

.NET Framework 4.5
Expert Programming
Cookbook

Over 50 engaging recipes for learning advanced concepts of
.NET Framework 4.5

A.P. Rajshekhar

BIRMINGHAM - MUMBAI

.NET Framework 4.5 Expert Programming
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1110113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-742-3

www.packtpub.com

Cover Image by David Gutierrez (bilbaorocker@yahoo.co.uk)

Credits

Author
A.P. Rajshekhar

Reviewers
Wei Chung, Low

Jason De Oliveira

Acquisition Editor
James Jones

Lead Technical Editor
Ankita Shashi

Technical Editors
Jalasha D'costa

Worrell Lewis

Varun Pius Rodrigues

Copy Editors
Brandt D'Mello

Aditya Nair

Laxmi Subramanian

Ruta Waghmare

Project Coordinators
Priya Sharma

Abhishek Kori

Proofreader
Lawrence A. Herman

Indexer
Rekha Nair

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

A.P. Rajshekhar, Senior Developer with Red Hat, has more than 7 years of experience
in IT, having worked on applications ranging from enterprise-level web applications and
game development to android applications. His endeavors include development of Learning
Management System, Health Systems, Supply Management Solution, and Xbox-based games.
He has extensive knowledge of different technologies (SOA, Portal, Java Persistence, and
.NET Persistence) and platforms (Sharepoint and JBoss EAP). He is also the author of Building
Dynamic Web 2.0 Websites with Ruby on Rails, Packt Publishing, that was in Amazon's top 50
in Web 2.0 for 6 months. Apart from that he has also contributed to DevShed Portal on topics
ranging from server-side development (JEE/.NET/RoR) to mobile (Symbian/Android-based
development) and game development (SDL and OpenGL) with a total readership of more
than 3 million. He is currently ranked among the top 10 authors on DevShed. You can find
out about his interests on his blogs – http://aprajshekhar.wordpress.com and
http://sententiasupervicis.wordpress.com.

Authoring a book is not an easy feat. However, the help and guidance
from my family and friends helped me to author this book. First, I would
like to thank Packt Publishing for providing me an opportunity to work on
such an exciting project. I would like to thank my parents for their constant
encouragement. Special thanks to my friends Shrikant Khare and Sormita
Chakraborty for their support, encouragement, and initial research on the
topics to be covered.

About the Reviewers

Wei Chung, Low is a Business Intelligence Manager, a .NET developer, and a MCT, MCPD,
MCITP, MCTS, MCSD.NET. He works with IPG MediaBrands (NYSE: IPG) at its Kuala Lumpur,
Malaysia campus. He is also a member of PMI, certified as PMP. He started working on
Microsoft .NET early in his career and has been involved in development, consultation, and
corporate training in the areas of business intelligence, system integration, and virtualization.
He has worked for the Bursa Malaysia (formerly Kuala Lumpur Stock Exchange) and Shell IT
International previously, which gave him rich integration experiences across different platforms.

He strongly believes that a good system implementation delivers precious value to
businesses, and integration of various systems across different platforms shall always
be a part of it, just as diverse people from different cultures live together in harmony in
most of the major cities.

Jason De Oliveira works as CTO for Cellenza (http://www.cellenza.com), an IT
Consulting company specializing in Microsoft technologies and Agile methodology in Paris,
France. He is an experienced Manager and Senior Solutions Architect, with advanced skills
in Software Architecture and Enterprise Architecture.

Jason works for big companies and helps them to realize complex and challenging software
projects. He frequently collaborates with Microsoft and you can quite often find him at the
Microsoft Technology Center (MTC) in Paris.

He loves sharing his knowledge and experience via his blog, by speaking at conferences,
writing technical books, writing articles in the technical press, giving software courses
as a Microsoft Certified Trainer (MCT), and coaching co-workers in his company.

Microsoft has awarded him the Microsoft® Most Valuable Professional (MVP C#) Award
since 2011 for his numerous contributions to the Microsoft community. Microsoft seeks to
recognize the best and brightest from technology communities around the world with the MVP
Award. These exceptional and highly respected individuals come from more than 90 countries,
serving their local online and offline communities and have an impact worldwide. Jason is very
proud to be one of them.

Please feel free to contact him via his blog if you need any technical assistance or want to
exchange information on technical subjects (http://www.jasondeoliveira.com).

Jason has worked on the following books:

ff WCF 4.5 Multi-tier Services Development with LINQ to Entities, Packt Publishing

ff Visual Studio 2012 - Développez pour le web, ENI Publishing

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Core .NET Recipes	 5

Introduction	 5
Implementing the validation logic using the Repository pattern	 6
Creating a custom validation attribute by extending the validation
data annotation	 10
Using XML to generate a localized validation message	 16
Extending the validation attribute for localization	 19
Creating custom attributes	 22
Processing custom attributes via reflection	 27
Using asynchronous file I/O for directory-to-directory copy	 33
Accessing JSON using dynamic programming	 38

Chapter 2: Application Events and Windows Forms	 45
Introduction	 45
Creating an event that can have generic values as payload	 46
Creating a table layout that can dynamically add or remove rows based on
the size of the collection	 52
Creating DataGridView dynamically	 61
Creating a video player using DirectX and Windows Forms	 71

Chapter 3: Threading and Parallel Programming	 77
Introduction	 77
Creating a shared resource	 78
Handling Producer-Consumer race conditions	 82
Handling background threads in Windows Forms	 88
Handling threads in WPF	 93
Using parallel programming to make bulk image processing faster	 98
Chaining two parallelized bulk image processing operations	 101

ii

Table of Contents

Chapter 4: ASP.NET Recipes – I	 105
Introduction	 105
Creating a user registration page using HTML5 controls	 105
Saving a draft of a user registration page using HTML5 client storage	 109
Binding objects to controls using strongly-typed data controls	 114
Implementing communication between an ASPX page
and a Silverlight application	 119

Chapter 5: ADO.NET Recipes	 129
Introduction	 129
Saving large files (BLOB) in MS SQL Server using ADO.NET	 129
Retrieving large files (BLOB) from SQL Server using ADO.NET	 134
Using transactions to maintain database consistency when saving
multiple files	 138
Using DataSet to modify custom XML configuration files	 145

Chapter 6: WCF Recipes	 151
Introduction	 151
Implementing custom binding in WCF	 151
Creating a WCF REST service	 157
Handling exceptions using FaultContract and FaultException	 162
Uploading files using Stream	 166
Securing a service using role-based security	 173

Chapter 7: WPF Recipes	 179
Introduction	 179
Implementing the Model and Repository patterns	 180
Implementing View Model	 187
Implementing View commands and binding data to View	 190
Using the live data shaper for live sorting	 196
Playing videos using MediaElement	 199
Using Ribbon control to display the video player controls	 203

Chapter 8: ASP.NET Recipes – II	 209
Introduction	 209
Preventing cross-site injection using the anti-XSS library	 210
Adding Google Map functionality using Map Helper	 213
Third-party authentication of users using Google	 216
Implementing unobtrusive validation	 218

iii

Table of Contents

Chapter 9: Silverlight Recipes	 223
Introduction	 223
Using Pivot control to present asset data	 223
Accessing webcams	 227
Using client-side storage for saving a draft of the user registration data	 231

Chapter 10: Entity Framework Recipes	 235
Introduction	 235
Joining two entities using LINQ	 236
Uploading files using Entity Framework and stored procedures	 240
Managing connections manually for long-running tasks	 244
Using functions that return tables as return values	 247

Index	 255

iv

Table of Contents

Preface
.NET is an architecture-neutral programming language and agnostic framework that caters
to the varying requirements from desktop application, to business solutions, to multiplayer
online three-dimensional games. The Version 4.5 added many new features and enhanced
the existing ones that help in the development of robust and user-friendly solutions more
easily. .NET Framework 4.5 Expert Programming Cookbook takes a hands-on approach in
teaching you how to use the new as well as advanced features of the .NET Framework 4.5.
Each topic will teach you how to use a specific feature of .NET to solve a real world problem
or scenario.

This is a concise and practical cookbook with recipes which demonstrates advanced concepts
with all the new functionality of the .NET Framework 4.5.

What this book covers
Chapter 1, Core .NET Recipes, will cover the core concepts in .NET, which include metadata
programming, reflection, asynchronous I/O, and dynamic programming.

Chapter 2, Application Events and Windows Forms, covers topics such as event handling,
dynamically generating controls, and layouts as well as creating video players using
Managed DirectX.

Chapter 3, Threading and Parallel Programming, will cover multi-threading, thread-safety, and
the parallel framework extensions to avoid threading pitfalls in your Windows Forms, WPF, and
Silverlight applications.

Chapter 4, ASP.NET Recipes – I, explains the new features of ASP.NET applications including
strongly-typed controls, HTML 5 controls, and client-side storage as well as passing data
between Silverlight and the ASPX page.

Chapter 5, ADO.NET Recipes, covers saving and retrieving files of big size (BLOB) in SQL
Server, managing transactions, and using DataSet to operate upon XML data.

Preface

2

Chapter 6, WCF Recipes, explains uploading files using streamed mode, implementing
REST services, handling exceptions using FaultContract, implementing custom binding,
and securing services using role-based security.

Chapter 7, WPF Recipes, will cover design patterns that include MVVM, repository pattern, and
Data Mapper as well as new controls such as Ribbon control and live data shaper. It will also
cover creating a video player using WPF Media API.

Chapter 8, ASP.NET Recipes – II, covers the new features of ASP.NET websites such as
enabling Google/Facebook, SSO-based authentication, adding unobtrusive validation,
embedding maps in websites, and protecting against cross-server scripting attacks.

Chapter 9, Silverlight Recipes, explains the new pivot control, accessing webcams, and
client-side storage.

Chapter 10, Entity Framework Recipes, will cover using LINQ to join multiple entities,
calling stored procedures using Entity Framework, handling long-running tasks, and
using table-valued functions of MS SQL Server.

What you need for this book
You will need Visual Studio 2012, MS SQL Server 2008 or higher, Windows 7 or higher,
and hardware compatible with Windows 7 or higher. A webcam will be required to run
certain recipes.

Who this book is for
This book is for those who have basic to intermediate knowledge about the .NET Framework
and want to understand its advanced features and features new to .NET 4.5. Each advanced
feature covered in this book assumes that the reader has the basic knowledge of the concept
being discussed.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning:

Code words in text are shown as follows: "The core of the validation logic lies in the
IsUsernameUnique method of the MockRespository class."

A block of code is set as follows:

public interface IRepository
{
 void AddUser(User user);
 bool IsUsernameUnique(string userName);
}

Preface

3

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

foreach (string filename in Directory.EnumerateFiles(sourceDir))
{
 using (FileStream sourceStream = File.Open(filename, FileMode.Open))
 {
 }
}

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Then click on the Copy
button to start copying."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
Core .NET Recipes

In this chapter we will cover:

ff Implementing the validation logic using the Repository pattern

ff Creating a custom validation attribute by extending the validation data annotation

ff Using XML to generate a localized validation message

ff Extending the validation attribute for localization

ff Creating custom attributes

ff Processing custom attributes via reflection

ff Using asynchronous file I/O for directory-to-directory copy

ff Accessing JSON using dynamic programming

Introduction
This chapter will cover recipes related to core concepts in .NET, which will include
the following:

ff Metadata-driven programming: The first six recipes will cover how to use attributes
as metadata for specific purposes such as validation and localization.

ff Reflection: The Processing custom attributes via reflection recipe will tell you how
to use reflection to create metadata processors such as applications or libraries
that can understand custom attributes and provide the output based on them.

ff Asynchronous file I/O: This is a new feature for file input/output introduced in .NET
4.5. The Using asynchronous file I/O for directory-to-directory copy recipe will cover
this feature.

Core .NET Recipes

6

ff Dynamic programming: .NET 4.0 introduced the concept of dynamic programming,
in which blocks of code marked as dynamic will be executed directly, bypassing
the compilation phase. We will look at this in the last recipe, Accessing JSON using
dynamic programming.

Implementing the validation logic using the
Repository pattern

The Repository pattern abstracts out data-based validation logic. It is a common
misconception that to implement the Repository pattern you require a relational database
such as MS SQL Server as the backend. Any collection can be treated as a backend for a
Repository pattern. The only point to keep in mind is that the business logic or validation
logic must treat it as a database for saving, retrieving, and validating its data. In this recipe,
we will see how to use a generic collection as backend and abstract out the validation logic
for the same.

The validation logic makes use of an entity that represents the data related to the user and
a class that acts as the repository for the data allowing certain operations. In this case, the
operation will include checking whether the user ID chosen by the user is unique or not.

How to do it...
The following steps will help check the uniqueness of a user ID that is chosen by the user:

1.	 Launch Visual Studio .NET 2012. Create a new project of Class Library project type.
Name it CookBook.Recipes.Core.CustomValidation.

2.	 Add a folder to the project and set the folder name to DataModel.

3.	 Add a new class and name it User.cs.

4.	 Open the User class and create the following public properties:

Property name Data type
UserName String

DateOfBirth DateTime

Password String

Use the automatic property functionality of .NET to create the properties. The final
code of the User class will be as follows:

namespace CookBook.Recipes.Core.CustomValidation
{
 /// <summary>
 /// Contains details of the user being registered

Chapter 1

7

 /// </summary>
 public class User
 {

 public string UserName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public string Password { get; set; }

 }
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

5.	 Next, let us create the repository. Add a new folder and name it Repository.

6.	 Add an interface to the Repository folder and name it IRepository.cs.

7.	 The interface will be similar to the following code snippet:
public interface IRepository
 {
 }

8.	 Open the IRepository interface and add the following methods:

Name Description Parameter(s) Return Type
AddUser Adds a new user User object Void

IsUsernameUnique Determines whether
the username is
already taken or not

string Boolean

After adding the methods, IRepository will look like the following code:

namespace CookBook.Recipes.Core.CustomValidation
{
 public interface IRepository
 {
 void AddUser(User user);
 bool IsUsernameUnique(string userName);
 }
}

9.	 Next, let us implement IRepository. Create a new class in the Repository folder
and name it MockRepository.

Core .NET Recipes

8

10.	 Make the MockRepository class implement IRepository. The code will be
as follows:
namespace CookBook.Recipes.Core.Data.Repository
{
 public class MockRepository:IRepository
 {
 #region IRepository Members
 /// <summary>
 /// Adds a new user to the collection
 /// </summary>
 /// <param name="user"></param>
 public void AddUser(User user)
 {

 }
 /// <summary>
 /// Checks whether a user with the username already
 ///exists
 /// </summary>
 /// <param name="userName"></param>
 /// <returns></returns>
 public bool IsUsernameUnique(string userName)
 {

 }

 #endregion
 }
}

11.	 Now, add a private variable of type List<Users> in the MockRepository class.
Name it _users. It will hold the registered users. It is a static variable so that it
can hold usernames across multiple instantiations.

12.	 Add a constructor to the class. Then initialize the _users list and add two users to
the list:
public class MockRepository:IRepository
 {
 #region Variables
 Private static List<User> _users;

 #endregion
 public MockRepository()
 {
 _users = new List<User>();
 _users.Add(new User() { UserName = "wayne27",
DateOfBirth = new DateTime(1950, 9, 27), Password = "knight"
});

Chapter 1

9

 _users.Add(new User() { UserName = "wayne47",
DateOfBirth = new DateTime(1955, 9, 27), Password = "justice"
});
 }
 #region IRepository Members
 /// <summary>
 /// Adds a new user to the collection
 /// </summary>
 /// <param name="user"></param>
 public void AddUser(User user)
 {
 }
 /// <summary>
 /// Checks whether a user with the username already exists
 /// </summary>
 /// <param name="userName"></param>
 /// <returns></returns>
 public bool IsUsernameUnique(string userName)
 {

 }

 #endregion
 }

13.	 Now let us add the code to check whether the username is unique. Add the following
statements to the IsUsernameUnique method:
bool exists = _users.Exists(u=>u.UserName==userName);
return !exists;

The method turns out to be as follows:

public bool IsUsernameUnique(string userName)
{
 bool exists =
 _users.Exists(u=>u.UserName==userName);
 return !exists;
}

14.	 Modify the AddUser method so that it looks as follows:

 public void AddUser(User user)
 {
 _users.Add(user);
 }

Core .NET Recipes

10

How it works...
The core of the validation logic lies in the IsUsernameUnique method of the
MockRespository class. The reason to place the logic in a different class rather than in
the attribute itself was to decouple the attribute from the logic to be validated. It is also an
attempt to make it future-proof. In other words, tomorrow, if we want to test the username
against a list generated from an XML file, we don't have to modify the attribute. We will just
change how IsUsernameUnique works and it will be reflected in the attribute. Also, creating
a Plain Old CLR Object (POCO) to hold values entered by the user stops the validation logic
code from directly accessing the source of input, that is, the Windows application.

Coming back to the IsUsernameUnique method, it makes use of the predicate feature
provided by .NET. Predicate allows us to loop over a collection and find a particular item.
Predicate can be a static function, a delegate, or a lambda. In our case it is a lambda.

bool exists = _users.Exists(u=>u.UserName==userName);

In the previous statement, .NET loops over _users and passes the current item to u. We
then make use of the item held by u to check whether its username is equal to the username
entered by the user. The Exists method returns true if the username is already present.
However, we want to know whether the username is unique. So we flip the value returned
by Exists in the return statement, as follows:

return !exists;

Creating a custom validation attribute by
extending the validation data annotation

.NET provides data annotations as a part of the System.ComponentModel.
DataAnnotation namespace. Data annotations are a set of attributes that provides out of
the box validation, among other things. However, sometimes none of the in-built validations
will suit your specific requirements. In such a scenario, you will have to create your own
validation attribute. This recipe will tell you how to do that by extending the validation
attribute. The attribute developed will check whether the supplied username is unique or
not. We will make use of the validation logic implemented in the previous recipe to create a
custom validation attribute named UniqueUserValidator.

How to do it...
The following steps will help you create a custom validation attribute to meet your specific
requirements:

1.	 Launch Visual Studio 2012. Open the CustomValidation solution.

2.	 Add a reference to System.ComponentModel.DataAnnotations.

Chapter 1

11

3.	 Add a new class to the project and name it UniqueUserValidator.

4.	 Add the following using statements:
using System.ComponentModel.DataAnnotations;
using CookBook.Recipes.Core.CustomValidation.MessageRepository;
using CookBook.Recipes.Core.Data.Repository;

5.	 Derive it from ValidationAttribute, which is a part of the System.
ComponentModel.DataAnnotations namespace. In code, it would be
as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {

 }
}

6.	 Add a property of type IRepository to the class and name it Repository.

7.	 Add a constructor and initialize Repository to an instance of MockRepository.
Once the code is added, the class will be as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {
 public IRepository Repository {get;set;}

 public UniqueUserValidator()
 {
 this.Repository = new MockRepository();
 }
 }
}

8.	 Override the IsValid method of ValidationAttribute. Convert the object
argument to string.

9.	 Then call the IsUsernameUnique method of IRepository, pass the string
value as a parameter, and return the result. After the modification, the code will
be as follows:

namespace CookBook.Recipes.Core.CustomValidation
{
 public class UniqueUserValidator:ValidationAttribute
 {
 public IRepository Repository {get;set;}

Core .NET Recipes

12

 public UniqueUserValidator()
 {
 this.Repository = new MockRepository();
 }
 public override bool IsValid(object value)
 {
 string valueToTest = Convert.ToString(value);
 return this.Repository.IsUsernameUnique(valueToTest);
 }
 }
}

We have completed the implementation of our custom validation attribute. Now let's
test it out.

10.	 Add a new Windows Forms Application project to the solution and name it
CustomValidationApp.

11.	 Add a reference to the System.ComponentModel.DataAnnotations and
CustomValidation projects.

12.	 Rename Form1.cs to Register.cs.

13.	 Open Register.cs in the design mode. Add controls for username, date of birth,
and password and also add two buttons to the form. The form should look like the
following screenshot:

14.	 Name the input control and button as given in the following table:

Control Name
Textbox txtUsername

Button btnOK

Chapter 1

13

Since we are validating the User Name field, our main concern is with the textbox
for the username and the OK button. I have left out the names of other controls for
brevity.

15.	 Switch to the code view mode. In the constructor, add event handlers for the Click
event of btnOK as shown in the following code:
public Register()
{
 InitializeComponent();
 this.btnOK.Click += new EventHandler(btnOK_Click);
}

void btnOK_Click(object sender, EventArgs e)
{
}

16.	 Open the User class of the CookBook.Recipes.Core.CustomValidation
project. Annotate the UserName property with UniqueUserValidator. After
modification, the User class will be as follows:
namespace CookBook.Recipes.Core.CustomValidation
{
 /// <summary>
 /// Contains details of the user being registered
 /// </summary>
 public class User
 {
 [UniqueUserValidator(ErrorMessage="User name already
exists")]
 public string UserName { get; set; }
 public DateTime DateOfBirth { get; set; }
 public string Password { get; set; }

 }
}

17.	 Go back to Register.cs in the code view mode.

18.	 Add the following using statements:
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using CookBook.Recipes.Core.CustomValidation;
using CookBook.Recipes.Core.Data.Repository;

Core .NET Recipes

14

19.	 Add the following code to the event handler of btnOK:
//create a new user
User user = new User()
{
UserName = txtUsername.Text, DateOfBirth=dtpDob.Value
};
//create a validation context for the user instance
ValidationContext context = new ValidationContext(user, null,
null);
//holds the validation errors
IList<ValidationResult> errors = new List<ValidationResult>();

if (!Validator.TryValidateObject(user, context, errors, true))
{
 foreach (ValidationResult result in errors)
 MessageBox.Show(result.ErrorMessage);
}
else
{
 IRepository repository = new MockRepository();
 repository.AddUser(user);
 MessageBox.Show("New user added");
}

20.	 Hit F5 to run the application. In the textbox add a username, say, dreamwatcher.
Click on OK. You will get a message box stating User has been added successfully.

21.	 Enter the same username again and hit the OK button. This time you will get a
message saying User name already exists. This means our attribute is working
as desired.

22.	 Go to File | Save Solution As…, enter CustomValidation for Name, and click
on OK.

We will be making use of this solution in the next recipe.

How it works...
To understand how UniqueUserValidator works, we have to understand how it is
implemented and how it is used/called. Let's start with how it is implemented. It extends
ValidationAttribute. The ValidationAttribute class is the base class for all the
validation-related attributes provided by data annotations. So the declaration is as follows:

public class UniqueUserValidator:ValidationAttribute

Chapter 1

15

This allowed us to make use of the public and protected methods/attribute arguments of
ValidationAttribute as if it is a part of our attribute. Next, we have a property of type
IRepository, which gets initialized to an instance of MockRepository. We have used the
interface-based approach so that the attribute will only need a minor change if we decide to
test the username against a database table or list generated from a file. In such a scenario,
we will just change the following statement:

this.Repository = new MockRepository();

The previous statement will be changed to something such as the following:

this.Repository = new DBRepository();

Next, we overrode the IsValid method. This is the method that gets called when we use
UniqueUserValidator. The parameter of the IsValid method is an object. So we have to
typecast it to string and call the IsUniqueUsername method of the Repository property.
That is what the following statements accomplish:

string valueToTest = Convert.ToString(value);
return this.Repository.IsUsernameUnique(valueToTest);

Now let us see how we used the validator. We did it by decorating the UserName property of
the User class:

[UniqueUserValidator(ErrorMessage="User name already exists")]
public string UserName {get; set;}

As I already mentioned, deriving from ValidatorAttribute helps us in using its properties
as well. That's why we can use ErrorMessage even if we have not implemented it.

Next, we have to tell .NET to use the attribute to validate the username that has been set. That
is done by the following statements in the OK button's Click handler in the Register class:

ValidationContext context = new ValidationContext(user, null, null);
//holds the validation errors
IList<ValidationResult> errors = new List<ValidationResult>();
if (!Validator.TryValidateObject(user, context, errors, true))

First, we instantiate an object of ValidationContext. Its main purpose is to set up the
context in which validation will be performed. In our case the context is the User object. Next,
we call the TryValidateObject method of the Validator class with the User object, the
ValidationContext object, and a list to hold the errors. We also tell the method that we
need to validate all properties of the User object by setting the last argument to true. That's
how we invoke the validation routine provided by .NET.

Core .NET Recipes

16

See also
ff The Implementing Model and Repository pattern recipe discussed in Chapter 7,

WPF Recipes

Using XML to generate a localized validation
message

In the last recipe you saw that we can pass error messages to be displayed to the validation
attribute. However, by default, the attributes accept only a message in the English language.
To display a localized custom message, it needs to be fetched from an external source such as
an XML file or database. In this recipe, we will see how to use an XML file to act as a backend
for localized messages.

How to do it...
The following steps will help you generate a localized validation message using XML:

1.	 Open CustomValidation.sln in Visual Studio .NET 2012.

2.	 Add an XML file to the CookBook.Recipes.Core.CustomValidation
project. Name it Messages.xml. In the Properties window, set Build Action
to Embedded Resource.

3.	 Add the following to the Messages.xml file:
<?xml version="1.0" encoding="utf-8" ?>
<messages>
 <en>
 <message key="not_unique_user">User name is not unique</message>
 </en>
 <fr>
 <message key="not_unique_user">Nom d'utilisateur n'est pas
unique</message>
 </fr>
</messages>

4.	 Add a folder to the CookBook.Recipes.Core.CustomValidation project.
Name it MessageRepository.

5.	 Add an interface to the MessageRepository folder and name it
IMessageRepository.

Chapter 1

17

6.	 Add a method to the interface and name it GetMessages. It will have
IDictionary<string,string> as a return type and will accept a
string value as parameter. The interface will look like the following code:
namespace CookBook.Recipes.Core.CustomValidation.MessageRepository
{
 public interface IMessageRepository
 {
 IDictionary<string, string> GetMessages(string locale);
 }
}

7.	 Add a class to the MessageRespository folder. Name it
XmlMessageRepository.

8.	 Add the following using statements:
using System.Xml;

9.	 Implement the IMessageRepository interface. The class will look like the following
code once we implement the interface:
namespace CookBook.Recipes.Core.CustomValidation.MessageRepository
{
 public class XmlMessageRepository:IMessageRepository
 {
 #region IMessageRepository Members

public IDictionary<string, string> GetMessages(string locale)
{
 return null;
}

 #endregion
 }
}

10.	 Modify GetMessages so that it looks like the following code:
public IDictionary<string, string> GetMessages(string locale)
{
 XmlDocument xDoc = new XmlDocument();
 xDoc.Load(Assembly.GetExecutingAssembly().GetManifestResourceS
tream("CustomValidation.Messages.xml"));
 XmlNodeList resources = xDoc.SelectNodes("messages/"+locale+"/
message");
 SortedDictionary<string, string> dictionary = new
SortedDictionary<string, string>();
 foreach (XmlNode node in resources)

Core .NET Recipes

18

 {
 dictionary.Add(node.Attributes["key"].Value, node.
InnerText);
 }

 return dictionary;
}

Next let us see how to modify UniqueUserValidator so that it can localize the
error message.

How it works...
The Messages.xml file and the GetMessages method of XmlMessageRespository form
the core of the logic to generate a locale-specific message. Message.xml contains the key to
the message within the locale tag. We have created the locale tag using the two-letter ISO
name of a locale. So, for English it is <en></en> and for French it is <fr></fr>.

Each locale tag contains a message tag. The key attribute of the tag will have the key that
will tell us which message tag contains the error message. So our code will be as follows:

<message key="not_unique_user">User name is not unique</message>

not_unique_user is the key to the User is not unique error message. In the
GetMessages method, we first load the XML file. Since the file has been set as an embedded
resource, we read it as a resource. To do so, we first got the executing assembly, that is,
CustomValidation. Then we called GetManifestResourceAsStream and passed the
qualified name of the resource, which in this case is CustomValidation.Messages.xml.
That is what we achieved in the following statement:

xDoc.Load(Assembly.GetExecutingAssembly().GetManifestResourceStream(
"CustomValidation.Messages.xml"));

Then we constructed an XPath to the message tag using the locale passed as the parameter.
Using the XPath query/expression we got the following message nodes:

XmlNodeList resources = xDoc.SelectNodes("messages/"+locale+"/
message");

After getting the node list, we looped over it to construct a dictionary. The value of the key
attribute of the node became the key of the dictionary. And the value of the node became
the corresponding value in the dictionary, as is evident from the following code:

SortedDictionary<string, string> dictionary = new
SortedDictionary<string, string>();
foreach (XmlNode node in resources)
{
 dictionary.Add(node.Attributes["key"].Value, node.InnerText);
}

Chapter 1

19

The dictionary was then returned by the method. Next, let's understand how this dictionary is
used by UniqueUserValidator.

Extending the validation attribute for
localization

If you do not want to hardcode the message or embed it as a resource, the only approach left
is to extend the attribute so that messages can be decided at runtime based on the locale
used. Extending an attribute for this purpose can also help if you decide to fetch the message
from the database or an external translation service.

In this recipe, we will modify the UniqueUserValidator code so that it can generate
locale-based custom messages. The custom messages will be fetched from an XML file
using the logic developed in the previous recipe.

How to do it...
The following steps will guide you as you generate locale-based custom messages:

1.	 Open CustomValidation.sln in Visual Studio .NET 2012.

2.	 Open UniqueUserValidator and add the following using statements:
using CookBook.Recipes.Core.CustomValidation.MessageRepository;
using CookBook.Recipes.Core.Data.Repository;

3.	 Then add a property of type IMessageRepository and instantiate it in
the constructor:
public IRepository Repository {get;set;}
public IMessageRepository MessageRepo {get;set;}

public UniqueUserValidator()
{
 this.Repository = new MockRepository();
 this.MessageRepo = new XmlMessageRepository();
}

Core .NET Recipes

20

4.	 Override the FormatErrorMessage method of ValidationAttribute. In the
overridden method, get the current locale and call the GetMessage method of
IMessageRepository with the locale value. Then, return the value corresponding
to the ErrorMessage property. In code, it will be as follows:
public override string FormatErrorMessage(string name)
{
 string locale =
Thread.CurrentThread.CurrentCulture.TwoLetterISOLanguageName;
 return this.MessageRepo.GetMessages(locale)[this.ErrorMessage];
}

We have completed the modifications to UniqueUserValidator. Now let's see how
to use it. Along with using the modified UniqueUserValidator code, we will also
test whether it responds to the change in locale correctly.

5.	 Open the User class, which is in the DataModel folder of the CookBook.Recipes.
Core.CustomValidation project.

6.	 Change the ErrorMessage parameter of the UserName property to the following:
[UniqueUserValidator(ErrorMessage = "not_unique_user")]
public string UserName { get; set; }

7.	 Next, open the Register class of CustomValidationApp in the design mode.
Add a label and a combobox. Name the combobox cmbLocale. After adding the
controls, the Register form will look as follows:

8.	 Next, open the Register class in the view code mode. Add the following code in
the constructor:
cmbLocale.Items.Add("en-IN");
cmbLocale.Items.Add("fr-FR");
cmbLocale.SelectedIndex = 0;

Chapter 1

21

9.	 Add an event handler for the SelectedIndexChanged event of cmbLocale
as follows:
public Register()
{
 InitializeComponent();
 cmbLocale.Items.Add("en-IN");
 cmbLocale.Items.Add("fr-FR");
 cmbLocale.SelectedIndex = 0;
 cmbLocale.SelectedIndexChanged += new
 EventHandler(cmbLocale_SelectedIndexChanged);

this.btnCancel.Click += new EventHandler(btnCancel_Click);
this.btnOK.Click += new EventHandler(btnOK_Click);
}

void cmbLocale_SelectedIndexChanged(object sender, EventArgs e)
{
}

10.	 Add the following code to the event handler for the SelectedIndexChanged event
of cmbLocale:
Thread.CurrentThread.CurrentCulture = new CultureInfo(cmbLocale.
SelectedItem.ToString());

11.	 Press F5 to run the application. Enter wayne27 as username. Click on OK. You will
get a message saying User name is not unique.

12.	 Select fr-FR from the locale combobox. Click on the OK button. You will get a
message saying Nom d'utilisateur n'est pas unique, which is the French version
of the message we have used in Messages.xml.

How it works...
The main change we did to the attribute is overriding the FormatErrorMessage method
of ValidationAttribute. The validation framework / data annotation library calls the
FormatErrorMessage method when it needs to output a message corresponding to a
property. In short, by overriding it, we can provide a customized message.

To do so, we first need to find the two-letter ISO name of the current locale. Using the
CurrentCulture property of CurrentThread, which is a static property of the Thread
class, we can find the locale name. The following code did that and provided us with the
two-letter ISO name of the current locale:

string locale = Thread.CurrentThread.CurrentCulture.
TwoLetterISOLanguageName;

Core .NET Recipes

22

Next, we passed the locale to the GetMessages method of IMessageRepository.
From the returned dictionary, we found the message we wanted using the ErrorMessage
property/named parameter and returned it. The value in ErrorMessage acted as the key:

return this.MessageRepo.GetMessages(locale)[this.ErrorMessage];

CustomValidationApp performs two roles. First of all, it makes use of the UserName
property of the User class decorated with UniqueUserValidator to pass the key of the
message we want, as shown:

[UniqueUserValidator(ErrorMessage = "not_unique_user")]
public string UserName { get; set; }

The value we passed to ErrorMessage acted as the key in FormatErrorMessage.
The other role the application performs is to provide us with a test platform for testing
locales, in this case, English and French. This was done by the following code in the
SelectedIndexChanged event handler of cmbLocale in the Register class:

Thread.CurrentThread.CurrentCulture = new CultureInfo(cmbLocale.
SelectedItem.ToString());

What we did in the preceding code is to set the current culture of the application to the
culture selected in the locale combobox. When we set the CurrentCulture property of
CurrentThred of the Thread class to a particular culture, the culture of the application
is changed until the application is closed. Use this only for testing purposes.

Creating custom attributes
In the previous recipes we saw how to extend existing attributes to suit our needs. However,
there are situations where you don't have an existing attribute to extend. In such cases, you
will have to create your own attribute. In this recipe we will look at creating custom attributes.
Our attribute will help you to keep track of bugs fixed within a class. It can be used to tag the
class itself or methods within the class.

A custom attribute is a class extending from System.Attribute. However, its behavior
is quite different from a class. And to make it to work as an attribute, extra steps such as
creating another class that can process the attribute are required.

How to do it...
1.	 Launch Visual Studio .NET 2012. Create a project of type Class Library and name it

CookBook.Recipes.Core.DefectTracker.

2.	 Delete Class1.class from the project.

3.	 Add a folder to the project and name it Attributes.

4.	 Next, add a class to the folder and name it DefectTrackerAttribute.

Chapter 1

23

5.	 Derive the DefectTrackerAttribute class from Attribute.

6.	 Add the following properties as shown in the following table:

Name Type
DefectID Int

ResolvedBy String

ResolvedOn String

Comments String

Once the properties are added, our class will look as follows:

namespace CookBook.Recipes.Core.DefectTracker.Attributes
{

 public class DefectTrackerAttribute:Attribute
 {
 #region Public Properties
 public int DefectID {get;set;}
 public string ResolvedBy {get;set;}
 public string ResolvedOn {get;set;}
 public string Comments {get;set;}
 #endregion
 }
}

7.	 Now, let's specify all the places where, within a class, we can use this attribute by
decorating/tagging the class with the AttributeUsage attribute:
[AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]
 public class DefectTrackerAttribute:Attribute
 {
 #region Public Properties
 public int DefectID {get;set;}
 public string ResolvedBy {get;set;}
 public string ResolvedOn {get;set;}
 public string Comments {get;set;}
 #endregion

 }
}

Core .NET Recipes

24

8.	 Next, add a constructor so that we can pass the values via the constructor. The
Comments parameter will be optional. In code, the constructor will be as follows:
public DefectTrackerAttribute(int defectID, string resolvedBy,
string resolvedOn, string Comments = "")
{
 this.DefectID = defectID;
 this.ResolvedBy = resolvedBy;
 this.ResolvedOn = resolvedOn;
 this.Comments = Comments;
}

That completes the steps in creating DefectTrackerAttribute. Let's see how to
use it.

