

Learning .NET High-performance
Programming

Learn everything you need to know about
performance-oriented programming for
the .NET Framework

Antonio Esposito

BIRMINGHAM - MUMBAI

Learning .NET High-performance Programming

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2015

Production reference: 1260615

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-846-3

www.packtpub.com

www.packtpub.com

Credits

Author
Antonio Esposito

Reviewers
Altaf Hussain

Thomas Krause

Chad D. Morgan

Newton Sheikh

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Larissa Pinto

Content Development Editor
Amey Varangaonkar

Technical Editor
Rohith Rajan

Copy Editors
Charlotte Carneiro

Ameesha Green

Puja Lalvani

Vikrant Phadke

Project Coordinator
Suzanne Coutinho

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

About the Author

Antonio Esposito has been an experienced software developer, architect, and
trainer since 2002. He started programming in BASIC on MS-DOS 3 at the age of 8
and still loves programming on Microsoft products. An expert in .NET, he has a lot
of knowledge of SOA techniques and architectures as well as WCF and Microsoft
Azure. He also has extensive knowledge of application production frameworks,
such as WPF, MVC, and so on.

Antonio has worked with prominent companies as a freelance consultant, speaker,
and trainer. These companies include UniCredit Banca, Microsoft Italia, IBM Italia,
Ferrari, Tenova Pomini, Cornér Banca, and many others.

As a speaker, he has had the opportunity to contribute to events such as the MCT
Summit Europe, WPC Italia, Community Days Milano, Codemotion, and many more
from his own user group, DotNet Lombardia.

I thank my lovely baby and wife for always being in my heart.

About the Reviewers

Altaf Hussain is a student pursuing a master's course from Saint Francis Xavier
University in Nova Scotia, Canada. Prior to this, he received his undergraduate
degree in computer science and engineering from Shahjalal University of Science
and Technology in Sylhet, Bangladesh. He is researching in the field of semantic web
and cloud services. He is also into developing a framework for context-aware service
discovery and selection, providing decision-making support for healthcare scenarios,
using parallel computing and semantic technologies.

Altaf is also working as a senior software engineer for Logistics Software Corp.,
Canada, where he develops distributed web and desktop applications in C#, ASP.
NET, and contemporary technologies. Prior to beginning his master's course, he also
worked as a full-stack distributed application developer, implementing e-forms,
citizen services, and public sector workflow integration. Altaf has also published
several research papers in the fields of grid computing, cloud computing, and the
Semantic Web.

Thomas Krause is an independent software developer, author, and consultant.
He specializes in high-performance solutions, algorithms, and artificial intelligence.
Most of the projects he has worked on have leveraged the productivity of the
Microsoft .NET framework while still aiming to be highly performant and
efficient. One example of this is his work on a message-based backend processing
system based on BizTalk for a Fortune 500 company. This system manages the
administration of over 200,000 employees in that company worldwide.

Thomas has also served as a consultant and developer on an automated infringement
system that handles tens of millions of offenses in traffic every year worldwide
and processes terabytes of data. As an author, he wrote a book about large-scale
duplicate detection algorithms using indexing technologies, similar to those used
by Google and other major search engines.

Thomas lives and works in Cologne, Germany, where he enjoys Metthappen and
Kölsch (ground pork on bread and the typical Cologne beer). Cologne is also home
to a company called Akzente.IT, which he founded for his consulting work. He is
always looking for new and interesting projects, so don't hesitate to contact him.
You can find more information about him at http://akzente.it/.

First and foremost, I want to thank my parents, my girlfriend, and
the rest of my family, who have always supported me.

Special thanks also go to Sophie for being my funny neighbor; my
colleague Oliver for bringing everything in apple-pie order as well
as delivering an awesome product to our friends overseas; and my
colleague Manuel for playing with me for FC Klostein (local soccer
team). Seriously, you guys are great and it's always fun working
with you!

Chad D. Morgan is currently the director of technology at MapGraphiX, a
software company that focuses on mapping solutions for the transportation industry.
Additionally, he owns a consulting company, Pelican Creek Consulting, and has
14 years of professional experience, developing software across various industries.
He has had a strong focus on web technologies. His credentials include Microsoft
Certified Professional Developer, Microsoft Certified Application Developer, and
Microsoft Certified Technology Specialist, among others.

http://akzente.it/

Newton Sheikh is a consultant on cloud computing and distributed computing
with focus on Microsoft Azure. He is also a .NET developer and game programmer.
He has a lot of interest in the field of mathematics and complex algorithms.

Newton enjoys most of his day coding, working on business solutions, and designing
architecture for the cloud. He also loves working on compiler design.

When he is not in front of a computer, he loves to spend time with his friends and
family and hang out at different places with a camera in his hands.

He has reviewed XNA 4 3D Game Development by Example Beginner's Guide,
Packt Publishing.

You can get in touch with him at https://in.linkedin.com/pub/newton-
sheikh/33/391/910.

I would like to thank my colleagues with whom I work for helping
me with the review process.

https://in.linkedin.com/pub/newton-sheikh/33/391/910
https://in.linkedin.com/pub/newton-sheikh/33/391/910

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @
PacktEnterprise on Twitter or the Packt Enterprise Facebook page.

http://www.PacktPub.com
www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.packtpub.com/

[i]

Table of Contents
Preface	 vii
Chapter 1: Performance Thoughts	 1

Understanding performance	 2
Performance as a requirement	 3
Performance engineering	 4
Performance aspects	 5

Latency	 6
Throughput	 7
Resource usage	 7
Availability/reliability	 8
Scalability	 8
Efficiency	 9

Class of applications	 9
Case study: performance aspects of a desktop application	 10
Case study: performance aspects of a mobile application	 11
Case study: performance aspects of a server application	 12
Performance concerns as time changes	 14

Technical overview	 15
Multithreaded programming	 15
Parallel programming	 17
Distributed computing	 19
Grid computing	 20

Summary	 20
Chapter 2: Architecting High-performance .NET Code	 21

Software architecture	 22
Performance concerns about architecture	 24

Table of Contents

[ii]

Object-oriented design principles	 25
The single responsibility principle	 26
The open-closed principle	 27
The Liskov substitution principle	 27
The interface segregation principle	 27
The dependency inversion principle	 27

Common designs and architectures	 28
Layered architecture	 29

Performance concerns	 30
Model-View-Controller and ASP.NET MVC	 33

Performance concerns	 34
Model-View-ViewModel and XAML	 41

Performance concerns	 43
The 3-tier architecture	 45

Performance concerns	 47
Service-Oriented Architecture (SOA)	 50

Standardized service contract	 52
Service loose coupling	 52
Service abstraction	 53
Service reusability	 53
Service autonomy	 53
Service statelessness	 54
Service discoverability	 54
Service composability	 55
Performance concerns	 55

Architecture comparison	 57
Common platform architectures	 58

Architecting desktop applications	 58
Architecting mobile applications	 60
Architecting web applications	 62
Architecting cloud web applications	 63

Performance considerations	 65
Caching, when and where	 65
PLINQ everywhere	 66
Inversion of Control (IoC)	 67
Lazy loading	 68
Reusability of code	 69
Agnostic versus idiom-powered implementation	 69
Short coding	 70
Remote computation	 71
Cloud versus on-premise applications	 71

Summary	 72

Table of Contents

[iii]

Chapter 3: CLR Internals	 73
Introduction to CLR	 73
Memory management	 76
Garbage collection	 80

Large object heap	 83
Collection tuning	 83

Working with AppDomains	 86
IDisposable interface	 91

Threading	 91
Multithreading synchronization	 96

Locks	 98
Signaling locks	 99
Drawbacks of locks	 105

Exception handling	 105
Summary	 109

Chapter 4: Asynchronous Programming	 111
Understanding asynchronous programming	 111
Asynchronous programming theory	 112
Asynchronous Programming Model (APM)	 114
Event-based Asynchronous Pattern (EAP)	 119
Task-based Asynchronous Pattern (TAP)	 121

Task creation	 121
Task synchronization	 128
Task exception handling	 130
Task cancellation	 131
Task continuation	 134
Task factories	 135

Task UI synchronization	 137
Async/await	 143
Summary	 145

Chapter 5: Programming for Parallelism	 147
Parallel programming	 147

Task parallelism	 149
Data parallelism	 150

Task parallelism with TPL	 151
Data parallelism with TPL	 155

ThreadPool tuning	 157
Parallel execution abortion	 158
Partitions	 160
Sliding parallel programming	 161

Table of Contents

[iv]

Integrated querying with LINQ	 162
Data parallelism with PLINQ	 167

Partitioning optimization	 170
Summary	 173

Chapter 6: Programming for Math and Engineering	 175
Introduction	 175
Evaluating the performance of data types	 176

BigInteger	 178
Half-precision data type	 179

Real-time applications	 180
Case study: Fourier transform	 185

Rolling average	 185
Low-pass filtering for Audio	 188

Sliding processing	 192
Summary	 194

Chapter 7: Database Querying	 195
Introduction	 196
Overview of ADO.NET	 196
An overview of Entity Framework	 201

Advanced querying	 204
Entity Framework querying optimization	 206

Querying execution lifecycle	 206
Querying approaches	 208

Performance thoughts	 211
Entity Framework persistence optimization	 215
Performance comparison	 218

Stream-like querying	 219
ADO.NET bulk copy	 221
Summary	 222

Chapter 8: Programming for Big Data	 223
What is big data?	 224
Architecting big data solutions	 225

Case study – automotive big data system	 227
Microsoft Azure for big data	 230

Service Bus Topic	 231
AppFabric Cache	 235
Redis Cache	 236

Simplified grid computing	 239
Lookup programming	 246
Summary	 250

Table of Contents

[v]

Chapter 9: Analyzing Code Performance	 251
Software profiling	 252
Profiling with Visual Studio	 253

Instrumentation profiling	 260
The analysis report comparison	 265

Testing with Visual Studio 2013	 266
The Integration test	 268
Performance-related tests	 268
TDD	 269
Test and Continuous Integration	 269

Static program analysis	 270
Code analysis	 270
Code metrics	 272

Summary	 274
Index	 275

[vii]

Preface
For most of us, "performance" is a word with a single meaning. When it comes to
software production, this meaning usually corresponds to something fast. A fast
program is a good program. Although this is not is a wrong assertion, the meaning
of the word "performance" is wider and deeper.

Writing a responsive UI actually means writing a performing UI. Deploying a worker
role across Microsoft Azure, which is able to scale up to 100 cores, and handling
millions of messages per hour actually means writing a performing workflow.
The two examples show two different kinds of performance, and more exist.

Other than multiple meanings, the word "performance" also refers to multiple
implementation levels. For example, a developer has to keep the security aspect of
his application in mind right from the outset, because using a simple X509 certificate
does not make an insecure web application secure. The same is true when it comes
to performance.

If we want to create a high-performance application, we have to design a
high-performance architecture right from the start, implement performance-oriented
strategies, and bring up a good performance-engineered project that is able to assist
the wider development project to create valid performance requisites and tests.

As developers, we cannot avoid mastering all the techniques required to help us face
day-to-day challenges. Asynchronous programming and parallel programming are
two examples. Mastering such techniques helps us create good software in terms of
responsiveness and scalability. A clear understanding of the .NET Framework has
to become part of the knowledge arsenal for any .NET developer; understanding
memory management, process isolation, and thread life cycle are examples.

Lots of real-world examples will be available in this book. They will be about the
most widely used programming techniques and scenarios, together with special-case
programming recipes for big data, engineering, and database integration.

All of these topics are covered here with enthusiasm and expertise.

Preface

[viii]

What this book covers
Chapter 1, Performance Thoughts, gives you an overview of the term "performance"
and related concepts.

Chapter 2, Architecting High-performance .NET Code, describes the various architectural
concerns of software related to performance, with practical real-world examples.

Chapter 3, CLR Internals, gives you in-depth knowledge of the internals of CLR,
from memory management to thread life cycle management.

Chapter 4, Asynchronous Programming, equips you with the ability to program
methods that will never keep the user waiting.

Chapter 5, Programming for Parallelism, gives you many details of parallelism, and
covers scenarios such as this one: a lot of data items are available for our business
logic. Mastering parallelism techniques brings any application throughput to
extremely high levels, with little effort by the developer.

Chapter 6, Programming for Math and Engineering, shows you real-world examples for
specific cases related to scientific elaboration.

Chapter 7, Database Querying, demonstrates working with databases. Any business-
related application or enterprise application deals with a lot of data. This chapter also
provides good knowledge of all persistence-layer access frameworks and techniques
that make such accesses fast and reliable for all kinds of applications.

Chapter 8, Programming for Big Data, covers working with huge and fast-growing
datasets that have specific issues and difficulties, with a simplified presentation and
a lot of examples.

Chapter 9, Analyzing Code Performance, proves that good programming and design are
not enough if we don't always monitor our software performance results in design
time and runtime.

What you need for this book
The only requirement to use all that this book offers is Microsoft Visual Studio 2013,
with related updates and some experience in the C# programming language.

Preface

[ix]

Who this book is for
Any developer will benefit from reading this book because of the many practical
examples and the related advanced explanations. Software architects and project
managers will also benefit from reading this book in the fields of performance
engineering, architecture, and designs.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

var previousTiming = GCSettings.LatencyMode;
try
{
 //switch to LowLatency mode
 GCSettings.LatencyMode = GCLatencyMode.LowLatency;

 //your code
 //never use large short-living objects here
}
finally
{
 GCSettings.LatencyMode = previousTiming;
}

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking on the Next button moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/8463EN_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/8463EN_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/8463EN_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[xi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Performance Thoughts
In software engineering, the most misused word is performance. Although anyone
may like a performing application or website, the word itself hides a lot of meanings,
each with specific pros and cons.

A professional programmer must have a deep understanding of the various facets of
the term performance, as the term assumes different meanings in different scenarios.

A well-performing application should comply with different kinds of performance
requirements, which usually change according to the application's architecture and
design. It should also focus on the market expectations and (sometimes) what the
current development trend is.

As C# programmers, we must add to the generic knowledge about
performance-oriented programming. All these skills let us achieve the best results
from coding. Choosing the best architecture solution or design pattern will give a
boost to long- or short-term performance results (explained later in this chapter).
However, implementing these architectures with the wrong design, will nullify
expectations of speed or quality we planned. This chapter will guide you on the
meanings and facets of the term performance, as implied when programming for
Microsoft .NET Framework:

•	 Understanding performance
•	 Performance as a requirement
•	 Performance engineering
•	 Performance aspects
•	 Class of applications
•	 Technical overview

Performance Thoughts

[2]

Understanding performance
When you talk about performance with respect to the results of an application
 being developed, it is a word that means good results for the given expectations.

Without diving into the details of the meaning, it is clear that the keyword here
is not the search for good results but the comparison between those results with
a specific reference value. No static, relative, or ranged value can have any
significance without some kind of a legend associated with it.

Diving into the meaning of the phrase good results for the given expectations, there is
another hidden important key concept: the availability to measure, in technical terms,
any given aspect of our application. Such terms must be numerically defined, such
as a time, a size expressed in Bytes (or multiples), and so on.

In other words, performance is associated with all the measurable aspects of
an application.

As software developers, we have to understand client needs. We cannot be simply
code writers or technical enthusiasts.

Although we have to mine technical requisites between use cases and user
expectations, we have to guide the client to give us useful information regarding
their expectations. I know they do not know anything about software engineering,
but it is up to us to let them learn at least the basics here. Sometimes, we have to
mine requisites by ourselves, while other times we can try to get the client to use
the right requisite formula with suggestions, questions, and indications.

Any requisite with no relative or absolute reference value exposed is invalid.

Subtle to define as not valid is any performance requisite with some generic numeric
needs, without specifying any context or value legend. An example will be a
request like a web page response time, without specifying the server load or page
computational complexity.

Taking some time to reflect on what we just read, we found another aspect of
the term performance, which is a technical value and may become a performance
indicator only if it's compared to a valid expected range.

Let's evaluate another client need. A client asks for a web page to be able to respond
in less than 1 second in a low load time window (less than 1,000 active users) or not
more than 10 seconds with heavy load equal to or more than 10,000 active users.

Here, we do have a valid request against a value range and environment, but there
is still something missing, such as a shared and documented test case, which acts as a
reference to everyone working on the project.

Chapter 1

[3]

An example on a valid client's need for performance requirement would be that a
client asks for a web application to execute Test001 in less than one second with less
than 1.000 active users online, or be able to execute the same test case in less than 10
seconds with no more than 10.000 active online users.

Performance as a requirement
Talking about performance as a need for a client (or buyer), it is easy to infer how
this is definitely a requirement and not a simple need that a client may have.

In software engineering, the requirement collection (and analysis) is called
Requirements engineering. We found a couple of specific requirements that we
should properly understand as software developers: the functional and
non-functional requirements.

Under the functional requirement, we can find what a software must do, and
this (and other specifications) codes what we call software design. While with a
non-functional requirement, we focus on how the system (and hence, the software)
has to work. This (and other specifications) codes what we call system architecture.

In other words, when a client asks for an application to compute something (and if
the computation hides a proprietary logic, the formula is part of the requirement as a
technical detail), they are asking for a function, so this is a functional requirement.

When a client asks for an application to work only if authenticated (a non-functional
requirement), they are definitely asking that an application works in a specific
manner, without asking the application to produce a target or goal in the results.

Usually, anything about security, reliability, testability, maintainability,
interoperability, and performance guidelines, are all non-functional requirements.
When the client asks the software what needs can be satisfied with respect to their
business, it is actually a functional requirement.

Although a client may ask for a fast or responsive application, they are not actually
asking for something related to their business or what to do with the software, they
are simply asking for some generic feature; in other words, a wish. All such technical
wishes are non-functional requirements. But what about a scenario in which the
client asks for something that is a business requirement?

Let's say that a client asks for an application to integrate with a specific industrial bus
that must respond in less than 100 milliseconds to any request made throughout the
bus. This now becomes a functional requirement. Although this is not related to their
business, logically, this is a technical detail related to their domain, and has become a
proper functional (domain-related) requisite.

Performance Thoughts

[4]

Performance engineering
Performance engineering is the structure behind the goal to succeed in respecting all
the nonfunctional requirements that a software development team should respect.

In a structured software house (or enterprise), the performance engineering is within
system engineering, with specific roles, skills, tools, and protocols.

The goal here is not only to ensure the availability of the expected performance
requirements during the development stage, but also how these requirements evolve
when the application evolves, and its lifecycle up to the production environment,
when continuous monitoring of the current performance against the initial
requirements gives us a direct and long-range analysis of the system running.

We live in a time when an IT team is definitely an asset for most companies.
Although there are still some companies that don't completely understand the
definition of IT and think of it as an unnecessary cost, they will at least see the
importance of performance and security as the most easily recognizable
indicators of a well-made application.

Performance engineering has objectives that cover the easy goal of how to write
a fast application. Let's take a look at some of these objectives, as follows:

1.	 Reducing software maintenance costs.
2.	 Increasing business revenue.
3.	 Reducing hardware acquisition costs.
4.	 Reducing system rework for performance issues.

Here, the focus is on all aspects of software development that good performance
engineering may optimize. It is obvious that a more powerful application leads to
lesser hardware requirements, although it is still obvious that a well-made application
needs less reworks for performance issues. The focus is not on the time or money
saved, but the importance of thinking about performance from the beginning of the
development project up to the production stage. Writing a performing piece of code is
an easy task compared to a complete software development project, with performance
in mind. I know that coding is loved by any developer, but as a professional, we have
to do something more.

Chapter 1

[5]

Reducing the work to fix issues and the cost of having developers working on
performance optimization or system tuning after an application is deployed in the
production stage enforces the contract with the client/buyer who commissioned
the software development. This respects the performance requisites and builds trust
with the customer as well as leading to a sensible reduction in maintenance costs.

In performance engineering, a formal performance requisite is coded at the
beginning of the development stage, together with software and system architects.
Multiple tests are then executed during the development lifecycle in order to satisfy
requisites (first) and maintain the level of success at the time. At the end of the
production stage, the performance test analysis will act as proof of the work done
in programming, testing, releasing, and maintaining of the software, as well as an
indicator for various kind of issues not related directly to performance (a disk failure,
a DoS instance, a network issue, and so on).

Performance aspects
When working on performance requirements, in the development stage or for the
complete application lifecycle, we have to choose the performance aspects that
influence our software and development project. Before writing the code, many
decisions will be taken, such as what architecture the software must have, what
design to implement, what hardware target will run our software, and so on.

As said previously, anything technically measurable and comparable with a valid
value range may become a performance indicator and therefore a performance
requirement. The more this indicator becomes specific to the application that is being
developed, the more its requirements becomes domain related, while for all the others,
they are generic non-functional requirements.

We have to always keep in mind that a lot of things may become performance
indicators from the technical standpoint, such as the ability to support multithreading
or parallel programming, also system-specific indicators, such as the ability to support
multicore or a specific GPU's programming languages, but these are only details of a
well-formed performance requisite.

Performance Thoughts

[6]

A complete performance requisite usually covers multiple aspects of performance.
Many aspects do exist. Think of this requirement as a map, as follows:

Resource usage

Latency Magnitude

Latency

Throughput

Availability

Scalability

Efficiency

X

X

X

X

X

X

0% 20% 40% 60% 80% 100%

A performance aspect map is a simple grid, exposing the importance of performance aspects

The first thing to keep in mind is that we cannot have every aspect that is shown in
the preceding figure as our primary performance goal. It is simply impossible for
hardware and software reasons. Therefore, the tricky task here is to find the primary
goal and every secondary or less important objective that our application needs to
satisfy. Without any regret, some aspect may become completely unnecessary for our
application. Later in this chapter, we will cover a few test cases.

Putting extreme focus on a single kind of performance
may lead to a bad performing application.

A desktop or mobile application will never scale out, so why focus on it? A workflow
never interacts directly with a client; it will always work in an asynchronous way,
so why focus on latency? Do not hesitate to leave some of this aspect in favor of
other, more critical aspects.

Let's look at the most important and widely recognized performance aspects.

Latency
The latency is the time between a request and response, or more specifically, the time
between any action and its result. In other words, latency is the time between a cause
and its effect, such that a user can feel it.

A simple example of latency issues is someone using an RDP session. What lets us
feel that we are using an RDP session is the latency that the network communication
adds to the usual keyboard and mouse iteration.

Chapter 1

[7]

Latency is critical in web applications where any round-trip between the client's
browser and server and then back to the browser is one of the main indicators about
the website's responsiveness.

Throughput
One of the most misused words, a synonym for power, or for the most part, the
synonym for good programming, is throughput. Throughput simply means that the
speed rate of anything is the main task of the given product or function being valued.

For instance, when we talk about an HDD, we should focus on a performance
indicator to reassume all the aspects of HDD speed. We cannot use the sequential
read/write speed, and we cannot use the seek time as the only indicator to produce
a throughput valuation. These are specific performance indicators of the domain
of HDD producers. The following guidelines are also mentioned at the beginning
of the chapter. We should find a good indicator (direct, indirect, or interpolated) to
reassume the speed of the HDD in the real world. Is this what a performance test suite
does for a system and HDD? We can use a generic random 64K read/write (50/50
percent) test to produce a single throughput indicator.

Talking about software, the ability of a workflow to process transactions in a timely
manner (such as per second or per hour) is another valid throughput performance
indicator.

Resource usage
This is another key performance indicator that includes everything about resource
usage such as memory, CPU, or GPU (when applicable).

When we talk about resource usage, the primary concern is memory usage.
Not because the CPU or GPU usage is less important, but simply because the
GPU is a very specific indicator, and the CPU usually links to other indicators
such as throughput.

The GPU indicator may become important only if the graphical computation
power is of primary importance, such as when programming for a computer game.
In this case, the GPU power consumption becomes a domain-specific (of game
programming) technical indicator.

A memory leak may occur when the memory is partially or
totally unreleased within a process, when unused.

Performance Thoughts

[8]

That being said, it is easy to infer that for the resource usage indicator, the most
important feature is memory consumption. If we need to load a lot of data together
(in the following chapters, we will see alternatives to this solution), we will have to
set up hardware resources as needed.

If our application never releases unused memory, we will face a memory leak.
Such a leak is a tremendous danger for any application. OutOfMemoryException
is an exception, which in the .NET programming world means that no more memory
is available to instantiate new objects.

The only chance to find a memory leak is by profiling the entire application with a
proper tool (we will see the integrated profiling tool of Visual Studio in Chapter 9) to
show us how an application consumes memory on a subroutine basis.

Availability/reliability
This is a key performance indicator for any software serving multiple users, such as a
web service, web application, workflow, and so on.

Availability is also the proof of how a performance indicator may also be something
not directly related to speed or power, but simply the ability of the software being
in up-time, actually running, without issues in any condition. Availability is directly
related to reliability. The more a system is available, the more it is reliable. However,
a system may become available using a good maintenance plan or a lot of rework.
A reliable system is always a strong one that does not need special maintenance
or rework because it was well developed at the beginning, and meets most of the
challenges that the production stage can produce.

Scalability
When talking about scalability, things come back to some kind of power—the ability
of a single function or entire application to boost its performance—as the number
of processors rise or the number of servers increases. We will focus a lot on this
indicator by searching for good programming techniques such as multithreading
and parallel programming in this and the following chapters, because at the time
of writing this book, CPU producers have abandoned the path of single processor
power, in favor of multicore CPU architectures. Today, we see smartphones with a
CPU of four cores and servers with a single socket of twenty cores each. As software
developers, we have to follow market changes, and change our software accordingly
to take the most advantages possible.

Chapter 1

[9]

Scalability is not too difficult to achieve because of the great availability of
technologies and frameworks. However, it is not something we can always achieve
and at any level. We can neither rely only on hardware evolution, nor on infinite
scalability, because not all our code maybe scalable. If they are, it is always limited
by the technology, the system architecture, or the hardware itself.

Efficiency
Efficiency is a relatively new kind of performance indicator. The existence of mobile
devices and computer-like laptops since 1975, with the release of IBM 5100, opened
the way to a new performance indicator of efficiency. Absolute power consumption
is a part of the meaning of efficiency, with a new technical indicator named
performance per watt, an indicator that shows the computation level that consumes
a single watt of power.

As software developers, we will never focus on hardware electrical consumption,
but we have to reduce, at the most, any overhead. Our goal is to avoid wasting any
computational power and consequently, electrical power. This aspect is critical in
mobile computing, where battery life is never enough.

Speaking of cloud computing, efficiency is a critical indicator for the cloud provider
that sells the virtual machines in a time-based billing method, trying to push as many
billable VMs in the same hardware. Instead, for a cloud consumer, although efficiency
is something outside of their domain, wasting CPU power will force the need to use
more VMs. The disadvantage of this is to pay more to have the same results.

In my opinion, always take into consideration this aspect, at least a bit, if you want to
reduce global electrical consumption.

Class of applications
The performance requirement analysis is not easy to obtain.

A lot of aspects actually exist. As explained at the beginning of the last paragraph,
we have to strike the right balance between all performance aspects, and try to find
the best for our target application.

Trying to get the best from all the aspects of performance is like asking for no one at
all, with the added costs of wasting time in doing something that is not useful. It is
simply impossible reaching the best for all aspects all together. Trying to obtain the
best from a single aspect will also give a bad overall performance. We always must
make a priority table like the aspect map already seen in preceding paragraphs.

Performance Thoughts

[10]

Different types of applications have different performance objectives, usually the
same per type. Here are some case studies for the three main environments, namely
desktop, mobile, and server-side applications.

Case study: performance aspects of a
desktop application
The first question we should ask ourselves, when designing the performance
requirements of a desktop class application, is to whom is this application going
to serve?

A desktop class application serves a single user per system.

Although this is a single-user application, and we will never need scalability at the
desktop level, we should consider that the architecture being analyzed has a perfect
scalability by itself.

For each new user using our application, a new desktop will exist, so new
computational power will be made available to users of this application. Therefore,
we can assume that scalability is not a need in the performance requisite list of this
application kind. Instead, any server being contacted by this kind of application will
become a bottleneck if it is unable to keep up with the increasing demands.

As written by Mr. Jakob Nielsen in 1993, a usability engineer, human users react as
explained in the following bullet list:

•	 100 milliseconds is the time limit to make sure an application is actually
reacting well

•	 1 second is the time limit to bring users to the application workflow,
otherwise users will experience delay

•	 10 seconds is the time limit to keep the users' attention on the given
application

It is easy to understand that the main performance aspect composing a requisite for
a desktop application is latency.

Low resource usage is another key aspect for a desktop application performance
requisite because of the increasingly smaller form factor of mobile computing, such
as the Intel Ultrabook®, device with less memory availability. The same goes for
efficiency.

It is strange to admit that we do not need power, but this is the truth because a single
desktop application is used by a single user, and it is usually unable to fulfil the
power resources of a single desktop class system.

Chapter 1

[11]

Another secondary goal for this kind of performance requirement is availability.
If a single application crashes, this halts the users productivity and in turn might
lead to newer issues such that, the development team will need to fix it. This crash
affects only a single user, leaving other user application instances free by any kind of
related issues.

Something that does not impact a desktop class application, as explained previously,
is scalability, because multiple users will never be able to use the same personal
computer all together.

This is the target aspect map for a desktop class application:

Resource usage

Latency Magnitude

Latency

Throughput

Availability

Scalability

Efficiency

X

X

X

X

X

X

0% 20% 40% 60% 80% 100%

The aspect map of a desktop application relying primary on a responding UI

Case study: performance aspects of a mobile
application
When developing a mobile device application, such as for a smartphone device
or tablet device, the key performance aspect is resource usage, just after Latency.

Although a mobile device application is similar to a desktop class one, the main
performance aspect here is not latency because on a small device with (specifically
for a Modern UI application) an asynchronous programming model, latency is
something overshadowed by the system architecture.

Performance Thoughts

[12]

This is the target aspect map for a mobile device application:

Resource usage

Latency Magnitude

Latency

Throughput

Availability

Scalability

Efficiency

X

X

X

X

X

X

0% 20% 40% 60% 80% 100%

The aspect map of a mobile application relying primary on low resource usage

Case study: performance aspects of a server
application
When talking about a server-side application, such as a workflow running in a
completely asynchronous scenario or some kind of task scheduler, things become so
different from the desktop and mobile device classes of software and requirements.

Here, the focus is on throughput. The ability to process as many transactions the
workflow or scheduler can process.

Things like Latency are not very useful because of the missing user interaction.
Maybe a good state machine programming may give some feedback on the
workflow status (if multiple processing steps occurs), but this is beyond the
scope of the Latency requirement.

Resource usage is also sensible here because of the damage a server crash may
produce. Consider that the resource usage has to multiply for the number of
instances of the workflow actually running in order to make a valid estimation of
the total resource usage occurring on the server. Availability is part of the system
architecture if we use multiple servers working together on the same pending job
queue, and we should always make this choice if applicable, but programming for
multiple asynchronous workflow instances may be tricky and we have to know how
to avoid making design issues that can break the system when a high load of work
comes. In the next chapter, we will look at architectures and technologies we can use
to write a good asynchronous and multithreaded code.

Chapter 1

[13]

Let's see my aspect map for the server-side application class, shown as follows:

Resource usage

Latency Magnitude

Latency

Throughput

Availability

Scalability

Efficiency

X

X

X

X

X

X

0% 20% 40% 60% 80% 100%

The aspect map of a server-side application relying primary on high processing speed

When dealing with server-side applications that are directly connected to user
actions, such as a web service responding to a desktop application, we need high
computation power and scalability in order to respond to requests from all users in
a timely manner. Therefore, we primarily need low latency response, as the client
is connected (also consuming resources on the server), waiting for the result. We
need availability because one or more application depends on this service, and we
need scalability because users can grow up in a short time and fall back in the same
short time. Because of the intrinsic distributed architecture of any web service-based
system, a low resource usage is a primary concern; otherwise, the scalability will
never be enough:

Resource usage

Latency Magnitude

Latency

Throughput

Availability

Scalability

Efficiency

X

X

X

X

X

X

0% 20% 40% 60% 80% 100%

A user invoked server-side application aspect-map relying primary on latency speed

The aspect map of a server-side web service-based application carefully uses
cloud-computing auto-scale features. Scaling out can help us in servicing thousands
of clients with the right number of VMs. However, in cloud computing, VMs are
billable, so never rely only on scalability.

Performance Thoughts

[14]

It is not necessary to split the aspects trying to cover each level of
magnitude, but it is a good practice to show the precedence order.

Performance concerns as time changes
During the lifecycle of an application living in the production stage, it may so
happen that the provisioned performance requisite changes.

The more focus we put at the beginning of the development stage
in trying to fulfil any future performance needs, the less work
we will need to do to fix or maintain our application, once in the
production stage.

The most dangerous mistake a developer can make is underestimate the usage
of a new application. As explained at the beginning of the chapter, performance
engineering is something that a developer must take care of for the entire duration
of the project. What if the requirement used for the duration of the development
stage is wrong when applied to the production stage? Well, there is not much time
to recriminate. Luckily, software changes are less dangerous than hardware changes.
First, create a new performance requirement, and then make all brand new test cases
that can be applied to the new requirements and try to execute this on the application
as in the staging environment. The result will give us the distance from the goal!
Now, we should try to change our code with respect to the new requirements and
test it again. Repeating these two steps until the result becomes valid against the
given value ranges.

Talking, for instance, about a desktop application, we just found that the ideal aspect
map focuses a lot on the responsiveness given by low Latency in user interaction.
If we were in 2003, the ideal desktop application in the .NET world would have
been made on Windows Forms. Here, working a lot with technologies such as
Thread Pool threads would help us achieve the goal of a complete asynchronous
programming to read/write any data from any kind of system, such as a DB or
filesystem, thus achieving the primary goal of a responsive user experience. In 2005,
a BackgroundWorker class/component could have done the same job for us using
an easier approach. As long as we used Windows Forms, we could use a recursive
execution of the Invoke method to use any user interface control for any read/write
of its value.

Chapter 1

[15]

In 2007, with the advent of Windows Presentation Foundation (WPF), the access
to user controls from asynchronous threads needed a Dispatcher class. From 2010,
the Task class changed everyday programming again, as this class handled the
cross-thread execution lifecycle for background tasks as efficiently as a delegate
handles a call to a far method.

You understand three things:

•	 If a software development team chose not to use an asynchronous
programming technique from the beginning, maybe relying on the DBMS
speed or on an external control power, increasing data over time will do the
same for latency

•	 On the contrary, using a time-agnostic solution will lead the team to an
application that requires low maintenance over time

•	 If a team needs to continuously update an old application with the latest
technologies available, the same winning design might lead the team to
success if the technical solution changes with time

Technical overview
Until now, we have read about what performance requirement analysis means, how
to work with performance concerns, and how to manage performance requirements
against the full life cycle of a software development project. We will now learn
more about the computing environment or architecture that we can leverage while
programming for performance. Before getting into the details of the architecture,
design, and C# specific implementations, which will be discussed in the following
chapters, we will have an overview of what we could take as an advantage from
each technique.

Multithreaded programming
Any code statement we write is executed by a processor. We can define a processor
as a stupid executor of binary logic. The same processor executes a single logic every
time. This is why modern operating systems work in time-sharing mode. This means
the processor availability is frequently switched from virtual processors.

A thread is a virtual processor that lives within a process (the .exe or any .NET
application) that is able to elaborate any code from any logical module of the
given application.

Performance Thoughts

[16]

Multicore processors are physical processors, which are all printed in the same
metallic or plastic package. This helps reducing some cost and optimizing some
external (but still internal to the package) devices such as memory controller, system
bus, and often a high-speed cache.

Multithreading programming is the ability to program multiple threads together.
This gives our applications the ability to use multiple processors, often reducing
the overall execution time of our methods. Any kind of software may benefit from
using multithreaded programming, such as games, server-side workflows,
desktop applications, and so on. Multithreading programming is available from
.NET 1.0 onward.

Although multithreading programming creates an evident performance boost
by multiplying the code being executed at the same time, a disadvantage is
the predictable number of threads used by the software on a system with an
unpredictable number of processor cores available. For instance, by writing an
application that uses two threads, we optimize the usage of a dual-core system,
but we will waste the added power of a quad-core processor.

An optimization tries to split the application into the highest number of threads
possible. However, although this boosts processor usage, it will also increase the
overhead of designing a big hardly-coded multithreaded application.

Gaming software houses update lot of existing game engines to address multicore
systems. First implementations simply used two or three main threads instead of
a single one. This helped the games to use the increased available power of first
multicore systems.

A simple multithreaded application, like most games made use of in 2006/2007

Chapter 1

[17]

Parallel programming
Parallel programming adds a dynamic thread number to multithreading
programming.

The thread number is then managed by the parallel framework engine itself according
to internal heuristics based on dataset size, whether or not data-parallelism is used,
or number of concurrent tasks, if task parallelism is used.

Parallel programming is the solution to all problems of multithreaded programming
while facing a large dataset. For any other use, simply do not use parallelism, but use
multithreading with a sliding elaboration design.

Parallelism is the ability to split the computation of a large dataset of items into
multiple sub datasets that are to be executed in a parallel way (together) on multiple
threads, with a built-in synchronization framework, the ability to unite all the
divided datasets into one of the initial sizes again.

Another important advantage of parallel programming is that a parallel development
framework automatically creates the right number of sub datasets based on the
number CPU cores and other factors. If used on a single-core processor, nothing
happens without costing any overheads to the operating system.

When a parallel computing engine splits the initial dataset into multiple smaller
datasets, it creates a number, that is, a multiple of the processor core count. When
the computation begins, the first group of datasets fulfils the available processor
cores, while the other group waits for its time. At the end, a new dataset containing
the union of all the smaller ones is created and populated with the results of all the
processed dataset results.

When using parallel programming, threads flow to the cores trying to use all
available resources:

LARGE

DATASET

Waiting for the first

available core

CORE

CORE

CORE

CORE

DS #1

DS #2

DS #3

DS #4

DS #5

Differently from hardcoded thread usage with the parallelism of Task Parallel Library
items flow to all available cores

Performance Thoughts

[18]

In parallel programming, the main disadvantage is the percentage of the use of
parallelizable code (and data) in the overall application.

Let's assume that we create a workflow application to read some data from an
external system, process it, and then write the data back to the external system again.
We can assume that if the cost of input and output is about 50 percent of the overall
cost of the workflow, we can, at best, have an application that is twice as fast, if it
uses all the available cores. Its the same for a 64-core CPU.

The first person to formulate this sentence was Gene Amdahl in his Amdahl's
law (1967). Thinking about a whole code block, we can have a speed-up that is
equal to the core count only when such code presents a perfect parallelizability;
otherwise, the overhead will always become a rising bottleneck as the number of
cores increases. This law shows a crucial limitation of parallel programming. Not
everything is parallelizable for system limitations, such as hardware resources, or
because of external dependencies, such as a database that uses internal locks to
grant unlimited accesses limiting parallelizability.

The following image is a preview of a 50 percent parallelizable code across a
virtually infinite core count CPU:

65536

TIMES FASTER VS CORE COUNT

1 4 16 64 256 1024 4096 16384

0.5

1.0

1.5

2.0

2.5

The execution speed increase of a 50 percent un-parallelizable code. The highest speed multiplication (2X)
is achieved about at 100 cores.

Chapter 1

[19]

A software developer uses the Amdahl's law to evaluate the theoretical maximum
reachable speed when using parallel computing to process a large dataset.

Against this law, another one exists, by the name of Gustafson–Barsis' law, described
by John L. Gustafson and Edwin H. Barsis. They said that because of the limits
software developers put on themselves, software performances do not grow in a
linear way. In addition, they said that if multiple processors work on a large dataset,
we can succeed processing all data in any amount of time we like; the only thing we
need is enough power in the number of processor cores.

Although this is partially true only on cloud computing platform, where with the
right payment plan, it is possible to have a huge availability of processor count
and virtual machines. The truth is that overhead always will limit the throttling
multiplication. However, this also means that we have to focus on parallelizable
data and never stop trying to find a better result in our code.

Distributed computing
As mentioned earlier, sometimes the number of processor cores we have is never
enough. Sometimes, different system categories are involved in the same software
architecture. A mobile device has a fashionable body and may be very nice to use for
any kind of user, while a server is powerful and can serve thousands of users, it is
not mobile or nice.

Distributed computing occurs every time we split software architecture into multiple
system designs. For instance, when we create a mobile application with the richest
control set, multiple web services responding on multiple servers with one or more
databases behind them, we create an application using distributed computing.

Here, the focus is not on speeding up a single elaboration of data, but serving
multiple users. A distributed application is able to scale up and down on any virtual
cloud farm or public cloud IaaS (infrastructure as a service, such as Microsoft®
Azure). Although this architecture adds some possible issues, such as the security
between endpoints, it also scales up at multiple nodes with the best technology its
node can exploit.

The most popular distributed architecture is the n-tier; more specifically, the
3-tier architecture made by a user-interface layer (any application, including web
applications), a remotely accessible business logic layer (SOAP/REST web services),
and a persistence layer (one or multiple databases). As time changes, multiple nodes
of any layer may be added to fulfil new demands of power. In the future, technology
will add updates to a single layer to fulfill all the requirements, without forcing the
other layers to do the same.

Performance Thoughts

[20]

Further reading:
http://en.wikipedia.org/wiki/Distributed_computing

Grid computing
In grid computing, a huge dataset is divided in tiny datasets. Then, a huge number
of heterogeneous systems process those small datasets and split or route them again
to other small processing nodes in a huge Wide Area Network (WAN), usually the
Internet itself. This is a cheaper method to achieve huge computational power with
widely distributed network of commodity class systems, such as personal computers
around the world.

Grid computing is definitely a customization of distributed computing, available for
huge datasets of highly parallelized computational data.

In 1999, the University of California in Berkeley released the most famous project
written using grid computing named SETI @ home, a huge scientific data analysis
application for extra-terrestrial intelligence search. For more details, you can refer
to the following link:

http://setiathome.ssl.berkeley.edu/

Summary
In this chapter, you read about the meaning and aspects of the term performance, the
importance of performance engineering, and about the most widely used techniques
available to fulfil any performance requirement.

In the next chapter, you will focus on the software architecture and designs that
can produce well-performing applications, good-looking solutions, and avoid
common mistakes.

http://en.wikipedia.org/wiki/Distributed_computing
http://setiathome.ssl.berkeley.edu/

[21]

Architecting
High-performance

.NET Code
Software architecture is something that is hard to define in a single statement.
However, to summarize, the architecture of an application is its whole design,
together with how its blocks/modules/layers interact with each other and with
the related documentation.

As explained in the previous chapter, different designs produce different pros and
cons in terms of the various aspects of performance. Here, we will dive into the most
used/misused architectural techniques and solutions, in search of the best for our
performance goals.

In this chapter, we will focus on the following topics:

•	 Software architecture
•	 Performance concerns about the architecture
•	 Object-oriented design principles
•	 Common designs and architectures
•	 Common platform architectures
•	 Performance considerations

Architecting High-performance .NET Code

[22]

Software architecture
A software architecture is something a development team must share, together
with the person in charge of the architecture itself (even better if someone who
constructs software architectures as their main job), to achieve the goal of producing
an application with standard methods, techniques, and tools driving the team as
standardized industry-level workers.

A software architect is someone who designs software in a real sense. He
understands and addresses business (functional) and technical (non-functional)
requisites that drive the development team in the right direction during the entire
software development lifecycle. A software architect is also someone who makes
the software writable by multiple developers simultaneously, by writing a global
design at the beginning of the development of a new software, and hence, enables
it to work homogeneously. This is why, often, a software architect is in charge of
internal framework development, and so, useful in simplifying and standardizing
team working.

This happens by writing documentation about overall architecture and design,
defining all boundaries that any module must comply with, all technologies
to be used by those modules, all standards to apply to, any authentication and
authorization logic, and any choice about the interaction between those modules
or layers depending on the kind of application.

Software architecture: A widely accepted definition of software
architecture is that it deals with anything that software developers
perceive as hard to change. As foundations are unchangeable once we
build the building, the same applies to those guidelines and rules that
build software architecture. Software architecture is not about technical
whole-application level choices; it is the art of making a choice.

Although creating multiple modules in an agnostic way and never trying to fulfill
single specific business needs, such modules may help the company to reuse
the software by creating a corporate code base. However, dividing software into
multiple modules does not imply architecting it. Different designs and patterns
also exist regarding architectures. Any of those designs can alter some project
management rate, such as future code reuse (productivity), maintainability, or
performance.

At the design stage, anything can produce pros and cons regarding all three different
sides of the same cube, which represents the whole work of software development.
Architectural decisions affect performance in a way that is sometimes hard to fix with
simple future optimization code; so always be particularly careful in the design stage.

Chapter 2

[23]

In this context, performance thoughts are usually a primary concern. Sometimes the
choice of having less manageability instead of a higher throughput can be taken,
or vice versa, if that is the need. However, choices such as writing ugly code in the
name of extreme performance are usually something to avoid.

Software architecture is some kind of multipurpose design of the whole system,
where different decisions are made to fulfill the right balance between all needs and
specifications, including performance that a software actually needs. The software
should also eventually support future additions/modifications.

A big deal when designing the architecture is the use of design patterns.

The most diffused definition of pattern (applicable also to software patterns) is the
following one made by Christopher Alexander in his book A Pattern Language: Towns,
Buildings, Construction, published in year 1977:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a
way that you can use this solution a million times over, without ever doing it the
same way twice.

Always remember that a software architecture is not a design pattern, although a
design pattern (usually multiple) may become a part of a software architecture. A
design pattern is a commonly used solution to a commonly faced problem. Though the
definition is simple, the most important aspect of design patterns is their ability to
standardize the market regarding how professionals talk to each other. Talking in
terms of patterns between professionals helps one understand it technically. For
instance, saying, I made a layered architecture, helps—it avoids always explaining what
a layered architecture is. The same can happen when, instead of saying, I prepared an
instance of a class to be used in any case and from anywhere, a professional simply says,
I made a singleton of such class.

Thus, outside this, the only reason is to choose a design pattern, simply create your
own, or use no design pattern, is the need to develop the software. Sometimes,
the market enforces its fashions, such as the use of Model-View-Controller
(MVC) or Model-View-ViewModel (MVVM) patterns. An example is Microsoft's
development web environment: since ASP.NET in 2010, MVC has become the
standard for web applications. As a pragmatic developer, I can only state that this
does not mean that Web Forms is dead and that we cannot use it anymore in the
future! Both MVC and Web Forms have different pros and cons, and the choice of
which fits our software best should be the only (or principal) motivation to adopt one
web presentation pattern over another.

Architecting High-performance .NET Code

[24]

Performance concerns about architecture
The goal of architecture is to provide the best structure to fulfill all functional and
non-functional requirements, and to achieve the best results in terms of customer
satisfaction with a bit of overhead to, we have to manage any future need the
application may have during the release.

Decisions about selecting software architecture are about performance. An important
distinction is between decisions that affect the whole software and decisions that can
be made as optimization or tuning.

There is a performance architecture that focuses on the performance concerns that
always persist as time changes, and an optimization time, when performance
concerns fit the underlying system and its configuration (OS version, middleware
version, .NET version, the database version, and so on). After a system change,
the architectural vision should not change, whereas the optimization against the
new system must be made to fit the requirements. When dealing with software
architecture, performance concerns may change from time to time. Let's take a look
at a couple of instances.

Suppose that we have a web application that serves hundreds of users, and we need
to decide how to store data in single or multiple relational repositories. A simple
solution is to use a single relational DB for all the data, because using an association
to retrieve data from referenced tables is easy with an object-relational mapping
(OR/M) and because a DBMS is fast at executing joins. We might say that this
solution brings very good latency and throughput in data extraction from 100 to
10,000 users online. This is what usually happens in 2-tier architectures.

However, as time changes, things may become different because as powerful as a
system may be, scaling up (with all the trouble of changing the hardware of a critical
system) is not always possible. Think about when we already have the fastest system
available. Splitting the data persistence on different DBMS breaks constraint-based
associations between entities, but gives us great scalability over time. This is what
usually happens in 3-tier architectures. Adding new modules to the whole application
will also mean adding more module-oriented DBs, so the application scalability need is
linear to the available persistence storage scalability.

In Chapter 1, Performance Thoughts, we talked about performance requisites and
aspect maps. The two solutions have different maps. The first is winning latency
while the second is winning scalability. Different performance requisites might move
us away from choosing one solution or another. It depends on how far away the
analyst that made the requisite has been able to see the needs of the customer.

