
•САНКТ�ПЕТЕРБУРГ•МОСКВА•КРАСНОДАР•

•2021•

Учебное пособие

Н. А. ТЮКАЧЕВ, В. Г. ХЛЕБОСТРОЕВ

C#. ОСНОВЫ
ПРОГРАММИРОВАНИЯ

 1 / 10

Обложка
П. И. ПОЛЯКОВА

УДК 004
ББК 32.973�018я723

Т 98 Тюкачев Н. А. C#. Основы программирования : учебное пособие для
СПО / Н. А. Тюкачев, В. Г. Хлебостроев. — Санкт�Петербург : Лань,
2021. — 272 с. : ил. + CD. — Текст : непосредственный

ISBN 978�5�8114�6816�4

В книге изложены основы программирования на языке C# в среде .Net Frame�
work, описаны операции и операторы языка, а также система встроенных типов
данных. Значительное внимание уделено описанию организации консольного
ввода�вывода, преобразованию значений при вводе и их форматированию при
выводе. Текст содержит большое количество примеров программного кода,
способствующих усвоению материала.

Книга предназначена для студентов, обучающихся по направлениям групп
специальностей «Информатика и вычислительная техника», «Инфор�мационная
безопасность», «Электроника, радиотехника и системы связи» среднего
профессионального образования, а также учащихся старших классов и лиц,
самостоятельно изучающих языки программирования.

УДК 004
ББК 32.973�018я723

© Издательство «Лань», 2021
© Н. А. Тюкачев,

В. Г. Хлебостроев, 2021
© Издательство «Лань»,

художественное оформление, 2021

 2 / 10

3

ВВЕДЕНИЕ

В книге изложены основы программирования на языке C# в среде .Net
Framework, описаны операции и операторы языка, а также система
встроенных типов данных. Значительное внимание уделено описанию
организации консольного ввода-вывода, преобразованию значений при вводе
и их форматированию при выводе. Отдельная глава посвящена одномерным
и двумерным массивам с описанием основных алгоритмов их обработки.
Описаны способы создания пользовательских типов данных на основе
конструкций структура (struct) и перечисление (enum).

Вторая часть тома посвящена основам объектно-ориентированного
программирования. Подробно разбираются понятия класса и объекта.
Описываются различные виды членов-данных и членов-функций классов,
реализация принципов инкапсуляции, наследования и полиморфизма.
Эффективность объектно-ориентированного подхода демонстрируется на
примере задач, связанных с созданием и обработкой динамических структур
данных – списков, стеков и очередей.

Вводятся важные понятия интерфейса, коллекции, делегата и события.
Излагаются основы технологии разработки приложений Windows Forms с
обзором наиболее часто используемых компонентов.

Текст содержит большое количество примеров программного кода,
способствующих усвоению материала. Книга рассчитана на студентов
высших учебных заведений, учащихся старших классов, а также лиц,
самостоятельно изучающих языки программирования.

 3 / 10

4

Глава 1. ОСНОВЫ ПРОГРАММИРОВАНИЯ В C#

1.1. СРЕДА ВИЗУАЛЬНОЙ РАЗРАБОТКИ VISUAL STUDIO
 Разработка компьютерных программ ведется в инструментальных

средах. Инструментальной средой называется комплекс специализированных
программных средств, предназначенных для поддержки процесса создания
проектов. Инструментальная среда или среда разработки – это полный набор
инструментов, необходимых для разработки программ. Примерами сред
разработки являются Turbo и Borland Pascal, Delphi, Visual Basic и другие.

Основными инструментами в любой среде разработки являются:
• текстовый редактор;
• компилятор;
• редактор связей;
• загрузчик;
• отладчик.

Текстовые редакторы сред программирования предназначены для
создания файлов исходных текстов проектов на том или ином языке
программирования. Они обладают специальными средствами
форматирования, позволяющими выделять ключевые слова, вводить строки
комментариев, автоматически устанавливать отступы для улучшения
читабельности программ.

Компиляторы выполняют преобразование исходных текстов проектов в
исполняемые процессором последовательности команд. Результаты такого
преобразования сохраняются в так называемых объектных файлах.

Любой компьютерный проект предполагает выполнение некоторых
стандартных действий: ввода и вывода данных, вычисления значений
элементарных математических функций и т.д. Нет необходимости составлять
соответствующие алгоритмы, благодаря наличию в инструментальных
средах библиотек стандартных подпрограмм. Такие библиотеки содержат
реализации вышеупомянутых, а также целого ряда других часто
встречающихся действий, в виде так называемых стандартных методов.
Добавление к разрабатываемому проекту необходимых стандартных методов
называется компоновкой (link). Компоновка осуществляется
инструментальными программами, называемыми редакторами связей
(компоновщиками). Результатом компоновки является создание
исполняемого файла с расширением *.exe.

Visual Studio – это разработанная Microsoft современная
инструментальная среда, которая может быть использована для создания
программных средств различного назначения. Первая версия этого продукта
под названием Visual Studio 97 появилась в 1997 году. В ней впервые были
собраны вместе различные средства разработки ПО. Она позволяла создавать

 4 / 10

5

проекты на языках Visual Basic 5.0, Visual C++ 5.0, Visual J++ 1.1, Visual
FoxPro 5.0 и среду разработки ASP – Visual InterDev.

В начале 2002 года Microsoft объявила о создании программной
платформы .Net Framework. Под программной платформой понимается
комплекс специализированных программных средств, обеспечивающих
выполнение всех других программ. Эта задача традиционно выполнялась
различными операционными системами, начиная от DOS и заканчивая
последними версиями Windows и Linux. .Net Framework (далее .Net) является
надстройкой над операционной системой и позволяет по-новому
организовать процесс выполнения проектов. Эту задачу решает первая из
двух ее основных составляющих – общеязыковая среда выполнения
(Common Languige Runtime, CLR).

Ключевым в этом названии является слово «общеязыковая».
Особенностью платформы .Net является то, что она обеспечивает
возможность создания и выполнения проектов, отдельные части которых
написаны на разных языках программирования. Это становится возможным
благодаря второй основной составляющей .Net – общей системе типов
(Common Type System, CTS). Как будет показано далее, типы – это способ
интерпретации исполняющимися программами обрабатываемых данных.
Различия в определении типов (типов данных) в разных языках
программирования является одним из основных препятствий на пути к
взаимодействию проектов, написанных на различных языках
программирования. CTS устраняет это препятствие.

Практически одновременно с платформой .Net выходит и основанная
на ней инструментальная среда Visual Studio .Net. Все последующие версии
Visual Studio (2003, 2005, 2008, 2010) предназначены для работы на
платформе .Net Framework. Для краткости будет также использоваться
аббревиатура VS.

Visual Studio включает в себя настройки для работы с Web, Visual C#,
Visual F#, Visual Basic, Visual C++. Среда разработки может быть настроена
на любую из этих задач. Если VS не настроена на C#, то настройки
необходимо изменить. Чтобы сбросить настройки и выбрать опцию
Настройка среды разработки Visual C# (Visual C# Development Settings),
необходимо импортировать их. Для этого выберите в меню Сервис (Tools)
пункт Параметры импорта и экспорта (Import и Export Settings) и затем
выберите переключатель Сбросить все настройки (Reset All Settings).

 5 / 10

6

Рис. 1.1. Выбор переключателя Сбросить все параметры (Reset All Settings)

Затем щелкните на кнопке Далее (Next) и укажите, хотите ли вы
сохранить существующие параметры, прежде чем продолжить. Если вы уже
выполняли какие-нибудь настройки, то наверняка захотите сделать это; в
противном случае щелкните на кнопке Нет (No), а затем снова на кнопке
Далее (Next). В следующем диалоговом окне выберите опцию Настройки
среды разработки Visual C# (Visual C# Development Settings), как показано на
рис. 1.2.

Рис. 1.2. Выбор опции Настройки среды разработки Visual C#

Щелкните на кнопке Готово (Finish), чтобы применить изменения.

 6 / 10

7

Схема расположения компонентов в среде VS будет выглядеть так, как
показано на рис. 1.3.

Рис. 1.3. Предлагаемая по умолчанию схема компоновки в VS

Главное окно, в котором по умолчанию при запуске VS содержится
еще и полезная страница Начало работы (Start Page), является тем местом, где
отображается весь код. Это окно может содержать много вкладок и тем
самым позволяет легко переключаться между несколькими файлами.

Над главным окном находятся панели инструментов и меню VS. Здесь
могут размещаться несколько панелей инструментов с возможностями от
сохранения и загрузки файлов до компоновки и запуска проектов и даже
отладки элементов управления.

Ниже приведено краткое описание тех основных окон, которыми
придется пользоваться чаще всего.

Окно Обозреватель решений (Solution Explorer) позволяет отображать
входящие в состав решения проекты в разных представлениях, которые
демонстрируют, например, то, какие файлы в них содержатся и что
содержится в этих файлах. В этом окне отображается информация о
загруженном в текущий момент решении (solution). Решением называется
один или более проектов вместе с их конфигурациями. Если этого окна нет,

 7 / 10

8

то его можно вызвать из меню, выбором пункта Вид (View) → Обозреватель
решений (Solution Explorer). Для вызова текста файлов необходимо дважды
щелкнуть мышью по имени файла.

Окно Список ошибок (Error List). Открывать его можно выбором в
меню Вид (View)→Список ошибок (Error List). В нем отображаются ошибки,
предупреждения и другая касающаяся проекта информация.

Окно Панель инструментов (Toolbox). Предоставляет доступ к
компонентам, необходимым для создания пользовательского интерфейса
приложений Windows.

Окно Свойства (Properties). Появляется после выбора в меню Вид
(View) → Окно свойств (Properties Window). Это окно дает более
детализированное представление содержимого проекта и позволяет
осуществлять настройку свойств его компонентов.

Окно классов (Classes). Позволяет осуществлять навигацию по классам,
включенным в решение. Появляется после выбора в меню Вид (View) →
Классы (Classes) и предоставляет другой вид проекта, показывая структуру
созданного кода.

На рис. 1.4 показано окно классов со всеми развернутыми узлами.

Puc. 1.4. Окно классов

Среда VS способна отображать и многие другие окна, как
информационные, так и функциональные.

 8 / 10

9

По умолчанию эти окна настроены так, чтобы они автоматически
скрывались, но при желании их можно пристыковать к любому краю экрана.

Рис. 1.5. Пристыковка окна Обозреватель решений

Многие команды в VS можно выполнять, нажимая клавиши в
определенном сочетании, что существенно ускоряет работу. Набор сочетаний
зависит от настроек VS. В таблице 1 приведены некоторые сочетания
клавиш.

Таблица 1. Некоторые горячие клавиши

Функции Клавиши
Окна
Код F7
Конструктор (для Windows) Shift+F7
Обозреватель решений Ctrl+W,S
Панель элементов (для Windows) Ctrl+W,X
Во весь экран Shift+Alt, Enter
Отладка-выполнение
Новый проект Ctrl+Shift+N
Начать отладку F5
Запуск без отладки Ctrl+F5
Остановить отладку Shift+F5
Выполнить до текущей позиции Ctrl+F10
Шаг с заходом F11
Шаг с выходом Shift+F11
Шаг с обходом F10
Функции Клавиши
Точка останова F9
Удалить все точки останова Ctrl+Shift+F9

 9 / 10

10

Редактирование текста
Отменить действие Ctrl+Z
Вернуть отмененное действие Ctrl+Y
Вырезать Ctrl+X
Копировать Ctrl+C, Ctrl+Insert
Вставить Ctrl+V, Shift+Insert
Перейти на строку по номеру Ctrl+G
Выделить все Ctrl+A
Быстрый поиск Ctrl+F
Быстрая замена Ctrl+H
Найти в файлах Ctrl+Shift+F
Заменить в файлах Ctrl+Shift+H

1.2. ПЕРВЫЙ ПРОЕКТ
Прежде всего, определимся с терминологией и введем несколько новых

понятий. Компьютерные программы принято делить на системные и
прикладные. Системными называют программы, предназначенные для
организации работы компьютера. В частности, комплексами таких программ
являются операционные системы – Windows, Linux и другие. Прикладные
программы предназначены для решения различного рода «житейских» задач,
таких как набор текстов, создание изображений, выполнение инженерных и
экономических расчетов и т.д. Кроме того, в особую группу выделяют уже
упоминавшиеся выше инструментальные среды.

В современной терминологии прикладные программы называют
приложениями. Важной характеристикой приложений является вид
использованного в них пользовательского интерфейса. По этому признаку
приложения делятся на консольные (Console Application) и оконные (Form
Application).

Консольные приложения используют текстовый интерфейс: ввод
данных и вывод результатов осуществляется в виде строк текста на черном
экране. Оконные приложения имеют графический интерфейс, позволяющий
пользователю взаимодействовать с приложением в процессе его выполнения,
используя элементы управления – кнопки, меню, списки и т.д. Создание
оконных приложений осложнено необходимостью разработки его
интерфейса, поэтому в первое время мы будем создавать консольные
приложения. В следующем примере приводится пошаговое описание
процесса создания консольного приложения.

Пример 1.1. Создание простого консольного приложения
1. Создайте новый проект консольного приложения, выбрав в меню

Файл→Создать→Проект (File→ New→Project), появится окно, показанное на
рис. 1.6.

Powered by TCPDF (www.tcpdf.org)

 10 / 10

11

Pиc. 1.6. Создание нового консольного проекта

2. В окне выберите узел Visual C# в списке Последние шаблоны и
проект типа Консольное приложение (Console Application).

3. Измените путь в текстовом поле Расположение (Location) на
H:\Примеры\Глава 1\Example 1 или любой другой. Этот каталог будет создан,
если его не существует.

4. Измените предлагаемый по умолчанию текст ConsoleApplicationl1 в
текстовом поле Имя (Name), на осмысленное имя проекта. Если имя не будет
изменено, то будет создано поддерево каталогов с корневой папкой
ConsoleApplication1.

5. Щелкните на кнопке <ОК>. В папке H:\Примеры\Глава 1\Example 1
будет создана папка «Example 1» с папками и файлами проекта.

 1 / 20

12

Рис. 1.7. Папка с проектом

4. Записать проект можно в любой момент времени, щелкнув по кнопке
Сохранить все (Save All) в панели инструментов или выбрав пункт меню
Файл → Сохранить все (Save All→ File).

5. По завершении инициализации проекта добавьте в файл
Program.cs, отображающийся в основном окне, следующие строки кода:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Example_1
{
 class Program
 {
 static void Main(string[] args)
 {
 // Вывод текста на экран.
 Console.WriteLine("Hello") ;
 Console.ReadKey();
 }
 }
}

В этом листинге обычным шрифтом выделены строки, которые
создаются автоматически, жирным – строки, набираемые программистом.

6. Выберите в меню пункт Отладка→Начать отладку (Debug→Start
Debugging) или нажмите клавишу <F5>. Через некоторое время после этого
на экране должно появиться окно, показанное на рис. 1.8.

 2 / 20

13

Рис. 1.8. Окно, появившееся после выбора пункта меню Начать отладку

7. Нажмите любую клавишу, чтобы выйти из приложения.
Замечание. Существует несколько способов выполнения
основных шагов: например, новый проект можно создавать и
через пункт меню, и нажатием комбинации клавиш
<Ctrl+Shift+N>, и щелчком на соответствующей пиктограмме в
панели инструментов.
Замечание. Компилировать и выполнять код тоже можно
несколькими способами. Например, кроме описанного ранее
выбора в меню пункта Отладка→Начать отладку, можно также
использовать и клавиатурную комбинацию <F5> или

соответствующую пиктограмму в панели инструментов.
Можно запускать код и, не находясь в режиме отладки, выбирая
в меню пункт Отладка→Запустить без отладки (Debug→Start
Without Debugging) или нажав <Ctrl+F5>, а также компилировать
проект, не запуская его (как с включенным, так и с выключенным
режимом отладки), выбирая в меню пункт Сборка→ Собрать
решение (Build→Build Solution) или нажав <F6>.

После компиляции код можно выполнить, запустив созданный файл
*.ехе, находящейся в папке ..\bin\Debug проекта.

Работа консольных приложений завершается сразу же, как только
заканчивается выполнение их кода, а это означает, что в случае запуска этих
приложений непосредственно из IDE нельзя увидеть результаты. Для обхода
этой проблемы в предыдущем примере коду с помощью следующей строки
было указано перед завершением ожидать нажатия клавиши:
Console.ReadKey();

Все файлы кода в С# имеют расширение *.cs.

1.3. БАЗОВЫЙ СИНТАКСИС С#. СТРУКТУРА ПРОЕКТА
Операторы. Элементарной структурной единицей исходного кода

является оператор (statement). Операторы делятся на операторы объявлений и
операторы действий. Операторы действий выполняют те или иные
последовательности операций с данными, представленными константами и
переменными. Операторы объявлений используются для сообщения
компилятору о появлении в программе таких констант и переменных, их
именах и типах. Каждый оператор языка C# имеет завершающий символ, в
качестве которого используется точка с запятой. При этом компиляторы С#

 3 / 20

14

не обращают внимания на дополнительные интервалы в коде, проставляемые
с помощью пробельных символов – символов пробела, табуляции и пустой
строки.

Благодаря наличию у операторов завершающего символа, с одной
стороны, и игнорированию пробельных символов, с другой, допускается:
• произвольное разбиение операторов на две или более строк;
• запись двух или более операторов в одной строке.

В целях повышения читабельности текстов рекомендуется избегать
записи в одной строке двух и более операторов. Тем не менее, вполне
допустимо использовать операторы, занимающие по несколько строк кода.

Блоки. Несколько операторов С# могут быть объединены в блок. Блок
отделяется от остальной части кода с помощью фигурных скобок { и } и
может содержаться любое количество операторов или вообще ни одного. С
точки зрения синтаксиса языка блок представляет собой один составной
оператор.

Замечание. В конце блока завершающий символ точки с
запятой не ставится.

Например, простой блок кода может иметь следующий вид:
{
 <оператор_1>
 <оператор_2>
 <оператор_3>
}

В данном случае вторая и третья строки кода являются частью одного и
того же оператора, так как в конце второй строки нет символа точки с
запятой.

Блоки кода могут быть вложенными, то есть блок может находиться
внутри другого блока. В этом случае для повышения наглядности кода
используются отступы. Отступы можно устанавливать, вводя символ
табуляции. Текстовый редактор среды VS делает это автоматически при
вводе символа { и последующем нажатии клавиши Enter.

В следующем примере показан блок нулевого уровня вложения,
содержащий внутри себя блок первого уровня вложения:
{
 <оператор_1>
 {
 <оператор_2>
 <оператор_3>
 }
 <оператор_4>
}

Отметим, что использование отступов является рекомендуемым, но не
обязательным стилем записи.

 4 / 20

15

Методы. Следующим уровнем структурирования исходного кода
являются методы. Описание метода состоит из заголовка метода,
включающего ее имя и тела метода, являющегося блоком. Содержательно
метод представляет собой программную реализацию некоторого алгоритма.

Классы. Методы и совместно используемые ими данные объединяются
в классы (classes). Аналогично описанию метода, описание класса состоит
из заголовка, содержащего имя класса и тела класса, ограниченного
фигурными скобками. Тело класса содержит объявления и описания его
членов, которыми, в частности, могут быть константы, переменные и методы.
Более того, методы в языке C# могут присутствовать только как члены
некоторого класса. Методы, содержащиеся в классе, называются методами
этого класса.

Пространства имен. Понятие пространства имен (namespace) введено
в языке C# для предотвращения так называемого конфликта имен на уровне
классов. Проблема состоит в том, что на стадии компоновки код, созданный
программистом, дополняется кодом из присоединяемых библиотек. При этом
может оказаться так, что имя какого-либо класса, объявленного
программистом, случайно совпадет с именем библиотечного класса.

Пространство имен состоит из заголовка, содержащего имя этого
пространства, и тела пространства, ограниченного фигурными скобками.
Тело пространства имен может содержать описания одного или нескольких
классов с несовпадающими именами. Совпадающие имена могут иметь
только классы, принадлежащие разным пространствам имен. В таких случаях
для классов используются уточненные имена, состоящие из имени
пространства имен и имени класса, разделенных символом точка.

Отметим, что аналогично блокам, пространства имен допускают
вложенность, то есть внутри одного пространства имен может быть
объявлено другое пространство имен.

Единицы компиляции и сборки. Программа C# состоит из одного
или нескольких исходных файлов, называемых единицами компиляции. В
начале каждого из таких файлов объявляются используемые в нем
пространства имен, а затем размещается собственное постранство имен этого
файла. При этом одно и то же пространство имен может присутствовать в
нескольких исходных файлах.

При компиляции многофайловой программы C# выполняется
совместная обработка всех исходных файлов и их физическая упаковка в
сборки. Файлы сборок имеют расширение exe, если у одного из классов есть
метод Main(), или dll, если ни у одного из классов нет метода Main().
Сборки первого типа называются приложениями, а сборки второго типа –
библиотеками.

 5 / 20

16

Комментарии. Текст программы рекомендуется сопровождать
комментариями. Комментарии – это описательный текст на обычном языке,
поясняющий смысл той или иной части программного кода.

Комментарии могут выделяться в тексте программы двумя способами:
• размещением ограничивающих маркеров – открывающего /* в начале и

закрывающего */ в конце комментария;
• использованием одного единственного маркера //, означающего, что

остальная часть данной строки является комментарием.
Ограничивающие маркеры используются для ввода многострочных

комментариев, маркер // рекомендуется использовать в однострочных
комментариях.

Единственной комбинацией символов, которую нельзя вводить в теле
комментария, является */. Причина этого очевидна: появление этого символа
расценивается компилятором как конец комментария, а оставшаяся часть
текста комментария не может быть интерпретирована как какой-либо
оператор C#. Например, показанный ниже тип оформления комментариев
является допустимым:
/* комментарий */
/* это...
. . . тоже комментарий! */

А вот пример неправильной записи комментария:
/* Завершающий символ комментария "*/" */

В конце комментария символы, идущие после "*/", будут
восприниматься как код С#, что приведет к ошибке.

Второй способ позволяет закомментарить одну строку. Для этого
необходимо в строке поставить символы //. Все символы за // будут считаться
комментарием. Например:
// Комментарий в одной строке.

Такой способ удобно применять для комментирования операторов, так
как он позволяет размещать операторы и комментарии в одной строке:
<оператор> // Объяснение оператора

Третий способ записи комментариев позволяет добавлять
однострочные комментарии, начинающиеся не с двух, а с трех символов
слэша:
/// Специальный комментарий

Такие комментарии компилятором игнорируются, но, поменяв
настройки среды VS, можно при компиляции извлечь текст, идущий после
таких комментариев, в текстовый файл, который затем можно применять для
создания документации.

Регистрозависимость. С#-код чувствителен к регистру. В отличие от
некоторых других языков, в языке С# код обязательно нужно вводить в
правильном регистре, так как использование прописной буквы вместо

 6 / 20

17

заглавной может привести к невозможности скомпилировать проект.
Например, возьмем следующую строку кода:
Console.WriteLine("Первая программа на C#!");

Ее С#-компилятор сможет понять, потому что все буквы в команде
Console.WriteLine() указаны в правильном регистре. Ни одна из трех
приведенных ниже строк работать не будет:
console.WriteLine("Первая программа на C#!");
CONSOLE.WRITELINE("Первая программа на C#!");
Console.Writeline("Первая программа на C#!");

Во всех этих строках использован неправильный регистр, поэтому С#-
компилятор выдаст сообщение об ошибке. По мере ввода кода он предлагает
команды, которые можно использовать, и исправляет ошибки, связанные с
применением неправильного регистра.

 7 / 20

18

Глава 2. ТИПЫ И ПЕРЕМЕННЫЕ

Выполнение программы сводится к преобразованию данных,
введенных программистом, в соответствии с правилами обработки,
сформулированными в виде алгоритмов. Вводимые данные имеют разную
природу. Это могут быть числа или строки текста. Числа могут быть целыми
или вещественными, символы текста могут принадлежать тому или иному
алфавиту. Но в памяти компьютера любые данные представлены как
последовательности из нулей и единиц.

Для введения в программу информацию о природе данных в языках
программирования используется понятие типа данных. Тип данных
определяет способ интерпретации двоичного представления тех или иных
данных при исполнении программы. Для хранения значений каждого типа
данных компилятором выделяется определенное число байт. Количество
выделяемых байт не зависит от величины этого значения. Так, число 1 и
число 1000000 будут представлены в памяти компьютера
последовательностями нулей и единиц одинаковой длины.

2.1. ПЕРЕМЕННЫЕ
Элементарной единицей данных в компьютерной программе является

переменная. Каждая переменная должна иметь имя, отличающее ее от других
переменных, и тип. Эти характеристики переменных задаются при их
объявлении.

2.1.1. ОБЪЯВЛЕНИЕ ПЕРЕМЕННЫХ
Объявление переменных осуществляется оператором объявления,

имеющим вид:
<тип_переменной> <имя_переменной>;

Например:

int n;
double x;

Переменную можно объявить в любом месте метода или класса. Если
переменная объявлена не в методе, а в классе, то она называется полем.

При попытке использовать переменную, которая не была объявлена,
компилятор обнаружит ошибку и выдаст соответствующее сообщение.

Переменная характеризуется своим значением. В отличие от имени и
типа, значение переменной может изменяться при выполнении программы.
Для того чтобы начать использовать переменную ее необходимо

 8 / 20

19

инициализировать – то есть присвоить начальное значение. Инициализация
переменных, как правило, выполняется в момент объявления, хотя и может
быть отложена. В первом случае оператор объявления дополняется
присваиванием начального значения и имеет вид:
<тип_переменной> <имя_переменной> = <начальное_значение>;

Например:
int n = 0;
double x = 0.1;

Во втором случае инициализация выполняется после объявления
переменной, но до ее первого использования, в одном из операторов
выполнением операции присваивания. При попытке использовать
переменную без ее инициализации будет возникать ошибка.

Несколько переменных одного типа могут быть объявлены в одном
операторе, с инициализацией или без нее. Например:
 int i = 0,j,n = 10;

Хорошим стилем считается инициализация переменных во время их
объявления. Причину этого можно пояснить следующим простым примером:
int x, s; // Объявление без инициализации
x = 7;
if (x > 5) s = 4;
Console.WriteLine("s = {0}",s); // Ошибка компиляции:
// использование неинициализированной переменной

Переменная s получает значение в условном операторе if. Тем не
менее, при компиляции возникнет ошибка, утверждающая, что в методе
WriteLine() делается попытка использовать неинициализированную
переменную s. Связано это с тем, что для оператора if на этапе компиляции
не вычисляется условие, зависящее от переменной x. Поэтому,если условие
ложно, инициализация s в этом операторе не происходит.

Иногда возникает необходимость запретить изменять значение
переменной, назначенное ей при инициализации. Такая переменная
называется константой. Она должна быть объявлена с использованием
служебного слова const и инициализирована при объявлении, например:

const int n = 10;

2.1.2. ИМЕНОВАНИЕ ПЕРЕМЕННЫХ
При выборе имен переменных необходимо соблюдать несколько

условий:
• имя переменной должно отражать ее назначение и быть не очень

длинным;
• должно подчиняться правилам построения имен;
• имя, если оно является составным, должно быть удобочитаемым.
Определены следующие правила для имен переменных:

 9 / 20

20

• первым символом в имени обязательно должна быть или буква, или
символ подчеркивания «_», или символ @;

• последующими символами могут быть буквы, символы
подчеркивания или числа;

• в качестве имен не могут быть служебные и ключевые слова языка.
Язык С# является чувствительным регистру. Это означает, что если в

объявлении переменной ее имя записано с использованием символов
нижнего регистра, то запись того же имени в другом месте программы с
использованием хотя бы одной буквы верхнего регистра будет
рассматриваться как попытка обращения к другой, необъявленной
переменной и вызовет ошибку компиляции.

Следующие имена удовлетворяют правилам формирования имен в C#:
myVar
VAR1
Сумма
_test
@addr41

Примеры недопустимых имен:
9variable – имя начинается с цифры;
namespace – имя является служебным словом;
It's-all – имя содержит символы апострофа и дефиса.

С учетом регистровой зависимости все приведенные ниже имена
переменных будут являться разными именами:
myVariable
MyVariable
MYVARIABLE

При конструировании составных имен переменных используются такие
системы именования:

typeCase – венгерская нотация;
PascalCase – стиль языка Pascal;
camelCase – "верблюжий" стиль.
Венгерская нотация подразумевает использование в именах всех

переменных стандартных прописных префиксов, указывающих на тип этих
переменных, например intVal. Для простых типов еще можно было бы
подобрать одно- или двухбуквенные префиксы. Но из-за наличия многих
сотен таких более сложных типов, такой подход приводит к необходимости
придумывать длинные имена.

В любом месте кода можно выяснить тип переменной, наведя на ее имя
курсор мыши. Поэтому в настоящее время обычно используются системы
именования PascalCase или camelCase. Но для разделения частей составного
имени не рекомендуется использовать символ подчеркивания, например,
my_Arr.

 10 / 20

21

2.1.3. ПРОСТРАНСТВА ИМЕН
Пространства имен (namespace) являются в .Net способом обеспечения

уникальности имен в коде приложения. Большую часть этих имен
составляют имена различных пользовательских типов.

Пространство имен определяется с помощью ключевого слова
namespace с указанием имени пространства. Область действия пространства
имен ограничивается фигурными скобками. Пространства имен образуют
иерархию, так что внутри одного пространства имен можно определить
любое число вложенных пространств. На самом верхнем уровне этой
иерархии, по умолчанию, определено глобальное пространство имен. Доступ
к элементам из этого пространства можно получать просто путем указания их
имени. Имена элементов из других пространств должны обязательно
квалифицироваться.

Квалифицированное имя — это такое имя, в котором содержится вся
иерархическая информация, то есть цепочка имен вложенных пространств на
пути от глобального пространства к данному. Имена отдельных пространств
в цепочке разделяются точками, например:
namespace LevelOne
{
// код в пространстве имен LevelOne
// определение имени "NameOne"
}
// код в глобальном пространстве имен

В этом коде определяется одно пространство имен — LevelOne — и
одно имя в этом пространстве имен — NameOne (сам код не приводится для
придания описанию общего характера, но зато приводится комментарий на
том месте, где должно находиться определение). В коде, добавляемом внутри
пространства имен LevelOne, на это имя можно ссылаться с использованием
NameOne, то есть квалифицировать его не обязательно.

В коде, добавляемом внутри глобального пространства имен, на него
обязательно нужно ссылаться с помощью имени LevelOne.NameOne.

Оператор using не предоставляет доступа к именам в другом
пространстве имен. Если только код в пространстве имен не будет каким-то
образом связан с проектом, например, его определением в файле исходного
кода проекта или в другом связанном с проектом коде, доступа к
содержащимся в нем именам не будет. Кроме того, в случае связывания
содержащего пространство имен кода с проектом, доступ к его именам будет
открыт вне зависимости от того, используется оператор using или нет.
Оператор using просто упрощает получение доступа к этим именам и может
сократить количество вводимого кода, делая его более удобным для чтения.

Теперь вернемся к приведенному в начале этой главы коду приложения
«Example 1» с тремя следующими касающимися пространств имен строками:

 11 / 20

22

using System;
using System.Collections.Generic;
using System.Text;
namespace ConsoleApplicationl
{
}

Здесь три строки, начинающиеся с ключевого слова using, применяются
для объявления того, что в последующем коде С# будут использоваться
пространства имен System, System.Collections.Generic, System.Text и
что к ним нужно обращаться из всех пространств имен в данном файле без
квалификации. Пространство имен System является корневым для
приложений .Net Framework и содержит все базовые функциональные
возможности, которые могут быть необходимы для создания консольных
приложений. Два других пространства имен очень часто используются в
консольных приложениях и потому указаны здесь просто так, на всякий
случай.

В четвертой строке, начинающейся с ключевого слова using,
объявляется пространство имен под названием ConsoleApplicationl,
предназначенное для кода самого приложения.

2.2. СИСТЕМА ТИПОВ ЯЗЫКА C#. ВСТРОЕННЫЕ ТИПЫ
Все типы C# подразделяются на две основные группы: типы значений

и ссылочные типы. Переменные типа значений содержат данные,
переменные ссылочного типа хранят адреса ячеек памяти, в которых
размещены соответствующие данные. Для данных типов значений память
отводится в момент их объявления и такие данные называют статическими.
Для данных, на которые ссылаются переменные ссылочных типов, память
выделяется по специальным запросам уже в процессе выполнения
программы. Такие данные называются динамическими.

Типы данных принято также подразделять на простые и сложные в
зависимости от того, как устроены их данные. Значения простых (скалярных)
типов едины и неделимы. Сложные типы характеризуются способом
структуризации данных – одно значение сложного типа состоит из
нескольких значений данных, организующих сложный тип. Примерами
сложного типа данных являются массив, структура, класс.

Типы делятся на встроенные и пользовательские, то есть типы,
определенные в коде программы. Встроенные типы принадлежат языку
программирования и составляют его базис. Пользовательские типы
конструируются на основе встроенных типов по правилам, встроенными в
язык.

В языке C# имеется большой набор встроенных типов: логический тип,
большое число числовых типов, символьный и строковый типы, объектный

 12 / 20

23

тип. Среди этих типов есть простые и сложные, типы значений и ссылочные
типы.

2.2.1. ЧИСЛОВЫЕ ТИПЫ ДАННЫХ
В C# предусмотрено большое число целочисленных типов,

предназначенных для работы с целыми числами. Они различаются между
собой числом байт, требуемых для переменной, и диапазонами
целочисленных значений. Каждый из целочисленных типов требует свой
размер ячейки – число байт, отводимых для хранения значений. В ячейке из N
бит (N / 8 байт) можно записать 2N различных двоичных чисел,
соответствующих такому же количеству целых чисел. Соответствие между
этими двоичными числами и целыми числами устанавливается двумя
альтернативными способами.

Первый способ предполагает, что все числа являются
неотрицательными. Минимальным является число 0, представляемое
цепочкой из N нулей, а максимальным – число 2N – 1, представляемое
цепочкой из N единиц.

Второй способ позволяет представлять как отрицательные, так и
неотрицательные значения. Цепочки бит, начинающиеся с нуля
соответствуют неотрицательным значениям, а начинающиеся с единицы –
отрицательным. Число 0 по-прежнему изображается цепочкой из N нулей,
максимальное положительное число равно 2N-1 – 1, а минимальное
отрицательное равно –2N-1.

Все целочисленные типы перечислены в табл. 2.

Таблица 2. Целочисленные типы данных

Символ u в начале имен некоторых типов являются сокращением от
слова unsigned (беззнаковый), который указывает на то, что хранить
отрицательные числа в переменных этих типов нельзя. Символ s в названии
первого из байтовых типов является сокращением от слова signed

Тип Число байт Допустимые значения
sbyte 1 от –128 до 127
byte 1 от 0 до 255
short 2 от –32768 до 32767
ushort 2 от 0 до 65535
int 4 от –2147483648 до 2147483647
uint 4 от 0 до 4294967295
long 8 от –9223372036854775808 до

9223372036854775807
ulong 8 от 0 до 18446744073709551615

 13 / 20

24

(знаковый) и говорит о том, что для переменных этого типа допустимы как
неотрицательные, так и отрицательные значения.

Целочисленные значения, присутствующие в тексте программы,
называются числовыми литералами. Правила записи числовых литералов
совпадают с привычными правилами записи целых чисел. В тех случаях,
если требуется уточнить целочисленный тип, к которому следует отнести
литерал, в записи литералов используют буквенные суффиксы. Следует
отметить, что уточнения в виде суффиксов можно применять только к типам
uint, long и ulong. Соответствующие суффиксы имеют вид U, L, LU или
UL. Эти символы можно набирать и в верхнем и в нижнем регистре.
Например,
long k = 10L;
uint m = 10u;
ulong n = 10Ul;

Литералы целых типов могут записываться в шестнадцатеричной
системе счисления с использованием префикса 0x. Например, число 1000
может быть записано как 0x3E8 с использованием префикса x и 16-ричных
цифр.

Для хранения вещественных значений с плавающей точкой доступны
переменные типов float и double. Вещественные значения хранятся в так
называемой полулогарифмической форме, то есть в виде ±m*2p. Множитель
m называется мантиссой числа, а показатель степени двойки p – его
порядком. Для обеспечения однозначности выбора порядка числа на
мантиссу накладывается условие нормированности. Обычно оно состоит в
задании диапазона допустимых значений мантиссы [0.0, 1). В таблице 3
представлены оба эти типа данных.

Таблица 3. Вещественные типы данных

Тип Число байт Допустимые значения

float 4 от -3.4×1038 до -1.5×10-45 и от 1.5×10-45 до 3.4×1038
double 8 от -1.7×10308 до -5.0×10-324 и от 5.0×10-324 до 1.7×10308

Литералы вещественного типа имеют две формы записи – с
фиксированной и с плавающей точкой. В первом случае вещественное число
записывают с использованием точки в качестве разделителя целой и дробной
части. Например, 5.25 или –234.5.

Во втором случае число записывается с использованием множителя в
виде степени числа 10, то есть фактически в виде ±m×10p. При этом не
накладывается никаких ограничений на возможные варианты выбора
значений пары m и p. Например, одно и то же значение 234.5 может быть
записано так 23.45e1 или 2345e-1. Обычно такая форма записи используется
для представления очень больших или очень малых величин.

 14 / 20

25

Так же как и в целых литералах, в записи литералов вещественного
типа можно использовать буквенные индексы – f для типа float и d для
типа double. Для типа double буквенный суффикс можно не указывать.

Еще одним числовым типом является тип decimal. Переменная этого
типа позволяет хранить значения в виде ±m*10e.

2.2.2. БУЛЕВСКИЙ И СИМВОЛЬНЫЕ ТИПЫ ДАННЫХ
В C# имеются два простых типа, предназначенных для работы с

нечисловыми данными: булевский bool и символьный char.

Таблица 4. Нечисловые простые типы данных

Тип Число байт Допустимые значения
bool 1 true или false
char 2 Символы Unicode

Данные булевского типа обычно используются в программах для
проверки тех или иных условий. Литералы булевского типа – это ключевые
слова true и false.

Замечание. В языке C# не определено преобразование булевских значений в
числовые, например, true в 1, а false в 0, как это сделано в C++.
Литералы символьного типа имеют вид символа, заключенного в

апострофы. Например, 'A', '8', '+'. Такой способ записи пригоден только для
символов, допускающих непосредственное представление. Более
универсальным является их представление с помощью их числовых кодов, то
есть порядковых номеров символов в таблице Unicode.

Unicode – это набор символов, включающий символы латинского
алфавита, символы национальных алфавитов, цифры, знаки препинания и
специальные символы. Каждый символ набора Unicode имеет код из
диапазона от 0 до 65535. Первые 128 символов Unicode совпадают с
символами стандарной части таблицы ASCII.

Представление с помощью шестнадцатиричных кодов состоит из
символа обратный слэш (\), за которым следует в шестнадцатеричный код.
Например, символы можно записать в виде: '\0x0041', '\0x56', '\0x02b'. Наряду
с этим используются Unicode-значения: записанные с использованием
префикса u и состоящие из четырех цифр: '\0u0041', '\0u0056', '\0u002b'.

Для ряда символов, имеющих специальное назначение, используется
представление в виде управляющих escape-последовательностей. В таблице 5
перечислены все управляющие последовательности.

 15 / 20

26

Таблица 5. Управляющие последовательности

В столбце "Unicode-значение" данной таблицы приведены
шестнадцатеричные значения символов.

2.2.3. СТРОКОВЫЙ ТИП ДАННЫХ
Тип string является ссылочным, поэтому переменные этого типа

хранят лишь адреса строк. Сами же строки являются динамическими
структурами и размещаются в памяти уже в процессе выполнения
программы. Длина строки ограничивается размером доступной оперативной
памяти. В памяти компьютера строки представляются цепочками кодов
образующих их символов, завершающихся признаком конца строки –
управляющей последовательностью \0.

Строковые литералы записываются как последовательности символов,
заключенные в двойные кавычки: 'A' – символ, "A" – строка из одного
символа. Примеры строк:
"Hello, World!" или "2*2 = 4"

Строки могут включать в себя управляющие последовательности.
Например:
"С:\\Temp\\MyDir\\MyFile.doc"
или
"Роман \"Мастер и Маргарита\" – любимая книга, а Булгаков –
любимый писатель".

Существует возможность отказаться от использования в строках
управляющих последовательностей или, задавая строки дословно (verbatim).
Для этого достаточно в начале строки поставить символ @. После этого
можно будет, в частности включать в строковый литерал символы переноса
строк и табуляции. Например:
@"С:\Temp\MyDir\MyFile.doc"

А вот такую строку

Управляющая
последовательность

Получаемый символ Unicode-
значение

\’ Символ одиночной кавычки 0x0027

\" Символ двойной кавычки 0x0022

\\ Символ обратной косой черты 0х005С

\0 Отсутствие символа 0x0000

\a Звуковой сигнал 0x0007

\b Символ возврата 0x0008

\f Символ перевода страницы 0x000с

\n Символ новой строки 0х000А

\r Символ возврата каретки 0x000D

\t Символ горизонтальной табуляции 0x0009

\v Символ вертикальной табуляции 0x000В

 16 / 20

27

 @"Возможные значения:
вариант 1
вариант 2"
при использовании управляющих последовательностей пришлось бы
записать в виде:
 "Возможные значения:\n\t вариант 1\n\t вариант 2"

Единственным исключением является управляющая
последовательность для символа двойных кавычек, которая должна
обязательно указываться во избежание окончания строки.

В следующем примере приводится код, который объявляет две
переменные, присваивает им значения и затем выводит эти значения на
экран.

Пример 2.1. Использование переменных простых типов

Листинг 2.1. Использование переменных простых типов

using System;
namespace Example_2
{
 class Program
 {
 static void Main(string[] args)
 {
 int k;
 string myString;
 k = 17;
 myString = "\"Мое целое\" равно ";
 Console.WriteLine("{0} {1}.", myString, k);
 Console.ReadKey();
 }
 }
}

На рис. 2.1 показан результат, который должен получиться.

Рис. 2.1. Результат выполнения приложения

Код программы выполняет следующее: объявляет две переменных;
присваивает этим двум переменным значения; выводит значения этих двух
переменных на консоль.

Объявление переменных происходит в следующей части кода:

int k;
string myString;

 17 / 20

28

В первой строке объявляется переменная типа int с именем k, а во
второй — переменная типа string с именем myString. В следующих двух
строках кода осуществляется присваивание значений:
k = 17;
myString = "\"Мое целое\" равно ";

Здесь переменным присваиваются два фиксированных значения с
помощью операции присваивания =. Переменной k присваивается
целочисленное значение 17, а переменной myString — строка "myString"
вместе с кавычками.

2.2.4. ОБЪЕКТНЫЙ ТИП ДАННЫХ
Типы данных:

• и встроенные и пользовательские типы являются классами. Это
означает, что с каждым из них, кроме множества возможных значений,
связаны методы для работы с данными этого типа.

• типы С# образуют дерево, вершиной которого является класс object.
 Методы класса object являются базовыми и доступны для любого

другого типа данных. Тип object является ссылочным типом. Более
подробное отложим до главы 7, посвященной описанию классов.

2.3. ТИПЫ CTS
Рассмотренные выше встроенные типы данных языка C# фактически

являются типами общей системы типов .Net. Имена встроенных типов C#
являются псевдонимами имен типов .Net. В таблице 6 показана связь этих
имен.

Таблица 6. Связь между именами типов .Net и C#

Тип CTS Тип C#
Byte byte
SByte sbyte
Int16 short
Int32 int
Int64 long
UInt16 ushort
UInt32 uint
UInt64 ulong
Single float
Double double
Boolean bool
Char char
String string

 18 / 20

29

2.4. ПРЕОБРАЗОВАНИЕ ТИПОВ
В памяти компьютера все данные, независимо от их типа,

представляются в виде последовательностей нулей и единиц. Тип определяет
длину этой последовательности и способ ее интерпретации.

При объявлении переменной задается ее тип и, следовательно, обе эти
характеристики. В процессе выполнения программы может возникнуть
необходимость в изменении способа интерпретации некоторого значения
переменной, то есть в преобразовании этого значения к другому типу.

Преобразование типов выполняется по определенным правилам,
которые устанавливают однозначное соответствие между значениями двух
типов. Например, преобразование значения целого типа к вещественному
сводится к замене целого числа вещественным с целой частью, равной
исходному целому числу и нулевой дробной частью.

Еще одним примером является тип char. Значения этого типа,
являющиеся символами из набора Unicode, в памяти компьютера
представляются своими кодами – двухбайтовыми беззнаковыми целыми, то
есть значениями типа ushort. Следовательно, существует взаимно
однозначное соответствие между значениями этих двух типов.

Для всех встроенных типов данных существует соответствующее
строковое представление. Именно это представление получают при
выполнении операций вывода. При вводе данных с клавиатуры, напротив,
строковые значения вводимых данных приводятся к типам данных тех
переменных, для которых они предназначены.

Существует два преобразования типов: неявное (implicit) и явное
(explicit). Неявное преобразование выполняется компилятором и не
требует специальных указаний. Явное преобразование применяется тогда,
если преобразование из типа А в тип В возможно только при определенных
обстоятельствах или если правила для преобразования являются достаточно
сложными.

2.4.1. НЕЯВНОЕ ПРЕОБРАЗОВАНИЕ ТИПА
Неявное (implicit) преобразование возможно лишь для некоторых типов

данных. Список этих типов приведен в табл. 7.

Таблица 7. Неявные преобразования типов

Тип Длина Может быть неявно преобразован в тип
byte 1 short, ushort, int, uint, long, ulong,

float, double, decimal
sbyte 1 short, int, long, float, double, decimal
short 2 int, long, float, double, decimal
ushort 2 int, uint, long, ulong, float, double,

decimal
int 4 long, float, double, decimal

 19 / 20

30

uint 4 long, ulong, float, double, decimal
long 8 float, double, decimal
ulong 8 float, double, decimal
float 8 double
char 2 ushort, int, uint, long, ulong, float,

double, decimal

Неявное приведение типов выполняется при объявлении переменных с
их инициализацией, а также при вычислении выражений. Например:
float x = 4;
char c = 'a';
x = c;

Здесь целое значение 4 преобразуется в значение 3.0f при инициализации
переменной x, а символьное значение 'a', которым инициализирована
переменная с преобразуется в вещественное значение 97.0f (так как код символа
'a' равен 97) при выполнении операции присваивания.

Можно сформулировать следующее правило неявного преобразования
типов.

Любой тип А, диапазон возможных значений которого содержится
в диапазоне возможных значений типа В, может преобразовываться в
этот тип неявным образом. Преобразования типов, ведущие к
расширению множества значений, называются расширяющими
преобразованиями.

В соответствии с этим правилом неявное преобразование типов
никогда не может привести к потере точности. По этой причине невозможно,
например, неявное приведение вещественного значения к целому.

Отметим, что типы bool и string не поддерживают ни одного
варианта неявного преобразования.

2.4.2. ЯВНОЕ ПРЕОБРАЗОВАНИЕ ТИПА
Если невозможно неявное приведение типов, то можно выполнить это

принудительным образом, выполнив операцию приведения к нужному типу.
Эта операция имеет следующий простой синтаксис:

(<целевой_тип>) <исходное_значение>
Явные (explicit) преобразования типов применяют как сужающие

преобразования, то есть преобразования, приводящие к сужению множества
значений. Такие преобразования возможны далеко не всегда. Типы, имеющие
очень отдаленное отношение или вообще никакого отношения друг к другу,
скорее всего, не будут поддерживать преобразования посредством
приведения.

Рассмотрим следующий пример, в котором предпринимается попытка
преобразовать значение типа short в byte:
byte myByte;
short myShort = 7;
myByte = myShort;

Powered by TCPDF (www.tcpdf.org)

 20 / 20

31

Console.WriteLine("значение myByte: {0}", myByte);
Console.WriteLine("значение myShort: {0}", myShort);

Детали организации вывода в консольных приложениях на C# будут
рассмотрены в разделе 2.5 настоящей главы. При компиляции этого кода
будет выдано следующее сообщение об ошибке:

Рис. 2.2. Сообщение об ошибке

Не удается неявно преобразовать тип "short" в "byte". Существует
явное преобразование (возможно, пропущено приведение типов).

Выполним явное преобразование типов:

byte myByte;
short myShort = 7;
myByte = (byte)myShort;
Console.WriteLine("значение myByte: {0}", myByte);
Console.WriteLine("значение myShort: {0}", myShort);

После выполнения этого кода на экран будут выведены следующие
строки:

значение myByte: 7
значение myShort: 7

Изменим теперь предыдущий код, заменив значение 7 значением 281:
byte myByte;
short myShort = 281;
myByte = (byte) myShort;
Console.WriteLine("значение myShort: {0}", myShort);
Console.WriteLine("значение myByte: {0}", myByte);

Это приведет к получению следующего результата:
значение myShort: 281
значение myByte: 25

Для разъяснения этого результата рассмотрим двоичные представления
исходного и конечного значений в операции явного приведения типа.
Исходное значение двухбайтовое целое имеет вид:
281 = 00000001 000110012

Результат операции приведения к типу byte – это однобайтное целое с
двоичным представлением вида:
25 = 000110012

Потерян левый крайний бит исходного кода, который размещался в
старшем байте, так как он не уместился в новой переменной.

 1 / 20

32

2.4.3. ОПЕРАЦИИ ПРЕОБРАЗОВАНИЯ ДЛЯ ДАННЫХ

СТРОКОВОГО ТИПА
Строковый тип данных играет особую роль в языках

программирования в силу того, что большого значения текстовой
информации для человека. В частности, как уже отмечалось, именно строки
участвуют в операциях ввода и вывода данных. В то же время к строкам
неприменимы операции неявного преобразования типов. По этой причине
рассмотрим только явные операции преобразования типов с участием
строковых данных.

2.4.3.1. Методы преобразования

Для всех встроенных типов данных возможно преобразование их
значений в строковое представление, то есть приведение к строковому типу.
Это достигается использованием метода ToString(), унаследованного
этими типами от их общего предка типа object. Синтаксис такого
преобразования имеет вид:
<имя_переменной>.ToString()

Отметим, что хотя этот метод не требует задания каких-либо
параметров при своем вызове, пара круглых скобок после его имени должна
быть указана. Об этой особенности вызова методов в семействе языков C мы
будем говорить в разделе главы 7, посвященной описанию методов.

Обратное преобразование из строкового в любой встроенный тип
значения называется также анализом строк. Анализ строки может быть
выполнен с помощью метода Parse(), определенного для соответствующего
типа. Синтаксис обращения к этому методу имеет вид:
<имя_типа>.Parse(<строка>)

Результатом выполнения метода Parse() является значение
соответствующего типа. Разумеется, такое преобразование возможно лишь
при условии, что преобразуемая строка является правильной записью
литерала указанного типа, иначе выполнение программы завершается с
выдачей сообщения об ошибке. Поэтому, в тех случаях, если выполнение
этого требования не гарантировано, рекомендуется использовать другой
метод преобразования TryParse(). Обращение к этому методу производится
следующим образом:
<имя_типа>.TryParse(<строка>, out <имя_переменной>)

В этом случае результатом выполнения метода является булевское
значение, указывающее, успешно ли выполнено преобразование. В случае
успешного завершения преобразования, в переменную, указанную в качестве
второго параметра, записывается преобразованное значение. Эта переменная
должна быть предварительно объявлена с типом, к которому выполняется
приведение. Кроме того, следует обратить внимание на необходимость

 2 / 20

33

использования при вызове метода TryParse перед именем переменной
ключевого слова out. О назначении этого и аналогичных ему ключевых слов
будет рассказано в разделе главы 7, посвященном методам классов.

Еще одним способом приведения строкового типа является
использование методов класса Convert. В таблице 8 приведены названия
этих методов и типы получаемых результатов.

Таблица 8. Методы класса Convert
Метод Тип результата
ToBoolean(str) bool
ToByte(str) byte
ToChar(str) char
ToDecimal(str) decimal
ToDouble(str) double
ToIntl6(str) short
ToInt32(str) int
ToInt64(str) long
ToSByte(str) sbyte
ToSingle(str) float
ToString(str) string
ToUIntl6(str) ushort
ToUInt32(str) uint
ToUInt64(str) ulong

Синтаксис обращения к этим методам имеет вид:
Convert.<имя_метода>(<строка>)

Аргументом при вызове любого метода является преобразуемая строка
или строковая переменная. Заметим, что в названиях методов используются
имена типов .Net. Это позволяет использовать их не только в С#, но и в
других совместимых с .NET языках. Важно отметить, что как методы
Parse(), так и методы класса Convert(), выполняют проверку
принадлежности представляемого строкой значения допустимому для
соответствующего типа диапазону значений. При этом ни операция
unchecked, ни установки свойств проекта этих проверок не отменяют.