9.	 Add a project of type Class Library and name it DefectTrackerTest.

10.	 Delete Class1.cs.

11.	 Add a reference to the CookBook.Recipes.Core.DefectTracker project.

12.	 Next, add a class to DefectTrackerTest and name it CurrencyConverter.

13.	 Add the following import:
using CookBook.Recipes.Core.DefectTracker.Attributes;

14.	 Add a private variable of type double:
private double _value;

15.	 Add a parameterized constructor that will look as follows:
[DefectTrackerAttribute(1042,"AP", "2012/02/11","Changed float
param to double")]
public CurrencyConverter(double value)
{
 _value = value;
}

16.	 Add DefectTrackerAttribute to the constructor.

17.	 Add a method that accepts a double argument and returns a double value.

18.	 Tag the method with DefectTrackerAttribute. The method will look as follows:
[DefectTrackerAttribute(DefectID = 1042, ResolvedBy = "AP",
ResolvedOn = "2012/02/11")]
public double ToRupee()
{
 return _value * 50;
}

Chapter 1

25

How it works...
As I mentioned earlier, a custom attribute is really a class that is inherited from
System.Attribute. Our DefectTrackerAttribute class is no different.
So, we inherit it from Attribute:

public class DefectTrackerAttribute:Attribute
{
}

Now, we have to pass information to the attribute. This can be done in two ways:

ff Through a constructor

ff As a named parameter of the constructor

Using a constructor to pass the parameter is similar to what we do for classes. However,
for the constructor parameters to be used as named parameters, we will need properties.
So we added properties and the constructor:

public class DefectTrackerAttribute:Attribute
 {
 #region Public Properties
 public int DefectID {get;set;}
 public string ResolvedBy {get;set;}
 public string ResolvedOn {get;set;}
 public string Comments {get;set;}
 #endregion
 public DefectTrackerAttribute()
 {
 }
 public DefectTrackerAttribute(int defectID, string resolvedBy,
string resolvedOn, string Comments = "")
 {
 this.DefectID = defectID;
 this.ResolvedBy = resolvedBy;
 this.ResolvedOn = resolvedOn;
 this.Comments = Comments;
 }
 }

Core .NET Recipes

26

The members of the class to which we can apply the attribute is the most important aspect of
that attribute. To specify this, we can use the AttributeUsage attribute. Since we want to
apply our attribute to classes, constructors, methods, fields, and properties, we specify it
as follows:

 [AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]
 public class DefectTrackerAttribute:Attribute
 {
 #region Public Properties
 public int DefectID {get;set;}
 public string ResolvedBy {get;set;}
 public string ResolvedOn {get;set;}
 public string Comments {get;set;}
 #endregion
 public DefectTrackerAttribute(int defectID, string resolvedBy,
string resolvedOn, string Comments = "")
 {
 this.DefectID = defectID;
 this.ResolvedBy = resolvedBy;
 this.ResolvedOn = resolvedOn;
 this.Comments = Comments;
 }
 }

The AllowMultiple argument specifies whether the attribute can be used more than once
on a class or its members. As the same member may be modified multiple times for different
defects, we will be using our attribute multiple times on that member. Hence, we passed
AllowMultiple as true. With that we come to the end of this recipe.

In DefectTrackerTest, we have just one class, CurrencyConverter. We tagged its
constructor and ToRupee with DefectTrackerAttribute:

public CurrencyConverter(double value)
{
 _value = value;
}

[DefectTrackerAttribute(DefectID = 1042, ResolvedBy = "AP", ResolvedOn
= "2012/02/11")]public double ToRupee()
{
 return _value * 50;
}

Chapter 1

27

In the next recipe we will see how to create a processor for our attribute and how to use
them both.

Processing custom attributes via reflection
In the previous recipe, we developed a custom attribute named DefectTrackerAttribute.
However, the attribute, by itself, does not do anything. Unless there is an application or library
that looks at the class and members tagged/decorated by the attribute, it is just a piece of
code that does nothing. So, in this recipe, we will see how to process the class tagged by
DefectTrackerAttribute using reflection.

How to do it...
1.	 Launch Visual Studio .NET 2012.

2.	 Open CustomAttribute.sln.

3.	 Open the CookBook.Recipes.Core.DefectTracker project in Add a folder to
the project. Name it Processor.

4.	 Add a class to the folder and name it DefectTrackerProcessor.

5.	 Add the following imports:
using System.Reflection;
using CookBook.Recipes.Core.DefectTracker.Attributes;

6.	 Add the following methods to it:

Name Parameters Return type
GetDetails String assmblyPath

String className

String

GetMemberDetails String memberName

IEnumerable<DefectTracke
rAttribute> attributes

String

7.	 To the GetMemberDetails method, add the following code:
 StringBuilder sb = new StringBuilder();
 sb.Append("\n");
 if (!sb.ToString().Contains(memberName))
 {
 sb.Append(memberName);
 }
 foreach (var attribute in attributes)
 {

Core .NET Recipes

28

 sb.Append("ID-");
 sb.Append(attribute.DefectID);
 sb.Append("\t");
 sb.Append("Resolved By-");
 sb.Append(attribute.ResolvedBy);
 sb.Append("\t");
 sb.Append("Resolved On-");
 sb.Append(attribute.ResolvedOn);

 }
return sb.ToString();

8.	 To the GetDetails method, add the following code:
StringBuilder details = new StringBuilder();
Assembly assembly = Assembly.LoadFrom(assemblyPath);
Type type = assembly.GetType(className, true, true);

//check whether the constructors have the custom attribute
ConstructorInfo[] constructorInfo = type.GetConstructors();
foreach (var item in constructorInfo)
{
 IEnumerable<DefectTrackerAttribute> attributes =
 item.GetCustomAttributes<DefectTrackerAttribute>();
 details.Append(GetMemberDetails(item.Name, attributes));
}

//check whether the methods have custom attribute
MethodInfo[] methodInfo = type.GetMethods();

foreach (var item in methodInfo)
{
 IEnumerable<DefectTrackerAttribute> attributes =
 item.GetCustomAttributes<DefectTrackerAttribute>();
 if (attributes.Count() > 0)
 {
 details.Append(GetMemberDetails(item.Name, attributes));
 }
}

return details.ToString();

That completes the first step. Next, let us look at how to use the processor.

Chapter 1

29

9.	 Add a project of type Windows Forms Application and name it DefectTrackerApp.

10.	 Add a reference to the CookBook.Recipes.Core.DefectTracker project.

11.	 Rename the Form class to TrackDefect.

12.	 Switch to the design mode. Design the form so that it looks like the
following screenshot:

13.	 Name the textboxes and buttons as follows:

Control Description Name
Textbox For the assembly path, that is, the path of

the .dll or .exe file to be loaded
txtAssembly

Button To display the file open dialog btnOpen

Textbox To enter the fully qualified class name to be
loaded from the assembly

txtClassName

Button To call DefectTrackerProcessor btnLoad

Textbox To display the details of the fixed defects in
the class

txtDetails

14.	 Double-click on btnOpen to generate the Click event handler. In the event handler,
add the following code:
if(diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
txtPath.Text = diagOpen.FileName;

15.	 Switch to the design mode. Double-click on btnOpen to generate the Click event
handler. In the event handler, add the following code:
if (!String.IsNullOrEmpty(txtPath.Text) && !String.
IsNullOrEmpty(txtClassName.Text))
 {

Core .NET Recipes

30

 txtDetails.Text = new DefectTrackerProcessor().
GetDetails(txtPath.Text,
 txtClassName.Text);
}

16.	 Add the following import:
using CookBook.Recipes.Core.DefectTracker.Attributes;

17.	 Set DefectTrackerApp as a startup project.

18.	 Press F5 and run the application.

19.	 Click on the Open button. In the file dialog, navigate to the bin folder of the
DefectTrackerTest project. Select DefectTracker.dll. Observe the
full path being displayed in the textbox next to the Open button.

20.	 In the textbox next to the Load button, enter DefectTrackerTest.
CurrencyConverter. Click on Load.

21.	 The multiline textbox next to the Details label will be filled with details of the
constructor and the methods that make use of the attribute.

That completes the steps for creating a processor for the custom attribute and using it.
Next, let us dive more into the code to understand what is happening.

How it works...
The core of the DefectTrackerProcessor class is the GetDetails method that uses
reflection to find out whether the class whose name has been sent as the parameter contains
DefectTrackerAttribute. The first step is to load the assembly containing the class using
the LoadFrom static method of the Assembly class. The next step is to retrieve the class
from the assembly and set it to the Type class variable. These two steps are achieved in the
following statements:

Assembly assembly = Assembly.LoadFrom(assemblyPath);
Type type = assembly.GetType(className, true, true);

The Type class is the root of the functionality provided by .NET for reflection. It is the entry
point to gain details regarding the members of a class or structure. In the preceding code, the
GetType method looks into the assembly and returns the Type instance containing details of
the class whose name has been passed via the className variable. The second parameter
of GetType is set to true so that, if the class is not found, an exception is thrown and we can
know that something is wrong. We want to find the class regardless of whether the class name
is passed in upper- or lowercase. Hence, the last parameter is set to true to tell GetType to
ignore the case of the class name.

Chapter 1

31

Now that we have the Type instance containing the details of the class, we can check
whether the members of the class are decorated with DefectTrackerAttribute or not.
The first class member that we check is the constructor. The following statement provides the
details of the constructors within a class:

//check whether the constructors have the custom attribute
ConstructorInfo[] constructorInfo = type.GetConstructors();

The GetConstructors method of Type returns an array of ConstructorInfo. Each
instance of ConstructorInfo in the array contains details such as the name and attributes
decorating that constructor, for each constructor of the class that Type represents. Next,
we iterate through the array and get the list for DefectTrackerAttribute for the current
constructor as shown in the following statements:

foreach (var item in constructorInfo)
{
 IEnumerable<DefectTrackerAttribute> attributes =
 item.GetCustomAttributes<DefectTrackerAttribute>();
 details.Append(GetMemberDetails(item.Name, attributes));
}

Then, we passed the list to the GetMemberDetails method along with the name. In the
GetMemberDetails method, we iterate over the list to get the defect details using the
properties of DefectTrackerAttribute as shown:

foreach (var attribute in attributes)
{
 sb.Append("ID-");
 sb.Append(attribute.DefectID);
 sb.Append("\t");
 sb.Append("Resolved By-");
 sb.Append(attribute.ResolvedBy);
 sb.Append("\t");
 sb.Append("Resolved On-");
 sb.Append(attribute.ResolvedOn);

}

Core .NET Recipes

32

Similar to the constructor, we can get details of methods tagged with
DefectTrackerAttribute using the GetMethodInfo method of the
Type class. That is what we have done in the following statements:

//check whether the methods have custom attribute
MethodInfo[] methodInfo = type.GetMethods();

foreach (var item in methodInfo)
{
 IEnumerable<DefectTrackerAttribute> attributes =
 item.GetCustomAttributes<DefectTrackerAttribute>()
 if (attributes.Count() > 0)
 {
 details.Append(GetMemberDetails(item.Name, attributes));
 }
}

The MethodInfo class contains the details of a method of the class represented by Type.
The array returned by GetMethods() contains details of all the methods within the class.
We iterated over the array and determined whether the method is tagged with the attribute
or not. If it is tagged, that is, the attribute list contains one or more elements, we fetched the
details, just like we did for the constructor(s). Once we got the details of the constructor and
the methods, we returned the details as a string value.

In the TrackDefect class of DefectTrackerApp, we called the instantiated
DefectTrackerProcessor and called the GetDetails method with the assembly
path and the class name that was entered via the UI. This is done in the Click event
handler of the Load button.

private void btnLoad_Click(object sender, EventArgs e)
{
if (!String.IsNullOrEmpty(txtPath.Text) &&
 !String.IsNullOrEmpty(txtClassName.Text))
 {
 txtDetails.Text = new DefectTrackerProcessor().GetDetails(txtPath.
Text, txtClassName.Text);
 }
}

Chapter 1

33

There's more...
We saw how Type helps us to get details of constructors and methods of a class. Similarly,
we can get details of the properties of a class using the GetProperties method. It returns
an array of PropertyInfo. Each PropertyInfo holds the details of a specific property of
the class. If you want details of only a specific property, call the GetProperty() method and
pass the property name as argument.

Using asynchronous file I/O for
directory-to-directory copy

Asynchronous file I/O has been a feature of .NET from Version 1.1 onwards. However,
the loops that the developer had to run to get it working were many. In Version 4.5, .NET
introduced a new API that would make using asynchronous file operation easy. At the core
of the API, we have two operators—async and await. This recipe will focus on using these
operators to implement an asynchronous directory-to-directory copy utility.

How to do it...
The following steps will help you perform directory-to-directory copy using asynchronous
file I/O:

1.	 Launch Visual Studio .NET 2012. Create a project of type Class Library and name it
CookBook.Recipes.Core.AsyncFileIO.

2.	 Rename Class1.cs to Utils.cs.

3.	 Open Utils.cs. Make the class public and static as shown:
public static class Utils
{
}

4.	 Add a public static method to the class and name it CopyDirectoryAsync. It
will take two parameters – a string containing the source directory and another string
containing the target directory. It will return a Task value of type int. The signature
will be as follows:
public static Task<int> CopyDirectoryAsync(string sourceDir,
string targetDir)
{
}

Core .NET Recipes

34

5.	 Change the method signature to add the async keyword to it:
public static async Task<int> CopyDirectoryAsync(string sourceDir,
string targetDir)
{
}

6.	 Add a variable of type int to the method. Assign the count of the files in the
target directory:
int count = Directory.EnumerateFiles(targetDir).Count();

7.	 Next, add the following code:
foreach (string filename in Directory.EnumerateFiles(sourceDir))

{

 using (FileStream sourceStream = File.Open(filename, FileMode.
Open))

 {

 using (FileStream DestinationStream = File.Create(targetDir +
 filename.Substring(filename.LastIndexOf('\\'))))

 {

 await sourceStream.CopyToAsync(DestinationStream);

 }

 }

}

8.	 Add the return statement as shown:
return (Directory.EnumerateFiles(targetDir).Count() - count);

Next, let us look at how to use the Utility class. To use the Utility class,
we will create a Windows Forms Application project.

9.	 Add a project of type Windows Forms Application and name it
AsyncFileIO.

10.	 Add a reference to CookBook.Recipes.Core.AsyncFileIO.

11.	 Rename Form1.cs to FileUtility.cs.

Chapter 1

35

12.	 Open FileUtility.cs in the design mode. Design the form so that it looks like the
following screenshot:

13.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To hold the path of the source directory txtSource

Button To display the directory chooser for
choosing the source directory

btnSource

Textbox To hold the path of the target directory txtTarget

Button To display the directory chooser for
choosing the target directory

btnTarget

Button To start copying from the source to the
target directory

btnCopy

Folder Browser
Dialog

To display the folder chooser diagFolder

14.	 Double-click on btnSource to add the Click event handler for it. Add the following
code to the event handler:
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 txtSource.Text = diagFolder.SelectedPath;
}

15.	 Switch to the design mode. Add the Click event handler for btnTarget by
double-clicking on it. In the event handler, add the following code:
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 txtTarget.Text = diagFolder.SelectedPath;
}

Core .NET Recipes

36

16.	 Similarly, add the Click event handler for btnCopy. Then, add the following code to
the handler:
if (!String.IsNullOrEmpty(txtSource.Text) && !String.
IsNullOrEmpty(txtTarget.Text))
{
 Utils.CopyDirectoryAsync(txtSource.Text, txtTarget.Text);
}

17.	 Press F5 and run the application. Click on the Source button to choose the
directory that you want to copy. Choose the directory to which you want to copy
by clicking on the Target button. Then click on the Copy button to start copying.

That completes the steps to create directory-to-directory copy functionality, which does the
copying asynchronously.

How it works...
The whole logic of asynchronous copy is implemented within one method: the
CopyDirectoryAsync method of the Utils class. As you have already seen, both
the class and the method are public as well as static. The reason for making the method
static is that we have implemented it as a utility method. Utility methods are always
implemented as public and static methods. In .NET itself, all the methods of the Math
class are static methods, and the class itself is static.

Now let us look at how the logic works. If you observe the signature of the method, there are
two things that make it different from other methods (or synchronous methods).

public static async Task<int> CopyDirectoryAsync(string sourceDir,
string targetDir)

First is the async keyword. It means that somewhere in the method an asynchronous task is
going to be executed. Next is the return type. If you want to return any value from a method
that has async in its signature, you will have to do it using the Task object. In our case, we
wanted to return the number of files copied. So we have used Task<int> as our return type.

As we wanted to return the number of files copied, we will have to know the current number of
files in the target directory. With the following statement we can achieve this:

int count = Directory.EnumerateFiles(targetDir).Count();

Chapter 1

37

In the preceding statement, we have used the EnumerateFiles method of the Directory
class to get a list of all the filenames within the target directory and then got the number of
elements in that list. Next, we have to get the files we want to copy. For that, we iterate over
the filenames returned by Directory.EnumerateFiles. To EnumerateFiles, we passed
the path of the source directory as shown:

 foreach (string filename in Directory.EnumerateFiles(sourceDir))
{
}

Then, we open each file for reading as a stream:

foreach (string filename in Directory.EnumerateFiles(sourceDir))
{
 using (FileStream sourceStream = File.Open(filename, FileMode.Open))
 {
 }
}

Once we have opened the file to be copied, we have to open another stream to the location
where the file will be copied. To do that we created a file of the same name and then
connected a new stream to it, as shown in the following highlighted code:

foreach (string filename in Directory.EnumerateFiles(sourceDir))
{
 using (FileStream sourceStream = File.Open(filename, FileMode.Open))
 {
 using (FileStream DestinationStream = File.Create(targetDir +
 filename.Substring(filename.LastIndexOf('\\'))))
 {
 }

 }
}

Now comes the most important part of our code, the statement that makes asynchronous
copy work. Once we open a stream to a file in the destination directory, we can transfer the
contents. To do so, we used the CopyToAsync method of the FileStream class. However,
what makes the content transfer statement important is the await keyword before it, as in:

await sourceStream.CopyToAsync(DestinationStream);

Core .NET Recipes

38

The await keyword in the preceding statement tells the framework that the execution of this
method is suspended until the CopyToAsync method is done. Apart from that, the await
keyword also tells the framework to return the control of the execution to the code that called
this method, that is, CopyDirectoryAsync. In other words, until the current file is copied,
the application can resume its normal operation and would not appear to the user as if the
application is frozen.

In our case, the FileUtils class calls the CopyDirectoryAsync method when Copy is
clicked. When the execution reaches the await statement, the control is returned back to
the FileUtils class until the current file, as per the loop, is copied. Till the file is copied,
the user can make use of any feature of the application. Once the file is copied, the file in the
source directory is opened and the process continues. If the size of the files are huge, say
500 MB, you will be able to see the effect of the asynchronous transfer.

Accessing JSON using dynamic
programming

In Version 3.5, .NET introduced the var keyword. With var, developers got the choice of not
declaring the type of the variable. It became the task of the compiler to infer the type of the
variable based on the value assigned. .NET 4.0 took this concept a step ahead by introducing
the keyword dynamic.

When a variable is declared dynamic, its type is inferred only during execution. The compiler
does not check for the type and type safety of a dynamic variable. This helps a lot when
dealing with data whose type is either unknown or too complex to be bound to a compiled
object. In this recipe, you will see how dynamic can access parsed JSON data without
creating classes for the JSON elements. One thing to keep in mind is that in this recipe the
implementation of logic and the application that uses the implementation are one and the
same. In other words, the main application itself contains the logic.

How to do it...
The following steps will help you access JSON using dynamic programming:

1.	 In Visual Studio .NET 2012, create a new project of type Windows Forms Application.
Name it DynamicJsonParsing.

2.	 Rename Form1.cs to AccessJson.cs.

3.	 Open AccessJson in the design mode. Design the form so that it looks like the
following screenshot:

Chapter 1

39

4.	 Name the controls as detailed the following table:

Control Description Name
Label To display the name of the

element whose value will be
shown

lblValueFor

Label To display the value of the element lblValue

Label To display the name of the
complex element whose value will
be shown

lblComplexValueFor

Label To display the value of the complex
element

lblComplexValue

Textbox To display the JSON string being
parsed and accessed

txtJson

Button To parse, access, and display the
values of JSON data.

btnParse

5.	 Add a reference to System.Web.Extensions.

6.	 Switch to the code view mode and add the following import:
using System.Web.Script.Serialization;

Core .NET Recipes

40

7.	 Next, add the following private method to the class. It will return the JSON data.
private string GetJsonString()
{
 return @"{
 'order':{
 'name':'testOrder',
 'value':'1000',
 'products':[
 {'name': 'testProduct',
 'expiry': '12 months'
 }]
 },
 'delivery':'at home'
 }";
}

8.	 In the constructor, add the following statement after the call of the
InitializeComponents method:
txtJson.Text = GetJsonString();

9.	 Switch to the design mode. Double-click on the btnParse button to add a
Click event handler.

10.	 In the event handler, add the following statements:
var serializer = new JavaScriptSerializer();
var dictionary = serializer.Deserialize<Dictionary<string,
 dynamic>>(txtJson.Text);
lblValueOf.Text = "Value of delivery";
lblValue.Text = dictionary["delivery"];
lblComplexValueOf.Text = "name of product of order";
lblComplexValue.Text = dictionary["order"]["products"][0]["name"];

11.	 Press F5 and run the application. Click on the Parse button. The values will be
displayed as shown:

Chapter 1

41

How it works...
The core work of accessing JSON happens in the event handler for the Parse button. We had
assigned a string containing JSON. The data within the JSON string is about a particular order.
The product contained in the order and the type of delivery is as shown:

{
 'order':{
 'name':'testOrder',
 'value':'1000',
 'products':[
 {'name': 'testProduct',
 'expiry': '12 months'
 }]
 },
 'delivery':'at home'
 }

Core .NET Recipes

42

In the JSON above, delivery is a normal data element. However, the name of a product is a
complex data element since name is a part of the products array (note the square bracket),
which itself is part of order element. For data of this type, if we go for the traditional approach
to access the values, we will have to either create multiple classes or perform complex string
manipulations. That is where having dynamic helps.

In the event handler for the Parse button, we first parsed the JSON using
JavaScriptSerializer as shown:

var serializer = new JavaScriptSerializer();
var dictionary = serializer.Deserialize<Dictionary<string,

 dynamic>>(txtJson.Text);

The JSON data is deserialized or parsed into a dictionary having a string value as key and a
dynamic object as value. If we look at the dictionary as a table of Key and Value, it will look
something like the following:

Key Value
delivery at home

order {
 'name':'testOrder',
 'value':'1000',
 'products':[
 {'name':
'testProduct',
 'expiry': '12
months'
 }]
 }

From the preceding table it is clear that the value for delivery is at home. So the following
statement is nothing special, just a simple way of getting the value via the key:

lblValue.Text = dictionary["delivery"];

Chapter 1

43

However, if we have to find the name of the product, simply using the key won't work. If
we pass the order as the key, we will get a complete piece of complex JSON data. However,
this data is of type dynamic. So, if we write statements like the ones written as follows,
the compiler won't complain, and will leave it to the runtime check to assign the values:

dynamic order = dictionary["order"];
dynamic products = order["products"];
dynamic product = products[0];
dynamic name = product["name"];

The first statement assigns the value of the order to the order variable. The order variable
will now contain an array of products. The first element of the product array is assigned to
the product variable. Then, from the product variable, the name key is used to access the
product name. On combining all four steps, we get:

lblComplexValue.Text = dictionary["order"]["products"][0]["name"];

So, by using dynamic programming, we were able to access the parsed JSON data without
having to create the class hierarchies and without having to use string manipulation.

One point to keep in mind is that dynamic methods and statements are not
compiled. This, errors will only be caught at runtime when the statements are
compiled and executed.

2
Application Events and

Windows Forms

In this chapter, we will cover:

ff Creating an event that can have generic values as payload

ff Creating a table layout that can dynamically add or remove rows based on the
size of the collection

ff Creating DataGridView dynamically

ff Creating a video player using DirectX and Windows forms

Introduction
The focus of this chapter will be a Windows Forms Application project that will include event
handling and dynamically generating controls and layouts. We will start with developing events
that may have custom classes as their payloads. Then we will look at how to add and remove
rows from a table layout container at runtime. Next, we will develop a control that can create
and host DataGridView based on the values passed to it. To achieve this we will use the
custom attribute, among others. The best is saved for last: we are going to develop a video
player using DirectX controls and libraries.

Application Events and Windows Forms

46

Creating an event that can have generic
values as payload

In a Windows Forms Application project, you can make communication happen among forms
by using events. To raise custom events, you can make use of EventHandler delegates with
EventArgs as argument. However, built-in EventArgs does not allow you to pass data as
payload. So, by default, if you want to pass data among the forms, you will have to make use
of both events (to indicate that the data has changed) and properties (to access the changed
data). But there is another way – to extend EventArgs and add the capability to accept
payloads. This recipe will tell you how to do it.

During the process of implementing the custom EventArgs by extending EventArgs, one
point to keep in mind is that you can make it a part of the project that requires it or you can
make it a part of a different project or class library. The second option is the recommended
one since the need for custom event arguments can come up at the least expected time.
Also, it will make your implementation modular and reusable.

How to do it...
Since the EventArgs class we are going to develop will have its own namespace,
we will keep the name EventArgs. So, without further delay, the following are the
steps for developing and using it:

1.	 Open Visual Studio 2012 and add a project of type Class Library. Name it
CookBook.Recipes.Winforms.Events.

2.	 Add a reference to System.Windows.Form.

3.	 Rename Class1.cs to EventArgs.

4.	 Change the signature of the class as shown below to indicate that it is Generic type:
public class EventArgs<T>

5.	 Add the following import:
using System.ComponentModel;

6.	 Derive our EventArgs class from System.ComponentModel.EventArgs:
public class EventArgs<T>: EventArgs
{
}

Chapter 2

47

7.	 Add a public property of type T and name it Data:
public T Data {get; set;}

8.	 Add a constructor that accepts an argument of type T. Assign the value of the
parameter to the Data property:
public EventArgs(T value)
{
 Data = value;
}

To see how our custom class will work, we will require multiple forms. Hence, the
project that we are going to create will have two forms.

9.	 Create a project of type Windows Forms Application and name it
CustomEventArgsApp.

10.	 Add a reference to the CookBook.Recipes.Winforms.Events project.

11.	 Add a form to the project and name it Contacts.

12.	 Open the Contacts form in the design mode. Design the form so that it resembles
the following screenshot:

Application Events and Windows Forms

48

13.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To enter the first name of the contact txtFname

Textbox To enter the last name of the contact txtLname

Textbox To enter the phone number of the contact txtPhone

Button To raise an event indicating that the details
have been filled, and to close the form

btnOK

Button To close the form and discard entered values btnCancel

14.	 Switch to the view code mode. Add the following import:
using CookBook.Recipes.Winforms.Events;

15.	 Add an event to the class and name it ContactDetailsAdded. In code, it will be
as follows:
public event EventHandler<EventArgs<string>> ContactDetailsAdded =
delegate { };

Switch to the design view mode. Double-click on btnOk to add an event handler
for Click.

16.	 Add the following statements to the handler:
string data = String.Format("{0}-{1};{2}", txtLname.Text,
txtFname.Text, txtPhone.Text);
ContactDetailsAdded(this, new EventArgs<string>(data));
this.Close();

17.	 Switch back to the design mode. Double-click on btnCancel to add an event handler
for Click.

18.	 Add the code to close the form:
this.Close();

Chapter 2

49

Next, rename Form1.cs to AddUserDetails.cs. Design it so that it looks like the
following screenshot:

19.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To enter the user's first name txtFname

Textbox To enter the user's last name txtLname

Textbox To enter the user's address txtAddress

Textbox To hold the user's contact details txtContacts

Button To open the contacts form btnAdd (Label is "…")

20.	 Double-click on btnAdd to add a handler for its Click event. In the handler, add the
following statement:
var contacts = new Contacts();

contacts.ContactDetailsAdded += new
EventHandler<CookBook.Recipes.Winforms.Events.
EventArgs<string>>(contacts_ContactDetailsAdded);

contacts.Show();

Application Events and Windows Forms

50

21.	 In the event handler for ContactDetailsAdded, add the statement to append the
contact details passed from the Contact form to the txtContacts textbox.
void contacts_ContactDetailsAdded(object sender,
 CookBook.Recipes.Winforms.Events.
EventArgs<string>e)
{
 txtContacts.Text += e.Data;
}

22.	 Run the application. Click on the button with ... as text to open the Contacts form.
Enter the values for first name, last name, and phone number.

23.	 Click on OK. Observe the textbox for contacts.

Next, let us see how the application that we have developed works.

How it works...
There are two parts to our application: the library containing the custom EventArgs class
and the Windows Forms Application project that makes use of it. Let us understand them
one-by-one, starting with the custom EventArgs class.

There are three main aspects of the custom EventArgs class. First, it is a generic class.
The following declaration of the class ensures that it can handle data of any type:

public class EventArgs<T>: EventArgs
{
}

When you add the suffix <T> to any class name, .NET treats it as a generic type. The second
important aspect is that we have inherited it from the EventArgs class. Just by inheriting it
from the EventArgs class, we have enabled it to be used with EventHandler.

The third one is that it will accept data as payload. To accept data, we first add a property
of type T:

public T Data {get; set;}

Data is an automatic property. That means it does not require a private variable to store the
values it gets and sets. It is also of type T. The T type indicates that data of any type can be
assigned to it. One point to keep in mind is that the type T of Data is directly linked to the
type T in the declaration of the class. To elaborate, you cannot assign a value of any other
type except string to the Data property, if you instantiate EventArgs as follows:

EventArgs<string> e = new EventArgs<string>();

Chapter 2

51

Now that that is out of the way, let us move on to the constructor. The constructor has only one
parameter and it is of type T. We assigned the value of the parameter to the Data property:

public EventArgs(T value)
{
 Data = value;
}

We could have done without the constructor. However, without a constructor, passing the
payload to the EventArgs class will take more lines of code. First we will have to instantiate
EventArgs, then assign a value using the Data property. Only then can we pass the
EventArgs object to the event. So it is better using the constructor. Next, let us
understand how this class has been used.

In CustomEventArgsApp, it is the Contacts form that makes use of the custom
EventArgs class. So let us start with the Contacts form. In the form, we have first
declared our custom event and assigned an empty delegate to it:

public event EventHandler<EventArgs<string>> ContactDetailsAdded =
delegate { };

The EventArgs class used in the EventHandler delegate for the ContactDetailsAdded
event is our custom EventArgs class. Since the custom EventArgs class is of type
Generic, we declared it to be of type string. Next, we assigned an empty delegate to it. By
doing this we don't have to check whether anyone has subscribed to ContactDetailsAdded
every time we want to raise it. If neither assignment nor null check is done, there is a chance
of an exception being raised when the application is running.

We raised the ContactDetailsAdded event in the event handler for the Click event of
btnOK. In raising it, we instantiated EventArgs and passed the string data to it. The string
contained the contact details we want to pass to the AddUserDetails form:

string data = String.Format("{0}-{1};{2}", txtLname.Text, txtFname.
Text, txtPhone.Text);
ContactDetailsAdded(this, new EventArgs<string>(data));

In the event handler for btnAdd, we instantiated the Contacts form and subscribed to the
ContactDetailsAdded event by adding a handler to it:

var contacts = new Contacts();
contacts.ContactDetailsAdded += new EventHandler<CookBook.Recipes.
Winforms.Events.EventArgs<string>>(contacts_ContactDetailsAdded);

Application Events and Windows Forms

52

In contacts_ContactDetailsAdded, we retrieved the data passed by the Contacts form
by using the Data property of the custom EventArgs:

void contacts_ContactDetailsAdded(object sender, CookBook.Recipes.
Winforms.Events.EventArgs<string> e)
{
 txtContacts.Text += e.Data;
}

Since EventArgs is passed from the form that raises the event to the form that handles it,
EventArgs is the simplest and most efficient way to carry payloads. That is what we have
achieved in this recipe.

Creating a table layout that can dynamically
add or remove rows based on the size of the
collection
TableLayoutPanel is to Windows Forms as the table tag is to HTML. It is used to present
elements in the UI in a tabular format. It is more flexible than other layouts as it provides good
options to set up the rows and columns. For example, if one of the rows has control that needs
two columns instead of one, you can use the ColumnSpan property to make the control span
two columns. However, the ease of use exposed by the panel at design time is not evident
when you try to do the same at runtime. A good example is adding rows. To add them at
design time is easy. But when you want to do so at runtime, you will need to know various
steps that result in adding a new row. This recipe will tell you how to wrap those steps into
a helper class so that you can add or remove rows at runtime. So let us get started.

How to do it...
We will be using a Class Library project for the first step and a Windows Forms project for
the second.

Though we are working with a UI element, the Helper will only modify the
TableLayoutPanel element. It will not become a part of the UI. Hence, we will be
implementing it as a library. The steps are as follows:

1.	 Launch Visual Studio 11 (2012). Create a project of type Class Library and name it
CookBook.Recipes.Winforms.Layouts.

2.	 Add a reference to System.Windows.Forms.

3.	 Add a folder to the project and name it Entities.

4.	 To the Entities folder, add a C# Code file and name it RowEnum.

Chapter 2

53

5.	 Open RowEnum and add the following statements:
public enum RowEnum
{
 Add,
 Delete
}

6.	 Add a class to the Entities folder and name it RowEntity.

7.	 Open the RowEntity class and add the following attributes:

Name Type
List ArrayList

Operation RowEnum

After adding the properties, the class will look similar to the following code:

public class RowEntity
{
 public ArrayList List { get; set; }
 public RowEnum Operation { get; set; }
}

8.	 Rename Class1.cs, which was added to the project when we created the project,
to DynamicTableHelper.cs. Make it public.

9.	 Open DynamicTableHelper and add a private variable of type
TableLayoutPanel. Name it _layout:
private TableLayoutPanel _layout;

10.	 Add a parameterized constructor that will take TableLayoutPanel as an argument.
Assign the parameter to _layout:
public DynamicTableHelper(TableLayoutPanel panel)
{
 _layout = panel;
}

11.	 Next, add a private method that will add rows to _layout. It takes int as its
argument. Name it AddRows. Its signature will be as follows:
private void RemoveRows(int rowsToRemove)
{
}

Application Events and Windows Forms

54

12.	 Add the following statements to the AddRows method:
for (int i = 0; i < rowsToAdd; i++)
{
 _layout.RowCount++;
 RowStyle style = new RowStyle(SizeType.AutoSize,50);
 _layout.RowStyles.Add(style);
}

13.	 Add another private method. It will remove rows from _layout. Its parameter will be
of type int. Name it RemoveRows. Its signature will be as follows:
private void RemoveRows(int rowsToRemove)
{
}

14.	 Add the following code to the RemoveRows method.
for (int i = 0; i < rowsToRemove; i++)
{
 _layout.RowCount = _layout.RowCount - 1;
 _layout.RowStyles.RemoveAt(_layout.RowStyles.Count - 1);

}

15.	 Next, add a public method to the class. It will take RowEntity as its parameter
and will return TablePanelLayout. Name it AddOrRemoveRows. Its signature
will be as follows:
public TableLayoutPanel AddOrRemoveRows(RowEntity entity)
{
}

16.	 Add the following statements to the AddOrRemoveRows method:
int listSize = entity.List.Count;
int rowCount = _layout.RowCount;
if (entity.Operation == RowEnum.Add &&listSize>rowCount)
{
 AddRow(listSize-rowCount);
 }
 else if (entity.Operation == RowEnum.Delete && listSize <
rowCount)
 {
 RemoveRows(rowCount - listSize);
 }
_layout.AutoScroll = true
return _layout;

We will now be creating a Windows Forms Application project to make use of
the Helper.

Chapter 2

55

17.	 Create a project of type Windows Forms application and name it
DynamicTableLayoutApp.

18.	 Add a reference to CookBook.Recipes.Winforms.Layouts.

19.	 Rename Form1.cs to TablelayoutTest.cs.

20.	 Design the form so that it looks similar to the following screenshot:

21.	 Name the controls of the form as detailed in the following table:

Control Description Name
Panel To hold TableLayoutPanel pnlTableHolder

Label To display the number of rows in
TableLayoutPanel

lblRowCount

Button To add rows btnAdd

Button To remove rows btnRemove

22.	 Switch to the view code mode. Add a private variable of type ArrayList and name
it _list.
private ArrayList _list;

Application Events and Windows Forms

56

23.	 To the constructor, add the following statements after calling the
InitializeComponent method:
_list = new ArrayList();
_list.Add("row 1");
_list.Add("row 2");
//since rows of the table are equal to the size of the list
//we can display the row count based on list size
lblRowCount.Text ="No. of rows "+_list.Count.ToString();

24.	 Switch to the design mode. Double-click on btnAdd to add the Click event handler.
Add the following code to the handler:
 _list.Add("row "+_list.Count);
 RowEntity row = new RowEntity();
 row.List = _list;
 row.Operation = RowEnum.Add;
 TableLayoutPanel temp = (TableLayoutPanel)pnlTableHolder.
Controls[0];
 DynamicTableHelper control = new DynamicTableHelper(temp);
 temp = control.AddOrRemoveRows(row);
 pnlTableHolder.Controls.Remove(tblMain);
 pnlTableHolder.Controls.Add(temp);
 //we will get the no. of rows directly from the table
 //to ascertain that rows have been added correctly
 lblRowCount.Text = "No. of rows " + temp.RowCount;

25.	 Switch to the design mode. Double-click on btnRemove to add the Click event
handler. Add the following code to the handler:
if (_list.Count>0)
{

 _list.RemoveAt(_list.Count - 1);

 RowEntity row = new RowEntity();
 row.List = _list;
 row.Operation = RowEnum.Delete;
 TableLayoutPanel temp = (TableLayoutPanel)pnlTableHolder.
Controls[0];
 DynamicTableHelper control = new DynamicTableHelper(temp);
 temp = control.AddOrRemoveRows(row);
 pnlTableHolder.Controls.Remove(tblMain);
 pnlTableHolder.Controls.Add(temp);
 //we will get the no. of rows directly from the table
 //to ascertain that rows have been added correctly
 lblRowCount.Text = "No. of rows " + temp.RowCount;
}

Chapter 2

57

26.	 Run the application. Click on the Add button. Observe the rows being added. Click on
the Remove button. Observe the rows being removed.