Chapter 2

[25]

Bear in mind that if we used the second option, the one with multiple persistence
systems, the system would have performed slightly worse on latency (compared the
first option) at the beginning. Further, if the web application would have scaled to
10,000 or 100,000 online users, we could have chosen the winning architecture, after
all. Scaling to fulfill thousands of requests is obviously different from responding in
as few milliseconds as possible. This is a choice. The architect deals with such choices
all days of their life. That is the simplest truth and definition available of a software
architect. This shows how difficult it is to find the right design for a system, even if
we're talking about a single module, such as the relational persistence module.

Another important aspect is choosing whether to optimize the software to work in
the given environment or not, and if yes, how to do it.

If we have to make a software module or tier that can operate indistinctly on a
premise (on our systems) or on a cloud Infrastructure as a Service (IaaS) or a
Platform as a Service (PaaS) subsystem, we must create something more system
agnostic—a software module that is able to scale up and down from the premise to
the cloud. Otherwise, by using idioms of specific systems such as a specific DBMS
function (for instance, SQL Server File Table), we cannot ensure that such a feature is
always available in all environments. A module that should execute in the same way
in our virtual machine or a public cloud virtual machine without configuring nothing
more than what is available in a .config file is definitely an agnostic software
module. On the contrary, when the highest performance is required, by sacrificing
some code reusability, we can use all dialects or idioms of any language to get the
best from each one.

An idiom in computer science is something specific to a given
language or system, such as C# Interface or Delegate, which is not
available in other languages, or SQL Server file streams, which is
not available in other DBMS.

In this chapter, we will focus on performance architecture, while in the following
chapters, we will focus on code optimization and performance instrumentation.

Object-oriented design principles
C# is a general-purpose language that can work in a managed environment. It is the
.NET Common Language Runtime (CLR) that handles the most tricky logic for us,
such as the lifecycle of variables and their removal from memory, process isolation,
thread abstraction, variably safe typing, and so on.

Architecting High-performance .NET Code

[26]

Although we will assume that we will use C# only in object-oriented programming
(OOP), the language itself supports other paradigms as well.

In terms of class design, the following tenets are at the basis of OOP:
•	 Encapsulation: Any class can hide its core logic in external items.
•	 Inheritance: Any class can expand the capability of a mother class,

by adding more specific properties or adding/changing logics.
•	 Polymorphism: Any object, if extended by inheritance, when

compared to other objects of the same parent family, may produce
different business results by applying the eventually changed logic
as allowed by inheritance, creating what names a polymorphic
behavior.

Object orientation is all about abstracting the real world in multiple business-like items
that represent any business-related entity, such as a house in the real-estate business
domain or a customer in the invoicing business domain. Entities may not only be
people or companies. Anything that can be represented in detail with finite properties
(data) and the ability to use some logic on inner data or that can interact with other
entities is definitely a living entity in terms of OOP. This living entity is called an object.
An entity is a part of a family of objects that has the same logic but has different related
inner data, called a class. Therefore, an object is an instance of a class.

Understanding OOP will greatly simplify the understanding of how to subdivide
the whole application in multiple modules/layers/tiers. Do the dictates from OOP
give all the answers? Actually, no. Another group of OOP design principles made
by Michael Feathers and Robert C. Martin in 2000, named SOLID, explains in detail on
how to actually program for OOP. Understanding those other principles will give us
knowledge about all architecture decisions.

The word SOLID is an acronym of five principles. Let's briefly look at them.

The single responsibility principle
A single class must have a single responsibility, something like abstracting a single
business entity or a single communication protocol. It does not matter how easy
creating such an entity is or how much coding such an entity needs. This is because if
a single class tries to abstract multiple entities, it would be unable to actually abstract
any of those entities proposed. This does not mean that multiple classes abstract
entities that are more specific. For example, applying an inheritance principle does
not inherit a single and a more abstract class (the mother class).

Chapter 2

[27]

The open-closed principle
This principle states that a class must be open for extension and closed for
modification. This is an important principle regarding teamwork and code lifetime
management. If a class never changes its contract (public shape) but still grows up
in functionality, it then maintains compatibility with the older versions. Later in
this chapter, in the Common designs and architectures section, we will see how this
principle is also applicable in specific high-distributed architectures such as the n-tier
or Service Oriented Architectures.

The Liskov substitution principle
This principle states that wherever an object is used, a subtype must be used in
the same place, without ever changing any code and without having any different
behavior in the application. This tenet extends the OOP inheritance principle
by giving us a direct test case to validate how inheritance is applied to our class
hierarchy.

The interface segregation principle
This principle states that a role interface must be created, based on what a client
(the caller of the methods of any object) needs with no more logic (methods) or
properties than effectively required. These interfaces help software decoupling
between modules, module management, and development because it splits the
contract (the shared need of a client in the form of a C# interface) from the concrete
implementation. Like creating a facade, this principle helps to simplify the shape
of the object to its clients and helps move concrete logic from different classes, if
needed, without (actually decoupling) any change in the client usage.

The dependency inversion principle
This principle extends the preceding interface segregation principle by stating that
better decoupling and management of software modules happens by inverting
references between objects. Without this principle, multiple modules calling each
other at the same or from different levels will make up the software. Although
abstraction is practically nothing at some level, such as when developing a module
with, for instance, classes for low-level network communication, for most other
modules, abstraction is significantly useful for reducing coupling. For instance,
with a strait dependency, a desktop application using this module will contain a UX
module that calls business logic in one module and that in turn calls another system
by using another module (A -> B -> C).

Architecting High-performance .NET Code

[28]

By inverting the dependency, we will find that module A asks for another module
(without knowing the concrete name/implementation) that extends any interface
that A needs. The same occurs between module B and the unknown module C, when
B asks for a module to implement its needs (module C). A practical implementation
of this scenario is the plugin pattern or the Inversion of Control (IoC) with the
Dependency Injection (DI) pattern.

By respecting this principle, the improved decoupling is visible. Less visible is the
little drawback this solution has. If used extensively, this solution could create some
performance issues, such as added latency and higher resource usage that came from
data-mapping usage. Later in this chapter, we will see a case study on Dependency
Injection.

Further information about SOLID can be found at:
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_
design%29.

Common designs and architectures
As mentioned earlier, sharing knowledge and simplifying communication between
team members is one of the most common reasons some scientists give names to
architectures and designs.

A layer is a logical module of software with its own core logic and
boundaries.
A tier is a physical container of one or more layers, such as a server
across a network or multiple instances of the same Virtual Machine,
working in a load-balanced way.

Different kinds of architectures and designs exist, such as a single or multiple layered
architectures and creational or behavioral design patterns. This book is not about
architectures, so we will only provide an overview of the most used software and
system architectures while trying to provide more details on performance concerns.

When dealing with a software architecture that relies on multiply
systems, such as any n-tier architecture, the whole design takes the
name of system architecture.

When talking about performance, many system designs are taken into account.

http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29
http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29

Chapter 2

[29]

Layered architecture
Most architectures created are layered architectures. A generic layered architecture
splits different application modules at different levels (layers) that represent the
distance from the application user. The following figure shows a layered architecture:

The preceding diagram shows what a generic web application or desktop application
design might look like, according to a layered architecture. Layering is one of
the older software architectures for OOP. It comes from a time when the critical
requirement was to persist data and keep it safe somewhere. This is why the end
user is at the opposite of the layer diagram. This approach adds decoupling because
coupling only takes place from the top layer to the bottom layer.

Architecting High-performance .NET Code

[30]

Multiple modules can exist in the same layer, sharing the same stage of distance
from the application user, because its parts are of the same behavioral module
set (presentation, business, and so on). Otherwise, any cross-layer invocation can
actually become a message exchange for decoupling needs. In-layer communication
does not need to be decoupled, so any living object may talk to any associated object
simply by invoking/using each one the brother instance's methods and properties
that it needs.

Instead, when the communication breaks the boundary of the layer, we need to use
the data transfer object (DTO) pattern, usually with plain old CLR object (POCO)
objects. This kind of plumbing class serves as a container for data transfer, and
a messaging scenario may actually use the request-reply pattern, which always
expects a couple of DTOs, a request, and a response.

DTO, a design pattern as explained by Martin Fowler in his book Patterns of Enterprise
Application Architecture, published by Addison-Wesley, has the objective of grouping
data and reducing method calls. However, its main task is to reduce a round trip by
frequently calling a remote system. It is also frequently used in design-by-contract
programming (also known as contract programming) when dealing with interfaces
as suggested by the interface-segregation principle in order to break the dependency
and decouple the whole system.

From more information on design-by-contract, refer to:
http://en.wikipedia.org/wiki/Design_by_contract.

Performance concerns
As far as performance is concerned, the drawback of such a super-decoupled system
is the need of other objects to convert or map (maybe with a data mapper pattern)
different kinds of DTOs for all message purposes. Although the computational
power in terms of CPU power needed to copy value-type data from one object to
another is negligible, creating millions of object in memory may create an issue
regarding memory usage and release. More critical is the huge cost standardization
of such solutions may bring by reducing the availability of some specific language
idioms, for instance, the ability to use IQueryable<T> idiom manipulations that will
produce a single server-side executed query. Other instances are later discussed in
this chapter. You will learn database querying later in Chapter 7, Database Querying.

http://en.wikipedia.org/wiki/Design_by_contract

Chapter 2

[31]

As explained earlier, many decoupling techniques are available with layered
architecture. The first is creating several contracts to break the knowledge of concrete
implementation between associated layers. These contracts are obviously made
with .NET interfaces and later implemented in concrete classes, where needed. As
mentioned, never underestimate the cost of object creations/destructions and data
copying that is generated by intensive data mapping. Though this will not cause a
lot of CPU wastage, it will bring up a number of other issues. Later, in Chapter 3, CLR
Internals, in the Garbage collection section, a deeper knowledge of this cost will become
evident. However, in addition to this cost, think of all the idiom-based increased
powerfulness that an architecture based on DTO exchanging with data mapping will
simply avoid having at our availability.

A multilayered architecture may be released on a single tier (we usually say that
this will flatten the architecture's physical setup) that usually also means a single
server because of the restrictions in database balancing. A layered architecture
has some pros, such as easy maintainability of layers and easy division of work
in a team based on skills— from the upper layer skills of user experience, to the
intermediate layer skills of good analysis, to the lower layer's need for expert
database developers—it is easily understandable that scalability is still zero until we
use a single tier. Latency depends only on DB latency itself. This means we can only
optimize the I/O development module to try to take some advantage during this
time. Throughput is also limited from one of the DBMS itself.

Flattening a 2-tier architecture will need a single physical tier.

A flattened 2-tier architecture

Architecting High-performance .NET Code

[32]

Although a flattened release of a multilayered architecture is also available for
10-tier architectures, this must be avoided in any production environment. For
testing purposes, however, it might be a cheap solution if we are low on space in our
virtualization host. However, bear in mind that this choice will alter the similarity
between the two environments, for instance powering up any latency time because of
the network access time or the avoided network resource authentication time that is
not actually required.

An enterprise application is one that usually involves handling of
big databases with several concurrent transactions, frequent data
schema changes, customized business rules and logic, and huge
integration needs with ubiquitous internal business-to-consumer
(B2C) or business-to-business (B2B) legacy systems.

Most of the enterprise-dedicated applications of order management or customer
relationship are made on this layered architecture. Obviously, the worst performance
aspect in this scenario is the zero horizontal scalability. This is because this layered
architecture is usually released on a 2-tier system, where many improvements in
performance arise.

The following figure shows the classic 2-tier physical setup with multiple web
servers (or desktop clients) that are using a single RDBMS as a data repository
or a state repository:

2-tiered architecture

Chapter 2

[33]

By splitting the physical structure of the layered architecture, multiple groups of
systems can be clustered to serve the same web application. This solution drastically
changes the performance limitations of the whole architecture, by adding good
scalability, although still limited by the unbalanced node (the database). Although this
classic physical implementation of 2-tier architecture is the most common in enterprise
or Small office Home office (SoHo) worlds, this solution usually bases its usage on the
easiness of the solution and not on specific performance or reliability needs.

With this physical architecture, latency suffers the added hop, but throughput and
scalability balances this (very) small drawback very well.

A hop in computer networking is just another step when a request
must be made to achieve the last system in order to be able to
participate in a response composition.

Another very big difference that occurs when moving from a single-tier to n-tier
(any tier amount) is the creation of a balance between applications/web servers.

Model-View-Controller and ASP.NET MVC
The MVC pattern, which is one of the most widely diffused across various
programming languages, is based on a classical layered architecture.

The MVC pattern is at the base of the ASP.NET MVC framework, one of the most
used framework in any newborn web application powered by the .NET framework
since its first release in 2009, Version 1.0. Previous ASP.NET versions, that was
renamed to Web Forms, actually became obsolete without any addition from the
developer group (if any still exists) and without any coverage in the official Microsoft
learning courseware since the release of Visual Studio 2012. This made ASP.NET
MVC the main web-programming framework for Visual Studio.

The MVC pattern is the first layered design pattern for user-interface based
applications, made of three layers. Later, Model-View-Presenter (MVP) and
MVVM joined the group, adding different or specific features from their creators.

Architecting High-performance .NET Code

[34]

The MVC pattern was born in 1988 and was first announced in the pages of The
Journal of Object Technology. It divides the presentation layer into three main modules
or sub-layers: the View is the module concerning the graphical user experience.
The Controller is the module concerning the iteration flow from/to the application
and the user; and the Model represents the entities needed to fulfill single/multiple
Views. The following figure shows an MVC-based web application:

An MVC-based web application with all its layers in which the distinction between the business Model (from
domain) and the user-experience oriented model (from MVC) is easily visible

Performance concerns
Using the MVC design pattern in web application development needs more
programming work, together with increased testability (because of the more
decoupled architecture) in comparison to any Rapid Application Development
(RAD) approach.

Chapter 2

[35]

The concrete implementation of the two frameworks ASP.NET MVC and ASP.NET
Web Forms behaves very differently in terms of performance.

A performance comparative between ASP.NET MVC and Web Forms

Regarding latency, the winner is the MVC-based framework. Web Forms have a
verbose page life cycle that increases the page elaboration time with an empty form.

Rendering time of a Web Forms text label in 75 milliseconds

Without diving into the detail of the Web Forms page life cycle, it is enough to say
that it must follow more than the simple steps that the MVC framework does. In
ASP.NET MVC, any request simply routes from the MvcHandler class that creates
a ControllerFactory class, this creates our controller, which invokes our action
method by passing a model that was created by a ModelBinding and populated
with any input data from the GET or POST request. Then, the controller does its job by
executing the logic within the action and producing a new model to bind to the view.

Architecting High-performance .NET Code

[36]

In Web Forms, instead, there are more than 10 events for any page and the same
for any child (nested) control. This means that the bigger a page is, the higher the
number of wasted objects being created/destroyed and invoked events will be, thus
increasing the latency time of rendering the whole page.

The same preceding page rendered as View in MVC in 6 milliseconds

ASP.NET MVC renders an empty view in not more than 7 milliseconds on my laptop
(but in the first application load, the compilation time adds to the rendering time),
while Web Forms render the same empty form in not less than 70 milliseconds.
Although such absolute values are useless, relative values are the proof of the very
different minimum latency times of the two frameworks. Regarding latency, on my
laptop ASP.NET MVC is almost 10 times better than Web Forms!

Talking about scalability, MVC bases its architecture on a strong object-oriented
design pattern that will guide the programmer to the most modularized application
design, instead of the RAD guided approach of Web Forms.

I am not saying Web Forms cannot be used in a good MVP pattern or other
layered (non-RAD) architectures, but this is actually not the average scenario.
Thus, MVC-based web applications are supposed to become more scalable than
Web Forms applications.

Analyzing scalability results in two solutions; this is a big difference that
distinguishes MVC from Web Forms. The design of MVC is completely stateless,
while a legacy Web Forms application will frequently make use of the session state,
the ability to contain some navigational user data that lives in the memory of the
web server(s).

Chapter 2

[37]

Session state is a big bottleneck in scalability because it usually relies on the SQL
Server as a persistence provider to contain and share session data between multiple
servers that are involved in the same web application.

A sequence UML diagram of ASP.NET legacy SQL-based SessionState

Of course, some alternatives to using SQL Server persistence for session state do
exist, such as the state server, an in-memory container with the limitation of the
RAM available for the server. Another alternative that is greatly scalable from the
state server is using a cloud-distributed cache provider, which is also available for
local installations, that named AppFabric Cache. Using this kind of session provider
will boost scalability, but obviously the choice of never using a session grants
another level of scalability. It is like what was mentioned in the previous chapter
about Amdahl's law. Although a powerful cache provider can give good results in
session state persistence, it will also limit this capability, which will, in turn, limit
the scalability of the whole architecture. Instead, without using the session state, this
limit is virtually nothing when talking about state persistence because other factors
limiting scalability could still exist.

Architecting High-performance .NET Code

[38]

A drawback exists in the sessionless approach of MVC. This is the throughput
limitation and resource usage amplification due to the need of any request processed
by the server to reload (what is usually in the session state) any related data from the
persistence storage again. This is a subtle difference between the two designs, but it
can make a significant difference in how they perform.

Talking about resource usage, I have to say that although MVC has a smaller
footprint in comparison to the page's life cycle of a Web Forms application, the
whole architecture needs more decoupling, and as mentioned previously, more
decoupling means more abstraction and more mapping/conversion between objects.
Another point against all such abstraction is the loss of idiom-based programming,
such as the Entity Framework materialization or query building, because these are
wasted by the DTO pattern being used by layered communication. When using an
idiom-based approach, we can take advantage of technologies such as any dynamic
expression tree construction that is available with LINQ (explained in the Querying
approaches section in Chapter 7, Database querying). Instead, if we always have to
populate a complete DTO, we create multiple DTOs, each for any different request
operation, or we always create the DTO with all available data for any given entity.
If we create multiple DTOs, we must face issues such as more coding and more
requests needed for any case that a single DTO response gives the caller some useful
information, but still misses something. If we create the DTO with all available data
for the entity, we often waste CPU time and system resources by asking for lot of
information, although a caller asks only for one particular piece of information.
Obviously, using DTO is not a bad idea. However, simply put, it makes harder to
create the right balance between DTO shape and number, which is not an easy task.

Here, a mixed design is desirable but would be hard to implement while respecting
all principles of MVC pattern, layered architecture, SOLID, and OOP altogether.

Chapter 2

[39]

A comparative between an idiom-based approach (left) and a DTO-based approach (right)

As shown in the preceding diagram, a DTO-based approach can waste a lot of
computational power, often without any need. Let's take the instance of an invoice
materialization with no requirement to summarize the total amount or any other
computation logic, such as client aggregations or product statistics and so on. To
reduce this kind of limitation to DTOs, a solution could be to create different levels
of DTOs of each entity with different details, or use the same type of DTO but with
multiple de-persistence methods with the objective of materializing objects with
probable empty properties. Another solution may be to use methods to work in an
always-lazy calculation mode, sacrificing any massive reading of data.

The most balanced solution between data materialization cost and round-trip
reduction is creating two or three business entities (or a single one with multiple
DTOs). This solution avoids the extreme cost of using always the single fat DTO.
It also avoids using the idiom-based entity, giving an increased ability to customize
object materialization outside of the proper layer. This instance is also applicable
outside of a persistence/de-persistence scenario.

Architecting High-performance .NET Code

[40]

A common solution to DTO materialization or data mapping is the wide use of
caching techniques that can prevent requests from frequently penetrating the layers
from the top-most layer to the deep persistence layer. This choice can help latency as
well as throughput, but it makes the entire solution harder to maintain because of the
difficulty of sharing a common cache object lifetime.

Talking about throughput, the MVC is the best solution because of the very small
footprint of its page materialization life cycle, which produces a very low overhead
during view rendering. This low overhead, if multiplied by the thousands of views
rendered each day compared to the same job done by the classical Web Forms ISAPI,
will give us an idea of more such resources that are used in effective throughput in
MVC applications.

When analyzing the availability scenario, in a long-range analysis, MVC is the
absolute winner. However, in a short-range analysis, Web Forms can produce a good
solution, with very little effort from the developer team. This is because of the RAD
approach. Once upon a time, old books about Web Forms often said that RAD helps
in saving time that will later become available to developers, with the suggestion to
use such time for better business analysis.

Another thing to bear in mind about availability regarding ASP.NET MVC
applications is that the increased number of layers needs better skilled and
experienced developers. Although each layer will become easy to develop by
addressing a single (or few) functional needs per instance, integrating all such
modules in a well-architected application needs some experience.

Finally, regarding efficiency, MVC is again the winner compared to Web Forms
because of the higher throughput it achieves with the same computational power.

Model View Presenter (MVP) is not all that different from MVC. In MVP, the
Presenter acts as a controller in the middle, between the View and the Model.
In MVC, requests from the View are sent to the Controller, which is in
charge of understanding the request, parsing input data, routing such
requests to the right action, and producing the right Model object to bind to
the View.
On the other hand, the Presenter is more like an object-oriented code behind
logic with the goal of updating the View with the Model data and reading
back user actions/data.

Chapter 2

[41]

Model-View-ViewModel and XAML
The MVVM pattern is another descendant of the MVC pattern. Born from an
extensive update to the MVP pattern, it is at the base of all eXtensible Application
Markup Language (XAML) language-based frameworks, such as Windows
presentation foundation (WPF), Silverlight, Windows Phone applications,
and Store Apps (formerly known as Metro-style apps).

MVVM is different from MVC, which is used by Microsoft in its main web
development framework in that it is used for desktop or device class applications.

The first and (still) the most powerful application framework using MVVM in
Microsoft is WPF, a desktop class framework that can use the full .NET 4.5.3
environment. Future versions within Visual Studio 2015 will support built-in .NET
4.6. On the other hand, all other frameworks by Microsoft that use the XAML
language supporting MVVM patterns are based on a smaller edition of .NET. This
happens with Silverlight, Windows Store Apps, Universal Apps, or Windows Phone
Apps. This is why Microsoft made the Portable Library project within Visual Studio,
which allows us to create shared code bases compatible with all frameworks.

While a Controller in MVC pattern is sort of a router for requests to catch any request
and parsing input/output Models, the MVVM lies behind any View with a full two-
way data binding that is always linked to a View's controls and together at Model's
properties. Actually, multiple ViewModels may run the same View and many Views
can use the same single/multiple instance of a given ViewModel.

A simple MVC/MVVM design comparative

Architecting High-performance .NET Code

[42]

We could assert that the experience offered by MVVM is like a film, while the
experience offered by MVC is like photography, because while a Controller always
makes one-shot elaborations regarding the application user requests in MVC, in
MVVM, the ViewModel is definitely the view!

Not only does a ViewModel lie behind a View, but we could also say that if a
VM is a body, then a View is its dress. While the concrete View is the graphical
representation, the ViewModel is the virtual view, the un-concrete view, but still
the View.

In MVC, the View contains the user state (the value of all items showed in the
UI) until a GET/POST invocation is sent to the web server. Once sent, in the MVC
framework, the View simply binds one-way reading data from a Model. In MVVM,
behaviors, interaction logic, and user state actually live within the ViewModel.
Moreover, it is again in the ViewModel that any access to the underlying Model,
domain, and any persistence provider actually flows.

Between a ViewModel and View, a data connection called data binding is established.
This is a declarative association between a source and target property, such as
Person.Name with TextBox.Text. Although it is possible to configure data binding
by imperative coding (while declarative means decorating or setting the property
association in XAML), in frameworks such as WPF and other XAML-based
frameworks, this is usually avoided because of the more decoupled result made by
the declarative choice.

The most powerful technology feature provided by any XAML-based language is
actually the data binding, other than the simpler one that was available in Windows
Forms. XAML allows one-way binding (also reverted to the source) and two-way
binding. Such data binding supports any source or target as a property from a Model
or ViewModel or any other control's dependency property.

This binding subsystem is so powerful in XAML-based languages that events are
handled in specific objects named Command, and this can be data-bound to specific
controls, such as buttons. In the .NET framework, an event is an implementation of
the Observer pattern that lies within a delegate object, allowing a 1-N association
between the only source of the event (the owner of the event) and more observers
that can handle the event with some specific code. The only object that can raise the
event is the owner itself. In XAML-based languages, a Command is an object that
targets a specific event (in the meaning of something that can happen) that can be
bound to different controls/classes, and all of those can register handlers or raise the
signaling of all handlers.

Chapter 2

[43]

An MVVM performance map analysis

Performance concerns
Regarding performance, MVVM behaves very well in several scenarios in terms
of data retrieval (latency-driven) and data entry (throughput- and scalability-
driven). The ability to have an impressive abstraction of the view in the VM without
having to rely on the pipelines of MVC (the actions) makes the programming
very pleasurable and give the developer the choice to use different designs and
optimization techniques. Data binding itself is done by implementing specific .NET
interfaces that can be easily centralized.

Talking about latency, it is slightly different from previous examples based on web
request-response time, unavailable in MVVM. Theoretically speaking, in the design
pattern of MVVM, there is no latency at all.

In a concrete implementation within XAML-based languages, latency can refer to
two different kinds of timings. During data binding, latency is the time between
when a VM makes new data available and a View actually renders it. Instead, during
a command execution, latency is the time between when a command is invoked and
all relative handlers complete their execution. We usually use the first definition until
differently specified.

Although the nominal latency is near zero (some milliseconds because of the
dictionary-based configuration of data binding), specific implementation concerns
about latency actually exist. In any Model or ViewModel, an updated data notification
is made by triggering the View with the INotifyPropertyChanged interface.

Architecting High-performance .NET Code

[44]

The .NET interface causes the View to read the underlying data again. Because all
notifications are made by a single .NET event, this can easily become a bottleneck
because of the serialized approach used by any delegate or event handlers in the
.NET world.

On the contrary, when dealing with data that flows from the View to the Model,
such an inverse binding is usually configured declaratively within the {Binding …}
keyword, which supports specifying binding directions and trigger timing (to choose
from the control's lost focus CLR event or anytime the property value changes).

The XAML data binding does not add any measurable time during its execution.
Although this, as said, such binding may link multiple properties or the control's
dependency properties together. Linking this interaction logic could increase latency
time heavily, adding some annoying delay at the View level. One fact upon all, is
the added latency by any validation logic. It is even worse if such validation is other
than formal, such as validating some ID or CODE against a database value.

Talking about scalability, MVVM patterns does some work here, while we can make
some concrete analysis concerning the XAML implementation. It is easy to say that
scaling out is impossible because MVVM is a desktop class layered architecture
that cannot scale. Instead, we can say that in a multiuser scenario with multiple
client systems connected in a 2-tier or 3-tier system architecture, simple MVVM
and XAML-based frameworks will never act as bottlenecks. The ability to use the
full .NET stack in WPF gives us the chance to use all synchronization techniques
available, in order to use a directly connected DBMS or middleware tier (which will
be explained later in this chapter).

Instead of scaling up by moving the application to an increased CPU clock system,
the XAML-based application would benefit more from an increased CPU core count
system. Obviously, to profit from many CPU cores, mastering parallel techniques
is mandatory. Chapter 4, Asynchronous Programming and Chapter 5, Programming for
Parallelism will cover such thematic.

About the resource usage, MVVM-powered architectures require only a simple
POCO class as a Model and ViewModel. The only additional requirement is the
implementation of the INotifyPropertyChanged interface that costs next to nothing.
Talking about the pattern, unlike MVC, which has a specific elaboration workflow,
MVVM does not offer this functionality. Multiple commands with multiple logic can
process their respective logic (together with asynchronous invocation) with the local
VM data or by going down to the persistence layer to grab missing information. We
have all the choices here.

Chapter 2

[45]

Although MVVM does not cost anything in terms of graphical rendering, XAML-
based frameworks make massive use of hardware-accelerated user controls.
Talking about an extreme choice, Windows Forms with Graphics Device Interface
(GDI)-based rendering require a lot less resources and can give a higher frame
rate on highly updatable data. Thus, if a very high FPS is needed, the choice of still
rendering a WPF area in GDI is available. For other XAML languages, the choice is
not so easy to obtain. Obviously, this does not mean that XAML is slow in rendering
with its DirectX based engine. Simply consider that WPF animations need a good
Graphics Processing Unit (GPU), while a basic GDI animation will execute on any
system, although it is obsolete.

Talking about availability, MVVM-based architectures usually lead programmers
to good programming. As MVC allows it, MVVM designs can be tested because of
the great modularity. While a Controller uses a pipelined workflow to process any
requests, a ViewModel is more flexible and can be tested with multiple initialization
conditions. This makes it more powerful but also less predictable than a Controller,
and hence is tricky to use. In terms of design, the Controller acts as a transaction
script, while the ViewModel acts in a more realistic, object-oriented approach.

Finally, yet importantly, throughput and efficiency are simply unaffected by MVVM-
based architectures. However, because of the flexibility the solution gives to the
developer, any interaction and business logic design may be used inside a ViewModel
and their underlying Models. Therefore, any success or failure regarding those
performance aspects are usually related to programmer work. In XAML frameworks,
throughput is achieved by an intensive use of asynchronous and parallel programming
assisted by a built-in thread synchronization subsystem, based on the Dispatcher
class that deals with UI updates.

The 3-tier architecture
The 3-tier architecture is a layered architecture that is deployed across a physical
multi-layered setup. This choice grants extreme layer reusability because each tier
(logical representation of a physical layer able to multiple software layers) can
participate in multiple applications, if properly developed.

The n-tier architecture is a generic multitier system architecture based on intensive
multilayering. 3-tier is the smaller one, which is able to divide the three main tiers
(presentation, business, persistence). It is possible to find solutions made of four
tiers or six tiers. The architecture itself is the same as 3-tier. The only difference is the
number of tiers containing business logic.

Architecting High-performance .NET Code

[46]

In its physical view, it is easily visible that the third tier is that of Web Services.
This tier is responsible for containing any business logic by obtaining reusability
and higher scalability rates.

The 3-tier system architecture

Within n-tier architecture, layers are matched on a functional basis. They must share
the intent, vision, or objective to be paired in the same tier. An example is the MVC
layers paired in the presentation tier, all executing in the same web application
running on the same web-server tier.

The second tier, as in 2-tier architecture, is the one containing all persistence layers.

Chapter 2

[47]

The last tier, the one in the middle in the preceding diagram, is the one containing
presentation-unaware business logic (logics regarding the presentation are usually
interactive logics). Here, software modules such as a web service, a business rule
engine, or a state machine workflow, are present to handle whatever the business
requirements are. All such logics will run in the application-server tier.

The difference between layered structure and tiered structure is that the latter is a
layered architecture with a specific physical layout (system architecture).

Another 3-tier system architecture containing an external system for business-rule processing (strategies)

Performance concerns
In terms of performance, n-tier architecture gives its best in scalability because each
tier, if appropriately designed, could scale individually. Bear always in mind that
performance aspects such as network availability, throughput, and latency are a
primary concern of 3-tier architecture.

Architecting High-performance .NET Code

[48]

Sometimes, a better result is achieved by isolating the tiers from the main network,
apart from the tier that will need this explicit connection, by using a sub-network
of grouped systems in a closed network. Because in 3-tier architecture network
performances directly affect overall performance, it is a good choice to avoid using
the network used to make tiers communicate with each other for other needs of
the whole company. This solution reduces the usage of network resources by the
addition of corporate network needs, as well as private network ones.

Regarding latency, the multiple round trips happening on the network at each tier
cross will add visible delays if no cache systems are used (we will cover caching later
in the Caching, when and where section of this chapter). Although this issue may be
annoying, the great improvements made to other performance indicators usually
balance this limitation.

Scalability, as mentioned, will improve greatly using 3-tier architecture, thanks to the
ability to balance physical resource usage across multiple systems.

Although a bottleneck that is able to reduce scalability, is the persistence storage
provider, usually a DBMS. Balancing the computational power of all systems
participating in the architecture is easy to do. Instead, SQL-based persistence
providers are usually difficult to balance. Regarding scalability, NoSQL databases
are a winning choice compared to classic SQL-based databases.

Chapter 2

[49]

Resource usage affects the size of the solution. This is why we should not use
such architecture to drive simple or small applications. In other words, in small
releases, n-tier architecture needs many virtual/physical systems, along with a lot
of serialization and creation of DTOs during communication between modules
of different tiers. If our target is a small software application, maybe the best
architecture would be a 2-tier MVC based web application. Talking again about
3-tier architecture, although it enables us to release the whole solution in a single
physical system with multiple virtual machines (or even a single virtual machine),
the solution must be designed as a network-based architecture, otherwise eventually
scaling out to multiple virtual machines will be impossible. Again, another heavy
usage of resources is made by caching providers, which is massively used in 3-tier
architecture because of the evident benefit in terms of response time and throughput.

Throughput is another key benefit of such architecture because of the great division
made by software modules and layers in all tiers of the whole design. The only
limitation is an internal network failure or congestion. It is not just about network
bandwidth but also about network backbone availability (within switches), routing/
firewall speed (of network appliances), and broadcast/multicast traffic that can
saturate all network resources and their availability easily.

The architecture achieves high availability, thanks to the high scalability rate.
Multiple nodes of any tier can be released and may work together to balance traffic
and obtain a strong failover. The weak tier here is the persistence one that relies on
internal persistence-provider solutions in order to achieve availability.

Efficiency is a secondary aspect of n-tier solutions and is a powerful architecture that
should address a heavy task such as e-commerce, or a complex human workflow-
based solution, such as escalation-based customer care for client services, and so on.
High consumption of resources in terms of memory, processor, and network traffic
are needed to let n-tier architecture run in the proper way. Therefore, if efficiency is
your primary goal when searching for an architecture suited for your new application,
simply use another onelike a 2-tier MVC application or any other 2-tiered architecture
that has improved efficiency and latency compared to 3-tiererd architecture.

One limitation of n-tier architecture is that the whole system is still a single
monolithic application. It is also modularized, layered, divided in tiers to achieve
hardware-linked resource configuration per tier, and so on, but the whole system is a
single software, a single (although big) application. That is why some genius thought
of the Service Oriented Architecture (SOA).

Architecting High-performance .NET Code

[50]

Service-Oriented Architecture (SOA)
The service orientation happens when we stop thinking of it as a completely
monolithic application, and begin thinking of it as an information system made by
the combined usage of multiple small applications.

These small applications that name services are containers of logics with the same
functional scope. Although a service does not contain any data by itself, any service
has its own persistence storage (or multiple)—a persistence storage is never available
to multiple services. The data availability must cross within a service and not behind it.

Services do not have any graphical representation; they are used by other services
or end-user applications (with a UI) that need access to service data and logic. In
SOA vocabulary, these external applications are used to invoke requests and retrieve
response messages from services. Those serialized DTOs that move across the
network names are Messages.

An important thing to bear in mind is that when talking about SOA, there are no
multiple layers released across multiple tiers. In SOA, we definitely have multiple
small applications that together compose a huge information system. This does not
mean that a single service cannot be developed with a layered architecture by itself.
In fact, this is usually what actually happens.

In SOA, there are also special services with the task of grouping data by other
smaller services (service facade) or special services to maintain, or for service
discoverability, such as a corporate Enterprise Service Bus (ESB).

The following diagram provides a simplified representation of an SOA design with
a direct service access, a routed service access by an ESB, and a service aggregator
access through a service facade:

Chapter 2

[51]

An SOA environment

The most visible unlike SOA and n-tier is that although SOA uses a layered
approach, this is confined within the boundaries of any service that acts as a
container of the whole logic in terms of the functional behavior of such services.

Another great difference is that different from any other architecture, here, each
service has its own data. Any other service needing the same data can only access it
by invoking the other service. Thus, this approach increases some latency time, and
by utilizing some network resources, it will greatly increase the availability of the
whole solution because such integration between logic is done at the service level
and not at the raw data level.

Principles of SOA are similar to SOLIDs. A brief description of the most widely
accepted standard, as defined by Thomas Erl in his book SOA Principles of Service
Design, published by Prentice Hall, is provided in the next section.

Architecting High-performance .NET Code

[52]

Standardized service contract
Services within the same service inventory are in compliance with the same
contract design standard.

 – Thomas Erl, SOA Principles of Service Design

Defining a contract, as is done for the interface segregation principle of SOLID, helps
in sharing the knowledge of how to use the service, what the service expects on
request, and what the service will give as a response, with the difference of adding a
network-related standard (as simple object access protocol or SOAP—an XML-based
protocol—on HTTP).

This principle is the basis on which all the others principles lie because without a
standardized communication and meta-communication (the ability to exchange
descriptive information about service design), no autonomous network calls can
be placed.

Service loose coupling
Service contracts impose low consumer coupling requirements and are themselves
decoupled from their surrounding environment.

 – Thomas Erl, SOA Principles of Service Design

Loose coupling is the goal of any OOP-based principle. For SOA, it is exactly the
same. This principle states that between the service consumer (a client or another
service) and the service, a neutral contract with neutral DTO classes must exist.
This choice will break any form of coupling between the client and the service and
between the service inner logic and outer DTOs. Never expose a real Domain object
because it is too powerful and too coupled to internal needs.

This principle helps maintain a neutral layer of objects, that is, the DTOs (already
seen in SOLID), which will also help grant a decoupled contract again, in time. When
multiple versions of the same service become available in time, new DTOs will be
available to fulfill updated service contracts without a direct connection with internal
business objects.

Chapter 2

[53]

Service abstraction
Service contracts only contain essential information and information about services
is limited to what is published in service contract.

 – Thomas Erl, SOA Principles of Service Design

The decoupling principle states that a service must actually be a kind of a black box
in the consumer's eyes. The less a consumer knows about the service being used,
the more such a service becomes abstract and changeable with other versions or
implementations. In SOA, the radical change of the whole service with all that is
behind it is actually possible with almost no changes at the consumer level. This is
one of the strongest benefits of using SOA.

Service reusability
Services contain and express agnostic logic and can be positioned as reusable
enterprise resources.

 – Thomas Erl, SOA Principles of Service Design

A service is like a network printer or a network storage server. It is definitely a resource.
It does not belong to any single application; it is an application itself. It is like any
physical resource, always available to any one (human or machine) that needs it within
the company network and sometimes, with appropriate security outside the company,
in scenarios such as B2B and B2C (usually through a service proxy).

The service reusability principle also slightly states that the ownership of the logic
and data behind a service must not be bypassed by anyone.

Service autonomy
Services exercise a high level of control over their underlying runtime execution
environment.

 – Thomas Erl, SOA Principles of Service Design

Architecting High-performance .NET Code

[54]

This principle definitely enforces the service's single ownership against its core logic
and data by dictating that the more a service is isolated by other systems (for instance,
it does not call any other service), the more it becomes autonomous. The more a service
is autonomous, the more it can be composed of other services to fulfill higher level
logic needs or simply to group complex logic behind a single (and easy to invoke) call
in what is exposed as a service facade or a service proxy, usually exposed in B2B and
B2C solutions.

Service statelessness
Services minimize resource consumption by deferring the management of state
information when necessary.

 – Thomas Erl, SOA Principles of Service Design

In SOA, the communication state, such as the session state of classic ASP.NET, is
useful to reduce network traffic and round trips, providing the ability to reach a
more complex interaction level without the need to include anything in a request
(for example, as we did in non-SOA compliant services such as RESTfuls).

This principle also states that state information duplication should never happen
when a multiple cross-service level access takes place.

For instance, if we are invoking a service that needs accessing three other services
that will all need accessing their persistence storage or other helper services, such
as an audit service and some other one, with SOA we have the ability to make the
request only to the first service while waiting for the whole response. Meanwhile,
behind the scenes, the first service will start a session state of the whole operation.
All services participating in the same session will be able to access all such data
without a direct data exchange between services. Usually, a distributed caching
service or session state is the container of all such shared user data.

During a service operation execution, each service should contain only its own state
information, relying on the whole session state for any cross-service request.

Service discoverability
Services are supplemented with communicative meta-data by which they can be
effectively discovered and interpreted.

 – Thomas Erl, SOA Principles of Service Design

Chapter 2

[55]

A service is a company resource, such as an employee, a printer, or anything else
available to the company to reach its goals. So just like an employee has his internal
email address or phone number available to every colleague within the company,
a service must be found by any application that could ever need it. The principle
states that a company service registry, such as an address book of services, must
exist. Such a registry (ESB) must contain any available information about the service,
such as name, physical address, available contracts, and related versions, and must
be available to anyone in the company. Modern ESBs also add functions of DTO
conversion in order to achieve version compatibility or to improve compatibility
against external standards that are not directly implemented within our services.
Other common features include request routing (with priority support), message
audit, message business intelligence, and response caching. Within Microsoft's
offering, an ESB is available as an optional feature for the BizTalk Server, under the
name of BizTalk ESB Toolkit.

Discoverability is a strong principle to boost service orientation because it helps to
see the service as a resource and not as a software module or application piece.

Service composability
Services are effective composition participants, regardless of the size and complexity
of the composition.

 – Thomas Erl, SOA Principles of Service Design

This principle states that a service must be able to act as an effective composition
member of services. This is because an agnostic service can be used to solve different
problems, and because a service composition brings the separation of concerns to
another level, giving the composition the ability to resolve very difficult problems
with the participation of the whole system with a little additional work.

This principle may be the soul of the whole principle list. It explains the goal of the
entire paradigm. Although services live as autonomous applications, they exist to
integrate other services. Indeed, regarding SOA, an information system is definitely a
composition of services.

Performance concerns
Regarding performance, it is clear that SOA consumes more resources than the
n-tier architecture does. The most widely used standard to drive SOA services is
the Simple Object Access Protocol (SOAP). SOAP is based on XML messages that
rely on HTTP/POST messaging. This makes all such services definite web services.
SOAP supports all the SOA needs, but with a high cost in terms of message size and
protocol complexity.

Architecting High-performance .NET Code

[56]

With .NET 3.0, Microsoft introduced Windows Communication Foundation (WCF),
which adds support to multiple service communication standards such as SOAP,
REST, and the newly NetTcpBinding class that extends the old .NET Remoting API
(a remote-proxy based protocol for distributed programming on TCP—an updated
version of Common Object Request Broker Architecture (CORBA)) making it able
to fulfill all SOA needs. With the ability to support multiple service endpoints (with
different protocols), WCF opens the way to a new era of low-footprint SOA services.
Switching from SOAP to the NetTcpBinding largely reduces network traffic and
latency time without any drawbacks, in terms of SOA principles. Unfortunately, this
standard is not entirely compatible with no-.NET applications. Obviously, with an
ESB converting the messages, such issues disappear.

Developing a performing SOA-driven application needs skilled developers and
extensive optimization at multiple levels. Most communication across a network
occurs whenever a message flows between services. Moreover, a lot of message
validation and business rules are executed at service boundary level, before a service
accepts any request and before a client (an application or the service itself) accepts
any response from another node. Kindly consider that because of the whole design of
the architecture, low latency is never available because of the high number of logical
and physical steps any message must pass through to reach the target destination,
both as a request and as a response.

High scalability, rather than latency, is definitely a killer feature of SOA. Such
an autonomous design for any service produces the maximum scalability level
for any service node. The whole architecture itself is made to fulfill thousands of
requests from/to any node in the whole design. The eventual bottleneck here is the
network itself. Only an extremely well performing network may drive a huge SOA
information system. Another key aspect of such a scalability level is persistence
decoupling. Although this may create some data duplication, such as the same IDs
doubled in each single persistence system, if applicable, it also enables real scaling of
such persistence systems. Because of not being bonded to a single (huge and centric)
DBMS any more but to multiple different instances made with heterogeneous
technologies, addressing the best persistence system depending the kind of data,
should be persisted.

Resource usage, as explained, is the Achilles heel of SOA. A saying about SOA is
that if you cannot drive SOA because it is missing its hardware resources, SOA is not
the right architecture for your company! An SOA system is always a huge system,
as the mainframe was a huge system for banking needs 40 years ago (and still is).
Maybe SOA is the most complex and powerful architecture for enabling distributed
systems to fulfill hundreds or thousands of requests per second of a different kind
and complexity level, but such system complexity has some basic requirements, such
as high systems resources.

Chapter 2

[57]

Throughput is another killer feature of SOA because of the quasi-unlimited
scalability of the whole system and the extreme modularization that helps in
optimizing the code at the core of a service for its only needs. This kind of design
also helps maintain the availability of any service because of the great autonomy of
each node against other nodes. In addition, testing is easy to drive here because of
the great decoupling between nodes that exchanges messages to be substituted with
mock (fake data for testing purposes) messages.

Another key feature of SOA is the governance of the whole solution. It is easy to
analyze traffic on a per message basis, per functional area basis, per service basis
with information regarding consumer metadata, message version, service contract
version, and so on.

All such analysis data may be grouped to get an exhaustive overview of the whole
system and business without having to fit that logic within a business service, because
its agnostic design never should. Information such as the average total amount of an
invoice or product price doesn't need to flow from the invoice service to a business
analysis workflow; the corporate ESB could simply route this message to the two
nodes together. With this, each one could know about the existence of the other.

With Efficiency, the resource consumption of the design is usually a great indicator
of the ability of the system to process a huge amount of messages. Keep in mind, as
said about resource usage, that SOA has some technical requisites that avoids using
easy or small systems. SOA definitely suits complex, huge, or high transaction-rate
information systems well.

Architecture comparison
In this section, we provide an analytical view on how different performance
indicators relate to different solutions, based on the architectures that we have
just discussed.

The two excellent architectures are the 2-tier ASP.NET MVC-based architecture,
which is the best performing in terms of latency, and SOA, which definitely wins
in terms of scalability.

Architecting High-performance .NET Code

[58]

Another thing that is easily visible is the average low-level result that Web Forms
obtains about any performance indicator. Here, the age of the framework (released
in 2001) acts as the main bottleneck, together with the RAD approach made to help
shorten time release, thus killing long-term maintenance and the life cycle of the
whole application.

The architectures just analyzed compared with performance results

Common platform architectures
Each type of application has its best fitting software architecture. All modern
architectures are somehow derived from layered architecture, although this does not
make them all similar in terms of performance. Often, the same logical architecture is
performed differently. Accordingly, the applied application kind, and often the same
logical architecture, requires some customization to better fit the specific needs of
each platform.

Architecting desktop applications
Since the release of Visual Studio 2008, the main desktop platform framework was
WPF. Although it is possible to use WPF in an event-driven architecture such as the
RAD architecture used in Windows Forms, this is not an efficient solution when
fitted across a WPF project. A similar approach will waste long-term programmer
productivity, without producing any concrete benefit against performance
indicators.

Chapter 2

[59]

A desktop application requires in low latency, low resource usage, good efficiency,
and discrete throughput, while indicators such as scalability and availability are
definitely secondary concerns.

For an internal line-of-business (LoB) data-driven application, the best desktop
application relies on a layered MVVM application on the WPF framework,
released on a 2-tier system architecture. Because of the great low-latency given by
WPF, together with asynchronous programming, maintenance costs of MVVM
architecture, together with a direct connection to any corporate DBMS, are low,
any other external system nullifies the need for middleware or a middle tier with
its own maintenance costs. Obviously, for a corporate application that needs to be
accessed by thousands of employees, a 3-tier or SOA architecture will be mandatory
in order to fulfill scalability needs, reuse logic, and achieve an improved application
decoupling from the underlying database.

The ability to use any multithreading technique in such client applications will also
give the right throughput to fulfill any elaboration need.

A line-of-business application with multiple DBMS persistence storages

Such architecture will also benefit from the automatic release systems that are offered
by Visual Studio with built-in versions and update management, such as ClickOnce.
Alternatively, a XBAP browser-enabled WPF application may be developed, but this
WPF template is slowly being abandoned by Microsoft and by most of the control/
component makers on the market.

Architecting High-performance .NET Code

[60]

The alternative is an SOA-powered architecture that totally differs from a data-
driven architecture, such as the one explained earlier. SOA does its best when a
complex business logic is the primary concern of the whole design.

Find more information about ClickOnce at http://en.wikipedia.org/wiki/
ClickOnce.

Architecting mobile applications
Mobile applications are similar to desktop applications in terms of performance
needs. While the desktop world today is totally confined to enterprise applications,
mobile devices, such as smartphones and tablets, need something similar to the
desktop application. However, they're different because essentially they're usually
consumer-oriented applications.

Mobile applications need very low resource usage, high efficiency, and a good
throughput, if applicable. Indicators such as latency and availability are secondary
concerns while scalability is unnecessary as any other single-user application relying
on external services for data persistence and complex business logics.

Another factor that's important when developing mobile applications, although not
regarding performance, is the need for a reactive UX. A mobile user should never
find his device frozen; the UI must always do something to acknowledge that the
logic is still being executed. Although the same behavior is suggested also for any
desktop class applications, mobile applications specifically need such behavior as
a primary concern. This need does not deal with latency; it is more like a partial
update to the UI, which is made to improve the user experience. Regarding the
system architecture, the target solution for a mobile is a 3-tier architecture with the
first tier made by a huge number of devices. Usually, because of the high fluctuation
of connected devices, a cloud-based release is suggested.