Далее приводится пример, охватывающий применение большинства из
рассмотренных в этом разделе типов операций преобразования. В частности,
в нем сначала объявляется и инициализируется ряд переменных различных
типов, а затем выполняются операции преобразования между их типами как
неявным, так и явным образом.

Пример 2.2. Преобразование типов

Листинг 2.2. Преобразование типов

static void Main(string[] args)
{

 3 / 20

34

 short shortRes, shortVal = 4;
 int intVal = 67;
 long longRes;
 float floatVal = 10.5F;
 double doubleRes, doubleVal = 99.999;
 string strRes, strVal = "17";
 bool boolVal = true;
 Console.WriteLine(" Примеры преобразования");
 Console.WriteLine();
 // Примеры преобразования переменных
 doubleRes = floatVal * shortVal;
 Console.WriteLine("Неявные (double): {0}*{1} -> {2}",
 floatVal, shortVal, doubleRes);
 shortRes = (short)floatVal;
 Console.WriteLine("Явные (short): {0} -> {1}",
 floatVal, shortRes);
 strRes = Convert.ToString(boolVal) +
 Convert.ToString(doubleVal);
 Console.WriteLine("Явные (string): \"{0} \"+\"{1}\" ->
 {2}", boolVal, doubleVal, strRes);
 longRes = intVal + Convert.ToInt64(strVal);
 Console.WriteLine("Смешанное (long): {0} + {1} -> {2}",
 intVal, strVal, longRes);
 Console.ReadKey();

}

Рис. 2.3. Результат работы приложения

В этом примере присутствуют все рассмотренные до сих пор типы
преобразований, как в простых операциях присваивания, подобных тем, что
демонстрировались в приведенных ранее коротких примерах кода, так и в
выражениях. Рассмотрению подлежат оба случая, так как к преобразованию
типов может приводить обработка не только операций присваивания, но и
каждой неунарной операции. Например:
shortVal * floatVal

Здесь значение short умножается на значение float. В ситуациях,
подобных этой, где не указано никакой явной операции преобразования, по
возможности будет выполняться неявная операция преобразования. В данном
примере единственной неявной операцией преобразования, в которой есть
смысл, является преобразование типа short в тип float (так как для

 4 / 20

35

преобразования float в short требуется явная операция), поэтому именно
она и будет использоваться.

Это поведение можно переопределить, как показано ниже:
shortVal * (short)floatVal

Это не означает, что в таком случае после операции будет
возвращаться значение short.

Из-за того, что результат перемножения двух значений short, скорее
всего, будет превышать 32767 (максимальное значение, которое может
храниться в переменных типа short), на самом деле после этой операции
будет возвращаться значение int.

Явные преобразования, выполняемые с помощью такого синтаксиса
приведения, имеют те же приоритеты, что и другие унарные операции (вроде
префиксной формы операции ++), то есть — высшие.

При наличии операторов, в которых принимают участие смешанные
типы, преобразование происходит при обработке каждой операции, в
соответствии с приоритетами. Это означает, что могут иметь место и
"промежуточные" преобразования:
doubleResult = floatVal + (shortVal * floatVal);

Здесь первой будет обрабатываться операция *, которая, как уже
рассказывалось ранее, будет приводить к преобразованию shortVal во
float. Далее будет обрабатываться операция +, которая не требует
преобразования типов, так как имеет дело с двумя значениями float (а
именно — floatVal и результатом вычисления shortVal * floatVal). И,
наконец, последней будет обрабатываться операция =, при которой результат
предыдущей операции, имеющий тип float, будет преобразовываться в тип
double.

2.4.3.2. Форматные преобразования

Метод ToString() позволяет получить некоторое стандартное
представление литерала того или иного встроенного типа. Например, для
всех целых типов это будет запись литерала в десятичной системе счисления,
без незначащих нулей и знака "плюс" для положительных значений.
Литералы типа float будут изображаться с двумя, а литералы типа double –
с 10 знаками после запятой. Чтобы избавиться от подобных ограничений и
иметь возможность получать литералы в представлениях (форматах),
отличных от стандартного, следует использовать другой вариант этого
метода, требующий задания строки форматирования:
<имя_переменной>.ToString(<строка_форматирования>)

Наличие нескольких вариантов одного и того же метода с разными
наборами аргументов называется перегрузкой методов. Подробно об этом
также будет рассказано в разделах главы 7, посвященной методам.

 5 / 20

36

Строка формата содержит один или несколько описателей формата,
определяющих, каким образом осуществляется преобразование значения.
Описатели формата делятся на стандартные и настраиваемые. Строки
стандартных числовых форматов служат для форматирования встроенных
числовых типов.

Стандартная строка числового формата имеет вид Axx, где A является
символом буквы, называемой спецификатором формата, а xx является
необязательным целым числом, называемым спецификатором точности.
Спецификатор точности находится в диапазоне от 0 до 99 и влияет на число
цифр в результате. Любая строка иной структуры интерпретируется как
строка настраиваемого формата. Стандартные спецификаторы числовых
форматов представлены в таблице 9.

Таблица 9. Стандартные спецификаторы числовых форматов

Спецификатор
формата

Имя
формата

Описание формата

"D" или "d" Десятичное
число

Формат доступен только для целых типов. Число
преобразуется в строку, состоящую из
десятичных цифр (0-9); если число
отрицательное, перед ним ставится знак "минус".
Минимальное количество знаков в выходной
строке задается спецификатором точности.
Недостающие знаки в строке заменяются нулями.

"E" или "e" Экспонен-
циальный
(научный)

Число преобразуется в строку вида
"-d.ddd…E+ddd" or "-d.ddd…e+ddd », где знак "d"
представляет цифру (0-9). Если число
отрицательное, в начале строки появляется знак
"минус". Перед разделителем целой и дробной
части всегда стоит один знак.
Требуемое число знаков дробной части задается
спецификатором точности. Если спецификатор
точности отсутствует, по умолчанию число
знаков дробной части равно шести.
Регистр спецификатора формата задает регистр
буквы, стоящей перед экспонентой ("E" или "e").
Экспонента состоит из знака "плюс" или "минус"
и трех цифр. Недостающие до минимума цифры
заменяются нулями, если это необходимо.

"F" или "f" Фиксирован
ная запятая

Число преобразуется в строку вида "-ddd.ddd…",
где знак "d" представляет цифру (0-9). Если число
отрицательное, в начале строки появляется знак
"минус".
Требуемое число знаков дробной части задается
спецификатором точности.

 6 / 20

37

"G" или "g" Общие Число преобразуется в наиболее короткую запись
из записи с фиксированной запятой или
экспоненциальной записи, в зависимости от типа
числа и наличия спецификатора точности.
Нотация с фиксированной запятой используется,
если число меньше 10-4 или если длина целой
части числа больше значения спецификатора
точности. В противном случае используется
научная нотация.

"N" или "n" Номер Число преобразуется в строку вида
"-d,ddd,ddd.ddd… ", где знак '-' при
необходимости представляет знак "минус", знак
'd' - цифра (0-9), знак ',' - разделитель тысяч, а знак
'.'- разделитель целой и дробной части.

"P" или "p" Процент Результатом является число, умноженное на 100 и
отображаемое с символом процента.

"X" или "x" Шестнадца-
теричный

Этот формат доступен только для целых типов.
Число преобразуется в строку
шестнадцатеричных знаков. Регистр
шестнадцатеричных знаков, превосходящих 9,
совпадает с регистром спецификатора формата.
Например, чтобы отображать эти цифры в виде
"ABCDEF", нужно задать спецификатор "X"; и
спецификатор "x", чтобы получить "abcdef".
Минимальное количество знаков в выходной
строке задается спецификатором точности.
Недостающие знаки в строке заменяются нулями.

"C" или "c" Валюта Число преобразуется в строку, представляющую
денежные единицы.

"R" или "r" Приемо-
передача

Применимо только к типам float и double.
Обеспечивает формирование строк с
максимальной степенью точности представления
исходного значения.

Настраиваемые строки числовых форматов позволяют формировать

строки с более сложной структурой. Как уже отмечалось, при
преобразовании числовых значений любая строка форматирования, отличная
от стандартной, рассматривается как настраиваемая. Ряд символов (0 # . , E e
\ % ;) в такой строке имеет специальное назначение, а остальные
рассматриваются как текстовое дополнение и без изменения переносятся в
строку результата. В частности, символы играют роль цифрозаменителей,
указывая места, где в полученной строке должны располагаться цифры
исходного числа. Например:

 7 / 20

38

double Сумма = 12.34;
string str = Сумма.ToString("Число в формате с
 фиксированной точкой: ##.###");
Console.WriteLine(str);

На экран будет выведена строка
Число в формате с фиксированной точкой: 12.34

2.5. КОНСОЛЬНЫЙ ВВОД И ВЫВОД
Любая программа должна каким-то образом получать исходные данные

и сообщать о полученных результатах. Поэтому операции ввода и вывода
являются универсальными как в смысле их использования в программах, так
и в смысле наличия соответствующих средств во всех языках
программирования. Мы использовали вывод результатов в приведенных
ранее примерах. Теперь рассмотрим этот вопрос более подробно.

Как уже отмечалось выше (см. 1.3), основным способом группирования
методов в языке C# являются классы, которые, в свою очередь, группируются
в пространства имен. Методы, выполняющие ввод и вывод данных в
консольных приложениях, содержатся в классе Console пространства имен
System, являясь методами этого класса.

К числу этих методов относятся:
• методы вывода Write() и WriteLine();
• методы ввода Read(), ReadKey() и ReadLine().

Методы вывода в качестве аргумента содержат список вывода –
последовательность выражений, разделенных запятыми, значения которых
подлежат выводу. Результатом выполнения методов вывода является
формирование на экране строки вывода, содержащей значения выражений из
списка вывода. При этом метод WriteLine() дополнительно выводит
символ перехода к новой строке.

 Вывод данных может производиться с использованием
форматирования или без него. В случае бесформатного вывода список
вывода может содержать всего один элемент, значение которого
преобразуется в строковое представление стандартным образом (список
вывода метода WriteLine() может быть пустым). Бесформатный вывод
возможен для данных всех встроенных типов.

Методы ввода не имеют аргументов. Метод Read() возвращает в
качестве результата код очередного символа из вводимой строки. Для
завершения считывания этот метод требует нажатия клавиши Enter, или
запроса на выполнение еще одной операции ввода. При этом если вводимая
строка содержит более одного символа, то следующие операции ввода будут
читать символы из этой же строки.

 8 / 20

39

Метод ReadKey() также возвращает в качестве результата код
очередного символа из вводимой строки и не требует для завершения
считывания нажатия клавиши Enter.

Метод ReadLine() возвращает очередную строку из входного потока.
Это означает, что метод завершает считывание данных только после нажатия
клавиши Enter.

2.5.1. КОНСОЛЬНЫЙ ВЫВОД. ФОРМАТИРОВАНИЕ
При форматном выводе в списке вывода может содержаться любое число

элементов. Первым элементом списка является строка составного формата, за
которой следуют остальные элементы списка. Строка составного формата
состоит из фиксированного текста, в который включены местозаполнители,
называемые элементами форматирования. Остальные элементы списка вывода
(параметры) индексируются в порядке их следования, начиная с нуля. Каждый
элемент форматирования ограничен фигурными скобками и содержит индекс
некоторого параметра и, возможно, некоторую дополнительную информацию о
форме представления его значения. Операция форматирования создает
результирующую строку, состоящую из исходного фиксированного текста, в
который включены строковые представления параметров. Например, оператор
Console.WriteLine("Сумма {0} и {1} равна {2}", 2, 3, 2+3);
сформирует строку вывода
Сумма 2 и 3 равна 5

Помимо индекса параметра, элемент форматирования может содержать
дополнительные сведения относительно формата представления выводимой
информации. Вся необходимая для дополнительного форматирования
информация размещается непосредственно в элементах форматирования и
отделяется запятой от индекса параметра.

Каждый элемент форматирования имеет следующий вид:
{index[,alignment][:formatString]}

Здесь index – индекс параметра вывода, alignment – ширина поля
вывода, то есть число символов в строке, представляющей выводимое
значение, formatString – строка форматирования. Выводимое значение
выравнивается по правому краю поля вывода при положительном значении
ширины и по левому краю при отрицательном.

Например, результатом выполнения следующего оператора вывода:

Console.WriteLine("***{0,10}***",3.14);

будет следующая строка:
*** 3.14***

А выполнение такого оператора:

Console.WriteLine("***{0,–10}***",3.14);

приведет к следующему результату:
***3.14 ***

 9 / 20

40

О строках числового форматирования речь шла в разделе 2.4.3.2
настоящей главы. Данные булевского и символьного типов не требуют
какого-либо форматирования при выводе и, соответственно, строки
форматирования для них не определены. Что же касается пользовательских
типов данных, то проблемы ввода и вывода их значений будут
рассматриваться по мере знакомства с этими типами.

Следующие примеры иллюстрируют варианты применения элементов
форматирования, содержащих строки форматирования:

Листинг 2.3. Консольный вывод с форматированием

static void Main(string[] args)
{
 float x = (float)Math.Exp(1);
 Console.WriteLine(" "+x.ToString());

 double y = Math.Exp(1);
 Console.WriteLine(" "+y.ToString());

 // Число в формате с фиксированной точкой
 string str = y.ToString(" Число: ##.###");
 Console.WriteLine(str);

 Console.WriteLine(" ***{0,10}***", 3.14);
 Console.WriteLine(" ***{0,-10}***", 3.14);

 Console.WriteLine("Integer – {0:D3},{1:D5}",

12345,12);
 Console.WriteLine("Currency–{0:C},{1:C5}",

99.9, 999.9);
 Console.WriteLine(" Exponential – {0:E}", 1234.5);
 Console.WriteLine(" Fixed Point – {0:F3}",

1234.56789);
 Console.WriteLine(" General – {0:G}", 1234.56789);
 Console.WriteLine(" Number– {0:N}", 1234567.89);
 Console.WriteLine(" Hexadecimal – {0:X7}", 12345);

 Console.ReadKey();
}

В результате выполнения этих операторов в окно консольного
приложения будут выведены следующие строки:

Integer fotmating – 12345,00012
Currency formatting – $99.90,$999.90000
Exponential formatting – 1.234500E+003
Fixed Point formatting – 1234.568
General formatting – 1234.56789

 10 / 20

41

Number formatting – 1,234,567.89
Hexadecimal formatting – 0003039

2.5.2. КОНСОЛЬНЫЙ ВВОД. ПРЕОБРАЗОВАНИЕ ЗНАЧЕНИЙ
Основным методом ввода является метод ReadLine(), возвращающий

в качестве результата своего выполнения строку из входного потока. Этого
недостаточно для ввода значений типов, отличных от строкового.
Необходимо выполнить анализ введенной строки, и в случае, если она
представляет собой допустимое изображение литерала некоторого типа,
выполнить преобразование этого литерала в соответствующее значение.
Такое преобразование выполняется методами Parse() и TryParse(),
доступными для всех встроенных типов. Результат выполнения метода
ReadLine() передается им в качестве аргумента, например:

int myVar = int.Parse(Console.ReadLine());
double Сумма;
bool f = double.TryParse(Console.ReadLine(), out Сумма);

В первой строке этого кода выполняется ввод строки с изображением
целочисленного литерала с последующим преобразованием литерала в
целочисленное значение. При этом в случае ошибки в строке ввода
произойдет аварийное завершение программы.

В третьей строке выполняется ввод вещественного значения с
проверкой правильности вводимой последовательности символов. При
возникновении ошибки не происходит аварийного завершения программы,
но возвращается булевское значение false. Контроль ввода является одним
из правил хорошего стиля программирования.

Как было показано в разделе 2.4.3.1, разбор введенной строки можно
выполнить также с помощью методов класса Convert. В этом случае
вышеприведенный код следует записать в виде:
int myVar = Convert.ToInt32(Console.ReadLine());
double Сумма = Convert.ToDouble(Console.ReadLine());

В этом случае при вводе неверного значения также происходит
аварийное завершение программы.

2.5.3. ПРИМЕР РАБОТЫ С КОНСОЛЬЮ
Используя возможности класса Console, можно создавать достаточно

интересные приложения, что демонстрируется следующим примером.
Пример 2.3. Построить график функции e-x*x в окне консоли.
В этом проекте использованы методы класса Console, представленные

в таблице 10.

 11 / 20

42

Таблица 10. Методы класса Console

Метод Назначение
Clear() Удаляет всю информацию из буфера

консоли и из окна
SetCursorPosition
(int left, int top)

Устанавливает положение курсора

SetWindowSize (int width,
int height)

Устанавливает значения высоты и
ширины окна консоли

Кроме того, использовались два свойства этого класса:

• BackgroundColor – возвращает или задает цвет фона консоли;
• ForegroundColor – назначает цвет символов.

Цвета консоли заданы в перечислении ConsoleColor. Значением по
умолчанию является Black.

Рис. 2.4. График функции e-x*x.

Листинг 2.4. Построение графика функции в окне консоли

class Program
{
 static int W = 160; // ширина окна консоли

 12 / 20

43

 static int H = 60; // высота окна консоли
 static float x1 = -3.0f; // окно на бумаге
 static float x2 = 3.0f;
 static float y1 = -0.1f;
 static float y2 = 1.2f;

 static int II(float x)
 {
 return (int)(0 + (x - x1) * W / (x2 - x1));
 }
 static int JJ(float y)
 {
 return (int)(0 + (y - y2) * H / (y1 - y2));
 }

 static void Main(string[] args)
 {
 // размер окна консоли
 Console.SetWindowSize(W,H);
 // цвета окна: фона – белый,символов - черный
 Console.BackgroundColor =
 ConsoleColor.White;
 Console.ForegroundColor = ConsoleColor.Red;
 Console.Clear();

 float h = (x2 - x1) / W; // шаг по оси OX
 float x = x1 - h;

 // построение вертикальной оси
 for (int i = 0; i < H; i++)
 {
 Console.SetCursorPosition(II(0), i);
 Console.Write('|');
 }

 // построение горизонтальной оси и точек графика
 for (int i = 0; i < W; i++)
 {
 x = x + h;
 // горизонтальная ось
 Console.SetCursorPosition(II(x), JJ(0));
 Console.Write('-');
 // график функции
 float y = (float)Math.Exp(-x * x);
 int b = JJ(y);
 if (b>=0 && b<H)
 {
 Console.SetCursorPosition(II(x), b);

 13 / 20

44

 Console.Write('*');
 }
 }
 Console.ReadKey();
 }
 }

 14 / 20

45

Глава 3. ВЫРАЖЕНИЯ И ОПЕРАЦИИ

Обработка данных компьютером сводится к их последовательному
преобразованию путем выполнения действий, предусмотренных алгоритмом
программы. Описание этих действий в программе образует несколько
уровней детализации. На самом нижнем уровне этой иерархии находятся
операции.

Операцией (operator) называется элементарное действие над данными,
результатом которого является получение нового значения. Данные,
над которыми выполняется операция, называются ее операндами.

Примерами операций являются арифметические операции над числами
(сложение, вычитание, умножение и деление), а также операции сравнения и
логические операции. Синтаксически, то есть в исходном тексте программы,
операции представляются специальными символами и служебными словами.

Следующим уровнем иерархии действий являются выражения,
объединяющие несколько операций, после выполнения которых получается
значение выражения.

В языке С# имеется большой набор операций, различающихся своими
характеристиками, к числу которых относятся:

• арность операции – число участвующих в операции операндов;
• тип значения, возвращаемого операцией;
• приоритет операции – последовательность выполнения;
• ассоциативность операции – направление выполнения.

По числу участвующих в них операндов операции делятся на:
• унарные, выполняемые над одним операндом;
• бинарные, выполняемые над двумя операндами;
• тернарные, выполняемые над тремя операндами.

Большинство операций относится к категории бинарных операций,
несколько – к категории унарных и лишь одна, называемая условной
операцией (conditional operator) – к категории тернарных. Типы двух
операндов, участвующих в бинарных операциях, могут не совпадать. В этом
случае выполняется приведение их к одному типу по соответствующим
правилам. Для большинства операций тип возвращаемого значения совпадает
с типом операндов, но ряда операций отличается от него.

Приоритет и ассоциативность – это характеристики операций,
определяющие правила вычисления значений выражений. Стоит упомянуть
еще об одной характеристике операций. В результате ее выполнения
значения используемых в ней операндов могут изменяться или оставаться

 15 / 20

46

неизменными. Все унарные операции (кроме унарного +) изменяют значение
своего операнда. Что же касается бинарных операций, то некоторые из них
также могут менять значение одного из своих операндов. Такие бинарные
операции называются операциями с побочным эффектом.

С точки зрения синтаксиса языка выражение определяют следующим
образом.

Выражение (expression) – это запись, которая может включать в себя
литералы, имена констант и переменных, вызовы методов, знаки
операций и круглые скобки.

Правила вычисления выражений.
1. Операции в выражении выполняются с учетом их приоритета: сначала

выполняются операции с более высоким приоритетом, затем – с более
низким.

2. Операции с одинаковым приоритетом выполняются с учетом их
ассоциативности, то есть в направлении слева направо или справа
налево.

3. Части выражения, заключенные в скобки (подвыражения), вычисляются
в первоочередном порядке.
В таблице 11 перечислены операции, определенные в языке C# с

указанием их характеристик. Нумерация приоритетов выполнена в порядке
их убывания.

Таблица 11. Операции языка C#

Приори-
тет

Категория Обозначения Ассоциативность

0 Первичные . () [] new
sizeof
typeof
checked
unchecked

1 Унарные + – ! ~ ++ – –
(тип)

Слева направо

2 Мультипликативные * / % Слева направо
3 Аддитивные + – Слева направо
4 Сдвиги << >> Слева направо
5 Отношения, проверка

типов
< > <= >= is
as

Слева направо

6 Эквивалентность == != Слева направо
7 Логическое И

бинарное
& Слева направо

 16 / 20

47

Приори-
тет

Категория Обозначения Ассоциативность

8 Логическое
исключающее ИЛИ
бинарное

^ Слева направо

9 Логическое ИЛИ
бинарное

| Слева направо

10 Условное И && Слева направо
11 Условное ИЛИ || Слева направо
12 Условное выражение ?: Справа налево
13 Присваивания = *= /= %= +=

–= <<= >>= &=
^= |=

Справа налево

3.1. МАТЕМАТИЧЕСКИЕ ОПЕРАЦИИ
Математические операции определены для простых числовых типов.

Эти операции с указанием типов операндов и типов результатов
представлены в таблице 12. В этой таблице под целыми типами понимаются
типы int, uint, long и ulong. Для типов sbyte, byte, short и ushort
выполнение указанных операций возможно только после явного приведения
к нужным типам. Это ограничение не распространяется на операции
инкремента и декремента.

Операция деления выполняется по-разному в зависимости от типа ее
операндов. Если оба операнда имеют целый тип, то ее результатом будет
остаток от деления. Если же хотя бы один операнд является вещественным,
то и тип результата будет вещественным.

Унарные операции инкремента ++ и декремента – – имеют своим
результатом, соответственно, увеличение или уменьшение на единицу
значения своего операнда. Эти операции имеют две формы – префиксную и
постфиксную. Различия между ними возникает, если они входят в выражение
наряду с другими операциями. В префиксной форме они выполняются как
операции с 1-м уровнем приоритета. Например, выражение
x / ++y

при x = 10 и y = 3 имеет значение 2, так как значение переменной x сначала
увеличено до 4, а затем было выполнено целочисленное деление 10 на 4.

В постфиксной форме операции инкремента и декремента
выполняются после всех остальных операций в выражении. Поэтому
выражение
x / y++

при тех же значениях переменных x и y имеет значение 3. В этом случае
сначала производится целочисленное деление 10 на 3, в результате чего
получается значение выражения, и затем значение y увеличивается на 1.

 17 / 20

48

Таблица 12. Простые математические операции

Операция Пример Тип операндов Тип результата
Унарный плюс + x целые/вещественные целые/

вещественные
Унарный
минус

– x целые/вещественные целые/
вещественные

Сложение x + y целые/вещественные целые/
вещественные

Вычитание x – y целые/вещественные целые/
вещественные

Умножение x * y целые/вещественные целые/
вещественные

Деление x / y целые/вещественные целые/
вещественные

Остаток от
деления

x % y целые целые

Инкремент ++x, x++ любой целый любой целый
Декремент – –x, x– – любой целый любой целый

Замечание. Унарная операция + не влияет на значение переменной. Если x = –
1, тогда +x тоже будет равняться –1.

Eще один пример использования этих операций в выражениях:

int a, b = 5, c = 6;
a = b++ * --c;

Перед вычислением выражения сначала выполнится операция ––c,
которая изменит значение соответствующей переменной с 6 на 5. Затем будет
выполнено умножение числа 5 на 5, что и даст значение выражения, то есть
25. И только после этого значение переменной b будет увеличено на 1.

Операции инкремента ++ и декремента –– часто используются в
циклах. В следующем примере программа приглашает ввести строку и два
числа и затем выводит результаты выполнения ряда вычислений над
введенными числами.

Пример 3.1. Ввод данных, преобразование типов и применение
математических операций к переменным.

Листинг 3.1. Математические операции

static void Main(string[] args)
{
 double a, b;
 string Name;

 18 / 20

49

 Console.Write("Введите ваше имя:");
 Name = Console.ReadLine();
 Console.WriteLine("Привет {0}!", Name);
 Console.Write("a = ");
 a = Convert.ToDouble(Console.ReadLine());
 Console.Write("b = ");
 b = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("{0}+{1} = {2}", a, b, a + b);
 Console.WriteLine("{0}-{1} = {2}", a, b, a - b);
 Console.WriteLine("{0}*{1} = {2}", a, b, a * b);
 Console.WriteLine("{0}/{1} = {2}", a, b, a / b);
 Console.ReadKey();
}

Помимо математических операций, в этом примере демонстрируется
ввод данных с использованием метода Console.ReadLine(). Сначала
предлагается ввести имя; введенное имя сохраняется в переменной Name типа
string:
string Name;
Console.WriteLine("Введите ваше имя:");
Name = Console.ReadLine();
Console.WriteLine("Добро пожаловать, {0}!", Name);

Если будет введена строка «Вася», то программа выведет на экран
«Привет, Вася!».

Далее выполняется считывание двух чисел типа double. Этот процесс
является более сложным, так как метод Console.ReadLine() генерирует
строку, которую необходимо преобразовать в число. Здесь необходимо
использовать механизм преобразования типов, используя, в данном случае,
метод Convert.ToDouble().

Сначала объявляются переменные, в которых должны сохраняться
вводимые числа:
double a, b;

Далее обеспечивается отображение соответствующего приглашения, и
в отношении получаемой Console.ReadLine() строки применяется
команда Convert.ToDouble() для преобразования ее в число double. Это
число затем присваивается объявленной ранее переменной a:

Console.WriteLine("a = ");
a = Convert.ToDouble(Console.ReadLine());

Аналогично принимается значение переменной b. После этого
производится вывод на экран результатов сложения, вычитания, умножения
и деления двух полученных чисел:

Console.WriteLine("{0} + {1} = {2}", a, b, a + b);

 19 / 20

50

Выражения, типа a+b и т.д., передаются оператору
Console.WriteLine() в виде параметра, без использования промежуточной
переменной и не требуют преобразования типов.

Рис. 3.1. Результат работы программы

3.2. ОПЕРАЦИИ ОТНОШЕНИЯ
Бинарные операции отношения позволяют сравнить два значения

одного и того же типа. В общем случае эти операции записываются в виде:
<выражение> <операция_отношения> <выражение>

Результатом выполнения этих операций является получение булевского
значение true или false. Операции отношения перечислены в табл. 13.

Таблица 13. Операции отношения

Напомним, что операции «равно» и «неравно» имеют более низкий

приоритет, чем остальные операции отношения. Перечисленные операции
отношения могут применяться к числовым, строковым и булевским
значениям.

3.2.1. ОПЕРАЦИИ ОТНОШЕНИЯ ДЛЯ ЧИСЛОВЫХ И

СИМВОЛЬНЫХ ДАННЫХ
При выполнении операций сравнения с числовыми операндами при

необходимости производится неявное приведение сравниваемых значений к
одному типу. Пример применения операции отношения, к числовым
значениям:
bool Ok;
Ok = myVal < 100;

Следует отметить одну особенность, связанную с выполнением
сравнения двух вещественных значений. Вещественные значения имеют

Операция Пример Результат
Равно a == b true, если a = b, иначе false
Неравно a != b true, если a ≠ b, иначе false
Меньше a < b true, если a меньше b, иначе false
Больше a > b true, если a больше b, иначе false
Больше или равно a >= b true, если a больше или равна b, иначе false
Меньше или равно a <= b true, если a меньше или равна b, иначе false

Powered by TCPDF (www.tcpdf.org)

 20 / 20

51

ограниченную точность представления в памяти компьютера. В этой связи,
не рекомендуется проверять два вещественных значения на равенство:
результат такого сравнения может оказаться зависящим от среды
выполнения.

Сравнение двух символов сводится к сравнению их кодов в таблице
Unicode, то есть фактически, к сравнению двух целых чисел. Например:
bool isLess;
isLess = myChar < ‘A’;

Переменная isLess получит значение true в том случае, если
переменная myChar хранит символ, расположенный в таблице Unicode
после символа `A` и значение false в противном случае.

3.2.2. ОПЕРАЦИИ ОТНОШЕНИЯ ДЛЯ СТРОКОВЫХ И БУЛЕВСКИХ

ДАННЫХ
Сравнение строк в C# имеет свою особенность по сравнению с

многими другими языками программирования, а именно, строки могут
сравниваться только на совпадение или несовпадение. Иначе говоря, для
строковых операндов можно использовать только операции «равно» (==) и
«неравно» (!=). Пример применения операции отношения, к строковым
данным:
bool isFull;
isFull = myString == "Full";

Здесь isFull будет присваиваться значение true только в том случае,
если в переменной myString хранится строка "Full".

То же ограничение имеет место и для операндов булевского типа.
Например, принадлежность значения целой переменной myVal интервалу
[100, 200] можно проверить следующим образом:
bool isTrue;
isTrue = myVal <= 200 == myVal >= 100;

В этом примере существенным является порядок выполнения операций
отношения: сначала выполняются операции «меньше или равно» и «больше
или равно», затем операция «равно».

3.3. ЛОГИЧЕСКИЕ ОПЕРАЦИИ
Логические операции выполняются над данными булевского типа. Это

хорошо известные операции булевой алгебры – НЕ, И, ИЛИ, Исключающее
ИЛИ. Все эти операции перечислены в табл. 14.

Операция инверсии является унарной и имеет самый высокий
приоритет. Следующей по уровню приоритета является операция
конъюнкции &, далее следует операция дизъюнкции | и самый низкий
приоритет имеет операция строгой дизъюнкции ^. Интересной особенностью
бинарных операций &, |, ^ является то, что они могут выполняться и над

 1 / 25

52

данными целого типа. В этом случае их результат определяется иным
способом, о чем будет идти речь в следующем разделе. Возможность
использования разных способов получения результата операции для разных
типов операндов называется перегрузкой операций.

Таблица 14. Операции с логическими значениями

Имеются еще две логические операции, являющиеся аналогами

операций & и |, которые называются условными логическими операциями и
показаны в табл. 15. Результат этих операций выглядит точно так же, как и у
операций & и |, но их важным отличием является способ, по которому этот
результат получается. Они вычисляют значение первого операнда (a в табл.
15), а затем могут не переходить к обработке второго операнда (b в табл. 15).

Таблица 15. Условные логические операции

Операция Пример Результат
Условная
конъюнкция (И)

a && b true, если a и b равны true, иначе
false

Условная
дизъюнкция (ИЛИ)

a || b true, если a или b равно true,
иначе false

Если значением первого операнда в операции && является false, то
значение второго операнда не влияет на результат, так как результатом все
равно будет false. Точно так же и операция || будет всегда возвращать true,
если значением первого операнда является true, каким бы ни было значение
второго операнда. Для операций & и | всегда вычисляются оба операнда.

Есть две причины, по которым в C# введены условные логические
операции. Во-первых, применение операций && и || вместо & и |
обеспечивает более высокую производительность вычислений. Во-вторых,
операции полезны в том случае, если вычисление второго операнда возможно
только при определенных значениях первого операнда. Например:
c = (a != 0) && (b / a > 2);

В данном случае при a = 0 попытка деления b на a будет приводить к
возникновению ошибки.

Операция Пример Результат
Инверсия (НЕ)

!a
true, если a равно false, и
false, если a равно true

Конъюнкция (И)
a & b

true, если a и b равны true;
иначе false

Дизъюнкция (ИЛИ)
a | b

false, если a и b равны false;
иначе true

Строгая дизъюнкция
(исключающее ИЛИ) a ^ b

false, если a и b равны false
или если a и b равны true; иначе
true

 2 / 25

53

3.4. БИТОВЫЕ ОПЕРАЦИИ
В предыдущем разделе говорилось о возможности применения

операций И, ИЛИ, Исключающее ИЛИ к данным целых типов. В этом случае
они выполняются поразрядно над соответствующими парами бит двоичных
представлений чисел-операндов. Каждый бит в первом операнде
сравнивается с находящимся в такой же позиции битом во втором операнде,
после чего соответствующему биту результата присваивается значение
результата операции. Результатом выполнения битовых операций всегда
является значение типа int.

Рассмотрим, например, операцию &:
int result, A = 4, B = 5;
result = A & B;

В этом случае требуется взять двоичные представления A и B, которые
выглядят, соответственно, как 000001002 и 000001012. Результат можно
получить путем сравнения двоичных цифр, находящихся в этих двух
представлениях в эквивалентных позициях.

Если 0-бит и в A и в B равен 1, тогда 0-бит в result тоже будет равен 1,
а если нет, тогда он будет равен 0.

Если 1-бит и в A и в B равен 1, тогда 1-бит в result тоже будет равен 1,
а если нет, тогда он будет равен 0.

Сравнить таким же образом и все остальные биты.
Следовательно, значение result в двоичном представлении будет

выглядеть как 1002, то есть result получает значение 410. Результаты
применения битовых операций для значений A = 7, B = 3 представлены в
табл. 16.

Таблица 16. Битовые операции для A = 7, B = 3

В языке С# также предусмотрена и возможность использования

унарной битовой операции НЕ (~), действие которой заключается в
инвертировании каждого бита операнда, в результате чего получается
переменная со значениями 1 для тех битов, которые в операнде равны 0, и
значениями 0 для тех битов, которые в операнде равны 1.

Помимо четырех продемонстрированных битовых операций
существует еще две бинарные битовые операции сдвига. В языке C#
операции сдвига определены только для некоторых целочисленных типов, а
именно, int, uint, long, ulong. Первый операнд в этих операциях
представляет сдвигаемый код, второй – определяет величину сдвига в битах.
Величина сдвига задается пятью младшими битами второго операнда для

A 000001112 = 710 000001112 = 710 000001112 = 710
Операция & | ^
B 000000112 = 310 000000112 = 310 000000112 = 310
result 000000112 = 310 000001112 = 710 000001002 = 410

 3 / 25

54

типов int и uint, имея диапазон значений от 0 до 31. Для типов long и
ulong величина сдвига задается шестью младшими битами второго
операнда, изменяясь в пределах от 0 до 63. Биты, выходящие за пределы
разрядной сетки, отбрасываются, а пустые младшие разряды заполняются
нулями. Битовые операции сдвига представлены в табл. 17.

Таблица 17. Битовые операции сдвига

Рассмотрим примеры применения операций сдвига. Для сокращения

записи будем указывать только значения младшего байта в двоичных
представлениях операндов.

Пример выполнения операции сдвига влево.
int b, a = 7, n = 2;
b = a << n;

Перед выполнением операции сдвига a = 710 = 000001112. Переменная
n = 210 = 000000102, так что 5 младших разрядов задают величину сдвига,
равную 2. В результате выполнения операции сдвига будет получен код
000111002, являющийся двоичным представлением числа 2810. Это значение
и будет присвоено переменной b.

Пример выполнения операции сдвига вправо.
int b, a = 10, n = 1;
b = a >> n;

После сдвига переменной b будет присвоено значение 510 = 000001012.
Если же выполнить сдвиг вправо при n = 2, то переменная b получит
значение 210 = 000000102.

Из приведенных примеров видно, что при неотрицательных значениях
второго операнда сдвиг влево на n бит эквивалентен умножению на 2n, а
сдвиг вправо делению нацело на 2n до тех пор, пока 1 не будут выходить за
пределы цепочки битов.

Операции сдвига удобно использовать для изменения k-го бита в
переменной a на 1. Например:
int a = 10, k = 2; // a = 00001010
// 1 << k = 00000100
a = a | (1 << k); // a = 00001110

Операция Пример Результат
Сдвиг вправо a >> b двоичный код содержимого переменной a

сдвигается вправо на количество разрядов,
определяемое младшими битами двоичного
кода содержимого переменной b

Сдвиг влево a << b двоичный код содержимого переменной a
сдвигается влево на количество разрядов,
определяемое младшими битами двоичного
кода содержимого переменной b

 4 / 25

55

или для изменения k-го бита в переменной a на 0:
int a = 10, k = 1; // a = 00001010
// ~(1 << k) = 11111101
a = a & ~(1 << k); // a = 00001000

Или для проверки значения k-го бита:
if ((a & (1 << k)) == 0)

Если в переменной k-бит будет равен 0, то выражение a & (1 << k) == 0
будет true, и false в противном случае.

Часто операции сдвига применяются для оптимизации кода, например,
в коде драйверов устройств или в коде системы. Еще один пример
использования – имитация работы со множествами. Опишем, например,
переменную целого типа MySet. Переменная целого типа занимает в памяти
32 бита, которых достаточно для элементов множества в диапазоне от 0 до
31: если k-бит равен 1, то k входит в множество, если 0, то не входит. Тогда
операции:

MySet |= 1 << k; // MySet = MySet+[k];
MySet &= ~(1 << k); // MySet = MySet-[k];
bool b = (MySet & (1 << k)) != 0; // b = k in MySet;

будут эквивалентны операциям включения элемента k, исключения и
проверки вхождения его в «множество» MySet. Этот прием мы будем
использовать при реализации алгоритма оптимальной выборки.

Используя массив элементов целого типа можно создавать
«множества» любой мощности.

3.5. ТЕРНАРНАЯ ОПЕРАЦИЯ
Самый простой способ выполнить сравнение — это воспользоваться

тернарной (или условной) операцией. Тернарная операция работает с тремя
операндами. Синтаксис этой операции выглядит следующим образом:
<условие> ? <результат,если условие = true> :
<результат, если условие = fаlsе>

Здесь <проверка> вычисляется для получения булевского значения, а
результатом операции в зависимости от этого значения является или
<результат_если_True>, или < результат_если_False>.

Применять этот синтаксис можно, например, так:

string result = (x < 10) ? "< 10": ">= 10";

Результатом приведенной тернарной операции будет какая-то одна из
двух строк, обе из которых могут присваиваться переменной result. Выбор
того, какая из них должна присваиваться, будет делаться сравнением
значения x с числом 10, при этом в случае, если это значение меньше десяти,
присваиваться будет первая строка, а если больше или равно 10 — то вторая.
Например, в случае, если значение x равно 4, result будет присвоена строка
"< 10".

 5 / 25

56

Такая операция подходит для простых присваиваний, подобных
показанному, но не совсем удобна для выполнения на основании сравнения
более длинных фрагментов кода. Для них больше подходит оператор if.

3.6. ОПЕРАЦИИ ПРИСВАИВАНИЯ
В отличие от многих языков программирования, в языке C# действие

по присваиванию значения переменной является не оператором, а операцией.
Это означает, что:
• ее результатом является получение некоторого значения;
• присваивание может входить составной частью в выражения.

Присваивание – это бинарная операция, операндами которой, в общем
случае, являются выражения. Значением, получаемым в результате
выполнения этой операции, является значение второго (правого) операнда-
выражения. Но присваивание имеет еще и побочный эффект, заменяя
значение левого операнда вновь полученным значением.

Кроме простой операции присваивания (=) в C# определены
составные операции присваивания с более сложным синтаксисом. Как и
операция =, они все приводят к присваиванию значения той переменной,
которая находится в их левой части, на основании операндов и операций,
находящихся в их правой части. Эти операции приведены в табл. 18.

Таблица 18. Операции присваивания

Операция Пример Результат
= a = b; a присваивается значение b
+= a += b; a = a + b
-= a -= b; a = a - b
*= a *= b; a = a * b
/= a /= b; a = a / b
Операция Пример Результат
%= a %= b; a = a % b
&= b &= a; b = b & a;
|= b |= a; b = b | a;
^= b ^= a; b = b ^ a;
>>= b >>= a; b = b >> a;
<<= b <<= a; b = b << a;

Из табл. 18 видно, что все дополнительные операции приводят к
включению a в производимые расчеты, а это значит, что строка кода вроде
a += b эквивалентна строке a = a + b.

Операция += может использоваться и со строками, точно так же, как и
операция +. Применение этих операций, особенно в случае длинных имен
переменных, может делать код более читаемым.

Логические операции можно объединить с операциями присваивания.
Операции &= и |= используют операции & и |, а не && и ||. У битовых
операций сдвига тоже имеются операции присваивания.

 6 / 25

57

Пример 3.2. Применение логических и битовых операций

Листинг 3.2. Применение логических и битовых операций

static void Main(string[] args)
{
 Console.Write(" A = "); //Введите целое число
 int A = Convert.ToInt32(Console.ReadLine());
 Console.WriteLine(" А < 10? {0}", A < 10);
 Console.WriteLine(" От 0 до 5? {0}",(0<=A) && (A <= 5));
 Console.WriteLine(" A & 10 = {0}", A & 10);
 Console.ReadKey();
}

Первая строка выводит приглашение на ввод значения «А =». Вторая
строка принимает значение, введенное с клавиатуры, в переменную А:
Console.Write("A = ");
int A = Convert.ToInt32(Console.ReadLine());

Для получения целого числа из введенной строки используется
команда Convert.ТоInt32().

В остальных строках кода выполняются различные операции над
полученным числом и выводятся результаты:

3.7. ВЫЧИСЛЕНИЕ ВЫРАЖЕНИЙ
При вычислении выражения каждая операция обрабатывается по

очереди, что вовсе не обязательно означает, что вычисление этих операций
происходит строго в порядке слева направо. В качестве типичного примера
возьмем следующее выражение:
С = A + B;

Здесь операция + будет вступать в силу раньше, чем =. В случае, если
приоритеты выполнения операций и не является очевидными, как, например,
в следующем выражении:

D = A + B * C;

 В этом выражении первой будет выполняться операция *, за ней —
операция + и только потом — операция =. Такой порядок выполнения
соответствует тому, который применяется в математике, и обеспечивает
получение точно такого же результата, как и в случае выполнения
аналогичного алгебраического подсчета вручную.

Использование круглых скобок позволяет управлять порядком
выполнения операций; например, рассмотрим следующее выражение:
D = (A + B) * C;

 7 / 25

58

Здесь первым будет вычисляться содержимое, заключенное в круглые
скобки, то есть операция + будет выполняться перед операцией *.

В табл. 11 показано, как выглядят приоритеты операций. Если
приоритеты совпадают (как, например, у операций * и /), тогда операции
вычисляются в порядке, определяемом их ассоциативностью.

Для переопределения стандартных приоритетов можно пользоваться
круглыми скобками. Кроме того, следует обратить внимание, что операции
++ и -- в постфиксной форме имеют, как видно в таблице, низшие
приоритеты только с концептуальной точки зрения. Они не выполняются над
результатом, например, выражения присваивания, поэтому можно считать,
что они обладают более высоким приоритетом, чем все остальные операции.

Таблица 11 позволяет уяснить, каким образом будут вычисляться
выражения, приведенного ниже и в котором операция && обрабатывается
после операций отношения <= и >=:
B = A <= 4 && A >= 2;

Для внесения большей ясности рекомендуется добавлять в выражения
круглые скобки:
B = (A <= 4) && (A >= 2);
для явного указания порядка вычислений.

3.8. КЛАСС MATH
Для работы с числовыми типами предусмотрен класс Math,

содержащий математические константы и статические методы для
реализации математических функций. В полях E и PI класса хранятся
основание натурального логарифма e = 2.71828183 и π = 3.14159265. В табл.
19 представлены некоторые методы класса. Каждый метод объявлен с
модификаторами pablic и static, что делает эти методы доступными из
программы без предварительного создания объекта класса Math.

Таблица 19. Методы класса Math

Метод Описание
double Abs(double d); Модуль аргумента. Имеются

перегруженные методы для всех
математических типов

double Acos(double d); Угол в радианах по его арккосинусу
double Asin(double d); Угол в радианах по его арксинусу
double Atan(double d); Угол в радианах по его арктангенсу
long BigMul(int x,
int y);

Произведение двух целых чисел

double Ceiling(double d); Округление в большую сторогу
double Cos(double d); Косинус угла d в радианах
double Cosh(double d); Гиперболический косинус угла d в

радианах

 8 / 25

59

int DivRen(int a, int b,
out int R);

Результат деления и остаток R

double Exp(double d); ed
double Floor(double d); Округление в меньшую сторону
double
IEEERemainder(double a,
double b);

Остаток от деления a на b

double Log(double d
[, double a]);

Натуральный логарифм d.
В перегруженном методе вторым
параметром передается основание
логарифма a.

double Log10(double d); Десятичный логарифм числа d

double Max(double a,
double b);

Максимальное из двух чисел

double Min(double a,
double b);

Минимальное из двух чисел

double Pow(double a,
double b);

ab

double Round(double d); Округляет до ближайшего целого
int Sign(double d); Возвращает -1,0 или +1, если а,

соответственно, меньше 0, равно 0 или
больше 0

double Sin(double d); Синус угла в радианах
double Sinh(double d); Гиперболический синус угла в радианах
double Sqrt(double d); Корень квадратный из а
double Tan(double d); Тангенс угла в радианах

Пример 3.3. Использование методов классов Console и Math.

Листинг 3.3. Использование методов класса Math

static void Main(string[] args)
{
 int a = 2;
 Console.Write(" Введите b = ");
 int b = Convert.ToInt32(Console.ReadLine());
 Console.WriteLine("a= {0} b = {1} Result = {2}",a,b,a*b);
 double x = 1e-3;
 double y;
 y = Math.Sqrt(x);
 Console.WriteLine(" x = {0} y = {1}", x, y);
 x = Math.PI; // округление
 string s = Convert.ToString(Math.Round(x, 2));
 Console.WriteLine(" Pi = "+Math.Round(x, 2));

 9 / 25

60

 Console.ReadKey();
}

В результате выполнения программы на экране появятся следующие
строки:

Рис. 3.2. Результат работы программы

 10 / 25

61

Глава 4. ОПЕРАТОРЫ ЯЗЫКА

Для формального описания синтаксиса языков программирования
используются специальные системы обозначений (нотаций), называемые
метаязыками. Наиболее известными метаязыками являются язык
синтаксических диаграмм и расширенная форма Бэкуса-Наура (РБНФ). Здесь
мы упомянем только основные средства РБНФ. При записи грамматики в
форме Бэкуса-Наура используются два типа объектов:

• основные символы или терминальные символы, являющиеся
символами алфавита языка, в частности, ключевые слова;

• металингвистические переменные или нетерминальные символы,
которые изображаются словами (русскими или английскими),
заключенными в угловые скобки (<...>);

• металингвистические связки (::=, |,[]).
Запись ::= означает «определяется как», символы [] обозначают

необязательное вхождение членов, а символ | означает «или». Например,
можно дать такое определение фигуры:
 <фигура> ::= <треугольник>|<квадрат>|<эллипс>

4.1. ПОНЯТИЕ ОПЕРАТОРА
В предыдущей главе мы рассмотрели два первых уровня иерархии

действий над данными при выполнении компьютерной программы –
операции и вычисление выражений. Следующим уровнем в этой иерархии
являются операторы. Чтобы дать определение понятию «оператор» надо
вспомнить, что компьютерная программа представляет собой запись
алгоритма на языке программирования. Алгоритм состоит из отдельных
шагов и оператор – это минимальная часть программного кода, которой
может быть поставлен в соответствие отдельный шаг алгоритма.

Оператором называется минимальный алгоритмически значимый
элемент программного кода.

В языке C# каждый оператор синтаксически выделяется своим
завершающим символом, в качестве которого используется символ «точка с
запятой». Важно подчеркнуть, что точка с запятой – это не разделитель
операторов, как, например, в языке Паскаль, а часть оператора.

У каждого оператора языка имеется конечная точка. Конечная точка
оператора — это позиция, непосредственно следующая за оператором. Если
существует возможность передачи управления оператору языка в ходе
выполнения, говорят, что он является достижимым. И наоборот, если
возможность выполнения оператора исключена, он называется

 11 / 25

62

недостижимым. Ниже приведен пример программного кода, содержащего
недостижимый оператор.

Листинг 4.1. Пример недостижимого оператора

void F()
{
 Console.WriteLine("выполняется");
 goto Label;
 Console.WriteLine("не выполняется");
 Label:
 Console.WriteLine("выполняется");
}

В этом примере второй вызов метода Console.WriteLine
недостижим, потому что он не может быть выполнен ни при каких условиях.
Если компилятором установлен факт недостижимости оператора языка,
выдается предупреждение. Недостижимость оператора не рассматривается
как ошибка.

В этой главе будут рассмотрены наиболее часто используемые
операторы языка C#. Их делят на несколько типов, а именно:

• операторы объявлений;
• операторы выражений;
• операторы выбора;
• операторы циклов;
• операторы перехода.

4.1.1. БЛОК
В C# имеется возможность группировать операторы, создавая блоки.

Последовательность операторов, заключенная в фигурные скобки,
называется блоком.

Сгруппированную последовательность операторов будем называть
«списком_операторов». Тогда в обозначениях РБНФ определение блока
выглядит следующим образом:
<блок> ::= {[<список_операторов>]}

В этом определении следует обратить внимание на то, что наличие
списка операторов не является обязательным. Если список операторов
опущен, то блок называется пустым.

Использование блоков позволяет решить две проблемы.
Во-первых, это проблема внедренных операторов. Внедренными

называются операторы, входящие в состав других операторов. Например, в
состав условного оператора входит оператор, который должен быть
выполнен при истинном значении условия, и оператор, выполняющийся при
ложном значении условия. В общем случае, действие, назначенное
внедренному оператору, бывает достаточно сложным и требует

 12 / 25

63

использования нескольких операторов языка программирования. В этом
случае, объединенные в блок операторы рассматриваются как один
составной оператор. Отметим одну синтаксическую особенность составного
оператора – он не содержит завершающего символа «точка с запятой».

Во-вторых, использование блоков позволяет ограничить область
действия объявлений. Переменные и константы, объявленные внутри блока,
могут использоваться только внутри этого блока. Часть программного кода, в
пределах которого может использоваться объявленная константа или
переменная, называется ее областью видимости. Говорят, что переменная или
константа локальна внутри блока, содержащего ее объявление.

Блок выполняется следующим образом. Если блок пустой, то
выполнение блока сразу завершается.

Если блок непустой, управление передается в список операторов.
После выполнения последнего оператора списка операторов, выполнение
блока завершается.

4.1.2. ПУСТОЙ ОПЕРАТОР
Пустой оператор не выполняет никаких действий.

<пустой_оператор> ::= ;
Пустой оператор используется, если в контексте, требующем наличия

оператора языка, не требуется выполнять никаких операций. Выполнение
пустого оператора сводится к передаче управления в конечную точку
оператора. Таким образом, конечная точка пустого оператора достижима,
если достижим сам пустой оператор.

Пустой оператор часто используется при записи операторов цикла с
пустым телом цикла. Кроме того, наличие пустого оператора позволяет
ставить символ «точка с запятой» и после закрывающей скобки блока.