With that we come to the end of how to implement the Helper and use it. Next, let us see how
it works.

How it works...
Before we go into the details of the code, I would like to clarify the term "helper". We
implemented the logic to add or remove the rows as a helper and not a utility. Now, when
we say utility, from the perspective of implementation, it is a collection of static methods
that may be related or may not be related to each other. A utility that works with a file is the
former and a utility containing commonly used methods such as conversions come is latter.

However, when you develop a helper, neither is it static nor is the functionality of the methods
within it unrelated. Also, the helper itself will be geared towards providing extra functionality to
a particular component such as DataGrid (UI) or sending e-mails (service).

With the difference between utilities and helpers clear, let us understand the code. First is the
class containing the enum object. Its purpose is straightforward – to define the functionalities
that we will be using to support the Helper. In our case there are only two, that is, add and
remove. So the enum object also contains only two values:

public enum RowEnum
{
 Add,
 Delete
}

Next, we have the class RowEntity that has two attributes – one to hold an ArrayList
object and another to hold the operation/functionality that the developer wants to use
for the layout. Their names will be List and Operation, respectively, as shown in the
following snippet:

public class RowEntity
{
 public ArrayList List { get; set; }
 public RowEnum Operation { get; set; }
}

Application Events and Windows Forms

58

We created this class instead of passing the list and the operation directly to the Helper
because this helps in preventing a change in the signature of the method in the Helper. For
example, if we want to add one more functionality, say custom height and weight for rows,
we will not be changing the signature of the helper method. We will add it in RowEntity and
change the logic of the helper method. We used ArrayList instead of generic List<T>
because we do not know the type of object being added to the List attribute. ArrayList
accepts variables of type Object. So we need not worry about the type.

Now, let us look at the helper class, that is, DynamicTableHelper. The core of the logic is in
three methods – AddOrRemoveRows, AddRow, and RemoveRow. All three of them make use
of the private variable _layout. It holds a reference to the instance of TableLayoutPanel
that is being used by all three aforementioned methods. _layout is initialized in the
parameterized constructor with the TableLayoutPanel instance passed by the code
that will use the helper:

public DynamicTableHelper(TableLayoutPanel panel)
{
 _layout = panel;
}

Next is the AddOrRemoveRows method. In the method, the first thing we did was to use the
instance of RowEntity to find the operation (add or remove), and the size of the list. It was
passed as a parameter. We also assigned the current number of rows of _layout to the
variable rowCount, as shown in the following statements:

int listSize = entity.List.Count;
int rowCount = _layout.RowCount;

Then we checked whether the operation is to add or remove. If it is to add, we checked if the
size of the list is greater than the current row count of the table. If it is greater, we found the
number of rows to be added and called the AddRows method with the number of rows to be
added. This is what we did in the following statements:

int listSize = entity.List.Count;
int rowCount = _layout.RowCount;
if (entity.Operation == RowEnum.Add &&listSize>rowCount)
{
 AddRow(listSize-rowCount);
}

Similarly, if the operation is to remove, we checked whether the current row count is greater
than the size of the list. If it is, we called the RemoveRow method with the number of rows to
be removed, as shown in the following code snippet:

else if (entity.Operation == RowEnum.Delete && listSize < rowCount)
{
 RemoveRows(rowCount - listSize);
}

Chapter 2

59

Once the operations are done, we set the AutoScroll value of _layout to true. We did this
so that if the rows exceed the height of TableLayoutPanel, a scroll bar is displayed. After
that is done we return the _layout value, as is evident from the following code:

_layout.AutoScroll = true;
return _layout;

To add a new row, first we have to increment the RowCount property. Then create a new
instance of RowStyle. It takes two arguments depending on whether the row can grow to
accommodate the size of the control within the row and the height of the row. After that, add
the RowStyle instance to the RowStyle collection of TableLayoutPanel. Those are the
steps we coded in the AddRow method. The additional step we did was to run the steps in a
loop, as you can see in the following statements:

for (int i = 0; i < rowsToAdd; i++)
{
_layout.RowCount++;
RowStyle style = new RowStyle(SizeType.AutoSize,50);
_layout.RowStyles.Add(style);

}

To remove a row, first we have to remove the RowStyle instance corresponding to the row
from the RowStyle collection. In our case it is the last row. We did all of the aforementioned
steps in a loop. In code, the steps we implemented in the RemoveRow method are as follows:

for (int i = 0; i < rowsToRemove; i++)
{
 _layout.RowCount = _layout.RowCount - 1;
 _layout.RowStyles.RemoveAt(_layout.RowStyles.Count - 1);

}

Now let us look at how we used DynamicTableHelper in DynamicTableLayoutApp to
add and remove rows based on the size of _list. _list is of type ArrayList initialized
and populated in the constructor as shown in the following code snippet:

_list = new ArrayList();
_list.Add("row 1");
_list.Add("row 2");

Application Events and Windows Forms

60

We added only two items because during the designing of the form we added only two rows to
TableLayoutPanel. The logic to add rows is implemented in the handler for btnAdd. In the
handler, we added one more item, _list. So whenever the Add button is clicked, a new item
will be added. Then we initialized RowEntity and set the List property to _list and the
Operation property to Add, as shown in the following statements:

_list.Add("row "+_list.Count);
RowEntity row = new RowEntity();
row.List = _list;
row.Operation = RowEnum.Add;

Next, we need to get an instance of TableLayoutPanel whose rows we want to add.
We know that it is placed inside Panel and it is the only item within the panel. So,
TableLayoutPanel will be the item at index zero of the Controls property of Panel. The
Controls property is a collection of all the controls within the Panel element. Once we get
the instance of TableLayoutPanel, we instantiate DynamicTableHelper. The instance of
TableLayoutPanel is passed to the constructor of DynamicTableHelper. Then, we call
the AddOrRemove method of the helper. These steps are shown in the following code:

TableLayoutPanel temp = (TableLayoutPanel)pnlTableHolder.Controls[0];
DynamicTableHelper control = new DynamicTableHelper(temp);
temp = control.AddOrRemoveRows(row);

The next step is to remove the existing instance of TableLayoutPanel from Panel.
This needs to be done because if we add the TableLayoutPanel instance returned by
the Helper without removing the existing one, we will have two tables and we will not be
able to see the rows being added. The last two steps are to add temp (which contains
the TableLayoutPanel instance returned by the Helper) to Panel and set the text of
lblRowCount to the current row count of TableLayoutPanel. The following statements
in the process achieved what we discussed just now:

pnlTableHolder.Controls.Remove(tblMain);
pnlTableHolder.Controls.Add(temp);
//we will get the no. of rows directly from the table
//to ascertain that rows have been added correctly
lblRowCount.Text = "No. of rows " + temp.RowCount;

The logic to remove rows is implemented in the handler for btnRemove. There are only two
changes from the logic to add rows. First, the size of _list is checked. This is done so that
if its size is zero then no more elements are removed from the list. Second, the Operation
property of RowEntity is set to Delete. Those are the only changes that are evident from
the following statements:

if (_list.Count>0)
{
 _list.RemoveAt(_list.Count - 1);

Chapter 2

61

 RowEntity row = new RowEntity();
 row.List = _list;
 row.Operation = RowEnum.Delete;
 TableLayoutPanel temp = (TableLayoutPanel)pnlTableHolder.
Controls[0];
 DynamicTableHelper control = new DynamicTableHelper(temp);
 temp = control.AddOrRemoveRows(row);
 pnlTableHolder.Controls.Remove(tblMain);
 pnlTableHolder.Controls.Add(temp);
 //we will get the no. of rows directly from the table
 //to ascertain that rows have been added correctly
 lblRowCount.Text = "No. of rows " + temp.RowCount;
 }

With that we come to the end of this section as well as the recipe.

Creating DataGridView dynamically
DataGridView is a good control to display data in a tabular form. However, creating
it without using the designer is difficult. In this recipe we will look at how to create
DataGridView dynamically and assign a data source to it.

How to do it...
Implementation of DynamicDataGrid and its usage can be performed using the
following steps:

1.	 Launch Visual Studio 2012. Create a project of type Class Library and name
it CookBook.Recipes.WindowForms.DataGrid. Name the solution
DynamicDataGrid.

2.	 Add a new folder to the project and name it Entities.

3.	 Add a new class to the Entities folder and name the class DataGridEntity.

4.	 Make the DataGridEntity class public, as shown in the following code snippet:
public class DataGridEntity
{
}

Application Events and Windows Forms

62

5.	 To the class, add the following properties:

Name Data type
Header String

ColumnType String

ColumnWidth Int

DataMember String

Once the properties are added, the class will look as shown in the following
code snippet:

public class DataGridEntity
{
 public string Header {get; set;}
 public string ColumnType {get; set;}
 public int ColumnWidth {get; set;}
 public string DataMemeber {get; set;}
}

6.	 Next, add a control to the project and name it DynamicDataGrid.

7.	 Add DataGridView to the control and name it dvgGrid.

8.	 Set the Dock property of dvgGrid to Fill.

9.	 Switch to the view code mode. Add a private variable of type
List<DataGridEntity> and name it _details.

10.	 Add another private variable of type Object and name it _dataSource.

11.	 Modify the constructor so that it takes two parameters, a list of DataGridEntity
and an Object parameter. After the modification, the code will look as follows:
public DynamicDataGrid(List<DataGridEntity> details, Object
dataSource)
{
 InitializeComponent();
}

12.	 Add the following code to the constructor below the call to the
InitializeComponent method:
_entities = details;
_dataSource = dataSource;

Chapter 2

63

13.	 Add a new private method of type DataGridViewColumn that takes a
parameter of type string and returns void. Name it GetColumn.
Its signature will be as follows:
private DataGridViewColumn GetColumn(string columnType)
{
}

14.	 Add the following statements to the method:
DataGridViewColumn temp = new DataGridViewTextBoxColumn();
switch (columnType)
{
 case "Text":
 temp = new DataGridViewTextBoxColumn();
 break;
 case "Combo":
 temp = new DataGridViewComboBoxColumn();
 break;
 case "Checkbox":
 temp = new DataGridViewCheckBoxColumn();
 break;
 default:
 break;
 }
return temp;

15.	 Add another method of type void and name it GenerateColumns.

16.	 Add the following code to the method:
private void GenerateColumns()
{
 if (_entities != null && _entities.Count > 0)
 {
 foreach (var item in _entities)
 {
 DataGridViewColumn column = GetColumn(item.ColumnType);
 column.HeaderText = item.Header;
 column.Width = item.ColumnWidth;
 column.DataPropertyName = item.DataMemeber;
 dgvGrid.Columns.Add(column);
 }
 dgvGrid.DataSource = _dataSource;
 }
}

Application Events and Windows Forms

64

17.	 Next, call the GenerateColumns method from the constructor as shown in the
following highlighted code:
public DynamicDataGrid(List<DataGridEntity> details, Object
dataSource)
{
 InitializeComponent();
 _entities = details;
 _dataSource = dataSource;
 GenerateColumns();
}

With that we come to the end of the steps for creating/developing DynamicDataGrid.
We will be using a regular Windows Forms Application project to test DynamicDataGrid.
The following are the steps:

1.	 Create a new project of type Windows Forms Application, and name it
DynamicGridApp.

2.	 Add a reference to CookBook.Recipes.WindowForms.DataGrid.

3.	 Rename Form1.cs to DynamicGrid.

4.	 Open the form in the design view mode. Design the form so that it matches the
following screenshot:

Chapter 2

65

5.	 Name the controls as detailed in the following table:

Control Description Name
Panel To hold the generated grid pnlGrid

Button To generate the grid btnLoad

6.	 Add a new folder to the project and name it Entities.

7.	 Add a new class to the Entities folder and name it User.

8.	 Add the following properties to the User class.

Name Data type
UserID String

FirstName String

LastName String

After adding the properties, the class will look similar to the following code:

public class User
{
 public string UserID { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }

}

9.	 Open the DynamicGrid class in the code view mode. Add a private method that
takes a Type object and a dictionary having a String literal as a key and value.
It will return a list of DataGridEntity. The signature of the method would be
as follows:
private List<DataGridEntity> GetColumnDetails(Type type,
 Dictionary<string,string> headers)

10.	 We will use reflection to populate the list of DataGridEntity. Add the following
code to the GetColumnDetails method:
PropertyInfo[] info = type.GetProperties();
List<DataGridEntity> details = new List<DataGridEntity>();
foreach (var item in info)
{
 DataGridEntity temp = new DataGridEntity();
 temp.ColumnType = "Text";
 temp.ColumnWidth = 100;

Application Events and Windows Forms

66

 temp.Header = headers[item.Name];
 temp.DataMemeber = item.Name;
 details.Add(temp);
}
return details;

11.	 Switch to the design mode. Double-click on btnLoad to add the Click event handler.

12.	 In the event handler, add the following code:
List<User> users = new List<User>();
users.Add(new User() {
UserID = "1", FirstName = "John", LastName = "Wayne"
});
users.Add(new User() {
UserID = "2", FirstName = "John", LastName = "Carter"
});

Dictionary<string, string> headerMap = new Dictionary<string,
string>();
headerMap.Add("UserID", "User ID");
headerMap.Add("FirstName", "First Name");
headerMap.Add("LastName", "Last Name");

if (pnlGrid.Controls.Count > 0)
{
 pnlGrid.Controls.Clear();
}
Control grid = new DynamicDataGrid(GetColumnDetails(typeof(User),
headerMap), users);
grid.Dock = DockStyle.Fill;
pnlGrid.Controls.Add(grid);

13.	 Run the application. Click on the Load Grid button. The grid for the user list will be
displayed as shown in the following screenshot:

Chapter 2

67

How it works...
In the last section we saw how to implement and use DynamicDataGrid. Now,
let us understand how the code works. We will start with the implementation of
DynamicDataGrid.

Columns are the core of DataGridView. To generate a DataGridView control at runtime,
we need to know about the columns it will contain. That is where DataGridEntity comes
into the picture. Through its properties, we can get details of the column to be generated.
Each instance of the DataGridEntity class represents a column to be added to
DataGridView. Each property of DataGridEntity tells us about the column we
need to add. Let us have a look at each property of DataGridEntity:

ff ColumnType: Its value tells us whether we want a column to hold a textbox,
combobox, or checkbox

ff Header: This is the header of the column

ff ColumnWidth: This is the width of the column

ff DataMember: This is the name of the property of the entity, which will be bound to
the DataGridView control

Application Events and Windows Forms

68

We will discuss more about these properties when we will discuss populating
DataGridEntity. We used this entity in the GenerateColumns method of
DynamicDataGrid to add columns to dgvGrid. We first looped over the collection of
DataGridEntity instances. After that, for each instance of DataGridEntity, we created
an instance of DataGridViewColumn named column, so that DynamicDataGrid can
know the type of column required for each instance of DataGridEntity. Then we set the
properties of temp using the values of the current instance of DataGridEntity. This is
shown in the following statements:

foreach (var item in _entities)
{
 DataGridViewColumn column = GetColumn(item.ColumnType);
 column.HeaderText = item.Header;
 column.Width = item.ColumnWidth;
 column.DataPropertyName = item.DataMemeber;
 dgvGrid.Columns.Add(column);
}

In the preceding code, we created a column based on the value of the ColumnType property
of the DataGridEntity class. We passed the value of ColumnType to the GetColumn
method. In the GetColumn method, we checked the value being passed and based on that
created a new instance of the corresponding column. For example, if the parameter contained
a value as Text, we created a DataGridViewTextBoxColumn class. That is what we have
done in the following block:

private DataGridViewColumn GetColumn(string columnType)
{
 DataGridViewColumn temp = new DataGridViewTextBoxColumn();
 switch (columnType)
 {
 case "Text":
 temp = new DataGridViewTextBoxColumn();
 break;
 case "Combo":
 temp = new DataGridViewComboBoxColumn();
 break;
 case "Checkbox":
 temp = new DataGridViewCheckBoxColumn();
 break;
 default:
 break;
 }
 return temp;
 }

Chapter 2

69

Coming back to the GenerateColumns method, once we added all the required columns, we
assigned _dataSource to the DataSource property of dgvGrid. The _dataSource object
contained the value passed to DynamicDataGrid through the dataSource parameter of
the constructor. The following highlighted code is the statement that performs the data
source assignment:

foreach (var item in _entities)
{
 DataGridViewColumn column = GetColumn(item.ColumnType);
 column.HeaderText = item.Header;
 column.Width = item.ColumnWidth;
 column.DataPropertyName = item.DataMemeber;
 dgvGrid.Columns.Add(column);
}
dgvGrid.DataSource = _dataSource;

We have called the GenerateColumns method from the constructor so that once the
constructor is called, the generation of columns takes place without further assistance from
the user of DynamicDataGrid. That is all there is to DynamicDataGrid. Now let us look at
how it is used, in detail.

In DynamicGrid, we have implemented the Click handler for the Load button. We have
implemented the logic to call DynamicDataGrid in this method. To display the grid, we
created a list of user entities and populated it with test data in the following statements:

List<User> users = new List<User>();
users.Add(new User() {
UserID = "1", FirstName = "John", LastName = "Wayne"
});
users.Add(new User() {
UserID = "2", FirstName = "John", LastName = "Carter"
});

We don't want to show the header as UserID. Instead, we want to display it as User ID.
So, we have to map the property name to the display name. This mapping is being done
using Dictionary, as shown in the following statements:

Dictionary<string, string> headerMap = new Dictionary<string,
string>();
headerMap.Add("UserID", "User ID");
headerMap.Add("FirstName", "First Name");
headerMap.Add("LastName", "Last Name");

Application Events and Windows Forms

70

Next, we have to make sure that pnlGrid does not contain any previous instance of
DynamicDataGrid. So we removed all the controls from it if we find that the size of
its Controls collection is greater than zero, as shown in the following snippet:

if (pnlGrid.Controls.Count > 0)
{
 pnlGrid.Controls.Clear();
}

The next step is to instantiate DynamicDataGrid with a list of DataGridEntity and
the data source, that is, the list of user entities. In the following statement we have done
the same:

Control grid = new DynamicDataGrid(GetColumnDetails(typeof(User),
headerMap), users);

In the preceding statement, we populated the list of DataGridEntity using the
GetColumnDetails method. We passed the Type instance corresponding to the User
class. In GetColumnDetails, we retrieved the information of all the properties of the
User class as an array of PropertyInfo. Each item of the PropertyInfo array contains
details of a specific property of the User class. We iterated over the array and populated the
collection of DataGridEntity using the details provided by PropertyInfo, as shown in
the following code snippet:

PropertyInfo[] info = type.GetProperties();
List<DataGridEntity> details = new List<DataGridEntity>();
foreach (var item in info)
{
 DataGridEntity temp = new DataGridEntity();
 temp.ColumnType = "Text";
 temp.ColumnWidth = 100;
 temp.Header = headers[item.Name];
 temp.DataMemeber = item.Name;
 details.Add(temp);
}

In the preceding code, we have assigned the value of the Header property by using the
header name mapping dictionary. In the dictionary, the name of the property was the key
and the value of the header to be displayed was the value. Coming back to the event handler
of the Load button, we assigned the grid instance to a Control variable named temp.
The Dock style of temp is set to Fill so that it covers the entire pnlGrid. As shown in
the following code, temp is then added to the Controls collection of pnlGrid:

grid.Dock = DockStyle.Fill;
pnlGrid.Controls.Add(grid);

With that we come to the end of this section as well as the recipe.

Chapter 2

71

See also
See Chapter 1, Core .NET Recipes, for more details on using reflection, and the following
section of MSDN for an overall idea about how to use reflection:

http://msdn.microsoft.com/en-us/library/ms173183%28v=vs.110%29.aspx

Creating a video player using DirectX and
Windows Forms

Before Windows Presentation Framework (WPF) was introduced, if you wanted to add 3D
graphics, animation, or audio/video to your application, Managed DirectX was the only option.
At present, Managed DirectX has been deprecated in favor of WPF. However, if you want to
embed a video in your application and do not want to use the non-trivial approach of hosting
WPF, Managed DirectX is a good approach. In this recipe we will look at how to use Managed
DirectX to develop a video player. So, let's get started.

You will require the DirectX 9 SDK for this recipe.

How to do it...
The steps to implement the video player are as follows:

1.	 Launch Visual Studio .NET 11 and create a project of type Windows Forms
Application. Name it MediaPlayer.

2.	 Right-click on References of the project. Select Add Reference.

3.	 In the dialog box, click on the Browse button. Navigate to <WinDir>\Microsoft.
NET\DirectX for Managed Code\.

<WinDir> is the path to the Windows folder. Select Microsoft.DirectX.
AudioVideoPlayback.dll and click on OK.

4.	 Open App.config and modify the startup tag so that it looks like the
following snippet:
<startup useLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0"
 sku=".NETFramework,Version=v4.5,Profile=Client" />
</startup>

We set useLegacyV2RuntimeActivationPolicy to true so that we can use
Managed DirectX along with .NET Version 4.5 libraries.

Application Events and Windows Forms

72

5.	 Next, go to Debug | Exceptions. Uncheck LoaderLock under Managed Debugging
Assistant. If it is not unchecked, Visual Studios will always report the Loader Lock
exception when we try to run the application.

6.	 Rename Form1.cs to Player.cs.

7.	 Design the form so that it looks similar to the following screenshot:

8.	 Name the controls as detailed in the following table:

Control Description Name
TabStripMenuItem To display an open file dialog box tsmiOpen

Panel To display the video pnlVideo

TrackBar To play the video to a certain
position

tbSeek

Button To play the video btnPlay

Button To pause the video btnPause

Button To stop the video btnStop

9.	 Switch to the view code mode. Add the following import:
using Microsoft.DirectX.AudioVideoPlayback;

Chapter 2

73

10.	 To the Player class, add the following private variables:
private string _fileName;
private Video _video;

11.	 Switch back to the design mode. Double-click on tsmiOpen to add a Click
event handler.

12.	 To the handler, add the following code:
OpenFileDialog diagOpen = new OpenFileDialog();
diagOpen.DefaultExt = "*.avi,*.wmv";
if (diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 _fileName = diagOpen.FileName;
 if (_video != null)
 {
 _video.Dispose();
 }
 _video = new Video(_fileName);

 int height = pnlVideo.Height;
 int width = pnlVideo.Width;

 _video.Owner = pnlVideo;
 pnlVideo.Width = width;
 pnlVideo.Height = height;
 _video.Play();
 _video.Pause();
}

13.	 Switch to the design mode. Double-click on btnPlay to add a Click event handler.

14.	 To the handler, add the following code:
if (_video != null && !_video.Playing)
 {
 _video.Play();
 }

15.	 Similarly, add Click event handlers for btnPause and btnStop.

16.	 To the event handler of btnPause, add the following code:
if (_video != null && _video.Playing)
{
 _video.Pause();
}

Application Events and Windows Forms

74

17.	 To the event handler of btnStop, add the following code:
if (_video != null && _video.Playing)
{
 _video.Stop();
}

18.	 Switch to the design mode. Add a handler for the ValueChanged event of tbSeek.

19.	 To the handler, add the following code:
if (_video != null)
{
 _video.SeekCurrentPosition((tbSeek.Value * 5000000000D),
SeekPositionFlags.RelativePositioning);
}

20.	 Run the application and test out the various controls.

With that we come to the end of how to make a video player (albeit a basic one) using
Managed DirectX. Next, let us see how the player works.

How it works...
The core of the Player is the _video variable, which is of type Video. The Video class
resides in the Microsoft.DirectX.AudioVideoPlayback namespace. To play a video
using the Video class, the first step is to instantiate it by passing it the path of the video that
we want to play. That is what we are doing in the Click handler of tsmiOpen.

When the user clicks the Open menu item, we will have to provide the user with a file
open dialog so that he/she can choose the video file. To achieve the same, we created an
instance of OpenFileDialog and assigned it to the diagOpen variable. Then we called the
ShowDialog method of diagOpen. If the user selected a file and clicked on OK, the returned
value of ShowDialog will contain OK. If that is the case, we get the filename and assign it to
the _fileName variable. Those were the steps we implemented in the following code:

OpenFileDialog diagOpen = new OpenFileDialog();
diagOpen.DefaultExt = "*.avi,*.wmv";
if (diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
 _fileName = diagOpen.FileName;
}

Chapter 2

75

Once we obtain the filename, we can use it to instantiate and initialize the Video class.
However, before doing so, we will have to check whether _video was initialized to some other
video. If yes, we will have to dispose it so that we can use _video to play a new file. The code
highlighted in the following statements accomplishes the same:

if (diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
 _fileName = diagOpen.FileName;
 if (_video != null)
 {
 _video.Dispose();
 }
}

After disposing the existing Video instance, we created a new instance of the Video class by
passing the file path in _fileName to the constructor of the Video class. Then we saved the
current height and width of pnlVideo. _video needs a drawable surface to display the video
it contains. We provided it one by assigning the Owner property of Video to pnlVideo.

A slight catch with the Owner property is that it sets the height and width of the control, in
our case pnlVideo, to the height and width of the video file to be played. So, after assigning
the Owner property, we have to restore the original height and width of the control, that is
pnlVideo. Then, we play and pause the video so that the user can know that the video can
be played. In the following statements we have implemented the aforementioned steps:

_video = new Video(_fileName);

int height = pnlVideo.Height;
int width = pnlVideo.Width;

_video.Owner = pnlVideo;
pnlVideo.Width = width;
pnlVideo.Height = height;
_video.Play();
_video.Pause();

Now let us see how the Play button works. To play a video, we can use the Play method of
the Video class. However, before playing a video, it is better to check whether it is already
playing. We will not call the Play method if the Playing property of _video is false. That
is what the code in the event handler of the Play button did:

if (_video != null && !_video.Playing)
{
 _video.Play();
}

Application Events and Windows Forms

76

Similarly, for the Pause button we check if the video is playing. If yes, we pause it using the
Pause method, as shown here:

if (_video != null && _video.Playing)
{
 _video.Pause();
}

In the event handler for the Stop button, we first checked whether the video is playing, and if
it is we stopped it by calling the Stop method:

if (_video != null && _video.Playing)
{
 _video.Stop();
}

Last is the seek functionality. To implement the seek functionality, we have to use the
SeekToCurrentPosition method of the Video class. To the method, we have to pass the
amount of position to move/seek and also pass whether the seek is relative or absolute to
the previous seek movement. We have tied the amount of seek to the track bar. So whenever
the slider of the track bar moves, we will have to call the SeekToCurrentPosition method
with the amount calculated based on the current value of the track bar. That is what we have
done in the following statements, which are part of the ValueChanged event handler:

if (_video != null)
{
 _video.SeekCurrentPosition((tbSeek.Value * 5000000000D),
SeekPositionFlags.RelativePositioning);
}

The multiplier for the seek value was arrived at using an equation related to video time and
frame rate. Explaining the equation is beyond the scope of this book.

3
Threading and Parallel

Programming

In this chapter, we will cover:

ff Handling Producer-Consumer race condition using locking

ff How to handle background threads in Windows Forms

ff Points to keep in mind when threading

ff Parallelizing image processing

ff Chaining two parallelized bulk image processing operations

Introduction
The focus of this chapter will be on threading and parallel programming. We will start with
using the Monitor class to implement locking in order to avoid race conditions. Race
conditions are common occurrences in Producer-Consumer scenarios. This recipe will use
console-based applications and not Windows Forms since we will see how to handle user/
background threads along with UI threads in Windows Forms in the third recipe. Then we will
move on to main points that one should keep in mind while developing threaded applications.
The last two recipes will discuss the concept of parallel programming. Between them, the fifth
will introduce you to the concepts of parallel programming and the sixth one will tell you how
to chain operations in parallel programming. That is the agenda for this chapter. So, let's
get started.

Threading and Parallel Programming

78

Creating a shared resource
In a multi-threaded environment, resources are shared between multiple threads. So, it is
critical that such resources should be capable of handling access by multiple threads. In this
recipe, we will see how to create a shared resource that provides an in-built functionality that
handles access by multiple threads using lock and monitors. .NET provides an implementation
of monitor for threading in the form of Monitor class. In this recipe, we will see how to use the
Monitor class to create a SharedBuffer class.

How to do it...
1.	 Launch Visual Studio 2012. Create a new Console Application and name it

ProducerConsumerModel.

2.	 Add a new class to the project and name it SharedBuffer.

3.	 Add a private variable of type int and name it _contents.

4.	 Add another private variable of type bool and name it _reading. Initialize it
to false.

5.	 Add a public method that returns the int value and name it Read as shown in
the following code snippet:
 public int Read()
{
}

6.	 Add the following code to the Read method:
lock (this)
 {
 if (!_reading)
 {
 try
 {
 Monitor.Wait(this);
 }
 catch (SynchronizationLockException e)
 {
 Console.WriteLine(e);
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e);
 }
 }

Chapter 3

79

 Console.WriteLine("Reading: {0}", _contents);
 _reading = false;
 Monitor.Pulse(this);
 }
 return _contents;

7.	 Add another public method of type void with a parameter of type int. Name
 it Write:
public void Write(int value)
{
}

8.	 Add the following code to the Write method:
lock (this)
{
 if (_reading)
 {
 try
 {
 Monitor.Wait(this);
 }
 catch (SynchronizationLockException e)
 {
 Console.WriteLine(e);
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e);
 }
 }
 _contents = value;
 Console.WriteLine("Writing: {0}", _contents);
 _reading = true;
 Monitor.Pulse(this);
}

9.	 Save the solution as ConsumerProducerModel.sln.

Now let's understand how it works.

Threading and Parallel Programming

80

How it works...
All of the action in SharedBuffer happens in the Read and Write methods that make use
of the lock statement and the Monitor class. Before we go into details of these methods,
let us have a closer look at the lock statement. Whenever you want to tell the framework that
a specific set of statements can be treated as a critical section, you wrap those statements
in a lock statement. One main point to remember about lock is that it is a convenience
method for Monitor.Enter and Monitor.Exit. For example, .NET transforms the
following statements:

lock (this)
{
//critical section statements
}

The transformation results in the following code that makes use of the Monitor.Enter and
Monitor.Exit methods:

Monitor.Enter(this)
{
 // critical section statements
}
finally
{
 Monitor.Exit(this);
}

In short, the lock statement tells the framework which statements form the critical section.
So, obtaining a lock means the Monitor class would not allow any other threads to execute
statements in the critical section except Wait, until the current thread is done with the critical
section. So, it is good practice to check for Wait conditions first.

Coming back to the Read and Write methods, let us start with the Write method. A thread
that wants to write to the buffer calls the Write method to write into the buffer. Before writing
into the buffer, we have to tell the framework which statements are part of the critical section.
So we first used a lock statement. The object the lock statement used was the class itself,
as shown in the following code snippet:

lock (this)
{
}

Chapter 3

81

Next we have to be sure that any other thread is not reading from the buffer. So we check the
status of _reading. If it is true, we will have to wait till all the threads are done reading from
the buffer. We did that by using the Wait method of Monitor, as shown in the following code:

lock (this)
{
if (_reading)
{
 try
 {
 Monitor.Wait(this);
 }
 catch (SynchronizationLockException e)
 {
 Console.WriteLine(e);
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e);
 }
 }
}

Since we tried to obtain a lock on the class itself, we had to pass an instance of the class to
the Wait method. Next, we added the statements to write to the buffer. In our case, the buffer
is _contents. Then we wrote the value of the buffer to the console as shown in the following
line of code:

_contents = value;
Console.WriteLine("Writing: {0}", _contents);

Once the contents are written, we set the reading to true, indicating that the thread can now
start reading the value. If it is already waiting, we have to tell it to come out of the wait state.
For that we used Monitor.Pulse on the instance of the class as shown in the following
code snippet:

_reading = true;
Monitor.Pulse(this);

Threading and Parallel Programming

82

The Read method works in a similar way. First it sets up the critical section using the lock
statement. Next, it checks whether _reading is false. If it is false, it waits for Monitor.
Pulse from the Write method. Once it receives the go ahead signal from Monitor, it
reads from _content, which is our buffer, and then sends its own work done signal using
Monitor.Pulse. That's what we have done in the following statements:

lock (this)
{
 if (!_reading)
 {
 try
 {
 Monitor.Wait(this);
 }
 catch (SynchronizationLockException e)
 {
 Console.WriteLine(e);
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e);
 }
 }
 Console.WriteLine("Reading: {0}", _contents);
 _reading = false;
 Monitor.Pulse(this);
 }
 return _contents;

Handling Producer-Consumer race
conditions

The Producer-Consumer problem is one of the classic thread-related problems. Simply put,
it can be described as follows:

Two threads, one that writes to the shared resource (Producer) and one that reads from
the shared resource (Consumer), should be synchronized so that the Consumer does not
consume more than what the Producer has produced.

The approach to handling this problem involves use of semaphores or monitors. We have seen
how monitors are used to create a shared resource. We will now use SharedBuffer created
in the previous recipe to avoid a race condition in a Producer-Consumer scenario. We will
also create a Producer class to write into it and a Consumer class to read from it, and
use threads to run them simultaneously.

Chapter 3

83

How to do it...
1.	 Launch Visual Studios 2012. Open ProducerConsumerModel.sln.

2.	 Add a new class to the project and name it Producer.

3.	 Add a private variable of the type SharedBuffer and name it _buffer.

4.	 Add another variable of type int and name it _maxCount.

5.	 Next add a parameterized constructor that takes an int type and an instance of
SharedBuffer as a parameter. The signature of the constructor is as shown in
the following line of code:
public Producer(SharedBuffer buffer, int count)

6.	 Now, add the following statements to the constructor:
_buffer = buffer;
_maxCount = count;

7.	 Next, add a method of type void that takes no parameter and name it Start.
The signature will be as follows:
public void Start()

8.	 Add the following code to the Start method:
for (int i = 0; i < _maxCount; i++)
{
 _buffer.Write(i);
}

9.	 Add a new class and name it Consumer.

10.	 Add a private variable of the type SharedBuffer to the Consumer class.
Name it _buffer.

11.	 Add another variable of type int and name it _maxCount.

12.	 Next add a parameterized constructor that takes an int type and an instance of
SharedBuffer as a parameter. The signature of the constructor is as shown in
the following line of code:
public Consumer(SharedBuffer buffer, int count)

13.	 Add the following code to the constructor:
_buffer = buffer;
_maxCount = count;

14.	 Add a method of type void and name it Start. The signature of the method will be
as follows:
public void Start()

Threading and Parallel Programming

84

15.	 Add the following code to the Start method:
int temp;
for (int i = 0; i < _maxCount; i++)
{
 temp = _buffer.Read();
}

16.	 Open Program.cs. In the Main method, first add a variable of type int. Name it
result and initialize it to zero.

17.	 Next, instantiate SharedBuffer, Consumer, and Producer classes. After the
additions, the Main method will look like the following code:
int result = 0;
SharedBuffer buffer = new SharedBuffer();
Producer producer = new Producer(buffer, 10);
Consumer consumer = new Consumer(buffer, 10);

18.	 Now add two variables of type Thread. Name them producerThread and
consumerThread.

19.	 Instantiate producerThread with the Start method of Producer.

20.	 Similarly, instantiate consumerThread with the Start method of Consumer.
After the instantiation, the Main method will look similar to the following code.
The highlighted code contains instantiation of the Thread variables:
int result = 0;
SharedBuffer buffer = new SharedBuffer();
Producer producer = new Producer(buffer, 10);
Consumer consumer = new Consumer(buffer, 10);

Thread producerThread = new Thread(new ThreadStart(producer.
Start));
Thread consumerThread = new Thread(new ThreadStart(consumer.
Start));

21.	 Now add the following code for controlling the thread:
try
{
 producerThread.Start();
 consumerThread.Start();

 producerThread.Join();
 consumerThread.Join();

 Console.ReadLine();
}

Chapter 3

85

catch (ThreadStateException e)
{
 Console.WriteLine(e);
 result = 1;
}
catch (ThreadInterruptedException e)
{
 Console.WriteLine(e);

 result = 1;
}

22.	 Now add the statement to return result back to the calling process:
// Even though Main returns void, this provides a return code to
// the parent process.
Environment.ExitCode = result;

23.	 Run the application. The output will look similar to the following screenshot:

Threading and Parallel Programming

86

How it works...
Let us start with Producer. The Producer class used the Write method of _buffer,
which is a variable of type SharedBuffer, to write to the buffer. How many values are written
to the buffer is determined by the _maxCount variable. The instance of SharedBuffer and
the value of _maxCount are passed to the class through the parameters of the constructor as
shown in the following line of code:

public Producer(SharedBuffer buffer, int count)
{
 _buffer = buffer;
 _maxCount = count;
}

Then, in the Start method a loop is run from zero to the value in _maxCount, and the
current value is stored in variable i. Within the loop, the Write method of _buffer is
called with i to write to the shared buffer. That is what we have done in the Start method:

public void Start()
{
 for (int i = 0; i < _maxCount; i++)
 {
 _buffer.Write(i);
 }
}

The Consumer class is similar to the Producer class except that it uses the Read method
of SharedBuffer to read from the shared buffer. Similar to the Producer class, Consumer
has a _buffer variable to hold instance of SharedBuffer, and _maxCount to hold the
maximum number of values to be read from the shared buffer. We set the values of these
variables using the parameters of the constructor as shown in the following line of code:

public Consumer(SharedBuffer buffer, int count)
{
 _buffer = buffer;
 _maxCount = count;
}

In the Start method we used _maxCount and a for loop to read values from the shared
buffer. We started from zero and continued up to _maxCount. For each value of i, the loop
counter, we called the Read method of _buffer, as is evident from the following code:

public void Start()
{
 int temp;
 for (int i = 0; i < _maxCount; i++)

Chapter 3

87

 {
 temp = _buffer.Read();
 }
}

The threads are created and run in the Main method of the Program class. In the Main
method, we created instances of SharedBuffer, Producer, and Consumer classes.
While instantiating the Producer and Consumer classes, we passed the instance of
SharedBuffer and the maximum number of values to be written to and read from the
buffer. That is what the following statements accomplished:

SharedBuffer buffer = new SharedBuffer();

Producer producer = new Producer(buffer, 10);

Consumer consumer = new Consumer(buffer, 10);

In the preceding code, we have passed the same number as the maximum number of values
to be written and read. It is required because if that number is greater in Producer, then it
will write more items to the buffer than the number of items that can be read by Consumer.
Such a scenario is called buffer overflow. In the reverse case, if the maximum number of the
items to be read is greater than the maximum number of items being written, Consumer
will try to read/consume more than Producer can produce. Such a scenario is called
buffer underflow.

