r "
o —
- iy
»¥
- - o -

B L Y
e L 1B e P Y.
:y-ri‘, 1 S SIETTn o ST | TS

L e

Ty L.':‘m
&ggghz':l‘l: not
L

A T

G r;“

- -

Quick answers to

Microsoft .NET Framework 4.5
Quickstart Cookbook

..)Af—g P =tV VAL
iting n

> but Ind

Jose Luis Latorre Millas [PACKT] enterprise X

PUBLISHING

Microsoft .NET
Framework 4.5
Quickstart Cookbook

Get up to date with the exciting new features in .NET 4.5
Framework with these simple but incredibly effective recipes

Jose Luis Latorre Millas

enterprise

PUBLISHING

BIRMINGHAM - MUMBAI

Microsoft .NET Framework 4.5 Quickstart
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2013

Production Reference: 1160513

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-698-3
www . packtpub.com

Cover Image by Artie Ng (artherng@yahoo. com. au)

Credits

Author
Jose Luis Latorre Millas

Reviewers
Stephen Cleary

Layla Driscoll
Nauzad Kapadia
Leon Welicki

Ariel Woscoboinik

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Dayan Hyames

Technical Editors
Chirag Jani

Soumya Kanti

Veena Pagare

Copy Editors
Insiya Morbiwala

Aditya Nair

Laxmi Subramanian

Project Coordinator
Amey Sawant

Proofreader
Lawrence A. Herman

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Jose Luis Latorre Millas is a Microsoft Silverlight MVP, Toastmaster's Competent
Communicator, TechEd speaker, INETA speaker, STEP member, trainer, technical writer,

and reviewer. He is deeply involved with the technical communities through his collaboration
with INETA Europe, Barcelona Developers, and other communities and user groups. He recently
co-founded the Zurich .NET Developers user group at Zurich, Switzerland, which can be found
athttp://ZurichDev.net.

Jose Luis Latorre is strongly focused on XAML technologies such as Windows Store Apps,
Windows Phone Apps, Silverlight, and WPF. He has written several articles on these topics,
reviewed books, and worked with and given several talks over the last few years on these
areas of knowledge.

Jose Luis works as Ul Team Lead developer at Roche Diagnostics, where he does his best to
develop and improve diagnostic software and its interfaces, which will help to save lives.

Acknowledgment

I'd like to first of all thank my girlfriend, Sandra Saenz Gonzalez, for her enormous support in

taking on the project that this book was. | am greatly thankful for her constant understanding
while having me closed up between four walls as | wrote and developed its contents. Thanks,
Sandra, | love you.

Big thanks as well to my friend Jesus Salillas, who helped me with style reviews and guidance.

There are many good people out there who | have to thank, too. Thanks to Alfonso Rodriguez,
who encouraged me to get into this "big .NET community world," and to Cristina Gonzalez, who
has been my MVP Lead for—wow!—6 years already; easier said than done. Additionally, there
is my good friend Paco Marin, who encouraged me strongly to write for him and his magazine,
DotNetMania, now DNM, and during these years of collaboration, while writing for him, we
have become good friends; thank you for all your support and care.

On the way, | found great friends out there, versed in the community, who allowed me to jump
right at my passion. Thanks to the INETA guys, Damir Tomicic, Tomislav Bronzin, Sander Gerz,
Andrej Radinjer, Andre Obelink, Christian Nagel, Dobrisa Adamec, and, of course, Miguel
Lopez. Thank you for being there and doing what you do, greatly empowering the European
developers' community. And for letting me take part in it and letting me "live it." One simple
word—outstanding.

I'd like to give a big thank you to the staff of Packt Publishing for this opportunity, their support
and patience on bringing this together, and for their understanding concerning my move to
Switzerland, which had me a bit lost for a while (regarding the book). There you showcased
that you are truly valuable, as a company and as people; special thanks to Rashmi Phadnis,
Amey Sawant, and Dayan Hyames.

And finally | would like to thank Layla Driscoll, former Product Manager of the .NET CLR team,
and Leon Welicki, Program Manager of the Workflow Foundation, both of whom | have had
the honor of having as technical reviewers for this book. Thanks! It's awesome to count on
you as reviewers.

| also have some friends who believed in me and encouraged me to write and said "l could
do it"—thanks Braulio Diez, David Nudelman, Luis Franco, David Salgado, and Luis Fraile
for your friendship, belief, and support.

I wouldn't have been able to write enclosed in the 15 square meters—my home for almost
four months of my initial stay in Switzerland—if | couldn't take my stress out, which | did
with my friends at Crossfit Zurich, so | want to give a big thank you to Ozi, all the coaches,
and friends | have found at the "box" for being there!

And | will end by thanking those who started it all for me, that is, thanks to my father and
mother for giving me birth and making me so curious; love you.

Thank you all!

About the Reviewers

Nauzad Kapadia is an independent professional and founder of Quartz Systems, and
provides training and consulting services for the entire Microsoft .NET and SQL Server stack.
Nauzad has over 17 years of industry experience and has been a regular speaker at events
such as TechED, DevCon, DevDays, and user group events. He has been a Microsoft MVP
(Most Valuable Professional) for six years on technologies ranging from C# and ASP.NET to
SQL Server. Whenever he is not working on his computer, he enjoys rock music, photography,
and reading.

Ariel Woscoboinik graduated as a Bachelor of Information Technology from the
University of Buenos Aires, and as an IT technician from ORT school. Since his childhood he
has been programing and getting more and more involved in the world of technology. Later
on, he became interested in organizations and their business models and succeeded in
converging both interests into his career—looking for the best solutions to involve people,
processes, and technology.

Currently, he works as a Software Development Manager for Telefe, the leading TV channel
in Argentina.

Ariel has been working with Microsoft technologies since high school. During his career,
he has worked for highly prestigious companies from myriad industries—Microsoft, MAE,
Intermex LLC, Pfizer, Monsanto, Banco Santander, IHSA, Disco S.A., Grupo Ecosistemas,
Perception Group, and Conuar.

Among his passions are acting in dramas as an amateur actor, travelling around the world,
watching films, and soccer.

You can reach him at http://www.linkedin.com/in/arielwoscoboinik or
on twitter, @arielwos.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content
» On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Windows Store Apps 7
Introduction 7
Building our first Windows Store app 10
Adding a splash screen (and app tiles) to our app 21
Improving the application to make it compliant with the
Windows 8 lifecycle model 24
Improving our application tile 33
Improving our application with toast notifications 40
Chapter 2: Exploring the Top New Features of the CLR 43
Introduction 43
Creating a portable library 45
Controlling the timeout in regular expressions 49
Defining the culture for an application domain 52
Overriding the default reflection behavior 53
Using the new ZipArchive class 56
Understanding async and await in .NET 4.5 59
Using the new asynchronous file /0 operations 63
Chapter 3: Understanding the New Networking Capabilities 67
Introduction 67
Using the HttpClient and the new System.Net.Http namespaces 68
Chapter 4: Understanding the new features of Entity Framework 5.0 75
Introduction 75
Creating our first "Code First" application 76
Using Code First Migrations 84

Table of Contents

Chapter 5: Understanding the New Features of ASP.NET 89
Introduction 89
Creating our first ASP.NET 4.5 Web Forms application 90
Configuring our application to use unobtrusive validation 103
Using Smart Tasks in the HTML editor 107
Using WAI-ARIA support 109
Using the Extract to User Control feature 110
Using the Page Inspector feature 112
Creating an asynchronous HTTP module 114

Chapter 6: Implementing WPF's new features 117
Introduction 117
Implementing asynchronous error handling with INotifyDataErrorinfo 118
Using the WeakEvent pattern with WeakEventManager 125
Using the dispatcher's new features 127
Data binding to static properties 130
Throttling data source update delays 133
LiveShaping - repositioning elements when its bound data changes 138

Chapter 7: Applying the New WCF Features 145
Introduction 145
Using the asynchronous features of WCF 145
Using WebSockets 149
Using Contract First development 156

Chapter 8: Creating and Hosting Our First ASP.NET Web API 161
Introduction 161
Creating our first ASP.NET web API 162
Implementing a CRUD ASP.NET web API 170
Setting up a self-hosted ASP.NET web API 175

Chapter 9: Using the New Capabilities of WF 181
Introduction 181
Creating a state machine workflow 182
Using the enhanced designer features 193

Appendix A: Resources for Further Knowledge 199
Resources for knowing more about .NET 4.5 and its tools 199
Resources for knowing more about Windows 8 200
Resources for knowing more about general development 201

Table of Contents

Appendix B: .NET 4.5 - Deployment Risks and Issues 203
Introduction 203
Risks of the in-place upgrade 204
Platform targeting 204
Other risks 205

Index 207

Preface

With about 10 years since its first release, Microsoft's .NET Framework 4.5 is one of the

most solid development technologies for creating casual, business, or enterprise applications.
It has evolved into a very stable and solid framework for developing applications, with a solid
core called the CLR (Common Language Runtime). Microsoft .NET Framework 4.5 includes
massive changes and enables modern application and Ul development.

Microsoft .NET Framework 4.5 Quickstart Cookbook aims to give you a runthrough of
the most exciting features of the latest version. You will experience all the flavors of .NET
4.5 hands on. The "How-to" recipes mix the right ingredients for a final taste of the most
appetizing features and characteristics. The book is written in a way that enables you to
dip in and out of the chapters.

The book is full of practical code examples that are designed to clearly exemplify the different
features and their applications in real-world development. All the chapters and recipes are
progressive and based on the fresh features of .NET Framework 4.5.

The book is divided into functional examples that combine many techniques to showcase the
usage of a concrete .NET 4.5 feature.

What this book covers

Chapter 1, Windows Store Apps, shows us the basics, 101, of creating Windows Store
apps and some key aspects of it, such as adding a splash screen, tiles, understanding
the Windows 8 lifecycle model, and using toasts.

Chapter 2, Exploring the Top New Features of the CLR, helps us explore some of the most
exciting features of the CLR, such as portable class libraries, controlling timeout on regular
expressions, overriding the default reflection behavior, and understanding how to use async
and await.

Preface

Chapter 3, Understanding the New Networking Capabilities, explores the new networking
features and show us how to use the HttpClient and System.Net .Http namespaces.

Chapter 4, Understanding the New Features of Entity Framework 5.0, helps us explore Code
First and Code First Migrations directly.

Chapter 5, Understanding the New Features of ASP.NET, helps us explore the new capabilities
while creating an ASP.NET web forms application; it shows us how to use unobtrusive validation
and explains what it is good for; and it focuses on the other improvements, such as smart tasks,
WAI-ARIA support, and "extract to user control" between others.

Chapter 6, Implementing WPF New Features, covers the new way of handling errors

in WPF asynchronously with INotifyDataErrorinfo, use the WeakEvent pattern with the
WeakEventManager class, bind to static properties, Throttling data source update delays and
LiveShapping, and repositioning elements in the view when its bound data gets updated.

Chapter 7, Applying the New WCF's Features, helps us explore some of the most interesting
features of WCF, such as its asynchronous support, WebSockets, and Contract First development.

Chapter 8, Creating and Hosting Our First ASP.NET Web API, basically explores this amazing
new feature under the ASP.NET umbrella: web APIl. We will be creating a basic web API,
adding CRUD capabilities, and self-hosting it.

Chapter 9, Using the New Capabilities of WF, explores one of the most exciting updates for
.NET 4.5; it comes, greatly polished, with a mature and greatly enhanced framework for
the workflow foundation. Here we explore creating a state machine workflow and new
designer capabilities.

Appendix A, Resources for Further Knowledge, provides key references to websites of interest
regarding the areas covered in this book.

Appendix B, NET 4.5, Deployment Risks and Issues, will show us some issues that can
happen when applying .NET 4.5 to an existing project and on its deployment, such as the
limitation on platform, different behaviors of the .NET framework, and that some things that
might work properly in our developer environment might not work as well when deployed.

What you need for this book

For working through this book, .NET 4.5 is needed together with Visual Studio 2012;
we recommend either the professional or a superior version. Regarding the operating system,
Windows 8 is needed for some aspects as well, so it is the recommended operating system.

Preface

Who this book is for

If you are a .NET developer and would like to learn the new features in .NET 4.5, this book is
just for you. Prior experience with .NET Framework would be useful but not necessary.

Microsoft .NET Framework 4.5 Quickstart Cookbook gives architects and project managers
a high-level overview and clear understanding of what the .NET 4.5 Framework provides and
how it can be used.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

ToastTemplateType toastTemplate = ToastTemplateType.ToastText0l;
XmlDocument toastXml = ToastNotificationManager.GetTemplateContent (to
astTemplate) ;

XmlNodeList toastTextElements = toastXml.GetElementsByTagName ("text") ;

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Preface

Please contact us at copyrightepacktpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Windows Store Apps

In this chapter, we will cover:

» Building our first Windows Store app
» Adding a splash screen (and app tiles) to our app

» Improving the application to make it compliant with the Windows 8 lifecycle model

v

Improving our application tile

v

Improving our application with toast notifications

Introduction

We are clearly speaking of a new, modern, and touch-friendly kind of application with
the Windows Store apps style.

Windows Store app style application development, for the latest Windows 8 platform,
is a very important part of this release of the .NET Framework 4.5.

We will explore Windows Runtime managed development in our development recipes.

We also have the power of a very simple, well designed, and lightweight base class library
API at our disposal (C# and VB) for developing Windows Store apps. This is called Windows
Runtime, more commonly known as WinRT.

Windows Store Apps

The following image clarifies the overall structure and components that we will have to
use for developing Windows Store apps:

Metro style app for C# or VB NET for Metro style apps
CLR

WinRT APIs Win32 APIs

Windows

Portable libraries are there to help us port our existing code into multi-targeting scenarios
such as Windows Store apps, Windows Phone, Silverlight, desktop, or X-box code with a strong
focus on Model-View-ViewModel (MVVM). MVVM is an architectural design pattern designed
for modern user interface (Ul) development, very commonly used in XAML development. This
will allow us to share the Model and ViewModel code with only the need for rewriting the Ul
and the application model, apart from the device integration.

Windows Store apps are designed for tablet devices and touch interaction, mainly for
consumers. However, the good old desktop is still there and we can develop classic
Windows applications, now called desktop apps, through the desktop mode.

Both of these execution and development modes coexist and are here for different scenarios.
This chapter focuses on Windows Store apps development.

The Windows 8 app programming model basically:

» Implements the new Windows Store app style

» Provides a simple programming model for developers

» Provides WinRT, which provides a natural .NET-like interaction with Windows APIs

» Provides a Silverlight-like XAML Ul model to develop with

» Is sandboxed, providing self-contained secure applications

» Is designed to be asynchronous, which if well applied, makes our applications
fast and fluid

WInRT provides projections that expose the API to the different development environments.
With this we can use WIinRT from the .NET Framework 4.5.

Chapter 1

The Ul can be created with XAML (or HTML and CSS if we prefer), which is rendered with
DirectX 11.1 (also known as Direct2D), so that we have a high performing Ul. We can also
implement the interface using DirectX.

So the good news is that the development is very straightforward and easy if we have some
experience in Silverlight, Windows Presentation Foundation (WPF), or Windows Phone.
If not, it will only be easy.

Note that the Base Class Library (BCL) used by WinRT is not the full desktop version but a
reduced set, very similar to the Silverlight types.

There are also some very important Windows Store app principles to keep in mind. We will
explore the following principles through the recipes in this book:

>

Windows Store app style design: Focus on the content, minimalism, and emphasis
on typography

Fast and fluid: Fast user interactions and transitions that are intuitive and executed
without delays (performance)

Touch first: Simple and consistent touch interaction language

Scale beautifully: Windows Store apps are readily executed on tablets with less than
10-inch and up to 27-inch screens

Support for multiple states: Full screen, portrait, landscape, or snapped

Using the right contracts: Contracts provide a way for Windows Store apps to
collaborate, allowing the user to search or share content between applications

Live tiles: Useful information appears on the app's tile on the start screen while
the app is not in execution

Settings and data roam to the cloud: Users get the same experience regardless
of where they sign in from

It's your turn; go ahead and explore our recipes! They will help you explore progressively how to
implement the different flavors of this new era of Windows Store apps. Let's get started!

Windows Store Apps

Building our first Windows Store app

First things first; we will start with the creation of our first base application that we will re-use
for most of the following recipes in this chapter, improving it one step (or more) at a time. This
recipe will show you how to implement a basic application and help you get familiar with Visual
Studio 2012 and Blend for Visual Studio 2012.

Getting ready

In order to use this recipe, you should have a Windows 8 operating system, Visual Studio 2012,
and Blend for Visual Studio 2012. We will also need a Windows 8 developer license to create
Windows Store apps, which we can get for free from Visual Studio 2012, as shown in the
following image:

I\L'-'J»';I Get a developer license for Windows 8

R
You need a developer license to develop this style of app for
Windows 8. A developer license lets you install and test the app
on this computer before Microsoft tests and certifies it

You may use the developer license only for the purpose of
developing, testing and evaluating apps. In all other respects,
the Windows 8 Software License Terms govern your use of
Windows & and the developer license,

When you get a developer license, some data is sent to
Microsoft about your use of the developer license, Read the
privacy statement for more information.

If you agree to these terms and want to install 2 developer
license, click 'l Agree',

Cancel

Chapter 1

How to do it...

First we will open Visual Studio 2012 in Windows 8 and create a new project. For this we must
perform the following steps:

1. Select the Menu option from File | New Project (or press Ctrl + Shift + N).

2. Inthe New Project window, we will select Visual C# from Installed | Templates.
Then select the Windows Store app style and finally the Grid App (XAML) template.
We will give it a proper name such as OurFirstMetroApp, and location, and click
on the OK button.

? Recent : | Default H Search Installed Templates (Ctrl+E) jeol
4 |nstalled .
Blank App (XAML) Visual C2 Type: Visual C#

4 Templates A three-page project for a Windows Store

b JavaScript Grid A ML Visual C# app that navigates among grouped items
" EEE—" TRDEGTIE sue arranged in a grid. Dedicated pages

b Visual Basic display group and item details.

4 Visual G _|‘ Split App (XAML) Visual C#

Windows Store
B Visual C++
Samples

Class Library (Windows Store apps) Visual C#
P Online Windows Runtime Component Visual C#

Unit Test Library (Windows Store apps) Visual C#

Name: OurFirstMetroApp

Location: ChcodeWinStoreApps\RecipelT\ |~

Solution name: QurFirstMetroApp Create directory for solution
[[] Add to source control

| oK | | Cancel

Next, Visual Studio will create the project for us.

s

Windows Store Apps

3. We will build the solution from the menu option Build | Build Solution (or press
F7) and then debug it from the menu option Debug | Start Debugging (we can
also press F5 or click on the play icon on the actions bar). If everything is working
properly, we should get the following output:

OurFirstMetroApp

) 3

Group Title: 1 Group Title: 2 Group Title: 3

Item Title: 1 Item Title; 4 Item Title: 1 Item Title; 1 Item Title: 4

Item Title: 2 Item Title: 5 Item Title: 2 Item Title: 2 Item Title: 5

Item Title: 3 Item Title: 3 Item Title: 3 Item Title: 6

4. Now, we can scroll horizontally, click (or touch if we have a tactile screen) on a
group title to open the group view, and click on an item title to open the item view.
In the item view, we have buttons at the edges of the screen to navigate through
the group items.

5. We will go back to the Windows 8 desktop mode, then to Visual Studio 2012 and
stop the debugging session (or press Shift + F5).

6. Next, we will go to Solution Explorer and double-click on the Package.
appxmanifest file.

7. Once the Application Manifest Editor window opens, we will go to the Capabilities
tab and uncheck the Internet (client) capability option, as our current application
does not need outbound access to the Internet.

Chapter 1

8. To add a new item to the project, on the Visual Studio 2012 Solution Explorer

right-click on the project and select Add | New Item... (or Ctrl + Shift + A).

Fe

(il

Solution Explorer

@ o--wanm »H

Search Solution Explorer (Ctrl+7) P

fad Solution 'OurFirstMetrofpp’ (1 project)

Build tro.ﬂ.pp
) ties
Rebuild nces
Deploy
Run Code Analysis 2
) odel
Scope to This
ml
Mew Solution Explorer View DetailPagexaml
Add PO Mew ltem... Ctrl+Shift+A
Add Reference... '3 Existing Item... Shift+Alt+A
Add Service Reference... ‘i MNew Folder
Store Pt (Class.. Shift+Alt+C
Manage MuGet Packages...
Set as StartUp Project

Debug »
Add Solution to Source Control...

Cut Ctrl+ X

Remove Del

Rename F2

Unload Project p Project Properties

Open in Blend...

Properties

Windows Store Apps

9. Select the Windows Store app style, and from there select the Basic Page item,
name it HelloPage .xaml, and then click on the Add button at the lower-right
corner of the window.

Add New Item - QurFirstMetroApp ?
4 Installed Sort by: Default & Search Installed Templates (Ctrl+E) P~
Vi | C& = S
4 Visua Blank Page Visual C# Type: Visual C#
Code
7 A minimal page with layout awareness, a
it
HE Basic Page Visual C& title, and a back button control.
General
Web . . "
Windows Store Split Page Visual C3
B Online Items Page Visual C2
Itern Detail Page Visual C&
Grouped ltems Page Visual G2
T . - .
B Group Detail Page Visual C2
m Resource Dictionary Visual CZ
>
éj Templated Control Visual C#
L] User Control Visual C=
=)
c#
2 Class Visual C#
#—] File O Picker Contract Visual C&
B i cpen ke Con
pa Search Contract Visual CZ
o0 Interface Visual £
-
Name: \HeHoPagdxaml |

10. Open HelloPage.xaml, expand the design view, and then click on the Unfold button
on the section that separates the WYSWIG render view of the XAML from the XAML
code. There we will select Fit all at the left-hand side of the screen.

7o |- EmE mE 4] 4
800% T El XAML
A00% an:LayoutfwarePage
200% :Na're="pageR?0t"
:Class="0urFirstMetroApp.HelloPage"
150% stalontext="{Binding DefaultViewModel, RelativeSource={RelativeSource Self}}™
100% nlns="http://schemas.microsoft. com/winfx/2866/xaml/presentation”
66.67% nlns:x="http://schemas.microsoft. com/winfwx/2006/xaml”
0% nlns:local="using:0urFirstMetrofpp”
nlns:common="using:OurFirstMetroApp.Common™
33.33% nlns:d="http://schemas.microsoft.com/expression/blend/2088"
25% nlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2886"
12.5% c:Ignorable="d">
Fit all Jage.Resources>
Fit selection

Chapter 1

11.

12.

13.

14.

Let's add the finishing touches to our Visual Studio XAML workspace. To do so,
we will expand the TOOLBOX and the DOCUMENT OUTLINE panels and pin them.

To use our project-defined name, we will comment the page's AppName resource,
which is now overriding the global AppName resource. We will go and comment
the line defining this on the <Page . Resources> tag of HelloPage.xaml, which
is located in the topmost area of the XAML code, similar to the following code:

<Page.Resourcess>

<!-- TODO: Delete this line if the key AppName is declared in App.
xaml -->

<l--<x:String x:Key="AppName">My Application</x:String>-->
</Page.Resources>

Next, we will add a grid control to the bottom section of the design area by dragging it
from the TOOLBOX panel and dropping it just below the title. It will be added inside the
first grid and will appear on the DOCUMENT OUTLINE panel following the hierarchy.

We also want it to occupy all the available space on the grid row and column where we
created it, so we will right-click on the grid, select Reset Layout, and then select All.

@ OurkirstMetroApp

Copy

Delete

Crder

Align

Reset Layout Al

Group Inta Margin
Alignment

Change Layout Type Width

Pin Active Container Height

Set Current Selection Size

Edit Style

View Code

View Source

]

Windows Store Apps

15. As the grid will handle the body section's layout, we will name it grBody. Select the
grid and change the property Name on the Properties panel, or we can change it
directly in the DOCUMENT OUTLINE panel.

16. Next, we will add a row separator to the grBody grid. We will move our cursor to
the left-hand side of the grid, and an orange marker with the shape of an arrow will
appear, indicating a grid separator. Clicking on that region, we will be able to add,
modify, or delete a row. The same applies to the columns. We will add a row about
150 pixels from the bottom.

17. We will continue and change the size of the row to a fixed one. Select the row
and move the cursor to the left-hand side of the blue zone that defines the row
manipulation section. A pop-up menu will appear where we will choose the Pixel
option for a fixed bottom row.

=

v Star
X Pixel
Auto b
@@ Select Row m
Add Row Before El WAM

Chapter 1

18. Next, we will add a TextBlock control on the top row of the grid that we just divided

(adding a row separator creates two rows). We will reset the layout of the TextBlock

control as we did previously with the grid.

19. Next, we will style the TextBlock using a default style by right-clicking on the TextBlock

and then selecting the option Edit Style | Apply Resource | PageSubheaderTextStyle.

extBlock

Cut
Copy

Delete

Order
Align
Reset Layout

Group Inta

Set Current Selection

Edit Text
Edit Style Edit Current
Edit a Copy...

Create Empty...

Apply Resource ¥

Be - |Jfx | EEE
esign T+
:nL_‘g-'J_I'_'=

mE| e -
@ xamL [E
ideLJ.LhI:"_sUUI’ e Ddl_NDL:ILLUIIDL}-'J.I:‘f i
<TextBlock x:Name="pageTitle
PageHeaderTextStyle}" />
</Grid>
<Grid x:Name="grBody"” Grid.Row="1">»
- <Grid.RowDefinitions>
; <RowDefinition/>
4] <RowDefinition Height="158"/
42 </Grid.RowDefinitions>

"o

36 Gr

L
O 00 =
]

BasicTextStyle
BaselineTextStyle
HeaderTextStyle
SubheaderTextStyle
TitleTextStyle
[temTextStyle
BodyTextStyle
CaptionText5tyle
PageHeaderTextStyle
PageSubheaderTextStyle
SnappedPageHeaderTextS

R

writing This is our First Windows Store App.

20. To finish the TextBlock, we will edit the Text property in the Properties panel by

Windows Store Apps

21. We will drag a Button control from TOOLBOX to the lower row of the grid that we
added recently. We will change some of its properties in the Properties panel,
setting its HorizontalAlignment and VerticalAlignment to Center, its FontSize
to 20, its Name to btnStart, and its Content to Start.

22. Next, we will change its font style property. For this we will click on the box next to the
property and select System Resource and then ContentControlThemeFontFamily.

FontFamily
B Custom Expression...
~
[Reset
B Convert to Local Value
[System Resource o ContentControlThemeFontFamily

SymbaolThemeFontFamily

[Convert to Mew Resource...

[Create Data Binding...

23. We will double-click on the start button and then the code behind HelloPage
.xaml will be seen, where an empty method has been created. There we will
enter the following code (note that for this to work, we will have to add the data
to the namespace):

private void btnStart Click(object sender, RoutedEventArgs e)

{

this.Frame.Navigate (typeof (GroupedItemsPage), "AllGroups") ;

}

24. We will open the App.xaml . cs code behind the file and comment the
Navigate instruction on the OnLaunched event, adding a new one that
brings us to HelloPage .xaml:

//if (!rootFrame.Navigate (typeof (GroupedItemsPage), "AllGroups"))
if (!rootFrame.Navigate (typeof (HelloPage)))

Chapter 1

25. Next, we will save all from the menu or with the Ctrl + Shift + S shortcut.

26. We will build the solution and debug our first Windows Store app. We should see that
our application launches and shows the page we just added.

We created an application from the Grid Application template, which does a lot of work for
us, creating an app that allows us to navigate through a hierarchy of groups and group items.
We can explore them in the touch-ready Windows Store app Gridview (the Windows Store
app control that displays a grid of data items) and from there we can go to the group view
and the item view, where we can navigate to other items.

If we look at the structure that has been created for us by the project template, we have the
typical Properties and References sections of a Visual Studio .NET project. The App . xaml

file is the entry point to our application and has the same meaning and overall structure as the
same file on Silverlight, WPF, or Windows Phone projects containing defined or referenced global
resources. When the application starts, it creates a frame-based navigation system, similar to
that of the Windows Phone, and navigates to our first page, in our case, HelloPage.xaml.

DOSOLUTION EXPLORER vy

Ga e s =

Search Solution Explorer (Ctrl+:)

|E| Solution 'OurFirstMetrofpp’ (1 project)
4 [e#] OurFirstMetroApp

& Properties

u-B References

D'

B

b Bl Assets
b M Common

b Ml DataModel

b I Appxaml

b L) GroupDetailPage xaml

b I GroupeditemsPagexaml

b I HelloPagexaml

b I ltemDetailPagexam|

f& OurFirstMetroApp_TemporaryKey.pfx
Package.appxmanifest

Windows Store Apps

To move between pages, the code behind App . xaml creates a frame and adds it as the
application's main content. The navigation actions just change the page contained by the
frame, and the navigation stack is maintained for us so we can go forward and navigate
back automatically. The following diagram explains it clearly:

Application

Frame

2

Page 1 Page 2 Page 3

So, we can navigate to a particular page with the following instruction:
this.Frame.Navigate (typeof (GroupedItemsPage), "AllGroups") ;

The previous instruction indicates the page we want to navigate to and the navigation
parameter. Additionally we can navigate back with the following instruction:

if (this.Frame.CanGoBack) ({
this.Frame.GoBack () ;

}

Note that the CanGoback check is not obligatory, but not doing so can throw an exception.

We have also specified the application's capabilities through the Package . appxmanifest
designer.

We added a basic page of type LayoutAwarePage, which provides layout awareness, that
is, this page is now able to detect changes in how it is viewed. This can be either portrait,
landscape, snapped, or filled. Being the two last ones (snapped and filled) special views

of the application provided by the Windows Store App design style that our application is
expected to support.

On our basic page, we deleted a resource so the page could get the app . xaml file
predefined. The AppName resource added a grid with some layout and two controls to it,
TextBlock and Button. Then we adjusted their layout and properties to change the default
application behavior with the click event of the start button. We finally changed the default
code of the App.xaml.cs OnLaunched method to navigate to our new page instead of
the previous GroupedItemsPage location.

=]

Chapter 1

Moreover, we have been doing several tasks in various ways with Visual Studio 2012 so now
we should be more familiar with it.

There's more...

Other options to create our Windows Store app would be to create a blank application or a
split application. The blank application creates an extremely basic application structure for
us to fill. The split application shows information in a master-detail way, showing the master
information on one half of the screen and the details on the other half.

There are also the classic Class Library and Unit Test Library templates.

We have built this first project as a grid application as we will use it for further recipes, adding
more features to it so that it becomes a fully compliant Windows Store app style application.

With this recipe, we have also created an application and extended it with a first page
and made it compliant with the Windows Store app style design and principles, providing
a clean and open layout that minimizes distractions, with enough breathing room and a
clear information hierarchy founded on a clean typography.

Adding a splash screen (and app tiles) to our

app

So, we have an application and want to take full advantage of the Windows Store app style
design, right? One of the easiest ways of accomplishing this is to provide a splash screen.

Getting ready

We should have an application ready, such as the previous recipe app. Any app will do.
In fact, you can create an empty project and you will be ready to start this recipe.

How to do it...

Here we are going to take some steps to provide our app with a splash screen and app. tiles.
There are some predefined places in our app that we can customize with default images.

1. We will put an image in our splash screen that consists of a background color and an
image of 620 x 300 pixels. We already have a default image, SplashScreen.png,
in the Assets folder so we will need to replace this image with our own.

2. We will also prepare our application logo in three flavors, 150 x 150 pixels for our main
logo, 50 x 50 pixels for our store logo, and 30 x 30 pixels for our small logo image.

s

Windows Store Apps

3. Additionally, we can add a Wwide Logo image to display when the application goes on
expanded mode, in which case our tile doubles its space. Thus, we must make a tile

of 310 x 150 pixels.

4. Next, we will add the images to our Assets folder, replacing the current predefined

placeholder images with the new ones for our project.

5. Following that, we will open the Package . appxmanifest file with the manifest
designer; a double-click on the file will do. Add a reference at the Wide logo section
of our new wide logo. Then we will change the Show name section to No Logos, as
our logo will showcase the application name. And finally we will change Background

color to #FFFFFF.

Package.appxmanifest & X

The properties of the deployment package for your app are contained in the app manifest file. You can use the Manifest Designer to set or modify one or more of the properties.

Application Ul

Display name:
Entry point:
Default language:

Description:

Tile:

Logo:
Wide logo:
Small logo:

Short name:
Show name:

Furegrhnd text:

Background color:

Supported rotations:

Capabilities Declarations Packaging

Use this page to set the properties that identify and describe your app.

QurFirstMetroApp
OurFirstMetroApp.App
en-Us More information

QurFirstMetroApp

An optional setting that indicates the app's orientation preferences.

O O O

4

[] Landscape [] Portrait [[] Landscape-flipped [] Portrait-flipped
Assets\Logo.png X El
Required size: 150 x 150 pixels
Assets\Widelogo.png X II'
Required size: 310 x 150 pixels
Assets\SmallLogo.png x El

| Mo Logos - |

Light -

[FFFFFF |

Required size: 30 x 30 pixels

6. We will deploy our solution to see how it fits in the Windows 8 Ul. We should locate
quickly our application tile, select it and make it larger, and launch it to see our

brand new custom splash screen.

