех целей).

Получение атрибутов во время выполнения
Существуют два стандартных способа получения атрибутов во

время выполнения:

вызов метода GetCustomAttributes() любого объекта
Type или MemberInfo;
вызов метода Attribute.GetCustomAttribute() или
Attribute.GetCustomAttributes().

Последние два метода перегружены для приема любого объек-
та рефлексии, который соответствует корректной цели атрибута
(Type, Assembly, Module, MemberInfo или ParameterInfo).

Вот как можно выполнить перечисление всех методов рас-
смотренного выше класса Foo, которые имеют атрибут Test
Attribute:
foreach (MethodInfo mi in typeof (Foo).GetMethods())
{
 TestAttribute att = (TestAttribute)
 Attribute.GetCustomAttribute
 (mi, typeof (TestAttribute));

 if (att != null)
 Console.WriteLine (

C#_9.0_Pocket_Reference_Instant.indb 227 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 228

 "{0} will be tested; reps={1}; msg={2}",
 mi.Name, att.Repetitions, att.FailureMessage);
}

Вывод имеет следующий вид:
Method1 will be tested; reps=1; msg=
Method2 will be tested; reps=20; msg=
Method3 will be tested; reps=20; msg=Debugging Time!

Атрибуты информации о вызывающем
компоненте

Начиная с версии C# 5.0, необязательные параметры можно
помечать одним из трех атрибутов информации о вызывающем
компоненте, которые инструктируют компилятор о необходимо-
сти передачи информации, полученной из исходного кода вызыва-
ющего компонента, в значение параметра по умолчанию:

[CallerMemberName] дает имя члена вызывающего ком-
понента;
[CallerFilePath] дает путь к файлу исходного кода вы-
зывающего компонента;
[CallerLineNumber] дает номер строки в файле исходно-
го кода вызывающего компонента.

В следующем методе Foo() демонстрируется использование
всех трех атрибутов:
using System;
using System.Runtime.CompilerServices;

class Program
{
 static void Main() => Foo();

 static void Foo (
 [CallerMemberName] string memberName = null,
 [CallerFilePath] string filePath = null,
 [CallerLineNumber] int lineNumber = 0)
 {
 Console.WriteLine(memberName);

C#_9.0_Pocket_Reference_Instant.indb 228 30.03.2021 20:40:27

Асинхронные функции 229

 Console.WriteLine(filePath);
 Console.WriteLine(lineNumber);
 }
}

В предположении, что код находится в файле c:\source\
test\Program.cs, вывод будет таким:
Main
c:\source\test\Program.cs
6

Как и в случае стандартных необязательных параметров, под-
становка делается в месте вызова. Следовательно, показанный
выше метод Main() является “синтаксическим сахаром” для сле-
дующего кода:
static void Main()
 => Foo ("Main", @"c:\source\test\Program.cs", 6);

Атрибуты информации о вызывающем компоненте удобны
при написании функций журналирования, а также при реализа-
ции шаблонов уведомления об изменениях. Например, мы можем
вызвать метод, подобный приведенному ниже, из средства досту-
па set определенного свойства без необходимости указывать имя
этого свойства:
void RaisePropertyChanged (
 [CallerMemberName] string propertyName = null)
 {
 ...
 }

Асинхронные функции
Ключевые слова await и async поддерживают асинхронное

программирование — стиль программирования, при котором дли-
тельно выполняющиеся функции делают большую часть своей
работы (или даже всю) после того, как управление возвращено вы-
зывающему компоненту. Такое программирование кардинально
отличается от нормального синхронного программирования, ког-
да длительно выполняющиеся функции блокируют вызывающий
код до тех пор, пока операция не будет завершена. Асинхронное
программирование подразумевает параллелизм , потому что дли-

C#_9.0_Pocket_Reference_Instant.indb 229 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 230

тельно выполняющаяся операция продолжает выполняться па-
раллельно с работой вызвавшего ее кода. Разработчик асинхрон-
ной функции инициирует такой параллелизм либо с помощью
многопоточности (для операций с интенсивными вычислениями),
либо посредством механизма обратных вызовов (для операций
с интенсивным вводом-выводом).

ПРИМЕЧАНИЕ
Многопоточность, параллелизм и асинхронное програм-
мирование — обширные темы. Им посвящены две гла-
вы в книге C# 9.0. Справочник. Полное описание языка;
кроме того, они рассматриваются по адресу http://
albahari.com/threading.

Например, рассмотрим следующий синхронный метод, интен-
сивный в плане вычислений и требующий длительного времени
работы:
int ComplexCalculation()
{
 double x = 2;
 for (int i = 1; i < 100000000; i++)
 x += Math.Sqrt (x) / i;
 return (int)x;
}

Метод ComplexCalculation() блокирует вызывающий код
на несколько секунд, пока не выполнит вычисления, и только за-
тем возвращает полученный результат вызывающему коду:
int result = ComplexCalculation();
// :
Console.WriteLine (result); // 116

В среде CLR определен класс с именем Task<TResult> (из
пространства имен System.Threading.Tasks), предназначен-
ный для инкапсуляции концепции операции, которая завершает-
ся в будущем. Можно сгенерировать объект Task<TResult> для
операции с интенсивными вычислениями с помощью вызова ме-
тода Task.Run(), который сообщает среде CLR о необходимости
выполнения указанного делегата в отдельном потоке, выполняю-
щемся параллельно вызывающему компоненту:

C#_9.0_Pocket_Reference_Instant.indb 230 30.03.2021 20:40:27

Асинхронные функции 231

Task<int> ComplexCalculationAsync()
 => Task.Run(() => ComplexCalculation());

Этот метод является асинхронным, потому что он немедленно
возвращает управление вызывающему коду и продолжает выпол-
няться параллельно. Однако нам нужен некий механизм, который
давал бы возможность вызывающему коду указывать, что должно
произойти, когда вычисления завершатся и результат станет до-
ступным. Класс Task<TResult> решает эту задачу, открывая
доступ к методу GetAwaiter(), который позволяет вызывающе-
му коду присоединять продолжение :
Task<int> task = ComplexCalculationAsync();
var awaiter = task.GetAwaiter();
awaiter.OnCompleted(() => //
{
 int result = awaiter.GetResult();
 Console.WriteLine (result); // 116
});

Тем самым операции сообщается о том, что по завершении она
должна выполнить указанный делегат. Наше продолжение сначала
вызывает метод GetResult(), который возвращает результат вы-
числения. (Или, если задание завершилось неудачно, сгенерировав
исключение, вызов GetResult() сгенерирует это исключение по-
вторно.) Затем продолжение выводит на консоль результат с помо-
щью Console.WriteLine().

Ключевые слова await и async
Ключевое слово await упрощает присоединение продолже-

ний. Начнем с базового сценария и рассмотрим следующий код:
var = await ;

 ();

Компилятор преобразует его в код, функционально подобный
показанному ниже:
var awaiter = .GetAwaiter();
awaiter.OnCompleted (() =>
{
 var = awaiter.GetResult();
 ()
);

C#_9.0_Pocket_Reference_Instant.indb 231 30.03.2021 20:40:27

Язык C# 9.0. Карманный справочник 232

ПРИМЕЧАНИЕ
Компилятор также создает код для оптимизации сцена-
рия синхронного (немедленного) завершения операции.
Распространенная причина немедленного завершения
асинхронной операции — операция реализует внутрен-
ний механизм кеширования и результат уже находится в
кеше.

Следовательно, мы можем вызвать определенный ранее метод
ComplexCalculationAsync() следующим образом:
int result = await ComplexCalculationAsync();
Console.WriteLine(result);

Чтобы код скомпилировался, к содержащему его методу необ-
ходимо добавить модификатор async:
async void Test()
{
 int result = await ComplexCalculationAsync();
 Console.WriteLine(result);
}

Модификатор async сообщает компилятору о том, что await
необходимо трактовать как ключевое слово, а не как идентифика-
тор (в итоге код, написанный до выхода версии C# 5.0, где слово
await могло быть идентификатором, по-прежнему будет успешно
компилироваться). Модификатор async может применяться толь-
ко к методам (и лямбда-выражениям), которые возвращают void
либо (как вы увидите позже) объект Task или Task<TResult>.

ПРИМЕЧАНИЕ
Модификатор async подобен модификатору unsafe в
том, что не оказывает никакого влияния на сигнатуру ме-
тода или открытые метаданные; он воздействует только
на то, что происходит внутри метода.

Методы с модификатором async называются асинхронными
функциями, потому что они сами по себе обычно являются асин-

C#_9.0_Pocket_Reference_Instant.indb 232 30.03.2021 20:40:28

Асинхронные функции 233

хронными. Чтобы увидеть, почему, давайте посмотрим, каким об-
разом процесс выполнения проходит через асинхронную функцию.

Встретив выражение await, управление (обычно) возвраща-
ется вызывающему коду, что очень похоже на поведение yield
return в итераторе. Но перед возвратом исполняющая среда при-
соединяет к ожидающему заданию продолжение, гарантирующее,
что когда задание завершится, поток управления вернется обрат-
но в метод и продолжит работу с того места, где он его оставил.
Если в задании возникает ошибка, то ее исключение генерируется
повторно (благодаря вызову GetResult()); в противном случае
выражению await присваивается возвращаемое значение зада-
ния.

ПРИМЕЧАНИЕ
Реализация средой CLR метода OnCompleted() объекта
ожидания задания гарантирует, что по умолчанию про-
должения отправляются, при его наличии, через текущий
контекст синхронизации. На деле это означает, что если
в сценариях с богатыми пользовательскими интерфей-
сами (WPF, UWP (универсальная платформа Windows)
и Windows Forms) внутри потока пользовательского ин-
терфейса используется await, то выполнение кода будет
продолжено в том же самом потоке. В итоге упрощается
обеспечение безопасности относительно потоков.

Выражение, к которому применяется await, обычно являет-
ся заданием. Однако компилятор устроит любой объект с мето-
дом GetAwaiter(), который возвращает объект с возможностью
ожидания. Такой объект реализует метод INotifyCompletion.
OnCompleted(), а также имеет надлежащим образом типизиро-
ванный метод GetResult() и логическое свойство IsCompleted,
которое выполняет проверку синхронного завершения.

Обратите внимание, что выражение await вычисляется как
имеющее тип int; именно поэтому ожидаемым выражением было
Task<int> (метод GetAwaiter().GetResult() которого воз-
вращает значение типа int).