A widely used mobile device web-service based architecture is described in the
following diagram. Reusability of services is available for future versions of mobile
applications:

http://en.wikipedia.org/wiki/ClickOnce
http://en.wikipedia.org/wiki/ClickOnce

Chapter 2

[61]

A 3-tier system serving a mobile application

In Visual Studio 2013, new project templates are available and can be used to create
multiplatform applications. The Universal Apps project helps to create applications
that can work on Windows Phone or Windows with a single shared core logic.

Regarding the architecture, creating a mobile application targeted for a single or
multiple platforms does not change the architecture needs. Usually, a cloud service
provider is used for single mobile applications because Universal Apps may be
targeted for a bigger market, made by a more heterogeneous client style.

Regarding performance, the biggest limitation is the one offered by using a portable
library logic internally in mobile code where a small .NET framework (with less
features) is available. On the other hand, you can execute complex code outside
mobile devices in a web service where there is a full .NET framework stack available.
It offers better features with more performance optimization techniques, along with
virtually infinite computational power.

The usage of a shared logic in a portable library, or using a Universal Apps project
that does the same for us, is priceless for the simplicity of creating a single cross-
platform application. The drawback is that we have to know the limitations behind
such a choice. It is obvious that a shared library can execute only easy tasks with the
small .NET framework available. When things become difficult, is time to move the
needed computation outside the device.

Architecting High-performance .NET Code

[62]

What is the alternative? Creating a 3-tier architecture catching all the complex
logic (see the previous example about the Web) in the middle tier and multiple
presentations for devices and other media. Such a presentation may also use
Universal Apps as development projects. With this choice, we can process complex
logic and huge datasets in a serviced tier without losing the ability to produce a
fashioned mobile application for multiple platforms with as few efforts possible.

Architecting web applications
A theoretically perfect definition of a web application is that it serves thousands
of requests per second, without letting any users feel the traffic on the server. The
technical name for this handling is load sensitivity, a specific performance indicator
that stands for how much a system changes its other performance indicators with
respect to load change. This indicator is definitely part of our simplified meaning of
scalability, because if a system is able to handle millions of requests per second with
a huge performance drop in all other indicators, this is definitely not good scalability.

Thus, the target performance requisite for a web application is low latency or
asynchronous elaboration of jobs in a state-machine workflow manner. High
throughput is necessary, and the same goes for scalability, although this means
sacrificing indicators such as resource usage and efficiency. Availability is a critical
requisite because although we never desire an easy-to-crash system, when dealing
with thousands of requests per second, it is obvious that some of those will fail—such
failures should never reduce the robustness of the whole system. Availability means
that the web application should maintain its healthy status, although some user
requests could fail.

Regarding performance, the most balanced architecture is the 2-tier made on ASP.
NET MVC. This layered architecture gives a good response time and good scalability
and throughput, along with good long-term maintenance level.

Chapter 2

[63]

A 2-tier system serving a layered MVC web application

An alternative is to use the SOA to create multiple functional isles with multiple web
services and persistence storages. This could support heavy loads, extremely high
scalability rate, and very complex logic. Obviously, without any of these specific needs,
its drawbacks will waste any benefit with the cost of a high development effort.

Architecting cloud web applications
What differs from a classic, although not legacy, web application and a cloud one is
mainly the different technology stacks that sometimes bring different architectural
solutions.

Another great difference between these two worlds is the release management.
Something actually difficult when working with a 3-tier architecture is handling
the service versioning that is needed to fulfill future requirements, along with
supporting real time web application subscribed contracts. A typical solution to
release the whole software made of all three tiers in a big-bang way, by releasing all
tiers together. Although this may seem like a good solution, it is usually difficult to
have a new working release of everything, especially when multiple additions are
made to the initially designed system architecture.

Here is where a cloud provider such as Microsoft Azure helps us, because all of our
application tiers are always in the Cloud Service deployment package. We can say
that an Azure Cloud Service always does big-bang releases.

Architecting High-performance .NET Code

[64]

The goal of a 3-tier (and higher) architecture is to externalize core business logic by
the presentation layer, which can be updated in time, or reused by serving different
frameworks, such as the MVC for web, the MVVM for devices, and so on. With a
3-tier architecture and for SOA too, we have the ability to update only a portion of
our application per instance. Obviously, only updates that do not affect other tiers
can be made. This gives a great advantage and enables ease of release management
and saving time.

Another simplification in release management, scalability, and availability, is the
usage of multiple persistence storages, eventually relying on different technologies.
A Microsoft Azure 3-tier architecture with multiple persistence storage and
asynchronous processing that is made with cloud level queues design is described
in the following diagram:

A Microsoft Azure 3-tier architecture

What actually differs from the solution previously seen is the usage of different
persistence storages trying to address a winning solution regarding performance,
such as relational databases or no-SQL repositories, such as a BLOB storage for files.

Chapter 2

[65]

Another interesting difference here is the usage of asynchronous task registration.
An example is the account registration or any high computational or state machine
logic-driven task. With this choice, task data is temporarily stored on a First In First
Out (FIFO) container, a message queue with transactional support and automatic
re-attempt logic that guarantees the message processing. This asynchronous design is
highly scalable and available because in critical load condition, a message will never
be lost or unprocessed; in the worst-case scenario, it might be processed with a bit
of delay.

Performance considerations
When dealing with performance, a lot of little design concerns may improve or
worsen the overall feel of the application. Let's look at the most used or misused
techniques.

Caching, when and where
Caching data means reusing a temporary copy of such data for a short time period,
reducing the need to contact a persistence storage or any external system, such as
a service.

In respect to performance indicators, caching is something that boosts the
throughput and latency of data retrieval by avoiding a round trip to an external
server that is running a database. Meanwhile, caching increases client resource usage
of CPU and memory. Storing temporary data in a cache is something that is fully
handled by a caching framework that has the task of removing old data from the
cache when the imposed timeout occurs, or when there is too much data within the
cache and older (or less used) data must be removed in order to create space for any
new data. This is why when lots of data is deliberately loaded and maintained in
memory, to prevent future data loading at application start, we do not use cache.
We simply load all data into the memory.

Since .NET 4.0, a new assembly containing caching services has been added to the
framework (for old .NET editions, a cache framework was available in the System.
Web namespace). The System.Runtime.Caching.MemoryCache class is used to
manage an in-memory configurable data cache. A distributed cache service for
on-premise or cloud services is available under the name AppFabric Cache.

Architecting High-performance .NET Code

[66]

Caching is a design technique that must work at the boundary of each layer where
it is potentially needed. In multi-tier architectures, the cache is always used at the
boundary of the tier.

A boundary cache: one at tier 1 and one at tier 2

As visible in the preceding diagram, we find two cache proxies at boundaries of tiers.
The one on the left side (at boundary exit) can avoid round trips on the network,
along with avoiding data loading from the following tier. Caching at a boundary exit
is possibly the biggest performance booster against indicators such as latency and
throughput.

The one on the right side (at boundary entrance) can reduce the core logic, and
eventually, core data gateways work when the response is already available. An
instance of this kind of caching is the OutputCache of any ASP.NET application.

In enterprise-level applications, in which many requests are made with a lot of data to
handle, it is a good idea to have the two cache levels working together to reduce any
kind of already-done logic or data retrieval. This is commonly named multilevel cache.

Be cautious to cached item's lifetime, handled with absolute or relative expiration.
Eventually, if a cached item changes it's value before it's cache expiration time then
use object poisioning (it is the art of removing a data entry that is not good to be
committed), especially in distributed cache systems. Also, take care of item assigned
key, expecially when using a multilevel cache, because if such cache has heterogeneous
data entries against the same key, a possible data inconsistency may arise.

PLINQ everywhere
The Integrated in-code querying support made by the LINQ framework in 2007 with
.NET 3.0, changed the mind of developers completely when dealing with data. With
these frameworks, any enumerable data available in .NET or externally with specific
providers (such as a DB), is available to any object filtering/grouping/reshaping
with a single unified querying language.

Chapter 2

[67]

Task Parallel Library (TPL) and PLINQ (LINQ + TPL) did the same thing in 2010,
adding parallel elaboration to any enumerable dataset. The TPL, which will be
discussed later in Chapter 4, Asynchronous Programming, is the basis of all asynchronous
programming model on .NET 4.0 or greater. Things such as asynchronous tasks or
multicore asynchronous execution of any LINQ query definitely cuts the edge with
legacy programming when dealing with computations and iterations.

Dividing thousands of items in to tens of threads may be the best choice when
dealing with a very high throughput demanding code; the sooner the code
terminates its job, the better it is.

When creating applications such as web or serviced types, where any user request
comes across a new thread, creating so many computational threads per user can
produce a worse performance than using normal LINQ instead of PLINQ. Such
thread usage might let you finish the thread pool provision, further reducing
the thread creation time drastically, along with the high resource cost of creating
hundreds of threads.

Although definitely needed, such kinds of applications should avoid multiplying
thread creation by using standard LINQ queries. A detailed overview about PLINQ
and TPL will be available in Chapter 4, Asynchronous Programming.

Inversion of Control (IoC)
This design inverts the usage of references between classes. Usually, a class uses its
references, thus becoming the orchestrator. Inversely, when using the IoC design, a
class asks for any implementation of such a desired interface (contract) and waits for
the factory to be able to find a suitable external class/component to fulfill this need.

Although this choice can lead to writing winning solutions for design (this
depends on the taste of the architect dealing with such architecture), with great
modularization and code reusability, and in respect to module reusability, this
choice is a bit unpredictable regarding performances.

An application may perform well with a good (or fake for testing purposes) external
module and badly with a bad one. It is hard to test something external that was
made by someone else. It is also hard to test something that will be made in the
future, maybe because in a couple of years, new external components will become
available and possibly usable in such applications.

When dealing with such a problem, the performance engineer's job is to isolate the
poorly performing modules within the whole application. This helps to identify the
reason for such bad performance of the external module and helps maintain a secure
application all around, limiting the exploitation made by the assembly injection or
cracking.

Architecting High-performance .NET Code

[68]

Lazy loading
Lazy loading is the art of never preloading data or simple class instances. Like
caching that prevents duplicated logic from being executed, by saving the result,
lazy loading prevents the execution of some logic or data retrieval until it is actually
needed. For instance, Entity Framework (EF) definitely uses a lot of lazy loading
in query execution and query compilation. Chapter 7, Database querying, will focus
entirely on data retrieval with EF.

A lot of attention must be given to what logic or data should be delayed in a lazy
environment. Never delay data that will be requested just a second later or in
massive amounts.

Never use the lazy loading technique for massive amounts of data;
instead, use an asynchronous programming technique.

Regarding performance impact, lazy loading the right data will boost the startup
of the application or the response time of a web application. Some general
improvement in latency will occur too if unnecessary data is loaded when not
needed. Obviously, when an application is completely used by its users, loading all
composing modules, any lazy data could be already loaded without altering any
performance aspect, compared to a non-lazy approach.

Lazy loading first boosts latency time by trying to delay a secondary logic execution
(or data retrieval) to some future time. The drawback happens specifically when a
bad design occurs with intensive single data requests (instead of a single complete
one) or multiple execution of the same logic for lots of items, without relying on any
asynchronous or parallel technique. Lazy loading also alters the execution flow from
an imperative instantiation time to a less predictable one. Debugging will suffer
because of this.

On the contrary, there is pre-loading data. Although this feels like a legacy option, do
not discard it for just this reason. All application level data that can be loaded only
once can definitely be loaded at startup. This will increase at such a time, but with the
right user acknowledgment, like an old-style initialization bar, the user will feel that
the system is loading what is needed, and this is always a good practice, while until the
end, such data will grant the best latency time as it wont incur any retrieval cost.

Usually, mixing caching with lazy or pre-emptive loading is always a bad choice
because they have opposite goals. Caching is for slow-changing data, increasing
initial latency and resource usage for a future improvement in throughput. Lazy
loading, on the other hand, reduces (boost) initial latency by delaying tasks to a short
timed future by drastically reducing the throughput of data retrieval, which usually
lacks any optimization technique.

Chapter 2

[69]

Reusability of code
It is well known that coding is the love of any developer. It is like a special kind
of craziness that takes control of the brain of any developer when a new solution,
algorithm, or logic is actually made. Just like how when someone using Microsoft
Word presses the Save button when they finish writing something new and
important, a developer will try to save the application code when new code is
inserted for future usage. Although any code may be reused by cutting and pasting,
this is not code reusability.

Writing a good component or control is not easy because most of the code must
be reusable. A good component must be autonomous, regarding any eventual
implementation. The more autonomous and agnostic the code is, the easier it
becomes for any future user of such a control.

For instance, Text Box is a text container. It does not matter if it's usually used for
text and not for numbers; it also supports numbers, passwords, and so on. Whoever
made the control had to test all possible usage scenarios, without supporting a single
use case.

Well-performing code should usually be customized to your specific application or
platform needs. Another big deal to face is that eventually, unbelievably complex code
structures are made to achieve the best abstraction level without keeping in mind
maintainability or any design/architectural guideline. This is where performance
optimization cannot be applied. In a certain way, performance and agnosticism are
opposites. This is not an always-true rule, but it is the most frequent situation.

This is why most component/control products on the market are usually extremely
complex to use and slow at runtime, as some kind of customization in look or
behavior is needed.

Agnostic versus idiom-powered
implementation
An idiom is a specific technical implementation of a feature provided by a single
framework.

For instance, a .NET interface is an idiom because in a lot of other programming
languages, it just does not exist. With such interfaces, a lot of designs and paradigms
become available. What if we want to write an easily portable (between different
languages) application? We would lose all such creational availability.

Architecting High-performance .NET Code

[70]

Entity Framework offers many idioms, such as the ability to have an object-oriented
expression tree that represents the query as an object through the IQueryable
interface. More details can be found in in Chapter 7, Database Querying. Any
instance of an object query based on such an interface is able to give anywhere,
until executed, the ability to alter the query that will be executed, maybe changing
requested data or modifying request filters, like in an object-oriented dynamic SQL.
Another instance is using EF (an agnostic ORM framework) to add thousands of
inserts, instead of using an SQL Client provider's specific feature such as the Bulk
Insert. The ability to use any database is a great design goal, but giving a boost of 10
times the insertion time is actually a goal, too.

An agnostic code is some kind of really reusable and application or target unaware
code. Agnostic code cannot use any idioms. This is the price to be paid for such
reusability.

As seen earlier, in terms of mobile platform architectures, agnostic code is easily
movable between platforms or projects. Although a shared assembly is also usable
by all platforms, why do we let the more powerful system pay for the limitation of
the smaller one? We definitely need to make the right choice regarding our specific
priority here.

Short coding
Coding without wasting rows is usually something good for each aspect. It shows
the developer's skills, along with the understanding of the business problem. An
extremely short code, such as when playing a code-golf challenge, may also produce
some drawbacks.

Generally, although short coding may reduce debugging easiness and code
understanding to other developers, it may improve better performance results.
A single huge LINQ query versus a multiple-step one usually produces better SQL
(if applicable) or a better in-memory query.

It's also true that the CLR virtual machine (the details are given in the next chapter)
optimizes some code execution to improve code speed at runtime, but such speed
can be wasted by a simple academically-styled code that greatly improves the main
tenability. Sure, this can happen; but at what price?

Short coding with several comments may be the right balance for real-world
programming.

Chapter 2

[71]

Further reading on short coding:
http://en.wikipedia.org/wiki/Code_golf

Remote computation
In the Microsoft programming world, remote computation never had its time.
Web services helped a lot, but add a server class system is usually only a bit more
powerful than a desktop class system, so we have had to wait for the mobile devices
era to need this kind of logic again. Microsoft's Cortana (voice-assistant) or Apple's
Siri is a direct example of this design.

The remote computation occurs when we use the device as a console for a more
powerful system. In the example of the two vocal assistants, the device uses its
microphone and speaker to get the request from the user and then give back the
answer in the form of an audio wave.

Local devices cannot process vocal analysis at the same time with the same accuracy
and updatability of a remote system that is always available to users through an
Internet connection.

Remote computation virtually extends the throughput of any device, because as time
changes, new resources are added to the cloud provider that is playing the vocal
assistant, along with server-side optimizations eventually.

When we have to face great computational goals, we may use the same solution by
using cloud systems or legacy intranet systems. Usually, a secondary, smaller, and
weaker edition of the same system is already released at the client's level to maintain
the availability of the whole system because of eventual Internet congestion, or
simply due to unavailability.

Cloud versus on-premise applications
We have seen cloud architectures and abilities at different points in this chapter.

The choice to use a cloud provider as a system to drive our application is usually
based on expected client needs. On premise applications, this might work fine if
there is a finite number of clients that usually use a certain kind of logic within
corporate level system capabilities. What if we need to load a huge dataset that
exceeds internal system capabilities for only two days? Using a cloud provider,
we can use an extremely enterprising class of virtual hardware for a few hours.

http://en.wikipedia.org/wiki/Code_golf

Architecting High-performance .NET Code

[72]

Talking about performance, a cloud provider has virtually infinite scalability and
availability, along with very good efficiency and throughput. Latency and resources
usage are based entirely on our design, but features systems as distributed cache
and FIFO queues are available immediately via a cloud provider. Asking for these
features in a legacy company may need time and lot of IT management effort. In
addition, scaling a web server is easy in every company's internal data center by
buying some network balancer, while letting scale (in high availability) an SQL
Server or an MSMQ cluster virtually without limits is not so easy at all!

Several performance benefits are available through using a cloud provider, along
with any new features available in the future through this winning technology.

Summary
This chapter showed the importance of performance within the software architecture
design time. An overview of the most widely adopted and responsive platform-
oriented design and architectures gave you the vision of how to address emerging
software development in the direction of well-performing goals.

In the next chapter, we will dive into the internal architecture of CLR to give the you
the ability to understand exactly how to produce well-performing code.

Further reading:

•	 Fowler, Martin. Patterns of Enterprise Application Architecture,
Addison Wesley, 2002

•	 Saltarello. Esposito. Microsoft .NET: Architecting Applications
for the Enterprise, Microsoft Press, 2014

[73]

CLR Internals
This chapter will guide you into the knowledge and usage of the virtual machine in
which any Microsoft .NET Framework-based language can actually run: the Common
Language Runtime (CLR). Good knowledge of such internal functionalities will help
any programmer produce better code, avoiding bottlenecks and anti-patterns.

The important aspects that make .NET so easy to use and powerful at the same time
have all been explained in depth in this chapter. Go through this exciting chapter and
learn how to work with the most beautiful programming language framework there is.

In this chapter, we will cover the following topics:

•	 Memory management
•	 Garbage collection
•	 Working with AppDomains
•	 Threading
•	 Multithreading synchronization
•	 Exception handling

Introduction to CLR
CLR is the environment that actually executes any .NET application. A widely
used definition is that the CLR is the virtual machine running any .NET application.
Although this simple explanation is somehow correct, we must take a step back and
explain in depth what C#, Visual Basic, and CLR are.

CLR Internals

[74]

.NET is a managed programming language that offers the ability to program any
kind of application, target any platform, abstract what is usually said to be low-level
programming, such as memory management, object initialization, and finalization,
and access any operating system, and so on.

C#, VB.NET, F# and many other high-level languages from Microsoft for the .NET
Framework and other non-Microsoft languages such as COBOL.NET are human-
oriented languages with proper design pros and cons that are usually linked to
historical trade area or scientific needs. For instance, management software was
usually made in Visual Basic, while low-level programming in C/C++, scientific
programming was done with FORTRAN, and banking programming in COBOL.

When dealing with .NET Framework, all compliant languages (such as C# and
VB) are actually only the frontend a programmer uses to interact with real .NET
language, such as Microsoft Common Intermediate Language (CIL).

When a programmer builds code with Visual Studio, they trigger the compiler to
produce the CIL from the source code. The compiler itself is also usable by any
command prompt or script because of being a simple console application.

Together with the Intermediate Language (IL), any compiler of .NET languages also
produces relative metadata that is definitely required for datatype validation in class
member invocation, to reflect types, members, and so on.

This module was made by IL and metadata, together with a Windows Portable
Executable (PE32 or PE32+ for a 64-bit target platform) header, defines the kind of
module (.dll or .exe) and the CLR header. This header defines the version of .NET
used and relative options, produce a file package known as Assembly, which also
contains the eventually linked resources such as images, icons, and so on.

Chapter 3

[75]

In the following diagram, we see an assembly with all its layers, showing the .NET
physical file structure with the system headers, CLR header, code metadata, and body:

From C# to an Assembly

Once the compilation succeeds, we can launch the application (or link the DLL as a
reference to other applications) with the usual double-click. The PE32(+) header will
run the executable as an unmanaged application, which will try to load the .NET
environment by launching the CLR with relative configuration as available in the
assembly file, such as the .NET version, requested target platform, and others. On a
system without the proper .NET framework runtime available, the whole application
will break execution while on any valid system, the application will run normally.

The following is a simplified block diagram that shows the CLR process
execution sequence:

The application startup lifecycle within the CLR

CLR Internals

[76]

Once the metadata loads successfully, any method is ready to run within the
Just-in-Time (JIT) compiler of the CLR. JIT compiles the platform-independent
CIL language in a platform-specific optimized language that can be executed on
the underlying system, method by method, in a lazy fashion. Once a method is
actually compiled, this compiled code is injected into the in-memory metadata of
the assembly, so as to not have to compile it again until the application remains
loaded in the memory.

Although the best performance ever available is provided by using native coding,
only experts are able to reach similar results. Otherwise, CLR and its JIT compilation
produce great code that often performs fine (and sometimes better) than compared
to any unmanaged application, if mid-level programmers are involved in the coding.
This is because of the great optimization work done by Microsoft when converting
CIL to native code.

This comparison is similar to what happens if we compare an OR/M (such as Entity
Framework) querying performance with one of the stored procedures . Although the
best-ever results are obtainable only by using specific DBMS features available with
specific dialect-SQL coding (such as T-SQL, PL-SQL, and so on), only an expert SQL
developer is able to provide such kind of querying.

A moderately experienced C# developer is more able at object querying (and
such querying is more platform- and database-producer independent) than in
specific SQL coding. This is why, for the most part, object-querying will always
produce better performing queries, compared to SQL querying performances. In
the future, relational databases will be superseded by NoSQL databases. So, for
young developers, learning SQL coding is something actually secondary in their
professional growth schedule.

Memory management
When talking about memory management, any code programmer will remember
how native languages opened their doors to any kind of issues and bottlenecks.
This can also mean that the expert C++ programmer could have access to some
customization to produce better memory management than CLR does. However,
this relates only to very few people in very few cases.

Theoretically speaking, when a programmer needs to use some memory to store any
value in an operation, they need to:

Chapter 3

[77]

•	 Define a variable of the chosen type
•	 Allocate enough free memory to contain the variable:

°° Reserve some bytes in the operating system's memory stack to
contain the variable

•	 Use the variable:
°° Instantiate the variable with the needed value
°° Do whatever is needed with such variable, for example - Define

variable, allocate memory, use your variable, deallocate memory

•	 De-allocate the freed memory:

°° Once the variable becomes useless, free the related memory for
further usage by this or other applications

Other than the usual generic programming issues with this step sequence, such as
using the wrong type, wasting memory, or going against an overflow of the type,
the trickiest memory management issues are memory leak and memory corruption:

•	 Memory leak: This occurs anytime we forget to de-allocate memory,
or by letting the application always consume more memory, and offer an
easy-to-predict result.

•	 Memory corruption: This occurs when we free memory by de-allocating
some variable, but somewhere in our code, we still use this memory (because
it is referred by another variable as a pointer), unaware of such de-allocation.
This happens because when we de-allocate variables and relative memory,
we must always be sure of updating (or de-allocating) all eventually related
pointers that otherwise may still point to a freed memory area that could also
contain other data.

CLR helps us by managing memory itself. Thus, in the .NET world, the previous list
becomes the following:

•	 Declaring a variable of any type
•	 Instantiating the variable with a valid value:

°° CLR makes the difference between value-types and reference-types
regarding initial values of variables before assignation. Reference-
types have an initial value of null (Nothing in VB). Value-types
(all primitive-types except string and object), instead, are always
valued at the default value. Value-types may support a null value
through the class Nullable<T> or by adding the character ?at the
type ending, like int? (only in C#).

•	 Using the variable

CLR Internals

[78]

It is obvious here that memory management is done completely by the CLR, which
allocates the needed variable memory plus some overhead (a pointer to a type
instance and a sync block index) as soon as the variable is instantiated. A target-
system sized integer pointer that points to an instance of type class represents the
type of the variable and the another value of the same size used for synchronizing
the variable usage. This means that on any 32-bit system, any variable will add 2
x 32-bit values, while for 64-bit systems, a variable will add 2 x 64-bit values. This
explains the small additional memory usage that occurs on 64-bit systems. All those
objects are arranged in sequence in a memory area called the managed heap.

C#/VB variable value assignation is a bit different. C# uses early binding,
with a built-in type-safe validation for constant and (often) variable values.
A down-casting (in terms of numeric type capability) must pass through
a cast operation such as int a = (int)longValue;. When a value
outside of the smaller type ranges enters the cast, -1 becomes the new
value. VB, instead, uses late binding that accepts any value assignation
(with built-in support for conversions and parsing), by default. Because
of the lazy approach, in VB, a numeric conversion must be compliant to
the new type's value ranges. Here, a cast operation does not occur, so an
eventual OverflowException is the result of a code like this: Dim a As
Integer = longValue.

The CLR also manages another internal memory area called the managed stack.
Each thread handles its own stack (this is why often we refer it as the thread stack)
by storing all value-types values in a Last-In-First-Out (LIFO) manner. The purpose
of CLR is to abstract memory allocation; thus, directly trying to impact that the kind
of memory used is actually some kind of inference in CLR itself. To be honest, it's
possible to use explicitly stack memory by switching to C# in unmanaged coding
(with a proper keyword, such as unsafe) using C++ related techniques, or using
only value-types such as integers, double, chars, and so on in managed C#. When
using managed C#, the stack memory is available only until we program in a
procedural way. This happens because any type within an object (a reference-type)
will be stored in the managed heap. Although storing data in the stack will boost the
value read/write speed in the memory, it is like programming in the 1960s.

An interesting read is an article by Eric Lippert, the Chief Programmer of C#
compiler team at Microsoft. Find it at http://blogs.msdn.com/b/ericlippert/
archive/2010/09/30/the-truth-about-value-types.aspx.

The heap is a growing list of bytes that contains a First-In-First-Out (FIFO) collection.
It is always slightly bigger than needed, as it quickly accepts new values, exactly the
same as any .NET List<T> collection. The CLR also has a pointer or cursor that is
always pointing to the newly available space for any future allocation.

http://blogs.msdn.com/b/ericlippert/archive/2010/09/30/the-truth-about-value-types.aspx
http://blogs.msdn.com/b/ericlippert/archive/2010/09/30/the-truth-about-value-types.aspx

Chapter 3

[79]

Here is a diagram showing such FIFO-like memory handling with the new-item
cursor:

The heap memory allocation model

This heap population job occurs on a portion of memory that is assigned to the
application by the CLR, the address space, in which the Windows environment
is actually a Virtual Address Space because it can span from physical memory
to page files. This whole application's memory space is then divided into
regions—small memory portions side by side to assemble table pages for the
compiled CIL, plus metadata and other regions that are eventually created as
more memory requests occur.

Memory availability in Microsoft Windows systems and CLR

Although for Windows-based systems the theoretic virtual memory available for
application address space is 8 TB (64-bit) or 1.5 GB (32-bit), always remember that
the address space may be fragmented. This will easily reduce real address space
availability for simple variables like huge collections. This is why a CLR running at
32-bit usually raises an OutOfMemoryException error at around 1 GB of memory
consumption if we simply populate a huge List<T>.

CLR Internals

[80]

The difficult part of the job of CLR is freeing such a heap: instead of an unmanaged
language in which this job is assigned to the programmer, here, the CLR de-allocates
the memory just when the variable exits the scope (if it lives in a managed stack) or
when there is no more reference by any other object and it exits the scope (if it lives
in a managed heap). This job occurs in a lazy fashion with an internal heuristic that
also looks for memory requests. This is why, on a system with high address space
available, an application that consumes 100 MB of memory can simply continue
consuming the same amount of memory, although it is not used anymore if the
application does nothing. However, as soon as possible, when the application needs
to create new objects, it could trigger the memory cleanup of the heap by starting an
operation named garbage collection.

Garbage collection
As mentioned, garbage collection (GC) is the engine that cleans up the memory of
managed heap within the CLR with an internal algorithm and its own triggering
engine. Although it is impossible to know exactly when the GC will fire, its
algorithm is detailed in many articles on MSDN and relative blogs and also has
known trigger points, for instance, when CLR needs lots of new memory. The GC
memory cleanup operation is named collect.

Microsoft gives us the ability to trigger the collector manually, by invoking the
GC.Collect method. Although this option is available, manually triggering the
GC is something to avoid because every usage will interfere with CLR abstraction
of the underlying system.

The GC collection occurs multiple times until the process is alive and running.
Its execution has the goal of freeing the memory from objects that are not in use
anymore by any code block, or that are not referred by any other living object.

Any surviving object is then marked as a survivor object. This marking phase is
crucial in the GC logic. Each survival will increment the survival counter for such
an object. The first time an object is analyzed by the GC is in generation zero of
its mark counter. Multiple survivals will bring this counter to generation-1 or
generation-2. In CLR, the most unchanging objects (survived through all GCs) are
marked in generation-2.

Garbage collection always starts by pausing all threads of the application, and then
the managed heap is scanned to find unused objects and can service them. Following
is a graphical representation of such behavior:

Chapter 3

[81]

The garbage collection algorithm

Always bear in mind that the variables seen in the preceding diagram are objects that
can contain any number of variables, their self-like basic types, and links to other
objects, such as the C item that is associated with the E item.

As mentioned, the GC can trigger its job any time that the application needs to
instantiate new objects. This occurs because once started, the CLR defines a threshold
in bytes, that is, new object breaks to trigger the GC algorithm. Newly-created objects
are referred in the GC as gen-0 (generation-0) objects; they are never analyzed for
marking. GC has a generational algorithm that focuses on newly-created objects
because they are thought to be the most likely to exit the scope; instead, the objects
first created when an application starts are thought to be the most enduring ones.
Once an object passes the marking phase, it may be promoted to gen-1; thus, it
becomes a long-living object. Any generation has its size limit, as defined by the
CLR, so it may also happen that the GC analyzes all objects from gen-0 and gen-1.
Usually, the GC only collects the generation that exceeds its size limit.

CLR Internals

[82]

The choice of what generation to collect is ordered from the newer (gen-0) generation
up to the older (gen-2) generation. Because of this, it may happen that if a generation
always exceeds its limit, the following generations can never be collected, wasting
some memory. Obviously, a manual collection trigger will start the collection of all
generations. Although this may seem to be an issue, this algorithm is the result of
an intensive study that proves this is generally the most efficient way to clean up
memory usage.

Once an object survives two collections from gen-0, GC promotes it to gen-1. Once
a gen-1 object survives four collections, it is promoted to gen-2. Gen-2 is the less-
changing generation; it is also the less-collected one.

Here is a graphical representation of objects within the virtual address space of
the managed heap showing different generations. Bear in mind that, as stated
previously, physical fragmentation may occur, although virtual memory seems to be
a straight collection of objects.

The managed heap with all available generations

When a process starts, the GC logic within the CLR assigns a size limit for each
generation. During runtime of a process, the GC increments or decrements the
generation size according to the execution of the application. This means that the
GC somehow has a self-learning algorithm that tunes itself, based on how many
objects it de-allocates or does not de-allocate.

Exceeding of the allocation threshold is not the only trigger for the GC to start
collecting dead objects; it may also run when Windows signals low physical
memory, when an AppDomain class exits (including the main one), or when the
code fires GC.Collect() method.

The GC is unable to clean up objects somehow linked to static
fields because their scope is the application itself. So use this design
carefully, or else a memory leak could happen.

Chapter 3

[83]

Large object heap
CLR divides objects in two sizes: small (less than 85,000 bytes) and large (equal to or
greater than 85,000 bytes). All large objects are allocated in a specific heap, the large
object heap (LOH). The managed heap is valid for each heap, although the LOH has
some limitations because of the size of objects contained within.

With the small object heap, the GC can avoid memory corruption, memory
fragmentation, and memory leak because any object is only stored once. It's still
possible to create thousands of non-useful items, but this is a behavior of the
programmer that CLR cannot avoid. Instead of talking about LOH, the GC will
avoid the compacting phase, reducing the thread suspend-time and avoiding costly
CPU-intensive work, such as moving large objects in memory. This choice boosts the
collection latency (time to finish) but obviously does not help memory consumption
by never releasing the unused space between adjacent objects. Instead, the unused
space at extremes is always released.

Another great limitation to dealing with using LOH is trying to reduce the collection
time. All objects within LOH are marked as gen-2. This means that CLR expects that
objects always live long. This causes a great impact on application performance if
their real usage is short-lived because the great size will easily exceed the gen-2 size
limit, starting the collection phase of such an internal, and usually never-changing,
heap area.

Collection tuning
By invoking the GC.Collect method (or when the CLR responds to the Windows
low-memory event), it is possible to force start the collection algorithm of any
generation. Although this may happen (I always suggest never invoking it
manually), GC usually works in a triggered fashion, trying to balance the lowest
application performance impact with the needed memory cleanup.

Garbage collection is divided into two different algorithms that fulfill different
application needs. We can choose which garbage collection type to use within our
application only once in the application configuration file (or Web Configuration
File), under the runtime node, where we can switch from the workstation collection
(default) to the server collection:

 <runtime>
 <gcServer enabled="true" /> <!-- enables Server mode -->
 </runtime>

CLR Internals

[84]

When the GC works in the workstation mode (default), the CLR tries to balance the
overall execution time of the collection with a few resources, by using a single thread
at normal priority to analyze and eventually release the unused memory blocks.

When the GC works in server mode (available only for multicore systems), it creates
a thread per CPU core and divides the collection work across those threads that will
clean up all managed heaps and LOHs related to all application threads executing on
the same CPU core.

Using server collection, we can definitely boost memory cleanup throughput by
using multiple cores and avoiding a single thread crossing all CPU cores available.
The drawback is higher resource usage because of the increased thread count. The
server collection should be configured only for applications that are specific to the
server side (such as a database or web server), preferring single-application servers.

The LatencyMode property is another configuration available to optimize collection
intrusiveness and triggering.

The default collect mode is the interactive (or concurrent) mode. With this mode, the
collection marking phase works in a background thread (or multiple threads, if using
server collection) and only the memory release and compact works by suspending all
application threads. This mode is maybe the most balanced one, trying to have good
throughput in memory release without consuming too many resources.

The opposite is the batch mode (or called as the non-concurrent mode). This mode is
configurable within the configuration file, as shown earlier. It can be configured by
disabling the concurrent mode, as seen in the following code—the configuration is
combinable with the request for using server collection:

<runtime>
 <gcConcurrent enabled="false"/> <!-- enables Batch mode -->
</runtime>

The batch mode is the most powerful in terms of throughput of memory release
because it simply suspends all application thread execution and releases all unused
memory. Obviously, this choice can break application latency because an application
request must await the completion of the collection.

Other LatencyMode configurations are available only at runtime by setting
the GCSettings.LatencyMode property with a value of the GCLatencyMode
enum that contains the batch and interactive values, plus the LowLatency,
SustainedLowLatency and NoGCRegion values.

Chapter 3

[85]

By choosing the LowLatency mode (available only for workstation collection), gen-2
collection is suspended completely, while gen-0 and gen-1 are still collected. This
option should be used only for short periods when we need a very low interference
of the GC during a critical job; otherwise, an OutOfMemoryException error may
occur. When manually triggering the collector with the related GC.Collect method,
or when a system is low on memory, a gen-2 collection will occur, although in the
LowLatency mode. One of the best benefit when using the LowLatency mode is
increase in application responsiveness because of the collection of only small items.
The GC itself uses resources minimally, but in the meanwhile, the process can still
consume lots of memory because of the inability to collect long-visibility objects
from gen-2.

The LowLatency mode is configurable, as shown in the following code:

var previousTiming = GCSettings.LatencyMode;
try
{
 //switch to LowLatency mode
 GCSettings.LatencyMode = GCLatencyMode.LowLatency;

 //your code
 //never use large short-living objects here
}
finally
{
 GCSettings.LatencyMode = previousTiming;
}

The SustainedLowLatency mode is similar to an optimized interactive mode that
tries to have more memory retention than the interactive mode actually uses. A
complete collection usually occurs only when Windows signals a low-on-memory
state. Contrary to the LowLatency mode, which must be used only for a very short
duration, the SustainedLowLatency mode can be chosen as an interactive or batch
mode without the occurrence of an out-of-memory state. It is obvious that a system
with more physical RAM is the best candidate for such a configuration.

An LOH with short-living large objects (that is never collected)
plus the interactive mode and the workstation mode usually equals
a high memory-consuming application with great freeze time
occurring, because of the slow mono-threading garbage collection.

CLR Internals

[86]

Within .NET 4.6 (currently in preview mode), a new mode is available for the
extreme purpose of disabling the whole garbage collection process. This mode is
named NoGCRegion. This choice gives all computational resources to application
code, disabling any GC threads. Obviously, such behavior can easily create an
OutOfMemoryException condition, and its usage should occur only for very short
time periods in extreme cases.

This enumeration value (GCSettings.LatencyMode) is in read-only. This means that
we cannot write the GCSettings.LatencyMode property specifying the NoGCRegion
value. Instead, we need to signal such a critical section by invoking a couple of
methods, one to enter and one to exit this section. Here's a code example:

try
{
 var neededMemoryAmount = 1000000000;
 //asks GC to stop collecting
 GC.TryStartNoGCRegion(neededMemoryAmount);

 //do your critical stuffs
}
catch (Exception)
{
 //handle the exception
}
finally
{
 //resume previous collect mode
 GC.EndNoGCRegion();
}

Bear in mind that in the .NET history, the GC algorithm has been updated multiple
times, and this may occur again in future versions.

To know more about the fundamentals of garbage collection, visit https://msdn.
microsoft.com/en-us/library/ee787088(v=vs.110).aspx.

Working with AppDomains
An application domain (AppDomain) is a kind of virtual application. It contains
and runs code, starts multiple threads, and links to any needed reference, such as
external assemblies or COM libraries.

https://msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx

Chapter 3

[87]

Application domains can be created to isolate portions of an application and prevent
them from directly contacting other portions; to configure different kinds of security
authorizations, such as with Code Access Security (CAS) techniques to limit I/O
access, network access, and so on; or to simply increment the whole security level of
the application by isolating different application contexts from others.

AppDomain usage for reference and/or CAS isolation

The application domains can be unloaded if needed, allowing us to work in a reliable
way with multiple external plugins or extensions, like the ones from IoC designs, or
simply because we need to load multiple versions of the same assembly all together.

External libs loaded at runtime in temporary AppDomains

CLR Internals

[88]

Application domains also give us the ability to start multiple applications within a
single Windows process that usually consumes several resources in multiple logical
applications that are exposed as different application domains, each isolated by
others as if they're different processes. The Windows Communication Foundation
(WCF) handles its clients in a design similar to the following diagram:

Different assembly rules exposed as different DLL files, all loaded as different virtual processes in the same
physical process as AppDomains

Keep in mind that the main goal of using an AppDomain class is always isolation.
Thus, often some resource usage is incremented. An example is that when loading
the same assembly in multiple AppDomains, it will produce multiple instances
of the Type class for each type that is contained in the referred assembly by each
AppDomain. Although the JIT is made only once, the compiled IL is copied across
the multiple type-and-metadata tables that live within each AppDomain. The only
objection is for the neutral AppDomain, which is a kind of shared AppDomain across
all the processes; it does not waste resources and cannot be unloaded by invoking
the AppDomain.Unload method.

The creation of an AppDomain class is straightforward, as shown in the following
code snippet:

var d = AppDomain.CreateDomain("AppDomain1");
d.ExecuteAssembly("ConsoleApplication2.exe");
AppDomain.Unload(d);

Chapter 3

[89]

The Load method of the AppDomain class always loads an assembly in the current
application domain. Thus, the best way to load assemblies within a defined
AppDomain class is within its code using the Assembly.Load method or by calling
ExecuteAssembly method, as shown in the preceding example.

The CreateDomain method actually returns a proxy to the real objects, giving the
other application domains the ability to invoke some method on the remote one
(AppDomain1). Those proxies are part of .NET Remoting, a distributed programming
framework derived from CORBA. Currently, WCF TcpBinding is compatible with
Remoting, although it is heavily evolved and optimized to fulfill SOA requirements.

When multiple objects live in multiple AppDomain, some communication may occur
between those domains. Other than the option of using an external component,
such as a file or service such as any WCF binding, any instance in any AppDomain
can produce a Remoting proxy to invoke distance methods. Such instances will be
marshaled (copied between process boundaries) by value, serializing the object itself,
or by reference, with a specific class heritage. Here's an example of this:

var domain1 = AppDomain.CreateDomain("domain1");
var domain2 = AppDomain.CreateDomain("domain2");

var byValueType=typeof(MarshalledByValueClass);
var byValue = (MarshalledByValueClass)domain1.CreateInstanceAndUnwrap(
byValueType.Assembly.GetName().FullName, byValueType.FullName);

var byReferenceType=typeof(MarhalledByReferenceClass);
var byReference = (MarhalledByReferenceClass)domain2.CreateInstanceAn
dUnwrap(byReferenceType.Assembly.GetName().FullName, byReferenceType.
FullName);

Console.WriteLine("MarshalledByValueClass -> domain: {0}\
tisProxy: {1}", byValue.DomainName, RemotingServices.
IsTransparentProxy(byValue));
Console.WriteLine("MarhalledByReferenceClass -> domain: {0}\tisProxy:
{1}", byReference.DomainName, RemotingServices.IsTransparentProxy(byR
eference));

AppDomain.Unload(domain1);
AppDomain.Unload(domain2);
Console.ReadLine();

CLR Internals

[90]

These new classes are available, although from another assembly:

[Serializable]
public sealed class MarshalledByValueClass
{
 public string DomainName { get; set; }
 public MarshalledByValueClass()
 {
 DomainName = AppDomain.CurrentDomain.FriendlyName;
 }
}

public sealed class MarhalledByReferenceClass : MarshalByRefObject
{
 public string DomainName { get; set; }
 public MarhalledByReferenceClass()
 {
 DomainName = AppDomain.CurrentDomain.FriendlyName;
 }
}

In this example, two different objects cross the AppDomain execution. The first object
(named byValueType) used the by-value marshaling by being decorated with the
SerializableAttribute class. This means that when the object crossed boundaries
of two AppDomains, it got serialized/de-serialized each time. Bear in mind that the
caller is within the default AppDomain class.

The second object (named byReferenceType), instead, used the by-reference marshaling
by inheriting the MarshalByRefObject class. Actually, such an object never crosses
the boundaries of the two AppDomains. A remote proxy is available to remote the
AppDomains classes to invoke remote methods and read/write remote properties.

The first difference is that for the marshaled-by-value instance, only the constructor
actually works in the other domain. Thus, after it is unloaded, the object copy is
still alive in the calling domain, ready to do anything else. For the marshaled-by-
reference instance, the object actually lives in the remote domain; hence, any proxy
usage after the domain unloads will raise an AppDomainUnloadedException event,
proving that a single instance of such an object exists.

This is the execution console output:

MarshalledByValueClass -> domain: domain1 isProxy: False
MarhalledByReferenceClass -> domain: domain2 isProxy: True

Chapter 3

[91]

IDisposable interface
The IDisposable interface, when implemented in any class, informs CLR
that such an object will handle some external resource or unmanaged handle.
The best behavior here is to free up or disconnect from such costly resource as
soon as possible, although the object collection will occur later with GC logics.

Once such an interface is implemented, the usage must tell CLR that cleanups
of such resources must occur at a specific time, creating a local scope with usual
parenthesis in C# or a specific End instruction in VB, by using the using keyword:

class Program
{
 static void Main(string[] args)
 {
 using (var instance = new ExternalResourceContainer())
 {

 } //here automatically CLR will invoke .Dispose method
 }
}

public class ExternalResourceContainer : IDisposable
{
 private object externalResource;
 public void Dispose()
 {
 //release resource usage
 }
}

We may also invoke the Dispose method manually if we cannot use the using block.

Threading
A thread is a virtual processor that can run some c3ode from any AppDomain.
Although at any single time a thread can run code from a single domain, it can cross
domain boundaries when needed. Indeed, in the preceding example, there is only a
single thread that did the entire job for all three AppDomains.

CLR Internals

[92]

Without diving into the internals of Windows threading, we should know that a CLR
thread is actually a Windows thread. This one has a high creation cost (even worse
for 64-bit systems) as in any other virtualization technique, although in Windows,
creating a process is even worse in terms of resource usage. This is why Microsoft
has supported multi-threading programming in its operating systems since the age
of Windows NT.

What is important to know is that a thread never has 100 percent of CPU's time
because its CPU time is reassigned to any new pending-for-work threads every 30
milliseconds (a time-slice) by acting what we call in Windows a context switch.

This ensures that at the operating system level, no process can harm the system
stability by locking every CPU forever and thus stopping critical OS tasks. This is
why Windows is definitely a time-sharing operating system.

In the .NET world, a thread can be created by starting the Run method of the Thread
class. Thus, the simple instantiation of the object does nothing more than instantiate
any other class. A thread must always have an entry point: a starting method that
can have an initialization parameter, usually referred to as state— that is actually
anything within the .NET class hierarchy.

A Priority configuration is available and mapped to Windows' thread in order to
alter the results in the context-switching search for new threads. Usually, priorities
higher than normal are dangerous for system stability (in rare cases, letting the
OS reach the starvation state that occurs when the highest-priority thread prevents
context switching), while lower priorities are often used to process no CPU-time
critical operations.

An IsBackground property is available to any Thread class instance. Setting
this property to True will signal to the CLR that this is a non-blocking thread—a
background thread—in that its execution does not keep a process in the running
state. On the other hand, upon setting it to False (default value), CLR will consider
this thread as a foreground thread, in that its execution will keep the whole process
in the running state.

Operations such as the animation of a clock may surely be made on a background
thread, while the non-blocking UI operation of saving a huge file on a network
resource is surely a candidate to run in a foreground thread, because although
asynchronous against the UI, the foreground thread is also needed, and an eventual
process premature exit should not kill such a thread. It is clear that CLR will
automatically kill any background thread when a process ends without giving them
any time to preserve any eventually needed data consistency.

Chapter 3

[93]

Here's an example code on creating a background thread with low-priority CPU
time:

static void Main(string[] args)
{
 //thread creation
 var t1 = new Thread(OtherThreadStartHere);

 //set thread priority at starting
 t1.Priority = ThreadPriority.Lowest;

 //set thread as background
 t1.IsBackground = true;

 //thread start will cause CLR asks a Thread to Windows
 t1.Start();

 //lock current executing thread up to the end of the t1 thread
 t1.Join();
}

private static void OtherThreadStartHere()
{
 //eventually change priority from innerside
 Thread.CurrentThread.Priority = ThreadPriority.Normal;

 //do something
}

The Thread class has specific methods to configure (as said) or handle thread lifetime,
such as Start, to create a new OS thread and Join to kill a OS thread, and get back the
remote thread status on the caller thread, such as any available exception.

Other methods are available, such as Suspend, Resume (both deprecated), and
Abort (still not deprecated). It is easy to imagine that by invoking the Suspend or
Resume method, the CLR will pause the thread from running or resuming work.
Instead, the Abort method will inject a ThreadAbortException event at the current
execution point of the thread's inner code, acting as a thread stopper. Although this
will actually stop the thread from working, it is easy to infer that it is not an elegant
solution because it can easily produce an inconsistent data state.

CLR Internals

[94]

To solve this issue, CLR gives us the BeginCriticalRegion method to signal the
beginning of an unable-to-abort code block and an EndCriticalRegion method to
end such a code portion. Such methods will prevent any ThreadAbortException
event being raised in such a portion of the atomic code. Here's an example code:

static void Main(string[] args)
{
 //thread creation
 var t1 = new Thread(OtherThreadStartHere);

 //thread start will cause CLR asks a Thread to Windows
 t1.Start();

 //do something

 t1.Abort();
}

private static void OtherThreadStartHere()
{
 for (int i = 0; i < 100; i++)
 {
 Thread.Sleep(100);

 //signal this is an atomic code region
 //an Abort will never break execution of this code portion
 Thread.BeginCriticalRegion();

 //atomic code
 //atomic code
 //atomic code
 //atomic code

 Thread.EndCriticalRegion();
 }
}

When dealing with iterated functions within a thread, instead of
using Abort and Critical sections to gently signal the thread to
exit, simply use a field as a flag (something like canContinue) to
check within the iterated function, such as while(canContinue).
This choice will behave in a similar way to the previous example,
without having to raise a useless exception.