=

Chapter 1

Photos

The custom splash screen after launching will look something like this:

People

OUR FIRST
METRO APP

Photos

We just added some graphical assets and changed completely how the application looks in
the Windows 8 UlI, re-styling it and providing it with a bit of branding. Our app is now much
closer to the Windows Store app design style.

We have also shown how easy this is and explained some of the properties from the
Package.appxmanifest file.

There's more...

We could use additional splash screens for 1.4x and 1.8x scaling if we want better adaptation
for higher resolution displays.

Windows Store Apps

We could also capture the SplashScreen.Dismissed event and react quickly to it,
for example, to provide a follow-up screen that mimics the splash screen while our
application loads.

o' Fabrikam

Loading queue {3

o Fabrikam

This behavior would be beneficial if the application has to perform some processing or data
loading/caching before providing control to the user.

The official Microsoft Developer Network (MSDN) splash screen sample, for example,
exhibits this precise behavior.

Another option would be to start the transition to our application's main screen after the
SplashScreen.Dismissed event.

Improving the application to make it

compliant with the Windows 8 lifecycle
model

An important requirement for a Windows Store app is that it should comply with the Windows
8 Ul lifecycle model, which is to save its state and important data when we stop using the
application. So if it gets unloaded from memory, we can restore its state without any problem.
It gives our application a good user experience (UX) and aligns itself with the expectations

of the customers, in that when we open it back, it will seem as if it has never been closed.

Getting ready

As any Windows Store app would do, we propose evolving the resultant application from the
previous recipe.

How to do it...

Here we will add some data to showcase the lifecycle steps that our application goes through,
binding it to our interface and feeding it while stepping through the lifecycle events. To do this,
we should start from the app resulting from our previous recipe.

=

Chapter 1

In the DataModel folder, we will add a new class named AppData.cs.
Next we will add the following code to it:

using System;

using System.Collections.Generic;

using System.Collections.ObjectModel;

using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace OurFirstMetroApp.DataModel

{

public class AppData : OurFirstMetroApp.Common.BindableBase

{
private string _appKeyValue = string.Empty;
public string AppKeyValue

{
get { return this. appKeyValue; }
set { this.SetProperty(ref this. appKeyValue, value); }

}
}

We will open App.xaml.cs, and, in the constructor method, locate the
following line of code:

this.Suspending += OnSuspending;

Add the following lines of code to implement the event handler of the Resuming
event as the Suspending event is already handled. There we will accept the
automatically created method that Visual Studio proposes after pressing += and
the Tab key. The code should end as follows:

//We handle the suspending event to save the state
this.Suspending += OnSuspending;

//And the Resuming to control when we resume our app.
this.Resuming += App_ Resuming;

After this, we will add the MyAppBindableData property in the App class
at App.cs:

Public AppData MyAppBindableData{ get; set; }

We might need to add a reference to the DataModel nhamespace:

using OurFirstMetroApp.DataModel;

=]

Windows Store Apps

7.

10.

11.

12.

13.

We will initialize the MyAppBindableData property in the application's constructor
with the following code:

//We initialize the AppBindableData
this.MyAppBindableData = new AppDataf() ;

Next we will add the following code onto the Suspending event handler method:

private async void OnSuspending(object sender, SuspendingEventArgs e)

{

SaveUgerSessionDatal() ;

}

Note that there is already an implementation doing some work. We will avoid
exploring or re-using that code for simplicity, but it would be a good exercise to
explore the code, which is in the SuspensionManager . cs source file in the
Common folder of the project.

Add the saveUserSessionData method as follows at the end of the App class:

private void SaveUserSessionData ()

{

//Save application state and stop any background activity
ApplicationDataContainer localSettings = null;
localSettings = ApplicationData.Current.LocalSettings;
localSettings.Values["KeyValue"] = " - I have been suspended ";

}

Note that we will have to add a reference to the Windows . Storage hamespace:

using Windows.Storage;

Implementing the other generated function, App_Resuming, will result in the
following code:

Void App Resuming (object sender, object e)

{

PrepareMessage (" and resumed") ;

}

To implement the PrepareMessage method, we will code it as follows:

Void PrepareMessage (String msg) {
ApplicationDataContainer localSettings = null;
localSettings = ApplicationData.Current.LocalSettings;
var kv = localSettings.Values["KeyValue"];

=]

Chapter 1

14.

15.

if (kv != null)

{

this.MyAppBindableData.AppKeyValue = this.MyAppBindableData.
AppKeyValue + kv.ToString() ;

}

this.MyAppBindableData.AppKeyValue = this.MyAppBindableData.
AppKeyValue + msg;

}

Next we will override the application's OnActivated event by adding the
following code:

protected override void OnActivated (IActivatedEventArgs args)

{

String msg = String.Empty;

if (args.Kind == ActivationKind.Launch)

msg = msg + " - Previously I was " + args.PreviousExecutionState.
ToString() ;

msg = msg + " and have been Activated";

}

PrepareMessage (msg) ;
base.OnActivated (args) ;

}

Next we will manage the application's OnL.aunched method by adding the following
code at the end of the method:

String msg = String.Empty;

if (args.Kind == ActivationKind.Launch)

msg = msg + " - Previously I was " + args.PreviousExecutionState.
ToString() ;

msg = msg + " and have been Launched";

}

PrepareMessage (msg) ;

e

Windows Store Apps

16. To wire this all up, we will go to our HelloPage .xaml page, and there we will create
TextBlock that we will name as tbAppLifeHistory, binding this text property
to the 2AppKeyVvalue property. We will locate it under the first TextBlock code of
the application description. Note that we will have to add a row to the grid to properly
position this new control. The result can be seen as follows:

© OurFirstMetroApp

This is our First METF

79% v [fx|mmm w4 P < i
b Design 4 @xamL
69 <TextBlock Margin="126,08,08,6" TextWrapping="Wrap" Text="This is our First METRO Style Application”
style="{StaticResource PageSubheaderTextstyl verticalalignment="Stretch"/>
] <TextBlock x:Name="tbAppLifeHistory" Margin="12@,2,8,6" TextWrapping="Wrap"
Text="{Binding AppKeyvalue}"
Style="{5taticResource PageSubheaderTextstyle}"
3 VerticalAlignment="Stretch"
1 Grid.Row="1"/>

</Grid>

17. The XAML code for the TextBlock will look as follows:
<TextBlock x:Name="tbAppLifeHistory" Margin="120,0,0,6"
TextWrapping="Wrap"
Text="{Binding AppKeyValue}"
Style="{StaticResource PageSubheaderTextStyle}"
VerticalAlignment="Stretch"
Grid.Row="1"/>

=]

18.

19.
20.

21.

Chapter 1

To finish our wiring, we will go to the code behind HelloPage .xaml and on the
constructor, add a call to the CheckPreviousExecution () method as follows:
Void CheckPreviousExecution() {

this.tbApplLifeHistory.DataContext = (App.Current as App) .
MyAppBindableData;

ApplicationDataContainer localSettings = null;
localSettings = ApplicationData.Current.LocalSettings;
localSettings.Values ["KeyValue"]="";

}
Note that we will have to add a usings clause for the Windows . Storage namespace.

Now we just have to compile and try it. A good way is to build and then deploy the
solution to our Windows 8 operating system. We can use the menu option Build |
Deploy Solution. We could also use the simulator and suspend/resume it.

Next we will go to our Windows 8 Ul and run it. The first time we run our application,
we will see the following message:

OurFirstMetroApp

This is our First METRO Style Application

- Previously | was NotRunning and have been Launched

Windows Store Apps

22. Now we will go to desktop mode where we will launch the Task Manager window. After
approximately 5 seconds, we will see that our application goes into the Suspended
state. Note that an easy way to launch the Task Manager is to right-click on the bottom
taskbar and then click on Task Manager.

= Task Manager Elﬁlé‘
File Options View
| Processes | Performance | App history | Startupl Users | Detailsl Ser\ricesl
4% 38% 1% 0%
Name Status CPU Memory Disk MNetwork
[V] Windows Reader Suspended 0% 9.1 MB 0 MB/s 0Mbps *
3 Weather Suspended 0% 54.0 MB 0 MB/s 0 Mbps
ﬂ Qur First Metro App (32 bit) Suspended b 0% 9.1 MB 0 MB/s 0 Mbps i
Calendar Suspended 0% 29.2 MB 0 MB/s 0 Mbps
B4 mail Suspended 0% 259 MB 0 MB/s 0 Mbps
2 people Suspended 0% 54.4 MB 0 MB/s 0 Mbps
u? Windows® installer 0% 4.7 MB 0 MB/s 0 Mbps
BN Console Window Host 0% 0.6 MB 0 MB/s 0 Mbps
gy MSBuild.exe (32 bit) 0% 13.7 MB 0 MB/s 0 Mbps
= COM Surrogate 0% 0.6 MB 0 MB/s 0 Mbps
n XDesProc 0% 115.3 MB 0 ME/s 0 Mbps
5 Antimalware Service Executable 0% 20.4 MB 0 MB/s 0 Mbps
"7 Client Server Runtime Process 0% 1.1 MB 0 MB/s O0Mbps =
() Fewer details End task

23. Go back to the Windows 8 Ul and launch our application again. This is what we will see:

OurFirstMetroApp

This is our First METRO Style Application

- Previously | was NotRunning and have been Launched - | have been suspended and resumed

NED

Chapter 1

24. Next we will go back to the desktop mode and terminate the application from
the Task Manager. If we go back to the Windows 8 Ul and launch our application,
this is what we will see:

| QurFirstMetroApp

This is our First METRO Style Application

- Previously | was Terminated and have been Launched

We started creating the AppData class that inherits from BindableBase, which in turn
implements the INotifyPropertyChanged interface and is used to notify the value
changes in a property that we have bound to the user interface through binding.

Next we add an AppData property in our application class so that we can reference this
property globally anywhere within our application.

Continuing, we will handle the suspending and resuming events that occur when the
application is suspended, which will happen after we switch to another task or application.
After 5 seconds, our application will save its state and become Suspended. In our case,
we will only indicate that our application has been suspended.

For that we have the SaveUserSessionData () method responsible. There we will

access our application data through the application data's ApplicationDataContainer
class where we can store the settings and other information belonging to our application.

The ApplicationDataContainer class is a private storage for our application and current
user that we can access in many different ways, such as the key-to-value dictionary or through
a filesystem-like method. This is very similar to Silverlight's isolated storage and if you have
used it before it should feel very familiar.

For the resuming event, we are calling the PrepareMessage method. We will pass one
message string to it and it will fetch the value from our application's 1ocalSettings
property and concatenate it with the message, adding it to the AppKeyValue property.

Es

Windows Store Apps

Basically we are indicating our application lifecycle status changes and are concatenating
them on a global property.

To finish, we must indicate the changes on the OnActivated and OnLaunched methods;
there we will also add the PreviousExecutionState enumeration to the message that
declares the original state from which the application comes.

We then added TextBlock control and bound it to the AppKeyValue property. In the code,
we added its data context to the corresponding property of the application class holding

this property; we did this to separate it from the App . cs class implementation and to take
advantage of the BindableBase base class that the template had already provided.

We have also seen how to deploy our application, launch the task manager, and control our
application states from it.

To properly understand the states, we have the following diagram:

Application Lifecycle

Terminated/ Not running - LaunchFieudr}n;\nc?ivated

Suspending
Suspended

Here we see clearly that when the application is not running, it can be put into the terminated
(on purpose) or the not running (nobody terminated it, we just installed or deployed it, for
example) state.

Then, we can launch it from the Windows 8 Ul and the application will be in the running state.
From this state we can close or terminate it or we can move to another application or window.
After 5 seconds, our application will be automatically suspended. If we come back to it, our
application will resume and get activated (not launched, as this would happen when we do it
from the terminated or the not running state).

=

Chapter 1

The application will remain as it was when it was suspended and we will have no clue that it
has stopped its execution, unless we code the application to be aware of it.

There's more...

It could be a good idea to save the user state and the application data, for example, if the user
was working on a form. It would be nice that when he returns, he goes back to the same form
he was working on and finds the same data.

If the application has been deactivated for a long period of time, a recommended practice
would be to start afresh, as the user might not remember what was happening or where he
was. Of course, it all depends on the application and the tasks being performed in it.

If the application works with online data, the activated and resuming events could be used
to refresh the information from the online sources. For example, we could have an app with
a financial purpose or our app is alive such as a chat, RSS reader, or a twitter app.

We could also associate our app with a file or a protocol so that it would be the default
application for managing these file extensions or we could define auto-launching capabilities
for AutoPlay or other contracts and extensions. Some possible contracts might be the camera,
contact picker, print task, protocol, search, or share target.

Improving our application tile

One of the principles of the Windows Store style apps is to invest in a great tile. As the entry
point to our applications and the main point of interaction with the Windows 8 Ul, it is obviously
extremely important.

A tile is the main interface of our application in the Windows 8 Ul, which can provide a much
more engaging experience than a traditional icon, as it is much more personal. We can update
it while our app is not running, thereby keeping it alive.

We will dedicate this recipe to improving our application's main tile.

Getting ready

We will implement this recipe on the application we have been developing, but we could apply
what we are going to do to any Windows Store app.

s

Windows Store Apps

How to do it...

Here we are going to see how to add notification capabilities to our application tile.

1.

Open the application and, from the project, open App.xaml . cs and add the
following namespaces:

using Windows.UI.Notifications;
using Windows.Data.Xml.Dom;

Create a method with the name CreateTileNotification using the
following code:

private void CreateTileNotification() {

//Wide Tile
XmlDocument tileXml = TileUpdateManager.GetTemplateContent (TileTem
plateType.TileWideText03) ;
XmlNodeList tileTextAttributes = tileXml.
GetElementsByTagName ("text") ;
tileTextAttributes[0] .AppendChild (tileXml.CreateTextNode ("A group
was added or updated..."));

//Square Tile
XmlDocument squareTileXml = TileUpdateManager.GetTemplateContent (T
ileTemplateType.TileSquareText04) ;
XmlNodeList SquareTileTextAttributes = squareTileXml.
GetElementsByTagName ("text") ;
SquareTileTextAttributes [0] .AppendChild (squareTileXml.
CreateTextNode ("A group was added or updated..."));

//We add the square tile to the wide tile as a sibling of the
wide tile
IXmlNode node = tileXml.ImportNode (squareTileXml.
GetElementsByTagName ("binding") .Item(0), true);
tileXml.GetElementsByTagName ("visual") .Item(0) .AppendChild (node) ;

//We create the notification with the tiles and send it to the
app tile
TileNotification tileNotification = new TileNotification(tileXml) ;
tileNotification.ExpirationTime = DateTimeOffset.UtcNow.
AddSeconds (10) ;
TileUpdateManager.CreateTileUpdaterForApplication () .
Update (tileNotification) ;

}

S E

Chapter 1

Add a call to this method at the end of the OnLaunched method:
CreateTileNotification() ;

We will open Package . appxmanifest and under the Tile: section, put #222222
as the Background color property.

We should execute the application and immediately go back to the Windows 8 Ul to
see the tile update in action.

A group was added or
updated...

In the OnLaunched method, just before the CreateTileNotification () ; call,
we will add the following lines of code to enable natification cycling:

//We enable the notification cycling
TileUpdateManager.CreateTileUpdaterForApplication () .
EnableNotificationQueue (true) ;

Next we are going to update our CreateTileNotification method to accept two
string parameters, one for the message and another for the tag of the notification,
which will serve to uniquely identify a notification in our app. Add the following code:

private void CreateTileNotification(String msg, String Tag)
{
//Wide Tile
XmlDocument tileXml = TileUpdateManager.GetTemplateContent (TileTem
plateType.TileWideText03) ;
XmlNodeList tileTextAttributes = tileXml.
GetElementsByTagName ("text") ;
tileTextAttributes[0] .AppendChild(tileXml.CreateTextNode (msg)) ;

//Square Tile
XmlDocument squareTileXml = TileUpdateManager.GetTemplateContent (T
ileTemplateType.TileSquareText04) ;
XmlNodeList SquareTileTextAttributes = squareTileXml.
GetElementsByTagName ("text") ;
SquareTileTextAttributes [0] .AppendChild (squareTileXml.
CreateTextNode (msg)) ;

s

Windows Store Apps

//We add the square tile to the wide tile as a sibling of the
wide tile
IXmlNode node = tileXml.ImportNode (squareTileXml.
GetElementsByTagName ("binding") .Item(0), true);
tileXml.GetElementsByTagName ("visual") .Item(0) .AppendChild (node) ;

//We create the notification with the tiles and send it to the
app tile
TileNotification tileNotification = new TileNotification(tileXml) ;

//We add a tag to the tileNotification
tileNotification.Tag = Tag;

tileNotification.ExpirationTime = DateTimeOffset.UtcNow.
AddSeconds (10) ;

TileUpdateManager.CreateTileUpdaterForApplication() .
Update (tileNotification) ;

}

We will substitute the previous CreateTileNotification () call that we added
at the end of the OnLaunched event handler with these new lines:

CreateTileNotification ("Message number one", "one");
CreateTileNotification ("Message number two", "two");
CreateTileNotification ("Message number three", "three");

Launch the application and immediately after launching it go back to our Windows 8 Ul.
Watch how the tile now shows the three message tiles in a cycle that repeats itself.

Message number two

OFMA

10. After the latest CreateTileNotification call, add the following code:

//We add a Numeric badge

XmlDocument badgeXml = BadgeUpdateManager.GetTemplateContent (Badge
TemplateType .BadgeNumber) ;

XmlElement badgeElement = (XmlElement)badgeXml.SelectSingleNode ("/
badge") ;

NEQ

Chapter 1

11.

12.

13.

badgeElement .SetAttribute ("value", "7");
BadgeNotification badge = new BadgeNotification (badgeXml) ;

BadgeUpdateManager .CreateBadgeUpdaterForApplication () .
Update (badge) ;

If we now run the application, we will observe a number at the bottom-right corner;
that's our numeric badge.

Message number
three

OFMA

We will comment the previous code and add these lines after it:

//And we add a Glyph badge

XmlDocument badgeXml Glyph = BadgeUpdateManager.GetTemplateContent
(BadgeTemplateType .BadgeGlyph) ;

XmlElement badgeElement Glyph = (XmlElement)badgeXml Glyph.
SelectSingleNode (" /badge") ;

badgeElement Glyph.SetAttribute ("value", "newMessage");
BadgeNotification badge Glyph = new BadgeNotification (badgeXml
Glyph) ;

BadgeUpdateManager .CreateBadgeUpdaterForApplication () .

Update (badge Glyph) ;

Run the application and switch immediately to see the new look of our application
tile with a glyph badge.

Message number two

CFMA

Eis

Windows Store Apps

First, we picked a template for our tile and loaded it into an XmlDocument variable.

XmlDocument tileXml = TileUpdateManager.GetTemplateContent (TileTemplat
eType.TileWideText03) ;

Next we accessed the element that we wanted to change from within the template and
changed its value.

XmlNodeList tileTextAttributes = tileXml.GetElementsByTagName ("text") ;

tileTextAttributes[0] .AppendChild (tileXml.CreateTextNode ("A group was
added or updated..."));

We repeated the same operation but with another SquareTile template, so we ended up
with two customized tile templates.

//Square Tile

XmlDocument squareTileXml = TileUpdateManager.GetTemplateContent (TileT
emplateType.TileSquareText04) ;

XmlNodeList SquareTileTextAttributes = squareTileXml.
GetElementsByTagName ("text") ;

SquareTileTextAttributes [0] .AppendChild (squareTileXml.
CreateTextNode ("A group was added or updated..."));

Then we added the square tile as a sibling of the wide tile.

//We add the square tile to the wide tile as a sibling of the wide
tile
IXmlNode node = tileXml.ImportNode (squareTileXml.
GetElementsByTagName ("binding") .Item(0), true);

tileXml.GetElementsByTagName ("visual") .Item(0) .AppendChild (node) ;
Once the tile XML code was ready, we created TileNotification from it.
//We create the notification with the tiles and send it to the app
tile
TileNotification tileNotification = new TileNotification(tileXml) ;
Then we added an expiration time for the tile to go away after 10 seconds.
tileNotification.ExpirationTime = DateTimeOffset.UtcNow.AddSeconds (10) ;

We ended by sending createdTilenotification to TileUpdater of our application.

TileUpdateManager.CreateTileUpdaterForApplication () .
Update (tileNotification) ;

NED

Chapter 1

We enabled the cycling tile notifications, which allow us to show various notifications one
after another in a queue with instructions:

TileUpdateManager.CreateTileUpdaterForApplication() .
EnableNotificationQueue (true) ;

And then we created TileNotification with atag to differentiate between different
TileNotifications while removing ExpirationTime.

Continuing our recipe, we created in a similar way the numeric badge from a template
(basic badge templates are BadgeNumber or BadgeGlyph) and then set the badge
attribute, created the BadgeNotification, and used BadgeUpdateManager to
update it.

A BadgeNumber template can display a number from 1 to 99 and a BadgeGlyph template
can contain one of the following status glyphs:

> none

» activity

» alert

» available

> away

» busy

» newMessage

» paused

» playing

» unavailable

4 error
We have seen that improving a tile with custom notifications or cycling through different

tile notifications are easy to implement. Moreover, we have a good number of tile templates
to explore.

Creating badges is also really easy and might add a lot of value to our application tile.

Windows Store Apps

There's more...

We should use tile improvements, notifications, and badges with care and only when they
make sense and add value to our application.

We could also implement secondary tiles in response to user actions.

Finally, we can update the tile while the application is not running through the Windows
Push Notification Service (WNS), improving our app with toast notifications.

Improving our application with toast

notifications

Toasts notify the user of relevant and time-sensitive events such as the reception of a new
e-mail or a reminder for an approaching appointment.

They will help our application to accomplish another of the Windows Store app principles,
which is to feel connected and alive.

Getting ready

We will implement this recipe on the application that we have been developing, but we could
apply what we are going to do to any Windows Store app.

How to do it...

Here we are going to add the capability of creating toasts to our app.

1. Open the application and HelloPage.xaml .cs and add the following
using namespaces:

using Windows.Data.Xml.Dom;
using Windows.UI.Notifications;

Add there the following method:

private void GenerateToastNotification()

{

ToastTemplateType toastTemplate = ToastTemplateType.ToastTextO0l;
XmlDocument toastXml = ToastNotificationManager.GetTemplateContent
(toastTemplate) ;

XmlNodeList toastTextElements = toastXml.
GetElementsByTagName ("text") ;

=)

Chapter 1

toastTextElements [0] .AppendChild (toastXml.CreateTextNode ("A
toast!")) ;

//The duration

XmlNodeList rootElement = toastXml.GetElementsByTagName ("toast") ;
((XmlElement) rootElement [0]) .SetAttribute ("duration", "long");
//Create and send the toast

ToastNotification toast = new ToastNotification (toastXml) ;

ToastNotificationManager.CreateToastNotifier () .Show(toast) ;

}

2. Open HelloPage.xaml. Add a button near the header with the text
Generate Toast.

3. On the code behind the click event handler of the added button, add a call to the
newly created GenerateToastNotification () method.

4. Openthe Package.appmanifest designer and on the Application Ul tab,
we will look for the Toast Capable option and select Yes on the combobox.

5. If we execute the application and click a number of times on the Launch Toast
button, our display should look similar to the following image:

Atoast!

OurFirstMetroApp

This is our First METRO Style Application

In a way very similar to our tile notification, we picked up the toast template type and loaded
the template content into an Xm1lDocument variable.

After this we accessed the element that we wanted to change, in our case the text element,
and changed its value.

We changed its duration by setting one of the attributes of the toast element.

Finally, we created ToastNotification from the resulting XML and showed the toast.

@l

Windows Store Apps

We could navigate to a specific destination in our app when the user taps on the toast,
as that might be an invitation to explore new and interesting data.

We can use different toast templates, schedule toast notifications, or even send toast
push notifications through the WNS.

The toast can be extensively customized with images, sounds, or an expiration time.

=

Exploring the Top New
Features of the CLR

In this chapter, we will cover:

» Creating a portable library

» Controlling the timeout in regular expressions
» Defining the culture for an application domain
» Overriding the default reflection behavior

» Using the new ZipArchive class

» Understanding async and await in .NET 4.5

» Using the new asynchronous file I/0 operations

Introduction

.NET 4.5 brings many benefits, such as improvements in performance, compatibility, garbage
collection, and new features in its structure to provide the overall scenarios it is targeted for,
for example, Windows Store apps development.

One of its most important characteristics is that it is an in-place substitution of the .NET 4.0
and only runs on Windows Vista SP2 or later systems.

Exploring the Top New Features of the CLR

.NET 4.5 breathes asynchronous features and makes writing async code even easier. It also
provides us with the Task Parallel Library (TPL) Dataflow Library to help us create parallel
and concurrent applications.

Another very important addition is the portable libraries, which allow us to create managed
assemblies that we can refer through different target applications and platforms, such as
Windows 8, Windows Phone, Silverlight, and Xbox.

We couldn't avoid mentioning Managed Extensibility Framework (MEF), which now has
support for generic types, a convention-based programming model, and multiple scopes.

Of course, this all comes together with a brand-new tooling, Visual Studio 2012, which you
canfind at http://msdn.microsoft.com/en-us/vstudio. Just be careful if you have
projects in .NET 4.0 since it is an in-place install.

. For this chapter I'd like to give a special thanks to Layla Driscoll
& from the Microsoft .NET team who helped me summarize the
s topics, focus on what's essential, and showcase it to you, dear

reader, in the most efficient way possible. Thanks, Layla.

There are some features that we will not be able to explore through recipes as they are just
there and are part of the CLR but are worth explaining for better understanding:

» Support for arrays larger than 2 GB on 64-bit platforms, which can be enabled by
an option in the app config file.

» Improved performance on the server's background garbage collection, which must
be enabled in the <gcServers> element in the runtime configuration schema.

» Multicore JIT: Background JIT (Just In Time) compilation on multicore CPUs to
improve app performance. This basically creates profiles and compiles methods
that are likely to be executed on a separate thread.

» Improved performance for retrieving resources.

» The culture-sensitive string comparison (sorting, casing, normalization, and so on)
is delegated to the operating system when running on Windows 8, which implements
Unicode 6.0. On other platforms, the .NET framework will behave as in the previous
versions, including its own string comparison data implementing Unicode 5.0.

Next we will explore, in practice, some of these features to get a solid grasp on what .NET 4.5
has to offer and, believe me, we will have our hands full!

=

http://msdn.microsoft.com/en-us/vstudio

Chapter 2

Creating a portable library

Most of us have often struggled and hacked our code to implement an assembly that we
could use in different .NET target platforms. Portable libraries are here to help us to do
exactly this.

Now there is an easy way to develop a portable assembly that works without modification
in .NET Framework, Windows Store apps style, Silverlight, Windows Phone, and XBOX 360
applications.

The trick is that the Portable Class Library project supports a subset of assemblies from
these platforms, providing us a Visual Studio template.

This recipe will show you how to implement a basic application and help you get familiar
with Visual Studio 2012.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed. Note that you will
need a Visual Studio 2012 SKU higher than Visual Studio Express for it to fully support
portable library projects.

How to do it...

Here we will create a portable library and see how it works:

1. First, open Visual Studio 2012 and create a new project. We will select the Portable
Class Library template from the Visual C# category.

2. Now open the Properties dialog box of our newly created portable application and,
in the library we will see a new section named Target frameworks. Note that, for this
type of project, the dialog box will open as soon as the project is created, so opening
it will only be necessary when modifying it afterwards.

pcl_myFirstPcl # X Classl.cs
Libra
e A
Build
Build Events Assembly name: Default namespace:
Debug pel_myFirstPcl pel_myFirstPcl
Resources Target frameworks
Reference Paths NET for Metra style apps, .NET Framewark 4 and higher, Silverlight 4 and higher, Windows
Phone 7 and higher
Signing
Code Analysis

Exploring the Top New Features of the CLR

3.

4,

If we click on the Change button, we will see all the multitargeting possibilities
for our class.

Change Target Framewaorks @

Target frameworks:

’.NET Framework 4 and higher v]
| Silverlight 4 and higher |
’Windows Phone 7 and higher v]
MET for Metro style apps

[¥box 360

Install additional frameworks...

Ok l I Cancel

We will see that we can target different versions of a framework. There is also a link
to install additional frameworks. The one that we could install right now is XNA but
we will click on Cancel and let the dialog box be as it is.

Next, we will click on the show all files icon at the top of the Solution Explorer window
(the icon with two papers and some dots behind them), right-click on the References
folder, and click on Add Reference. We will observe on doing so that we are left with
a .NET subset of assemblies that are compatible with the chosen target frameworks.

Chapter 2

Reference Manager - pcl_myFirstPcl @
4 Assemblies Targeting: .NET Portable Subset (.MET for Metro style apps, .NET Framewerk... Search Assemblies P~
Framework Mame Version Name:
Extensions | | System.ComponentModel. Composition 2050 | Systern.ComponentModel. Comp
. System.ComponentModel. DataAnnotations 2050 osition
|l System.Windows 2050 Crgated by: .
b Browse System.Xml.Ling 2050 Vﬂlrcsrioo;‘?ﬂ Corporation
2050
File Version:
40200
[Browse... l I oK | [Cancel

6. We will add the following lines to test the portable assembly:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

namespace pcl myFirstPcl

{

public static class MyPortableClass

{

public static string GetSomething()

{

return "I am a portable class library";

}
}

7. Build the project.

Next, to try this portable assembly we could add, for example, a Silverlight project to
the solution, together with an ASP.NET Web application project to wrap the Silverlight.

@1

Exploring the Top New Features of the CLR

9.

10.

11.
12.

We just need to add a reference to the portable library project and add a button to
the MainPage.xaml page that calls the portable library static method we created.

The code behind it should look as follows. Remember to add a using reference to
our portable library namespace.

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using pcl myFirstPcl;

namespace SilverlightApplication testPCL

{

public partial class MainPage : UserControl

{

public MainPage ()

{

InitializeComponent () ;

}

private void Button Click 1 (object sender, RoutedEventArgs e)
{

String something = MyPortableClass.GetSomething() ;
MessageBox.Show ("Look! - I got this string from my portable class
library: " + something) ;

}
}
}

We can execute the code and check if it works.

In addition, we could add other types of projects, reference the Portable Library
Class, and ensure that it works properly.

We created a portable library from the Portable Class Library project template and selected
the target frameworks.

We saw the references; note that it reinforces the visibility of the assemblies that break the
compatibility with the targeted platforms, helping us to avoid mistakes.

Next we added some code, a target reference application that referenced the portable class,
and used it.

=

Chapter 2

There's more...

We should be aware that when deploying a .NET app that references a Portable Class Library
assembly, we must specify its dependency to the correct version of the .NET Framework,
ensuring that the required version is installed.

A very common and interesting usage of the Portable Class Library would be to implement
MVVM. For example, we could put the View Model and Model classes inside a portable

library and share it with Windows Store apps, Silverlight, and Windows Phone applications.
The architecture is described in the following diagram, which has been taken from MSDN
(http://msdn.microsoft.com/en-us/library/hh563947%28v=vs.110%29.aspx):

Silverlight app
reference

View
classes

Portable Class Library — Metro style app

reference I
Model ViewModel Wiew
classes classes classes

Windows Phone app
reference

Wiew
classes

It is really interesting that the list of target frameworks is not limited and we even have a
link to install additional frameworks, so | guess that the number of target frameworks will
eventually grow.

Controlling the timeout in regular

expressions

.NET 4.5 gives us improved control on the resolution of regular expressions so we can react
when they don't resolve on time. This is extremely useful if we don't control the regular
expressions/patterns, such as the ones provided by the users.

A badly formed pattern can have bad performance due to excessive backtracking and this
new feature is really a lifesaver.

http://msdn.microsoft.com/es-es/library/hh563947%28v=vs.110%29.aspx
http://msdn.microsoft.com/es-es/library/hh563947%28v=vs.110%29.aspx

Exploring the Top New Features of the CLR

How to do it...