4.1.3. ПОМЕЧЕННЫЕ ОПЕРАТОРЫ
Любой оператор программного кода может быть снабжен меткой, то

есть быть помеченным. Помеченные операторы разрешается использовать в
блоках, но запрещается использовать как внедренные операторы.
<помеченный_оператор> ::= <метка>: <оператор>
<метка> ::= <идентификатор>

Помеченный оператор объявляет метку, имя которой задает
идентификатор. Областью видимости метки является весь блок, в котором
она объявлена, включая вложенные блоки, если они имеются. Если у двух
меток с одним именем перекрывающиеся области видимости, это
распознается как ошибка времени компиляции.

Метка может указываться в операторах goto, находящихся в области
ее видимости. Это означает, что оператор goto может передавать управление
в пределах блока и за его пределы, но не внутрь блока.

Метки имеют собственную область объявления и не вступают в
конфликт с другими идентификаторами. Например:

 13 / 25

64

Листинг 4.2. Использование метки

int F(int a)
{
 if (a >= 0) goto a;
 a = -a;
 a: return a;
}
является допустимым; в нем имя a используется и как параметр, и как метка.

Выполнение помеченного оператора происходит точно так же, как
выполнение оператора языка, следующего за меткой.

4.2. ОПЕРАТОРЫ ОБЪЯВЛЕНИЯ
Оператор объявления объявляет локальную переменную или

константу. Операторы объявления разрешается использовать в блоках, но
запрещается использовать как внедренные операторы.

<оператор_объявления> ::= <оператор_объявление_переменной> |
<оператор_объявление_константы>

4.2.1. ОБЪЯВЛЕНИЯ ПЕРЕМЕННЫХ
Объявление переменной объявляет одну или несколько переменных,

локальных в пределах соответствующего блока.
<оператор_объявление_переменной> ::= <тип_переменной>
<список_деклараторов_переменных>;
<тип_переменной> ::= <имя_типа> | <var>
<список_деклараторов_переменных> ::=
<декларатор_переменной>[,<список_деклараторов_переменных]
<декларатор_переменной> ::= <идентификатор> | <идентификатор>
= <инициализатор_переменной>
<инициализатор_переменной> ::= <выражение> |
<инициализатор_массива>

Тип переменной задается или непосредственно указанием имени типа в
объявлении, или опосредованно с помощью ключевого слова var. В
последнем случае тип переменной определяется ее инициализатором и
переменная называется неявно типизированной.

В списке деклараторов переменных каждый декларатор представляет
новую переменную. Декларатор переменной состоит из идентификатора,
определяющего имя переменной, за которым могут следовать лексема = и
инициализатор переменной, присваивающий переменной начальное
значение.

В отношении объявлений неявно типизированных переменных
действуют следующие ограничения.
• Объявление переменной не может содержать несколько деклараторов

переменных.

 14 / 25

65

• Декларатор переменной должен включать инициализатор переменной.
• Инициализатор переменной должен представлять собой выражение.
• Выражение инициализатора должно иметь тип, определяемый во время

компиляции.
• Выражение инициализатора не может ссылаться на саму объявляемую

переменную.
Далее приводятся примеры неверных объявлений неявно введенных

локальных переменных:

var x; // переменная не инициализируется
var v = v++; // инициализатор не может ссылаться на саму
переменную
var p = 12.5, q = 10; // объявление содержит несколько
деклараторов переменных

Объявление переменной должно предшествовать ее первому
использованию. Объявление нескольких переменных эквивалентно
нескольким объявлениям одиночных переменных одного и того же типа.
Кроме того, использование инициализатора в объявлении локальной
переменной в точности эквивалентно вставке оператора присваивания
непосредственно после объявления. Например, оператор объявления

int x = 1, y, z = x * 2;

в точности соответствует следующему списку операторов:

int x;
x = 1;
int y;
int z;
z = x * 2;

В объявлении неявно введенной локальной переменной в качестве типа
объявляемой переменной принимается тип выражения, используемого для
инициализации переменной. Например:

var i = 5;
var s = "Hello";
var d = 1.0;

Эти объявления неявно введенных локальных переменных в точности
эквивалентны следующим объявлениям с явным определением типа:

int i = 5;
string s = "Hello";
double d = 1.0;

 15 / 25

66

4.2.2. ОБЪЯВЛЕНИЯ ЛОКАЛЬНЫХ КОНСТАНТ
Объявление константы объявляет одну или несколько локальных

констант.

<объявление_константы> ::= const <тип_константы>
<список_деклараторов_констант>
<тип_константы> ::= <имя_типа>
<список_деклараторов_констант> ::=
<декларатор_константы>[,<список_деклараторов_констант]
<декларатор_константы> ::= <идентификатор> =
<константное_выражение>

Тип константы в объявлении константы задает тип констант,
представленных в объявлении. Каждый декларатор константы из списка
деклараторов состоит из идентификатора, определяющего имя константы, за
которым следуют лексема = и константное выражение, задающее значение
константы. Константное выражение может содержать только литералы и
имена ранее объявленных констант. Объявление нескольких констант
эквивалентно нескольким объявлениям одиночных констант одного и того
же типа.

Областью видимости локальной константы является блок, в котором
встречается объявление. Объявление константы должно предшествовать ее
первому использованию.

4.3. ОПЕРАТОРЫ ВЫРАЖЕНИЯ
Выражение, после которого стоит точка с запятой, является

оператором, который называется оператором выражения. Его смысл состоит
в том, что компьютер должен выполнить все действия, записанные в данном
выражении, иначе говоря, вычислить выражение. Не любое выражение
может быть использовано в качестве оператора. Правила языка C# допускают
использование в качестве операторов только выражения присваивания,
инкремента, декремента и вызова методов.

Так как присваивание в языке C# является операцией, то оператор
выражения с включением этой операции играет роль оператора
присваивания, используемого во многих языках программирования.

4.4. ОПЕРАТОРЫ ВЫБОРА
Оператор выбора выбирает для выполнения один из нескольких

возможных операторов языка на основании значения заданного выражения.
<оператор_выбора> ::= <оператор_if>|<оператор_switch>

 16 / 25

67

4.4.1. ОПЕРАТОР IF
Оператор if выбирает для выполнения внедренный оператор на

основании значения логического выражения. Внедренные операторы могут
быть блоками. Синтаксис оператора if описывается следующей формулой
РБНФ:

<оператор_if> ::= if (<логическое_выражение>) <оператор> | if
(<логическое_выражение>) <оператор> else <оператор>

Как следует из определения оператора if, он имеет две формы –
сокращенную и полную. Оператор if выполняется следующим образом.
1. Вычисляется значение логического выражения.
2. Если это значение равно true, управление передается первому

внедренному оператору. После выполнения внедренного оператора
выполнение оператора if завершается.

3. Если результатом логического выражения является false и оператор
имеет полную форму, то управление передается второму внедренному
оператору. После выполнения внедренного оператора выполнение
оператора if завершается.

4. Если результатом логического выражения является false и оператор
имеет сокращенную форму, то его выполнение завершается.
Как видно из приведенного описания оператор if по способу своего

выполнения совершенно аналогичен тернарной операции. Имеется важное
различие между ними. В тернарной операции по результатам выбора
производится вычисление выражения, а в операторе if выполняется более
общее действие, задаваемое внедренным оператором. Однако, в некоторых
случаях одни и те же действия можно выполнить, используя как тернарную
операцию, так и оператор if. Например:

string s = (k < 10) ? "< 10" : ">= 10";

Тот же результат будет получен при выполнении следующего
оператора if:

string s;
if (k < 10)
 s = "Меньше 10";
else
 s = "Больше или равно 10";

Последний вариант содержит больше строк, но зато легче читается и
проще понимается.

Внедренный оператор также может быть оператором if и в этом
случае говорят о вложенных операторах if. Вложенные операторы if могут
иметь полную или сокращенную форму. При этом надо помнить следующее

 17 / 25

68

правило: часть else оператора всегда относится к ближайшему
предшествующему if. Так, оператор if в виде:

if (x) if (y) F(); else G();

равнозначен следующей конструкции

if (x)
{
 if (y)
 {
 F();
 }
 else
 {
 G();
 }
}

Пример 4.1. Решение квадратного уравнения A×x2 + B×x + C = 0.

Листинг 4.3. Решение квадратного уравнения

static void Main(string[] args)
{
 Console.Clear();
 double a, b, c;
 Console.Write("a = ");
 a = Convert.ToDouble(Console.ReadLine());
 Console.Write("b = ");
 b = Convert.ToDouble(Console.ReadLine());
 Console.Write("c = ");
 c = Convert.ToDouble(Console.ReadLine());
 if (a == 0)
 if (b == 0)
 if (c == 0)
 Console.WriteLine("x - любое");
 else
 Console.WriteLine("нет корней");
 else
 Console.WriteLine("x = {0}", -c / b);
 else
 {
 double d = b * b - 4 * a * c;
 if (d >= 0)
 {
 d = Math.Sqrt(d);
 Console.WriteLine("x1 = {0}",(-b+d)/(2*a));
 Console.WriteLine("x2 = {0}",(-b-d)/(2*a));

 18 / 25

69

 }
 else
 Console.WriteLine("нет вещ-ных корней");
 }
 Console.ReadKey();
}

Пример 4.2. Даны длины трех отрезков. Если они могут быть длинами

сторон остроугольного треугольника, вывести их в порядке убывания,
вычислить площадь полученного треугольника.

Листинг 4.4. Площадь треугольника

static void Main(string[] args)
{
 Console.BackgroundColor = ConsoleColor.White;
 Console.ForegroundColor = ConsoleColor.Black;
 Console.Clear();
 Console.WriteLine();

 double a, b, c;
 // ввод данных
 Console.Write(" a = ");
 a = Convert.ToDouble(Console.ReadLine());
 Console.Write(" b = ");
 b = Convert.ToDouble(Console.ReadLine());
 Console.Write(" c = ");
 c = Convert.ToDouble(Console.ReadLine());
 // проверка существования треугольника
 if (a>0 & b>0 & c>0 & a+c>b & b+c > a & a + b > c)
 {
 // вычисление знаков косинусов
 double cosC = a * a + b * b - c * c;
 double cosA = c * c + b * b - a * a;
 double cosB = a * a + c * c - b * b;
 // анализ треугольника
 if (cosC < 0 | cosA < 0 | cosB < 0)
 Console.WriteLine("тупоугольный");
 else
 if (cosC > 0 & cosA > 0 & cosB > 0)
 Console.WriteLine("остроугольный");
 else
 if (cosC == 0 | cosA == 0 & cosB == 0)

 19 / 25

70

 Console.WriteLine("прямоугольный");

 double p = (a + b + c) / 2;
 double s = Math.Sqrt(p*(p-a)*(p- b) * (p - c));
 Console.WriteLine(" s = {0:F3}", s);

 // сортировка a, b, c
 double t;
 if (a < b)
 {
 t = a; a = b; b = t;
 }
 if (b < c)
 {
 t = c; c = b; b = t;
 }
 if (a < b)
 {
 t = a; a = b; b = t;
 }

 Console.WriteLine("a = {0} b = {1} c = {2}",a, b, c);
 }
 else
 Console.WriteLine("не треугольник");
 Console.ReadKey();
}

4.4.2. ОПЕРАТОР SWITCH
Оператор switch выбирает для выполнения список операторов на

основании вычисления значения выражения, которое может иметь
следующие типы: один из целых типов, типы bool, char, string, а также
тип перечисления, о котором будет идти речь в главе 6. Синтаксис оператора
switch имеет вид:
<оператор_switch> ::= switch (<выражение>) <блок_switch>
<блок_switch> ::= { [разделы_switch] }
<разделы_switch> ::= <раздел_switch> [<разделы_switch>]
<раздел_switch> ::= <метки_switch> <список_операторов>
<метки_switch> ::= <метка_switch> [<метки_switch>]
<метка_switch> ::= case <константное_выражение>: | default:

 20 / 25

71

Оператор switch состоит из ключевого слова switch, за которым
следуют выражение в скобках (так называемое switch-выражение) и блок
switch. Блок switch состоит из произвольного (возможно, нулевого) числа
разделов switch, заключенных в фигурные скобки. Каждый раздел switch
состоит из одной или нескольких меток switch и следующего за ними
списка операторов. Например:

uint x;
x = Convert.ToInt32(Console.ReadLine());
switch (x)
{
 case 0:
 x++;
 break;
 case 1:
 case 3:
 case 5:
 x--;
 break;
 default:
 x *= 5;
 break;
}

Здесь использовано несколько меток для одного из разделов оператора
switch. Константное выражение каждой метки должно иметь тип,
допускающий неявное преобразование в тип switch-выражения. Ошибка
времени компиляции возникает, если несколько меток case в одном
операторе switch задают одно и то же константное значение. В операторе
switch может быть не более одной метки default.

Оператор switch выполняется следующим образом.
1. Вычисляется значение switch-выражения.
2. Если одна из констант, указанных в метке case оператора switch,

совпадает со значением switch-выражения, управление передается
списку операторов, следующему за такой меткой case.

3. Если ни одна из констант, указанных в метках case оператора switch, не
совпадает со значением switch-выражения и при этом имеется метка
default, управление передается списку операторов, следующему за
меткой default.

4. Если ни одна из констант, указанных в метках case оператора switch, не
совпадает со значением switch-выражения и метка default отсутствует,
выполнение оператора switch завершается.
В вышеприведенном примере список операторов в каждом разделе

оператора switch завершался оператором break. Этот оператор завершает
выполнение оператора switch. Синтаксис языка C# запрещает выход в

 21 / 25

72

следующий раздел switch после завершения выполнения списка операторов
текущего раздела. Это называется правилом «запрета последовательного
выполнения».

Если после выполнения одного раздела switch должно следовать
выполнение другого раздела switch, необходимо явным образом указывать
оператор goto case или goto default:

Листинг 4.5. Пример оператора switсh

switch (i)
{
case 0:
 Proc0();
 goto case 1;
case 1:
 Proc1();
 goto default;
default:
 ProcDefault();
 break;
}

Правило запрета последовательного выполнения позволяет избежать
распространенных ошибок в программах C и C++, вызываемых случайным
пропуском оператора break. Кроме того, благодаря этому правилу разделы
оператора switch можно расставлять в произвольном порядке — это не
повлияет на поведение оператора. Например, в вышеприведенном примере
можно расположить разделы switch в обратном порядке, и это не отразится
на выполнении оператора:

Листинг 4.6. Пример эквивалентного оператора switсh

switch (i)
{
default:
 ProcDefault();
 break;
case 1:
 Proc1();
 goto default;
case 0:
 Proc0();
 goto case 1;
}

Список операторов раздела switch обычно заканчивается оператором
break, goto case или goto default, но в принципе допускается любая

 22 / 25

73

конструкция, исключающая достижимость конечной точки списка
операторов. Например, оператор while, контролируемый логическим
выражением true, никогда не позволит достичь его конечной точки.
Аналогично операторы throw и return всегда передают управление в
другое место, и их конечные точки также недостижимы. Поэтому следующий
пример будет допустимым:

Как уже отмечалось switch-выражения может иметь строковый тип.
Например:

Листинг 4.7. Пример оператора switсh со строковым выражением

void DoCommand(string command)
{
 switch (command.ToLower())
 {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

Оператор switch действует без учета регистра символов и сможет
выполнить данный раздел switch только при условии, что строка switch-
выражения в точности совпадает с константой метки case. Поэтому для
строки command предварительно выполняется перевод символов в нижний
регистр. Если типом switch-выражения является string, в качестве
константы метки case разрешается использовать значение null.

Списки операторов в разделах switch могут включать операторы
объявления. Областью видимости локальной переменной или константы,
объявленной в одном из разделов, является весь блок switch. В каждом
разделе switch использованию локальной переменной должно
предшествовать присваивание ей некоторого значения. Что же касается
локальной константы, то будучи объявленной в одном из разделов она может
использоваться в любом другом разделе switch. Пример использования
локальных константы и переменной представлен в листинге 4.8.

 23 / 25

74

Листинг 4.8. Пример использования локальной константы

int x = Convert.ToInt32(Console.ReadLine());
switch (x)
{
 case 0:
 const int c = 5;
 int y;
 x++;
 goto default;
 case 1:
 y = 2 * c;
 x--;
 Console.WriteLine("x = {0}","y = {1}", x, y);
 break;
 default:
 y = 1;
 x *= 2 + c -y;
 Console.WriteLine("x = {0}", x);
 break;
}

Классическим примером использования оператора switch является
программа, моделирующая работу калькулятора. Ниже приведен листинг
такой программы (листинг 4.9).

Листинг 4.9. Калькулятор

static void Main(string[] args)
{
 double a,b,c = 0;
 Console.Write("a = ");
 a = Convert.ToDouble(Console.ReadLine());
 Console.Write("b = ");
 b = Convert.ToDouble(Console.ReadLine());
 Console.Write("Знак операции = ");
 string ch = Console.ReadLine();
 switch (ch)
 {
 case "+":
 c = a + b;
 break;
 case "-":
 c = a - b;
 break;
 case "*":
 c = a * b;
 break;

 24 / 25

75

 case "/":
 c = a / b;
 break;
 }
 Console.WriteLine("c = {0}", c);
 Console.ReadKey();
 }

4.5. ОПЕРАТОРЫ ЦИКЛА
Оператор цикла (итераций) повторно выполняет один и тот же код,

называемый телом цикла.

<оператор_итераций> ::= <оператор_do> | <оператор_while> |
<оператор_for> | <оператор_foreach>

В этом параграфе будут рассмотрены операторы do, while и for. К
оператору foreach мы обратимся в главах 5 и 9 при рассмотрении массивов
и коллекций соответственно.

4.5.1. ОПЕРАТОР DO
Синтаксис оператора do задается следующей формулой РБНФ:

<оператор_do> ::= do { <список_операторов> } while
(<условие_продолжения>)

Условие продолжения является выражением булевского типа.
Циклы do работают следующим образом. Сначала выполняются

операторы тела цикла, затем производится вычисление значения булевского
выражения. Если оно имеет значение true, то снова выполняется тело цикла.
Если же булевское выражение имеет значение false, то выполнение цикла
завершается.

Например, для вывода чисел от 1 до 10 в столбик можно было бы
использовать такой цикл do:

int i = 1;
do
{
 Console.WriteLine("i = {0}", i++) ;
}
while (i <= 10);

Здесь используется постфиксная форма операции ++ для увеличения
значения i на 1 после его вывода на экран, что требует выполнения проверки
условия i <= 10 для включения числа 10 в состав выводимых на консоль
чисел.

Powered by TCPDF (www.tcpdf.org)

 25 / 25

76

В следующем примере эта операция тоже используется для
демонстрации применения циклов do на примере вычисления суммы
последовательности целых чисел.

Пример 4.3. Вычислить сумму заданной последовательности целых
чисел, заканчивающейся нулем.

Листинг 4.10.

static void Main(string[] args)
{
 int x, Sum = 0;
 do
 {
 Console.Write("x = ");
 x = Convert.ToInt32(Console.ReadLine());
 Sum += x;
 }
 while (x != 0);
 Console.WriteLine("Sum = {0}", Sum);
 Console.ReadKey();
}

Пример 4.4. Ввести последовательность натуральных чисел,
заканчивающуюся 0. Проверить упорядоченность этой последовательности
по возрастанию.

Листинг 4.11. Упорядоченность последовательности чисел

static void Main(string[] args)
{
 int pred, x;
 bool ok = true;
 Console.Write("x = ");
 pred = Convert.ToInt32(Console.ReadLine());
 do
 {
 Console.Write("x = ");
 x = Convert.ToInt32(Console.ReadLine());
 if (x != 0)
 ok = x >= pred;
 pred = x;
 }
 while (ok & (x != 0));
 if (ok)
 Console.WriteLine("Посл-ть упорядочена");
 else
 Console.WriteLine("Посл-ть не упорядочена");
 Console.ReadKey();
}

 1 / 25

77

Тело цикла do выполняется, по крайней мере, один раз. Такой вариант
не всегда подходит. Так в примере 4.3 тело цикла не должно выполняться для
пустой последовательности (первое введенное число равно нулю). Можно
добавить проверку на пустоту вводимой последовательности, но это
приведет в усложнению кода. В этих случаях лучше использовать цикл
while.

Пример 4.5. Методом деления отрезка пополам с заданной точностью
найти корень трансцендентного уравнения ex – 2 = 0.

Рис. 4.1. График функции ex – 2 = 0.

Листинг 4.12. Метод деления отрезка пополам

static void Main(string[] args)
{
 const double Eps = 1e-6;
 double x, a = 0, b = 10;
 double fx, fa;
 do
 {
 x = (a+b)/2;
 fx = Math.Exp(x) - 2;
 fa = Math.Exp(a) - 2;
 if (fa * fx < 0) b = x; else a = x;
 }
 while (Math.Abs(b - a) > Eps);
 Console.Write("x = {0}", (a + b)/2);
 Console.ReadKey();
}

Пример 4.6. Вычислить сумму числовых значений цифр заданного

числа.

 2 / 25

78

Листинг 4.13. Сумма цифр заданного числа

static void Main(string[] args)
{
 Console.Write(" N = ");
 int Sum = 0;
 int N = Convert.ToInt32(Console.ReadLine());
 do
 {
 Sum += N % 10;
 N = N / 10;
 }
 while (N != 0);
 Console.Write("Sum = {0}", Sum);
 Console.ReadKey();
}

4.5.2. ОПЕРАТОР WHILE
Циклы while очень похожи на циклы do, но имеют одно важное

отличие: условие продолжения в них проверяется в начале, а не в конце
очередной итерации цикла. Поэтому тело цикла может ни разу не
выполниться, если условие продолжения сразу оказывается невыполненным.

Синтаксис оператора while задается следующей формулой РБНФ:
<оператор_while> ::= while (<условие_продолжения>) <оператор>

Видно, что в отличие от оператора do тело цикла этого цикла состоит
из одного оператора. Поэтому при необходимости использования в теле
цикла while нескольких операторов их надо объединять в блок. Циклы
while могут применяться практически так же, как циклы do:

int i = 1;
while (i <= 10)
{
 Console.WriteLine("{0}", i++);
}

Этот код будет делать то же самое, что и показанный ранее код с
циклом do, то есть выводить в столбик числа от 1 до 10. В следующем
примере показано, как использовать цикл while в приложении,
проверяющем, является ли последовательность натуральных чисел
упорядоченной по возрастанию.

Пример 4.7. Ввести последовательность натуральных чисел,
заканчивающуюся 0. Проверить упорядоченность этой последовательности
по возрастанию.

 3 / 25

79

Листинг 4.14.

static void Main(string[] args)
{
 int pred, x;
 bool ok = true;
 Console.Write("x = ");
 pred = Convert.ToInt32(Console.ReadLine());
 x = pred;
 while (ok & (x != 0))
 {
 Console.Write("x = ");
 x = Convert.ToInt32(Console.ReadLine());
 if (x != 0)
 ok = x >= pred;
 pred = x;
 }
 if (ok)
 Console.WriteLine("Упорядочена");
 else
 Console.WriteLine("Не упорядочена");
 Console.ReadKey();
}

4.5.3. ОПЕРАТОР FOR
Оператор for является наиболее общим видом оператора цикла в C#.

Синтаксис этого оператора таит в себе довольно много деталей, хотя в своей
простейшей форме он вполне аналогичен таким же циклам в языках Бейсик и
Паскаль. Итак, синтаксис оператора for описывается следующей формулой:

<оператор_for> ::= for ([<инициализатор>];
[<условие_продолжения>]; [<итератор>]) <оператор>
<инициализатор> ::= <объявление_переменных> |
<список_операторов_выражения>
<итератор> ::= <список_операторов_выражения>

Инициализатор цикла for выполняется один раз; с него начинается
выполнение этого оператора. Инициализатор может быть одного из двух
видов. Во-первых, он может представлять собой объявление одной или
нескольких локальных переменных. В этом случае инициализатор имеет вид:

<инициализатор> ::= <имя_типа> <список_имен_переменных>

Имена переменных в списке разделяются запятыми. Областью
видимости этих переменных является тело цикла, а также условие
продолжения и итератор. Это означает, что они могут быть использованы как
в условии продолжения, так и в операторах выражения итератора. Например:

 4 / 25

80

for (int i = 1; i <= 10; ++i)
 Console.WriteLine ("{О}", i);

Во-вторых, инициализатором может быть оператор выражения или
список таких операторов. Напомним, что в качестве оператора могут
использоваться только выражения присваивания, инкремента, декремента и
вызова методов. Ввиду особой роли, которую играет символ точки с запятой
в операторе for, этот завершающий символ у операторов выражения в
инициализаторе опускается. Операторы выражения в списке разделяются
запятыми. Например:
int i, x, y = 14;
for (i = 0, --y, x = 3 * y; x != 0; i++, x /= 3)
 Console.WriteLine("i = {0} x = {1} ", i, x);

Здесь инициализатор представляет собой список из двух операторов
выражения присваивания и одного декремента. Инициализатор является
необязательным элементом оператора for, но при его отсутствии
завершающий символ «точка с запятой» все равно ставится.

Условием продолжения цикла, как и в случае других операторов цикла,
является выражение булевского типа. Условие продолжения может
отсутствовать, и в этом случае считается, что оно равно константе true, то
есть цикл становится бесконечным. Завершающая точка с запятой ставится и
в отсутствие условия продолжения.

Итератор цикла представляет собой список операторов выражения,
записанный по тем же правилам, что и инициализатор в своей второй форме.
В отличие от инициализатора, итератор выполняется после каждой итерации
и, как правило, обеспечивает изменение локальных переменных цикла.
В вышеприведенном примере итератор содержал два оператора выражения.
Итератор также является необязательным элементом оператора for.

Тело цикла должно быть представлено блоком или одним оператором,
в том числе, пустым. Последнюю возможность можно использовать в тех
случаях, если в теле цикла выполняется одно или несколько операторов
выражений. Эти операторы выражения можно перенести в итератор цикла,
оставив тело цикла пустым.

Оператор for выполняется следующим образом.
• Если задан инициализатор, производится объявление локальных

переменных или выполнение операторов выражения в порядке их
записи. Этот шаг выполняется только один раз.

• Если задано условие продолжения, то вычисляется значение
соответствующего булевского выражения.

• Если условие продолжения отсутствует или результатом его вычисления
является true, управление передается внедренному оператору. После
завершения выполнения внедренного оператора последовательно
вычисляются выражения итератора (если они заданы), а затем

 5 / 25

81

выполняется следующая итерация, начиная с проверки условия
продолжения.

• Если условие продолжения задано и результатом его вычисления
является false, выполнение оператора for завершается.
Формат цикла for делает код более удобным для восприятия, так как

описание всех деталей цикла сосредоточено в одном месте, а не разнесено по
разным частям кода.

В следующем примере приводится пример применения цикла for.
Пример 4.8. Вычислить сумму N слагаемых ряда.

2

1 ... (1) *
1! 2! !

N
x Nx x xe

N
− = − + − + − (R = ∞).

Листинг 4.15. Вычисление суммы ряда

static void Main(string[] args)
{
 double Sum = 1, a = 1, x = 0.2;
 int sign = 1;
 Console.WriteLine("Точное значение Sum = {0}",
 Math.Exp(-x));
 Console.Write("N = ");
 int N = Convert.ToInt32(Console.ReadLine());
 for (int i = 1; i <= N; i++)
 {
 sign = -sign;
 a *= x / i;
 Sum += sign * a;
 }
 Console.WriteLine("for Sum = {0}", Sum);
 Console.ReadKey();
}

Ту же сумму можно вычислить с помощью оператора while:

Листинг 4.16. Вычисление суммы ряда

int j = 0;
Sum = 1; sign = 1; a = 1;
while (j < N)
{
 j++;
 sign = -sign;
 a *= x / j;
 Sum += sign * a;
}

 6 / 25

82

Console.WriteLine("while Sum = {0}", Sum);

или с заданной точностью Eps = 1e-6 с помощью оператора do:

Листинг 4.17. Вычисление суммы ряда

double Eps = 1e-6;
j = 0;
Sum = 1; sign = 1; a = 1;
do
{
 j++;
 sign = -sign;
 a *= x / j;
 Sum += sign * a;
}
while (Math.Abs(a) > Eps);
Console.WriteLine("do Sum = {0}", Sum);

4.6. ОПЕРАТОРЫ ПЕРЕХОДА
Операторы перехода применяются для изменения естественного

порядка выполнения операторов, позволяя передать управление оператору,
не следующему непосредственно за данным, то есть осуществляют
безусловную передачу управления.
<оператор_перехода> ::= <оператор_break> |
<оператор_continue> | <оператор_goto> | <оператор_return> |
<оператор_throw>

Оператор, которому оператор перехода передает управление,
называется его целью.

Если оператор перехода находится внутри блока, а его цель — вне
этого блока, говорят, что оператор перехода производит выход из блока.
Операторы перехода могут передавать управление за пределы блока, но они
никогда не передают управление внутрь блока.

4.6.1. ОПЕРАТОР BREAK
Оператор осуществляет выход из ближайшего объемлющего оператора

switch, while, do, for или foreach.
<оператор_break> ::= break;

Целью оператора break является оператор, непосредственно
следующий за содержащим его оператором switch, while, do, for или
foreach. В разделе 4.4.2 говорилось о том, как оператор break используется
в разделах оператора case, обеспечивая выполнение правила запрета

 7 / 25

83

последовательного перехода. Еще одним часто используемым способом
применения оператора break является выход из бесконечных циклов.
Например, вывод в столбик чисел от 1 до 10 можно реализовать с помощью
вот такого бесконечного цикла:

int i = 1;
while (true)
{
 Console.WriteLine("{0}", i++);
 if (i == 11)
 break;
}

Отметим, что если оператор break поместить вне операторов switch,
while, do, for или foreach, то компилятор сообщит об ошибке.

Если несколько операторов switch, while, do, for или foreach
вложены друг в друга, оператор break применяется только к самому
внутреннему из них. Для передачи управления с переходом через несколько
уровней вложенности следует использовать оператор goto.

4.6.2. ОПЕРАТОР CONTINUE
Оператор continue начинает новую итерацию содержащего его

оператора цикла.
<оператор_continue> ::= continue;

Целью оператора continue является оператор, непосредственно
следующий за содержащим его оператором цикла. Этот оператор
применяется в тех случаях, если при выполнении очередной итерации
некоторая часть тела цикла оказывается излишней. Пусть, например,
требуется вычислить сумму абсолютных величин последовательности целых
чисел, которая завершается нулем. Не прибегая к помощи функции
вычисления модуля числа, это можно сделать следующим образом:

int x = 0, Sum = 0;
do
{
 Sum += x;
 Console.Write("x = ");
 x = Convert.ToInt32(Console.ReadLine());
 if (x > 0)
 continue;
 x = -x;
}
while (x != 0);

Если оператор continue поместить вне операторов цикла, то
возникает ошибка времени компиляции.

 8 / 25

84

Если несколько операторов while, do, for или foreach вложены друг
в друга, оператор continue применяется только к самому внутреннему из
них.

4.6.3. ОПЕРАТОР GOTO
Язык С# позволяет снабжать строки кода метками и затем переходить

сразу же к ним с помощью оператора goto. У такого подхода имеются как
преимущества, так и недостатки. Главным его преимуществом является то,
что он предоставляет простой способ для управления выбором исполняемого
кода, а главным недостатком – увеличение сложности отладки кода и
ухудшение его восприятия.

<оператор_goto> ::= goto < метка>;

Оператор goto передает управление оператору, помеченному
указанной меткой.

Например, рассмотрим такой код:

Листинг 4.18. Использование оператора goto

int k = 5;
goto myLabel;
k += 10;
myLabel:
Console.WriteLine("k = {0}", k);

Выполнение этого кода будет происходить следующим образом.
Сначала объявляется переменная k с типом int, которой затем присваивается
значение 5. Далее оператор goto прерывает обычный ход выполнения кода и
передает управление оператору с меткой myLabel. После этого сразу же
осуществляется вывод в окно консоли значения k. Таким образом,
получается, что в этом коде никогда не будет выполняться оператор k +=
10;

На самом деле, после добавления данного кода в приложение и
попытки скомпилировать его в окне Error List (Список ошибок) появится
предупреждение с соответствующим заголовком "Unreachable code detected"
(Обнаружен недостижимый код) и деталями о местонахождении
проблемного кода.

 9 / 25

85

4.6.4. ОПЕРАТОР RETURN
Оператор return используется для выхода из методов класса. К

обсуждению этого оператора мы вернемся в разделе 7.1.4.1 главы 7,
посвященного методам классов. Синтаксис этого оператора имеет вид:

<оператор_return> ::= return [выражение];

Необязательный элемент [выражение] позволяет вернуть в точку
вызова значение, являющееся результатом выполнения метода.

 10 / 25

86

Глава 5. МАССИВЫ

Массив – это поименованный упорядоченный набор значений одного и
того же типа, называемого базовым типом массива. Массивы являются
структурными переменными. Это означает, что один и тот же набор значений
(элементов массива) можно расположить различными способами. В этом
разделе мы будем рассматривать простейший случай линейного размещения
элементов массива. Такие массивы называются одномерными.

5.1. ОДНОМЕРНЫЕ МАССИВЫ
Одномерные массивы объявляются следующим образом:

<одномерный_массив>::= <базовый_тип> [] <имя_массива>;

С каждым элементом массива можно связать его порядковый номер –
индекс элемента. В языке C# нумерацию элементов массива принято
начинать с нуля. Доступ к отдельным значениям, хранящимся в массиве,
осуществляется с помощью операции индексирования. Эта операция
относится к числу первичных операций, то есть операций, выполняемых в
первоочередном порядке. Синтаксис обращения к элементу массива имеет
вид:

<элемент_массив> ::= <имя_массива>[<индекс>];

Квадратные скобки в этой формуле являются обозначением операции
индексирования, а не метасимволом РБНФ!

Индексация элементов массива позволяет просматривать их в цикле:
int i;
for (i = 0; i < 3; i++)
{
 Console.WriteLine("Имя[{0}]: {1}", i, studets[i]);
}

Массивы должны обязательно инициализироваться перед тем, как к
ним можно будет получить доступ. Использовать или присваивать значения
элементам массива, если они не инициализированы, нельзя. Инициализацию
массива можно выполнить двумя способами:

1. статическим – указанием всего содержимого массива в литеральной
форме;

2. динамическим – указанием числа элементов (размера массива) и
применением операции new, выделяющей для них место в памяти.

 11 / 25

87

Статическая инициализация массива подобна инициализации простых
переменных при их объявлении. Отличие заключается в том, что теперь
необходимо указывать целый список значений, заключенный в фигурные
скобки. Например:

int[] myArr = {5, 9, 10, 2, 99};

Количество заданных значений определяет размер массива. Здесь
задается массив myArr, состоящий из пяти элементов, каждому из которых
присваивается целочисленное значение.

Динамическая инициализация требует следующего синтаксиса:

[<имя_массива>] = new <базовый_тип>[<размер_массива>];

Здесь ключевое слово new используется для явной инициализации
массива. При этом всем членам массива присваиваются значения по
умолчанию. Для числовых типов значением по умолчанию является 0.
Динамическую инициализацию можно совместить с объявлением массива, но
можно выполнить и как отдельную операцию, кратно. При этом каждый раз
элементы массива будут обнуляться. Оба подхода можно комбинировать:
int[] myArray = new int [5] {5, 9, 10, 2, 99};

В этом случае объявленный размер должен совпадать с длиной списка
в фигурных скобках.

5.1.1. ЗАПОЛНЕНИЕ МАССИВОВ СЛУЧАЙНЫМИ ЧИСЛАМИ
Для инициализации элементов массивов удобно использовать

случайные числа. Язык C# предоставляет для работы с целыми числами
класс Random. Этот класс содержит ряд методов, позволяющих генерировать
последовательности псевдослучайных целых или вещественных чисел,
равномерно распределенных в некотором диапазоне. Псевдослучайность
генерируемых чисел означает, что каждое последующее число
последовательности вычисляется по некоторому сложному правилу на
основе предыдущего значения. Поэтому первый конструктор создает
несовпадающие серии чисел, а второй может создавать совпадающие серии.
Так как методы не являются статическими, то для их использования
необходимо создать объект класса. В табл. 20 представлены эти методы.

Таблица 20. Некоторые методы класса Random

Метод Описание
Next(); Возвращает очередное псевдослучайное целое

число. В качестве начального значения берет
текущее время. Генерирует неповторяющиеся
последовательности псевдослучайных чисел.

Next(max); Возвращает очередное псевдослучайное целое

 12 / 25

88

число. В качестве начального берет указанное
максимальное значение. Генерирует
повторяющиеся последовательности
псевдослучайных чисел.

Next(min,
max);

Возвращает очередное псевдослучайное целое
число. В качестве начального берет указанное
максимальное значение. Генерирует
повторяющиеся последовательности
псевдослучайных чисел из указанного диапазона.

NextBytes
(byte[]
buffer);

Заполняет переменную-массив buffer байтами с
псевдослучайными значениями

NextDouble(); Возвращает вещественное псевдослучайное число
в диапазоне от 0 до 1

Пример 5.1. Создание динамического массива из 5 элементов и вывод

его элементов.

Листинг 5.1. Создание динамического массива и вывод его элементов

static void Main()
{
 Random rnd = new Random();
 int[] a = new int[5];
 for (int i = 0; i < 5; ++i)
 a[i] = rnd.Next(100);
 for (int i = 0; i < 5; ++i)
 Console.WriteLine(a[i]);
 Console.ReadKey();
}

В следующем примере демонстрируется создание и манипуляции
массивом строк.

Пример 5.2. Создание статического массива и вывод его элементов.

Листинг 5.2. Создание статического массива и вывод его элементов

static void Main()
{
 string[] students = { "Петя", "Олег", "Юрий" };
 Console.WriteLine("Список {0} студентов: ",
 students.Length);
 for (int i = 0; i < students.Length; i++)
 Console.WriteLine(students[i]);
 Console.ReadKey();
}

 13 / 25

89

В приведенном примере создается массив string с тремя значениями,
которые затем отображаются в цикле for. Использование свойства
students.Length позволяет получить длину массива.

Если индекс выходит за пределы допустимого интервала 0..Length-1,
то возникает ошибка:
for (i = 0; i <= students.Length; i++)
{
 Console.WriteLine(students[i]);
}

Во время компиляции этого кода i будет принимать недопустимое
значение 3, что приведет к получению такого диалогового окна (рис. 5.1).

Рис. 5.1. Сообщение о выходе индекса за допустимые пределы

Более гибкий способ получения доступа к членам массива реализуется
с помощью циклов foreach.

5.1.2. ОПЕРАТОР FOREACH
Цикл foreach позволяет обращаться к каждому элементу в массиве с

помощью такого простого синтаксиса:
foreach (<базовый_тип> <имя> in <массив>)
{
 //можно использовать <имя> для каждого элемента
}

Этот цикл будет осуществлять проход по всем элементам и помещать
каждый из них по очереди в переменную <имя> безо всякого риска
получения доступа к недопустимым элементам. Такой подход позволяет не
беспокоиться о том, сколько элементов содержится в массиве, и быть

 14 / 25

90

уверенным, что каждый из них будет использован в цикле. В случае его
применения код из предыдущего примера можно изменить следующим
образом:
static void Main(string[] args)
{
 string[] друзья = { "Петя", "Олег", "Юрий" };
 Console.WriteLine("Список {0} друзей:",
 друзья.Length);
 foreach (string имя in друзья)
 {
 Console.WriteLine(имя);
 }
 Console.ReadKey();
}

Вывод этого кода выглядит точно так же, как и вывод кода, который
приводился в предыдущем примере. Главное отличие между применением
цикла foreach и стандартного цикла for состоит в том, что foreach
предоставляет к содержимому массива доступ только для чтения, что не
позволяет изменять значения элементов. То есть выполнение следующей
операции является недопустимым:

foreach (string имя in друзья)
{
 имя = "Виктор";
}

5.1.3. ССЫЛОЧНЫЕ ТИПЫ ДАННЫХ
Ссылочные типы содержат указатели на данные, размещенные в общей

памяти (в куче). Ссылочные типы бывают самоописываемыми (self-
describing), указателями и интерфейсами. Самописываемые типы делятся
на классы и массивы (коллекции).

Для переменных значимых типов выделяется своя область памяти, и
изменения значений переменной относятся только к этой переменной.
Действия над переменными ссылочного типа относятся к объектам и могут
влиять на значения нескольких ссылочных переменных (рис. 5.2).

Пример 5.3. В программе вводятся две переменные Val1 и Val2
целого значимого типа и две переменные Ref1 и Ref2 ссылочного целого
типа (рис. 5.2):

 15 / 25

91

Рис. 5.2. Размещение переменных в памяти

Листинг 5.3. Действия над переменными типов значений и ссылочного типа

using System;
class Program
{
 static void Main()
 {
 int Val1 = 111; int Val2 = a1;
 Val2 = 222; // изменение Val2 не меняет Val1
 int[] Ref1 = {1,2,3}; int[] Ref2 = {4,5,6};
 Ref2 = Ref1;
 Console.WriteLine("Val1={0} Val2={1}", Val1, Val2);
 Ref1[1] = 0; // Ref2[1] тоже принимает значение 0
 foreach (int b in Ref2)
 Console.WriteLine("Ref2 = {0}", b);
 Console.ReadLine();
 }
}
// Val1 = 111 Val2 = 222
// Ref2 = 1
// Ref2 = 0
// Ref2 = 2

5.2. МНОГОМЕРНЫЙ МАССИВ
Многомерным называется такой массив, в котором для получения

доступа к элементам применяется несколько индексов. Например,
предположим, что требуется сохранить карту высот местности по
равномерной прямоугольной сетке точек с двумя координатами х и у. Эти
две координаты можно представить в виде индексов, для того чтобы в
массиве с именем Z могли храниться значения высоты, соответствующие
каждой паре координат. В такой ситуации может помочь двумерный массив.

Массивы такого типа объявляются следующим образом:
<тип> [,] <имя>;

Массивы с большим количеством измерений объявляются с
использованием большего количества запятых. Для присваивания значений
применяется похожий синтаксис, в котором запятые служат для разделения

 16 / 25

92

размеров. Объявить и инициализировать двухмерный массив Z с базовым
типом double и размерностью координаты х, равной 3, а координаты у — 4,
можно следующим образом:
double[,] Z = new double[3,4];

В качестве альтернативного варианта для начального присваивания
можно использовать литеральные значения. Эти значения должны иметь вид
вложенных блоков, заключенных в фигурные скобки, и быть отделены друг
от друга запятыми:
double[,] Z = {{1,2,3,4}, {2,3,4,5}, {3,4,5,6}};

Данный массив имеет те же самые измерения, что и предыдущий, то
есть три строки и четыре столбца. Благодаря предоставлению литеральных
значений, эти измерения определяются неявным образом.

Для получения доступа к отдельным элементам многомерного массива
указываются отделенные запятой индексы: Z[2,1]. Приведенное выражение
подразумевает доступ ко второму элементу третьего вложенного массива, то
есть к значению 4. Напомним, что отсчет начинается с 0, а первое число
представляет вложенный массив. Другими словами, первое число
специфицирует пару фигурных скобок, а второе — на элемент внутри этой
пары скобок.

Цикл foreach предоставляет доступ ко всем элементам в многомерном
массиве, точно так же как и в одномерных массивах:

double[,] Z = {{1,2,3,4}, {2,3,4,5}, {3,4,5,6}};
foreach (double h in Z)
{
 Console.WriteLine ("{0} ", h);
}

Порядок, в котором элементы выводятся, совпадает с тем, что
использовался для присваивания значений.

Пример 5.4. Умножение матрицы на вектор.

Листинг 5.4. Умножение матрицы на вектор

static void Main(string[] args)
{
 double[,] A = {{1,2,3,4},{5,6,7,8},{9,10,11,12}};
 double[] B = {1,2,3,4};
 double[] C = new double[3];
 for (int i = 0; i < 3; i++)
 {
 C[i] = 0;
 for (int j = 0; j < 4; j++)
 {
 C[i] = C[i] + A[i, j] * B[j];
 }

 17 / 25

93

 }
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("C[{0}] = {1}", i, C[i]);
 }
 Console.ReadKey();
}

5.3. МАССИВЫ МАССИВОВ
Многомерные массивы, о которых рассказывалось в предыдущем

разделе, прямоугольные – каждая строка имеет одинаковый размер.
Массивы могут быть зубчатыми, то есть строки могут иметь разные

размеры. Для этого каждый элемент в массиве должен являться тоже
массивом. Можно создавать и массивы массивов, состоящие из массивов.
Однако у всех массивов должен быть один и тот же базовый тип.

Для объявления массивов, состоящих из массивов, указывают
несколько пар квадратных скобок:

int[][] intArr;

Инициализация массивов из массивов не является таким же простым
методом, как инициализация многомерных массивов. Например, за
приведенным выше объявлением не может следовать такая строка кода:

intArr = new int[3][4];

Нельзя применять и такую строку кода:

intArr = {{1, 2, 3}, {1}, {1, 2}};

Существуют два возможных варианта.
Первый вариант: инициализировать сначала массив, содержащий

другие подмассивы, а затем по очереди инициализировать подмассивы:

intArr = new int[2][];
intArr [0] = new int[3];
intArr [1] = new int[4];

Второй вариант: использовать модифицированную версию
приводившейся выше операции литерального присваивания:

intArr = new int[3][] {new int[] {1, 2, 3}, new int[] {1},
new int[] {1, 2}};

Синтаксис для использования зубчатых массивов довольно сложен. Из-
за этого в большинстве случаев проще использовать прямоугольные массивы
или какой-то другой более простой метод хранения.

5.4. СВОЙСТВА И МЕТОДЫ ДЛЯ РАБОТЫ С МАССИВАМИ
Массивы в C# являются наследниками базового класса System.Array.

Класс массива Array обладает большим количеством статических методов,

 18 / 25

94

доступных через префикс имени класса Array, и не статических методов,
доступных через префикс имени переменной. Большинство из них обладает
перегруженными вариантами.

Некоторые из статических методов приведены ниже:
void Clear(Array array, int index, int length) –

 в диапазоне начиная с index длиной length всем элементам массива array
присваивает значение 0, false или null в зависимости от типа элементов.

void Copy(Array sourceArray, long sourceIndex, Array

destArray, long destIndex) – копирует диапазон элементов из массива
sourceArray, начиная с заданного индекса sourceIndex, и вставляет его в
массив destArray, начиная с индекса destIndex.

void ConstrainedCopy(Array sourceArray, int sourceIndex,

Array destArray, int destIndex, int length) – копирует диапазон
элементов из массива sourceArray, начиная с индекса sourceIndex, и
вставляет его в массив destArray, начиная с индекса destIndex.
Гарантирует, что в случае ошибки все изменения будут отменены.

Array CreateInstance(Type elemetnType, int[] lengths,

int[] lowerBounds) – создает многомерный массив типа Type с
заданными длинами lengths по измерениям и нижними границами
lowerBounds.

int IndexOf<T>(T[] array, T value, int startIndex, int

count) – выполняет поиск объекта value и возвращает индекс первого
найденного в диапазоне с startIndex длиной count.

void Resize<T>(ref T[] array, int newSize) – изменяет
размер массива на newSize, сохраняя значения элементов.

void Sort(Array keys, Array items, int index, int length,

System.Collections.IComparer comparer) – сортирует диапазон
элементов.

Некоторые нестатические методы, доступные через имя переменной,
приведены ниже:

void CopyTo(Array arr, long index) – копирует все элементы
массива в массив arr, начиная с индекса index.

int GetLength(int dim) – возвращает количество элементов по
измерению dim.

int GetLowerBound(int dim) – возвращает минимальное значение
индекса по измерению dim.

long GetLongLength(int dim) – получает число элементов в
измерении dim.

int GetUpperBound(Dim) – возвращает максимальное значение
индекса по измерению Dim.

object GetValue(int Ind) – возвращает значение элемента Ind
одно- или многомерного массива.

 19 / 25

95

int Length – свойство, которое возвращает информацию о количестве
элементов внутри массива.

long LongLength – получает общее число элементов во всех
измерениях массива.

int Rank – свойство, которое возвращает информацию о количестве
измерений в текущем массиве.

void SetValue(val, ind) – устанавливает значение val элемента
ind для одномерного массива.

Пример 5.5. Неповторяющиеся элементы массива. Использование
метода Resize().

Дан массив целых чисел, среди которых могут быть повторяющиеся
элементы. Составить новый массив из неповторяющихся чисел.

Листинг 5.5. Неповторяющиеся элементы массива

static void Main(string[] args)
{
 int[] a = {1, 2, 3, 1, 2, 3};
 int[] b = new int[0];
 bool ok;
 int j, n = 0;
 for (int i = 0; i < a.Length; i++)
 {
 // ищем a[i] в массиве b
 ok = false; j = -1;
 while ((j < n - 1) & !ok)
 ok = a[i] == b[++j];
 if (!ok)
 {
 // увеличиваем длину массива b
 Array.Resize<int>(ref b, ++n);
 b[n - 1] = a[i]; // запоминаем a[i]
 }
 }
 for (int i = 0; i < n; i++) // выводим массив b
 Console.WriteLine(b[i]);
 Console.ReadKey();
}

Циклом while пытаемся найти элемент a[i] в массиве b. Если

элемент не найден, то увеличиваем длину n массива b и в последний
добавленный элемент b[n-1] записываем значение a[i]. За действительное
число используемых элементов массива b отвечает переменная n, которая
увеличивается, если элемент a[i] в массиве b не найден, и его надо
включать в массив b.

 20 / 25

96

Пример 5.6. Поиск символа в последовательности. Использование
метода IndexOf().

Дан набор символов. Необходимо написать метод, проверяющий
входит ли символ ch в этот набор.

Листинг 5.6. Поиск символа в наборе

bool Test(char ch, params char[] nums)
{
 return Array.IndexOf(nums, ch) >= 0;
}

Вызов этого метода может выглядеть так:

if (Test(ch, '0','1','2','3','4','5','6','7','8','9'))

Из последовательности символов метод Test() создает массив nums,
в котором метод IndexOf() ищет символ ch.

5.5. ОПЕРАЦИИ СО СТРОКАМИ
Переменная типа string может восприниматься как доступный только

для чтения массив переменных char. Это означает, что доступ к отдельным
символам можно получать с использованием такого синтаксиса:

string s = "строка";
char ch = s[1];

Замечания. Индекс строки меняется от 0 до s.Length-1.
Присваивать символам значения s[1] = 'A' нельзя.

Для получения массива char, пригодного для выполнения записи,
можно применять показанный ниже код. В этом коде использован метод
переменной массива ToCharArray():

string s = "строка";
char[] ch = s.ToCharArray();

После этого массивом ch можно начинать манипулировать обычным
образом.

Строки можно использовать в циклах foreach, как показано ниже:

foreach (char ch in s)
{
 Console.WriteLine ("{0} ", ch);
}

Класс string обладает значительным количеством свойств и
нестатических методов для работы со строками, доступных через префикс
имени переменной. Некоторые из них приведены в табл. 21.

 21 / 25

97

Таблица 21. Методы типа string в формате <строка>.<метод>

Метод Описание
Length Свойство. Длина строки
ToCharArray() Преобразование в массив типа char
ToLower () Преобразование в нижний регистр
ToUpper () Преобразование в верхний регистр
Trim() Устранение любых вхождений указанных

символов в начале или конце строки
TrimStart () Устранение любых вхождений указанных

символов в начале строки
TrimEnd () Устранение любых вхождений символов в

конце строки
PadX () Назначение длины строки
PadLeft() Добавление пробелов слева
PadRight() Добавление пробелов справа
Insert(2,"++") Вставляет подстроку в указанную

позицию
Remove(3) Отсекает строку до указанной позиции
Replace("ро","++") Замещает подстроку
Split(sep[,]); Разбивает строку на массив слов
Substring(2,2) Копирует часть строки
IndexOf("ка",1) Ищет подстроку
CompareOrdinal(s1,
s2)

Возвращает отрицательное значение, если
s1 < s2, равное 0, если s1 = s2, и
положительное, если s1 > s2.

Ниже приведены примеры использования этих методов.