Chapter 3

[95]

Other interesting methods of the Thread class are Sleep (accepts a millisecond
parameter) and Yield. The Sleep method suspends the thread for the given time;
alternately, when 0 is used as a parameter, it signals a context switch to change the
state to suspended, eventually causing higher-priority threads to use the thread
time-slice as soon as possible. A better choice—when you want to recycle some of
the time-slice time if a thread actually ended its job prematurely—is to use the Yield
method that will give the remaining time-slice the next queued thread as soon as
possible, waiting for the CPU time of the same processor. Here is an example code:

private static void OtherThreadStartHere()
{
 //change state to suspended and wait 1000 ms
 Thread.Sleep(1000);

 //change state to suspended
 Thread.Sleep(0);

 //give remaining time-slice to the next queued thread of current
CPU
 Thread.Yield();
}

If we are in search of an alternative to create a thread from scratch with the Thread
class, we could use an already created-thread preserved in CLR for any unimportant
jobs that we can usually make in a background thread. These threads are contained
in a collection named as ThreadPool. Many other CLR classes use threads from the
ThreadPool collection, so if a lot of jobs are going to be queued in it, remember to
increase the minimum and maximum pool size:

static void Main(string[] args)
{
 //set minimum thread pool size
 ThreadPool.SetMinThreads(32, 32);

 //set maximum thread pool size
 ThreadPool.SetMaxThreads(512, 512);

 //start a background operation within a thread from threadpool
 //as soon as when a thread will became available
 ThreadPool.QueueUserWorkItem(ExecuteInBackgroundThread);
}

private static void ExecuteInBackgroundThread(object state)
{
 //do something
}

CLR Internals

[96]

Multithreading synchronization
When dealing with multiple threads, data access in fields and properties must
be synchronized, otherwise inconsistent data states may occur. Although CLR
guarantees low-level data consistency by always performing a read/write operation,
such as an atomic operation against any field or variable, when multiple threads
use multiple variables, it may happen that during the write operation of a thread,
another thread could also write the same values, creating an inconsistent state of the
whole application.

First, let's take care of field initialization when dealing with multithreading. Here is
an interesting example:

// a static variable without any thread-access optimization
public static int simpleValue = 10;

// a static variable with a value per thread instead per the whole
process
[ThreadStatic]
public static int staticValue = 10;

//a thread-instantiated value
public static ThreadLocal<int> threadLocalizedValue = new
ThreadLocal<int>(() => 10);

static void Main(string[] args)
{
// let's start 10 threads
 for (int i = 0; i < 10; i++)
 new Thread(IncrementVolatileValue).Start();

 Console.ReadLine();
}

private static void IncrementVolatileValue(object state)
{
 // let's increment the value of all variables
 staticValue += 1;
 simpleValue += 1;
 threadLocalizedValue.Value += 1;

 Console.WriteLine("Simple: {0}\tLocalized: {1}\tStatic: {2}",
simpleValue, threadLocalizedValue.Value, staticValue);
}

Chapter 3

[97]

Here is the console output:

Simple: 18 Localized: 11 Static: 1
Simple: 19 Localized: 11 Static: 1
Simple: 18 Localized: 11 Static: 1
Simple: 18 Localized: 11 Static: 1
Simple: 19 Localized: 11 Static: 1
Simple: 18 Localized: 11 Static: 1
Simple: 19 Localized: 11 Static: 1
Simple: 19 Localized: 11 Static: 1
Simple: 19 Localized: 11 Static: 1
Simple: 20 Localized: 11 Static: 1

The preceding code example simply incremented three different integer variables
by 1. The result shows how different setups of such variable visibility and thread
availability will produce different values, although they should all be virtually equal.

The first value (simpleValue) is a simple static integer that when incremented by
1 in all ten threads creates some data inconsistency. The value should be 20 for all
threads—in some threads, the read value is 18, in some other 19, and in only one
other thread is 20. This shows how setting a static value in multithreading without
any thread synchronization technique will easily produce inconsistent data.

The second value (the staticValue) is outputted in the middle of the example
output. The usage of the ThreadStaticAttribute legacy breaks the field
initialization and duplicates the value for each calling thread, actually creating 10
copies of such an integer. Indeed, all threads write the same value made by 10 plus 1.

The most decoupled value is obtained by the third value (threadLocalizedValue),
shown at the right of the example output. This generic compliant class
(ThreadLocal<int>) behaves as the ThreadStaticAttribute usage by multiplying
the field per calling thread with the added benefit of initializing such values with an
anonymous function at each thread startup.

CLR Internals

[98]

C# gives us the volatile keyword that signals to JIT that the field access
must not be optimized at all. This means no CPU register caching,
causing all threads to read/write the same value available in the main
memory. Although this may seem to be a sort of magic synchronization
technique, it is not; it does not work at all. Accessing a field in a volatile
manner is a complex old-style design that actually does not have reason
to be used within CLR-powered languages.
For more information, please read this article by Eric Lippert, the Chief
Programmer of the C# compiler team in Microsoft, at http://blogs.
msdn.com/b/ericlippert/archive/2011/06/16/atomicity-
volatility-and-immutability-are-different-part-three.
aspx.

More than the standard atomic operation given by CLR to any field, only for primitive
types (often limited to int and long), CLR also offers a memory fence, such as field
access utility named Interlocked. This can make low-level memory-fenced operations
such as increment, decrement, and exchange value. All those operations are thread-
safe to avoid data inconsistency without using locks or signals. Here is an example:

//increment of 1
Interlocked.Increment(ref value);
//decrement of 1
Interlocked.Decrement(ref value);
//increment of given value
Interlocked.Add(ref value, 4);
//substitute with given value
Interlocked.Exchange(ref value, 14);

Locks
Different synchronization techniques and lock objects exist within CLR and outside
of Windows itself. A lock is a kind of flag that stops the execution of a thread until
another one releases the contended resources. All locks and other synchronization
helpers will prevent threads from working on bad data, while adding some overhead.

In .NET, multiple classes are available to handle locks. The easiest is the Monitor
class, which is also usable with the built-in keyword lock (SyncLock in VB). The
Monitor lock allows you to lock access to a portion of code. Here is an example:

private static readonly object flag = new object();
private static void MultiThreadWork()
{
 //serialize access to this portion of code
 //using the keyword

http://blogs.msdn.com/b/ericlippert/archive/2011/06/16/atomicity-volatility-and-immutability-are-different-part-three.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/06/16/atomicity-volatility-and-immutability-are-different-part-three.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/06/16/atomicity-volatility-and-immutability-are-different-part-three.aspx
http://blogs.msdn.com/b/ericlippert/archive/2011/06/16/atomicity-volatility-and-immutability-are-different-part-three.aspx

Chapter 3

[99]

 lock (flag)
 {
 //do something with any thread un-safe resource
 }

 //this code actually does the same of the lock block above
 try
 {
 //take exclusive access
 Monitor.Enter(flag);

 //do something with any thread un-safe resource
 }
 finally
 {
 //release exclusive access
 Monitor.Exit(flag);
 }
}

Signaling locks
All those locks that inherit the WaitHandle class are signaling locks. Instead of
locking the execution code, they send messages to acknowledge that a resource
has become available. They are all based on a Window kernel handle, the
SafeWaitHandle, this is different from the Monitor class that works in user mode
because it is made entirely in managed code from CLR. Such low-level heritage in
the WaitHandle class hierarchy adds the ability to cross AppDomains by reference,
inheriting from the MashalByRefObject class.

More powerful than the Monitor class, the Mutex class inherits all features from the
Monitor class, adding some interesting features, such as the ability to synchronize
different processes working at the operating-system level. This is useful when
dealing with multi-application synchronization needs.

Following is a code example of the Mutex class usage. We will create a simple
console application that will await an operating-system level synchronization lock
with the global name of MUTEX_001.

Please start multiple instances of the following application to test it out:

static void Main(string[] args)
{
 Mutex mutex;
 try

CLR Internals

[100]

 {
 //try using the global mutex if already created
 mutex = Mutex.OpenExisting("MUTEX_001");
 }
 catch (WaitHandleCannotBeOpenedException)
 {
 //creates a new (not owned) mutex
 mutex = new Mutex(false, "MUTEX_001");
 }

 Console.WriteLine("Waiting mutex...");
 //max 10 second timeout to acquire lock
 mutex.WaitOne();

 try
 {
 //you code here
 Console.WriteLine("RETURN TO RELEASE");
 Console.ReadLine();
 }
 finally
 {
 mutex.ReleaseMutex();
 Console.WriteLine("Mutex released!");
 }

 mutex.Dispose();
}

Like the Monitor class, the Semaphore class enables us to lock a specific code portion
access. The unique (and great) difference is that instead of allowing a single thread to
execute such a code-block, the Semaphore class allows multiple threads all together.
This class is a type of a limiter for limiting the resource usage.

In the following code example, we will see the Semaphore class is configured to
allow up to four threads to execute all together—other threads will be queued until
some allowed thread ends its job:

class Program
{
 static void Main(string[] args)
 {
 for (int i = 0; i < 100; i++)
 new Thread(AnotherThreadWork).Start();

Chapter 3

[101]

 Console.WriteLine("RETURN TO END");
 Console.ReadLine();
 }

 //4 concurrent threads max
 private static readonly Semaphore waiter = new Semaphore(4, 4);

 private static void AnotherThreadWork(object obj)
 {
 waiter.WaitOne();

 Thread.Sleep(1000);
 Console.WriteLine("{0} -> Processed", Thread.CurrentThread.
ManagedThreadId);

 waiter.Release();
 }
}

Other widely used signaling lock classes are ManualResetEvent and the
AutoResetEvent class. The two implementations simply differ in terms of the
manual or automatic switch of the signal state to a new value and back to the
initial value.

The usage of those two classes is completely different when compared to all classes
seen before, because instead of giving us the ability to serialize thread access of
a code-block, these two classes act as flags giving the signal everywhere in our
application to indicate whether or not something has happened.

For instance, we can use the AutoResetEvent class to signal that we are doing
something and let multiple threads wait for the same event. Later, once signaled,
all such threads could proceed in processing without serializing the thread
execution, for instance, when we use locks instead, like all others seen earlier,
such as the Monitor, Mutex, or Semaphore classes.

Here is a code example showing two threads, each signaling its completion by the
manual or the automatic wait handle, during which the main code will await the
thread's completion before reaching the end:

static void Main(string[] args)
{
 new Thread(ManualSignalCompletion).Start();
 new Thread(AutoSignalCompletion).Start();

 //wait until the threads complete their job

CLR Internals

[102]

 Console.WriteLine("Waiting manual one");
 //this method simply asks for the signal state
 //indeed I can repeat this row infinite times
 manualSignal.WaitOne();

 Console.WriteLine("Waiting auto one");
 //this method asks for the signal state and also reset the
value back
 //to un-signaled state, waiting again that some other code
will
 //signal the completion
 //if I repeat this row, the program will simply wait forever
 autoSignal.WaitOne();

 Console.WriteLine("RETURN TO END");
 Console.ReadLine();
}

private static readonly ManualResetEvent manualSignal = new
ManualResetEvent(false);
private static void ManualSignalCompletion(object obj)
{
 Thread.Sleep(2000);
 manualSignal.Set();
}

private static readonly AutoResetEvent autoSignal = new
AutoResetEvent(false);
private static void AutoSignalCompletion(object obj)
{
 Thread.Sleep(5000);
 autoSignal.Set();
}

In this case, all such functionalities are overshot by the Task class and the Task
Parallel Library (TPL), which will be discussed throughout Chapter 4, Asynchronous
Programming and Chapter 5, Programming for Parallelism.

Moreover, in .NET 4.0 or later, the Semaphore and the ManualResetEvent classes
have alternatives in new classes that try to keep the behavior of the two previous
ones by using a lighter approach. They are called ManualResetEventSlim and
SemaphoreSlim.

Chapter 3

[103]

Such new slim classes tend to limit access to the kernel mode handle by
implementing the same logic in a managed way until possible (usually when a little
time passes between signaling). This helps to execute faster than the legacy brothers
do. Obviously, those objects lose the ability to cross boundaries of app domains or
processes, as the WaitHandle hierarchy usually does. The usage of those new classes
is identical to previous ones, but with some simple method renaming.

New classes are available in .NET 4 or greater: CountdownEvent and Barrier.
Similar to the two slim classes we just saw, these classes do not derive from the
WaitHandle hierarchy.

The Barrier class, as the name implies, lets you program a software barrier.
A barrier is like a safe point that multiple tasks will use as parking until a single
external event is signaled. Once this happens, all threads will proceed together.

Although the Task class offers better features in terms of continuation, in terms of
more flexibility, the Barrier class gives us the ability to use such logic everywhere
with any handmade thread. On the other hand, the Task class is great in continuation
and synchronization of other Task objects. Here is an example involving the Barrier
class:

private static readonly Barrier completionBarrier = new Barrier(4,
OnBarrierReached);

static void Main(string[] args)
{
 new Thread(DoSomethingAndSignalBarrier).Start(1000);
 new Thread(DoSomethingAndSignalBarrier).Start(2000);
 new Thread(DoSomethingAndSignalBarrier).Start(3000);
 new Thread(DoSomethingAndSignalBarrier).Start(4000);

 Console.ReadLine();
}

private static void DoSomethingAndSignalBarrier(object obj)
{
 //do something
 Thread.Sleep((int)obj); //the timeout flowed as state object
 Console.WriteLine("{0:T} Waiting barrier...", DateTime.Now);

 //wait for other threads to proceed all together
 complationBarrier.SignalAndWait();
 Console.WriteLine("{0:T} Completed", DateTime.Now);
}

CLR Internals

[104]

private static void OnBarrierReached(Barrier obj)
{
 Console.WriteLine("Barrier reached successfully!");
}

The following is the console output:

17:45:41 Waiting barrier...
17:45:42 Waiting barrier...
17:45:43 Waiting barrier...
17:45:44 Waiting barrier...
Barrier reached successfully!
17:45:44 Completed
17:45:44 Completed
17:45:44 Completed
17:45:44 Completed

Similar to the Barrier class, the CountdownEvent class creates a backward timer to
collect multiple activities and apply some continuation at the end:

private static readonly CountdownEvent counter = new
CountdownEvent(100);
static void Main(string[] args)
{
 new Thread(RepeatSomething100Times).Start();

 //wait for counter being zero
 counter.Wait();

 Console.WriteLine("RETURN TO END");
 Console.ReadLine();
}

private static void RepeatSomething100Times(object obj)
{
 for (int i = 0; i < 100; i++)
 {
 counter.Signal();
 Thread.Sleep(100);
 }
}

An interesting overview of all those techniques is available in this article, available
on the MSDN website at http://msdn.microsoft.com/en-us/library/
ms228964(v=vs.110).aspx.

http://msdn.microsoft.com/en-us/library/ms228964(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms228964(v=vs.110).aspx

Chapter 3

[105]

Drawbacks of locks
Use lock techniques carefully. Always try to avoid any race condition that happens
when multiple different threads are fighting each other in trying to access the same
resource. This produces an inconsistent state and/or causes high resource usage
too. When a race condition happens in the worst possible manner, there will be
starvation for resources.

Starvation happens when a thread never gets access to CPU time because different
threads of higher priority take all the time, sometimes also causing an operating
system fault if a thread in a loop-state is unable to abort its execution when running
at highest priority level (the same of the OS core threads). You can find more details
on resource starvation at http://en.wikipedia.org/wiki/Resource_starvation.

With the wrong locking design, an application may fall in the deadlock state. Such
a state occurs when multiple threads wait forever, each with the other, for the same
resource or multiple resources without being able to exit this multiple lock state.
Deadlock often happens in wrong relational database designs or due to the wrong
usage of relational database inner lock techniques. More details on the deadlock
state can be found at http://en.wikipedia.org/wiki/Deadlock.

Instead, with managed synchronization techniques such as spin-wait based algorithms
(like the one within SemaphoreSlim class), an infinite loop can occur, wasting CPU
time forever and bringing the application into a state called livelock, which causes
the process to crash for the stack-overflow condition, at a time. For more details on
livelock, visit http://en.wikipedia.org/wiki/Deadlock#Livelock.

Exception handling
Exception handling is the black art of doing something to repair an unpredicted error
or malfunction. Within CLR, anytime something happens outside our prevision,
such as setting an Int16 typed variable with a value outside valid ranges, the CLR
will handle such an event by itself, creating an instance of an Exception class and
breaking the execution of our code, trying instead to find some other code able to
handle (a.k.a catch) such an exception.

Any Exception class is populated with all useful details regarding what just
happened, like a simplified error text (within the Message property), the StackTrace
that explains exactly the whole method call hierarchy, and other details. Often,
instead of a simple Exception class, an inheritance child is instantiated to collect
specific additional details or simply to define the kind of exception just raised.
Indeed, setting an outranged value within an Int16 typed variable will raise an
OverflowException event in place of a simple Exception event.

http://en.wikipedia.org/wiki/Resource_starvation
http://en.wikipedia.org/wiki/Deadlock
http://en.wikipedia.org/wiki/Deadlock#Livelock

CLR Internals

[106]

As just said, an exception is usually handled within a .NET-based application in
response to an unpredicted error, although an exception is actually a special GoTo
statement that will alter the control-flow of our application. This is the why its called
as an exception instead of an error.

Anytime an error happens, or simply when the flow cannot proceed as normal, an
exception is created and raised (raising an exception actually starts the control-flow
alteration) to avoid completing a method run, maybe, because its data is inconsistent.
We can also create our exceptions regarding our business, components, or helpers/
frameworks if special parameters are needed to flow.

Carefully create and handle exceptions because of the cost the CLR incurs when
any exception is raised. Although an exception will start a control-flow alteration,
at the beginning, CLR will compute the full call stack of the executing thread. This
is a CPU-intensive operation that actually stops the thread from running any other
code. This is proof that Microsoft considers the entire exception-handling framework
as error management. Therefore, it is impossible to create a multiple control-flow
application using exception handling without enabling great wastage of resources.
This means that, if we still need to be creating multiple control-flow applications,
we will still need to use the goto keyword.

Here is a graphical representation that shows the control-alteration made by
any exception:

A flow diagram of an exception with its control-flow in search of a continuation

As seen in the preceding diagram, when the control-flow changes, the CLR searches
for some catch code-block. This may be locally, or at any calling level, up to the
program's Main method. Here is a classical implementation in C#:

int a = 0;

try

Chapter 3

[107]

{
 //normal control-flow
 a = 10;
 a = a / int.Parse("0"); //this will raise a
DivideByZeroException
}
catch (DivideByZeroException dx)
{
 //altered control-flow if CLR raises DivideByZeroException
 Console.WriteLine(dx.Message);
}
catch (Exception ex)
{
 //altered control-flow if CLR raises any other exception
 Console.WriteLine(ex.Message);
}
finally
{
 //usually used for cleanup resources
 //or restore data state

 a = 0;
}

The CLR executes the code within the try block; then, when an exception is raised,
CLR searches the best-fit altered control-flow by matching handled exceptions (with
the catch keyword) with the exception raised. The search is from top to bottom and
supports class hierarchy. This means that the less specific exception (the one handled
with the generic Exception class) must be always the last one. Otherwise, other
exceptions will never be matched.

In the preceding example, there is a catch block for such an exact exception raised,
so the flow will continue in that block. After any try or catch block, the finally
block is invoked, if present (optional).

A try-catch block can be nested in others if needed, although this may lead to a control
flow that is tricky to understand with all those alterations. By nesting exceptions, CLR
still goes in search of a catch block from the deeper code row where the exception has
originated, flowing up to the process' Main method. Such exceptions lift, like an air
bubble in the water, it lets programmers work with exception-handing search as made
by CLR from the deeper code to the most outer one (the Main method), the name of
exception bubbling.

CLR Internals

[108]

Raising new exceptions is actually simple; it is enough to use the throw keyword
and pass the new exception:

throw new Exception("HI");

Any time an exception is raised somewhere, the related AppPool is notified of the
FirstChanceException event that actually runs before the bubbling occurs—in
other words, at the start of the bubbling.

During the bubbling, if the CLR cannot find any valid catch block, the related
AppDomain (the one where the exception originated) is notified on the
UnhandledException event. Although this cannot handle the exception as a
super catch block can, it can somehow notify application users or the system
administrator gracefully before the critical exit of the process. Here is an such
an example:

static void CurrentDomain_UnhandledException(object sender,
UnhandledExceptionEventArgs e)
{
 //contains exception details
 var ex = e.ExceptionObject;

 //if true the process will terminate
 var willKillCLR = e.IsTerminating;
}

static void CurrentDomain_FirstChanceException(object sender,
FirstChanceExceptionEventArgs e)
{
 //contains exception details
 var ex = e.Exception;
}

After the UnhandledException event occurs, the AppDomain class is unloaded by CLR.

A special case occurs when another compiler raises a non Common Language
Specification (CLS) compatible exception (such as raising a string exception or int
exception—classes that do not inherit from the Exception class). Although this is a
rare opportunity, some external vendor language implementation could work with
such behavior. In this case, the CLR will raise a RuntimeWrappedException event
with the ability to read raw exception data, such as an int value or a string value,
as an internal exception.

Chapter 3

[109]

Another special case to be aware of is that a finally block—although it is usually
called, anything that can happen within a catch block—cannot run if the executing
thread is killed by unmanaged code, by invoking the Win32 KillThread or
KillProcess method.

Obviously, in such cases, Windows will also kill the whole process with anything
within. The only leak that will still survive will occur when you launch an external
process driven by your application that somehow was killed by Windows. In this
case, the finally block is avoided and the external process can remain in memory.
A widely-used solution is to always check if zombie external processes are still alive
from previous executions of the application, when we start a new instance of such
an application.

Summary
In this chapter, we looked into CLR internals with regard to compilation and
memory management, the two most important abstractions that CLR offers. Thread
management, synchronization, and event handling were discussed to give the
developer the ability to interact with all specific tools and techniques CLR offers
regarding the tricky aspects of programming.

In the next chapter, asynchronous programming techniques such as task creation,
maintenance, executing, and tuning will be analyzed in depth.

Further reading:
•	 Russinovich, Mark. Windows Internals, 6th edition, Microsoft

Press, 2012
•	 Richter, Jeffrey. CLR via C#, 4th edition, Microsoft Press, 2013

[111]

Asynchronous Programming
This chapter will dive into the asynchronous elaboration techniques available within
the .NET framework.

Here we will explain the following features, techniques, and frameworks:

•	 Asynchronous programming theory
•	 Asynchronous Programming Model (APM)
•	 Event-based Asynchronous Pattern (EAP)
•	 Task-based Asynchronous Pattern (TAP)
•	 Async/await operator

•	 Task optimization and CLR tuning
•	 Task tweaking
•	 Task UI synchronization

Understanding asynchronous
programming
Multi-threaded programming happens when we use multiple threads to execute
our code. The added benefit is the increased CPU power available by using
multiple threads.

Asynchronous programming happens anytime we move the execution of any our
code from the main thread to another one and then back to the first one to catch
any result or acknowledgement. Thus, the difference between multi-threaded and
asynchronous programming is that the catching of the result happens within the
asynchronous one. Otherwise, it's called multi-threaded programming. For instance,
a background thread providing some data in a polling way is simply another
multi-threaded one.

Asynchronous Programming

[112]

Asynchronous programming theory
The first thing to bear in mind when talking about asynchronous programming is
what the market actually perceives as asynchronous programming (also because
Microsoft tends to drive people in this direction with its frameworks) is the ability
to keep the UI unlinked to the code behind the waiting time. A strong proof of such
a direction is the obligation to use asynchronous programming for any Windows
Phone and Windows Store application. Although this choice is understandable
because it drives programmers to create apps as the market expects, it also misguides
programmers regarding the concept of asynchronous programming theory.

In multi-threaded programming, we create multiple virtual processors (threads)
able to execute our code for long-time operations and without the need to participate
in the same job. This means that different threads may do different things. In
multi-threading, any thread does its job while trying to avoid any resource sharing
with other threads, because of the cost of lock synchronization this sharing will
imply, as seen in the Multithreading synchronization section in Chapter 3, CLR Internals.
It is like executing multiple applications in the same process or dividing macro
features of the same application across available cores.

In asynchronous programming, we create multiple threads to execute a single
short-timed job (usually involving different external systems) that must end
(or continue) all together.

A chat application is an example of a multi-threaded program, an application that
consists of two threads. A thread for read data from other participants, and another to
write data back to the participants. The two threads have different goals, although they
can sometimes exchange or share data. Those threads have a long life and behave as
two different applications each integrating with the other only when needed.

An asynchronous programmed example application, instead, creates four threads to
save data in four different CSV streams, later compressed into a single ZIP file. What
makes such an example perfect for asynchronous programming is the short life of
each single thread, the unified software barrier where all threads wait for each other
to produce a single ZIP file, and the completely cohesive thread behavior.

Two main asynchronous programming designs are available to developers.
A blocking one, which happens when the calling thread waits for all asynchronous
threads to proceed all together, or an event signaling based one, where each
asynchronous thread acknowledges the main thread by invoking CLR events.

Chapter 4

[113]

Asynchronous programming approaches – blocking vs. event signaling

As visible in the preceding figure, asynchronous execution may happen in a blocking
way with multiple threads that are waited for by the main thread, with signalers
such as the WaitHandle hierarchy, as seen in the Multithreading synchronization
section Chapter 3, CLR Internals.

Obviously, the .NET framework's observer pattern implementation made with
delegates and events is usable and thus, an asynchronous callback handler may
be invoked in an operation-starting instance to complete the whole job. If desired,
another signaling lock may be used here to continue all together in the blocking way,
but again, on another thread.

Before .NET 4, Microsoft allowed asynchronous programming with two main
different techniques, one for desktop class applications and another more generic
one. Although when programming for .NET 4.5.x, the new frameworks do exist, a lot
of SDKs, from Microsoft and other vendors, still support the legacy pattern. Thus, a
good knowledge of those techniques is still needed for any programmer who wants
to be compliant with all asynchronous designs from Microsoft and also wants to
understand the architectural concerns that lie behind the mere technical skill.

Let's look at them in detail.

Asynchronous Programming

[114]

Asynchronous Programming Model
(APM)
The Asynchronous Programming Model (APM) is one of the oldest patterns
introduced by Microsoft in .NET 1.0 back in 2001 for asynchronous programming
handling.

The pattern is easy. To start a deferred job, you simply start such a job by using a
Delegate (remote method invoker) and then get an object back of type IAsyncResult
to know the status of such a remote operation. Here an asynchronous programmed
application to compute file hashes. The application will add a "." to the Starting
data computation initial message to acknowledge to the user that the application is
still processing. The following examples use the blocking approach:

static void Main(string[] args)
{
 //a container for data
 var complexData = new byte[1024];

 //a delegate object that gives us the ability to trigger the
pointed method in async way
 var dataDelegate = new Action<byte[]>(ComputeComplexData);

 Console.Write("Starting data computation...");

 //start retrieving complex data in another thread
 IAsyncResult dataStatus = dataDelegate.BeginInvoke(complexData,
null, null);

 //waiting the completation
 while (!dataStatus.IsCompleted)
 {
 Console.Write(".");
 Thread.Sleep(100);
 }

 Console.WriteLine(" OK");

 //instantiate a delegate for hash elaboration in async way
 var hashDelegate = new Func<byte[], string>(ComputeHash64);

 Console.Write("Starting hash computation...");

Chapter 4

[115]

 IAsyncResult hashStatus = hashDelegate.BeginInvoke(complexData,
null, null);

 //waiting the completion
 while (!hashStatus.IsCompleted)
 {
 Console.Write(".");
 Thread.Sleep(100);
 }

 //this time the async operation returns a value
 //we need to use the delegate again to catch this value from
the other thread
 var hash = hashDelegate.EndInvoke(hashStatus);

 Console.WriteLine(" OK");

 Console.WriteLine("END");
 Console.ReadLine();
}

static void ComputeComplexData(byte[] data)
{
 var r = new Random();
 Thread.Sleep(3000);
 r.NextBytes(data);
}

public static string ComputeHash64(byte[] data)
{
 using (var engine = new System.Security.Cryptography.
MD5CryptoServiceProvider())
 {
 Thread.Sleep(3000);
 var hash = engine.ComputeHash(data);
 return Convert.ToBase64String(hash);
 }
}

The code is very easy. The class that helps make things asynchronous here is the
Delegate class. Here, we use the pre-generated versions, Action<T> and Func<T>,
compliant with the generic pattern, which helps us use any feature required of such
Delegate objects without having to declare a specific one each time.

Asynchronous Programming

[116]

A Delegate object is an object-oriented method pointer with a
lot of added features such as asynchronous support and multiple
method handlers. Any CLR event is a Delegate too. Such a class gives
us the ability to invoke any remote method in a synchronous way
(with the usual .Invoke method), or in an asynchronous way with
BeginInvoke/EndInvoke, as visible in the preceding example. As
mentioned earlier, the IsCompleted property gives us feedback about
the remote execution completion of all pointed remote methods.

The usage of such a blocking asynchronous operation, without the need to block the
execution of the main thread, helps create respondent UXs as a download popup, or
special import/export features.

A simple asynchronous download popup

There are a lot of SDKs that give us the ability to use APM patterns like in the
preceding example. In .NET 4.0, many core-framework APM implementations have
been updated to the new TAP framework (discussed later in this chapter in the Task-
based Asynchronous Pattern (TAP) section). Here's another APM example showing
network communication with the IDisposable/using pattern:

static void Main(string[] args)
{
 //running in .NET 4.0

 var url = "http://www.google.com";

 Console.Write("Asking for {0}", url);

 //create a new web request for given url
 var request = WebRequest.Create(url);

 //start collecting response in async way

Chapter 4

[117]

 var responseStatus = request.BeginGetResponse(null, null);

 //waiting the completation
 while (!responseStatus.IsCompleted)
 {
 Console.Write(".");
 Thread.Sleep(100);
 }
 Console.WriteLine(" OK");

 //a size counter
 int size = 0;

 //catch back on the main thread the response
 using (var response = request.EndGetResponse(responseStatus))
 //open the stream to access the response data
 using (var stream = response.GetResponseStream())
 //open a reader for such data
 using (var r = new StreamReader(stream, Encoding.UTF8))
 //until data is valid
 while (!r.EndOfStream && r.Read() >= 0)
 size++;

 Console.WriteLine("Total size: {0:N1}KB", size / 1024D);

 Console.WriteLine("END");
 Console.ReadLine();
}

In the preceding second code example, we found the ability to use the APM with .NET
assemblies. The usage is very straightforward. As visible in the two examples given,
the IAsyncResult type gives us the ability to wait for completion in a polling way
by repetitively checking the IsCompleted property value. The additional ability to
wait for such completion with a WaitHandle class is interesting, as already seen in the
Multithreading synchronization section in Chapter 3, CLR Internals. Here's an example:

//alternative 1:
//waiting the completation
while (!status.IsCompleted)
 Thread.Sleep(100);

//alternative 2:
//waiting the completation with the signaling event lock
status.AsyncWaitHandle.WaitOne();

Asynchronous Programming

[118]

Although the WaitHandle class based alternative may seem to be more comfortable
than the one that uses the polling property check, the difference is that the polling
one also gives us the ability to update the UI while waiting. Instead, the WaitHandle
class will simply stop the execution of the thread where such an object is being
waited on. Bear in mind that multiple threads can wait together at the same time as
the IAsyncResult completion status or wait handle, without any issues (until this
brings some other resources to the race condition).

In addition to the blocking wait, as said at the beginning of the paragraph, we have
the ability to catch the completion of an asynchronous method execution, to another
asynchronous method by passing a Delegate object, which represents a callback
method. If multiple callbacks are caught in the same handler, a state parameter can
help in its handling. Using a callback method gives us a more event-based approach.
Consider that the callback executes in the same thread as the asynchronous
processing. Here is an example with a single callback method:

static void Main(string[] args)
{
 var invoker = new Func<int>(OnCreateInteger);

 //trigger 3 invocations sending the same invoker as the state
 to the ending handler
 invoker.BeginInvoke(OnHandleInteger, invoker);
 Thread.Sleep(100);
 invoker.BeginInvoke(OnHandleInteger, invoker);
 Thread.Sleep(100);
 invoker.BeginInvoke(OnHandleInteger, invoker);

 Console.WriteLine("MAIN THREAD ENDED");
 Console.ReadLine();
}

private static void OnHandleInteger(IAsyncResult ar)
{
 //the state contains the sent invoker var invoker =
(Func<int>)ar.AsyncState;

 Console.WriteLine("Async operation returned {0}",
invoker.EndInvoke(ar));
}

private static int OnCreateInteger()
{
 Thread.Sleep(3000);
 //returns a random integer
 return DateTime.Now.Millisecond;
}

Chapter 4

[119]

Event-based Asynchronous Pattern
(EAP)
The Event-based Asynchronous Pattern (EAP) is a specific design pattern to
standardize event-based asynchronous programming features. Such a design is
available in multiple classes from .NET itself and is available and suggested in all
our implementations if applicable.

Unlike the previously seen APM, in this pattern, any method that supports
synchronous execution will add an overloaded method for an asynchronous
invocation. The result, instead, will be available only to a specific predefined
callback method, one for each available method, within the class itself.

Here is an example showing the WebClient class downloading some web page data:

static void Main(string[] args)
{
 //a simple web client
 var client = new WebClient();

 //register for result callback
 client.DownloadDataCompleted += client_DownloadDataCompleted;

 //invoke asynchronous request
 client.DownloadDataAsync(new Uri("http://www.google.com"));

 Console.WriteLine("MAIN THREAD ENDED");
 Console.ReadLine();
}

static void client_DownloadDataCompleted(object sender,
DownloadDataCompletedEventArgs e)
{
 //this callback receives the whole response (data and status)

 //data
 byte[] downloadDataResult = e.Result;

 //eventual exception
 Exception ex = e.Error;

 Console.WriteLine("Downloaded {0:N1}KB",
downloadDataResult.Length / 1024d);
}

Asynchronous Programming

[120]

The same features are available in any of our classes by implementing the same
pattern. Here is an example:

 class Program
 {
 static void Main(string[] args)
 {
 var instance = new SimpleAsyncClass();

 Console.WriteLine("Sync value: {0}",
instance.ProcessSomething());

 //register an event handler to catch the result
 instance.ProcessSomethingCompleted +=
instance_ProcessSomethingCompleted;
 //invoke async invoke
 instance.ProcessSomethingAsync();

 Console.WriteLine("MAIN THREAD ENDED");
 Console.ReadLine();
 }

 static void instance_ProcessSomethingCompleted(object
sender, int e)
 {
 Console.WriteLine("Async value: {0}", e);
 }
 }

 public class SimpleAsyncClass
 {
 public int ProcessSomething()
 {
 Thread.Sleep(3000);
 //returns a random integer
 return DateTime.Now.Millisecond;
 }

 public void ProcessSomethingAsync()
 {
 //initialize a delegate object to make async call
 var invoker = new Func<int>(ProcessSomething);
 //start async elaboration with callback
 invoker.BeginInvoke(InnerProcessSomethingCompleted,
invoker);
 }

 private void InnerProcessSomethingCompleted(IAsyncResult
ar)
 {

Chapter 4

[121]

 //catch the delegate object from async state
 var invoker = (Func<int>)ar.AsyncState;
 //raise the event with computed value
 if (ProcessSomethingCompleted != null)
 ProcessSomethingCompleted(this,
invoker.EndInvoke(ar));
 }

 //the event that is usable for intercepting the computed value
 public event EventHandler<int> ProcessSomethingCompleted;
 }

This simple implementation gives us the ability to understand how EAP works.
The pattern asks us to add some naming conventions such as the syntax Async at
the end of the method or the syntax Completed for the acknowledgement event.

The pattern itself, in its pure version, is more verbose than how it was just seen.
It also requires a specific Delegate declaration for each method (although all with
the same sign), cancellation support, process state notification (the percentage or
completion), and a busy indicator. It is at the discretion of the programmer whether
to implement a pure pattern or a simplified one, as visible in the example just given.

The BackgroundWorker is a component that supports a full EAP with the ability to
run in an asynchronous way and synchronize the UI access by itself (discussed later
in this chapter in the Task UI synchronization section).

Task-based Asynchronous Pattern (TAP)
The Task-based Asynchronous Pattern (TAP) is the newly provided asynchronous
programming framework born in .NET 4. TAP provides features of APM and EAP
with an added signaling lock like an API that offers a lot of interesting new features.

Task creation
In .NET, this asynchronous job takes the name of a task. A task is also a class of the
System.Threading.Tasks namespace. Here is a basic example:

var task = Task.Run(() =>
 {
 Thread.Sleep(3000);
 //returns a random integer
 return DateTime.Now.Millisecond;
 });

Console.Write("Starting data computation...");

Asynchronous Programming

[122]

//waiting the completation
while (task.Status != TaskStatus.RanToCompletion)
{
 Console.Write(".");
 Thread.Sleep(100);
}
Console.WriteLine(" OK");
Console.WriteLine("END");
Console.ReadLine();

The preceding example is similar to the first one shown about the APM. Although a
lambda expression is used here to create an anonymous method implementation, it
is the same as creating a named method like we did in the previous example with the
ProcessSomething instance.

The Task.Run method starts the asynchronous execution of the remote method
provided by the Delegate object (the lambda syntax actually creates a Delegate
object referring to an un-named method). It immediately returns a Task object that
is usable to the query execution status and eventually waits with any wait handle,
shown as follows:

task.Wait();

The preceding lambda-based syntax works on .NET 4.5, while another syntax is
available from .NET 4 with more configurations available:

var task = Task.Factory.StartNew<int>(OnAnotherThread);

Although the two methods are actually the same because the Task.Run method
executes the StartNew method of the default TaskFactory class, by invoking the
StartNew itself, we can also specify customized options regarding task creation and
continuation. In addition, we can create multiple factories, one for each specific group
of tasks of a homogenous configuration with less effort and improved manageability.

A special feature of the TaskFactory class is the ability to marshal the result from
APM's EndInvoke method in a specific task with the FromAsync method. In such
cases, multiple overloads of the same method offer different options such as sending
a state parameter or not sending one.

Chapter 4

[123]

Let's look at a complete example:

static void Main(string[] args)
{
 //the usual delegate for APM
 var invoker = new Func<int>(OnAnotherThread);

 //a task catching the EndInvoke in another asynchronous
method
 var fromAsyncTask =
Task.Factory.FromAsync<int>(invoker.BeginInvoke,
invoker.EndInvoke, null);

 //this usage of the result will internally invoke the Wait
method
 //blocking the execution until a result will become available
 Console.WriteLine("From async 1: {0}", fromAsyncTask.Result);

 //this second overload wants the whole IAsyncResult
 var status = invoker.BeginInvoke(null, null);
 //this will catch the EndInvoke in a task
 var fromAsyncTask2 = Task.Factory.FromAsync<int>(status,
invoker.EndInvoke);

 Console.WriteLine("From async 2: {0}", fromAsyncTask2.Result);

 Console.ReadLine();
}

private static int OnAnotherThread()
{
 Thread.Sleep(500);
 return DateTime.Now.Millisecond; //a random int
}

Actually, the initial section of the code is the best regarding short coding because the
second one also needs an IAsyncResult interface with the need for another variable.

Asynchronous Programming

[124]

Visit the following MSDN link to learn more about the FromAsync method:

http://msdn.microsoft.com/en-us/library/dd321469(v=vs.110).aspx

At the end of the page, we can see the following remark:

This remark warns us about using the overload that wants the whole IAsyncResult.
Instead, it suggests using the one that needs the couple Begin/End statements.

Another useful option that is available when using the TaskFactory method is the
ability to configure how tasks are created; the following code shows an example:

var task1 = Task.Factory.StartNew(() =>
{
 //classic task creation with factory defaults

var task2 = Task.Factory.StartNew(() =>
{
 //task that startup asap
}, TaskCreationOptions.PreferFairness);

var task3 = Task.Factory.StartNew(() =>
{
 //task that will run for a long time
}, TaskCreationOptions.LongRunning);

The TaskCreationOptions enum helps us select between different choices
(members) for task startups. The most interesting one here is the last one, that is,
the LongRunning member. Although this does not change the task startup time, its
creation will occur on a special background thread, without consuming a classic
thread from the ThreadPool class, where the TaskFactory class usually takes
background threads from, for its tasks.

http://msdn.microsoft.com/en-us/library/dd321469(v=vs.110).aspx

Chapter 4

[125]

In theory, although TAP can apply for long-running background work, this is
actually not asynchronous programming. It is multi-threading. In actual fact, this
logic lies in the factory's Scheduler, an instance of the TaskScheduler class, the
object in charge of handling task execution with the best performance. For the
default task scheduler, high throughput is the primary concern. This is why we need
to use the PreferFairness creation option to specify a low-latency startup scenario.

Generically talking, this is a good option because from .NET 4 onwards, good
optimization has been applied on the ThreadPool engine that actually handles
a single global FIFO queue of pending user jobs available for the whole process
without any local or global lock. In addition to this global queue, any nested
task will run on another queue instead, a local queue for each application thread
that is running in a LIFO way is optimized for fast execution, CPU cache access
optimization, and data locality in CLR memory; the following shows an example:

var task = Task.Factory.StartNew(() =>
{
 //will enqueue on global AppPool queue
 var inner = Task.Factory.StartNew(()=>
 {
 //will enqueue on local AppPool queue
 });
});

An important aspect of the System.Threading.ThreadPool class usage is that some
default limitation on thread availability does exist. Such limitations can be set both
at the default pool size (minimum size) and at the maximum size. These defaults are
the logical processor count for the minimum pool size, while the maximum size is
dynamically set by the CLR itself (in older .NET frameworks, it was statically set as a
multiple of the CPU count).

The ThreadPool class exposes static methods to get and set the minimum
(GetMinThreads) and maximum (GetMaxThreads) pool size. Together they expose
the GetAvailableThreads method, which gives us the actual remaining thread
count number that equals the maximum size once it is subtracted from the currently
used thread count. Here is a code example:

int min, minIO, max, maxIO;
//retrieve min and max ThreadPool size
ThreadPool.GetMinThreads(out min, out minIO);
ThreadPool.GetMaxThreads(out max, out maxIO);

//retrieve actually available thread count
int remaining, remainingIO;
ThreadPool.GetAvailableThreads(out remaining, out remainingIO);

Asynchronous Programming

[126]

//set up a new ThreadPool configuration
ThreadPool.SetMinThreads(64, 64);
ThreadPool.SetMaxThreads(2048, 2048);

Please bear in mind that all requests against the ThreadPool class will remain
queued until some threads become available. This is why, if we create infinite
tasks, in a little time, we will exceed the minimum thread pool size, and we will
receive an OutOfMemoryException message. This exception happens because of
the unavailability of adding other user tasks to the pool queue. Another important
thing to know about the ThreadPool thread lifecycle is that CLR preallocates enough
threads as the specified minimum size. When we continue adding threads, until we
reach the maximum size, the CLR will add threads to the thread pool, as we might
expect. The difference is that thread increase happens in a very slow way, adding
only one thread per second. Here is a straightforward example:

int c = 0;
while (true)
{
 Task.Factory.StartNew(() =>
 {
 Console.WriteLine(++c);
 Thread.Sleep(-1);
 }, TaskCreationOptions.PreferFairness);
}

This example will print the number of logical threads on your CPU to a console
output in a short amount of time. Later, a new thread per second count will be
available (and never released), giving us a raw representation of pool increase
timings. Please use this example, because as you learned before, without ever
releasing such threads, the pool queue will reach its limit quickly, causing an
OutOfMemoryException error.

Let's look at a more complete example:

static void Main(string[] args)
{
 //creates a listener for TCP inbound connections
 var listener = new TcpListener(IPAddress.Any, 8080);

 //start it
 listener.Start();

 //accept any client
 while (true)

Chapter 4

[127]

 {
 //get a task for client connection
 var client = listener.AcceptTcpClientAsync();
 //wait for client connection
 client.Wait();

 //once the connection succeeded, it starts a new task
 //for handling communication with this new client

 Task.Factory.StartNew(HandleClientConnection, client,
TaskCreationOptions.PreferFairness);

 //run again to accept new clients
 }
}

private static void HandleClientConnection(object arg)
{
 var client = (TcpClient)arg;
 //do something
}

This example shows you how to use asynchronous programming efficiently to
handle thousands of client connections on the same port. This code has virtually
no limits on the client connection count (but the limit set by Windows itself is
somewhere around 65,000 connections per port). Obviously, as already said before,
although the code is able to accept a virtually infinite number of clients, only a small
number of them will be available to run on our CPU, because of the ThreadPool
timings in its size increase.

The same example made with an old APM instead, will stop accepting clients as soon
as it reaches the ThreadPool default limitations:

static void Main(string[] args)
{
 //creates a listener for TCP inbound connections
 var listener = new TcpListener(IPAddress.Any, 8080);

 //start it
 listener.Start();

 //accept any client
 while (true)
 {
 //start waiting for a client

Asynchronous Programming

[128]

 var status = listener.BeginAcceptTcpClient(null, null);

 //wait for client connection
 status.AsyncWaitHandle.WaitOne();

 //catch the asynchronously created client
 var client = listener.EndAcceptTcpClient(status);

 //once the connection happened, it start a new thread pool
job
 //for handling communication with such new client

 ThreadPool.QueueUserWorkItem(HandleClientConnection,
client);

 //run again to accept new clients
 }
}

private static void HandleClientConnection(object arg)
{
 var client = (TcpClient)arg;
 //IMPLEMENTATION OMITTED
}

Task synchronization
Back to the TaskFactory class, going deeper with regards to nested tasks and
their execution in graph synchronization, we have to differ between attached and
detached tasks. Any task may attach itself to its parent task, if any, although this is
not the default behavior. With the default behavior, child tasks are detached from
their parent tasks. This means that the parent does not care about its child tasks,
shown as follows:

var parent = Task.Factory.StartNew(() =>
{
 var child = Task.Factory.StartNew(() =>
 {
 Thread.Sleep(3000);
 Console.WriteLine("child: ending");
 });
 Thread.Sleep(1000);
});

Chapter 4

[129]

parent.Wait();
Console.WriteLine("parent: ended before waiting for its child");
Console.ReadLine();

Here is the result:

parent: ended before waiting for its child
child: ending

The TaskFactory class lets us specify that a child task must attach to the parent one
by passing the optional parameter TaskCreationOptions.AttachedToParent. In
such a case, the parent will care about its child's status and exceptions by waiting for
their completion times, shown as follows:

var parent = Task.Factory.StartNew(() =>
{
 var child = Task.Factory.StartNew(() =>
 {
 Thread.Sleep(3000);
 Console.WriteLine("child: ending");
 }, TaskCreationOptions.AttachedToParent);
 Thread.Sleep(1000);
});

parent.Wait();
Console.WriteLine("parent: ended after waiting for its child");
Console.ReadLine();

As seen in the preceding code, such little differences in code produce a big difference
in the result. In two words: the opposite:

child: ending
parent: ended after waiting for its child.

Always use the Task.Factory.StartNew method when dealing with child tasks
because the Task.Run method prevents the child from attaching itself to the parent.
The Task.Run method is only a shortcut for task creation with the default setup,
while the Task.Factory.StartNew method gives us the ability to configure our task
initialization options.

Such synchronization has its costs. Therefore, although not really useful, please use
multiple outer tasks with the required synchronization techniques, such as waiting
for the right number of tasks.