Next we are going to control the timeout in the regular expression, where we will react if the
operation takes more than 1 millisecond:

1. Create a new Visual Studio project of type Console Application, named
caRegexTimeout
2. Open the Program.cs file and add a using clause for using regular expressions:

Using System.Text.RegularExpressions;

3. Add the following method and call it from the Main function:

private static void ExecuteRegexExpression()

bool RegExIsMatch = false;

string testString = "One Tile to rule them all, One Tile to find
them.. ";

string RegExPattern = @"([a-z]+)*!";
TimeSpantsRegexTimeout = TimeSpan.FromMilliseconds (1) ;

try

{

RegExIsMatch = Regex.IsMatch(testString, RegExPattern,
RegexOptions.None, tsRegexTimeout) ;

}

catch (RegexMatchTimeoutException ex)
Console.WriteLine ("Timeout!!") ;
Console.WriteLine ("- Timeout specified: " + ex.MatchTimeout) ;

}

catch (ArgumentOutOfRangeException ex)

{
Console.WriteLine ("ArgumentOutOfRangeException!!") ;
Console.WriteLine (ex.Message) ;

}

Console.WriteLine ("Finished succesfully: " + RegExIsMatch.
ToString()) ;

Console.ReadLine () ;

}

4. If we execute it, we will see that it doesn't finish successfully, showing us
some details in the console window.

Chapter 2

5 file:///C:/PACKT/02-CLR/ caRegexTimeout/caRegexTimeout/bin/Debug/caRegexTimeout. EXE o[- HE

5. Next, we will change testString and RegExPattern to:
String testString = "jose@brainsiders.com";

String RegExPattern = @"* ([\w-\.]l+)@([\w-\.]1+)\.[a-2zA-2Z]{2,4}s";

6. If we run it, we will now see that it runs and finishes successfully.

The RegEx.IsMatch () method now accepts a parameter, which is matchTimeout of
type TimeSpan, indicating the maximum time that we allow for the matching operation.
If the execution time exceeds this amount, RegexMatchTimeoutException is launched.

In our code, we have captured it with a try-catch statement to provide a custom message
and of course to react upon a badly formed regex pattern taking too much time.

We have tested it with an expression that will take some more time to validate and we got
the timeout. When we changed the expression to a good one with a better execution time,
the timeout was not reached.

Additionally, we also watched out for the ArgumentOutOfRangeException, which is
thrown when TimeSpan is zero, or negative, or greater than 24 days.

There'smore...

We could also set a global matchTimeout for the application through the "REGEX
DEFAULT MATCH TIMEOUT" property with the AppDomain.SetData method:

AppDomain.CurrentDomain.SetData ("REGEX DEFAULT MATCH
TIMEOUT", TimeSpan.FromMilliseconds (200)) ;

Anyway, if we specify the matchTimeout parameter, we will override the global value.

i

http://softwareninjaneer.com/AppDomain.SetData Method http:/msdn.microsoft.com/en-us/library/system.appdomain.setdata%28v=VS.110%29.aspx

Exploring the Top New Features of the CLR

Defining the culture for an application

domain

With .NET 4.5, we have in our hands a way of specifying the default culture for all of our
application threads in a quick and efficient way.

We will now define the default culture for our application domain as follows:

1.

Create a new Visual Studio project of type Console Application named
caCultureAppDomain.

Open the Program.cs file and add the using clause for globalization:

using System.Globalization;

Next, add the following methods:

static void DefineAppDomainCulture () {
String CultureString = "en-US";
DisplayCulture() ;

CultureInfo.DefaultThreadCurrentCulture = CultureInfo.CreateSpecif
icCulture (CultureString) ;

CultureInfo.DefaultThreadCurrentUICulture = CulturelInfo.CreateSpec
ificCulture (CultureString) ;

DisplayCulture() ;
Console.ReadLine () ;

}

static void DisplayCulture()

Console.WriteLine ("App Domain........: {0}", AppDomain.
CurrentDomain. Id) ;
Console.WriteLine ("Default Culture...: {0}", CulturelInfo.

DefaultThreadCurrentCulture) ;

Console.WriteLine ("Default UI Culture: {0}", CulturelInfo.
DefaultThreadCurrentUICulture) ;

}
Then add a call to the Def ineAppDomainCulture () method.

If we execute it, we will observe that the initial default cultures are null and we specify
them to become the default for the App Domain.

=

Chapter 2

We used the culturelInfo class to specify the culture and the Ul of the application domain
and all its threads. This is easily done through the DefaultThreadCurrentCulture and
DefaultThreadCurrentUICulture properties.

There's more...

We must be aware that these properties affect only the current application domain, and if it
changes we should control them.

Overriding the default reflection behavior

One interesting capability of .NET 4.5 is that we can customize our reflection context, overriding
the default reflection behavior with the CustomReflectionContext class.

With it, we can control what properties and attributes are exposed by a class through reflection.

How to do it...

Here we will override the reflection behavior to provide additional attributes:
1. Create a new Visual Studio project of type Console Application named
caOverridingReflection.

2. Inthe References folder of the project, in the Solution Explorer, add a reference
tothe System.Reflection.Context assembly.

3. Open the Program.cs file and add a using clause for system.reflection.

using System.Reflection;

Exploring the Top New Features of the CLR
4,

Next, add the SsomeClass declaration:

class SomeClass

{
}

Then add a method to visualize, through reflection, the attributes of a type:

//Nothing here. .

public static void ShowAttributes (Type t)

{

foreach (Attribute a in t.GetCustomAttributes())

{

Congole.WriteLine(a) ;

}

Console.ReadLine () ;

}

Call it from the Main method and the result should be none, that is, our class has
no attributes so there is nothing to display on the console.

Next, add a class with the name MyCustomReflectionContext.cs and add a
reference to System.Reflection and System.Reflection.Context.

using System.Reflection;
using System.Reflection.Context;

Change the generated code for the following one:

class MyCustomReflectionContext :CustomReflectionContext
{
protected override IEnumerable<objects
GetCustomAttributes (MemberInfo member, IEnumerable<objects>
declaredAttributes)
{
if (member == typeof (SomeClass)) {
List<object>CustomAttributes = new List<object>();
CustomAttributes.Add
(new DefaultMemberAttribute ("One")) ;
CustomAttributes.Add
(new DefaultMemberAttribute ("Two")) ;
CustomAttributes.Add
(new DefaultMemberAttribute ("Three")) ;

return base.GetCustomAttributes
(member, declaredAttributes) ;

}
}

9. Change the showAttributes method as follows:

=

public static void ShowAttributes (Type t)

{

foreach (Attribute a in t.GetCustomAttributes())

Chapter 2

Console.WriteLine(a + " - " + (a as DefaultMemberAttribute) .
MemberName) ;

}

Console.ReadLine () ;

}

10. Finally, change the code in the Main method as follows so that we can test it properly:

static void Main(string[] args)

{

Console.WriteLine ("1l. Without Custom Reflection Context") ;
ShowAttributes (typeof (SomeClass)) ;

Console.WriteLine ("2. With Custom Reflection Context") ;

MyCustomReflectionContextCustRefCtx = new
MyCustomReflectionContext () ;

Type Mappedtype = CustRefCtx.MapType (typeof (SomeClass) .
GetTypelnfol()) ;

ShowAttributes (Mappedtype) ;

}

11. If we execute the code, we will get the result shown in the following screenshot:

| file:///C:/PACKT/02-CLR/caOverridingReflection/caOverridingR... — || @ |3

Without Custom Reflection Context -

With Custom Reflection Context
ystem. Reflp Llun.Def ultMemberfAttribute One

- ultMemberAttribute — Two
em.Ref lection.DefaultMemberAttribute Three

We used reflection to get the custom attributes of a type we just created and we got none.

Next, we created a CustomReflectionContext that will allow us to customize what is
exposed through reflection. In our case, we are ensuring that if the class is our recently created
class, it should return three Defaul tMemberAttribute replies. If not, it will return the current
attributes of the class.

s

Exploring the Top New Features of the CLR

To illustrate this reflection context, create an instance of the reflection context to map a concrete
type, SomeClass in our case. We will now have this new mapped type created in the reflection
context and thus affected by it.

Finally, we used reflection as we did previously but now we will get three new attributes that
we did not get before.

There's more...

With .NET 4.5, we can customize the reflection output of types as we see fit, as it is able

to provide virtualized type information. This can be useful in many situations when we want
more flexibility in providing type-driven behaviors or to dynamically change the properties that
we want to make available.

We had TypeDescriptors and PropertyDescriptors before but they were not really
a solution for design time, which CustomReflectionContext is.

A smart application of this would be to get the MEF to compose types that aren't MEF-
enabled (that is, decorated with the MEF attributes). When constructing catalogs specifying
ReflectionContext, MEF will project types through that reflection context and use the
resulting view for its composition mechanism.

from the CLR product team-thanks, Mircea!

Using the new ZipArchive class

We have two new classes, ZipArchive and ZipArchiveEntry, which add the capability
to create .zip archives to the .NET framework. This was possible previously, but with
several limitations.

How to do it...

Next we will see how to use the ZipArchive class to create a Zip file and to extract it to a
concrete location.

[This next great application suggestion is from Mircea Trofin,]
A

1. Create a new Visual Studio project of type Console Application named
caZipArchive.

2. Addthe System.IO.Compression and System.IO.Compression.Filesystem
assemblies as references to the project.

5]

Chapter 2

Open the Program.cs file and add the following using clauses:
using System.IO;

using System.IO.Compression;

Next, add the following method:

static void CreateZipFile() {

String ZipPath= @"C:\PACKT\02-CLR\caZipArchive\test\";
String ZipFilePath = ZipPath + "test.zip";

String FileNameOl = "OneTextDocument.txt";
String FileNameO2 = "OtherTextDocument.txt";
String FileToZipO1l ZipPath + FileNameOl;
String FileToZip02 = ZipPath + FileName02;

using (FileStreamZipToOpen = new FileStream(ZipFilePath, FileMode.
CreateNew))

{

using (ZipArchiveZArchive = new ZipArchive (ZipToOpen,
ZipArchiveMode.Create))

{

ZArchive.CreateEntryFromFile (FileToZip0l, FileNameOl) ;
ZArchive.CreateEntryFromFile (FileToZip02, FileName02) ;

}
}

We should change the directory address and create the two files at the corresponding
folder, just for testing purposes.

Call it from the Main method and execute the application. We should see that a Zip
file has been created for us.

Delete the Zip File.
Add the following method:

static void ExtractZipFile() {
String ZipPath = @"C:\PACKT\02-CLR\caZipArchive\test\";
String ZipFilePath = ZipPath + "test.zip";

String ExtractionPath = @"C:\PACKT\02-CLR\caZipArchive\test\
unzip";

using (ZipArchiveZArchive = ZipFile.OpenRead (ZipFilePath))

{

Exploring the Top New Features of the CLR

foreach (ZipArchiveEntry zaEntry in ZArchive.Entries)

{
zaEntry.ExtractToFile (Path.Combine (ExtractionPath,
zaEntry.FullName)) ;

}
}

9. And call it in the Main method, just after CreateZipFile:

static void Main(string[] args)

{

//First we create the zip file
CreateZipFile () ;

//Next, we extract it
ExtractZipFile () ;

}

10. Delete the previously generated ZIP file and create the unzip directory.

11. If we execute the application, a ZIP file should be generated on the specified directory,
and we should find all the files that we added in the extraction directory.

We used FileStream to create a new file stream and write to it with ZipArchive.

Additionally, we added two files using the CreateEntryFromFile extension method
of the ZipArchive class that is the result of adding the System.I0.Compression.
FileSystem assembly.

With this we had our ZIP file created.

Continuing, we opened our ZIP file using the OpenRead method of the ZipFile class,
which returns a ZipArchive object that represents the package of compressed files.

We can iterate all the entries with a simple foreach instruction. For each
ZipArchiveEntry, we extract it with the ExtractToFile extension method.

And that's it! In a few lines of code we have created a ZIP file, added some files, and then
extracted the ZIP files to another folder.

Chapter 2

There's more...

We could also specify the level of compression, edit the files within the ZIP file, or update
existing ZIP files.

Additionally, for simplicity we 'neither validated for the existence of files or directories nor
checked for any errors, so we should do this properly in a production environment.

We should be aware that the extension methods (provided by the System.IO.Compression.
FileSystem assembly) that we used aren't available in Windows Store apps. There we should
compress and decompress using the GZipStream or DeflateStream class.

Understanding async and await in .NET 4.5

The new asynchronous capabilities of .NET 4.5 rely on the async and await modifiers.
Basically we have two important points here:

» The async modifier indicates to the compiler that a method or lambda expression is
asynchronous—we call them async methods.

» The await operator, which can only be used within an async method, is applied to a
task to suspend execution of the method until the task is complete. Meanwhile, the
control is returned to the caller of that method.

How to do it...

Here we will use the async and await features in a basic way to clearly understand them.

1. Create a new Visual Studio project of type Console Application named caAsyncAwait.
Add a reference to the System.Net .Ht tp assembly.

3. Inthe Program. cs file, add the following using clauses:
using System.Net;
using System.IO;

4. Next, add the following methods:

Static async Task HttpTestAsync (String url) {
byte[] result = await GetURLContentsAsync (url) ;
Console.WriteLine ("Received {0,8} bytes..", result.Length);

}

private static async Task<byte[]> GetURLContentsAsync (string url)

s

Exploring the Top New Features of the CLR

{

var content = new MemoryStream() ;
var webReq = (HttpWebRequest)WebRequest.Create (url) ;
using (WebResponse response = await webReq.GetResponseAsync())

{

using (Stream responseStream = response.GetResponseStream())

{

Await responseStream.CopyToAsync (content) ;

}
}

Return content.ToArray () ;

}

5. Add a call to the Ht tpTestAsync function in the Main method surrounded with some
sentences in the Console.Writeline method to keep track of what is happening:

static void Main(string[] args)

{

Console.WriteLine ("Start of Main Method") ;
HttpTestAsync ("http://www.packtpub.com/forthcoming-titles") ;
Console.WriteLine ("End of Main Metod") ;

Console.ReadLine () ;

}

6. We should execute the application and get the results shown in the
following screenshot:

| files///C/PACKT02-CLR ¢... |- = |- =

Start of Main Method &
f Main Metod
ived 268388 hytes..

7. Next, add the following method:
Static async void MultipleHttpTestAsync ()

{

Task tl = HttpTestAsync ("http://www.packtpub.com/forthcoming-
titles") ;

Task t2
Task t3 = HttpTestAsync ("http://www.microsoft.com") ;

HttpTestAsync ("http://www.silverlightguy.com") ;

&)

Chapter 2

await tl;
await t2;
await t3;

Console.WriteLine ("All tasks have finished..");

}

8. Comment the previous call to Ht tpTestAsync in the Main method and next to it
add a calltoMultipleHttpTestAsync.

9. If we execute the code, we will see that the different tasks are executed after the Main
method ends. If we execute it several times, their finishing order might change.

5 | file:///C:/PACKT/02-CLR/caAsyncAwait/calisyncAwait/bin/Debug/calsyncAwait.EXE o]l e =

Start of Main Method

End of Main Metod

Received 1828 bytes from htt s .microsoft.com. .

Received 2680388 bhytes from htt packtpub.com/forthcoming-titles..
Received 63731 by from http:"7vwww.silverlightguy.com. .

All tasks have finished

10. Now, we will add a similar method:

Static async void OptimizedMultipleHttpTestAsync ()

{
Task t3 = HttpTestAsync ("http://www.packtpub.com/forthcoming-
titles") ;
Task t2 = HttpTestAsync ("http://www.silverlightguy.com") ;

Task tl = HttpTestAsync ("http://www.microsoft.com") ;

Task[] tasklist= new Task[] { t1, t2, t3 };
Await Task.WhenAll (tasklist) ;

Console.WriteLine ("All tasks have finished..");

}

11. Then we will change the call from the Main method to this new method.

12. If we execute it, we get practically the same output as with the previous code.

Exploring the Top New Features of the CLR

We have initially created the Ht tpTestAsync method, adding to it the async modifier,
which indicates that the method (or the lambda expression) is asynchronous. These
methods are called async methods.

An async method provides the ability to be called without blocking the caller's thread, which is
convenient for long-running jobs. Also, the caller of an async method resumes its work without
waiting for the async method to finish, unless we indicate in the call to the async method that

we wish to wait until it finishes; we will do that with the await expression.

The await operator is applied to a task in an asynchronous method to suspend the execution
of the method until the awaited task is completed. Basically, it waits for the completion of the
task. Nowadays, the thread is not blocked and the process continues, but the rest of the code
after the await operator becomes an automatic callback method.

It is obvious that the task where the await operator is applied must be modified by the async
modifier and returns a task or task of TResult, that is, when the task is returned by an async
method, it might not be the source of the task.

Additionally, by convention, all asynchronous method names should end in Async.

Going back to the Ht tpTestAsync method we just commented, we have marked it as async
and it is returning a task that we can wait for with the await operator. Inside it, because it is
an async method, it can await the completion of the GetURLContent sAsync method.

The GetURLContentsAsync method is an async method that retrieves a URL with a
WebRequest method, gets its content as a response, and returns it when it is finished.

HttpTestAsync takes the resultant content from GetURLContentsAsync as we are waiting
for it to finish with await and writes on the console the total amount of bytes received.

We execute the first test with the following lines of code:

Console.WriteLine ("Start of Main Method") ;
HttpTestAsync ("http://www.packtpub.com/forthcoming-titles") ;
Console.WriteLine ("End of Main Metod") ;

We continue with the Main method before the awaited GetURLContent sAsync method
finishes so that the main console writelines are written first.

In the next example we code, MultipleHttpTestAsync, we are creating three tasks

to download three URLs asynchronously and then we await them. The tasks are being
executed in parallel since they are started at creation. The await expression only indicates
that the processing can't continue until the task finishes.

&

Chapter 2

So with this code, we really are controlling the start time of the tasks (that is, the async
methods are called) but not their end time. The order of the await operators can affect the
times a bit but they might finish before arriving at the await expressions:

Task t3 = HttpTestAsync ("http://www.packtpub.com/forthcoming-titles") ;
Task t2 = HttpTestAsync ("http://www.silverlightguy.com") ;
Task tl = HttpTestAsync ("http://www.microsoft.com") ;

await t1;
await t2;
await t3;

A more elegant solution is what we will do in the next example, where we add all the tasks to
an array and use the Task.WhenaAll method on this generated collection of tasks:

Task[] tasklist = new Task[] { t1, t2, t3 };
await Task.WhenAll (tasklist) ;

This method asynchronously awaits multiple asynchronous operations that it expects as an
IEnumerable of tasks.

This way the code will resume when all the tasks have been completed, not before or after.

There's more...

We have seen the basics of async and await, explored task handling, and even executed
some the tasks in parallel. We ended up using a method from the Task class, Whenall,
which enabled us to wait for a list of tasks to finish.

But there is a lot more to explore with task management, which you will be familiar with if
you have already explored the TPL. We have plenty of options there to control the processing
flow of our application in ways that would have been extremely complicated earlier.

Using the new asynchronous file 1/0

operations

There are some brand new asynchronous methods for file operation 1/0, which are clearly
designed for providing resource-intensive work without blocking the main Ul thread.

For I/0 operations, we have some interesting methods such as ReadAsync, WriteAsync,
CopyToAsync, FlushAsync, ReadLineAsync, and ReadToEndasync, which are
implemented on stream classes and on classes that read and/or write to streams such

as TextWriter or TextReader.

(&5}

Exploring the Top New Features of the CLR

How to do it...

Next we will see a simple example that we can extrapolate to a majority of these methods
with ease.

1. Create a new Visual Studio project of type Console Application named caAsyncIO.

2. Add ausing clause for System. I0:
using System.IO;

3. Copy the following base method:

Private async static void CopyFolderContents () {
String SourceFolder = @"C:\PACKT\02-CLR\caAsyncIO\source";

String DestinationFolder = @"C:\PACKT\02-CLR\caAsyncIO\
destination";

Console.WriteLine ("Going to copy {0} files..", Directory.
EnumerateFiles (SourceFolder) .Count ()) ;

foreach (string SourceFile in Directory.
EnumerateFiles (SourceFolder))

{

String DestinationFile = DestinationFolder + SourceFile.
Substring (SourceFile.LastIndexOf ('\\"'));

Await CopyFilesWithFileStreams (SourceFile,
DestinationFile) ;

}

4. Then call it from the Main method:

static void Main(string[] args)
{

CopyFolderContents () ;
Console.ReadLine () ;

}

5. Wejust need to add the CopyFilesWithFileStreams method:

Private async static Task CopyFilesWithFileStreams (StringStartFi
le, String DestinationFile)

{

using (FileStreamSourceFileStream = File.Open(StartFile,
FileMode.Open))

{

using (FileStreamDestinationFileStream = File.
Create (DestinationFile))

=

Chapter 2

Await SourceFileStream.CopyToAsync (DestinationFileStream) ;
Console.WriteLine ("Copied the " + DestinationFile) ;

}
}

6. Then we can execute the FileStream |/O test. The execution of our application
should give us the following result:

5 | file:///C:/PACKT/02-CLR/ calsynclO/cahsynclO/bin/Debug/calsyncdlO.BXE | o [& |[u3al

Going to copy 2 files..

Copied the C:“\PACKT“A2-CLR~cafAsync u sinationsdocument @1.»tf
Copied the C:\PACKT“B2-CLR“cafsynclOxdestination“document B2.prtf

7. We will add the following two methods to implement a stream version of what we
just did:
Private async static Task CopyFilesWithStreams (String StartFile,
String DestinationFile) {
using (StreamReader SourceStreamReader = File.OpenText (StartFile))

{

using (StreamWriter DestinationStreamWriter = File.
CreateText (DestinationFile))

{

Await CopyFilesAsync (SourceStreamReader,
DestinationStreamWriter) ;

Console.WriteLine ("Copied the " + DestinationFile) ;

}
}

Public async static Task CopyFilesAsync (StreamReader SourceReader,
StreamWriter DestinationWriter)

{
char[] buffer = new char[0x1000];
int numRead;

while ((numRead = await SourceReader.ReadAsync (buffer, 0,
buffer.Length)) != 0)

{

Await DestinationWriter.WriteAsync (buffer, 0, numRead) ;

]

Exploring the Top New Features of the CLR

8. We will only need to modify the CopyFolderContents () method by
commenting the call to CopyFilesWithFileStreams and adding a
call to CopyFilesWithStreams:

await CopyFilesWithStreams (SourceFile, DestinationFile) ;

9. If we execute it, the result will be exactly the same as before.

We have set up a system to copy all the files from one directory to another. Using the
Directory.EnumerateFiles method does the trick, and we just have to enumerate
them and delegate the task to a copy method with source and destination paths that
include the filename.

Additionally, CopyFolderContents has been declared async so we can use the await
operator inside it, and we do that with CopyFilesWithStreams, the first method we
implement to read and copy the file using FileStream objects. We do it with nested
using, the first for opening the file with File.Open and the second for creating and
writing the destination file with File.Create.

Finally we use the CopyToASync asynchronous method to do the trick. Of course, we use
the await operator inside it.

Next, we implement the same functionality but with the StreamReader and StreamWriter
objects. We do it in a similar way, that is, with the two nested using clauses, one for the
reader and the other for the writer.

For executing the reading and writing tasks, we implemented our own method that executes
a while loop that reads and writes a buffer from the source stream into the destination stream
until it finishes copying. For doing this, it uses the new ReadAsync and WriteAsync methods.

We have seen how to use some of the many available methods, and there are many more
to explore, but anyway, the concepts and workings are similar to those we have just seen.

See also

» The Understanding async and await in .NET 4.5 recipe.

Understanding the New
Networking Capabilities

In this chapter, we will cover how to use the HttpClient and new System.Net .Http
namespaces.

Introduction

.NET 4.5 brings improved capabilities in networking such as more support for
internationalization, protocol improvements, better performance, and new programming
interfaces for HTTP and WebSockets. The main improvement is that it now fully supports
WebSockets and the complete HTTP standard.

.NET Framework 4.5 enhances internationalization with the following features:

» Internationalized Domain Name (IDN) support
» E-mail Address Internationalization (EAI) support
» International Uniform Resource Identifier (URI) support, compliant with
the latest RFCs from the Internet Engineering Task Force (IETF)
Regarding protocol support, the additions are:

» Better IPv6 support

» Improved Sockets protocol support with a dual-mode socket support

Understanding the New Networking Capabilities

As for new namespaces, we now have System.Net .Http, System.Net .Http.Headers,
and System.Net .WebSockets namespaces. We have improvements on classes such

as HttpListener, Uri, Socket, and on namespaces such as System.Net .Mail or
System.Net .NetworkInformation.

We will now explore in practice some of these features to get a solid grasp on the new
capabilities.

Using the HttpClient and the new System.

Net.Http namespaces

HttpClient is a new .NET 4.5 class using the HTTP protocol, similar to WebClient or
HttpWebRequest. A highlight of this class is the full support of Async.

In fact it's not such a novelty, since we already had it on the REST Starter Kit and the
implementation of the .NET 4.0 Web API.

The HttpClient class resides on the System.Net . Http namespace, which is a brand
new .NET 4.5 namespace. Basically, we use HttpClient to create HTTP requests, manage
the response, and process the response's content.

Some of the most interesting capabilities are:

» Helper methods that create requests and process the responses
» The possibility of defining a default header to apply to all sent messages

» Timeout and cancellation management

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

Here we will create a basic application that exemplifies the clear usage of HTTPClient:
1. First open Visual Studio 2012 and create a new project. We will select the Console
Application template from the visual C# category and name it caHttpClient.
2. Add a reference to the System.Net .Http assembly.
3. Open Program.cs and add a using clause to the added assembly namespace:
using System.Net.Http;

Chapter 3

4. Add the following method to perform a basic test of the new HttpClient class:

private static async Task TestHttpClient ()
try

{

HttpClient HttpCli = new HttpClient () ;

Console.WriteLine ("Executing the Asyncronous http petition ");

HttpResponse MessageHttpResponse = await HttpCli.
GetAsync ("http://www.packtpub.com/") ;
HttpResponse.EnsureSuccessStatusCode () ;

string StringHttpResponse = await HttpResponse.Content.
ReadAsStringAsync () ;

Console.WriteLine (StringHttpResponse) ;

}

catch (HttpRequestException e)

{

Console.WriteLine ("\nThere was a problem..");
Console.WriteLine ("Problem :{0} ", e.Message);

}
}

And call it from the Main method:

static void Main(string[] args)

{

Console.WritelLine ("Press a key to start ");
Console.ReadLine () ;

TestHttpClient () ;

Console.ReadLine () ;

}

5. If we execute it, we will get the following result:

5| file:///C/PACKT/03-NETWORKING/ caHttp Client/caHttpClient/bin/Debug/caHttpClient.EXE =

ress a key to start

Executing the Asyncronous http petition

There was a problem..
nnot write more bytes to the buffer than the configured maximum

buffe

[}

Understanding the New Networking Capabilities

6. So we just have to increase the size of the response buffer.

7. Before executing the HTTP petition, we will increase it with the following line:
HttpCli.MaxResponseContentBufferSize = 512000;

8. You can putin any value, but it is a common issue that the value entered is too small,
so increasing the default response buffer is highly recommended, as we just did in
the previous step.

9. Next we will open the NuGet package manager by navigating to Tools | Library
Package Manager | Manage NuGet Packages for Solution....

Tools UnitTest Architecture Analyze Window Help

Attach to Process... Ctrl+Alt+P

Connect to Database...

1
b
[]
"'E; Connect to Server...
BE¥ Add SharePoint Connection...
& Code Snippets Manager... Ctrl+K, Ctrl+B
Choose Toolbox Items...

Add-in Manager...

Library Package Manager »
[I] Extension Manager...

Create GUID

PreEmptive Dotfuscator and Analytics

Ql:_ Main(stnng(] args)

Package Manager Console
Manage NuGet Packages for Solution...

Package Visualizer

oA [@E

Package Manager Settings

10. Once in the NuGet Package manager, locate and add the Microsoft ASP.NET

Web API Client Libraries package. Adding this to our project will add the needed
references, System.Net .Http.Formatting, System.Net .Http, and
Newtonsoft.Json.

[

Chapter 3

caHttpClient.sin - Manage NuGet Packages B
b Installed packages Stable Only - Sortby: Most Downloads - System.Net.Http S |
. — T

== "V‘h‘tr ki ASP-d':H we"r‘t‘:[?‘em I';tlhﬂ"ej tent tiation to System.Net.Htt) i Created by: Microsoft
weomr This package adds suppert for formatting and content negotiation to System.Net.Hitp. -)
Al Ttincludes support for JSON, XML, and form URL encoded data. Y e e i T
MuGet official package source Version: 4.0.20710.0
Search Resuits NETFx HttpEntityClient e 1212202
Simple CRUD + Query typed HTTP client Downloads: 147177
Sew Sime Y typ
b Updates View License Terms
Project Information
b Recent pack
Seent packages NETFx HttpClient.Query<T> i
e, Allows querying WCF Web Api endpoints that expose 1Queryable< T, with full query support for nested Description:
relationships, etc. This package adds support for formatting
and content negotiation to
[\ NETEx HetpNamevalucCotection System Net Hitp. It includes support for
‘e Asimpler NameValueCollection-derived class that uses HTTP query string semantics and renders to a LR L et (b Al evest
query string when ToString is invoked. Tags: Microsaft AspNet WebApi
AspNetWebApi HitpClient
J\J NETEx HupEntityConventionCient Dependencies:

oo Simple CRUD + Query typed conventions HTTP client Microsoft.Net.Http (= 2.0.20710.0 &8

<21)
Newtonsoft.Jsen (2 4.5.6)
N NETFx JsonContent

fGep AJson.NET-based HitpContent class for content serialization. Each item above may have sub-

dependencies subject to additional license
agreements.

'B WebAPIDoodle.Formatting

i prdmy 2 e @i WebAPIDaodleFormatting is a library which contains several formatters for

owner. Microsoft is not responsible e
for, nor does it grant any licenses to, -

third-party packages. ABIE

Scttings | Close |

11. Add a using clause for the Newtonsoft .Json namespace and the following method:

private static async Task TestHttpClientdson ()
{
try

{

HttpClient HttpCli = new HttpClient () ;

HttpResponseMessage response = await HttpCli.GetAsync ("http://api.
worldbank.org/countries?format=json") ;

response.EnsureSuccessStatusCode () ;

JArray content = awailt response.Content.ReadAsAsync<JArrays> () ;
return Console.WriteLine ("First 10 World Bank countries:");

var i = 0;

foreach (var country in content[1l].Take (10))
{

i =1+ 1;

Console.WriteLine (" - {0} : {1}", i, country.

Value<string> ("name")) ;

7}

Understanding the New Networking Capabilities

}
}
catch (HttpRequestException e)
{
Console.WriteLine ("\nThere was a problem..");
Console.WriteLine ("Problem :{0} ", e.Message);

}
}

12. Add the call to this function in the Main method and execute the application.
We should get the following result:

0 file://F/NET45Packt/CHO3-Networking/code/caHttpClient - 02/caHttpClient/bin/Debug/caHttpCli... = = %
Prezs a key to stapt

First 18 World Bank countries:
- : Aruba

: Afghanistan

: Angola

: Albania

: Andorra

: Arab Yorld

: United Arab Emirates
: Argentina

: Armenia

B : American Samoa

b o 00 =] O CF G D

We created a console application and added the System.Net . Http assemblies and
namespaces.

Then, we created an instance of the HttpClient class, extended its maximum buffer size,
and instanced a Ht tpResponseMessage class that we used to capture the response from
the HttpClient class.

To fill the response message, we are using the GetAsync method of the HttpClient class.
Itis an Async method, as most of the methods we can find on this namespace. It makes the
code easy to read.

Alternatively, we could have used other read methods such as ReadByteArray, GetStream,
or GetStringAsync. In fact, the helper method GetStringAsync could have been used
as follows:

stringHttpStringResponse = await HttpCli.GetStringAsync (http://www.
packtpub.com/) ;

=

http://www.packtpub.com/

Chapter 3

Instead of:

HttpResponse MessageHttpResponse = await HttpCli.GetAsync ("http://www.
packtpub.com/") ;

HttpResponse.EnsureSuccessStatusCode () ;

string StringHttpResponse = await HttpResponse.Content.
ReadAsStringAsync () ;

Additionally, we get the errors and validations from the response message; in this case we
use the HttpResponseMessage method to ensure that the response was successful and
throw an error if not:

HttpResponse.EnsureSuccessStatusCode () ;

We are accessing the Content property of the Ht tpResponseMessage class to get
the string value. This Content is of type HttpContent and, if needed, we could access
its Headers property and all its related properties such as Content - Language,
Content-Type, and Last-Modified:

string StringHttpResponse = await HttpResponse.Content.
ReadAsStringAsync () ;

Next, we write the content we got, in this case, our website's HTML content.

Additionally, we have expanded our basic hello HttpClient by addingin some extension
methods provided by System.Net .Http.Formatting and some JSON built into .NET
with Newtonsoft .Json, both of them added with the Microsoft ASP.NET Web API Client
Libraries NuGet package.

System.Net .Http.Formatting provides us with support for serialization, deserialization,
and some other features on top of System.Net .Http.

Newtonsoft .Json enhances JSON helper objects with functionalities to read and
manipulate JSON documents such as JsonArray and JsonToken.

In this example, we get a URI that returns JSON data, and retrieve it with GetAsync into an
HttpResponseMessage object:

HttpResponseMessage response = await HttpCli.GetAsync ("http://api.
worldbank.org/countries?format=json") ;

Next we read the HttpContent page that we got from our response message with
ReadAsAsync<JArray>():

JArraycontent = await response.Content.ReadAsAsync<JArray> () ;

This does the magic and we now have an array of JsonToken elements that we can iterate
through and write into the console.

(75}

Understanding the New Networking Capabilities

There's more...

By now, we should have a grasp of the power of HttpClient and its related assemblies,
but there's more than what we have seen.

