
Прасид Пай, Питер Абрахам

Реактивное программирование
на С++

 1 / 32

Praseed Pai, Peter Abraham

C++ Reactive
Programming

Design concurrent and asynchronous applications using
the RxCpp library and Modern C++17

BIRMINGHAM – MUMBAI

 2 / 32

Прасид Пай, Питер Абрахам

Реактивное
программирование

на С++

Проектирование параллельных и асинхронных приложений
с использованием библиотеки RxCpp и современного C++17

Москва, 2019

 3 / 32

УДК	 004.4
ББК	 32.973.202-018.2

П12

Пай П., Абрахам П.
П12	 Реактивное программирование на С++ / пер. с анг. В. Ю. Винника. – М.:

ДМК Пресс, 2019. – 324 с.: ил. 

ISBN 978-5-97060-778-7

В книге изложены понятия и принципы функционального реактивного программи-
рования, помогающие строить параллельные, асинхронные приложения с наименьшими
усилиями и минимумом ошибок. Реактивное программирование – парадигма програм-
мирования, ориентированная на потоки данных и распространение изменений, это путь
для лёгкого создания пользовательских интерфейсов, анимации или моделирования
систем, изменяющихся во времени.

Всесторонне рассмотрена библиотека RxCpp, описана разработка реактивных микро-
сервисов на C++, а также использование библиотеки Qt/C++ в реактивном стиле. Изучив
эту книгу, вы будете хорошо разбираться в тонкостях реактивной модели программиро-
вания и методах её реализации на новейшей версии стандарта C++17.

Издание предназначено для разработчиков С++, желающих получить максимум
эффективности от своих приложений.

УДК  004.4
ББК  32.973.202-018.2

Authorized Russian translation of the English edition of C++ Reactive Programming ISBN
9781788629775 © 2018 Packt Publishing.

This translation is published and sold by permission of Packt Publishing, which owns or
controls all rights to publish and sell the same.

Все права защищены. Любая часть этой книги не может быть воспроизведена в ка-
кой бы то ни было форме и какими бы то ни было средствами без письменного разрешения
владельцев авторских прав.

ISBN 978-1-78862-977-5 (анг.)	 © 2018 Packt Publishing
ISBN 978-5-97060-778-7 (рус.)	 ©  Оформление, издание, перевод, ДМК Пресс, 2019

 4 / 32

Содержание

Над книгой работали...11

Предисловие...12

Глава 1. Модель реактивного программирования –
обзор и история...17
Событийно-ориентированная модель программирования...............................18

Событийно-ориентированное программирование в системе X Window......19
Событийно-ориентированное программирование в среде Microsoft
Windows..20
Событийно-ориентированное программирование в каркасе Qt..................22
Событийно-ориентированное программирование средствами
библиотеки MFC..23
Прочие модели событийно-управляемого программирования....................24
Ограничения классических моделей обработки событий..............................24

Реактивная модель программирования..25
Ключевые интерфейсы реактивной программы..26
Методы вталкивания и втягивания данных..28

Дуальность интерфейсов IEnumerable и IObservable......................................28
Превращение событий в наблюдаемый источник..31
Методологические замечания..36
Итоги..37

Глава 2. Современный язык C++ и его ключевые идиомы............39
Принципы проектирования языка C++..40

Абстракция нулевой стоимости...40
Выразительность...40
Взаимозаменяемость..43

Усовершенствования языка, повышающие качество кода.................................44
Автоматический вывод типов..44
Единообразный синтаксис инициализации..46
Вариадические шаблоны..46
Ссылки rvalue...48
Семантика перемещения..50
Умные указатели...52
Лямбда-функции...54
Функциональные объекты и лямбда-функции...55

 5 / 32

6    Содержание

Композиция, карринг и частичное применение функций.............................57
Обёртки над функциями...60

Операция композиции функций..61
Прочие возможности языка..63

Выражения-свёртки..63
Сумма типов: тип variant..64
Прочее..65

Циклы по диапазонам и наблюдатели...65
Итоги..69

Глава 3. Параллельное и многопоточное
программирование на языке C++...70
Что такое параллельное программирование...71
Здравствуй, мир потоков!...72
Управление потоками...74

Запуск потока...74
Присоединение к потоку...75
Передача аргументов в поток...77

Использование лямбда-функций...79
Управление владением...80

Совместный доступ потоков к данным..82
Двоичные семафоры...84
Предотвращение тупиков...87
Условные переменные..91

Потокобезопасный стек..93
Итоги..96

Глава 4. Асинхронное программирование
и неблокирующая синхронизация в языке C++.................................98
Асинхронные задачи в языке C++..99

Фьючерсы и обещания..100
Класс std::packaged_task..102
Функция std::async..104

Модель памяти в языке C++..106
Параллельный доступ к памяти...106
Соглашение о порядке модификации памяти..107
Атомарные операции и типы в языке C++...108
Атомарные типы..108

Тип std::atomic_flag..111
Тип std::atomic<bool>..113
Тип std::atomic<T*> и арифметика указателей...116
Общий случай шаблона std::atomic<>..117

Порядок доступа к памяти..118
Последовательно согласованный порядок доступа......................................119

 6 / 32

Содержание    7

Результат : последовательная согласованность...120
Семантика захвата и освобождения..120
Ослабленный порядок доступа к памяти..122

Неблокирующая очередь...124
Итоги..126

Глава 5. Знакомство с наблюдаемыми источниками.....................127
Шаблон «Наблюдатель»...128
Ограниченность классического шаблона «Наблюдатель»................................131
Обобщённый взгляд на шаблоны проектирования..133
Объектно-ориентированная модель программирования и иерархии............135
Обработка выражений с помощью шаблонов «Композит» и «Посетитель»......136
Разглаживание многоуровневых композитов для итеративного доступа......142
Операции отображения и фильтрации списков..146
От наблюдателей к наблюдаемым источникам..149
Итоги..153

Глава 6. Введение в программирование потоков
событий на языке C++...155
Что такое программирование потоков данных...156

Преимущества модели программирования потоков данных......................157
Прикладное программирование с использованием библиотеки Streams......157
Ленивые вычисления..158

Пример программы для обработки потока данных......................................159
Агрегирование значений в парадигме потоков данных..............................160
Погружение стандартных контейнеров в парадигму потоков данных.......160
Несколько слов о библиотеке Streams..161

Программирование потоков событий...162
Преимущества программирования на основе потоков событий.................162
Библиотека Streamulus и её программная модель..162
Библиотека Spreadsheet для оповещения об изменениях данных..............168
Библиотека RaftLib – ещё один инструмент обработки потоков данных......170
Потоки данных и реактивное программирование.......................................172

Итоги..173

Глава 7. Знакомство с моделью маршрутов данных
и библиотекой RxCpp..174
Парадигма маршрутов данных...175
Знакомство с библиотекой RxCpp..176

Библиотека RxCpp и её модель программирования.....................................177
Простой пример взаимодействия источника с наблюдателем....................178
Фильтрация и преобразование потоков данных..178

 7 / 32

8    Содержание

Создание потока из контейнера...179
Создание собственных наблюдаемых источников...179

Конкатенация потоков..180
Отписка от потока данных..180

Визуальное представление потоков данных...181
Операции над потоками данных..181

Операция average...182
Операция scan..182
Соединение операций в конвейер...183
Работа с планировщиками..183
Сага о двух операциях: как разглаживать потоки потоков..........................186
Прочие важные операции...191

Беглый взгляд на ещё не изученное...192
Итоги..193

Глава 8. Ключевые элементы библиотеки RxCpp............................194
Наблюдаемые источники данных..194

Что такое объект-производитель...195
Горячие и холодные источники данных..195
Горячие источники данных..196
Горячие источники данных и механизм повтора...198

Наблюдатели и подписчики..199
Единство наблюдаемого и наблюдателя..200
Планировщики...203

Методы observe_on и subscribe_on..206
Планировщик с циклом выполнения run_loop..208

Операции над потоками данных..209
Операции создания потоков...210
Операции преобразования данных...210
Операции фильтрации..211
Операции комбинирования данных..212
Операции обработки ошибок...212
Вспомогательные операции...212
Логические операции..213
Математические операции и агрегирование потоков..................................213
Операции для управления подключениями...213

Итоги..214

Глава 9. Реактивное программирование графических
интерфейсов на основе каркаса Qt...215
Введение в программирование интерфейсов пользователя на основе
каркаса Qt...216

 8 / 32

Содержание    9

Объектная модель библиотеки Qt..217
Сигналы и слоты..218
Подсистема событий...220
Обработчики событий...221
Отправка событий...221
Система метаобъектов..222

Программа «Здравствуй, мир» на основе библиотеки Qt.................................222
События, сигналы и слоты на примере..225

Создание собственного визуального объекта...225
Создание главного диалогового окна приложения.......................................227
Запуск приложения...231

Интеграция библиотек RxCpp и Qt...232
Реактивная фильтрация событий из каркаса Qt...233
Создание окна и размещение его элементов..235
Наблюдатели для различных типов событий..236
Знакомство с библиотекой RxQt...238

Итоги..241

Глава 10. Шаблоны и идиомы реактивного
программирования на языке С++...242
Объектно-ориентированное программирование и шаблоны
проектирования...242
Основные каталоги шаблонов..244

Шаблоны «Банды четырёх»...244
Каталог POSA...245

Ещё раз о шаблонах проектирования..246
От шаблонов проектирования к реактивному программированию...............248
Разглаживание иерархии и линейный проход..254
От итераторов к наблюдаемым источникам...256
Шаблон «Ячейка»...257
Шаблон «Активный объект»..260
Шаблон «Ресурс взаймы»..262
Шаблон «Шина событий»..263
Итоги..267

Глава 11. Реактивные микросервисы на языке C++.......................268
Язык C++ и веб-программирование...269

Модель программирования REST...269
Библиотека REST SDK для языка C++...270

Программирование HTTP-клиента с использованием
библиотеки C++ REST SDK...270
Программирование HTTP-сервера...272

Тестирование HTTP-сервера с помощью утилит curl и postman.....................275