Asynchronous Programming

[130]

Regarding task synchronization, it is imperative that you understand the difference
between all available waiting tasks. Waiting for a task is like waiting for a signaling
lock, as already seen in the Multithreading synchronization section in Chapter 3, CLR
Internals. The Task class gives us methods such as Wait, WaitAll, or WaitAny to
accomplish jobs as shown in the following example:

//Make a Task wait forever
task1.Wait();

//wait for a task to timeout
if (task1.Wait(1000)) //ms
{
 //on time
}
else
{
 //timeout
}

if (task1.Wait(TimeSpan.FromMinutes(1))) { } else { }

//Make tasks wait tasks forever, or timeout
Task.WaitAll(task1, task2, task3);
if (Task.WaitAll(new[] { task1, task2, task3 }, 1000)) { }
if (Task.WaitAll(new[] { task1, task2, task3 },
TimeSpan.FromMinutes(1))) { }

//wait the first one with or without timeout
//others will although complete their job
//wait any always returns the index of the fastest
Task.WaitAny(task1, task2, task3);
Task.WaitAny(new[] { task1, task2, task3 }, 1000);
Task.WaitAny(new[] { task1, task2, task3 },
TimeSpan.FromMinutes(1));

Task exception handling
Slightly different from our usual exception handling, as already seen in the Exception
Handling section in Chapter 3, CLR Internals, when dealing with tasks, it is impossible
to bubble up a raw exception. Any time an exception happens within a task, any
tasks waiting, will receive an AggregateException error that acts as a container for
all the exceptions that happened within the tasks being waited on. This behavior is
similar to what happens in exceptions that originate in external threads. If we do not
invoke the Join method to stop the external thread, such exceptions will never route
to the main thread. Here's an example:

Chapter 4

[131]

var task1 = Task.Factory.StartNew(() =>
 {
 throw new ArgumentException("Hi 1");
 });

var task2 = Task.Factory.StartNew(() =>
{
 throw new ArgumentException("Hi 2");
});

try
{
 //the wait will join the two threads exception routing
 //all unhandled exceptions from external threads to the
 //main one
 Task.WaitAll(task1, task2);
}
catch (AggregateException ax)
{
 foreach (var ex in ax.InnerExceptions)
 Console.WriteLine("{0}", ex.Message);
}

Task cancellation
Another interesting feature when dealing with tasks is the ability to handle task
cancellation. A slight similarity does exist between such a design (task cancellation)
and the one from the Thread.Abort method. The difference is that for threads, an
exception is raised by CLR itself, immediately stopping the thread's execution; while
here, although the design may seem the same, all of the implementation is in our
hands. The definition of critical section is something to be forgotten here. By the way,
because we have cancellation handling in our hands, we can come up with all we
need to accomplish a graceful exit from any critical code block. To accomplish state-
of-the-art cancellation handling, we must create a CancellationTokenSource object
to trigger the job cancellation. This source object will create a CancellationToken
object representing a single-use cancellation token. Once used, a new source must be
created and used.

Asynchronous Programming

[132]

To avoid tasks from being started after a cancellation has already been requested,
we must pass this cancellation token to the StartNew method of the TaskFactory
class. Together with this optimization, passing the token to the StartNew method
that informed the Task Parallel Library (TPL) that eventually raised an System.
OperationCancelledException from the token within the task code body, must
become a TaskCancelledException. Here's a complete example:

static CancellationToken cancellationToken;
static void Main(string[] args)
{
 //let us configure a minimal //threadpool size to slow down
task execution
 ThreadPool.SetMinThreads(2, 2);
 ThreadPool.SetMaxThreads(2, 2);

 //the cancellation token source able to trigger cancellation
 var cancellationTokenSource = new CancellationTokenSource();
 //the cancellation token able to give a feedback on
cancellation status
 cancellationToken = cancellationTokenSource.Token;

 //let's create some task
 //the cancellationToken is here assigned to each task. this
links such two objects
 //avoiding a new task from starting if the token has already been
triggered
 //in addition, passing the token here will convert the
 OperationCancelledException thrown by
 the ThrowIfCancellationRequested method in the
 TaskCancelledException class that will inform
 //TPL that such task has been kindly aborted
 var tasks = Enumerable.Range(0, 10).Select(i =>
Task.Factory.StartNew(OnAnotherThread,
cancellationToken)).ToArray();

 Console.WriteLine("All tasks queued for running");
 Console.WriteLine("RETURN TO BEGIN CANCEL TASKS");
 Console.ReadLine();
 cancellationTokenSource.Cancel();

 Console.WriteLine("Cancel requested!");

 try
 {
 //join back all tasks

Chapter 4

[133]

 Task.WaitAll(tasks);
 }
 catch (AggregateException ax)
 {
 //all tasks will throw an OperationCanceledException
 foreach (var ex in ax.InnerExceptions)
 if (!(ex is TaskCanceledException))
 Console.WriteLine("Task exception: {0}",
ex.Message);
 }

 foreach (var t in tasks)
 Console.WriteLine("Task status ID {0}: {1}", t.Id,
t.Status);

 Console.WriteLine("END");
 Console.ReadLine();
}

[DebuggerHidden] //avoid visual studio from catching token
exceptions
private static void OnAnotherThread()
{
 Console.WriteLine("Task {0} starting...", Task.CurrentId);

 //do some CPU intensive job
 for (int i = 0; i < 100; i++)
 {
 //prevent a cancelled task continuing doing
 //useless job
 cancellationToken.ThrowIfCancellationRequested();

 //CPU job
 Thread.Sleep(500);
 }

 Console.WriteLine("Task {0} ending...", Task.CurrentId);
}

The following is the console output:

All tasks queued for running
RETURN TO BEGIN CANCEL TASKS
Task 2 starting...

Asynchronous Programming

[134]

Task 1 starting...

Cancel requested!
Task status ID 1: Canceled
Task status ID 2: Canceled
Task status ID 3: Canceled
Task status ID 4: Canceled
Task status ID 5: Canceled
Task status ID 6: Canceled
Task status ID 7: Canceled
Task status ID 8: Canceled
Task status ID 9: Canceled
Task status ID 10: Canceled
END

Task continuation
Another useful feature of any task is the ability to attach (with an extension method)
any other task.

When dealing with task continuation, the Status property of any task, and eventually
the Result property with the internal return value may be valued to apply the right
logic for each result.

In such operations, the task continuation helps us by providing a comfortable
enumeration used to select the desired Status property when continuation occurs:

//a task
var task1 = Task.Factory.StartNew(() =>
 {
 Thread.Sleep(1000);
 //uncomment here for testing the error
 //throw new Exception("Hi");
 return 10;
 });

//a continuation is attached to task1
task1.ContinueWith(task =>
 {
 //this continuation will occur only when previous task
will run without errors
 Console.WriteLine("OK: {0}", task.Result);
 }, TaskContinuationOptions.OnlyOnRanToCompletion);

task1.ContinueWith(task =>

Chapter 4

[135]

 {
 //this continuation will occur only if something goes
wrong
 Console.WriteLine("ERR: {0}", task.Exception.InnerException);
//the first inner exception
 }, TaskContinuationOptions.NotOnRanToCompletion);

Without waiting for the task1 completion, although a continuation occurs, it skips
the need to handle eventual exceptions in the task-creating code.

With continuation and synchronization techniques used together, complex scenarios
of asynchronous programming are available to programmers without having to
face difficulties such as manual synchronization with signaling locks or by handling
parent-child thread synchronization.

Task factories
As seen previously, the Task and TaskFactory classes give us the ability to start
tasks with special options. Although this is actually an interesting feature, we still
use the default factory available, available throughout the Task.Factory property.

A TaskFactory class can also be instantiated with custom options that will work as
the starting configuration for any task made with this factory. This is particularly
useful when multiple instances of the same kind of task are going to be created. Here
is an example:

static void Main(string[] args)
{
 var cancellation = new CancellationTokenSource();

 //a factory for creating int-returning tasks
 //all tasks created by this factory will share this default
configuration
 //all tasks will support cancellation
 //all tasks will start in an attached-to-parent fashion
 //all tasks will accept a continuation occurring only on
success
 //the default TaskScheduler will be used
 var factory = new TaskFactory<int>(cancellation.Token,
 TaskCreationOptions.PreferFairness,
 TaskContinuationOptions.AttachedToParent,
 TaskScheduler.Default);

 //10 tasks
 var tasks = Enumerable.Range(1, 10)

Asynchronous Programming

[136]

 .Select(i => factory.StartNew(CreateRandomInt)
 //all tasks continue as attached (from factory) and
skipping faulted results
 .ContinueWith(HandleRandomInt,
TaskContinuationOptions.NotOnFaulted))
 //always define such query materialization
 //differently, the foreach run could trigger infinite task
creations
 .ToArray();

 bool canContinue = false;

 //a single continuation async task
 //will start when all other tasks will end
 //such usage avoid calling WaitAll
 factory.ContinueWhenAll(tasks, allTasks =>
 {
 canContinue = true;
 return 0;
 });

 do
 {
 Console.Clear();

 foreach (var task in tasks)
 Console.WriteLine("Task n. {0}: {1}", task.Id,
task.Status);

 Thread.Sleep(1000);
 } while (!canContinue);

 Console.WriteLine("END");
 Console.ReadLine();
}

//this method executes only if the previous task completed
successfully
private static void HandleRandomInt(Task<int> task)
{
 Console.WriteLine("Handling value: {0}", task.Result);
}

static Random random = new Random();

Chapter 4

[137]

[DebuggerHidden] //this attribute disables exception debugging
public static int CreateRandomInt()
{
 //wait 1~10 seconds
 Thread.Sleep(random.Next(1000, 10000));

 //throw exception sometime
 if (random.Next(1, 100) % 10 == 0)
 throw new ArgumentException("Unable to produce a valid integer
value!");

 return random.Next(1, 100);
}

This example launches multiple tasks to retrieve integers with some complex
calculations (the random sleep time). Later, for the only successfully generated
integers, a continuation task is assigned to handle these new values. Usually, this
application would have used interaction (for/foreach), although in multiple tasks
a whole re-join of all such asynchronous executions to catch all results is required.
Instead, using continuations, everything is easier because such interaction does
not occur.

Another interesting feature visible in the example is the ability to have a continuation
task for the whole group of tasks instead of a task-by-task basis. Such usage avoids
the WaitAll invocation. Remember that WaitAll works like a Thread.Join method,
which opens the door to exception bubbling of all joined tasks in the caller thread.

Task UI synchronization
When dealing with asynchronous programming, the UI experience may achieve
great improvement. The first look at any Windows Phone or Windows Store
application will easily grant such feedback because of the obligation Microsoft made
to SDKs for such platforms.

Dealing with an application that never waits for any external/internal resource or
computation, and always remains responsive, is a great feature. The drawback is that
Windows Forms and WPF controls are unable to easily update their user data using
asynchronous threads (this limitation doesn't exist on ASP.NET).

Asynchronous Programming

[138]

Both frameworks, Windows Forms and WPF, implement their controls on a Single
Thread Apartment (STA) with affinity. This means that all objects born on the
starting thread will be available only throughout this thread. This affinity works
like a firewall that prevents any other thread from accessing the resources behind it.
So, although it is possible in asynchronous tasks/threads that do computations or
that consume resource usage, when they are exited, any UI update must flow from
the initial calling thread that created the UI controls, and maybe the same one that
started the tasks.

This is a simple example that produces an exception in WPF:

//this is a no-MVVM WPF script
public partial class MainWindow : Window
{
 public MainWindow()
 {
 InitializeComponent();
 }

 private void Window_Loaded(object sender, RoutedEventArgs e)
 {
 Task.Factory.StartNew(() =>
 {
 Thread.Sleep(3000);
 //asynchronously set the Content of a Label on UI
 Label1.Content = "HI";
 });
 }
}

When the Content property is set, InvalidOperationException type is raised with
this description: The calling thread cannot access this object because a
different thread owns it. As said previously, before the preceding example,
all UI controls live within a single thread in STA mode. This is why we have such
behavior in WPF (and in Windows Forms too).

The solution is easy here because this is a script in WPF code-behind. It is enough to
use a Dispatcher class, already exposed by any WPF control that works as a bridge
to ask the UI thread to do something we want. The preceding task becomes this:

Task.Factory.StartNew(() =>
{
 Thread.Sleep(3000);

 var computedText = "HI";

 //asynchronously set the Content of a Label on UI

Chapter 4

[139]

 Dispatcher.Invoke(() =>
 {
 //this code will execute on UI thread in synchronous
way
 Label1.Content = computedText;
 });

});

When working in MVVM, a dispatcher is useless when a notification occurs.
When any class that implements the INotifyPropertyChanged interface raises its
PropertyChanged event, any control in binding with any property of this object,
will read the underlying data again, refreshing the UI control state. This inverted
behavior breaks the need for a direct cross-thread invocation with the dispatcher.
The following is an example using the view model:

//a simple viewmodel
public sealed class SimpleViewModel : INotifyPropertyChanged
{
 //supporting INotifyPropertyChanged is mandatory for data
changes notification to UI controls with data binding
 public event PropertyChangedEventHandler PropertyChanged;

 //a simple helper method for such notification
 private void Notify([CallerMemberName]string name = null)
 {
 if (PropertyChanged != null && name != null)
 PropertyChanged(this, new PropertyChangedEventArgs(name));
 }

 public SimpleViewModel()
 {
 //the task is fired as view model is instantiated
 Task.Factory.StartNew(OnAnotherThread);
 }

 private string text;
 public string Text { get { return text; } set { text = value;
Notify(); } } //this is how notify fires

 private void OnAnotherThread()
 {
 Thread.Sleep(3000);

 //asynchronously set a text value

Asynchronous Programming

[140]

 Text = "HI";
 }
}

To avoid coupling between a ViewModel and a View, we need supporting cross-
threaded operations within a ViewModel with the ability to execute some UI update
in the proper thread (the UI thread one), although we need using the Dispatcher
from within the ViewModel itself, we may use it without having the View passing
it to the ViewModel in a direct way. The ViewModel, can simply store the initial
creation thread in it's constructor code, and later use such thread to ask for a
dispatcher linked to this thread. This choice gives the ability to make cross-threaded
operations against object living within the UI thread, without having the ViewModel
to directly interact with View. The following is an example:

//a simple ViewModel
public sealed class CrossThreadViewModel : INotifyPropertyChanged
{
 //supporting INotifyPropertyChanged is mandatory for data
changes notification to UI controls with data-binding
 public event PropertyChangedEventHandler PropertyChanged;
	
 //a simple helper method for such notification
 private void Notify([CallerMemberName]string name = null)
 {
 if (PropertyChanged != null && name != null)
 PropertyChanged(this, new
PropertyChangedEventArgs(name));
 }

 Thread creatingThread;
 public CrossThreadViewModel()
 {
 //in the constructor the caller thread is stored as field
 creatingThread = Thread.CurrentThread;

 Texts = new ObservableCollection<string>();
 Task.Factory.StartNew(OnAnotherThread);
 }

 //an observable collection is a self-notifying collection
 //that must be accessed by the creating thread
 private ObservableCollection<string> texts;
 public ObservableCollection<string> Texts { get { return
texts; } set { texts = value; Notify(); } } //this is how notify
fires

 private void OnAnotherThread()
 {

Chapter 4

[141]

 Thread.Sleep(3000);

 //asynchronously create a text value
 var text = "HI";

 //add the value to the collection with a dispatcher
 //for the creating thread as stored
 Dispatcher.FromThread(creatingThread).Invoke(() =>
 {
 Texts.Add(text);
 });
 }
}

Another solution is available to access collections from multiple threads within a
WPF application in .NET 4.5 or greater. We can request the WPF that is synchronizing
an STA object, by using a lock and simply invoking the BindingOperations.
EnableCollectionSynchronization method. Here the previous example is
modified using the EnableCollectionSynchronization class:

static object lockFlag = new object(); //the collection accessing
lock
Thread creatingThread;
public CrossThreadViewModel()
{
 //in the constructor the caller thread is stored as a field
 creatingThread = Thread.CurrentThread;

 Texts = new ObservableCollection<string>();
 BindingOperations.EnableCollectionSynchronization(Texts,
lockFlag);
 Task.Factory.StartNew(OnAnotherThread);
}

//an observable collection is a self-notifying collection
//that must be accessed by creating thread
private ObservableCollection<string> texts;
public ObservableCollection<string> Texts { get { return texts; }
set { texts = value; Notify(); } } //this is how notify fires

private void OnAnotherThread()
{
 Thread.Sleep(3000);

 //asynchronously create a text value
 var text = "HI";
 Texts.Add(text);//no more dispatcher needed
}

Asynchronous Programming

[142]

Although this solution will avoid the need of collection synchronization, this will not
avoid all of the cross-thread issues, and sometimes we still need to use the dispatcher
using the synchronous ViewModel creation thread, as shown in the previous
example.

When working in Windows Forms, although the dispatcher is unavailable,
a solution always exists for such cross-thread issues. It is enough to ask the control
(or Windows Form) to do the cross-thread operation for us, using a delegate identical
to the one from the dispatcher.

The following is an example of a wrongly-made cross-thread operation that will
generate the same InvalidOperationException exception already seen in the
WPF example:

public Form1()
{
 InitializeComponent();

 Task.Factory.StartNew(() =>
 {
 //this code will fail
 label1.Text = "Hi";
 });
}

The following code example shows the right way to avoid the
InvalidOperationException class:

public Form1()
{
 InitializeComponent();

 Task.Factory.StartNew(() =>
 {
 //async elaboration
 var text = "Hi";

 //this asks the form to execute such Action on its
creating thread
 this.Invoke(new Action(() =>
 {
 label1.Text = text;
 }));
 });
}

Chapter 4

[143]

Async/await
Asynchronous programming was first released for Microsoft Visual Studio 2012
as an add-on, and is now natively available in Microsoft Visual Studio 2013.
Asynchronous programming is also available with a special pattern called
async/await, which is greatly optimized for cross-thread operations.

This pattern helps to achieve asynchronous programming in a simplified way and
adds a transparent (to programmers) asynchronous/synchronous jump, row-by-row,
with the ability to execute code on the UI, creating threads without having to use
any dispatcher or a delegate. The following is an example from the legacy Windows
Forms as seen earlier:

public Form1()
{
 InitializeComponent();

 OnAsyncWay();
}

private async Task OnAsyncWay()
{
 //running in creating thread

 //async elaboration
 //this starts a new task that returns the required value
 var text = await Task.Factory.StartNew(() =>
 {
 //running on another thread
 Thread.Sleep(1000);
 return "Hi";
 });

 //running again on creating thread
 label1.Text = text;
}

As it is visible (although usually the StartNew syntax returns a task), this is executed
by the await method that translates it in the asynchronous returned values as the
Result property of the task itself.

Any async method must await something, else it is
actually useless.

Asynchronous Programming

[144]

The async keyword specifies that the whole method contains asynchronous
calls. The await keyword, instead, specifies that the next invocation will execute
asynchronously, and when such a task ends, the code must continue again in a
synchronous way on the caller thread. Unlike a dispatcher, that requests another
thread that is doing something, with async/await methods we can write code
that can work on multiple threads in a very simplified way.

We can also await multiple tasks with the Task.WhenAll method, as follows:

private async Task OnAsyncWay()
{
 var allValues = await Task.WhenAll(
 Task.Factory.StartNew<int>(TaskRunner1),
 Task.Factory.StartNew<int>(TaskRunner2),
 Task.Factory.StartNew<int>(TaskRunner3)
);
}

private int TaskRunner3() { return 3; }
private int TaskRunner2() { return 2; }
private int TaskRunner1() { return 1; }

When dealing with async/await methods, if sleep-time is needed, instead of using
the Thread.Sleep methods that occur on the main thread, use the Task.Delay
method, which will wait for the same time without having to block the calling
thread. The following is an example:

await Task.Delay(1000);

Keep in mind that async/await methods add the thread switching feature to the
existing task-based asynchronous programming techniques already seen earlier.
Everything is still available, from task continuation to factory configuration, task
child synchronization, and so on. With such added features, it becomes very easy to
deal with UI updates. Asynchronous programming is necessary to achieve a greater
user experience and high throughput/scalability for any application.

For further reading, you can refer to the following link https://msdn.microsoft.
com/en-us/library/hh191443.aspx.

https://msdn.microsoft.com/en-us/library/hh191443.aspx
https://msdn.microsoft.com/en-us/library/hh191443.aspx

Chapter 4

[145]

Summary
In this chapter, you saw how asynchronous programming is available to developers
with different .NET techniques. Although with the last .NET editions, the TAP
(with the async/await method) will be the main choice when dealing with such
programming. A complete knowledge of the available solutions is mandatory
anytime we cannot use the newest .NET edition. Moreover, it is actually a plus to
know all the available techniques because such a wide knowledge opens the mind
of any developer to the asynchronous theory problems and solutions.

In the next chapter, you will learn more about parallelism, another important aspect
of high performance programming.

Chapter 5

[147]

Programming for Parallelism
Within the .NET world, parallel programming is the art of executing the same job on
a collection of data or functions by splitting the desired elaboration over all available
computational resources.

This chapter will focus on .NET Task Parallel Library's (TPL) implementation
of parallel computing, together with the Parallel Language Integrated Query
(PLINQ) language.

This chapter will cover the following topics:

•	 Parallel programming
•	 Task parallelism with TPL
•	 Data parallelism with TPL
•	 Integrated querying with LINQ
•	 Data parallelism with PLINQ

Parallel programming
The goal of any parallel programming is to reduce the whole latency time of
the operation by using all the available local resources, in terms of CPU
computational power.

Two definitions of parallelism actually exist. Task parallelism happens when
we execute multiple jobs all together, such as saving data against multiple
database servers.

Data parallelism, instead, happens when we split a huge dataset elaboration across
all available CPUs, like when we have to execute some CPU demanding method
against a huge amount of objects in the memory, like hashing data.

Programming for Parallelism

[148]

In the .NET framework, we have the ability to use both parallel kinds. Despite that,
the most widely used kind of parallelism within the .NET framework's programming
is data parallelism, thanks to PLINQ being so easy to use.

The following table shows the comparison between Task parallelism and
Data parallelism:

Task parallelism Data parallelism
What does it parallelize? Parallelizable functions Parallelizable data
Performance boost Reduces overall execution

time by executing multiple
functions per time period

Reduces overall execution
time by splitting the same
algorithm's execution across
all the available CPUs

Starting constraint The same initial data state The same data set
Ending constraint Can end up all together

in a synchronous or
asynchronous way

Must end up all together in
a synchronous way

Messaging If required, any task can
message others or can await
others with signaling locks,
as seen in the Multithreading
Synchronization section in
Chapter 3, CLR Internals

Usually nonexistent

There is a tight coupling between multithreading (MT) programming and parallel
programming. MT is actually a feature of programming languages that helps us by
using low-level operating systems threads that give us the ability to run multiple
code all at the same time.

Parallel programming, instead, is a high-level feature of programming languages,
which will handle multiple operating-system threads autonomously, giving us the
ability to split some jobs at a given time and later catch the result in a single point.

Multithreaded programming is a technique in which we work with multiple
threads by ourselves. It is a hard-coded technique whereby we split the different
logic of our applications across different threads. Opening two TCP ports to make
a two-threaded network router is multithreading. Executing a DB read and data
fix on a thread and a DB write on another thread is still multithreading. We are
actually writing an application that hardly uses multiple threads.

Chapter 5

[149]

In parallelism, instead, there is a sort of orchestrator, a chief of the whole parallel
processing (usually the starting function or routine). The unified starting point,
makes all parallel thread handlers share the same additional starting data. This
additional data is obviously different from the divided main data that start up the
whole parallel process, like a collection of any enumerable.

When dealing with multithreading programming, it is like executing multiple
applications that live within the same process all together. They may also talk
to each other with locking or signals, but they do not need to.

Task parallelism
Task parallelism happens when we want to split different activities (functions or
algorithms) that start from the same point with the same application state (data).
Usually, these paralleled tasks end up all together in a task-group continuation.
Although this common ending is not mandatory, it is maybe the most canonical
definition for task parallelism within the .NET TPL. You should recognize that the
choice of continuing with a single task or with multiple tasks, or waiting on another
thread of tasks does not change the overall definition. It is always task parallelism.

How task parallelism changes a sequential communication with multiple external systems

Any time we need to do different things all together with the same starting data, it is
task parallelism. For example, if we need to save data across three different DBs all
together, it is task parallelism. If we need to send the same text throughout a mail a
file log and a database, those three asynchronous tasks are task parallelism.

Programming for Parallelism

[150]

Usually, these different things do not need to talk to each other. If this is a requirement,
usual locks or (better) signaling locks may give us the ability to drive such multiple
asynchronous programming in order to avoid race conditions in resource usage or
data inconsistencies with multiple read/writes. A messaging framework is also a good
choice when dealing with a multiple asynchronous task execution that needs some
data exchanging outside the starting data state.

When using asynchronous programming with multiple tasks (refer to the Asynchronous
Programming Model section in Chapter 4, Asynchronous Programming), it may be that
we actually use multiple threads. Although this is task-based multithreading, this
is not task parallelism because it misses a shared starting point and overall shared
architecture. Parallelism is made by another abstraction level above the abstraction
level of Task-based Asynchronous Pattern (TAP).

When we query a Delegate object that is executing some remote method
asynchronously, we are actually using a thread-pool thread (we may also use
those threads by scratch); we are still using simplified multithreading tools.
This is not parallelism.

Data parallelism
The art of executing the same function/method against a single (usually huge) dataset
is called data parallelism. When working with a huge dataset, parallel programming
can bring about an impressive time reduction of the execution of algorithms.

How data parallelism splits data items across CPUs

Within data parallelism, there are more rules; this is different from task parallelism,
in which we can actually implement any logic when creating our parallelized
functions. Most important of all is that all data must come from a single (usually
huge) dataset. This principle is directly coupled to the set theory.

Chapter 5

[151]

A set is a uniform group of items of the same type. In the .NET world, a set is any
typed array, collection, or the same data type. Like in any relational database, a single
table may contain only a homogenous group of items; the same thing happens when
we talk about a set. Indeed, a relational table is actually derived from the set theory.

It is not enough to have multiple items all together to create a set. Actually,
a set must have any number of items that can be handled as a single unique
super-entity. All items that compose a set must be structured as a whole. This
means that to practice correctly with data parallelism, a single object type must fill
the set once (no duplications), and no logic will ever be admitted to interact with a
single item composing a set if the same logic will not be executed against all other
items. Another principle about a set is that items do not have any order. Although,
they do have an identifier; otherwise, duplication could occur.

Task parallelism with TPL
As mentioned earlier, task parallelism happens when dealing with parallel
invocations of multiple methods/function. Within the .NET Framework, this can be
obtained with the invocation of the Parallel.Invoke method, which needs to have
as a parameter all parallelizable actions as a whole. Most techniques applicable here
are also applicable in asynchronous programming with the Task or the TaskFactory
class. So reading Chapter 4, Asynchronous Programming is mandatory to get the best of
task parallelism.

The Parallel.Invoke method simply takes multiple remote methods to call
procedures in a parallel way by accepting a System.Action array. Here is
an example:

static void Main(string[] args)
{
 //short form with named methods
 Parallel.Invoke(Method1, Method2, Method3);

 //short form with anonymous methods
 Parallel.Invoke(
 () => { },
 () => { },
 () => { });
}

static void Method1() { }
static void Method2() { }
static void Method3() { }

Programming for Parallelism

[152]

In the following code example, we will process a picture resize in two different
resolutions using task parallelism:

static void Main(string[] args)
{
 //add reference to System.Drawing assembly

 //an original image file
 byte[] originalImageData = File.ReadAllBytes("picture.jpg");
 byte[] thumb300x200 = null;
 byte[] thumb150x100 = null;

 //resize picture to 300x200px and 150x100px for thumbprint needs
 Parallel.Invoke(
 new Action(() =>
 {
 thumb300x200 = ResizeImage(originalImageData, 300,
200);
 }),
 new Action(() =>
 {
 thumb150x100 = ResizeImage(originalImageData, 150,
100);
 })
);

 //save the resized images
 File.WriteAllBytes("pricture-300.jpg", thumb300x200);
 File.WriteAllBytes("pricture-150.jpg", thumb150x100);
}

static byte[] ResizeImage(byte[] original, int newWidth, int
newHeight)
{
 //creates a stream from a byte[]
 using (var sourceStream = new MemoryStream(original))
 //load a bitmap from source stream
 using (var originalBitmap = new Bitmap(sourceStream))
 //resize the original bitmap to a new size
 using (var resizedBitmap = new Bitmap(originalBitmap,
newWidth, newHeight))
 //creates a new in-memory stream from resized image
 using (var targetStream = new MemoryStream())

Chapter 5

[153]

 {
 //save resized image to the in-memory stream
 resizedBitmap.Save(targetStream, ImageFormat.Jpeg);
 //return a byte[] from the saved stream
 return targetStream.ToArray();
 }
}

The Parallel.Invoke method will do the most work for us by actually creating a
task for each action we need to process; thus obtaining the parallelization needed.

As with any task creation by the TaskFactory class, here we have the ability to
configure some task creation options such as the maximum concurrent task number,
giving a CancellationToken, and so on:

Parallel.Invoke(new ParallelOptions
{
 MaxDegreeOfParallelism = 2,
},
 () => Method1(),
 () => Method2(),
 () => Method3()
);

An important fact that we always have to deal with when working with parallel
programming is that this result has no order. Because of parallelization, we cannot
predict task execution time. We must simply wait for completion.

A similar result is available through the WaitAll behaviour:

Task.WaitAll(
 Task.Run(
 () => Method1()),
 Task.Run(
 () => Method2()),
 Task.Run(
 () => Method3())
);

Although this choice adds the ability to handle timeout as we wish, it provides
a similar result because it lacks in task-group configuration, as what was offered
by the ParallelOptions class. A solution is to use a custom class extending the
TaskFactory class, but this choice will add nothing more than using the Parallel.
Invoke method.

Programming for Parallelism

[154]

Please note that the focus when dealing with task parallelism is that the framework
handles lot of things by itself; first of all, the task's creation and destruction. Because
of this, the WaitAll method is a bit outside of the theory of task parallelism; it's only
related to multiple asynchronous programming.

An interesting usage scenario for task parallelism is in speculative execution.
This happens when we execute some task before it is actually needed, or in a
more general way, when we do not need it. A canonical example is what happens
when we execute multiple searches against our data source (or web) with different
parameters. Here, only the fastest tasks win, so all other slower tasks are canceled.
Here is an example:

static void Main(string[] args)
{
 //a cancellation token source for cancellation signalling
 using (var ts = new CancellationTokenSource())
 //tasks that returns a value
 using (var task1 = Task.Factory.StartNew<int>(TaskWorker,
ts.Token))
 using (var task2 = Task.Factory.StartNew<int>(TaskWorker,
ts.Token))
 using (var task3 = Task.Factory.StartNew<int>(TaskWorker,
ts.Token))
 {
 //a container for all tasks
 var tasks = new[] { task1, task2, task3 };
 //the index of the fastest task
 var i = Task.WaitAny(tasks);

 //lets cancel all remaining tasks
 ts.Cancel();

 Console.WriteLine("The fastest result is {0} from task
index {1}", tasks[i].Result, i);

 //bring back to the starting thread all task exceptions
 try
 {
 Task.WaitAll(tasks);
 }
 catch (AggregateException ax)
 {
 //let's handle all inner exceptions automatically
 //if any not OperationCanceledException exist

Chapter 5

[155]

 //those will be raised again
 ax.Handle(ex => ex is OperationCanceledException);
 }
 }
 Console.ReadLine();
}

private static readonly Random random = new Random();
private static int TaskWorker(object token_as_object)
{
 //the token is available as object parameter
 var token = (CancellationToken)token_as_object;
 //do some long running logic
 var finish = DateTime.Now.AddSeconds(random.Next(1, 10));
 while (DateTime.Now < finish)
 {
 //if the cancellation has been requested
 //an exception will stop task execution
 token.ThrowIfCancellationRequested();
 Thread.Sleep(100);
 }
 return random.Next(1, 1000);
}

Please note that although we can obtain task parallelism with by simply using the
Parallel.For/ForEach/Invoke methods, complex scenarios are available only by
manually handling task creation, continuation, and waiting. Please remember that
a task is simply a deferred job. Nothing more or less. It is how we use it that makes
our design using parallelism or asynchronous programming.

Data parallelism with TPL
As already said, data parallelism with TPL happens only when we deal with a
dataset (not the DataSet class). Within .NET, the easy way of doing this is with the
Parallel.For and Parallel.ForEach methods from the Parallel module. The
following example shows the basic usage of the Parallel module:

for (int i = 0; i < 10; i++)
{
 //do something
}

Parallel.For(0, 10, i =>

Programming for Parallelism

[156]

{
 //do something
});

The first thing that catches our eye is the singularity of logic. While in task
parallelism we deal with multiple instances of logic; here, there is always only
one type of logic. We simply execute it on multiple CPUs.

This example is obviously incompatible with the Set Theory previously exposed,
because there is neither a simple collection of objects. In other words, the parallel
For is an iterative structure as the normal For.

To parallelize some logic regarding just a simple collection, the Parallel class gives
us the ForEach method:

var invoiceIdList = new[] { 1, 2, 3, 4, 5 };

Parallel.ForEach(invoiceIdList, InvoiceID =>
 {
 //do something
 });

This alternative made with the Parallel.ForEach method outclasses the very
simple result achieved by the Parallel.For method implementation, giving us the
chance to work against a collection that is a Set.

Although a collection in .NET is not actually a Set, it is quite similar.
The only missing requirement is that a collection does not guarantee
the uniqueness of items.

Any collection of any size may be enumerated by the Parallel.ForEach method.
Obviously, the best performance improvement is achieved by big collections because
the more items there are, the more the TPL engine can split such items across
multiple threads.

Parallelism in .NET executes on the TPL framework. This means that threads from
ThreadPool are used to execute parallel jobs. Limitations and configurations of such
behavior were exposed in the Task-based Asynchronous Pattern section in Chapter 4,
Asynchronous Programming.

Chapter 5

[157]

An added feature available in parallelism is the throttling configuration within
the ParallelOptions class. Parallel.Invoke/For/ForEach methods accept an
instance of this class, giving the ability to specify a maximum amount of parallel
executions. Here's an example:

//our throttling configuration
var throttling = new ParallelOptions
{
 MaxDegreeOfParallelism = 2
};

//let's process the data in a parallel way
Parallel.ForEach(invoiceIdList, throttling, i =>
{
 //do something
});

ThreadPool tuning
Please bear in mind that TPL uses threads from ThreadPool to execute a task's code.
This is why tuning ThreadPool is so important when using parallel programming
extensively . In addition to what we saw in the Task-based Asynchronous Pattern
section in Chapter 4, Asynchronous Programming, here we will try to show you what
happens if we try to increase the thread pool size to an extreme, for example:

ThreadPool.SetMinThreads(256, 256);
ThreadPool.SetMaxThreads(4096, 4096);

The configuration shown asks the thread pool to increase its size from a minimum
of 256 threads to a maximum size of 4096 (losing dynamic size management—the
default value for the maximum size). Increasing the thread pool size at such high
values will cost some CPU usage and memory because the operating system needs
such resources in thread creation.

Obviously, such a high thread availability will give TPL the ability to parallelize
hundreds of tasks (at least 256, as set earlier). Carefully increment so extremely
global thread availability because of the increased possibility of cross-thread issues
that we will need to handle with locks and signals, as seen in the Multithreading
Synchronization section in Chapter 3, CLR Internals. In fact, with such an extreme
concurrency level, when using locks to serialize specific code blocks, a huge
overhead in terms of CPU time will occur because of the contest of the lock flag
that all concurrent threads will try to obtain.

Programming for Parallelism

[158]

Parallel execution abortion
Within a parallel iteration, we cannot use the break keyword in any classic
for/foreach statement. If we need a similar behavior, we can use an overload of
the foreach method that will execute inner parallel code by using an Action<T,
ParallelLoopState> class that in addition to the iterating item will also inject a
ParallelLoopState object available to the inner code. This state object will provide
information about the overall parallel state or let us request a premature stop of the
full parallel execution. Here's a complete example:

static void Main(string[] args)
{
 //a big dataset
 var invoiceIdList = Enumerable.Range(1, 1000);

 int c = 0;

 Parallel.ForEach(invoiceIdList, (id, state) =>
 {
 //stop all ForEach execution if anything go wrong
 try
 {
 //execute some logic
 ExecuteSomeCode(id);

 //within the lambda/method we can know about stop
signalling
 if (state.IsStopped)
 Console.WriteLine("Executed # {0} when
IsStopped was true", c++);
 else
 Console.WriteLine("Executed # {0}", c++);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error: {0}", ex.Message);
 //stop al parallel process
 state.Stop();
 Console.WriteLine("Requested a parallel state
break!");
 }
 });

 Console.WriteLine("END");

Chapter 5

[159]

 Console.ReadLine();
}

private static readonly Random random = new Random();
private static void ExecuteSomeCode(int id)
{
 //a random execution time
 Thread.Sleep(random.Next(1000, 2000));

 //an impredicted fail
 if (DateTime.Now.Millisecond >= 800)
 throw new Exception("Something gone wrong!");
}

In this example, we used the Stop method that actually requests a stop to all
subsequent parallel interactions and together will signal the running iterations that a
stop has been requested by the IsStopped flag. This is the output of such an example
(the results can vary a lot):

Executed # 0
Executed # 1
Executed # 2
Executed # 3
Executed # 5
Executed # 4
Executed # 6
Executed # 7
Executed # 8
Error: Something gone wrong!
Requested a parallel state break!
Executed # 9 when IsStopped was true
Executed # 10 when IsStopped was true
Error: Something gone wrong!
Requested a parallel state break!
Error: Something gone wrong!
Requested a parallel state break!
Error: Something gone wrong!
Requested a parallel state break!
Executed # 11 when IsStopped was true
Executed # 12 when IsStopped was true
Executed # 13 when IsStopped was true
Executed # 14 when IsStopped was true
END

Programming for Parallelism

[160]

As shown, after the initial normal execution of parallel statements (from #0 to #8),
an error has occurred; this invoked the Stop method of the ParallelLoopState
class, which is available in the state parameter within the lambda code. This
prevented new interactions of the Parallel.ForEach method. Within the already
executing interactions, the IsStopped flag is given a value of true, so (eventually)
a proper logic may be applied.

Similar to the Stop method, the Break method can also stop the execution of a parallel
statement but it will stop executing only the items that will follow the calling item in
the underlying collection order.

If we have a collection of integers from 1 to 100, and when processing the 14th
we called the Break method, only items from 15 to 100 will actually receive the
IsStopped flag or will not run at all.

Partitions
Any time we deal with data parallelism, TPL will prepare data to flow in different
tasks in small groups. Such groups are called partitions.

Two default partition logics are available within the .NET framework. Range
partitioning happens against any finite collection. It divides the collection between
all available threads, and any partition is then executed within its related thread.
The following shows an example of the Parallel.For method that produces a
finite indexer collection of values:

Parallel.For(1, 1000, item =>
 {
 Console.WriteLine("Item {0} Task {1} Thread {2}", item,
Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(2000);
 });

This code produces the following output:

Item 1 Task 1 Thread 8
Item 125 Task 2 Thread 9
Item 249 Task 3 Thread 11
Item 373 Task 4 Thread 10
Item 497 Task 5 Thread 12
Item 621 Task 6 Thread 16
Item 745 Task 7 Thread 14
Item 869 Task 8 Thread 15
Item 993 Task 9 Thread 13

Chapter 5

[161]

As visible, the index value collection has been divided by 9, as 8 is the number of the
initial ThreadPool size, plus the one new thread created by ThreadPool is triggered
by the huge pre-empted work. The same range partitioning logic is involved by
using the AsParallel() method against any other finite collection such as an Array,
ArrayList, List<T>, and so on.

Another built-in partition logic is the chunk partitioning logic, which takes
place whenever we use the Parallel.ForEach method or the AsParallel()
method against any enum without a finite length. This partitioning is based on an
enumerator logic. It simply asks for some new item (usually the same amount as the
number of CPU cores), creates a new task for this item group, and puts the execution
on an available thread, and then waits for any new thread's availability to start
its logic again. In chunk partitioning, the chunk size is known at start and totally
handled by the TPL inner logic.

Chunk partitioning has a better balancing capability than the range partitioning
because a chunk is often smaller than a partition.

If built-in partitioning logic is not enough for our needs, we can create a custom
partitioner by inheriting from the Partitioner<T> class. A custom partition
logic can avoid using locks, greatly improve overall resource usage, and lead
to energetic efficiency within the whole solution. A complete guide is available
on the MSDN website: https://msdn.microsoft.com/en-us/library/
dd997411(v=vs.110).aspx.

Although chunk partitioning supports dynamic chunk sizes, this size is invariant
during a single enumeration. If we need full dynamic partitioning, we need to create
a partitioner. An example is shown on the MSDN website:

https://msdn.microsoft.com/en-us/library/dd997416%28v=vs.110%29.aspx

Further details about partitioning are explained in the Partitioning optimization
section later in this chapter.

Sliding parallel programming
An interesting behavior takes place when we combine sliding programming, just like
when using a cursor from a stream or an enumerable with parallel programming.
In this scenario, we add high computation speed together with a very low footprint
in the memory because of the tiny memory usage made by the few pieces of data
currently loaded in each thread. Here is an example:

static void Main(string[] args)
{
 var enumerable = GetEnumerableData();

https://msdn.microsoft.com/en-us/library/dd997411(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd997411(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dd997416%28v=vs.110%29.aspx

Programming for Parallelism

[162]

 Parallel.ForEach(enumerable, new ParallelOptions
 {
 MaxDegreeOfParallelism = 2,
 }, i =>
 {
 //process the data
 Console.WriteLine("Processing {0}...", i);
 Thread.Sleep(2000);
 });

 Console.WriteLine("END");
 Console.ReadLine();
}

private static IEnumerable<int> GetEnumerableData()
{
 //let's produce an enumerable data source
 //eventually use an underlying steam
 for (int i = 0; i < 10; i++)
 {
 Console.WriteLine("Yielding {0}...", i);
 yield return i;
 }
}

This scenario gives tremendous computational power without having to keep in
memory all data altogether, thus, only actually processing objects resides in memory.

The previous examples shows a single method using the yield keyword for manually
enumerated values. The example may be improved by implementing multiple
methods using the yield operator invoking each one to the other. The obtained
architecture, will be able to handle extremely complex logic without never having to
keep more than needed data in memory.

Integrated querying with LINQ
The Language-Integrated Query (LINQ) framework is what mostly changes the
programming technique in the .NET world. LINQ is a framework that lives within
the .NET language and helps us create complex queries against any data source,
such as in-memory objects using the LINQ to object-provider or against an Entity
Framework database using the LINQ to entities provider.

Almost anything that is enumerable in the world has its own provider within a
simplified index, as shown at the following link:

http://blogs.msdn.com/b/charlie/archive/2008/02/28/link-to-
everything-a-list-of-linq-providers.aspx

http://blogs.msdn.com/b/charlie/archive/2008/02/28/link-to-everything-a-list-of-linq-providers.aspx
http://blogs.msdn.com/b/charlie/archive/2008/02/28/link-to-everything-a-list-of-linq-providers.aspx

Chapter 5

[163]

Any iteration for the for or foreach statements is now made with LINQ. The same
is made against any relational database accessed by an O/RM or any non-relational
database too. LINQ has its own pseudo SQL language that is accessible within any
.NET language. Here is a LINQ statement example:

var query = from i in items
 where i >= 100
 orderby i descending
 select i;

By analyzing the preceding statement, you should understand that it represents a
simple query that will make a filter for in-memory data, then will order the filtered
data, and later will output the data. The key concept of LINQ is that LINQ creates
queries. It does not executes such queries; it simply declares queries.

Any query has a proper type. The type of query mentioned earlier is
IOrderedEnumerable<int>, which means that it is an ordered enumerable
collection. Because of the verbosity of the query's result type, in conjunction with the
frequent usage of anonymous types, the var keyword is widely used when typing a
variable that will contain the query itself, as the previous example showed.

Please remember that anonymous types will be visible to Intellisense (Visual
Studio's suggestion system of the text editor) only within the code block in which it
was created. This means that outside the method where we created the anonymous
type, we will lose the Intellisense support. The anonymous type will be visible only
to the assembly where it was created.

This means that if we need to use an anonymous typed object outside our assembly,
we should instead use a statically typed type (not anonymous), or we need to use the
Reflection namespace to read the internal marked properties that compose our
anonymous type.

Back to LINQ, the query itself will be executed in a lazy fashion only when iterated
by any foreach statement or when using specific Extension methods that will
materialize (produce results) the query in the ToArray or ToList methods:

var concreteValues = query.ToArray();

LINQ has a lot of extension methods to access its huge library. Actually, the
preceding syntax is very limited compared to all the extension methods available
from any enumerable collection. Here's an example:

var values = items
 .Where(i => i >= 100)
 .OrderByDescending(i => i)
 .ToArray();

Programming for Parallelism

[164]

All LINQ methods will work in a fluent way, appending any new altering method
to the previous one. The Lambda expression is ubiquitous and is used to define new
values, value mapping, filter predicates, and so on, so its syntactical deep knowledge
is mandatory when using LINQ. The two examples provide identical results,
although the second one will not store the query itself but only its concrete result.

The magic of LINQ is the ability to work in any application and query any kind of
data, from variables to XMLs with a single syntax. Of course, some limitations are
present when dealing with external resources such as databases, because some data
providers cannot handle all LINQ methods. In such a case, an exception will be
thrown by the provider itself. In modern .NET programming, any iterating logic is
usually executed within a LINQ statement.

Another magic aspect of LINQ is the ability to return queries and not always data.
This adds the ability to create new features without having to retrieve the same
data more than once, or without having to write complex if/else statements with
possible copy/paste programming. The following example shows how to split the
query similar to what we have already seen in the previous example:

var query1= items as IEnumerable<int>;
var query2= query1.Where(i => i >= 100);
var query3 = query2.OrderByDescending(i => i);
var values = query3.ToArray();

The following example shows how to add new filters to the already filtered query.
The two where statements will execute just like an and clause.

var query = items.Where(i => i >= 100);

if (SomeLogic())
 //another where is added to the LINQ
 query = query.Where(i => i <= 900);

Please note that using this query result can trigger an undesirably query
materialization (execution) multiple times. If you want to work in values,
it is always easier to materialize the LINQ with an ending that consists of
the ToArray or ToList method.

LINQ offers, by default, any set operation such as Union, Distinct, Intersect,
and Except; any aggregate operation such as Count, Sum, Max, Min, and Average;
and any relational data operation such as Join, GroupJoin, and so on.

Chapter 5

[165]

Transformation methods such as Select or SelectMany are also interesting because
they give us the ability to change the object that flows from one LINQ step to the
other letting us add/remove/change data. By the way, one of the greatest features
of LINQ is the ability to append LINQ queries to another LINQ query, including
when dealing with multiple LINQ data providers.

Here's an overview of LINQ's features:

//a dataset
var items = Enumerable.Range(1, 1000);

//a simple filter
var filter1 = items.Where(i => i <= 100);

//takes until matches a specific predicate
var filter2 = items.TakeWhile(i => i <= 100); //same as Where
above.

//shape the original data item in another one
var shape1 = items.Select(x => new { Value = items });

//shape multi-dimensional data in flattened data
//this will produce a simple array from 1 to 9
var shape2 = new[] { new[] { 1, 2, 3 }, new[] { 4, 5, 6 }, new[]
{7, 8, 9 } }.SelectMany(i => i);

//group data by divisible by 2
var group1 = items.GroupBy(i => i % 2 == 0);

//take only x values
var take1 = items.Take(10);

//take only after skipped x values
var skip1 = items.Skip(10);

//paginate values by using Take and Skip together
var page3 = items.Skip(2 * 10).Take(10);

//join values
var invoices = new[]
{
 new {InvoiceID=10, Total=44.50},

Programming for Parallelism

[166]

 new {InvoiceID=11, Total=34.50},
 new {InvoiceID=12, Total=74.50},
};
//join invoices with items array
//shape the result into a new object
var join1 = invoices.Join(items, i => i.InvoiceID, i => i, (a, b)
=> new { a.InvoiceID, a.Total, Index = b, });

All LINQ methods are combinable with any other data collection made by any other
data provider. This means that we can actually make a join between two different
database values, or between a database value and a file, or an XML, a Web Service,
or a control on our UI, or anything else we could want. Obviously, things are not
so easy when we want merge data from multiple LINQ data providers, especially
because of the Entity Framework data provider that will try to translate anything
written in LINQ into SQL. To help us avoid LINQ to SQL translation issues, there
are techniques such as small materializations within the LINQ steps (like putting
a ToArray() method before performing the join between different providers) or
starting the query with an in-memory source instead of using an Entity Framework
DbQuery class.