HttpClient provides us with a powerful API to access everything exposed through HTTP
via GET, POST, PUT, and DELETE, which support the standard very well and also nicely
match the WebAPI on the server side.

Understanding the
new features of
Entity Framework 5.0

In this chapter we will cover:

» Creating our first Code First application

» Using Code First Migrations

Introduction

Entity Framework (EF) has really grown, and with .NET 4.5, we have a mature framework
that has some new capabilities, such as Code First Migrations, which we will explore in the
following recipes.

Note that we will do that in a progressive way, so we will be creating a base for some of the
recipes in the next chapter.

Understanding the new features of Entity Framework 5.0

Creating our first "Code First" application

Our first application will create a database from code. We will start by creating an ASP.NET
project that we will reuse in the following recipes.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed.

How to do it...

Here we will create a Code First application and see the main concepts behind this technology
and how to use it properly.

1. First open Visual Studio 2012 and create a new project. We will select the ASP.NET
MVC 4 Web Application template from Visual C# | Web and name it EFCodeFirst
as shown in the following screenshot:

New Project [
b Recent ‘:‘NET Framework 4.5 - ‘ Sort by: ‘:Default - ‘ F Search Installed Templates P~
4 Installed (3] o TF #

. gJ ASP.NET Web Farms Application Visual C# [Dip=aps s
emplates project for creating an application using
4 T I A project f i licati i
A I ¥ ASP.NET MVC 4 and Web API
Visual Basic g_] ASP.NET MVC 3 Web Application Visual C# ana e
4 Visual C¥
- (<]
WimE s g‘_] ASP.NET MVC 4 Web Application Visual C#
Web L
. =]
Vit g‘_] ASP.NET Empty Web Application Visual C#
Cloud
Reporting o : .))
. ASP.NET Dynamic Data Entities Web Application Visual C#
SharePoint -
Silverlight (5.4
! ASP.NET AJAX Server Control Visual C#
Test]
WCF (34 "
Workflow !E ASP.NET AJAX Server Control Extender Visual C#
Visual C++ cH
- !E ASP.NET Server Control Visual C#
b Online
Name: EFCodeFirst
Location: E\NET45Packt\CHO3.5-EF5.0\projects, - Browse... ‘
Solution name: EFCodeFirst | Create directory for solution
Add to source control
0K | ‘ Cancel

7@

Chapter 4

2. Select the Internet Application template as shown in the following screenshot:

New ASP.NET MVC 4 Project

==

Project Template

Select a template:

Description:
'-j '-j Fj‘ '-j A default ASP.NET MVC 4 project with | #
@ @ @ @ an account controller that uses forms
Empty Basic Internet Intranet authentication.
VelellleNely| Application
(%4 C#
5 5
Mobile Web API
Application
View engine:
lRazor hd

] Create a unit test project

Test project name:
EFCodeFirst.Tests

Test framework:

Visual Studio Unit Test

¥ | Additional Info

[OK J l Cancel

Understanding the new features of Entity Framework 5.0

3. Next, we will create a class that we will use as the schema to create a table. We will
add the BookModel class to the Models folder of our project as shown in the following
code. Note that we will need to add a reference to System. ComponentModel .
DataAnnotations.

namespace EFCodeFirst.Model

{

public class BookModel

{
[Required]
public int Id { get; set; }
public String Title { get; set; }
public String Description { get; set; }

}

4. In order to ensure we have the EntityFramework NuGet package, as shown in the
following screenshot, we will right-click on the project and select the Manage NuGet
Packages... option and validate that we have the EntityFramework package selected;
if not, we will install it.

EFCodeFirst - Manage NuGet Packages X

4 Installed packages | Sort by: |.Name: Ascending - | Search Installed packages P~

m .B EntityFramework " Created by: Microsoft
b Online Entity Framework is Id: EntityFramework
Version: 5.0.0-rc (Prerelease)
b Updates View License Terms
. jQuery UI (Combined Library) Projectinformation
e The full jQuery Ul library as a single -
combined file. Includes the base theme.

Prerelease Mlicrosoft's recommende...

I Recent packages Descripti
escription:

Entity Framework is Microsoft's
recommended data access technology for
new applications.

m

jQuery Validation
A jQuery plugin that makes simple
clientside form validation trivial. Dependencies:

.

. No Dependencies
iQuery

JQuery is a fast and concise JavaScript
Library that simplifies HTML document tra...

Json.NET
Json.NET is a popular high-performance
JSON framework for NET

knockoutjs
A JavaScript MVVM library to help you
create rich, dynamic user interfaces with cl...

H s &

Each package is licensed to you by its

owner. Microsoft is not responsible 'm Eli_crosoﬂ: .NET Frta.mzwurk 4 H'I'I'_I'-' Clie... ~
for, nor does it grant any licenses to, 4 " b
third-party packages. 1 22 p
Settings Close

@

Chapter 4

We will build the project before continuing, so that everything is up-to-date. If not,
we will not be able to see the classes we just created in the template dialog.

5. Right-click on the Controllers folder and select Add | Controller... as shown in the

following screenshot:

—mmr—coTTTeTT
4 Controllers

&1 View in Browser (Internet Explarer) Cirl+Shift+W EController.cs
Browse With... ontroller.cs
Convert to Web Application
@ Check Accessibility.. -
Controller... Crl+M, Ctrl+C Add > pdelcs
O NewItem.. Ctrl+Shift+A Scope to This
"0 Existing Item.. Shift+Alt+A B New Solution Explarer View
= New Folder Exclude From Project
Add ASP.NET Folder 'Y cu Cirl+X onfig
J
% Class. ol Copy Cirl+C
m Explorer Class View
X Delete Del
X Rename i
bperties
c Open Folder in Windows Explorer
& Properties Alt+Enter
Folder Name Controllers

6. On the Add Controller dialogue that appears, we will name the

controller BooksController.

7. Onthe next field, we will select the option MVC Controller with read/write

actions and views, using Entity Framework.

8. Continuing, at the Model class option we will choose the BookModel class

we just created.

(7]

Understanding the new features of Entity Framework 5.0

9. Atthe Data context class option we will select the <New Data Context> option

and enter the name EFCodeFirst .Models.BooksContext and click on the
OK button. The dialog should look as follows:

-

Add Contraller ﬁ

Controller name:

BooksController

Scaffolding options

Template:

MVC controller with read/write actions and views, using Entity Framework -
Model class:

BookModel (EFCodeFirst Model) -

Data context class:
EFCodeFirst. Models.BooksContext| -

Views:

lRazor (CSHTML) - I [Advanced Options... l

[Add H Cancel l

10.

11.

We will press the Add button displayed in the previous screenshot.

As a result, the BooksController.cs and BooksContext . cs files will be added
with methods to handle data, together with a view folder containing some files for
each needed view.

We will open the BooksContext file to see how simple it would be to create this
class on our own, should we need it for other projects without the autogeneration
help that this tooling provides:

public class BooksContext : DbContext

{

// You can add custom code to this file. Changes will not be
overwritten.

(&)

Chapter 4
//

// If you want Entity Framework to drop and regenerate your
database

// automatically whenever you change your model schema, add
the following

// code to the Application Start method in your Global.asax
file.

// Note: this will destroy and re-create your database with
every model change.

//

// System.Data.Entity.Database.SetInitializer (new System.
Data.Entity.DropCreateDatabaseIfModelChanges<EFCodeFirst.Models.
BooksContext>()) ;

public BooksContext () : base("name=BooksContext")
{
}

public DbSet<BookModel> BookModels { get; set; }

}

12. Finally, we should be able to run the application by adding /books to our URI, for
instance http://localhost:5049/books, so that we can start creating our
book collection as shown in the following screenshot:

a- y,/.-|_. http://localhost:5049/books ,0 ~ B G X ” | -~ Index - My ASP.NET ... | |
Register Login
Index
Create New
Title Description
.NET 4.5 First Look A cool book is being written ;) Edit | Details | Delete
© 2012 - My ASP.NET MVC Application

Understanding the new features of Entity Framework 5.0

We created an ASP.NET application as a placeholder to showcase the EF capabilities, but we
could have chosen other options, such as a console application.

The first step was creating a basic class with some properties that we want to use to create
a database table. Continuing, we validated that we had the EntityFramework NuGet package
so that we could properly work with EF Code First.

Next, we added a controller that was automatically created for our BooksModel class,
creating all of the tools that are necessary for MVC to work with the data. This automates for
us the creation of the data context for the DbContext base class.

Additionally, in the BooksContext . cs file we can observe that we have a reference to the
System.Data.Entity namespace. If we were to create this manually, we would also need
to add this reference manually. This context is all the code we need to store and retrieve data;
a DbSet property of the entity type inside this context class is shown in the following code:

public DbSet<BookModel> BookModels { get; set; }

Of course, we will need to create an instance of the context class, which DbContext will
use to create a LocalDB database for us (this is installed by default by Visual Studio 2012).
The database is named after the fully qualified name of our context, as we can see in the
following screenshot:

Server Explorer

] WwiEs I
|4 @ Data Connections
|4 I BooksContext (EFCodeFirst)
|« m Tables
|« EH BookModels
=~ [d
B Title
B Description
[Views

The DbContext class then looks at the properties and uses the DbSet properties that we
have defined to create the tables, fields, and other properties.

[

Chapter 4

There's more...

We have just grasped the power of Entity Framework Code First, but there's much more than
we have seen.

This release is especially powerful in its ability to deal with model changes, and with it we can
go ahead or back in time in a proper way. We will see how this works in the next recipe.

We have the Code First conventions that EF uses to discover the model, which are type
discovery, primary key, relationship, complex types, and connection string, explained in the
following list:

» Type discovery: This convention is used to create the database representation of our
model, pulling also any referenced types. If we created a BookComments class and
referenced it from our BookModel class, it would be included automatically.

» Primary key: This is a convention that determines that a property is a primary key
if it contains the id or ID string, mapping them as an integer identity column.

» Relationship: This is a convention that infers relationships based on the navigation
properties of our class. An example of this would be having the previously mentioned
reference to the BookComment class set as:

public virtual ICollection<BookComment> BookComments {get; set;}

» Complex types: This is a convention that determines that a class with no detected
primary key that does not reference other entities is a complex type.

» Connection string: This is a convention that creates the database on the LocalDB
Server, naming it after the fully qualified name of the context.

The Code First conventions can be extended by Data Annotations, which are attributes that
enable further configuration. Among other things, we can identify a field as a key or foreign key
or mark that a field is required, as we did in our BookModel class. Note that we, in practice,
override almost all of the conventions with these Data Annotation attributes.

For example, it would be clearer if, in our class, we put the [Key] attribute in our key field:

[Key]
public int Id { get; set; }

These Data Annotations are useful to supplement the conventions or to directly override them.

We also have a fluent API, which gets us into the advanced part of Code First, and thus it is
recommended that we use it only in those situations where Data Annotations can't help us.
With fluent API, we can override the OnModelCreating method in the DbContext base
class and configure the properties with more capabilities than with the conventions or Data
Annotations model.

&)

Understanding the new features of Entity Framework 5.0

Of course we can use all these models combined in any way we wish, getting the best of
all worlds.

Following the next recipe is recommended, since it is really important to get a solid
comprehension of how Code First and Code First Migrations are used.

Additionally, | do recommend that you explore the topics, EF's conventions, Data Annotations,
and fluent API.

Using Code First Migrations

In this recipe we will use Code First code Migrations to evolve our model and update the
database. You might be asking yourself why this is so important. Isn't this just another way
of doing something we already knew how to do?

Not so! It solves a very important problem in a simple and efficient way. Haven't we all at
some time had the problem of deploying software and keeping the database up-to-date?
Well, this solves this exact problem. And in a very easy and simple way, | must add.

How? Keep reading.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed. It would be good to
have implemented the previous recipe and worked on the resulting solution.

How to do it...

Using this recipe we will implement Code First Migrations and show how to evolve our model
and revert it to a previous version.

First, open Visual Studio 2012 and open the previous project. We recommend copying it to a new
folder so if anything goes wrong (you all know Murphy is always present) we can start a new one.

Change the project name to EFCodeFirstMigrations.

We will start by enabling migrations. To do this, we will open the Package Manager Console
option and type the Enable-Migrations command into it, pressing Return to execute

it. We will observe that a Migrations folder has been created in the project with two
source files, one for the initial creation of the database and the other for the configuration
(configuration.cs).

=

Chapter 4

We will open the configuration.cs file and change the AutomaticMigrationsEnabled
property's value to true using the following line of code:

AutomaticMigrationsEnabled = true
Note that we could have enabled Automatic Migrations with this command:
Enable-Migrations - EnableAutomaticMigrations

Let's add a minor change to our BookModel class to see how this works out. We will add a
Boolean property named IsOnSale as shown in the following code line:

public boolIsOnSale {get; set;}

Apply the pending changes from our code to the database with the command Update-
Database that we will type into and execute with the Package Manager Console. If we want
more details on what is happening, we can also execute this command with the -verbose
flag as shown in the following code line:

Update-Database -Verbose

It would be good to validate that our database has been properly generated, so we should
open our Server Explorer panel and refresh it to reflect the changes.

Next, we will comment the added property and execute the Update-Database command
again. It will not be executed because it would result in data loss.

We will uncomment the IsoOnSale property and add a BookRating integer property to the
BookModel class.

For medium to advanced scenarios for which we want more control over what happens, we
have Code Migrations. We will enable it by going to our configuration. cs file and setting
the AutomaticMigrationsEnabled property to false

Then we will go to our Package Manager Console and execute the Add-Migration
command, followed by the name we want to give to this code migration. We will use the name
BookRating as it describes very well what this migration will do.

Now a new file has appeared in our Migrations folder, named BookRating.cs, prefixed
with a timestamp that will help us with the ordering. If we open it, we will clearly see and
understand how it works:

public partial class BookRating : DbMigration

{

public override void Up ()

{

Understanding the new features of Entity Framework 5.0

AddColumn ("dbo.BookModels", "BookRating", c =>c.Int
(nullable: false));

}

public override void Down ()

{
DropColumn ("dbo.BookModels", "BookRating") ;
1

!

There we can see the Up and Down methods that will be invoked when needed. We can
modify them to do what we want. For example, we will rate the books with a rating of five
by default. We will modify the AddColumn function with the following code:

AddColumn ("dbo.BookModels", "BookRating",
c =>c.Int(nullable:false, defaultValue:5)) ;

The only thing left now is to update the database with the Update-Database command.
Go on and execute it.

To validate that everything has gone as expected, we should open the Server Explorer panel,
navigate to our database, and finally, right-click on our table, selecting the Show Table Data
option. We can appreciate that the BookRating column has been added and also that its
value has been set to 5 as shown in the following screenshot:

[l ol laleTal 4" [eTo[SI L DET) IRl 201207081445383_BookRating.cs BookModel.cs Config
@ » MaxRows: 1000 - Oa
Id Title Description IsOnSale BookRating
R NET 45FirstLook A cool book is being written;) False 5
* NULL NULL NULL NULL NULL

Now we are going to go back to the previous version. To do this, we will use the Update-
Database command together with the —-TargetMigration flag. We will execute the
following code on the Package Manager Console window:

Update-Database -TargetMigration:"InitialCreate"

This will not execute properly as it will produce a loss of data. We must add the —-Force
flag to execute it without problems. Excecute the code previously mentioned, once again,
but using the -Force flag:

Update-Database -TargetMigration:"InitialCreate" -Force

~[ee]

Chapter 4

We can again update the database to the latest state with the Update-Database
-TargetMigration: "BookRating" command. We don't have any reason to use
the -Force flag since there will be no data loss in this case.

We enabled Code First Migrations with the Enable-Migrations command and manually
changed the mode to Automatic Migrations, showing its behavior with a simple property change.

With Automatic Migrations, we can execute the Update-Database command, and all is done
for us, without any need to handle versions or anything else. We saw that this comes with the
drawback of not being able to move to a previous version.

Continuing, we activated Code Migrations and generated a migration with the Add-Migration
command, which, as we saw, we can use to move up and down within the different versions,
and finally, we customized a bit of migration to provide a default value.

Next, we saw how to move back and forward in time to a specific migration in a very easy way
and also used the -Force flag to enable proper downgrading in cases where the elimination
of fields and/or tables is required. For this, the command is Update-Database -TargetMi
gration:"MigrationName", followed by the -Force flag, if needed.

In addition, to what we have seen, we might want to perform some activity with the data to
fit the new model, such as copying data from one table to another, prepopulating the new
entity with a default value, and likewise. To do this, we can execute SQL at any point in our
migration, as we can see in the following code:

Sql ("UPDATE dbo.BookModels SET BookRating = 5");

Additionally we can automatically generate the update script with the -Script flag indicating
the source and the destination migrations:

Update-Database -Script -SourceMigration:$InitialDatabase -
TargetMigration: "BookRating"

Executing this would generate the necessary SQL script that we can then use to execute the
migration directly on our SQL Server.

7}

Understanding the New
Features of ASP.NET

In this chapter, we will cover:

» Creating our first ASP.NET 4.5 Web Forms application

» Configuring our application to use unobtrusive validation
» Using Smart Tasks in the HTML editor

» Using WAI-ARIA support

» Using the Extract to User Control feature

» Using the Page Inspector feature

» Creating an asynchronous HTTP module

Introduction

ASP.NET has definitely improved with .NET 4.5, providing us with better tools, capabilities,
and performance.

As far as capabilities are concerned, the three "flavors" of ASP.NET are greatly enhanced. First,
the new async features of .NET 4.5 are really interesting on ASP.NET. The web is becoming
more interconnected every day, so asynchronous requests (and responses) are in all aspects
of our daily work. Second, we have in our hands a greatly enhanced IDE with capabilities such
as intelli-sense and improved support for the latest versions of web-development languages.
Third, NuGet has been improved and now provides some componentized functionality for ASP.
NET, such as Modernizr, which enables compatibility between browsers enabling/disabling
HTML5 capabilities, jQuery, and so on.

Understanding the New Features of ASP.NET

There is even more candy, with features such as unobtrusive validation, an AntiXSS library,
and EF Code First.

All'in all, it's become an even better framework for web development!

The following sections will explore, in practice, some of these features to get a solid grasp on
the new functionality. We will start by creating an example application using some of the new
features of ASP.NET 4.5.

Creating our first ASP.NET 4.5 Web Forms

application

Web Forms is the classical programming framework of ASP.NET. Nowadays, much of the
concepts and improvements we will see are common to the other development frameworks
such as ASP.NET, MVC, and Web Pages.

In this recipe we will see how to work with the new capabilities of ASP.NET 4.5 by creating
a Web Forms application.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

How to do it...

Now, we will create a Code First ASP.NET Web Forms application that will create the database
from code. We will also add some seed data.

1. First, open Visual Studio 2012 and create a new project. We will select the ASP.NET
Web Forms Application template by going to visual C# | Web category, name it
wfSampleApp, and press OK to create the application.

2. After the project has been created, add and open the NuGet Package Manager by
going to Tools | Library Package Manager | Manage NuGet Packages for Solution.

3. Add the Entity Framework package to the project.

4. Create a folder in the project root with the name CodeFirst. We will put our related
Code First files and models in this folder.

5. Place a new class item in the CodeFirst folder named BookModel. Add the
following class definition there:

public class BookModel

{

[ScaffoldColumn (falgse)]
Public int Id { get; set; }

[Required, StringLength(260)]

Chapter 5

[Display (Name="Title", Description="The title of the book",

Order=1)]
public String Title { get; set; }

[Display (Name = "Description", Description = "The description

of the book", Order = 2)]

public String Description { get; set; }
public bool IsOnSale { get; set; }
public int BookRating { get; set; }
public int? CategoryId { get; set; }

}

6. Create another model with the name of CategoryModel with the following code:

public class CategoryModel

{
[ScaffoldColumn (false)]
Public int Id { get; set; }

[Required, StringLength(140)]

[Display (Name = "Title", Description = "The title of the
category", Order = 1)]

public String Title { get; set; }

[Display (Name = "Description", Description = "The description

of the category", Order = 2)]
public String Description { get; set; }
public virtual ICollection<BookModels> Books { get; set;

Understanding the New Features of ASP.NET

7.

Next we will add the Context class in the same location. Add a BooksContext .cs
class with the following code in it:

public class BooksContext : DbContext

{

Public DbSet<BookModel> Books { get; set; }

Public DbSet<CategoryModels> Categories { get; set; }

}

Finally we will add an Initializer class, named BooksInitializer.cs,

with the following content:

public class BooksInitializer :DropCreateDatabaseIfModelChanges<Bo
oksContext>

{

protected override void Seed (BooksContext context)
{
SeedCategories () .ForEach (bc =>context.Categories.Add (bc)) ;
SeedBooks () . ForEach (b =>context.Books.Add (b)) ;

}

private List<CategoryModel> SeedCategories ()
{
List<CategoryModel> BookCategories = new
List<CategoryModels> () {
NewCategoryModel () {
Id=1,
Title = "Thriller"
I
New CategoryModel () {
Id=2,
Title = "Mystery"
I
New CategoryModel () {
Id=3,
Title = "Sci-fi"
I
New CategoryModel () {
Id=4,
Title = "Computer Science"

Chapter 5

Return BookCategories;

}

private List<BookModels>SeedBooks ()

{
List<BookModel> Books = new List<BookModels>()
new BookModel () {

Id=1,
Title = ".NET 4.5 First Look",

CategoryId = 4,
Description = "A book to quickly and

practically get into .NET 4.5"

b
New BookModel () {

Id=2,
Title = "The lost book of Agatha Christie",

CategoryId=1
}
Vi
return Books;

}
}

9. We will open the Global . asax code behind the file and add the following line
of code in the Application_Start method (note that we will need to add two
usings clauses, one for System.Data.Entity file and another to access the
Code First files):

Database.SetInitializer<BooksContext> (new BooksInitializer()) ;

10. Open the Wweb . config file and comment the DefaultConnection connection
string and add a connection string that will create the database in the App Data
folder. The new connection string is the following;:

<add name="BooksContext"providerName="System.Data.SglClient"

connectionString="Data Source=(LocalDB)\vll.O;AttacthFilename=|Da
taDirectory|\wfSampleApp.mdf; Integrated Security=True"/>

55}

Understanding the New Features of ASP.NET

11. Next we will add a new item of type Web Form using Master Page and name it

Books . aspx.

Add New Item - wfSampleApp

7 -

4 Installed

4 Visual C#
Code
Data
General
Web
Windows Forms
WPF
Reporting
Silverlight
Workflow

P Online

Sort by: [Default A

D

@
i

Web Form

Web API Controller Class

Web Form using Master Page

Web User Control

Master Page

MNested Master Page

HTML Page

n

Visual C¥

Visual C¥

Visual G¥

Visual C¥

Visual C¥

Visual C¥

Visual C¥

Name: Bookslaspx

Search Installed Templates P~

Type: Visual C#

A form for Web Applications that is built
from a Master Page

[add || cancel |

12. On pressing the Add button, the following dialogue will appear, where we will select
the default master page and click on OK:

Select a Master Page

Pl X

Project folders:

Contents of folder:

4 2] wiSampleApp

= Account
W App_Data
W App_Start
B CodeFirst

- i Content
W Images
& Properties
=8 References

. i Scripts

| cance

=

13.
14.

15.

16.

Chapter 5

Add another item of the same type, with the name Book . aspx.

We will open the Site.Master page, look for the <nav>element in the header
section, and change it to match the following code:

<navs>

<ul id="menu"s>

<lis>Home

<a i1d="Al" runat="server" href="~/Books.aspx">Books
About</1li>

Contact</1li>
</uls>

</navs>

Now open the Site.Master page code and type the method that we will use
to provide the information to our interface so that it can be rendered. Create a
function with the name GetBooksCategories with the following content:

public IQueryable<CategoryModel> GetBookCategories ()

{

BooksContext dbBooks = new BooksContext () ;
DbSet<CategoryModel> dbSetCategories = dbBooks.Categories;

return (dbSetCategories as IQueryable<CategoryModels) ;

}

We will update our Ul to provide a visual for this data, by opening the Site.Master
page and locating the <div id="body"> section. Insert the following code just
under that:

<section style="text-align: center; background-color: #fff"s>
<asp:ListView

ID="ListBookCategoriesg"
ItemType="wfSampleApp.CodeFirst.CategoryModel"
runat="server"

SelectMethod="GetBookCategories">

<ItemTemplates>

<a href="Books.aspx?id=<%#: Item.Id %>"><%#: Item.Title %$>
</ItemTemplate>

<ItemSeparatorTemplate> | </ItemSeparatorTemplates
</asp:ListView>

</section>

Understanding the New Features of ASP.NET

17. If we have named our project differently, we should be aware of
the name changes and correct it on the TtemType attribute in
the previous code.

18. It would be interesting to go to Item. Id line of code and delete the Id text.
This can be easily accomplished with the following tip: place the cursor in
front of the . and press Ctrl + the Space bar to call intelli-sense to our
aid. We should see the intelli-sense's help popup as shown in the
following screenshot:

runat="server"
SelectMethod="GetBookCategories">

<ItemTemplate>
<a href="Books.aspx?id=<%i#: Ttem. %>"»><%#: Ttem.Title %>
</TtemTemplate> J Books
<ItemSeparatorTemplate>| </ItemSepara L
. . & Description
<fasp:ListView>
</section> @ Equals
@ GetHashCode
@ GetType

<asp:ContentPlaceHolder runat="server" ID="Fe M _ int CategoryModelId
<section class="content-wrapper main-content & Tjte
<asp:ContentPlaceHolder runat="server" IDg ToString >
n

19. We should execute the application, which will result in the database
being created and the main page rendering as illustrated in the
following image.

5]

Chapter 5

-:-EEE
@@ “ - http//localhost:62284/ P~-RACX H | Home Page - My AS... % u {iﬁ * @:}

Register Log in
Home Books About Contact
Thriller | Mistery | Sci-fi | Computer Science

Home Page. Modify this template to jump-start your ASP.NET

application.

videos, tutorials, and samples

We suggest the following:

o Getting Started
ASP.NET Web Forms lets you build dynamic websites using a familiar drag-and-drop, event-driven model.A design surface and
hundreds of controls and components let you rapidly build sophisticated, powerful Ul-driven sites with data access. Learn more...

e Add NuGet packages and jump start your coding
NuGet makes it easy to install and update free libraries and tools. Learn more...

20. Open the Books . aspx file and add ListViewcontrol code in the Featured
Content section.

21. Add the following code to it:
<asp:ListView
ID="BooksList"
runat="server"
DataKeyNames="Id"
ItemType="wfSampleApp.CodeFirst .BookModel"
SelectMethod="Books_GetData"

>

<EmptyDataTemplate>

<asp:Label ID="EmptyBooksLabel" runat="server" Text="We found no
books..."></asp:Label>

</EmptyDataTemplates>

<ItemTemplate>

o7}

Understanding the New Features of ASP.NET

22.

23.

24,

25.

Book :<a href="Book.aspx?Id=<%#: Item.Id %>"><%#: Item.
Title %>

0n sale:
<asp:CheckBox
ID="CheckBox1l"
runat="server"
Checked="'<%# Item.IsOnSale %>'
/>
</ItemTemplates>

</asp:ListView>

In the Books . aspx.cs code, add the following method:

Public IQueryable<BookModel> Books_ GetData ([QueryString ("Id")]
int? Id)
{
BooksContext dbBooks = new BooksContext () ;
IQueryable<BookModel> dbSetBooks = dbBooks.Books;

if (Id.HasValue&& Id > 0)

{

dbSetBooks = from b in dbSetBooks
where b.CategoryId == Id
select b;

Return dbSetBooks;

}

Note that we need to add the following Using statements:

Using System.Web.ModelBinding;
Using wfSampleApp.CodeFirst;

If we execute the application now, when we click on the top category, we should
navigate to the Books . aspx, passing the parameter of category ID. This should
show the books of that category; if there are none, the We found no books...
message should be shown.

Next we will open the Book . aspx file and its code.

5]

Chapter 5

26. In the Book . aspx file, we will add the following code in the Featured Content section:

<asp:FormView

ID="BookDetails"

runat="server"

DataKeyNames="Id"
ItemType="wfSampleApp.CodeFirst .BookModel"
SelectMethod="BookDetails GetItem"

>

<ItemTemplate>

<hl><%#: Item.Title %></hl>

Description:

<%#: Item.Description %>

0On Sale:<asp:CheckBox ID="CheckBoxl" runat="server"
Checked="'<%# Item.IsOnSale %>' />

Rating:<%#: Item.BookRating %>

</ItemTemplate>

</asp:FormViews>

27. In the code behind the file, we will add the following select method. We can
automatically create its signature after entering the select method property
on the Formview control. Visual Studio's intelli-sense will ask us if we want to
create the method. The code is as follows:

Public BookModel BookDetails GetItem([QueryString("Id")] int? Id)

{

BooksContext dbBooks = new BooksgContext () ;
IQueryable<BookModel> dbSetBooks = dbBooks.Books;

if (Id.HasValue && Id > 0)

{

dbSetBooks = from b in dbSetBooks
where b.Id == Id
select b;

}

Return dbSetBooks.First () ;

}

Understanding the New Features of ASP.NET

28. Finally we will select Books . aspx as the default page and execute the application.
Upon execution, we should see the Books . aspx page inside the Site.Master
page, displaying all the books since we are not applying any filter by default:

(=] B e

‘_ ntip://localhost62284/Books.aspx P~-BOX ” | |- My ASP.NET Appli... ‘ ‘), Qg
.

Register Login

Thriller | Mistery | Sci-fi | Computer Science

Book : .NET 4.5 First Look
Onsale: [
Book : The lost book of Agatha Christie

On sale: [+

© 2012 - My ASP.NET Application

29. If we click on the Computer Science link at the top, we will be filtering by book
category and displaying only the books from this category.

30. Next we will click on a book link, located on its name, and we should see the Book.
aspx page showing the details of that book, as shown in the following screenshot:

= E i
‘Q . | http://localhost:62284/Book.aspx?Id=1 ,O RO X H | - My ASP.NET Appli... ‘ | fo

-

Register Legin

Thriller | Mistery | Sci-fi | Computer Science

.NET 4.5 First Look

Description:
& book to quickly and practically get into .NET 4.5

On Sale: [

Rating:5

© 2012 - My ASP.NET Application

100

Chapter 5

We created an ASP.NET Web Form using some of the new capabilities of ASP.NET 4.5.

We started by creating the CodeFirst model through Entity Framework, which we added
through NuGet. Note that the previous chapter is dedicated to Entity Framework and is
recommended to be read before the current one. We manually added the models for the book
and for the categories of books. Next we created a BooksContext class that inherits from
DbContext and an Initializer class that we will use to seed the database with initial
data when it is created. Note that we use DropCreateDatabaseIfModelChanges<Books
Context >, which means this will be executed only when there is any change in the database.

We have also used some data annotations attributes on our model classes, which will directly
affect the database and the user input validation. An example of this is the [Required]
attribute, which adds the input validation rule that this property must not be null.

The DbContext base class we used is from the Entity Framework and handles most of the
CodefFirst database creation and updates magic transparently for us.

The DropCreateDatabaseIfModelChanges base class provides a default implementation
of a class to handle the creation phase of a database, which we will use for the seed method
mainly.

Following that, we set up a connection string with the database context with BooksContext as
the class name, so we will create a database file for this data context, in the App Data folder.

In the Global.asax code in the Application_ Start method, we define an instance of
this class as the database initializer for BooksContext with Database.SetInitializer<
BooksContext> (new booksInitializer ()). This class will be executed every time the
database is created and provides two methods that we can override, InitializeDatabase
and Seed.

Next we set up the Ul, creating two pages: Books . aspx and book . aspx. On the Site.
Master page, we added a link to the Books . aspx page to its navigation menu, identified
by the <nav> tag. <nav> is an HTML5 element, supported with full intelli-sense in Visual
Studio 2012, among other languages.

We added a custom method to return the categories on the Site.Master page code,
which gets an instance of BooksContext class and collects the list of the database
categories into DbSet. They are then returned as IQueryable database categories
so that the Ul is able to consume them properly.

Understanding the New Features of ASP.NET

In order to use this, we are adding a ListView control into the body of the Site.Master
page using model binding. The use of the proper item type enforces type validation in our
strongly typed models, and we can rely on intelli-sense for help on properties, methods, and
so on. We choose our previously defined GetBookCategories method as a select method,
located in our Site.Master code.

If we take a look at the ASP.NET code containing the <%#: Item.Id%> data-binding
expression, the : after the # indicates that the resulting expression must be HTML-encoded,
which is good for avoiding HTML and XSS (Cross Site Scripting) attacks. The item expression
determines the bound property from our bound object. We also checked that this item has
full intelli-sense support for the data model/type it is bound to.

When we execute the application for the first time and create a DataContext instance,
the database is created—that is, if it didn't exist previously.

Continuing with application development, we added the functionality for the Books and
the Books pages, using the new model binding to bind the data to our Ul elements. The
only thing we need to do is to define the Select method to get the data, which is done
automatically (well, we do have to associate the method with the Ul but that's all it takes).