 9 / 32

10    Содержание

Создание HTTP-клиента с помощью библиотеки libcurl..............................276
Реактивная библиотека-обёртка RxCurl..277

Использование формата JSON с протоколом HTTP..278
Использование библиотеки C++ REST SDK для создания сервера...................282
Обращение к REST-сервисам с помощью библиотеки RxCurl..........................290
Несколько слов об архитектуре реактивных микросервисов...........................292

Мелкоблочные сервисы...293
Разнородное хранение данных..294
Независимое развёртывание сервисов..294
Оркестровка и хореография сервисов..295
Реактивный стиль запросов к веб-сервисам...295

Итоги..295

Глава 12. Особые возможности потоков и обработка
ошибок...297
Средства обработки ошибок в библиотеке RxCpp...300

Выполнение действия в ответ на ошибку..300
Восстановление после ошибки...302
Обработка ошибки путём перезапуска источника данных..........................305
Автоматическое выполнение завершающих действий в случае
ошибки...307

Обработка ошибок и планировщики...308
Примеры обработки потоков событий..313

Агрегирование потоков данных...313
Событийно-управляемое приложение..315

Итоги..319

 10 / 32

Над книгой работали

Авторы
Прасид Пай работает в индустрии программного обеспечения на протяже-
нии 25 лет. Начинал с системного программирования в среде MS DOS на языке
ANSI C. Принимал активное участие в разработке крупных кроссплатформен-
ных систем на языке C++ для систем Windows, GNU Linux и macOS. Обладает
опытом применения технологий COM+ и CORBA на языке C++. В последнее де-
сятилетие работает с языком Java и платформой .Net.

Выступил основным разработчиком компилятора с языка SLANG4.net, пер-
воначально написанного на языке C#, а затем портированного на язык C++
с использованием системы LLVM. Соавтор книги «.NET Design Patterns» («Шаб
лоны проектирования для платформы .NET»), вышедшей в издательстве Packt
Publishing.

Питер Абрахам стал приверженцем языка программирования C++ и пыл-
ким борцом за производительность кода со времён своей учёбы в колледже,
где он достиг высот в программировании для операционных систем Windows
и GNU Linux. Он обогатил свой опыт программированием для архитектуры
CUDA, обработкой изображений, компьютерной графикой, работая в таких
компаниях, как Quest Global, Siemens и Tektronics.

В своей профессиональной деятельности Питер постоянно использует по-
следние нововведения языка C++ и библиотеку RxCpp. Он обладает большим
опытом работы с инструментами разработки кроссплатформенных графиче-
ских приложений, такими как Qt, WxWidgets и FOX toolkit.

Рецензент
Сумант Тамбе – разработчик программного обеспечения, исследователь,
участник разработки с открытым кодом, блогер, докладчик на различных
конференциях, автор многочисленных статей и любитель компьютерных игр.
Опытен в применении современного языка C++, брокера сообщений Kafka,
различных служб распространения данных, методологии реактивного про-
граммирования и потоков данных для решения новых задач, возникающих
в области больших данных и интернета вещей.

Автор блога «C++ Truths» («Истины о языке C++») и вики-книги «More C++
Idioms» («Ещё идиомы программирования на языке C++»). Делится своими
знаниями в блоге, на конференциях, семинарах и встречах профессиональ-
ного сообщества. Удостаивался звания Microsoft MVP в области технологий
разработки программ на протяжении пяти лет. Имеет докторскую степень по
компьютерным наукам в университете Вандербильта.

 11 / 32

Предисловие

Эта книга поможет читателю овладеть парадигмой реактивного программи-
рования на языке C++ и создавать асинхронные и многопоточные приложения.
Книга включает в себя задачи, взятые из реальной практики, которые чита-
телю предстоит решать с помощью реактивной модели программирования.
Здесь освещен долгий путь становления средств обработки событий. Читатель
узнает о поддержке параллельного программирования в языке C++ и о функ-
циональном реактивном программировании. Описанные в книге конструкции
на базе объектно-ориентированного и функционального программирования
позволят читателю создавать эффективные программы. Наконец, читатель
узнает о программировании микросервисов на языке C++ и научится создавать
собственные операции для библиотеки RxCpp.

Для кого предназначена эта книга
Разработчик, программирующий на языке C++ и интересующийся применени-
ем реактивного программирования для создания асинхронных и параллель-
ных приложений, найдёт эту книгу чрезвычайно интересной. От читателя не
требуется наличие каких-либо знаний реактивного программирования.

Что охватывает эта книга
В главе 1 «Модель реактивного программирования – обзор и история» вводят-
ся некоторые структуры данных, ключевые для реактивной модели програм-
мирования (для краткости – Rx). В ней речь идёт также об обработке событий
в графических интерфейсах пользователя, дан общий обзор реактивного про-
граммирования, рассказано о реализации графических версий различных ви-
дов интерфейса на основе библиотеки классов MFC.

В главе 2 «Современный язык C++ и его ключевые идиомы» рассказано
о тонкостях языка C++, о правилах вывода типов, шаблонах с переменным чис-
лом аргументов, ссылках rvalue и семантике перемещения, лямбда-функциях,
основах функционального программирования, соединении операций в кон-
вейер, а также о том, как реализовать итератор и наблюдателя.

Глава 3 «Параллельное и многопоточное программирование на языке C++»
содержит сведения о средствах многопоточного программирования, включён-
ных в стандарт языка C++. Читатель узнает, как запустить поток и управлять
им, а также о различных тонкостях стандартной библиотеки, связанных с этим.
Эта глава представляет собой хорошее введение в средства поддержки много-
поточности, появившиеся в новом стандарте языка C++.

 12 / 32

Что охватывает эта книга    13

В главе 4 «Асинхронное программирование и неблокирующая синхрониза-
ция в языке C++» рассказано о средствах, предоставляемых стандартной биб
лиотекой для организации параллельных вычислений на основе задач. Также
в ней говорится о появившейся в современном языке C++ модели памяти для
многопоточного программирования.

В главе 5 «Знакомство с наблюдаемыми источниками» говорится об одном
из шаблонов проектирования «Банды четырёх» – шаблоне «Наблюдатель»
и о его недостатках. Читатель узнает о шаблонах проектирования «Компонов-
щик» и «Посетитель» в контексте моделирования дерева синтаксического раз-
бора выражения.

В главе 6 «Введение в программирование потоков событий на языке C++»
внимание сосредоточено на программировании потоков событий. Также рас-
сматривается библиотека Streamulus, в которой реализован подход к обработке
потоков событий на основе встраиваемых предметно-ориентированных язы-
ков (англ. Domain-Specific Embedded Language, DSEL). Изложение сопровож
дается рядом примеров программ.

Глава 7 «Знакомство с моделью потоков данных и библиотекой RxCpp» от-
крывается общим обзором вычислительной парадигмы на основе потоков
данных, затем показаны основы создания программ с помощью библиотеки
RxCpp. Читатель изучит набор операций, предоставляемых этой библиотекой.

Глава 8 «Ключевые элементы библиотеки RxCpp» даёт представление о том,
как средства библиотеки RxCpp взаимодействуют между собой. Глава открыва-
ется разбором объектов наблюдения (Observable), далее описаны механизм
подписки и реализация расписания.

Глава 9 «Реактивное программирование графических интерфейсов с помощью
библиотеки Qt» посвящена применению парадигмы реактивного программиро-
вания для создания графических интерфейсов пользователя на основе библио
теки Qt. Читатель узнает о концептуальной основе библиотеки Qt, об иерар-
хии её классов, системе метаобъектов, а также о механизме сигналов и слотов.
В качестве примера создаётся приложение, обрабатывающее события от мыши
и фильтрующее их. Затем читателю предстоит знакомство с более сложной те-
мой – как создавать собственные реактивные операции средствами библиоте-
ки RxCpp, если имеющихся в ней операций не хватает для той или иной задачи.
Знание этих аспектов также поможет понять, как создавать композитные опе-
рации, состыковывая уже имеющиеся. Последняя тема в данной книге не осве-
щается, подробную информацию можно найти по адресу https://www.packtpub.
com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf.

Глава 10 «Шаблоны и идиомы для реактивного программирования на языке
C++» погружает читателя в чудесный мир шаблонов проектирования и идиом
языка программирования. Изложение начинается с шаблонов «Банды четы-
рёх», затем разобраны шаблоны, специфические для реактивного программи-
рования.

В главе 11 «Реактивные микросервисы на языке C++» показано, как реактив-
ная модель программирования может использоваться для создания реактив-

 13 / 32

https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf

14    Предисловие

ных микросервисов на языке C++. Читатель узнает о наборе средств разработки
Microsoft C++ REST SDK и связанной с ним модели программирования.

Глава 12 «Особые возможности потоков и обработка ошибок» посвящена
средствам обработки ошибок из библиотеки RxCpp, а также некоторым слож-
ным конструкциям и операциям для обработки потоков событий. Рассказано,
как продолжать поток событий после возникновения ошибки, как ожидать,
пока источник потока исправляет ошибочное состояние, и возобновлять об-
работку и как работают обобщённые операции, способные обрабатывать как
ошибочные, так и нормальные ситуации.

Как извлечь из этой книги максимум пользы
Для понимания большинства вопросов, рассматриваемых в этой книге, чита-
телю необходимо владеть программированием на языке C++.

Загрузка исходного кода примеров
Файлы с исходным кодом примеров программ можно найти на сайте www.
packtpub.com. Покупатель этой книги может посетить страницу www.packtpub.
com/support, зарегистрироваться и получить файлы по электронной почте на
свой адрес.

Для загрузки файлов нужно выполнить следующие шаги.
1.	 Войти или зарегистрироваться на сайте www.packtpub.com.
1.	 Перейти по ссылке Support.
2.	 Щёлкнуть по ссылке Code Downloads & Errata.
3.	� Ввести английское название книги в поле Search и выполнить дальней-

шие инструкции на сайте.
Когда файлы получены, нужно распаковать их с помощью последних версий

архиваторов:
�� WinRAR или 7-Zip для ОС Windows;
�� Zipeg, iZip или UnRarX для системы Mac;
�� 7-Zip или PeaZip для системы Linux.