Entity Framework queries will be discussed later in Chapter 7, Database Querying.
In the meantime, here is a simple example of a cross LINQ provider query:

var localDataset = new[]
{
 new { Latitude=41.88f, Longitude=12.50f, Location="Roma"},
 new { Latitude=45.46f, Longitude=9.18f, Location="Milano"},
 new { Latitude=59.32f, Longitude=18.08f,
Location="Stockholm"},
};

//within the TestDB there is a simple table as
//CREATE TABLE [dbo].[Position] (
//[Latitude] [real] NOT NULL,
//[Longitude] [real] NOT NULL)
using (var db = new TestDBEntities())
{
 //this query starts from the local dataset
 //and later creates a join with the table within the database
 var query = from p in localDataset
 join l in db.Position on new { p.Latitude,
p.Longitude } equals new { l.Latitude, l.Longitude }
 select new
 {
 l.Latitude,

Chapter 5

[167]

 l.Longitude,
 p.Location,
 };

 //materialize the query
 foreach (var position in query)
 Console.WriteLine("Lat {0:N2} Lon {1:N2}: {2}",
position.Latitude, position.Longitude, position.Location);
}

Console.ReadLine();

By executing the example given, you will know how to join two different data
providers by specifying the only coordinate couple that we want see in the
database table.

Carefully use lambda expressions because any time we create an
anonymous method with lambda, all variables available in the scope
of the anonymous method are also available within the method itself.
When we use some external variable within the anonymous method,
those variables became captured variables, changing (extending) their
lifecycle, and assuming the same lifecycle of the anonymous method
that captures them.

Data parallelism with PLINQ
PLINQ is the framework required to use LINQ within the TPL parallel framework.
In .NET, it is straightforward to use parallelism against any LINQ query because we
simply need to add the AsParallel method at the root of the query to switch the
execution from the simple LINQ engine to PLINQ with TPL support.

The following example will execute two different where conditions against an
enumerable using PLINQ:

static void Main(string[] args)
{
 //a dataset
 var items = Enumerable.Range(1, 100);

 //multi-level in-memory where executed as data parallelism
 var processedInParallel = items.AsParallel()
 .Where(x => CheckIfAllowed1(x))

Programming for Parallelism

[168]

 .Where(x => CheckIfAllowed2(x))
 .ToArray();

 Console.ReadLine();
}

private static bool CheckIfAllowed2(int x)
{
 Console.WriteLine("Step 2 -> Checking {0}", x);
 //some running time
 Thread.Sleep(1000);
 return x % 3 == 0;
}

private static bool CheckIfAllowed1(int x)
{
 Console.WriteLine("Step 1 -> Checking {0}", x);
 //some running time
 Thread.Sleep(2000);
 return x % 2 == 0;
}

This is a partial result:

Step 1 -> Checking 1 //first chunk starts
Step 1 -> Checking 6
Step 1 -> Checking 3
Step 1 -> Checking 2
Step 1 -> Checking 4
Step 1 -> Checking 7
Step 1 -> Checking 8
Step 1 -> Checking 5
Step 1 -> Checking 9
Step 1 -> Checking 10
Step 2 -> Checking 4 //second chunk starts
Step 2 -> Checking 8
Step 2 -> Checking 2
Step 2 -> Checking 6
Step 1 -> Checking 12
Step 1 -> Checking 11
Step 1 -> Checking 13

Chapter 5

[169]

The execution of the preceding example will easily show how PLINQ performed
using the chunk partitioning logic. The first chunk of items (10 items) reached Step
1 in a simple way. Just later, the second chunk of items were executed all together.
This second chunk contains items of the first chunk that succeeded in passing Step 1
and now are ready for Step 2, and new items for the Step 1.

There is the ability to use the AsParallel method without returning values with the
ForAll method, as shown in the following code example:

items.AsParallel().ForAll(i =>
{
 //do something
});

After an AsParallel method invocation, the type of the enumerable changes in
ParallelQuery<T>. This new type adds configurability for parallelism, such as
forcing parallel-concurrency or forcing parallelism itself, although the heuristics
of the TPL cannot be enabled if given an enumerable.

Forcing parallelism (with the WithExecutionMode method) is useful when the
engine does not seem to understand that parallelism, it could add some execution
time (latency time) reduction. This happens because anytime we use the AsParallel
method, the engine makes a prediction of the reduced execution time, and if this is
not positive, the engine can decide to not use parallelism at all. Here is an example:

//multi-level in-memory where executed as data parallelism
var processedInParallel = items.AsParallel()
 .WithExecutionMode(ParallelExecutionMode.ForceParallelism)
 .Where(x => CheckIfAllowed1(x))
 .Where(x => CheckIfAllowed2(x))
 .ToArray();

We can configure parallel concurrency by setting the maximum degree with the
WithDegreeOfParallelism method. This method is useful for limiting (throttling)
concurrency level, and for increasing it above the usual size as defined by the
heuristic of the TPL. The maximum size is 64 for .NET 4 and 512 for .NET 4.5+,
while the default value is the CPU core count. Here is an example:

var processedInParallel = items.AsParallel()
 .WithDegreeOfParallelism(100)
 .Where(x => CheckIfAllowed1(x))
 .Where(x => CheckIfAllowed2(x))
 .ToArray();

Programming for Parallelism

[170]

Another useful method of the ParallelQuery<T> class is WithMergeOptions, which
gives us the ability to configure how the parallel engine will buffer (or not) data from
the parallel partitions before collecting the result. The ability to disable buffering at all
is interesting. This choice will give the parallel results to any enumerator consuming
the parallel query as soon as possible, without having to wait for processing all parallel
query items. The following shows an example that consists of parallel merge options:

items.AsParallel().WithMergeOptions(ParallelMergeOptions.NotBuffer
ed)

Partitioning optimization
The CLR gives us the ability to force a specific partitioning logic if the one exposed
as the default is not optimal for our needs. The default partitioning logic is
automatically chosen according to the data collection type given as an input through
the AsParallel method. Here is an example:

//a dataset
var items = Enumerable.Range(1, 1000).ToArray();

//a customized partitioning logic
//range partitioning
var partitioner = Partitioner.Create<int>(items, false);

partitioner.AsParallel().ForAll(item =>
 {
 Console.WriteLine("Item {0} Task {1} Thread {2}", item,
Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(2000);
 });

The preceding example shows a range partitioning logic within the AsParallel
execution of PLINQ. Here, the result shows the partition size:

Item 1 Task 2 Thread 6
Item 751 Task 8 Thread 13
Item 501 Task 6 Thread 16
Item 251 Task 4 Thread 12
Item 376 Task 5 Thread 15
Item 626 Task 7 Thread 14
Item 876 Task 9 Thread 9
Item 126 Task 3 Thread 10
Item 377 Task 5 Thread 15
Item 877 Task 9 Thread 9

Chapter 5

[171]

Instead, the following example shows a load-balancing logic that is obtainable by
using the Partitioner class:

//a dataset
var items = Enumerable.Range(1, 1000).ToArray();

//a customized partitioning logic
//a load-balancing logic
var partitioner = Partitioner.Create<int>(items, true);

partitioner.AsParallel().ForAll(item =>
 {
 Console.WriteLine("Item {0} Task {1} Thread {2}", item,
Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(2000);
 });

The following is the output:

Item 2 Task 2 Thread 10
Item 7 Task 6 Thread 11
Item 5 Task 5 Thread 15
Item 8 Task 8 Thread 16
Item 6 Task 7 Thread 13
Item 3 Task 4 Thread 12
Item 4 Task 3 Thread 17
Item 1 Task 9 Thread 9
Item 10 Task 7 Thread 13
Item 15 Task 5 Thread 15

When no partitioning logic fits your needs, the only choice available is writing your
own partitioner by extending the Partitioner<T> or OrderablePartitioner<T>
class:

 class Program
 {
 static void Main(string[] args)
 {
 //a dataset
 var items = Enumerable.Range(1, 1000).ToArray();

 //my partitioner
 var partitioner = new MyChunkPartitioner(items);

 partitioner.AsParallel().ForAll(item =>

Programming for Parallelism

[172]

 {
 Console.WriteLine("Item {0} Task {1} Thread
{2}", item, Task.CurrentId, Thread.CurrentThread.ManagedThreadId);
 Thread.Sleep(2000);
 });

 Console.ReadLine();
 }
 }

 //only use for testing purposes
 public class MyChunkPartitioner : Partitioner<int>
 {
 //underlying data collection
 public IEnumerable<int> Items { get; private set; }
 public MyChunkPartitioner(IEnumerable<int> items)
 {
 Items = items;
 }

 //partition elaboration
 public override IList<IEnumerator<int>> GetPartitions(int
partitionCount)
 {
 var result = new List<IEnumerator<int>>();

 //compute the page size in an easy way
 var pageSize = Items.Count() / partitionCount;

 for (int page = 0; page < partitionCount; page++)
 result.Add(Items.Skip(page * pageSize).Take(pageSize).
GetEnumerator());

 return result;
 }
 }

Keep in mind that with custom partitioning logic, we have the opportunity to
define partition size, and not partition count, because this count is passed as a
parameter from outside.

Chapter 5

[173]

Summary
In this chapter, you saw how to use task parallelism and data parallelism with
the .NET framework's features and techniques. Asynchronous programming and
parallelism together give any .NET programmer the ability to reach impressive
performance goals with an easy-to use approach and reliable environment.

In next chapter, you will see how to implement everything that you learned in this
chapter in the special case of mathematics or engineering elaboration.

Chapter 6

[175]

Programming for
Math and Engineering

This chapter will focus on computation that is mathematical and engineering
oriented, such as digital signal filtering, or any other mathematical computation
that may apply to any Big Data of (usually) simple items.

A lot of the examples within this chapter will use libraries such as Math.NET
Numerics or AForge.Math. These libraries are available for free through NuGet
Package Manager.

In this chapter, we will cover the following topics:

•	 Evaluating the performance of data types
•	 Real-time applications
•	 Case study: the Fourier transform
•	 Sliding processing

Introduction
Performance impact regarding complex computation is often a primary concern for
mathematicians and engineers who deal with C# coding.

Throughput is usually the main performance goal when dealing with scientific data
because the faster the application can do its job, the faster the result will be available
to the user. This high computational speed improves updating a UI in a higher FPS
or processing more asynchronous data for a non-UI application. This always affects
the end user considerably.

Programming for Math and Engineering

[176]

As opposed to an enterprise world in which big datasets of complex data and
logics with simple operations exist, in the mathematical or engineering world,
these datasets are usually huge but always of primary types, such as floating-point
numbers or sometimes timestamps.

Saving a single millisecond per item when processing 100,000 items per second
means saving lot of time, so, fixing usually unintended mistakes or computations
that are not optimized has become a main task of any programmer.

Evaluating the performance of data types
Years ago, when CPUs were very slow, the choice of the type of variable was actually
an important choice. With modern managed programming languages, even the most
primitive data types perform quite the same, but in some cases specific and different
behaviors still exist regarding data type performance, in terms of throughput and
resource usage.

The following is a sample application that is useful for checking data type speed in
randomly generating and sum ten million data items of primitive values. Obviously,
such sample code is not able to give any kind of absolute speed rating. It is a simple
demonstration application that is useful for giving an idea of different data-type
performance behavior:

//a random value generator
var r = new Random();

//repeat 10 times the test to have an averaged value
var stopwatchResults = new List<double>();

//a stopwatch for precision profiling
var w = new Stopwatch();

w.Start();
//change type here for testing another data type
var values = Enumerable.Range(0, 10000000).Select(i =>
(float)(r.NextDouble() * 10))
 .ToArray();

w.Stop();
Console.WriteLine("Value array generated in {0:N0}ms",
w.ElapsedMilliseconds);

for (int j = 0; j < 10; j++)

Chapter 6

[177]

{
 w.Reset();
 w.Start();

 //change type here for testing another data type
 float result = 0;

 //sum all values
 foreach (var f in values)
 result += f;

 w.Stop();
 Console.WriteLine("Result generated in {0:N0}ms",
w.ElapsedMilliseconds);
 stopwatchResults.Add(w.ElapsedMilliseconds);
}

Console.WriteLine("\r\n-> Result generated in {0:N0}ms avg",
stopwatchResults.Average());
Console.ReadLine();

When executed, this application gives an average execution time. Here are some
results per data type that were executed on my laptop, which has a quad-core Intel
i7-4910MQ, running at 3.9Ghz in turbo mode.

Please note that the following values are only useful in relation to
each other and they are not valid speed benchmark results.

Type Average result
Int32 37 ms
Int16 37 ms
Int64 37 ms
Double 37 ms
Single 37 ms
Decimal 328 ms

As expected, all data types with a footprint of 32 or 64 bits executed at the same on
my 64-bit CPU within the CLR execution environment, but the Decimal data type,
which is actually a 128 floating-point number, executed almost 10 times slower than
all the other data types.

Programming for Math and Engineering

[178]

Although in most financial or mathematical computation the increased precision of a
decimal is mandatory, this demonstrates how using a lower precision data type will
really boost throughput and latency of any of our applications.

The Decimal datatype is able to drastically reduce rounding errors that often happen
when using standard 64-bit or 32-bit (double or float) floating point data types,
because most of the decimal memory footprint is used to increase precision instead
of minimum/maximum numeric values. Visit the following link for more details:
https://msdn.microsoft.com/en-us/library/system.decimal.aspx.

BigInteger
A special case is when dealing with arbitrary-sized data types, such as the
BigInteger of the System.Numerics namespace (add reference to System.
Numerics assembly in order to use the related namespace). This structure can handle
virtually any numeric signed integer value. The size of the structure in memory will
grow together with the internal value numeric size, bringing an always-increasing
resource usage and bad throughput times.

Usually, performance is not impacted by the numeric values of two (or multiple)
variables when involved in a mathematical computation. This means that computing
10*10 or 10*500 costs the same with regards to CPU usage. When dealing with
arbitrary sized typed variables, this assertion becomes false, because of the increased
internal size of the data being computed, which brings a higher CPU usage at each
value increase.

Let us see how a BigInteger multiplication speed changes with the same multiplier:

Multiplier Average result Difference
10 332 ms
100 348 ms + 5%
1000 441 ms + 26%
10000 640 ms + 45%
100000 658 ms + 3%

Things change a lot here. The BigInteger numeric structure performs in a similar
way to the Decimal type, when the number is actually a small value. Compared with
other data types, this type always performs worse as the value increases, although
only by a small amount, because of the intrinsic implementation of the type that
internally contains an arbitrary amount of small integer values that compose the full
value. A BigInteger type has no bound limitations in the numeric value range.

https://msdn.microsoft.com/en-us/library/system.decimal.aspx

Chapter 6

[179]

Compared to a Decimal type that has very high precision with a good numeric value
range, the BigInteger type has no precision (as an integer value) with no value range
limitation. This differentiation simply states that we should only use the BigInteger
type when we definitely need storing and computing calculations against a huge
numeric value, possibly with no known upper/lower numeric range boundaries.

This behavior should discourage users from using such a data type, except when
it is absolutely necessary. Consider that an arbitrary size numeric structure is hard
to persist on any relational database without strong customizations or by using
serialization features, with the high costs of lot of data extraction whenever we
need to read/write such a value.

Half-precision data type
Although not available by default within the CLR, when dealing with unmanaged
code, often referred to as unsafe code, this old data type becomes available.

A native implementation for .NET is made in this link: http://csharp-half.
sourceforge.net/.

This implementation, as expected, uses native unsafe code from C++. To enable
unsafe coding within C#, we need to select the Allow unsafe code flag within
the Build pane of project property page.

Here, a 16-bit floating-point precision example is given with unsafe coding:

var doublePrecision = double.Parse("10.987654321");
Console.WriteLine("{0}", doublePrecision);

var singlePrecision = float.Parse("10.987654321");
Console.WriteLine("{0}", singlePrecision);

var halfPrecision = Half.Parse("10.987654321");
Console.WriteLine("{0}", halfPrecision);

//result:

10.987654321
10.98765
10.98438

http://csharp-half.sourceforge.net/
http://csharp-half.sourceforge.net/

Programming for Math and Engineering

[180]

When you lose precision by using a smaller data type, you reduce the characteristic
digit count (the number of digits different from zero) of the contained value. As seen,
the 64-bit example (the first row) clearly shows more digits than the other two types.

Another great disadvantage of using small precision datatypes is that because of the
numeric characterization reduction, it may be possible that a specific value won't exist.
In this case, the nearest value available is used in place of the original value. This issue
also exists in 32-bit and 64-bit floating points. But when working with a very tiny 16-bit
value, such as the half-precision data type, this issue becomes more evident.

All floating-point values have a characteristic number and a 10-based
multiplier. This means that the more characteristic numbers we
use upside the decimal separator, the fewer will remain available
downside the decimal separator. And the opposite is also true.

Regarding performance, maybe because of this specific implementation,
performances are actually poor with high computation times that become
a visible issue on big datasets.

Using a 16-bit floating-point data type is discouraged because it is unable to give any
performance improvement, but only in case if we definitely need such a 16-bit data
type, that may be because of some legacy-application integration.

Real-time applications
Real-time computing happens when a system is able to guarantee its latency time,
regardless of the system load. Obviously, low latency times are mandatory, but it
is the ability to guarantee the same latency time as load increases that makes a fast
system actually a real-time system. A more detailed definition is available here:
http://en.wikipedia.org/wiki/Real-time_computing.

A canonical example is the ABS (anti-lock braking system) logic ubiquitously
implemented in any automobile. Such logic must give results within a specific
deadline (in a span of milliseconds), otherwise the system will go into a failed state.

Sometimes real-time systems may run at an acceptable service level, although
with soft constraint specifications such as adding some tolerance to the deadline
requirement. With such a near real-time requirement, we can code in .NET for
Microsoft Windows as easily as we usually do for any other application type.

Bear in mind that within Microsoft Windows we cannot have full real-time
computation, mainly because of the unavailability of any application to claim
the 100 percent time of a CPU that is handled in time-share by the OS itself.

http://en.wikipedia.org/wiki/Real-time_computing

Chapter 6

[181]

This does not mean that Windows or the CLR cannot run code fast enough for
real-time, as real-time programming does not mean fast – it means with deterministic
times. Windows cannot run real-time applications, simply because it cannot guarantee
specific timing for (system – Win32) method invocations or thread start-up/stop
times. The same happens regarding the CLR that cannot guarantee fixed timings about
method execution and object destruction, for instance as has already been described in
the Garbage Collection section in Chapter 3, CLR Internals.

When dealing with specific applications such as industrials systems for automations
or robotics, it may be that we need near-real-time execution in C# to drive such
automations. Although we cannot create a Computer Numerical Control (CNC)
with C#, we can drive a CNC with remote invocations made in any .NET language.
When driving a CNC, the best performing architecture in C# is made using task-
parallelism or multi-thread based design.

If we have to create an application that reads a joystick position value, and then
moves a robotic arm to a specific position, we should make at least a three-threaded
application that can run at 60 FPS (Frame Per Second). This means that all C# code
must execute in less than 16ms per cycle.

A real-time queued driver processor made with C#

The application consists of a task, or a thread in charge of asking the position of the
joystick with an infinite-loop in a polling design. No logic can be placed here because
if any kind of logic is placed here, it would reduce the read speed, which, in turn,
would reduce the overall FPS rates of the application.

Successively, any value will be queued in a valid thread-safe in-memory queue that
will propogate the value without having to couple the two tasks processing speeds.

Programming for Math and Engineering

[182]

The second task will eventually check for data integrity and avoid data duplication
by knowing the actual CNC state and thus avoid sending the same position to the
next step multiple times.

The last task will read messages from the previous step by reading another
queue and will later send any queued message to the CNC in the right sequence,
because the whole queued architecture guarantees the sequential transmission
of all messages.

For instance, you can run the real time application and later run a telnet client by
executing such command: [telnet localhost 8080]. When the telnet will establish the
connection to the real time application we can simply test it by writing some text in
the telnet client one. All the text will be sent to the real time application and is later
shown in the console.

static void Main(string[] args)
{
 //create all needed tasks and wait until any will exit
 //any task exit will be considered an error and will cause process
exit
 Task.WaitAny(
 Task.Factory.StartNew(OnDataReaderTask, TaskCreationOptions.
LongRunning),
 Task.Factory.StartNew(OnDataProcessorTask,
TaskCreationOptions.LongRunning),
 Task.Factory.StartNew(OnDataWriterTask, TaskCreationOptions.
LongRunning));

 Console.WriteLine("Abnormal exit!");
}

//a stopwatch for testing purposes
static readonly Stopwatch stopwatch = new Stopwatch();

//this task will read data from the reader source
//we will use a simple tcp listener for testing purposes
private static void OnDataReaderTask()
{
 //a listener for opening a server TCP port
 var listener = new TcpListener(IPAddress.Any, 8080);
 listener.Start();

 //the server client for communication with remote client
 using (var client = listener.AcceptTcpClient())
 using (var stream = client.GetStream())
 while (true)
 {
 //try reading next byte

Chapter 6

[183]

 var nextByte = stream.ReadByte();

 //valid char
 if (nextByte >= 0)
 {
 AllMessagesQueue.Enqueue((char)nextByte);

 //start stopwatch
 stopwatch.Reset();
 stopwatch.Start();
 }

 Thread.Sleep(1);
 }
}

//this queue will contains temporary messages going from reader
task to processor task
static readonly ConcurrentQueue<char> AllMessagesQueue = new
ConcurrentQueue<char>();

//this task will process data messages
//no data repetition will be admitted
private static void OnDataProcessorTask()
{
 char last = default(char);
 while (true)
 {
 char c;
 //if there is some data to read
 if (AllMessagesQueue.TryDequeue(out c))
 //only new values are admitted when sending
coordinates to a CNC
 if (c != last)
 {
 last = c;
 ValidMessagesQueue.Enqueue(c);
 }
 else
 //stop stopwatch
 stopwatch.Stop();

 Thread.Sleep(1);
 }

Programming for Math and Engineering

[184]

}

//this queue will contains temporary messages going from processor
task to writer task
static readonly ConcurrentQueue<char> ValidMessagesQueue = new
ConcurrentQueue<char>();

//this task will push data to the target system
//instead of a CNC we will use the Console for testing purposes
private static void OnDataWriterTask()
{
 while (true)
 {
 char c;
 //if there is some data to read
 if (ValidMessagesQueue.TryDequeue(out c))
 {
 //stop stopwatch
 stopwatch.Stop();
 Debug.WriteLine(string.Format("Message crossed tasks
in {0:N0}ms", stopwatch.ElapsedMilliseconds));

 //we will send such data to the CNC system
 //for testing purposes we will use a Console.Write
 Console.Write(c);
 }

 Thread.Sleep(1);
 }
}

The preceding example shows how to process data without ever making any tasks
wait for another. This solution will guarantee the message flow and executes in
not more than 10ms on my laptop, so its speed is actually higher than 60 FPS,
as required.

The usage of Thread.Sleep at 1ms will force CLR to pause the execution of the
thread. On Windows, this stop-and-resume time is variable.

Obviously, we cannot guarantee that under load, the system will process in the
same time, so this is definitely a near-real-time application with a soft constraint
on deadlines specification; although optimistically, for 99.99% of the time, it works
just fine.

Chapter 6

[185]

Case study: Fourier transform
Fourier transform has several usages in engineering programming. The easiest usage
is producing a rolling average value for a dataset by applying a digital filter on the
given values as being frequency-domain values.

A low-pass filter is the one that stops high frequency values from passing. In audio
engineering, it is used to drive a sub-woofer or any low-frequency speaker. When
dealing with any other numerical value, such filters become useful to have an
averaged value or to cut away any interference or parasite signal in our values.

Rolling average
The application of a Fast Fourier Transform (FFT) on any numerical value will
produce a rolling average result like this:

A rolling average with a FFT at 10hz (orange) and 4hz (red) cut frequency

A typical feature of a FFT filter is at the edges, where the filter follows the trend
of the whole dataset instead of the local data. In the preceding picture, this error
is visible on the right-hand side, where the FFT produces an increasing averaged
value while the raw one is going down.

Programming for Math and Engineering

[186]

By using the Math.NET Numerics package from NuGet, the following is the code
to make a low-pass with FFT:

/// <summary>
/// Makes a low-pass digital filter against any floating point
data
/// </summary>
private static IEnumerable<float> LowPass(IEnumerable<float>
values, int cutHz)
{
 //convert raw data to Complex frequency domain-data
 var complex = values.Select(x => new Complex(x, 0)).ToArray();

 //start a fast Fourier transform (FFT)
 //this will change raw data in frequency data
 Fourier.Forward(complex);

 //low data is at edges so we clean-up
 //any data at the centre because we want
 //only low data (is a low-pass filter)
 for (int i = 0; i < complex.Count(); i++)
 if (i > cutHz && i < complex.Count() - cutHz)
 complex[i] = new Complex();

 //convert back data to raw floating-point values
 Fourier.Inverse(complex);

 return complex.Select(x => (float)x.Real);
}

The following example shows how to create the preceding chart in Windows Forms.
The application starts with an empty Form1 file.

//for data initialization
private void Form1_Load(object sender, EventArgs e)
{
 var r = new Random();
 double d = 0;

 //randomly generated data
 var data = Enumerable.Range(1, 1000)
 .Select(i => (float)(r.Next() % 2 == 0 ? d += (r.NextDouble()
* 10d) : d -= (r.NextDouble() * 10d)))

Chapter 6

[187]

 .ToArray();

 //namespace System.Windows.Forms.DataVisualization.Charting
 var chart1 = new Chart();

 //add the chart to the form
 this.Controls.Add(chart1);
 //shows chart in full screen
 chart1.Dock = DockStyle.Fill;

 //create a default area
 chart1.ChartAreas.Add(new ChartArea());

 //create series
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "RawValue",
 ChartType = SeriesChartType.Line,
 });
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "AveragedValue10",
 ChartType = SeriesChartType.Line,
 BorderWidth = 2,
 });
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "AveragedValue4",
 ChartType = SeriesChartType.Line,
 BorderWidth = 2,
 });

 //apply a digital low-pass filter with different cut-off
frequencies
 var lowPassData10hz = LowPass(data, 10).ToArray();

Programming for Math and Engineering

[188]

 var lowPassData4hz = LowPass(data, 4).ToArray();

 //do databinding
 chart1.DataSource = Enumerable.Range(0, data.Length).Select(i
=> new
 {
 Index = i,
 RawValue = data[i],
 AveragedValue10 = lowPassData10hz[i],
 AveragedValue4 = lowPassData4hz[i],
 }).ToArray();
 chart1.DataBind();

 //window in full screen
 WindowState = FormWindowState.Maximized;
}

Low-pass filtering for Audio
Low-pass filtering has been available since 2008 in the native .NET code. NAudio is
a powerful library helping any CLR programmer to create, manipulate, or analyze
audio data in any format.

Available through NuGet Package Manager, NAudio offers a simple and .NET-like
programming framework, with specific classes and stream-reader for audio data files.

Let's see how to apply the low-pass digital filter in a real audio uncompressed file in
WAVE format. For this test, we will use the Windows start-up default sound file. The
chart is still made in a legacy Windows Forms application with an empty Form1 file,
as shown in the previous example.

private async void Form1_Load(object sender, EventArgs e)
{
 //stereo wave file channels
 var channels = await Task.Factory.StartNew(() =>
 {
 //the wave stream-like reader
 using (var reader = new WaveFileReader("startup.wav"))
 {
 var leftChannel = new List<float>();
 var rightChannel = new List<float>();

 //let's read all frames as normalized floats

Chapter 6

[189]

 while (reader.Position < reader.Length)
 {
 var frame = reader.ReadNextSampleFrame();
 leftChannel.Add(frame[0]);
 rightChannel.Add(frame[1]);
 }

 return new
 {
 Left = leftChannel.ToArray(),
 Right = rightChannel.ToArray(),
 };
 }
 });

 //make a low-pass digital filter on floating point data
 //at 200hz
 var leftLowpassTask = Task.Factory.StartNew(() =>
LowPass(channels.Left, 200).ToArray());
 var rightLowpassTask = Task.Factory.StartNew(() =>
LowPass(channels.Right, 200).ToArray());

 //this let the two tasks work together in task-parallelism
 var leftChannelLP = await leftLowpassTask;
 var rightChannelLP = await rightLowpassTask;

 //create and databind a chart
 var chart1 = CreateChart();

 chart1.DataSource = Enumerable.Range(0, channels.Left.Length).
Select(i => new
 {
 Index = i,
 Left = channels.Left[i],
 Right = channels.Right[i],
 LeftLP = leftChannelLP[i],
 RightLP = rightChannelLP[i],
 }).ToArray();

 chart1.DataBind();

 //add the chart to the form

Programming for Math and Engineering

[190]

 this.Controls.Add(chart1);
}

private static Chart CreateChart()
{
 //creates a chart
 //namespace System.Windows.Forms.DataVisualization.Charting

 var chart1 = new Chart();

 //shows chart in fullscreen
 chart1.Dock = DockStyle.Fill;

 //create a default area
 chart1.ChartAreas.Add(new ChartArea());

 //left and right channel series
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "Left",
 ChartType = SeriesChartType.Line,
 });
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "Right",
 ChartType = SeriesChartType.Line,
 });

 //left and right channel low-pass (bass) series
 chart1.Series.Add(new Series
 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "LeftLP",
 ChartType = SeriesChartType.Line,
 BorderWidth = 2,
 });
 chart1.Series.Add(new Series

Chapter 6

[191]

 {
 XValueMember = "Index",
 XValueType = ChartValueType.Auto,
 YValueMembers = "RightLP",
 ChartType = SeriesChartType.Line,
 BorderWidth = 2,
 });

 return chart1;
}

Let's see the graphical result:

The Windows start-up sound waveform. In bolt, the bass waveform with a low-pass filter at 200hz.

The usage of parallelism in elaborations such as this is mandatory. Audio elaboration
is a canonical example of engineering data computation because it works on a
huge dataset of floating points values. A simple file, such as the preceding one that
contains less than 2 seconds of audio sampled at (only) 22,050 Hz, produces an array
greater than 40,000 floating points per channel (stereo = 2 channels).

Just to have an idea of how hard processing audio files is, note that an uncompressed
CD quality song of 4 minutes sampled at 44,100 samples per second * 60 (seconds) * 4
(minutes) will create an array greater than 10 million floating-point items per channel.

Programming for Math and Engineering

[192]

Because of the FFT intrinsic logic, any low-pass filtering run must run in a single
thread. This means that the only optimization we can apply when running FFT based
low-pass filtering is parallelizing in a per channel basis. For most cases, this choice
can only bring a 2X throughput improvement, regardless of the processor count of
the underlying system.

Sliding processing
As already seen in Chapter 3, CLR Internals, CLR has some limitations in
memory management.

Working with engineering data means having to deal with a huge dataset of more
than a million records.

Although we can load a simple integer array with millions of items in memory,
the same thing will be impossible when the number rises by a lot, or the data type
becomes heavier than a simple integer value.

The .NET has a complete enumerator-like execution model that can help us handle a
billion items without ever having to deal with all such items in memory, all together.
Here is an example on sliding processing:

static void Main(string[] args)
{
 //dataset
 //this dataset will not be streamed until needed
 var enumerableDataset = RetrieveHugeDataset();

 //start using the enumerable
 //this will actually start executing code within
RetrieveHugeDataset method
 foreach (var item in enumerableDataset)
 if (item % 12 == 0)
 Console.WriteLine("-> {0}", item);

 //parallel elaboration is also available
 enumerableDataset
 .AsParallel()
 .Where(x => x % 12 == 0)
 .ForAll(item => Console.WriteLine("-> {0}", item));

 Console.ReadLine();

Chapter 6

[193]

}

static readonly Random random = new Random();

//return an enumerable cursor to read data in a sliding way
static IEnumerable<int> RetrieveHugeDataset()
{
 //easy implementation for testing purpose
 for (int i = 0; i < 10000; i++)
 {
 //emulate some resource usage
 Thread.Sleep(random.Next(50, 200));

 //signal an item available to the enumerator
 yield return random.Next(10, 100000);
 }
}

Although this is a simple example, the ability to process a huge dataset with
data-parallelism, without storing the whole dataset in memory, is often mandatory
when dealing with special data elaboration such as what is produced by CNC
systems or audio ADCs. When dealing with a high frequency sampler dataset, it is
easy to store more than a billion of items. Because dealing with such a huge dataset
in memory may easily cause an OutOfMemoryException issue, it is easy to see that
sliding elaboration is the only design that can avoid memory issues altogether, with
the ability to process in a parallel manner.

Keep in mind that LINQ queries against in-memory objects work with exactly
the same implementation as the preceding code. Most LINQ methods, such as
an altering method, or a filtering method, will internally execute in a sliding
way. By executing a LINQ expression against another enumerator, such as our
RetrieveHugeDataset method, we start a completely new world of programming
in which the data flows between enumerator steps without having to being stored
somewhere in memory in a fixed-length container.

A canonical example of such sliding elaboration also uses a source or target
(or together) a stream-based class, as a FileStream or NetworkStream. The
combination of all such sliding processor classes is infinite and greatly powerful.

Programming for Math and Engineering

[194]

Summary
In this chapter, we discussed classical mathematic and engineering concerns about
data processing using practical examples and real-world solutions, such as the Fast
Fourier Transform and near-real-time elaboration.

In the next chapter, we will see how to persist/de-persist data at high speed with
modern ADO.NET techniques such as Entity Framework O/RM.

Chapter 7

[195]

Database Querying
Accessing a database for persisted data retrieval is usually a time-consuming
operation. Within the .NET framework, ADO.NET is the sub-framework responsible
for database access. In 2008, Microsoft introduced Entity Framework (EF) as a
multiplatform object relational-mapping (O/RM) database access subsystem within
ADO.NET itself.

Although classical ADO.NET (low level) database access techniques have been
superseded by EF's features, some specific usage is still a prerogative of such legacy
programming classes.

In this chapter, we will take a tour of EF's querying capabilities, trying all available
techniques to emphasize the performance results of each one. We will cover the
following topics in this chapter:

•	 Overview of ADO.NET
•	 Overview of Entity Framework
•	 Entity Framework querying optimization
•	 Entity Framework persistence optimization
•	 Performance comparison
•	 ADO.NET specific features

Database Querying

[196]

Introduction
The ActiveX Data Objects (ADO) .NET is the main data provider for database access
for any CLR-based application. ADO.NET was designed to supercede the old ADO.
ADO used to be another framework for database access and manipulation. It works
as a middleware, similar to a control or component, able to make available underlying
database features as simplified features. It uses ActiveX technology (which is the heir
to COM and OLE) to encapsulate its features as reusable cross-language features.
This is why ADO was able to work in applications made with Visual Basic 6 or C++.
ADO.NET, instead, is available only to CLR-based applications. As the ADO could,
ADO.NET can also interact with any database using a specific data provider or cross
provider, such as OLEDB or ODBC.

ADO.NET is completely extensible with a full interface-based architecture, relying
on the abstract factory pattern. This makes the framework usable in situations other
than in a classical tightly-coupled scenario with path to the specific database, as
well as in an agnostic way without having to know exactly which data provider is
actually running.

Made for ADO.NET, Entity Framework is the main O/RM created by Microsoft to
interact with any database in an object-oriented way. The usage of EF relies on the
data provider's ability to translate C# queries in specific SQL-dialect, such as TSQL
or others. Thus, the underlying ADO.NET data provider must be compliant with EF.
At this time, almost all database engines have a specific EF-compliant data provider,
each one optimized for its database language.

Within ADO.NET, we have the ability to use all specific database features, even if
they are not standardized across all database producers. On the contrary, Entity
Framework uses only standardized features to give you the ability to change the
data provider at any time.

Overview of ADO.NET
ADO.NET components access the database in two ways: in a connected way and
in a disconnected way. In the connected access method, we deal with synchronous
communication with a database instance, sending any instances of data definition
language (DDL) or data manipulation language (DML). In the disconnected access
method, we store a pseudo-copy of data and schema of any table locally, with the
ability to save changes (if any) asynchronously.

Chapter 7

[197]

In the end, any time we deal with ADO.NET, as with low level classes, or with high
level OR/M classes, we always produce some SQL statement. This statement may be
the result of an OR/M data provider that translate object-oriented code in SQL code
or may be the result of our direct text entry like when we write the SQL by ourselves
or like when we simply invoke a stored procedure (an SQL statement stored on
the database itself). Eventual parameters may be used to parameterize the SQL
execution. Never concatenate strings to produce an SQL statement because of poor
performance execution of the string-format-like value formatting, heavily increased
attack surface for SQL-injection exploits, and bad testability.

A simplified view of ADO.NET components

The simplest database access is when we make a simple SELECT statement against
our persistence storage and try to read its result, later. If the result is in a tabular
form, we must use a DataReader object, which is an enumerator-like class that
uses a client-side cursor to stream data rows, giving us the ability to read columns
data as we wish, by column index or name. As a simplified option, we can read the
first row's first column data of any SELECT with a direct request, without having to
stream the result-set with a cursor. Here is an example:

//a connection with specific connection-string
using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
//a command with custom SQL statement
using (var cm = new SqlCommand("SELECT [Number],[Date] from
[Invoice]", cn))
{
 //open the connection
 cn.Open();

Database Querying

[198]

 //execute the command statement and catch the result-set into
a data reader
 using (var dr = cm.ExecuteReader())
 //read until cursor signal new rows availability
 while (dr.Read())
 //reads columns data
 Console.WriteLine("Number:{0}\tDate:{1:d}", dr[0],
dr["Date"]);
}

Because of the extremely high customizability of the ADO.NET connected classes
architecture, it could easily run into performance issues. A poor-quality SQL
statement made by the developer could also create another performance issue.

If the using keyword is not used properly, the preceding code can open several
database connections, wasting client and server resources and limiting future usage
of the database server itself because of the limited number of connections available.
This is another example showing a scalar request made against the database:

//a connection with specific connection-string
using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
//a command with custom SQL statement
using (var cm = new SqlCommand("SELECT @a+@b+@c", cn))
{
 //add parameters value to the command
 //the usage of the "@" is not mandatory
 cm.Parameters.AddWithValue("a", 10);
 cm.Parameters.AddWithValue("b", 10);
 cm.Parameters.AddWithValue("@c", 10);

 //open the connection always at the last time
 cn.Open();
 var result = (int)cm.ExecuteScalar();
}

In this case, a direct binary value flows to the client from the database. The usage of
an input parameter is actually straightforward.

Another specific feature of the Command class is the ability to return an XML value
made in the database. Even if such a feature has bad performance for both XML
encoding and decoding, sometimes it is useful. Moreover, if applied together with
XML serialization from .NET, this could make a (very) basic O/RM tool. Here is
an example:

Chapter 7

[199]

//an XML serializer/deserializer for Invoice class
var serializer = new XmlSerializer(typeof(Invoice));

using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
//a command with XML result
using (var cm = new SqlCommand("SELECT [Number], [Date] from [Invoice]
FOR XML AUTO", cn))
{
 cn.Open();

 //instead of returning a binary result-set this returns an
XmlReader
 using (var reader = cm.ExecuteXmlReader())
 //read until an Invoice is available
 while (!reader.EOF && reader.ReadToFollowing("Invoice"))
 {
 //the single row as xml string
 string xml = reader.ReadOuterXml();
 //another reader to read the single row
 using (var subReader = reader.ReadSubtree())
 {
 //the deserializer can parse the xml row and retrieve
needed values as defined by the decorator pattern (attributes) against
the Invoice class
 var invoice = serializer.Deserialize(subReader);
 }
 }
}

The following example shows the Invoice class decorated to supply XmlSerializer
needs:

[XmlRoot("Invoice")]
public class Invoice
{
 [XmlAttribute]
 public string Number { get; set; }

 [XmlAttribute]
 public DateTime Date { get; set; }
}

Database Querying

[200]

When executing such an example in SQL Management Studio, the rows are
returned as an XML instance, shown as follows:

<Invoice Number="001/2015/GR" Date="2015-01-01T00:00:00" />

Any other operation that does not need data retrieval will return the affected row
count, as shown in the following example:

using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
//a command with a insert-select using parameters
using (var cm = new SqlCommand("INSERT INTO [Invoice](CustomerCustomer
ID,Number,Date) SELECT @customerid,
@number, @date", cn))
{
 //parameter definition and population
 cm.Parameters.AddWithValue("customerid", 1);
 cm.Parameters.AddWithValue("number", "2015/test/test");
 cm.Parameters.AddWithValue("date", DateTime.Now.Date);

 //open the connection
 cn.Open();

 //checks for the right insert result
 if (cm.ExecuteNonQuery() != 1)
 throw new ArgumentException("No insert made within
database server. Check values");
}

The other way of dealing with ADO.NET classes is by accessing the database
in disconnected mode, in which we bring the data and schema locally in our
application state, without having to maintain a connection open to the database
server. The following code shows an example:

//a temporary datatable to contains
//read data and schema
using (var dt = new DataTable())
{
 //a connection with specific connection-string
 using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
 //a command with custom SQL statement
 using (var cm = new SqlCommand("SELECT [Number], [Date] from
[Invoice]", cn))
 //a data adapter to fill a datatable and
 //handle eventual change tracking

Chapter 7

[201]

 using (var da = new SqlDataAdapter(cm))
 //the connection this time is handled by the adapter
 da.Fill(dt);

 //thanks to the using keyword
 //at this row anything related
 //to the database connection and
 //command execution is being
 //disposed

 //do some work on disconnected data
 //the DataRow usage is similar to a DataReader
 foreach (DataRow dr in dt.Rows)
 Console.WriteLine("Number:{0}\tDate:{1:d}", dr[0],
dr["Date"]);
}

Although such usage is actually substituted by O/RM data access techniques, the
ability to execute SQL code without the need to know the shape of returned data
during design is still a killer feature of such legacy (2001) data-access framework.
An example is reading a pivot table from a database view or a stored procedure.

An overview of Entity Framework
First released in 2008, EF has improved heavily during the four major releases
deployed over the last 5 years. At the time of writing, the stable release is the
Version 6.x and has the ability to connect to any relational database with three main
connection architectures: database-first, model-first, and code-first. The first two are
similar, except for the need to connect to an already-existing database or creating
one with EF itself. Code-first, instead, is a completely new approach to access and
maintain a database structure during application's lifetime. This relies on classes
and a lot of decorator pattern (attributes) to specify physical names, constraints, and
types. This design, together with the classical validation and UI-formatting oriented
decorations from the DataAnnotation namespace, definitely makes it an easy-to-write
persistence layer class that can flow up to the UI (MVC has great advantages due to
approach) to create simple data-driven applications.

Database Querying

[202]

Oddly, when using super decoupled architectures such as domain-driven design
(DDD), it offers great advantages when all application layers (database itself) are
developed in the same way and coded in the same language (without any SQL).

EF in diagram view of a (very) simple invoicing application

When using an O/RM, making a SELECT query in a database means using items from
the collection that represent the table. It is quite impossible to make a one-to-one
comparative between classical ADO.NET and EF because of the completely different
approach in database iteration. What definitely is important to understand is that until
materialized, anything is still a query when dealing with an O/RM; otherwise, a large
number of performance issues may arise.

The materialization happens when we actually iterate with an enumerator by using
the for-each statement, or when we flow the result in a finite collection, such as an
Array or List<T> by using the LINQ extensions methods such as ToArray, ToList,
ToDictionary, or anything similar. Here's an example:

using (var context = new InvoicingDBContainer())
{
 var query = context.Invoice;
 Console.WriteLine("query: {0}", query.ToString());

 var data = context.Invoice.ToArray();
 Console.WriteLine("data: {0}", data.ToString());
}

Luckily and easily, if we invoke the .ToString() method on a query, we would
have the real SQL output as proof of being a simple query (similar to a command
in classical ADO.NET object hierarchy). On the other hand, if we invoke the same
method on the materialized data stored in an array, we obviously take the class
name of the array itself. Here is an example:

Chapter 7

[203]

query: SELECT
 [Extent1].[InvoiceID] AS [InvoiceID],
 [Extent1].[CustomerCustomerID] AS [CustomerCustomerID],
 [Extent1].[Number] AS [Number],
 [Extent1].[Date] AS [Date]
 FROM [dbo].[Invoice] AS [Extent1]
data: EntityFrameworkWorkbanch.Data.Invoice[]

In Entity Framework, the context is definitely not a simple data proxy or container.
It never caches data or contains data. Its main job is to implement the Unit of Work
pattern. The goal of this pattern is tracking changes to any entity (data item) within
the context so that it is capable of persisting changes that have occurred in entities
autonomously. The following is an example of a Unit of Work pattern:

//the unit of work context
using (var context = new InvoicingDBContainer())
{
 //an invoice
 var invoice = context.Invoice.FirstOrDefault();
 //editing the Date property
 invoice.Date = invoice.Date.AddDays(-1);
 //ask the context for persist detected changes
 context.SaveChanges();
}

//the unit of work context
using (var context = new InvoicingDBContainer())
{
 //add a new invoice
 context.Invoice.Add(new Data.Invoice
 {
 Date = DateTime.Now.Date,
 Number = "NUMBER",
 CustomerCustomerID = 1,
 });
 //ask the context for persist detected changes
 context.SaveChanges();
}

//the unit of work context
using (var context = new InvoicingDBContainer())
{
 //an invoice
 var invoice = context.Invoice.FirstOrDefault();

Database Querying

[204]

 //register for removal
 context.Invoice.Remove(invoice);
 //ask the context for persist detected changes
 context.SaveChanges();
}

The bigger difference when using those two frameworks is that when we use
connected ADO.NET, we deal with a remote server speaking SQL language, while
when we use EF, we work on objects that map data. This means that if we need to edit
any data, we have to deal with the local object states, not with the remote server itself.

Advanced querying
The best of EF is seen when querying data. Although the comfort of editing data
with objects definitely offers some great advantages in terms of data quality and
issue prevention, data querying with EF and LINQ raises the level of quality and
the maximum level of complexity of such queries, without actually increasing the
complexity in code. This is because of the great power of querying with LINQ.

A big advantage when working with objects is the ability to produce a dynamic
object-oriented query with all related benefits, such as type safe values, constraint
validation, and so on.

using (var context = new InvoicingDBContainer())
{
 //a simple user filter
 string filter = null;

 //base query
 var query = context.Invoice
 .Where(x => x.Date >= new DateTime(2015, 1, 1))
 .Where(x => string.IsNullOrEmpty(filter) || x.Number.
Contains(filter));

 if (true)//some dynamic logic
 query = query.OrderBy(x => x.Date);
 else
 query = query.OrderByDescending(x => x.Date);

 //query materialization
 var data = query.ToArray();
}

Chapter 7

[205]

The same example executed in connected ADO.NET would need concatenated
SQL strings with obvious increased attack surface for SQL injection and a general
reduction in design quality of the whole code.

Another great advantage when using LINQ to Entities (LINQ when applied to
an EF data provider) as a querying language is the ability to easily make a nested
query with full support from IntelliSense, and the auto-completion of Visual Studio
with the full list of querying features of LINQ, such as aggregations, computations,
interactions, filters, and so on. Here's an example on advanced querying:

using (var context = new InvoicingDBContainer())
{
 string filter = null;

 var query = context.Invoice
 //an hard-coded filter
 .Where(x => x.Date >= new DateTime(2015, 1, 1))
 //a dynamic filter from user
 .Where(x => string.IsNullOrEmpty(filter) || x.Number.
Contains(filter))
 //it is time to shape data with needed aggregations
 .Select(x => new //new anonymous type
 {
 CustomerID = x.CustomerCustomerID,
 x.Number,
 x.Date,
 //InvoiceElement is the navigation property to
 //the InvoiceElement table containing invoice elements
 //the navigation makes associated table data available
like if we had done a JOIN on the child table
 ElementCount = x.InvoiceElement.Count(),
 BaseAmount = x.InvoiceElement.Sum(e => e.Amount *
e.UnitPrice),
 VATAmount = x.InvoiceElement.Sum(e => e.Amount *
e.UnitPrice * (e.VatMultiplier - 1d)),
 //instead of writing here the TotalAmount duplicating
calculations we will write it in next step
 })
 .Select(x => new
 {
 x.CustomerID,
 x.Number,
 x.Date,
 x.ElementCount,
 x.BaseAmount,

Database Querying

[206]

 x.VATAmount,
 TotalAmount = x.BaseAmount + x.VATAmount,
 })
 .OrderBy(x => x.Date)
 .ThenBy(x => x.Number);

 var data = query.ToArray();
}

This ability to create new objects within any query is called query shaping. By using
anonymous types, we can create as many query levels as we need to achieve our
result with object querying. Never use old interaction logic (for/for-each on locally
materialized objects) with EF because it has no pros; it only seems too familiar to
someone who is used to LINQ to entities queries.

Entity Framework querying optimization
First, when trying to understand EF performance, we need to know what stages
EF operates on in order to actually query the database server with our object query.
We always must keep in mind that EF is an object model mapped to a physical
model that is produced from database's metadata. When we make a query, it is made
across the entity objects that are mapped to the known physical layer within the
EF itself. This mapping later produces the right SQL, which is sent to the database
server. This means that if a change is made against the database metadata, the
known metadata in EF may become invalid and produce runtime errors.