Next, we created the instances of two Thread variables. To instantiate a Thread variable we
will have to create an instance of the ThreadStart class. To instantiate the ThreadStart
class, we will have to pass the name of the method we want to run in a separate thread.
That's what we have done for running the Start method of both Producer and Consumer
in the following statements:

Thread producerThread = new Thread(new ThreadStart(producer.Start));
Thread consumerThread = new Thread(new ThreadStart(consumer.Start));

Then we start the threads by calling the Start method of the Thread variables:

producerThread.Start();
consumerThread.Start();

Next we wait for the threads to complete their tasks by calling their Join method. The Join
method tells the main thread (the thread on which the application is running) to wait till the
thread has completed its execution. We used the following statements to tell the main thread
to wait till producerThread and consumerThread have finished running.

producerThread.Join();
consumerThread.Join();

Threading and Parallel Programming

88

All of the preceding statements have been wrapped in a try/catch statement because
both the Start method and the Join method can throw exceptions. In the catch block
we have set the value of the result variable to 1 to indicate that the application did not
run successfully. That's what we have done in these statements:

try
{
 producerThread.Start();
 consumerThread.Start();

 producerThread.Join();
 consumerThread.Join();

 Console.ReadLine();
 }
 catch (ThreadStateException e)
 {
 Console.WriteLine(e);
 result = 1;
 }
 catch (ThreadInterruptedException e)
 {
 Console.WriteLine(e);

 result = 1;
 }

In the end we pass the value of the result to the Exit property of the Environment class so
that if this application (child) is run by another application (parent), the parent application can
know whether the execution of the child has been successful or not.

// Even though Main returns windows forms void, this provides a return
code to
// the parent process.
Environment.ExitCode = result;

Handling background threads in Windows
Forms

In Windows Forms, any thread except the UI thread is considered a background thread. If you
want to perform any long operation in a separate thread, then you will have to understand
how to handle the background thread. The main aspect of handling a background thread
is passing data from the background thread to the UI thread. If you don't handle the data
passing in the right way, the controls will not be updated with the correct values. In the
worst case, your application will stop responding.

Chapter 3

89

How to do it...
The following recipe will tell you how to handle the background thread in the right way:

1.	 Launch Visual Studios 2012. Create a new project of type Windows Forms
Application and name it UIThreadHandlingWinForms.

2.	 Rename Form1.cs to DirectoryLister.cs.

3.	 Switch to the design mode. Design the form so that it looks similar to the
following screenshot:

4.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To hold the path of selected folder txtDirectory

Button To display the dialog of the selected
folder. Its text will be "…"

btnSelectDir

Button To start listing the files in the selected
directory

btnListFiles

ListBox To display the file list lstFiles

5.	 Switch to the view code mode. Add a private variable of type Thread. Name
it _thread as shown in the following line of code:
private Thread _thread;

Threading and Parallel Programming

90

6.	 Declare a delegate of type void and taking parameter of type string array. Name it
FileList. In the code it will look similar to the following statement:
private delegate void FileList(string[] fileNames);

7.	 Declare a variable of type FileList delegate as shown in the following line
of code:
private FileList fileList;

8.	 Add a method of type void taking a string array as parameter. Name it
DisplayFiles. Its signature will be as follows:
private void DisplayFiles(string[] files)
{
}

9.	 Add the following statement to the DisplayFiles method:
lstFiles.DataSource = files;

10.	 Add another method of type void and name it ListFiles. It will look as shown in
the following code:
private void ListFiles()
{
}

11.	 Add the following statements to the ListFiles method:
string directoryPath = txtDirectory.Text;
if (!String.IsNullOrEmpty(directoryPath))
{
 string[] files;

 try
 {
 files = Directory.GetFiles(directoryPath);
 }
 catch (Exception e)
 {
 return;
 }
IAsyncResult result = BeginInvoke(fileList, new object[] { files
});

12.	 Switch to the design mode. Double-click on btnSelectDir to add the Click
event handler.

Chapter 3

91

13.	 In the event handler for btnSelectDir, add the following code:
FolderBrowserDialog diagFolder = new FolderBrowserDialog();
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 txtDirectory.Text = diagFolder.SelectedPath;
}

14.	 Switch to the design mode. Double-click on btnListFiles to add the Click
event handler.

15.	 In the event handler for btnListFiles, add the following code:
if (!String.IsNullOrEmpty(txtDirectory.Text))
{
 _thread = new Thread(new ThreadStart(ListFiles));
 _thread.Start();
 _thread.Join();
}

16.	 In the constructor, add the following code below the call to the
IntializeComponents method:
fileList = new FileList(DisplayFiles);

17.	 Run the application. Click on the … button to select a folder.

18.	 Click on the List Files button. Observe the listbox.

Next, let us look at how the application works.

How it works…
Use of delegate forms the core of handling background threads correctly, along with
passing data to the UI thread. To use delegate, we have to perform three steps. First, we
need to declare a new delegate type. We can declare a new delegate type by providing a
name, the return type, the number of parameters, and the type of each parameter. That is
what we have done in the following statement by declaring a FileList delegate type:

private delegate void FileList(string[] fileNames);

The second step is to declare a variable of the newly declared delegate type. We did the
same in the following statement:

private FileList fileList;

Threading and Parallel Programming

92

In the last step, we have to instantiate the delegate type by passing a method of the same
signature. That is what we did in the constructor, as shown in the statement highlighted in the
following code:

public DirectoryLister()
{
 InitializeComponent();
 fileList = new FileList(DisplayFiles);
}

The DisplayFiles method passed to the FileList delegate did only one thing and that
was to update the UI, as shown in the following code:

private void DisplayFiles(string[] files)
{
 lstFiles.DataSource = files;
}

Next, let us look at the background thread and how it made use of fileList. Along with the
delegate type, we had also declared a variable of type Thread:

private Thread _thread;

We have instantiated _thread in the Click event handler for the List Files button.
To instantiate it, we passed a new instance of ThreadStarter, to which we passed
the ListFiles method. Then we started the thread by calling the Start method and
waited for it to complete by calling the Join method. That is what we achieved in the
following statements:

_thread = new Thread(new ThreadStart(ListFiles));
_thread.Start();
_thread.Join();

In the preceding statements, we have passed ListFiles to the constructor of
ThreadStart. The reason is that we want to run the logic implemented in the ListFiles
method in a separate thread, which is represented by _thread. Now, in the ListFiles
method we retrieved the list of files within a directory chosen by the user, as shown in the
following code:

string directoryPath = txtDirectory.Text;
if (!String.IsNullOrEmpty(directoryPath))
{
 string[] files;
 try

Chapter 3

93

 {
 files = Directory.GetFiles(directoryPath);
 }
 catch (Exception e)
 {
 return;
 }

In the previous code, the Directory.GetFiles statement is surrounded with
try/catch. The reason is that if any IO exception occurs, we don't want it to stop
the execution of our application.

Next, we have to pass the list of files to the UI thread. The recommended way to do so is
by using an asynchronous approach. To make use of the asynchronous communication/
approach, .NET has provided us with the BeginInvoke method. We need to pass the
delegate type that we want to invoke and the argument for the delegate, if any. The
arguments will be passed as an array of objects. In our case, the delegate we want to invoke
is fileList and the argument for fileList is files. That's what we have done in the
following statement:

IAsyncResult result = BeginInvoke(fileList, new object[] { files });

BeginInvoke returns an object of type IAsyncResult that can later be used to determine
whether the invocation has been successful or not. We have saved the result of the invocation
in the result variable as previously shown. However, we are not using it. It has been shown so
that you can use IAsyncResult if you require it in the future.

Handling threads in WPF
In the previous recipe, we looked at the best way to run operations in non-UI/background
threads in Windows Forms. The concerns that we addressed for Windows Forms exist for WPF
as well. You cannot access any control on the UI thread from the background thread. In such
a case, how do you pass data to a UI thread? In this recipe, we are going to discuss the best
approach to doing this.

Threading and Parallel Programming

94

How to do it…
1.	 Launch Visual Studio 2012. Create a project of type WPF Application and name it

ThreadHandlingWPF.

2.	 Open MainWindow.xml in the design mode. Design the UI so that it looks similar to
the following screenshot:

3.	 Name the controls as detailed in the following table:

Control Description Name
Textblock To hold the path of the selected folder. txtDirectory

Button To display the select folder dialog. Its
text will be "…"

btnSelectDir

Button To start listing the files in the selected
directory.

btnListFiles

ListBox To display the file list. lstFiles

4.	 Open MainWindow.xaml.cs. Create a new delegate type that accepts an array of
strings as a parameter. Its return type will be void. Name it ListDelegate. In code
it will look as follows:
private delegate void ListDelegate(string[] files);

5.	 Next create a variable of type ListDelegate, as shown in the following line of code:
private ListDelegate listFiles;

Chapter 3

95

6.	 Next add two variables, one of type string and another of type Thread. They will
look similar to the following statements:
Thread _thread;
string _path;

7.	 Then add a method that accepts an array of strings. Name it DisplayFiles.
Its signature will be as follows:
private void DisplayFiles(string[] files)
{
}

8.	 Add the following statement to the DisplayFiles method:
lstFileList.ItemsSource = files;

9.	 Next, add another method and name it ListFiles. It will look similar to the
following code:
private void ListFiles()
{
 if (!String.IsNullOrEmpty(_path))
 {
 string[] files;

 try
 {
 files = Directory.GetFiles(_path);
 }
 catch (Exception)
 {

 return;
 }
 lstFileList.Dispatcher.BeginInvoke(listFiles, new object[] {
files });
 }
}

10.	 In the constructor, add the following statement below the call to
InitializeComponent:
listFiles = new ListDelegate(DisplayFiles);

11.	 Open MainWindow.xaml. Add Click event handlers for btnSelectDir and
btnListFiles by double-clicking on them.

Threading and Parallel Programming

96

12.	 In the event handler for btnSelectDir, add the following statements:
FolderBrowserDialog diagFolder = new FolderBrowserDialog();
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 txtPath.Text = diagFolder.SelectedPath;
 _path = txtPath.Text;
}

13.	 In the event handler for btnListFiles, add the following statements:
ThreadStart start = new ThreadStart(ListFiles);
_thread = new Thread(start);
_thread.Start();
_thread.Join();

14.	 Run the application. Click on the button with … on it and select a folder. Click on
List Files. Observe the listbox for the list of files from the selected folder.

Next, let us see how it works.

How it works…
The main aspect of a UI thread and a non-UI/background thread communication is passing
data between them. To pass data between the threads, we have used a delegate. To use a
delegate, we have to create a delegate type and create a variable of that type. We did that
in the following statements:

private delegate void ListDelegate(string[] files);
private ListDelegate listFiles;

Then we initialized the listFiles delegate to the DisplayFiles method in the
constructor, as shown by the highlighted statement in the following code:

public MainWindow()
{
 InitializeComponent();
 listFiles = new ListDelegate(DisplayFiles);
}

In the DisplayFiles method, we assigned the string array as ItemSource of ListBox.

private void DisplayFiles(string[] files)
{
 lstFileList.ItemsSource = files;
}

Chapter 3

97

WPF is very strict regarding the ownership of controls. That's why we can't directly access
txtSelectedDir from the background thread. Hence, we assigned its text to a string
variable, as shown in the highlighted statement of the following code:

private void btnSelectDir_Click(object sender, RoutedEventArgs e)
{
 FolderBrowserDialog diagFolder = new FolderBrowserDialog();
 if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 txtPath.Text = diagFolder.SelectedPath;
 _path = txtPath.Text;
 }
}

Next, in the event handler for btnListFiles, we instantiated a thread that runs the logic
implemented in the ListFiles method, as shown in the following code:

private void btnListFiles_Click(object sender, RoutedEventArgs e)
{
 ThreadStart start = new ThreadStart(ListFiles);
 _thread = new Thread(start);
 _thread.Start();
 _thread.Join();
}

The core of the thread communication is in the ListFiles method, especially in the
following statement:

lstFileList.Dispatcher.BeginInvoke(listFiles, new object[] { files });

Each WPF UI control has a Dispatcher object that can be used to pass data to the particular
control. The Dispatcher object has a BeginInvoke method, which accepts the delegate
to be called and the values to be passed to it. In the preceding statement, we passed the
list to be displayed by calling BeginInvoke of the Dispatcher object of ListBox. The
BeginInvoke method would call the listFile delegate with an array of strings as the
argument. listFile, in turn, would call DisplayFiles to display the file list.

Background/non-UI thread handling in Silverlight also makes use of the
Dispatcher object of the UI controls to pass data from the thread to
the control.

Threading and Parallel Programming

98

Using parallel programming to make bulk
image processing faster

.NET 4.0 introduced the concept of parallel programming. In parallel programming, the
concept of threading is taken to the next level. A multi-threaded application generally targets
a single processor core. Parallel programming targets processors with multiple cores. What
it essentially does is distribute the logic of your application across multiple cores of your
processors. This distribution of logic makes use of all the available processor power to make
the execution of the application faster. One of the areas where parallelization provides
massive gains in execution speed is image processing. In this recipe, we will use parallel
programming to make bulk image processing tasks faster. The task we will handle in this
recipe is rotating all the images in a folder by 180 degrees and saving them as new images
at a different location.

How to do it…
1.	 Launch Visual Studio 2012. Create an application of type WPF Application and name

it ParallelImageRotate.

2.	 Open MainWindow.xaml. Design the UI so that it resembles the
following screenshot:

Chapter 3

99

3.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To display the path of the

selected directory
txtPath

Button To display the folder selection
dialog and call the function to
process images in the selected
folder

btnSelectedDir

Label To display the names of images
processed

lblImagesProcessed

4.	 Open MainWindow.xaml.cs. Add a method that accepts a string parameter.
The signature will be as follows:
private void DoRotate(string path)
{
}

5.	 Add the following code to the DoRotate method:
 string[] files = System.IO.Directory.GetFiles(path, "*.jpg");
 string newDir = @"C:\Users\Public\Pictures\Sample Pictures\
Modified";
 System.IO.Directory.CreateDirectory(newDir);

 // Method signature: Parallel.ForEach(IEnumerable<TSource>
source,
 //Action<TSource> body)
 Parallel.ForEach(files, currentFile =>
 {
 // The more computational work you do here, the greater
 // the speedup compared to a sequential foreach loop.
 string filename = System.IO.Path.GetFileName(currentFile);
 System.Drawing.Bitmap bitmap = new System.Drawing.
Bitmap(currentFile);

 bitmap.RotateFlip(System.Drawing.
RotateFlipType.Rotate180FlipNone);
 bitmap.Save(System.IO.Path.Combine(newDir, filename));
lblImagesProcessed.Dispatcher.BeginInvoke((Action)delegate() {
 lblImagesProcessed.Content += filename + Environment.NewLine;
});
 } //close lambda expression
); //close method invocation

Threading and Parallel Programming

100

6.	 Switch to MainWindow.xaml. Add a Click event handler for btnSelectDir.
In the event handler add the following statements:
FolderBrowserDialog diagFolder = new FolderBrowserDialog();
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 DoRotate(diagFolder.SelectedPath);
}

7.	 Run the application. Select a directory containing images and observe the speed with
which the images are being rotated and saved.

How it works…
There are two ways to achieve parallelism: data parallelism and task parallelism. In this
recipe, we have used data parallelism. In data parallelism, the collection on which the
operation needs to be performed is partitioned so that multiple threads, each containing the
logic of the operation, can work on different segments concurrently. In our case, the collection
contains image files in a directory and the operation rotates each image and saves it at a
new location. To achieve data parallelism, we need to use Parallel.ForEach. It takes the
collection to iterate over and the action to be performed on individual items of the collection.
The action parameter can be a lambda expression, which is a code block without any name.

In the following code, we have passed the list of files in the directory, selected by a user as the
collection parameter. The lambda expression takes the file passed to it, rotates it, and then
saves the file in a new location:

// Method signature: Parallel.ForEach(IEnumerable<TSource> source,
//Action<TSource> body)
Parallel.ForEach(files, currentFile =>
{
 // The more computational work you do here, the greater
 // the speedup compared to a sequential foreach loop.
 string filename = System.IO.Path.GetFileName(currentFile);
 System.Drawing.Bitmap bitmap = new System.Drawing.
Bitmap(currentFile);

bitmap.RotateFlip(System.Drawing.RotateFlipType.Rotate180FlipNone);
 bitmap.Save(System.IO.Path.Combine(newDir, filename));

lblImagesProcessed.Dispatcher.BeginInvoke((Action)delegate() {
 lblImagesProcessed.Content += filename + Environment.NewLine; });
 } //close lambda expression
); //close method invocation.

Chapter 3

101

Since the parallelization works similar to threads, the rule for passing data to a UI is the same
as that for threads. We have used WPF. So, to pass the name of the processed file to the
label control, we have used the Dispatcher object of the Label control. By typecasting a
delegate into an Action object, we were able to provide the logic to set content of the Label
control inline. To know more about the Dispatcher object refer to the Handling threads in
WPF recipe in this chapter.

Chaining two parallelized bulk image
processing operations

In the previous recipe, we saw how to parallelize a bulk image processing operation.
However, what should be done if you wanted to do another parallelized operation just after
the completion of the first one in continuation? The answer is chaining of operations. .NET
provides you an option to chain multiple parallelized operations so that once an operation is
complete, the next can be started without waiting for input or a command. In this recipe we
will chain two operations, first, rotating all the images in a directory and saving them to a new
location, and second, saving the rotated images under a new name after adding transparency
to them.

How to do it…
1.	 Launch Visual Studio 2012. Create an application of type WPF Application and name

it ParallelImageRotate.

2.	 Open MainWindow.xaml. Design the UI so that it resembles the following screenshot:

Threading and Parallel Programming

102

3.	 Name the controls as detailed in the following table:

Control Description Name
Textbox To display the path of the selected

directory
txtPath

Button To display the folder selection dialog
and call the function to process
images in the selected folder

btnSelectedDir

Label To display the names of images
processed

lblImagesProcessed

4.	 Open MainWindow.xaml.cs. Add a method that accepts an array of strings
containing filenames and a second string containing the path to save the files
as parameters. The signature will be as follows:
private void DoRotate(string[] files, string newDir)
{
}

5.	 Add the following code to the DoRotate method:
Parallel.ForEach(files, currentFile =>
{
 // The more computational work you do here, the greater
 // the speedup compared to a sequential foreach loop.
 string filename = System.IO.Path.GetFileName(currentFile);
 System.Drawing.Bitmap bitmap = new System.Drawing.
Bitmap(currentFile);
 bitmap.RotateFlip(System.Drawing.RotateFlipType.
Rotate180FlipNone);
 bitmap.Save(System.IO.Path.Combine(newDir, filename));

} //close lambda expression
); //close method invocation

6.	 Add another method that accepts parameters similar to the DoRotate method and
name it MakeTransparent. Its signature will be as follows:
private void MakeTransparent(string[] files, string newDir)
{
}

7.	 To the MakeTransparent method, add the following code:
Parallel.ForEach(files, currentFile =>
{
 // The more computational work you do here, the greater
 // the speedup compared to a sequential foreach loop.
 string filename = System.IO.Path.GetFileName(currentFile);

Chapter 3

103

 System.Drawing.Bitmap bitmap = new System.Drawing.
Bitmap(currentFile);
 string newFile = "trans_" + filename;
 bitmap.MakeTransparent(System.Drawing.Color.Blue);
 bitmap.Save(System.IO.Path.Combine(newDir, newFile));

lblImagesProcessed.Dispatcher.BeginInvoke((Action)delegate() {
 lblImagesProcessed.Content += filename + Environment.NewLine; });
 } //close lambda expression
); //close method invocation

8.	 Next, let us add a method that will set up the chaining of operations implemented in
DoRotate and MakeTransparent. It will accept a string parameter. Its signature
will be as follows:
private void StartBulkProcessing(string path)
{
}

9.	 Add the following code to StartBulkProcessing:
string[] files = System.IO.Directory.GetFiles(path, "*.jpg");
string newDir = @"C:\Users\Public\Pictures\Sample Pictures\
Modified";

System.IO.Directory.CreateDirectory(newDir);
try
{
 var firstTask = new Task(() => DoRotate(files,newDir));
 var secondTask = firstTask.ContinueWith((t) =>
MakeTransparent(files, newDir));
 firstTask.Start();
}
catch (AggregateException e)
{
 Console.WriteLine(e.Message);
}

10.	 Open MainWindow.xaml. Add the Click event handler for btnSelectDir.

11.	 Add the following code to the Click event handler for btnSelectDir:
FolderBrowserDialog diagFolder = new FolderBrowserDialog();
if (diagFolder.ShowDialog() == System.Windows.Forms.DialogResult.
OK)
{
 StartBulkProcessing(diagFolder.SelectedPath);
}

12.	 Run the application. Click on the Select Directory button. Observe the output.

Threading and Parallel Programming

104

How it works…
The methods DoRotate and MakeTransparent make use of Parallel.ForEach to set
up the parallel operations. We have seen the working of Parallel.ForEach in the previous
recipe. The core of this recipe is in the StartBulkProcessing method. We set up the
chaining of operations in it. First, we created an instance of Task by passing DoRotate
to its constructor as anonymous delegate:

var firstTask = new Task(() => DoRotate(files,newDir));

Then we called ContinueWith on firstTask. The ContinueWith method takes instance
of Action as its parameter. We used a lambda functionality to pass the MakeTransparent
method as the Action instance to the ContinueWith method:

var secondTask = firstTask.ContinueWith((t) => MakeTransparent(files,
newDir));

After that we called the Start method on firstTask to start it:

firstTask.Start();

Since multiple exceptions may occur during execution, we have wrapped the previously
mentioned statements in a try/catch block:

try
{
 var firstTask = new Task(() => DoRotate(files,newDir));
 var secondTask = firstTask.ContinueWith((t) =>
MakeTransparent(files, newDir));
 firstTask.Start();
 }
 catch (AggregateException e)
 {

 }

We used an Aggregate exception because many exceptions can be mapped to
AggregateException and we can handle it as required.

4
ASP.NET Recipes – I

In this chapter, we will cover:

ff Creating a user registration page using HTML5 controls

ff Saving a draft of a user registration page using HTML5 client storage

ff Binding objects to controls using strongly-typed data controls

ff Implementing communication between an ASPX page and a Silverlight application

Introduction
ASP.NET is the core of web application development in .NET. In this chapter we will discuss
the UI related features provided by ASP.NET 4.5 along with passing data between Silverlight
and an ASPX page. The first recipe will focus on using HTML5-based input controls. Then we
will look at using client storage in HTML5 to implement the draft functionality. A new feature
of ASP.NET 4.5 is binding objects directly to controls. In the third recipe, we will focus on how
to use this functionality to edit a user's details. In the last recipe the focus will be on passing a
user's data between a Silverlight application and an ASPX page.

Creating a user registration page using
HTML5 controls

HTML5 has introduced many new input controls. They include (but are not limited to) input
controls for e-mail, date, date and time, number, phone number, and range. ASP.NET 4.5
incorporates all of the previously mentioned controls. So, if you are working with .NET 4.5,
you would not have to create a separate HTML page to develop an HTML5-based page.
In this recipe we will see how to develop a user registration page using HTML5-based
ASP.NET controls.

ASP.NET Recipes – I

106

How to do it...
1.	 Launch Visual Studio 2012.

2.	 Create a project of type ASP.NET Web Forms Application and name it
RegistrationFormHtml5.

3.	 Save the solution as RegistrationFormHtml5.

4.	 Remove Default.aspx and AboutUs.aspx, as we will not be using them.

5.	 Add a new ASPX page and name it Default.aspx.

6.	 Open Default.aspx and switch to the Source tab.

7.	 Add a table to the form:
 <form id="form1" runat="server">
 <div>
 <table style="width:59%;">
 </table>

 </div>
 </form>

8.	 Next, add a row with two columns.

9.	 Set the text of the first column to UserName.

10.	 In the second column, add a textbox. Set its ID attribute to txtUserName.
The markup for the first row will be as follows:
<tr>
 <td class="auto-style1">Username</td>
 <td>
 <asp:TextBox ID="txtUserName" runat="server"
 Width="186px"></asp:TextBox>
 </td>
 </tr>

11.	 Add another row for a user to enter his/her e-mail address. Set the text of the first
column to e-mail.

12.	 Add a textbox control to the second column. Set its ID attribute to txtEmail. Set its
TextMode attribute to Email. The markup will be as follows:
 <tr>
 <td class="auto-style1">Email</td>
 <td>
 <asp:TextBox ID="txtEmail" runat="server" TextMode="Email"
 Width="184px"></asp:TextBox>
 </td>

</tr>

Chapter 4

107

13.	 Add a row for date of birth. Set the text of the first column to Date of Birth.

14.	 Add a textbox to the second column. Set its ID attribute to txtDob. Set its TextMode
attribute to Date. The markup will be as follows:
 <tr>
 <td class="auto-style1">Date of Birth</td>
 <td>
 <asp:TextBox ID="txtDob" runat="server" TextMode="Date"
 Width="184px"></asp:TextBox>
 </td>
</tr>

15.	 Next, add a row for age. Set the text of the first column to Age In Years.

16.	 Add a textbox to the second column. Set its ID attribute to txtAge. Set its TextMode
attribute to Number. The markup will be as follows:
 <tr>
 <td class="auto-style1">Age In Years</td>
 <td>
 <asp:TextBox ID="txtAge" runat="server" TextMode="Number"
 Width="184px"></asp:TextBox>
 </td>
</tr>

17.	 Next, add a row for phone number. This row will contain a control for the user to enter
a phone number. Set the text of the first column to Phone.

18.	 Add a textbox to the second column. Set its ID attribute to txtPhone. Set its
TextMode to Phone. The markup will be:
<tr>
 <td class="auto-style1">Phone</td>
 <td>
 <asp:TextBox ID="txtPhone" runat="server" TextMode="Phone"
 Width="184px"></asp:TextBox>
 </td>
</tr>

19.	 Now add a row for blog URL. A user can enter the URL of his/her blog using the
controls in this row. Set the text of the first column to Blog address.

20.	 Add a textbox to the second column. Set its ID attribute to txtBlog. Set its
TextMode attribute to Url. The markup will be as follows:
<tr>
 <td class="auto-style1">Blog address</td>
 <td>
 <asp:TextBox ID="txtBlog" runat="server" TextMode="Url"
 Width="184px"></asp:TextBox>
 </td>
</tr>

ASP.NET Recipes – I

108

21.	 The last row will contain a Submit button. The markup for that row will be as follows:
<tr>
 <td> </td><td><input type="submit"/></td>
</tr>

22.	 Now run the application. In the Email field, enter user. Click on Submit Query. You
will see the following message:

23.	 Try adding invalid values to the other fields and check by clicking on Submit Query.
You will find error messages corresponding to the field's input type.

How it works...
HTML5 has introduced new input types that cover number, range, date, e-mail, and so on.
ASP.NET has incorporated all of these input types into a Textbox control or a <asp:textbox>
tag. The control has a property named TextMode. All the text input types have been mapped
to TextMode. In case of the <asp:textbox> tag, TextMode is its attribute. We have used
<asp:textbox> and its TextMode property to construct our registration form. The following
table details the TextMode values we have used along with their corresponding HTML5
input types:

Chapter 4

109

Control ID TextMode What it does HTML5 input type
txtEmail Email User can enter only a valid

e-mail ID. If an invalid e-mail
ID is entered, the user will
be shown a message.

<input type
="email"/>

txtDob Date Only a valid date can be
entered. If the user enters
anything else, a message
will be presented stating
that input is invalid.

<input type =
"date"/>

txtAge Number A user can enter only
numbers. If anything else
is entered, the user will be
shown a message.

<input type =
"number"/>

txtPhone Phone Only a valid phone number
can be entered. If the user
enters anything else, a
message will be presented
stating that input is invalid.

<input type =
"tel"/>

txtBlog Url Only a valid URL can be
entered. If the user enters
anything else, a message
will be presented stating
that input is invalid.

<input type =
"url"/>

The point to keep in mind is that the validations are done implicitly. You don't have to add
validators to implement the functionality. It is built-in even if you are using plain HTML5
input types.

You will need an HTML5 compatible web browser to run this application. Even
in a supported browser, the results may vary. Of the existing browsers, Opera
supports most of the input types.

Saving a draft of a user registration page
using HTML5 client storage

HTML5 has introduced the concept of client storage. A HTML5 enabled browser can save up
to 10 MB of data on the client side. The data will be stored in the form of name-value pairs.
This storage is accessible via JavaScript. Even though ASP.NET 4.5 does not include controls
that take advantage of this functionality, we can make use of JavaScript within an ASPX page
to access the local storage.

ASP.NET Recipes – I

110

In this recipe we will enhance the registration form by adding a save as draft functionality. Save
as draft functionality will make use of HTML5 client storage and JavaScript to save the data
entered by the user on his/her machine itself, which can be loaded later whenever required.

How to do it...
1.	 Launch Visual Studio 2012. Open the solution named RegistrationFormHtml5.

2.	 Open Default.aspx. Switch to the Source tab.

3.	 Go to the row containing the Submit button. Add another column next to the
Submit button.

4.	 Add a Button control to the column. Set its ID attribute to btnReset. Set its Text
to Reset.

5.	 Add an onClick handler to btnReset. The markup will be as follows:
<td class="auto-style2">
 <asp:Button ID="btnReset" OnClick="btnReset_Click"
runat="server" Text="Reset" />
</td>

6.	 Open Default.aspx.cs. In the handler for btnReset, add the following code:
txtAge.Text = string.Empty;
txtBlog.Text = string.Empty;
txtDob.Text = string.Empty;
txtEmail.Text = string.Empty;
txtPhone.Text = string.Empty;
txtUserName.Text = string.Empty;

7.	 Open Default.aspx. Switch to the Source tab. Add another column next to the
Reset button. Add an HTML button to the column. Set its id attribute to draft.
Add an onClick handler. Let the name of the handler be saveDraft. The markup
will be as follows:
<td class="auto-style1">
 <button id="draft" onclick="saveDraft()">Save Draft</button>
</td>

8.	 In the <head> section of the page, add a <script> section:
<head runat="server">
 <script>
 </script>
</head>

9.	 In the <script> section, add the following code:
function saveDraft() {
 window.localStorage.username =

Chapter 4

111

 document.getElementById("txtUserName").value;

 window.localStorage.email = document.getElementById("txtEmail").
value;
 window.localStorage.dob = document.getElementById("txtDob").
value;

 window.localStorage.age = document.getElementById("txtAge").
value;
 window.localStorage.phone = document.getElementById("txtPhone").
value;

 window.localStorage.blog = document.getElementById("txtBlog").
value;
}

10.	 Now, add one more column to the row containing the buttons.

11.	 Add an HTML button to the column. Set its id attribute to load. Add an onClick
handler. Let the name of the handler be loadDraft. The markup will be as follows:
<td class="auto-style1">
 <button id="load" onclick="loadDraft()">Load Draft</button>
</td>

12.	 In the <script> section, add the following function:
function loadDraft() {
 document.getElementById("txtUserName").value = window.
localStorage.username;

 document.getElementById("txtEmail").value = window.localStorage.
email;

 document.getElementById("txtDob").value = window.localStorage.
dob;

 document.getElementById("txtAge").value = window.localStorage.
age;

 document.getElementById("txtPhone").value = window.localStorage.
phone;

 document.getElementById("txtBlog").value = window.localStorage.
blog;
}

13.	 Run the application.

ASP.NET Recipes – I

112

14.	 Enter valid values for all the fields. Click on Save Draft:

15.	 Next, click on Reset. All the values will be cleared as shown in following screenshot:

Chapter 4

113

16.	 Click on Load Draft. The controls will be filled with values previously entered:

How it works...
The core of the implementation for local storage is done in two of the JavaScript functions,
saveDraft() and loadDraft(). Both of them used the HTML5 related object and the
DOM functionality to save to and retrieve from the local storage. Let us start with saveDraft.

In saveDraft we used the localStorage property of the window object. The
localStorage property provided us with the LocalStorage object that wraps the local
storage functionality provided by the browser. We can save data into the local storage as
key-value pairs. In JavaScript, this can be achieved either by using the setItem method
of the localStorage object, or by using key as a property of the localStorage object.
We have used the second approach in the following code snippet:

window.localStorage.email = document.getElementById("txtEmail").value;

In the preceding statement, we used email as a property of window.localStorage and
assigned the value present in the Email field. This is equivalent to the following code snippet:

window.localStorage.setItem("email", document.
getElementById("txtEmail").value);

ASP.NET Recipes – I

114

In the loadDraft method we did the reverse of what we have done in saveDraft. By using
key as the property of the localStorage object, we retrieved the corresponding value and
assigned it to the required field. For example, in the following statement, we retrieve the saved
value of the Email field and assign it back to the Email field:

document.getElementById("txtEmail").value = window.localStorage.email;

One point to keep in mind is that the preceding statement is equivalent to:

document.getElementById("txtEmail").value = window.localStorage.
getItem("email");

Binding objects to controls using
strongly-typed data controls

In the previous versions of ASP.NET, to bind a property of an object to a control we needed to
use Eval. Eval makes use of reflection to check whether the property is present in the data
bound to the control or not. If the property is present, the value of the property is retrieved
and displayed. The main problem with Eval is that checking for the property name is not
done at compile time.

ASP.NET 4.5 introduces strongly-typed controls. The main property of these controls is that
we can declare the data type of the object that the controls are bound to. In this recipe we will
use some of these strongly-typed data controls to display the data entered by the user in the
registration page.

How to do it...
1.	 Launch Visual Studio 2012. Open the solution named RegistrationFormHtml5.