Исходный код всех примеров к этой книге также можно найти в системе
GitHub по адресу https://github.com/PacktPublishing/CPP-Reactive-Programming.
Возможные обновления этих примеров будут публиковаться в этом же репо-
зитории.

По адресу https://github.com/PacktPublishing/ можно также найти обширные
репозитории с примерами и к другим книгам и видеолекциям. Рекомендуем
читателю ознакомиться с ними.

Как загрузить цветные иллюстрации
Издательство также предоставляет файл в формате PDF, в котором собраны
цветные рисунки, снимки экрана, диаграммы и другие иллюстрации к этой

 14 / 32

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/

Принятые в тексте соглашения    15

книге. Их можно загрузить по адресу https://www.packtpub.com/sites/default/
files/downloads/CPPReactiveProgramming_ColorImages.pdf.

Принятые в тексте соглашения
На протяжении всей книги текст оформлен с использованием следующих со-
глашений.

Код_в_тексте: таким шрифтом набраны размещённые в основном тексте эле-
менты исходного кода, имена таблиц баз данных, имена директорий и файлов,
расширения имён файлов, пути к файлам, адреса сетевых ресурсов, пользова-
тельский ввод, идентификаторы пользователей в сети Twitter и т. д. Пример
использования: «Приведённый выше фрагмент кода инициализирует объект
структурного типа WNDCLASS (или WNDCLASSEX на новых системах) нужным шабло-
ном окна».

Самостоятельные фрагменты кода, вынесенные в отдельный абзац, оформ-
лены следующим образом:
/* закрыть соединение с сервером */
XCloseDisplay(display);

return 0;
}

Если нужно обратить внимание читателя на определённую часть кода, она
набирается полужирным шрифтом.
/* закрыть соединение с сервером */
XCloseDisplay(display);

return 0;
}

Всё, что вводится или выводится в консоли, передано в книге следующим
образом:
$ mkdir css
$ cd css

Полужирным начертанием отмечены новые термины, важные слова и текст,
отображаемый программой на экране. Например, таким способом показаны
пункты меню и сообщения в диалоговых окнах. Пример использования: «На
жаргоне оконного программирования это называется циклом обработки со-
общений».

	 Так будут оформляться предупреждения и важные примечания.

	 Так будут оформляться советы или рекомендации.

 15 / 32

https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf

16    Предисловие

Отзывы и пожелания
Мы всегда рады отзывам наших читателей. Расскажите нам, что вы думаете об
этой книге – что понравилось или, может быть, не понравилось. Отзывы важны
для нас, чтобы выпускать книги, которые будут для вас максимально полезны.

Вы можете написать отзыв прямо на нашем сайте www.dmkpress.com, зайдя
на страницу книги и оставив комментарий в разделе «Отзывы и рецензии».
Также можно послать письмо главному редактору по адресу dmkpress@gmail.
com, при этом напишите название книги в теме письма.

Если есть тема, в которой вы квалифицированы, и вы заинтересованы в на-
писании новой книги, заполните форму на нашем сайте по адресу http://dmk-
press.com/authors/publish_book/ или напишите в издательство по адресу www.
dmkpress.com.

Список опечаток
Хотя мы приняли все возможные меры, для того чтобы удостовериться в ка-
честве наших текстов, ошибки все равно случаются. Если вы найдете ошибку
в одной из наших книг — возможно, ошибку в тексте или в коде, — мы будем
очень благодарны, если вы сообщите нам о ней. Сделав это, вы избавите дру-
гих читателей от расстройств и поможете нам улучшить последующие версии
данной книги.

Если вы найдете какие-либо ошибки в коде, пожалуйста, сообщите о них
главному редактору по адресу www.dmkpress.com, и мы исправим это в следу-
ющих тиражах.

Нарушение авторских прав
Пиратство в интернете по-прежнему остается насущной проблемой. Изда
тельства «ДМК Пресс» и Packt очень серьезно относятся к вопросам защиты
авторских прав и лицензирования. Если вы столкнетесь в интернете с неза-
конно выполненной копией любой нашей книги, пожалуйста, сообщите нам
адрес копии или веб-сайта, чтобы мы могли принять меры.

Пожалуйста, свяжитесь с нами по адресу электронной почты www.dmkpress.
com со ссылкой на подозрительные материалы.

Мы высоко ценим любую помощь по защите наших авторов, помогающую
нам предоставлять вам качественные материалы.

 16 / 32

http://www.dmkpress.com
mailto:dmkpress%40gmail.com?subject=
mailto:dmkpress%40gmail.com?subject=
http://dmkpress.com/authors/publish_book/
http://dmkpress.com/authors/publish_book/
http://www.dmkpress.com
http://www.dmkpress.com
http://www.dmkpress.com
http://www.dmkpress.com
http://www.dmkpress.com

Глава 1
Модель реактивного
программирования –

обзор и история

Появление систем X Window System, Microsoft Windows и IBM OS/2 Presentation
Manager сделало популярным программирование графических интерфейсов
для платформы PC. Это стало большим шагом вперёд по сравнению с преоб-
ладавшим ранее интерфейсом командной строки и подходом к программиро-
ванию, ориентированным на пакетную обработку. Реагирование на событие
оказалось в центре внимания программистов по всему миру, тогда как раз-
работчики платформ принялись за создание прикладных программных ин-
терфейсов, с помощью которых программисты могли бы обрабатывать собы-
тия, – низкоуровневых, в духе языка C, использующих указатели на функции
обратного вызова. Модели программирования при этом основывались в основ-
ном на модели кооперирующихся потоков, а по мере появления более совер-
шенных микропроцессоров большинство платформ стало поддерживать также
и вытесняющую многопоточность. Обработка событий (как и другие асинхрон-
ные задачи) становилась всё сложнее, и традиционные подходы к реагирова-
нию программ на события всё менее поддавались масштабированию. Несмотря
на то что появлялись превосходные инструменты для создания графических
интерфейсов, основанные на языке C++, для обработки событий по-прежнему
использовались числовые коды сообщений, диспетчеризация через указатели
на функции и другие низкоуровневые технологии. Ведущие разработчики ком-
пиляторов даже пытались добавлять свои расширения в язык C++, чтобы об-
легчить программирование в среде Windows. Обработка событий, асинхронные
вычисления и другие подобные задачи требовали новых подходов. К счастью,
современный стандарт языка C++ поддерживает функциональную парадигму
программирования, содержит средства управления потоками вместе с подхо-
дящей моделью памяти и улучшенные средства управления памятью, что по-
зволяет программистам работать с асинхронными потоками данных, в част-
ности трактовать события как потоки. Всё это достигается благодаря модели

 17 / 32

18    Модель реактивного программирования – обзор и история

программирования, называемой реактивным программированием. Чтобы по-
казать общую картину явления, осветим в этой главе следующие вопросы:

�� событийно-ориентированная модель программирования и её реализа-
ции на различных платформах;

�� что собой представляет реактивное программирование;
�� различные модели реактивного программирования;
�� разбор нескольких простых программ для закрепления понимания ос-

новных понятий;
�� методология, принятая в данной книге.

Событийно-ориентированная модель программирования
Событийно-ориентированное программирование – это такая модель програм-
мирования, в которой ход выполнения программы определяется событиями.
Примерами событий могут быть нажатия на кнопку мыши, нажатия клавиш
на клавиатуре, жесты на сенсорном экране, сигналы от датчиков, сообщения от
других программ и т. д. Событийно-ориентированное приложение основано на
механизмах, позволяющих обнаружить события в реальном масштабе времени
(или близко к тому) и отвечать, реагировать на них, вызывая подходящие про-
цедуры – обработчики событий. Поскольку большинство ранних программ, обра-
батывающих события, было написано на языках C и C++, для организации обра-
ботчиков в них применялись низкоуровневые технологии наподобие указателей
на функции обратного вызова. Более поздние системы, такие как Visual Basic,
Delphi и другие среды быстрой разработки приложений, содержали уже встро-
енные средства событийно-ориентированного программирования. Чтобы отчёт-
ливее показать предмет, сделаем краткий обзор механизмов обработки событий
в нескольких различных платформах. Это поможет читателю лучше понять круг
проблем, для решения которых предназначены реактивные модели программи-
рования (в контексте разработки графических интерфейсов пользователя).

	 В реактивном программировании данные рассматриваются как потоки, а события в си-
стемах оконного интерфейса могут рассматриваться как потоки, разнородные элементы
которых должны обрабатываться единообразно. Реактивная модель программирования
предоставляет средства для сбора событий из разных источников в поток, фильтрации
потоков, различных преобразований над потоками, выполнения тех или иных действий
над элементами потоков и т. д. Эта модель программирования содержит в своей основе
средства асинхронной обработки и управление расписанием асинхронных действий.
В этой главе в основном рассматриваются ключевые структуры данных, характерные
для реактивного программирования, и то, как создавать простейшие реактивные про-
граммы. Реальным реактивным программам внутренне присущ асинхронный принцип
работы, тогда как примеры из этой главы работают синхронно. Прежде чем переходить
к асинхронному порядку выполнения и управлению расписанием, предстоит сперва
объяснить ряд теоретических принципов и соответствующих языковых конструкций, это
будет сделано в следующих главах. Примеры из данной главы служат только для перво-
начального знакомства с предметом и представляют лишь учебный интерес.