On the Books and Book pages, in the code behind the select methods, we have used
the QueryStringAttribute class to get the query string ID that we are passing from
the Categories menu we built earlier. In fact, ASP.NET makes this really easy in the
form of value providers that we can use directly for other usual sources such as query
string parameters, cookies, and session state. This attribute is provided to us from the
System.Web.ModelBinding hamespace, as can be seen in the following screenshot:

public BookModel BookDetails_GetItEm([Quer‘l\;String(“Id“)] int? Id)

{ ~ . ~ _ class System.Web.ModelBinding.QueryStringAttribute
BooksContext dbBooks = new BooksCo popiacents an attribute that specifies that model binding values are provided by a query string value.
TQueryable<BookModels> dbSetBooks = :

With this, we have explored some of the new and most interesting features of ASP.NET 4.5,
ending with a completely functional website.

There's more...

We now have a grasp of the power of ASP.NET Web Forms, with model binding, the use
of strongly typed data controls, HTML5 support, improved intelli-sense support, and its
integration with CodeFirst.

102

Chapter 5

It would be interesting to explore the rest of the data controls provided by ASP.NET to
familiarize ourselves with the showcased features (strongly typed data controls and
model binding) and to implement double binding with the BindItem element for
data-input scenarios.

Configuring our application to use

unobtrusive validation

This new feature will allow us to configure our validator controls for the use of unobtrusive
client validation logic in a very simple way. A very significant benefit of doing this is the
reduction of the amount of JavaScript rendered in the page, making it substantially smaller.

Note that unobtrusive means not obtrusive or undesirably noticeable, which is generally a
good practice for JavaScript, meaning that there is a separation of responsibility between
the web page (presentation) and its behavior.

Getting ready

In order to use this recipe you should have Visual Studio 2012. We will use this as well as
the application generated from our previous recipe.

How to do it...

Here we will create a sample app and see how to apply unobtrusive validation to it and how it
affects the resulting HTML.

1. Open our previous ASP.NET application or create a new one.

2. Openthe Web.Config file.

3. Locate the <appSettings> element.

4. |If it doesn't exist, add the following setting inside the element found previously:

<add key="ValidationSettings:UnobtrusiveValidationMode"
value="none" />

Understanding the New Features of ASP.NET
5.

104

We will open our Book . aspx page and add the following code (a control and two
validators) at the end of the TtemTemplate section:

<asp:TextBoxID="TbValidation"runat="server"/>
<asp:RequiredFieldValidatorID="tbvalidatorl"runat="server"ErrorMes
sage="The field is required.."
ControlToValidate="TbValidation"EnableClientScript="true"/>
<asp:RangeValidatorID="tbrangevalidatorl"runat="server"ErrorMessag
e="The range allowed is from 10 to 100"
ControlToValidate="TbValidation"EnableClientScript="true"/>

Next we execute the application and will see that the generated HTML looks as follows:

<input name="ctl00S$FeaturedContent$BookDetails$TbValidation"
type="text" id="FeaturedContent BookDetails TbValidation" />
<span id="FeaturedContent BookDetails tbvalidatorl"
style="visibility:hidden;">The field is required..

<span id="FeaturedContent BookDetails tbrangevalidatorl"
style="visibility:hidden; ">The range allowed is from 10 to 100</
span>

We can see that the handling of this validations has generated a lot of JavaScript
code after the HTML code:

<script type="text/javascript"s>

//<! [CDATA [

var Page Validators = new Array (document.
getElemthById("FeaturedContent BookDetails tbvalidatorl"),
document.getElementById("FeaturgdContent BookDetails
tbrangevalidatorl")) ; B B
//11>

</scripts>

<script type="text/javascript"s>

//<! [CDATA [

var FeaturedContent BookDetails tbvalidatorl = document.all

? document.all["FeaEuredContent_BookDetai1s tbvalidatorl"]
document.getElementById("FeataredContent BookDetails

tbvalidatori") ; a a

FeaturedContent BookDetails tbvalidatorl.controltovalidate =

"FeaturedContenE_BookDetail;_TbValidation";

FeaturedContent BookDetails tbvalidatorl.errormessage = "The field

is required..";

FeaturedContent BookDetails tbvalidatorl.evaluationfunction =

"RequiredFieldvValidatorEvaluateIsValid";

FeaturedContent BookDetails tbvalidatorl.initialvalue = "";

Chapter 5

var FeaturedContent BookDetails tbrangevalidatorl = document.all
? document.all ["FeaturedContent BookDetails tbrangevalidatorl"]
document .getElementById ("FeaturedContent BookDetails
tbrangevalidatorl") ;
FeaturedContent BookDetails tbrangevalidatorl.controltovalidate =
"FeaturedContent BookDetails TbValidation";
FeaturedContent BookDetails tbrangevalidatorl.errormessage = "The
range allowed is from 10 to 100";
FeaturedContent BookDetails tbrangevalidatorl.evaluationfunction =
"RangeValidatorEvaluateIsvValid";
FeaturedContent BookDetails tbrangevalidatorl.maximumvalue = "";
FeaturedContent BookDetails tbrangevalidatorl.minimumvalue = "";
//11>

</script>

<script type="text/javascript"s>

//<! [CDATA[

var Page ValidationActive = false;

if (typeof (ValidatorOnLoad) == "function") ({
ValidatorOnLoad () ;

}

function ValidatorOnSubmit () {

if (Page ValidationActive) {

return ValidatorCommonOnSubmit () ;
else {

return true;

document .getElementById ('FeaturedContent BookDetails

tbvalidatorl') .dispose = function() {
Array.remove (Page Validators, document.

getElementById('FeaturedContent BookDetails tbvalidatorl')) ;

}

document .getElementById ('FeaturedContent BookDetails
tbrangevalidatorl') .dispose = function() ({

Understanding the New Features of ASP.NET

Array.remove (Page Validators, document.
getElementById('FeaturedContent BookDetails tbrangevalidatorl')) ;

}
/711>

</script>

8. We will go back to the settings in the Web . config file and change the value
t0o WebForms:

<add key="ValidationSettings:UnobtrusiveValidationMode"
value="WebForms" />

9. Executing the application again will generate the following code:

<input name="ctl00$FeaturedContent$BookDetails$TbValidation"
type="text" id="FeaturedContent BookDetails TbValidation" />
<span data-val-controltovalidate="FeaturedContent

BookDetails TbValidation" data-val-errormessage="The fi
eld is required. ." id="FeaturedContent BookDetails
tbvalidatorl" data-val="true" data-val-evaluationfunction="Re
quiredFieldValidatorEvaluateIsValid" data-val-initialvalue=""
style="visibility:hidden;">The field is required..

<span data-val-controltovalidate="FeaturedContent BookDetails
TbValidation" data-val-errormessage="The range allowe
d is from 10 to 100" id="FeaturedContent
BookDetails tbrangevalidatorl" data-val="true" data-val-evaluatio
nfunction="RangeValidatorEvaluateIsValid" data-val-maximumvalue=""
data-val-minimumvalue="" style="visibility:hidden;">The range
allowed is from 10 to 100

10. We can observe that this is different from before, with a few data attributes rendered
that have the information the validator needs. On the other hand, we will find that no
inline JavaScript code has been generated this time.

We just had to add a setting into Web . Conf ig file; however, unobtrusive validation is enabled
by default in new projects, so in most cases, even if this setting is not there, it is active.

There's more...

We could also configure it from code, setting System.UI.ValidationSettings.
UnobtrusiveValidationMode t0 UnobtrusiveValidationMode .WebForms Or setting
this on a particular page and changing the page's UnobtrusiveValidationMode property
1o UnobtrusiveValidationMode .WebForms Of none.

106

Chapter 5

Using Smart Tasks in the HTML editor

The HTML editor provides improved support for some of the server controls that used to have
dialogues and wizards for their configuration and setup. Usually we had to do this from the
design view or move our mouse to the properties to launch these configuration wizards.

With ASP.NET 4.5, we have them at our fingertips in our source code view.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

How to do it...

In this recipe we are going to see how to activate and use the Smart Tasks in the HTML editor.

1. Open our previous ASP.NET application or create a new one.

Open the Site.Master page.

Locate the <asp:ListViews server control that we added (or add a new one).
Place our text input cursor in the code, over the tag; click on it so that it is selected.

ok 0N

We should see an underline glyph at the beginning of the element and it
should appear highlighted, showing that it has been selected, as shown in
the following screenshot:

<asp:listView
- ID="ListBookCategories"
ITtemType="wfSampleApp.CodeFirst.CategoryModel™
runat="server"
SelectMethod="GetBookCategories">
<ItemTemplate>
<a href="Books.aspx?id=<¥#: Ttem.Id %>"><%#: Ttem.Title %>
</ItemTemplate>
<ItemSeparatorTemplate>| </ItemSeparatorTemplate>
</asp:ListView>

6. When we click over the glyph or put the mouse over the <asp: tag, we will see that
the smart task glyph expands into an arrow.

Understanding the New Features of ASP.NET

7. We can click on this arrow to expand the Smart Tasks panel or we can press Ctrl +.
to directly expand it, as shown in the following screenshot.

<asp:ListView
ListView Tasks
Format Element

Choose Data Source: |(None) E|
<Itemlemplates

8. From there, we can select the data source selection, create a new one, and launch its
wizard, as shown in the next screenshot:

Data Source Configuration Wizard @lﬁ

i:.__) Choose a Data Source Type

Where will the application get data from?

sQL ..,i e o‘ﬁ :.: @

Database Entity LINQ Object Site Map XML File

Use LINQ to connect to a DataContext or objkact in the Bin or App_Code directory for the application.

Specify an ID for the data source:
LingDataSourcel

l OK l ‘ Cancel ‘

108

Chapter 5

We just saw how easy it is to use this time-saving new feature so that we do not have to
leave our code panel to perform these tasks, improving our productivity, which always
comes in handy.

Using WAI-ARIA support

Visual Studio 2012 fully supports the Web Accessibility Initiative-Accessible Rich Internet
Applications (WAI-ARIA) standard, making it easier for us to create accessible websites. This
is the Accessible Rich Internet Applications suite that provides a way to make web content
and apps more accessible through this framework, and this in turn allows us to add attributes
for identifying features regarding accessibility. Basically, ARIA is a set of semantic tags and
attributes that identify features regarding accessibility in user interaction, how they relate to
each other, and their state.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

How to do it...

Here we will see how to use Visual Studio 2012's support for WAI-ARIA:

Open our previous ASP.NET Application or create a new one.
Open the Site.Master page.
Go to the <nav> element.

N

Press Ctrl + the Space bar.

Understanding the New Features of ASP.NET

5. We will be able to see all the WAI-ARIA attributes, which are prefixed with the aria-
prefix, as we can see in the following screenshot:

<ul id="menu">
<ii | ><a runat="server" href="~
<1}><9 accesskey -
<lir< _ - -
<1is< # aria-activedescendant
 & aria-atomic
av> @@ aria-autocomplete
@ aria-busy
& aria-checked
& aria-controls
' . @ aria-describedby
:ylef te)(t_" aria-disabled -
stView

6. Now it is extremely easy to add the necessary semantics to our HTML5 document.

It is really easy to add the WAI-ARIA attributes using the Visual Studio 2012 intelli-sense
feature, which automatically recognizes them.

Using the Extract to User Control feature

Modularizing is always a good idea to simplify code. With the Extract to User Control feature,
we have a powerful tool that will help us with this refactoring functionality.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

Chapter 5

How to do it...

Here we are going to show how to easily generate a user control from a section of code in our
web page.

1.

ok 0N

Open our previous ASP.NET application or create a new one.

If you created a new application, add a control and customize it to your liking.
Open the Site.Master page.

Go to the div body and select the <section> element surrounding it.
Right-click on the selected code and click on the Extract to User Control option.

</header>
<div id="body">»
<section style="text-align: center; background-color: #fff">
<asp:ListView

ID: %1 Insert Snippet.. Ctrl+K, Ctrl+X

Tt 41 Surround With... Ctrl+K, Ctrl+S
rur
sel ob Cut Ctrl+X
<I gl copy Ctrl+C
t‘tem.Ti‘tle
</
<T
</asp:l X Delete Del
</section>
View Code
gk Viewin Page Inspector Ctrl+K, Ctrl+G
<asp:Contel) " />
<section ¢! Breakpoint ¢
<asp:C Ga Run To Cursor Ctrl+F10 t" />
</section>
</div>
<footer> c';-r Extract to User Control
<div c}ass:. #1 Add Content Page
<div c]
<p: Collapse Tag Ctrl+M, Ctrl+T
« | B Format Selection Ctrl+K, Ctrl+F L

& Split |« Source

Formatting and Validation...

Understanding the New Features of ASP.NET

6. On the Save as dialog, assign the name ListOfCategories.ascx and click on the

OK button.
Save as | s ﬁl
Project folders: Contents of folder:
4 B wiSampleApp & About.aspx
m Account @ Book.aspx
® App_Data € Books.aspx
W App_Start & Contact.aspx
i CodefFirst © Default.aspx
. B Content favicon.ico
M Images *‘:‘]Global.asax _
& Properties - p_ackages.conflg
; £ Site.Master
=8 References 2 Web.confi
- Scripts SO
File name: ListOfCategorieslascx |AII Files (**) - |
l OK l ‘ Cancel ‘

7. Now we will need to move the GetBookCategories () method from the code,
as the related methods are not moved.

We simply created a user control based on a section of our HTML code. We just have to
remember to move the methods and code that are not moved.

Using the Page Inspector feature

Page Inspector is a tool that renders our pages in our Visual Studio 2012 IDE and lets us
examine the source code and its output. It is great to determine which piece of code has
produced a specific HTML markup code.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

How to do it...

In this section we are going to see how to use the Page Inspector to inspect a page along with

its styles.

1. Open our previous ASP.NET application.

Chapter 5

2. Right-click on the Books . aspx page and select the View in Page Inspector option.

3. Once the Page Inspector panel opens, click on the Inspect button at the bottom of
the rendered page and click on the Categories selector. The bottom section should
showcase the rendered HTML; we should see the applied styles on our left and the
ASP.NET code that generates the selected element on our right.

- My ASP.NET Application - Page Inspector

@ 0 Problems | § Browser, @

-1 x

@ (& httpy/localhost:62284/Books.aspx?id=2

ListOfCategoriesascx &
<%@ Control Language="C#" AutoEventiireup="true" CodeBehind="ListOfCategori,

Register Login

Mistery
Sci-fi

Computer
Science
</section>
<span id="FeaturedContent_BooksList_EmptyBooksLabe
books. ...
<section class="content-wrapper main-content
clear-fix"></section>

</div>

4<footer>

4<div class="content-wrapper">

4<div class="float-left">

N secion | Home Books About Contact
Thriller | Mistery | Sci-fi | Computer Science
‘e found no books...
[© 2012 - My ASP.NET Application
& Inspect Files v
4<div id="body"> * Styles Trace Styles Layout Attributes
a<section style="text-align: center; background inherited
-color: rgb(255, 255, 255);"> tnherite:
Thriller 4<body> body { site.css

@color:
@font-family:

Mreb(s1, 51, 51);

@font-size: 0.85em;
¥

4header, footer, hgroup, nav, section { site.css
@display: block;

¥
“inlined {
[@background-col.. CJrgb(255, 255, 255);
[@text-align:
¥

center;

section style"text-align: center; background-color: #FFf™> |
<asp:ListView
1D="ListBookCategories"
TtenType="wfSampleApp.CodeFirst.CategoryModel”
runat="server"
Selectethod="GetBookCategories">
<ItenTemplate>

<a href="Books.aspx?id=<%#: Item.1d %>"><%#: Item.Title %>

</ItemTemplate>
<ItemSep Template>| </ItemSep: emplate>

“Segoe UI", Verdana, Helvetice

</asp:ListViews
/section:

Understanding the New Features of ASP.NET

The page inspector is an outstanding feature to discover where a concrete style is being
applied or what is provoking a change in our interface. It allows us to see the source HTML,
the styles, and the final generated code as well as the final rendering, hence becoming a
really useful tool.

Creating an asynchronous HTTP module

ASP.NET 4.5 provides us with the full C# language features described previously in Chapter 2,
Exploring the Top New Features of the CLR. Also, the additional methods and features make it
easier for us to work with asynchronous language features.

This helps enormously in writing asynchronous HTTP modules and handlers.

Performance is also improved, as the model is asynchronous; it doesn't keep the thread
blocked until the request is completed.

Getting ready

In order to use this recipe you should have Visual Studio 2012.

How to do it...

We are going to create an asynchronous HTTP module. An HTTP module allows us to
intercept HTTP requests for modifying those requests so we can generate a response
in a customized way.

1. Create a new class library project and name it AsyncHTTPModule.

2. Add a reference to the System.Web assembly.

3. Add a class and name it CustomModule. Note that we could as well add an item
of type ASP .NET, which would do most of the following for us:

o AddaUsing clause to the System.Web page

o Make the class implement ITHttpModule

o Right-click on the interface and click on the Implement interface option
o Add the following asynchronous method:

private async Task getWebPageContent (object caller, EventArgs e)

{

WebClient wc = new WebClient () ;

Chapter 5

var result = await wc.DownloadStringTaskAsync
("http://www.packtpub.com/") ;

HttpApplication app = (HttpApplication)caller;
app.Response.Write (result) ;

}

4. Note that we will need to add a Using clause to System.Net to use the
WebClient method.

5. Next we will implement the Init method:
public void Init (HttpApplication context)

{

// We use the EventHandlerTaskAsyncHelper to wrap the task
based method to use with the "old" async programming model.

EventHandlerTaskAsyncHelper asyncHelper = new EventHandlerTaskAsyn
cHelper (getWebPageContent) ;

// The helper class instance generates the Begin/End methods
for us from a Task Function.

context .AddOnPostAuthorizeRequestAsync (asyncHelper.
BeginEventHandler, asyncHelper.EndEventHandler) ;

}

We should now implement the dispose method. Leaving it empty will do for now.
And we have our ASP.NET 4.5 asynchronous module ready.

In this scenario, the request thread is released when the request has been initiated and
a new thread is created when the request finishes, with the response being received on
a brand new thread.

Implementing an asynchronous HTTP module fits in perfectly with the core of this behavior.

We implemented IHt tpModule and created an asynchronous task. This method can be
awaited, which means that it will not block the thread on which it is executed; when it has
finished, it will continue from the point where it was awaited, control being returned to the
caller of the async method. When an async method or the task it returns finishes, it invokes
its continuation from where it left off.

After defining the asynchronous method, which will download the www . packtpub.com
website asynchronously and return it as the response, we need to assign it so it can be
used by the HTTP module.

Understanding the New Features of ASP.NET

We do this with the EventHandlerTaskAsyncHelper class, which we get from the
System.Web hamespace.

This helper method is meant to integrate a task-based method with the programming model
exposed by the ASP.NET HTTP pipeline, which will assign the Begin and End methods to the
async helper's BeginEventHandler and EndEventHandler event handlers.

It would be interesting to explore the asynchronous HTTP handler feature of ASP.NET 4.5
since the new async features would allow us to significantly improve the performance of
our applications.

Implementing WPF's
new features

In this chapter we will cover:

Implementing asynchronous error handling with INotifyDataErrorInfo
Using the WeakEvent pattern with WeakEventManager

Using the dispatcher's new features

Data binding to static properties

Throttling the data source update delays

LiveShaping — repositioning elements when bound data changes

Introduction

WPF has been enhanced in .NET 4.5, including new and improved controls, such as the
ribbon, better data validation, and the INotifyDataErrorInfo interface, to get into the
world of asynchronous data validation. The main new features of .NET 4.5 are as follows:

>

>

Improved performance for displaying large sets of data.

Improvements in data binding, which involves binding to static properties, custom
types (ICustomTypeProvider), reacting when the data context is disconnected,
and introducing timeouts for property changes. We can also obtain the data binding
information for a binding expression.

Data source update delays help us configure a delay to update a data source from
the Ul, which can be very useful to improve our application's performance.

Implementing WPF's new features

» Better weak-event pattern support, now accepting markup extensions.
» LiveShaping or repositioning of data as the values change.

» Accessing collections on the Ul threads.

In the following sections, we will cover and explain some of the most relevant changes,
improvements, and actions.

Implementing asynchronous error handling

with INotifyDataErrorinfo

The INotifyDataErrorInfo interface has been a .NET citizen for some time, at least for
Silverlight developers. It brought a new improved system for validating data, which we now
have in WPF, with all of its power and interesting things to discover.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

In this recipe we will explain how to use this new powerful feature of WPF in .NET 4.5.

1. First, open Visual Studio 2012 and create a new project. We will select the WPF
Application template from the Visual C# category and name it WPFValidation.

2. Create a class named BaseClass.cs. Edit it and implement the interfaces
INotifyPropertyChanged and IDataErrorInfo. We can copy the following
code inside it:
public abstract class BaseClass : INotifyPropertyChanged,
INotifyDataErrorInfo
{

private static Dictionary<string, PropertyChangedEventArgss>
argumentInstances = new Dictionary<string,
PropertyChangedEventArgss> () ;

private Dictionary<string, List<string>> errors = new
Dictionary<string, List<string>>();

public event PropertyChangedEventHandler PropertyChanged;
public event EventHandler<DataErrorsChangedEventArgss>
ErrorsChanged;

Chapter 6

public bool HasErrors

{

get { return this.errors.Count > 0; }

public IEnumerable GetErrors (string propertyName)
{
if (string.IsNullOrEmpty (propertyName) ||
lthis.errors.ContainsKey (propertyName))
return null;

return this.errors [propertyName] ;

public void AddError (string propertyName, string error, bool
isWarning)

{

if (!this.errors.ContainsKey (propertyName))
this.errors [propertyName] = new List<strings () ;
if (!this.errors[propertyName] .Contains (error))

if (isWarning)

this.errors [propertyName] .Add (error) ;
else

this.errors [propertyName] . Insert (0, error) ;

this.RaiseErrorsChanged (propertyName) ;

public void RemoveError (string propertyName, string error)

if (this.errors.ContainsKey (propertyName) &&
this.errors [propertyName] .Contains (error))

this.errors [propertyName] .Remove (error) ;

if (this.errors[propertyName] .Count == 0)
this.errors.Remove (propertyName) ;

Implementing WPF's new features

this.RaiseErrorsChanged (propertyName) ;

public void RaiseErrorsChanged(string propertyName)
{
if (this.ErrorsChanged != null)
this.ErrorsChanged(this, new DataErrorsChangedEventArg
s (propertyName)) ;

}

protected virtual void OnPropertyChanged (string propertyName)
{
if (this.PropertyChanged != null)
this.PropertyChanged (this, new PropertyChangedEventArg
s (propertyName)) ;
}
}

3. We can now add a class that inherits this BaseClass, so let's add the BooksModel
class to the equation:

class BooksModel : BaseClass
private string name;
public string Name
get { return name; }
set

{

name = value;

if ((name.Length < 2) || (name.Length > 150)) ({
this.AddError ("Name", "The name must be over 2
characters and less than 150 characters", false);

}

OnPropertyChanged ("Name") ;

private String isbn;
public String ISBN
{
get { return isbn; }
set {

120

Chapter 6

isbn = value;
ValidateISBN () ;

}
private async Task ValidateISBN ()
{
await Wait_a bit();
Random rnd = new Random(DateTime.Now.Millisecond) ;
int likeness = rnd.Next (0, 6);
if (likeness > 2)
{
this.AddError ("ISBN", "I don't like the ISBN", false);
}
else
{
this.RemoveError ("ISBN", "I don't like the ISBN") ;
}
}

private Task Wait_a bit() {
return Task.Run(() => Thread.Sleep(1500)) ;

}

Continuing, we will open and edit the MainWindow.xaml file to provide a user
interface, as follows:

<Window x:Class="INotifyDataErrorInfoWPF.MainWindow"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="150" Width="425">
<Grid Margin="0,0,0.4,-0.4">
<Grid.ColumnDefinitionss>
<ColumnDefinition Width="12.8"/>
<ColumnDefinition Width="65%*"/>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitionss>
<RowDefinition Height="15.2"/>
<RowDefinition/>

Implementing WPF's new features

</Grid.RowDefinitions>
<Grid Margin="0.2,15,8.2,0.4" Grid.Column="1" Grid.
RowSpan="2">
<Grid.ColumnDefinitionss>
<ColumnDefinition Width="7*"/>
<ColumnDefinition Width="23*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitionss>
<RowDefinition Height="32"/>
<RowDefinition Height="32"/>
<RowDefinition/>
<RowDefinition Height="4*"/>
</Grid.RowDefinitions>
<Label Content="Name:"/>
<Label Content="ISBN:" Grid.Row="1"/>
<TextBox x:Name="tbName"
Text="{Binding Name, Mode=TwoWay, ValidatesOnNotifyDataErr
ors=True}"
Grid.Column="1"
Margin="2,2,2.4,2"
/>
<TextBox x:Name="tbISBN"
Text="{Binding ISBN, Mode=TwoWay, ValidatesOnNotifyDataErr
ors=True}"
Grid.Column="1" Grid.Row="1"
Margin="2,2,1.4,2"
/>
</Grids>
</Grids>
</Window>

5. Next, we will add some code in it to create an instance of BooksModel and set it
as the context of the view. We will edit the MainWindow constructor as follows:

public MainWindow ()

{

InitializeComponent () ;

BooksModel bm = new BooksModel () ;
this.DataContext = bm;

122

Chapter 6

6. If we run our application and introduce some information, for example, if we type a
character in the Name field and exit it, we should see the input field surrounded by
a red ling, as shown in the following screenshot:

| MainWindow [= _‘—J@ e S

8 - - -

Name: a

ISEN:

Additionally, if we input some text in the ISBN field, it gets validated (in a bit more than a
second) by a random function that decides whether it likes the value or not. So we can see
an asynchronous validation in place. Note that the asynchronous nature of this validation
would allow us to make it happen on the server, which could have more advanced business
validation rules, that make sense to delegate some business validation to it.

If we take a look at the INotifyDataErrorInfo class diagram in the following screenshot,
we can appreciate its simplicity. Its interface exposes an ErrorsChanged event that is fired
whenever an error is detected or removed, a HasErrors read-only property, and a GetErrors
method that returns IEnumerable with the error list associated with the requested property:

‘. INotifyDataErrorinfo 2
Interface
2

= Properties
SR Hastrrors
= Methods
@ GetErrors
= Events

¥ ErrorsChanged

We implemented these elements on BaseClass, together with the usual event for
INotifyPropertyChanged.

Implementing WPF's new features

Additionally, we created the AddError and RemoveError helper methods to handle the
addition and removal of errors in an easy way. Errors are automatically broadcasted to
anybody who is listening to them—mainly the bindings in place.

The RaiseErrorsChanged method will raise the event to notify that the errors have
changed, which will happen whenever we have added or removed an error.

Next, we have implemented the BookModel class, which inherits from BaseClass.
For both its properties, we set up validations on its property setters.

For the first property, Name, we just check that its length is between 2 and 150 and if it
is not we call the AddError method with the name of the property and the error. Note
that there is a third parameter, which indicates if this is a warning.

For the 1SBN property, we perform an asynchronous validation using the async method

ValidateISBN (). As an example, it will first await an async method, named Wwait_a
bit (), that just sleeps for 1.5 seconds, and then decides randomly whether the value is
valid or not.

This example showcases that we could in fact go to the server, ask for it to validate the
value, see if the updated ISBN already exists or is registered, and if it does, return an error.

Finally, we have created a very simple interface to enter data into two TextBox
controls, which we have bound to the properties. Remember we need to add
ValidatesOnNotifyDataErrors = True. If we don't do this, the Ul field will
not react to the validation events.

There's more...

This event based validation system is in many ways similar to INotifyPropertyInfo and
is ideal for asynchronous validation systems that can be run on the server. Additionally, this
enables us to implement really advanced scenarios such as:

» Performing cross-property validations that apply to more than one field, for example,
the typical from - to range of dates. Now, we can mark both as invalid when the from
date is greater than the to date.

» Hierarchical validation systems are those in which an error in a property element is
cascaded to its parent, so if a piece of the complete hierarchy is invalid, the whole
structure of data is invalidated.

124

Chapter 6

Using the WeakEvent pattern with

WeakEventManager

Normal event handlers are defined using the += operator and the source keeps a reference
to its listeners. If this reference is not removed, it prevents the listener from receiving garbage
data. This is one of the most common causes of memory leaks, which are now much easier
to avoid.

WPF 4.5 weakEventManager provides us with a central event dispatching capability that
allows the listeners to be de-allocated from memory, while the event is still alive.

While this is not a strictly new behavior, WPF 4.5 brings us enhanced support to set up a weak
reference to an event. Prior to this version of WPF, we had to create a weak event manager for
every event. This is not the case anymore. Now we can use a generic WeakEventManager for
this; let's see how it works.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

Here we will implement some events with the WeakEventManager class.

1. First, open Visual Studio 2012 and create a new project. We will select the WPF
Application template from the Visual C# category and name it WPFWeakEvents.

2. Openthe MainWindow.xaml view and add a Button Click event, name it
btnRaiseEvent, and put Raise an event..in the content.

3. Openthe MainWindow.xaml .cs code and change the MainWindow class code
to this:

public partial class MainWindow : Window

{

public MainWindow ()

{

InitializeComponent () ;

// The leaking way
// this.btnRaiseEvent.Click += btnRaiseEvent Click;

SetupWeakEventManager () ;

Implementing WPF's new features

void btnRaiseEvent Click (object sender, RoutedEventArgs e)

{

MessageBox.Show ("Hey, use the WeakEventManager or I might
leak...");

}

private void SetupWeakEventManager ()

{

WeakEventManager<Button, RoutedEventArgss>.AddHandler (this.
btnRaiseEvent, "Click", btnRaiseEvent Click);

}
}

4. And that's it! We just implemented the WeakEventManager class to handle the
Button Click event in a proper way that will provide a safer event handling, which
will not provoke memory leaks.

We used the WeakEventManager class, which provides us with a way to add and remove a
handler through static methods, so we now have a much easier way to add weak event handlers.

Take a look at the WeakEventManager generic class, pictured in the following screenshot:

WeakEventManager <TEventSource, TEventArgs> A |
Generic Class

+ WeakEventManager
-

= Methods
@ AddHandler
@, NewlListenerList
@ RemoveHandler
@, Startlistening
@, Stoplistening

To use the WeakEventManager class, we only need to provide the type that raises the
event and the type with the event's data. Next, we invoke the AddHandler method, which
requires the specific object that we are subscribing to, the event name, and the associated
event handler.

126

Chapter 6

We should also use the RemoveHandler method to remove the event handler, which is a
polite behavior for our code, wherever possible.

Before this WPF version, we had to implement the IWeakEventListener interface on the
event listeners, which is no longer required. However, it can still be useful in some scenarios—
bear in mind that this is driven by reflection and thus has a performance penalty. This could
be interesting for implementing a custom control or a library, avoiding performance penalties.
Also doing so could be interesting for testing purposes.

Using the dispatcher's new features

The Dispatcher class is a very common way of accessing the Ul thread while we are on
another thread.

With WPF 4.5 we have some new methods for synchronous and asynchronous operations,
which make this Dispatcher class more async and await friendly. Another improvement is
that Dispatcher. Invoke and Dispatcher.InvokeAsync are now able to return a value.

Finally, we also have a new parameter of CancellationToken type, which provides the
obvious capability of being able to cancel dispatched tasks.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

In the following steps we will see how to use the Dispatcher class to dispatch a task that
accesses the Ul thread.

1. First open Visual Studio 2012 and create a new project. We will select the WPF
Application template from the Visual C# category and name it WPFDispatcher.

2. Open the MainWindow.xaml view and add a Button Click event, name it
btnDispatcher and enter 1 as the content.

3. Openthe MainWindow.xaml .cs code and change the MainWindow class code
as follows:

public MainWindow ()

{

InitializeComponent () ;

Implementing WPF's new features

this.btnDispatcher.Click += btnDispatcher Click;

void btnDispatcher Click (object sender, RoutedEventArgs e)

{

TestNewDispatcherAsyncMethod () ;

public async void TestNewDispatcherAsyncMethod()
// Usage of the InvokeAsync method

var TaskDoSomething = await Dispatcher.InvokeAsync<Task<string
>> (DoSomething) ;

// We wait for the task to finish
TaskDoSomething.Wait () ;

// Getting the result from the finished task
string resultFromTask = TaskDoSomething.Result;

// Usage of the Invoke method which returns a value of a
defined type

var returnedOject = Dispatcher.Invoke<strings> (
DoSomethingElse) ;

}

private string DoSomethingElse ()

{

return "hi";

private async Task<string> DoSomething()

{

//As we are being dispatched we could access the UI thread and
update-change something there...

String num = this.btnDispatcher.Content.ToString() ;
int iNum;

int.TryParse (num, out iNum) ;

iNum = iNum + 1;

this.btnDispatcher.Content = iNum.ToString() ;

128

Chapter 6

return "I should do something...";

}

4. We can now execute the code and click the button. For every click it will increase its
value by one.

We have used one of the new Dispatcher methods, which can be called asynchronously.