Листинг 5.7. Примеры использования методов типа string

static void Main(string[] args)
{
 string s = "строка";
 string s1;
 s1 = s.Insert(2, "++"); // s1 = "ст++рока"
 int L = s.Length; // L = 6
 s1 = s.PadLeft(10); // s1 = " строка"
 s1 = s.Remove(3); // s1 = "стр"
 s1 = s.Replace("ро", "++"); // s1 = "ст++ка"

 s = " строка ";
 s1 = s.Trim(); // s1 = "строка"
 s1 = "1111 2222....3333";
 char[] separators = { ' ', ',', '.' };

 22 / 25

98

 string[] sArr = s1.Split(separators,
 StringSplitOptions.RemoveEmptyEntries);
 foreach (string sTemp in sArr) // 1111
 { // 2222
 Console.WriteLine("{0} ", sTemp); // 3333
 }
 s1 = s.Substring(2, 2); // s1 = "тр"
 s1 = s.ToUpperInvariant(); // s1 = "СТРОКА"
 s1 = s.ToUpper(); // s1 = "СТРОКА"

 Console.ReadKey();
}

Необязательный параметр StringSplitOptions, используемый в

методе Split, может использовать два варианта: None – включать в массив
слов пустые строки; RemoveEmptyEntries – не включать в массив слов
пустые строки.

5.6. ПРОСТЕЙШИЕ АЛГОРИТМЫ ПОИСКА
В этом разделе рассматривается поиск элемента в массиве. Приводятся

алгоритмы поиска в неупорядоченном и упорядоченном массивах.
Отдельный параграф посвящен хешированию.

5.6.1. ПОИСК В НЕУПОРЯДОЧЕННОМ МАССИВЕ. ПОИСК С

БАРЬЕРОМ
Простейшим методом поиска элемента, находящегося в

неупорядоченном массиве, является последовательный просмотр каждого
элемента массива. Перебор элементов заканчивается или тогда, если найдется
элемент с искомым ключом, или если будет достигнут конец массива – это
значит, что такого элемента в массиве нет.

Результатом поиска желательно иметь индекс искомого элемента, если
элемент найден. Поэтому алгоритм, осуществляющий поиск элемента в
массиве, оформим в виде метода целого типа. Если элемент найден, значение
метода равно индексу первого найденного элемента, если такого элемента в
массиве нет, то значение метода равно 0. Алгоритм простого поиска
элемента x в массиве a приведен в листинге 5.8.

Листинг 5.8. Простой поиск

static int SearchSimple(int[] a, int x)
{
 bool ok = false; // до поиска – элемент не найден
 int i = 0;

 23 / 25

99

 while ((i < a.Length-1) && !ok)
 if (x == a[i]) ok = true; else i++;
 if (ok) return i; else return -1;
}

В этом алгоритме выход из цикла осуществляется по двум условиям:
элемент найден или достигнут конец массива. Проверку выхода за границу
массива можно опустить, если искомый элемент гарантированно находится в
массиве. Такой гарантией может служить барьер – нулевой элемент массива,
значение которого равно искомому элементу. Установка барьера
производится до цикла поиска.

Листинг 5.9. Поиск с барьером

static int SearchBarrier(int[] a, int x)
{
 int L = a.Length;
 Array.Resize<int>(ref a, ++L);
 a[L - 1] = x;
 int i = 0;
 while (a[i] != x)
 i++;
 if (i != L) return i; else return -1;
}

В этом примере результат метода получается автоматически: он равен
или индексу найденного элемента, или нулю, – то есть индексу барьера, если
в массиве элемента нет.

Для последовательного поиска в среднем требуется (N+1)/2 сравнений.
Таким образом, порядок алгоритма – линейный.

5.6.2. ПОИСК В УПОРЯДОЧЕННОМ МАССИВЕ. БИНАРНЫЙ

ПОИСК
Поиск можно значительно ускорить, если массив упорядочен. В этом

случае чаще всего применяется метод деления пополам или бинарный поиск.
Суть этого метода заключается в следующем. Сначала искомый элемент
сравнивается со средним элементом массива. Если искомый элемент больше
среднего, то поиск продолжается в правой части массива, если меньше
среднего – то в левой части. При каждом сравнении из рассмотрения
исключается половина элементов – не имеет смысла искать элемент,
больший среднего, в левой – меньшей по значению элементов половине
массива.

Максимальное число требующихся сравнений – log2N. Алгоритм
приведен в листинге 5.10.

 24 / 25

100

Листинг 5.10. Бинарный поиск

static int SearchBinary(int[] a, int x)
{
 int m, left = 0, right = a.Length-1;
 do
 {
 m = (left + right) / 2;
 if (x > a[m])
 left = m + 1;
 else
 right = m - 1;
 }
 while ((a[m] != x) && (left <= right));
 if (a[m] == x) return m; else return -1;
}

5.7. ПРОСТЕЙШИЕ АЛГОРИТМЫ СОРТИРОВКИ

5.7.1. СОРТИРОВКА ПРОСТЫМ ОБМЕНОМ
Сортировка методом пузырька воплощает принцип обменной

сортировки: сравниваются и обмениваются местами два соседних элемента.
Если представить массив высоким и узким сосудом с жидкостью, а элементы
массива – пузырьками, вес которых пропорционален величине ключа
элемента, то каждый проход по массиву заставляет пузырек подняться
кверху и занять место, соответствующее его весу. Алгоритм приведен в
листинге 5.11.

Листинг 5.11. Сортировка методом пузырька

public void SortBubble()
{
 int L = Length();
 for (int i = 1; i<=L-1; i++)
 for(int j =L-1; j>=i; j--)
 if (a[j-1]>a[j])
 {
 int t = a[j-1];
 a[j-1] = a[j];
 a[j] = t;
 }
}

5.7.2. ШЕЙКЕР-СОРТИРОВКА
Оптимизация предыдущего алгоритма включает в себя следующее:

• массив можно считать уже упорядоченным, если на последнем
проходе не было ни одной перестановки элементов;

Powered by TCPDF (www.tcpdf.org)

 25 / 25

101

• сравнение пар элементов можно производить только до места
последней перестановки: раз не было перестановок, значит – дальше
элементы упорядочены;

• при прохождении массива слева направо (снизу вверх) поднимается
легкий пузырек. Почему бы не двигаться по массиву в обратном
направлении – сверху вниз, опуская тяжелый пузырек?

Эти моменты учтены в шейкер-сортировке (от англ. shake – трясти),
приведенной в листинге 5.12.

Листинг 5.12. Шейкер-сортировка

public void SortShaker()
{
 int left = 1, right = a.Length - 1,
 last = right;
 do
 {
 for (int j = right; j >= left; j--)
 if (a[j - 1] > a[j])
 {
 int t=a[j-1]; a[j - 1] = a[j];
 a[j] = t; last = j;
 }
 left = last;
 for (int j = left; j <= right; j++)
 if (a[j - 1] > a[j])
 {
 int t=a[j-1]; a[j-1]=a[j];
 a[j] = t; last = j;
 }
 right = last - 1;
 }
 while (left < right);
}

Число сравнений в алгоритме простого обмена равно C = 1/2(N2-N), а
минимальное и максимальное количества пересылок равны: Mmin = 0,
Mmax ~ (N2-N). Наименьшее число сравнений в шейкер-сортировке Cmin = N-1
– это соответствует единственному проходу по упорядоченному массиву.

Все усовершенствования сортировки обменом приводят только к
уменьшению числа сравнений. Но так как именно перестановка элементов
занимает, как правило, гораздо большее время, то эти усовершенствования не
приводят к значительному эффекту. Анализ показывает, что сортировка
методом пузырька (и даже ее улучшенный вариант – шейкер-сортировка)
менее эффективна, чем сортировка вставками и обменом.

 1 / 25

102

Глава 6. ПЕРЕЧИСЛЕНИЯ И СТРУКТУРЫ

6.1. ПЕРЕЧИСЛЕНИЯ
У каждого из рассмотренных до сих пор типов (за исключением

string) имеется определенный набор допустимых значений. Самым
простым примером является тип bool, который может принимать только
одно из двух значений — true или false.

Встречается много ситуаций, в которых может оказаться необходимым
иметь переменную, способную принимать какое-то одно значение из
фиксированного набора результатов. Например, для арифметических
операций может потребоваться переменная типа Operation, способная
хранить одно из таких значений, как PLUS, MINUS, MULTIPLY, DIVIDE
или NONE:
enum Operation
{
 PLUS = 1,
 MINUS = 2,
 MULTIPLY = 3,
 DIVIDE = 4,
 NONE = 0
}

В таких ситуациях применяются перечисления. Для Operation
перечисления позволяют определять тип, способный принимать только
какое-нибудь одно значение из представленного фиксированного набора.

Обратите внимание, что здесь необходим еще один дополнительный
шаг: нужно не просто объявлять переменную конкретного типа, а сначала
объявлять и детализировать определяемый пользователем тип и только затем
объявлять переменную этого типа.

Перечисления могут определяться с помощью ключевого слова enum
следующим образом:
enum <имя_типа>
{
 <значение 1>,
 <значение 2>,
 <значение3>
}

После этого можно начинать объявлять переменные такого нового типа
с помощью такого синтаксиса:

<имя_типа> <имя_переменной>;

 2 / 25

103

Присваивать значения таким переменным можно следующим образом:

<имя_переменной> = <имя_типа>.<значение>;

У перечислений имеется базовый тип, используемый для хранения.
Каждое из значений, которое может принимать тип перечисления,
сохраняется в виде значения этого базового типа (по умолчанию int).
Указать другой базовый тип можно, добавив желаемый тип в объявление
перечисления:

enum <имя_типа>: <базовый_тип>
{
 <значение1>,
 <значение2>,
 <значение3>
}

Для перечислений в качестве базовых могут использоваться типы
byte, sbyte, short, ushort, int, uint, long и ulong.

По умолчанию каждому значению автоматически присваивается
значение соответствующего базового типа в соответствии с порядком, в
котором оно определяется, начиная с нуля. Это означает, что значение1
получает 0, значение2 — 1, значение3 — 2 и т.д.

Операции присваивания таких значений можно переопределять путем
использования операции = и указания фактических желаемых значений для
каждого значения перечисления:

enum <имя_типа>: <базовый_тип>
{
 <значение1> = <фактическое_значение1>,
 <значение2> = <фактическое_значение2>,
 <значение3> = <фактическое_значение3>
}

В следующем примере сначала определяется перечисление по имени
MyDock, а затем демонстрируются различные способы его применения.

Пример 6.1. Использование перечисления

Листинг 6.1. Описание перечисления

enum MyDock: byte
{
 Left = 19,
 Right = 2,
 Fiil = 3,
 Top = 4,
 Bottom = 5,
 None = 6
}

 3 / 25

104

В листинге 6.2 приведен полный текст программы.

Листинг 6.2. Использование перечисления

class Program
{
 static void Main(string[] args)
 {
 byte myByte;
 string myString;
 MyDock myDock = MyDock.Left;
 Console.WriteLine("myDock = {0}", myDock);
 myByte = (byte)myDock;
 myString = Convert.ToString(myDock);
 Console.WriteLine("byte экв. = {0}", myByte);
 Console.WriteLine("string экв. = {0}", myString);
 Console.ReadKey();
 }
}

Рис. 6.1. Результат выполнения программы

Приведенный код демонстрирует определение и применение типа
перечисления по имени MyDock и преобразование значений перечисления в
другие типы. Обратите внимание, что здесь требуются явные
преобразования.

Хотя базовым типом MyDock и является byte, для преобразования
значения myDock в byte все равно нужно использовать приведение (byte):

myByte = (byte)myDock;

Точно такое же явное приведение необходимо и в обратном
направлении, при желании преобразовать byte в MyDock. Например, для
преобразования переменной myByte типа byte в переменную типа MyDock и
присваивания полученного значения переменной myDock можно
воспользоваться следующим кодом:

myDock = (MyDock)myByte;

 4 / 25

105

Необходимо соблюдать осторожность, так как не все допустимые
значения переменной типа byte отображаются на определенные значения
переменной MyDock. Тип MyDock может хранить другие значения byte,
поэтому ошибка сразу не возникнет, но это может привести к нарушению
логики позже в приложении.

Для преобразования значения перечисления в строку можно применять
метод Convert.ToString():

myString = Convert.ToString(myDock);

В качестве второго варианта можно использовать метод ToString()
на самой переменной. Следующий код даст тот же самый результат, что и
применение Convert.ToString():
myString = myDock.ToString();

Операция приведения строк myString = (string)myDock работать
не будет, так как необходимая обработка это не просто помещение
хранящихся в переменной типа перечисления данных в переменную типа
string.

Для работы с данными перечислимого типа существует класс Enum.
Ниже перечислены некоторые методы класса Enum.

string Enum.GetName(Type enumType, object value) –
возвращает имя константы с заданным значением из указанного
перечисления.

string[] Enum.GetNames(Type enumType) – возвращает массив
имен констант в указанном перечислении.

Type Enum.GetUnderlyingType(Type enumType) – возвращает
базовый тип заданного перечисления.

Array Enum.GetValues(Type enumType) – возвращает массив
значений имен констант в указанном перечислении.

object Enum.Parse(Type enumType, string value, bool

ignoreCase) – преобразует строковое представление имени или числового
значения одной или нескольких перечислимых констант в эквивалентный
перечислимый объект. Параметр указывает, учитывается ли в операции
регистр.

object Enum.ToObject(Type enumType, ulong value) –
преобразует значение заданного числа без знака в член перечисления.

Для выполнения преобразования строки в значение перечисления
предусмотрен метод — Enum.Parse(), который применяется следующим
образом:

 (тип_перечисления) Enum.Parse(typeof(тип_перечисления),
строка_значения_перечисления);

 5 / 25

106

Здесь используется операция — typeof, которая получает
информацию о типе своего операнда. В случае типа MyDock этим можно
было бы воспользоваться следующим образом:

myString = "Left";
myDock = (MyDock)Enum.Parse(typeof(MyDock), myString);

В случае передачи значения, которое не отображается ни на одно из
значений перечисления, будет выдаваться ошибка.

Для передачи значений перечислимого типа в массив строк
используется метод GetNames():

string[] sArr = Enum.GetNames(typeof(MyDock));

Для реализации задачи передачи перечислимого типа в массив
объектов или в коллекцию создадим массив объектов arr и воспользуемся
методом GetValues:

object[] arr = Enum.GetValues(typeof(MyDock));

При компиляции возникнет ошибка «Возможно пропущено приведение
типов». Дело в том, что метод GetValues() имеет тип массива, а у
переменных этого типа есть метод преобразования типов Cast<object>().
Поэтому в окончательном виде оператор принимает вид:

object[] arr =
Enum.GetValues(typeof(MyDock)).Cast<object>().
 ToArray<object>();

Для вывода элементов массива arr[] на экран можно воспользоваться
циклом for:

for (int i = 0; i <= arr.Length - 1; i++)
 Console.WriteLine("{0} {1}",(byte)arr[i],arr[i]);

Полученный массив arr[] можно, например, добавить в список Items
элемента comboBox1:

comboBox1.Items.AddRange(arr);

6.2. СТРУКТУРЫ
Структуры представляют собой структуры данных, состоящие из

нескольких блоков данных разного типа. Они позволяют определять свои
собственные типы переменных на основании данной структуры. Например,
предположим, что требуется сохранить информацию о студенте: фамилия,
имя, пол, вес. Для простоты предположим, что пол может быть представлен
типом перечисления Floor:

enum Floor : byte // пол
{

 6 / 25

107

 мужской = 1, // mens = 1,
 женский = 2 // female = 2,
}

Тогда для сохранения этих сведений можно использовать четыре
переменных:

public Floor floor;
public string surname;
public string name;
public double weight; //вес;

Гораздо проще будет особенно для информации о множестве студентов
использовать одну структуру.

Структуры определяются с помощью ключевого слова struct:

struct <имя_типа>
{
 <объявления_членов>
}

В разделе <объявления_членов> содержатся объявления переменных,
называемых данными-членами структуры или полями. Объявление каждого
члена имеет следующий вид:

<уровень_доступа> <тип> <имя>;

Для предоставления вызывающему структуру коду возможности
получать доступ к ее данным-членам на месте <уровень_доступа>
помещается ключевое слово public. Например:

public struct Student
{
 public Floor floor;
 public string surname;
 public string name;
 public double weight; //вес;
}

После определения типа структуры можно определять переменные
этого типа:
Student myStudent;

Обращаться к полям этой сложной переменной с помощью символа
точки, после префикса – имени переменной:

myStudent.surname = “Семенов”;
myStudent.name = “Петр”;
myStudent.weight = 80;

Замечание. Новый тип может быть объявлен только в любом
классе или ранее класса Program, но не в методе.

 7 / 25

108

Пример 6.2. Использование структуры студент

Листинг 6.3. Использование структуры студент

enum Floor : byte // пол
{
 мужской = 1, // mens = 1,
 женский = 2 // female = 2,
}
public struct Student
{
 public Floor floor;
 public string surname;
 public string name;
 public double weight; //вес;
}

class Program
{
 static void Main(string[] args)
 {
 Student myStudent;
 int myFloor = -1;
 Console.WriteLine("1) Мужской\n2) Женский");
 do
 {
 Console.WriteLine("Выберите пол:");
 myFloor =
 Convert.ToInt32(Console.ReadLine());
 }
 while ((myFloor < 1) || (myFloor > 2));
 myStudent.floor = (Floor)myFloor;
 Console.Write("Фамилия: ");
 myStudent.surname = Console.ReadLine();
 Console.Write("Имя: ");
 myStudent.name = Console.ReadLine();
 Console.Write("Вес: ");
 myStudent.weight =
 Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Фамилия <{0}> Имя <{1}> "
 + " пол <{2}>", myStudent.surname,
 myStudent.name, myStudent.floor);
 Console.ReadKey();
 }
}

Результаты работы программы представлены на рис. 6.2.

 8 / 25

109

Рис. 6.2. Результат выполнения программы

У структуры может быть конструктор – метод с именем структуры, но
без указания типа или void:

public Student(Floor vFloor,string vSurname, string vName,
double vWeight)
{
 floor = vFloor;
 surname = vSurname;
 weight = vWeight;
 name = vName;
}

Вызов конструктора реализуется следующим образом:
myStudent = new Student(Floor.мужской,"Каверин","Илья",75);

У структуры могут быть созданы свои методы. Например,
нестатический метод, который объединяет поля фамилия surname и имя
name в одну строку:
public string FullName()
{
 return surname + " " + name;
}

Во-первых, в этом случае структура должна быть объявлена с
модификатором public. Во-вторых, обращение к нестатическому методу
возможно только через переменную myStudent типа структура:
string s = myStudent.FullName();

6.3. СТРУКТУРА DATETIME
Структура System.DateTime, не имеющая псевдонима, предназначена

для хранения даты и времени в диапазоне от 01.01.0001 0:00:00 до 31.12.9999
23:59:59. Значения этого типа измеряются в тиках: 1 тик равен 100
наносекунд.

В табл. 22 некоторые свойства структуры DateTime.

 9 / 25

110

Таблица 22. Некоторые свойства структуры DateTime

Член Описание

Date Дата
Day День
Month Месяц
Year Год
DayOfWeek День недели
DayOfYear Номер дня в году
Hour Часы
Minute Минуты
Second Секунды
Multisecond Миллисекунды
Today Текущую дату
Ticks Количество тиков
ToLongDateString Дату с названием месяца
ToShortDateString Дату с номером месяца
ToLongTimeString Время с секундами
ToShortTimeString Время без секунд
ToString Дату и время
Now Текущая дата и время

Для переменных типа DateTime определены все операции отношения.
Пример 6.3. Использование типа DateTime

Листинг 6.4. Использование типа DateTime

using System;
namespace ConsoleApplication2
{
 class Program
 {
 static void Main(string[] args)
 {
 DateTime dt = DateTime.Now;
 // текущая дата и время
 Console.WriteLine("Текущая дата: {0}",
 dt.ToString());
 Console.ReadKey();
 }
 }
}

В этой программе объявляется переменная dt типа DateTime,
инициализируется с помощью метода Now текущей датой и временем.
Результат выводится на экран методом WriteLine, который печатает строку
"Текущая дата и время: {0}", вставляя вместо {0} строку «dt.ToString()».

 10 / 25

111

Глава 7. КЛАССЫ И ОБЪЕКТЫ

В C# классы представляют собой фундаментальные типы данных.
Класс — это тип данных, объединяющий состояние (поля) и действия
(методы). Класс предоставляет определения для динамически создаваемых
экземпляров класса (также называются объектами). Классы поддерживают
механизмы реализации основных принципов объектно-ориентированного
программирования (ООП):

• инкапсуляции;
• наследования;
• полиморфизма.

Принцип инкапсуляции предписывает скрывать детали внутренней
реализации объектов и предохранять целостность данных.

Принцип наследования состоит в возможности создавать производные
классы (классы-потомки), расширяющие функциональные возможности
базового класса (класса-предка), и многократно использовать код.

В соответствии с принципом полиморфизма объект класса-предка
может обращаться к определенным методам классов потомков, изменяя тем
самым, свое поведение в процессе выполнения программы.

Новые классы создаются с помощью объявлений класса. Объявление
класса начинается с заголовка, в котором задаются атрибуты и
модификаторы класса, имя класса, имя класса-предка, если таковой имеется,
а также имена интерфейсов, реализуемых классом. За заголовком следует
тело класса, ограниченное разделителями { и }, которое содержит перечень
объявлений членов класса.

[<атрибуты>] [<модификаторы>] class <имя_класса>
[:<имя_предка>]
{<тело_класса>}

Ниже приведено объявление простого класса TPoint:

Листинг 7.1. Объявление простого класса

public class TPoint
{
 public int x, y; // поля
 public TPoint(int ax, int ay) // конструктор
 {
 x = ax;

 11 / 25

112

 y = ay;
 }
}

Экземпляры класса создаются с помощью оператора new, который
выделяет память для нового экземпляра, вызывает конструктор для
инициализации экземпляра и возвращает ссылку на экземпляр. Например, с
помощью следующих операторов создаются два объекта TPoint, ссылки на
которые сохраняются в двух переменных p1 и p2:
TPoint p1 = new TPoint(1, 1);
TPoint p2 = new TPoint(2, 2);

Рис. 7.1. Распределение памяти после создания объектов p1 и p2

Память, занимаемая объектом, автоматически освобождается, если
объект более не используется. В C# не допускается явно освобождать память
от объектов.

7.1. ЧЛЕНЫ КЛАССА
Класс может содержать статические члены и члены экземпляра.

Статические члены принадлежат классам. Члены экземпляра принадлежат
объектам – экземплярам класса. Обращение к членам класса осуществляется
с помощью синтаксиса:
<имя_объекта>.<имя_члена_класса>

Но для статических членов возможно также обращение вида:
<имя_класса>.<имя_члена_класса>

Следовательно, для использования статических членов класса
необязательно создавать его экземпляры.

Иногда к члену экземпляра требуется обратиться внутри самого класса.
В этом случае невозможно использовать имя объекта, так как оно
объявляется вне класса. Тогда вместо имени объекта используют ключевое
слово this (этот). Используем этот прием при демонстрации измененного
объявления класса Point, включающего дополнительно статическое поле a:

 12 / 25

113

Листинг 7.2. Объявление простого класса со статическим полем

public class Point
{
 public int x, y; // поля
 public static int a; // статическое поле
 public Point(int x, int y, int a)
 // конструктор
 {
 this.x = x;
 this.y = y;
 Point.a = a;
 }
}

Во-первых, для статического поля a нельзя в конструкторе
использовать указатель на экземпляр класса this, а надо использовать имя
класса Point.

Во-вторых, после создания двух объектов p1 и p2
Point p1 = new Point(1, 1, 1);
Point p2 = new Point(2, 2, 2);
распределение памяти будет выглядеть так:

Рис. 7.2. Распределение памяти после создания объектов p1 и p2

В-третьих, если к полям x и y можно получить доступ только через
имена объектов, например, p1.x = 3, то к статическому полю можно
получить доступ только через имя класса, например, Point.a = 3.

В табл. 23 представлен список видов членов, которые может содержать
класс.

Таблица 23. Члены класса

Член Описание
Константы Постоянные значения, связанные с классом
Поля Переменные класса
Методы Произвольные действия, которые могут выполняться

 13 / 25

114

над данными класса
Свойства Действия, связанные с чтением и записью полей класса
Индексаторы Действия, связанные с индексацией экземпляров класса
Операторы Члены класса, переопределяющие действие некоторых

операций применительно к экземплярам данного класса
Конструкторы Действия, выполняемые при создании экземпляров

класса
Деструкторы Действия, выполняемые перед окончательным

удалением экземпляров класса
События Уведомления о совершении какого-либо действия,

формируемые экземплярами класса
Вложенные
типы

Типы, объявленные внутри класса

7.1.1. УРОВНИ ДОСТУПНОСТИ
Каждому члену класса присваивается уровень доступности, который

определяет разделы программы, в которых можно получить доступ к этому
члену. Таким образом обеспечивается выполнение требования скрытия
деталей реализации в соответствии с приципом инкапсуляции.
Поддерживается пять уровней доступности. Эти уровни задаются с помощью
соответствующих служебных слов – модификаторов уровня доступности и
представлены в таблице 24.

Таблица 24. Доступность членов класса

Уровень
доступности

Служебное
слово

Описание

Открытый public Доступ не ограничен
Защищенный protected Доступ ограничен этим классом и

унаследованными от него классами
Внутренний internal Доступ ограничен сборкой
Внутренний
защищенный

protected
internal

Доступ ограничен сборкой и классами,
унаследованными от этого класса

Закрытый private Доступ ограничен этим классом (по
умолчанию)

Различие между открытым и внутренним уровнями доступности
проявляется только в тех случаях, если приложение использует классы,
объявленные в других приложениях или библиотеках. Такие
«экспортируемые» классы, а также их члены, должны иметь открытый
уровень доступности. Если же класс или член класса не предназначен для
внешнего использования, то вполне возможно для них ограничиться
внутренним уровнем доступности.

 14 / 25

115

Модификаторы уровня доступности сужают область видимости класса
или его членов – от полностью видимого public до закрытого private. По
умолчанию для членов класса принимается значение private.

7.1.2. ПОЛЯ
Поле представляет собой переменную, связанную с классом или

экземпляром класса. Синтаксис объявления полей аналогичен синтаксису
объявления переменных и имеет вид:

[модификаторы] имя_типа имя_поля [= выражение]
Модификаторы поля задаются с помощью ключевых слов и

предназначены для уточнения объявления. К числу модификаторов поля
относятся уже упоминавшиеся выше модификаторы уровня доступности и
модификатор статичности static. Поле, объявленное с использованием
модификатора static (статическое поле), связано с классом. Это означает,
что вне зависимости от количества создаваемых экземпляров класса всегда
существует только одна копия статического поля.

Поле, объявленное без использования модификатора static,
определяет поле экземпляра. Каждый экземпляр класса содержит отдельную
копию всех нестатических полей экземпляра класса.

Возможно объявление полей только для чтения с помощью
модификатора readonly. Присваивание значения полю с модификатором
readonly может выполняться только при объявлении поля или в
конструкторе этого класса.

7.1.3. СВОЙСТВА
Свойства в языке C# являются еще одним механизмом реализации

принципа инкапсуляции, регулируя доступ к полям класса. Поля класса
принято объявлять с модификатором уровня доступности private и, тем
самым, защищать их от возможности произвольного изменения из внешней
по отношению к классу части кода. Свойства служат средством связи полей
объекта с его окружением. Они могут выполнять дополнительную обработку
перед изменением состояния поля — и, на самом деле, могут вообще не
изменять состояния. Это получается благодаря тому, что они обладают двумя
подобными методам блоками, один из которых отвечает за получение
значения свойства, а второй — за установку значения свойства.

Эти блоки, также называемые средствами доступа (accessors),
определяются с помощью, соответственно, ключевого слова get и ключевого
слова set и могут применяться для управления уровнем доступа к свойству.
Можно опускать тот или иной из них и тем самым создавать свойства,
доступные только для записи или только для чтения (в частности, пропуск
блока get позволяет обеспечивать доступ только для записи, а пропуск блока

 15 / 25

116

set — доступ только для чтения). Разумеется, это касается только внешнего
кода, так как у кода внутри класса будет доступ к тем же данным, что и у
этих блоков кода. Еще можно использовать со средствами доступа
модификаторы доступности, то есть делать, например, блок get открытым
(public), а блок set — защищенным (protected). Для получения
действительного свойства нужно обязательно включать хотя бы один из этих
блоков.

Синтаксис объявления свойства имеет вид:

 [модификаторы] имя_типа имя_свойства
 {
 [get { }]
 [set { }]
 }

Здесь модификаторы имеют тот же смысл, что и в объявлениях полей.
Базовая структура свойства может быть представлена следующим образом:

public int MyIntProp
{
 get
 {
 // Код для получения значения свойства
 }
 set
 {
 // Код для установки значения свойства
 }
}

Для именования общедоступных свойств в .Net тоже применяется
стиль PascalCasing, a не camelCasing, и потому здесь, как для полей и
методов, используется именно она.

Первая строка в определении свойства как раз и является тем
небольшим фрагментом, который очень похож на определение поля. Отличие
состоит в том, что в конце строки находится не точка с запятой, а блок кода,
содержащий вложенные блоки get и set.

В блоках get должно обязательно присутствовать возвращаемое
значение типа свойства. Простые свойства часто ассоциируются с одним
приватным полем, управляя доступом к нему, в случае чего блок get может
возвращать значение поля и напрямую:

private int myInt; // Поле, используемое свойством
public int MyIntProp // Свойство.
{
 get { return myInt; }

 16 / 25

117

 set { mylnt = value; } // Код установки значения свойства
}

Код, находящийся за пределами класса, не сможет получать доступ к
данному полю myInt напрямую из-за того, что уровень доступности
последнего указан как private.

Вместо этого внешнему коду для получения доступа к этому полю
придется использовать свойство. Метод set присваивает значение полю
похожим образом. Здесь можно применять ключевое слово value для ссылки
на значение, получаемое от пользователя свойства: value равно значению
того же типа, что и у свойства, так что если в свойстве используется тот же
тип, что в поле, беспокоиться о приведении типов не нужно.

Это простое свойство делает немного больше, чем просто защищает от
прямого доступа к полю myInt. Реальная мощь свойств проявляется тогда,
когда осуществляется больше контроля над процессами. Например, блок set
мог бы быть реализован и следующим образом:

set
{
 if (value > = 0 && value <= 10)
 myInt = value;
}

Эта реализация предусматривает изменение myInt только в случае
присваивания свойству значения в диапазоне между 0 и 10. В ситуациях,
подобных этой, требуется делать важный выбор, что должно происходить в
случае использования недействительного значения. Существует четыре
возможных варианта:
• ничего (как и в предыдущем коде);
• полю должно присваиваться значение по умолчанию;
• выполнение кода должно продолжаться так, будто ничего страшного не

произошло, но с регистрацией события в журнале для последующего
анализа причин его возникновения;

• должно генерироваться исключение.
В общем случае предпочтительными являются два последних варианта.

Выбор того или иного зависит от того, каким образом будет использоваться
класс и насколько много контроля должно предоставляться его
пользователям. Генерация исключения предоставит пользователям довольно
много контроля и позволит знать о том, что происходит, благодаря чему те
смогут реагировать соответствующим образом.

Еще одной особенностью свойств является то, что блоки get и set в
них могут иметь свои собственные уровни доступности, как показано ниже:

private int myInt;
public int MyIntProp
{

 17 / 25

118

 get { return mylnt; }
 protected set { mylnt = value; }
}

Здесь использовать блок set сможет только код, находящийся или
внутри самого класса, или внутри его производных классов.

То, какие уровни доступности могут применяться для блоков get и
set, зависит от уровня доступности самого свойства: делать их доступнее
того свойства, к которому они относятся, запрещено. Это означает, что в
свойствах с уровнем доступности private не может использоваться вообще
никаких модификаторов доступности для их блоков get и set, в то время как
в свойствах с уровнем доступности public, наоборот, для блоков get и set
могут задаваться все возможные модификаторы.

7.1.4. МЕТОДЫ
Метод — это член класса, реализующий вычисление или действие,

которые могут выполняться объектом или классом. Доступ к статическим
методам осуществляется через классы. Доступ к методам экземпляра
осуществляется через экземпляры класса.

Синтаксис объявления метода имеет вид:

[<модификаторы>] <тип_возвращаемого_значения>
<имя_метода>([<список_формальных_параметров>])
{<тело метода>}

Замечание. Имена методов обычно пишутся в формате
PascalCase. Использование круглых скобок, как в определении,
так и в вызове метода, является обязательным.

В языке C# методы – основной способ описания действий над
данными. Рассмотрим отдельные элементы вышеприведенного синтаксиса
объявления методов.

К числу модификаторов метода относятся уже упоминавшиеся выше
модификаторы уровня доступности и модификатор статичности static.
С рядом других модификаторов методов мы познакомимся далее.

Тип возвращаемого значения задает тип значения, вычисляемого и
возвращаемого методом. Если метод не возвращает значение, ему
присваивается тип возвращаемого значения void.

Список формальных параметров используется для передачи в метод
значений или ссылок на переменные. Список формальных параметров может
быть пустым, однако ограничивающие его круглые скобки в объявлении
метода все равно должны быть указаны.

 18 / 25

119

Пример 7.1. Объявление и использование метода

Листинг 7.3. Объявление метода

class Program
{
 static void MyWrite ()
 {
 Console.WriteLine("Текст из метода myWrite");
 }
 static void Main(string[] args)
 {
 MyWrite();
 Console.ReadKey();
 }
}

В первых четырех строках кода определяется метод с именем
MyWrite(). Код этого метода выводит в окно консоли некоторый текст.
Объявление этого метода включает следующие элементы:
• два ключевых слова: static и void;
• имя метода, за которым следуют круглые скобки – MyWrite();
• заключенный в фигурные скобки блок выполняемого кода.

Ключевое слово void служит для обозначения того, что метод не
возвращает никакого значения через свое имя.

Метод MyWrite() вызывается из другого метода – статического
метода Main, являющегося точкой входа в программу. Это означает, что
данный метод автоматически вызывается при запуске программы на
выполнение. Вызов метода MyWrite()выглядит следующим образом:

MyWrite();
Отметим, что вызов из одного метода класса метода того же класса

производится просто по имени вызываемого метода.

7.1.4.1. Возвращаемые значения

Наиболее простым способом для обмена данными с методом является
использование возвращаемого значения. Методы, имеющие возвращаемые
значения, при обращении к ним предоставляют именно эти значения. В этом
смысле ситуация аналогична тому, как переменные при обращении к ним
предоставляют свои значения. Как и переменные, возвращаемые значения
методов имеют тип. Этот тип должен быть указан в объявлении метода.

Например, можно создать метод GetString() с возвращаемым
значением типа string. Использовать такой метод можно следующим
образом:
string s = GetString();

 19 / 25

120

Можно также создать метод GetVal() с возвращаемым значением
типа double. Вызов такого метода может быть составной частью
математического выражения:
double x;
double a = 5.3;
x = GetVal() * a;

Еще одной особенностью метода, возвращающего значение, является
требование обязательного наличия в его теле, по крайней мере, одного
оператора возврата return, содержащего выражение, тип которого совпадает
с типом возвращаемого значения, или неявно преобразовывается к нему.
Например:
static double GetVal()
{
 return 3.2;
}

При достижении оператора return управление выполнением
программы сразу же возвращается вызывающему коду. Никакие строки кода
после этого оператора больше не выполняются, хотя это вовсе не означает,
что операторы return могут размещаться только в последней строке тела
метода. Оператор return можно использовать и ранее в коде, например,
после выполнения какой-то логики ветвления. Размещение return в цикле
for, блоке if или любой другой структуре будет приводить к немедленному
выходу из структуры и завершению выполнения метода, как показано ниже:

Листинг 7.4. Описание метода с выходом return

static double GetVal()
{
 double result;
 // вычисляется x
 if (x < 5)
 return 4.7;
 else
 return 3.2;
}
Здесь возвращаться может одно из двух значений, в зависимости от

значения x. Единственным ограничением в данном случае является то, что
оператор return должен обрабатываться перед достижением закрывающей
фигурной скобки } в методе. Следующий код недопустим:

Листинг 7.5. Описание метода с некорректным выходом return

static double GetVal()
{
 double x;

 20 / 25

121

 // вычисляется x
 if (x < 5)
 return 4.7;
}

В этом случае, если значение x >= 5, не будет выполнено никакого
оператора return, что является недопустимым. Все пути обработки должны
обязательно приводить к одному из операторов return. В большинстве случаев
компилятор будет распознавать эту проблему, и возвращать ошибку типа not all
code paths return a value (не все пути кода возвращают значение).

Оператор return может применяться в методах, которые объявляются
с использованием ключевого слова void (то есть не имеют возвращаемого
значения). Такие методы будут просто завершаться. При использовании
оператора return методом с void указание возвращаемого значения между
ключевым словом return и следующим за ним символом точки с запятой
будет ошибкой.

Пример 7.2. Найти подстроку в строке.
Метод MyPos() типа int можно написать в классе Program без

модификатора. В этом случае по умолчанию используется модификатор
private.

Листинг 7.6. Метод поиска подстроки в строке

class Program
{
 int MyPos(string s1, string s)
 {
 int i = -1;
 bool ok = false;
 while ((i < s.Length - s1.Length) && !ok)
 ok = s1 == s.Substring(++i,
 s1.Length);
 if (ok)
 return i;
 else
 return -1;
 }

 static void Main(string[] args)
 {
 Program prog = new Program();
 int k = prog.MyPos("ро","строка");
 Console.WriteLine("MyPos = {0}", k);
 Console.ReadKey();
 }
}

 21 / 25

122

Перед вызовом нестатистического метода MyPos() необходимо создать
экземпляр prog класса Program:

 Program prog = new Program();
 int k = prog.MyPos("ро","строка");

Если же метод MyPos() объявить с модификатором static, то
обращение к методу уже не требует экземпляра класса:
 int k = Program.MyPos("ро","строка");

Пример 7.3. Вычислить площадь треугольника.
В этом примере по координатам трех точек необходимо вычислить

площадь треугольника.
Введем класс TPoint для точки, в котором объявим два поля x, y и два

конструктора:

Листинг 7.7. Описание класса TPoint

 public class TPoint
 {
 public double x, y; // поля
 public TPoint() { } // 1-й конструктор
 public TPoint(double x, double y)// 2-й конструктор
 {
 this.x = x;
 this.y = y;
 }
 }

Далее в классе описаны два статических метода типа double для
вычисления длины отрезка:

Листинг 7.8. Метод вычисления длины отрезка

static double Distance(TPoint p1, TPoint p2)
{
 return Math.Sqrt(Math.Pow(p2.x - p1.x, 2) +
 Math.Pow(p2.y - p1.y, 2));
}
и площади треугольника по формуле Герона:

Листинг 7.9. Метод вычисления площади

static double Surface(TPoint p1,TPoint p2,TPoint p3)
{
 double a = Distance(p1,p2);
 double b = Distance(p2, p3);

 22 / 25

123

 double c = Distance(p1, p3);
 double p = (a + b + c) / 2;
 return Math.Sqrt(p*(p - a) * (p - b) * (p - c));
}

Выполнение программы начинается с метода Main(), в котором
создается три экземпляра класса TPoint, принимаются с клавиатуры
значения координат и вызывается метод Surface. Полный текст кода класса
Program приводится в листинге 7.10.

Листинг 7.10. Вычислить площадь треугольника

class Program
{
 public class TPoint
 {
 public double x, y;
 // два конструктора
 public TPoint() { }
 public TPoint(double x, double y)
 {
 this.x = x;
 this.y = y;
 }
 }

 static double Distance(TPoint p1, TPoint p2)
 {
 return Math.Sqrt(Math.Pow(p2.x - p1.x, 2) +
 Math.Pow(p2.y - p1.y, 2));
 }
 static double Surface(TPoint p1,TPoint p2,
 TPoint p3)
 {
 double a = Distance(p1,p2);
 double b = Distance(p2, p3);
 double c = Distance(p1, p3);
 double p = (a + b + c) / 2;
 return Math.Sqrt(p*(p-a)*(p - b) * (p - c));
 }

 static void Main(string[] args)
 {
 TPoint p1 = new TPoint();
 Console.Write("p1.x = ");
 p1.x = Convert.ToDouble(Console.ReadLine());
 Console.Write("p1.y = ");
 p1.y = Convert.ToDouble(Console.ReadLine());

 23 / 25

124

 TPoint p2 = new TPoint();
 Console.Write("p2.x = ");
 p2.x = Convert.ToDouble(Console.ReadLine());
 Console.Write("p2.y = ");
 p2.y = Convert.ToDouble(Console.ReadLine());

 TPoint p3 = new TPoint();
 Console.Write("p3.x = ");
 p3.x = Convert.ToDouble(Console.ReadLine());
 Console.Write("p3.y = ");
 p3.y = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("S = {0}", Surface(p1,p2,p3));
 Console.ReadKey();
 }
}

7.1.4.2. Формальные параметры

Формальные параметры используются для передачи в методы значений
или ссылок на переменные. Параметры метода получают фактические
значения от аргументов, которые указываются при вызове метода. Синтаксис
описания формального параметра:

[модификатор_параметра] тип_параметра имя_параметра

Описания отдельных параметров в списке разделяются запятыми.
Важной характеристикой метода является его сигнатура. Сигнатура метода
получается из списка его формальных параметров после удаления из него
имен параметров.

В C# поддерживается четыре вида параметров:
• параметры значений;
• параметры ссылок (модификатор ref);
• выходные параметры (модификатор out);
• массивы-параметры (модификатор params).
Параметр значения используется для передачи входного параметра.

Параметр значения соответствует локальной переменной, начальное
значение которой получается из аргумента, передаваемого для этого
параметра. Изменение параметра значения не влияет на аргумент,
передаваемый для этого параметра.

Параметры значения могут быть необязательными, указывающими
значение по умолчанию, поэтому соответствующие аргументы могут быть
опущены.

Параметр ссылки используется для передачи как входных, так и
выходных параметров. Аргумент, передаваемый параметру ссылки, должен
являться переменной и ему должно быть назначено начальное значение. Во

 24 / 25

125

время выполнения метода параметр ссылки представляет то же место
хранения, что и переменная аргумента. Параметр ссылки объявляется с
помощью модификатора ref. В следующем примере показано использование
параметров с модификатором ref.

Листинг 7.11. Описание метода с параметром ссылки ref

class Test
{
 static void Swap(ref int x, ref int y)
 {
 int temp = x;
 x = y;
 y = temp;
 }
 static void Main()
 {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine("{0} {1}", i, j);
 }
}

Листинг 7.12. Описание метода с параметром ссылки ref

static void SurfaceRef(TPoint p1,TPoint p2,TPoint p3,
 ref double s)
{
 double a = Distance(p1, p2);
 double b = Distance(p2, p3);
 double c = Distance(p1, p3);
 double p = (a + b + c) / 2;
 s = Math.Sqrt(p * (p - a) * (p - b) * (p - c));
}
static void Main(string[] args)
{
 double s;
 //...
 s = 0;
 SurfaceRef(p1, p2, p3, ref s);
 Console.WriteLine("S = {0}",s);
 Console.ReadKey();
}

Выходной параметр используется для передачи выходных параметров.
Выходной параметр аналогичен параметру ссылки и не требует начальной
инициализации аргумента, предоставляемого вызывающим объектом.

Powered by TCPDF (www.tcpdf.org)

 25 / 25

126

Выходной параметр объявляется с помощью модификатора out.
В следующем примере показано использование параметров с модификатором
out.

Листинг 7.13. Описание метода с параметром ссылки out

class Test
{
 static void Divide(int x, int y,
 out int result,
 out int emainder)
 {
 result = x / y;
 remainder = x % y;
 }
 static void Main()
 {
 int res, rem;
 Divide(10, 3, out res, out rem);
 Console.WriteLine("{0} {1}", res, rem);
 }
}

Массив-параметр используется для передачи методу переменного числа
аргументов. Массив-параметр объявляется с помощью модификатора params.
В качестве массива-параметра может использоваться только последний параметр
метода. Массив-параметр должен являться одномерным массивом. Методы Write
и WriteLine класса System.Console являются примерами использования
массивов-параметров. Эти методы объявляются следующим образом.

public class Console
{
 public static void
 Write(string fmt, params object[] args) {...}
 public static void
 WriteLine(string fmt, params object[] rgs){...}
 ...
}

В таких методах массив параметров используется как обычный
параметр, имеющий тип массива. При вызове метода с массивом параметров
можно передать как один аргумент типа массива параметров, так и любое
число аргументов с типом элементов массива параметров. В последнем
случае экземпляр массива автоматически создается и инициализируется с
использованием заданных аргументов. Например, вызов

Console.WriteLine("x = {0} y = {1} z = {2}", x, y, z);

равнозначен следующей записи:

 1 / 25

127

string s = "x = {0} y = {1} z = {2}";
object[] args = new object[3];
args[0] = x;
args[1] = y;
args[2] = z;
Console.WriteLine(s, args);

Пример 7.4. Написать метод определения максимального элемента
массива, с передачей в метод массива данных.

Листинг 7.14. Описание метода с передачей данных из массива

class Program
{
 static int MaxValue (int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }
 static void Main(string [] args)
 {
 int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};
 int maxVal = MaxValue(myArray) ;
 Console.WriteLine("Max {0}", maxVal);
 Console.ReadKey ();
 }
}

В приведенном коде содержится метод, который принимает массив
целых чисел в виде параметра и возвращает максимальное число в нем. Этот
метод называется MaxValue() и имеет один определенный параметр –
массив типа int с названием intArray, а также возвращаемый тип int.
Процесс вычисления максимального значения выглядит очень просто.
Сначала локальная переменная типа int по имени maxVal инициализируется
первым значением из массива, после чего это значение сравнивается с
каждым из остальных элементов в массиве. Если в каком-то из элементов
содержится более высокое значение, чем в maxVal, тогда оно делается
текущим значением maxVal. В результате по завершении цикла maxVal
содержит максимальное значение из имеющихся в массиве и возвращается с
помощью оператора return.

В коде метода Main() объявляется и инициализируется простой массив
целых чисел типа int, который будет передаваться в метод MaxValue():

 2 / 25

128

int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};

Вызов MaxValue() применяется для присваивания значения
переменной maxVal:
int maxVal = MaxValue(myArray);

Пример 7.5. Написать метод SumVals(), вычисляющий сумму элемен-
тов массива, с параметрической передачей данных из массива.

Листинг 7.15. Описание метода SumVals с параметрической передачей
данных из массива

 class Program
 {
 static int SumVals(params int[] vals)
 {
 int sum = 0;
 foreach(int v in vals)
 {
 sum += v;
 }
 return sum;
 }
 static void Main(string[] args)
 {
 int sum = SumVals(1, 2, 3, 4, 5) ;
 Console.WriteLine("Сумма = {0}", sum) ;
 Console.ReadKey();
 }
 }

В этом примере метод SumVals() определяется с использованием
ключевого слова params так, чтобы она могла принимать любое количество
параметров типа int:
static int SumVals(params int[] vals)
{
 …
}

Код этого метода проходит по значениям в массиве vals и складывает
их вместе, возвращая результат. В Main() осуществляется вызов этого
метода с пятью целочисленными параметрами:
int sum = SumVals(1,2,3,4,5);

Этот метод можно было бы вызвать с любым количеством параметров.

7.1.4.3. Тело метода и локальные переменные

Тело метода содержит последовательность операторов, выполняющих
соответствующую обработку даных. Кроме того, в теле метода могут быть
объявлены дополнительные переменные. При этом тело метода превращается

 3 / 25

129

в блок, ограничивающий область видимости этих переменных. Переменные,
объявленные внутри тела метода, называются его локальными переменными.
В объявлении локальной переменной задается имя типа, имя переменной и
при необходимости начальное значение. В следующем примере объявляются
локальная переменная i с нулевым начальным значением и локальная
переменная j без начального значения.

Листинг 7.16. Локальные переменные метода

class Squares
{
 static void Main()
 {
 int i = 0;
 int j;
 while (i < 10)
 {
 j = i * i;
 Console.WriteLine("{0} x {0} =
 {1}",i++, j);
 }
 }
}

В C# значение локальной переменной можно использовать только
после явного присваивания ей значения. Например, если переменной i (см.
выше) не присвоено начальное значение, при последующем ее
использовании возникнет ошибка компиляции, так как в момент
использования переменной i ей явно не присвоено значение.

В методе можно использовать операторы return для передачи
управления вызвавшему его объекту. В методе, возвращающем void,
операторы return не могут задавать выражение. В методе, возвращающем
отличное от void значение, операторы return должны включать выражение,
вычисляющее возвращаемое значение.

7.1.4.4. Статические методы и методы экземпляров

Метод, объявленный с использованием модификатора static,
называется статическим методом. Статический метод не выполняет
операций с конкретным экземпляром и может напрямую обращаться только к
статическим членам.

Метод, объявленный без использования модификатора static,
называется методом экземпляра. Метод экземпляра выполняет операции
только с конкретным экземпляром – объектом – и может обращаться как к
статическим членам, так и к членам экземпляра. Явное обращение к
экземпляру, для которого вызывается метод экземпляра, выполняется с

 4 / 25

130

помощью ключевого слова this. При ссылке на this в статическом методе
возникает ошибка.

В следующем примере класс Stud содержит как статические члены, так
и члены экземпляра.

Листинг 7.17. Статические члены и члены экземпляра класса

 public class Stud
 {
 static int nextId;
 int id;
 public Stud() {id = nextId++;}
 public int Id { get { return id; } }
 public static int NextId
 {
 get { return nextId; }
 set { nextId = value; }
 }
 }

Каждый экземпляр класса Stud содержит свойство Id и статическое
свойство NextId. Конструктор класса Stud инициализирует новый
экземпляр со следующим id, которое получает из свойства NextId. Так как
конструктор представляет собой член экземпляра, допускается обращение
как к свойству экземпляра Id, так и к статическому свойству NextId.

Статические методы get() и set() свойства NextId могут
обращаться к статическому полю NextId, но при непосредственном
обращении этих методов к полю экземпляра Id возникнет ошибка.

В следующем примере показано использование класса Stud.

Листинг 7.18. Использование класса Stud

 static void Main(string[] args)
 {
 Stud.NextId = 1;
 Stud stud1 = new Stud();
 Stud stud2 = new Stud();
 Console.WriteLine(stud1.Id); // 1
 Console.WriteLine(stud2.Id); // 2
 Console.WriteLine(Stud.NextId); // 3
 Console.ReadKey() ;
 }

Обратите внимание, что статическое свойство NextId вызывается для
класса, а свойство экземпляра Id — для экземпляра класса.

 5 / 25

131

7.1.4.5. Примеры методов для обработки строк

Приведем пример класса MyString, в котором реализованы: поле fs,
свойство S, конструктор и четыре метода:

Листинг 7.19. Класс TMyString

 class MyString
 {
 string fs; // поле
 public string S // свойство
 {
 get {return fs;}
 set {fs = value;}
 }
 public MyString(string fs) // конструктор
 {
 this.fs = fs;
 }
 public int Pos(string s1)
 //метод: поиск строки
 public string Copy2() //копирование строки
 public bool Sorted()
 //проверка упорядоченности
 public int CountSymb(string s1)
 //подсчет числа символов
 }

Пример 7.6. Реализовать метод Pos(), которая ищет подстроку в
строке.

Листинг 7.20. Поиск подстроки

public int Pos(string s1)
// метод: поиск подстроки
{
 int i = -1;
 bool ok = false;
 while ((i<S.Length-s1.Length) && !ok)
 ok = s1 == S.Substring(++i,s1.Length);
 if (ok)
 return i;
 else
 return -1;
}

Пример 7.7. Дана строка символов. Вывести символы между первым и
вторым «-».

 6 / 25

132

Листинг 7.21. Копировать подстроку символов между двумя (-)

 public string Copy2()
 // метод: копирование строки -ааа-
 {
 int i = -1;
 bool ok = false;
 while ((i < S.Length) && !ok)
 ok = S[++i] == '-';
 string sNew = "";
 ok = false;
 while ((i < S.Length) && !ok)
 {
 ok = S[++i] == '-';
 if (!ok)
 sNew += S[i];
 }
 return sNew;
 }

Пример 7.8. Проверить упорядоченности символов в строке.

Листинг 7.22. Упорядоченность символов

 public bool Sorted()
 //метод: проверка упорядоченности
 {
 int i = -1;
 bool ok = true;
 while ((i < S.Length - 2) && ok)
 ok = S[++i] < S[i + 1];
 return ok;
 }

Пример 7.9. Подсчитать количество символов “a” и “o” в строке.