 18 / 32

Событийно-ориентированная модель программирования    19

Событийно-ориентированное программирование
в системе X Window
Система X Window представляет собой кроссплатформенный интерфейс при-
кладного программирования, поддерживается главным образом в системах,
отвечающих стандарту POSIX, а также перенесена в систему Microsoft Windows.
Фактически программный интерфейс X представляет собой сетевой протокол
оконного графического ввода-вывода, которому требуется оконный менеджер,
управляющий совокупностью окон. Клиентское приложение формирует гра-
фические образы, а X-сервер отвечает за их отображение на экране конкрет-
ной машины. В персональных настольных системах, как правило, графический
клиент и сервер работают локально, на одной и той же машине. Следующая
программа поможет читателю понять дух модели программирования, лежа-
щей в основе библиотеки XLib, и присущий ей способ обработки событий.
#include <X11/Xlib.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 Display *display;
 Window window;
 XEvent event;
 char *msg = "Hello, World!";
 int s;

В этом фрагменте кода подключены необходимые заголовочные файлы,
в которых содержатся прототипы функций, предоставляемых библиотекой
XLib для языка C. Создавая программы на основе одной лишь библиотеки XLib,
программисту нужно иметь дело с некоторыми специфическими структура-
ми данных. В наше время, впрочем, для создания коммерческих программных
продуктов чаще всего используют такие высокоуровневые библиотеки-обёрт-
ки, как Qt, WxWidgets, Gtk+ или Fox.
 /* open connection with the server */
 display = XOpenDisplay(NULL);
 if (display == NULL){
 fprintf(stderr, "Cannot open display\n");
 exit(1);
 }
 s = DefaultScreen(display);
 /* create window */
 window = XCreateSimpleWindow(display,
 RootWindow(display, s), 10, 10, 200, 200, 1,
 BlackPixel(display, s), WhitePixel(display, s));

 /* select kind of events we are interested in */

 19 / 32

20    Модель реактивного программирования – обзор и история

 XSelectInput(display, window, ExposureMask | KeyPressMask);

 /* map (show) the window */
 XMapWindow(display, window);

В этом фрагменте кода инициализируется соединение с графическим серве-
ром, затем создаётся окно с заданными параметрами. Как правило, програм-
мы в среде X Window работают под управлением оконного менеджера, кото-
рый управляет взаимным расположением окон. Мы выбрали интересующие
нашу программу типы сообщений, вызвав функцию XSelectInput, перед тем как
отобразить окно.
 /* event loop */
 for (;;)
 {
 XNextEvent(display, &event);

 /* draw or redraw the window */
 if (event.type == Expose)
 {
 XFillRectangle(display, window,
 DefaultGC(display, s), 20, 20, 10, 10);
 XDrawString(display, window,
 DefaultGC(display, s), 50, 50, msg, strlen(msg));
 }
 /* exit on key press */
 if (event.type == KeyPress)
 break;
 }

Затем программа входит в бесконечный цикл, в котором запрашивает оче-
редное событие, а соответствующая функция из библиотеки XLib отображает
в окне текстовую строку. На жаргоне оконного программирования это назы-
вается циклом обработки сообщений. Для получения очередного события ис-
пользуется функция XNextEvent.
 /* close connection to server */

 XCloseDisplay(display);
 return 0;
}

Покинув «бесконечный» цикл обработки сообщений, программа закрывает
соединение с графическим сервером.

Событийно-ориентированное программирование
в среде Microsoft Windows
Корпорация Microsoft разработала модель программирования графических
интерфейсов пользователя, которую можно считать наиболее успешной окон-
ной системой в мире. Третья версия системы Windows имела ошеломительный

 20 / 32

Событийно-ориентированная модель программирования    21

успех в 1990 г., и фирма Microsoft продолжила его развивать в версиях Windows
NT, Windows 95, 98, ME. Рассмотрим в общих чертах модель событийно-ориен-
тированного программирования в системе Microsoft Windows (за подробной
информацией о том, как работает эта модель, можно обратиться к документа-
ции фирмы Microsoft). Следующий пример поможет понять суть программи-
рования в среде Windows на языках C и C++.
#include <windows.h>
//----- Prtotype for the Event Handler Function
LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
//--------------- Entry point for a Idiomatic Windows API function
int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)
{

 MSG msg = { 0 };
 WNDCLASS wc = { 0 };
 wc.lpfnWndProc = WndProc;
 wc.hInstance = hInstance;
 wc.hbrBackground = (HBRUSH)(COLOR_BACKGROUND);
 wc.lpszClassName = "minwindowsapp";
 if (!RegisterClass(&wc))
 return 1;

Приведённый выше фрагмент кода инициализирует объект структурно-
го типа WNDCLASS (или WNDCLASSEX на новых системах) нужным шаблоном окна.
Самое важное в этой структуре – это поле lpfnWndProc, в нём находится адрес
функции, посредством которой экземпляр окна отвечает на события.
 if (!CreateWindow(wc.lpszClassName,
 "Minimal Windows Application",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 0, 0, 640, 480, 0, 0, hInstance, NULL))
 return 2;

Вызов функции CreateWindow (или CreateWindowEx на новых версиях ОС Win-
dows) создаёт окно на основе оконного класса с именем, взятым из параметра
WNDCLASS.lpszClassname.
 while (GetMessage(&msg, NULL, 0, 0) > 0)
 DispatchMessage(&msg);
 return 0;
}

Этот блок кода запускает цикл, в который берёт из очереди новые сообще-
ния до тех пор, пока не будет получено сообщение WM_QUIT. Сообщение WM_QUIT
завершает цикл. В некоторых случаях их необходимо также подвергнуть не-
которой предварительной обработке, перед тем как передавать их функции
DispatchMessage. Наконец, системная функция DispatchMessage вызывает окон-
ную функцию обратного вызова, адрес которой был ранее передан через поле
lpfnWndProc.

 21 / 32

22    Модель реактивного программирования – обзор и история

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam) {
 switch (message) {
 case WM_CLOSE:
 PostQuitMessage(0); break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 }
 return 0;
}

Показанный выше фрагмент кода представляет собой минимальную функ-
цию обратного вызова (в англоязычной литературе – callback). Обратившись
к документации фирмы Microsoft, можно узнать больше о прикладном интер-
фейсе программирования в среде Windows и о том, как события обрабатыва-
ются в программах.

Событийно-ориентированное программирование в каркасе Qt
Каркас Qt представляет собой кроссплатформенный и многоплатформенный
инструментарий профессиональной разработки программ, включая разработ-
ку графических интерфейсов пользователя, который работает в средах Win-
dows, GNU Linux, macOS X и в других системах семейства Mac. Этот инстру-
ментарий поддерживает также встроенные системы и мобильные устройства.
Модель программирования на языке C++ в этом каркасе основана на исполь-
зовании специального инструмента, называемого метаобъектным компи-
лятором (англ. Meta Object Compiler, MOC); он просматривает исходный код
в поисках директив (особых макросов и расширений языка), помещённых
в исходный код, и определённым образом генерирует вспомогательный ис-
ходный код, отвечающий за обработку событий. Таким образом, перед тем как
компилятор языка C++ получит исходный код, этот код должен пройти сквозь
инструмент MOC, который сгенерирует код, отвечающий стандарту ANSI C++
и не содержащий языковых конструкций, специфических для системы Qt. Бо-
лее подробные сведения можно почерпнуть из документации по каркасу Qt.
Следующая простая программа демонстрирует ключевые моменты програм-
мирования в каркасе Qt и присущую ему логику обработки событий.
#include <qapplication.h>
#include <qdialog.h>
#include <qmessagebox.h>
#include <qobject.h>
#include <qpushbutton.h>

class MyApp : public QDialog {
 Q_OBJECT
public:
 MyApp(QObject* /*parent*/ = 0):
 button(this)
 {

 22 / 32

Событийно-ориентированная модель программирования    23

 button.setText("Hello world!");
 button.resize(100, 30);
 // When the button is clicked, run button_clicked
 connect(&button,
 &QPushButton::clicked, this, &MyApp::button_clicked);
 }

Макрос Q_OBJECT указывает метаобъектному компилятору сгенерировать
таблицу диспетчеризации события (Event Dispatch). Когда источник событий
подключается к приёмнику, в эту таблицу вставляется новая строка. Сгенери-
рованный код обрабатывается компилятором наряду с исходным кодом, напи-
санным программистом, в результате чего строится исполняемая программа.
public slots:
 void button_clicked() {
 QMessageBox box;
 box.setWindowTitle("Howdy");
 box.setText("You clicked the button");
 box.show();
 box.exec();
 }
 protected:
 QPushButton button;
};

Слово slots как расширение языка особым образом обрабатывается мета-
объектным компилятором при генерации вспомогательного кода, но для ком-
пилятора языка C++ прозрачно, так как представляет собой обычный макрос.
int main(int argc, char** argv) {
 QApplication app(argc, argv);
 MyApp myapp;
 myapp.show();
 return app.exec();
}

Этот последний фрагмент кода инициализирует объект, играющий роль
обёртки над приложением, и отображает главное окно. В целом Qt можно на-
звать наилучшим из всех каркасов для разработки приложений, разработан-
ных для языка C++. Кроме того, в нём имеются хорошие средства интеграции
с популярным языком программирования Python.

Событийно-ориентированное программирование средствами
библиотеки MFC
Библиотека классов MFC (Microsoft Foundation Classes) по сей день остаётся
довольно популярным средством для создания приложений в среде Microsoft
Windows. Если прибавить к ней ещё и библиотеку ATL (ActiveX Template Lib
rary), можно получить также некоторую поддержку веб-программирования.
Для обработки событий в библиотеке MFC используется механизм, называе
мый схемой сообщений, или таблицей сообщений (message map). Таблица

 23 / 32

24    Модель реактивного программирования – обзор и история

сообщений, оформленная с помощью специальных макросов, как показано
в следующем примере, присутствует в каждой программе, созданной на осно-
ве библиотеки MFC.
BEGIN_MESSAGE_MAP(CClockFrame,CFrameWnd)
 ON_WM_CREATE()
 ON_WM_PAINT()
 ON_WM_TIMER()
END_MESSAGE_MAP()

Эта таблица определяет реакцию на стандартные сообщения системы Win-
dows: сообщения WM_CREATE, WM_PAINT и WM_TIMER должны обрабатываться, соответ-
ственно, функциями OnCreate, OnPaint и OnTimer. На уровне внутренних механиз-
мов реализации, глубоко скрытых от пользователя, эти таблицы представляют
собой массивы, в которых целочисленный код сообщения используется для
поиска нужной строки, содержащей указатель на функцию-обработчик. Таким
образом, отличие данного подхода от модели обработки сообщений на основе
системных вызовов Windows оказывается при внимательном рассмотрении не
слишком значительным.