Talking about performance, we must dive deep into SQL materialization.
This knowledge of the stage list made by EF becomes critical.

Querying execution lifecycle
The first step when we make a query from scratch with EF involves metadata loading.
This step reflects all entity class metadata and related mapping to the physical layer.
When made, the result is cached in all application domains. This step definitely
incurs high cost. Luckily, it takes place only once in an application's lifetime, but only
in the case when we deal with multiple application domains.

Chapter 7

[207]

The second step that occurs any time we perform any kind of database access
(query or edit) is the connection opening (later closed immediately when the result
is materialized). Although this does not cost so much because of CLR connection
pooling, it adds some minor latency times to the first database connection, when the
first connection is added to the pool.

Once the connection is available, Entity Framework needs compiling an in-memory
query, representing the SQL query in object-oriented way. This in-memory query,
called query view. For performance purposes, this query view is cached by Entity
Framework itself per each AppDomain. This means that subsequent executions of
the same query, will not produce a new query view, simply the previous query view
is used and the related SQL statement is sent to the database server.

Now it is time for EF to create the proper SQL statements (related to the specific
database dialect) by analyzing the expression tree of all LINQ expressions used for the
object query. This adds some execution time, and is still cached for a single query.

The following steps are less incisive in terms of performance. These are SQL execution
on database (out of our performance concern scope) entity type load by reading the
metadata from step one, metadata validation, change-tracking activation (it's possible
to disable this step if not needed), and finally, object materialization. The last step may
increase execution time if multiple objects are materialized together.

Without any caching, EF would definitely perform 10 times worse or more than
connected ADO.NET would in the data retrieval scenario, in which the query view
compilation would always take quite some more time than the database SELECT
execution itself.

Although the connection pooling reduce connection open/close times by caching
such connections, any time we reuse a connection from the pool, some handshake
happens (at least the authentication). When we deal with Internet accessed SQL
Servers, like SQL Azure, a frequent connection pooling can produce a significant
delay if we insert (for instance) hundreds of items with a new connection opening
handshake per item. In this case, a connection retention like storing a single
connection in a static variable, will avoid pooling overhead.

More detail on ER performance consideration can be found
at https://msdn.microsoft.com/en-us/library/
cc853327.aspx.

https://msdn.microsoft.com/en-us/library/cc853327.aspx
https://msdn.microsoft.com/en-us/library/cc853327.aspx

Database Querying

[208]

Querying approaches
Entity Framework gives us the ability to query with different designs. By default, the
approach of EF is to execute in the main query what we actually write in the query.
Because of the object-oriented approach of EF entities, later, we can later access its
properties, such as the navigation properties, to associate entities without having
to put such navigation imperatively in the main query. The execution is available
until the context is available. This also means that another statement is sent to the
database server and another connection open/close happens per main item iterated,
producing many database round trips. This default approach, named lazy loading,
can also be disabled in the design view of EF itself. In such a case, if we want to
access a navigation property with disabled lazy loading, we will need to manually
load it or else we will simply get a null value.

Another querying approach is by preloading all the required navigation properties
using an approach called eager loading. By executing an EF query in eager loading
against a master-detail relationship, the result in terms of database querying is
a SELECT statement producing a Cartesian product of all tables involved in the
executed queries. This may produce a huge result set within the database server.
Once such a set comes to EF, it creates a sort of in-memory data grouping to give
objects the right hierarchical shape. With eager loading, no multiple round trips
happen, but the big dataset may easily result in great network usage and client
(EF side) materialization costs.

The eager and the lazy loading approach gives us the ability to use interesting OOP
designs. For example, we could add computational properties or methods to any
entity centralizing such logic. This becomes very useful for data-driven applications.
Here's an example:

partial class InvoiceElement
{
 public double BaseAmount { get { return Amount * UnitPrice; }
}
 public double TotalAmount { get { return Amount * UnitPrice *
VatMultiplier; } }
}

partial class Invoice
{
 public double BaseAmount { get { return InvoiceElement.Sum(x
=> x.BaseAmount); } }
 public double TotalAmount { get { return InvoiceElement.Sum(x
=> x.TotalAmount); } }
}

Chapter 7

[209]

This means that anytime we will need to know the total invoice amount, it will simply
be available as a computed property. However, this also means that we always have to
take in memory all invoice elements, even if we simply need a total amount.

The last available approach uses query shaping. Instead of executing a query on
standard inferred entities from a physical database, we use EF to materialize only
the required data, as happens when dealing with a View on a database server.
Here is an example:

//the AsNoTracking disable change tracking
//this avoid wasting some time and resources
using (var db = new Data.InvoicingDBContainer())
{

 //the lazy execution - the default one
 var lazy_query = db.Invoice.AsNoTracking();

 //the eager execution
 //this will pre-execute in a super-join all requested
navigation properties
 var eager_query = db.Invoice.AsNoTracking()
 .Include("Customer")
 .Include("InvoiceElement");

 //a new query with a new shape
 //this give us the ability to get
 //from the database server only what we need
 //without wasting network resources and
 //moving computation across the remote server
 var shaped_query = from i in db.Invoice.AsNoTracking()
 select new
 {
 i.Number,
 i.Date,
 CustomerName = i.Customer.CompanyName,
 BaseAmount = i.InvoiceElement.Sum(x =>
x.Amount * x.UnitPrice),
 TotalAmount = i.InvoiceElement.Sum(x
=> x.Amount * x.UnitPrice * x.VatMultiplier),
 };

 Console.WriteLine("Simple (lazy) query");
 TraceTime(() =>
 {
 //enumerate the result to execute the query

Database Querying

[210]

 foreach (var item in lazy_query)
 {
 var date = item.Date;
 var total = item.TotalAmount;

 //accessing navigation property in lazy way
 //will trigger context to load the related
 //navigation property for each entity in resultset
 var companyname = item.Customer.CompanyName;
 }
 });

 Console.WriteLine("Simple (eager) query");
 TraceTime(() =>
 {
 //enumerate the result to execute the query
 foreach (var item in eager_query)
 {
 var date = item.Date;
 var total = item.TotalAmount;

 //with eager loading no multiple round-trips are made
 //but at beginning a bigger result-set is loaded
 var companyname = item.Customer.CompanyName;
 }
 });

 Console.WriteLine("Shaped query");
 TraceTime(() =>
 {
 //enumerate the result to execute the query
 foreach (var item in shaped_query)
 {
 //all needed data is already within
 //query materialization
 }
 });
}

Chapter 7

[211]

Performance thoughts
Analyzing performance concerns of the three approaches is not so easy. The first
thing to learn is that each approach may perform well in different scenarios.

The following table shows the pros and cons of lazy loading, eager loading,
and shaped query:

Approach Pros Cons
Lazy loading •	 All local properties

always available and
ready to be edited

•	 Full OOP
programming against
navigation and local
properties

•	 Local-side execution
of logic once data is
materialized

•	 Navigation available only
until the context is available

•	 Wastes many resources
when a property is not
needed, as lazy loading
always makes a sort using
SELECT * on the base entity

•	 Lots of round trips to the DB
for each entity navigation
property during first usage

Eager loading •	 All local properties
always available and
ready to be edited

•	 Full OOP
programming against
navigations and local
properties

•	 Local-side execution
of logic once data is
materialized

•	 No round trips to DB

•	 Lot of resources are wasted
anytime a property is not
needed because makes
always a sort of SELECT *
on base entity

•	 High execution cost
for network and object
materialization

Shaped query •	 Server-side execution
of logics within the
query

•	 No round trips to DB
•	 Minimal resource

usage on network and
EF side

•	 Only needed data is
materialized

•	 Unable to centralize logics
within objects because of the
data-driven approach

•	 Read-only objects

Database Querying

[212]

Oddly, lazy loading always loads all entity data to reduce eventual round trips to
the database by applying a Data Transfer Object (DTO) pattern with the database
server, while navigation properties use the Lazy Load pattern, which is exactly the
opposite of DTO.

The execution of the following example will give us interesting evidence of how EF
performs different query approaches:

First execution
Simple (lazy) query
-> in 1,717 ms
Simple (eager) query
-> in 189 ms
Shaped query
-> in 181 ms

Second execution
Simple (lazy) query
-> in 1,153 ms
Simple (eager) query
-> in 97 ms
Shaped query
-> in 10 ms

The example executed on my laptop includes fake data of 100 invoices, each with 84
elements. Absolute values are definitely useless, while relative data analysis gives us
several interesting features. First, we need to observe how EF metadata and query
view generation add sensible time cost to each querying approach.

In terms of real execution time—visible from the second execution and later—by using
lazy loading, the request of all invoice elements per invoice adds huge round-trip times
to the whole querying mechanism. This elaboration time is more than 10 times than
that of eager loading and more than 20 times that of shaped loading.

Compared to lazy loading, the eager loading approach performs better when
considering latency time of a single round trip. However, upon analyzing the
produced database query in SQL Server Profiler, we can see the concrete SQL
statement produced. A huge and resource-wasting statement! Here is an example:

SELECT
 [Project1].[InvoiceID] AS [InvoiceID],
 [Project1].[CustomerCustomerID] AS [CustomerCustomerID],
 [Project1].[Number] AS [Number],
 [Project1].[Date] AS [Date],
 [Project1].[CustomerID] AS [CustomerID],

Chapter 7

[213]

 [Project1].[CompanyName] AS [CompanyName],
 [Project1].[Address1] AS [Address1],
 [Project1].[Address2] AS [Address2],
 [Project1].[Address3] AS [Address3],
 [Project1].[TenantTenantID] AS [TenantTenantID],
 [Project1].[C1] AS [C1],
 [Project1].[InvoiceElementID] AS [InvoiceElementID],
 [Project1].[InvoiceInvoiceID] AS [InvoiceInvoiceID],
 [Project1].[Amount] AS [Amount],
 [Project1].[Description] AS [Description],
 [Project1].[UnitPrice] AS [UnitPrice],
 [Project1].[VatMultiplier] AS [VatMultiplier]
 FROM (SELECT
 [Extent1].[InvoiceID] AS [InvoiceID],
 [Extent1].[CustomerCustomerID] AS [CustomerCustomerID],
 [Extent1].[Number] AS [Number],
 [Extent1].[Date] AS [Date],
 [Extent2].[CustomerID] AS [CustomerID],
 [Extent2].[CompanyName] AS [CompanyName],
 [Extent2].[Address1] AS [Address1],
 [Extent2].[Address2] AS [Address2],
 [Extent2].[Address3] AS [Address3],
 [Extent2].[TenantTenantID] AS [TenantTenantID],
 [Extent3].[InvoiceElementID] AS [InvoiceElementID],
 [Extent3].[InvoiceInvoiceID] AS [InvoiceInvoiceID],
 [Extent3].[Amount] AS [Amount],
 [Extent3].[Description] AS [Description],
 [Extent3].[UnitPrice] AS [UnitPrice],
 [Extent3].[VatMultiplier] AS [VatMultiplier],
 CASE WHEN ([Extent3].[InvoiceElementID] IS NULL) THEN
CAST(NULL AS int) ELSE 1 END AS [C1]
 FROM [dbo].[Invoice] AS [Extent1]
 INNER JOIN [dbo].[Customer] AS [Extent2] ON
[Extent1].[CustomerCustomerID] = [Extent2].[CustomerID]
 LEFT OUTER JOIN [dbo].[InvoiceElement] AS [Extent3] ON
[Extent1].[InvoiceID] = [Extent3].[InvoiceInvoiceID]
) AS [Project1]
 ORDER BY [Project1].[InvoiceID] ASC, [Project1].[CustomerID] ASC,
[Project1].[C1] ASC

This statement produces a result-set of 8,400 rows. However, an execution time of 97
milliseconds is good for a set this size. Let's consider that the query is executed on a
local database. If the same query were executed across a network, it would lead to a
lot of wastage of network resources, as well as a higher execution time. Hence, it is
important to use eager loading carefully.

Database Querying

[214]

Obviously, the shaped query performed the best with respect to latency times and
overall resource usage. Take into consideration that although there are advantages, it
is lacking in terms of scalability. In a system design where we have a single database
system and multiple application servers—because of the database-side execution
of computations—once the relational database ends its computational resources,
it will be impossible to have better performance. It will be impossible improving
performances although adding hundreds of application servers running our .NET
application.

Regarding the quality of the SQL statement, a shaped query produce the most
beautiful code. Here's an example:

SELECT
 [Project1].[InvoiceID] AS [InvoiceID],
 [Project1].[Number] AS [Number],
 [Project1].[Date] AS [Date],
 [Project1].[CompanyName] AS [CompanyName],
 [Project1].[C1] AS [C1],
 (SELECT
 SUM([Filter2].[A1]) AS [A1]
 FROM (SELECT
 [Extent4].[Amount] * [Extent4].[UnitPrice] *
[Extent4].[VatMultiplier] AS [A1]
 FROM [dbo].[InvoiceElement] AS [Extent4]
 WHERE [Project1].[InvoiceID] =
[Extent4].[InvoiceInvoiceID]
) AS [Filter2]) AS [C2]
 FROM (SELECT
 [Extent1].[InvoiceID] AS [InvoiceID],
 [Extent1].[Number] AS [Number],
 [Extent1].[Date] AS [Date],
 [Extent2].[CompanyName] AS [CompanyName],
 (SELECT
 SUM([Filter1].[A1]) AS [A1]
 FROM (SELECT
 [Extent3].[Amount] * [Extent3].[UnitPrice] AS [A1]
 FROM [dbo].[InvoiceElement] AS [Extent3]
 WHERE [Extent1].[InvoiceID] =
[Extent3].[InvoiceInvoiceID]
) AS [Filter1]) AS [C1]
 FROM [dbo].[Invoice] AS [Extent1]
 INNER JOIN [dbo].[Customer] AS [Extent2] ON
[Extent1].[CustomerCustomerID] = [Extent2].[CustomerID]
) AS [Project1]

Chapter 7

[215]

Entity Framework persistence
optimization
When dealing with DML statements, EF shows some limitations due to its object
orientation. An example on all comes with a DELETE statement made in EF. This
example shows how to make a master-detail delete operation:

int InvoiceID = 11;

using (var db = new InvoicingDBContainer())
{
 //materialize an invoice
 //this will produce a SELECT statement
 var invoice = db.Invoice
 .Include("InvoiceElement") //eager-load elements for
deletion
 .FirstOrDefault(x => x.InvoiceID == InvoiceID);

 //manually load elements for deletion
 //no lazy-load works for cascade delete objects
 //db.Entry(invoice).Collection("InvoiceElement").Load();

 //informs EF context to remove invoice from database
 db.Invoice.Remove(invoice);

 //asks EF context to persist changed entities
 //this will produce the DELETE statement
 db.SaveChanges();
}

Obviously, the whole selection of the Invoice and of all InvoiceElement instances
(both for eager or lazy loading approaches is the same) is mandatory before asking
the context to delete them, marking them as removed. This leads to a big resource
wastage and heavily increases the execution time of any DELETE statement.

Please note that without specifying the cascade-delete operation on the Invoice
and the InvoiceElement relation in EF designer, we will have to iterate all invoice
elements of the correct navigation property from the invoice variable.

Notice that lazy loading in cascade-delete does not work at all.

Database Querying

[216]

Do not think that EF has poor DELETE operation performances. Also, note that for the
case of manipulating data by hand, any application will need data retrieval before
knowing what item to delete. So, the entity instances required to be deleted are, for
the most times, already available to your application.

Specifically for data deletion, a simple workaround comes to the rescue:

var ElementID = 9;

using (var db = new InvoicingDBContainer())
{
 //create a disconnected instance with needed key
 var element = new InvoiceElement
 {
 //manually set the primary-key value
 InvoiceElementID = ElementID,
 };

 //asks the context for attaching the disconnected instance
 db.InvoiceElement.Attach(element);

 //mark element with removed status within context change tracker
 db.InvoiceElement.Remove(element);

 //asks EF context to persist changed entities
 //this will produce the DELETE statement
 db.SaveChanges();
}

It is also possible to make deletions in master-detail scenarios, but the reduced
strength of the whole design should convince you to avoid this choice. The same
behavior occurs when dealing with the UPDATE statement:

var InvoiceID = 15;

using (var db = new InvoicingDBContainer())
{
 //materialize an invoice
 //this will produce a SELECT statement
 var invoice = db.Invoice
 .FirstOrDefault(x => x.InvoiceID == InvoiceID);

 //a simple edit
 invoice.Number = "updated nr";

Chapter 7

[217]

 //asks EF context to persiste changed entities
 //this will produce the UPDATE statement
 db.SaveChanges();
}

using (var db = new InvoicingDBContainer())
{
 //a fake invoice for updating data
 var invoice = new Invoice
 {
 InvoiceID = InvoiceID,
 };

 //attach the fake invoice to the context
 //this will start the change tracking of such entity
 db.Invoice.Attach(invoice);

 //a simple edit
 invoice.Number = "updated again";

 //asks EF context to persiste changed entities
 //this will produce the UPDATE statement
 db.SaveChanges();
}

In the first example, EF will make a SELECT operation and later an UPDATE operation,
setting the only edited column to the new value. In the second example, the
workaround shows how to have the same result without having to make a SELECT
operation. Obviously, as was said before, sometimes such SELECT operations will
always be required because we need a valid ID.

This workaround works fine because the change tracker can produce the SQL
statement of only the changed properties, leaving all the others intact on the
database server.

About the INSERT operation: when dealing with EF, this adds no cost overhead,
so no performance concerns exist more than with a legacy SQL statement that is
manually written.

Database Querying

[218]

Performance comparison
Comparing two different frameworks for database interaction is actually difficult.
An O/RM that provides increased simplicity in database querying/persisting
and extreme team working improvements from the intrinsic object-oriented
programming makes EF the best choice in several scenarios. This, along with the
knowledge of performance bottlenecks that occurs in such a framework, will help in
avoiding dangerous issues when in the production stage, when the application load
increases more than expected.

The following is a comparison of all performance results of connected ADO.NET
with SQLClient data provider and EF using the same data provider. Absolute values
are always useless, while relative ones give us significant information about the
performance results:

SqlClient EF EF + Workaround
INSERT (1000 items) 215ms 1716ms (+ 698 %) none
UPDATE (1000 items) 268ms 1672ms (+ 524 %) 914ms (+ 241 %)
DELETE 1ms 7ms (+ 600 %) 40ms (+ 3900 %)
SELECT 1ms 1ms

•	 The INSERT test is executed by adding to an Entity Framework entity Set
all items with a single SaveChanges invocation at the operation ending, by
using a single always-opened SQL Connection.

•	 The UPDATE test is executed with a different connection or context for ADO or
EF per item to update.

•	 The DELETE test executed against a single row deletion. Although EF
made a SELECT query before a DELETE operation, the workaround with the
disconnected item attachment adds significant execution time, making its
usage valid only to avoid item materialization for complex (or big) entities.

•	 The SELECT test is executed with a top 1000 against the only invoice table.

As evident in the preceding table, EF actually performs fast in data reading along
with the ability to produce complex queries with multiple execution scenarios.
In contrast, when dealing with data manipulation, connected ADO.NET classes
perform much better.

Chapter 7

[219]

Stream-like querying
It is not about how much memory we have, it is about conserving it. If we have to
execute a custom ETL (Extract, Transform, Load) workflow application or any other
application that needs accessing, and usually persists the data, it doesn't mean that
we have to keep all the data in the application state. A sliding approach becomes
mandatory anytime we deal with huge datasets. However, when the dataset is not
so huge, reducing resource usage without sacrificing any other performance aspect
is important.

This design is available as with Entity Framework classes as with connected ADO.
NET classes. By using EF we have the ability to manipulate data items in object-
oriented way, and while using connected ADO.NET classes we don't. Here is an
example of the stream-like data manipulation using the two frameworks (EF and
ADO.NET):

//a source and target context
using (var sourceContext = new InvoicingDBContainer())
using (var targetContext = new InvoicingDBContainer())
 //iterate a query without a collection materialization
 foreach (var invoice in sourceContext.Invoice.Take(100000).
AsNoTracking())
 //a simple client-side logic
 if (invoice.Number.EndsWith("0"))
 {
 targetContext.Invoice.Add(new Invoice
 {
 Date = invoice.Date.AddDays(4),
 Number = string.Format("{0}/BIS",
invoice.Number),
 CustomerCustomerID =
invoice.CustomerCustomerID,
 });
 targetContext.SaveChanges();
 }

The following is the same example with connected ADO.NET:

//a couple of connections for data copying
using (var sourceConnection = new SqlConnection("data
source=(local);initial catalog=TestDB;integrated security=true;"))
using (var targetConnection = new SqlConnection("data
source=(local);initial catalog=TestDB;integrated security=true;"))
{
 sourceConnection.Open();

Database Querying

[220]

 targetConnection.Open();

 //a source command and result-set
 using (var sourceCommand = new SqlCommand("SELECT TOP 100000 *
FROM Invoice", sourceConnection))
 using (var sourceReader = sourceCommand.ExecuteReader())
 while (sourceReader.Read())
 {
 //by scrolling a data reader we scroll a client cursor
 //this cursor works on a light row batch produced
 //by the data provider itself
 //we don't have all data materialized here

 var InvoiceID = (int)sourceReader["InvoiceID"];
 var CustomerCustomerID = (int)sourceReader["CustomerCusto
merID"];
 var Number = (string)sourceReader["Number"];
 var Date = (DateTime)sourceReader["Date"];

 //some sliding client-side logic
 if (Number.EndsWith("0"))
 //the target insert
 using (var targetCommand = new SqlCommand("INSERT
INTO [Invoice](CustomerCustomerID,Number,Date) SELECT @customerid,
@number, @date", targetConnection))
 {
 targetCommand.Parameters.
AddWithValue("customerid", CustomerCustomerID);
 targetCommand.Parameters.AddWithValue("number",
string.Format("{0}/BIS", Number));
 targetCommand.Parameters.AddWithValue("date",
Date.AddDays(4));
 targetCommand.ExecuteNonQuery();
 }
 }
}

Chapter 7

[221]

ADO.NET bulk copy
In modern database access programming, the use of an object-oriented approach
similar to the one available throughout EF is obvious. Although in most scenarios
EF performs very well, there are specific cases when we want to use ADO.NET, for
instance, when we want use some specific feature of the data provider or the database
itself. Obviously, this choice is available at the cost of sacrificing the simplicity and
reliability of dealing with an object-oriented data access layer. Although for custom
database features we have to deal with the SQL language, often such features are
available as data provider-specific features within ADO.NET classes.

Bulk copy is a great feature offered by the System.Data.SqlClient data provider.
It allows the insertion of a lot of data within a database table without having to fulfill
all INSERT validations or execution times. This boosts the throughput of the whole
operation heavily. Here's an example of bulk copying:

//create a temporary data-table for new data
using (var dt = new DataTable())
{
 //the name of columns is not important
 //the type is useful
 //the right order is mandatory
 dt.Columns.Add("", typeof(int));
 dt.Columns.Add("", typeof(int));
 dt.Columns.Add("", typeof(string));
 dt.Columns.Add("", typeof(DateTime));

 for (int i = 0; i < 1000000; i++)
 dt.Rows.Add(new object[]
 {
 null, //primary key is identity on DB
 1, //the customer id
 string.Format("2015/001/{0}",i), //the number
 new DateTime(2015,1,1).AddDays(i), //the date
 });

 //the target connection
 using (var cn = new SqlConnection("data source=(local);initial
catalog=TestDB;integrated security=true;"))
 {
 //open the connection
 cn.Open();

Database Querying

[222]

 //the bulk copy engine
 var machine = new SqlBulkCopy(cn);
 //the batch size - if desired
 machine.BatchSize = 1000;
 //the destination table name
 machine.DestinationTableName = "Invoice";
 //start the bulk copy
 machine.WriteToServer(dt);
 }
}

Using the Bulk Insert feature is the best choice when we need to add a lot of data.
This feature is often used in data import/export even by the database. For instance,
SQL Server Integration Services makes extensive use of the Bulk Insert feature for its
ETL workflows.

More information about Bulk Insert can be found at https://msdn.
microsoft.com/en-us/library/ms188365.aspx.

Summary
In this chapter, we saw how to deal with ADO.NET features for data access and
manipulation. Within ADO.NET, Entity Framework adds some extremely useful
features in a purely object-oriented approach, giving us the ability to write complex
and dynamic queries with the reliability and ease of object-oriented programming.

In the next chapter, we will see how to handle Big Data specific data items and
performance concerns with core .NET classes.

https://msdn.microsoft.com/en-us/library/ms188365.aspx
https://msdn.microsoft.com/en-us/library/ms188365.aspx

Chapter 8

[223]

Programming for Big Data
In the previous chapter, we covered database access programming with Entity
Framework and ADO.NET. In this chapter, we will cover solutions for small
big data applications, based on core .NET framework and Entity Framework.

Although big data applications can fulfill government and/or scientific needs, those
solutions will need customization at every level; this is beyond the scope of this
book. This chapter will focus on small big data application scenarios, such as IoT
(Internet of Things) or long-ranged enterprise applications that have been collecting
data for decades.

This chapter will cover the following topics:

•	 What is big data
•	 Architecting big data solutions
•	 Microsoft Azure for big data
•	 Simplified grid-computing
•	 Lookup programming

Programming for Big Data

[224]

What is big data?
A big data application deals with large volumes of fast-growing data. This is the
most widely accepted definition and the most basic one too. Although a unique
academic definition for big data does not exist, a more detailed definition of a big
data application states is inclusive of the following criteria:

•	 It handles huge volumes of data, to take care of its size on every usage such
SQL SELECT queries or similar. As the word Big suggests, to deal with big
data, the total data size must be huge. These days, any database that is less
than 100 GB in size cannot be considered as a valid big data storage.

•	 It handles fast-growing data in the meaning of velocity of growth. Real big data
architecture and solutions are applicable only to fast-growing data; otherwise,
we are simply dealing with a huge dataset. Any ever-growing large data store
can be handled easily by any application in a few hours or days, depending
on the scale of the data. The important thing to note here is that eventually,
we will always be able to finish the computation. It is the rapidly increasing
data that forces developers to come up with and use specific techniques and
technologies to handle such data properly. This is different from the methods
used to process standard data because these techniques are unable to deal with
data that is both large and rapidly growing.

•	 It handles a great variety of non-homogeneous data types. Because of the
intrinsic data handled by any big data application, a data item can be of
many different types. It frequently happens that same data types exist in
multiple versions, incrementing the overall data type number.

Although more complex or specific definitions of big data actually exist, we will stick
to the more canonical one. This choice is necessary because of the poor uniformity of
the definition among scientists and IT organizations that deal with
big data.

Now that we have an idea of what big data is, it's time to take a look at related
technologies and techniques. In terms of data storage, a huge big data solution will
rely on NoSQL databases because of their intrinsic high speed data read/write
capability. This does not mean that relational databases are not fast enough for big
data because often, they are also used in similar designs. However, when dealing
with very large applications, any small improvement in speed can result in crucial
improvements in the overall application performance.

Chapter 8

[225]

In big data applications, most of the development effort focuses on data analysis.
In terms of analysis computation, extreme parallelism is the key to success when
dealing with big data applications. As seen in Chapter 2, Architecting High-performance
.NET Code, the most parallelizable design is based on grid-computing techniques
that are made across heavy distributed programming technologies. Ideally, the
most powerful big data design in terms of throughput heavily uses grid and parallel
programming, together with an asynchronous design regarding data analysis
and persistence.

Because this book is not addressed to scientists from NASA or NSA, we will still use
a relational RDBMS with examples showing you how to handle a table with a billion
rows with SQL-based data sources.

For more information on big data and its definitions, please visit:

•	 https://en.wikipedia.org/wiki/Big_data
•	 http://timoelliott.com/blog/2013/07/7-

definitions-of-big-data-you-should-know-
about.html

Architecting big data solutions
When dealing with a huge dataset, non-functional requirements definitely become
a primary concern. We cannot place our primary focus on a domain, leaving non-
functional requirements as a secondary concern, because a single system that can
fulfill a big data application's needs by itself simply does not exist.

When dealing with big data solutions, a lot of the work of a developer is predicting
usage patterns and sizing the whole environment for correct short-term and long-term
future usage. Never think of how to design and maintain the initial system size; always
think of how to design and maintain it after a year or more of data throughput. The
whole system must be able to grow not only in size but also in complexity; otherwise,
the system will never fit the future needs of business and will soon become obsolete
(because of the need for data type variety of previously seen tenets).

https://en.wikipedia.org/wiki/Big_data
http://timoelliott.com/blog/2013/07/7-definitions-of-big-data-you-should-know-about.html
http://timoelliott.com/blog/2013/07/7-definitions-of-big-data-you-should-know-about.html
http://timoelliott.com/blog/2013/07/7-definitions-of-big-data-you-should-know-about.html

Programming for Big Data

[226]

Let's make some usage predictions. For instance, let's consider a satellite
antitheft-system that is always probing your position in the world. Such systems
usually send data to the central data center from one to five times per hour, with a
dataset of hundreds or more positions per instance.

A binary position packet is made up of a device ID, a UTC GPS fix, latitude, and
longitude. This means 4 x 32-bit data fields for a sum of 16 bytes per position packet
multiplied 120 times (2 positions per minute), which results in 1920 bytes per hour.
Now, think of it as a car that runs for an average of 5 hours per day plus a lot of
parking time, with obvious data-sending optimizations. This produces a size of
600 in-moving packets per day with a size of 9600 bytes per day in the network.
Anyone could think it is easy to manage such network usage for any kind of Internet
bandwidth. Of course, if you multiply such usage for 1000 cars (or more in the real
world), this becomes 600,000 new packets per day in our database, with a constant
network usage in the in-moving time of 9.15 MB/s.

Continuing our usage prevision, things start becoming a little harder to manage with
a database of 219 million rows (600k x 365 days) per year, which means 3.26 GB (219
m x 16 bytes) of increased size per year (plus indexes). Keep in mind that that this
preview is related to a small client market share of only 1000 cars, while in the real
world, any car rental company that has thousands of cars must manage a database
greater than the one that we have just predicted.

The first thing to keep in mind when designing fast-growing solutions is that the
datatype choice is crucial for the life of the whole system. Using 32 bits instead of
16 bits in a single data-packet field means increasing the network usage for nothing.
The same thing happens if we increase the database column size. Another drawback
of the database design is the increased size of all indexes or keys using the wrong-
sized column, with obvious increase in the index seek/scan time. Also, keep in mind
that in such large databases, altering the column size later (by years in a production
environment) means hours or days of system downtime for maintenance.

Another critical aspect is breaking dependencies from different system modules
and tiers. Never directly make a synchronous database INSERT from a Web Service
operation. Always decouple by using a persisted queue, such as the one used in
Azure Service Bus. This makes it easier to design the whole system and adds the
benefit of increasing the system's reliability and scalability.

Chapter 8

[227]

When trying to use a relational database, the key to success for big data systems
is planning multiple instances of splitting data of different functional types, or
(if possible) balancing content across multiple available tables of the same logical
database across multiple physical servers.

Another important design to implement often in big data solutions is the Reporting
Database pattern, as described by Martin Fowler, a british software engineer. Within
such suggested designs, there are database instances for data-insert and others,
which are asynchronously filled, for data querying. The added feature here is the
ability to denormalize or reshape data specifically for querying in the ETL workflow
used to move asynchronous data to the query databases. Obviously, the usage of
read-only databases also adds the great advantage of easily balancing database usage
on multiple servers.

To learn more about the Reporting Database pattern, visit http://
martinfowler.com/bliki/ReportingDatabase.html.

Case study – automotive big data system
It is easy to infer that cloud computing is the easiest way to handle big data
solutions. Here, you have space to deploy all the different tiers of your application,
persisted-queues to let tiers communicate with each other, huge space for databases,
and easy access to the right number of virtual machines to be used in grid
computing, if applicable to your needs.

Let's evaluate a practical satellite-based anti-theft system that is always connected,
with advanced logistic management sized for 10,000 devices, and that can produce
6 million packets per day or more. We choose to release the solutions across the
Microsoft Azure cloud provider. In the overall architecture design, we will consider
using idioms and specific technology provider (Azure) oriented features to optimize
all the performance aspects we can. Instead, exploiting maximum provider-specific
solutions and technology is a primary requirement. Here, the main functional and
non-functional requirements are as follows:

•	 Store a device packet positioned in a history table for three years:
°° Develop a low-level binary server to read device packets
°° Develop a data delete engine to purge data that is older than 3 years

•	 Asynchronously analyze and store device routes

http://martinfowler.com/bliki/ReportingDatabase.html
http://martinfowler.com/bliki/ReportingDatabase.html

Programming for Big Data

[228]

•	 Always be aware of the last position of each device:
°° Decouple last-position item storage from history to another table in

order to avoid frequent SELECT operations on a huge table
°° Notify system managers when a device goes out of the scope for

more than 30 minutes on usual routes and more than 15 minutes on
new routes

•	 Always be aware of device entering/exiting from any point of interest (POI)
•	 Show simplified device data for end users
•	 Show detailed device data for system managers

A decoupled big data solution, suited for Windows Azure

Chapter 8

[229]

The preceding system architecture can handle thousands of incoming messages
per second, flowing through the binary service released as Worker Role within
the Microsoft Azure Cloud Services. The usage of the Service Bus Topic with
two different subscriptions—one for the packet importer engine and one for POI
engine—decouple the two different logic that handles different execution times.
With this choice, the data-packet will flow into the history database as soon as
possible, while the POI logic execution could even be executed a bit later. The
primary concern for design here is to catch all messages. Instead, the primary
concern regarding performance is the high scalability provided by the eventual
scale-out of the VM count of the two engines, and obviously a high overall
throughput in receiving device packets.

An Azure Service Bus Topic is a special FIFO queue with a single
entrance and multiple exits. Those exits are called subscriptions
because their usage is the same as publish/subscribe scenarios,
where multiple receivers expect the same message from a single
message queue. The usage is exactly the same as having multiple
FIFO message queues with the commodity of sharing some
configuration, plus the obvious (and important) benefit of not
having to deal with multiple messages sent to the sender side, as a
single copy of the message flows into the Topic. It will multiply the
message across all subscribers by itself.

Later, the data packet will flow within the business logic lying in the Packet Importer
and POI engines. Those will then create proper persistence objects, which will then
flow within the main database (or multiple physical ones). This ends the overall
workflow of the packet input.

Asynchronously, the Data Purge Engine will evaluate and, if needed, will clean
up old data from the main database. Still asynchronously, the Missing Device
Notifier will evaluate its logic against the persisted data, and if needed, it will notify
system managers if something interesting or wrong is happening. Because this logic
may became heavy to compute against a huge dataset, multiple VM instances will
eventually be required here.

Programming for Big Data

[230]

The End-User Data Extractor will execute the reporting database logic to produce
simplified data for the end user by simplifying data structure and reducing data
size. This is because the end-user database must contain three years of data by
requirement; instead, the main database (or multiple physical instances) could even
contain more data. This is our choice according to local laws. This logic may also
become CPU-intensive, so here, multiple VM instances could be required.

At the end of the system, two web applications exist for the two main types of users.
We could even create a single web application with multiple authorization roles, but
this choice would produce trickier business logic with less ability to optimize the two
different business and data access logic. Remember that in big data, this optimization
is a primary concern. The logic centralization, instead, becomes a secondary concern.
By the way, also remember that a lot of logic and modules are still shareable between
those two web applications and packaged in libraries with our preferred granularity.

Although web applications will not require high computational power, they will
access lot of data frequently, so a well-designed cache strategy is mandatory.

Microsoft Azure offers different cache providers and solutions. We
can use AppFabric cache within our cloud services in specific VMs,
or together with Worker/Web Roles VMs to save some money
(and performance). The same cache is available in a managed
multitenant offer by Azure itself with preconfigured size slots.
The same offering is also available with the Redis cache engine.
My personal tests showed that the two caches are similar in all
primitive-data-based scenarios. Redis became better when using
its special features, such as caching data lists or flags; AppFabric,
instead, became better while handling huge datasets because of
the higher memory size limit due to its balanced design (Redis has
only an active/passive failover).

Microsoft Azure for big data
Cloud computing is the principal technology provider for any big data solution
from small to mid-sized applications, although it is also available for huge big data
needs with different cloud features.

In the previous chapter, we saw some usage of Microsoft Azure. Let's see how to
develop solutions using such technologies.

Chapter 8

[231]

Within the Microsoft Azure offering, we will focus on the Service Bus sub-offering.
Within this category, we can find technologies such as the Relay (a WCF router
service for cross-premise communication), Queue and Topics (one-to-one or
one-to-many messaging queues), ACS (a federated security service), Event Hub
(a multistream-like event router similar to a queue), and a centralized and
customizable Push Notification service.

Service Bus Topic
To use a Topic within Microsoft Azure, we must create a Service Bus and get an
access key for the specific Topic. To create a Service Bus item within Microsoft
Azure, following the wizard on the website will suffice. Once created, the connection
information can be found through the button on the lower part of the page with the
name Connection Information.

The Service Bus page of the Microsoft Azure web portal

Programming for Big Data

[232]

In the information popup, we will find the full connection string:

Connection information popup of a Service Bus account

Once we have the Service Bus name and the full connection string, we simply need
to add a name to a Topic (always following the wizard). Here's an example of how
to do this:

//topic connection string
static string connectionString = "[CONNECTIONSTRING]";

//the topic name
static string topicName = "[TOPICNAME]";

static void Main(string[] args)
{
 //a topic client

Chapter 8

[233]

 var client = TopicClient.CreateFromConnectionString(connectionStri
ng, topicName);

 StartSubscription1Async();
 StartSubscription2Async();

 while (true)
 {
 Console.Clear();
 Console.WriteLine("Write a message");
 var message = Console.ReadLine();

 //send the message to the topic
 client.Send(new BrokeredMessage(message));

 Console.WriteLine("RETURN TO CONTINUE");
 Console.ReadLine();
 }
}

//a helper for handling all subscribers
private static Task SubcribeToTopicAsync(string subscriptionName,
Action<BrokeredMessage> messageHandler)
{
 return Task.Factory.StartNew(() =>
 {
 //the subscription client
 var client = SubscriptionClient.CreateFromConnectionString(con
nectionString, topicName, subscriptionName);

 //always dequeue messages...
 while (true)
 {
 //try dequeue message from subscription's inner queue
 var msg = client.Receive(TimeSpan.FromSeconds(3));
 if (msg != null)
 //handle message with subscription specific logic
 messageHandler(msg);

 }
 }, TaskCreationOptions.LongRunning);
}

private static void StartSubscription2Async()

Programming for Big Data

[234]

{
 var subscription = "sub1";
 SubcribeToTopicAsync(subscription, msg =>
 {
 //read message body containing user message
 var body = msg.GetBody<string>();

 //some subscriber specific logic
 Thread.SpinWait(1000000);

 Console.WriteLine("{0} -> {1}",
SubscriptionClient.FormatSubscriptionPath(topicName,
subscription), body);

 //once completed, the message is flagged as completed
 //otherwise the message will flow again in the next
 //message subscriber available
 msg.Complete();
 });
}

private static void StartSubscription1Async()
{
 var subscription = "sub2";
 SubcribeToTopicAsync(subscription, msg =>
 {
 //read message body containing user message
 var body = msg.GetBody<string>();

 //some subscriber specific logic
 Thread.SpinWait(2000000);

 Console.WriteLine("{0} -> {1}", SubscriptionClient.FormatSubsc
riptionPath(topicName,
subscription), body);

 //once completed, the message is flagged as completed
 //otherwise the message will flow again in the next
 //message subscriber available
 msg.Complete();
 });
}

Chapter 8

[235]

For more information on Bus Topic, please visit http://azure.
microsoft.com/it-it/documentation/articles/service-
bus-dotnet-how-to-use-topics-subscriptions/.

AppFabric Cache
The AppFabric cache is available for the Windows Server operating system. In
Azure, the same caching engine is available within the cloud services offering or as
a Managed Cache Service, where we can buy a portion of a cache in a pay-per-use
way. The API is always the same.

//cache provider

//will use the "default" configured cache
//within the .config file
var cache = new DataCache();

var key = "time";

while (true)
{
 //retrieve cached value
 var value = (DateTime?)cache[key];

 //if not available, drill the cache with a new value
 if (value == null)
 {
 value = DateTime.Now;

 //adds the value to the cache with a TTL of 5 seconds
 cache.Add(key, value, TimeSpan.FromSeconds(5));
 }

 Console.WriteLine(" {0}", value);

 //slow down
 Thread.Sleep(1000);
}

Using the AppFabric API is easy. A lot of configuration is available, but is not
mandatory.

http://azure.microsoft.com/it-it/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/
http://azure.microsoft.com/it-it/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/
http://azure.microsoft.com/it-it/documentation/articles/service-bus-dotnet-how-to-use-topics-subscriptions/

Programming for Big Data

[236]

A great benefit in using such an API is the ability to put anything that is serializable
within the cache. Another great benefit is the local cache feature that adds an
in-memory cache within the running executable memory, for example, as the
MemoryCache class does from the System.Runtime.Caching namespace.

When enabled, this local cache becomes a primary-level cache that reduces the usage
of the cloud cache, which acts as a second-level cache. This dual caching reduces the
network usage of the remote cache service, also reducing the latency considerably.

To know more about creating cache for Azure Managed Cache
Service, refer to https://msdn.microsoft.com/en-us/
library/dn448831.aspx.

Redis Cache
Redis was born as an object-oriented NoSQL database. Later, because of the high
throughput and reduced latency offered by the Redis database—because of its
intrinsic architecture of being an in-memory database—Redis became a cache
provider that is widely used across multiple programming languages and platforms.

Unlike the easiness of the AppFabric cache, Redis has a verbose API with the ability
to do several things that are unavailable within the AppFabric SDK, such as locking
an item or using a cache item, such as the Interlocked class. By default, the Redis
API for .NET serializes only strings and primitive numbers or binary data. Date and
time is not supported. Here is an example:

//redis connection string
var cs = "[URL],ssl=true,password=[PWD]";

//cache connector
var client = ConnectionMultiplexer.Connect(cs);

//cache proxy
var cache = client.GetDatabase();

var key = "time";

while (true)
{
 //retrieve cached value
 var value = (string)cache.StringGet(key);

 //if not available, drill the cache with a new value

https://msdn.microsoft.com/en-us/library/dn448831.aspx
https://msdn.microsoft.com/en-us/library/dn448831.aspx

Chapter 8

[237]

 if (value == null)
 {
 value = DateTime.Now.ToString();

 //adds the value to the cache with a TTL of 5 seconds
 cache.StringSet(key, value, TimeSpan.FromSeconds(5));
 }

 Console.WriteLine(" {0}", value);

 //slow down
 Thread.Sleep(1000);
}

The two biggest drawbacks of the Redis cache are the missing support for built-in
serialization of custom types and the unavailability of a built-in local cache.

Caching must happen at the layer/tier boundary. Sharing cache data is important;
this is why distributed cache systems exist. However, avoiding wastage of network
usage is important. A second-level cache is mandatory when dealing with highly
accessed data. Within .NET, the help to create such a local cache comes with the
MemoryCache class, the following is an example:

//local cache
var local = new MemoryCache("local");

//redis connection string
var cs = "[URL],ssl=true,password=[PWD]";

//cache connector
var client = ConnectionMultiplexer.Connect(cs);

//cache proxy
var cache = client.GetDatabase();

var key = "time";

while (true)
{
 //retrieve value from local cache
 string value = (string)local[key];

 if (value != null)
 Console.WriteLine("local -> {0}", value);

Programming for Big Data

[238]

 //if unavailable retrieve if from
 //second level cache from cloud
 else if (value == null)
 {
 value = (string)cache.StringGet(key);

 if (value != null)
 Console.WriteLine("redis -> {0}", value);
 }

 //if not available, drill both caches with a new value
 if (value == null)
 {
 value = DateTime.Now.ToString();

 Console.WriteLine("new -> {0}", value);

 //as an example we will use different TTLs
 cache.StringSet(key, value, TimeSpan.FromSeconds(8));

 local.Add(key, value, new CacheItemPolicy {
AbsoluteExpiration = DateTime.Now.AddSeconds(5) });
 }

 //slow down
 Thread.Sleep(1000);
}

This example produces the following result:

new -> 22/03/2015 17:50:18
local -> 22/03/2015 17:50:18
local -> 22/03/2015 17:50:18
local -> 22/03/2015 17:50:18
local -> 22/03/2015 17:50:18
redis -> 22/03/2015 17:50:18
redis -> 22/03/2015 17:50:18
new -> 22/03/2015 17:50:26
local -> 22/03/2015 17:50:26
local -> 22/03/2015 17:50:26

Carefully use multilevel cache because of the increased difficulty in synchronizing
cache items' expiration.

Chapter 8

[239]

A complete guide on using the Azure Redis cache is available at
http://azure.microsoft.com/en-us/documentation/
articles/cache-dotnet-how-to-use-azure-redis-cache/.

Simplified grid computing
Cloud computing gives us enough power and technologies to do almost anything.
Such a statement is true until we do not deal with real-world limits. As discussed in
the Parallel programming section in Chapter 1, Performance Thoughts in, some overhead
that limits the system's scalability always exists. This is Amdahl's law. Although this
sentence is definitely true, we can avoid many such limitations. Grid computing is
the art of parallelizing computation with a large number of systems.

Although specific frameworks or languages do exist, we will see how to create a
small grid computing system from scratch in C#.

The first thing to do is have a huge dataset divided into smaller datasets. This
improves scalability at the highest level. Once we have the data, we also have to bind
each data portion with the related execution logic. By creating multiple messages, we
can handle any business logic step. This fine granularity helps to achieve the highest
scalability and adds great reliability because anything could eventually go wrong at
any time. Such a message architecture will let the forgotten message flow to another
available engine, which can resume from the last failed point. Indeed, designs that
frequently save partial states refer to those messages as persistence points.

Let's imagine that we have to work for an automotive solution. Now, we need to
handle millions of position packets per day, and for each packet, calculate the full
street address if it is not already available in our system.

Different designs are available with increasing difficulty and eventually impacts
performance results. Usually, the more scalable a design is, the more overload
it could bring if executed in a small system. However, such overall overload is a
necessary cost if we want to scale to hundreds of systems or more.

A queue-based automotive solution for grid computing

http://azure.microsoft.com/en-us/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/
http://azure.microsoft.com/en-us/documentation/articles/cache-dotnet-how-to-use-azure-redis-cache/

Programming for Big Data

[240]

The message structure is the main creation. Although the structure itself is quite the
same, using different message names helps in making the business needs very clear.
Otherwise, a single message name is also possible with the addition of a message
status. The tree messages represent the tree computational stages: data input, reverse
geocode, and data saving. Here is an example:

/// <summary>
/// stage 1
/// a position is found in history db
/// a street address search starts across streets database
/// </summary>
public class SearchForAddressMessage
{
 public SearchForAddressMessage()
 {
 }

 public SearchForAddressMessage(float latitude, float
longitude)
 {
 Latitude = (float)Math.Round(latitute, 4);
 Longitude = (float)Math.Round(longitude, 4);
 }

 public float Latitude { get; set; }
 public float Longitude { get; set; }

 public override int GetHashCode()
 {
 return new { Latitude, Longitude }.GetHashCode();
 }
}

/// <summary>
/// stage 2
/// a new address need to be parsed from
/// found coordinates against a reverse-geocode service
/// </summary>
public class GeocodeNewAddressMessage : SearchForAddressMessage
{
}

/// <summary>
/// stage 3

Chapter 8

[241]

/// a street address has been found and must
/// flow to the street database
/// </summary>
public class SaveNewAddressMessage : SearchForAddressMessage
{
 public string StreetAddress { get; set; }
}

Some helper methods increment productivity and make it easier to understand
the code:

public static class QueueClientExtensions
{
 /// <summary>
 /// Helper method for sending any message
 /// to the queue with type name as ContentType
 /// </summary>
 public static void SendBody<T>(this QueueClient client, T arg)
 {
 client.Send(new BrokeredMessage(arg)
 {
 //by specifying the message type
 //the receiver will know what logic to execute
 //and how to deserialize the message body
 ContentType = arg.GetType().Name
 });
 }

 /// <summary>
 /// Helper method for sending any message
 /// to the queue with type name as ContentType
 /// </summary>
 public static void SendBody<T>(this QueueClient client,
IEnumerable<T> args)
 {
 client.SendBatch(args.Select(arg => new BrokeredMessage(arg)
 {
 //by specifying the message type
 //the receiver will knows what logic to execute
 //and how to deserialize the message body
 ContentType = arg.GetType().Name
 }));
 }
}

Programming for Big Data

[242]

To improve the realism of demonstration, I read thousands of positions from a CSV
file I created with pseudo-random values. The CSV file only contains two columns:
latitude and longitude. Here's an example of how to read it:

//the queue client needs connection string and queue name
var queue = QueueClient.CreateFromConnectionString(
SERVICEBUS_CONNECTIONSTRING, QUEUE_NAME);

//emulate data packet input
Task.Factory.StartNew(() =>
 {
 //a csv file with positions
 var fname = @"C:\Temp\positions_export.csv";

 //skip line nr 1 containing column names
 //take only 100 items for testing purpose
 //split string for semicolon char
 var positions = File.ReadAllLines(fname).Skip(1).Take(100)
 .Select(row => row.Split(';'))
 //parse csv data as "latitude;longitude"
 .Select(x => new { Latitude = float.Parse(x[0]),
Longitude = float.Parse(x[1]) })
 //avoid unnecessary duplications
 .Distinct()
 //create stage 1 messages
 .Select(x => new SearchForAddressMessage(x.Latitude,
x.Longitude));

 //upload all messages to the queue
 queue.SendBody(positions);
 });

Each process step will send a message to the following one throughout a queued
message. Based on those steps, engines will execute their internal logic without
interfering with other engines, because each one will handle only a single message
per instance.