Листинг 7.23. Число символов в строке

 public int CountSymb(string s1)
 // метод: подсчет символов
 {
 bool ok;
 int j, k = 0;
 for (int i = 0; i < S.Length; i++)
 {
 j = -1; ok = false;
 while ((j < s1.Length - 1) && !ok)
 ok = S[i] == s1[++j];

 7 / 25

133

 if (ok) k++;
 }
 return k;
 }

Сама программа выглядит так.

 Листинг 7.24. Текст программы

class Program
{
 class TMyString
 static void Main(string[] args)
 {
 TMyString myStr = new TMyString("1234561");
 string st;
 st = myStr.S;
 myStr.S = "строка";
 Console.WriteLine("Pos = {0}",
 myStr.Pos("стро"));
 myStr.S = "1234";
 Console.WriteLine("упорядочена = {0}",
 myStr.упорядочена());
 myStr.S = "12123434";
 Console.WriteLine("CountSymb = {0}",
 myStr.CountSymb("12"));
 myStr.S = "12-123-434";
 Console.WriteLine("Copy2 = {0}",
 myStr.Copy2());
 Console.ReadKey();
 }
}

7.1.4.6. Перегрузка методов

Перегрузка метода позволяет использовать в одном классе несколько
методов с одинаковыми именами и различными сигнатурами. При
компиляции вызова перегруженного метода компилятор использует
разрешение перегрузки для определения конкретного вызываемого метода.
С помощью разрешения перегрузки определяется метод, наиболее
подходящий для заданных аргументов, или, если такой метод не найден,
возвращается сообщение об ошибке. В следующем примере показано
действие разрешения перегрузки. В комментариях к каждому вызову метода
Main() указывается, какой метод фактически вызывается.

 8 / 25

134

Листинг 7.25. Перегрузка методов

class Test
{
 static void F() {
 Console.WriteLine("F()");
 }
 static void F(object x) {
 Console.WriteLine("F(object)");
 }
 static void F(int x) {
 Console.WriteLine("F(int)");
 }
 static void F(double x) {
 Console.WriteLine("F(double)");
 }
 static void F(double x, double y) {
 Console.WriteLine("F(double, double)");
 }
 static void Main() {
 F(); // вызывает F()
 F(1); // вызывает F(int)
 F(1.0); // вызывает F(double)
 F("abc"); // вызывает F(object)
 F((double)1); // вызывает F(double)
 F((object)1); // вызывает F(object)
 F(1, 1); // вызывает
 // F(double,double)
 }
}

Как показано в примере, конкретный метод всегда можно выбрать
посредством явного приведения аргументов к соответствующим типам
параметров или явного предоставления аргументов типа.

7.1.5. КОНСТРУКТОРЫ
Создание объекта, то есть выделение памяти для его размещения,

происходит автоматически. Следующим шагом является инициализация его
полей, то есть присваивание им некоторых начальных значений. Эту работу
выполняет особый метод, называемый конструктором.

По сравнению с другими методами объявление конструктора имеет две
особенности:

• имя конструктора должно совпадать с именем класса;
• для конструктора не указывается тип результата.

Существуют три способа получения инициализирующих значений.

 9 / 25

135

Во-первых, эти значения могут быть переданы в конструктор с
помощью параметров. В этом случае имеется возможность для каждого
создаваемого объекта задавать свои начальные значения полей.

Во-вторых, поля объекта могут быть инициализированы
предустановленными для них значениями, которые указываются в теле
конструктора. В этом случае все объекты класса будут получать одни и те же
начальные значения для своих полей.

Наконец, при отсутствии явного задания инициализирующих значений
используются значения по умолчанию. Для числовых полей это нулевое
значение, для булевских полей – значение false, для полей ссылочных
типов – значение null.

Разумеется, возможны различные варианты комбинирования этих трех
способов, что позволяет объявлять в классе несколько перегруженных
конструкторов, отличающихся своими сигнатурами.

Например, конструктор класса TPoint, приведенного в листинге 7.1,
имеет два параметра:

public TPoint(int ax, int ay)
// конструктор с параметрами
{
 x = ax;
 y = ay;
}

Конструктор без параметров в этом случае будет выглядеть так:

public TPoint() {} // конструктор без параметров

Класс может не содержать объявления конструктора. В этом случае
автоматически предоставляется конструктор экземпляров по умолчанию,
инициализирующий поля объекта значениями по умолчанию.

В С# конструктор можно вызвать, введя ключевое слово new.
Например, мы можем создать объект типа TPoint следующим образом:

TPoint p = new TPoint();

Конструкторы с параметрами используются аналогичным образом:

TPoint p = new TPoint(10,10);

В результате применения этого конструктора будет создан новый
объект, полям которого в качестве начального значения будут присвоены
значения p.x = 10; p.y = 10.

Конструкторы, аналогично полям, свойствам и методам, могут иметь
разный уровень доступности. При этом закрытые конструкции объявляются в
классах, содержащих только статические методы. Для таких классов
создания экземпляров не требуется.

 10 / 25

136

7.2. НАСЛЕДОВАНИЕ
Если построен полезный класс, то он может многократно

использоваться, что и является одной из целей объектно-ориентированного
программирования. Часто необходимо расширить возможности класса,
придать ему новую функциональность или изменить интерфейс.

Всякая попытка изменять работающий класс может привести к
большим неприятностям – могут перестать работать ранее работавшие
программы, а многим экземплярам класса не нужен новый интерфейс и
новые возможности. В этом случае применяют наследование: существующий
класс не меняется, но создается его потомок, наследующий свойства и
методы предка и добавляющий новые свойства и методы.

В C# класс-предок называется базовым классом для класса-потомка.
Класс может иметь произвольное число потомков. В свою очередь, любой
класс-потомок может стать предком новых классов. Тем самым появляется
возможность построить иерархию классов. Прародителем всех классов в C#
является класс object.

В объявлении класса может задаваться базовый класс – предок, имя
которого записывается после имени класса и параметров типа через
двоеточие. Класс, для которого не задан базовый класс, считается
производным от типа object. В следующем примере для класса Point3D
базовым является Point, а базовым классом для Point является object:

Листинг 7.26. Объявление класса-потомка

public class Point
{
 public int x, y;
 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}
public class Point3D: Point
{
 public int z;
 public Point3D(int x, int y, int z):
 base(x, y)
 {
 this.z = z;
 }
}

Конструктор инициализирует свое поле z и, с помощью конструкции
:base(x, y), обращается к конструктору своего предка.

 11 / 25

137

Класс наследует члены своего базового класса. Наследование означает,
что класс неявно содержит все члены его базового класса, исключая:

• конструкторы экземпляров;
• статические конструкторы;
• деструкторы базового класса.

Производный класс может добавлять новые члены к своим
унаследованным членам, но он не может удалить определение
унаследованного члена. В предыдущем примере класс Point3D наследует
поля x и y класса Point. Это означает, что каждый экземпляр класса
Point3D содержит три поля: x, y и z.

У класса может быть только один предок, то есть множественное
наследование от классов запрещено. Но наследование может быть и от
интерфейсов и оно может быть множественным.

Существует неявное преобразование из типа класса к любому из его
базовых типов класса. Таким образом, переменная типа класса может
ссылаться на экземпляр этого класса или любого производного от него
класса. Например, если сделаны предыдущие объявления классов,
переменная типа Point может ссылаться как на экземпляр класса Point, так
и на экземпляр класса Point3D:

Point a = new Point(10, 20);
Point b = new Point3D(10, 20, 30);

В свойствах, как и в методах, могут использоваться ключевые слова
virtual, override и abstract, что в случае полей совершенно
невозможно.

7.3. ПРИМЕР «УМНЫЙ ДОМ»
Третий принцип ООП – полиморфизм – тесно связан с такими

понятиями, как абстрактный метод, виртуальный метод, перекрытие метода.
Для того чтобы разобраться с этими понятиями потребуется достаточно
сложный пример, содержащий много классов. В качестве такого примера
рассмотрим сильно упрощенную проблему создания «умного» дома.

В этом доме, состоящем из нескольких комнат, датчиками измеряется
температура снаружи и во всех комнатах, измеряется освещенность.
Необходимо поддерживать заданную температуру и освещенность, управляя
такими устройствами, как: нагревательный котел, кондиционер и
электрические лампы.

Таким образом, для описания различных устройств потребуются
следующие классы:
Устройство ::= Управляемое устройство | Датчик
(Device ::= OperatedDevice | Guage)

 12 / 25

138

Управляемое устройство ::=
 Нагревательный котел | Лампа | Кондиционер
(OperatedDevice ::= HeatingBoiler | Lamp | Conditioner)

Датчик ::= тепло | свет | движение
(Guage ::= GuageHeat | GuageLight | GuageMove)

Базовым классом для всех устройств является абстрактный класс

Device:

Листинг 7.27. Абстрактный класс устройств Device

public abstract class Device // устройства
{
 private string name;
 public string Name
 { get { return name; } set { name = value; } }
 private bool state;
 public virtual bool State
 { get { return state; } set { state = value; } }
 public abstract void MessageBD();
 // конструкторы
 public Device() { }
 public Device(string name, bool state)
 {
 this.name = name;
 this.state = state;
 }
}

обладающий общими свойствами имя устройства Name и состояние State,
конструкторами Device() и абстрактным методом MessageBD(),
предназначенным для записи изменений состояния устройств в базу данных.

Класс Device порождает два класса: класс управляемых устройств
(OperatedDevice) и класс датчиков (Guage):

Листинг 7.28. Класс управляемых устройств OperatedDevice

public class OperatedDevice : Device
{
 public OperatedDevice() { }
 public OperatedDevice(string name, bool state)
 : base(name, state) { }
 public virtual void MessagePhone() { }
 // надо перекрыть. Есть у потомков
 public override void MessageBD()
 {

 13 / 25

139

 Console.WriteLine("OperatedDevice-> name = {0}",
 Name);
 }
}

Листинг 7.29. Класс датчиков Guage

public class Guage : Device // датчики
{
 override public bool State
 { get { return State; } }
 protected float voltage; // напряжение
 public float Voltage
 {get{return voltage; } set { voltage = value;}}
 // надо перекрыть. Есть у потомков
 public override void MessageBD(){}
}

В классе управляемых устройств OperatedDevice помимо
конструкторов появляется виртуальный метод MessagePhone(),
предназначенный для генерации сообщений от некоторых устройств на
телефон, и мы обязаны перекрыть абстратный метод MessageBD(), который
есть у предка. В этом методе вместо записи данных в БД будем просто
выводить сообщение на экран.

В классе датчиков Guage перекрывается свойство State (датчики
лишаются права программно изменять состояние on/off), добавляется
свойство напряжение Voltage и мы обязаны перекрыть метод MessageBD().

От класса управляемых устройств OperatedDevice порождается три
класса: нагревательный котел HeatingBoiler, лампа Lamp, кондиционер
Conditioner.

Класс Lamp самый простой – в нем просто добавляется свойство
мощность Power:

Листинг 7.30. Класс ламп

public class Lamp : OperatedDevice // лампа
{
 protected float power;
 public float Power
 { get { return power; } set { power = value; } }
}

Класс Conditioner организован немного сложнее: кроме добавления
своства режим Mode, к нему подключен интерфейс IMessageBD:

 14 / 25

140

Листинг 7.31. Класс кондиционеров Conditioner

public class Conditioner:OperatedDevice, IMessageBD
{
 protected byte mode;
 public byte Mode
 { get { return mode; } set { mode = value; } }
 public void MessageBD2() { }
}

Интерфейс IMessageBD:

 public interface IMessageBD
 {
 void MessageBD2();
 }

содержит объявление всего одного метода MessageBD2(), который мы
обязаны реализовать в классе Conditioner.

Больше всего изменений произошло в классе нагревательный котел
HeatingBoiler:

Листинг 7.32. Класс наревательный котел HeatingBoiler

public class HeatingBoiler : OperatedDevice,
 IMessageBD // Нагревательный котел
{
 protected double temperature;
 public double Temperature
 {
 get { return temperature; }
 set
 {
 if (value<22) {value = 0; state = false;}
 temperature = value;
 }
 }
 public override void MessagePhone() { }
 public void MessageBD2() { }
 public HeatingBoiler() { }
 public HeatingBoiler(string name, bool state,
 float temperature): base(name, state)
 {
 this.temperature = temperature;
 }
}

 15 / 25

141

Класс является потомком класса OperatedDevice и кроме того:
• подключен интерфейс IMessageBD, а это означает, что в классе

должна быть реализация метода MessageBD2();
• добавлено свойство Temperature с «интеллектуальным» методом

set;
• перекрыт метод MessagePhone();
• создано два конструктора.

Потомки у класса датчики более простые. В каждом из классов
добавлено по одному свойству:

Листинг 7.33. Класс различных датчиков

public class GuageHeat : Guage
// датчик температуры
{
 protected float temperature;
 public float Temperature
 { get { return temperature; }
 set { temperature = value; } }
}
public class GuageLight : Guage // датчик освещенности
{
 protected float lightExposure; // освещенность
 public float LightExposure
 { get { return lightExposure; }
 set { lightExposure = value; } }
}
public class GuageMove : Guage // датчик движения
{
 protected bool moveMent;
 public bool MoveMent
 { get {return moveMent;} set {moveMent = value;}}
}

Общая диаграмма классов представлена на рис. 7.3 и 7.4.

 16 / 25

142

Рис. 7.3. Диаграмма классов для проекта «Умный» дом

Рис. 7.4. Диаграмма классов для проекта «Умный» дом

 17 / 25

143

Опишем теперь класс комната Room:

Листинг 7.34. Класс комната

public class Room // комната
{
 protected double temperature; // температура
 public double Temperature
 { get { return temperature; }
 set { temperature = value; } }
 public Room() {}
 public Room(double temperature)
 {
 this.temperature = temperature;
 }
}

В этом классе введено свойство температура Temperature и два
конструктора.

И, наконец, опишем основной класс IntellectualHouse:

Листинг 7.35. Класс «Умный дом»

public class IntellectualHouse // Умный дом
{
 protected static double temperatureOut;
 // температура вне
 public static double TemperatureOut
 { get { return temperatureOut; }
 set { temperatureOut = value; } }
 protected static Room room;
 public OperatedDevice[] myDevice =
 new OperatedDevice[3];
 public void WriteBD()
 {
 for (int i = 0; i < myDevice.Length;i++)
 myDevice[i].MessageBD();
 }
 public IntellectualHouse()
 {
 room = new Room(20);
 myDevice[0] =
 new HeatingBoiler("Котел", true,50);
 myDevice[1] = new Lamp("Лампа", true,100);
 myDevice[2] =
 new Conditioner("Кондиционер", true,3);
 }
}

 18 / 25

144

В этом классе введено свойство внешней тепературы TemperatureOut,
массив устройств myDevice[], конструктор IntellectualHouse() и метод
WriteBD(), предназначенный для записи состояния устройств в базу данных.

7.4. ПОЛИМОРФИЗМ
Базовый класс управляемых устройств OperatedDevice определил

метод по имени MessageBD(), изначально реализованный так:

Листинг 7.36. Класс OperatedDevice

public class OperatedDevice : Device
{
 public override void MessageBD()
 {
 Console.WriteLine("OperatedDevice -> name = {0},
 State = {1}", Name, State);
 }}

Так как этот метод был определен с ключевым словом public, теперь
можно вносить данные в БД от различных устройств:

Листинг 7.37. Запись данных от различных устройств

 public void WriteBD()
 {
 for (int i = 0; i < myDevice.Length; i++)
 myDevice[i].MessageBD();
 }

В результате работы этого метода на экране появится следующая
информация:

Проблема такой реализации состоит в том, что общедоступно

унаследованный метод MessageBD() работает одинаково для всех
подклассов, то есть выводит только имя и состояние устройства. Однако у
каждого потомка базового класса есть свои отличительные свойства и они
должны попадать в базу данных.

7.4.1. КЛЮЧЕВЫЕ СЛОВА ABSTRACT, VIRTUAL И OVERRIDE
Полиморфизм предоставляет подклассу способ определения своей

собственной версии метода с таким же именем и с такой же сигнатурой,
определенного его базовым классом, используя процесс, который называется
переопределением метода (method overriding). Чтобы пересмотреть структуру
классов, необходимо понять значение ключевых слов abstract, virtual и
override. Если в базовом классе определен метод, который может быть

 19 / 25

145

переопределен в подклассе, он должен быть помечен ключевым словом
abstract или virtual:

public abstract class Device // устройства
{
 public abstract void MessageBD();
}

Отличие абстрактного от виртуального метода заключается в том, что у
абстрактного метода не должно быть никакой реализации, а у виртуального
метода должна быть реализация в блоке {} может быть пустая.

Если класс-потомок желает изменить реализацию деталей абстрактного
или виртуального метода, он делает это с помощью ключевого слова
override. Например, классы HeatingBoiler и Conditioner
переопределяют метод MessageBD(), как показано ниже. Если, например,
класс Lamp не будет переопределять MessageBD(), то он наследует версию,
определенную в классе предка OperatedDevice:

Листинг 7.38. Запись данных от различных устройств

public class HeatingBoiler : OperatedDevice, IMessageBD
{
 public override void MessageBD()
 {
 base.MessageBD();
 Console.WriteLine(" HeatingBoiler: Temperature
 = {0}", Temperature);
 }
}
public class Conditioner : OperatedDevice, IMessageBD
{
 public override void MessageBD()
 {
 base.MessageBD();
 Console.WriteLine(" Conditioner: Mode =
 {0}", Mode);
 }
}

Обратите внимание на использование каждым переопределенным
методом поведения по умолчанию через ключевое слово base. Таким
образом, полностью повторять реализацию логики MessageBD()не
обязательно, а вместо этого можно повторного использовать и, возможно,
расширять поведение по умолчанию родительского класса.

 20 / 25

146

Ниже показан возможный тестовый запуск приложения.

7.4.2. ПОНЯТИЕ АБСТРАКТНЫХ КЛАССОВ
Допустим, что базовый класс Device объявлен не абстрактным. В этом

случае класс Device представляет защищенные переменные члены своим
потомкам, а также предлагает абстрактный метод MessageBD(), который
может быть переопределен наследниками. У данной реализации есть один
неприятный эффект: можно создавать экземпляры базового класса Device:

Device X = new Device();

В нашем примере единственное назначение базового класса Device —
определить общие члены для всех подклассов. Поэтому нельзя позволять
создавать прямые экземпляры этого класса, так как тип Device слишком
общий. В С# можно добиться этого программно, используя ключевое слово
abstract, то есть создавая абстрактный базовый класс:

abstract class Device
{
}

После этого попытка создать экземпляр класса Device приведет к
ошибке во время компиляции: «Ошибка! Нельзя создавать экземпляр
абстрактного класса!»

Если класс определен как абстрактный базовый класс с помощью
ключевого слова abstract, он может определять любое количество
абстрактных членов. Абстрактные члены могут использоваться везде, где
необходимо определить член, которые не предлагает реализации по
умолчанию. Таким образом навязывается полиморфный интерфейс каждому
наследнику, перекладывая на них задачу реализации конкретных деталей
абстрактных методов.

Полиморфный интерфейс абстрактного базового класса просто
ссылается на его набор виртуальных и абстрактных методов. Эта особенность
ООП позволяет строить расширяемое и гибкое программное обеспечение.

Виртуальный метод MessageBD() предоставляет реализацию по
умолчанию, которая просто печатает сообщение, информирующее о том, что
вызван метод MessageBD() базового класса Device. Если метод помечен
ключевым словом virtual, он предоставляет реализацию по умолчанию,
которую автоматически наследуют все производные типы. Дочерний класс
может переопределить такой метод, но он не обязан это делать.

 21 / 25

147

Абстрактные методы могут определяться только в абстрактных
классах. Иначе возникает ошибка компиляции.

Методы, помеченные как abstract, являются протоколом. Они просто
определяют имя, если есть возвращаемое значение и, если необходимо, набор
аргументов, то есть сигнатуру метода. Абстрактный класс информирует
классы-потомки: "есть метод по имени MessageBD(), который не принимает
аргументов. Если ты — мой прямой наследник, позаботься о реализации".

Хотя невозможно напрямую создавать экземпляры абстрактного
базового класса Device, можно свободно сохранять ссылки на объекты
любого подкласса в абстрактной базовой переменной.

Таким образом, создав массив myDevice[] объектов Device, можно
хранить объекты, наследующие базовый класс Device. Учитывая, что все
элементы в массиве myDevice действительно наследуются от Device,
известно, что все они поддерживают один и тот же полиморфный интерфейс
или, говоря конкретно, — все они имеют метод MessageBD(). Выполняя
цикл по массиву ссылок Device, исполняющая система определяет, какой
конкретный тип имеет каждый его элемент. И в этот момент вызывается
корректная версия метода MessageBD().

7.5. ЧЛЕНЫ-ФУНКЦИИ КЛАССА
Члены класса, содержащие исполняемый код, в совокупности

называются члены-функции. В предыдущем разделе описан ряд членов-
функций, а именно: методы, свойства и конструкторы. В этом разделе будут
рассмотрены другие типы членов-функций, поддерживаемых в C#:
индексаторы, события, операторы и деструкторы.

7.5.1. ИНДЕКСАТОРЫ
В некоторых ситуациях желательно обращаться к объектам классов

коллекций, являющихся членами класса, так, словно сам класс является
массивом. Предположим, требуется создать объект для хранения
информации о студенте с именем stud. Пусть он, кроме имени студента
Name, содержит список средних оценок за семестры, хранящийся в
одномерном массиве, а точнее – в закрытой переменной с именем
estimationSemester. Помимо массива объект может содержит целый ряд
свойств и методов. Было бы удобно обращаться к этому объекту, используя
индексы, словно окно списка является массивом. Например, появилась бы
возможность писать такие операторы:

stud.Name = “Петя”;
stud[1] = 4.2;

Индексатор (indexer) в C# как раз является конструкцией,
позволяющей пользоваться привычным синтаксисом с квадратными
скобками для обращения к объектам классов коллекций, являющихся

 22 / 25

148

членами класса. Индексатор — это специальный вид свойства, поведение
которого определяется методами get() и set().

Индексатор объявляется следующим образом:

<возвращаемый_тип> this [<тип_индекса> <имя_индекса>]{get;
set;}

Возвращаемый тип определяет тип объекта, возвращаемого
индексатором, а тип индекса определяет, какие аргументы будут
задействованы для индексации объекта класса коллекции, содержащего
требуемые объекты. Можно указать несколько индексов, создав тем самым
многомерный массив!

Ключевое слово this – это ссылка на объект, в котором появляется
индексатор. Как и в случае обычного свойства, необходимо определить
методы get() и set(), описывающие, как запрошенный объект будет
извлекаться из объекта класса коллекции или записываться в него.

Пример 7.10. Приведем пример класса TStud с индексатором. Он
содержит одномерный массив estimationSemester и индексатор,
осуществляющий доступ к содержимому списка:

Листинг 7.39. Пример класса TStud с индексатором

public class TStud
{
 private double[] estimationSemester;
 int length;
 public string Name;
 public TStud(params double[] arg)
 {
 this.length = arg.Length;
 estimationSemester = new double[length];
 for (int i = 0; i < arg.Length; i++)
 this[i] = arg[i];
 }
 public int Length
 { get { return length; } }
 public double this[int index]
 {
 get { return estimationSemester[index]; }
 set { estimationSemester[index] = value; }
 }
 public void Add(double value)
 {
 int n = estimationSemester.Length;
 Array.Resize<double>(ref estimationSemester,
 ++n);
 estimationSemester[n - 1] = value;

 23 / 25

149

 }
}

В тексте программы работа с этим классом будет выглядеть так:
 TStud st = new TStud(4.2, 3.9, 4.6);
 st[1] = 4.0;
 st.Name = "Петя";
 st.Add(4.4);

Пример 7.11. В C# есть два класса SortedSet и HashSet,
предназначенные для работы с множествами. Попробуем смоделировать
множества с помощью массива целых чисел, в котором каждый бит каждого
элемента массива отвечает за вхождение в множество одного из целых
положительных чисел в диапазоне от 0 до Length-1.

Листинг 7.40. Моделирование множества

class MySet
{
 int[] bits;
 int length;
 public MySet(params int[] arg)
 {
 this.length = 0;
 for (int i = 0; i<arg.Length; i++)
 if (arg[i]>length)
 length = arg[i];
 bits = new int[((length - 1) >> 5) + 1];
 for (int i = 0; i < arg.Length; i++)
 this[arg[i]] = true;
 }
 public int Length
 { get { return length; }}
 public bool this[int index]
 {
 get
 {return (bits[index>>5]& 1 << index) != 0; }
 set
 {
 if (value)
 bits[index >> 5] |= 1 << index;
 else
 bits[index >> 5] &= ~(1 << index);
 }
 }
}

В этом примере индекс постоянно сдвигается направо на 5 потому, что
int занимает 4 байта или 32 бита, 32 = 25.

 24 / 25

150

Создание множества из трех элементов, проверка вхождения,
добавление элемента 4 и удаление элемента 3 выглядит так:

MySet a = new MySet(1, 3, 5);
if (a[3])...;
a[4] = true;
a[3] = false;

В следующем параграфе мы переопределим операции +, -, * и / для
множеств.

7.5.2. ПЕРЕОПРЕДЕЛЕНИЕ ОПЕРАЦИЙ
Одна из целей языка С# состоит в том, чтобы обеспечить классам,

определенным пользователем, обладание всей функциональностью базовых
типов. Предположим, определяется тип Complex, представляющий
комплексные числа. Обеспечить этот класс функциональностью базовых
типов — значит, получить возможность выполнять арифметические
операции над объектами класса (складывать два числа, умножать их и т. д.).
Конечно, можно реализовать методы для каждой из требуемых операций и
вызывать их примерно так:
Complex z1; Complex z2;
Complex sum = z1.Add(z2);

Однако привычнее писать:

Complex sum = z1 + z2;

В языке С# операции являются статическими методами, которые
возвращают результат операции, а в качестве аргументов используют ее
операнды. Для задания операции для какого-либо класса необходимо
перегрузить соответствующий метод аналогично тому, как перегружается
любой метод класса. Так, чтобы перегрузить операцию сложения (+) для
структуры Complex, следует написать:

public static Complex operator + (Complex p1, Complex p2)
{ return new Complex(p1.a + p2.a, p1.b + p2.b); }

Синтаксис перегрузки операции в языке С# предписывает указывать
ключевое слово operator и знак перегружаемой операции после него.

Слово operator является модификатором метода. Поэтому, чтобы
перегрузить операцию сложения (+), следует указать operator +.

Теперь, если написать:

 sum = z1+z2;

то будет вызвана перегруженная операция +, которой переменная z1 будет
передана в качестве первого параметра, а переменная z2 — в качестве

Powered by TCPDF (www.tcpdf.org)

 25 / 25

151

второго. Если компилятор встречает выражение z1 + z2, то он преобразует
его в:

 Complex.operator + (z1, z2)

В результате возвращается новое значение типа Complex, которое в
данном случае присваивается объекту Complex с именем sum.

Приведем полное описание структуры Complex:

Листинг 7.41. Структура для комплексных чисел Complex

public struct Complex
{
 public double a;
 public double b;
 public Complex(double a, double b) // конструктор
 {
 this.a = a;
 this.b = b;
 }
 // Перегруженная операция +
 public static Complex operator + (Complex p1,
 Complex p2)
 {return new Complex(p1.a+p2.a, p1.b + p2.b); }
 // Перегруженная операция -
 public static Complex operator - (Complex p1,
 Complex p2)
 {return new Complex(p1.a-p2.a, p1.b-p2.b);}
 // операция умножения двух комплексных чисел
 public static Complex operator * (Complex p1,
 Complex p2)
 {
 return new Complex(p1.a * p2.a - p1.b * p2.b,
 p1.a * p2.b + p1.b * p2.a);
 }
 //умножение комплексного числа на вещественное
 public static Complex operator * (Complex p,
 double a)
 {
 return new Complex(a*p.a, a*p.b);
 }
 // метод: модуль комплексного числа
 public static double Abs(Complex p)
 { return Math.Sqrt(p.a*p.a + p.b*p.b); }
}

В этой структуре, кроме операций <+> и <->, определены две
операции умножения <*> с различными сигнатурами и статический метод
Abs().

 1 / 25

152

Пример 7.12. Даны комплексное число z и вещественное число ε > 0.
Вычислить с помощью ряда с точностью ε значение следующей комплексной
функции:

ez = 1 + z / 1! + z2 / 2! + … + zn / n! + …;

Точное значение функции ez вычисляется по формуле:

 ez = ex(cos(y)+i*sin(y)).

В листинге 7.42 приводится код программы

Листинг 7.42. Вычисление комплексного ряда

static void Main(string[] args)
{
 Complex z = new Complex(0.1,0.1);
 Complex a = new Complex(1, 0);
 Complex s = new Complex(1, 0);
 double eps = 1e-6; int i = 0;
 while (Complex.Abs(a)>eps)
 {
 a *= z * (1.0/++i);
 s += a;
 }
 Console.WriteLine();
 Console.WriteLine("Exp(z) = {0}+i*{1}",
 Math.Exp(z.a) * Math.Cos(z.b),
 Math.Exp(z.a) * Math.Sin(z.b));
 Console.WriteLine("Exp(z) = {0}+i*{1}",s.a,s.b);
 Console.ReadKey();
 }

Ниже приведены результаты работы программы:

Как и требовалось в цикле while, приближенное значение отличается

от точного на 10-6.
Пример 7.13. Реализовать бинарные операции для класса множество

MySet.

Листинг 7.43. Бинарные операции для множества

public static MySet operator + (MySet p1, MySet p2)
{
 int L = Math.Max(p1.Length,p2.Length);
 MySet result = new MySet(L);
 int Lmin = Math.Min(p1.bits.Length,

 2 / 25

153

 p2.bits.Length);
 for (int i = 0; i<Lmin; i++)
 result.bits[i] = p1.bits[i] | p2.bits[i];
 return result;
}
public static MySet operator *(MySet p1, MySet p2)
{
 int L = Math.Max(p1.Length, p2.Length);
 MySet result = new MySet(L);
 int Lmin = Math.Min(p1.bits.Length,
 p2.bits.Length);
 for (int i = 0; i < Lmin; i++)
 result.bits[i] = p1.bits[i] & p2.bits[i];
 return result;
}
public static MySet operator -(MySet p1, MySet p2)
{
 int L = Math.Max(p1.Length, p2.Length);
 MySet result = new MySet(L);
 int Lmin = Math.Min(p1.bits.Length,
 p2.bits.Length);
 for (int i = 0; i < Lmin; i++)
 result.bits[i] = p1.bits[i] & ~p2.bits[i];
 return result;
}
public static MySet operator /(MySet p1, MySet p2)
{
 int L = Math.Max(p1.Length, p2.Length);
 MySet result = new MySet(L);
 int Lmin = Math.Min(p1.bits.Length,
 p2.bits.Length);
 for (int i = 0; i < Lmin; i++)
 result.bits[i] = (~p1.bits[i] & p2.bits[i])
 | (p1.bits[i] & ~p2.bits[i]);
 return result;
}

Ниже приводится пример кода программы, в которой используется
класс MySet:
 MySet a = new MySet(1, 3, 5);
 MySet b = new MySet(1, 3, 4);
 MySet c = a + b;
 c.Print(); // 1 3 4 5
 c = a - b;
 c.Print(); // 5
 c = a * b;
 c.Print(); // 1 3
 c = a / b;
 c.Print(); // 4 5

 3 / 25

154

У всех унарных и бинарных операторов есть стандартная реализация,
доступная автоматически в любом выражении. В дополнение к стандартным
реализациям объявление operator в классах и структурах позволяет
использовать пользовательские реализации. Пользовательские реализации
операторов всегда имеют приоритет над предопределенными реализациями
операторов: только в случае, если не существует пользовательских
реализаций операторов, будут рассматриваться предопределенные
реализации операторов.

К унарным операторам, допускающим перегрузку, относятся:

+ - ! ~ ++ -- true false

Несмотря на то что true и false явно в выражениях не используются,
они считаются операторами, потому что вызываются в некоторых контекстах
выражений: логические выражения, выражения, включающие условия, и
логические условные операторы.

К бинарным операторам, допускающим перегрузку, относятся:
+ - * / % & | ^ << >> == != > <
>= <=

Перегрузка возможна только для операторов, указанных выше.
При перегрузке бинарного оператора связанный оператор

присваивания также неявно перегружается. Например, при перегрузке
оператора * также выполняется перегрузка оператора *=. Оператор
присваивания (=) нельзя перегрузить. При присваивании всегда происходит
простое побитовое копирование значения в переменную.

7.5.3. ДЕСТРУКТОРЫ
Деструкторы используются в .Net для того, чтобы освобождать память

от объектов, если они больше не используются. В общем случае не требуется
писать код для метода деструктора; обычно работает операция,
выполняющаяся по умолчанию.

Если, например, программа выходит за область действия переменной,
она становится недоступной для кода, но при этом она может по-прежнему
существовать где-то в памяти компьютера. Только после того, как сборщик
мусора среды исполнения .Net выполнит свою работу, она будет
окончательно уничтожена.

Это означает, что не следует полагаться на деструктор в плане
освобождения ресурсов, которые использовались экземпляром объекта, так
как объект может оставаться неиспользуемым на протяжении длительного
времени. Если используемые ресурсы критичны, то это может привести к
возникновению проблем.

7.5.4. ПАРАМЕТРЫ ТИПА
В определении класса может задаваться набор параметров типа. Список

имен параметров типа указывается за именем класса в угловых скобках.

 4 / 25

155

Параметры типа могут использоваться в теле объявлений класса для
определения членов класса. В следующем примере для класса MyClass
задаются параметры типа TFirst и TSecond:

Листинг 7.44. Объявление простого класса с параметрами

public class MyClass <TFirst,TSecond>
{
 public TFirst first;
 public TSecond second;
}

Тип класса, в объявлении которого принимаются параметры типа,
называется универсальным типом класса. При использовании
универсального класса для каждого параметра типа необходимо указать
аргумент типа:

MyClass <int,string> myObject =
 new MyClass <int,string> {first = 1, second = ”two”};
int i = myObject.first; // TFirst is int
string s = myObject.second; // TSecond is string

Универсальный тип с предоставленными аргументами типа, например
MyClass<int,string>, называется сформированным типом.

 5 / 25

156

Глава 8. ПРИЛОЖЕНИЯ ДЛЯ WINDOWS

8.1. ПРИМЕР 2*2
В этом проекте мы сможем в элементах TextBox вводить два числа и,

нажав кнопку Button, получить на форме в элементе Label произведение
этих чисел.

Выбрав в меню пункт Файл/Создать/Проект или нажав клавиши
<Ctrl, Shift+N>, получим окно (рис. 8.1):

Рис. 8.1. Окно для создания нового проекта

В этом окне необходимо выполнить минимум три действия:
Выбрать тип приложения. Выбираем Приложение Windows Forms;
Выбрать расположение, то есть папку, в которой будет создана папка

нового проекта. Нажав кнопку <Обзор …>, выбираем, например,
D:\Документы\C#\Book\Ch8 Приложения для Windows\.

Ввести Имя проекта, например, «2 умножить на 2». Под этим именем,
как только будет нажата кнопка <OK>, будет создана папка проекта и в нее
записано некоторое количество файлов.

 6 / 25

157

Сам проект находится в файле с расширением *.csproj. В файле
Program.cs содержится головная часть программы:

Листинг 8.1. Головная часть программы

using System;
using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace _2_умножить_на_2
{
 static class Program
 {
 /// <summary>
 /// Главная точка входа для приложения.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.
 SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

В файле Form1.cs — описание класса Form1:

Листинг 8.2. Файл Form1.cs

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;

namespace _2_умножить_на_2
{
 public partial class Form1 : Form
 {
 public Form1()
 {

 7 / 25

158

 InitializeComponent();
 }
 private void buttonRun_Click(object sender,
 EventArgs e)
 {
 int x = Convert.ToInt32(textBoxX.Text);
 int y = Convert.ToInt32(textBoxY.Text);
 labelResult.Text = "Result =
 "+Convert.ToString(x*y);
 }
 private void buttonClose_Click(object
 sender, EventArgs e)
 {
 Close();
 }
 }
}

В листинге 8.2 выделены строки, которые необходимо ввести.
На форму Form1 выставим три компонента Label (label1, label2,

label3), с помощью которых будем делать надписи на форме, две кнопки:
для выполнения вычислений Button1 и выхода из программы Button2, и
два компонента для ввода чисел: TextBox1 и TextBox2.

В окне «Свойства» (рис. 8.2) необходимо изменить свойства и
назначить обработчики событий.

Рис. 8.2. Окно «Свойства»

 8 / 25

159

Это окно появляется, если активным является конструктор форм. Если
окна «Свойства» нет, то выберете пункт меню Вид/Окно свойств.

В этом окне необходимо поменять свойства компонентов:
Свойства Name (labelX, labelY, labelResult, textBoxX,

textBoxY, buttonClose, buttonRun);
Свойству Text компонентов labelX, labelY, labelResult,

buttonRun, buttonClose назначим следующие значения:
labelX.Text = “x =“
labelY.Text = “y =“
labelResult.Text = “Result =“
buttonRun.Text = “Run“
buttonClose.Text = “Close“

Осталось определить события, которые будут возникать при нажатии
клавиш buttonRun и buttonClose.

Дважды щелкнем на компоненте ButtonClose или в окне «Свойств»
на странице событий для компонента buttonClose, дважды щелкнем в
строке Click. В файле Form1.cs появится заготовка метода, в котором
необходимо допечатать вызов метода Close():

Листинг 8.3. Завершение работы программы

private void buttonClose_Click(object sender,
 EventArgs e)
{
 Close();
}

В этом методе вызовем метод Close(), который закроет форму Form1
и, следовательно, закончит выполнение всего проекта.

Точно также создадим заготовку метода обработки события на нажатие
клавиши buttonRun, в которой свойству Text компонента LabelResult
присвоим произведение значений x и y, взятые из компонентов TextBoxX и
TextBoxY и преобразованное в строку с помощью метода
Convert.ToString():

Листинг 8.4. Вычисление произведения двух чисел

private void buttonRun_Click(object sender,
 EventArgs e)
{
 int x = Convert.ToInt32(textBoxX.Text);
 int y = Convert.ToInt32(textBoxY.Text);
 labelResult.Text = "Result =
 "+Convert.ToString(x*y);
}

 9 / 25

160

Откомпилируйте программу к запустите ее на выполнение командой
Отладка/Начать отладку или нажатием клавиши <F5>.

Рис. 8.3. Выполнение проекта "2*2"

8.2. ОБЗОР КОМПОНЕНТОВ
В основе разработки большинства приложений C# для Windows лежит

применение средств Forms Designer (Конструктор форм). Создание
интерфейса пользователя осуществляется перетаскиванием элементов
управления c панели инструментов на форму и их размещением там, где они
должны отображаться во время выполнения программы.

Рассмотрение всех элементов управления Visual Studio в рамках этой
книги невозможно, потому в настоящей главе рассмотрены некоторые из
наиболее часто применяемых компонентов, начиная с надписей и текстовых
полей и заканчивая представлениями и элементами управления с вкладками.

В этой главе рассматриваются следующие элементы управления:
• Label и LinkLabel, предназначенные для отображения

информации.
• Button, предназначенный для запуска событий.
• TextBox, позволяющие пользователю приложения вводить текст.
• RadioButton и CheckBox, которые позволяют информировать

пользователя о текущем состоянии приложения и позволяют
пользователю изменять это состояние.

• ListBox и ListView, позволяющие отображать информацию в виде
списков, такие как массивы.

• TabControl и Groupbox, позволяющие группировать другие
элементы управления.

8.2.1. ОБЩИЕ СВОЙСТВА
Все элементы управления обладают рядом свойств, которые служат для

изменения поведениея элемента управления. Базовый класс большинства
элементов управления, System.Windows.Forms.Control, обладает рядом

 10 / 25

161

свойств, которые другие элементы управления наследуют непосредственно
или замещают для обеспечения того или иного нестандартного поведения.

Некоторые свойства класса Control, общие для большинства
элементов управления, описаны в табл. 25.

Таблица 25. Часто используемые свойства класса Control

Свойство Описание
Anchor Указывает поведение при изменении размеров его

контейнера
BackColor Цвет фона элемента
Bottom Расстояние от верхнего края окна до нижнего края элемента

управления
Dock Пристыковывает элемент управления к краям его

контейнера
Enabled Типа bool. Определяет активность элемента управления
ForeColor Цвет изображения элемента управления
Height Высота элемента управления
Left Положение левого края элемента управления относительно

левого края его контейнера
Name Имя элемента управления, используемое в коде
Parent Родительский объект элемента управления
Right Положение правого края элемента управления относительно

левого края его контейнера
TabIndex Порядковый номер элемента управления в

последовательности перехода между элементами внутри его
контейнера по клавише табуляции

TabStop Указывает доступность элемента управления по <Tab>
Tag Значение, типа string, не используется самим элементом

управления. Оно позволяет хранить информацию об
элементе управления в самом элементе управления

Text Содержит текст, связанный с данным элементом управления
Tор Положение верхнего края элемента управления

относительно верхнего края его контейнера
Visible видимость элемента управления во время выполнения
Width Ширина элемента управления

8.2.2. СОБЫТИЯ
Обычно события связаны с действиями, выполняемыми пользователем.

Например, при щелчке по кнопке генерируется событие Click. Обработка
события — это метод, с помощью которого можно снабдить элемент
различными функциональными возможностями.

Класс Control определяет ряд событий, которые есть у всех элементов
управления. Некоторые из них описаны в табл. 26.

 11 / 25

162

Таблица 26. Часто используемые события класса Control

Событие Описание
Click Происходит при щелчке на элементе управления или при

нажатии клавиши <Enter>
DoubleClick Происходит при двойном щелчке на элементе

управления. Обработка события Click для некоторых
элементов управления, таких как Button, не допускает
возможность вызова события Doubleclick

DragDrop Происходит по завершении операции перетаскивания
объекта поверх элемента управления

DragEnter Происходит, если перетаскиваемый объект перемещается
внутрь границ элемента управления

DragLeave Происходит, если перетаскиваемый объект покидает
границы элемента управления

DragOver Происходит, если объект перетаскивается поверх
элемента управления

KeyDown Происходит при нажатии клавиши. Событие происходит
раньше событий KeyPress и KeyUp

KeyPress Происходит при нажатии клавиши. Cобытие происходит
после события KeyDown и перед событием KeyUp.

KeyUp Происходит при освобождении клавиши. Cобытие
происходит после событий KeyDown и KeyPress

GotFocus Происходит, если элемент управления получает фокус
LostFocus Происходит, если элемент управления теряет фокус
MouseDown Происходит при нажатии кнопки мыши. Cобытие не

эквивалентно событию Click, так как событие
MouseDown происходит сразу после нажатия кнопки
мыши и перед ее освобождением

MouseMove Происходит в процессе перемещения указателя мыши
над элементом управления

Mouseup Происходит при освобождении кнопки мыши
Paint Происходит при прорисовке элемента управления

Разработка приложения состоит из следующих этапов:
1) добавить форму;
2) выбрать и разместить элементы управления;
3) добавить обработчики событий;
4) написать код в обработчиках событий.

Есть четыре способа добавления обработчика события.

1. Двойной щелчок на элементе управления. В результате происходит
создание обработчика события, используемого по умолчанию данного

 12 / 25

163

элемента управления. В окне Properties (Свойства) – затененное
событие.

2. Двойной щелчок на этом событии в списке событий. В результате
будет сгенерирован код обработчика события и сигнатура метода
обработки этого события.

3. Ввести или выбрать имя существующего метода для обработки
события в поле, расположенном рядом с данным событием в списке
Events, и после нажатия клавиши <Enter> будет сгенерирован
обработчик события с выбранным именем.

4. Добавление кода подписки на событие вручную, добавляя код в
конструктор формы после вызова метода InitializeComponent().

8.3. ЭЛЕМЕНТ УПРАВЛЕНИЯ BUTTON
Пространство имен System.Windows.Forms предоставляет три

элемента управления, потомков класса ButtonBase: Button, CheckBox и
RadioButton. Элемент управления Button — прямоугольная кнопка.
В основном кнопка служит для выполнения следующих задач.
• Закрытие диалогового окна с определенным состоянием, например,

кнопки <ОК> и <Cancel>.
• Выполнение действия с данными, введенными в диалоговом окне,

например, при щелчке на кнопке <Поиск>.
• Открытие другого окна или приложения, например, кнопка <Help>.

Обычно работа с элементом управления Button состоит из добавления
элемента управления в форму и двойного щелчка на нем для добавления кода
обработчика события Click.

Часто применяемые свойства класса Button перечислены в табл. 27.
Таблица 27. Некоторые свойства класса Button

Свойство Описание
FlatStyle Изменяет стиль кнопки (Popup, Flat, Standard,

System). Если в качестве стиля установлен Popup, кнопка
выглядит плоской до тех пор, пока указатель мыши не над
ней. В этом случае внешний вид кнопки изменяется на
трехмерный

Enabled Свойство логического типа, определяющее активность
элемента

Image Изображение, которое будет отображаться на кнопке
Основное событие кнопки — Click. Это событие происходит при

каждом щелчке пользователя на кнопке — то есть при нажатии и отпускании
левой кнопки мыши. Если нажать левую кнопку мыши и отвести указатель
мыши в сторону от кнопки, то событие Click не будет запущено. Кроме
того, событие Click запускается, если кнопка находится в фокусе и
нажимается клавиша <Enter>.

 13 / 25

164

8.4. ЭЛЕМЕНТ УПРАВЛЕНИЯ LABEL
Этот элемент управления предназначен для отображения текста.

Обычно для стандартной надписи Label обработчики события не требуются,
хотя она и поддерживает события.

Для элемента управления Label определено множество свойств.
Большинство из них унаследованы от элемента управления Control, но
некоторые являются новыми. Наиболее часто используемые свойства
перечислены в табл. 28.

Таблица 28. Некоторые свойства класса Label

Свойство Описание
BorderStyle Стиль рамки вокруг надписи
FlatStyle Способ отображения элемента управления (Popup,

Flat, Standard, System). Установка значения этого
свойства равным Popup приводит к тому, что элемент
выглядит плоским или приподнятым

Image Указывает изображение
ImageAlign Указывает позицию изображения
TextAlign Указывает позицию отображения текста

Элемент позволяет вывод нескольких строк:
label1.Text = "Первая строка\nВторая строка";

8.5. ЭЛЕМЕНТ УПРАВЛЕНИЯ TEXTBOX
Основное назначение этого элемента — предоставление возможности

ввода и редактирования текста. .Net Framework предоставляет два основных
элемента управления для редактирования текста: TextBox и RichTextBox.
Оба эти элемента управления являются наследниками базового класса
TextBoxBase.

Элемент TextBox в зависимости от значения свойства Multiline
может редактировать или одну строку (Multiline = false) или много
(Multiline = true).

Рис. 8.4. Типы элемента TextBox

 14 / 25

165

В табл. 29 перечислены наиболее часто используемые свойства.
Таблица 29. Основные свойства класса TextBox

Свойство Описание
Text Редактируемый текст
CharacterCasing Значение, указывающее, изменяет ли элемент

управления TextBox регистр введенного текста.
Возможные значения:

• Lower — весь введенный текст
преобразуется в строчный;
• Normal — текст не подвергается никаким
изменениям;
• Upper — весь введенный текст
преобразуется в прописной

MaxLength Значение, которое указывает максимальную длину
(в символах) любого текста, введенного в элементе
управления TextBox. Если максимальная длина
должна ограничиваться только доступным объемом
памяти, установите это значение равным нулю

Multiline Указывает, является ли данный элемент
многострочным, то есть может ли отображать
несколько строк текста. Если это свойство
установлено равным true, обычно значение
свойства Wordwrap также устанавливают равным
true

PasswordChar Указывает, должен ли символ пароля замещать
реальные символы, введенные в однострочном
элементе TextBox. Если значение свойства
Multiline установлено равным true, это свойство
не оказывает никакого влияния

Readonly Булевское значение, указывающее, является ли
текст доступным только для чтения

ScrollBars Указывает, должен ли элемент управления TextBox
отображать линейки прокрутки

SelectedText Текст, который выбран в элементе управления
TextBox

SelectionLength Количество символов, выбранных в тексте. Если это
значение больше общего числа символов в тексте,
элемент управления переустанавливает его равным
общему количеству символов минус значение
свойства SelectionStart

 15 / 25

166

SelectionStart Начало выбранного текста в элементе управления
TextBox

Wordwrap Указывает, должен ли многострочный элемент
TextBox автоматически переносить слова на
следующую строку, если длина строки превышает
ширину элемента управления

Список событий, предоставляемых элементом управления TextBox, дан
в табл. 30.

Таблица 30. Часто используемые события класса TextBox

Событие Описание
Enter
Leave
Validating
Validated

Эти четыре события происходят в указанном порядке.

KeyDown
KeyPress
KeyUp

Позволяют отслеживать и изменять текст, введенный в
элементах управления. События KeyDown и KeyUp
принимают код клавиши, включая специальные клавиши.
Событие KeyPress принимает символ, соответствующий
клавише клавиатуры.

TextChanged Происходит при каждом изменении текста

8.6. ЭЛЕМЕНТ УПРАВЛЕНИЯ RADIOBUTTON
Переключатели RadioButton применяются для выбора между

взаимоисключающими опциями. Эти элементы помещаются или прямо на
форму или, для образования единого логического блока, в какой-нибудь
контейнер, например, в GroupBox.

В зависимости от свойства Appearance элементы могут принимать
два вида: или кружок с надписью рядом, или кнопка, на которую можно

выставить изображение: .
При размещении элемента GroupBox и нескольких элементов

управления RadioButton внутри его, состояние элементов RadioButton
будет автоматически изменено для отражения того, что только одна опция
внутри групповой рамки может быть выбрана. Если элементы управления
RadioButton размещены не внутри элемента управления GroupBox, на
форме в любой момент времени может быть выбран только один из них.

Таблица 31. Основные свойства класса RadioButton

Свойство Описание
Appearance Переключатель может отображаться в виде надписи с

круглой меткой выбора слева или же в виде стандартной
кнопки

AutoCheck Если значение этого свойства равно false, то изменение
щелчком недоступно

 16 / 25

167

CheckAlign Свойство используется для изменения способа
выравнивания. Значение по умолчанию —
ContentAlignment.MiddleLeft

Checked Логическое свойство указывает состояние элемента
Таблица 32. Часто используемые события класса

RadioButton

Событие Описание
CheckedChanged Отправляется при изменении состояния выбора

элемента управления RadioButton
Click Отправляется при каждом щелчке на элементе

управления RadioButton. Это событие не
эквивалентно событию CheckedChange, так как при
двукратном и более щелчке на элементе управления
RadioButton свойство checked изменяется только
один раз — и только, если оно еще не было выбрано.

8.7. ЭЛЕМЕНТ УПРАВЛЕНИЯ CHECKBOX
Элемент управления CheckBox (флажок) отображается в виде надписи

 с расположенным слева от него маленьким квадратом. Флажок
следует использовать, если пользователю нужно предоставить возможность
выбора варианта.

Свойства и события этого элемента управления подобны свойствам и
событиям элемента управления RadioButton, но в табл. 33 перечислены два
новых свойства.

Таблица 33. Часто используемые свойства класса CheckBox

Свойство Описание
CheckState В отличие от переключателя, флажок может пребывать в

трех состояниях: Checked, Indeterminate и Unchecked.
Если состояние флажка — indeterminate, индикатор
состояния флажка, расположенный рядом с надписью,
обычно затемнен, указывая, что или текущее значение
флажка недопустимо, или оно не может быть определено по
какой-либо причине (например, флажок указывает
состояние "только для чтения" двух выбранных файлов, из
которых один доступен только для чтения, а второй — нет),
или не имеет смысла в данной ситуации

ThreeState Если значение этого свойства — false, невозможно
изменять состояние CheckState на indeterminate.
Значение свойства CheckState можно изменять на
Indeterminate из кода.

Обычно в этом элементе управления придется использовать одно или
два события. Хотя событие CheckChanged применяется и в RadioButton, и

 17 / 25

168

в CheckBox, его действие различно в этих двух элементах управления.
События элемента управления CheckBox описаны в табл. 34.