	 Мы не приводим здесь пример исходного кода, поскольку среди доступных для скачива-
ния примеров программ к этой книге имеется полная реализация одного характерного
графического приложения в духе модели реактивного программирования на основе
библиотеки MFC. Читатель может изучить исходный код и комментарии к нему, чтобы
разобраться в неочевидных аспектах обработки событий в библиотеке MFC.

Прочие модели событийно-управляемого программирования
Системы распределённой обработки объектов, такие как COM+ или CORBA,
обладают собственными подсистемами обработки событий. Модель событий,
принятая в технологии COM+, основана на понятии «точки соединения» (англ.
connection point), представленном интерфейсами IConnectionPointContainer
и IConnectionPoint, а в технологии CORBA реализована модель на основе так на-
зываемого сервиса событий1 (event service). Спецификация CORBA поддержи-
вает оба механизма оповещения о событиях: «втягивание» и «вталкивание».
Разбор технологий COM+ и CORBA выходит за рамки этой книги, читатель мо-
жет обратиться к соответствующей документации.

Ограничения классических моделей обработки событий
Цель этого краткого обзора моделей обработки событий, присущих различным
платформам, состоит в том, чтобы показать предмет с нужной точки зрения.

1	 Следует отметить, что сервис событий в технологии CORBA подвергается критике из-
за ряда серьёзных недостатков (схема доставки сообщений, при которой каждый кли-
ент получает сообщения обо всех событиях от сервера, перегружает сеть; отсутствует
фильтрация сообщений по каким-либо критериям, синхронный режим отправки
сообщений) – см, например, http://www.k-press.ru/cs/2000/3/corba/corba_callback.asp. –
Прим. перев.

 24 / 32

http://www.k-press.ru/cs/2000/3/corba/corba_callback.asp

Реактивная модель программирования    25

Логика реагирования на события в этих моделях обычно тесно связана с плат-
формой, для которой создан код. Хотя с появлением многоядерных процессо-
ров создание многопоточного кода на основе низкоуровневых средств стало
чересчур сложным, в стандартной библиотеке языка C++ стала доступна вы-
сокоуровневая модель параллельного программирования на основе задач. Но
ведь источники событий чаще всего написаны отнюдь не на основе стандарт-
ной библиотеки! Так, в стандарт языка C++ не включена библиотека для созда-
ния графических интерфейсов пользователя, единый интерфейс для доступа
к внешним устройствам и т. д. Как преодолеть это противоречие? К счастью, со-
бытия и данные от внешних источников можно организовывать в потоки или
последовательности, которые затем можно весьма эффективно обрабатывать,
используя средства функционального программирования, такие как лямбда-
функции. При этом нетрудно получить и дополнительную выгоду: если нало-
жить некоторые ограничения на изменение значений объектов, параллельная
обработка окажется неотъемлемой частью модели обработки потоков.

Реактивная модель программирования
Говоря упрощённо, реактивное программирование – это не что иное, как про-
граммирование с асинхронными потоками данных. Применяя к потокам те
или иные операции, можно решать различные вычислительные задачи. Пер-
вая задача реактивной программы – превратить свои данные в поток, из ка-
кого бы источника эти данные ни были получены. Так, создавая современное
приложение с графическим интерфейсом, нужно обрабатывать события пере-
мещения и нажатия кнопок мыши. Сейчас в большинстве приложений функ-
ция обратного вызова (callback) вызывается при наступлении такого события
и сразу обрабатывает его. При этом большую часть времени обработчик собы-
тия занят фильтрацией событий по тем или иным критериям, а затем вызы-
вает функцию для обработки конкретной разновидности события. В контексте
этой задачи применить реактивную модель программирования – значит со-
брать события от мыши (типа перемещения и нажатия кнопки) в коллекцию,
затем установить на эту коллекцию фильтр, наконец оповещать обработчики.
В таком случае логика взаимодействия приложения с обработчиком не будет
вызываться без необходимости.

Модель, основанная на обработке потоков, широко известна и довольно
проста в реализации. Почти всё, что угодно, можно превратить в поток. При-
мерами потоков могут служить сообщения, логи, каналы в сети Twitter, блоги,
ленты новостей и т. д. Методы функционального программирования очень хо-
рошо подходят для обработки потоков. Такой язык, как C++ современного стан-
дарта, включающий превосходную поддержку как объектно-ориентированно-
го, так и функционального стиля программирования, становится очевидным
выбором для написания реактивных программ. Главная идея, лежащая в осно-
ве реактивного программирования, состоит в том, что некоторые типы данных

 25 / 32

26    Модель реактивного программирования – обзор и история

могут представлять значения, протяжённые во времени. Такие типы данных
(конкретно, последовательности) в этой парадигме программирования играют
роль наблюдаемых источников (observable). Результаты вычислений, завися-
щих от изменяющихся со временем значений, в свою очередь, представляют
собой значения, изменяющиеся со временем. Изменяемое значение должно
получать асинхронные оповещения всякий раз, когда изменяется другое зна-
чение, от которого оно зависит.

	 Несмотря на то что главный предмет этой книги составляет реактивное программи-
рование, в этой главе мы будем заниматься в основном объектно-ориентированным
подходом. Это необходимо для того, чтобы определить ряд ключевых интерфейсов (для
чего в языке C++ используется аппарат виртуальных функций), которые в дальнейшем
понадобятся для собственно реактивного программирования. Позднее, когда будут
изучены конструкции языка C++ для поддержки функционального программирования,
читатель сможет самостоятельно построить отображение объектно-ориентированных
конструкций на функциональные. Кроме того, в этой главе мы намеренно устраняемся
от обсуждения вопросов параллельной обработки, чтобы сконцентрировать внимание
на программных интерфейсах. В главах 2 «Современный язык C++ и его ключевые
идиомы», 3 «Параллельные вычисления и потоки в языке C++» и 4 «Асинхронное про-
граммирование и неблокирующая синхронизация в языке C++» разъясняются основы
реактивного программирования с использованием средств функционального програм-
мирования.

Ключевые интерфейсы реактивной программы
Чтобы прояснить, что на самом деле происходит внутри реактивной програм-
мы, создадим несколько простых программ, демонстрирующих основные
моменты. С точки зрения проектирования, если отвлечься от вопросов парал-
лельной обработки и сфокусировать внимание лишь на программных интер-
фейсах, реактивная программа должна состоять из следующих частей:

�� источник событий, реализующий интерфейс IObservable<T>;
�� приёмник событий (также называемый наблюдателем или подписчи-

ком), реализующий интерфейс IObserver<T>;
�� механизм подписки наблюдателя на события от некоторого подписчика;
�� механизм оповещения подписчиков о данных, поступающих из источ-

ника.

	 В этой главе, и только в ней, примеры написаны с использованием классической
версии языка C++, так как необходимые элементы новейшего стандарта языка будут
описаны лишь в последующих главах. В частности, в приведённых ниже примерах
используются «сырые» указатели, чего практически всегда можно избежать, если
создавать код на новой версии языка C++. Код примеров в этой главе написан так,
чтобы в целом соответствовать требованиям, описанным в документации к системе
ReactiveX. При создании кода на языке C++ мы не будем пользоваться подходами
на основе наследования, которые обычно применяются при программировании на
языках Java и C#.

 26 / 32

Ключевые интерфейсы реактивной программы    27

Для начала определим интерфейсы для наблюдателя (IObserver) и наблюдае-
мого источника (IObservable), а также класс исключения CustomException.
#pragma once
//Common2.h

struct CustomException /*: public std::exception */ {
 const char * what() const throw () {
 return "C++ Exception";
 }
};

Класс CustomException – лишь заглушка, нужная для полноты интерфейса. По-
скольку мы договорились придерживаться в этой главе стандартных средств
языка C++, сохраним совместимость с классом std::exception.
template<class T> class IEnumerator
{
public:
 virtual bool HasMore() = 0;
 virtual T next() = 0;
};

template <class T> class IEnumerable
{
public:
 virtual IEnumerator<T> *GetEnumerator() = 0;
};

Интерфейс IEnumerable составляет основу для источников данных; он предо-
ставляет клиенту возможность перебирать свои элементы посредством интер-
фейса IEnuerator<T>.

	 Обращаем внимание читателя, что принцип, положенный в основу пары интерфей-
сов «перечисляемое-перечислитель» (IEnumerable<T> и IEnuerator<T>), зеркально от-
ражает идею, на которой основана пара интерфейсов «наблюдаемое-наблюдатель»
(IObserver<T> и IObservable<T>). Эту последнюю пару определим следующим образом:

template<class T> class IObserver
{
public:
 virtual void OnCompleted() = 0;
 virtual void OnError(CustomException *exception) = 0;
 virtual void OnNext(T value) = 0;
};

template<typename T>
class IObservable
{
public:
 virtual bool Subscribe(IObserver<T>& observer) = 0;
};

 27 / 32

28    Модель реактивного программирования – обзор и история

Интерфейс IObserver<T> – это интерфейс для приёмника данных, через кото-
рый он получает оповещения от источника данных. Источник же, в свою оче-
редь, должен реализовывать интерфейс IObservable<T>.

	 Мы определили интерфейс наблюдателя IObserver<T> с тремя методами. Это методы On-
Next, с помощью которого наблюдатель получает оповещение об очередном элементе
данных, OnCompleted, которым источник извещает, что у него более нет данных, и метод
OnError, которым источник извещает об исключении. Интерфейс IObservable<T> вопло-
щается источником данных, а приёмники регистрируют в нём свои объекты, обладаю-
щие интерфейсом IObserver<T>, чтобы получать оповещения.