Now, start the sequence of sending messages to the queue and retrieving them from
the queue that acts as a persistence system for temporary data, adding failover logic
and the asynchronous distributed programming feature. The queue will automatically
send a message to another engine if one will not confirm that it has been successfully
handled. Such logic execution is a type of milestone-based programming.

Chapter 8

[243]

Those small persistence messages are often referred to as persistence points when
used in other technologies, the Microsoft Biz Talk Server has a similar design. For this
example, a simple database with the following table structure has been created:

CREATE TABLE [dbo].[StreetAddress](
 [Latitude] [real] NOT NULL,
 [Longitude] [real] NOT NULL,
 [Position] [geography] NOT NULL,
 [FullAddress] [varchar](250) NOT NULL,
 CONSTRAINT [PK_StreetAddress] PRIMARY KEY CLUSTERED
(
 [Latitude] ASC,
 [Longitude] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF,
IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY]
) ON [PRIMARY] TEXTIMAGE_ON [PRIMARY]

All grid engines will execute an always-running logic that reads messages from the
queue, and then checks the message content type name to route the message to the
right stage logic.

while (true)
{
 //try dequeue some message

 var msg = queue.Receive(TimeSpan.FromSeconds(1));
 if (msg == null)
 break;

//continue…

In the following example, the Stage 1 takes the message from the queue and checks
if the address is present in our database. If not, a new message of Stage 2 is produced
and sent to the queue:

if (msg.ContentType == "SearchForAddressMessage")
{
 //stage 1
 var body = msg.GetBody<SearchForAddressMessage>();

 // existence check for address
 using (var db = new StreetAddressDBEntities())
 if (!db.StreetAddress.Any(a => a.Latitude == body.Latitude
&& a.Longitude == body.Longitude))
 //if the address is unavailable in our database

Programming for Big Data

[244]

 //a stage 2 message is sent to the queue
 //to trigger the reverse geocode logic
 queue.SendBody(new GeodoceNewAddressMessage
 {
 Latitude = body.Latitude,
 Longitude = body.Longitude
 });

 //signal the message as completed
 //so it will be deleted by the queue
 msg.Complete();
}

Once a message arrives at Stage 2, a reverse geocode request is sent to a Geographic
Information System (GIS), such as Bing Maps. Once the street address is found, we
will enqueue (add to the queue) a new message for Stage 3:

else if (msg.ContentType == "GeodoceNewAddressMessage")
{
 Console.WriteLine("# {0} -> Found GeodoceNewAddressMessage",
i);

 //stage 2
 var body = msg.GetBody<GeodoceNewAddressMessage>();

 //a request for reverse-geocode is available
 //a WS is available for Bing Maps here
 //http://dev.virtualearth.net/webservices/v1/geocodeservice/
geocodeservice.svc

 //the found street
 string street = null;

 using (var client = new GeocodeServiceClient("BasicHttpBinding_
IGeocodeService"))
 try
 {
 //ask bing for the street address
 var response = client.ReverseGeocode(new
ReverseGeocodeRequest
 {
 //bing credential key
 Credentials = new Credentials { ApplicationId =
BING_KEY },

Chapter 8

[245]

 //given position
 Location = new Location { Latitude =
body.Latitude, Longitude = body.Longitude }
 }).Results.FirstOrDefault();

 if (response != null)
 street = response.Address.FormattedAddress;
 }
 catch (Exception ex)
 {
 }

 //if reverse geocode succeded
 if (street != null)
 //send a message for saving position to the street db
 queue.SendBody(new SaveNewAddressMessage
 {
 Latitude = body.Latitude,
 Longitude = body.Longitude,
 StreetAddress = street,
 });
 else
 Debug.WriteLine(string.Format("No street found for {0}
{1}", body.Latitude, body.Longitude));

 //signal the message as completed
 //so it will be deleted by the queue
 msg.Complete();
}

Once a message reaches Stage 3, we will save the newly found street address to our
database for future data caching and any other need:

else if (msg.ContentType == "SaveNewAddressMessage")
{
 Console.WriteLine("# {0} -> Found SaveNewAddressMessage", i);

 //stage 3
 var body = msg.GetBody<SaveNewAddressMessage>();

 using (var db = new StreetAddressDBEntities())
 using (var tr = db.Database.BeginTransaction())
 {
 //always make a double check

Programming for Big Data

[246]

 if (!db.StreetAddress.Any(a => a.Latitude == body.Latitude
&& a.Longitude == body.Longitude))
 db.StreetAddress.Add(new StreetAddress
 {
 Latitude = body.Latitude,
 Longitude = body.Longitude,
 FullAddress = body.StreetAddress,
 });

 db.SaveChanges();
 tr.Commit();
 }

 //signal the message as completed
 //so it will be deleted by the queue
 msg.Complete();
}

This solution, although a simple prototype, could even handle millions of messages.

Further optimizations could split the single queue into multiple queues, one per
stage or business logic. Often, a grid system executes different logic altogether or the
same logic with different versions.

Lookup programming
As mentioned earlier, complete dataset retrieval is something that is poorly
optimized in any application scenario. When dealing with a huge dataset, trying to
load more than a million rows together in the same materialized Entity Framework
query or something similar will surely result in an OutOfMemoryException output.

As seen in the Stream-like querying section in Chapter 7, Database Querying, ADO.NET
gives us the ability to execute queries without having to put all the data together
in our memory, as we would have to with the old DbCommand class or new Entity
Framework ones. Sometimes, we are in the need of executing a lot of logic that needs
frequent lookups at a data source. Let's talk about the previous example again.

What if a GPS device always sends the same position? In our system, we will
take this position, produce a Stage 1 message, send it to the Stage 1 queue, and
then down to our grid engine, which will make a request to our database to check
whether such a position is already known to us or not, and eventually skip it.

Chapter 8

[247]

The best solution to avoid such round trips is to know that in the first stage, the GPS
position is already present in our system, thus being able to skip duplicated items as
quickly as possible. Obviously, a second check at a lower level is mandatory, but this
pre-check stage will easily boost latency of the whole application.

Instead of directly checking data duplication at the first stage with a direct database
query, we can use a cache or a huge collection. In our solution, storing all coordinates
could soon break any system. This is not a practical method, but we can use the
opportunity to evaluate how different local data-storing classes behave.

Again, we will read a simple CSV file for testing purposes—this time without any
CSV extraction limitation with the Take method:

var fname = @"C:\Temp\positions_export.csv";

//skip line 1 containing column names
//take only 100 items for testing purpose
//split string for semicolon char
var positions = File.ReadAllLines(fname).Skip(1)
 .Select(row => row.Split(';'))
 //parse csv data as "latitude;longitude"
 .Select(x => new { Latitude = float.Parse(x[0]), Longitude =
float.Parse(x[1]) })
 //avoid unnecessary duplications
 .Distinct()
 //produce a temporary key as a unique string taken from
 //the hash code of the anonymous instance (although
GetHashCode does not guarantee a complete uniqueness like any
hashing, we will use it for testing purposes)
 .Select(x => new { x.Latitude, x.Longitude, TempID =
x.GetHashCode().ToString() })
 .ToArray();

With the help of a Stopwatch class, let us evaluate how much it costs LINQ to have
objects in our memory find each item by themselves, by value and not by reference:

s.Start();
foreach (var p in positions)
{
 var found = positions.FirstOrDefault(x => x.Latitude ==
p.Latitude && x.Longitude == p.Longitude);
}
s.Stop();

Console.WriteLine("By lat/lon {0:N0}ms", s.ElapsedMilliseconds);

s.Reset();

Programming for Big Data

[248]

s.Start();
foreach (var p in positions)
{
 var found = positions.FirstOrDefault(x => x.TempID ==
p.TempID);
}
s.Stop();

Console.WriteLine("By string equals {0:N0}ms",
s.ElapsedMilliseconds);

Do consider that the cost is directly proportional to the number of rows. The following
is the time each item takes to find itself by evaluating a by-value equality, with less
than 6,000 rows in our CSV:

By evaluating lat/lon: 662ms
By evaluating the string key: 757ms

Are you wondering that the cost is because of the double integer key (lat/lon)? No!
A single string costs more than a couple of integers. Remember that LINQ simply
parses all objects in memory. It is not a database index seek.

So, how can we reproduce the logic of a database index seek in our .NET code?
Simple! With the old Hashtable class, or the newly created dictionary or the
HashSet classes (HashSet is the most recent).

Here, we give the dictionary a key by writing an anonymous Func<Myparam,
object>:

var dictionary = positions.ToDictionary(x => x.TempID, x => new {
x.Latitude, x.Longitude });

s.Reset();
s.Start();
foreach (var p in positions)
{
 var found = dictionary[p.TempID];
}
s.Stop();

Console.WriteLine("By string dictionary {0:N0}ms",
s.ElapsedMilliseconds);

Chapter 8

[249]

The result? The time taken to find each item again on its own, by asking the
dictionary, seeking by the string key for the same number of items in memory, is
0ms! The drawback is still that we cannot put a whole table within a dictionary
instance. The other option is to use a local cache object to contain the lookup data.
Such a cache instance will contain as many items as possible without ever breaking
an application's stability. Obviously, this does not contain the whole table in memory
(which is a bad idea), but this choice will boost the latency time of your engines
substantially by bringing the whole system to a higher throughput speed.

The following example shows how to preload an in-memory cache and check for
missing cache items by verifying that all items are definitely within the cache. Bear
in mind that a cache has its own memory management that tries to optimize storing,
most used entries (items within the cache) or newly added items. Here's an example:

//try putting all items within the cache

foreach (var p in positions)
 cache.Add(p.TempID, p, DateTimeOffset.Now.AddMinutes(30));

//cache miss counter
int miss = 0;

s.Reset();
s.Start();
foreach (var p in positions)
{
 var found = cache[p.TempID];
 if (found == null)
 miss++;
}
s.Stop();

Console.WriteLine("By MemoryCache {0:N0}ms with {1:N0} misses",
s.ElapsedMilliseconds, miss);

The result comes to a latency of 3ms, with zero misses. This proves that although
dictionary always remains the fastest class in item retrieval, a MemoryCache is not
so bad.

In this example, the cache has been drilled together at the start. In the real world, this
is a good practice, and although it creates some initial latency time, this initial time
cost will later boost the cache checks. However, if such a design does not fit your
needs, the lazy approach is available. It does not drill the cache at the beginning, but
at any cache check.

Programming for Big Data

[250]

Summary
In this chapter, we dived into the big data world. When dealing with billions of
records increasing at a fast rate, usual techniques and technologies are useless. We
had the opportunity to lay our hands on the basic grid computing techniques and
designs that will guide us to the right path anytime we need to handle huge datasets.

In the next chapter, we will take a tour around the profiling and performance
analysis tools available within Microsoft Visual Studio. We have already seen all
kinds of architectures, strategies, and technologies in all eight chapters, including
this one; although important, we need analysis tools to thoroughly understand how
they behave in terms of various performance aspects.

Chapter 9

[251]

Analyzing Code Performance
In this chapter, we will have an overview of performance analysis and software
testing techniques. When trying to get the best out of our code, nothing is more
useful than profiling our work. Profiling means analyzing code performance results,
routine by routine, trying to find bottlenecks, which gives us the ability to identify
performance consumption patterns.

Another important aspect of the software development lifecycle is testing our
application. In this chapter we will see various kinds of tests and features, as offered
by the Visual Studio test engine (MsTest). Tests are useful to analyze how our
application behaves regarding performance, may help with trying to simulate the
end-user feeling, or may help with analyzing the reliability of our application, or its
ability to scale out.

We will cover the following pointers in this chapter:

•	 Software profiling
•	 Profiling with Visual Studio 2013
•	 Testing with Visual Studio 2013
•	 Static program analysis

Analyzing Code Performance

[252]

Software profiling
Testing application results against the main performance aspects such as resource
usage, latency, throughput, availability, scalability and efficiency is definitely the
way any performance engineering fulfills its goals by comparing such results to the
desired performance levels.

As developers, we need a numerical expression of all performance aspects to infer
if something is working incorrectly, or simply if some optimization may improve a
performance aspect. Never consider simply aggregated values. Always go deep in
the performance analysis of any software. This is the key to success to developing a
performing application.

Profiling is the technique used to analyze at runtime how our software behaves
regarding resource usage (CPU or memory consumption), with details aggregated
per routine/function. This means that a profiling engine will explicitly inform you
which routine is consuming the most CPU time in our application, which is a huge
help in bottleneck identification.

Obviously, a profiling tool is not mandatory. For instance, we could use our instincts
to deduce that if a web application is taking lot of time to respond, maybe the
database behind is slow to respond, or is receiving bad performing queries, or the
web application is wasting time in doing its job. Although using a profiling tool is
not mandatory, often we will need to find where a bottleneck is happening. By using
a profiling tool, we can find the bottleneck quickly.

Today, any performance analysis tool should give us a detailed report of how our
application executes. By using good profiling technology, we should never ask
ourselves what the cause of bad performance is because we should already know it.
If we have a slow responding web application, by profiling its execution in Visual
Studio, we will know exactly which method(s) needs optimization.

Chapter 9

[253]

Profiling supports different techniques. For instance, an instrumentation profiling
injects special instructions in our method body (usually at the beginning and the
end). This behavior happens when CLR executes its JIT compiler, so we cannot see
such code in our Visual Studio text editor.

Profiling with Visual Studio
Visual Studio has a great profiling tool integrated within its usual IDE.

The main menu root is ANALYZE. Here, we find all we need to understand an
application's performance details, together with interesting static analysis tools to
verify a programmer's skill.

The ANALYZE menu as visible within Visual Studio 2013 update 4

Analyzing Code Performance

[254]

Here's a brief guide to how to start profiling our application:

1.	 Within the menu, click on the Performance and Diagnostics menu item.
This link opens the main window to start profiling our applications. Using
the performance wizard helps us in selecting the best profiling technique
and configuration for our needs. Specific profilers also exist for specific
application kinds, such as JavaScript memory usage or GPU power usage.

The performance and diagnostics window, ready to start profiling a WPF application

Chapter 9

[255]

2.	 By pressing the start button at the bottom of the window, we will see the
Performance Wizard asking us which profiling technology we want to
use. We will leave the default selection that will start CPU sampling. This
profiling technique will try to predict the CPU usage or our software, with
good results.

The performance wizard

3.	 Select the profiling method, the executable project to analyze, and if needed,
start immediately, or simply save this configuration.

At this point, our application starts, along with the profiling process. We can now do
anything in our software, such as the usual operations that give the profiling engine
a way to understand our application usage. Obviously, right now the profiling
engine is simply recording our steps and application feedback. When we exit our
application, the profiling engine will then analyze the recorded data and produce a
navigable detailed report.

Analyzing Code Performance

[256]

The result is immediately shown to the developer in a simplified graphical way
containing a CPU usage chart, a summary of hot paths, and the most CPU-
consuming methods within our application, as shown in the following screenshot:

A profiling report for CPU sampling

In the preceding example, I profiled a WPF application with a single data-bindable
collection, populated in memory. As a result, no CPU is used, and the profiler
correctly shows that the only method that is consuming CPU time is within
PresentationFramework.dll. This is because the WPF engine is outside of our
code; in fact, at the place of the method name, there is the assembly name between
the square brackets.

We could say that this is the ideal profiling result.

Chapter 9

[257]

The same result could be visible by profiling an application by trying
to load thousands of items in a single WPF control. Although a profiler
will surely show that our code is expending zero percent of the total,
because the 100 percent of CPU time cost is within the WPF library, this
does not mean we cannot optimize anything else. Instead, this means
that we have to change presentation architecture, maybe trying to load
fewer items per time, or changing the control setup, or not changing the
control at all. Although profiling does not care about such performance
issues, they eventually can be analyzed within other tools like the WPF
Performance Suite. Some details can be found at the following URI:
https://msdn.microsoft.com/en-us/library/
aa969767%28v=vs.110%29.aspx

The profiling result is available for future analysis within the Performance Explorer
window usually docked to the left of the IDE. If we do not find it, it is simply available
within the ANALYZE menu under the Windows item. The window lets us see all
profiling configurations used for our application and historic reports. By clicking on
the profiling method, we can start another recording session.

Back to the performance report, in the Hot Path box, we will find methods that
consumed the most CPU time. A high CPU consuming example is available with
the invocation of the Thread.SpindleWait method, which will waste CPU cycles.

public static IEnumerable<SimpleModel> GenerateMocks()
{
 var r = new Random(DateTime.Now.GetHashCode());
 return Enumerable.Range(1, 1000).Select(i =>
 {
 Thread.SpinWait(r.Next(100000, 1000000));
 return new SimpleModel
 {
 Name = string.Format("ITEM #{0}", i),
 Value = r.NextDouble() * (double)i,
 };
 })
 .ToArray();
}

https://msdn.microsoft.com/en-us/library/aa969767%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/aa969767%28v=vs.110%29.aspx

Analyzing Code Performance

[258]

As visible in the following screenshot, the CPU usage increases by up to 15 percent of
the overall system. Analyzing the Hot Path box, we will see that our GenerateMocks
method is responsible for the most CPU usage of the whole application (85 percent).
Actually, as visible, the CPU usage happens in the System.Core external assembly,
the one containing the Thread class of the core framework. The remaining 15 percent
of the application's CPU time usage is because of WPF rendering:

A sampling profiling report of some Thread.SpinWait usage

When reading at the Hot Path box (and other similar boxes), we have the ability
to click on a single function that is CPU consuming. The click will bring us to the
referred code block, if we have such a code file, otherwise (as happens when we click
a core framework assembly name) if the consumption is for an external assembly,
although by just clicking on its name we will be unable to read external code. In the
preceding example, we can click the GenerateMocks item. This will bring us to a
new view with a lot of interesting information, as can be seen in the following figure:

Chapter 9

[259]

CPU sampling profiling results across code editor

By analyzing the profiling result offered by this window, we can immediately see
which code row will have higher CPU usage. We can also see that our code block
actually uses 0.1 percent of the CPU, maybe because of the Random.Next invocation,
while the real CPU consumption comes from the method of the Core.dll.

This ability to dive into hierarchical invocation details and back to the root is the key
feature of profiling our code.

Within the profiling report window, in the toolbox we have a drop-down list that
names the Current View that gives us the ability to select different analysis results,
all based on the recorded data from the profile. We will always see the same data,
but with the ability to group it in different ways, be it in a per-function basis, or
hierarchical basis, or by another way.

Analyzing Code Performance

[260]

Instrumentation profiling
Executing the Performance Wizard again, we can use the instrumentation profiling
technique that adds the ability to analyze the method invocation count to the CPU
usage, as shown in the previous example made with the sampling technique.

The report of a profiling with instrumentation

Chapter 9

[261]

With instrumentation, the report summary is quite similar to the sampling one,
while the detailed data available by selecting the proper view in the Current View
is completely different. We still have the ability to find the most CPU consuming
methods, but we also have the ability to see the invocation count. This information is
priceless because it helps with finding development mistakes, other than the obvious
CPU consummation.

An instrumentation profiling call tree view with method call counters

Analyzing Code Performance

[262]

Executing the Performance Wizard again, we have the ability to try the Memory
Usage profiler. This profile records real-time memory usage during runtime. This
gives us the ability to understand if there are critical patterns in resource usage, such
as a memory leak (infinite memory usage increment), or if there are issues regarding
garbage-collection timings.

The memory profiling report summary

Chapter 9

[263]

Within the Call Tree view, we can see memory usage in bytes and in a relative
percentage. In the previous instance, the highest consuming method is the
Application.Run method, executed by the WPF engine that iterates 1000 items
collection and instantiates a template generation 1000 times. This results in 14MB
memory consumption.

The call tree detailed view of a memory profiling report

Analyzing Code Performance

[264]

Another great help comes with Concurrency Profiler, which is always available
by executing the Performance Wizard. Such a profiler shows exactly how many
race conditions happen in our code when multiple threads fight to get access to
the same resource.

Concurrency profiling report showing race condition count

The same information is available throughout the Resource Details chart, which is
shown in the following chart. On the Y side of the chart, we have thread IDs, while
on the X side, we have the time. This chart is actually a Gantt chart of race condition
that is happening within threads during time.

Concurrency profiling resource detail showing resource contention per thread

Chapter 9

[265]

In the figure below, there is the Call Tree view that shows exactly how many times a
race content occurred per method.

Concurrency profiling call tree showing that the most racing method is the Monitor.Enter method that is
the underlying executing method for the lock C# keyword

The analysis report comparison
Another great feature of Visual Studio is the report comparison. This feature gives us
a clear view of how our application performance results change over time.

A report comparison of two sampling profiling

In the preceding example, the first report is about the demo code without any CPU
wastage, while in the second report, the Thread.SpinWait method has been added.
The result shows that the System.Core.ni.dll in the second report consumes more
than 86 percent of the relative CPU, while the WPF rendering engine consumes a lot
less, in comparison.

Analyzing Code Performance

[266]

Testing with Visual Studio 2013
Software testing is what saves the life of any software development project.

Testing applications may be more important than designing good software. Although
a developer should always design good software following good architectural
principles, the truth is that poorly designed software will work fine if it has hardly
been tested and does exactly what the customer needs. On the contrary, it is almost
impossible for a never before tested well-designed software to work fine.

Software testing is available at multiple levels. The lower level of testing, the most
tightly coupled with our code, is the unit test. Such kinds of tests have the goal of
testing a single functional (or sometimes technical) method. If we need to test our
Fourier transform method, a unit test is the starting point. When unit testing, it is
good practice to give such method data for testing purposes. Such dummy data,
called a mockup, is actually useful to point out our code (the subject of the test),
isolating its execution from any external inference that real data could bring. In
other words, a mockup parameter helps by testing only a method per time, indeed,
this is real unit testing. In contrast, by testing multiple methods, we are doing
integration testing.

Here is a simple mathematical function to compute the Pow of any Single number,
as shown in the following code:

public static float Pow(float a, float b)
{
 return (float)Math.Pow(a, b);
}

Within Visual Studio 2013, we can add a Unit Test Project in the Add New Project
window. The preferable naming convention is [TO_BE_TESTED_ASSEMBLY].Test,
as shown in the following figure

Once created, we will find a test class, containing all unit tests coupled to a
business class or by functional needs. Within such classes, all our unit tests will be
available as simple methods, each agnostic against the other, as if each is a simple
console application.

Chapter 9

[267]

The unit test project creation

The unit test itself is actually easy, but we should always try to write tests with
some ideal case and some real (not ideal) case. When writing a unit test, we should
try to break the target method with any unusual parameter, trying to expose our
methods to difficulties. For instance, when testing a Pow(a,b) function, we could test
its usage by trying to use huge numbers, or negative numbers, or any other number
that could bring an exception. Otherwise, a test that's too easy will definitely be
useless. Here is an example:

[TestClass]
public class HelperTests
{
 [TestMethod]
 public void PowTest1()
 {
 var a = 10;
 var b = 10;
 var pow = Helpers.Pow(a, b);
 Assert.AreEqual<float>(pow, (float)Math.Pow(a, b));
 }
}

Analyzing Code Performance

[268]

Within our unit test, the Assert static class gives us all the needed prebuilt helpers
to signal MsTest (the test engine) that we are asking for some specific verification
(or deny it). In the preceding example, we checked the Pow method result against a
known value. The input parameters (a and b) are mock values. When dealing with
complex input parameters, such as any real business object, a mock framework helps
a lot to create dummy objects along with an Inversion of Control container to create
mock data or real data, depending on the executing behavior.

The Integration test
An integration test helps to test how different software modules behave when
working altogether. Any time we test multiple methods or multiple software
modules (with a lot of methods), we are actually doing integration testing. With
such testing, mock-up data may also leave space for the real world data coming
from other modules.

Creating a unit test within Visual Studio is made with the proper test project.
In contrast, there is no wizard or project template regarding integration testing.
Such kinds of tests are totally related to the developer's work.

We have the choice of testing different modules by following the use cases step lists
precisely, or we can use the software modules in a creative way, trying to find a
condition when software hangs.

When dealing with software module integration testing, if we use real world data,
an integration test may become a user-acceptance test, with the goal of trying to get
the user approval of our development work.

Performance-related tests
Regarding performance, different kinds of tests exist.

We start a performance test if we try to analyze how the system responds regarding
different performance aspects, such as scalability, latency, throughput, and so on.

Alternatively, we start a load test if we try to analyze how the application behaves
regarding a huge user load, or if we try to identify the higher user load allowed with
a static system setup.

Stress testing, although similar to a load test, instead this is more related to
understanding how the system recovers from a system fault, or from a huge user
load that will create some form of application fault.

Chapter 9

[269]

All such tests, such as the integration test, are available to the developer as free
developing tests. Those kinds of tests, although available within Visual Studio for
some application types, are not universally available. For instance, in Visual Studio
we have the Web Test (a test of website navigation) and the ability to create a Load
Test by executing multiple Web Tests. The same tests are not available for other
application types.

TDD
Test-driven development (TDD) is how the sword was centuries ago for fighters.
It is not technical knowledge. It gives us the methodology to test in advance, during,
and after we develop an application. In other words, it is like developing with the
test in mind. The choice of using or not such methodology in your own development
project, is related to team needs and wishes. Using TDD increases software quality,
but following the TDD way is not the only way to create good tests.

Test and Continuous Integration
When working with complex projects or big teams, implementing the Continuous
Integration within our Application Lifecycle Management (ALM) system, such as
Team Foundation Server (TFS), will be invaluable.

Continuous integration is the ability to verify that committed changes against our
source control compiles without any error. The goal of such features is to verify code
quality of the overall team, trying to avoid mistakes in which a developer somehow
interfere with the work of another developer.

Within Visual Studio, great integration is available with TFS. This makes setting
up Continuous Integration easy. An added feature of TFS is the ability to avoid the
committed changes that are definitely committed against the overall source control.
Usual Continuous Integration simply tries building our application projects at each
check-in to verify code compilation. Within Visual Studio, a more restrictive version
exists that is named as Gated Check-in. With this feature, a code that does not build
is simply rejected to the developer. This totally avoids bad coding being stored
within TFS.

Another great feature available within TFS is the ability to automatically execute all
our tests together with the compilation of the Continuous Integration. We then have
the ability to notify someone of test results, or prevent the developer committing
changes from being saved in the main code, similar to what happens when using the
gated check-in feature.

Analyzing Code Performance

[270]

This great feature helps increase the software quality a lot because of the automation
of the whole testing job. In addition, we will have historical information about
testing success/fail count. This can be a testing report itself, or give the development
team a practical regression test result in time.

Static program analysis
Contrary to all tests or analysis against a running application, that names dynamic
analysis, the static analysis focuses on our code when it is still at the design stage
(when we develop within Visual Studio). In other words, it is the analysis of our
code design (of the code, not of the application).

Static analysis helps to understand worst practices, such as an incorrect
implementation of an event handler or the incorrect extension of the IDisposable
interface within our class.

Static program analysis also helps with finding common mistakes and basic
forgetfulness.

A lot of frameworks and methodologies actually exist when doing static program
analysis. In this chapter, we will focus on the implementation available within Visual
Studio itself.

Although static analysis is something that does not boost any performance of our
applications by itself, it is obvious that an automated code analyzer makes writing
good code easier. Good code always reduces bottlenecks, so we can definitely
say that static analysis reduces common mistakes and helps in writing
better-performing code.

You can also refer to the following link:
http://en.wikipedia.org/wiki/Static_program_analysis

Code analysis
Within Visual Studio's ANALYZE menu, we can execute the Run Code Analysis
on Solution menu item. The analysis starts immediately for the entire solution
currently opened. If anything is perfect, we will see within the Code Analysis
window, the statement No Code Analysis issues were detected, otherwise a lot of
warning messages will explain what we did wrong in our coding, as shown in the
following screenshot.

http://en.wikipedia.org/wiki/Static_program_analysis

Chapter 9

[271]

Please note that static analysis is not an absolute truth. We can choose which kind
of analysis checks to do on a project basis. Indeed, when choosing which analysis
to activate or not, we could activate checks that for other software architects are
irrelevant or the opposite, or we can enable a more or less verbose analysis checklist,
depending on the project being analyzed:

The Code Analysis window, showing a possible issue with related description

The code analysis configuration is available in the last tab of the project
properties window.

The code analysis configuration pane

Analyzing Code Performance

[272]

Here, we have the ability to trigger a code analysis on the project build, otherwise
(by default) we can start the code analysis execution when we need it.

More importantly, here we can configure which Rule Set (list of code analysis rules)
to use to produce analysis issues, with the ability to open such sets for inspection
or editing.

The Rule Set editor

When opening a Rule Set for editing, we have the ability to enable or disable the
rule execution and change rule behavior. Although the default configuration lets us
produce a Warning when an analysis check fail happens, such warnings usually do
not pop up for the developer and they do not prevent project compilation. Instead,
we can configure an Error output in place of the warning. These errors stop project
compilation and can be used to link (together with the analysis on build) code
analysis to the TFS Continuous Integration. The combination of the two features is
definitely useful for team membership.

Code metrics
Another interesting feature that helps you to develop good code is the code metric
analysis against our solution/projects.

Different from classical static analysis, code metrics are indicators that help us to
understand the overall quality of our code by executing mathematical analyses.

Typical examples are the number of code lines, the number of inheritance levels, and
other statistical values like the Cyclomatic Complexity.

Chapter 9

[273]

Within Visual Studio 2013, we have the ability to execute a Code Metric analysis,
accessed by the usual menu root ANALYZE. Here, we find the Calculate Code
Metrics for solution menu item that will start the analysis immediately without
any wizard or confirmation:

The Code Metrics Results window showing metric results

Within the Code Metrics Results window, we will see the results on a per
project basis.

The complete explanation of the metrics analyzed, as shown in the preceding
screenshot, is available through the MSDN website:

https://msdn.microsoft.com/en-us/library/bb385914.aspx

Although such indicators are useful to give numeric details on our software, never
try to keep such indicators to their best value, because such a practice is something
that can bring a lot of trouble. Indeed, well reviewed software regarding metrics
could bring you a poorly designed and poorly performing application. Take such
indicators as they actually are. They are useful indicators that can give a potential
representation of our job, and give developers like us the time to rethink our
application's behavior. The time to rethink, could bring about better software and not
by trying to reach 100 in the Maintainability Index.

Another useful tip is regarding the Lines of Code indicator. Thirty years ago, the
number of lines of code was a measure of working effort (such analysis is called
SLOC). Today, writing so many lines of code means creating something difficult to
maintain and often means we have simply wasted time in developing useless things.

Please note that when we extremely decouple our code with a C# interface per
class, if such decoupling does not bring real benefits in future maintenance, this
will actually only bring more overall work, in the present and in the future. The
key to success is writing the right number of source lines without creating useless
components, supporting future needs without predisposing features that we already
know we don't need. Always compare your software module results regarding
code metrics in order to keep a matrix index history.

https://msdn.microsoft.com/en-us/library/bb385914.aspx

Analyzing Code Performance

[274]

For instance, if we develop a business library of thousands of lines of code, that is
fine, while if we find that a simple assembly responsible for a few functional tasks
has a thousand lines of code, there is something wrong. The question we should ask
ourselves is how can my logging library be so verbose, compared to my business one?

You can read more about SLOC at the following link:
http://en.wikipedia.org/wiki/Source_lines_of_code

An interesting metric is the Depth of Inheritance, also visible in the preceding
screenshot. When using polymorphic behavior, a high level of inheritance could
cause difficulty in maintaining and using code.

For further reading refer to:
http://en.wikipedia.org/wiki/Software_metric

Summary
In this chapter, you received priceless information about good team working
practices, along with advanced performance testing skills. Abilities such as profiling
code and setting up a unit test project give tremendous advantages in software
performance results and the overall perceived quality.

I hope you have learned useful skills and methodologies by reading this book.
I thank you and hope you will deepen your knowledge of everything that you
learned with the help of this book.

http://en.wikipedia.org/wiki/Source_lines_of_code
http://en.wikipedia.org/wiki/Software_metric

[275]

Index
Symbols
3-tier architecture

about 19, 45, 46
performance concerns 48, 49

.NET Remoting API 56

A
ActiveX Data Objects.NET (ADO.NET)

about 195, 196
bulk copy 221, 222
overview 196-201

Amdahl's law 239
APM

about 114-118
Delegate 114

AppDomains
IDisposable interface 91
working with 86-90

AppFabric Cache
about 37, 65, 235
URL 236

Application Lifecycle Management
(ALM) 269

AsParallel() method 161
ASP.NET MVC

about 33
performance concerns 35-40

async/await pattern
about 143, 144
URL 144

asynchronous programming
about 111
theory 112, 113

Asynchronous Programming Model. See
APM

async method 143

B
background thread 92
batch mode 84
big data

about 224
AppFabric cache 230
Automotive Big Data system 227-230
Data Purge Engine 229
End-User Data Extractor 230
lookup programming 246-249
Missing Device Notifier 229
Redis cache engine 230
solutions, architecting 225-227
URL 225
Worker Role 229

BigInteger data type
about 178
performance, evaluating 178, 179

BizTalk ESB Toolkit 55
BizTalk Server 55
BLOB storage 64
business-to-business (B2B) 32
business-to-consumer (B2C) 32

C
chunk partitioning 161
class of applications

about 9
performance aspects, of desktop

application 10

[276]

performance aspects, of mobile
application 11

performance aspects, of server
application 12, 13

performance concerns 14
ClickOnce

about 59
URL 60

CloudService deployment 63
Code Access Security (CAS) 87
code-first architecture 201
collect 80
Common Intermediate Language (CIL) 74
Common Language Runtime

(CLR) 25, 73-76
Common Language Specification (CLS) 108
Common Object Request Broker

Architecture (CORBA) 56
contract programming 30

D
database-first architecture 201
data definition language (DDL) 196
data manipulation language (DML) 196
data mapper pattern 30
data parallelism

about 147-151
PLINQ, using 167-170
TPL, using 155, 156

data parallelism, with PLINQ
about 167-170
partitioning optimization 170-172

data parallelism, with TPL
about 155, 156
parallel execution abortion 158-160
parallel programming, sliding 161
partitions 160, 161
ThreadPool, tuning 157

Data Transfer Object (DTO) pattern 212
data types

BigInteger 178
Decimal datatype 178
half-precision data type 179, 180
performance, evaluating 176, 177

deadlock state
about 105

URL 105
Decimal datatype

about 178
reference 178

decorator pattern 201
Delegate object 150
Dependency Injection (DI) 28
dependency inversion principle 27
design-by-contract programming

about 30
URL 30

designs and architectures
3-tier architecture 45
about 28
ASP.NET MVC 33
eXtensible Application Markup Language

(XAML) 41
layered architecture 29, 30
Model-View-Controller (MVC) 33
Model-View-ViewModel (MVVM) 41
performance concerns 55-57
Service-Oriented Architecture (SOA) 50

Dispatcher class 138
distributed computing

about 19
URL 20

domain-driven design (DDD) 202
dynamic analysis 270

E
eager loading

about 208
cons 211
pros 211

Entity Framework (EF)
about 38, 195
advanced querying 204-206
overview 201-204
performance consideration, URL 207
persistence optimization 215-217
querying optimization 206

Event-based Asynchronous Pattern
(EAP) 119-121

exception handling 105-109
eXtensible Application Markup

Language (XAML) 41

[277]

Extension methods 163
Extract, Transform, Load (ETL) 219

F
First In First Out (FIFO) 65
foreground thread 92
Fourier transform

about 185
low-pass filtering, for audio 188-191
rolling average 185, 186

framework performance
comparing 218
stream-like querying 219

FromAsync method
URL 124

G
garbage collection (GC)

about 80-82
collection tuning 83-86
large object heap (LOH) 83
URL 86

Geographic Information System (GIS) 244
Graphics Device Interface (GDI) 45
Graphics Processing Unit (GPU) 45
grid computing

about 20, 239-243
URL 20

H
half-precision data type

about 179
performance, evaluating 179, 180

I
Infrastructure as a Service (IaaS) 19, 25
instrumentation profiling 260-264
integrated querying

LINQ, using 162-167
integration test 268
Intellisense 163
interactive (or concurrent) mode 84
interface segregation principle 27
Interlocked 98

Intermediate Language (IL) 74
Internet of things (IoT) 223
Inversion of Control (IoC) 28, 67

J
Just-in-Time (JIT) 76

L
Language-Integrated Query. See LINQ
large object heap (LOH) 83
layer 28
layered architecture

about 29, 30
performance concerns 30-32

lazy loading
about 208
cons 211
pros 211

Lazy Load pattern 212
line-of-business (LoB) 59
LINQ

URL 162
used, for integrated querying 162-167

LINQ to Entities 205
Liskov substitution principle 27
livelock

about 105
URL 105

low-pass filtering 188

M
managed heap 78
managed stack 78
memory management

about 76-79
memory corruption issue 77
memory leak issue 77
URL 78

Microsoft Azure, for big data
about 230
AppFabric Cache 235
Redis Cache 236-238
Service Bus Topic 231-235

[278]

model-first architecture 201
Model-View-Controller (MVC)

about 23, 33
performance concerns 34-40

Model-View-Presenter (MVP) 33, 40
Model-View-ViewModel (MVVM)

about 23, 41, 42
performance concerns 43-45

multithreaded (MT) programming 15, 148
multithreading synchronization

about 96, 97
locks 98
locks, signaling 99-104
URL 98

N
NAudio 188
n-tier architecture 19
NuGet Package Manager 175

O
object-oriented design principles

about 25, 26
dependency inversion principle 27, 28
interface segregation principle 27
Liskov substitution principle 27
open-closed principle 27
single responsibility principle 26

object-oriented programming (OOP)
about 26
encapsulation 26
inheritance 26
polymorphism 26

open-closed principle 27

P
Parallel.ForEach method 156
parallel programming

about 17-19, 147
data parallelism 147-150
task parallelism 147-149

partitions 160

performance
about 2, 3
aspects 5
as requirement 3
concerns, of software architecture 24, 25
engineering 4, 5
functional requirement 3
non-functional requirement 3
of data types, evaluating 176, 177

performance aspects
about 5, 6
availability/reliability 8
efficiency 9
latency 6
of desktop application 10
of mobile application 11
of server application 12, 13
resource usage 7
scalability 8
throughput 7

performance considerations
about 65
agnostic, versus idiom-powered

implementation 69
cloud, versus on-premise applications 71
data, caching 65
Inversion of Control (IoC) 67
lazy loading 68
PLINQ 66
remote computation 71
reusability of code 69
short coding 70

performance per watt 9
persistence points 239
platform architectures

about 58
cloud web applications, architecting 63, 64
desktop applications, architecting 58, 59
mobile applications, architecting 60, 61
web applications, architecting 62, 63

Platform as a Service (PaaS) 25
PLINQ

about 67
using, with data parallelism 167-170

presentation tier, 3-tier architecture 46

[279]

profiling
about 252
instrumentation profiling 260-264
report comparison 265
software profiling 252
with Visual Studio 253-259

Q
querying approaches

about 208
eager loading 208
lazy loading 208
performance analysis 211-213

querying optimization, Entity
Framework (EF)

about 206
approaches 208
execution lifecycle, querying 206, 207

R
race condition 105
range partitioning 160
Rapid Application Development (RAD) 34
real-time applications

about 180, 181
testing 184

real-time computing
about 180
reference 180

Redis Cache
about 236-238
URL 239

Reporting Database pattern
about 227
URL 227

request-reply pattern 30

S
Service Bus Topic

about 231, 232
URL 235

Service-Oriented Architecture (SOA)
about 50, 51
service abstraction 53
service autonomy 54

service composability 55
service discoverability 55
service loose coupling 52
service reusability 53
service statelessness 54
standardized service contract 52

set 151
shaped query

cons 211
pros 211

short coding
about 70
URL 71

Simple Object Access Protocol (SOAP) 55
single responsibility principle 26
Single Thread Apartment (STA) 138
sliding processing

about 192
example 192, 193

Small office Home office (SoHo) 33
software architecture

about 22, 23
comparing 57
performance concerns 24, 25

software design 3
software profiling 252
software testing, with Visual Studio 2013

about 266, 267
integration test 268
load test 268
performance related tests 268, 269
report comparison 265
stress test 268
Test and Continuous Integration 269, 270
test-driven development (TDD) 269

speculative execution 154
SQL Management Studio 200
starvation 105
static program analysis

about 270
code analysis 270, 272
code metrics 272-274
URL 270

system architecture 3, 28

[280]

T
Task-based Asynchronous Pattern (TAP)

about 121, 150
task cancellation 131-133
task continuation 134, 135
task creation 121-127
task exception handling 130
task factories 135-37
task synchronization 128, 129

Task.Factory.StartNew method 129
task parallelism

about 147-150
TPL, using 151-155

Task Parallel Library (TPL)
about 67, 102, 132
using, with data parallelism 155, 156
using, with task parallelism 151-155

task UI synchronization 137-142
Task.WhenAll method 144
Team Foundation Server (TFS) 269
techniques

distributed computing 19
grid computing 20
multithreaded programming 15
overview 15
parallel programming 17-19

test-driven development (TDD) 269
Thread Stack 78
tier 28

U
Unit of Work pattern 203
Universal Apps project 61

V
Visual Studio

profiling with 253-256

W
Web Forms 23
Wide Area Network (WAN) 20
Windows Communication Foundation

(WCF) 56

X
XAML

performance concerns 43-45

Thank you for buying
Learning .NET High-performance

Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly
focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

C# Multithreaded and Parallel
Programming
ISBN: 978-1-84968-832-1 Paperback: 344 pages

Develop powerful C# applications to take advantage
of today's multicore hardware

1.	 Make use of the latest Visual Studio debugging
tools, to manage and debug multiple threads
running simultaneously.

2.	 Learn how to use the Thread, Task, and Parallel
libraries in your C# applications.

3.	 Explore the evolution of multithreaded
development in C#, starting with
BackgroundWorker classes and moving on to
threads and tasks and finally covering Async.

Visual Studio 2013 and .NET 4.5
Expert Cookbook
ISBN: 978-1-84968-972-4 Paperback: 308 pages

Over 30 recipes to successfully mix the powerful
capabilities of Visual Studio 2013 with .NET 4.5

1.	 Provides step-by-step instructions, helping
you to learn the various components and
technologies of .NET development with
Visual Studio 2013.

2.	 Filled with examples that clearly illustrate
how to integrate with the technologies and
frameworks of your choice.

3.	 Helps you keep pace with the fast growing
IT industry and gain expertise on upcoming
technologies, common forms of debugging
and software testing.

Please check www.PacktPub.com for information on our titles

.Net Framework 4.5 Expert
Programming Cookbook
ISBN: 978-1-84968-742-3 Paperback: 276 pages

Over 50 engaging recipes for learning advanced
concepts of .NET Framework 4.5

1.	 Explores the advanced features of core
.Net concepts in step-by-step detail.

2.	 Understand great ways to enhance your
website by securing against cross-site scripting
attacks, enabling third party authentications,
and embedding maps.

Multithreading in C# 5.0
Cookbook
ISBN: 978-1-84969-764-4 Paperback: 268 pages

Over 70 recipes to help you learn asynchronous
and parallel programming with C# 5.0 quickly
and efficiently

1.	 Delve deep into the .NET threading
infrastructure and use Task Parallel Library
for asynchronous programming.

2.	 Scale out your server applications effectively.

3.	 Master C# 5.0 asynchronous operations
language support.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Performance Thoughts
	Understanding performance
	Performance as a requirement
	Performance engineering
	Performance aspects
	Latency
	Throughput
	Resource usage
	Availability/reliability
	Scalability
	Efficiency

	Class of applications
	Case study: performance aspects of a desktop application
	Case study: performance aspects of a mobile application
	Case study: performance aspects of a server application
	Performance concerns as time changes

	Technical overview
	Multithreaded programming
	Parallel programming
	Distributed computing
	Grid computing

	Summary

	Chapter 2: Architecting
High-performance
.NET Code
	Software architecture
	Performance concerns about architecture
	Object-oriented design principles
	Single responsibility principle
	The open-closed principle
	The Liskov substitution principle
	That interface segregation principle
	The dependency inversion principle

	Common designs and architectures
	Layered architecture
	Performance concerns

	Model-View-Controller and ASP.NET MVC
	Performance concerns

	Model-View-ViewModel and XAML
	Performance concerns

	3-tier architecture
	Performance concerns

	Service-Oriented Architecture (SOA)
	Standardized service contract
	Service loose coupling
	Service abstraction
	Service reusability
	Service autonomy
	Service statelessness
	Service discoverability
	Service composability

	Performance concerns

	Architecture comparison
	Common platform architectures
	Architecting desktop applications
	Architecting mobile applications
	Architecting web applications
	Architecting cloud web applications

	Performance considerations
	Caching, when and where
	PLINQ everywhere
	Inversion of Control (IoC)
	Lazy loading
	Reusability of code
	Agnostic versus idiom-powered implementation
	Short coding
	Remote computation
	Cloud versus on-premise applications

	Summary

	Chapter 3: CLR Internals
	Introduction to CLR
	Memory management
	Garbage collection
	Large object heap
	Collection tuning

	Working with AppDomains
	IDisposable interface

	Threading
	Multithreading synchronization
	Locks
	Signaling locks
	Drawbacks of locks

	Exception handling
	Summary

	Chapter 4: Asynchronous Programming
	Understanding asynchronous programming
	Asynchronous programming theory
	Asynchronous Programming Model (APM)
	Event-based Asynchronous Pattern (EAP)
	Task-based Asynchronous Pattern (TAP)
	Task creation
	Task synchronization
	Task exception handling
	Task cancellation
	Task continuation
	Task factories

	Task UI synchronization
	Async/await
	Summary

	Chapter 5: Programming for Parallelism
	Parallel programming
	Task parallelism
	Data parallelism

	Task parallelism with TPL
	Data parallelism with TPL
	ThreadPool tuning
	Parallel execution abortion
	Partitions
	Sliding parallel programming

	Integrated querying with LINQ
	Data parallelism with PLINQ
	Partitioning optimization

	Summary

	Chapter 6: Programming for
Math & Engineering
	Introduction
	Evaluating the performance of data types
	BigInteger
	Half-precision data type

	Real-time applications
	Case study: Fourier transform
	Rolling average
	Low-pass filtering for Audio

	Sliding processing
	Summary

	Chapter 7: Database Querying
	Introduction
	Overview of ADO.NET
	An overview of Entity Framework
	Advanced querying

	Entity Framework querying optimization
	Querying execution lifecycle
	Querying approaches
	Performance thoughts

	Entity Framework persistence optimization
	Performance comparison
	Stream-like querying

	ADO.NET bulk copy
	Summary

	Chapter 8: Programming for Big Data
	What is big data?
	Architecting big data solutions
	Case study – automotive big data system

	Microsoft Azure for big data
	Service Bus Topic
	AppFabric Cache
	Redis Cache

	Simplified grid computing
	Lookup programming
	Summary

	Chapter 9: Analyzing Code Performance
	Software profiling
	Profiling with Visual Studio
	Instrumentation profiling
	The analysis report comparison

	Testing with Visual Studio 2013
	The Integration test
	Performance-related tests
	TDD
	Test and Continuous Integration

	Static program analysis
	Code analysis
	Code metrics

	Summary

	Index