Таблица 34. Часто используемые события класса CheckBox

Событие Описание
CheckedChanged Происходит при каждом изменении свойства

Checked. Если свойство ThreeState имеет
значение true, то можно выполнить щелчок на
флажке без изменения значения свойства
checked. Это происходит при изменении
состояния флажка с Checked на Indeterminate

CheckStateChanged Происходит при каждом изменении свойства
CheckedState. Так как и Checked, и Unchecked
— возможные значения свойства CheckedState,
это событие отправляется при каждом изменении
свойства checked. Кроме того, оно отправляется
также при изменении состояния с Checked на
Indeterminate

8.8. ЭЛЕМЕНТ УПРАВЛЕНИЯ GROUPBOX
Элемент управления GroupBox является контейнером и часто

используется для логического группирования набора элементов управления,
таких как RadioButton и CheckBox, и для отображения заголовка и рамки
вокруг этого набора.

Родительским элементом элементов управления становится контейнер,
а не форма, что делает возможным наличие в форме более одного
выбранного переключателя в любой конкретный момент времени.

Внутри контейнера может быть выбран только один переключатель.
Еще одно следствие помещения элементов управления в групповую

рамку то, что на них можно оказывать влияние, изменяя соответствующее
свойство групповой рамки. Например, если нужно отключить все элементы
управления внутри элемента управления GroupBox, можно установить
значение свойства Enabled элемента GroupBox равным false.

8.9. ЭЛЕМЕНТ УПРАВЛЕНИЯ COMBOBOX
Элемент управления ComboBox объединяет в себе элементы управления

TextBox и ListBox и предназначен для выбора одного из пунктов списка
и/или для ввода нового. Существует три модификации этого элемента:
Simple, DropDown, DropDownList, определяемые свойством DropDoenList
(рис. 8.5).

 18 / 25

169

Рис. 8.5. Модификации элемента ComboBox

Модификации Simple и DropDown позволяют редактировать текстовое
поле. В модификации DropDownList текстовое поле не активно.

Таблица 35. Основные свойства и методы элемента
ComboBox

Свойства, методы Описание
Text Свойство. Строка текстового поля
SelectedIndex Свойство только для чтения. Возвращает номер

выбранного элемента
SelectedIndexChanged Событие. Возникает при изменении свойства

SelectedIndex
DrawItem Событие. Используется для программной

прорисовки элементов списка
MeasureItem Событие. Используется для программной

прорисовки элементов списка
SelectedItem Свойство только для чтения. Возвращает

выбранный элемент списка
Items[] Свойство. Список элементов типа

ObjectCollection
Items.Count Свойство. Количество элементов списка
Items.Clear() Метод. Удаляет все элементы коллекции
Items.AddRange() Метод. Добавляет массив элементов в список
Items.Add() Метод. Добавляет элемент в список
Items.Remove() Метод. Удаляет указанный элемент из списка
Items.Insert() Метод. Вставляет элемент в список

Пример 8.1. Необходимо использовать элемент ComboBox для выбора

одного из значений перечислимого типа Enum.
Например, добавим в список сomboBox1 все значения перечислимого

типа HatchStyle – стиль кисти, используемый при рисовании фигур. Тип
содержит более 50 значений. Некоторые из них представлены ниже:

 19 / 25

170

0 Horizontal
0 Horizontal
1 Vertical
2 ForwardDiagonal
3 BackwardDiagonal
4 LargeGrid
4 LargeGrid
4 LargeGrid
5 DiagonalCross
…
52 SolidDiamond

Слева представлена колонка целых представлений перечислимых
значений. Обратите внимание на то, что некоторые целые представления
повторяются, а некоторых может не быть. Это означает, что попытка
превратить номер выбранного элемента сomboBox1.SelectedIndex в
значение Enum может закончиться неудачей.

Для реализации задачи выбора из перечислимого типа создадим массив
объектов hatchStyle и добавим этот массив в список Items:

Листинг 8.4. Создание массива объектов hatchStyle

object[] hatchStyle =
 Enum.GetValues(typeof(HatchStyle)).Cast<object>().
 ToArray<object>();
comboBox1.Items.AddRange(hatchStyle);

Полученный массив объектов можно вывести, например, на элемент
textBox1:

for (int i = 0; i <= hatchStyle.Length - 1; i++)
{
 int k = (int)hatchStyle[i];
 textBox1.Text += Convert.ToString(k) + " " +
 Convert.ToString(hatchStyle[i]) + "\n";
}

При выборе одной из строк элемента comboBox1 стиль кисти
преобразуется из выбранного объекта:

Листинг 8.5.

private void comboBox1_SelectedIndexChanged(object sender,
 EventArgs e)
{
 myHatchStyle = (HatchStyle)comboBox1.SelectedItem;
}

 20 / 25

171

8.10. ЭЛЕМЕНТЫ УПРАВЛЕНИЯ LISTBOX И

CHECKEDLISTBOX
Списки используются для отображения списков строк, из которых

одновременно можно выбирать одну или более строк. Аналогично флажкам и
переключателям, списки предоставляют способ выбор одного или более
элементов. Список следует использовать в тех случаях, если во время
разработки неизвестно точное количество значений, из которых
пользователей может осуществлять выбор. Даже если все возможные
значения известны во время разработки, над применением списка следует
подумать при наличии большого числа значений.

Класс ListBox является производным от класса ListControl,
который предоставляет основные функциональные возможности элементов
управления типа списка, поставляемых с каркасом .Net Framework.

Еще один вид доступного списка — CheckedListBox. Будучи
производным от класса ListBox, он предоставляет список, аналогично
ListBox, но кроме текстовых строк он предоставляет также флажок для
каждого элемента в списке.

Рис. 8.6. Элементы ListBox и CheckedListBox

Свойства, описанные в табл. 36, существуют в обоих классах ListBox
и CheckedListBox, если не указано иное.

Таблица 36. Основные свойства классов ListBox и
CheckedListBox

Свойство Описание
Selectedindex Это значение указывает начинающийся с нуля

индекс элемента, выбранного в списке. Если
одновременно список может содержать несколько
выборок, это свойство содержит индекс первого
элемента в выборке

ColumnWidth В списке, содержащем несколько столбцов, это
свойство указывает ширину столбцов

items Коллекция items содержит все элементы списка.
Свойства этой коллекции используются для
добавления и удаления элементов

 21 / 25

172

MultiColumn Список может содержать более одного столбца.
Используйте это свойство для выяснения или
установки того, должны ли значения отображаться
в виде столбцов

Selectedlndices Коллекция, содержащая начинающиеся с нуля
индексы выбранных элементов списка

Selectedltem В списке, в котором возможен выбор только одного
элемента, это свойство содержит выбранный
элемент, если таковой существует. В списке, в
котором возможен выбор более одного элемента,
оно будет содержать первый из выбранных
элементов

Selectedltems Коллекция, содержащая все элементы, выбранные в
текущий момент времени

Sorted Если значение этого свойства установлено равным
true, элемент управления ListBox выполняет
упорядочение содержащихся в нем элементов по
алфавиту

Text Это свойство работает иначе, чем все ранее
рассмотренные. При установке свойства Text
элемента управления ListBox он выполняет поиск
элемента, который соответствует указанному
тексту, и выбирает его. При получении свойства
Text возвращенным значением является первый
выбранный элемент списка.

Checkedlndices Только для checkedListBox. Это свойство —
коллекция, содержащая индексы всех элементов в
CheckedListBox, которые находятся в состоянии
Checked или Indeterminate

Checkedltems Только для CheckedListBox. Это свойство —
коллекция, содержащая все элементы в
CheckedListBox, которые находятся в состоянии
Checked или Indeterminate

CheckOnClick Только для CheckedListBox. Если значение этого
свойства — true, элемент будет изменять свое
состояние при каждом щелчке на нем

ThreeDCheckBoxes Только для CheckedListBox. Устанавливая это
свойство, можно выбирать для использования
плоские и обычные элементы управления checkBox

 22 / 25

173

Наиболее часто используемые методы описаны в табл. 37. Если не
указано иное, эти методы принадлежат обоим классам ListBox и
CheckedListBox.

Таблица 37. Основные события классов ListBox и
CheckedListBox

Метод Описание
ClearSelected() Очищает все выборки в элементе управления

ListBox
FindString() Находит в элементе управления ListBox

первую строку, начинающуюся с указанной
строки. Например, Findstring ("а") найдет в
ListBox первую строку, начинающуюся с
символа "а"

FindStringExact() Подобен методу Findstring, но вся строка
должна совпадать с указанной

GetSelected() Возвращает значение, указывающее то, выбран
ли элемент

SetSelected() Устанавливает или очищает выбор элемента
ToString() Возвращает выбранный элемент
GetltemChecked() Только для CheckedListBox. Возвращает

значение, указывающее на то, выбран ли
элемент

GetltemCheckState() Только для CheckedListBox. Возвращает
значение, указывающее состояние установки
флажка элемента

SetltemCheckedO Только для CheckedListBox. Устанавливает
указанный элемент в состояние Checked

SetltemCheckState() Только для CheckedListBox. Устанавливает
состояние установки флажка элемента

События элемента управления ListBox описаны в табл. 38.
Таблица 38. Основные события классов ListBox и

CheckedListBox

Событие Описание
ItemCheck Только для CheckedListBox.

Происходит при изменении состояния
установки флажка одного из элементов
списка

SelectedindexChanged Происходит при изменении индекса
выбранного элемента

 23 / 25

174

8.11. ЭЛЕМЕНТ УПРАВЛЕНИЯ LISTVIEW
Элемент управления ListView, представление данных в виде списка,

обладает большим набором возможностей, таких как отображение больших
значков, представление подробных сведений и т.п.

Данные, содержащиеся в элементе управления, можно представлять в
виде столбцов и строк, аналогичном таблице, в виде единственного столбца
или в виде различных значков.

Таблица 39. Часто используемые свойства класса ListView

Свойство Описание
Activation Управляет способом активизирования элемента

пользователем в списочном представлении.
Возможные значения следующие:
standard — эта настройка отражает способ
активизирования
OneClick — одиночный щелчок
TwoCiick — двойной щелчок на элементе
активизирует его

Alignment Управляет способом выравнивания элементов в
представлении в виде списка. Четыре возможных
значения перечислены ниже:

Default — элемент остается на месте
Left — элементы выравниваются по

левому краю элемента управления ListView
Тор — элементы выравниваются по

верхнему краю элемента управления ListView
SnapToGnd — элемент управления

содержит невидимую сетку, к которой будут
привязаны элементы

AllowColumnReorder Если значение этого свойства установлено
равным true, имеется возможность изменять
порядок следования столбцов в представлении в
виде списка.

AutoArrange Если значение этого свойства установлено
равным true, элементы будут автоматически
выстраиваться в соответствии со свойством
Alignment. Если элемент перетаскивается в
центр, а значение свойства Alignment — Left,
то элемент автоматически переместится к левому
краю представления.

CheckBoxes Это свойство имеет смысл только в том случае,
если значение свойства View — Largelcon или

 24 / 25

175

Smalllcon
Checkedlndices Если значение этого свойства установлено

равным true, слева от каждого элемента в
списочном представлении будет отображаться
элементу управления checkBox. Это свойство
имеет смысл только в том случае, если
значением свойства view является Details или
List

Checkedltems Предоставляют соответственно доступ к
коллекции индексов и элементов, которая
содержит элементы списка, помеченные
флажками

Columns Представление в виде списка может содержать
столбцы. Это свойство предоставляет доступ к
коллекции столбцов, посредством которой
можно добавлять или удалять столбцы

Focusedltem Содержит элемент, обладающий фокусом в
списке. Если ни один элемент не выбран, это
значение является нулевым

FullRowSelect Если значение этого свойства — true, и на
элементе выполнен щелчок, вся строка,
содержащая этот элемент, выделяется. Если это
значение — false, выделяется только сам
элемент

GridLines Если значение этого свойства установлено
равным true, в списочном представлении
вычерчиваются линии сетки между строками и
столбцами. Это свойство имеет смысл только в
том случае, если значением свойства View
является Details

HeaderStyle Управляет способом отображения заголовков
столбцов. Существуют три стиля:

clickable — заголовок столбца работает
аналогично кнопке

NonClickable — заголовки столбцов не
реагируют на щелчки кнопкой мыши

None — заголовки столбцов не
отображаются

HoverSelection Если значение этого свойства — true, можно
выбирать элемент в списочном представлении,
задерживая указатель мыши над ним

Items Коллекция элементов в представлении в виде

Powered by TCPDF (www.tcpdf.org)

 25 / 25

176

списка
LabelEdit Если значение этого свойства — true,

пользователь может редактировать содержимое
первого столбца в представлении Details
(Подробные сведения)

LabelWrap Если значение этого свойства — true, надписи
будут занимать столько строк, сколько требуется
для отображения всего текста

LargelmageList Содержит объект imageList, хранящий
большие изображения. Эти изображения могут
использоваться, если значение свойства View
равно Largelcon

MultiSelect Установка этого свойства равным true
позволяет пользователю выбирать несколько
элементов

Scrollable Установка этого свойства равным true ведет к
отображению линеек прокрутки

Selectedlndices
Selectedltems

Содержит коллекции, которые соответственно
содержат выбранные индексы и элементы

SmalllmageList Если значение свойства View — Small icon,
это свойство содержит объект imageList,
хранящий используемые изображения

Sorting Позволяет представлению в виде списка
выполнять упорядочение элементов, которые
оно содержит. Существуют три возможных
режима:

Ascending — по возрастанию
Descending — по убыванию
None — без сортировки

StatelmageList ImageList содержит маски изображений,
которые используются в качестве
накладываемых на изображения
LargelmageList и SmalllmageList для
представления нестандартных состояний

Topltem Возвращает элемент, расположенный в верхней
части представления в виде списка

View Представление в виде списка может отображать
свои элементы в четырех различных режимах:

LargeIcon — все элементы
представляются в виде большого значка (32x32)
и надписи

 1 / 25

177

SmallIcon — все элементы представляются в
виде маленького значка (16x16) и надписи
List — отображается только один столбец. Этот
столбец может содержать значок и надпись
Details — возможно отображение любого
числа столбцов. Только первый столбец может
содержать значок
Tile (доступно только на платформах Windows
XP и последующих версиях Windows) —
отображает большой значок, а справа от него —
надпись и информацию о подэлементе

8.12. ЭЛЕМЕНТЫ УПРАВЛЕНИЯ ВРЕМЕНЕМ. TIMER
Генерирует в приложении повторяющиеся события. Класс Timer

описан в нескольких пространствах имен:
System.Timers
System.Threading
System.Windows.Forms

Создавать элемент управления временем можно двумя способами:
• поставив на форму элемент управления временем;
• создав с помощью конструктора этот элемент.

Рассмотрим второй способ. Если подключено пространство имен
System.Threading, то доступен элемент управления временем Timer
предназначен для отсчета временных интервалов, измеряемых в тиках
(приблизительно одна миллисекунда). Если Timer активен, то есть свойство
Enabled = true, то единственный обработчик таймера будет вызываться
через Interval тиков.

В следующем примере счетчик времени t выводится на свойство Text
формы и кнопка button1 двигается направо:

Листинг 8.6. Перемещение кнопки

private void timer1_Tick(object sender, EventArgs e)
{
 Text = Convert.ToString(t++);
 if (t % 5 == 0)
 button1.Left += 5;
}

Во время работы программы можно осуществлять временные задержки
с помощью метода Sleep(). Если подключить пространство имен
System.Threading, то будет доступен метод Thread.Sleep(1000):
Thread.Sleep(1000); // задержка приблизительно на 1 сек

Временные задержки необходимы для реализации различных
мультипликаций.

 2 / 25

178

8.13. ЭЛЕМЕНТ УПРАВЛЕНИЯ DATAGRIDVIEW
Элемент управления DataGridView предоставляет настраиваемую

таблицу для отображения данных. Класс DataGridView поддерживает
настройку ячеек, строк, столбцов и платформы с помощью свойства
DefaultCellStyle, ColumnHeadersDefaultCellStyle, CellBorderStyle
и GridColor.

Можно использовать элемент управления DataGridView для
отображения данных с или без базового источника данных. Без определения
источника данных можно создавать столбцы и строки, которые содержат
данные и добавлять их непосредственно в DataGridView с помощью
свойства Rows и Columns. Можно также использовать коллекцию Rows для
доступа к объектам DataGridViewRow, а свойство DataGridViewRow.Cells
для чтения или записи значения ячеек напрямую. Индексатор Item также
предоставляет прямой доступ к ячейкам.

В качестве альтернативы заполнения элемента управления вручную
можно задать свойства DataSource и DataMember для привязки
DataGridView к источнику данных и автоматически заполнения ее данными.

Таблица 40. Некоторые свойства и методы DataGridView

Свойство/Метод Описание
ColumnCount Возвращает или задает количество

столбцов, отображаемых в DataGridView
RowCount Возвращает или задает количество сток,

отображаемых в DataGridView
object [j, i].Value Значение ячейки
bool AllowUserToAddRows Возвращает или задает значение,

указывающее, отображается ли параметр
для добавления строки. false – нет новой
строки

Columns Коллекция столбцов
Columns[j].Width Ширина колонки
Columns.Add(,) Добавить колонку
CurrentCell Получает или задает ячейку, которая

является активной в данный момент
CurrentCell.RowIndex Получает номер выбранной строки
CurrentCell.ColumnIndex Получает номер выбранной колонки
CurrentCell.Value Получает или задает значение выбранной

ячейки
Rows[] Получает коллекцию строк
Rows.Add() Добавить строку

В следующем примере в dataGridView1 добавляется новая колонка с
именем "arr" и шириной 130, случайным образом заполняется одномерный

 3 / 25

179

массив arr, длиной L, задается L строк элемента dataGridView1 и в ячейки
нулевой колонки заносятся значения элементов массива:

Листинг 8.7. Инициализация компонента dataGridView1

public Form1()
{
 InitializeComponent();
 dataGridView1.Columns.Add("arr", "arr");
 dataGridView1.Columns["arr"].Width = 130;
 //нет новой строки
 dataGridView1.AllowUserToAddRows = false;
 int L = 10;
 Random rnd = new Random();
 int[] arr = new int[L];
 for (int i = 0; i <= L - 1; i++)
 arr[i] = rnd.Next(100);
 dataGridView1.RowCount = L;
 for (int i = 0; i <= L - 1; i++)
 dataGridView1[0,i].Value = arr[i];
}

Результат работы программы представлен на рис. 8.7.

Рис. 8.7. Результат выполнения программы

При щелчке в любой ячейке на свойство Text формы выводится
содержимое ячейки:

Листинг 8.8. Вывод содержимого ячейки

private void dataGridView1_CellClick(object sender,
 DataGridViewCellEventArgs e)
{
 int i = dataGridView1.CurrentCell.RowIndex;

 4 / 25

180

 int j = dataGridView1.CurrentCell.ColumnIndex;
 Text = Convert.ToString (dataGridView1[j, i].Value);
}

8.14. ДИАЛОГИ
Для выполнения стандартных операций, таких как открытие и

сохранение файлов, изменение свойств шрифта, изменение цвета, вывод на
печать, рекомендуется использовать заранее созданный класс диалоговых
окон. Имеющиеся в .Net классы диалоговых окон представлены на рисун-
ке 8.8. Все они являются потомками абстрактного класса CommonDialog.

Рис. 8.8. Классы окон диалога

В классе CommonDialog описаны методы и события (табл. 41),
доступные любому классу общего диалогового окна.

Классы OpenFileDialog и SaveFileDialog являются потомками
абстрактного класса FileDialog, который добавляет общие файловые
характеристики для диалоговых окон при открытии и сохранении файлов.

Таблица 41. Общие файловые характеристики для

диалоговых окон

Методы и
события

Описание

ShowDialog() Метод реализуется в производных классах для
вывода общего диалогового окна

Reset() Установка значений по умолчанию для всех свойств
HelpRequest Событие генерируется в тот момент, если

пользователь щелкает мышью на кнопке Help
общего диалогового окна

Эти диалоговые окна могут быть использованы:
• диалог OpenFileDialog используется для поиска и выбора файла для

открытия, который может быть настроен так, чтобы открывать или один,
или несколько файлов;

• с помощью диалога SaveFileDialog можно задавать имя сохраняемого
файла и осуществлять поиск директории, в которой этот файл должен
быть сохранен.

• диалог PrintDialog используется для выбора принтера и задания
опций, используемых при печати;

 5 / 25

181

• диалог PageSetupDialog используется для определения параметров
полей страницы;

• диалог PrintPreviewDialog позволяет осуществлять предварительный
просмотр выводимой на печать информации;

• диалог FontDialog выдает список всех инсталлированных в Windows
шрифтов вместе со стилями и размерами, а также позволяет
осуществлять предварительный просмотр выбранного шрифта;

• класс ColorDialog предназначен для выбора необходимого цвета.
Так как для всех классов диалога базовым классом является

CommonDialog, то все классы диалога могут использоваться аналогичным
образом. ShowDialog() и Reset() являются экземплярами общих методов.
Метод ShowDialog() по окончании работы возвращает экземпляр
DialogResult, в котором содержится информация о том, какая кнопка нажата
при выходе из диалога. Метод Reset() присваивает всем свойствам диалога
значения, использующиеся по умолчанию.

Приведенный ниже фрагмент кода демонстрирует пример
использования класса диалога.
OpenFiieDialog dialog = new OpenFileDialog();
dialog.Filter = “Txt|*.txt|All files|*.*”;
dialog.Title = "Sample";
dialog.ShowReadOnly = true;
if (dig.ShowDialog() == DialogResult.OK)
 string fileName = dialog.FileName;

В этом коде:
• Создается новый экземпляр класса диалога.
• Затем необходимо присвоить значения некоторым свойствам, для того

чтобы разрешить/запретить использование дополнительных
возможностей и определить состояние диалога.

• Вызывается метод ShowDialog(), выводящий диалоговое окно, которое
переходит в режим ожидания и реагирует на вводимую пользователем
информацию.

• Если пользователь нажимает кнопку ОК, диалоговое окно закрывается;
проверка на нажатую кнопку ОК осуществляется путем сравнения
результата диалога со свойством DialogResult.ОК. После этого можно
получить доступ к значениям, введенным пользователем, обратившись к
значению определенных свойств. В данном случае сохраняется значение
свойства FileName в переменной fileName.
У каждого диалогового окна есть свои собственные настраиваемые

возможности, которые будут рассматриваться в последующих разделах.

 6 / 25

182

8.14.1. КЛАСС OPENFILEDIALOG
С помощью диалогового окна OpenFileDialog можно определить

имя файла, который необходимо открыть, а используя окно
SaveFileDialog — задать имя, под которым файл должен быть сохранен.

Перед тем как вызывать метод ShowDialog(), сначала необходимо
создать новый экземпляр класса OpenFileDialog.
OpenFileDialog dlg = new OpenFileDialog();
if (dlg.ShowDialog() == DialogResult.OK)
{
 …
}

Перед вызовом метода ShowDialog() есть возможность задать
значения некоторых свойств, которые будут оказывать влияние на поведение
и внешний вид диалогового окна или налагать ограничения на файлы,
которые могут быть открыты.

При применении OpenFileDialog в консольных приложениях
необходимо включить пространство имен System.Windows.Forms.

В качестве заголовка окна OpenFileDialog по умолчанию
используется слово Open (открытие). Заголовок диалога может быть изменен,
для чего необходимо присвоить соответствующее значение свойству Title.

По умолчанию диалог открывает директорию, которая открывалась
пользователем, если он в последний раз запускал приложение, и выводит
хранящиеся в этой директории файлы. Это поведение может быть изменено
посредством задания свойства InitialDirectory. По умолчанию в качестве
значения свойства InitialDirectory используется пустая строка. При
втором обращении к диалоговому окну будет выводиться та же директория, в
которой находится последний открывавшийся файл.

Такое поведение может быть изменено присвоением свойства
InitialDirectory строке, содержащей имя директории, перед обращением
к методу ShowDialog().

Фильтр для файлов определяет типы файлов, которые пользователь
может выбирать для открытия. Строка простого фильтра для файлов
выглядит следующим образом:
Text Documents (*.txt |*.txt|All Files |*.*)

Фильтр состоит из нескольких отделов, разделенных вертикальной
чертой (|). Он может состоять только из парных строк, поэтому число отделов
всегда должно быть четным. Первая строка определяет текст, который будет
выводиться в окне со списком; вторая строка используется для задания
расширений файлов, которые будут выводиться в процессе диалога. Строке
фильтра присваивается свойство Filter, как это показано в примере
программы, приведенном ниже:
dig.Filter = "Text |*.txt|All Files|*,*";

 7 / 25

183

Метод ShowDialog() класса OpenFileDialog возвращает результат в
виде перечислимого типа DialogResult. В перечислимом типе
DialogResult определены следующие допустимые значения: Abort,
Cancel, Ignore, No, None, OK, Retry и Yes.

None — это значение, используемое по умолчанию до тех пор, пока
пользователь не закрыл диалог. Возвращаемый результат будет зависеть от
того, какую кнопку нажал пользователь. В диалоговом окне
OpenFileDialog могут быть возвращены только значения
DialogResult.OK и DialogResult.Cancel.

Если пользователь нажал кнопку ОК, то доступ к выбранному
пользователем имени файла можно получить посредством свойства
FileName. Если пользователь отменил диалог, то свойство FileName будет
содержать пустую строку. Если значение свойства MultiSelect равно true,
то доступ ко всем выбранным файлам можно получить с помощью свойства
FileNames, которое в этом случае возвращает массив строк.

Следующий фрагмент кода демонстрирует, каким образом можно
извлечь несколько имен файлов из диалога OpenFileDialog:
OpenFileDialog dialog = new OpenFiieDialog();
dialog.MultiSelect = true;
if (dialog.ShowDialog() == DialogResult.OK)
{
 foreach (string s in dialog.FileNames)
 Console.WriteLine(s);}

8.14.2. КЛАСС SAVEFILEDIALOG
Классы SaveFileDialog и OpenFileDialog очень похожи и

обладают целым набором одинаковых свойств.
С помощью свойства Title (заголовок) можно задавать заголовок

данного диалогового окна, аналогично тому, как это делалось для окна
OpenFileDialog. Если ничего не задавать, то будет выведено значение,
использующееся по умолчанию, — Save As (сохранить как).

AddExtension — это свойство логического типа, которое определяет,
должно ли расширение автоматически добавляться к имени файла, вводимого
пользователем.

Если пользователь самостоятельно ввел расширение файла, то в этом
случае никаких дополнительных расширений добавляться не будет: если
пользователь ввел в качестве имени файла test, то файл будет сохранен под
именем test.txt. Если же пользователь ввел имя test.txt, то файл все
равно будет сохранен под именем test.txt, а не под именем test.txt.txt.

Свойство DefauitExt определяет расширение файла, используемое в
тех случаях, если пользователь не указывает расширения. Если это свойство
остается пустым, то вместо него будет использоваться расширение,
определяемое выбранным на данный момент значением свойства Filter.

 8 / 25

184

Если вы одновременно присвоите значения и свойству DefauitExt, и
свойству Filter, то здесь будет использоваться Значение свойства
DefauitExt, независимо от значения свойства Filter.

8.14.3. КЛАСС FONTDIALOG
Диалоговое окно FontDialog позволяет пользователю приложения

осуществлять выбор шрифта. Пользователю предоставляется возможность
изменять шрифт, стиль, размер и цвет шрифта.

Данное диалоговое окно может использоваться точно так же, как и все
предыдущие. В программе разработки Windows Forms это окно можно
перенести из окна с инструментами и поместить в форму таким образом, что
это приведет к созданию экземпляра FontDialog.

Код, предназначенный для использования FontDialog, может
выглядеть следующим образом:
if (dialogFont.ShowDialog() == DialogResult.OK)
{
 textBoxEdit.Font = dialogFont.Font;
}

Диалоговое окно FontDialog выводится с помощью метода
showDialog(). Если пользователь завершает диалог нажатием кнопки ОК,
то этим методом возвращается значение DialogResult.OK. Выбранный
пользователем шрифт можно определить, воспользовавшись свойством Font
класса FontDialog; в дальнейшем этот шрифт передается свойству Font
класса Textbox.

8.14.4. КЛАСС COLORDIALOG
В диалоговом окне ColorDialog не так много настраиваемых

возможностей, как в FontDialog. ColorDialog позволяет пользователю
создать свои собственные цвета, если его не устраивает ни один из
предлагаемых базовых цветов; это достигается установкой свойства
AllowFullColor.

Часть диалогового окна, отвечающая за создание цветов, может быть
автоматически расширена посредством свойства FullColor. Свойство
SolidColorOnly указывает на то, что пользователем могут выбираться
только однородные цвета. Свойство CustomColors может быть
использовано для считывания и записи новых значений параметров
создаваемого цвета.

8.15. ФОРМЫ
Существует три разновидности форм:

• форма, основанная на диалоговом окне;
• однодокументные интерфейсы (Single Document Interface, SDI);
• многодокументные интерфейсы (Multi-Document Interface, MDI).

 9 / 25

185

MDI-приложения представляются пользователям в таком же виде, что
SDI-приложения и обладают способностью одновременно поддерживать
несколько дочерних открытых окон.

Если в проекте одна форма, то в Program.cs при вызове метода Run()
создается объект класса Form1, у которого нет имени:
namespace WindowsFormsApplication1
{
 static class Program
 {
 /// <summary>
 /// Главная точка входа для приложения.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.
 SetCompatibleTextRenderingDefault(false);
 Application.Run(new Form1());
 }
 }
}

И класс Program и класс Form1 объявлены в пространстве имен
WindowsFormsApplication1 независимо. Поэтому доступ из класса Form1 к
членам класса Program возможен только через имя класса: Program.val.

Пусть в классе Form1 объявлено два поля:
public static int val1;
public int val2;

к которым необходимо обращаться из Form2. К статическому полю
val1 можно обращаться через имя класса Form1.val1 = 1. К нестатическому
полю только через имя объекта form1, которое необходимо объявить в
классе Program:

static class Program
{
 public static Form1 form1;
 public static Form2 form2;
 /// <summary>
 /// Главная точка входа для приложения.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.
 SetCompatibleTextRenderingDefault(false);
 form2 = new Form2();

 10 / 25

186

 form1 = new Form1();
 Application.Run(form1);
 }
}

Тогда обращение к полю val2 возможно через имя класса Program и
будет выглядеть так:
Program.form1.val2 = 2;

По умолчанию любая не главная форма невидима и, если ее надо
сделать видимой, то необходимо использовать нестатические методы Show()
или ShowDialog(), которые вызываются следующим образом:
Program.form2.Show();
if (Program.form2.ShowDialog() == DialogResult.OK)

8.16. ПРИМЕР 2<=>10
В качестве первого примера рассмотрим проект, позволяющий

переводить двоичные целые числа в десятичные, а десятичные — в
двоичные.

Создадим новый проект и на форму выставим следующие компоненты:
label1, textBox1, buttonClose, button2_10, button10_2 (рис.
8.9).

Рис. 8.9. Форма проекта

Двойным щелчком на компоненте buttonClose создадим обработчик
события buttonClose _Click и вызовем в нем метод закрытия формы:

Листинг 8.9. Завершение работы проекта

private void buttonClose_Click(object sender, EventArgs e)
{
 Close();
}

Двойным щелчком на компоненте button2_10 создадим обработчик
события button2_10_Click и напишем в нем следующие строки:

 11 / 25

187

Листинг 8.10. Выполнение преобразований 2 → 10

private void button2_10_Click(object sender, EventArgs e)
{
 string s = textBox1.Text;
 if (s != "")
 if (Test2(s))
 label1.Text = "Result = "
 + Reverse2_10(s).ToString();
 else
 label1.Text = "Это не двоичное число!";
 else
 label1.Text = "Пустая строка!";
}

В этом методе, прежде всего, проверяется пустота строки. Если эта
строка пуста, то на label1 выводится 'Пустая строка!', иначе метод Test2
проверяет, что в строке действительно содержится двоичное число,
и вызывается метод преобразования двоичного числа в десятичное
Rewer2_10.

Двойным щелчком на компоненте button10_2 создадим обработчик
события button10_2_Click и напишем в нем следующие строки:

Листинг 8.11. Выполнение преобразований 10 → 2

private void button10_2_Click(object sender, EventArgs e)
{
 string s = textBox1.Text;
 if (s != "")
 if (Test10(s))
 label1.Text = "Result = " + Reverse10_2(s);
 else
 label1.Text = "Это не десятичное число!";
 else
 label1.Text = "Пустая строка!";
}

В этом методе, прежде всего, проверяется пустота строки. Если эта
строка пуста, то на label1 выводится 'Пустая строка!', иначе метод Test10
проверяет, что в строке действительно содержится десятичное число, и
вызывается метод преобразования десятичного числа в двоичное
Rewer10_2.

Методы Test2 и Test10 представляют собой логические функции:

 12 / 25

188

Листинг 8.12. Проверка двоичности и десятичности числа

static bool Test2(string s)
{
 int i = -1; bool ok = true;
 while ((i < s.Length-1) && ok)
 {
 i++;
 ok = ('0' <= s[i]) && (s[i] <= '1');
 }
 return ok;
}
static bool Test10(string s)
{
 int i = -1; bool ok = true;
 while ((i < s.Length-1) && ok)
 {
 i++;
 ok = ('0' <= s[i]) && (s[i] <= '9');
 }
 return ok;
}

Они вернут значение false, если хотя бы один из символов строки не
попадет в допустимый диапазон двоичного или десятичного представления.

Методы Rewer2_10() и Rewer10_2() преобразуют двоичное число в
десятичное или десятичное в двоичное:

Листинг 8.13. Метод преобразования строки в десятичное число

static int Reverse2_10(string s)
{
 int k = 0;
 //k = Convert.ToInt32(s, 2);
 for (int i = 0; i < s.Length; i++)
 {
 string ch = Convert.ToString(s[i]);
 k = 2 * k + Convert.ToByte(ch, 10);
 }
 return k;
}

Листинг 8.14. Метод преобразования строки в двоичное число

static string Reverse10_2(string s)
{
 string sNew = "";

 13 / 25

189

 int k = Convert.ToInt32(s);
 while (k != 0)
 {
 sNew = Convert.ToString(k % 2) + sNew;
 k = k / 2;
 }
 return sNew;
}

Метод Rewer2_10() готовит целое число, которое с помощью метода
ToString() преобразуется в строку и присваивается свойству label1.Text.
Метод Rewer10_2() готовит строку s с двоичным представлением числа,
которая также присваивается свойству label1.Text.

8.17. ПРИМЕР: УМНОЖЕНИЕ МАТРИЦЫ НА ВЕКТОР
Рассмотрим задачу умножения матрицы, состоящую из целых чисел, на

вектор с использованием элементов dataGridView.
Создадим новый проект и на форму выставим три компонента

dataGridViewA, dataGridViewB и dataGridViewC и кнопку ButtonRun.

В первых двух таблицах данные будут вводиться, а в третьей будет
выводиться столбец результата умножения.

В окне Свойств изменим свойства элементов:
Таблица 42. Свойства элементов

dataGridViewA
ColCount 3 Число столбцов
RowCount 3 Число строк
DefaultColWidth 60 Ширина колонок
DefaultRowHeight 20 Высота строк
FixedCols 0 Нет фиксированных столбцов
FixedRows 0 Нет фиксированных строк
Options Ячейки можно редактировать
dataGridViewB
ColCount 1 Число столбцов
RowCount 3 Число строк
DefaultColWidth 60 Ширина колонок
DefaultRowHeight 20 Высота строк
FixedCols 0 Нет фиксированных столбцов
FixedRows 0 Нет фиксированных строк
Options Ячейки можно редактировать
dataGridViewC
ColCount 1 Число столбцов
RowCount 3 Число строк

 14 / 25

190

DefaultColWidth 60 Ширина колонок
DefaultRowHeight 20 Высота строк
FixedCols 0 Нет фиксированных столбцов
FixedRows 0 Нет фиксированных строк
ButtonRun
Caption Exit

В результате форма должна принять вид, как на рис. 8.10.

Рис. 8.10. Форма проекта

В момент активизации формы заполним случайными значениями
массивы и ячейки таблиц dataGridViewA и dataGridViewB:

Листинг 8.15. Первоначальное заполнение ячеек

private void SetA(int n, int m)
{
 Random rnd = new Random();
 A = new double[n,m];
 for (int i = 0; i <= n - 1; i++)
 for (int j = 0; j <= m - 1; j++)
 A[i,j] = rnd.Next(10);
 B = new double[m];
 for (int j = 0; j <= m - 1; j++)
 B[j] = rnd.Next(10);
 C = new double[n];
}

 15 / 25

191

Основное событие таблицы dataGridViewA (заполнение ячеек третьей
таблицы) назначим на событие onSetEditText, возникающее при
изменении содержимого ячейки:

Листинг 8.16. Изменения при редактировании ячеек

private void SetGrid()
{
 dataGridViewA.ColumnCount = m;
 dataGridViewA.RowCount = n;
 dataGridViewB.RowCount = m;
 dataGridViewC.RowCount = n;

 for (int j = 0; j <= m - 1; j++)
 dataGridViewA.Columns[j].Width = 50;
 dataGridViewB.Columns[0].Width = 50;
 dataGridViewC.Columns[0].Width = 50;

 for (int i = 0; i <= n - 1; i++)
 for (int j = 0; j <= m - 1; j++)
 dataGridViewA[j, i].Value = A[i, j];
 for (int j = 0; j <= m - 1; j++)
 dataGridViewB[0, j].Value = B[j];
 for (int j = 0; j <= n - 1; j++)
 dataGridViewC[0, j].Value = C[j];
}

Такое же событие для компонента dataGridViewB в Инспекторе
Объектов направим на событие StringGrid1SetEditText.

Преобразование содержимого ячеек реализует целочисленный метод
MyStrToInt():

Листинг 8.17. Преобразование строки в целое

private void button6_Click(object sender, EventArgs e)
{
 for (int i = 0; i <= n-1; i++)
 {
 C[i] = 0;
 for (int j = 0; j <= m - 1; j++)
 C[i] += A[i, j] * B[j];
 }
 SetGrid();
}

Этот код очищает строку от пробелов и проверяет возможность
преобразования строки в число.

 16 / 25

192

8.18. ХЕШИРОВАНИЕ
Поиск элемента в неупорядоченном массиве требует порядка N

сравнений, число сравнений в упорядоченном массиве с использованием
метода деления пополам улучшает ситуацию: порядок алгоритма становится
log2N. Таким образом, структура массива влияет на скорость поиска.
Зависимость числа сравнений остается функцией размерности массива N.

Идея ассоциативной адресации (прямой адресации, H-кодирования,
хеширования – от англ. hash – мешанина, крошево) отличается коренным
образом. Элементы в массив – хэш-таблицу – вносятся по определенному
правилу с тем, чтобы алгоритм поиска элемента не зависел от размерности
таблицы. Это означает, что каждому элементу определено «свое» место в
таблице, и при поиске этого элемента сразу же идем на это место и смотрим:
есть ли там элемент.

Теперь осталось только определить это самое «свое» место. Для этого
будем считать, что индекс элемента в хэш-таблице – «свое» место –
содержится в самом элементе, то есть является некоторой функцией ключа
элемента.

Итак, в идеальном случае предполагается, что хэш-таблица
представлена с помощью массива sizeTable элементов, которые более
удобно нумеровать от 0 до sizeTable – 1. Кроме того предполагается, что
существует метод HashKey, называемая хэш-функцией, ставящая в
соответствие каждому ключу Key некоторое целое i, различное для разных
ключей и такое, что 0 <= i <= sizeTable – 1. Тогда достаточно
разместить элемент с ключом Key в элементе хэш-таблицы с индексом i=
HashKey(Key), и время поиска становится постоянным.

К сожалению, эта идеальная схема практически не работает, и вот
почему. Посмотрим, каким же критериям должен удовлетворять хэш-метод.

Во-первых, он должен давать индекс элемента в диапазоне индексов
хеш-таблицы. Это легко достигается, если последним действием хэш-
функции сделать mod SizeTable.

Во-вторых, желательно иметь для каждого элемента уникальный
индекс. Но этого ни одна хэш-функция гарантировать не может.
Действительно, если ключ элемента – s:string, а значение индекса
элемента вычисляем по формуле index = ord(s[0] + ord(s[1] + …. +
ord(s[length(s)-1]) % N, то два ключа ‘abc’ и ‘cab’ будут иметь
одинаковые значения хэш-функции, то есть одинаковые индексы. Говорят,
что два ключа Key1 и Key2, таких, что Key1 ≠ Key2 и HashKey(Key1) =
HashKey(Key2) вызывают коллизию.

Существует два вида коллизий: непосредственные коллизии,
соответствующие случаю HashKey(Key1) = HashKey(Key2), и коллизии
по модулю, если HashKey(Key1) ≠ HashKey(Key2), но HashKey(Key1) =
HashKey(Key2)(mod SizeTable).

 17 / 25

193

Долю коллизий «по модулю» можно уменьшить, если размером хэш-
таблицы выбирать число, не имеющее делителей, меньших 20. Например,
SizeTable можно выбрать простым числом.

Рассмотрим работу с хэш-таблицей на примере простейшего
телефонного справочника. В качестве элемента таблицы возьмем номер
телефона и фамилию человека, которого можно услышать по этому
телефону.

struct TInfo
{
 public string phone;
 public string fio;
}

Ключом будет номер телефона, тогда хэш-функцией может быть,
например, такая:

Листинг 8.18. Хэш-функция

int hashKey(string s)
{
 int result = 0;
 for (int i = 0; i < s.Length; i++)
 {
 result += Convert.ToInt32(s[i]) * i;
 result %= sizeTable;
 }
 return result;
}

Выбор хэш-функции является самой сложной проблемой хэширования.
В этой функции с целью исключения коллизии для телефонных номеров,
например, 123456 и 654321 суммируются коды цифр с весами, равными
порядковому номеру цифры.

Операции с хэш-таблицей:
• вставка элемента в таблицу;
• удаление элемента из таблицы;
• поиск элемента в таблице.

При отсутствии коллизий эти операции совершались бы просто.
Сначала вычислялся бы индекс элемента в таблице, затем производилась бы
соответствующая операция. При вставке нового элемента в таблицу может
оказаться, что его место уже занято. Тогда поступают следующим образом
(это называется обработкой, или разрешением коллизии).

От места, где должен стоять элемент, делают шаг вправо. Величина
этого шага может выбираться по-разному, главное, величина шага не должна
быть множителем SizeTable. Если на новом месте пусто – вставляем

 18 / 25

194

элемент, иначе делаем шаги вправо (с учетом mod SizeTable) до тех пор,
пока не найдем свободное место.

Итак, у элемента таблицы должен быть признак занято/пусто. Как
станет понятно дальше, для функции поиска необходим еще один признак:
посещался ли элемент. Этот признак устанавливается при удалении элемента.

Введем структуру элемента таблицы:

 Листинг 8.19. Структура элемента в хэш-таблице

struct THashItem
{
 public TInfo info;
 public bool empty; // пуст ли
 public bool visit; // посещался ли
}

С учетом этого опишем хэш-класс:

 Листинг 8.20. Класс хэш-таблицы

class MyHash
{
 public int sizeTable; // размер таблицы = 301;
 static int step=37; //шаг для разрешения коллизий
 int size; // число элементов в таблице
 public THashItem[] h; // хэш-таблица
 public MyHash(int sizeTable) // конструктор
 public void HashInit() // метод инициализации
 // метод случайного заполнения строки
 public string RandStr()
 int hashKey(string s) // хэш-функция
 public int AddHash(int m)// метод вставки элемента
 public int AddHash(string fio, string phone)
 void ClearVisit() //метод очистки полей visit
 public bool Delete(string phone) // метод удаления
 // метод поиска по телефону
 public int FindHash(string phone, out string FIO,
 out int count)
}

Конструктор класса задает размер таблицы, инициализирует массив
h[]:

Листинг 8.21. Конструктор класса

public MyHash(int sizeTable)
{
 this.sizeTable = sizeTable;

 19 / 25

195

 h = new THashItem[sizeTable];
 HashInit();
}

и методом HashInit() заполняет его элементы:

Листинг 8.22. Метод инициализации

public void HashInit()
{
 size = 0;
 for (int i=0; i<sizeTable; i++)
 {
 this.h[i].empty = true;
 this.h[i].visit = false;
 }
}

Создание объекта происходит в классе FormMain:

Листинг 8.23. Подготовка элементов в FormMain()

public FormMain()
{
 InitializeComponent();
 MyHash myHash = new MyHash(301);
 dataGridView1.Columns.Add("N", "N");
 dataGridView1.Columns["N"].Width = 40;
 dataGridView1.Columns.Add("Телефон", "Телефон");
 dataGridView1.Columns["Телефон"].Width = 90;
 dataGridView1.Columns.Add("Фамилия", "Фамилия");
 dataGridView1.Columns["Фамилия"].Width = 90;
 dataGridView1.AllowUserToAddRows = false;
 //нет новой строки
}

Там же подготавливается элемент dataGridView1.
Заполнение хэш-таблицы происходит при нажатии клавиши

buttonAdd180:

Листинг 8.24. Заполнение элементов хэш-таблицы

private void buttonAdd180_Click(object sender,
 EventArgs e)
{
 dataGridView1.RowCount = myHash.sizeTable;
 myHash.HashInit();
 for (int i = 0; i < myHash.sizeTable; i++)
 dataGridView1[0, i].Value =

 20 / 25

196

 Convert.ToString(i);
 for (int i = 0; i < 180; i++)
 myHash.AddHash(i);
 ShowHash();
}

При вставке элемента в хэш-таблицу может возникнуть переполнение
таблицы, поэтому алгоритм оформлен в виде метода целого типа:
результатом ее будет индекс вставленного элемента или –1, если таблица
переполнена. Алгоритм вставки элемента в хэш-таблицу приведен в листинге
8.25.

Листинг 8.25. Вставка элемента в хэш-таблицу

public int AddHash(string fio, string phone)
{
 int adr = -1;
 if (size != sizeTable - 1)
 // таблица не переполнена
 {
 adr = hashKey(phone);
 if (h[adr].empty)
 {//место свободно - можно ставить элемент
 h[adr].empty=false;//признак занятости
 h[adr].visit = true;
 //признак посещенности
 h[adr].info.fio = fio;
 h[adr].info.phone = phone;
 size++;
 //количество элементов увеличилось
 }
 else
 // разрешение коллизии: ищем следующее место
 {
 adr = (adr + step) % sizeTable;
 while (!h[adr].empty)
 adr = (adr + step) % sizeTable;
 h[adr].empty = false;
 h[adr].visit = true;
 h[adr].info.fio = fio;
 h[adr].info.phone = phone;
 size++;
 // количество элементов увеличилось
 }
 }
 return adr;
}

 21 / 25

197

Для поиска элемента в таблице поступаем следующим образом.
Вычисляем индекс элемента и проверяем совпадение ключей при условии,
что элемент таблицы не пуст. Если ключи совпали, то элемент найден, иначе
предполагаем возможность коллизии: тот элемент, который мы ищем, при
вставке попал не на свое «законное» место, а на несколько шагов «правее».
И мы должны делать эти шаги вправо, пока не найдем элемент или не
наткнемся на непосещенное (visit = false) место. Признак empty
свидетельствует только о том, что в данный момент ячейка свободна, но она
могла освободиться после удаления элемента, который вызвал коллизию.

Все это учитывает метод поиска элемента в хэш-таблице, приведенная
в листинге 8.26.

Листинг 8.26. Поиск элемента в хэш-таблице

public int FindHash(string phone, out string FIO,
 out int count)
{
 ClearVisit();
 int i = hashKey(phone);
 // вычисление индекса элемента
 count = 1;
 int result = -1; bool ok; FIO = "";
 if (h[i].empty || (h[i].info.phone != phone))
 { // разрешение коллизии
 i = (i+step) % sizeTable;
 // перешли на следующую возможную позицию
 ok = false;
 while (!ok && h[i].visit)
 {
 count++;
 if (!h[i].empty &&
 (h[i].info.phone == phone))
 ok = true; // элемент найден
 else
 i = (i + step) % sizeTable;
 // иначе продолжаем поиск
 }
 if (ok)
 {
 result = i;
 FIO = h[result].info.fio;
 }
 else
 result = i;
 return result;
}

 22 / 25

198

Если элемент найден, то значение метода равно индексу, иначе –1.
Дополнительная информация о найденном элементе передается параметром
FIO, параметр count возвращает число шагов.

Метод удаления элемента — булевская функция. Если элемент был
найден в таблице и, следовательно, удален, то ее значение равно true, если
элемента в таблице не было — не было и удаления, значение метода —
false. Алгоритм приведен в листинге 8.27.

Листинг 8.27. Удаление элемента из хэш-таблицы

public bool Delete(string phone)
{
 bool result = false;
 if (size != 0) // таблица не пуста
 {
 int i = hashKey(phone);
 // вычисление индекса элемента
 if (h[i].info.phone == phone)
 // элемент найден
 {
 h[i].empty = true;
 result = true;
 size--;
 }
 else // коллизия
 {
 string FIO; int count;
 i=FindHash(phone,out FIO,out count);
 if (i != -1)
 // Элемент найден. Можно удалять
 {
 h[i].empty = true;
 result = true;
 size--;
 }
 }
 }
 return result;
}

Eсли элемент удален, то значение метода равно true. Если элемента в
таблице не было, то значение метода — false.

Ясно, что если таблица имеет много пустых ячеек, то коллизия
разрешится быстро. Поэтому размер таблицы выбирается несколько
большим, чем предполагаемое число элементов в ней. Для оценки
эффективности работы с хэш-таблицей в качестве параметра используют
коэффициент заполнения α = Size/SizeTable, где Size – число элементов

 23 / 25

199

таблицы. Оценки [Мейер, Бодуэн] показывают, что среднее число сравнений
для достаточно больших Size примерно равняется 1/(1-α) для
безрезультатного поиска или включения и (1/ α)log2(1/(1-α)). Конкретные
результаты приведены в таблице 43.

Таблица 43. Оценки Мейера и Бодуэна

Видно, что число обращений к таблице, то есть степень алгоритма,
зависит только от степени заполнения таблицы, а не от ее размера: в таблице,
содержащей тысячи элементов, можно разыскать любой из них в среднем за
два с половиной обращения, если только таблица заполнена не более чем на
90%.

Следует также отметить, что не только степень заполненности таблицы
играет роль, но и выбор хэш-функции.

Коэффициент
заполнения

Среднее число обращений при
включении или безрезультатном
поиске

Среднее число
обращений при
результативном поиске

25%
50%
75%
90%
95%

1,33
2
4
10
20

1,15
1,39
1,85
2,56
3,15

 24 / 25

200

Глава 9. МНОЖЕСТВА, ИНТЕРФЕЙСЫ,
КОЛЛЕКЦИИ, ДЕЛЕГАТЫ, СОБЫТИЯ

9.1. ИНТЕРФЕЙСЫ
Типы структуры, интерфейса и делегата также могут быть

универсальными.
В C# есть следующие виды шаблонов:

• абстрактные классы с абстрактными методами, которые должны
быть переопределены потомками под теми же именами и с такой же
сигнатурой. Это позволяет реализовать механизм полиморфизма;

• интерфейсы с наборами шаблонов для свойств и методов. Если к
классу присоединен интерфейс или несколько интерфейсов, то класс
обязан реализовать эти свойства и методы под теми же именами и с
такой же сигнатурой;

• делегаты с шаблоном метода, включающем тип метода и сигнатуру,
и списком указателей на методы с разными именами, но с такой же
сигнатурой. Это позволяет создавать методы, в которые в качестве
параметра можно передавать указатели на разные методы.

Интерфейсом называется семейство явно описанных как public
методов и свойств, которые сгруппированы в единое целое и инкапсулируют
какую-либо определенную функциональную возможность. Если интерфейс
подключен к классу, то в этом классе необходимо реализовать все, что
предписано интерфейсом. Это означает, что класс будет поддерживать все
свойства и члены, определяемые данным интерфейсом.

Интерфейсы не могут существовать сами по себе. Нельзя "создать
экземпляр интерфейса" таким же образом, как создается экземпляр класса.
Кроме того, интерфейс не содержит в себе никакого кода, который бы
реализовал его члены; он просто описывает эти члены. Их реализация
должна находиться в классах, в которых реализован данный интерфейс.

Интерфейсы похожи на абстрактные классы, но они имеют отличия и
служат для других целей.