Ожидание необобщенного задания вполне корректно и гене-
рирует выражение void:

C#_9.0_Pocket_Reference_Instant.indb 233 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 234

await Task.Delay(5000);
Console.WriteLine(" 5 ");

Статический метод Task.Delay() возвращает объект Task,
который завершается за указанное количество миллисекунд. Син-
хронным эквивалентом Task.Delay() является Thread.Sleep().

Тип Task представляет собой необобщенный базовый класс для
Task<TResult> и функционально эквивалентен Task<TResult>,
но не производит какого-либо результата.

Захват локального состояния
Реальная мощь выражений await заключается в том, что они

могут находиться почти где угодно в коде. В частности, выраже-
ние await может появляться на месте любого выражения (внутри
асинхронной функции), кроме блока catch или finally, выраже-
ния lock или контекста unsafe.

В следующем примере await используется внутри цикла:
async void Test()
{
 for (int i = 0; i < 10; i++)
 {
 int result = await ComplexCalculationAsync();
 Console.WriteLine (result);
 }
}

При первом выполнении ComplexCalculationAsync()
управление возвращается вызывающему коду благодаря выраже-
нию await. Когда метод завершается (или терпит неудачу), выпол-
нение возобновляется с того места, которое оно ранее покинуло,
с сохраненными значениями локальных переменных и счетчиков
циклов. Компилятор достигает этого путем превращения такого
кода в конечный автомат, подобно тому, как он поступает с ите-
раторами.

В отсутствие ключевого слова await ручное применение про-
должений означает необходимость в написании чего-то эквива-
лентного конечному автомату, что традиционно было фактором,
усложняющим асинхронное программирование.

C#_9.0_Pocket_Reference_Instant.indb 234 30.03.2021 20:40:28

Асинхронные функции 235

Написание асинхронных функций
В любой асинхронной функции возвращаемый тип void мож-

но заменить типом Task, чтобы сделать сам метод пригодным для
асинхронного выполнения (и поддержки await). Вносить какие-
то другие изменения не требуется:
async Task PrintAnswerToLife()
{
 await Task.Delay(5000);
 int answer = 21 * 2;
 Console.WriteLine (answer);
}

Обратите внимание, что в теле метода мы не возвращаем за-
дание явно. Компилятор самостоятельно создает задание, которое
сигнализирует о завершении данного метода (или о возникнове-
нии необработанного исключения). В результате облегчается со-
здание цепочек асинхронных вызовов:
async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine(" ");
}

(А поскольку Go() возвращает Task, сам метод Go() поддер-
живает ожидание посредством await.) Компилятор разворачива-
ет асинхронные функции, возвращающие задания, в код, косвенно
использующий класс TaskCompletionSource для создания зада-
ния, которое затем отправляет сигнал о завершении или сбое.

ПРИМЕЧАНИЕ
TaskCompletionSource — это тип CLR, позволяющий
создавать задания, которыми вы управляете вручную, сиг-
нализируя об их завершении с помощью результата (или
о сбое выполнения с помощью генерации исключения).
В отличие от Task.Run(), тип TaskCompletionSource
не связывает поток на протяжении выполнения опера-
ции. Он также применяется при написании методов с
интенсивным вводом-выводом, возвращающих объекты
заданий (наподобие Task.Delay()).

C#_9.0_Pocket_Reference_Instant.indb 235 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 236

Цель заключается в том, чтобы при завершении асинхронного
метода, возвращающего объект задания, обеспечить возможность
передачи управления в место кода, где происходит ожидание, с по-
мощью продолжения.

Возврат Task<TResult>
Если в теле метода возвращается тип TResult, то можно воз-

вращать Task<TResult>:
async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 // answer int,
 // Task<int>
 return answer;
}

Продемонстрировать работу метода GetAnswerToLife() мож-
но путем вызова его из метода PrintAnswerToLife() (который,
в свою очередь, вызывается из Go()):
async Task Go()
{
 await PrintAnswerToLife();
 Console.WriteLine ("Done");
}
async Task PrintAnswerToLife()
{
 int answer = await GetAnswerToLife();
 Console.WriteLine (answer);
}
async Task<int> GetAnswerToLife()
{
 await Task.Delay (5000);
 int answer = 21 * 2;
 return answer;
}

Асинхронные функции делают асинхронное программиро-
вание схожим с синхронным. Ниже приведен синхронный экви-
валент нашей схемы вызовов, где вызов Go() дает тот же самый
результат после блокирования в течение пяти секунд:
void Go()
{

C#_9.0_Pocket_Reference_Instant.indb 236 30.03.2021 20:40:28

Асинхронные функции 237

 PrintAnswerToLife();
 Console.WriteLine ("Done");
}
void PrintAnswerToLife()
{
 int answer = GetAnswerToLife();
 Console.WriteLine (answer);
}
int GetAnswerToLife()
{
 Thread.Sleep (5000);
 int answer = 21 * 2;
 return answer;
}

Здесь также проиллюстрирован базовый принцип проекти-
рования с использованием асинхронных функций в C#, который
предусматривает написание ваших методов синхронно, с последу-
ющей заменой вызовов синхронных методов вызовами асинхрон-
ных методов, и применение к ним await.

Параллелизм
 Мы только что продемонстрировали наиболее распространен-

ный подход, при котором ожидание функций, возвращающих объ-
екты заданий, выполняется немедленно после вызова. В результа-
те получается последовательный поток выполнения программы,
который логически подобен своему синхронному эквиваленту.