2.	 Add a folder and name it Entities.

3.	 Add a new class to the Entities folder and name it User.

4.	 Add properties to the class as detailed in the following table:

Property name Data type
ID Int

UserName String

Email String

Dob DateTime

Age Int

Phone String

Blog String

Chapter 4

115

5.	 Once the properties have been added, the class will be similar to the following:
public class User
{
 public int ID { get; set; }
 public string UserName { get; set; }
 public string Email { get; set; }
 public DateTime Dob { get; set; }
 public int Age { get; set; }
 public string Phone { get; set; }
 public string Blog { get; set; }
}

6.	 Open Default.aspx. Switch to the Source tab.

7.	 Go to the row containing the Submit button.

8.	 Replace the Submit button with a Button control.

9.	 Name the Button control as btnSubmit. Set its Text property to Submit.

10.	 Add the onClick handler to btnSubmit. The markup will be as follows:
<td class="auto-style1">
<asp:Button ID="btnSubmit" runat="server" Text="Submit"
OnClick="btnSubmit_Click"/>
</td>

11.	 Open Default.aspx.cs. Add the following code to the event handler
for btnSubmit:
User user = new User();
user.UserName = txtUserName.Text;
user.Age = Convert.ToInt32(txtAge.Text);
user.Blog = txtBlog.Text;
user.Email = txtEmail.Text;
List<User> users = new List<Entities.User>();
users.Add(user);
Session.Add("users", users);
Server.Transfer("~/Display.aspx");

12.	 Add a new Web Form and name it Display.

13.	 Open Display.aspx. Switch to the Source tab. Add the following markup to the
<div> element within the <form> tag:
<asp:FormView ID="UserDetails" ItemType="RegistrationFormHtml5.
Entities.User"
 runat="server" CssClass="auto-style1">
<ItemTemplate>
 <div>

ASP.NET Recipes – I

116

 <asp:Label ID="Label1" runat="server"
AssociatedControlID="UserName" CssClass="auto-style1">
 User Name:</asp:Label>
 <asp:Label ID="UserName" runat="server"
 Text='<%#BindItem.UserName %>' />
 </div>
 <div>
 <asp:Label ID="Label4" runat="server"
AssociatedControlID="email" CssClass="auto-style1">
 Email:</asp:Label>
 <asp:Label ID="email" runat="server"
 Text='<%#BindItem.Email %>' />
 </div>
 <div>
 <asp:Label ID="Label2" runat="server"
AssociatedControlID="age">
 Age:</asp:Label>
 <asp:Label ID="age" runat="server"
 Text='<%#BindItem.Age %>' />
 </div>
 <div>
 <asp:Label ID="Label3" runat="server"
AssociatedControlID="blog">
 Blog Address:</asp:Label>
 <asp:Label ID="blog" runat="server"
 Text='<%#BindItem.Blog %>' />
 </div>
 </ItemTemplate>
</asp:FormView>

14.	 Open Display.aspx.cs. In the Page_Load method, add the following code:
List<RegistrationFormHtml5.Entities.User> users =
(List<RegistrationFormHtml5.Entities.User>)Session["users"];
UserDetails.DataSource = users;
UserDetails.DataBind();

15.	 Open Default.aspx and run the application. In the page displayed in the browser,
enter the values as shown in the following screenshot:

Chapter 4

117

16.	 Click on Submit. You will get a page similar to the following screenshot:

ASP.NET Recipes – I

118

How it works...
We have used strongly-typed data controls in Display.aspx. However, we populated the
data for the controls in Default.aspx. So, let us start from there. In Default.aspx, we
changed the HTML button to an ASP Button control. We did this so that we can create a User
object and populate it with the values entered by the user. We populated the data and set it in
the session object in the click handler of btnSubmit as shown in the following code:

User user = new User();
user.UserName = txtUserName.Text;
user.Age = Convert.ToInt32(txtAge.Text);
user.Blog = txtBlog.Text;
user.Email = txtEmail.Text;
List<User> users = new List<Entities.User>();
users.Add(user);
Session.Add("users", users);
Server.Transfer("~/Display.aspx");

In the preceding code, we added the instance of the User class to List because the data
control in Display.aspx binds only to classes implementing IEnumerable. Once we set
the instance of List in the session, we transfer the execution to Display.aspx using
Server.Transfer.

In Page_Load of Display.aspx, we retrieved List from the session and bound it to the
data control:

List<RegistrationFormHtml5.Entities.User> users =
(List<RegistrationFormHtml5.Entities.User>)Session["users"];
UserDetails.DataSource = users;
UserDetails.DataBind();

UserDetails is an instance of the FormView control. It is the data control that we
have used to display the user data. It is a strongly-typed data control. The attribute/
property that makes FormView a strongly-typed control is ItemType. We set its value to
RegistrationFormHtml5.Entities.User, which tells the FormView control that its
child controls will be bound to the properties of the User class. In the following markup we
have bound the child controls of FormView to the properties of the User class:

<asp:FormView ID="UserDetails" ItemType="RegistrationFormHtml5.
Entities.User"
 runat="server" CssClass="auto-style1">
 <ItemTemplate>
 <div>
 <asp:Label ID="Label1" runat="server"
AssociatedControlID="UserName" CssClass="auto-style1">
 User Name:</asp:Label>

Chapter 4

119

 <asp:Label ID="UserName" runat="server"
 Text='<%#BindItem.UserName %>' />
 </div>
 <div>
 <asp:Label ID="Label4" runat="server"
AssociatedControlID="email" CssClass="auto-style1">
 Email:</asp:Label>
 <asp:Label ID="email" runat="server"
 Text='<%#BindItem.Email %>' />
 </div>
 <div>
 <asp:Label ID="Label2" runat="server"
AssociatedControlID="age">
 Age:</asp:Label>
 <asp:Label ID="age" runat="server"
 Text='<%#BindItem.Age %>' />
 </div>
 <div>
 <asp:Label ID="Label3" runat="server"
AssociatedControlID="blog">
 Blog Address:</asp:Label>
 <asp:Label ID="blog" runat="server"
 Text='<%#BindItem.Blog %>' />
 </div>
 </ItemTemplate>
 </asp:FormView>

In the preceding markup, Label with ID set to UserName is bound to the UserName property
of the User class. Since we set ItemType to the User class, we can access the properties
of the User class in the FormView control's child controls using BindItem. In short, to use
strongly-typed data controls, we need to use ItemType and BindItem together.

Implementing communication between an
ASPX page and a Silverlight application

Silverlight applications are hosted in the ASPX pages through the Silverlight plugin. The plugin
is embedded using the <object> tag, due to which we can pass data between an ASPX page
and the application using JavaScript. To make Silverlight applications JavaScript-aware, some
extra steps are required at the development stage. In this recipe we will see what those steps
are, and how to enable ASPX pages to communicate with Silverlight using those steps.

ASP.NET Recipes – I

120

How to do it...
1.	 Launch Visual Studio 2012. Create an application of type Silverlight Application and

name it SLAspxCommunication.

2.	 Open MainPage.xaml. Add a DataGrid control to the Grid control. Name it
dgUsers. The markup will be as follows:
<Grid x:Name="LayoutRoot" Background="White">
<sdk:DataGrid x:Name="dgUsers" HorizontalAlignment="Left"
Height="100" Margin="10,50,0,0" VerticalAlignment="Top"
Width="380"/>
</Grid>

3.	 Next, add a folder to SLAspxCommunication. Name it Entities.

4.	 Add a class to the Entities folder and name it User.

5.	 Add properties to the User class as detailed in the following table:

Property name Data type
ID Int

UserName String

Email String

Dob DateTime

Age Int

Phone String

Blog String

6.	 Once the properties are added, the class will be as follows:
public class User
{
 public int ID { get; set; }
 public string UserName { get; set; }
 public string Email { get; set; }
 public DateTime Dob { get; set; }
 public int Age { get; set; }
 public string Phone { get; set; }
 public string Blog { get; set; }
}

7.	 Next, open MainPage.xaml.cs. Add a private instance variable of type
ObservableCollection<User>. Name it _users:
private ObservableCollection<User> _users;

Chapter 4

121

8.	 Add another private instance variable of type string and name it _userName:
private string _userName;

9.	 Add a method that returns ObservableCollection<User>. Name it
GenerateList. Its signature will be as follows:
private ObservableCollection<User> GenerateList()
{
}

10.	 Add the following code to GenerateList:
_users = new ObservableCollection<User>();
_users.Add(new User()
 {
 UserName = "User1",
 Age = 19,
 Email = "user1@user.com"
 });
 _users.Add(new User()
 {
 UserName = "User2",
 Age = 19,
 Email = "user2@user.com"
 });

 _users.Add(new User()
 {
 UserName = "User3",
 Age = 19,
 Email = "user3@user.com"
 });
 _users.Add(new User()
 {
 UserName = "User4",
 Age = 19,
 Email = "user4@user.com"
 });
return _users;

11.	 Add the following statement in the constructor, below the call to
InitializeComponent:
_users = GenerateList();

ASP.NET Recipes – I

122

12.	 Next, add the following statement in the constructor, below the call to GenerateList:
HtmlPage.RegisterScriptableObject("Page", this);

13.	 After adding the statements, the constructor will be as follows:
public MainPage()
{
 InitializeComponent();
 _users = GenerateList();
 HtmlPage.RegisterScriptableObject("Page", this);
}

14.	 Add a method that returns ObservableCollection<User>. Name it
SearchUserName. The signature will be as follows:
private ObservableCollection<User> SearchUserName()
{
}

15.	 Add the following code in SearchUserName:
User user = _users.First<User>(e => e.UserName == _userName);
ObservableCollection<User> temp = new
ObservableCollection<User>();
temp.Add(user);
return temp;

16.	 Add another method of type void and with string as parameter. Name it SetUser.
The signature will be as follows:
public void SetUser(string user)
{
}

17.	 Add the following statements to the SetUser method:
 _userName = user;
 try
 {
 dgUsers.ItemsSource = SearchUserName();
 HtmlPage.Window.Invoke("setResult", "User found");
 }
 catch (Exception)
 {
 HtmlPage.Window.Invoke("setResult", "User not found");
 }

Chapter 4

123

18.	 Decorate SetUser with the ScriptableMember attribute. After it is done,
the method will be displayed as given in the following code block:
[ScriptableMember]
public void SetUser(string user)
{
 _userName = user;
 try
 {
 dgUsers.ItemsSource = SearchUserName();
 HtmlPage.Window.Invoke("setResult", "User found");
 }
 catch (Exception)
 {
 HtmlPage.Window.Invoke("setResult", "User not found");
 }
}

19.	 Open SLAspxCommunicationTestPage.aspx, which is present in the
SLAspxCommunication.Web project.

20.	 Remove the <form> tag.

21.	 Add a <div> tag after the <body> tag. Within the <div> tag add the text User
name to search.

22.	 Next, place an <input> tag after the text. Set its ID attribute to txtUser.

23.	 Now, add a <button> tag. Set its ID attribute to search. Add an onclick
handler. Name it search. The markup will be as follows:
<div>
 User Name to search:
 <input id="txtUser" /> <button id="search"
onclick="search()">Search</button>
</div>

24.	 Add a
 tag after the <div> tag.

25.	 Add another <div> tag. Set its ID attribute to result.

26.	 Next, add a <script> tag to the <head> tag. Add a function to the <script> tag.
Name it search. The markup will be as follows:
<script type="text/javascript">
 function search() {

 }
 </script>

ASP.NET Recipes – I

124

27.	 Add the following code to the search function:
try {
 var control = document.getElementById("silverlightControl");
control.Content.Page.SetUser(document.getElementById("txtUser").
value);
 } catch (e) {
 alert(e.description);
 }

28.	 Add another JavaScript method. Name it setResult. It will be accepting an
argument. The method will be as follows:
function setResult(result) {
 document.getElementById("result").innerHTML = "" + result +
"";
}

29.	 Run the application. The web page will be similar to the following screenshot:

30.	 Enter an invalid username. The web page will show a message similar to the one
displayed in the following screenshot:

Chapter 4

125

31.	 Enter a valid username. The web page will be similar to the following screenshot:

ASP.NET Recipes – I

126

How it works...
To make the MainPage.xaml file interact with JavaScript, we carried out two main
tasks. First, we registered our page as a scriptable object in the constructor using the
following statement:

HtmlPage.RegisterScriptableObject("Page", this);

The RegisterScriptableObject method of HtmlPage registers the MainPage class
with the script manager as an object that can interact with a client-side script (JavaScript,
JScript, and so on). Next, we made SetUser a method of the class that can be called from
the client-side script. We did it by decorating it with the ScriptableMember attribute as
shown in the following code snippet:

[ScriptableMember]
public void SetUser(string user)
{
 _userName = user;
 try
 {
 dgUsers.ItemsSource = SearchUserName();
 HtmlPage.Window.Invoke("setResult", "User found");
 }
 catch (Exception)
 {
 HtmlPage.Window.Invoke("setResult", "User not found");
 }
}

To send the value back to the ASPX page, we can use the Invoke method of the Window
object, which we can get from the HtmlPage class. The Invoke method accepts two
arguments – the client-side script function to be invoked and the data to be passed to the
function. In our case, the function is saveResult and data is either User found or User
not found. We have used it as shown in the following highlighted code:

[ScriptableMember]
public void SetUser(string user)
{
 _userName = user;
 try
 {
 dgUsers.ItemsSource = SearchUserName();
 HtmlPage.Window.Invoke("setResult", "User found");
 }

Chapter 4

127

 catch (Exception)
 {
 HtmlPage.Window.Invoke("setResult", "User not found");
 }
}

In the ASPX page, we implemented two JavaScript functions – setResult and setUser.
The setResult function is used by the Silverlight page to send data back to the ASPX page.
We used the setUser function to pass the username to the Silverlight page by calling the
SetUser method of the page as shown in the following code:

var control = document.getElementById("silverlightControl");
control.Content.Page.SetUser(document.getElementById("txtUser").
value);

First, we got the handle to the Silverlight container. Then we called the SetUser method on
the Page object of the Content object. The Content object is a property of the Silverlight
container. We had registered MainPage as HtmlPage.RegisterScriptableObject in
the constructor of MainPage. That's why the following statement works:

control.Content.Page.SetUser(document.getElementById("txtUser").
value);

5
ADO.NET Recipes

In this chapter we will cover:

ff Saving large files (BLOB) in MS SQL Server using ADO.NET

ff Retrieving large files (BLOB) from MS SQL Server using ADO.NET

ff Using transactions to maintain database consistency when saving multiple files

ff Using DataSet to modify custom XML configuration files

Introduction
This chapter will focus on recipes that deal with ADO.NET, which is the basis for all
database-based operations in .NET. We will start with saving files of large size in SQL
Server. The next recipe will tell you how to retrieve the saved file. The third recipe will focus
on implementing transactions. The last recipe will be about using DataSet to operate upon
XML data.

Please keep in mind that the recipes in this chapter use MS SQL Server 2012.

Saving large files (BLOB) in MS SQL Server
using ADO.NET

SQL Server allows you to save data in binary format. By making use of this feature, we can
save files of large size (more than 2 GB). Data having a large size are known as Binary Large
Objects or BLOB. This recipe will detail the steps to use this feature in a .NET application. The
saving of files at database level will be handled through a stored procedure. The application
will pass the required data to the stored procedure and execute it.

ADO.NET Recipes

130

We will be using image files for this recipe. Neither the application nor the stored procedure
will check for uniqueness of the name of the file being saved. Checking for the uniqueness of
the uploaded file is beyond the scope of this recipe.

How to do it...
The following steps will help you to save large files in SQL Server:

1.	 Launch SQL Server Management Studio 2012.

2.	 Add a new database and name it CookBook.

3.	 Add a new table to the CookBook database and name it tb_FileStorage.

4.	 Add columns to the tb_FileStorage table as detailed in the following table:

Name Data type Is Identity column
ID Tinyint Yes
File_name Varchar No
File_content Varbinary No

5.	 Next, add a stored procedure that will save the file to tb_FileStorage and name it
SaveFile. The procedure will be as follows:
USE [CookBook]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE PROCEDURE [dbo].[SaveFile]
 @vFileName varchar(50),
 @vFile varbinary(MAX)
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 INSERT INTO [dbo].[tb_FileStorage]
 ([File_name]
 ,[File_content])
 VALUES

Chapter 5

131

 (@vFileName,
 @vFile)

END

GO

6.	 Press F5 to execute the procedure.

7.	 Launch Visual Studio 2012. Create an application of type Windows Forms
Application and name it SaveRetrieveFile.

8.	 Save the solution as SaveRetrieveFile.sln.

9.	 Add reference to Microsoft.SqlServer.ConnectionInfo.dll.

10.	 Rename Form1.cs to SaveRetrieveFileDB.

11.	 Open SaveRetrieveFileDB in the design mode. Design the form so that it looks
similar to the following screenshot:

12.	 Name the controls as detailed in the following table:

Control Name Description
Label lblFile To hold and display the path of the selected file
Button btnChoose To display the file open dialog to the user
Button btnSave To save the file in the table

13.	 Switch to the view source mode. Add a method that accepts string as a parameter
and returns an array of byte. Name it ReadFile. The signature will be as follows:
private byte[] ReadFile(string path)
{
}

ADO.NET Recipes

132

14.	 Add the following code to the ReadFile method:
byte[] data = null;

FileInfo info = new FileInfo(path);
long numBytes = info.Length;

FileStream stream = new FileStream(path, FileMode.Open,
FileAccess.Read);

BinaryReader reader = new BinaryReader(stream);
data = reader.ReadBytes((int)numBytes);
return data;

15.	 Switch to the design mode. Double-click on btnChoose to add a Click
event handler.

16.	 In the Click event handler of btnChoose, add the following statements:
OpenFileDialog diagFile = new OpenFileDialog();
if (diagFile.ShowDialog() == DialogResult.OK)
{
 lblFile.Text = diagFile.FileName;
}

17.	 Switch to the design mode. Double-click on btnSave to add a Click event handler.

18.	 In the Click event handler of btnSave, add the following statements:
try
{
 byte[] imageData = ReadFile(lblFile.Text);

 SqlConnection connection = new SqlConnection(ConfigurationManager.
ConnectionStrings["local"].ConnectionString);
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = "SaveFile";

 command.Parameters.Add(new SqlParameter("@vFileName",
 (object)Path.GetFileNameWithoutExtension(lblFile.Text)));

 command.Parameters.Add(new SqlParameter("@vFile",
 (object)imageData));

 //Open connection and execute insert query.
 connection.Open();

Chapter 5

133

 command.ExecuteNonQuery();
 }
 catch (Exception)
 {
 MessageBox.Show("Could not save file", "Database Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}finally{
connection.Close();
}

19.	 Open app.config. Add connection string for your MS SQL Server. It will be similar to
the following entry:
<connectionStrings>
 <add connectionString="Data Source=APRAJSHEKHAR-HP;Initial
Catalog=CookBook;Integrated Security=True" name="local"/>
</connectionStrings>

20.	 Run the application.

21.	 Choose a high quality image and click on Save:

How it works...
The core of the recipe lies in the btnSave_Click and ReadFile methods. Let us start
with ReadFile. The table saves the file as binary data. In .NET, binary data is generally
represented using the byte array. So before sending image files to the database,
we have to convert it to a byte array. That is what we did in the following statements
of the ReadFile method:

FileStream stream = new FileStream(path, FileMode.Open,
 FileAccess.Read);

BinaryReader reader = new BinaryReader(stream);
data = reader.ReadBytes((int)numBytes);

ADO.NET Recipes

134

In the preceding code, we used BinaryReader to get the bytes from the file using
FileStream connected with the file. One point to keep in mind is that ReadBytes
requires the number of bytes to be read. That is why we used the Length property of
the FileInfo class to get the length of file in the following statements of ReadFile:

FileInfo info = new FileInfo(path);
long numBytes = info.Length;

Let us now look at btnSave_Click. We used the byte array returned from ReadFile as a
parameter to the Add method of the Parameters property of the SqlCommand instance in
the following code:

byte[] imageData = ReadFile(lblFile.Text);
command.Parameters.Add(new SqlParameter("@vFile", (object)imageData));

The SaveFile stored procedure accepts a file content as value of the @vFile parameter.
So, we passed the byte array when we added the parameter to the command. By doing so,
the byte array gets passed on to SQL Server when the command gets executed.

Retrieving large files (BLOB) from SQL
Server using ADO.NET

In the last recipe, we saw how to save files of large size, or BLOB, into tables using ADO.NET.
In this recipe we will focus on how to retrieve the saved files. Similar to the last recipe, we will
work with high quality image files. We will be retrieving the data from the table and displaying
it in a picture box. At the database side, we will use a stored procedure to retrieve the file data
corresponding to the name. At the application level, we will make use of the DataSet class of
ADO.NET to pass the filename to the stored procedure and get the data.

How to do it...
1.	 Launch SQL Server Management Studio 2012.

2.	 Open the database named CookBook.

3.	 Next, add a stored procedure that will retrieve data from tb_FileStorage and
name it ReadFile. The procedure will be as follows:
USE [CookBook]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

Chapter 5

135

CREATE PROCEDURE [dbo].[ReadFile]
 -- Add the parameters for the stored procedure here
 @vFileName varchar(50)
AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 SELECT [ID]
 ,[File_name]
 ,[File_content]
 FROM [dbo].[tb_FileStorage]
 WHERE [File_name] = @vFileName

END

GO

4.	 Launch Visual Studio 2012. Open the solution named SaveRetrieveFile.sln.

5.	 Open SaveRetrieveFileDB in design mode.

6.	 Design the form so that it looks similar to the following screenshot:

ADO.NET Recipes

136

7.	 Name the controls as detailed in the following table:

Control Control Name Description
Textbox txtFile To enter the name of the file to be

retrieved.
Button btnLoad To retrieve the file from the table

and display it using the picture
box control.

Picture Box pbImage To display the image retrieved
from the table.

8.	 Double-click on btnLoad to add an event handler for the Click event.

9.	 In the event handler, add the following code:
SqlConnection connection = new SqlConnection(ConfigurationManager.
ConnectionStrings["local"].ConnectionString);
SqlDataAdapter adapter = new SqlDataAdapter();
adapter.SelectCommand = new SqlCommand();
adapter.SelectCommand.CommandText = "ReadFile";
adapter.SelectCommand.CommandType = CommandType.StoredProcedure;
adapter.SelectCommand.Connection = connection;
adapter.SelectCommand.Parameters.Add(new SqlParameter(
"@vFileName", txtFile.Text));
SqlCommandBuilder MyCB = new SqlCommandBuilder(adapter);
DataSet ds = new DataSet("MyImages");

byte[] data = new byte[0];

adapter.Fill(ds, "MyImages");
DataRow row;
row = ds.Tables["MyImages"].Rows[0];

data = (byte[])row["File_content"];
MemoryStream imageStream = new MemoryStream(data);
pbImage.Image = Image.FromStream(imageStream);

10.	 Run the application. Enter the name of a file previously saved. Click on the Load
from DB button. The image will be loaded on to the picture box, as shown in the
following screenshot:

Chapter 5

137

How it works...
The whole logic to retrieve data of the image file from the table and display it using the
picture box control is in the event handler for the Click event of the Load from DB
button. The code in the event handler up to execution of the stored procedure using
SqlDataAdapter in the following statement is similar to any other code that uses
SqlDataAdapter and ADO.NET library:

adapter.Fill(ds, "MyImages");

Once SqlDataAdapter fills the DataSet instance with the data and the structure from the
result of the executed query/stored procedure, the steps change. First we accessed the very
first row of the table within the DataSet instance:

row = ds.Tables["MyImages"].Rows[0];

We were confident that the data will be in the first row because of the where clause in the
Select statement of the stored procedure. Then we extracted the binary data from the
File_content column of the row and assigned it to the byte array:

data = (byte[])row["File_content"];

We typecasted the result of row["File_content"] because row["File_content"]
returns an object type and to use the binary data we needed the byte array. Then we
created an instance of MemoryStream from the byte array:

MemoryStream imageStream = new MemoryStream(data);

ADO.NET Recipes

138

The MemoryStream class is similar to the FileStream class except that FileStream
works with files, while MemoryStream works with the in-memory data. If we were using
FileStream, we would have to create a temporary file and save the byte array into it. Since
we are using MemoryStream, we can directly work with the byte array. Next, we used the
ImageFromStream method of the Image class to create an image from the byte array and
set it to the Image property of the ImageBox control:

pbImage.Image = Image.FromStream(imageStream);

Using transactions to maintain database
consistency when saving multiple files

When saving or updating a set of records in a table or across multiple tables, scenarios occur
for which the set should be saved as a whole. In other words, if saving or updating of any record
fails, then no further inserts or updates of any of the records within that set should happen.
Also, the records saved till that point should be removed. For example, when trying to save
seven images, if saving the fifth image fails, then the next two images should not be saved.
And the first four saved images must be removed from the table. This is required to maintain
consistency of the database. In such a scenario, transactions comes into the picture.

ADO.NET provides the functionality to execute select, insert, update, and delete tasks within
transactions. In this recipe, we will see how to use the transaction functionality provided by
ADO.NET by applying it to the save image task.

How to do it...
1.	 Launch Visual Studio 2012. Open the solution named SaveRetrieveFile.sln.

2.	 Open SaveRetrieveFileDB in the design mode.

3.	 Remove the Label control lblFile.

4.	 Add the ListBox control to the column from which we removed the lblFile label
in the previous step.

5.	 Name ListBox as lstFiles.

Chapter 5

139

6.	 The form would look similar to the following screenshot:

7.	 Double-click on btnChoose to open the Click event handler of btnChoose.

8.	 Modify the code within the handler so that it becomes similar to the following code:
lstFiles.DataSource = null;

OpenFileDialog diagFile = new OpenFileDialog();
diagFile.Multiselect = true;
if (diagFile.ShowDialog() == DialogResult.OK)
{
 lstFiles.DataSource = diagFile.FileNames;
}

9.	 Modify the Click event handler of btnLoad so that it resembles the following:
private void btnSave_Click(object sender, EventArgs e)
{
 SqlConnection connection = new SqlConnection(ConfigurationManager.
ConnectionStrings["local"].ConnectionString);
connection.Open();
using (SqlTransaction transaction=connection.BeginTransaction())
 {

ADO.NET Recipes

140

 try
 {
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.
StoredProcedure;
 command.CommandText = "SaveFile";
 command.Transaction = transaction;
 foreach (String item in lstFiles.Items)
 {
 command.Parameters.Clear();
 command.Parameters.Add(new SqlParameter(
"@vFileName", (object)Path.GetFileNameWithoutExtension(item)));

 byte[] imageData = ReadFile(item);
 command.Parameters.Add(new SqlParameter(
"@vFile", (object)imageData));

 command.ExecuteNonQuery();
 }
 transaction.Commit();
 MessageBox.Show("Files have been successfully
saved");
 }
 catch (Exception)
 {
 transaction.Rollback();
 MessageBox.Show("Could not save file",
"Database Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 finally
 {
 connection.Close();
 }
 }
}

10.	 Run the application.

Chapter 5

141

11.	 Choose multiple files by clicking the Choose File button. You will see the listbox filled
with filenames, as shown in the following screenshot:

ADO.NET Recipes

142

12.	 Click on the Save button. You will see the following message if the images are
saved successfully:

13.	 If the images are not saved successfully, you will see the following message:

14.	 If the images are not saved successfully, check tb_FileStorage. You will find that
none of the images were saved.

Chapter 5

143

How it works...
A transaction is said to be complete if all the statements within the transaction are executed
successfully, also known as a commit. In case of failure of any statement, the previous state
of the table(s) would be restored. This is known as rollback. So, a transaction completes
either with a commit or a rollback. In ADO.NET, a transaction is represented by an instance
of the SqlTransaction class. You complete a transaction either by calling the Commit or
Rollback method on the instance of the transaction class.

In our recipe, we have placed saving of the images within the transaction by wrapping the
code that saves the file within the using block, as shown in the following highlighted code:

using (SqlTransaction transaction=connection.BeginTransaction())
 {
 try
 {
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = "SaveFile";
 command.Transaction = transaction;
 foreach (String item in lstFiles.Items)
 {
 command.Parameters.Clear();
 command.Parameters.Add(new SqlParameter(
"@vFileName", (object)Path.GetFileNameWithoutExtension(item)));

 byte[] imageData = ReadFile(item);
 command.Parameters.Add(new SqlParameter(
"@vFile", (object)imageData));

 command.ExecuteNonQuery();
 }
 transaction.Commit();
 MessageBox.Show("Files have been successfully
saved");
 }
 catch (Exception)
 {
 transaction.Rollback();
 MessageBox.Show("Could not save file", "Database
Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

ADO.NET Recipes

144

 }
 finally
 {
 connection.Close();
 }
 }

By making use of the using statement, we do not need to close the transaction
explicitly. To get an instance of SqlTransaction, we called BeginTransaction
of the SqlConnection instance:

using (SqlTransaction transaction=connection.BeginTransaction())

We set the Transaction property of the SqlCommand instance to the SqlTransaction
instance to tell ADO.NET that the SqlCommand instance will be part of the transaction:

SqlCommand command = new SqlCommand();
command.Connection = connection;
command.CommandType = CommandType.StoredProcedure;
command.CommandText = "SaveFile";
command.Transaction = transaction;

Then we executed the save image statements in a loop:

foreach (String item in lstFiles.Items)
{
 command.Parameters.Clear();
 command.Parameters.Add(new SqlParameter("@vFileName",
 (object)Path.GetFileNameWithoutExtension(item)));

 byte[] imageData = ReadFile(item);
 command.Parameters.Add(new SqlParameter("@vFile",
 (object)imageData));

 command.ExecuteNonQuery();
}

One point to keep in mind is that command.ExecuteNonQuery() only sends the data to the
database server. The data is not saved permanently until we call commit on the instance of
SqlTransaction. That is what we did in the following statement after the loop.

transaction.Commit();

Chapter 5

145

If any exception occurs during the loop, we catch that in the catch block and rollback
the transaction:

catch (Exception)
{
 transaction.Rollback();
 MessageBox.Show("Could not save file", "Database Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
}

At this point, none of the files sent to the database will be saved. And thus consistency of the
database will be maintained, which is the whole point of transactions.

Using DataSet to modify custom XML
configuration files
DataSet is the most versatile component of ADO.NET as it can load data from not only
database objects but also XML, Excel worksheets, and so on. Its ability to load data from XML
documents is really helpful if you want to keep configuration data such as Web Service host
address and locale-based messages. In this recipe, we will make use of DataSet to load
the configuration details from the XML document, modify the data, and save it back into the
XML document.

We will also use DataGridView to display the loaded data and provide a UI to the user for
modifying and saving the data. In this recipe you will also see how well DataGridView plays
with DataSet.

How to do it...
1.	 Launch Visual Studio 2012. Create a new project of type Windows Forms Project and

name it XmlConfigUI.

2.	 Save the solution as XmlConfigUI.sln.

3.	 Rename Form1 to XmlConfigUI.

4.	 Add an XML file and name it messages.xml.

5.	 Open messages.xml and add the following:
<messages>
 <message>
 <locale>en</locale>
 <text>User name is not unique</text>
 </message>
</messages>

ADO.NET Recipes

146

6.	 Open XmlConfigUI in the design mode. Design the form so that it looks similar to
the following screenshot:

7.	 Name the controls as detailed in the following table:

Control Control name Description
DataGridView dgvConfig To display the data loaded from

messages.xml

Button btnLoad To load data from messages.xml
and display it on dgvConfig

Button btnSave To save data in the DataSet class
back to messages.xml

8.	 Switch to the view source mode. Add a private instance variable of type DataSet:
private DataSet _dataSet;

9.	 In the constructor, add the following code after the call to InitializeComponents:
_dataSet = new DataSet("Messages");

10.	 Switch to the design mode. Double-click on btnLoad to add a Click event handler.

11.	 In the Click event handler of btnLoad, add the following code:
_dataSet.ReadXml(Application.StartupPath + "\\messages.xml");
dgvConfig.DataSource = _dataSet;
dgvConfig.DataMember = "message";

12.	 Switch to the design mode. Double-click on btnSave to add a Click event handler.

Chapter 5

147

13.	 In the Click event handler of btnSave, add the following code:
_dataSet.WriteXml(Application.StartupPath + "\\messages.xml");

14.	 Run the application.

15.	 Next, click on the Load button. The screen will look similar to the following screenshot:

16.	 Add a new row. Click on Save:

17.	 Close the application.

ADO.NET Recipes

148

18.	 Run the application again. Click on the Load button. The added row will be visible, as
shown in the following screenshot:

How it works...
The first step in loading XML into DataSet is to specify the path to the XML file, that is,
messages.xml. Since we did not want it to be an embedded resource, we set the file's
Copy to Output Directory to true. In our case (that is, debug), the output directory
will be bin\debug. We did this so that the following statements would provide the path to
messages.xml at runtime:

Application.StartupPath + "\\messages.xml"

In the Click event handler for the Load button, we used the preceding statement to load the
data into DataSet:

_dataSet.ReadXml(Application.StartupPath + "\\messages.xml");

The ReadXml method of DataSet reads the data and creates tables and columns based
on the schema. It then populates the table with the data present in XML. Next, we assigned
_dataSet to the DataSource property of dgvConfig:

dgvConfig.DataSource = _dataSet;

Chapter 5

149

Just assigning the data source will not be sufficient to display the data. We have to tell the
data source which member will provide the column names. In messages.xml, we have the
following structure:

<messages>
 <message>
 <locale>en</locale>
 <text>User name is not unique</text>
 </message>
</messages>

In the previous code, <locale> and <text> are under <message>. Since <locale>
and <text> would become columns in a data set, <message> will be the member that
will provide the column names. Hence, we added the following statement:

dgvConfig.DataMember = "message";

The way data that is in the DataSet instance is saved onto an XML file works in the opposite
way from reading it from XML and populating the DataSet instance. By calling the WriteXml
method of the DataSet instance, we essentially told DataSet to write out the data according
to the schema of the XML data loaded earlier:

_dataSet.WriteXml(Application.StartupPath + "\\messages.xml");

Using DataSet to read and save XML data is easy. However, it can be used in many ways,
one of them being handling of configuration data, as you have seen in this recipe.

6
WCF Recipes

In this chapter we will cover:

ff Implementing custom binding in WCF

ff Creating a WCF REST service

ff Handling exceptions using FaultContract and FaultException

ff Uploading files using Stream

ff Securing a service using role-based security

Introduction
Windows Communication Framework (WCF) is the base of Service Oriented Architecture in
.NET 3.5 and higher. The focus of this chapter will be on tasks such as uploading files and
implementing a REST service, among others, using WCF. We will start with creating custom
bindings for a ping service. Then we move on to implementing WCF REST service. The next
recipe will tell you how to implement Inversion-of-Control using Dependency Injection. The
last two recipes will deal with a service that can be used to upload a file and secure the ping
WCF service.

Implementing custom binding in WCF
In WCF, binding dictates many aspects such as the protocol being used, the size of the data/
payload, and so on. The default binding is based on HTTP and the default values provided
will work well in most of the scenarios. However, there may be cases where the default HTTP
binding may not work for you. The scenario can be anything from a need to use TCP instead of
HTTP to a requirement that needs a specific Web Service Security version to be used. For such
scenarios, custom binding comes in handy.

WCF Recipes

152

In this recipe, we will create a service that will check whether the SQL Server is up or not.
The service will use custom binding to set up the protocol and the encoding to be used for
communication between the service and client.

How to do it...
1.	 Launch Visual Studio 2012. Create a project of type WCF Service Library. Name it

WcfDbPingService.

2.	 Rename the IService interface to IPingService and the Service class to
PingService.

3.	 Add a reference to Microsoft.SqlServer.ConnectionInfo.dll.

4.	 Open the IPingService class and remove the existing code.

5.	 Add a method that accepts string as parameter and returns bool to the
IPingService class. Name it IsDbUp. Its signature will be:
bool IsDbUp(string connectionString);

6.	 Decorate the method with the OperationContract attribute:
[OperationContract]
bool IsDbUp(string connectionString);

7.	 After the modifications the IPingService class will look similar to the
following code:
[ServiceContract]
public interface IPingService
{
 [OperationContract]
 bool IsDbUp(string connectionString);
}

8.	 Next, open the PingService class that implements IPingService. Remove the
existing code from the class.

9.	 Implement the IsDbUp method from IPingService.

10.	 Add the following code to the IsDbUp method:
bool isUp = true;
try
{
 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();
 connection.Close();
}

Chapter 6

153

catch (Exception)
{
 isUp = false;
}
 return isUp;

11.	 Open App.config and add the following code before the <services> section:
<bindings>
 <customBinding>
 <binding name="CustomBinding_IPingService">
 <textMessageEncoding messageVersion="Soap11"/>
 <httpTransport />
 </binding>
 </customBinding>
</bindings>

12.	 Next, modify the <service> section so that it is similar to the following code:
<service name="WcfDbPingService.PingService">
<endpoint address="" binding="customBinding"
bindingConfiguration="CustomBinding_IPingService"
contract="WcfDbPingService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
</endpoint>
<endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8735/Design_Time_
Addresses/WcfDbPingService/Service1/" />
 </baseAddresses>
 </host>
</service>

13.	 Add another project of type Windows Forms Application and name it
PingDbTestApp.

14.	 Rename Form1.cs to PingDbTestForm.cs.

WCF Recipes

154

15.	 Open PingDbTestForm in Design mode. Design the form so that the UI resembles
the following screenshot:

16.	 Name the controls as detailed in the following table:

Control Name Description
Textbox txtConnString To enter the connection string for the

database that needs to be pinged
Button btnPing To call the ping service
Label lblResult To display the result of the service call

17.	 Add Service Reference to PingService and name it PingDbServiceReference.

18.	 Double-click on btnPing to add the Click event handler.

19.	 In the event handler, add the following code:
PingDbServiceReference.PingServiceClient client = new
PingDbServiceReference.PingServiceClient();
bool result = client.IsDbUp(txtConnString.Text);
lblResult.Text = "Database with connection string " +
txtConnString.Text + " is up? " + result;

20.	 Run the application as a new instance.

21.	 Enter the connection string of the SQL Server to be pinged and then click on the
Ping button.

Chapter 6

155

22.	 If the server is up, you will get the following screen:

23.	 If the server is not up, you will get the following screen:

The ping service is very basic in its implementation. The reason is that the
focus of this recipe is on custom binding. Implementing a sophisticated ping
service is out of the scope of this recipe.