// Usage of the InvokeAsync method

var TaskDoSomething = await Dispatcher.InvokeAsync<Task<strings>> (DoSo
mething) ;

The example illustrates how to receive the result of Task where we are changing a Ul element
and returning a value.

We can observe that we are executing a dispatcher operation asynchronously, which is in sync
with the Ul thread.

We are also invoking it in the usual non-asynchronous way with:

// Usage of the Invoke method which returns a value of a defined type
var returnedOject = Dispatcher.Invoke<string>(DoSomethingElse) ;

As you can see, we can now return a result value of a specific type with a Dispatcher.
Invoke method.

To complete the example, the DoSomething asynchronous method makes a very simple
change on the Ul thread.

There's more...

If we take a look at the new methods that the Dispatcher class provides, we find the
CancellationToken method, which enables us to cancel an action (or prevent it from
being executed). This method belongs to the .NET 4.0 Cancellation Framework, which is
useful for a proper implementation of the unit of work pattern.

We just saw how to use two of the most useful new methods, but there are a lot more to
be explored.

Implementing WPF's new features

Data binding to static properties

With WPF 4.5 we can now bind to static properties. Let's see how.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

In this recipe, we are going to see how to use the capability of WPF in .NET 4.5 to bind to
static properties as well as how to define and notify their property changes.

1. First, open Visual Studio 2012 and create a new project. We will select
the WPF Application template from the Visual C# category and name it
WPFStaticPropertiesBinding.

2. Addaclass and name it MyStaticDetails.cs, adding the following code:

public class MyStaticDetails
{

public static event EventHandler<PropertyChangedEventArgss>
StaticPropertyChanged;

protected static void OnPropertyChanged (string propertyName)

{

if (StaticPropertyChanged != null)
StaticPropertyChanged (null, new PropertyChangedEventAr

gs (propertyName)) ;

}

private static int myAge;
public static int MyAge
{
get { return myAge; }
set {
myAge = value;
OnPropertyChanged ("MyAge") ;

private static string myName;

130

Chapter 6

}

public static string MyName
{
get { return myName; }
set {
myName = value;
OnPropertyChanged ("MyName") ;

3. Openthe MainWindow.xaml .cs code and change the MainWindow class code
as follows:

public MainWindow ()

{

}

InitializeComponent () ;
MyStaticDetails msd = new MyStaticDetails() ;
MyStaticDetails.MyAge = 40;

MyStaticDetails.MyName = "Jose Louis";

this.DataContext = msd;

4. Openthe MainWindow.xaml view and add two rows and two columns to the grid,
then add two labels and two TextBox controls, and finally a binding expression to
their Text property. The resulting XAML code should be similar to the following;:

<Grid>

<Grid.ColumnDefinitionss>
<ColumnDefinition Width="21*"/>
<ColumnDefinition Width="64*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitionss>
<RowDefinition Height="30"/>
<RowDefinition Height="29.6"/>
<RowDefinition/>
</Grid.RowDefinitions>
<Label Content="Name: " />
<Label Content="Age: " Grid.Row="1"/>
<TextBox Grid.Column="1" TextWrapping="Wrap"
Text="{Binding MyName, Mode=TwoWay}"
Margin="2"/>

Implementing WPF's new features

<TextBox Grid.Column="1" Grid.Row="1" TextWrapping="Wrap"
Text="{Binding MyAge, Mode=TwoWay}"
Margin="2"/>
</Grids>

5. Add a breakpoint on the MyName setter.

6. Execute the application; we should see the following screen:

i | MainWindow = [& 28
Name: lose Louis
Age: 40

7. Go to the Name field and change it to Pancho, for example.

When we move the cursor out of the textbox (for example, by pressing the Tab

key), we will see that the break point is properly hit so the binding works on both
directions, as expected.

We implemented one of the two static events that we have in .NET 4.5 to notify changes in
static properties, specifically the StaticPropertyChanged event. We used it to pass a
PropertyChangedEventArgs event to provide, in turn, the name of the property being
changed. The implementation is very similar to that of our non-static PropertyChanged
event.

public static event EventHandler<PropertyChangedEventArgss>
StaticPropertyChanged;

protected static void OnPropertyChanged (string propertyName)

{

if (StaticPropertyChanged != null)
StaticPropertyChanged(null, new PropertyChangedEventArgs (prop
ertyName)) ;

}

132

Chapter 6

As we already did with the NotifyPropertyChanged event, we now call the method
we defined, to raise our StaticPropertyChanged event:

OnPropertyChanged ("MyAge") ;

The rest of the implementation is the creation of an instance of MyStaticDetails,
adding a default value and setting this as DataContext of the MainWindow Ul.

On the MainWindow Ul, we set up a grid with two rows and columns where we have placed
the headings as labels and the controls to display and edit the data as textboxes.

Finally, we added a binding expression for the Text property for the textbox, using TwoWay
binding in a standard fashion.

There's more...

We could have implemented the other interface:
public static event EventHandler MyPropertyChanged;

However, we would have needed to implement it for every property, since the events are
named for each individual property name. In our case, we would have had the events,
MyAgeChanged and MyNameChanged. This can be implemented for a reduced set of
properties but is definitely not scalable.

Throttling data source update delays

With WPF 4.5, we can now control how the data source that is bound to a part of the UI,

gets updated. The best example here is a slider bound to a value, which, for example, has

to perform a calculation. With WPF 4.0, the property setter was called for every changed
event that was launched by the binding in place and, if we didn't do anything to prevent the
excessive calculations, we could end with a responsiveness problem. This could be even
worse if some calculation was being performed in response, such as updating the total price.

Now, this doesn't happen, as we can control the delay after the property stops changing,
before updating the source. This means that we can change a Ul element and we can control
how the bound property gets updated. Adding a delay to it will benefit our performance, so
that thousands of updates cannot be thrown.

In the slider example, its PropertyChanged event was invoked many times for every
movement. Now we can instruct it to get invoked a bit after the slider stops moving.

Implementing WPF's new features

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

Here we are going to see how to apply throttling properly to our bindings to make our
application interface more responsive.

1. First, open Visual Studio 2012 and create a new project. We will select
the WPF Application template from the Visual C# category and name it
WPFAutoDelayedUpdates.

2. We will add the BaseClass.cs class from the Implementing asynchronous
error handling with INotifyDataErrorinfo recipe, which implements the
INotifyDataErrorInfo and the INotifyPropertyChanged interfaces for us.

3. Add a class and name it BookModel . cs, adding the following code:

class BookModel : BaseClass

{

private int bookRating;

public int BookRating
{
get { return bookRating; }
set {
ValidateRating() ;
bookRating = value;
OnPropertyChanged ("BookRating") ;

private async Task ValidateRating()
{
//await Wait a bit () ;
Thread.Sleep(200) ;
Random rnd = new Random(DateTime.Now.Millisecond) ;
int likeness = rnd.Next (0, 6);
if (likeness > 2)

{

this.AddError ("BookRating", "The rating is not wvalid"
false) ;

’

Chapter 6

else

{

this.RemoveError ("BookRating", "The rating is not

Go to the MainWindow.xaml . cs class and add the following code in the constructor:

public MainWindow ()

{

InitializeComponent () ;

BookModel bm = new BookModel () {
BookRating = 50
}i

this.DataContext = bm;

}

Continuing, we will open the MainWindow.xaml class and create the interface.
Divide the grid into two columns, one for the labels and another for the displayed
and editable values. Add the s1ider control for the editable values. The XAML
code should look like the following:

<Window x:Class="WPFAutoDelayedUpdates.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/
presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="MainWindow" Height="350" Width="525">
<Grid>
<Grid.ColumnDefinitionss
<ColumnDefinition Width="211*"/>
<ColumnDefinition Width="299*"/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitionss>
<RowDefinition Height="30"/>
<RowDefinition Height="30"/>
<RowDefinition Height="30"/>
<RowDefinition Height="30"/>
<RowDefinition/>
</Grid.RowDefinitions>
<Label Content="Select the book Rating" Grid.
ColumnSpan="2" Margin="0,0,0.4,0.4"/>

Implementing WPF's new features

<Label Content="Without Data Source Update Delay: "
Margin="0,30,1.2,0.8" Grid.RowSpan="2"/>

<Label Content="With Data Source Update Delay: " Grid.
Row="2" Margin="0,0.2,1.2,0.2"/>
<Label Content="The bound value: " Grid.Row="3" />

<TextBox TextWrapping="Wrap" Text="{Binding BookRating,
Mode=TwoWay}" Grid.Column="1" Grid.Row="3" IsReadOnly="True" />

<Slider x:Name="SliderNotDelayed"
Value="{Binding BookRating, Mode=TwoWay}"

Grid.Column="1" Grid.Row="1" Margin="3"
Maximum="100" />

<Slider x:Name="SliderDelayed"

Value="{Binding BookRating, Mode=TwoWay,
Delay=200}"

Grid.Column="1" Grid.Row="2" Margin="3"
Maximum="100" />

</Grids>
</Window>

6. We will bind the S1iders and TextBox controls in TwoWay mode to the
BookRat ing property. On the second binding, we specify the Delay keyword
with a 200 milliseconds delay:
<Slider x:Name="SliderDelayed"

Value="{Binding BookRating, Mode=TwoWay, Delay=200}"
Grid.Column="1" Grid.Row="2" Margin="3" Maximum="100" />

7. When we execute the application we will see the following Ul:

=

| MainWindow ==l X

Select the book Rating

Without Data Source Update Delay:
With Data Source Update Delay:

The bound value; 50

136

Chapter 6

8. If we slide the first S1ider to one side or the other, we will see that the response is
sluggish, since the value is updated for every movement, invoking the setter, which
executes a costly operation (Thread.Sleep (200) ;). The second Slider has a
much smoother response, because it only raises the setter 200 milliseconds after
its value has finished changing.

9. The power of this feature becomes crystal clear with this example. It will make life
much easier for yourself and your users.

We used a base class from the Implementing asynchronous error handling
with INotifyDataErrorinfo recipe as a starting point, providing us with an
INotifyPropertyChanged interface implementation as a base to work on our new code.

We implemented a class derived from our BaseClass and created only one property,
BookRating, of integer value. When set, it raises its PropertyChanged event with
the OnPropertyChanged ("BookRating") ; instruction.

Additionally, the setter is validated previously to a change, with a random validation method
that we had set with a delay of 200 ms. With this we can simulate a long running process, a
call to a service, or both.

We have to be careful with some of the issues involved: for example, if the running time of
the process and validation is not fixed, a setter launched later that runs faster would execute
the setter before the previous call. Additionally, there are some controls that are constantly
launching events. The movement of the S1ider control generates a constantly changing
value, or MouseMove, wWhich typically raises a lot of events.

These cases had to be handled previously with a technique called throttling, which was
not easy to implement. The introduction of RX (Reactive Extensions) was an improvement,
as we could do things such as:

Observable.FromEvent<PropertyChangedEventArgs> (x => this.

PropertyChanged +=x, x => this.PropertyChanged -= x)
.Where (x => x.PropertyName == "NameOfSlider")
.Select (_ => this.NameOfSlider)

.Throttle (TimeSpan.FromMilliseconds (50)) ;

Now, we can implement this in an even easier way.

For more information on RX we recommend the official source at
i http://msdn.microsoft.com/en-us/data/gg577609.aspx.

Implementing WPF's new features

Next, we created our Ul, with two sliders and a textbox to display the value. We set one of the
sliders with the delay attribute and the other without it:

<TextBox TextWrapping="Wrap" Text="{Binding BookRating, Mode=TwoWay}"
Grid.Column="1" Grid.Row="3" IsReadOnly="True" />
<Slider x:Name="SliderNotDelayed"
Value="{Binding BookRating, Mode=TwoWay}"
Grid.Column="1" Grid.Row="1" Margin="3" Maximum="100" />
<Slider x:Name="SliderDelayed"
Value="{Binding BookRating, Mode=TwoWay, Delay=200}"
Grid.Column="1" Grid.Row="2" Margin="3"

This Delay variable is in fact the throttling delay. | recommend the curious readers to explore
some more and remember this parameter as a throttling delay instead of a simple delay.
Its meaning and function becomes clearer and it becomes easier to remember what it does.

LiveShaping - repositioning elements when

its bound data changes

With WPF 4.0, when an item in a collection was added or removed, the CollectionView
interface that it belonged to had its filtering, sorting, and ordering updated. However, this did
not happen when we modified one of its item's properties.

Now, with WPF 4.5, we can implement this behavior in real-time with the new
ICollectionViewLiveShaping interface, so if the data is updated, so will its filtering,
sorting, and ordering. Let's see how it's done.

Getting ready

In order to use this recipe you should have Visual Studio 2012 installed.

How to do it...

Here we are going to see how to implement the ICollectionViewLiveShaping interface
to make our collection update its sorting of the collection of data and will make it change over
time as well.

1. First open Visual Studio 2012 and create a new project. We will select the WPF
Application template from the Visual C# category and name it WPFLiveShaping.

2. We will add the BaseClass. cs from the Implementing asynchronous error
handling with INotifyDataErrorinfo recipe, which provides an implementation of the
INotifyDataErrorInfo and the INotifyPropertyChanged interfaces.

138

Chapter 6

3. Add a class and name it BookModel . cs, adding the following code:

public class BooksModel : BaseClass
{
private string name;
public string Name
{
get { return name; }
set
{
name = value;
OnPropertyChanged ("Name") ;

private String isbn;
public String ISBN
{
get { return isbn; }
set {
isbn = value;
OnPropertyChanged ("ISBN") ;

private Double bookPrice;
public Double BookPrice
{
get { return bookPrice; }
set {
bookPrice = value;
OnPropertyChanged ("BookPrice") ;

}

4. Add the following code to the MainWindow.xaml . cs class:

public partial class MainWindow : Window

{
public ObservableCollection<BooksModel> myBooks { get; set; }
DispatcherTimer dt = new DispatcherTimer() ;
public ICollectionViewLiveShaping cvls;

Implementing WPF's new features

public MainWindow ()

{

InitializeComponent () ;

InitializeDatal() ;
BindData () ;
StartUpdatingData () ;

private void InitializeData ()

{
myBooks = new ObservableCollection<BooksModels () ;
Random r = new Random (DateTime.Now.Millisecond) ;

for (int 1 = 0; 1 < 15; 1i++)
{
BooksModel bm = new BooksModel () {
BookPrice = r.Next (1, 10),
ISBN = i.ToString(),
Name = "Book N°" + i.ToString/()

}i

myBooks .Add (bm) ;

private void BindData ()

{

cvls = (ICollectionViewLiveShaping)CollectionViewSource.
GetDefaultView (myBooks) ;

cvls.IsLiveSorting = true;
liveShapingDataGrid.ItemsSource = (IEnumerable)cvls;

private void StartUpdatingData ()

{
dt.Tick += dt_Tick;
dt.Interval = new TimeSpan(0, 0, 0, 0, 500);
dt.Start () ;

140

Chapter 6

void dt Tick (object sender, EventArgs e)

{

foreach (BooksModel bm in myBooks)
{

Random r = new Random(DateTime.Now.Millisecond) ;
bm.BookPrice = r.Next (1, 10);

}

On the MainWindow.xaml class, we will add two DataGrid controls that split the
view vertically with the following XAML code:

<Grid>
<Grid.ColumnDefinitionss>
<ColumnDefinition/>
</Grid.ColumnDefinitions>
<Grid.RowDefinitionss>
<RowDefinition Height="30"/>
<RowDefinition/>
</Grid.RowDefinitions>
<DataGrid x:Name="liveShapingDataGrid"
AutoGenerateColumns="False"
IsReadOnly="True" Margin="0,30,0.4,0.4" Grid.
RowSpan="2">
<DataGrid.Columns>
<DataGridTextColumn Header="Name" Binding="{Binding
Name}" width="90"/>
<DataGridTextColumn Header="ISBN" Binding="{Binding
ISBN}" Width="60"/>
<DataGridTextColumn Header="Price" Binding="{Binding
BookPrice}" Width="50" />
</DataGrid.Columns>
</DataGrid>
<Label Content="DataGrid With LiveShaping" FontWeight="Bold"
Margin="0,0,0.4,0.4"/>
</Grids>

Implementing WPF's new features

6. Execute the application and click on the Price header on the DataGrid, so it gets
ordered in an ascending way. Notice that the ordering of the elements is updated live
as the values change, as shown in the following screenshot:

| MainWindow l ==y X
DataGrid With LiveShaping
Name ISBN Price
Book N°1 1 1
Eook N°5 5 1
Book N°4 4 1
Book N°3 3 1
Book N°2 2 1
Book N°0 0 1
Book N°13 13 5]
Book N°12 12 5]
Book N°14 14 5]
Book N°11 11 5]
Book N°10 10 5]
Eook N°8 8 5]
Book N°7 7 B
Book N°& o] 5]
Eook N°9 9 B

We started by creating a BooksModel class with a double BookPrice property.

Next, in the MainWindow.xaml code, we created an ObservableCollection interface
of BooksModel entities, which we initialized and populated with a few elements on the
InitializeData () method.

We did our magic on the BindData () method, getting the default CollectionView from
our ObservableCollection and casting itas ICollectionViewLiveShaping, with
the following instruction:

cvls = (ICollectionViewLiveShaping)CollectionViewSource.
GetDefaultView (myBooks) ;

142

Chapter 6

We enabled the real-time sorting for the resulting ICollectionViewLiveShaping interface.
Next, we set it as ItemsSource of DataGrid, casting this CollectionViewLiveShaping
interface into an IEnumerable.

We then created the StartUpdatingData () method, configuring DispatcherTimer to
run every half second and update the price of the books, so we could see some action, live
from DataGrid. The method simply runs over all the BooksModel elements and updates
their price with a random generated value.

There is nothing special about the view, we just created DataGrid to display the three
properties of BookModel.

Finally, we executed the application, ordered the DataGrid by its price header, and let the
real-time ordering happen live. We could observe how the ordering reacts to the property
changes taking place every half second through our dispatcher timer.

It would be interesting to explore the other options of the ICollectionViewLiveShaping
interface, such as IsLiveFiltering and IsLiveGrouping.

We also have the option of changing how the collection behaves. It is possible to
deactivate its LiveFiltering, LiveGrouping, and LiveSorting options with
the CanChangeliveFiltering, CanChangeLiveSorting, and
CanChangeLiveGrouping properties.

This interface is implemented by the ListCollectionView,
BindingListCollectionView, ItemCollection, and CollectionViewSource
classes by default, thanks to WPF 4.5.

Applying the New
WCF Features

In this chapter, we will cover:

» Using the asynchronous features of WCF
» Using WebSockets

» Using Contract First development

Introduction

WCF 4.5 focuses on simplicity and ease of use. One of the features that supports this
statement is its streamlining of generated configuration files that have ceased to showcase
default values, reducing their size greatly. Configuring the ASP.NET compatibility is also easier
since WCF configuration files are validated by Visual Studio 2012 as part of the build process.
It has also improved in HTTPS protocol mapping and increased designer functionalities, such
as XML editor tooltips.

Other additions include Contract First development, asynchronous streaming support, and
WebSockets support.

Using the asynchronous features of WCF

One issue with the previous versions of WCF was that its service contracts did not contain
definitions of its asynchronous members, resulting in unnecessary complexity in the WCF
code when using asynchronous calls. Furthermore, the code was prone to timeouts and
error-handling issues.

Applying the New WCF Features

There are some scenarios that require these kinds of asynchronous calls:

>

>

>

Executing multiple requests in parallel and continuing when they have finished.
Executing a sequence of requests and stopping if one of them fails.

Performing a hierarchy of operations that can occur sequentially, and also executing
various requests in parallel after a given one. This is, in effect, a combination of the
previous two types.

WCF 4.5 simplifies this behavior and also makes the web services easily testable.

Next, we will explore how to implement an asynchronous web service and consume it.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed.

How to do it...

In this recipe, we will explore the new asynchronous features of WCF.

1.

146

First, open Visual Studio 2012, create a new project by navigating to Visual C# |
Web, and use the ASP.NET Empty Web Application template to create a web project
to host the web service. Name it WebAppWcfAsyncHost and click on OK.

Right-click on the project and add a new item of the type WCF Service; name it
AsyncService. sve and click on the Add button.

Open the generated IAsyncService. cs file and replace the code with the following:

[ServiceContract]
public interface IAsyncService

{
[OperationContract]
Task<int> DoWorkAsync () ;

}
Note that we will have to add a reference to System. Threading. Tasks.

Open the AsyncService class and replace the code with the following:

public class AsyncService : IAsyncService

{

Public async Task<int> DoWorkAsync ()

{
}

return new System.Random() .Next (1, 10);

Chapter 7

Build the application.

7. Add a new project by navigating to Visual C# | Windows, and select the Console
Application template. Name it ConsoleWcfServiceAsyncConsumer and click on
the OK button.

Set it as the startup project.
9. Right-click on the newly added project and select Add Service Reference.

10. Click on the Discover button and the provided service should appear; select it and
in the Namespace field write AsyncServiceReference, as shown in the following
screenshot, and click on the OK button.

-

Add Service Reference @ﬂ—hl

To see a list of available services on a specific server, enter a service URL and click Go. To browse
for available services, click Discover.

Address:

http://localhost:58997/AsyncService.svc hd [Go] lgiscover -l

Services: QOperations:

& AsyncService.svc
@ AsyncService
*9 IAsyncService

Select a service contract to view its operations.

1 service(s) found at address 'http://localhost:58997 /AsyncService.svc'.

MNamespace:

AsyncServiceReference

o][e

Applying the New WCF Features

11. Open the Program. cs file in the designer and enter the following code:

class Program

{

Static AsyncServiceClient svcCli = new AsyncServiceClient () ;

static void Main(string[] args)

{

Console.WriteLine ("Requesting values") ;
var result = GetResultsFromWebService() ;

Console.WriteLine ("The result is: " + result.Result.
ToString()) ;

Console.ReadLine () ;

Static async Task<int> GetResultsFromWebService ()

{

var tl = svcCli.DoWorkAsync (

var t2 = svcCli.DoWorkAsync() ;

I

I

var t3 = svcCli.DoWorkAsync (

)
)
)
) .

I

var t4 = svcCli.DoWorkAsync (

Console.WritelLine ("Waiting for all the wvalues to be
returned..");

await Task.WhenAll (tl, t2, t3, t4);
Congole.WriteLine ("All the values received,

processing..") ;
return tl.Result + t2.Result + t3.Result + t4.Result;

}

12. Press the F5 key to start executing the program. We should see the result of our

148

program in the console as shown in the following image:

1 file:/}/E/NET45Packt/CHO7-WCF/code/WebAppWr... == | (=) i S

Requesting values

Waiting for all the values to be returned..
All the values received, processing..

The result is: 42

N »

Chapter 7

13. We have just created an asynchronous WCF service, called it asynchronously many
times, and synchronized the reception of the different web service calls.

Essentially, the only different thing we did was to add the Task<int> command to the
WebService method declaration; the rest simply works out of the box.

On the client side, we called our random asynchronous value provider four times and assigned
the results to the tasks. We then used the Task.WhenaAll () method to wait for the tasks,

so the code will not continue running this method until all the tasks have finished; this means
that all the web service calls have returned.

Although this example might seem simple, imagine that you changed the random integer
services with other possible services, such as GetOrderTotal, GetOrderTaxes, Of
GetOrderShippingCosts, and you will begin to see the possibilities. This new coding
style simplifies our code noticeably, and makes it easier to maintain and understand.

The Task-Based Asynchronous Pattern that we have just seen is clearly superior to and
simpler than the previous event-based patterns and IASyncResult asynchronous patterns.

We should use this pattern as the preferred way to implement any WCF asynchronous operation.

It is also important to keep in mind that the use of this pattern is beneficial for scalability
since it assures that thread-related resources are only consumed when the code is being
executed. An asynchronous solution will allow the thread resources to be used by other
means while waiting for /0, database operations, or other services to complete. When
the operation is complete, it will yield the necessary data for the operation to continue.

Look into the Understanding async and await in .NET 4.5 recipe of Chapter 2, Exploring the
Top New Features of the CLR, dedicated to CLR and the usage of async and await.

Using WebSockets

WebSockets are bidirectional, full-duplex channels that start as HTTP channels and use
handshakes to upgrade the channels to WebSockets, with real, two-way TCP communication
between the client and the server. The added benefit is that all of this can happen through
port 80 and that they are router friendly.

In this recipe, we will see how to create and consume a WebSockets service.

Applying the New WCF Features

Getting ready

In order to use this recipe, you should have Windows 8 with Visual Studio 2012 installed.
WebSockets are only supported natively on Windows 8; see http://msdn.microsoft.
com/en-us/library/hh159285.aspx.

How to do it...

Here, we are going to set up our system in order to support WebSockets and implement a
basic WebSocket.

1. First, we need to validate that the following Windows features are installed on our
Windows 8 machine:

o ASP.NET 4.5 and HTTP activation
o WebSockets over Internet Information Services

Windows Features = =
| Turn Windows features on or off @

To turn a feature on, select its checkbox. To turn a feature off, clear its checkbox. A filled box means that
only part of the feature is turned on.

[] | .NET Frarmework 3.5 (includes .MET 2.0 and 2.0 s
= [®] | .NET Framework 4.5 Advanced Services

‘i | ASP.NET 4.5

= [m] | WCF Services

1P Acaton
[. Message Queuing (MSMQ) Activation
|:| . Mamed Pipe Activation
| TCP Activation
| TCP Port Sharing
[[] | Active Directory Lightweight Directory Services
D J Hyper-V
o Internet Explorer 10
= [®] | Internet Information Services

[] 1. FTP Server
|E| , Web Management Tools
=[] 1) World Wide Web Services
= [w] || Application Development Features

[.NET Extensibility 3.5
. .NET Extensibility 4.5
. Application Initialization
[0}, Asp

[[] |, ASP.NET 35

| ASP.NET 4.5

L cal

. ISAP| Bxtensions

| ISAPI Filters

. Server-Side Includes
. WebSocket Protocol

150

Chapter 7

Open Visual Studio 2012; create a new project by navigating to Visual C# | Web and
use the ASP.NET Empty Web Application template to create a web project to host
the web service. Name it webSocketsWef and click on the OK button.

Right-click on the project and add a new item of the type WCF Service; then name it
WebSocketsService. sve and click on the Add button.

Open the generated IWebSocketsService. cs file and replace the code with
the following;:
[ServiceContract (CallbackContract = typeof (IWebSocketsServiceCallb
ack))]
public interface IWebSocketsService
{
[OperationContract (IsOneWay = true)]
Task StartSendingData() ;

}

Note that we will have to add a reference to System. Threading. Tasks to add
support for asynchronous operations and types.

We will get an indication for the IWebSocketsServiceCallback exception,
which we will solve on the next step.

Create a IWebSocketsServiceCallback.cs class and add the following code:

[ServiceContract]
public interface IWebSocketsServiceCallback
{
[OperationContract (IsOneWay = true)]
Task SendData(string data) ;

}

Note that we have to add a usings clause for System. Threading.Tasks and
for the System. ServiceModel namespaces.

Open the WebSocketsService. sve. cs file and substitute the following for
the code:

public class WebSocketsService : IWebSocketsService

{

public async Task StartSendingData ()

{

Var callbackFunction = OperationContext.Current.GetCallbackChannel
<IWebSocketsServiceCallbacks> () ;

while ((callbackFunction as IChannel) .State == CommunicationState.
Opened)

Applying the New WCF Features

10.

11.

12.

152

{

await callbackFunction.SendData ("Hi, the time is : " + DateTime.
Now.ToLongTimeString()) ;

await Task.Delay(5000) ;

}
}

At this point, we need to add a reference to System. Threading. Tasks and
System.ServiceModel .Channnels.

Edit the Web . Config file and substitute the following for the code:

<?xml version="1.0"?>

<configurations>

<appSettingss>

<add key="aspnet:UseTaskFriendlySynchronizationContext"
value="true" />

</appSettings>

<system.web>

<compilation debug="true" targetFramework="4.5" />
<httpRuntimetargetFramework="4.5" />

</system.web>

<system.serviceModel >

<protocolMapping>

<add scheme="http" binding="netHttpBinding" />

<add scheme="https" binding="netHttpsBinding" />
</protocolMapping>

<behaviorss>

<serviceBehaviors>

<behavior name="">

<serviceMetadatahttpGetEnabled="true" httpsGetEnabled="true" />
<serviceDebugincludeExceptionDetailInFaults="false" />
</behaviors>

</serviceBehaviors>

</behaviorss>
<serviceHostingEnvironmentaspNetCompatibilityEnabled="true"
multipleSiteBindingsEnabled="true" />
</system.serviceModel>

</configurations>

Build the application.

Chapter 7

13.

14.
15.
16.

17.

18.

Add a new project by navigating to Visual C# | Windows and selecting the Console
Application template. Name it WebSocketsConsoleClient and press the
OK button.

Set it as the startup project.
Right-click on the newly added project and select Add Service Reference.

Click on the Discover button and the recently defined WebSockets
service should appear. Select it, and in the Namespace parameter type
WebSocketsServiceReference and press the OK button.

Add a new class named WebSocketsCallbackHandler to the console project with
the following code:

class WebSocketsCallBackHandler : WebSocketsServiceReference.
IWebSocketsServiceCallback

{

public void SendData (string data)

{

Congsole.WriteLine ("Received data from the WebSockets
service: " + data);

}

Continue by opening the Program. cs file and substituting the main method with the
following code:

static void Main(string[] args)

{

try

{

Var InstanceCtx = new InstanceContext

(new WebSocketsCallBackHandler ()) ;

Var WebSocketsClient = new WebSocketsServiceReference.
WebSocketgServiceClient (InstanceCtx) ;

WebSocketsClient.StartSendingDatal() ;

Console.ReadLine () ;

}

catch (Exception ex)

{

throw;

Applying the New WCF Features

19. We have to add a using clause for the System. ServiceModel namespace.

20. Open the App. config file that was autogenerated when we added the service
reference, and validate that the endpoint definition has its binding set to
netHttpBinding.

21. Now let's build and execute our solution; if all goes well, we should see the following
result on our console:

file:///C:/WCF/WebSocketsWcf/WebSocketsConsoleClient/bin/Debug/WebSock...

@Received data from the WehSockets sewrvice: Hi, the time is : 1:52:37
i data from the WYebhSockets service: Hi, the time is =
data from the UebSockets service: Hi. the time iz :
data from the WYebhSockets service: Hi, the time is =
data from the WebSockets service: Hi. the time iz :
data from the WebhSockets service: Hi, the time is
data from the WebhSockets service: Hi, the time is
data from the WebSockets service: Hi. the time is
data from the WYebhSockets service: Hi, the time is
data from the WebSockets service: Hi. the time i
data from the WYebhSockets service: Hi, the time is
data from the WebSockets service: Hi. the time i
from the UehSockets service: Hi. time
from the WebSockets service: Hi. time
from the UebSockets serwice: Hi. time

22. And that's it; we just created a WebSockets WCF service and a client that consumes it!

First, we configured our Windows 8 operating system to support WebSockets, ASP.NET 4.5,
and HTTP activation features. It is necessary to have .NET 4.5 on the operating system,
either by installing it automatically when performing the installation of Visual Studio 2012
or by installing it as a standalone.

Note that WebSockets will not run on previous operating systems that don't have 11IS8
installed, so this feature is unsupported natively on Windows 7.

We created an ASP.NET web app to host our web service and added the following attribute to it:

[ServiceContract (CallbackContract = typeof (IWebSocketsServiceCallba
ck))]

Chapter 7

Essentially, we are defining ServiceContract and setting up
IWebSocketsServiceCallback as the callback context.

Then on the interface, we added just one method, StartSendingData (), with the attribute:
[OperationContract (IsOneWay = true)]

This indicates that this method will only move in one direction, that is, from the client to the
server. We are going to use it as a handshake that will set up the communication between
the client and the server.

Note that we are using tasks, so this will comply with the async/await model that .NET 4.5
can be proud of.

Next we have created IWebSocketsServiceCallback, which is also a service contract,
where we defined the SendData () method task that we set to follow a one-way route. We
will obviously use this to send data which the clients usually updates. Note that we need to
implement this on the client too, for this to work properly.

To continue, we need to implement the interfaces we just defined. For WebSocketsService,
we set up the SstartSendingData () method that gets the current callback channel. While
the channel is open, we keep on executing asynchronous calls to the callback method.

In order to finish the server part, we use configuredwWeb.Config where we have added a
protocol mapping for HTTP and HTTPS to netHttpBinding/netHttpBindings, which we
will use for our WCF endpoints.

We built the project and added a console application that will be the client of our service. In the
console application, we had to add a service reference to our recently created web service.

We created a class called WebSocketsCallBackHandler to hold our implementation of the
callback method. The received data is redirected to the console with a WriteLine command.

In our main method, we'll create an instance of this class with the callback handler class as
its parameter, thus generating a client for our web service. From the following instance, we
just call the handshake method that will trigger the server to start sending data.