Рассмотрим интерфейс для примера «умный» дом, описанный в
параграфе 7.3:

Листинг 9.1. Интерфейс IMessageBD

public interface IMessageBD

Powered by TCPDF (www.tcpdf.org)

 25 / 25

201

{
 float Power
 { get; set; }
 void MessageBD2();
}

Мы создали интерфейс IMessageBD (сообщение в базу данных).
Обратите внимание на ключевое слово interface. Данный интерфейс
"говорит" о том, что у класса, который будет реализовывать этот интерфейс
должно быть свойство Power (мощность) и метод MessageBD2() (записать
информацию). Видно, что интерфейс не содержит информации, которая бы
демонстрировала то, как будут работать данный метод и свойство. Свойство
Power доступно как для записи, так и для чтения. Если необходимо сделать
свойство только для чтения, нужно убрать метод set. Для того чтобы сделать
свойство только для записи, нужно убрать метод get.

Теперь у нас есть интерфейс IMessageBD. Сейчас необходимо
реализовать этот интерфейс. Cоздадим класс HeatingBoiler:

Листинг 9.2. Класс HeatingBoiler

public class HeatingBoiler : OperatedDevice, IMessageBD
 // Нагревательный котел
{
 protected double temperature;
 public double Temperature
 {
 get { return temperature; }
 set { temperature = value; }
 }
 private float power;
 public float Power
 {
 get {return power;}
 set {power = value;}
 }
 public void MessageBD2() { }
 public override void MessageBD()
 {
 Console.WriteLine("T = {0}",Temperature);
 }
}

Класс наследует свойства и методы предка OperatedDevice и
реализует интерфейс IMessageBD. Реализация интерфейса по синтаксису
очень похожа на наследование, если не знать, что IMessageBD — это
интерфейс, то можно и перепутать. Класс должен реализовывать все свойства

 1 / 25

202

и методы интерфейса. Иначе при компиляции будет показана ошибка,
например такая: Does not implement interface member MessageBD().

Один класс может реализовывать несколько интерфейсов. В этом
случае их необходимо перечислять через запятую. Если в разных
интерфейсах предусмотрены методы с одинаковыми именами и сигнатурой,
то их можно реализовывать по-разному, указывая префиксом имя
интерфейса.

Оператор is позволяет в процессе работы программы проверить,
реализует ли данный объект тот или иной интерфейс. Вернемся к примеру
«умный» дом, в котором у класса OperatedDevice есть три потомка:
HeatingBoiler, Conditioner и Lamp, которые объединены в массив
myDevice[]. Прямое обращение к методу myDevice[i].MessageBD2() не
допусимо, так как класса OperatedDevice этого метода нет. Кроме того,
интерфейс IMessageBD не подключен к классу Lamp. Поэтому прежде, чем
обращаться к методу MessageBD2(), необходимо проверить подключен ли
интерфейс:

Листинг 9.3. Обращение к методу MessageBD2() с проверкой его наличия

for (int i = 0; i < myDevice.Length; i++)
 if (myDevice[i] is IMessageBD)
 {
 IMessageBD tmp = (IMessageBD)myDevice[i];
 tmp.MessageBD2();
 }

Зная, что класс реализует тот или иной интерфейс, можно с
уверенностью сказать, что он реализует и методы, которые этот интерфейс
предоставляет.

Строка
IMessageBD tmp = (IMessageBD)myDevice[i];

является очень важной. Создается ссылка tmp на интерфейс IMessageBD. С
помощью круглых скобок приводится объект c к объекту IMessageBD (то
есть преобразовывается). С помощью этой ссылки теперь можно обратиться
к необходимому методу.

То же самое можно сделать и без переменной tmp:
((IMessageBD)myDevice[i]).MessageBD2();

Кроме того, интерфейсы могут обобщить несколько объектов. Если
несколько объектов различных классов реализуют один и тот же интерфейс,
то у них есть общие методы и свойства. Поэтому можно использовать
интерфейс как параметр, передаваемый методу, а метод уже сам будет
решать, какую версию метода запускать.

 2 / 25

203

Интерфейсы можно наследовать. Но в отличие от классов интерфейсы
поддерживают множественное наследование, то есть один интерфейс может
наследоваться сразу от двух и более интерфейсов.

9.2. КОЛЛЕКЦИИ
Самым простым контейнером на платформе .Net является класс

массивов System.Array. Массивы С# позволяют определять наборы
типизированных элементов (включая массив объектов типа System.Object
с фиксированным верхним пределом). Часто требуются более гибкие
структуры данных, такие как динамически растущие и сокращающиеся
контейнеры или контейнеры, которые хранят только элементы, отвечающие
определенному критерию (например, элементы, унаследованные от
заданного базового класса, реализующие определенный интерфейс). В этой
главе рассматривается пространство имен System.Collections —
составная часть библиотеки базовых классов .Net.

Наиболее примитивной конструкцией контейнера является класс
System.Array. Этот класс предлагает множество методов (например,
реверсирование, сортировку, очистку и перечисление). Он не умеет
автоматически изменять свой размер при добавлении или удалении
элементов. Если понадобится хранить типы в более гибком контейнере,
одним из возможных вариантов выбора будет использование типов,
определенных в пространстве имен System.Collections.

Пространство имен System.Collections определяет ряд
интерфейсов. Большинство классов из пространства имен
System.Collections реализуют эти интерфейсы для обеспечения доступа к
своему содержимому. В табл. 44 перечислены основные интерфейсы,
связанные с коллекциями.

Таблица 44. Интерфейсы System.Collections

Интерфейс
System.Collections

Назначение

ICollection Определяет общие характеристики
(например, размер, перечисление, потоковая
безопасность) всех необобщенных типов
коллекций.

IComparer Позволяет сравнивать два объекта.
IDictionary Позволяет объекту необобщенной коллекции

представлять свое содержимое в виде пар
имя/значение.

IDictionaryEnumerator Перечисляет содержимое типа,
поддерживающего IDictionary

 3 / 25

204

Интерфейс
System.Collections

Назначение

IEnumerable Возвращает интерфейс IEnumerator для
заданного объекта.

IEnumerator Позволяет итерацию по подтипам в стиле
foreach

IHashCodeProvider Возвращает хеш-код для реализации типа с
использованием настраиваемого алгоритма
хеширования

IList Обеспечивает поведение добавления,
удаления и индексирования элементов в
списке объектов. Также этот интерфейс
объявляет члены, определяющие, является ли
реализованный тип коллекции доступным
только для чтения, а также является ли он
контейнером фиксированного размера

Самый простой интерфейс ICollection определяет поведение,
поддерживаемое типом коллекции. Данный интерфейс предлагает небольшой
набор членов, которые позволяют определять количество элементов в
контейнере, потоковую безопасность контейнера, а также возможность
копирования содержимого в тип System.Array. Формально ICollection
определен следующим образом:

Листинг 9.4. Интерфейс ICollection

public interface ICollection : IEnumerable
{
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo(Array array, int index);
}

Словарь (dictionary) — коллекция, состоящая из пар имя/значение.
Например, можно построить специальный тип, реализующий IDictionary,
который может хранить типы, извлекаемые по идентификатору или
дружественному названию. Имея эту функциональность, легко заметить, что
интерфейс IDictionary определяет свойства Keys и Values, а также
методы Add(), Remove() и Contains(). Индивидуальные элементы можно
получать то типу индексатора, который представляет собой конструкцию,
позволяющую взаимодействовать с подэлементами, используя синтаксис
массивов. Ниже показано формальное определение:

 4 / 25

205

Листинг 9.5. Интерфейс IDictionary

public interface IDictionary: ICollection, IEnumerable
{
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 // Тип индексатора
 object this [object key] { get; set; }
 ICollection Keys { get; }
 ICollection Values { get; }
 void Add(object key, object value);
 void Clear();
 bool Contains(object key);
 IDictionaryEnumerator GetEnumerator ();
 void Remove(object key);
}

IDictionary.GetEnumerator() возвращает экземпляр типа
IDictionaryEnumerator. Интерфейс IDictionaryEnumerator() — это
просто строго типизированный перечислитель, расширяющий IEnumerator
следующей функциональностью:

Листинг 9.6. Интерфейс IDictionaryEnumerator

public interface IDictionaryEnumerator : IEnumerator
{
 DictionaryEntry Entry { get; }
 object Key { get; }
 object Value { get; }
}

IDictionaryEnumerator позволяет перечислять элементы словаря
через обобщенное свойство Entry, возвращающее тип класса
System.Collections.DictionaryEntry. Вдобавок также появляется
возможность разбирать пары имя/значение, используя свойства Key/Value.

Последним из основных интерфейсов System.Collections является
IList, который предоставляет возможность вставки, удаления и индексации
элементов контейнера:

Листинг 9.7. Интерфейс IList

public interface IList : ICollection, IEnumerable
{
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 object this [int index] { get; set; }
 int Add(object value);

 5 / 25

206

 void Clear ();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
}

Интерфейсы не особенно полезны, пока они не реализованы
определенным классом или структурой. В табл. 45 приведен перечень
основных классов пространства имен System.Collections вместе с
ключевыми интерфейсами, которые они поддерживают.

Таблица 45. Классы System.Collections

Класс Назначение Ключевые
реализованные
интерфейсы

ArrayList Представляет массив объектов
динамически изменяемого размера

IList,
ICollection,
IEnumerable
ICloneable

Hashtable Представляет коллекцию объектов,
идентифицируемых числовым
ключом. Специальные типы,
хранимые в Hashtable, всегда
должны переопределять
System.Object.GetHashCode ()

IDictionary,
ICollection,
IEnumerable
ICloneable

Queue Представляет стандартную очередь
FIFO "первый вошел — первый
вышел"

ICollection,
ICloneable
IEnumerable

SortedList Аналогичен словарю, но допускает
доступ к элементам по индексу.

IDictionary,
ICollection,
IEnumerable
ICloneable

Stack Представляет стандартную очередь
очередь LIFO "первый вошел —
последний вышел"

ICollection,
ICloneable
IEnumerable

Пространство имен также определяет небольшой набор абстрактных
базовых классов CollectionBase, ReadOnlyCollectionBase и
DictionaryBase, которые могут использоваться при построении строго
типизированных контейнеров.

Далее рассмотрим примеры работы с очередями и стеками.
Очереди — это контейнеры, которые обеспечивают доступ к объектам

по алгоритму FIFO "первый вошел — первый вышел". В дополнение к
функциональности, предлагаемой поддерживаемыми интерфейсами, Queue
определяет ключевые члены, перечисленные в табл. 46.

 6 / 25

207

Таблица 46. Методы класса Queue

Члены класса Назначение
Dequeue() Удаляет и возвращает объект из начала Queue
Enqueue () Добавляет объект в конец Queue
Peek() Возвращает объект из начала Queue, не удаляя его
int Count Возвращает число элементов, содержащихся в

коллекции
Clear() Удаляет все объекты из коллекции
CopyTo(Array
array, int
index)

Копирует элементы коллекции Queue в
существующий одномерный массив, начиная с
указанного значения индекса массива

object[]
ToArray()

Копирует элементы коллекции Queue в новый массив

Пример 9.1. Дан массив целых чисел. Создать очередь, в которую из
каждой группы подряд идущих одинаковых чисел вставлять только одно.

В листинге 9.8 приводится текст метода TestQueue(), который создает
очередь из элементов массива arr[] и выводит ее на экран. Во время
вывода очередь уничтожается.

Листинг 9.8. Создание очереди из элементов массива

static void TestQueue()
{
 int[] arr = { 1, 1, 1, 2, 2, 3, 4, 4, 4 };
 Queue myQueue = new Queue();
 int e = 0;
 for (int i = 0; i<arr.Length; i++)
 if (arr[i] != e)
 {
 e = arr[i];
 myQueue.Enqueue(e);
 // положить в очередь
 }
 while (myQueue.Count!=0)
 {
 e = (int)myQueue.Dequeue();
 Console.Write(e+" ");
 }
}

На экран будут выведены числа: 1 2 3 4.
Тип System.Collection.Stack представляет коллекцию, хранящую

элементы с доступом в режиме LIFO "последний вошел — первый вышел".
Класс Stack определяет методы по имени Push() и Рор() для вставки и
удаления элементов из стека.

 7 / 25

208

Таблица 47. Методы класса Stack

Метод Назначение
object Peek() Возвращает верхний объект стека, но не

удаляет его
object Pop() Удаляет и возвращает верхний объект стека
void Push(object obj) Вставляет объект как верхний элемент стека

Пример 9.2. Проверить правильность расстановки скобок в
арифметическом выражении.

Напомним, что алгоритм проверки должен быть следующим.
Выражение просматривается посимвольно, и если встретилась любая
открывающая скобка, то она помещается в стек. Если встретилась
закрывающая скобка, то из стека берется последняя открывающая и
проверяется, соответствует ли она закрывающей. Просмотр выражения
заканчивается или если обнаружится ошибка, или когда строка закончится.
Если строка закончилась, то необходимо еще проверить стек — не остались
ли там непарные открывающие скобки.

Метод BracketTest, приведенный в листинге 9.9, реализует этот
алгоритм и возвращает значения:

• –1, если скобки расставлены правильно;
• 0, если не хватает закрывающих скобок;

номер позиции в строке, на которой стоит "неправильная" скобка.

Листинг 9.9. Проверка скобок в арифметическом выражении

static int BracketTest(string a)
{
 char[] begBracket = { '(', '[', '{' };
 char[] endBracket = { ')', ']', '}' };
 Stack myStack = new Stack();
 int lenA = a.Length;
 bool error = false;
 int result = -1;
 int i = -1;
 do
 {
 if (isBracket(begBracket, a[++i]))
 myStack.Push(a[i]);
 else
 if (isBracket(endBracket, a[i]))
 if (myStack.Count != 0)
 switch ((char)myStack.Pop())
 {

 8 / 25

209

 case '(':
 if (a[i] != ')')
 { result = i; error = true; }
 break;
 case '[':
 if (a[i] != ']')
 {result = i;error = true; }
 break;
 case '{':
 if (a[i] != '}')
 {result = i;error = true; }
 break;
 }
 else
 { error = true; result = i; }
 }
 while (!error && (i != lenA - 1));
 if ((myStack.Count != 0) || error)
 result = i;
 return result;
}

После серии вызовов Рор() и Реек(), стек оказывается пустым, и
последующие вызовы Pop() и Peek() приведут к выдаче системного
исключения.

9.3. ДЕЛЕГАТЫ
Делегат — это объект, указывающий на другой статический метод или

на метод экземпляра (или, возможно, список методов), который может быть
вызван позднее. Объект делегата поддерживает три фрагмента информации:

• адрес метода, на котором он вызывается;
• если есть, аргументы этого метода;
• если есть, возвращаемое значение этого метода.

Если делегат создан и снабжен необходимой информацией, он может
динамически вызывать методы, на которые он указывает, во время
выполнения. Каждый делегат автоматически снабжается способностью
вызывать свои методы синхронно или асинхронно.

Объявление типа делегата аналогично сигнатуре метода. Оно имеет
возвращаемое значение и некоторое число параметров какого-либо типа. Для
определения делегата на С# используется ключевое слово delegate. Имя
делегата может быть любым. Необходимо определить делегат,
соответствующий по сигнатуре методу, на который он будет указывать.
Например, создадим делегат по имени MyOperetion, который может
указывать на любой метод, возвращающий вещественное число и
принимающий два вещественных числа в качестве входных параметров:

 9 / 25

210

public delegate double MyOperation(double x, double y);

Обрабатывая тип делегата, компилятор генерирует герметизированный
(sealed) класс, унаследованный от класса System.MulticastDelegate.
Этот класс, вместе со своим предком классом System.Delegate,
предоставляет необходимую инфраструктуру для делегата, чтобы хранить
список методов, подлежащих позднейшему вызову. Сгенерированный
компилятором класс MyOperetion определяет три общедоступных метода.
Метод Invoke() используется для вызова каждого из методов,
поддерживаемых типом делегата в синхронном режиме; это означает, что
вызывающий код должен ждать завершения вызова, прежде чем продолжить
свою работу.

Ниже перечислены некоторые методы класса Delegate:
protected Delegate(object target, string method) —

инициализирует делегат, вызывающий заданный метод экземпляра
указанного класса.

public static bool operator == (Delegate d1, Delegate

d2) — определяет, являются ли заданные делегаты неравными.
public object Target{get;} — возвращает метод, представленный

делегатом.
public static Delegate CreateDelegate(Type type,

MethodInfo method) — создает делегат указанного типа, представляющий
заданный статический метод.

public virtual Delegate[] GetInvocationList()— возвращает
массив делегатов, представляющих список вызовов текущего делегата.

protected virtual MethodInfo GetMethodImpl()— возвращает
статический метод, представленный текущим делегатом.

public static Delegate Remove(Delegate source, Delegate

value) — удаляет последнее вхождение списка вызовов делегата из списка
вызовов другого делегата.

public static Delegate RemoveAll(Delegate source,

Delegate value) — удаляет все вхождения списка вызовов одного делегата
из списка вызовов другого делегата.

protected virtual Delegate RemoveImpl(Delegate d) —
удаляет список вызовов одного делегата из списка вызовов другого делегата.

Делегаты могут указывать на методы, содержащие любое количество
параметров out и ref и массивов параметров, помеченных ключевым словом
params.

Рассмотрим следующий пример для определенного ранее делегата
MyOperetion. Введем два метода Mult() и Divice() с такой же
сигнатурой, как у делегата:

 10 / 25

211

Листинг 9.10. Методы с одинаковой сигнатурой

static double Mult(double x, double y)
{
 return x * y;
}
static double Divice(double x, double y)
{
 return x / y;
}

Создадим экземпляр делегата с именем action, добавив в список
указатель на метод с именем Mult:
 MyOperation action = new MyOperation(Mult);

Для экземпляров делегатов допустимы операции += и -=, которые
добавляют и удаляют указатели на методы в список делегата. Добавим
в список указатель на метод Divice:
action += new MyOperation(Divice);

С помощью оперции foreach и метода GetInvocationList() можно
вывести поля списка:

Листинг 9.11. Вывод из списка делегата имен методов и типов

foreach (Delegate d in action.GetInvocationList())
{
 Console.WriteLine("Method: {0}", d.Method);// имя метода
 Console.WriteLine("Type : {0}", d.Target);// имя типа
}

В результате будет выведено:

Теперь можно вызвать метод, используя объект делегата или метод

делегата Invoke():
Console.WriteLine(" action : {0}", action(5, 4));
Console.WriteLine(" action : {0}", action.Invoke(5, 4));

В результате всегда будет вызываться последняя операция списка
делегата деление Divice() и на экран будет выведено следующее:

Список GetInvocationList() указателей делегата представляет

собой массив и можно вызвать любой метод, представленный в этом массиве,
однако это потребует дополнительных усилий. Так, например, необходимо
вызвать метод Mult(), указатель на который хранится в нулевом элементе
массива. Это можно делать двумя способами: используя метод
DynamicInvoke() или создав вспомогательный массив actionList:

 11 / 25

212

Листинг 9.12. Использование любого указателя из списка методов делегата

Console.WriteLine(" action[0]: {0}",
 action.GetInvocationList()[0].
 DynamicInvoke(new object[]{3,4 }));

Delegate[] actionList = action.GetInvocationList();
Console.WriteLine(" result[1]: {0}",
 (actionList[0] as MyOperation)(5, 4));

Операция -= удаляет из списка делегата указатель на метод. Так, после
операции:

action -= Divide;

в списке останется указатель только на метод Mult(), и поэтому оператор
action(2,2), вызвав этот метод, вернет 4.

Пример 9.3. Вывести график функции на форму и на панель. Форма и
панель имеют разные размеры. Поэтому необходимо использовать различные
методы масштабирования: для формы — II() и JJ(), для панели — IIp() и
JJp(). Все эти методы имеют одинаковую сигнатуру, которая подходит под
делегата delegate int IJ(double x). Метод рисования имеет следующий
набор параметров: void Draw(IJ II, IJ JJ, Graphics g, byte fl).
При рисовании на форме передаем II и JJ
C.Draw(C.II, C.JJ, g, 0);

а при рисовании на панели — IIp и JJp
C.Draw(C.IIp, C.JJp, q, 1);

Рис. 9.1. Использование делегата для рисования графиков функции

 12 / 25

213

Листинг 9.13. Использование делегата для рисования на разных элементах

class C
{
 public static int I1 = 0, J1 = 0, I2, J2;
 public static int Ip1 = 0, Jp1 = 0, Ip2, Jp2;
 static int n = 50;

 public static double x1 = -0.1, y1 = -1, x2 = 3.1,
 y2 = 16;

 public delegate int IJ(double x);

 public static int II(double x)
 {
 return I1 + (int)((x - x1) * (I2 - I1) / (x2 - x1));
 }

 public static int IIp(double x)
 {
 return Ip1 + (int)((x - x1) * (Ip2 - Ip1) /
 (x2 - x1));
 }

 public static int JJ(double y)
 {
 return J2 + (int)((y - y1) * (J1 - J2) / (y2 - y1));
 }

 public static int JJp(double y)
 {
 return Jp2 + (int)((y - y1) * (Jp1 - Jp2)/(y2 - y1));
 }

 private static double F(double x)
 {
 return 12 * Math.Exp(-x * x);
 }

 public static void Draw(IJ II, IJ JJ, Graphics g,
 byte fl)
 {
 if (fl == 0)
 g.Clear(Color.White);
 else
 g.Clear(Color.Silver);

 // оси координат

 13 / 25

214

 g.DrawLine(Pens.Gray, II(x1), JJ(0),
 II(x2), JJ(0));
 g.DrawLine(Pens.Gray, II(0), JJ(y1),
 II(0), JJ(y2));

 double dx = (x2 - x1) / n;
 double x = x1;
 for (int i = 1; i < n; i++)
 {
 g.DrawLine(Pens.Black, II(x), JJ(F(x)),
 II(x + dx), JJ(F(x + dx)));
 x += dx;
 }
 }
}

Graphics g, q;

public FormMain()
{
 InitializeComponent();
 g = this.CreateGraphics();
 q = panel1.CreateGraphics();

 C.I2 = ClientRectangle.Width;
 C.J2 = ClientRectangle.Height;
 C.Ip2 = panel1.Width;
 C.Jp2 = panel1.Height;
}

void Draw()
{
 C.Draw(C.II, C.JJ, g, 0);
 C.Draw(C.IIp, C.JJp, q, 1);
}

private void FormMain_Paint(object sender,
 PaintEventArgs e)
{
 Draw();
}

9.4. СОБЫТИЯ
Делегаты являются основой событий. Они позволяют объектам,

находящимся в памяти, участвовать в двустороннем общении.
Необходимо определить делегат как приватный член класса, иначе

вызывающий код получит прямой доступ к объектам делегатов.

 14 / 25

215

В качестве сокращения для построения специальных методов,
добавляющих и удаляющих методы в списке вызовов делегата, в С#
предусмотрено ключевое слово event.

Обработка компилятором ключевого слова event приводит к
автоматическому получению методов регистрации и отмены регистрации
наряду со всеми необходимыми переменными-членами для типов делегатов.
Эта переменная-член делегата всегда объявляется приватной, и потому не
доступна напрямую объекту, инициировавшему событие.

Определение события — двухэтапный процесс. Во-первых, нужно
определить делегат, который будет хранить список методов, подлежащих
вызову при возникновении события. Во-вторых, необходимо объявить
событие (используя ключевое слово event) в терминах связанного делегата.

Событие — это член, используемый классом или объектом для
предоставления уведомлений. Событие объявляется аналогично полю, но оно
должно иметь тип делегата и его объявление должно содержать ключевое
слово event.

Если событие не является абстрактным и не содержит объявления
методов доступа, его поведение в классе, в котором оно объявлено,
аналогично поведению поля. В поле хранится ссылка на делегат, который
представляет обработчики событий, добавленные к событию. Если
обработчики событий отсутствуют, поле имеет значение null.

Пример 9.4. Приведем пример класса MyClass,

Листинг 9.14. Добавление обработчиков событий

class MyClass
{
 string name;
 public string Name
 {
 get { return name; }
 set
 {
 name = value;
 onChanged();
 }
 }

 public virtual void onChanged()
 {
 if (Changed != null)
 Changed(this, EventArgs.Empty);
 }
 public event EventHandler Changed; //Событие
}

 15 / 25

216

в котором делегат

delegate void EventHandler(object sender, EventArgs e);

представляет метод, который будет обрабатывать событие, не имеющее
данных.

В классе MyClass объявляется член-событие Changed, указывающий
на добавление нового элемента в список. Событие Changed вызывается
виртуальным методом OnChanged, в котором сначала проверяется, имеет ли
событие значение null (т. е. для события отсутствуют обработчики).
Понятие вызова события совершенно эквивалентно вызову делегата,
представленного событием. Поэтому не существует специальных языковых
конструкций для вызова событий.

Реакция клиента на событие реализуется с помощью обработчиков
событий. Для добавления обработчиков событий используется оператор (+=),
для удаления — оператор (-=). В следующем примере к событию Changed
класса MyClass присоединяется обработчик событий IncCount().

Листинг 9.15. Добавление обработчиков событий

static int changeCount;
static void IncCount(object sender, EventArgs e)
{
 changeCount++;
}

static void Main(string[] args)
{
 MyClass s = new MyClass();
 s.Changed += IncCount;
 s.Name = "Первая";
 s.Name = "Вторая";
 s.Name = "Третья";
 s.onChanged();
 Console.WriteLine(changeCount);// Выводится "4"
 Console.ReadKey();
}

Метод вызывается при применении свойства Name и, так как метод
onChanged() объявлен public, его можно вызвать напрямую. В результате
работы программы переменная changeCount, которую меняет обработчик
события IncCount(), будет равна 4.

В расширенных сценариях, в которых требуется управление базовым
хранилищем события, в объявлении события можно явно определить методы
доступа add и remove, которые во многом аналогичны методу доступа set
свойства.

 16 / 25

217

Пример 9.5. Класс Timer, объекты которого генерирует в приложении
повторяющиеся события, представлен в C# в трех пространствах имен:

System.Timers;
System.Threading;

System.Windows.Forms.
Создадим обработчик события onTimer(), который при каждом

вызове увеличивает счетчик t и выводит его значение на экран:

Листинг 9.16. Обработчики событий для таймеров

static int t = 0;
static void onTimer(object r)
{
 Console.WriteLine("t1 = {0}",++t);
}
static void onTimer2(object r, ElapsedEventArgs e)
{
 Console.WriteLine("t2 = {0}", ++t);
}

Создание экземпляров для классов Timer выглядит по-разному: у
таймера из пространства имен System.Timers есть доступный делегат
Elapsed, в список которого добавляется имя обработчика события:

Листинг 9.17. Создание таймера и его запуск

System.Timers.Timer myTimer2 =
 new System.Timers.Timer(1000);
myTimer2.Elapsed += onTimer2;
myTimer2.Start();

У таймера из пространства имен System.Timers нет доступного
делегата, поэтому имя обработчика события передается в конструктор:
System.Threading.Timer myTimer1 =
 new System.Threading.Timer(onTimer, null, 0, 1000);

Обратите внимание на то, что делегаты предписывают обработчикам
различные наборы параметров.

Класс Timer из пространства имен System.Windows.Forms доступен
только на формах. При создании обработчика события через окно свойств
появляется заготовка метода, в которой необходимо разместить какой-
нибудь код:

Листинг 9.18. Обработчик события на форме

private void timer1_Tick(object sender, EventArgs e)
{
 Text = Convert.ToString(t++);

 17 / 25

218

 button1.Left += 5;
}

Если посмотреть код, который .Net генерирует сам, то мы увидим
следующие строчки:

private System.Windows.Forms.Timer timer1;
this.timer1 =
 new System.Windows.Forms.Timer(this.components);
this.timer1.Enabled = true;
this.timer1.Interval = 10;
this.timer1.Tick +=
new System.EventHandler(this.timer1_Tick);

В первой объявляется приватная переменная timer1, во второй –
конструктор создает ее, затем назначаются свойства и, наконец, через
делегата EventHandler передается имя обработчика события. Заметим, что
добавлять имя обработчика можно и более простым способом:

this.timer1.Tick += this.timer1_Tick

Пример 9.6. Часто в приложениях требуется создать обработчик
события от колеса мыши. Это можно сделать следующим образом:

Листинг 9.19. Добавление обработчика события для колеса мыши

private void Form1_Load(object sender, EventArgs e)
{
 MouseWheel += new
 MouseEventHandler(Form1_MouseWheel);
}
void Form1_MouseWheel(object sender,MouseEventArgs e)
{
 MyDraw();
}

Делегат MouseEventHandler(object sender, MouseEventArgs e)
представляет метод, который обрабатывает событие MouseDown, MouseUp
или MouseMove.

Событие MouseWheel генерируется при движении колесика мыши,
если элемент управления имеет фокус.

 18 / 25

219

9.5. МНОЖЕСТВА

9.5.1. КЛАССЫ HASHSET И SORTEDSET
В C# есть два класса HashSet и SortedSet, предназначенные для

работы с множествами. Эти два класса очень похожи по набору методов.
Единственное отличие – элементы класса SortedSet отсортированы.

Оба этих класса относятся к обобщенным типам. Поэтому при
создании экзепляра класса необходимо указывать тип элементов множества:

HashSet<T> set = new HashSet<T>();

например

HashSet<int> set = new HashSet<int>();

Тип элементов множества может быть не только целочисленным, но и
вещественным и строковым.

При создании множества в фигурных скобках можно указывать
элементы множества:

HashSet<int> set = new HashSet<int>(){1, 2, 3, 4, 5};

Перечислим основные методы класса HashSet.
• Clear() – очищает множество;
• Add(T item) — добавляет элемент множества;
• Remove(T item) — удаляет указанный элемент;
• IntersectWith(HashSet hash) – пересечение множеств (операция

A = A ∩ B);
• UnionWith(HashSet hash) – объединение множеств

(операция A = A ∪ B);
• ExceptWith(HashSet hash) – разность множеств (операция

A = A \ B);
• SymmetricExceptWith(HashSet hash) – симметричная разность

(операция A = (A \ B) ∪ (B \ A));
• Contains(T item) – проверяет входит элемент в множество.

Также в классе есть несколько методов, предназначенных для работы с
подмножествами.

Классы HashSet и SortedSet допускают использования оператора
foreach:
C.H1 = C.CreateSet(5);
listBox1.Items.Clear();
foreach (int s in C.H1)
{
 listBox1.Items.Add(s.ToString());
}

 19 / 25

220

Пример 9.7. Даны два множества H1 и H2. Найти пересечение,
объединение, разность и симметричную разность.

В классе С объявлено два множества целых чисел H1 и H2, которые
заполняются случайными числами методом CreateSet(). Метод Run()
выполняет все операции над этими множествами.

Листинг 9.20. Работа с множествами

class C
{
 static HashSet<int> h1;
 public static HashSet<int> H1
 {
 get { return h1; }
 set { h1 = value; }
 }

 static HashSet<int> h2;
 public static HashSet<int> H2
 {
 get { return h2; }
 set { h2 = value; }
 }

 public static byte fl;

 static Random rnd = new Random();
 public static HashSet<int> CreateSet(int n)
 {
 HashSet<int> res = new HashSet<int>();
 for (int i = 0; i < n; i++)
 res.Add(rnd.Next(10));
 return res;
 }

 public static void Run()
 {
 switch (fl)
 {
 case 0:
 h1.IntersectWith(h2); // and
 break;
 case 1:
 //h1 = h1 * h2;
 h1.UnionWith(h2); // or
 break;
 case 2:

 20 / 25

221

 h1.ExceptWith(h2); // A\B
 break;
 case 3:
 h1.SymmetricExceptWith(h2); // xor
 break;
 }
 }
}

На рис. 9.2 представлена форма проекта, предназначенного для работы с
целочисленными множествами.

Рис. 9.2. Работа с множествами

Листинг 9.21. Вызов метода Run

private void buttonRun_Click(object sender, EventArgs e)
{
 C.Run();
 listBox3.Items.Clear();
 foreach (int s in C.H1)
 {
 listBox3.Items.Add(s.ToString());
 }
}

9.5.2. МНОЖЕСТВО НА БИТАХ
Реализации множеств различаются только структурой данных,

используемой для поиска, — это может быть массив, список, дерево, хэш-

 21 / 25

222

таблица или что-то еще. На практике чаще всего используется хэш-таблица,
так как она дает максимальную производительность.

Часто нет необходимости использовать классы HashSet и SortedSet.
Достаточно просто создать свой класс, методы которого будут выполнять на
множестве целых чисел все операции.

В качестве носителя множества возьмем целую переменную, биты
которой будут отвечать за вхождение в множество целых чисел в диапазоне
от 0 до 31. Это ограничение легко снимается, если в качестве носителя
множества взять массив целых чисел. Так определенное множество ближе к
классу SortedSet, потому что элементы в нем отсортированы. Поиск
элемента со значением n максимально прост – надо просто проверить n-ый
бит. Еще один плюс – минимальный расход памяти.

В классе MySet описано свойство целого типа Set и несколько
методов, основанных на бинарных операциях:

Листинг 9.22. Класс MySet

class MySet
{
 int set;
 public int Set
 { get { return set; } set { set = value; } }

 public MySet() // конструктор
 public void Clear() // очистить множество
 public void Add(int n) // добавить элемент
 public void Remove(int n) // удалить элемент
 public void IntersectWith(MySet hash) // пересечение
 public void UnionWith(MySet hash) // объединение
 public void ExceptWith(MySet hash) // разность
 // симметричная разность
 public void SymmetricExceptWith(MySet hash)
 public bool Contains(int n) // проверка на вхождение
 public List<int> ListSet()
 Random rnd = new Random();
 public void Init(int n)
 public void Run(MySet set2)
}

И конструктор MySet() и метод Clear() очищают множество:
public MySet() // конструктор
{
 set = 0;
}

public void Clear() // очистить множество
{

 22 / 25

223

 set = 0;
}

Метод Add() получает целое n. Сдвигает 1 на n позиций влево и
операцией | меняет в n-ом бите значение на 1. Остальные биты складываются
с 0 и поэтому не меняются.
public void Add(int n) // добавить элемент
{
 set = set | (1 << n);
}

Метод Remove() удаляет элемент с номером n, то есть в n-ом бите
устаналивает 0. Сдвигаем 1 на n позиций влево, затем конвертируем число.
В результате во всех битах, кроме n-го, получаем 1. Далеее складываем
множество Set с этим числом. Все биты кроме n-го не меняются, а в n-ом
бите устанавливается 0.
public void Remove(int n) // удалить элемент
{
 set = set & ~(1 << n);
}

Метод IntersectWith() – пересечение – реализуется бинарной
операцией «И» &:
public void IntersectWith(MySet hash) // пересечение
{
 set &= hash.set;
}

Метод UnionWith() – объединение – реализуется бинарной операцией
«ИЛИ» |:
public void UnionWith(MySet hash) // объединение
{
 set |= hash.set;
}

Метод ExceptWith() – разность – реализуется конвертацией
множества hash и бинарной операцией «И» &:
public void ExceptWith(MySet hash) // разность
{
 set &= ~hash.set;
}

Метод SymmetricExceptWith() – симметричная разность –
реализуется конвертацией исходного множества и множества hash и
бинарными операциями «И» & и «ИЛИ» |:
public void SymmetricExceptWith(MySet hash)
// симметричная разность
{
 int tmp = (set & ~hash.set) | (~set & hash.set);
 set = tmp;
}

 23 / 25

224

Проверка на вхождение элемента в множество также реализуется
сдвигом 1 и операцией «И»:
public bool Contains(int n) // проверка на вхождение
{
 return (set & (1 << n)) != 0;
}

К сожалению, оператор цикла foreach на этом множестве не работает.
Поэтому приходится использовать обычный цикл for.
public List<int> ListSet()
{
 List<int> res = new List<int>();
 for (int i = 0; i < 32; i++)
 if (Contains(i))
 {
 res.Add(i);
 }
 return res;
}

Методы вызываются традиционным способом:

Листинг 9.23. Метод Run()

public void Run(MySet set2)
{
 switch (C.fl)
 {
 case 0:
 this.IntersectWith(set2);
 break;
 case 1:
 this.UnionWith(set2);
 break;
 case 2:
 this.ExceptWith(set2);
 break;
 case 3:
 this.SymmetricExceptWith(set2);
 break;
 }
}

 24 / 25

225

Глава 10. РАБОТА С ФАЙЛАМИ

Файлом называется поименованный набор данных, хранящийся во
внешней памяти компьютера. Файлы используются для долговременного
хранения данных, а также в качестве средства передачи информации с
помощью мобильных носителей (устройств флеш-памяти, переносных
жестких дисков, компакт-дисков). С помощью файлов происходит обмен
данными в компьютерных сетях.

В файлах может храниться информация любого вида, поэтому
необходимо знать, какие программы могут обрабатывать данные из каждого
конкретного файла. Связь данных из файла с программами их обработки
принято обозначать как формат файла. Формат файла обычно присутствует
в его наименовании, которое состоит из имени файла и расширения имени
(типа файла). Общепринятые расширения имён файлов – txt, docx, xlsx,
gif, jpeg, cs и т.д. позволяют автоматически загружать программы
обработки при обращении к соответствующим файлам.

Файлы принято группировать по тому или иному признаку, объединяя
их в каталоги (directory). В операционной системе Windows каталоги
называются папками (folder) и в дальнейшем изложении оба термина мы
будем использовать как эквивалентные. Папка может находиться внутри
другой папки – быть вложенной в неё. Тем самым, папки образуют
иерархическую структуру – дерево каталогов, на вершине которой находится
корневой каталог. Любой каталог может содержать и файлы, и вложенные в
него каталоги. Структурированное с помощью каталогов множество файлов
называется файловой системой.

Организация работы с файлами на логическом и физическом уровнях
является одной из основных задач любой операционной системы. При этом
следует различать операции уровня отдельных файлов – чтение/запись
данных и операции уровня файловой системы – создание и удаление
каталогов, распределение файлов по каталогам, назначение имен каталогам и
файлам. Операции уровня файлов выполняются операционной системой во
взаимодействии с программами, обрабатывающими данные из файлов, а
операции уровня файловой системы – утилитами, которые называются
файловыми менеджерами (Norton Commander, Far, Проводник и другие).
Любая операция с файлом или каталогом требует обращения к нему с
указанием имени (и типа для файла), а также пути (path). Путь – это
последовательность узлов-каталогов, через которые надо пройти, чтобы
достичь нужного каталога. Если путь прокладывается от корневого каталога,

Powered by TCPDF (www.tcpdf.org)

 25 / 25

226

то он называется абсолютным, если от некоторого некорневого каталога –
относительным.

Абсолютный путь явно специфицирует местоположение файла или
каталога. Например, путь D:\C#\File.txt точно определяет
местоположение файла.

Относительные пути определеляют местоположение файла или
каталога относительно некоторого каталога, называемого текущим.
Например, если приложение запускается в каталоге D:\C#\FileDemo и
использует относительный путь File.txt, это указывает на файл
D:\C#\FileDemo\File.txt. Чтобы перейти вверх по иерархии каталогов,
используется строка <..\>. Таким образом, путь ..\File1.txt указывает
на файл D:\C#\File1.txt.

Текущий рабочий каталог изначально устанавливается там, откуда
запущено приложение. При разработке в VS, это означает, что приложение
находится несколькими каталогами ниже созданной папки проекта. Обычно
оно располагается в Имя_Проекта\bin\Debug.

Чтобы обратиться к файлу в корневой папке проекта, потребуется
перейти на два каталога выше, указав префикс пути <..\..\>.

10.1. КЛАССЫ ВВОДА И ВЫВОДА

Пространство имен System.IO содержит классы для чтения данных из
файлов и записи их в файлы. Любой проект, в котором предусматривается
работа с файлами, должен ссылаться на это пространство имён
предложением using System.IO. На рисунке 10.1 представлены несколько
классов из пространства имён System.IO, используемых для работы с
файлами.

Рис. 10.1. Некоторые классы пространства имен System.IO

Абстрактный класс MarshalByRefObject содержит объявление
методов, которые используются для обмена данными между приложениями.

 1 / 25

227

Его наследниками являются три абстрактных класса, объявляющие методы
работы с потоками данных – классы TextReader, TextWriter и Stream.
Потоком данных в программировании называют любой обмен данными
между выполняющимся приложением и файлом, сетевым ресурсом или
другим приложением. Различают символьные и байтовые потоки: в первом
случае минимальной единицей передаваемых данных является символ, во
втором – байт. Классы TextReader и TextWriter объявляют методы работы
с символьными потоками, а класс Stream – с байтовыми потоками. Поток
всегда связан с источником и/или получателем данных. Так как операции с
внешними носителями выполняются гораздо медленнее, чем операции в
оперативной памяти, то число таких операций стараются минимизировать.
С этой целью для каждого потока в оперативной памяти выделяется область,
в которой размещается порция данных, подготовленных для записи в поток
вывода, или прочитанных из потока. Такие области оперативной памяти
называются буферами ввода/вывода. Возможно создание потоков, не
использующих буферы ввода/вывода, поэтому потоки делятся на
буферизованные и небуферизованные.

10.1.1. КЛАСС STREAM

Далее будем рассматривать буферизованный обмен данными с
файлами, которые будут источниками и приемниками этих данных. В классе
Stream объявлен набор стандартных операций для байтовых потоков.
В первую очередь, это операции чтения и записи данных. Кроме того, класс
Stream поддерживает указатель файла, который определяет место внутри
файла, где произойдет следующая операция чтения или записи. Для работы с
указателем файла предназначен метод Seek(). Наиболее часто применяемые
методы класса Stream перечислены в табл. 48.

Таблица 48. Некоторые
методы класса Stream

Метод Описание

virtual void Close()
Закрывает файл и освобождает занятые
им системные ресурсы

virtual int ReadByte()

Возвращает целочисленное
представление следующего доступного
байта файла. При обнаружении конца
файла возвращает значение -1

virtual void
WriteByte(byte b)

Записывает один байт в выходной файл

abstract int
Read(byte[] buf, int
offset, int numBytes)

Делает попытку прочитать numBytes байт
в массив buf, начиная с элемента

В

 2 / 25

228

buf[offset]. Возвращает количество
успешно прочитанных байтов

abstract void Write
(byte[] buf, int
offset, int numBytes)

Записывает поддиапазон размером
numBytes байт из массива buf, начиная с
элемента buf[offset].

abstract void Flush() Очищает буферы ввода/вывода

long Seek(long offset,
SeekOrigin origin)

Устанавливает текущую позицию
указателя файла, делая ее равной
указанному значению смещения offset
от заданного начала отсчета origin

Три первых метода являются виртуальными, остальные три –
абстрактными. Напомним, что:

• виртуальный метод может иметь свою реализацию в базовом классе,
абстрактный – нет (тело пустое);

• абстрактный метод должен быть реализован в классе наследнике,
виртуальный метод переопределять необязательно.

Метод Close()во всех своих реализациях должен сводиться к
вызову другого метода, а именно, метода Dispose(). Этот метод позволяет
освободить системные ресурсы, используемые потоком, в частности, буферы
ввода/вывода, предварительно очистив последние. Метод Dispose()

предоставляется интерфейсом IDispose,который наследуется классами
TextReader, TextWriter и Stream.

10.1.2. КЛАСС FILESTREAM

Класс FileStream является наследником класса Stream. Объект этого
класса представляет байтовый поток обмена данными с дисковым файлом.
Методы класса FileStream оперируют байтами и байтовыми массивами.
Класс FileStream поддерживает указатель файла, который определяет
место внутри файла, где произойдет следующая операция чтения или записи.
Когда файл открывается, указатель установлен на начало файла, но указатель
можно перемещать. Это позволяет приложению читать или писать в любом
месте файла, то есть реализовать прямой доступ к файлу, а также экономит
время при работе с большими файлами.

Для работы с указателем файла в классе реализован метод Seek(),
принимающий два параметра. Первый параметр указывает, насколько байт
нужно переместить указатель файла. Второй параметр показывает, откуда
начинать отсчет. Возможные значения второго параметра заданы в
перечислении SeekOrigin; это одно из трех значений: Begin, Current и
End.

 3 / 25

229

Например, следующая строка переместит указатель файла к восьмому
байту файла, начиная с самого первого в этом файле:
aFile.Seek (8, SeekOrigin.Begin);

Следующая строка переместит указатель файла на два байта вперед,
начиная с текущей позиции:
aFile.Seek (2, SeekOrigin.Current);

При чтении или записи положение файлового указателя изменяется на
число записанных или прочитанных байтов. Допустимо указывать
отрицательное значение смещения, которое может быть скомбинировано со
значением SeekOrigin.End или SeekOrigin.Current. Следующий
оператор переносит указатель файла на пять байтов от конца файла:
aFile.Seek(-5, SeekOrigin.End);

 Таким образом, потоки класса FileStream обрабатывают файлы как
файлы прямого доступа с возможностью обращения к любой позиции
внутри файла.

Конструктор класса FileStream имеет несколько перегрузок;
простейшая из них принимает два аргумента: имя файла и значение
перечисления FileMode:
FileStream aFile = new FileStream(filename, FileMode.Member);

Перечисление FileMode состоит из нескольких членов, которые
специфицируют способ открытия или создания файла. Члены перечисления
FileMode представлены в таблице 49.

Таблица 49. Члены

перечисления FileMode

Член
перечисления

Поведение при
существующем файле

Поведение при
отсутствии файла

Append

Файл открыт, указатель
установлен в конец файла.
Может использоваться
только в режиме чтения

Создается новый файл.
Может использоваться
только в режиме чтения

Create
Файл уничтожается и на
его месте создается новый

Создается новый файл

CreateNew Генерируется исключение Создается новый файл

Open
Файл открывается,
указатель в начало файла

Генерируется исключение

OpenCreate
Файл открывается, поток
позиционируется в начало
файла

Создается новый файл

Truncate
Файл открывается и
очищается. Поток

Генерируется исключение

 4 / 25

230

позиционируется в начало
файла. Исходная дата
создания файла остается
неизменной

 Другой часто используемый конструктор выглядит так:

FileStream aFile = new FileStream (filename,
FileMode.Member,FileAccess.Member);

Третий параметр – член перечисления FileAccess – задает способ
специфицирования назначения потока. Члены перечисления FileAccess
приведены в табл. 50.

Таблица 50. Члены
перечисления FileAccess

Член Описание
Read Открывает файл только для чтения
Write Открывает файл только для записи
ReadWrite Открывает файл только для чтения или записи

Попытка выполнить действие, отличное от специфицированного
членом перечисления FileAccess, приведет к генерации исключения. Это
свойство часто используется в качестве способа варьировать доступ
пользователя к файлу на основе его уровня авторизации. В версии
конструктора FileStream, не использующего параметр-перечисление
FileAccess, применяется значение по умолчанию, которым является
FileAccess.ReadWrite.

С потоком класса FileStream можно связать файл любого типа – он
всегда будет обрабатываться как последовательность байт. В следующем
примере графический gif-файл копируется с созданием файла типа .txt.
Копирование файлов является наиболее часто используемым способом
непосредственного применения потоков класса FileStream.

Пример 10.1. Выполнить копирование файла.

Листинг 10.1. Копирование файлов средствами класса FileStream

static void Main(string[] args)
{
 const int n = 15;
 byte[] buf = new byte[n];
 try
 {
 FileStream fileIn = new FileStream("phone.gif",
 FileMode.Open, FileAccess.Read);
 FileStream fileOut = new FileStream("newText.txt",
 FileMode.Create,FileAccess.Write);

 5 / 25

231

 int k;
 // чтение первого блока байт из потока, связанного с
 // файлом fIleIn
 k = fileIn.Read(buf, 0, n);
 while (k > 0)
 {
 for (int i = 0; i < n; i++)
 Console.Write("{0,4}", buf[i]);
 Console.WriteLine();
 // запись очередного блока байт в поток,
 // связанный с файлом fIleOut
 fileOut.Write(buf, 0, n);
 // чтение очередного блока байт из потока,
 // связанного с файлом fIleIn
 k = fileIn.Read(buf, 0, n);
 }
 fileOut.Close();
 }
 catch (Exception EX)
 {
 Console.WriteLine(EX.Message);
 }
 Console.ReadLine();
}

10.2. СИМВОЛЬНЫЕ ПОТОКИ. ФАЙЛЫ

ПОСЛЕДОВАТЕЛЬНОГО ДОСТУПА
Символьные потоки интерпретируют передаваемые данные как

последовательность символов, разбитую на строки, то есть обеспечивают
передачу данных в текстовом формате. В отличие от байтовых потоков в
символьные потоки не поддерживают возможности произвольного
перемещения указателя файла, поэтому текстовые файлы могут быть только
файлами последовательного доступа. Это означает, что при чтении
указатель перемещается от начала к концу файла, последовательно переходя
от текущего символа к следующему. При записи указатель устанавливается в
конец текстового файла.

10.2.1. КЛАССЫ TEXTREADER И TEXTWRITER
Методы вывода символьных данных объявлены в абстрактном классе

TextWriter. Так как вывод данных связан с преобразованием их типов,
имеется большое число перегрузок основных методов Write и WriteLine
для разных типов данных. В таблице 51 приведены некоторые методы и
свойства абстрактного класса TextWriter.

 6 / 25

232

Таблица 51. Некоторые
методы класса TextWriter

Метод Описание
void Close() Закрывает файл и освобождает занятые

им системные ресурсы
void Write(int val) Записывает значение типа int. Имеет

перегрузки для string и других типов
данных

void WriteLine(int val) Записывает значение типа int с
последующим символом новой строки.
Имеет перегрузки для string и других
типов данных

void Flush() Записывает все данные, оставшиеся в
выходном буфере, и очищает буфер

Encoding Свойство для чтения, позволяющее
получить используемую кодировку
символов

Все перечисленные методы являются виртуальными. Свойство
Encoding является абстрактным и реализуется в наследнике класса
TextWriter классе StreamWriter.

Методы ввода символьных данных объявлены в абстрактном классе
TextReader. Для основного метода Read() имеются две перегрузки –
чтение одного символа и считывание массива символов. В таблице 52
приведены некоторые методы этого класса. Все перечисленные методы
являются виртуальными.

Таблица 52. Некоторые
методы класса TextReader

Метод Описание

void Close ()
Закрывает файл и освобождает занятые им
системные ресурсы

int Peek ()

Возвращает числовой код текущего
символа, не перемещая указатель к
следующему символу файла. Возвращает
значение - 1 , если достигнут конец файла

int Read ()

Возвращает числовой код текущего
символа из входного файла и перемещает
указатель к следующему символу. При
обнаружении конца файла возвращает
значение -1

int Read (char [] buf,
int offset,int

Делает попытку прочитать numChars
символов в массив buf начиная с элемента

 7 / 25

233

numChars) символов в массив buf, начиная с элемента
buf[offset], и возвращает количество
успешно прочитанных символов

string ReadLine()

Считывает очередную строку текста и
возвращает ее как значение типа string.
При достижении конца файла возвращает
null-значение

string ReadToEnd()
Считывает все символы, оставшиеся в
файле, и возвращает их как значение типа
string

10.2.2. КЛАСС STREAMWRITER. ЗАПИСЬ В ТЕКСТОВЫЙ ФАЙЛ

Класс StreamWriter является наследником класса TextWriter и
реализует объявленные в нем методы записи в текстовые файлы.
Конструктор этого класса имеет ряд перегрузок, в которых первым
параметром является или уже созданный файловый поток, или строка,
содержащая наименование текстового файла. Иначе говоря, класс
StreamWriter играет роль оболочки, в которую помещается объект класса
FileStream для последующей работы с ним как с символьным потоком.

В простейшем случае конструктор класса StreamWriter имеет вид:
 public StreamWriter(FileStream stream)

или
 public StreamWriter(string path)

В других перегрузках конструктора может присутствовать до трех
дополнительных параметров, а именно:

encording – параметр типа Encording из пространства имен
System.Text, задающий вид кодировки символов при записи;

bufferSize – целочисленный параметр, задающий количество
записываемых символов.

Кроме того, при использовании в качестве первого параметра потока
можно задать параметр булевского типа leaveOpen, указывающий на
возможность оставить поток открытым после удаления объекта-оболочки.
При использовании в качестве первого параметра наименования файла,
вторым может быть параметр булевского типа append, задающий запись в
режиме добавления.

Таким образом, запись в текстовый файл должна состоять из
следующих шагов:

• создание потока – объекта класса FileStream;
• создание объекта класса StreamWriter и связь его с потоком;
• запись данных методами Write()и/или WriteLine();

 8 / 25

234

• выполнение метода Close() класса StreamWriter (закрываем
объект-оболочку);

• выполнение метода Close() класса FileStream (закрываем
файловый поток).