WCF Recipes

156

How it works...
The core of the implementation is in the <bindings> section in App.config. The default
binding provided by WCF is based on HTTP. We want to use HTTP itself. However, we want to
ensure that Version 1.1 of SOAP is being used. So, we add the following custom binding:

<customBinding>
 <binding name="CustomBinding_IPingService">
 <textMessageEncoding messageVersion="Soap11"/>
 <httpTransport />
</binding>

In the preceding code, we named the <binding> section CustomBinding_IPingService
so that we can use it later. Next, we have set the value of the messageVersion attribute of
<textMessageEncoding> to Soap11 so that SOAP Version 1.1 is used. Then by adding
<httpTransport/>, we are ensuring that HTTP is used.

To make sure that .NET uses the custom binding, we add two attributes to <endpoint>:
binding and bindingConfiguration. We set binding to customBinding so that our
custom binding will be used. Then we set bindingConfiguration to the name of our
custom binding, as shown in the following code:

<service name="WcfDbPingService.PingService">
 <endpoint address="" binding="customBinding"
bindingConfiguration="CustomBinding_IPingService"
contract="WcfDbPingService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8735/Design_Time_Addresses/
WcfDbPingService/Service1/" />
 </baseAddresses>
 </host>
</service>

If you look at App.config of PingDbTestApp, you will see the following code:

<system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name="CustomBinding_IPingService" />
 </basicHttpBinding>

Chapter 6

157

 </bindings>
 <client>
 <endpoint address="http://localhost:8735/Design_Time_Addresses/
WcfDbPingService/Service1/"
 binding="basicHttpBinding"
 bindingConfiguration="CustomBinding_IPingService"
 contract="PingServiceReference.IPingService"
name="CustomBinding_IPingService" />
 </client>
</system.serviceModel>

Since we have used HTTP as transport for our service configuration in the previous code
(taken from App.config of PingDbTestApp), <basicHttpBinding> is present. The point
of significance is that the name of <binding> is CustomBinding_IPingService. Keep
in mind that the port number will be different from what you see in the preceding code, since
that will be generated based on your system's setup.

Creating a WCF REST service
In the previous recipe, we implemented a ping database service using WCF. Since we are
using SOAP, we need to create a separate client to consume it. What if we want to check the
status of a database by passing the connection string as a query parameter and view the
result using a web browser? For such scenarios, we will have to implement a ping service
as a REST service.

A Representational State Transfer (REST) service uses HTTP(S) along with XML, HTML, and
JSON for communication. It does not require a WSDL to discover the functionality provided or
an SOAP for sending and receiving data. It uses HTTP and the HTTP methods (GET, POST,
PUT, DELETE, and OPTIONS) for Create, Retrieve, Update, and Delete (CRUD) operations.
In this recipe, we will see how to implement a RESTful WCF service having the retrieve
(GET) functionality.

You can find out more about REST from http://www.ibm.com/
developerworks/webservices/library/ws-restful/.

How to do it...
1.	 Launch Visual Studio 2012. Create a project of type WCF Service Library. Name it

WcfRestService.

2.	 Add a new class and name it Result.

3.	 Open the Result class and decorate the class with [DataContract].

WCF Recipes

158

4.	 Add a property of type bool to the class and name it IsUp. Decorate it with
[DataMember].

5.	 After the modifications, the Result class will be similar to the following code:
[DataContract]
 public class Result
 {
 [DataMember]
 public bool IsUp { get; set; }
 }

6.	 Rename IService to IPingService and Service to PingService.

7.	 Add a reference to Microsoft.SqlServer.ConnectionInfo.dll.

8.	 Open the IPingService class and remove the existing code.

9.	 Add a method that accepts string as a parameter and returns an instance of
Result to the IPingService class. Name it IsUp. Its signature will be as follows:
Result IsDbUp(string connectionString);

10.	 Decorate the method with the OperationContract and WebGet attributes,
as shown in the following code snippet:
[OperationContract]
[WebGet(UriTemplate="IsUp?server={connectionString}",
ResponseFormat=WebMessageFormat.Xml)]
Result IsDbUp(string connectionString);

11.	 After the modifications the IPingService class will look similar to the
following code:
[ServiceContract]
public interface IPingService
{
 [OperationContract]
 [WebGet(UriTemplate="IsUp?server={connectionString}",
ResponseFormat=WebMessageFormat.Xml)]
 Result IsDbUp(string connectionString);
}

12.	 Next, open the PingService class that implements IPingService and remove
the existing code from the class.

13.	 Implement the IsDbUp method from IPingService.

14.	 Add the following code to the IsDbUp method:
Result isUp = new Result();
isUp.IsUp = true;
try
{

Chapter 6

159

 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();
 connection.Close();
}
catch (Exception)
{
 isUp.IsUp = false;
}
 return isUp;

15.	 Open App.config and modify the <services> section so that it looks similar to
the following code:
<service name="WcfRestService.PingService">
 <endpoint address="" binding="webHttpBinding"
contract="WcfRestService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="webHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_
Addresses/WcfRestService/Service1/" />
 </baseAddresses>
 </host>
</service>

16.	 Next, add the following code before the <serviceBehaviors> section:
<behaviors>
 <endpointBehaviors>
 <behavior>
 <webHttp/>
 </behavior>
 </endpointBehaviors>

17.	 Run the application.

18.	 Open the browser and enter the URL http://localhost:8733/Design_Time_
Addresses/WcfRestService/Service1/IsUp?server=server.

19.	 The URL may be different. You can find the exact URL in App.config.

WCF Recipes

160

20.	 You will see a message similar to the one shown in the following screenshot:

21.	 Next, provide a valid connection string. You will see a message similar to the one
shown in the following screenshot:

Chapter 6

161

How it works...
The core of the REST implementation lies in IPingService and App.config. First, let us
look at IPingService, specifically the IsDbUp method. We decorated the IsDbUp method
with not only [ServiceContract] but also with [WebGet]:

[OperationContract]
[WebGet(UriTemplate="IsUp?server={connectionString}",
ResponseFormat=WebMessageFormat.Xml)]
Result IsDbUp(string connectionString);

In the preceding code, we pass the template for the REST call using UriTemplate. The
second parameter of the attribute is the expected format of the result. The parameter is
ResponseFormat. The ResponseFormat can either be XML or JSON. We set the value
of the ResponseFormat to XML.

Just decorating a method with [WebGet] would not make a service RESTful. You need
to make changes to App.config. The first change we made was changing the binding
property of <endpoint> to webHttpBinding:

<service name="WcfRestService.PingService">
 <endpoint address="" binding="webHttpBinding"
contract="WcfRestService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="webHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_Addresses/
WcfRestService/Service1/" />
 </baseAddresses>
 </host>
</service>

This tells .NET framework that the service is not going to use SOAP. Next, we added behavior
to tell the framework that HTTP methods should be treated as CRUD requests for the service.

<behaviors>
 <endpointBehaviors>
 <behavior>
 <webHttp/>
 </behavior>
 </endpointBehaviors>

WCF Recipes

162

Apart from the details discussed here, there is no difference between the RESTful services
and normal services. Hence, the IsDbUp method given in this recipe is not different from
the IsDbUp method we implemented in the previous recipe.

There's more...
You can use WebPut and WebPost for updating and adding content using WCF REST services.

Handling exceptions using FaultContract
and FaultException

Exceptions in applications are common. How they are handled differentiates the good
applications from the bad ones. In case of services, the exceptions should be communicated
to the clients so that clients can take the appropriate action. For WCF services, handling the
exceptions become more important as compared to the other applications. The reason is
that once an exception occurs, the underlying channel goes into the faulted state, and hence
the server and client will not be able to communicate with each other. In WCF, this can be
achieved using FaultContract and FaultException.

In this recipe, we will enhance the ping server by adding a check for the null string passed as
the value of argument. If it is null, a FaultException exception will be thrown and the client
can catch it and display the error.

How to do it...
1.	 Launch Visual Studio 2012 and open WcfDbPingService.sln.

2.	 Add a new class to the WcfDbPingService project. Name it PingException.

3.	 Decorate it with [DataContract].

4.	 Add properties as detailed in the following table and decorate them with
[DataMember]:

Name Data type
Title String

Message String

InnerException String

StackTrace String

Chapter 6

163

5.	 Once done, PingException will be similar to the following code:
[DataContract]
class PingException
{
 [DataMember]
 public string Title;
 [DataMember]
 public string Message;
 [DataMember]
 public string InnerException;
 [DataMember]
 public string StackTrace;
}

6.	 In the IPingService, decorate IsDbUp with [FaultContract] as shown in the
following highlighted code:
[ServiceContract]
public interface IPingService
{
 [OperationContract]

 [FaultContract(typeof(PingException))]
 bool IsDbUp(string connectionString);
}

7.	 Next, open PingService and add the following code to the IsDbUp method of
PingService before the try statement:
if (string.IsNullOrEmpty(connectionString))
{
 PingException ex = new PingException();
 ex.Title = "Error Function:IdDbUp()";
 ex.Message = "Argument is null.";
 ex.InnerException = " ";
 ex.StackTrace = " ";
 throw new FaultException<PingException>(ex,"Reason: Argument is
null");
}

8.	 Update the service reference of PingDbTestApp.

WCF Recipes

164

9.	 Open PingDbTestForm and modify the Click event handler of the Ping button as
shown in the following code:
private void btnPing_Click(object sender, EventArgs e)
{
 try
 {
 PingServiceReference.PingServiceClient client = new
PingServiceReference.PingServiceClient();
 bool result = client.IsDbUp(txtConnString.Text);
 lblResult.Text = "Database with connection string " +
txtConnString.Text + " is up? " + result;
 }
 catch (FaultException<PingServiceReference.PingException> ex)
 {
 MessageBox.Show(ex.Detail.Message);
 }
}

10.	 Run PingDbTestApp by navigating to Debug | Run in new instance.

11.	 Click on the Ping button without entering the connection string in the textbox.

12.	 You will see a message similar to the one shown in the following screenshot:

How it works...
The first step in using FaultContract is defining PingException as a data contract,
as shown in the following code:

[DataContract]
class PingException
{
 [DataMember]
 public string Title;
 [DataMember]
 public string Message;

Chapter 6

165

 [DataMember]
 public string InnerException;
 [DataMember]
 public string StackTrace;

}

We did this so that not only can the client discover the kind of exception to be thrown, but
the server can also pass on the details of the exception to the client. Next, we used the
PingExecption as an argument to FaultContract in IPingService, as highlighted
in the following code:

[ServiceContract]
public interface IPingService
{
 [OperationContract]
 [FaultContract(typeof(PingException))]
 bool IsDbUp(string connectionString);
}

To tell [FaultContract] to use our class to transfer the exception details to the client,
we need to pass the type information of our class. We did that in the previous code by using
the typeof statement. Next, in PingService, we checked whether the argument is null
or empty. If it is empty, then create an instance of PingException, populate it with the
required values, and throw a new FaultException using an instance of PingException.

if (string.IsNullOrEmpty(connectionString))
{
 PingException ex = new PingException();
 ex.Title = "Error Function:IdDbUp()";
 ex.Message = "Argument is null.";
 ex.InnerException = " ";
 ex.StackTrace = " ";
 throw new FaultException<PingException>(ex,"Reason: Argument is
null");
}

Remember to throw FaultException. Otherwise, the exception may not be received by the
client. At the client side, we caught FaultException and displayed the details to the user:

private void btnPing_Click(object sender, EventArgs e)
{
 try
 {
 PingServiceReference.PingServiceClient client = new
PingServiceReference.PingServiceClient();
 bool result = client.IsDbUp(txtConnString.Text);

WCF Recipes

166

 lblResult.Text = "Database with connection string " + txtConnString.
Text + " is up? " + result;
 }	
 catch (FaultException<PingServiceReference.PingException> ex)
 {
 MessageBox.Show(ex.Detail.Message);
 }
}

One point to remember is to catch FaultException and not the type of exception detail. In
the previous code we have caught the FaultException exception of type PingException
and not PingException itself.

Uploading files using Stream
File upload has become a common and desired functionality for any web application/
service as well as the libraries on which they are built. WCF is no exception. Until Version
4.0, WCF provided only the buffered mode for uploading the file. From Version 4.0 onwards,
WCF started to provide the streaming mode. In the buffered mode, the entire file needs to
be uploaded to the server before the WCF service can access it. In the streaming mode, the
service can access the file before it is completely uploaded. The streamed mode is very useful
when you need the service to process files of large sizes that cannot be buffered.

In this recipe, we will see how to implement and configure a service that can be used to
upload files using the streaming mode.

How to do it...
1.	 Launch Visual Studio 2012. Create a project of type WCF Service Library. Name it

WcfFileUploadService.

2.	 Add a new class and name it UploadDetails.

3.	 Open the Result class. Decorate the class with [MessageContract].

4.	 Make it public.

5.	 Add the properties shown in the following table:

Name Data type
FileName String

Data Stream

6.	 Decorate FileName with [MessageHeader].

7.	 Decorate the data with [MessageBodyMember].

Chapter 6

167

8.	 After the modifications, the UploadDetails class will be similar to the
following code:
[MessageContract]
public class UploadDetails
{
 [MessageHeader]
 public string FileName { get; set; }
 [MessageBodyMember]
 public Stream Data { get; set; }
}

9.	 Rename IService to IUploadService and Service to UploadService.

10.	 Open the IUploadService class and remove the existing code.

11.	 Add a method that accepts UploadDetails as the parameter and returns void,
to the IPingService class. Name it Upload. Its signature will be:
void Upload(UploadDetails details);

12.	 Decorate it with [OperationContract]. The interface will be similar to:
[ServiceContract]
public interface IUploadService
{
 [OperationContract]
 void Upload(UploadDetails details);
}

13.	 Next, open the UploadService class that implements IUploadService.
Remove the existing code from the class.

14.	 Implement the Upload method of IUploadService.

15.	 Add the following code to the Upload method:
using (FileStream fs = new FileStream(@"C:\Downloads\"+details.
FileName, FileMode.Create))
{
 int bufferSize = 1 * 1024 * 1024;
 byte[] buffer = new byte[bufferSize];
 int bytes;

 while ((bytes = details.Data.Read(buffer, 0, bufferSize)) > 0)
 {
 fs.Write(buffer, 0, bytes);
 fs.Flush();
 }

}

WCF Recipes

168

16.	 In the previous code replace C:\Downloads with the path where you have read/
write permissions as the code attempts to create the image file in the previously
mentioned path.

17.	 Now, open App.config. Add the following binding just before the <services>
section:
<bindings>
 <basicHttpBinding>
 <binding
 name="UploadServiceBinding"
 messageEncoding="Text"
 transferMode="Streamed"
 maxBufferSize="65536"
 maxReceivedMessageSize="5242880">
 </binding>
 </basicHttpBinding>
</bindings>

18.	 Update the <service> section so that it looks similar to the following code:
<service name="WcfFileUploadService.UploadService">
 <endpoint address="" binding="basicHttpBinding"
bindingConfiguration="UploadServiceBinding"
contract="WcfFileUploadService.IUploadService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_
Addresses/WcfFileUploadService/Service1/" />
 </baseAddresses>
 </host>
</service>

19.	 Add a new project of type Windows Forms Application and name it
UploadServiceTestApp.

20.	 Rename Form1.cs to UploadTestForm.cs.

21.	 Switch to the Design mode. Design the form so that it looks similar to the
following screenshot:

Chapter 6

169

22.	 Name the controls as shown in the following table:

Control Name Description
Textbox txtFile To display path of selected file
Button btnBrowse To call the upload service

23.	 Add a reference to UploadService and name it UploadServiceReference.

24.	 Double-click on btnBrowse to add a Click event handler.

25.	 In the event handler add the following lines of code:
OpenFileDialog diagOpen = new OpenFileDialog();
if (diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 try
 {
 txtFile.Text = diagOpen.FileName;
 UploadServiceReference.UploadServiceClient client = new
UploadServiceReference.UploadServiceClient();
 client.Upload(Path.GetFileName(txtFile.Text), File.
Open(txtFile.Text,
 FileMode.Open));
 MessageBox.Show("Upload successful");
 }
 catch (Exception)
 {
 MessageBox.Show("Upload failed");
 }
 }

WCF Recipes

170

26.	 Run the application by navigating to Debug | Run in new instance. You will see the
following screen:

27.	 Click on the Browse and Upload button and select a file to upload.

28.	 If the upload is successful, you will see the following message on the screen:

29.	 If unsuccessful, the following message will be displayed:

Chapter 6

171

How it works...
To use the streaming mode for uploads, the service should have a method that accepts a
parameter of type Stream. One point to keep in mind is that the method having Stream
as parameter should neither have any other parameter nor have a return type. Otherwise
the service will not run. This is the reason why we configured the UploadDetails class
as MessageContract:

[MessageContract]
public class UploadDetails
{
 [MessageHeader]
 public string FileName { get; set; }
 [MessageBodyMember]
 public Stream Data { get; set; }
}

In the preceding code, we have decorated FileName with [MessageHeader] and
not with [MessageBodyMember]. The reason is that Data is a type of Stream. If
MessageContract contains MessageBodyMember of type Stream, other properties should
be a part of MessageHeader. In other words, there can be only one MessageBodyMember if
the property is of type Stream. All other properties must be a part of MessageHeader.

In the Upload method of UploadService, we opened a new FileStream to write the file
to a folder. Then, we used it to write down the data contained in the instance of the Stream
class of UploadDetails:

using (FileStream fs = new FileStream(@"C:\Downloads"+details.
FileName, FileMode.Create))
{
 int bufferSize = 1 * 1024 * 1024;
 byte[] buffer = new byte[bufferSize];
 int bytes;

 while ((bytes = details.Data.Read(buffer, 0, bufferSize)) > 0)
 {
 fs.Write(buffer, 0, bytes);
 fs.Flush();
 }

}

WCF Recipes

172

To tell the .NET runtime that we intend to use the streaming mode, we added a new binding
named UploadServiceBinding. In the binding, we set messageEncoding to Text and
transferMode to Streamed. Then we set the maximum buffer size and the upper limit
of the message size. The size of the message determines the maximum size that can
be uploaded:

<bindings>
 <basicHttpBinding>
 <binding
 name="UploadServiceBinding"
 messageEncoding="Text"
 transferMode="Streamed"
 maxBufferSize="65536"
 maxReceivedMessageSize="5242880">

 </binding>
 </basicHttpBinding>
</bindings>

Since we want to use HTTP itself for transfer, we use <basicHttpBinding> instead
of custom binding. In the <service> section, we set bindingConfiguration to
UploadServiceBinding, as highlighted in the following code:

<service name="WcfFileUploadService.UploadService">
 <endpoint address="" binding="basicHttpBinding"
bindingConfiguration="UploadServiceBinding"
contract="WcfFileUploadService.IUploadService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_Addresses/
WcfFileUploadService/Service1/" />
 </baseAddresses>
 </host>
</service>

In UploadTestForm, we called the Upload method of the service with the name of the file
selected and its content as an instance of FileStream:

txtFile.Text = diagOpen.FileName;
UploadServiceReference.UploadServiceClient client = new
UploadServiceReference.UploadServiceClient();
client.Upload(Path.GetFileName(txtFile.Text), File.Open(txtFile.Text,
FileMode.Open));

Chapter 6

173

In interface and implementation we have passed MessageContract as a parameter to
the Upload method. However, while calling the same method, we passed the filename and
the instance of the Stream class as arguments to UploadMethod. The marshalling of the
arguments to MessageContract is done by .NET at runtime, transparently at the server side.

You should not use the transfer mode as Streamed and encoding as MOTM
simultaneously in the binding. Using both of them simultaneously will create
problems during the upload of files. The reason for the problems and ways to
handle them are out of the scope of this book.

Securing a service using role-based security
Security is the primary concern for any application or service. The WCF services are no
exception. There are many ways to secure a service. One of them is based on the "who can
access what" principle. In other words, only those users who have certain privileges can
access certain services or service methods. The privileges are defined via roles. Windows has
certain built-in roles, such as Administrators, Users, Guest, and so on. We can configure the
access to the service methods based on these roles so that any user who does not have that
specific role will not be able to execute the method.

In this recipe, we will configure PingService so that only those users who have the
Administrator's role will be able to call it. For others, it will give an "Access Denied" exception.

How to do it...
1.	 Launch Visual Studio 2012 and open WcfDbPingService.sln.

2.	 Open the PingService class.

3.	 Decorate the IsDbUp method with [PrincipalPermission] as shown in the
following code:
[PrincipalPermission(SecurityAction.Demand,Role="Administrators")]

public bool IsDbUp(string connectionString)
{
 bool isUp = true;
 if (string.IsNullOrEmpty(connectionString))
 {
 PingException ex = new PingException();
 ex.Title = "Error Function:IdDbUp()";
 ex.Message = "Argument is null.";
 ex.InnerException = " ";
 ex.StackTrace = " ";

WCF Recipes

174

 throw new FaultException<PingException>(ex,"Reason: Argument is
null");
 }
 try
 {
 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();
 connection.Close();
 }
 catch (SqlException)
 {
 isUp = false;
 }
 return isUp;
}

4.	 Next, open App.config and replace the <customBinding> section with
 the following:
<wsHttpBinding >
 <binding name="Secured_IPingService">
 <security mode="Message">
 <message clientCredentialType="Windows"/>
 </security>
 </binding>
</wsHttpBinding>

5.	 Modify the <service> section as follows:
<service name="WcfDbPingService.PingService">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="Secured_IPingService"
 contract="WcfDbPingService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />
 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_
Addresses/WcfDbPingService/Service1/" />
 </baseAddresses>
 </host>
</service>

Chapter 6

175

6.	 Update the service reference of PingDbTestApp. If you get any error while updating,
remove the existing reference and add again.

7.	 Open PingDbTestForm. In the btnPing_Cick method, add a catch clause for
AccessDeniedException to display the access denied error. After modification,
the method will be similar to the following code:
private void btnPing_Click(object sender, EventArgs e)
{
 try
 {
 PingServiceReference.PingServiceClient client = new
PingServiceReference.PingServiceClient();
 bool result = client.IsDbUp(txtConnString.Text);
 lblResult.Text = "Database with connection string " +
txtConnString.Text + " is up? " + result;
 }
 catch (FaultException<PingServiceReference.PingException> ex)
 {
 MessageBox.Show(ex.Detail.Message);
 }
 catch (System.ServiceModel.Security.
SecurityAccessDeniedException ex)

 {
 MessageBox.Show(ex.Message);
 }
}

8.	 Run PingDbTestApp. Click on the Ping button. You will see the following access
denied message:

9.	 Close PingDbTestApp. Right-click on WcfDbPingService. Navigate to Debug |
Run in a new instance.

10.	 Navigate to the bin\debug folder of PingDbTestApp. Run PingDbTestApp.exe
as the Administrator.

WCF Recipes

176

11.	 Click on the Ping button after entering a valid connection string. You will see the
following screen:

How it works…
To make the IsDbUp service method accessible to a user with a specific role, we performed
two actions. First, we decorated the IsDbUp with [PrincipalPermission].Then we
passed Demand as SecurityAction and Administrators as Role similar to the
following code:

[PrincipalPermission(SecurityAction.Demand,Role="Administrators")]
public bool IsDbUp(string connectionString)
{
 bool isUp = true;
 if (string.IsNullOrEmpty(connectionString))
 {
 PingException ex = new PingException();
 ex.Title = "Error Function:IdDbUp()";
 ex.Message = "Argument is null.";
 ex.InnerException = " ";
 ex.StackTrace = " ";
 throw new FaultException<PingException>(ex,"Reason: Argument is
null");
 }
 try
 {
 SqlConnection connection = new SqlConnection(connectionString);
 connection.Open();

Chapter 6

177

 connection.Close();
 }
 catch (SqlException)
 {
 isUp = false;
 }
 return isUp;
}

Second, in App.config, we replaced customBinding with wsHttpBinding. Then we
added a <security> section to it and set its mode to Message. By doing this we ensured
that the message itself is secured. If we had used Transport as mode, the security while
delivering the message would be ensured. However, the security of the message‑—including
the headers and the body of the message‑—is not ensured:

<wsHttpBinding >
 <binding name="Secured_IPingService">
 <security mode="Message">
 <message clientCredentialType="Windows"/>
 </security>
 </binding>
</wsHttpBinding>

Next, we added a <message> section and set its clientCredentialType to Windows.
This tells the runtime to look for the role as a part of the Windows credentials being sent:

<wsHttpBinding >
 <binding name="Secured_IPingService">
 <security mode="Message">
 <message clientCredentialType="Windows"/>
 </security>
 </binding>
</wsHttpBinding>

Then we changed the bindingConfiguration and binding attributes of the <endpoint>
section, which is within the <service> section, to the binding we created:

<service name="WcfDbPingService.PingService">
 <endpoint address="" binding="wsHttpBinding"
 bindingConfiguration="Secured_IPingService"
 contract="WcfDbPingService.IPingService">
 <identity>
 <dns value="localhost" />
 </identity>
 </endpoint>
 <endpoint address="mex" binding="mexHttpBinding"
 contract="IMetadataExchange" />

WCF Recipes

178

 <host>
 <baseAddresses>
 <add baseAddress="http://localhost:8733/Design_Time_
Addresses/WcfDbPingService/Service1/" />
 </baseAddresses>
 host>
</service>

At the client side, we included a catch clause for AccessDeniedException:

private void btnPing_Click(object sender, EventArgs e)
{
 try
 {
 PingServiceReference.PingServiceClient client = new
 PingServiceReference.PingServiceClient();
 bool result = client.IsDbUp(txtConnString.Text);
 lblResult.Text = "Database with connection string " +
 txtConnString.Text + " is up? " + result;
 }
 catch (FaultException<PingServiceReference.PingException> ex)
 {
 MessageBox.Show(ex.Detail.Message);
 }
 catch (System.ServiceModel.Security.SecurityAccessDeniedException
ex)
 {
 MessageBox.Show(ex.Message);
 }
}

7
WPF Recipes

In this chapter we will cover:

ff Implementing the Model and Repository pattern

ff Implementing View Model

ff Implementing View commands and binding data to View

ff Using the live data shaper for live sorting

ff Playing videos using MediaElement

ff Using Ribbon control to display the video player controls

Introduction
Windows Presentation Framework (WPF) needs no introduction. It provides a unified
programming model to develop Windows clients that incorporate User Interface, media, and
documents so that developers can use them without depending upon third-party libraries.
The focus of this chapter will be on the patterns used with WPF along with new controls
introduced in Version 4.5. We will start off with the Model-View-View Model (MVVM) pattern.
The first recipe will cover Model implementation. In the second recipe we will see how to
implement View Model. The third recipe will be about View and commands. Then we will focus
on the live data shaper in the fourth recipe. The next recipe will deal with playing videos using
WPF. The last recipe will be about the Ribbon control that has become part of WPF in .NET
4.5. Live data shaper and Ribbon controls are new to .NET 4.5.

Please keep in mind that we are going to use the database developed in Chapter 5,
ADO.NET Recipes.

WPF Recipes

180

Implementing the Model and Repository
patterns

The MVVM pattern provides a way to separate the UI logic from business and presentation
logic. It does so by dividing the application into three components – Model, View, and
View-Model. Model represents the data. View is the visual representation of the data and
View-Model contains the presentation logic for the Model to be used by the View. We shall
look at each of these components in detail, starting with the Model in this recipe.

Model is a class that represents the data. A Model cannot exist on its own. The data it
represents must be pulled from a data source and mapped to the Model. That is where the
Repository pattern comes into the picture. In this recipe we will implement both the Model
and Repository patterns.

The Model will hold the data related to the user, which includes ID, name, and so on; and
Repository will connect to a SQL Server and retrieve the data.

How to do it...
1.	 Launch SQL Server Management Studio 2012.

2.	 Add a new table to the CookBook database and name it tb_User.

3.	 Add the following columns to the tb_User table:

Name Data type Is Identity Column
ID int Yes
User_name nvarchar No
Email_id nvarchar No
First_name nchar No
Last_name nchar No

4.	 Next, add a stored procedure that will get user data from tb_User and name it
GetUsers. The procedure will be as follows:
USE [CookBook]
GO

/****** Object: StoredProcedure [dbo].[GetUsers] Script Date:
02-08-2012 20:32:59 ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

Chapter 7

181

CREATE PROCEDURE [dbo].[GetUsers]
 AS
BEGIN
 -- SET NOCOUNT ON added to prevent extra result sets from
 -- interfering with SELECT statements.
 SET NOCOUNT ON;

 SELECT [Id]
 ,[User_name]
 ,[Email_id]
 ,[First_name]
 ,[Last_name]
 FROM [dbo].[tb_User]

END

GO

5.	 Press F5 to execute the procedure.

6.	 Launch Visual Studio 2012. Create a project of type WPF Application and name
it WpfMVVM.

7.	 Add another project of type Class Library and name it Model.

8.	 Add a reference to Microsoft.SqlServer.ConnectionInfo.dll and save
the solution.

9.	 Delete Class1.cs of the Model project.

10.	 Add a new class. Name it User and make it public.

11.	 Add the following properties to the User class:

Name Data type
ID int

UserName String

Email String

FirstName String

LastName String

12.	 After adding the properties, the User class will be as follows:
public class User
{
 public int ID { get; set; }
 public string UserName { get; set; }
 public string Email { get; set; }

WPF Recipes

182

 public string FirstName { get; set; }
 public string LastName { get; set; }
}

13.	 Add an interface to the Model project and name it IDataRepository.

14.	 Add a method to IDataRepository that returns a collection of User instances
and name it GetUsers.

15.	 After the addition of the method, the interface will be similar to the following code:
public interface IDataRepository
{
 ObservableCollection<User> GetUsers();
}

16.	 Add a new class and name it SqlDataRepository.

17.	 Modify the SqlDataRepository class so that it implements IDataRepository.

18.	 Add the following code to the GetUsers method:
public ObservableCollection<User> GetUsers()
{
 ObservableCollection<User> users = null;
 using (SqlConnection connection = new
 SqlConnection(ConfigurationManager.ConnectionStrings["local"].
ConnectionString))
 {
 connection.Open();
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = "GetUsers";
 using (IDataReader reader = command.ExecuteReader())
 {
 users = MapUsers(reader);
 }
 }
 return users;
}

19.	 Next, add a private method that accepts IDataReader as a parameter and returns
the collection of the User instances. Name it MapUsers. Its signature will be:
private ObservableCollection<User> MapUsers(IDataReader reader)
{
}

Chapter 7

183

20.	 Add the following code to the MapUsers method:
ObservableCollection<User> users = new
ObservableCollection<User>();
if (reader != null)
{
 while (reader.Read())
 {
 User user = new User();
 user.ID = Convert.ToInt32(reader["Id"]);
 user.UserName = reader["User_name"].ToString();
 user.Email = reader["Email_id"].ToString();
 user.FirstName = reader["First_name"].ToString();
 user.LastName = reader["Last_name"].ToString();
 users.Add(user);
 }
}
return users;

21.	 Next, add a new project of test project type and name it ModelViewModelTests.

22.	 Add a reference to the Model project.

23.	 Rename the existing test class to DataRepositoryTest.

24.	 Rename the Test1 method to TestGetUsers.

25.	 Add the following code to the TestGetUsers method:
IDataRepository repository = new SqlDataRepository();
ObservableCollection<User> users = repository.GetUsers();
Assert.IsNotNull(users);
Assert.IsTrue(users.Count > 0);

26.	 Add an App.config file to ModelViewModelTests.

27.	 Add connection string details as shown in the following code:
<connectionStrings>
 <add name="local" connectionString="Data Source=APRAJSHEKHAR-
HP;Initial Catalog=CookBook;Integrated Security=True"/>
</connectionStrings>

WPF Recipes

184

28.	 Run the test. If it runs successfully, you will see a test report as shown in the
following screenshot:

29.	 If the test fails, you will see the following report:

Chapter 7

185

How it works...
In the last section, we accomplished three things – we created a model class (User) that
reflects the table's columns, implemented the logic (MapUsers method) to map class
instances to the rows of the table, and developed an adapter class (SqlDataRepository)
that provides the bridge between data retrieval and mapping. Let us look at them starting with
the User class.

We created a table named tb_User. The functionality of the User class is that other
components can make use of the data in tb_User without knowing the details of the table.
That is the reason why the properties of the User class have names similar to the columns of
the table, as shown in the following table:

Name of the property Name of the column
ID Id

Email Email_id

UserName User_name

FirstName First_name

LastName Last_name

Keep in mind that this is a convention and not a
hard-and-fast rule.

Next is SqlDataRepository, which acted as an adapter for data retrieval and mapping.
By definition, any class that acts in such a fashion implements the Repository pattern. The
Repository pattern, simply put, has an interface that defines the operations for a data source,
and a class that implements the interface for a specific type of database server where the
data source resides. In our case, the data source is the tb_User table and it is in MS SQL
Server 2012. In the IDataRepository interface we defined the GetUsers operation:

public interface IDataRepository
{
 ObservableCollection<User> GetUsers();
}

In SqlDataRepository, we implemented IDataRepository for MS SQL Server 2012 so
that we can retrieve the data from tb_User using the stored procedure:

public class SqlDataRepository:IDataRepository
{
 public ObservableCollection<User> GetUsers()
 {

WPF Recipes

186

 ObservableCollection<User> users = null;
 using (SqlConnection connection = new SqlConnection(ConfigurationM
anager.ConnectionStrings["local"].ConnectionString))
 {
 connection.Open();
 SqlCommand command = new SqlCommand();
 command.Connection = connection;
 command.CommandType = CommandType.StoredProcedure;
 command.CommandText = "GetUsers";
 using (IDataReader reader = command.ExecuteReader())
 {
 users = MapUsers(reader);
 }
 }
 return users;
 }
}

In the preceding code we have made a call to the MapUsers method. This is the method that
maps the row retrieved from the table to the instance of the User class:

private ObservableCollection<User> MapUsers(IDataReader reader)
{
 ObservableCollection<User> users = new ObservableCollection<User>();
 if (reader != null)
 {
 while (reader.Read())
 {
 User user = new User();
 user.ID = Convert.ToInt32(reader["Id"]);
 user.UserName = reader["User_name"].ToString();
 user.Email = reader["Email_id"].ToString();
 user.FirstName = reader["First_name"].ToString();
 user.LastName = reader["Last_name"].ToString();
 users.Add(user);
 }
 }
 return users;
}

In the preceding code, we iterated through each row, retrieved the data from the columns,
and populated the instances of the User class with the retrieved data. Then we added the
instances to ObservableCollection. The reason for using ObservableCollection will
become clear in the next recipe.

Chapter 7

187

For our application, MapUsers is the Data Mapper. A Data Mapper is a pattern that defines
how rows are mapped to the instances of the Model. The mapping can be implemented in a
simple format as we did earlier, or it can be implemented by pushing the mapping details to
an external file. That is what ORM libraries, such as NHibernate do. For our recipe, the simple
implementation sufficed.

Implementing View Model
MVVM, View Model (VM) acts as a glue and controller between View and Model. It also
interacts with those libraries and services that help in CRUD (Create, Retrieve, Update,
and Delete) operations on the Model.

In this recipe we will implement a View Model for our Model class, User. The View Model will
also contain logic to pass data to and receive data from View. It will also interact with the data
repository we implemented in our previous recipe.

How to do it...
1.	 Launch Visual Studio 2012 and open WpfMVVM.sln.