Вызов асинхронного метода без его ожидания позволяет пи-
сать код, который выполняется параллельно. Например, пока-
занный ниже код дважды параллельно выполняет метод Print
AnswerToLife():
var task1 = PrintAnswerToLife();
var task2 = PrintAnswerToLife();
await task1; await task2;

Применение await к обеим операциям “завершает” паралле-
лизм в данной точке (и повторно генерирует любые исключения,
которые могли поступить из этих заданий). Класс Task пре-
доставляет статический метод с именем WhenAll(), позволяю-
щий достичь того же результата чуть более эффективно. Метод

C#_9.0_Pocket_Reference_Instant.indb 237 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 238

WhenAll() возвращает задание, которое завершается, когда за-
вершаются все переданные ему задания:
await Task.WhenAll(PrintAnswerToLife(),
 PrintAnswerToLife());

Метод WhenAll() называется комбинатором заданий . (Класс
Task предлагает также комбинатор заданий с именем WhenAny(),
возвращающий задание, которое завершается, когда завершается
любое из заданий, переданных WhenAny().) Комбинаторы зада-
ний подробно рассматриваются в книге C# 9.0. Справочник. Пол-
ное описание языка.

Асинхронные лямбда-выражения
Подобно тому, как могут быть асинхронными обычные имено-

ванные методы:
async Task NamedMethod()
{
 await Task.Delay(1000);
 Console.WriteLine("Foo");
}

асинхронными могут быть и неименованные методы (лямбда-вы-
ражения и анонимные методы), если предварить их ключевым
словом async:
Func<Task> unnamed = async () =>
{
 await Task.Delay(1000);
 Console.WriteLine("Foo");
};

Вызывать их и ожидать их завершения можно точно так же:
await NamedMethod();
await unnamed();

Асинхронные лямбда-выражения могут использоваться при
присоединении обработчиков событий:
myButton.Click += async (sender, args) =>
{
 await Task.Delay (1000);
 myButton.Content = "Done";
};

C#_9.0_Pocket_Reference_Instant.indb 238 30.03.2021 20:40:28

Асинхронные функции 239

Это более лаконично, чем следующий код, обеспечивающий
тот же результат:
myButton.Click += ButtonHandler;
...
async void ButtonHander (object sender, EventArgs args)
{
 await Task.Delay (1000);
 myButton.Content = "Done";
};

Асинхронные лямбда-выражения также могут возвращать Task
<TResult>:
Func<Task<int>> unnamed = async () =>
{
 await Task.Delay (1000);
 return 123;
};
int answer = await unnamed();

Асинхронные потоки
Наличие конструкции yield return позволяет писать ите-

раторы; наличие await позволяет писать асинхронные функции.
Асинхронные потоки (C# 8) объединяют эти концепции и позво-
ляют писать итераторы с ожиданием, производящие элементы
асинхронно. Эта поддержка основана на следующей паре интер-
фейсов, которые являются асинхронными аналогами интерфей-
сов, описанных в разделе “Перечисление и итераторы”:
public interface IAsyncEnumerable<out T>
{
 IAsyncEnumerator<T> GetAsyncEnumerator (...);
}
public interface IAsyncEnumerator<out T>: IAsyncDisposable
{
 T Current { get; }
 ValueTask<bool> MoveNextAsync();
}

Тип ValueTask<T> — это структура, представляющая со-
бой оболочку для Task<T>, которая по поведению эквивалентна
Task<T> с тем отличием, что она делает возможным более эф-
фективное выполнение, когда задание завершается синхронно

C#_9.0_Pocket_Reference_Instant.indb 239 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 240

(что может произойти при перечислении последовательности).
Интерфейс IAsyncDisposable является асинхронной версией
IDisposable и обеспечивает возможность выполнения очистки
в случае ручной реализации интерфейсов:
public interface IAsyncDisposable
{
 ValueTask DisposeAsync();
}

ПРИМЕЧАНИЕ
Действие по извлечению каждого элемента из последова-
тельности (MoveNextAsync()) представляет собой асин-
хронную операцию, поэтому асинхронные потоки наибо-
лее подходят, когда элементы поступают постепенно (как
при обработке данных из видеопотока). И наоборот, тип
Task<IEnumerable<T>> больше подходит, когда после-
довательность как единое целое задерживается, а все эле-
менты поступают вместе.

Для генерации асинхронного потока требуется написать метод,
который сочетает в себе принципы итераторов и асинхронных ме-
тодов. Другими словами, метод должен включать yield return и
await и должен возвращать IAsyncEnumerable<T>:
async IAsyncEnumerable<int> RangeAsync (
 int start, int count, int delay)
{
 for (int i = start; i < start + count; i++)
 {
 await Task.Delay (delay);
 yield return i;
 }
}

Чтобы задействовать асинхронный поток, необходимо исполь-
зовать инструкцию await foreach:
await foreach(var number in RangeAsync (0, 10, 100))
 Console.WriteLine(number);

C#_9.0_Pocket_Reference_Instant.indb 240 30.03.2021 20:40:28

Небезопасный код и указатели 241

Небезопасный код и указатели
Язык C# поддерживает прямую работу с памятью через ука-

затели внутри блоков кода, которые помечены как небезопасные
и скомпилированы с ключом компилятора /unsafe. Типы указа-
телей полезны главным образом при взаимодействии с API-ин-
терфейсами C, но могут применяться и для доступа к памяти за
пределами управляемой кучи или для узких мест, критичных для
производительности.