Пример 10.2. Записать несколько строк в текстовый файл.

Листинг 10.2. Запись строк в текстовый файл

 static void Main(string[] args)
 {
 try
 {
 FileStream aFile =
 new FileStream("Test.txt",
 FileMode.OpenOrCreate);
 StreamWriter f = new StreamWriter(aFile);
 bool ok = true;
 f.WriteLine("Первая строка");
 f.WriteLine("Дата: {0}",
 DateTime.Now.ToLongDateString());
 f.Write("Третья строка,");
 f.Write(" ok = {0}.", ok);
 f.Close();
 aFile.Close();
 }
 catch (IOException e)
 {
 Console.WriteLine("Ошибка IO!");
 Console.WriteLine(e.ToString());
 Console.ReadLine();
 return;
 }
 }

В результате работы этой программы в папке ..\Debug будет создан
файл Test.txt, в котором будут следующие строки:
Первая строка
Дата: 30 мая 2016 г. (текущая дата)
Третья строка, ok = True.

В данном примере объект f класса StreamWriter был создан на
основе предварительно созданного файлового потока aFile. Но это можно
было бы сделать без предварительного создания файлового потока,
непосредственно из файла:
StreamWriter f = new StreamWriter("Test.txt", true);

Здесь использован конструктор? принимающий наименование файла и
логическое значение, задающее режим записи. Если логический параметр
установлен в false, то создается новый файл или существующий файл

 9 / 25

235

усекается до нулевого размера, а затем открывается. Если оно установлено в
true, файл открывается, и его данные сохраняются. Если файл не
существует, то он создается.

Отметим, что свойства FileMode и/или FileAccess для символьного
потока могут быть заданы только при создании соответствующего файлового
потока. Если символьный поток создается непосредственно из файла, то для
этих свойств устанавливаются значения по умолчанию.

10.3. КЛАСС STREAMREADER. ЧТЕНИЕ ИЗ ТЕКСТОВОГО

ФАЙЛА
Класс StreamReader является наследником класса TextReader и

реализует объявленные в нем методы чтения из текстовых файлов.
Конструктор этого класса имеет ряд перегрузок, в которых первым
параметром является или уже созданный файловый поток, или строка,
содержащая наименование текстового файла. Иначе говоря, класс
StreamReader также играет роль оболочки, в которую помещается объект
класса FileStream для последующей работы с ним как с символьным
потоком.

В простейшем случае конструктор класса StreamReader имеет вид:
 public StreamReader(FileStream stream)

или
 public StreamReader(string path)

По аналогии с классом StreamWriter можно использовать ряд
перегрузок этого конструктора с дополнительными параметрами. Чтение из
текстового файла должно состоять из следующих шагов:

• создание потока – объекта класса FileStream;
• создание объекта класса StreamReader и связь его с потоком;
• чтение данных методом Read() и/или ReadLine();
• выполнение метода Close()класса StreamReader (закрываем

объект-оболочку);
• выполнение метода Close() класса FileStream (закрываем

файловый поток).
Пример 10.3. Прочитать все строки из текстового файла.

Листинг 10.3. Чтение строк из текстового файла

 static void Main(string[] args)
 {
 string s;
 try
 {

 10 / 25

236

 FileStream aFile =
 new FileStream("Test.txt",
 FileMode.Open);
 StreamReader f = new StreamReader(aFile);
 s = f.ReadLine();
 // Прочитать данные строка за строкой.
 while (s != null)
 {
 Console.WriteLine(s);
 s = f.ReadLine();
 }
 f.Close();
 aFile.Close();
 }
 catch (IOException e)
 {
 Console.WriteLine("Ошибка IO ");
 Console.WriteLine(e.ToString());
 return;
 }
 Console.ReadKey();
 }

10.3.1. ПРИМЕР: ЧАСТОТНЫЙ СЛОВАРЬ

Рассмотрим задачу создания словаря неповторяющихся слов на основе
текстового файла. Будем считать, что в качестве разделителей используются
символы пробел, запятая, точка, точка с запятой, двоеточие, знак равенства,
открывающая и закрывающая круглые скобки.

Создадим новый проект, запишем его и на форму выставим следующие
компоненты: listBox1, listBox2, dataGridView1, button1, button2
(рис. 10.2).

В окне Свойства изменим свойства: button1.Name = buttonOpen,
button2.Name = buttonRun.

Рис. 10.2. Проект «Частотный словарь»

 11 / 25

237

Для создания словаря введем структуру tDict (листинг 10.4), в
которой есть поле word для сохранения слова и поле сount для сохранения
числа повторений этого слова в тексте. Все слова будут собираться в
динамическом массиве aDict.

Листинг 10.4. Описание структуры

public struct tDict
{
 public string Word;
 public int Count;
}
public tDict[] aDict = new tDict[]{};

Двойным щелчком на компоненте buttonOpen создадим обработчик
события buttonOpenClick и напишем в нем код, который вызовет диалог
openFileDialog, а затем заполнит элемент listBox1.

Листинг 10.5. Вызов метода SetWords

private void buttonOpen_Click(object sender, EventArgs e)
{
 if (openFileDialog1.ShowDialog() == DialogResult.OK)
 {
 fileName = openFileDialog1.FileName;
 FileStream fs =
 openFileDialog1.OpenFile() as FileStream;
 StreamReader f = new StreamReader(fs);
 listBox1.Items.Clear();
 while (f.Peek() > 0)
 listBox1.Items.Add(f.ReadLine());
 f.Close();
 fs.Close();
 openFileDialog1.Dispose();
 }
}

Двойным щелчком на компоненте buttonRun откроем файловый поток
FileStream, будем читать файл как текстовый в строки s и для каждой
строки вызывать метод Parser(s):

Листинг 10.6. Вызов метода Parser

private void buttonRun_Click(object sender, EventArgs e)
{
 if (fileName != "")

 12 / 25

238

 {
 string s;
 listBox2.Items.Clear();
 FileStream aFile =
 new FileStream(fileName, FileMode.Open);
 StreamReader f = new StreamReader(aFile);
 s = f.ReadLine();
 Parser(s);
 while (s != null)
 {
 s = f.ReadLine();
 Parser(s);
 }
 f.Close();
 aFile.Close();
 for (int i = 0; i < aDict.Length; i++)
 {
 s = aDict[i].Word + " " +
 Convert.ToString(aDict[i].Count);
 listBox2.Items.Add(s);
 }
 for (int i = 0; i < aDict.Length; i++)
 dataGridView1.Rows.Add(aDict[i].Word,
 Convert.ToString(aDict[i].Count));
 }
}

После завершения чтения файла массив aDict[] выводится в
элементы listBox2 и dataGridView1.

Метод Parser(s) из строки s методом Split() создает массив слов
sArr[]. Затем каждое слово массива sArr[] анализируется: если его нет в
массиве aDict[], то длина массива aDict[] увеличивается и слово
запоминается:

Листинг 10.7. Метод Parser()

public void Parser(string s)
{
 if ((s != null) && (s != ""))
 {
 char[] separators =
 {' ',',', '.', ':', ';', '}', '{', '=', '(', ')'};
 string[] sArr = s.Split(separators,
 StringSplitOptions.RemoveEmptyEntries);
 // не включать пустые строки
 // попытаться найти слово
 for (int i = 0; i < sArr.Length; i++)
 {

 13 / 25

239

 int n = FindWord(sArr[i]);
 if (n == -1)
 {
 int L = aDict.Length;
 Array.Resize <tDict> (ref aDict, ++L);
 aDict[L - 1].word = sArr[i];
 aDict[L - 1].count = 1;
 }
 else
 aDict[n].count++;
 }
 }
}

Приведем код функции FindWord(), которая пытается найти номер
слова s в массиве aDict[]. Если слово найдено, то функция вернет номер
этого слова, иначе она вернет -1:

Листинг 10.8. Функция поиска FindWord()

 public int FindWord(string s)
 {
 int L = aDict.Length;
 int i = -1;
 bool ok = false;
 while ((i < L - 1) && !ok)
 ok = aDict[++i].word == s;
 if (ok) return i; else return -1;
 }

На рис. 10.2 представлены результаты работы этой программы для
текста самой этой программы.

10.4. БАЙТОВЫЕ ПОТОКИ. ФАЙЛЫ ПРЯМОГО ДОСТУПА

Классы-оболочки StreamReader и StreamWriter использовались для
представления файловых потоков как потоков символов. Существует
множество других типов данных и, соответственно, имеется необходимость
иметь для них соответствующие классы-оболочки. Роль таких оболочек для
типов-значений, а также для типа string, играют классы BinaryReader и
BinaryWriter. Эти классы, кроме того, сохраняют возможность прямого
доступа к файлам.

10.4.1. КЛАСС BINARYWRITER. ЗАПИСЬ В ДВОИЧНЫЙ ФАЙЛ

Последовательность действий при записи в двоичный файл похожа на
аналогичную последовательность для текстового файла. Чтобы выполнить
запись данных в двоичный файл, необходимо:

 14 / 25

240

• создать поток FileStream;
• создать объект BinaryWriter, связав его с потоком;
• методом Write(), имеющим 17 перегруженных вариантов, записать

данные;
• методом Close(), освободив промежуточный буфер, закрыть файл;
• методом Close(), закрыть файловый поток.

Пример 10.4. Записать в двоичный файл 3 значения: целое, вещественное и
логическое.

Листинг 10.9. Запись в бинарный файл

static void Main(string[] args)
{
 int a = 12;
 double r = 12;
 FileStream aFile =
 new FileStream("Temp.dat",FileMode.Create);
 BinaryWriter f = new BinaryWriter(aFile);
 f.Write(a);
 f.Write(false);
 f.Write(r);
 a = 15; r = 1;
 f.Write(a);
 f.Write(r);
 f.Write(true);
 f.Close();
 aFile.Close();
}

Файл Temp.dat будет создан в папке ..\Debug.

10.4.2. КЛАСС BINARYREADER. ЧТЕНИЕ ИЗ ДВОИЧНОГО ФАЙЛА

Последовательность действий при чтении из двоичного файла похожа
на аналогичную последовательность для текстового файла. Чтобы выполнить
чтение данных из двоичного файла, необходимо:

• создать поток FileStream;
• создать объект BinaryReader, связав его с потоком;
• одним из методов ReadXXX(), имеющим 17 вариантов, прочитать

данные;
• методом Close(), освободив промежуточный буфер, закрыть файл;
• методом Close(), закрыть файловый поток.

Среди методов ReadXXX() есть: Read(), ReadBoolean(),
ReadByte(), ReadDouble(), ReadInt32(), ReadString() и т.д.

 15 / 25

241

Пример 10.5. Прочитать из двоичного файла 3 значения: целое,
вещественное и логическое.

Листинг 10.9. Создание статического массива и вывод его элементов

static void Main(string[] args)
{
 int a;
 double r;
 bool b;
 FileStream aFile =
 new FileStream("Temp.dat", FileMode.Open);
 BinaryReader f = new BinaryReader(aFile);
 aFile.Seek(0, SeekOrigin.Begin);
 a = f.ReadInt32(); // 12
 b = f.ReadBoolean(); // false
 r = f.ReadDouble(); // 12.0
 f.Close();
 aFile.Close();
}

Файл Temp.dat должен быть в папке ..\Debug.

10.4.3. ЗАПИСЬ СТРОКИ В ФАЙЛ ПРЯМОГО ДОСТУПА

Класс BinaryWriter предоставляет возможность записи в файлы
прямого доступа строковых значений. Для выполнения записи строки
необходимо:

• cоздать поток FileStream;
• cоздать символьный массив; простейший способ сделать это состоит

в том, чтобы сначала построить байтовый массив, который
планируется записать в файл;

• затем используйте объект Encoder для преобразования его в
байтовый массив, почти так же, как используется объект Decoder;

• вызвать метод Write() для отправки массива в файл;
• методом Close(), закрыть файловый поток.

Рассмотрим простой пример, демонстрирующий, как это делается.
Пример 10.6. Запись строки в файл произвольного доступа.

Листинг 10.10. Запись строки в файл через FileStream

 class Program
 {
 static void Main(string[] args)
 {
 byte[] byData;

 16 / 25

242

 char[] charData;
 try
 {
 FileStream aFile =
 new FileStream("Temp.dat",
 FileMode.Create);
 charData = "Переместить 123".ToCharArray();
 byData = new byte[2*charData.Length];
 Encoder e = Encoding.Unicode.GetEncoder();
 e.GetBytes(charData, 0, charData.Length,
 byData, 0, true);
 aFile.Seek(0, SeekOrigin.Begin);
 aFile.Write(byData, 0, byData.Length);
 }
 catch (IOException ex)
 {
 Console.WriteLine("Error IO!");
 Console.WriteLine(ex.ToString());
 Console.ReadKey();
 return;
 }
 }
 }

Это приложение открывает файл Temp.dat в каталоге ..\Debug и
пишет в него строку "Переместить 123".

Следующая строка кода создает символьный массив charData[] с
использованием статического метода ToCharArray() класса string. Так
как все в С# является объектами, и текст "Переместить 123" — это на самом
деле объект string, такие статические методы могут быть вызваны даже на
строке символов:
CharData = "Переместить 123".ToCharArray();

Следующие строки показывают, как преобразовать символьный массив
в байтовый массив byData[], необходимый объекту FileStream:
Encoder e = Endoding.UTF32.GetEncoder();
е.GetBytes(charData, 0, charData.Length, byData, 0, true);

Объект Encoder создается на базе кодировки Unicode. Всего у объекта
есть 5 кодировок:

ASCII – каждый символ порождает 1 элемент массива byData[].
Кириллица теряется.

Unicode – каждый символ порождает 2 элемента массива byData[].
Кириллица не теряется.

UTF32 – каждый символ порождает 4 элемента массива byData[].
Кириллица не теряется.

UTF7 – каждый символ кириллицы порождает 4 элемента массива
byData[], остальные – 1. Кириллица не теряется.

 17 / 25

243

UTF8 – каждый символ кириллицы порождает 2 элемента массива
byData[], остальные – 1. Кириллица не теряется.

Метод GetBytes() преобразует символьный массив в байтовый
массив. GetBytes() принимает символьный массив в качестве первого
параметра (charData в рассматриваемом примере) и индекс, указывающий
на начало массива, в качестве второго параметра 0 — для начала массива.
Третий параметр — количество символов, подлежащих преобразованию
(charData.Length — количество элементов в массиве charData).
Четвертый параметр — байтовый массив, в который нужно поместить
данные (byData), а пятый параметр — индекс, указывающий на начало
записи в байтовом массиве, 0 — для начала массива byData.

Шестой и последний параметр определяет, должен ли объект Encoder
сбрасывать свое состояние после завершения работы. Это отражает тот факт,
что объект Encoder запоминает место в памяти, где он остановился в
байтовом массиве. Это предназначено для последовательных вызовов
объекта Encoder, но бессмысленно при единственном его вызове.
Финальный вызов Encoder должен установить этот параметр в true, чтобы
очистить его память и освободить объект для сборки мусора.

После этого остается записать байтовый массив в FileStream,
используя метод Write():
aFile.Seek(0, SeekOrigin.Begin);
aFile.Write(byData, 0, byData.Length);

10.4.4. ЧТЕНИЕ СТРОКИ ИЗ ФАЙЛА ПРЯМОГО ДОСТУПА

Аналогично записи имеется возможность чтения строки из файла
прямого доступа. Она предоставляется классом BinaryReader. Для чтения
строки из файла необходимо:

• cоздать поток FileStream;
• вызвать метод Read() для чтения байтового массива byData из

файла;
• превратить массив byData в символьный массив char[], используя

метод GetChars() объекта Decoder;
• превратить массив char[] в строку;
• методом Close() закрыть файловый поток.

Пример 10.7. Чтение строки из файла произвольного доступа.

Листинг 10.11. Чтение строки из файла через FileStream

 static void Main(string[] args)
 {
 long n;

 18 / 25

244

 byte[] byData;
 char[] charData;
 try
 {
 FileStream aFile =
 new FileStream("Temp.dat",
 FileMode.Open);
 n = aFile.Length;
 byData = new byte[n];
 charData = new Char[n/2];
 aFile.Seek(0, SeekOrigin.Begin);
 aFile.Read(byData, 0, Convert.ToInt32(n));
 }
 catch(IOException e)
 {
 Console.WriteLine("Error IO!");
 Console.WriteLine(e.ToString ());
 Console.ReadKey();
 return;
 }
 Decoder d = Encoding.Unicode.GetDecoder() ;
 d.GetChars(byData,0,byData.Length, charData, 0);
 Console.WriteLine(charData);
 Console.ReadKey();
 }

Для преобразования других типов данных в байтовый массив

предназначен метод GetBytes() класса BitConverter, который содержит
переопределение этого метода для всех простых типов:
double x = 1.2;
byte[] byByte = BitConverter.GetBytes(x);

Для обратного преобразования служат многочисленные методы типа:
x = BitConverter.ToDouble(byByte,0);

Копирование и вставка:
Array.Copy(source, indsour, dest, inddest, len);

10.4.5. ЗАПИСЬ И ЧТЕНИЕ МАССИВА

Все статические данные можно записывать и читать двумя способами:
через поток класса FileStream и через потоки классов
BinaryWriter/BinaryReader. Рассмотрим пример записи чтения массива
arr[]:
 double[] arr = {1, 2, 3};

Вариант записи 1. Запись через FileStream. Подготовим массив
byData[] и запишем его:

 19 / 25

245

Листинг 10.12. Запись массива в файл через FileStream

 byte[] byData =
 new byte[arr.Length*sizeof(double)];
 byte[] temp;
 FileStream aFile = new FileStream("Temp.dat",
 FileMode.Create);
 int ofs = 0;
 for (int i = 0; i < arr.Length; i++) {
 temp = BitConverter.GetBytes(arr[i]);
 for (int j = 0; j < temp.Length; j++)
 byData[ofs+j] = temp[j];
 ofs += temp.Length;
 }
 aFile.Seek(0, SeekOrigin.Begin);
 aFile.Write(byData, 0, byData.Length);
 f.Close();

Вариант записи 2. Запись через BinaryWriter. Методом
Write(arr[i]) в цикле запишем все элементы массива.

Листинг 10.13. Запись массива в файл через BinaryWriter

 FileStream aFile = new FileStream("Temp1.dat",
 FileMode.Create);
 BinaryWriter f = new BinaryWriter(aFile);
 for (int i = 0; i < arr.Length; i++)
 f.Write(arr[i]);
 f.Close();
 aFile.Close();

И первый и второй варианты создают одинаковые файлы длиной 24
байта.

Эти файлы можно читать двумя способами.
Вариант чтения 1. Чтение через FileStream. Сначала подготовим

массив byData[], методом aFile.Read() прочитаем в него данные. Затем в
цикле методом BitConverter.ToDouble(byData, ofs) растащим по
элементам массива.

Листинг 10.14. Чтение массива из файла через FileStream

 byte[] byData;
 FileStream aFile =
 new FileStream("Temp.dat", FileMode.Open);
 aFile.Seek(0, SeekOrigin.Begin);

 aFile.Seek(0, SeekOrigin.Begin);
 long L = aFile.Length;

 20 / 25

246

 byData = new byte[L];

 aFile.Read(byData, 0, byData.Length);
 int n = byData.Length/sizeof(double);
 arr = new double[n];
 int ofs = 0;
 for (int i = 0; i < n; i++)
 {
 arr[i] = BitConverter.ToDouble(byData, ofs);
 ofs += sizeof(double);
 }
 aFile.Close();

Вариант чтения 2. Чтение через BinaryReader. Назначим длину
массива arr[] и в цикле методом ReadDouble() прочитаем все значения
элемента массива.

Листинг 10.15. Чтение массива из файла через BinaryReader

 FileStream aFile =
 new FileStream("Temp1.dat", FileMode.Open);
 BinaryReader f = new BinaryReader(aFile);
 long L = aFile.Length;
 arr = new double[L / sizeof(double)];
 for (int i = 0; i < arr.Length; i++)
 arr[i] = f.ReadDouble();
 f.Close();
 aFile.Close();

И первый, и второй вариант чтения дают одинаковые результаты.
Заметим, что создаются файлы прямого доступа. Если, например,

необходимо прочитать первую запись, в которой находится число 2, то
необходимо выполнить следующие действия при использовании потока
BinaryReader:
 aFile.Seek(1*sizeof(double),SeekOrigin.Begin);
 double x = f.ReadDouble();

или такие действия при использовании потока FileStream:
 byData = new byte[sizeof(double)];
 aFile.Seek(sizeof(double), SeekOrigin.Begin);
 aFile.Read(byData, 0, byData.Length);

10.4.6. ЗАПИСЬ И ЧТЕНИЕ СТРУКТУРЫ
Понятия типизированный файл в C# нет, но можно смоделировать это

понятие. Рассмотрим процесс записи и чтения полей класса Group,
имеющего два поля: ID – целого типа и Name – типа string. Так как мы
хотим сохранить механизм прямого доступа, то поле Name должно иметь
фиксированную длину. Поэтому введем класс короткой строки
ShortString, у объектов которого свойство s всегда имеет длину Len:

 21 / 25

247

Листинг 10.16. Класс короткой строки ShortSting

 class ShortSting
 {
 public int Len;
 string fs; // поле fs
 public string s { // свойство s
 get { return fs; }
 set { fs = value; fs = fs.PadRight(Len); }
 }
 // Конструктор
 public ShortSting(int val, string st)
 {
 Len = val;
 s = st;
 }
 }

Если длина строки короче Len, то метод PadRight() дополняет ее
справа пробелами.

Класс Group содержит в себе три поля (name, ID, size), конструктор
Group() и три метода Write(), Read() и Output():

 Листинг 10.17. Поля и методы класса Group

 class Group
 {
 public ShortSting Name;
 public int ID;
 int size;
 Char[] charData;
 byte[] byData;
 byte[] byByte;
 public Group(int ID, string st)
 // конструктор
 public void Write(FileStream aFile, int adr)
 // метод записи
 public void Read(FileStream aFile, int adr)
 // метод чтения
 public void Output(FileStream aFile)
 // метод вывода
 }

В конструкторе Group(int ID, string st) заполняется два поля, ID
и Name, и вычисляется размер size записываемых полей структуры:
size = sizeof(int) + 2*this.Name.Len;

При вычислении учитывается, что для строки необходимо в два раза
байт больше.

 22 / 25

248

Листинг 10.18. Конструктор класса Group

 public Group(int ID, string st)
 {
 this.ID = ID;
 this.Name = new ShortSting(20,st);
 size = sizeof(int) + 2*this.Name.Len;
 byData = new byte[size];
 charData = new char[Name.Len];
 }

Метод записи готовит для записи массив byData[] и записывает его.
Для каждого поля (ID и name) используется вспомогательный массив
byByte[], в который методом BitConverter.GetBytes() заносятся
данные простых типов и методом GetBytes() для строки. Затем массив
byByte[] копируется в основной массив byData[] методом
byByte.CopyTo(byData, ofs):

Листинг 10.19. Метод записи

 public void Write(FileStream aFile, int adr)
 {
 int ofs = 0;
 charData = Name.s.ToCharArray();
 int offset;
 if (adr != -1)
 offset = adr*size;
 else
 offset = (int)aFile.Length;

 byByte = BitConverter.GetBytes(ID);
 byByte.CopyTo(byData, ofs); ofs = ofs + 4;

 byByte = new byte[2 * charData.Length];
 Encoder e = Encoding.Unicode.GetEncoder();
 e.GetBytes(charData, 0, charData.Length,
 byByte, 0, true);
 byByte.CopyTo(byData, ofs);

 aFile.Seek(offset, SeekOrigin.Begin);
 aFile.Write(byData, 0, size);
 aFile.Flush();
 }

Метод чтения читает данные в массив byData[], методами типа
BitConverter.ToInt32() конвертирует часть массива в простые данные,
методом GetChars() конвектирует часть массива в массив charData[],
который далее используется для заполнения строки name:

 23 / 25

249

Листинг 10.20. Метод чтения

 public void Read(FileStream aFile, int adr)
 {
 aFile.Seek(adr * size, SeekOrigin.Begin);
 aFile.Read(byData, 0, size);
 int ofs = 0;
 ID = (Int32)BitConverter.ToInt32(byData, ofs);
 ofs = ofs + 4;

 Decoder d = Encoding.Unicode.GetDecoder();
 d.GetChars(byData,ofs,2* Name.Len, charData, 0);

 string s = "";
 for (int i = 0; i < charData.Length; i++)
 s += charData[i];
 Name.s = s;
 }

Метод вывода циклом for выводит все записи из файла на экран:

Листинг 10.21. Метод вывода

 public void Output(FileStream aFile)
 {
 int L = (int)aFile.Length;
 for (int i = 0; i < L / size; i++)
 {
 this.Read(aFile, i);
 Console.WriteLine(Name.s);
 }
 }
 }

В методе Main() создается поток FileStream, делаются три новые
записи в конец файла, замещается запись по адресу 2 и выводятся все записи.

 Листинг 10.22. Метод Main() программы

class Program
 {
 static void Main(string[] args)
 {
 FileStream aFile =
 new FileStream("Group.dat", FileMode.Create);

 Group group = new Group(1, "1 группа");
 group.Write(aFile, -1);
 group = new Group(2, "2 группа");

 24 / 25

250

 group.Write(aFile, -1);
 group = new Group(3, "3 группа");
 group.Write(aFile, -1);
 group = new Group(4, "4 группа");
 group.Write(aFile, 2);
 aFile.Close();

 FileStream aFile =
 new FileStream("Group.dat", FileMode.Open);
 group.Output(aFile);

 aFile.Close();
 Console.ReadKey();
 }
 }

10.4.7. ПРИМЕР БД «СТУДЕНТЫ»
В этом проекте мы будем хранить данные в файлах о студенческих

группах и о студентах, имеющих следующую структуру классов:

Листинг 10.23. Структура классов

 public class Group
 {
 public ShortString name; // 20*4
 public int id; // 4
 public byte isExists; // 2
 public UInt16 year; // 2
 public UInt16 day; // 2
 public UInt16 month; // 2
 }
 public class Stud
 {
 public byte isExists; // 2
 public ShortString fio; // 4*40
 public int idGroup; // 4
 public int idStud; // 4
 }

Для получения прямого доступа к файлам необходимо, чтобы все
записи были одинаковой длины. Поэтому поля name и fio этих классов
должны быть строками фиксированной длины. Введем класс короткой
строки:

Powered by TCPDF (www.tcpdf.org)

 25 / 25

251

Листинг 10.24. Класс короткой строки

 public class ShortString
 {
 public int len;
 string s;
 public string S
 {
 get { return s; }
 set
 {
 s = value;
 if (s.Length > len)
 s = s.Substring(0, len);
 else
 while (s.Length<len) s = s + ' ';
 }
 }
 }

Опишем две переменные group типа Group и stud типа Stud. Два этих
объекта связаны между собой соотношением «один ко многим». Это означает,
что каждой группе, имеющей уникальный номер group.id, поставлено в
соответствие несколько студентов, имеющих такой же номер группы
stud.idGroup. Каждая группа имеет имя group.name. Еще раз обращаем
внимание на то, что используется тип короткой строки, так как для
типизированного файла нельзя использовать длинные строки. В поле
group.year будем фиксировать год создания группы, и это позволит по
текущей дате определить курс и семестр для этой группы. Еще одно важное поле
group.isExists – признак удаления записи. Для неудаленной группы это поле
принимает значение 1, а для удаленной – значение 0. То есть физически мы не
будем удалять запись из файла, а просто пометим её как удаленную. Это
позволит, в случае необходимости, восстановить удаленную запись, конечно, до
тех пор, пока мы не запишем на это место в файле новую запись.

Для структуры, описывающей студента, поле stud.fio содержит
фамилию, имя и отчество студента, поле stud.idStud – уникальный номер
студента, stud.IdGroup – номер группы, а поле stud.isExists является
признаком удаления записи о студенте.

Проект должен позволять:
• создавать новую группу;

• редактировать данные о группе;

• удалять группу;

 1 / 20

252

• выводить список студентов любой группы;

• позволять вводить нового студента;

• редактировать данные о существующем студенте;

• удалять студента;

• искать студента по фамилии.
Проект состоит (рис. 10.3) из пяти форм: основной формы FormGrop, на

которой представлен список групп; формы FormEditGroup, предназначенной
для редактирования данных о группе, формы FormStud, на которую будет
выводиться список студентов, формы FormEditStud, предназначенной для
редактирования данных о студентах и формы FormFindStud. На последнюю
форму будет выводиться список студентов, найденных в результате поиска.

Рис. 10.3. Структура проекта «Студенческие группы»

На рис. 10.4 представлена структура классов.

Рис. 10.4. Структура классов

 2 / 20

253

Все классы определены в файле ClassData.cs.
1. Создадим новый проект, запишем его в новый каталог, переименуем

форму Form1 (Name = FormGroup) и выставим на неё следующие
компоненты: Panel1, dataGridView1, Button1, Button2, Button3,
Button4, Button5.

2. В инспекторе объектов назначим этим компонентам следующие
свойства:

Таблица 53. Назначение свойств компонентов на форме
FormGroup

Panel1
Dock Top Панель вверху формы

Caption Без названия

dataGridView1
Dock Fill Таблица занимает всю клиентскую

часть формы

Button1
Name ButtonNew Кнопка создания новой группы

Button2
Name ButtonEdit Кнопка вызова формы

редактирования

Button3
Name ButtonStud Кнопка вызова формы списка

студентов

Button4
Name ButtonDelete Кнопка удаления группы

Button5
Name ButtonFind Кнопка поиска студентов

После назначения всех свойств форма должна иметь такой вид (рис.

10.5).

Рис. 10.5. Форма FormGroup

3. Для формы ListForm создадим обработчик события FormGroup_Load:

 3 / 20

254

Листинг 10.25. Действия при запуске проекта

private void FormGroup_Load(object sender,
 EventArgs e)
{
 gridGroup.Columns.Add("adr", "adr");
 gridGroup.Columns["adr"].Width = 30;
 gridGroup.Columns.Add("ID", "ID");
 gridGroup.Columns["ID"].Width = 30;
 gridGroup.Columns.Add("Name", "Название");
 gridGroup.Columns["Name"].Width = 200;
 gridGroup.Columns.Add("Data", "Дата");
 gridGroup.Columns["Data"].Width = 100;
 gridGroup.AllowUserToAddRows = false;
 group = new Group();
 SetGrid();
}

В этой процедуре заполняется заголовками первая строка таблицы
gridGroup, файловые указатели fGroup и fStud связываются с
существующими файлами, и вызывается метод SetGrid, который читает
файл и заполняет таблицу.

5. Создадим метод SetGrid(), который читает файл, выбирает из него
неудаленные записи и заполняет ячейки таблицы:

Листинг 10.26. Чтение файла групп и заполнение таблицы

private void SetGrid()
{
 fr.BaseStream.Seek(0,SeekOrigin.Begin);
 int adr = 0;
 int L = (int)fr.BaseStream.Length / group.size;
 //gridGroup.RowCount = L;
 int L2 = 0; // gridGroup.RowCount;
 for (int i = 0; i <= L - 1; i++)
 {
 group.Read(aFile, adr++);// прочитать запись
 if(group.isExists!=0)//проверить неудаленность
 { // заполнить L2-1-ю строку
 gridGroup.RowCount = ++L2;
 gridGroup[0, L2 - 1].Value = i;
 gridGroup[1, L2 - 1].Value = group.id;

 4 / 20

255

 gridGroup[2, i].Value = group.name.S;
 DateTime d =
 new DateTime(group.year,
 group.month, group.day);
 gridGroup[3, L2 - 1].Value =
 d.ToShortDateString();
 }
 }
}

Обратите внимание на то, что:
• в ячейки нулевого столбца записываются физические адреса записей;

• число строк для компонента gridGroup назначается после заполне-
ния таблицы;

6. Создание новой группы. Двойным щелчком в инспекторе объектов для
кнопки ButtonNew создадим обработчик события onClick:

Листинг 10.27. Создание новой группы

private void buttonNew_Click(object sender,
 EventArgs e)
{
 group.SetData(0, "", DateTime.Now);
 if (Program.formEditGroup.ShowDialog() ==
 DialogResult.OK)
 {
 group.Write(aFile, -1); // записать
 SetGrid();// вывести информацию на экран
 }
}

В методе buttonNew_Click сначала обнуляются поля переменной
group с помощью метода SetData():
 public void SetData(int ID, string Name,
 DateTime date)
 {
 this.id = ID;
 this.name.S = Name;
 this.isExists = 1;
 this.year = (UInt16)date.Year;
 this.month = (UInt16)date.Month;
 this.day = (UInt16)date.Day;
 }

 5 / 20

256

а затем методом ShowModal() вызывается форма FormEditGroup, на
которой редактируются поля переменной group. В случае удачного
завершения работы формы FormEditGroup, открываем файл fGroup
процедурой ResetF(0), запишем отредактированную переменную в конец
файла и вызовем процедуру SetGrid для обновления строк в визуальной
таблице.

6. Редактирование группы. Двойным щелчком в инспекторе объектов
для кнопки ButtonEdit создадим обработчик события onClick:

Листинг 10.28. Редактирование группы

private void buttonEdit_Click(object sender,
 EventArgs e)
{
 int i = gridGroup.CurrentCell.RowIndex;
 int adr = (int)gridGroup[0, i].Value;
 group.Read(aFile, adr);
 if (Program.formEditGroup.ShowDialog() ==
 DialogResult.OK)
 {
 group.Write(aFile, adr);
 SetGrid();
 }
}

В этой процедуре физический адрес нужной записи adr берется из
нулевого столбца текущей строки таблицы gridGroup, процедурой Read()
открывается файл для чтения, устанавливается файловый указатель по адресу
adr и читается эта запись в переменную group. Затем методом ShowModal
вызывается форма FormEditGroup. В случае удачного завершения работы
формы FormEditGroup, отредактированная переменная записывается на то
же самое место в файле по адресу adr.

7. Удаление группы. Двойным щелчком в инспекторе объектов для
кнопки ButtonDelete создадим обработчик события onChange, который из
нулевого столбца таблицы берет адрес нужной записи adr, открывает файл,
ставит указатель на нужную запись, читает её, изменяет поле признака
удаленности Group.isExists на 0, снова ставит указатель на адрес adr,
записывает переменную Group, закрывает файл и обновляет информацию на
экране методом SetGrid:

Листинг 10.29. Удаление группы

 private void buttonDel_Click(object sender,

 6 / 20

257

 EventArgs e)
 {
 int i = gridGroup.CurrentCell.RowIndex;
 int adr = (int)gridGroup[0, i].Value;
 group.Read(aFile, adr);
 group.isExists = 0;
 group.Write(aFile, adr);
 SetGrid();
 }

8. Форма со списком студентов. Создадим новую форму, переименуем
ее в FormStud и выставим на неё следующие компоненты: Panel1,
dataGridView1, Button1, Button2, Button3.

9. В инспекторе объектов назначим этим компонентам следующие
свойства:

Таблица 54. Назначение свойств компонентов на форме
FormStud

Panel1
Dock Top Панель вверху формы

Text Без названия

dataGridView1
Dock Fill Таблица занимает всю клиентскую часть

формы

Button1
Name ButtonNew Кнопка создания нового студента

Button2
Name ButtonEdit Кнопка вызова формы редактирования

Button3
Name ButtonDelete Кнопка удаления студента

После назначения всех свойств форма должна иметь такой вид (рис. 10.6).

Рис. 10.6. Форма FormStud
10. Вызов списка студентов группы. Вернемся к форме FormGroup и

для кнопки ButtonStud двойным щелчком в инспекторе объектов создадим

 7 / 20

258

обработчик события onClick. В этой процедуре мы должны прочитать из
файла информацию о текущей группе в переменную Group и делаем это так
же, как при редактировании группы, а затем активизировать методом
ShowModal форму FormStud:

Листинг 10.30. Вызов формы со списком группы

 private void buttonStud_Click(object sender,
 EventArgs e)
 {
 int i = gridGroup.CurrentCell.RowIndex;
 int adr = (int)gridGroup[0, i].Value;
 group.Read(aFile, adr);
 Program.formStud.ShowDialog();
 }

 11. При активизации формы FormStud вызывается процедура
FormActivate, которая заполняет первую строку таблицы gridStud и
вызывает процедуру SetGrid для чтения файла студентов:

Листинг 10.31. Активизации формы FormStud

private void FormStud_Load(object sender,
 EventArgs e)
{
 gridStud.Columns.Add("adr", "adr");
 gridStud.Columns["adr"].Width = 30;

 gridStud.Columns.Add("IdGroup", "IdGroup");
 gridStud.Columns["IdGroup"].Width = 30;

 gridStud.Columns.Add("IdStud", "IdStud");
 gridStud.Columns["IdStud"].Width = 30;
 gridStud.Columns.Add("FIO", "FIO");
 gridStud.Columns["FIO"].Width = 200;

 gridStud.AllowUserToAddRows = false;
 //нет новой строки

 stud = new Stud();
 SetGrid();
}

 8 / 20

259

Процедура SetGrid, представленная в листинге 10.32, открывает файл
fStud для чтения, читает файл и выбирает из него неудаленных студентов,
принадлежащих выбранной группе. Принадлежность группе проверяется
совпадением полей Stud.Id и Group.Id. Именно это условие позволяет
реализовать связь «один ко многим» между записями файла групп и
записями файла студентов.

Листинг 10.32. Чтение файла студентов и заполнение таблицы

private void SetGrid()
{
 aFile = new FileStream("Stud.dat",
 FileMode.Open);
 aFile.Seek(0, SeekOrigin.Begin);
 int adr = 0;
 int L = (int)aFile.Length / studR.size;
 int L2 = 0;
 gridStud.RowCount = 0;
 for (int i = 0; i <= L - 1; i++)
 {
 studR.Read(aFile, adr++,false);
 if ((studR.isExists != 0) &&
 (studR.idGroup == FormGroup.group.id))
 {
 gridStud.RowCount = ++L2;
 gridStud[0, L2 - 1].Value = i;
 gridStud[1, L2 - 1].Value =
 studR.idGroup;
 gridStud[2, L2 - 1].Value =
 studR.idStud;
 gridStud[3,L2-1].Value = studR.fio.S;
 }
 }
 aFile.Close();
 aFile.Dispose();
}

12. Создание формы FormFindStud, предназначенной для вывода
списка найденных по шаблону FindStr студентов, аналогично созданию
формы FormStud. Но при чтении файла необходимо проверять не только
неудаленность записи, но и условие stud.fio.S.IndexOf(s)>=0.

 9 / 20

260

Листинг 10.33. Поиск студентов по шаблону студентов и заполнение таблицы

private void SetGrid()
{
 aFile.Seek(0, SeekOrigin.Begin);
 int adr = 0;
 int L = (int)aFile.Length / stud.size;
 int L2 = 0;
 gridStud.RowCount = 0;
 for (int i = 0; i <= L - 1; i++)
 {
 stud.Read(aFile, adr++);
 string s = FormGroup.findStr;
 if ((stud.isExists != 0) &&
 ((stud.fio.S.IndexOf(s)>=0) ||
 (s.Length == 0)))
 {
 gridStud.RowCount = ++L2;
 gridStud[0, L2 - 1].Value = i;
 gridStud[1, L2 - 1].Value =
 stud.idGroup;
 gridStud[2,L2-1].Value = stud.idStud;
 gridStud[3,L2-1].Value = stud.fio.S;
 }
 }
}

13. Форма редактирования группы. Создадим новую форму, назовем ее
FormEditGroup и выставим на нее компоненты LabelEdit1, LabelEdit2,
DateTimePicker1, Label1, BitBtn1, BitBtn2. Для этих компонентов в
инспекторе объектов изменим свойства:

Таблица 55. Свойства компонентов на форме
FormEditGroup

Edit1
Name EditName

Edit2
Name EditId

Label1
Text Дата

Button1.Name = BtnOk
DialogResult Ok Назначается модальное значение Ok

Button2.Name = BtnCancel
DialogResult Cancel Назначается модальное значение Cancel

 10 / 20

261

В результате форма должна выглядеть так, как показано на рис. 10.7.

Рис. 10.7. Редактирование группы

14. Для формы FormEditGroup необходимо создать два обработчика
событий: заполнение активных элементов при активизации формы и заполнение
полей переменной Group при закрытии формы нажатием кнопки Ok:

Листинг 10.34. Заполнение компонентов при активизации и закрытии формы

private void button2_Click(object sender,
 EventArgs e)
{
 FormGroup.group.id =
 Convert.ToInt32(textBoxID.Text);
 FormGroup.group.name.S = textBoxName.Text;
 FormGroup.group.year =
 (UInt16)dateTimePicker1.Value.Year;
 FormGroup.group.month =
 (UInt16)dateTimePicker1.Value.Month;
 FormGroup.group.day =
 (UInt16)dateTimePicker1.Value.Day;
}
private void FormEditGroup_Activated(object sender,
 EventArgs e)
{
 textBoxID.Text = Convert.ToString(
 FormGroup.group.id);
 textBoxName.Text =
 FormGroup.group.name.S.Trim();
 d = new DateTime(FormGroup.group.year,
 FormGroup.group.month, FormGroup.group.day);
 dateTimePicker1.Value = d;
}

 11 / 20

262

Форма FormEditStud создается аналогично, и ее вид представлен на
рис. 10.8.

Рис. 10.8. Форма для редактирования данных о студенте

 12 / 20

263

ЛИТЕРАТУРА

1. Archor, Tom. Inside C# / T. Archor. Redmond, WA: Microsoft Press,
2001.

2. Brown Erik. Windows Forms. Programming with C#. Manning. /
E. Brown 2002. 715 p.

3. C#. Спецификация языка. Версия 4.0. Корпорация Майкрософт
(Microsoft Corp.)

4. Conrad, James, et al. Introducing .NET. Birmingham, UK: Wrox Press,
2001.

5. Dennis, Alan. .NET Multithreading, Greenwich, CT: Manning Publications
Co., 2002

6. Feldman, Arlen. ADO.NET Programming, Greenwich, CT: Manning
Publications Co., 2002

7. Grimes, Fergal. Microsoft .NET for Programmers, Greenwich, CT:
Manning Publications Co., 2001.

8. Gunnerson Eric, A Programmer's Introduction to C#. Apress © 2000,
358 p.

9. Gunnerson, Eric. A Programmer’s Introduction to C#, Second Edition,
Berkeley, CA: Apress, 2001.

10. McMillan M. Data structures and algorithms using C# / M. McMillan
Cambridge University Press. 2007. 355 p.

11. Richter Jeffrey. Applied Microsoft .NET Framework Programming /
Jeffrey Richter. Microsoft Press, 2002. 501 p.

12. Robinson S. Professional C# / S. Robinson, et al. Birmingham, UK: Wrox
Press, 2001.

13. Sedgewick, Robert. Algorithms in C, Reading, MA: Addison-Wesley,
1998.

14. Stroustrup, Bjarne. The C++ Programming Language, Third Edition,
Reading, Mass: Addison-Wesley, 1977.

15. Troelsen A. C# and the .NET Platform / A. Troelsen. Berkeley, CA:
Apress, 2001.

16. Waldschmidt, Pr. Complete .NET XML / P. Waldschmidt Greenwhich,
CT: Manning Publications Co., 2002.

17. Weiss, Mark Allen. Data Structures and Algorithm Analysis in Java,
Reading, MA: Addison-Wesley, 1999.

18. Ватсон Б. C# 4.0 на примерах / Б. Ватсон – СПб.: БХВ-Петербург.
2011. – 608 стр.: ил.

19. Культин Н.Б. C# в задачах и примерах / Н.Б. Культин – СПб.: Питер,
2007. – 240 с.: ил.

 13 / 20

264

20. Либерти Д. Программирование на C# / Д. Либерти «Символ Плюс». –
684 с.

21. Нортроп Т., Уилдермьюс Шон, Райан Билл. Основы разработки
приложений на платформе Microsoft .NET Framework. Учебный курс
Microsoft / Т. Нортроп, Ш. Уилдермьюс, Б. Райан Пер. с англ. – М.:
«Русская Редакция», СПб.: «Питер», 2007. – 864 стр.: ил.

22. Уотсон К. C#. / К. Уотсон, М. Беллиназо, О. Корне, Д. Эспиноза,
З. Гринфосс, К. Нейджел, Д. Хаммер Педерсен, Д. Рейд,
М. Рейнольде, М. Скиннер, Э. Уайт. Из-во «Лори», 2005, – 861 с.

23. Уотсон К. Microsoft, Visual С# 2008. Базовый курс / К. Уотсон,
К. Нейгел, Я. Хаммер Педерсен, Д.Д. Рид, М. Скиннер, Э. Уайт.
"Диалектика" Москва, Санкт-Петербург, Киев, 2009. – 1211 с.

24. Фаронов В. Программирование на языке C#. – СПб.: Питер, 2007. –
240 с.: ил.

25. Фленов М. Библия C#. – СПб.: Питер, 2007. – 240 с.: ил.

 14 / 20

265

Оглавление
Введение..3
Глава 1. Основы программирования в C# ..4

1.1. Среда визуальной разработки Visual Studio4
1.2. Первый проект ..10
1.3. Базовый синтаксис С#. Структура проекта13

Глава 2. Типы и переменные ...18
2.1. Переменные ...18

2.1.1. Объявление переменных...18
2.1.2. Именование переменных ..19
2.1.3. Пространства имен ..21

2.2. Система типов языка C#. Встроенные типы.................................22
2.2.1. Числовые типы данных...23
2.2.2. Булевский и символьные типы данных25
2.2.3. Строковый тип данных ...26
2.2.4. Объектный тип данных ...28

2.3. Типы CTS...28
2.4. Преобразование типов..29

2.4.1. Неявное преобразование типа ..29
2.4.2. Явное преобразование типа ..30
2.4.3. Операции преобразования для данных строкового типа32

2.5. Консольный ввод и вывод..38
2.5.1. Консольный вывод. Форматирование39
2.5.2. Консольный ввод. Преобразование значений.......................41
2.5.3. Пример работы с консолью ..41

Глава 3. Выражения и операции ...45
3.1. Математические операции ...47
3.2. Операции отношения..50

3.2.1. Операции отношения для числовых
и символьных данных ...50

3.2.2. Операции отношения для строковых
и булевских данных...51

 15 / 20

266

3.3. Логические операции ...51
3.4. Битовые операции...53
3.5. Тернарная операция..55
3.6. Операции присваивания ...56
3.7. Вычисление выражений ...57
3.8. Класс Math...58

Глава 4. Операторы языка ...61
4.1. Понятие оператора..61

4.1.1. Блок...62
4.1.2. Пустой оператор ..63
4.1.3. Помеченные операторы ..63

4.2. Операторы объявления...64
4.2.1. Объявления переменных...64
4.2.2. Объявления локальных констант ...66

4.3. Операторы выражения ...66
4.4. Операторы выбора ..66

4.4.1. Оператор if ...67
4.4.2. Оператор switch ...70

4.5. Операторы цикла ..75
4.5.1. Оператор do..75
4.5.2. Оператор while...78
4.5.3. Оператор for ...79

4.6. Операторы перехода ...82
4.6.1. Оператор break...82
4.6.2. Оператор continue ..83
4.6.3. Оператор goto...84
4.6.4. Оператор return ..85

Глава 5. Массивы..86
5.1. Одномерные массивы ...86

5.1.1. Заполнение массивов случайными числами87
5.1.2. Оператор foreach..89
5.1.3. Ссылочные типы данных ..90

 16 / 20

267

5.2. Многомерный массив ...91
5.3. Массивы массивов ..93
5.4. Свойства и методы для работы с массивами................................93
5.5. Операции со строками..96
5.6. Простейшие алгоритмы поиска ...98

5.6.1. Поиск в неупорядоченном массиве. Поиск с барьером98
5.6.2. Поиск в упорядоченном массиве. Бинарный поиск99

5.7. Простейшие алгоритмы сортировки ...100
5.7.1. Сортировка простым обменом ...100
5.7.2. Шейкер-сортировка ...100

Глава 6. Перечисления и структуры ...102
6.1. Перечисления ..102
6.2. Структуры..106
6.3. Структура DateTime..109

Глава 7. Классы и объекты ..111
7.1. Члены класса ...112

7.1.1. Уровни доступности..114
7.1.2. Поля ..115
7.1.3. Свойства ...115
7.1.4. Методы ...118
7.1.5. Конструкторы ..134

7.2. Наследование ..136
7.3. Пример «Умный дом» ..137
7.4. Полиморфизм ..144

7.4.1. Ключевые слова abstract, virtual и override..........................144
7.4.2. Понятие абстрактных классов ..146

7.5. Члены-функции класса ...147
7.5.1. Индексаторы ..147
7.5.2. Переопределение операций ..150
7.5.3. Деструкторы...154
7.5.4. Параметры типа ...154

Глава 8. Приложения для Windows ...156

 17 / 20

268

8.1. Пример 2*2 ..156
8.2. Обзор компонентов...160

8.2.1. Общие свойства ...160
8.2.2. События ..161

8.3. Элемент управления Button ...163
8.4. Элемент управления Label ...164
8.5. Элемент управления TextBox ..164
8.6. Элемент управления RadioButton..166
8.7. Элемент управления CheckBox ...167
8.8. Элемент управления GroupBox ...168
8.9. Элемент управления ComboBox..168
8.10. Элементы управления ListBox и CheckedListBox....................171
8.11. Элемент управления ListView ...174
8.12. Элементы управления временем. Timer....................................177
8.13. Элемент управления DataGridView...178
8.14. Диалоги ..180

8.14.1. Класс OpenFileDialog ..182
8.14.2. Класс SaveFileDialog ...183
8.14.3. Класс FontDialog..184
8.14.4. Класс ColorDialog ..184

8.15. Формы ..184
8.16. Пример 2<=>10 ...186
8.17. Пример: умножение матрицы на вектор...................................189
8.18. Хеширование...192

Глава 9. Множества, интерфейсы, коллекции, делегаты, события200
9.1. Интерфейсы ...200
9.2. Коллекции..203
9.3. Делегаты ..209
9.4. События ...214
9.5. Множества ...219

9.5.1. Классы HashSet и SortedSet ..219

 18 / 20

269

9.5.2. Множество на битах ..221
Глава 10. Работа с файлами ...225

10.1. Классы ввода и вывода ...226
10.1.1. Класс Stream...227
10.1.2. Класс FileStream...228

10.2. Символьные потоки. Файлы последовательного доступа.......231
10.2.1. Классы TextReader и TextWriter ...231
10.2.2. Класс StreamWriter. Запись в текстовый файл233

10.3. Класс StreamReader. Чтение из текстового файла....................235
10.3.1. Пример: частотный словарь..236

10.4. Байтовые потоки. Файлы прямого доступа239
10.4.1. Класс BinaryWriter. Запись в двоичный файл239
10.4.2. Класс BinaryReader. Чтение из двоичного файла240
10.4.3. Запись строки в файл прямого доступа241
10.4.4. Чтение строки из файла прямого доступа243
10.4.5. Запись и чтение массива ...244
10.4.6. Запись и чтение структуры ...246
10.4.7. Пример БД «Студенты» ..250

Литература ..263

 19 / 20

ЛР № 065466 от 21.10.97
Гигиенический сертификат 78.01.10.953.П.1028

от 14.04.2016 г., выдан ЦГСЭН в СПб

Издательство «ЛАНЬ»
lan@lanbook.ru; www.lanbook.com;

196105, Санкт�Петербург, пр. Юрия Гагарина, 1, лит. А.
Тел.: (812) 412�92�72, 336�25�09.

Бесплатный звонок по России: 8�800�700�40�71

Зав. редакцией
литературы по информационным технологиям

и системам связи О. Е. Гайнутдинова

Николай Аркадиевич ТЮКАЧЕВ,
Виктор Григорьевич ХЛЕБОСТРОЕВ

C#. ОСНОВЫ ПРОГРАММИРОВАНИЯ

Учебное пособие

Подписано в печать 23.10.20.
Бумага офсетная. Гарнитура Школьная. Формат 60×90 1/16.

Печать офсетная. Усл. п. л. 17,00. Тираж 30 экз.

Заказ № 1306�20.

Отпечатано в полном соответствии
с качеством предоставленного оригинал�макета

в АО «Т8 Издательские Технологии».
109316, г. Москва, Волгоградский пр., д. 42, к. 5.

Powered by TCPDF (www.tcpdf.org)

 20 / 20