2.	 Add a new folder to the WpfMVVM project. Name it View Model.

3.	 Add a new class to the View Model folder. Name it UserViewModel.

4.	 Add a reference to the Model project.

5.	 Add a private variable of type IDataRepository. Name it _repository:
private IDataRepository _repository;

6.	 Add another private variable of type collection of User. Name it _users:
private ObservableCollection<User> _users;

7.	 Next, add a no-argument/default constructor. Set _repository as the new instance
of SqlDataRepository inside the constructor:
public UserViewModel()
{
 _repository = new SqlDataRepository();
}

8.	 Add a private method that returns a collection of the User class and name it
GetUsers. Its signature will be:
private ObservableCollection<User> GetUsers()
{
}

WPF Recipes

188

9.	 Add the following code to the GetUsers method:
return _repository.GetUsers();

10.	 Next, modify UserViewModel so that it implements the
INotifyPropertyChanged interface:
public class UserViewModel:INotifyPropertyChanged
{
…
}

11.	 Add a public variable of the PropertyChangedEventHandler delegate of type
event. Name it PropertyChanged:
public event PropertyChangedEventHandler PropertyChanged;

12.	 Add a getter and setter (together known as mutator) for _users. Call GetUsers
from the getter:
public ObservableCollection<User> Users
{
 get
 {
 return GetUsers();
 }
 set
 {
 _users = value;
 }
}

13.	 Raise the PropertyChanged event from the setter for _users:

public ObservableCollection<User> Users
{
 get
 {
 return GetUsers();
 }
 set
 {
 _users = value;
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs("Users"));
 }
 }
}

Chapter 7

189

How it works...
View Model interacts with two layers. One of them is a data access or business logic layer. In our
recipe, the Model project acts as a data access layer. So, we instantiated SqlDataRepository
within the constructor and assigned it to the IDataRepository variable:

public UserViewModel()
{
 _repository = new SqlDataRepository();
}

Then we used the _repository to get a list of users from the SQL Server in the
GetUsers method:

private ObservableCollection<User> GetUsers()
{
 return _repository.GetUsers();
}

The other layer that View Model interacts with is View. To make View Model work seamlessly
with View, we need a way for View Model to tell View whenever there is a change in data.
Therefore, we implemented the INotifyPropertyChanged interface. It contains one
event – PropertyChangedEventHandler. We need to fire this event whenever data is set
using any of the setters in View Model. In UserViewModel, we did this in the setter for the
Users property:

public ObservableCollection<User> Users
{
 get
 {
 return GetUsers();
 }
 set
 {
 _users = value;
 if (PropertyChanged != null)
 {
 PropertyChanged(this, new PropertyChangedEventArgs("Users"));
 }
 }
}

If any of the controls in View are bound to this property, .NET will notify them when we raise
the PropertyChanged event. Thus, View Model acts as a glue between View and business
logic/data logic services.

WPF Recipes

190

Implementing View commands and binding
data to View

In MVVM, if View wants to communicate with View Model, it is through commands. Commands
are essentially classes that implement the ICommand interface. However, creating a separate
class for each command required by the View makes the code base unnecessarily large. In
this recipe we will develop a generic command class; the instances of which can be used by
different View controls, such as buttons, to invoke a specific logic within View Model.

We will also look at how to bind data present in View Model to a control in View. We will
accomplish this by binding user data in UserViewModel to the DataGrid control in
MainWindow.xaml, which is our View.

How to do it...
1.	 Launch Visual Studio 2012. Open WpfMVVM.sln.

2.	 Add a new folder to WpfMVVM project. Name it Commands.

3.	 Add a new class to the Commands folder. Name it DelegateCommand.

4.	 Modify DelegateCommand so that it implements the ICommand interface.
public class DelegateCommand:ICommand
{
 public bool CanExecute(object parameter)
 {
 throw new NotImplementedException();
 }

 public event EventHandler CanExecuteChanged;

 public void Execute(object parameter)
 {
 throw new NotImplementedException();
 }
}

5.	 Add a private variable of type Action. Name it _commandMethod:
private Action _commandMethod;

6.	 Add a parameterized constructor that accepts Action as a parameter. Assign the
parameter to _commandMethod:
public DelegateCommand(Action commandMethod)
{
 _commandMethod = commandMethod;
}

Chapter 7

191

7.	 Replace the statements in the CanExecute method with the following code:
return true;

8.	 Replace the statements in ExecuteMethod with the following statement:
_commandMethod.Invoke();

9.	 Open the UserViewModel class. Add the properties shown in the following table:

Name Type Description
Load DelegateCommand To load user data into the

DataGrid

Clear DelegateCommand To clear the DataGrid

10.	 The properties would be similar to the following:
public DelegateCommand Load { get; set; }
public DelegateCommand Clear { get; set; }

11.	 Add a private method that returns void. Name it LoadUsers. Call GetUsers
within it:
private void LoadUsers()
{
 Users = GetUsers();
}

12.	 Add another private method that returns void. Name it ClearUsers. Clear the list
of users and assign the empty list to the Users property within it:
private void ClearUsers()
{
 _users.Clear();
 Users = _users;
}

13.	 Add the following statements to the constructor:
Load = new DelegateCommand(LoadUsers);
Clear = new DelegateCommand(ClearUsers);

WPF Recipes

192

14.	 Open MainWindow.xaml. Design it so that it looks similar to the
following screenshot:

15.	 Modify the DataGrid tag so that it binds to the Users property:
<DataGrid Margin="0,10,10,0" VerticalAlignment="Top" Grid.
ColumnSpan="2" Height="250" ItemsSource="{Binding Path=Users}"/>

16.	 Modify the Load and Clear buttons' tags so that they bind to the Load and Clear
commands, respectively:
<Button Content="Load Users" HorizontalAlignment="Left"
 Command="{Binding Path=Load}" Margin="11,11,0,0" Grid.
Row="1"
 VerticalAlignment="Top" Width="75"/>

<Button Content="Clear Grid" Command="{Binding Path=Clear}"
 HorizontalAlignment="Left" Margin="43,11,0,0" Grid.Row="1"
 VerticalAlignment="Top" Width="75" Grid.Column="1"/>

17.	 Open MainWindow.xaml.cs and add the following to the constructor after the call
to InitializeComponents:
DataContext = new UserViewModel();

18.	 Open App.config. Add the connection strings section so that it is similar to
the following:
<connectionStrings>
 <add name="local" connectionString="Data Source=APRAJSHEKHAR-
HP;Initial Catalog=CookBook;Integrated Security=True"/>
</connectionStrings>

Chapter 7

193

19.	 Run the application. You will see the following screenshot:

20.	 Click on the Load Users button. You will see the following screenshot:

WPF Recipes

194

21.	 Click on the Clear Grid button. The screen will be similar to the following screenshot:

How it works...
The DelegateCommand command and binding that happens in MainWindow.xaml are
the centerpieces of this recipe. Let us start with DelegateCommand. The main part of
DelegateCommand is the _commandMethod variable. It is of type Action. We have used
it to hold the method to be executed. The method to be executed is set via the constructor:

public DelegateCommand(Action commandMethod)
{
 _commandMethod = commandMethod;
}

So when we created an instance of DelegateCommand in the constructor of
UserViewModel, we had passed the name of the method as an argument:

Load = new DelegateCommand(LoadUsers);

Once the previous code is executed, the _commandMethod variable in DelegateCommand
would hold a reference to the LoadUsers method in UserViewModel.

The other two methods in DelegateCommand, CanExecute and Execute, are from the
ICommand interface. CanExecute tells the runtime whether the command can be executed or
not. A command, in our case, is the reference to the method held by _commandMethod. We are
simply returning true, which runtime translates as "execute the command". Now the Execute
method comes into the picture. When the runtime calls Execute, the method referred to by
_commandMethod gets executed. This happens because of the following statement:

_commandMethod.Invoke();

Chapter 7

195

For example, if _commandMethod contained a reference to LoadUsers then the previous
statement would call the LoadUsers method and execute it.

In UserViewModel, we have two properties defined as follows:

public DelegateCommand Load { get; set; }
public DelegateCommand Clear { get; set; }

We instantiate them as shown in the following code:

public UserViewModel()
{
 _repository = new SqlDataRepository();
 Load = new DelegateCommand(LoadUsers);
 Clear = new DelegateCommand(ClearUsers);
}

So, when Load is executed the LoadUsers method will be invoked, and when Clear is
executed ClearUsers will be invoked. Now, in the constructor of MainWindow, we set its
DataContext to an instance of UserViewModel:

DataContext = new UserViewModel();

By doing so, we are telling the runtime where to look for the binding properties and
commands. In MainWindow.xaml, which is our View, we bound ItemSource of
DataGrid to the Users property of UserViewModel:

<DataGrid Margin="0,10,10,0" VerticalAlignment="Top" Grid.
ColumnSpan="2" Height="250"
 ItemsSource="{Binding Path=Users}"/>

In the preceding code, {Binding Path=Users} tells the runtime to look for the property
named Users in UserViewModel. Similarly, we bound the Command attribute of Button
to the Load and Clear properties:

<Button Content="Load Users" HorizontalAlignment="Left"

Command="{Binding Path=Load}"
 Margin="11,11,0,0" Grid.Row="1"
VerticalAlignment="Top" Width="75"/>
 <Button Content="Clear Grid"
 Command="{Binding Path=Clear}"
 HorizontalAlignment="Left" Margin="43,11,0,0" Grid.
Row="1" VerticalAlignment="Top" Width="75" Grid.Column="1"/>

As a result of binding the Command attribute to the properties of type DelegateCommand,
we are ensuring that the LoadUsers and Clear methods of UserViewModel get executed
when the Load and Clear buttons are clicked.

WPF Recipes

196

Using the live data shaper for live sorting
Data shaping means processing the data by sorting, grouping, or filtering the data being
displayed. Live data shaping takes this one step forward and does the processing on live data.
In the case of live data, the new data is being added continuously or the existing data is being
changed continuously. Before Version 4.5 of .NET, shaping of live data meant adding custom
logic so that sorting and grouping do not go wrong. .NET 4.5 provides a new collection type,
which negates the requirement of custom logic for shaping live data.

In this recipe, we will use the new collection type to enable sorting of asset data based on the
values that change continuously.

How to do it...
1.	 Launch Visual Studio 2012. Add a new project of type WPF Application and name it

LiveDataShaping.

2.	 Add a new folder. Name it Entities.

3.	 Add a new class to the Entities folder. Name it Asset.

4.	 Add the following properties to the class:

Name Data type
ID int
Name String

Region String

Value String

5.	 Modify the class so that it implements the INotifyPropertyChanged interface.
public class Asset : INotifyPropertyChanged
{
}

6.	 Set the PropertyChanged event to empty delegate:
public event PropertyChangedEventHandler PropertyChanged =
delegate { };

7.	 Modify the value property so that it does not use the automatic property feature and
raises the PropertyChanged event in its setter:
private double _currentValue;
public double Value
{
 get
 {

Chapter 7

197

 return _currentValue;
 }
 set
 {
 _currentValue = value;
 PropertyChanged(this, new PropertyChangedEventArgs("Value"));
 }
}

8.	 Open MainWindow.xaml.cs. Add a private variable of type collection Asset.
Name it _items:
private ObservableCollection<Asset> _items = new
ObservableCollection<Asset>();

9.	 Next, add a private variable of type DispatcherTimer. Name it _timer:
private DispatcherTimer _timer = new DispatcherTimer();

10.	 Add a private method that returns the collection of Asset. Name it
GenerateTestData. Its signature will be as follows:
private ObservableCollection<Asset> GenerateTestData()
{
}

11.	 Add the following code to the GenerateTestData method:
ObservableCollection<Asset> temp = new
ObservableCollection<Asset>();
temp.Add(new Asset() { ID = 1, Name = "ASD", Region = "Mumbai",
Value = 1000 });
temp.Add(new Asset() { ID = 2, Name = "AS Hotel", Region =
"Chennai", Value = 11000 });
temp.Add(new Asset() { ID = 3, Name = "AD Cafe", Region =
"Kolkatta", Value = 10000 });
temp.Add(new Asset() { ID = 4, Name = "Landmark", Region =
"Mumbai", Value = 50000 });
temp.Add(new Asset() { ID = 5, Name = "ASD II", Region =
"Kolkatta", Value = 400 });
return temp;

12.	 In the constructor, add the following code after the call to InitializeComponent:
items = GenerateTestData();
ICollectionViewLiveShaping view = (ICollectionViewLiveShaping)
CollectionViewSource.GetDefaultView(_items);

view.IsLiveSorting = true;
view.LiveSortingProperties.Add("Value");

WPF Recipes

198

dgAsset.ItemsSource = (IEnumerable)view;

Random random = new Random();
_timer.Interval = TimeSpan.FromSeconds(1);
_timer.Tick += (s, e) =>
{
 foreach (var item in _items)
 item.Value += random.NextDouble() * 1000 - 500;
};
_timer.Start();

13.	 Open MainWindow.xaml. Add DataGrid. Name it dgAsset:
<DataGrid x:Name="dgAsset" IsReadOnly="True" />

14.	 Run the application. You will see the following screenshot:

15.	 Click on the Value column so that it is sorted in descending order. You will see the
following screenshot:

Chapter 7

199

How it works...
The load of shaping live data is taken by the ICollectionViewLiveShaping interface.
.NET provides us a default implementation for ICollectionViewLiveShaping
via CollectionViewSource. By calling the GetDefaultView method of
CollectionViewSource and passing the Asset collection as argument,
we have instantiated the default implementation provided by .NET:

ICollectionViewLiveShaping view = (ICollectionViewLiveShaping)
CollectionViewSource.GetDefaultView(_items);

Then we set IsLiveSorting to true:

view.IsLiveSorting = true;

Next, to tell ICollectionViewLiveShaping that the sorting has to be done on
the Value property, we added it to the LiveSortingProperties collection of
ICollectionViewLiveShaping:

view.LiveSortingProperties.Add("Value");

After that we assigned view to DataGrid:

dgAsset.ItemsSource = (IEnumerable)view;

Since ItemSource accepts only objects derived from IEnumerable, we type-casted
the ICollectionViewLiveShaping variable view to IEnumerable. We used
DispatchTimer and Random to simulate live data:

Random random = new Random();
_timer.Interval = TimeSpan.FromSeconds(1);
_timer.Tick += (s, e) =>
{
 foreach (var item in _items)
 item.Value += random.NextDouble() * 1000 - 500;
};
_timer.Start();

Playing videos using MediaElement
The MediaElement control provides an easy way to play videos in WPF applications.
Essentially, MediaElement wraps Windows Media Player. So any video that Windows
Media Player can play, MediaElement can also play.

In this recipe we will use MediaElement to create a simple video player with four basic
functionalities: load, play, pause, and stop.

WPF Recipes

200

How to do it...
1.	 Launch Visual Studio 2012. Create a new project of type WPF Application. Name it

WpfMediaPlayer.

2.	 Add a reference to System.Window.Forms.

3.	 Open MainWindow.xaml. Switch to design mode.

4.	 Design it so that it looks similar to the following screenshot:

5.	 Name the controls as detailed in the following table:

Control Name Description
MediaElement mePlayer To display the video
Button btnLoad To load the file and set the source of

mePlayer

Button btnPlay To play the video
Button btnPause To pause the video
Button btnStop To stop the video

Chapter 7

201

6.	 Set the UnloadedBehavior and LoadedBehavior attributes of MediaElement:
<MediaElement x:Name="mePlayer" Grid.ColumnSpan="5" Height="239"
Margin="10,10,10,0" VerticalAlignment="Top"
UnloadedBehavior="Manual" LoadedBehavior="Manual"/>

7.	 Double-click on btnLoad to add the Click event handler.

8.	 Add the following code:
OpenFileDialog diagOpen = new OpenFileDialog();
if (diagOpen.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
 mePlayer.Source = new Uri(diagOpen.FileName);
 mePlayer.Play();
 mePlayer.Pause();
}

9.	 Open MainWindow.xaml. Switch to design mode. Add event handlers for btnPlay,
btnPause, and btnStop.

10.	 In the event handler for btnPlay add the following highlighted code:
private void btnPlay_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Play();
}

11.	 In the event handler for btnPause add the following highlighted code:
private void btnPause_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Pause();
}

12.	 In the event handler for btnStop add the following highlighted code:
private void btnStop_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Stop();
}

WPF Recipes

202

13.	 Run the application. Click on the Load button and select a file. You will see the
following screenshot:

14.	 Test the application by clicking on the Play, Pause, and Stop buttons.

How it works...
MediaElement leverages the functionalities provided by Windows Media Player. Due to this
we need not worry about the "heavy lifting" activities such as loading the file, initializing the
decoder, rendering the video, and so on. The first step in using MediaElement is setting its
Source property to a video file:

mePlayer.Source = new Uri(diagOpen.FileName);
mePlayer.Play();
mePlayer.Pause();

In the preceding code we called Play() and Pause() so that the first frame of the video
is displayed. To call Play and Pause just after setting the Source property, we have to set
LoadedBehavior and UnloadedBehavior to Manual. We did that in the XAML code:

<MediaElement x:Name="mePlayer" Grid.ColumnSpan="5" Height="239"
Margin="10,10,10,0" VerticalAlignment="Top"
UnloadedBehavior="Manual" LoadedBehavior="Manual"/>

Chapter 7

203

As you have seen in the previous code, the Play method starts playing the video. We have
used the Play method in the Click event handler of btnPlay:

private void btnPlay_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Play();
}

Similarly, we called the Pause and Stop methods of MediaElement to pause the video and
stop playing the video. In the Click event handler of btnPause we called the Pause method:

private void btnPause_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Pause();
}

In the Click event handler of btnStop we called the Stop method:

private void btnStop_Click(object sender, RoutedEventArgs e)
{
 mePlayer.Stop();
}

Using Ribbon control to display the video
player controls

Until .NET 4.5, Ribbon control for WPF existed as a separate download. In Version 4.5 of
.NET, Ribbon control and its corresponding child controls have been included as a part of the
framework itself so that a separate download is not required. Ribbon and its child controls
include RibbonButton, RibbonButtonGroup, RibbonTab, and so on.

In this recipe, we will modify the video player created in the last recipe so that the video
control buttons are displayed using Ribbon control.

How to do it...
1.	 Launch Visual Studio 2012. Open the solution named WpfMediaPlayer.

2.	 Open MainWindow.xaml.

3.	 Remove the Load, Play, Pause, and Stop buttons.

WPF Recipes

204

4.	 Move MediaElement to the bottom. Once done, the UI will look as shown in the
following screenshot:

5.	 Switch to the XAML view. Add the Ribbon control to the main Grid so that it
is placed on the top of the window, above MediaElement. The markup will be
as follows:
<Ribbon HorizontalAlignment="Left" Margin="10,0,0,0"
VerticalAlignment="Top" Grid.ColumnSpan="5" Width="489"
Height="108">
</Ribbon>

6.	 Add RibbonTab to the Ribbon control. Set its header to Video Controls.
The markup will be as highlighted in the following code:
<Ribbon HorizontalAlignment="Left" Margin="10,0,0,0"
VerticalAlignment="Top" Grid.ColumnSpan="5" Width="489"
Height="108">
 <RibbonTab Header="Video Controls" HorizontalAlignment="Left"
Height="57" VerticalAlignment="Top" Width="487">

 </RibbonTab>

</Ribbon>

Chapter 7

205

7.	 Add RibbonGroup to RibbonTab. The markup will be similar to the highlighted
markup in the following code:
<Ribbon HorizontalAlignment="Left" Margin="10,0,0,0"
VerticalAlignment="Top" Grid.ColumnSpan="5" Width="489"
Height="108">
 <RibbonTab Header="Video Controls" HorizontalAlignment="Left"
Height="57" VerticalAlignment="Top" Width="487">
 <RibbonGroup Header="" Height="57" Margin="0"
VerticalAlignment="Top" Width="251">

 </RibbonGroup>
 </RibbonTab>
</Ribbon>

8.	 Next, add four buttons to RibbonGroup. Lay them out so that they look similar to the
following screenshot:

9.	 Now name them according to the following table:

Control Name Description
Button btnLoad To load the file and set the

source of mePlayer
Button btnPlay To play the video
Button btnPause To pause the video
Button btnStop To stop the video

WPF Recipes

206

10.	 Set btnLoad_Click as the value of the Click attribute of btnLoad.

11.	 Set btnPlay_Click as the value of the Click attribute of btnPlay.

12.	 Set btnPause_Click as the value of the Click attribute of btnPause.

13.	 Set btnStop_Click as the value of the Click attribute of btnStop.

14.	 The markup for the buttons will be similar to the highlighted markup shown
in the following code:
<Ribbon HorizontalAlignment="Left" Margin="10,0,0,0"
VerticalAlignment="Top" Grid.ColumnSpan="5" Width="489"
Height="108">
 <RibbonTab Header="Video Controls" HorizontalAlignment="Left"
Height="57" VerticalAlignment="Top" Width="487">
 <RibbonGroup Header="" Height="57" Margin="0"
VerticalAlignment="Top" Width="251">

 <Button x:Name="btnLoad" Content="Load" Margin="0,0,-91,0"
 Click="btnLoad_Click"/>
 <Button x:Name="btnPlay" Content="Play"
 RenderTransformOrigin="0.5,2.045" Margin="-1,27,-95,-27"
 Click="btnPlay_Click"/>
 <Button x:Name="btnPause" Content="Pause"
 RenderTransformOrigin="0.5,2.045" Margin="144,2,-240,-2"
 Click="btnPause_Click"/>
 <Button x:Name="btnStop" Content="Stop"
 RenderTransformOrigin="0.5,2.045" Margin="146,29,-242,-29"
 Click="btnStop_Click"/>

 </RibbonGroup>
 </RibbonTab>
</Ribbon>

Chapter 7

207

15.	 Run the application. Click on Load and select a video file. You will see the
following screenshot:

16.	 Test the play, pause, and stop functionalities.

WPF Recipes

208

How it works...
The main point to keep in mind regarding the Ribbon control is that to display the buttons
(or for that matter any other control) properly, you will need to use RibbonGroup. The same
is true for RibbonTab. That is the reason we placed RibbonGroup within RibbonTab and
the Button controls within RibbonGroup:

<Ribbon HorizontalAlignment="Left" Margin="10,0,0,0"
VerticalAlignment="Top" Grid.ColumnSpan="5" Width="489" Height="108">
 <RibbonTab Header="Video Controls" HorizontalAlignment="Left"
Height="57" VerticalAlignment="Top" Width="487">
 <RibbonGroup Header="" Height="57" Margin="0"
VerticalAlignment="Top" Width="251">
 <Button x:Name="btnLoad" Content="Load" Margin="0,0,-91,0"
 Click="btnLoad_Click"/>
 <Button x:Name="btnPlay" Content="Play"
 RenderTransformOrigin="0.5,2.045" Margin="-1,27,-95,-27"
 Click="btnPlay_Click"/>
 <Button x:Name="btnPause" Content="Pause"
 RenderTransformOrigin="0.5,2.045" Margin="144,2,-240,-2"
 Click="btnPause_Click"/>
 <Button x:Name="btnStop" Content="Stop"
 RenderTransformOrigin="0.5,2.045" Margin="146,29,-242,-29"
 Click="btnStop_Click"/>
 </RibbonGroup>
 </RibbonTab>
</Ribbon>

Since Ribbon, RibbonTab, and RibbonGroup act as containers, we can directly add the
event handlers for the buttons as evident in the preceding code.

8
ASP.NET Recipes – II

In this chapter we will cover:

ff Preventing cross-site injection using the anti-XSS library

ff Adding Google Map functionality using Map Helper

ff Third-party authentication of users using Google

ff Implementing unobtrusive validation

Introduction
In this chapter we will look at the advanced features provided by ASP.NET. The first recipe
will use built-in anti-XSS library to prevent cross-site scripting. The next recipe will be about
enabling map functionalities using Google Maps and Map Helper. The third recipe will focus
on using third-party authentication services. The last recipe will tell you how to use the
Validation helper to implement client- and server-side validation. All the recipes deal with
new features provided by ASP.NET 4.5. The first recipe deals with new features of the ASP.NET
application (ASPX pages), while the remaining three deal with new features of ASP.NET Web
Sites (CSHTML pages). This chapter assumes that you know the basics of ASP.NET Web Sites
and CSHTML pages. Also, except for the first recipe, the recipes work well only with Internet
Explorer 9 and higher.

ASP.NET Recipes – II

210

Preventing cross-site injection using the
anti-XSS library

Cross-site scripting (XSS) is the process of injecting HTML or JavaScript fragments into a
website. When these fragments are executed, they can do anything from redirecting the
user to another site without his/her knowledge to accessing the cookies of the user and
thus hijacking his/her session. Developers have been using the anti-XSS library for .NET to
safeguard their websites from XSS. With Version 4.5, .NET has incorporated the anti-XSS
library into ASP.NET.

In this recipe, we will develop a page for entering comments and displaying it. We will use
anti-XSS functionality to make the comment display page safe from XSS.

How to do it...
1.	 Launch Visual Studios 2012.

2.	 Create a project of type ASP.NET Web Forms Application. Name it AntiXss.

3.	 Remove Default.aspx and AboutUs.aspx, as we will not be using them.

4.	 Add a new ASPX page. Name it Default.aspx.

5.	 Open Default.aspx and switch to the Design tab.

6.	 Design the page so that it looks as follows:

Chapter 8

211

7.	 Name the controls as shown in the following table:

Control Name Description
Textbox txtTitle To enter titles for the comments
Textbox txtComment To enter the comment
Button btnSubmit To submit the comment

8.	 Add another ASPX page. Name it CommentsDisplay.aspx. Open it in design mode.

9.	 Design the page so that it looks similar to the following screenshot:

10.	 Name the controls as given in the following table:

Control Name Description
Literal ltlTitle To display the title of the comment
Literal ltlComments To display the comment
Literal ltlUnsafeComments To display comments that are not

guarded against XSS

11.	 Open Default.aspx in design mode. Double-click on btnSubmit to add a Click
event handler.

ASP.NET Recipes – II

212

12.	 In the event handler, add the following code:
Session.Add("title", txtTitle.Text);
Session.Add("comment", txtComments.Text);
Server.Transfer("~/CommentsDisplay.aspx");

13.	 Next, open CommentsDisplay.aspx.cs. In the Page_Load method, add the
following code:
ltlTitle.Text = System.Web.Security.AntiXss.AntiXssEncoder.
HtmlEncode((string)Session["title"],false);
ltlComments.Text = System.Web.Security.AntiXss.AntiXssEncoder.
HtmlEncode((string)Session["comment"], false);
ltlUnsafeComments.Text = (string)Session["comment"];

14.	 Set Default.aspx as the startup page. Run the application.

15.	 In the Title textbox, enter the following code:
Title

16.	 In the Comment textbox, enter the following code:
<script>window.alert("XSS successful");</script>

17.	 You will see a screen similar to the following screenshot:

Chapter 8

213

How it works...
The code that handles XSS is in the Page_Load method of CommentsDisplay.aspx.cs,
specifically, the following statements:

ltlTitle.Text = System.Web.Security.AntiXss.AntiXssEncoder.
HtmlEncode((string)Session["title"],false);
ltlComments.Text = System.Web.Security.AntiXss.AntiXssEncoder.
HtmlEncode((string)Session["comment"], false);

In the preceding statements, we called the HtmlEncode method of the AntiXssEncoder
class with the string we want to encode. The string is the comments entered in the previous
page. The HtmlEncode method replaces < and > with < and > respectively, so that
the <script>window.alert("XSS successful"); snippet becomes as follows:

<script>window.alert("XSS successful"); </script>

This changed snippet is not executed by the browser. Hence, XSS fails.

Adding Google Map functionality using Map
Helper

Nowadays, displaying maps as a part of your website has become a requirement. The reason
can be anything from helping customers locate your store to providing the transit path of a
package. ASP.NET 4.5 makes displaying maps easier by providing Map Helpers that can be
installed using the NuGet package manager.

In this recipe, we will see how to use Map Helper and Google Maps. We will be using the Razor
V2 View engine.

Getting ready
You will need to update the NuGet package manager by going to Tools | Extensions and
Updates. If NuGet is not installed, then install it by going to Tools | Extensions and Updates.

How to do it...
1.	 Create a new Web Site project. Name it MapDisplay.

2.	 Install ASP.NET Web Helpers Library by going to WEBSITE | Manage NuGet
Packages....

3.	 Add a new Content Page (Razor v2) page. Name it DisplayMap.

ASP.NET Recipes – II

214

4.	 Open DisplayMap.cshtml. Design it so that it looks similar to the
following screenshot:

5.	 Provide the name and values for the controls as detailed in the following table:

Control Type Name Value Description
Input text address @Request["address"] To enter the

address that
needs to be
displayed on
the map, and
to display the
entered address
once the query
is submitted

Input submit Show on Map To submit the
request

6.	 Add the following code after the <form> section:
@if(IsPost) {
@Maps.GetGoogleHtml(Request.Form["address"],
 width: "400",
 height: "400")
}

7.	 Run the application. Enter the name of the place or address in the textbox.
Click on the Show on Map button. You will see a map similar to the one in the
following screenshot:

Chapter 8

215

How it works...
The following code in DisplayMap.cshtml does the heavy lifting of calling the Google Map
API and displaying the result:

 @Maps.GetGoogleHtml(Request.Form["address"],
 width: "400",
 height: "400")

In the previous code we called the GetGoogleHtml method of Map Helper. Then, we
passed the value present in the address field by accessing it through the Form collection of
the Request object. The previous code is within the if statement that checks whether the
request is a postback request:

@if(IsPost) {
@Maps.GetGoogleHtml(Request.Form["address"],
 width: "400",
 height: "400")
}

If it is a postback request call the Map Helper; otherwise do not call it.

ASP.NET Recipes – II

216

Third-party authentication of users using
Google

Before Version 4.5, ASP.NET Web Pages used to provide functionality to authenticate users
using third parties such as Google, Live, Facebook, Twitter, or similar third parties, through
installable helpers. These helpers were categorized as Open Authentication (OAuth) helpers.
However, with Version 4.5, OAuth helpers have become part of the standard ASP.NET
Web Pages library. In this recipe, we will see how to use OAuth helpers to enable Google
authentication in a website.

How to do it...
1.	 Create a new Web Site project. Name it GoogleAuthentication.

2.	 Open _AppStart.cshtml. Add the following code after the call to WebSecurity.
InitializeDatabaseConnection:
OAuthWebSecurity.RegisterOpenIDClient(BuiltInOpenIDClient.Google);

3.	 Next, open Login.cshtml, which is in the Account folder.

4.	 Uncomment the following code:
<fieldset>
 <legend>Log in using another service</legend>
 <input type="submit" name="provider" id="facebook"
value="Facebook"
 title="Log in using your Facebook account." />
 <input type="submit" name="provider" id="twitter"
value="Twitter"
 title="Log in using your Twitter account." />
 <input type="submit" name="provider" id="windowsLive"
 value="WindowsLive" title="Log in using your Windows Live
account." />
</fieldset>

5.	 Add the following to the <fieldset> tag:
<input type="submit" name="provider" id="google" value="Google"
title="Log in using your Google account." />

6.	 Open AssociateServiceAccount.cshtml, which is present in the Account
folder. Add the following to <fieldset>:
<input type="submit" name="provider" id="google" value="Google"
title="Log in using your Google account." />

7.	 Open Default.cshtml. Run the application.

Chapter 8

217

8.	 Click on the Log in link. You will see the following page:

9.	 Click on the Google button and you will see the following page, which asks you to
provide your Google credentials to log in:

ASP.NET Recipes – II

218

How it works...
The entire process of implementing Google authentication is done by the
OAuthWebSecurity class. All we had to do was tell it that we want to use Google
authentication by calling RegisterOpenIDClient, as we did in _AppStart.cshtml:

OAuthWebSecurity.RegisterOpenIDClient(BuiltInOpenIDClient.Google);

Then we displayed the button that takes us to the Google sign-in page by uncommenting
<fieldset> in Login.cshtml and adding a button for Google, as highlighted in the
following code:

<fieldset>
 <legend>Log in using another service</legend>
 <input type="submit" name="provider" id="facebook" value="Facebook"
 title="Log in using your Facebook account." />
 <input type="submit" name="provider" id="twitter" value="Twitter"
 title="Log in using your Twitter account." />
 <input type="submit" name="provider" id="windowsLive"
 value="WindowsLive" title="Log in using your Windows Live
account." />
 <input type="submit" name="provider" id="google" value="Google"
 title="Log in using your Google account." />
</fieldset>

Implementing unobtrusive validation
In previous versions of ASP.NET Web Pages, you had to manually check each field and add the
error message to the ModelState class. However, Version 4.5 of .NET (ASP.NET Web Pages
Version 2) introduced the Validation helper, which can not only help your server-side validation
but also provide unobtrusive client-side validation. In this recipe, we will enhance the Map
Display application by adding the required field validation to the address field.

How to do it...
1.	 Open the MapDisplay website.

2.	 Open DisplayMap.cshtml. Add the following code to the top of the page, above
the DOCTYPE section:
@{
 Validation.RequireField("address", "Address is required");
}

Chapter 8

219

3.	 Next, add the following code to the <head> section:
<script src="~/Scripts/jquery.validate.js" type="text/
javascript"></script>
<script src="@Href("~/Scripts/jquery.validate.unobtrusive.min.
js")"></script>

4.	 Modify the address textbox so that it looks similar to the following markup:
<input style="width: 300px" type="text" name="address" value="@
Request["address"]" @Validation.For("address")/>

5.	 Next, add the following <div> section after the <div> section containing the
address textbox:
<div>
 @Html.ValidationMessage("address")
</div>

6.	 Modify the if statement containing the call to the Map Helper, as shown in the
following code:
@if(IsPost && Validation.IsValid()) {
 @Maps.GetGoogleHtml(Request.Form["address"],
 width: "400",
 height: "400")
 }

7.	 Run the application. Click on the Show On Map button without entering anything in
the textbox. You will see the following screen:

ASP.NET Recipes – II

220

8.	 Next, enter a valid address in the textbox. You will see the following screen:

How it works...
In this recipe, we have implemented both server-side and client-side validation. The first thing
we did was to tell the Validation helper that we want to validate the address field. That is
what we did with the following code:

@{
 Validation.RequireField("address", "Address is required");
}

The previous code is for server-side validation. Next, we added the <script> section for
unobtrusive validation:

<script src="~/Scripts/jquery.validate.js" type="text/javascript">
</script>
<script src="@Href("~/Scripts/jquery.validate.unobtrusive.min.js")">
</script>

Chapter 8

221

In the previous code, the link to jquery.validate.unobtrusive.min.js is generated
after the cshtml file is compiled. Next, we told the helper that we want to validate the
address field. We did this by adding @Validation.For to the address field. We also
passed the name of the field to @Validation.For:

<input style="width: 300px" type="text" name="address" value="@
Request["address"]" @Validation.For("address")/>

The last step for client-side validation is displaying the error messages, which we did by using
@Html.ValidationMessage:

<div>
 @Html.ValidationMessage("address")
</div>

For server-side validation, we called the IsValid() method of the Validation helper in
the if statement:

@if(IsPost && Validation.IsValid()) {
 @Maps.GetGoogleHtml(Request.Form["address"],
 width: "400",
 height: "400")
 }

The map helper is displayed only if IsValid() returns true.

9
Silverlight Recipes

In this chapter we will cover:

ff Using Pivot control to present asset data

ff Accessing webcams

ff Using client-side storage for saving a draft of the user registration data

Introduction
Silverlight helps developers create rich web clients. This is similar to WPF in the sense that
it helps in developing content and feature-rich desktop applications. However, Silverlight
applications run in a sandboxed environment within the web browser. In other words, as a
developer you will not have access to certain functionalities that are present in WPF. These
limitations include restricted access to DirectX for better graphics, limited access to webcams,
and so on. With Version 5, new features have been included that help overcome these
limitations. In this chapter we will look at some of these new functionalities. The Using Pivot
control to present asset data recipe will be about Pivot control introduced in Version 5. Then
we will see how to use webcams to capture live images. The Using client-side storage for
saving a draft of the user registration data recipe will introduce you to isolated storage APIs,
using which you can save data onto the client's system.

Using Pivot control to present asset data
The Pivot view makes interacting with data easy for the user. Until Version 5 of Silverlight (.NET
4.0 and below), PivotViewer control needed to be installed separately. However, with Silverlight
5 and .NET 4.5, it is supplied as part of the core distribution. In this recipe, we will see how to
use PivotViewer control to display asset-related data.

Silverlight Recipes

224

How to do it...
To use Pivot control to present asset data, perform the following steps:

1.	 Launch Visual Studio 2012. Create a project of the type Silverlight Application.
Name it Pivot.

2.	 Add a new folder. Name it Entities.

3.	 Add a new class to the Entities folder. Name it Asset.

4.	 Add the following properties to the class:

Name Data type
ID int

Name string

Region string

Value double

5.	 Open MainWindow.xaml. Add the following statements in the <Grid> section:
<sdk:PivotViewer x:Name="pvAsset">

 <!--Setting PivotProperties-->
 <sdk:PivotViewer.PivotProperties>
 <sdk:PivotViewerStringProperty Id="PName" Options="CanFilter"
 DisplayName="Name" Binding="{Binding Name}" />
 <sdk:PivotViewerStringProperty Id="PRegion" Options="CanFilter"
 DisplayName="Region" Binding="{Binding Region}" />

 </sdk:PivotViewer.PivotProperties>

 <!--Setting data-->
 <sdk:PivotViewer.ItemTemplates>
 <sdk:PivotViewerItemTemplate>
 <Border Width="200" Height="200" Background="Blue">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{Binding Name}" FontSize="16"
 Foreground="White" />

Chapter 9

225

 <TextBlock Text="{Binding Value}" FontSize="16"
 Foreground="White" />
 </StackPanel>
 </Border>
 </sdk:PivotViewerItemTemplate>
 </sdk:PivotViewer.ItemTemplates>
 </sdk:PivotViewer>

6.	 Open MainWindow.xaml.cs. Add a private method that returns
ObservableCollection<Asset>. Name it GenerateTestData.
Its signature will be as follows:
private ObservableCollection<Asset> GenerateTestData()
{
}

7.	 Add the following code to GenerateTestData:
ObservableCollection<Asset> temp = new
ObservableCollection<Asset>();
temp.Add(new Asset() { ID = 1, Name = "ASD", Region = "Mumbai",
Value = 1000 });
temp.Add(new Asset() { ID = 2, Name = "AS Hotel", Region =
"Chennai", Value = 11000 });
temp.Add(new Asset() { ID = 3, Name = "AD Cafe", Region =
"Kolkatta", Value = 10000 });
temp.Add(new Asset() { ID = 4, Name = "Landmark", Region =
"Mumbai", Value = 50000 });
temp.Add(new Asset() { ID = 5, Name = "ASD II", Region =
"Kolkatta", Value = 400 });
temp.Add(new Asset() { ID = 5, Name = "ASD III", Region =
"Kolkatta", Value = 1400 });
return temp;

8.	 Add the following statement to the constructor, after the call to
InitializeComponent:
pvAsset.ItemsSource = GenerateTestData();

Silverlight Recipes

226

9.	 Run the application. You will see the output as shown in the following screenshot.
Test the application by selecting the regions.