Основы работы с указателями
Для каждого типа значения или ссылочного типа V имеется

соответствующий тип указателя V*. Экземпляр указателя хранит
адрес переменной. Тип указателя может быть (небезопасно) при-
веден к любому другому типу указателя. В табл. 20 показаны ос-
новные операторы над указателями.

 20.

Оператор Описание

& Оператор взятия адреса возвращает указатель на переменную

* Оператор разыменования возвращает переменную по адресу в указателе

-> Оператор указателя на член представляет собой синтаксическое сокраще-
ние: x->y эквивалентно (*x).y

Небезопасный код
Помечая тип, член типа или блок инструкций ключевым сло-

вом unsafe , вы разрешаете в этой области видимости использо-
вать типы указателей и выполнять операции над указателями в
стиле C++. Ниже показан пример применения указателей для бы-
строй обработки изображения:
unsafe void BlueFilter(int[,] bitmap)
{
 int length = bitmap.Length;
 fixed(int* b = bitmap)
 {
 int* p = b;

C#_9.0_Pocket_Reference_Instant.indb 241 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 242

 for(int i = 0; i < length; i++)
 *p++ &= 0xFF;
 }
}

Небезопасный код может выполняться быстрее, чем соответ-
ствующая ему безопасная реализация. В показанном примере код
требовал бы вложенного цикла с индексацией в массиве и про-
веркой границ. Небезопасный метод C# может даже оказаться бы-
стрее, чем вызов внешней функции C, поскольку при этом не будет
никаких накладных расходов, связанных с покиданием управляе-
мой среды выполнения.

Инструкция fixed
Инструкция fixed необходима для закрепления управляемо-

го объекта, такого как изображение в предыдущем примере. Во
время выполнения программы многие объекты распределяются
в куче и впоследствии освобождаются. Во избежание нежелатель-
ных затрат или фрагментации памяти сборщик мусора переме-
щает объекты внутри кучи. Указатель на объект бесполезен, если
адрес объекта может измениться во время работы с ним, а потому
инструкция fixed сообщает сборщику мусора о необходимости
“закрепления” объекта, чтобы он никуда не перемещался. Это мо-
жет оказать влияние на эффективность программы во время вы-
полнения, так что фиксированные блоки должны использоваться
только кратковременно, а распределения памяти в куче внутри
фиксированного блока следует избегать.

В инструкции fixed можно получать указатель на тип-значе-
ние, массив типов-значений или строку. В случае массивов и строк
указатель фактически указывает на первый элемент, который име-
ет тип-значение.

Типы-значения, объявленные непосредственно внутри ссы-
лочных типов, требуют закрепления ссылочных типов, как пока-
зано ниже:
class Test
{
 int x;
 unsafe static void Main()
 {
 Test test = new Test();

C#_9.0_Pocket_Reference_Instant.indb 242 30.03.2021 20:40:28

Небезопасный код и указатели 243

 fixed (int* p = &test.x) // test
 {
 *p = 9;
 }
 System.Console.WriteLine (test.x);
 }
}

Оператор указателя на член
 В дополнение к операторам & и * язык C# предлагает оператор

-> в стиле C++, который может применяться при работе со струк-
турами:
struct Test
{
 int x;
 unsafe static void Main()
 {
 Test test = new Test();
 Test* p = &test;
 p->x = 9;
 System.Console.WriteLine (test.x);
 }
}

Ключевое слово stackalloc
Вы можете явно выделять память в блоке в стеке с помощью

ключевого слова stackalloc . Из-за распределения в стеке время
жизни блока памяти ограничивается временем выполнения мето-
да, в точности как для любой другой локальной переменной. Блок
может использовать оператор [] для индексации внутри памяти:
int* a = stackalloc int [10];
for (int i = 0; i < 10; ++i)
 Console.WriteLine(a[i]); //

Буфера фиксированных размеров
Для выделения памяти в блоке внутри структуры применяется

ключевое слово fixed:

C#_9.0_Pocket_Reference_Instant.indb 243 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 244

unsafe struct UnsafeUnicodeString
{
 public short Length;
 public fixed byte Buffer[30];
}
unsafe class UnsafeClass
{
 UnsafeUnicodeString uus;
 public UnsafeClass (string s)
 {
 uus.Length = (short)s.Length;
 fixed (byte* p = uus.Buffer)
 for (int i = 0; i < s.Length; i++)
 p[i] = (byte) s[i];
 }
}

Буфера фиксированных размеров не являются массивами: если
бы поле Buffer было массивом, то оно содержало бы ссылку на
объект, хранящийся в (управляемой) куче, а не 30 байтов внутри
самой структуры.