Var InstanceCtx = new InstanceContext (new
WebSocketgsCallBackHandler ()) ;

Var WebSocketsClient = new WebSocketsServiceReference.WebSocketsServic
eClient (InstanceCtx) ;

WebSocketsClient.StartSendingDatal() ;

And that's all there is to it! Notice how, despite its power, the solution is extremely simple.

Applying the New WCF Features

Using Contract First development

Contract First development comes to us in .NET 4.5 WCF as the ability to create the service
interface and data contract from a WSDL file. The WSDL file is generated in the svcutil.
exe application with the /servicecontract flag.

This provides an excellent way to parallelize development since we can work on the backend
service while it is being constructed, given that the service requirements and contract have
been defined beforehand.

In this recipe, we will see how to use this new feature.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed and a WSDL
contract. For this recipe, we will use the dynamically generated web service we implemented
in the first recipe.

How to do it...

In this recipe, we are going to generate a client for a WSDL file.

1. Open the project of our first recipe and set the ASP.NET website that hosts the
asynchronous web service. Navigate on the browser to the web service, appending
?wsdl to the address. You should get something like http://localhost:58997/
AsyncService.svec?wsdl. Note that the port might change. It will generate an
XML file with the WSDL definition and display it in our browser as follows:

156

Chapter 7

50 |

@ http://localhost:58997/AsyncService sve ?wsdl PN~-B ¢ X @ localhost x T ?,3

% Find: [xsd | Previous Next Options - |

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmIns:wsam="http://www.w3.0org/2007/05/addressing/metadata"
xmins:wsal0="http://www.w3.org/2005/08/addressing" xmlns:wsp="http:/ /schemas.xmlsoap.org/ws/2004/09 /policy"
xmlins:msc="http:/ /schemas.microsoft.com/ws/2005/12/wsdl/contract" xmins:wsaw="http://www.w3.org/2006/05/addressing/wsdl"
xmlins:wsap="http://schemas.xmlsoap.org/ws/2004/08/addressing/policy" xmIns:wsx="http:/ /schemas.xmlsoap.org/ws/2004/09/mex"
xmlins:wsa="http:/ /schemas.xmlsoap.org/ws/2004/08/addressing" xmins:tns="http://tempuri.org/"
xmlIns:soap12="http://schemas.xmlsoap.org/wsdl/soapl2/" xmins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlins:wsu="http:/ /docs.oasis-open.org/wss/2004/01/ oasis-200401-wss-wssecurity-utility-1.0.xsd"
xmlIns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/" targetNamespace="http:/ /tempuri.org/" name="AsyncService">
- <wsdl:types>
- <xsd:schema targetNamespace="http:/ /tempuri.org/Imports">
<xsd:import namespace="http:/ftempuri.org/" schemalocation="http:/ /localhost:58997 / AsyncService.svc?xsd=xsd0"/ >
<xsd:import namespac http://schemas.microsoft.com/2003/10/Serialization/"
schemalocation="http:/ /localhost:58997 / AsyncService.svc?xsd=xsd1"/>
</xsd:schema>
</wsdl:types>
- <wsdl:message name="IAsyncService_DoWork_InputMessage">
<wsdl:part name="parameters" element="tns:DoWork"/>
</wsdl:message>
- <wsdl:message name="IAsyncService_DoWork_OutputMessage">
<wsdl:part name="parameters" element="tns:DoWorkResponse"/>
</wsdl:message>
- <wsdl:portType name="IAsyncService">
- <wsdl:operation name="DoWork" >
<wsdl:input message="tns:IAsyncService_DoWork_InputMessage" wsaw:Action="http:/ /tempuri.org/IAsyncService/DoWork"/>
<wsdl:output message="tns:IAsyncService_DoWork_OQOutputMessage"
wsaw:Action="http:/ /tempuri.org/IAsyncService/DoWorkResponse"/>
</wsdl:operation>
</wsdl:portType>
- <wsdl:binding name="BasicHttpBinding_IAsyncService" type="tns:IAsyncService">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
- <wsdl:operation name="DoWork" >
<soap:operation style="document" soapAction="http://tempuri.org/IAsyncService/DoWork"/>
- <wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
- <wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
< /wsdl:binding>
- <wsdl:service name="AsyncService" >
- <wsdl:port name="BasicHttpBinding_IAsyncService" binding="tns:BasicHttpBinding_IAsyncService">
<soap:address location="http:/ /localhost:58997 / AsyncService.svc"/>

m

</wsdl:port> |
</wsdl:service>
</wsdl:definitions> i
®120% ~ J,

2. Navigate to your Visual Studio tools folder and open the vS2012 Tools
command prompt corresponding to your CPU.

3. Navigate to where you want to generate the service code.
4. Type the following command, noting that the port might change:
svcutil /sc http://localhost:58997/AsyncService.svc?wsdl

5. Note that we used the reduced form /sc of the /servicecontract flag
on our command.

Applying the New WCF Features

6. We should get a notification that ASyncService. cs has been generated,
as we can see in the following screenshot:

B VS2012 x64 Native Tools Command Prompt | =N X

E:\NET45Pack t\CHOT-WCF\code>svcutil /sc http://localhost:58997/AsyncService.suc?E
wsdl

Microsoft (R) Service Model HMetadata Tool

[Microsoft (R) Windows (R) Communication Foundation, Uersion 4.0.30319.17914]
Copyright (e¢) Microsoft Corporation. All rights reserved.

Attempting to download metadata from 'http://localhost:58997/AsyncService.suc?us

dl’ using WS-Metadata Exchange or DISCO.
Generating files...
E:\NET45Pack t\CHOT-WCF\code\AsyncService.cs

E:\NET45Pack t\CHOT-WCF\code>

7. We could accomplish this with a WDSL file, with or without an XSD file.

8. We will find our service contract in the file that was generated by our command
prompt, which is AsyncServices.cs in our case.

9. This file should contain the following code:

e ——————_—
// <auto-generated>

// This code was generated by a tool.

// Runtime Version:4.0.30319.17914

//

// Changes to this file may cause incorrect behavior and will
be lost if

// the code is regenerated.

// </auto-generateds>

[System.CodeDom.Compiler.GeneratedCodeAttribute ("System.
ServiceModel", "4.0.0.0")]

[System.ServiceModel.ServiceContractAttribute (ConfigurationName="I
AsyncService")]

public interface IAsyncService

158

Chapter 7

{

[System.ServiceModel .OperationContractAttribute (Action="h
ttp://tempuri.org/IAsyncService/DoWork", ReplyAction="http://
tempuri.org/IAsyncService/DoWorkResponse")]

Int DoWork () ;
!

10. If we had any data elements, they would also have been generated.

11. This technique allows us to generate a client that works against a given
service implementation.

This recipe is quite straightforward; after getting the WSDL file for our web service, all it takes
is for us to use the svcutil tool to generate the service interface and the data contract.

Creating and Hosting
Our First ASP.NET
Web API

In this chapter we will cover:

» Creating our first ASP.NET web API
» Implementing a CRUD ASP.NET web API
» Setting up a self-hosted ASP.NET web API

Introduction

.NET 4.5 introduces the capability to create ASP.NET web APIs. This is brought to us by ASP.
NET MVC4. Basically, the ASP.NET web API is a framework that enables developers to easily
build HTTP services. This makes the framework a good fit to build RESTful applications over
.NET 4.5.

An important point is that, since these services are being exposed over HTTP, we can
integrate them with almost any client device and technology in the market, which makes
them extremely useful.

Creating and Hosting Our First ASP.NET Web API
ASP.NET web APIs provide support for:
» A modern HTTP programming model, allowing direct access and manipulation of
HTTP requests and responses.

» Content negotiation, which helps determine the proper format for the data that
the ASP.NET Web API returns. JSON and XML are supported out of the box and
customizations for our own formats and structures are also allowed.

» Query composition through OData conventions, supporting OData queries
automatically out of the box when we return IQueryable<T> from our ASP.NET
web APl methods.

» Model binding, providing them directly on an HTTP request, and converting them
into .NET objects.

» Self-hosting.

ASP.NET web APl adds more punch with coding features such as routing capabilities support,
testability additions, loC, and more.

In the following sections we will see how to create our first ASP.NET web API, create a CRUD
with it, and explore its self-hosting option.

Creating our first ASP.NET web API

In this recipe, we will see how to expose a basic service and some data through HTTP with the
ASP.NET web API.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 and ASP.NET MVC 4 installed
(the latter one includes the ASP.NET web API).

How to do it...

Next we are going to create a web API:

1. To start, open Visual Studio 2012, select the web category from the visual C#
categories and use the ASP.NET MVC 4 Web Application template to create a
new project. Name it WebAPI101.

162

Chapter 8

2. 0Onthe New ASP.NET MVC 4 Project dialog select the Web API template and
click on the OK button.

New ASP.NET MVC 4 Project -

Project Template

Select a template: Description:

4 o3 o o3 An ASP.NET Web API Project. o
&1 &1 &1 & :
Empty Basic Internet Intranet
Application Application
C# iC#
&1 &l
Mobile Web API
Application
View engine:
lRazor -

] Create a unit test project

Test project name:
WebAPI101.Tests
Test framework:

Visual Studio Unit Test ¥ | Additional Info

OK l l Cancel

Creating and Hosting Our First ASP.NET Web API

The following project structure will be created for us:

fa] Solution 'WebAPI101' (1 project)
4] WebAPI101
b & Properties
b »m References
m App_Data
m App_Start
m Content
m Controllers
m Images
= Models
m Scripts
P Views
[favicon.ico
P 41 Global.asax
v packages.config
P 4 Web.config

R~

A

In the Models folder we will add a class, name it Booksmodel . cs, and introduce
the following code:

public class BookModel

{

Public int Id { get; set; }

public String Title { get; set; }
public String Description { get; set; }
public bool IsOnSale { get; set; }
public int BookRating { get; set; }
public double BookPrice { get; set; }

}

Next, we will add our own controller; right-click on the Controllers folder,
select Add, and then left-click over the Controller... option, as shown in the
following screenshot:

16

Chapter 8

m

b e RouteConfig.cs

4 Content

; &1 View in Browser (Internet Explorer) Ctrl+Shift+W eController.cs
Browse With... esController.cs
Convert to Web Application
@ Check Accessibility... ksModel.cs
Controller... Ctrl+M, Ctrl+C Add b
O New ftem.. Ctrl+Shift+A -
‘0 Existing ltem... Shift+Alt+A Scope to This -
‘W New Folder MNew Solution Explorer View es.config
Add ASP.NET Folder Exclude From Project Team Explorer | Class View
% Class.. M cut Crl+X
ol Copy Cirl+C .
r Properties
X Delete Del
¥z Rename Controllers
(') Open Folder in Windows Explorer
& Properties Alt+Enter
5. Inthe Controller dialog in Add, give it the name BooksController, select the

Empty API Controller template, and click on the Add button.

-

Add Contraller

)

Controller name:
BooksController
Scaffolding options
Template:
Empty API controller v
Mone - Advanced Optic
[Add H Cancel

Creating and Hosting Our First ASP.NET Web API

6. We could have started by opening the ValuesController.cs file and customizing
it, but it is better to delete this file so that we can illustrate the entire process.

7. Openthe BooksController.cs file and change the code of the
BooksController class to the following:

public class BooksController : ApiController
{

BookModel [] Books = null;

public BooksController ()

{

Books = GenerateBooks () ;

}

public IEnumerable<BookModels> Get ()

{

return Books;
}
public BookModel Get (int id)
{
var book = (from b in Books
where b.Id == id
select b) .FirstOrDefault () ;
return book;
}
private BookModel [] GenerateBooks () {
BookModel [] Books = new BookModel[]
new BookModel () {

Id=1,
Title = ".NET 4.5 First Look",
Description = "A book to quickly and

practically get into .NET 4.5"

b

new BookModel () {

Id=2,
Title = "The lost book of Agatha Christie",
Description = "A book everybody wants to
read..."
}
Vi
return Books;
}
}

166

Chapter 8

8. Press F5 to debug the application.

9. Inthe URL, add api/books/, so it will look similarto http://localhost:19347/
api/books/ and press Enter. Please note that the port number might change.

10. If we are opening the web page with Internet Explorer, we should see the
following message:

Do you want to open or save books (306 bytes) from localhost? Open Save ~ Cancel

11. We will open it with Notepad, and our content will be as follows:

[{"Id":1,"Title":".NET 4.5 First Look", "Description":"A book to
quickly and practically get into .NET 4.5","IsOnSale":false, "BookR
ating":0, "BookPrice":0.0}, {"Id":2,"Title":"The lost book of Agatha
Christie", "Description":"A book everybody wants to read...","IsOnS
ale":false, "BookRating":0, "BookPrice":0.0}]

12. This is the response from our web API. If we open it with another browser, such as
Mozilla Firefox or Google Chrome, we will see it as an XML visualization:

This XML file does not appear to have any style information associated with it. The document tree is shown below.

v<hrray0fBookModel xmlns:i="http://www.w3.org/2001/XMLSchema-instance”
xmlns="http://schemas.datacontract.org/2004/07/WebAPI101l.Models">
wv<BookModel:>
<BookPrice>0</BookPricex
<BookRating>0«</BookRating>
v<Description>
& book to gquickly and practically get into .NET 4.5
</Description>
<Id>1</Id>
<IsCmS5ale>xfalse</IsCnSalex
<Title>.NET 4.5 First Look</TitleX>
</BookModelz>
v<BookModelx
<BookPrice>0</BookFrice>
<BookRating>0</BookRating>
<Description>A book everybody wants to read...</DescriptionX
<Idx»2</Id>
<IsCn3alerfalse</IsCnSale>
<Title>The lost book of Agatha Christie</TitleX
</BookModel>
</ArrayCfBookModel>

Creating and Hosting Our First ASP.NET Web API

13. Note that to run it on another browser, we have to expand the browser
dropdown located on the DEBUG button, as follows:

i PROJECT BUILD

ontroller.cs

9 - D Google Chrome ~ JiIBElsIisBlRg

P Google Chrome

»API101.Contre Firefox
ising Syste [¥] Google Chrome

1sing Syste Internet Explorer
1sing Syste S

ising Syste age Inspector
1sing Syste Browse With...

DEBUG TEAM SQ

|sing Sy stemwevsrr L5

14. The response is so browser dependent because our web API is sending different
content types due to the Accept section in the request headers. We are getting a
JSON response for IE and an XML response for other browsers.

15.

16.

An interesting step here would be to test the browser tools (for Internet Explorer and
for Google Chrome) and see the http network traffic, specifically the request headers

and returned types for each browser.

We could go on and explore the web API to get a single book, filtering by its ID.
Execute the application with Firefox, go to the URL, add api /books/1 to it, so it
will look similar to http://localhost:19347/api/books/1, and press Enter.

We should get the following response:

€ localhost: 19347 /api/books/1

This XML file does not appear to have any style information

— <BookModel>
— <Description>
=/Description=

=Id=1<Td>=

</BookModel>

<BookPrice~(</BookPrice>
<BookRating=(</BookRating>

A book to quickly and practically get into NET 4.5

<IsOnSale>false</IsOnSale>
=Title= NET 4.5 Furst Look="/Title=

168

Chapter 8

With these few steps we have created a very simple ASP.NET Web API and tested it with
a browser.

We created an ASP.NET web API from its ASP.NET MVC 4 template, where we built a model
to define the information to be exposed through the web API, and then went on to create
the controller.

A web API controller is derived from the ApiController class. Its main function is to
prepare, filter, and return the requested information.

It is important to note the routing concept in web API, where there is a mapping of the URL
to the methods we expose in the controller class, resulting in the routes:

» /api/Books:Get ()
» /api/Books:Get (1)

If we explore the RouteConfig.cs file, in the App Start folder, we will observe that some
mappings have been added, such as api/{controller}/{id}, where {controller}
and {id} are placeholders.

The mapping process works as follows: the web API framework decides which API controller
will handle the request by matching {placeholder} to the controller's name. Then the
placeholder {id} is matched to a parameter of the same name.

In our case, Books is matched to BooksController. Since the request is a GET, it looks
for a method that starts with Get and has no parameters; therefore, it is matched to Get ().
However, we could have given it the name GetBooks () or GetAllBooks () and the result
would have been the same. Finally, when we put in an extra parameter for the ID, the web
API framework looks for a matching GET method that has an ID parameter, which matches
our Get (int id) as a result.

Creating and Hosting Our First ASP.NET Web API

Next, we have created the GenerateBooks () method, which we call on the constructor
of our BooksController class, the Get () method that returns the whole array of books,
and the Get (int id) function that returns only the book with the requested ID.

We have tested our web API from our browser, to get the full list of books and then a
specific book.

There's more...

This is of course a very basic view of the web APl and we have left plenty of interesting
areas to explore, such as creating web API clients, routing and actions, custom formats,
model binding, hosting aspects, OData support, extensibility features, testing, and
debugging capabilities.

See also

» Implementing a CRUD ASP.NET Web API
» Setting up a self-hosted ASP.NET Web API

Implementing a CRUD ASP.NET web API

In this recipe, we will see how to create an ASP.NET web API that supports CRUD operations,
which stands for Create Read Update and Delete. These map to the standard database
operations that correspond to the following HTTP verbs:

» GET: The GET method retrieves whatever information is identified by the requesting URI

» PUT: The PUT method requests that the enclosed entity is to be stored under the
supplied requesting URI

» POST: The POST method requests that the enclosed entity is to be a subordinate of
the resource identified by the requesting URI

» DELETE: The DELETE method requests that the resource identified by the requesting
URI should be deleted

In this recipe, we will see how to implement these CRUD features on the previously created
service, with the HTTP verbs, and the ASP.NET web API.

170

Chapter 8

Getting ready

In order to use this recipe, you should have Visual Studio 2012 and ASP.NET MVC 4 installed
(the latter one includes the ASP.NET web API). You should also have the project resulting from
our previous recipe.

How to do it...

Here we are going to implement the CRUD verbs into the web API that we created in our
previous section:

1. Copy our previous recipe project into a new folder and name it WebAPICRUD.
2. Create a class with the name of IRepository.cs with the following code:

public interface IRepository<T> where T : class
{

IEnumerable<T> GetAll() ;

T GetById(int id);

void Insert (T entity);

void Update (T entity);

void Delete (T entity);

}

3. Add a class named BooksRepository.cs containing the following code:

public class BooksRepository : IRepository<BookModels>

{

ObservableCollection<BookModel> ocBooks = null;
public BooksRepository ()

{

ocBooks = GenerateBooks () ;

}

private ObservableCollection<BookModel> GenerateBooks ()

{

ObservableCollection<BookModel> Books = new ObservableColl

ection<BookModel> () {
new BookModel () {
Id=1,
Title = ".NET 4.5 First Look",
Description = "A book to quickly and

practically get into .NET 4.5"

b

new BookModel () {

Creating and Hosting Our First ASP.NET Web API

Id=2,
Title = "The lost book of Agatha Christie",
Description = "A book everybody wants to

read..."

}i
return Books;
}
public IEnumerable<BookModels> GetAll() {
return ocBooks;
}
public BookModel GetById(int id) {
var book = (from b in ocBooks
where b.Id == id
select b) .FirstOrDefault () ;
return book;
}
public void Insert (BookModel book)
book.Id = GetLatestIdPlusOne() ;
ocBooks .Add (book) ;

}

private int GetLatestIdPlusOne ()
{
int BiggestId = 0;
foreach (BookModel book in ocBooks)
{
if (BiggestId < book.Id) ({

BiggestId book. Id;

}

return (BiggestId

+

1);

}

public void Update (BookModel book)
this.Delete (book) ;
ocBooks .Add (book) ;

}

public void Delete (BookModel book)
BookModel bookToRemove = GetById (book.Id);
ocBooks .Remove (bookToRemove) ;

172

Chapter 8

4. And substitute the following code for our BooksController.cs content:
public class BooksController

{

ApiController

static readonly IRepository<BookModels> BooksRep
new BooksRepository () ;

public IEnumerable<BookModels> Get ()

{
return BooksRep.GetAll () ;

}

public HttpResponseMessage Get (int id)

{

BookModel bm = BooksRep.GetById(id) ;
if (bm != null)

{

de.OK, bm);

}

else {

return Request.CreateResponse<BookModels> (HttpStatusCo

return Request.CreateResponse<BookModels> (HttpStatusCo
de.NotFound, null);

}

}

public void Put (BookModel bm) {
BooksRep .Update (bm) ;

HttpResponseMessage hrm = Request.CreateResponse<BookModel
> (HttpStatusCode.Created, bm);

}

public HttpResponseMessage Post (BookModel bm)
{
BooksRep. Insert (bm) ;

HttpResponseMessage hrm = Request.CreateResponse<BookModel
> (HttpStatusCode.Created, bm);

hrm.Headers.Location = new Uri (Url.Link ("DefaultApi", new
{ id = bm.1Id }));

return hrm;

public HttpResponseMessage Delete (BookModel bm)

{

BooksRep.Delete (bm) ;

Creating and Hosting Our First ASP.NET Web API

return new HttpResponseMessage (HttpStatusCode.NoContent) ;

}

5. And that's it! We now have a ready to go (albeit very basic) web API that implements
the main HTTP verbs.

We started from a copy of our past web API project so we could re-use the basics.

Next we implemented the repository pattern, with the IRepository interface and the
BooksRepository class. This is a good practice to increase readability and testability,
even if our actual implementation is working upon an observable collection in memory.

If we wanted to improve this example to use a database, for example, we would just need
to slightly change the BooksRepository implementation of the IRepository interface.

On this repository, we implemented an initialization of our database, the Getal1 ()
and Get (int id) functions and Insert (BookModel book) with a helper function
GetLatestIdPlusOne () to get the largest book ID and add one to it.

We also implemented the Update () and Delete () methods.

To follow, we built the BooksController class, which we started from scratch. First, we
added a static member of the type IRepository<BookModel >, associating it with a new
BooksRepository:

static readonly IRepository<BookModel> BooksRep =
new BooksRepository () ;

With this singleton in place, we can use it wherever we want from our BooksController
class, making it global to all the instances of the BooksController class.

We implemented the GET verbs first, in a very similar way to what we had done previously.
However, in the current implementation, they are now more decoupled and the responsibility
of getting the element now resides with the repository.

The PUT, POST, and DELETE verbs were also very straightforward to implement, by calling
the method directly.

Additionally, you will observe that we have been returning an adequate
HttpResponseMessage with each of these verbs, perfectly matching what the protocol
is expecting.

Chapter 8

Setting up a self-hosted ASP.NET web API

In this recipe, we will demonstrate how to self-host an ASP.NET web API. A web API gives us

the flexibility to host our web API in our process, also called self-hosting.

Getting ready

In order to use this recipe you should have Visual Studio 2012 and ASP.NET MVC 4 installed

(the latter includes the ASP.NET Web API).

How to do it...

Next we are going to self-host our web API.

1.
2.

Create a new console application project and name it WebAPISelfHosted.

Open the NuGet package manager, which you can launch from the Tools menu, select
Library Package Manager, and click on Manage NuGet Packages for Solution.

Select the online packages, and look for Microsoft ASP.NET Web API Self Host and

click on Install as shown in the following screenshot:

‘WebAPI101 sIn - Manage NuGet Packages

[——

b Installed packages | include prerelease | sort by: [Most Downloads

4 Online Microsoft ASP.NET Web API Core Libraries

This package contains the core runtime assemblies for ASP.NET Web APL This package is used by hosts of
the ASP.NET Web API runtime. To host a Web API in IIS use the Microsoft. AspNetWebApi.WebHost packag..

A5 NET

All
NuGet official package source

Search Results ' ASP.NET Web API Self Host
AseNeT - Legacy package, AspNetWebApi.SelfHost is now included in the ‘Microsoft AspNetWebApi.SelfHost'
b Updates package.

b Recent packages
Microsoft ASP.NET Web API Self Host

This package contains everything you need to host ASP.NET Web APIwithin your own
process (outside of IIS). ASPNET Web APIis a framework that makes it easy to build HTTP...

. AttributeRouting (Self-hosted Web APT)
AttributeRouting for self-hosted Web API lets you specify routes using attributes on your API controllers and
actions.

. AttributeRouting.Core
Core functionality for all AttributeRouting packages.

. AttributeRouting.Core.Http
Each package is licensed to you by its Core functionality for AttributeRouting Web AP packages.
owner. Microsoft is not responsible
for, nor does it grant any licenses to,

third-party packages.

| settings]

n
120

Install

selfhost x -
“ Created by: Microsoft

1d: Microsoft AspNet.WebApi SelfHost
Version: 40207100

Last Updated: 8/15/2012

Downloads: 3434

View License Terms

Project Information

Report Abuse

Description:

n

This package contains everything you
need to host ASP.NET Web AP within
your own process (outside of IIS).
ASP.NET Web APLis a framework that
makes it easy to build HTTP services that
reach a broad range of clients, including
browsers and mobile devices. ASPNET
Web APIis an ideal platform for
building RESTful applications on

the NET Framework

Tags: Microsoft AspNet WebApi
AspNetWebApi SelfHost
Dependencies:

Microsoft AspNet WebApi.Core (=
40207100 &8 < 41)

[cose |||

4. We will add a class named Booksmodel .
public class BookModel

{

public int Id { get; set; }

cs with the following code:

Creating and Hosting Our First ASP.NET Web API

public String Title { get; set; }
public String Description { get; set; }
public bool IsOnSale { get; set; }
public int BookRating { get; set; }
public double BookPrice { get; set; }

}

5. Next we will add a controller. Right-click on our project, select New item from Add and
type controller there. The ASP.NET Web API Controller Class option will appear.
Select it, name it BooksController, and press the Add button, as shown in the

following screenshot:

Add New [tem - WebAPISelfHosted

ol X

4 Installed Sort by: |Default v

4 \Visual C# Items

Code
Data
General
Web
Windows Forms
WPF
Reporting
Workflow

Graphics

(L]
,l;j Web API Controller Class Visual C# Items
4

Search Results

b Online

Name: BooksController{cs

i
ai E controller

Type: Visual C¥ Items

‘Web API Application Controller Class
(ASP.NET Web API Framewark requires
Controller names to be suffixed with

"Controller™)

® -

[

Add

H Cancel ‘

6. We will insert exactly the same code in BooksController as in our first controller,

as follows:

public class BooksController : ApiController

{

BookModel [] Books = null;
public BooksController ()

{
Books = GenerateBooks() ;
}
public IEnumerable<BookModels> Get ()
{

return Books;

176

Chapter 8

}

public BookModel Get (int id)
{
var book = (from b in Books
where b.Id == id
select b) .FirstOrDefault () ;
return book;

}

private BookModel [] GenerateBooks ()

{

BookModel [] Books = new BookModel[]
new BookModel () {

Id=1,
Title = ".NET 4.5 First Look",
Description = "A book to quickly and

practically get into .NET 4.5"

b

new BookModel () {

Id=2,
Title = "The lost book of Agatha Christie",
Description = "A book everybody wants to

read..."

}
}i

return Books;

}

We will open the Programs . cs file and add the following code:

static void Main(string[] args)

{
HttpSelfHostConfiguration cfg = new HttpSelfHostConfiguration (
"http://localhost:8030") ;

cfg.Routes.MapHttpRoute (
"API Default",
"api/{controller}/{id}",
new { id = RouteParameter.Optional }
) ;
using (HttpSelfHostServer server = new
HttpSelfHostServer (cfg))
{
server.OpenAsync () .Wait () ;
Console.WriteLine ("Press Enter to finalize the service (or
close the console application) .");
Console.ReadLine () ;
}

Creating and Hosting Our First ASP.NET Web API

8.

10.
11.
12.
13.

14.

178

We might get a reference problem when handling the routes; if this happens, add a
reference in the project to System.Web.Routing.d1l1l and to System.Web.dl1.

Add a using clause such as the following in the Program. cs file:
Using System.Web.Http.Routing;

Now save the solution, close Visual Studio 2012, and open it again as administrator.
Open the solution again and execute it by pressing F5.
We should see the console application being executed and waiting for us to finalize.

Launch a browser, Firefox for example, and type the URI that we wrote, together with
the web API syntax, to get all the books: http:// http://localhost:8030/
api/Books and press Enter.

We should see the following result:

| L http://localhost:8030/api/Books | +

=1

€ localhost:8030/api/Books

This XML file does not appear to have any style information associated with 1t.

—<ArrayOfBookModel>

— <BookModel=
<BookPrice>(0</BookPrice>
<BookRating>(</BookRating>

—=Description=
A book to quickly and practically get into NET 4.5
</Description>
<[d=1=/Td>
=IsOnSale=false</IsOnSale>
=Title= NET 4.5 First Look=/Title=
</BookModel>

—<BookModel>
<BookPrice=0=/BookPrice>
<BookRating>(</BookRating>
<Description=A book evervbody wants to read. . </Description>=
=[d=2=/T1d=
<IsOnSale>false</IsOnSale>
<Title>The lost book of Agatha Christie</Title>

</BookModel>
</ArrayOfBookModel=

Chapter 8

In this recipe, we created a console application, to which we added, through NuGet,
the Microsoft ASP.NET Web API Self Host package.

Following this, we added the BooksModel . cs class that we used on our first recipe and the
same BooksController.cs class, changing the namespaces to match our current project.

We saw how to solve a possible reference problem and went into the main part of the
project. In the Program. cs file we added the needed references and created a new
HttpSelfHostConfiguration class with the URL that our application will service.

We mapped the route to our web APl and created a server with the newly defined configuration.
There we wait for an Enter to be hit to continue the flow and finish the application.

Additionally, we explored the web API with a browser and checked that it works as expected.

Note that in order to run this application, you will need to open Visual Studio 2012 as an
administrator, since serving a specific HTTP domain on the machine requires administrator
privileges. Another alternative option for this would be to reserve the URL with Netsh. exe,
but this service does not run permanently on this machine and/or URL, so the Run as admin
option is preferable.

Using the New
Capabilities of WF

In this chapter, we will cover:

» Creating a state machine workflow

» Using the enhanced designer features

Introduction

WF, which stands for Workflow Foundation, was first presented in society almost six years
ago on November 2007 as part of .NET 3.0. Now it comes to us as a greatly enhanced
framework with polished features and some sweetness under its cape.

WF 4.5 has softened the edges that were still present in 4.0 and now offers a state
machine workflow model, so we no longer have to simulate it with flowcharts or use
the CodePlex state machine.

It is interesting to note that the CodePlex state machine project, which can be found at
http://wf.codeplex.com/releases/view/67992, is a predecessor of the current
state machine—it was put out as soon as WF4 was shipped to get feedback from the
community early on.

It comes with many enhancements that the community has been asking for, such as C#
expressions. The list of designer improvements is long: panning, search with navigable results,
quick find, a document outline, autosurround with sequence, annotations, multiselection for
activities, auto-connect, and auto-insert. Another useful addition is the build time workflow
validation, and errors in the XAML file will now break the build. To top it off, workflow validation
is executed in the background while in the designer.

Using the New Capabilities of WF

We now have WorkflowIdentity , which basically gives us the ability to associate a name
and version with a fully configured definition; identity is configured at the host level and all
instances are annotated with that identity that lives through the life cycle of the activity.

We have the ability to use side versioning as well, where we can have multiple versions of the
definitions of a workflow executing at the same time.

Additionally, we have workflow versioning called DynamicUpdate with dynamic update
capabilities, so now we can update a persisted workflow to a newer version. It is possible
to run different versions side by side.

On the activities side, we now have NoPersistScope and some additional capabilities,
such as validating the unconnected nodes and the DisplayName property.

Activity templates can now be generated from the contract with the new Contract First
development mode. This allows us to generate the operations for the contract, given that we
have an existing WCF contract, to generate a set of activities to represent the operations in
it. Contract First also allows us to validate a workflow; this means that if a workflow claims
to have implemented a contract, it should implement all its operations as well.

This Contract First is "opt-in," so we can use the usual authoring to create activities or use
Contract First.

If all of this wasn't enough, Microsoft is bringing WF to the cloud, which clearly states the
importance of the .NET workflow "de facto" framework.

Finally, workflows can now be run in partially trusted application domains, obviously with
less permissions and capabilities.

In the following sections, we will see how to create our first state machine workflow and
how to use the main designer's new features.

Creating a state machine workflow

State machines are not a new citizen of WF but are now here to stay as a solid part of WF. They
have a new type of activity, the StateMachine activity, with two classes to help us define a
state machine: state and transition. State helps us define a state that the machine can then
be in and a transition helps us define which state changes can occur from a specific state.

In this recipe, we will see how to create a state machine workflow with WF 4.5, execute it,
and debug it.

182

Chapter 9

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed.

How to do it...

We are going to create a state machine workflow using the following steps:

1.

First open Visual Studio 2012, create a new project by navigating to Visual C# |
Workflow, and use the Workflow Console Application template to create a new
project. Name it WFStateMachine and click on Ok.

Close the Wworkflowl .xaml file that will open on creating the project and rename
it to MyStateMachine.xaml. To do this, we can right-click and select Rename or
select it with a click and press F2.

Open Program. cs and change the Workf lowl reference to our new name,
MyStateMachine. We can also change the instance name to match the new
name, as in the following code:

class Program

{
static void Main(string[] args)
{
// Create and cache the workflow definition
Activity MyStateMachineInstance = new MyStateMachine () ;
WorkflowInvoker.Invoke (MyStateMachineInstance) ;

}

Note that the MyStateMachine class appears in red, so we still need to make a
minor change. Right-click on onMyStateMachine and select the view code option.