Методы вталкивания и втягивания данных
В реактивном программировании выделяются два подхода: на основе вталки-
вания и на основе втягивания. В системе, основанной на принципе втягива-
ния, источник данных ждёт запроса от приёмника (в нашей терминологии –
подписчика), чтобы отправить ему очередные элементы потока данных. Таков
классический подход, при котором источник данных играет пассивную роль,
а приёмник активно запрашивает у него информацию. Для этого удобно при-
менять шаблон итератора; интерфейсы IEnumerable<T> и IEnumerator<T> предна-
значены именно для этой модели, синхронной по своей природе (поток-при-
ёмник данных блокируется, пока источник выполняет его запрос). В системе,
основанной на вталкивании, напротив, источник данных рассылает события
по сети приёмников, инициируя их обработку. В этом случае, в отличие от си-
стем с втягиванием, новые элементы данных передаются подписчикам самим
источником, который тем самым моделирует последовательность элементов.
Асинхронная природа этой модели обеспечивается тем, что подписчики не
блокируются в ожидании данных, а вместо этого реагируют на поступившие
изменения. Легко видеть, что использование этого подхода предпочтительнее
при создании сложных интерфейсов пользователя, в которых нежелательно
блокировать главный поток графического интерфейса в ожидании событий.
Вталкивание даёт отличный механизм для обеспечения отзывчивости прило-
жения.

Дуальность интерфейсов IEnumerable и IObservable
Если присмотреться внимательно, можно обнаружить, что различие меж-
ду двумя описанными выше подходами не столь значительно. Интерфейс
IEnumerable<T> можно считать втягивающим эквивалентом вталкивающего ин-
терфейса IObservable<T>. Эти интерфейсы фактически дуальны. Когда две сущ-
ности обмениваются информацией, втягивание данных со стороны первой из
них соответствует вталкиванию со стороны второй. Эта дуальность иллюстри-
руется следующей диаграммой:

 28 / 32

Методы вталкивания и втягивания данных    29

Чтобы лучше понять дуализм втягивания и вталкивания, рассмотрим при-
мер кода.

	 В этой главе при написании кода мы придерживаемся классического языка C++, так как
новые средства языка и стандартной библиотеки для поддержки потоков, неблокирую
щего программирования и другие темы, существенные для реализации реактивной мо-
дели программирования на современном языке С++, обсуждаются в других главах.

#include <iostream>
#include <vector>
#include <iterator>
#include <memory>
#include "Common2.h"
using namespace std;

class ConcreteEnumberable : public IEnumerable<int>
{
 int *numberlist;
 int _count;
 friend class Enumerator;
public:
 ConcreteEnumberable(int numbers[], int count):
 numberlist(numbers), _count(count) {}
 ~ConcreteEnumberable() {}
 class Enumerator : public IEnumerator<int> {
 int *inumbers, icount, index;
 public:
 Enumerator(int *numbers, int count):
 inumbers(numbers), icount(count), index(0) {}
 bool HasMore() { return index < icount; }
 // строго говоря, следующий метод должен выбрасывать
 // исключение при выходе индекса за допустимые границы;
 // пускай он пока возвращает -1
 int next() { return (index < icount) ?
 inumbers[index++] : -1; }
 ~Enumerator() {}
 };

 29 / 32

30    Модель реактивного программирования – обзор и история

 IEnumerator<int> *GetEnumerator()
 { return new Enumerator(numberlist, _count); }
};

Показанный выше класс хранит указатель на массив целых чисел вместе
с его размером и позволяет перебирать один за другим его элементы, вопло-
щая интерфейс IEnumerable<T>. Логика перебора элементов реализована вло-
женным классом, который воплощает интерфейс IEnumerator<T>.
int main()
{
 int x[] = { 1,2,3,4,5 };
 // здесь используются "сырые" указатели, так как умные
 // указатели unique_ptr и shared_ptr излагаются позднее
 ConcreteEnumberable *t = new ConcreteEnumberable(x, 5);
 IEnumerator<int> * numbers = t->GetEnumerator();
 while (numbers->HasMore())
 cout << numbers->next() << endl;
 delete numbers;
 delete t;
 return 0;
}

В главной функции программы создаётся экземпляр класса ConcreteEnumbe
rable, играющий роль обёртки над обычным массивом, затем происходит пере-
бор элементов через посредство этой обёртки.

Теперь напишем генератор чётных чисел, чтобы показать, как видоизме-
няется взаимодействие типов данных при преобразовании втягивающей про-
граммы во вталкивающую. При этом надёжность программы принесём в жерт-
ву краткости листинга.
#include <iostream>
#include <vector>
#include <iterator>
#include <memory>
#include "Common2.h"
using namespace std;

class EvenNumberObservable : IObservable<int>
{
 int *_numbers;
 int _count;
public:
 EvenNumberObservable(int numbers[], int count):
 _numbers(numbers),_count(count){}
 bool Subscribe(IObserver<int>& observer) {
 for (int i = 0; i < _count; ++i)
 if (_numbers[i] % 2 == 0)
 observer.OnNext(_numbers[i]);
 observer.OnCompleted();
 return true;
 }
};

 30 / 32

Превращение событий в наблюдаемый источник    31

Этот класс принимает массив целых чисел, отбрасывает нечётные значения,
а о каждом найденном в массиве чётном значении информирует наблюдателя,
т. е. объект, воплощающий интерфейс IObservable<T>. Иными словами, источ-
ник данных вталкивает свои данные наблюдателю. Реализация наблюдателя
показана ниже:

class SimpleObserver : public IObserver<int>
{
public:
 void OnNext(int value) { cout << value << endl; }
 void OnCompleted() { cout << "hello completed" << endl; }
 void OnError(CustomException * ex) {}
};

Тем самым класс SimpleObserver реализует интерфейс IObserver<int> и, следо-
вательно, способен получать оповещения и реагировать на них.

int main()
{
 int x[] = { 1,2,3,4,5 };

 EvenNumberObservable * t = new EvenNumberObservable(x, 5);
 IObserver<int> *xy = new SimpleObserver();

 t->Subscribe(*xy);

 delete xy;
 delete t;

 return 0;
}

Из этого примера видно, как это просто – подписаться на получение от
наблюдаемого источника одних лишь чётных чисел, имея последовательность
натуральных чисел. Построенная нами система автоматически проталкивает
(иначе говоря, публикует) сообщение для наблюдателя всякий раз, когда об-
наруживает в исходных данных чётное число. В этом коде представлены такие
образцы реализации ключевых интерфейсов, чтобы из них стало очевидно,
что на самом деле происходит «под капотом» системы.

Превращение событий в наблюдаемый источник
Выше мы разобрали, как преобразовать втягивающую программу, основанную
на интерфейсе IEnumerable<T>, в программу вталкивающую, построенную на
паре интерфейсов IObservable<T>-IObserver<T>. В реальных приложениях, одна-
ко, источник данных не столь прост, как показанный выше поток целых чисел.
Рассмотрим, как преобразовать события MouseMove в поток, для чего создадим
небольшую программу на основе библиотеки MFC.

 31 / 32

32    Модель реактивного программирования – обзор и история

	 Библиотека MFC выбрана для этого примера потому, что реактивному программирова-
нию на основе более современной библиотеки Qt посвящена отдельная глава. В ней
мы рассмотрим создание реактивных программ на основе идиоматичных асинхронных
потоков, работающих по принципу вталкивания. В этой же программе, основанной на
библиотеке MFC, мы всего лишь будем фильтровать события перемещения мыши, вы-
деляя из них те, что попадают в заданный прямоугольник, и оповещая о таких событиях
наблюдателя. В этом примере события обрабатываются синхронно.

#include "stdafx.h"
#include <afxwin.h>
#include <afxext.h>
#include <math.h>
#include <vector>
#include "../Common2.h"

using namespace std;

class CMouseFrame :public CFrameWnd, IObservable<CPoint>
{
private:
 RECT _rect;
 POINT _curr_pos;
 vector<IObserver<CPoint> *> _event_src;
public:
 CMouseFrame()
 {
 HBRUSH brush = (HBRUSH)::CreateSolidBrush(
 RGB(175, 238, 238));
 CString mywindow = AfxRegisterWndClass(
 CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS, 0, brush, 0);
 Create(mywindow, _T("MFC Clock By Praseed Pai"));
 }

В данной части кода объявлен класс для окна приложения. Этот класс порож-
дён от класса CFrameWnd из библиотеки MFC и, помимо того, воплощает интер-
фейс IObservable<T>, тем самым вынуждая программиста реализовать в этом
классе метод Subscribe. Вектор указателей на объекты, обладающие интерфей-
сом IObserver<T>, используется для хранения всех подписчиков (иначе говоря,
наблюдателей), подключенных к этому источнику событий. Хотя в этом при-
мере будет только один наблюдатель, код допускает наличие любого числа
наблюдателей.
 virtual bool Subscribe(IObserver<CPoint>& observer) {
 _event_src.push_back(&observer);
 return true;
 }

Метод Subscribe просто сохраняет указатель на наблюдателя в векторе и воз-
вращает значение true, означающее успех. Всякий раз, когда мышь изменит
своё положение, окно получит оповещение через внутренние механизмы биб
лиотеки MFC, затем, если координаты мыши попадают в заданную прямо

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Превращение событий в наблюдаемый источник    33

угольную область, наблюдатели будут об этом извещены. За это отвечает пред-
ставленный ниже код.
 bool FireEvent(const CPoint& pt) {
 vector<IObserver<CPoint> *>::iterator it =
 _event_src.begin();
 while (it != _event_src.end()){
 IObserver<CPoint> *observer = *it;
 observer->OnNext(pt);
 // в настоящих реактивных программах установлен
 // строгий порядок вызова методов: метод OnCompleted
 // должен вызываться только после того, как все
 // данные обработаны; этот код лишь демонстрирует
 // общую идею.
 observer->OnCompleted();
 it++;
 }
 return true;
 }