В приведенном примере ключевое слово fixed используется
также для закрепления в куче объекта, содержащего буфер (кото-
рый будет экземпляром UnsafeClass).

void*
Указатель на void (void*) не выдвигает никаких предполо-

жений относительно типа лежащих в основе данных и удобен для
функций, которые имеют дело с низкоуровневой памятью. Суще-
ствует неявное преобразование из любого типа указателя в void*.
Указатель void* не допускает разыменования и выполнения над
ним арифметических операций. Например:
short[] a = {1,1,2,3,5,8,13,21,34,55};
fixed (short* p = a)
{
 //sizeof -
 Zap(p, a.Length * sizeof (short));
}

foreach (short x in a)
 System.Console.WriteLine (x); //

C#_9.0_Pocket_Reference_Instant.indb 244 30.03.2021 20:40:28

Небезопасный код и указатели 245

unsafe void Zap(void* memory, int byteCount)
{
 byte* b = (byte*) memory;
 for (int i = 0; i < byteCount; i++)
 *b++ = 0;
}

Указатели на функции (C# 9)
 Указатель на функцию схож с делегатом, но без косвенности

в виде экземпляра делегата; вместо этого он указывает непосред-
ственно на метод. Указатель на функцию может указывать только
на статические методы, без возможности многоадресной рассыл-
ки и требует контекст unsafe (потому что при этом не работает
безопасность типов времени выполнения). Его основная цель —
упростить и оптимизировать взаимодействие с помощью неу-
правляемых API (это взаимодействие детально рассматривается
в книге C# 9.0. Справочник. Полное описание языка).

Тип указателя функции объявляется следующим образом (тип
возвращаемого значения указывается последним):
delegate*<int, char, string, void>

Это объявление соответствует функции со следующей сигна-
турой:
void SomeFunction (int x, char y, string z)

Указатель на функцию создается с помощью оператора &. Вот
полный пример:
unsafe
{
 delegate*<string, int> functionPointer = &GetLength;
 int length = functionPointer ("Hello, world");

 static int GetLength (string s) => s.Length;
}

В этом примере functionPointer не является объектом, для
которого вы можете вызвать такой метод, как Invoke (или с помо-
щью ссылки на объект Target). Это переменная, которая указыва-
ет непосредственно на адрес целевого метода в памяти:
Console.WriteLine((IntPtr)functionPointer);

C#_9.0_Pocket_Reference_Instant.indb 245 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 246

Директивы препроцессора
Директивы препроцессора снабжают компилятор дополни-

тельной информацией о разделах кода. Наиболее распространен-
ными директивами препроцессора являются директивы условной
компиляции, которые предоставляют способ включения либо ис-
ключения разделов кода из процесса компиляции. Например:
#define DEBUG
class MyClass
{
 int x;
 void Foo()
 {
 #if DEBUG
 Console.WriteLine(" : x = {0}", x);
 #endif
 }
 ...
}

В данном классе инструкция внутри метода Foo() компили-
руется условно, в зависимости наличия определенного символа
DEBUG. Если удалить определение символа DEBUG, эта инструк-
ция в Foo() компилироваться не будет. Символы препроцессора
могут определяться внутри файла исходного кода (как сделано в
рассматриваемом примере), а также передаваться компилятору в
командной строке (/define:) либо в файле проекта в слу-
чае использования Visual Studio или MSBuild.

В директивах #if и #elif можно применять операторы ||, &&
и ! для выполнения логических действий ИЛИ, И и НЕ над не-
сколькими символами. Представленная ниже директива указы-
вает компилятору на необходимость включения следующего за
ней кода, если определен символ TESTMODE и не определен символ
DEBUG:
#if TESTMODE && !DEBUG
...

Однако имейте в виду, что вы не строите обычное выражение
C#, а символы, которыми вы оперируете, не имеют абсолютно
никакого отношения к переменным — статическим или каким-то
другим.

C#_9.0_Pocket_Reference_Instant.indb 246 30.03.2021 20:40:28

Директивы препроцессора 247

Директивы #error и #warning предотвращают случайное
неправильное использован ие директив условной компиляции, за-
ставляя компилятор генерировать предупреждение или сообще-
ние об ошибке, которое вызвано неподходящим набором симво-
лов компиляции.

В табл. 21 перечислены все директивы препроцессора.

 21.

Директива
препроцессора

Действие

#define Определяет

#undef Отменяет определение

#if
[2]

Условная компиляция (являются ==,
!=, &&, ||)

#endif Завершение директивы условной компиляции

#warning Заставляет компилятор вывести предупреждения

#error Заставляет компилятор вывести ошибки

#line [
[" "]|hidden]

 задает строку исходного кода, — имя
файла, выводимое компилятором, hidden указывает
отладчику пропустить код от этой точки до следующей
директивы #line

#region Обозначает начало области

#endregion Обозначает конец области

#pragma warning См. следующий раздел книги

#nullable См. раздел “Ссылочные типы, допускающие значение null”

Директива #pragma warning
Компилятор генерирует предупреждение, когда обнаруживает

в коде что-то, кажущееся ему непреднамеренной опиской. В отли-
чие от ошибок предупреждения обычно не препятствуют компи-
ляции приложения.

Предупреждения компилятора могут быть исключительно по-
лезными при выявлении ошибок, но их полезность снижается в
случае выдачи ложных предупреждений. В большом приложении

C#_9.0_Pocket_Reference_Instant.indb 247 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 248

очень важно поддерживать подходящее отношение “сигнал/шум”,
чтобы были замечены “настоящие” предупреждения.