On the XAML designer, change the class name property to MyStateMachine
as follows:

MyStateMachinexaml* + > EyeTelelyNasy
= <Activity mc:Ignorable="sap sap201@ sads"”

x:Class:"WFStateMachine.MyStateMachind"

5ap2@10:ExpressionActivityEditor.ExpressionActivityEditor="C#"
xmlns="http://schemas.microsoft.com/netfx/2009/xaml/activities”
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2606"
xmlns:sads="http://schemas.microsoft.com/netfx/2018/xaml/activities/debugger"
xmlns:sap="http://schemas.microsoft.com/netfx/2009/xaml/activities/presentation”
xmlns:sap2010="http://schemas.microsoft.com/netfx,/2010/xaml/activities/presentation”
xmlns:sco="clr-namespace:System.Collections.0ObjectModel;assembly=mscorlib”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" >

Using the New Capabilities of WF

6. Note that we could perform this previous step on the designer by clicking on the
canvas and pressing F4 (properties), where we can set the x: Class value for

the activity.

7. With this our project will be properly set up and we can proceed to creating our
first .NET 4.5 state machine workflow.

Close the XAML view of the WFStateMachine.xaml file and open it with a

double-click or right-click on View Designer.

8. Lock the Toolbox pane and unfold the StateMachine section as follows:

k
S
i
]

Toolbox
Search Toolbox

- Control Flow
r Flowchart
4 State Machine

Pointer
StateMachine
State
FinalState

r Messaging

p-

9. Drag-and-drop a StateMachine section at the center of the MyStateMachine
designer. It should look similar to the following screenshot:

MyStateMachinexaml* & X

-

MyStateMachine

Expand All Collapse All

-

oS StateMachine

9] Statel O

‘

Variables Arguments Imports

>

Start

m

¥ A

O

100% ~ 32 H

184

Chapter 9

10. We will select the StateMachine blue canvas from the header, and on the Properties

tab change the DisplayName property to Book process StateMachine.

11. In the section below the StateMachine section, click on the Variables button to
unfold it and enter four variables, NumberOfChapters, BookScore, ChapterScore,
and SubmittedChapters, of type int32. Make their scope the current activity so
they look as shown in the following screenshot:

Name
NumberOfChapters
BookScore
SubmittedChapters

ChapterScore

Create Variable

Variables Arguments Imports

Variable type Scope

Int32 Book process Stat...
Int32 Book process Stat...
Int32 Book process Stat...

Int32 Book process Stat...

Default
[

5

o

5

¥ P

100%

- 2B

12. In the MyStateMachine designer, we can observe the Start node and the first state.
Change the first and only state by clicking on the name Statel and change it to

Define Book.

13. Move it just below the Start node and double-click on it to open it.

14. In the Entry section, add an Assign task from the Toolbox pane in the Primitives
section as shown in the following screenshot:

Toolbox * I X

Search Toolbox P~

I Control Flow
I Flowchart

I State Machine
I- Messaging

I+ Runtime

4 Primitives

k. Pointer

© Delay

&= InvokeDelegate
& InvokeMethod
B} WriteLine

Using the New Capabilities of WF

15. In the To section, add the NumberOfChapters variable name; we will observe that we
have intelli-sense enabled, which will make our work easier.

16. In the Enter a C# expression box, we will enter newSystem.Random () .Next (4,
12). We could also type the expression directly in the Properties panel as follows:

Properties

System.Activities.Statements.Assign

‘}l Search: Clear
& Misc
DisplayName Assign
To NumberOfChapters |:|

Value new System.Random().Next(4, 12) [E

17. Next, select a WriteLine activity and drop it immediately below the Assign activity.
While we are doing this, we should see a placeholder appearing. When we drop the
new activity, we will see that the Assign and WriteLine activities have automatically
been surrounded by another activity, a Sequence activity. This is what is called auto
surround with sequence.

18. In the Text property of the WriteLine activity, add "The book has been defined".

19. The Define Book state should now look as follows (do not worry about the
Transition(s) section, we will add it in a few moments):

186

%1 Define Book

%) Entry

.
1 Sequence

>

a8 Assign

NumberQfChapters = new System.Randol

B WriteLine

Text "The Book has been defined”

> Exit

Drop activity here

S Transition(s)

Propose Book Destination: Validate Book

Chapter 9

20. At the top we will see the navigation breadcrumb. We can click on the Book process

State Machine link to go back and see the whole workflow.

MyStateMachinexaml* +® X

MyStateMachine Book process Stat.. Define Book

Using the New Capabilities of WF
21.

22.
23.

24,

25.

26.

27.

28.

29.

We will add some more states to workflow: Vvalidate Book, Create Chapter,
Accept Chapter, Validate Chapter, and Process Chapter.

Additionally, we will add a Final state and place it at the bottom of the workflow.

We will now connect the states with transitions. To create a transition, move the
cursor to the border of our first state Define Book; a square will appear, indicating
that we can create a connector, that is dragging it to another state as follows:

Define Book

eeeeeeesesmessscssssseneeneened | D120 @ line to create a transition

We will create a transition Validate Book by dragging this square into the Validate
Book state.

Name it by selecting the transition (the line) and change the DisplayName value
that appears on the Properties panel to Propose Book.

We will open the Validate Book activity and drop an Assign activity into its Entry
section, after we set its To property to the BookScore variable and its value to the
C# expression new System.Random () .Next (1, 10).

From Validate Book we will create two transitions, one going back to the Define
Book state and another to the Create Chapter state. We will name the first transition
Book Denied and the second one Book Accepted.

Double-click on the Book Denied transition and enter the C# expression in the
condition box as BookScore< 5.

In the Action section, drop a WriteLine activity and set its Text property to "Book
has been denied..". It should now look like the following screenshot:

188

Chapter 9

S Book Denied

Source; Validate Book

Trigger

Drop Trigger activity here

B

Book Denied

Condition
BookScore < 5

Action

B WriteLine

Text "Book has been denied..”

Destination: Define Book

AA bl A T PRU -
Add shared trigger transition

30. Click on the breadcrumb's Book Process state machine to go back to the general
view of the workflow.

31. Double-click on the Book Accepted transition, set its condition to BookScores>=
5, and add a WriteLine activity with its Text property as "Book has been
accepted!™".

32. In the Create Chapter state, we will add a WriteLine activity in its Entry section with
the text "We create/edit the chapter..". Next, add a Delay activity. On its
Properties panel, we will set its duration to the expression new TimeSpan(0,0,1).

Using the New Capabilities of WF
33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45,

190

In the Create Chapter section, we will create a transition called Validate Chapter,
naming it Submit for approval.

On the Submit for approval transition, we will add a WriteLine activity with the text
"Submitting chapter for approval..'.

Moving to our next state, that is, Validate Chapter, we will add a WriteLine activity
with "Validating Chapter.." as its text.

Additionally, we will add an Assign task with the ChapterScore variable as its To
parameter and new System.Random() .Next (1, 10) asits value.

From this state, we will create two transitions, one to its previous state, Create
Chapter, and another to the Process Chapter state, naming them Chapter Denied
and Chapter Accepted, respectively.

For the Chapter Denied transition, include a condition ChapterScore< 5 and add
a WriteLine activity in the Action section, setting its text to "The chapter has
been denied..".

Give the Chapter Accepted transition a condition of ChapterScore>= 5, and in the
Action section, add a WriteLine activity called the Transaction activity with the text
setto "The chapter has been accepted!".

In the Entry section in the Process Chapter state, add an Assign activity
with SubmittedChapters as its To parameter and SubmittedChapters =
SubmittedChapters + 1 asitsvalue.

From this Process Chapter state, we will create two transitions, one to the Create
Chapter state named Chapters Pending and another to the FinalState state
named 211 Chapters Completed.

On the Chapters Pending transition, we will add SubmittedChapters<NumberOf
Chapters as its condition and a WriteLine activity on its Action panel with its Text
property setto "There are chapters to be finished".

For the All Chapters Completed transition, we will set its condition to
SubmittedChapters>= NumberOfChapters and add a WriteLine activity on the
Action panel with the Text setto "A11 the chapters have been completed,
congratulations!!".

In the Final state, we will add a WriteLine activity with the text "You did it!" and
another Delay activity with the expression new TimeSpan(0,0,5) as its Duration
parameter.

In order to facilitate testing, we will set a debug breakpoint by selecting the first state
Define Book and pressing F9. To enter debug mode, press F5 or click on the Start
debugging button.

Chapter 9

46. Observe that we can debug the whole workflow of the states and also their activities

as follows:
Start
Book Denied
% 2] Define Book
Propose Book
) %] Validate Book
's@ Create Chapter ')D
Book Accept...
Chapter Deni...

9] Validate Chapter

)

Chapters Pen...

5.1 FinalState

Chapter Acce...

9] Process Chapter

D

All Chapters...

Using the New Capabilities of WF

47. We can then watch the results through our WriteLine activities on the console
as follows:

B | file:///E:/NET45Packt/CHO9-WF/code/WFStateMachine/WFStateMachine/bin/Debug/WFStateMachin.... = =] P

There are chapters to be finished
We create/edit the chapter...

for approval..
The chapter has been denied. ..
We create/edit the chapter...
Submitting chapter for approval..
Ualidating Chapter..
The chapter has been denied. ..
We create/edit the chapter...
Submitting chapter for approuval..
Ualidating Chapter..
The chapter has been accepted
There are chapters to be finished
We create/edit the chapter...
Submitting chapter for approval..
Ualidating Chapter..
The chapter has been accepted
There are chapters to be finished
We create/edit the chapter...
Submitting chapter for approval..
Ualidating Chapter..
The chapter has been accepted
There are chapters to be finished
We create/edit the chapter...
Submitting chapter for approval..
Ualidating Chapter..
The chapter has been accepted
There are chapters to be finished
We create/edit the chapter...
Submitting chapter for approuval..
Ualidating Chapter..
The chapter has been accepted
All the chapters have been completed, congratulations?!

Following the previous steps, we have successfully created a complete state machine
workflow using some of the new capabilities of WF 4.5.

We created a state machine workflow by adding a StateMachine activity and using it as
a placeholder for our states and transitions, which we selected from the StateMachine
section in our Toolbox pane.

192

Chapter 9

We designed a book process workflow similar to the one used at Packt Publishing but much
simpler. The preceding example showcases how to map a process to a workflow that is
characterized by having fixed states and transitions between them.

The complete process needed a few more states and transitions to fulfill its intended
behavior. We added activities on the state's entry points, but we could also have done
so on the exit points.

The specific transition to use at each cycle is decided by examining the condition that
we provided. For clarity and illustration purposes, we added a WriteLine activity to all
the transitions so we could follow the execution in the console written out.

We have seen some examples of the usage of C# expressions, used the surround with a
sequence capability of the improved designer, and used the bookmark to quickly navigate
out of the transitions and states.

Finally, we debugged the workflow and saw how easy it has become with the new improvements.

Using the enhanced designer features

In this recipe, we will see how to use some of the new features of the workflow designer.

Enhanced designer features that we will be using include search, auto surround, panning,
outline, and annotations.

Getting ready

In order to use this recipe, you should have Visual Studio 2012 installed. You need a project
to work with, such as the result of our previous recipe.

How to do it...

We will explore some of the new WF designer features with the following steps:

1. First open Visual Studio 2012 and then open a WF 4.5 project. Our previous project
will do perfectly.

Using the New Capabilities of WF

2. Navigate from the menu to View | Other windows | Document Outline (or press Ctrl
+ Alt + T). The outline allows us to navigate with a simple click through the hierarchy
of our workflow elements; this gives us a synchronized view of our workflow editor and
our document outline, as we can see in the following screenshot:

FILE EDIT VIEW PROJECT BUID DEBUG TEAM SQL DATA TOOLS TEST ARCHITECTURE ANALYZE WINDOW

Q- R = P Start ~ Debug -~ & _
Document Outline AR 1MyStateMachinexaml # X -
MyStateMachine MyStateMachine ~ Book process Stat.. ~ Define Book Expand Al Collapse All

4 EEE Book process StateMachine
4 InitialState
4 77 Define Book
4§ Propose Book
To
4 Entry
31 Sequence

% % Define Book

%) Entry

4 States

4§ Create Chapter
S Submit for Approval
Entry

4 37 FinalState
Entry

4§ Define Book xes Assign
S Propose Book

4 Entry NumberOfChapters = new System.Randon
4 31 Sequence
ﬁ WriteLine
4 7 Validate Book
% Book Denied
S Book Accepted
Entry
4 ¥ Validate Chapter
S Chapter Denied
S Chapter Accepted
Entry
4§ Process Chapter
S All Chapters Completed
S Chapters Pending
Entry

31 Sequence

>

B WriteLine

Text "The Book has been defined”

& Exit

‘:.‘-"OID activity here

S Transition(s)

Propose Book Destination: Validate Book

3. Press Ctrl + F to open the quick find Find and Replace dialog. Type Validate and
click on the Find Next button. You can cycle through all the incidences of the word
that have been found in your workflow.

Chapter 9

Find and Replace

A Find in Files | &~ Replace in Files Book Denied

Find what:
alidate w [. L
Propose E Found in property ‘DisplayName' |
Look in: : -
Current Document - m .1 Validate Book

[T Include sub-folders

Find options {)

Result options Book Accept...

Find Previous l [Find Next J

Bookmark A Find All

Chapter Acce...

5.1 Process Chapter

Chapters Pen... -):)

4. Unfold the Variables panel and right-click on the topmost variable row. A context
pop-up menu will appear with the Delete option, which already exists, that is used
to perform operations with the keyboard.

‘ [n] »
Name Variable type Scope Default

NumberOfChapters % Delete Book process Stat.. &

BookScore) AT Book process Stat.. 5

SubmittedChapters Edit Annotation Book process Stat.. 0

ChapterScore Delete Annotation Book process Stat.. 5

Create Variable

Variables Arguments Imports * P 100% - ﬁ:f, EE

Using the New Capabilities of WF

5. [If you select three states while pressing the Ctrl key, they can then be jointly dragged.
This enables us to multiselect and move states or activities on the designer (we
previously had to make the selection one by one).

6. For complex workflows, we have the Pan mode. You can activate it by clicking on the
hand at the bottom right of the workflow designer. We can simulate this by zooming
in on our workflow so we can pan around.

¥ P 100 ~ HH

7. On the state machine and in the flowchart workflows, we can drag a state on
top of another state and see that both states become connected by a transition
automatically. When dragging over the state, we will see that the attachment
points become visible, indicating that when we drop the state. It will automatically
get connected, as shown in the following screenshot. These features are called
auto-connect and auto-insert.

Chapter Acce...

9.1 Process Chapter

1.):)

8. Right-click on the Create Chapter state and navigate to Annotations | Add
Annotation. Enter This is the step that will take most of the
time. .. If you now hover over the annotation icon at the top right of the step,
the annotation will be shown. Note that you can collapse it so it will be displayed
as a post-it note or expand it so it will be visible in the canvas.

196

&_] Create Chapter

)

2

L

This is the step that will

take most of the time..

Chapter 9

We simply used the workflow designer on Visual Studio 2012 to showcase some of its

new features.

We did not show the auto surround with sequence or the C# expressions, since we have
already done so in the previous recipe. We also used the new debugger capabilities to

debug the states and activities of a workflow.

Resources for
Further Knowledge

In this chapter, we will cover:

» Resources for knowing more about .NET 4.5 and its tools
» Resources for knowing more about Windows 8

» Resources for knowing more about general development

Resources for knowing more about .NET 4.5

and its tools

Some resources of interest for .NET Framework 4.5 developers are as follows:

» The Visual Studio 2012 launch website http://visualstudiolaunch.com/.
» The .NET Framework blog http://blogs.msdn.com/b/dotnet/.

» The .NET Framework's Twitter handle https://twitter.com/dotnet.

» The Developer Tools Blogs http://blogs.msdn.com/b/developer-tools/.
» The Visual Studio Blogs http://blogs.msdn.com/b/visualstudio/.

» The Microsoft's Expression Blend team blog http://blendinsider.com/.

» The Visual Studio Developer Center http://msdn.microsoft.com/
visualstudio/.

» The Visual Studio official website http://www.microsoft.com/visualstudio.

Resources for Further Knowledge

» The Visual Studio resources website http://msdn.microsoft.com/vstudio.

» Microsoft Developer Network's What's New in the .NET Framework 4.5
http://msdn.microsoft.com/en-us/library/ms171868.aspx.

» Microsoft's Virtual Academy http://www.microsoftvirtualacademy.com/.
» Microsoft's patterns and practices site http://pnp.azurewebsites.net/en-us/.

» Codeproject search for .NET 4.5 http://www.codeproject.com/search.
aspx?g=.net+4.5&x=-1287&y=-147&sbo=kw.

» Channel9 http://channel9.msdn.com/.
» The Microsoft Developer Network home website http://msdn.microsoft.com/.

» There is a really cool end-to-end sample, from being a web backend to a Windows
Store app, that Layla Driscoll showcased at TechEd North America and TechEd
Europe. It's called What's New in the .NET Framework 4.5 and can be found at
http://code.msdn.microsoft.com/Whats-New-in-the-NET-e8d7545c.

Resources for knowing more about

Windows 8

Some cool resources for this outstanding platform, that is, Windows 8, are as follows:

» The event website where it all started: http://www.buildwindows.com/

» The section of the Microsoft Developer Network dedicated to the Build event where
you can get any sessions you might have missed: http://channel9.msdn.com/
Events/BUILD/

» The Windows 8 app developer blog: http://blogs.msdn.com/b/windowsappdev/
» The Windows dev center: http://msdn.microsoft.com/en-US/windows

» The Windows Store apps developer center: http://msdn.microsoft.com/en-
us/windows/apps

» Developer downloads for creating Windows Store apps:
http://msdn.microsoft.com/en-US/windows/apps/br229516.aspx

» The Windows Store apps samples: http://code.msdn.microsoft.com/
windowsapps/

» If you are interested in Windows 8, you might want to attend a Windows 8 Dev Camp:
http://www.devcamps.ms/windows

If you cannot attend, check "The Contoso Cookbook App" Hands-on-Lab; it is
simply great!

200

Appendix A

» Download "The Contoso Cookbook App" Hands-on-Lab from
http://www.microsoft.com/en-us/download/details.aspx?1d=29854

» You can work with the hands-on-lab through the virtual labs platform available at
http://msdn.microsoft.com/en-us/jj206431.aspx

» Of course, Windows 8 wouldn't be the same without one of the best, if not the
best, frameworks for MVVM development, MVVM Light, which you can grab from
http://mvvmlight.codeplex.com/

» Laurent Bugnion's blog also has an interesting post related to Windows 8
development at http://blog.galasoft.ch/

» Additionally, you will find some interesting posts about Windows 8 in my blog
http://silverlightguy.com

Resources for knowing more about general

development

Finally, some interesting resources for a few areas specific to .NET 4.5 development are

as follows:
» The Base Class Library (BCL) blog: http://blogs.msdn.com/b/bclteam/
» The Parallel Programming with .NET blog: http://blogs.msdn.com/b/pfxteam/
» The ADO.NET (Entity Framework too) blog: http://blogs.msdn.com/b/adonet/
» The Data Developer Center: http://msdn.microsoft.com/en-us/data
» The ASP.NET website: http://www.asp.net/
» The ASP.NET Web API (inside the ASP.NET website): http://www.asp.net/web-api

» The Windows Client website, http://windowsclient .net/, which contains
resources for WPF (Windows Presentation Foundation) and Windows Forms

201

.NET 4.5 - Deployment
Risks and Issues

In this appendix, | will expose some deployment risks and issues that might occur with
.NET 4.5.

Introduction

As mentioned in Chapter 2, Exploring the Top New Features of the CLR, .NET 4.5 is an in-place
replacement for .NET 4.0, which only runs on Windows Vista SP2 or later systems.

This means that when .NET 4.5 is installed, it replaces the .NET 4.0 assemblies; even though
.NET 4.5 has very high compatibility with .NET 4.0 scenarios, it might behave differently.

This comes along with the possibility that one of the deployment targets might not be
supported by .NET 4.5, such as Windows XP.

Along the same lines, we can install Visual Studio 2012 in our machine along with Visual Studio
2010; they can be run side by side.

Next we will see these points and their risks in some detail, specifically mentioning the following:

» Risks of the in-place upgrade to .NET 4.5

» Platform targeting

Additionally, we will expose some risk points to keep in mind while developing with the .NET
4.5 framework.

.NET 4.5 - Deployment Risks and Issues

Risks of the in-place upgrade

When .NET 4.5 is installed, it effectively replaces the existing .NET 4.0 assembilies in the
machine; they are overwritten by a newer version.

Curiously, when we query the runtime version, Environment . Version is still 4.0.30319,
having differences only in the build numbers. Basically, it becomes hard for the application
to identify if we are running .NET 4.0 or 4.5, which might be necessary if we have to decide
which part of the code can or cannot be executed.

And yes, we can build an application on .NET 4.5 and execute it on .NET 4.0, but these might
not run properly if it uses some features of the .NET 4.5 framework. Otherwise, building .NET
4.0 applications with .NET 4.5 should not bring any problems.

For avoiding these issues, we should use the <supportedruntimes element, which specifies
the versions of the CLR supported by the application with a syntax like the following:

<supportedRuntime version="runtime version" sku="gku id"/>

If this is not found on the application configuration file, the runtime version used to build the
application will be used. An example of this configuration is the following;:

<configuration>
<startup>

<supportedRuntime version="v4.0" sku=".
NETFramework,Version=v4.5" />

</startup>
</configurations>

With this in place, the application will know that it needs .NET 4.5; if it is not installed,
our application will not run and propose to install it.

Note that most of the client applications add this automatically, but we must keep an
eye out for it or we might be surprised.

Platform targeting

A .NET 4.5 application will not run on an unsupported platform such as Windows XP.

We must have in mind which operating systems support .NET 4.5. At the time of writing this
book, they were:

» Windows 8
» Windows 7

Appendix B

» Windows Vista SP2

» Windows Server 2012

» Windows Server 2008 R2
» Windows Server 2008 SP2

We might have to consider other risks as well, as follows:

» The performance improvements and bug fixes of .NET 4.5 might help pass some tests
if run on .NET 4.5, but they will not in .NET 4.0. An application can run perfectly over
.NET 4.5 and have errors running on .NET 4.0. Note that, for this to happen, it must
target .NET 4.0. An example of this is saving an enum value in the LINQ 2 entities; this
will work perfectly in .NET 4.5, but will provoke an error on a machine with .NET 4.0.

» In adevelopment team, a developer installing Visual Studio 2012 will install and
replace its assemblies with .NET 4.5, running the risk of modifying the project and/or
its behavior. His installation might also produce different execution behavior than
his peers.

205

Index

Sym bols asynchronous error handling
implementing, INotifyDataErrorinfo
-Force flag 86 used 118-124
.NET 4.5 asynchronous features, WCF
about 67 using 145-149
deployment risks 203 asynchronous HTTP module
features 67 about 114
issues 203 creating 114-116
new features 117, 118 auto surround with sequence 186
platforms 204 await
resources 199 about 59
RESTful applications 161 using 59-63
risks 205
-Script flag 87 B
A Base Class Library. See BCL
BCL 9
AddColumn function 86 BindData() method 142
Add-Migration command 87 BooksModel class 120
application BooksModel.cs class 179
improving, toast notifications adding 40, 41
application domain default culture C
defining 52, 53
application tile CancellationToken method 129
improving 33-39 CheckPreviousExecution() method 29
Application Ul tab 41 Code First application
ASP.NET 89, 90 complex types 83
ASP.NET MVC4 161 Connection string 83
ASP.NET web API creating 76-84
creating 162-169 Primary key 83
support 162 Relationship 83
working 169, 170 Typediscovery 83
ASP.NET Web Forms application working 82, 83
creating 90-103 Code First Migrations
async about 84
about 59 using 84-87

using 59-63

CodePlex state machine 181
constructor method 25
Contract First 182
Contract First development

about 156

using 156-158

working 159
Controller... option 164
CopyFilesWithFileStreams method 64
CopyFolderContents() method 66
Create Read Update and Delete. See CRUD
CRUD 170
CRUD ASP.NET web API

implementing 170-174

working 174
CustomReflectionContext class 53

D

data

binding, to static properties 130-132
data source

update delays, throttling 133-137
DbContext class 82
DEBUG button 168
default reflection behavior

overriding 53-55
DefineAppDomainCulture() method 52
Directory.EnumerateFiles method 66
Dispatcher.Invoke method 129
dispatcher’s new features

using 127-129
dispose method 115
DropCreateDatabaselfModelChanges

base 101

E

EAl 67
EF 75
E-mail Address Internationalization. See EAI
Enable-Migrations command 87
enhanced designer features
about 193
using 193-197
Entity Framework. See EF
EventHandlerTaskAsyncHelper class 116

208

Extract to User Control feature
using 111, 112

F

first Windows Store app
building 10-18
splash screen, adding 21
working 19-21

G

general development
resources 201
general development, resources
ADO.NET (Entity Framework too) blog 201
ASP.NET Web API 201
ASP.NET website 201
BCL (Base Class Library) blog 201
Data Developer Center 201
Parallel Programming with .NET blog 201
Windows Client website 201
GenerateBooks() method 170
GetAsync method 72
GetBookCategories() method 112
GetURLContentsAsync method 62

H

HTML editor

Smart Tasks, using 107, 109
HttpClient

about 68

using 68-72

working 72-74
HttpResponseMessage class 72
HttpResponseMessage method 73
HttpTestAsync function 60
HttpTestAsync method 62

IDN 67
IETF 67
Initializer class 92
INotifyDataErrorinfo

used, for asynchronous error handling imple-

mentation 118-124

in-place upgrade

risks 204
Internationalized Domain Name. See IDN
Internet Engineering Task Force. See IETF
loC 162
IsOnSale property 85

L

Launch Toast button 41
LiveShaping

about 138

steps 138-142

MainWindow.xaml class 135, 141
Managed Extensibility Framework. See MEF
MEF 44

Model-View-ViewModel. See MVVM
Multicore JIT 44

MVVM 8

MyAppBindableData property 26

new asynchronous file I/0 operations
using 63-66
working 66
new ZipArchive class
using 56-59
NotifyPropertyChanged event 133

0

OData 162

OnActivated event 27
OnActivated method 32
OnLaunched method 27, 32, 35
OnModelCreating method 83

P

Page Inspector feature
about 112
using 113
working 114

Pan mode 196
Pixel option 16
portable library
about 45
creating 45-48
working 48, 49
PrepareMessage method 26

RegEx.IsMatch() method 51
regular expression timeout

controlling 49, 50

working 51
RemoveHandler method 127
resources, .NET 4.5 199, 200
resources, Windows 8 200
RESTful applications 161
risks, .NET 4.5 205

S

SaveUserSessionData method 26
SaveUserSessionData() method 31
self-hosted ASP.NET web API

about 175

setting up 175-179
ShowAttributes method 54
side versioning 182
Smart Tasks

using, in HTML editor 107-109
splash screen

adding, to Windows Store app 21-23
StartSendingData() method 155
StartUpdatingData() method 143
state machine workflow

about 182

creating 183-193
static properties

data, binding to 130-132
StaticPropertyChanged event 132
sveutil tool 159
System.Net.Http namespaces

about 68

using 68-72

working 72-74

209

T

Task-Based Asynchronous Pattern 149
Task Parallel Library. See TPL
Task.WhenAll() method 149

Text property 131

throttling 137

TPL 44

U

Uniform Resource Identifier. See URI
unobtrusive validation

using, by application configuration 103, 106
Update-Database command 86, 87
update delays, data source

throttling 133-138
URI 67
user experience (UX) 24

W

WAI-ARIA
about 109
using 109
WCF
asynchronous features 145-149
WCF 4.5 145
WeakEventManager
using, with WeakEvent pattern 125, 126
WeakEventManager class 126

210

WeakEvent pattern

using, with WeakEventManager 125, 126
Web Accessibility Initiative-Accessible Rich

Internet Applications. See WAI-ARIA

WebClient method 115
WebSockets

about 149

using 149-154

working 154, 155
WF 181
Windows 8

resources 200, 201
Windows Presentation Foundation. See WPF
Windows Push Notification Services. See WNS
Windows Store apps

about 7-9

complying, with Windows 8 lifecycle

model 24-33

principles 9

programming model 8
WNS 40,42
Workflow Foundation. See WF
WPF 9,117
WriteLine activity 193

X

XmIDocument variable 38

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
Microsoft .NET Framework 4.5 Quickstart Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub . com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to authorepacktpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise &

professional expertise distilled

PUBLISHING

Ext.NET Web Application
Development
ISBN: 978-1-849693-24-0 Paperback: 410 pages

A guide to building Rich Internet Applications with
Ext.NET using ASP.NET Web Forms and ASP.NET MVC

1. Build rich internet applications using the power
of Ext.NET controls

Ext.NET Web Application 2. Learn how Ext.NET leverages Sencha's popular
Development Ext JS JavaScript framework to provide a full
client-server web development experience

3. Full of examples and tips, with clear step-by-step
instructions

.NET 4.0 Generics Beginner's
Guide

ISBN: 978-1-849690-78-2 Paperback: 396 pages

Enhance the type safety of your code and create
applications easily using Generics in .NET Framework 4.0

1. Learn how to use Generics’ methods and generic
collections to solve complicated problems.

2. Develop real-world applications using Generics

3. Know the importance of each generic collection
and Generic class and use them as per your
requirements

Please check www.PacktPub.com for information on our titles

enterprise &

professional expertise distilled

"PUBLISHING

WCF 4.5 Multi-Layer Services
Development with Entity Framework
Third Edition

Mike Liu

WCF 4.5 Multi-Layer Services
Development with Entity
Framework

ISBN: 978-1-849687-66-9 Paperback: 394 pages

Build SOA applications on Microsoft platforms with this
hands-on guide

1. This book will teach you WCF, Entity Framework,
LINQ, and LINQ to Entities quickly and easily.

2. Apply best practices to your WCF services and
utilize Entity Framework in your WCF services.

3. Practical, with step-by-step instructions and
precise screenshots, this is a truly hands-on book
for all C++, C#, and VB.NET developers.

rofansie Bise Dintitiad

Microsoft Visual Studio
LightSwitch Business
Application Development

Jayaram Krishnaswamy

Microsoft Visual Studio
LightSwitch Business
Application Development

ISBN: 978-1-849682-86-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1. Easily connect to various data sources with
practical examples and easy-to-follow instructions

2. Create entities and screens both from scratch and
using built-in templates

3. Query using built-in designer and by coding
(both VB and C#)

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Windows Store Apps
	Introduction
	Building our first Windows Store app
	Adding a splash screen (and app tiles) to our app
	Improving the application to make it compliant with the Windows 8 lifecycle model
	Improving our application tile
	Improving our application with toast notifications

	Chapter 2: Exploring the Top New Features of the CLR
	Introduction
	Creating a portable library
	Controlling the timeout in regular expressions
	Defining the culture for an application domain
	Overriding the default reflection behavior
	Using the new ZipArchive class
	Understanding async and await in .NET 4.5
	Using the new asynchronous file I/O operations

	Chapter 3: Understanding the New Networking Capabilities
	Introduction
	Using the HttpClient and the new System.Net.Http namespaces

	Chapter 4: Understanding the
new features of
Entity Framework 5.0
	Introduction
	Creating our first "Code First" application
	Using Code First Migrations

	Chapter 5: Understanding the New Features of ASP.NET
	Introduction
	Creating our first ASP.NET 4.5 Web Forms application
	Configuring our application to use unobtrusive validation
	Using Smart Tasks in the HTML editor
	Using WAI-ARIA support
	Using the Extract to User Control feature
	Using the Page Inspector feature
	Creating an asynchronous HTTP module

	Chapter 6: Implementing WPF's new features
	Introduction
	Implementing asynchronous error handling with INotifyDataErrorInfo
	Using the WeakEvent pattern with WeakEventManager
	Using the dispatcher's new features
	Data binding to static properties
	Throttling data source update delays
	LiveShaping – repositioning elements when its bound data changes

	Chapter 7: Applying the New
WCF Features
	Introduction
	Using the asynchronous features of WCF
	Using WebSockets
	Using contract-first development

	Chapter 8: Creating and Hosting Our First ASP.NET
Web API
	Introduction
	Creating our first ASP.NET web API
	Implementing a CRUD ASP.NET web API
	Setting up a self-hosted ASP.NET web API

	Chapter 9: Using the New Capabilities of WF
	Introduction
	Creating a state machine workflow
	Using the enhanced designer features

	Appendix A: Resources for
Further Knowledge
	Resources for knowing more about .NET 4.5 and its tools
	Resources for knowing more about
Windows 8
	Resources for knowing more about general development

	Appendix B: .NET 4.5 – Deployment Risks and Issues
	Introduction
	Risks of the in-place upgrade
	Platform targeting
	Other risks

	Index