How it works...
To display a pivot using PivotViewer control, two steps are required. First, set the properties
that the user can use to filter the data and control the pivot. We did this using the
PivotProperties property of PivotViewer. We wanted to set the filter on the
Name and Region properties of the Asset class.

<sdk:PivotViewer.PivotProperties>
 <sdk:PivotViewerStringProperty Id="PName" Options="CanFilter"
 DisplayName="Name" Binding="{Binding Name}" />
 <sdk:PivotViewerStringProperty Id="PRegion" Options="CanFilter"
 DisplayName="Region" Binding="{Binding Region}" />

 </sdk:PivotViewer.PivotProperties>

Chapter 9

227

In the preceding code, we used PivotViewerStringProperty during runtime to signify
that the property is of type string, it can be used to filter the data, and that it has to be
bound to the Name and Region properties.

The second step is to tell PivotViewer control how to display the data when the filters are
applied. That can be done using PivotViewItemTemplate. We used StackPanel and
TextBlock within PivotViewItemTemplate for representing the data as shown in the
following code:

<sdk:PivotViewerItemTemplate>
 <Border Width="200" Height="200" Background="Blue">
 <StackPanel Orientation="Vertical">
 <TextBlock Text="{Binding Name}" FontSize="16"
 Foreground="White" />
 <TextBlock Text="{Binding Value}" FontSize="16"
 Foreground="White" />
 </StackPanel>
 </Border>
</sdk:PivotViewerItemTemplate>

StackPanel and TextBlock are basic ways to display data. Any kind of transformations
and controls can be used to display the data.

Accessing webcams
In certain scenarios, you may have to access the webcam of the client. From Silverlight 4
onwards, the API to access webcams have become simpler to use. In this recipe, we will
see how to use webcams to display live images.

How to do it...
1.	 Launch Visual Studio 2012. Create a new project of the type Silverlight Application.

Name it WebCam.

2.	 Open MainPage.xaml. Add the following code to the <Grid> section:
<Rectangle RadiusX="5" RadiusY="5" x:Name="rectCam" Height="285"
HorizontalAlignment="Left" Margin="10,10,0,0" Stroke="Black"
StrokeThickness="1" VerticalAlignment="Top" Width="383"
Fill="Black" />

<Button Content="Start Webcam" Height="23"
HorizontalAlignment="Left" Margin="68,330,0,0" Name="btnStart"
VerticalAlignment="Top" Width="94"/>

Silverlight Recipes

228

<Button Content="Stop Webcam" Height="23"
HorizontalAlignment="Left" Margin="284,330,0,0" Name="btnStop"
VerticalAlignment="Top" Width="99" />

3.	 The page should look similar to the following screenshot:

4.	 Open MainPage.xaml.cs. Add a private variable of the type CaptureSource.
Name it _captureSource.
private CaptureSource _captureSource = null;

5.	 Add a method of the type void. Name it StartWebCam. Its signature will be
as follows:
private void StartWebCam()
{
}

Chapter 9

229

6.	 Add the following code to StartWebCam:
if (_captureSource==null)
{
 _captureSource = new CaptureSource();
}
if (_captureSource.State== CaptureState.Stopped)
{
 _captureSource.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
 VideoBrush previewBrush = new VideoBrush();
 previewBrush.SetSource(_captureSource);
 rectCam.Fill = previewBrush;
 _captureSource.Start();
}

7.	 Open MainPage.xaml in the design mode. Double-click on the Start Webcam
button to add a Click event handler.

8.	 Add the following code to the event handler:
if (!CaptureDeviceConfiguration.AllowedDeviceAccess)
{
 if (!CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 MessageBox.Show("Cannot access the webcam");
 }
 }
 else
 {
 StartWebCam();
 }

9.	 Open MainPage.xaml in the design mode. Double-click on the Stop Webcam
button to add a Click event handler.

10.	 Add the following code to the event handler:
if (_captureSource != null && _captureSource.State ==
CaptureState.Started)
{
 _captureSource.Stop();
}

11.	 Run the application. Test the application by clicking on the Start Webcam and Stop
Webcam buttons.

Silverlight Recipes

230

How it works...
The first step in accessing a webcam is finding out whether we have permission
to access it or not. To do so, we used the AllowDeviceAccess property and the
RequestDeviceAccess() method of the CaptureDeviceConfiguration class
in the Click event handler of btnStart.

if (!CaptureDeviceConfiguration.AllowedDeviceAccess)
{
 if (!CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 MessageBox.Show("Cannot access the webcam");
 }
 }

If we get a false value for any of them, we show a message to the user and stop the process.
If we get a true value for both, we need to initialize the CaptureSource variable. That's what
we did in the StartWebCam method.

_captureSource = new CaptureSource();

Then set the VideoCapture property of _capture using the
GetDefaultVideoCaptureDevice() method of CaptureDeviceConfiguration.

_captureSource.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();

Next, we need a brush using which we can draw (the output of webcam) on the Rectangle
control. Hence, we instantiated VideoBrush, set its source to _captureSource, and then
set the Fill property of the Rectangle control to the instance of VideoBrush.

VideoBrush previewBrush = new VideoBrush();
previewBrush.SetSource(_captureSource);
rectCam.Fill = previewBrush;

Once we have the Brush instance, we can start capturing the image using the webcam.

_captureSource.Start();

To stop the capturing of images, we first checked whether _captureSource has been
instantiated or not. If it is instantiated, we need to check whether the capturing is going on.
If both are true, we call the Stop() method of _captureSource to stop the capturing.

if (_captureSource != null && _captureSource.State == CaptureState.
Started)
{
 _captureSource.Stop();
}

Chapter 9

231

Using client-side storage for saving a draft
of the user registration data

Isolated storage APIs provide a way to store limited amount of data at the client side. Using
this functionality, we can save data such as search strings and usernames. In this recipe we
will use the isolated storage API so that the user can save the data entered in the registration
form on the client's system.

How to do it...
1.	 Create an application of the type Silverlight Application in Visual Studio 2012. Name

it ClientSidePersistance.

2.	 Open MainPage.xaml. Design it so that it looks similar to the following screenshot:

Silverlight Recipes

232

3.	 Name the controls as detailed in the following table:

Control Name Description
Textbox txtUserName To enter the username
Textbox txtFullName To enter the full name of the user
Textbox txtEmail To enter the e-mail address of the user
Button btnDraft To save the entered values in the

user's system
Button btnClear To clear the values
Button btnLoad To load and display the saved values

4.	 Open MainPage.xaml.cs. Add a private variable of the type
IsolatedStorageSettings. Name it appSettings.

5.	 Instantiate it using the ApplicationSettings property of
IsolatedStorageSettings as shown in the following code snippet:
private IsolatedStorageSettings appSettings =
IsolatedStorageSettings.ApplicationSettings;

6.	 Add a Click event handler for btnDraft. Add the following code in the event handler:
appSettings.Add("username", txtUserName.Text);
appSettings.Add("fullname", txtFullName.Text);
appSettings.Add("email", txtEmail.Text);

7.	 Next, add a Click event handler for btnClear. Add the following code in the
event handler:
txtEmail.Text = "";
txtFullName.Text = "";
txtUserName.Text = "";

8.	 Then, add a Click event handler for btnLoad. Add the following code in the
event handler:
txtUserName.Text = appSettings["username"]!=null?
appSettings["username"].ToString():"";
txtFullName.Text = appSettings["fullname"]!=null?
appSettings["fullname"].ToString():"";
txtEmail.Text = appSettings["email"]!=null? appSettings["email"].
ToString():"";

9.	 Run the application. Enter values in the textboxes. Click on the Save Draft button.

10.	 Then click on Clear. The values will be cleared.

11.	 Now click on the Load button. The saved values will be displayed.

Chapter 9

233

How it works...
The IsolatedStorageSettings class acts as a collection. So we can save our data using
the Add method. The Add method takes key and value as parameters. To save our data, we
called the Add method with a key and the text from the textbox as the value.

appSettings.Add("username", txtUserName.Text);
appSettings.Add("fullname", txtFullName.Text);
appSettings.Add("email", txtEmail.Text);

Similarly, we can access the saved value by using the key as an index. That's what we did in
the Click event of the event handler of btnLoad.

txtUserName.Text = appSettings["username"]!=null?
appSettings["username"].ToString():"";
txtFullName.Text = appSettings["fullname"]!=null?
appSettings["fullname"].ToString():"";
txtEmail.Text = appSettings["email"]!=null? appSettings["email"].
ToString():"";

10
Entity Framework

Recipes

In this chapter we will cover:

ff Joining two entities using LINQ

ff Uploading files using Entity Framework and stored procedures

ff Managing connections manually for long-running tasks

ff Using functions that return tables as return values

Introduction
Entity Framework is the technological successor to ADO.NET. It implements the Object
Relational Mapping (ORM) pattern. So, you can access the tables through the classes that
map to them. In this chapter, we will focus on the recipes that deal with using LINQ to join
multiple entities, will call stored procedures using Entity Framework, and so on. We will start
with using LINQ to join two entities that do not have navigation (foreign key) defined. The
Uploading files using Entity Framework and stored procedures recipe will focus on calling
stored procedures via Entity Framework to upload files. After that, we will look at handling
connections manually. The Using functions that return tables as return value recipe will
be about importing Table Valued Functions, which is a new feature in Version 5 of
Entity Framework.

We will use the database, tables, and stored procedures developed in Chapter 5,
ADO.NET Recipes.

Entity Framework Recipes

236

Joining two entities using LINQ
If two tables are joined by a foreign key relationship, their corresponding entities will have
a navigation defined between them. However, if the tables are not joined by a foreign key,
navigation does not exist. Even then, if they have common columns/fields, they can be joined
using LINQ. In this recipe, we will use LINQ to join entities representing tb_Users and
tb_FileStorage to retrieve all the files uploaded by a particular user.

How to do it...
1.	 Launch SQL Server Management Studio 2012.

2.	 Add a new column to tb_FileStorage. Name it User_ID and set its data type
to int.

3.	 Create a project of the type Windows Forms Application in Visual Studio 2012.
Name it TwoTableJoin.

4.	 In Solution Explorer, right-click on the project and choose New Item from Add.

5.	 In the dialog that comes up, choose ADO.NET Entity Data Model and click on Add to
launch the Entity Data Model wizard. Name it CookBookModel:

Chapter 10

237

6.	 In the wizard, choose Generate from database, and click on Next.

7.	 Select the CookBook.dbo connection, which connects to CookBook. We had
created this in the Saving large files (BLOB) in MS SQL Server using ADO.NET
recipe in Chapter 5, ADO.NET Recipes.

8.	 If the connection does not exist, create a new connection for the CookBook database.

9.	 Enter CookBookEntities in the Save entity connection settings... field. This will
be the name of the main ORM class.

Entity Framework Recipes

238

10.	 Click on Next. In the next screen, select all the tables and stored procedures.
Click on Finish:

11.	 In the EDM designer, rename tb_Users to Users and tb_FileStorage to Files.

12.	 Rename Form1.cs to UserData.cs.

13.	 Open UserData.cs in the design mode. Design the form so that it looks similar to
the following screenshot:

Chapter 10

239

14.	 Name the controls as detailed in the following table:

Control Name Description
Textbox txtUser To enter ID of the user whose files need

to be listed
Button btnShow To execute the logic for listing the files
DataGridView dgvFiles To display the files

15.	 Double-click on btnShow to add a Click event handler.

16.	 In the event handler, add the following code:
using (CookBookEntities context = new CookBookEntities())
{
 ObjectSet<User> users = context.Users;
 ObjectSet<Files> files = context.Files;
 int userID = Convert.ToInt32(txtUser.Text);
 var query =
 from user in users
 join file in files
 on user.Id equals file.User_ID
 where user.Id == userID
 select new
 {
 FileID = file.ID,
 FileName = file.File_name
 };
 var fileDetails = query.ToList();
 dgvFiles.DataSource = fileDetails;

 }

17.	 Run the application. In the textbox, enter the ID (for example 1) of a user who has
entries in tb_FileStorage.

18.	 Click on Show. You will see the data grid populated.

How it works...
The core of the logic is in the following statement:

var query =
 from user in users
 join file in files

Entity Framework Recipes

240

 on user.Id equals file.User_ID
 where user.Id == userID
 select new
 {
 FileID = file.ID,
 FileName = file.File_name
 };

In the preceding code, the user identifier is used for the users set. Then, it is joined with
the files set, whose identifier is file. The join is performed using the Id field of user and
User_ID field of the file identifier. Now, we want file details of only those users whose IDs
have been entered in the textbox. So, we used the where clause. The user should exist in the
users set. Therefore, we used the where clause on Id of the user and not on files.

This provides us with the required data. However, we do not want to display all the fields.
Hence, in the select clause, we created a new object with two fields, FileID and
FileName. We assigned the ID of file to FileID and File_name of the file to FileName.
So, when we execute the query, we get a list of objects that has two properties, FileID and
FileName. One point to keep in mind is that the query is not executed until the following
statement is run:

var fileDetails = query.ToList();

Uploading files using Entity Framework and
stored procedures

Using Entity Framework, you can accomplish all of the CRUD (Create, Retrieve, Update, and
Delete) operations without making calls to the stored procedures. However, in some cases,
encapsulating CRUD operations within a stored procedure becomes necessary. In such
scenarios, you can call a stored procedure from within your code as if you are calling any
other method of C#.

In this recipe, we will use a stored procedure to upload image files to the database. We will
call the stored procedures by using classes and methods generated by Entity Framework.

How to do it...
1.	 Create a project of the type Windows Forms Application in Visual Studio 2012.

Name it FileUpload.

2.	 In Solution Explorer, right-click on the project and choose Add | New Item.

3.	 In the dialog, choose ADO.NET Entity Data Model and click Add to launch the
Entity Data Model wizard. Name it CookBookModel:

Chapter 10

241

4.	 In the wizard, choose Generate from database and click on Next.

5.	 Select CookBook.dbo connection. We had created this in the Saving large files
(BLOB) in MS SQL Server using ADO.NET recipe in Chapter 5, ADO.NET Recipes.

Entity Framework Recipes

242

6.	 If the connection does not exist, create a new connection for the CookBook database.

7.	 Enter CookBookEntities in the Save entity connection settings... field. This will
be the name of the main ORM class.

8.	 Click on Next. On the next screen, select all the tables and the stored procedure
named SaveFile. Click on Finish.

9.	 Rename Form1.cs to UploadForm.cs.

10.	 Open UploadForm.cs in the design mode. Design the form so that it looks similar
to the following screenshot:

11.	 Name the controls as detailed in the following table:

Control Name Description
Textbox txtPath To display the path of the selected file.
Button btnUpload To select and upload the selected file.

12.	 Double-click on btnUpload to add a Click event handler.

13.	 In the event handler, add the following code:
OpenFileDialog diagFile = new OpenFileDialog();

if (diagFile.ShowDialog()==System.Windows.Forms.DialogResult.OK)
 {
 txtPath.Text = diagFile.FileName;
 using (CookBookEntities context = new CookBookEntities())
 {
 try
 {

 context.SaveFile(Path.GetFileNameWithoutExtension(txtPath.Text),
 GetBytesFromFile(txtPath.Text));
 MessageBox.Show("Upload Successful");

Chapter 10

243

 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
 }
 }

14.	 Next, add a private method that takes the file path as an argument and returns a
byte array. Name it GetBytesFromFile. Its signature will be as follows:
private byte[] GetBytesFromFile(string path)
{
}

15.	 Add the following code to GetBytesFromFile:
byte[] data = null;

FileInfo info = new FileInfo(path);
long numBytes = info.Length;

FileStream stream = new FileStream(path, FileMode.Open,
 FileAccess.Read);

BinaryReader reader = new BinaryReader(stream);
data = reader.ReadBytes((int)numBytes);
return data;

16.	 Run the application. Click on the Browse and Upload button.

17.	 Select an image file and click on OK.

If the upload/save is successful, you will see a message box stating that the upload was
successful. If the upload/save is not successful, then you will see a message box displaying
the exception.

How it works...
The main difference between the version of Entity Framework shipped with Visual Studio
2012 and previous versions (versions before Version 4.5) is that, when you generate ORM
for a stored procedure, you can accomplish it in one step—importing the stored procedure.
In the versions before Version 4.5 of Entity Framework, two steps were involved. First, you
had to import the stored procedure. Then, you had to perform a function import. The function
import generated entities relate to the result returned by the stored procedure imported while
generating the model.

Entity Framework Recipes

244

In Version 5 of Entity Framework, the function import step is carried out while generating the
model. You can still customize the default return types that are provided when the model is
generated. In our case, we do not require a customized return type. Therefore, we skipped the
(optional) step of customizing the return type.

The generated function, named SaveFile, takes two parameters—the name of the image
file to be saved and the byte array containing the data. We retrieved the file name using the
GetFileNameWithoutExtension method of the Path class. For the byte array, we used
FileStream and BinaryReader to read the file contents into the byte array, as shown in
the following code:

FileStream stream = new FileStream(path, FileMode.Open,
 FileAccess.Read);

BinaryReader reader = new BinaryReader(stream);
data = reader.ReadBytes((int)numBytes);

With the filename and byte array thus retrieved, we called the SaveFile method of the
CookBookEntities class:

try
 {

 context.SaveFile(Path.GetFileNameWithoutExtension(txtPath.Text),
 GetBytesFromFile(txtPath.Text));
 MessageBox.Show("Upload Successful");
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

In the preceding code, the call to SaveFile is encapsulated in try/catch. We did this so
that if there is a failure to upload the file due to some exception, we can display it to the user.

Managing connections manually for
long-running tasks

Entity Framework manages connections by itself. In other words, you as a developer need not
open and close connections manually. However, there are scenarios where you would want
to manage the opening and closing of connections manually. Saving large-sized files to a
database is one such scenario.

In this recipe, we will look at the steps required in managing connections manually. To do so,
we will use the application developed in the previous recipe.

Chapter 10

245

How to do it...
1.	 Open FileUpload.sln in Visual Studio 2012.

2.	 Open UploadForm.cs in the view code mode.

3.	 In the btnUpload_Click method, replace the using statement with the
following statement:
CookBookEntities context = new CookBookEntities();

4.	 Next, add the following if block inside the try block, above the call to the
SaveFile method:
if (context.Connection.State != ConnectionState.Open)
{
 context.Connection.Open();
}

5.	 Now, add the following finally block after the catch block:
finally
{
 context.Dispose();
}

6.	 Once the modifications are done, the btnUpload_Click method will be similar to
the following code:
OpenFileDialog diagFile = new OpenFileDialog();

if (diagFile.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
 txtPath.Text = diagFile.FileName;
 CookBookEntities context = new CookBookEntities();

try
{
 if (context.Connection.State != ConnectionState.Open)
 {
 context.Connection.Open();
 }
 context.SaveFile(Path.GetFileNameWithoutExtension(txtPath.Text),
 GetBytesFromFile(txtPath.Text));
MessageBox.Show("Upload Successful");
}
catch (InvalidOperationException ex)
{
 MessageBox.Show(ex.Message);
}

Entity Framework Recipes

246

finally
{
 context.Dispose();
}
}

7.	 Run the application and click on the Browse and Upload button.

8.	 Select an image file and click on OK.

If the save is successful, you will see a message box stating that the upload is successful.
If the save is not successful, you will see a message box displaying the exception message.

How it works...
In the previous recipes, we used the using statement so that we do not have to
manually dispose of the context object. One important point about the context object
(CookBookEntities) is that, once its Dispose method is called, the connection is closed.
So, to manually control the closing of the connection, we removed the following statement:

using (CookBookEntities context = new CookBookEntities())

In its place, we inserted the following code:

CookBookEntities context = new CookBookEntities();

Since we have removed the using statement, we have to manually open the connection and
dispose of the object manually. To open the connection, we first have to check the state of
the connection. If it is not in the opened state, we have to open the connection by calling the
Open method of the Connection property. The Connection property is a public property
of CookBookEntities. That is what we did in the following statements:

if (context.Connection.State != ConnectionState.Open)
 {
 context.Connection.Open();
 }

Next, we called the Save method to save the selected file:

context.SaveFile(Path.GetFileNameWithoutExtension(txtPath.Text),
GetBytesFromFile(txtPath.Text));

For this recipe, the preceding statement is a long-running task. It will either run successfully
or end in an exception. Whichever be the case, we have to close the connection. To do so,
we called the Dispose method of CookBookEntities in the finally method:

finally
{
 context.Dispose();
}

Chapter 10

247

Calling Dispose internally calls the Close method of the Connection property thus closing
the database connection.

Using functions that return tables as return
values

In Microsoft SQL Server 2008 and later versions, we could create functions that return
tables as return values. These functions are known as Table Valued Functions. Until Entity
Framework Version 5, there was no way to use such functions with Entity Framework. However,
with Entity Framework 5 (Visual Studio 2012), it is possible to use Table Valued Functions.

In this recipe, we will see how to do so. The function that we will use will return the details of
files uploaded by a user, and we will display the details on DataGridView.

How to do it...
1.	 Launch SQL Server Management Studio 2012.

2.	 Open the database named CookBook.

3.	 Next, add a Table Valued Function that will retrieve data from tb_FileStorage.
Name it GetUserDetails. The function will be:
USE [CookBook]
GO

/****** Object: UserDefinedFunction [dbo].[GetUserDetails]
Script Date: 24-10-2012 17:55:48 ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE FUNCTION [dbo].[GetUserDetails]
(
	 -- Add the parameters for the function here
	 @vID int
)
RETURNS TABLE
AS
RETURN
(

Entity Framework Recipes

248

	 -- Add the SELECT statement with parameter references here
	 SELECT * FROM tb_FileStorage WHERE tb_FileStorage.User_ID =
@vID
)

GO

4.	 Create a project of type Windows Forms Application in Visual Studio 2012.
Name it TableValuedFunction.

5.	 In Solution Explorer, right-click on the project and choose Add | New Item.

6.	 In the dialog box, choose ADO.NET Entity Data Model and click on Add to launch the
Entity Data Model wizard. Name it CookBookModel:

7.	 In the wizard, choose Generate from database and click on Next.

Chapter 10

249

8.	 Select the CookBook.dbo connection. We had created this in the Saving large files
(BLOB) in MS SQL Server using ADO.NET recipe in Chapter 5, ADO.NET Recipes.

9.	 If the connection does not exist, create a new connection for the CookBook database.

10.	 Enter CookBookEntities in the Save entity connection settings... field. This will
be the name of the main ORM class.

Entity Framework Recipes

250

11.	 Click on Next. In the next screen that comes up, select all the tables and the function
named GetUserDetails. Click on Finish:

12.	 Open CookBookModel.edmx in the design mode.

13.	 In the Model Browser window, select GetUserDetails under the Function Imports
section. Right-click on it and select Edit.

Chapter 10

251

14.	 In the Edit Function Import dialog box, select Entities and choose tb_FileStorage:

15.	 Rename Form1.cs to UserDetails.cs.

Entity Framework Recipes

252

16.	 Open UserDetails.cs in the design mode. Design the form so that it looks similar
to the following screenshot:

17.	 Name the controls as detailed in the following table:

Control Name Description
Textbox txtUserID To enter the ID of the user

whose files need to be listed
Button btnSubmit To execute the logic for listing

the files
DataGridView dgvUserDetails To display the files

18.	 Double-click on btnShow to add a Click event handler.

19.	 In the event handler, add the following code:
int userID = Convert.ToInt32(txtUserID.Text);
using (CookBookEntities context = new CookBookEntities())
{
 var result = context.GetUserDetails(userID);

 dgvUserDetails.DataSource = result;
}

20.	 Run the application.

Chapter 10

253

21.	 Enter the user ID in the textbox and click on Submit. You will see the
following screen:

How it works...
The heavy lifting to map the method to the Table Valued Function of the database is done
by the Entity Framework in step 11. The function generated by the framework maps to a
complex entity type. However, we want to use the tb_FileStorage entity, which is
mapped to the tb_FileStorage table. Hence, in step 14, we chose the tb_FileStorage
entity. Once that mapping is done, calling the method with the value entered by the user
is pretty straightforward:

int userID = Convert.ToInt32(txtUserID.Text);
using (CookBookEntities context = new CookBookEntities())
{
 var result = context.GetUserDetails(userID);

 dgvUserDetails.DataSource = result;
}

The retrieved value is then assigned as data source to DataGridView.

Index
Symbols
@Html.ValidationMessage 221
.NET 5

A
AddOrRemove method 60
AddOrRemoveRows method 58
ADO.NET

used, for large file retrieving from SQL Server
134-138

used, for large file saving in MS SQL Server
129-133

Age property 120
anti-XSS library

used, for cross-site injection preventing
210-213

ApplicationSettings property 232
ASP.NET

about 105
advanced features 209

ASP.NET 4.5 105
ASPX page and Silverlight application com-

munication
implementing 119-127

asset data
presenting, Pivot control used 223-227

Asynchronous file I/O
about 33-37
using, for directory-to-directory copy 33-37

B
background threads

handling, in window forms 88-93
BeginInvoke method 93
Binary Large Objects. See BLOB
BLOB 129
Blog property 120
btnParse button 40
btnPing_Cick method 175
btnUpload_Click method 245

C
Click event 233
client-side storage

used, for registration data draft saving
231-233

client-side validation
implementing 218-221

collection size based rows
adding, table layout creating 52-57

commit 143
Connection property 246
connections

managing manually 244-246
ContactDetailsAdded event 51
ContinueWith method 104
CopyDirectoryAsync method 38
CopyToAsync method 38

256

Create, Retrieve, Update, and Delete. See
CRUD

cross-site injection
preventing, anti-XSS library used 210-213

Cross-site scripting. See XSS
CRUD 157, 240
custom attributes

about 22
creating 22-24
processing, via reflection 27-33
working 25-27

custom binding
implementing, in WCF 151-156

customBinding 177
custom validation attribute

creating, validation logic used 10-15
custom XML configuration files

modifying, DataSet used 145-149

D
data annotations 10
DataGridView

about 61-66
creating dynamically 61-66
working 67-70

data parallelism 100
DataSet

used, for custom XML configuration files modi-
fying 145-149

data shaping 196
DirectX

used, for video player creating 71-76
Dob property 120
DoRotate method 102
draft functionality 105
dynamic programming

used, for JSON accessing 38-43

E
Email property 120
entity

joining, LINQ used 236-239
Entity Framework

used, for file uploading 240-244
EventArgs class 46

event with generic values as payload
creating 46-52

exceptions
handling, FaultContract used 162-165
handling, FaultException used 162-165

F
FaultContract

used, for exception handling 162-165
FaultException

used, for exception handling 162-165
files

uploading, Stream used 166-170
FormatErrorMessage method 21

G
GenerateColumns method 69
GenerateTestData method 197
GetConstructors method 31
GetDefaultVideoCaptureDevice() method 230
GetDetails method 32
GetGoogleHtml method 215
GetProperty() method 33
GetUsers method 189
Google

used, for third-party user authentication
216-218

Google Map
about 213
adding, Map Helper used 213-215

H
HTML5 client storage

used, for user registration page draft saving
109-114

HTML5 controls
used, for user registration page creating

105-109
HtmlEncode method 213

I
ID property 120
InitializeComponent method 62
Invoke method 126
IsUsernameUnique method 9

257

J
JSON

accessing, dynamic programming used
38-43

K
key

delivery 42
order 42

L
LINQ

used, for entity joining 236-239
ListFiles method 97
live data shaper

using 196-198
working 199

Load from DB button 136
LoadUsers method 195
localized validation message

generating, XML used 16-19
localStorage property 113

M
MakeTransparent method 104
Map Helper

about 213
used, for Google Maps adding 213-215

MapUsers method 186
MediaElement

used, for videos playing 199-203
model 180
model pattern

implementing 180-184
working 185-187

Model-View-View Model. See MVVM
MS SQL Server

large files saving, ADO.NET used 129-133
MVVM 179

O
object binding

to controls, strongly-typed data controls used
114-119

Object Relational Mapping. See ORM
Operation property 60
ORM 235

P
parallelized bulk image processing operations

chaining 101-104
parallel programming

about 77
used, for bulk image processing speedup

98-101
Phone property 120
Pivot control

used, for asset data presentation 223-227
Plain Old CLR Object. See POCO
Play method 203
POCO 10
predicate feature 10
Producer-Consumer race condition

about 82
handling 83, 84
working 86-88

PropertyChanged event 189, 196
public static method 33

R
Read method 82
ReadXml method 148
RegisterScriptableObject method 126
RemoveRow method 58
Repository pattern

about 6, 180
implementing 180-184
used, for validation logic implementing 6-10
working 185-187

Representational State Transfer. See REST
RequestDeviceAccess() method 230
REST 157
REST WCF service

about 157
creating 157-159
working 161

Ribbon control
used, for video player control display 203-208

258

role-based security
used, for service securing 173-178

rollback 143

S
service

securing, role-based security used 173-178
setResult function 127
SetUser method 127
shared resource

about 78
creating 78, 79
working 80-82

Show On Map button 219
Silverlight 223
Silverlight and ASPX page application com-

munication
implementing 119-127

SQL Server
large files, retrieving from ADO.NET 134-138

StartBulkProcessing method 104
Stop() method 230
stored procedures

used, for file uploading 240-244
Stream

used, for files uploading 166-170
working 171, 172

strongly-typed data controls
used, for object binding to controls 114-119

T
table layout

Class Library project, using 52-57
creating 52, 57-61

TableLayoutPanel 52
table valued functions

about 247
using 247-253
working 253

task parallelism 100
TextMode values

txtAge 109
txtBlog 109
txtDob 109
txtEmail 109

txtPhone 109
third-party user authentication

Google, using 216-218
threading 77
threads, WPF

handling 93-96
working 96, 97

transactions
about 138
used, for database consistency maintenance

138-144

U
Upload method 172
UserName property 120
user registration page

creating, HTML5 controls used 105-109
user registration page draft

saving, HTML5 client storage used 109-114
Users property 191
utility 57

V
validation attribute

extending, for localization 19-22
validation logic

implementing, Repository pattern used 6-10
used, for custom validation attribute creating

10-15
ValueChanged event 74
video player

creating, DirectX used 71-76
Windows Forms used 71-76

video player controls
displaying, Ribbon control used 203-208

videos
playing, MediaElement used 199-203

View
commands, implementing 190-195
data, binding to 190-195

View Model. See VM
VM

about 187
implementing 187, 188
working 189

259

W
WCF

about 151
custom binding, implementing 151-156

webcams
about 227
accessing 227-229
working 230

Windows Communication Framework. See
WCF

Windows Forms
background threads, handling 88- 93
used, for video player creating 71-76

Windows Presentation Framework. See WPF
WPF

about 179
threads, handling 93-96

X
XML

used, for localized validation message
generation 16-19

XSS 210

Thank you for buying
.NET Framework 4.5 Expert Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Microsoft .NET 4.5 Quickstart
ISBN: 978-1-84968-698-3 Paperback: 210 pages

Over 50 simple but incredibly effective recipes to get
updated to exciting new features in .NET 4.5 Framework

1.	 Designed for the fastest jump into .NET 4.5, with a
clearly designed roadmap of progressive chapters
and detailed examples

2.	 A great and efficient way to get into .NET 4.5 and
not only understand its features but clearly know
how to use them, when, how and why

3.	 Covers Windows 8 XAML development, .NET Core
(with Async/Await & reflection improvements), EF
Code First & Migrations, ASP.NET, WF, and WPF

OData Programming
Cookbook for .NET
Developers
ISBN: 978-1-84968-592-4 Paperback: 376 pages

70 fast-track, example-driven recipes with clear
instructions and details for OData programming with
.NET Framework

1.	 Master OData programming concepts and skills by
implementing practical examples and apply them
in real-world scenarios

2.	 Find simple and handy means to resolve common
OData programming issues more effectively

3.	 Explore the new OData programming features in
latest and future versions of WCF Data Service

Please check www.PacktPub.com for information on our titles

Microsoft Silverlight 5 Data
and Services Cookbook
ISBN: 978-1-84968-350-0 Paperback: 662 pages

Over 100 practical recipes for creating rich, data-driven,
business applications in Silverlight 5

1.	 Design and develop rich data-driven business
applications in Silverlight and Windows Phone 7
following best practices

2.	 Rapidly interact with services and handle multiple
sources of data within Silverlight and Windows
Phone 7 business applications

3.	 Packed with practical, hands-on cookbook recipes,
illustrating the techniques to solve particular data
problems effectively within your Silverlight and
Windows Phone 7 business applications

MVVM Survival Guide for
Enterprise Architectures in
Silverlight and WPF
ISBN: 978-1-84968-342-5 Paperback: 490 pages

Eliminate unnecessary code by taking advantage of the
MVVM pattern—less code, fewer bugs

1.	 Build an enterprise application using Silverlight
and WPF, taking advantage of the powerful MVVM
pattern

2.	 Discover the evolution of presentation patterns—
by example—and see the benefits of MVVM in
the context of the larger picture of presentation
patterns

3.	 Customize the MVVM pattern for your projects’
needs by comparing the various implementation
styles

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
 Core .NET Recipes
	Introduction
	Implementing the validation logic using the Repository pattern
	Creating a custom validation attribute by extending the validation data annotation
	Using XML to generate a localized validation message
	Extending the validation attribute for localization
	Creating custom attributes
	Processing custom attributes via reflection
	Using asynchronous file I/O for
directory-to-directory copy
	Accessing JSON using dynamic programming

	Chapter 2
: Application Events and Windows Forms
	Introduction
	Creating an event that can have generic values as payload
	Creating a table layout that can dynamically
	add or remove rows based on the size of the collection
	Creating DataGridView dynamically
	Creating a video player using DirectX and Windows Forms

	Chapter 3
: Threading and Parallel Programming
	Introduction
	Creating a shared resource
	Handling Producer-Consumer race conditions
	Handling background threads in Windows Forms
	Handling threads in WPF
	Using parallel programming to make bulk image processing faster
	Chaining two parallelized bulk image processing operations

	Chapter 4
: ASP.NET Recipes – I
	Introduction
	Creating a user registration page using HTML5 controls
	Saving a draft of a user registration page using HTML5 client storage
	Binding objects to controls using
strongly-typed data controls
	Implementing communication between an ASPX page and a Silverlight application

	Chapter 5
: ADO.NET Recipes
	Introduction
	Saving large files (BLOB) in MS SQL Server using ADO.NET
	Retrieving large files (BLOB) from SQL Server using ADO.NET
	Using transactions to maintain database consistency when saving multiple files
	Using DataSet to modify custom XML configuration files

	Chapter 6
: WCF Recipes
	Introduction
	Implementing custom binding in WCF
	Creating a WCF REST service
	Handling exceptions using FaultContract and FaultException
	Uploading files using Stream
	Securing a service using role-based security

	Chapter 7
: WPF Recipes
	Introduction
	Implementing the Model and Repository pattern
	Implementing View Model
	Implementing View commands and binding data to View
	Using the live data shaper for live sorting
	Playing videos using MediaElement
	Using Ribbon control to display the video player controls

	Chapter 8
: ASP.NET Recipes – II
	Introduction
	Preventing cross-site injection using the anti-XSS library
	Adding Google Map functionality using Map Helper
	Third-party authentication of users using Google
	Implementing unobtrusive validation

	Chapter 9
: Silverlight Recipes
	Introduction
	Using Pivot control to present asset data
	Accessing webcams
	Using client-side storage for saving a draft of the user registration data

	Chapter 10 : Entity Framework Recipes
	Introduction
	Joining two entities using LINQ
	Uploading files using Entity Framework and stored procedures
	Managing connections manually for
long-running tasks
	Using functions that return tables as return values

	Index