С этой целью компилятор позволяет избирательно подавлять
выдачу предупреждений с помощью директивы #pragma warning
там, где вы точно знаете, что делаете. В следующем примере мы
указываем компилятору, что выдавать предупреждения о том, что
поле Message не используется, не нужно:
public class Foo
{
 #pragma warning disable 414
 static string Message = "Hello";
 #pragma warning restore 414
}

Если в директиве #pragma warning отсутствует конкретное
числовое значение, то будет отключена (или восстановлена) выда-
ча всех предупреждений, с любыми кодами.

Если вы интенсивно применяете эту директиву, то можете
скомпилировать код с переключателем командной строки /warn
aserror, который сообщит компилятору о необходимости тракто-
вать любые оставшиеся предупреждения как ошибки.

XML-документация
Документирующий комментарий — это порция встроенного

XML-кода, которая документирует тип или член типа. Докумен-
тирующий комментарий располагается непосредственно перед
объявлением типа или члена и начинается с трех символов косой
черты:
/// <summary> .</summary>
public void Cancel() { ... }

Многострочные комментарии записываются следующим об-
разом:
/// <summary>
/// .
/// </summary>
public void Cancel() { ... }

или так (обратите внимание на дополнительную звездочку в начале):

C#_9.0_Pocket_Reference_Instant.indb 248 30.03.2021 20:40:28

XML-документация 249

/**
<summary> .</summary>
*/
public void Cancel() { ... }

При компиляции с переключателем командной строки /doc
(или при включении генерации XML-документации в файле про-
екта) компилятор извлекает и накапливает документирующие
комментарии в специальном XML-файле. Имеется два основных
сценария использования такого файла.

Если он размещен в той же папке, что и скомпилированная
сборка, то IntelliSense Visual Studio автоматически читает
этот XML-файл и испо льзует содержащуюся в нем инфор-
мацию для предоставления списка членов пользователям
сборки с тем же именем, что и у XML-файла.
Сторонние инструменты (такие, как Sandcastle и NDoc)
могут преобразовать этот XML-файл в справочный HTML-
файл.

Стандартные дескрипторы документации
Ниже перечислены стандартные XML-дескрипторы, которые

распознаются Visual Studio и генераторами документации.

<summary>

<summary>...</summary>

Указывает всплывающую подсказку, которую IntelliSense
отображает для типа или члена. Обычно это одиночная
фраза или предложение.

<remarks>

<remarks>...</remarks>

Дополнительный текст, который описывает тип или член.
Генераторы документации объединяют его с полным описа-
нием типа или члена.

<param>

<param name=" ">...</param>

Пояснения к параметру метода.

C#_9.0_Pocket_Reference_Instant.indb 249 30.03.2021 20:40:28

Язык C# 9.0. Карманный справочник 250

<returns>
<returns>...</returns>

Пояснения к возвращаемому значению метода.

<exception>

<exception [cref=" "]>...</exception>

Указывает исключение, которое может генерировать дан-
ный метод (в cref задается тип исключения).

<permission>

<permission [cref=" "]>...</permission>

Указывает тип IPermission, требуемый документируемым
типом или членом.

<example>

<example>...</example>

Описывает пример (используемый генераторами докумен-
тации). Как правило, содержит текст описания и исходный
код (исходный код обычно заключен в дескриптор <c> или
<code>).

<c>

<c>...</c>

Указывает внутристрочный фрагмент кода. Этот дес-
криптор обычно применяется внутри блока <example>.

<code>

<code>...</code>

Указывает многострочный пример кода. Этот дескриптор
обычно используется внутри блока <example>.

<see>

<see cref=" ">...</see>

Вставляет внутристрочную перекрестную ссылку на дру-
гой тип или член. Генераторы HTML-документации обычно
преобразуют этот дескриптор в гиперссылку. Компилятор
выдает предупреждение, если указано некорректное имя
типа или члена.

C#_9.0_Pocket_Reference_Instant.indb 250 30.03.2021 20:40:28

XML-документация 251

<seealso>

<seealso cref=" ">...</seealso>

Вставляет перекрестную ссылку на другой тип или член. Ге-
нераторы документации обычно записывают ее в отдельный
раздел “See Also” (“См. также”) в нижней части страницы.

<paramref>

<paramref name=" "/>

Вставляет ссылку на параметр внутри дескриптора <summary>
или <remarks>.

<list>
<list type=[bullet | number | table]>
<listheader>
<term>...</term>
<description>...</description>
</listheader>
<item>
<term>...</term>
<description>...</description>
</item>
</list>

Уведомляет генератор документации о необходимости гене-
рации маркированного (bullet), нумерованного (number)
или табличного (table) списка.

<para>

<para>...</para>

Уведомляет генератор документации о необходимости фор-
матирования содержимого в виде отдельного абзаца.

<include>

<include file= -
path= - - [@name=" "] >
...
</include>

Выполняет объединение с внешним XML-файлом, содержа-
щим документацию. В атрибуте path задается XPath-запрос
к конкретному элементу из этого файла.