Метод FireEvent проходит по всем наблюдателям и в каждом из них вызыва-
ет метод OnNext, также вызывает он и метод OnCompleted. Механизмы обработки
событий в реактивном программировании предполагают ряд правил вызова
методов у наблюдателей. В частности, если вызван метод OnCompleted, то ме-
тод OnNext для данного наблюдателя более вызываться не должен. Подобным
же образом, если у наблюдателя вызван метод OnError, дальнейшие сообщения
ему не отправляются. Если бы мы стремились в точности соблюдать все согла-
шения, принятые в модели реактивного программирования, текст программы
вышел бы слишком сложным. Предназначение показанного здесь кода состоит
в том, чтобы схематически показать реактивную модель программирования
в действии.
 int OnCreate(LPCREATESTRUCT l){
 return CFrameWnd::OnCreate(l);
 }

 void SetCurrentPoint(CPoint pt) {
 this->_curr_pos = pt;
 Invalidate(0);
 }

Метод SetCurrentPoint вызывается наблюдателем и устанавливает координа-
ты для последующего отображения текста. Вызов метода Invalidate приводит
к генерации сообщения WM_PAINT, по которому механизмы библиотеки MFC, со-
гласно таблице обработчиков сообщений, вызовут метод OnPaint.
 void OnPaint()
 {
 CPaintDC d(this);
 CBrush b(RGB(100, 149, 237));
 int x1 = -200, y1 = -220, x2 = 210, y2 = 200;

 1 / 32

34    Модель реактивного программирования – обзор и история

 Transform(&x1, &y1); Transform(&x2, &y2);
 CRect rect(x1, y1, x2, y2);
 d.FillRect(&rect, &b);
 CPen p2(PS_SOLID, 2, RGB(153, 0, 0));
 d.SelectObject(&p2);

 char *str = "Hello Reactive C++";
 CFont f;
 f.CreatePointFont(240, _T("Times New Roman"));
 d.SelectObject(&f);
 d.SetTextColor(RGB(204, 0, 0));
 d.SetBkMode(TRANSPARENT);
 CRgn crgn;
 crgn.CreateRectRgn(
 rect.left, rect.top,
 rect.right, rect.bottom);
 d.SelectClipRgn(&crgn);
 d.TextOut(
 _curr_pos.x, _curr_pos.y,
 CString(str), strlen(str));
 }

Метод OnPaint вызывается самой библиотекой MFC в ответ на вызов мето-
да Invalidate. Этот метод отображает строку текста в том месте, которое ранее
было установлено методом SetCurrentPoint.
 void Transform(int *px, int *py)
 {
 ::GetClientRect(m_hWnd, &_rect);
 int width = (_rect.right - _rect.left) / 2;
 int height = (_rect.bottom - _rect.top) / 2;
 *px = *px + width;
 *py = height - *py;
 }

Метод Transform вычисляет границы внутренней области окна и переводит
абстрактные декартовы координаты точки в координаты относительно дан-
ного окна. Это вычисление можно было бы ещё лучше выполнить с помощью
преобразователей координат, поддерживаемых системой Windows.
 void OnMouseMove(UINT nFlags, CPoint point)
 {
 int x1 = -200,y1= -220, x2 = 210,y2 = 200;
 Transform(&x1, &y1);Transform(&x2, &y2);
 CRect rect(x1, y1, x2, y2);
 POINT pts;
 pts.x = point.x;
 pts.y = point.y;
 rect.NormalizeRect();
 // В реальной программе эти точки накапливались бы
 // в списке
 if (rect.PtInRect(point)) {

 2 / 32

Превращение событий в наблюдаемый источник    35

 // лучше отправлять оповещения, не блокируя поток
 FireEvent(point);
 }
 }

Метод OnMouseMove проверяет, находится ли текущее положение мыши в пря-
моугольнике, центрированном относительно экрана, и если это так, извещает
об этом наблюдателей.
 DECLARE_MESSAGE_MAP();
};

BEGIN_MESSAGE_MAP(CMouseFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_PAINT()
 ON_WM_MOUSEMOVE()
END_MESSAGE_MAP()

class WindowHandler : public IObserver<CPoint>
{
private:
 CMouseFrame *window;
public:
 WindowHandler(CMouseFrame *win) : window(win) { }
 virtual ~WindowHandler() { window = 0; }
 virtual void OnCompleted() {}
 virtual void OnError(CustomException *exception) {}
 virtual void OnNext(CPoint value) {
 if (window) window->SetCurrentPoint(value);
 }
};

Показанный выше класс WindowHandler реализует интерфейс IObserver<CPoint>
и обрабатывает события, полученные от объекта CMouseFrame, который вопло-
щает интерфейс IObservable<CPoint>. В этом небольшом примере наблюдатель
передаёт окну координаты для отображения текста.
class CMouseApp :public CWinApp
{
 WindowHandler *reactive_handler;
public:
 int InitInstance()
 {
 CMouseFrame *p = new CMouseFrame();
 p->ShowWindow(1);
 reactive_handler = new WindowHandler(p);
 p->Subscribe(*reactive_handler);
 m_pMainWnd = p;
 return 1;
 }

 virtual ~CMouseApp() {

 3 / 32

36    Модель реактивного программирования – обзор и история

 if (reactive_handler) {
 delete reactive_handler;
 reactive_handler = 0;
 }
 }

};

CMouseApp a;

Последний фрагмент кода отвечает за инициализацию и запуск приложе-
ния. Сначала создаётся и отображается главное окно, затем создаётся объект-
наблюдатель, далее наблюдатель подключается к источнику данных. Деструк-
тор отвечает за удаление объекта-наблюдателя. В последней строке создаётся
объект, инкапсулирующий приложение в целом, что приводит к запуску всей
системы.

Методологические замечания
Цель данной главы состоит в том, чтобы познакомить читателя с ключевыми
интерфейсами, лежащими в основе реактивного подхода к программирова-
нию, а именно с интерфейсами IObservable<T> и IObserver<T>. Эти два интер-
фейса, по существу, дуальны интерфейсам IEnumerable<T> и IEnumerator<T>. Мы
разобрали, как смоделировать эти пары интерфейсов на классической версии
языка C++, и написали их упрощённые реализации. Наконец, мы создали про-
грамму с графическим интерфейсом, которая перехватывает события от мыши
и извещает о них множество наблюдателей. Эти игрушечные реализации по-
зволили немного прикоснуться к идеям и принципам реактивной модели про-
граммирования. Показанные здесь реализации можно считать примером объ-
ектно-ориентированного реактивного программирования.

Чтобы стать профессионалом в реактивном программировании на языке
C++, программисту нужно уверенно овладеть следующими темами:

�� новые языковые конструкции в новом стандарте языка C++;
�� средства поддержки функционального программирования, поддержи-

ваемые в новом стандарте языка C++;
�� модель асинхронного программирования (библиотека RxCpp берёт эту

заботу на себя!);
�� обработка потоков событий;
�� мощные, пригодные для реальных задач библиотеки для реактивного

программирования, такие как библиотека RxCpp;
�� применение парадигмы реактивного программирования для разработ-

ки графических интерфейсов и веб-программирования;
�� усложнённые конструкции реактивного программирования;
�� обработка ошибок и исключений.

 4 / 32

Итоги    37

В этой главе речь шла главным образом о ключевых идиомах и о том, за-
чем вообще нужна стройная модель асинхронной обработки данных. В сле
дующих трёх главах будут разобраны новые средства, появившиеся в языке
C++, в особенности средства многопоточного и параллельного программи-
рования, а также средства неблокирующей синхронизации, ставшие возмож-
ными благодаря появлению моделей памяти с гарантиями. Всё это заложит
прочный фундамент для овладения функциональным реактивным програм-
мированием.

В главе 5 «Знакомство с наблюдаемыми источниками» мы вернёмся к теме
наблюдателей и воплотим знакомые интерфейсы в духе функционального
программирования, по-новому осветив некоторые понятия. В главе 6 «Введе-
ние в программирование потоков событий на языке C++» мы займёмся более
сложными вопросами обработки потоков событий с помощью двух промыш-
ленных библиотек, использующих подход на основе встроенных предметно-
ориентированных языков (англ. Domain-Specific Embedded Language, DSEL).

Тем самым будет подготовлена основа для знакомства с промышленной
библиотекой RxCpp и её тонкостями, позволяющими создавать программные
продукты современного уровня и профессионального качества. Этой замеча-
тельной библиотеке посвящены глава 7 «Введение в модель потоков данных
и библиотеку RxCpp» и глава 8 «Ключевые элементы библиотеки RxCpp». В по-
следующих главах рассматривается реактивное программирование графиче-
ских интерфейсов с использованием библиотеки Qt и некоторых изощрённых
операций библиотеки RxCpp.

Последние три главы посвящены вопросам повышенной сложности: шаб
лонам проектирования реактивных программ, созданию микросервисов на
языке C++, обработке ошибок и исключений. Читатель, приступивший к чте-
нию книги, владея лишь классической версией языка C++, к концу книги при-
обретёт значительный опыт не только в создании реактивных программ, но
и в использовании современной версии языка. В силу самой темы этой книги
разобрана будет большая часть нововведений из стандарта C++ 17 (доступных
на момент написания книги).

Итоги
Из этой главы читатель узнал о некоторых структурах данных, ключевых для
реактивной модели программирования. Мы построили их упрощённые реали-
зации, что позволило проиллюстрировать лежащие в их основе понятия. Для
начала мы разобрали, как обрабатывать события от графического интерфейса
пользователя с помощью функций API системы Windows, с помощью функций
библиотеки XLib, а также с использованием библиотек MFC и Qt. Кроме того,
мы вкратце рассмотрели, как обрабатываются события в технологиях COM+
и CORBA. Затем был представлен краткий обзор реактивной модели програм-

 5 / 32

38    Модель реактивного программирования – обзор и история

мирования в целом. Мы определили несколько интерфейсов и сделали на-
бросок их реализации. Наконец, для полноты изложения было показано, как
встроить реализации этих интерфейсов в программу с графическим интер-
фейсом, основанную на библиотеке MFC. Также были изложены основные ме-
тодологические аспекты данной книги.

В следующей главе будет сделан беглый обзор основных новшеств совре-
менного языка C++ (под этим словом будем понимать стандарты C++ 11, 14
и 17) с упором на семантику перемещения, лямбда-выражения, вывод типов,
циклы по диапазонам, сочленение функций и умные указатели. Всё это нужно
для написания даже простейшего кода в реактивной парадигме.