C#_9.0_Pocket_Reference_Instant.indb 251 30.03.2021 20:40:28

C#_9.0_Pocket_Reference_Instant.indb 252 30.03.2021 20:40:28

Предметный указатель 253

A
abstract 101
as 99
async 232
await 231

B
base 102
break 72

C
catch 149
CLR 28
const 79
continue 73

D
default 49
delegate 131, 148
do-while 71
dynamic 212

E
event 137

F
fi nally 149, 153
fi xed 242
for 71
foreach 72

G
global:: 77
goto 73

I
if 66
in 52
internal 112
is 99

L
let 202
LINQ 186

выражения запросов 199
запрос 187
квантификатор 190
оператор запроса 187
отложенное выполнение

запроса 192
подзапрос 192
последовательность 187
проецирование 188
соединение 205
эквисоединение 205

N
nameof 95
namespace 74
NaN 34
null 26

O
out 51
override 100

P
params 52
partial 94
private 112
protected 112
public 21, 112

R
readonly 78
ref 51
return 160

S
sealed 102
SQL 199
stackalloc 243
static 20

Предметный указатель

C#_9.0_Pocket_Reference_Instant.indb 253 30.03.2021 20:40:28

Предметный указатель254

string 38
switch 67

T
this 85
throw 155
try 149
typeof 125

U
Unicode 37
unsafe 241
using 75, 154
using static 75

V
virtual 100

W
when 152
while 71

Y
yield 160

А
Аргумент 13
Асинхронное программиро-

вание 229
продолжение 231

Асинхронные потоки 239
Атрибут 224

параметр 225

Б
Библиотека 13
Блок инструкций 13

В
Выражение 12, 56

Д
Деконструкция кортежей 174
Делегат 131
Директивы препроцессора 246

З
Замыкание 145
Запись 175

И
Идентификатор 15
Индексатор 90
Инициализатор

модуля 92
объекта 84

Инкапсуляция 21
Инстанцирование 20
Инструкция 64

блок 64
выбора 65
выражения 65
итеративная 70
цикла 70

Интерфейс 113
расширение 115

Исключение 149
генерация 155
фильтр 152

Итератор 159
семантика 161

К
Класс 12, 78

абстрактный 101
деконструктор 83
запечатывание 102
конструктор 81

статический 92
метод. См. Метод
наследование 96
поле 78
производный 97
свойство 85

автоматическое 87
инициализатор 88
сжатое до выражения 87

сокрытие членов 101
ссылка this 85
статический 93
финализатор 93

C#_9.0_Pocket_Reference_Instant.indb 254 30.03.2021 20:40:29

Предметный указатель 255

Ключевое слово 15
контекстное 16

Ковариантность 128, 135
Комбинатор заданий 238
Комментарий 11, 17

документирующий 248
Константа 17, 79
Конструктор 20

первичный 180
Контравариантность 128,

130, 136
Кортеж 173

деконструкция 174
литеральный 173

Куча 47
Л

Литерал 13, 16
строковый дословный 39

Лямбда-выражение 143
М

Массив 41
диапазоны 44
зубчатый 45
индекс 42, 44
инициализация 42, 43
многомерный 45
прямоугольный 45
размер 42

Метод 12, 79
анонимный 148
локальный 23, 80
обобщенный 123
параметр 13
перегрузка 81
расширяющий 170
сжатый до выражения 80
сигнатура 80
статический локальный 81
частичный 94

Множественная диспетчериза-
ция 219

Н
Наследование 96

О
Обобщение 122

ограничение 126
Образец 182

комбинатор 184
константы 183
кортежа 184
переменной 182
позиционный 184
свойства 185
типа 182

Оператор 13, 16, 56
арифметический 31
ассоциативность 57
декремента 31
инкремента 31
побитовый 33
приоритет 57
присваивания 57

составной 57
условный 36
checked 32
unchecked 33

П
Параллелизм 229, 237
Параметр 49

необязательный 53
in 52
out 51
params 52
ref 51

Перегрузка методов 81
Переменная 12, 17

внешняя 144
захваченная 145
образец 182

Переполнение 32
Перечисление 118
Перечислитель 157
Подписчик 137
Полиморфизм 97

C#_9.0_Pocket_Reference_Instant.indb 255 30.03.2021 20:40:29

Предметный указатель256

Полностью квалифицированное
имя 75

Присваивание 57
Пространство имен 12, 74

глобальное 75
импорт 12, 75

Протокол 131
Р

Распаковка 106
Рекурсия 47
Ретранслятор 137
Рефакторинг 12

С
Сборка 13
Сборщик мусора 48
Свойство 85

автоматическое 87
инициализатор 88
сжатое до выражения 87
только инициализируемое 89

Связывание 212
динамическое 212
пользовательское 214
статическое 213
языковое 215

Сериализация 224
Сигнатура 80
Событие 137
Сокращенное вычисление 37
Сокрытие имен 76
Ссылка 25
Стек 47
Строка

дословная 39
интерполированная 40
конкатенация 39

Структура 109
конструирование 110
readonly 111

Структурное равенство 175
Т

Тип 12, 17

вложенный 121
встроенный 18
вывод 29, 46
закрытый 123
значение по умолчанию 43, 49
импорт 75
классификация 27
образец 182
открытый 123
пользовательский 19
предопределенный 18
преобразование 23
приведение 23
примитивный 28
с плавающей точкой 29
ссылочный 24
тип-значение 24
частичный 93
числовой 28
члены 19
bool 35
object 105

У
Указатель 241

на функцию 245
на член 243
void* 244

Упаковка 106
Ф

Функция
асинхронная 232
виртуальная 100
оператора 221
указатель 245

Ц
Цикл

do-while 71
for 71
foreach 72
while 71

Ч
Числовой суффикс 30

C#_9.0_Pocket_Reference_Instant.indb 256 30.03.2021 20:40:29