 6 / 32

Глава 2
Современный язык C++

и его ключевые идиомы

Классический язык программирования C++ был стандартизирован в 1998 г.,
а в 2003 г. вышла новая редакция стандарта, содержащая главным образом не-
большие исправления. За поддержкой усложнённых абстракций разработчики
обращались к комплексу библиотек Boost (http://www.boost.org) и к другим биб
лиотекам с открытой лицензией. Благодаря новой эпохе в развитии стандарта,
начавшейся с версии C++ 11, язык получил ряд существенных усовершенство-
ваний, и теперь разработчики могут выразить на этом языке множество широ-
ко распространённых абстракций, поддерживаемых другими языками, без не-
обходимости использовать сторонние библиотеки. Даже потоки и интерфейс
к файловой системе, которые до сих пор оставались исключительно в ведении
библиотек, стали частью стандарта языка. Современный стандарт языка C++
(под этим словосочетанием будем понимать стандарты C++ 11, 14 и 17) до-
бавляет ряд замечательных новых средств и в сам язык, и в его стандартную
библиотеку, что фактически делает его наилучшим из имеющихся языков для
промышленной разработки программного обеспечения. Разобранные в этой
главе новшества составляют минимальный набор средств, которыми про-
граммисту необходимо овладеть, чтобы работать с конструкциями реактивно-
го программирования вообще и с библиотекой RxCpp в частности. Основная
цель этой главы состоит в том, чтобы осветить лишь наиболее важные ново-
введения, помогающие реализовывать идеи реактивного программирования,
не касаясь при этом особо запутанных тем. Такие конструкции, как лямбда-
функции, автоматический вывод типов, ссылки rvalue, семантика перемеще-
ния и стандартная поддержка параллельного программирования, составляют
часть того аппарата, которым, по убеждению авторов данной книги, должен
владеть каждый программист на языке C++. В этой главе будут обсуждаться
следующие темы:

�� ключевые моменты проектирования языка C++ в целом;
�� некоторые улучшения языка, помогающие писать более изящный код;
�� улучшенное управление памятью на основе ссылок rvalue и семантики

перемещений;

 7 / 32

http://www.boost.org

40    Современный язык C++ и его ключевые идиомы

�� улучшенное управление временем жизни объектов на основе различных
видов умных указателей;

�� параметризация поведения с использованием лямбда-функций;
�� обёртка для функций – тип-шаблон std::function;
�� некоторые прочие нововведения;
�� создание итераторов и наблюдателей на основе перечисленных языко-

вых средств.

Принципы проектирования языка C++
В той мере, в которой это напрямую касается разработчиков программного
обеспечения, основными принципами, которыми постоянно руководствуются
создатели языка C++, были и остаются следующие три:

�� абстракция нулевой стоимости – введение абстракций всё более высоко-
го уровня не должно оплачиваться потерей производительности;

�� выразительность – для типов данных, определённых пользователем,
в первую очередь классов, должен поддерживаться столь же богатый на-
бор выразительных средств, как и для встроенных типов;

�� взаимозаменяемость – должно быть возможно подставлять пользова-
тельские типы данных в любые контексты, где ожидается встроенный
тип, например в обобщённые структуры данных и алгоритмы.

Разберём вкратце каждый из этих принципов отдельно.

Абстракция нулевой стоимости
Язык программирования C++ с момента своего возникновения помогал про-
граммистам создавать код, весьма эффективно использующий возможности
процессора, для которого компилируется программа, и в то же время работать
на высоком уровне абстракции там, где это необходимо. Разрабатывая средства
абстрагирования, разработчики языка всегда старались минимизировать или
даже полностью исключить связанные с ними потери производительности.
Эту характеристику языка называют «абстракцией нулевой стоимости» или
«абстракцией с нулевыми потерями». Единственная заметная плата – это за-
траты на косвенные (т. е. осуществляемые через указатель) вызовы виртуаль
ных функций. Несмотря на многообразие добавленных в язык возможностей,
его создатели строго соблюдали гарантию нулевой стоимости абстракций,
присущую языку с момента его возникновения.

Выразительность
Язык C++ помогает разработчикам делать собственные типы или классы столь
же выразительными, как и встроенные в язык базовые типы. Это позволяет,
например, создавать арифметические типы с произвольной разрядностью
и точностью (известные в некоторых языках программирования как BigInteger
и BigFloat), с тем же поведением, что и у встроенных целых и вещественных

 8 / 32

Принципы проектирования языка C++    41

типов. В иллюстративных целях ниже показан класс SmartFloat, представляю-
щий собой обёртку над действительным числом двойной точности согласно
стандарту IEEE и переопределяющий большинство операций, присущих типу
double. Этот пример кода демонстрирует, как создавать типы данных, подра
жающие семантике встроенных в язык типов.
//---- SmartFloat.cpp
#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;
class SmartFloat {
 double _value; // завёрнутое значение
 public:
 SmartFloat(double value) : _value(value) {}
 SmartFloat() : _value(0) {}
 SmartFloat(const SmartFloat& other) {_value = other._value;}
 SmartFloat& operator=(const SmartFloat& other) {
 if (this != &other) { _value = other._value; }
 return *this;
 }
 SmartFloat& operator=(double value) {
 _value = value; return *this;
 }
 ~SmartFloat() {}

В представленном выше фрагменте объявлен класс SmartFloat, в который за-
вёрнуто значение типа double, а также определены конструкции и операции
присваивания, что позволяет создавать инициализированные объекты. В сле-
дующем фрагменте кода определены операции инкремента и декремента. Обе
операции представлены в двух формах: префиксной и постфиксной.
 SmartFloat& operator++() { _value++; return *this; }
 SmartFloat operator++(int) // постфиксная операция
 { SmartFloat nu(*this); ++_value; return nu; }
 SmartFloat& operator--() { _value--; return *this; }
 SmartFloat operator--(int)
 { SmartFloat nu(*this); --_value; return nu; }

Этот фрагмент служит чисто иллюстративным целям. При создании реаль-
ного кода нам пришлось бы проверять переполнение разрядной сетки, чтобы
обеспечить надёжность своего изделия. В конце концов, цель создания обёрток
состоит именно в повышении надёжности кода!
 SmartFloat& operator+=(double x) { _value += x; return *this;}
 SmartFloat& operator-=(double x) { _value -= x;return *this; }
 SmartFloat& operator*=(double x) { _value *= x; return *this;}
 SmartFloat& operator/=(double x) { _value /= x; return *this;}

В этом фрагменте показано, как реализовывать комбинированные опера-
ции присваивания. Здесь мы снова ради краткости кода опустили проверки на

 9 / 32

42    Современный язык C++ и его ключевые идиомы

возможный выход значений за допустимые границы. С этой же целью тут не
показана генерация или обработка исключений.
 bool operator>(const SmartFloat& other)
 { return _value > other._value; }
 bool operator<(const SmartFloat& other)
 { return _value < other._value; }
 bool operator==(const SmartFloat& other)
 { return _value == other._value; }
 bool operator!=(const SmartFloat& other)
 { return _value != other._value; }
 bool operator>=(const SmartFloat& other)
 { return _value >= other._value; }
 bool operator<=(const SmartFloat& other)
 { return _value <= other._value; }

Здесь реализованы операции-отношения для сравнения объектов. Наконец,
семантика наших объектов как заменителей стандартного типа с плавающей
точкой двойной точности реализована следующим образом:
 operator int() { return _value; }
 operator double() { return _value; }
};

Для полноты семантики мы реализовали операции преобразования для
двух типов, int и double. Теперь напишем две функции, вычисляющие сумму
элементов массива. Первая из них принимает на вход массив значений встро-
енного типа double, тогда как вторая ожидает массив объектов нашего клас-
са SmartFloat. Нетрудно видеть, что код этих функций одинаков, различаются
лишь использованные в них типы данных. Показанная ниже тестовая програм-
ма позволяет убедиться, что эти функции выдают одинаковые результаты.
double Accumulate(double a[], int count){
 double value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}

double Accumulate(SmartFloat a[], int count) {
 SmartFloat value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}

int main() {
 double x[] = { 10.0,20.0,30,40 };
 SmartFloat y[] = { 10,20.0,30,40 };
 double res = Accumulate(x,4); // вызов с типом double
 cout << res << endl;
 res = Accumulate(y,4); // вызов с типом SmartFloat
 cout << res << endl;
}

 10 / 32

Принципы проектирования языка C++    43

Таким образом, мы убедились, что язык C++ позволяет создавать вырази-
тельные типы данных, полностью копирующие семантику встроенных типов.
Выразительность языка делает возможным создание как типов, моделиру-
ющих значения, так и типов, подражающих семантике указателей, для чего
служат многочисленные методики, поддерживаемые языком. Благодаря пере-
груженным операциям, операциям преобразования типов, операциям соз-
дания объекта по заданному адресу (известной в англоязычной литературе
под названием «placement new»), семантике перемещения и иным подобным
средствам работа с классами в языке C++ поднята на более высокий уровень,
сопоставимый с высоким уровнем современных управляемых, динамических
и декларативных языков. Впрочем, с властью приходит ответственность: язык
C++ теперь предоставляет ещё больше возможностей «выстрелить себе в ногу».

Взаимозаменяемость
В предыдущем примере показано, как для собственного типа данных опреде-
лить все операции, характерные для встроенного типа. Ещё одна цель, на кото-
рую ориентировались создатели языка C++, – это возможность программиро-
вать в обобщённом стиле, то есть писать такой код, в который можно было бы
подставлять созданные программистом типы данных наряду с такими встро-
енными типами, как float, double, int и др.
template <class T>
T Accumulate(T a[], int count){
 T value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}

int main() {
 // шаблонизированная версия типа SmartFloat
 SmartValue<double> y[] = { 10.0,20.0,30,40 };
 double res = Accumulate(y,4);
 cout << res << endl;
}

	 Язык C++ поддерживает несколько парадигм, и три описанных выше принципа – лишь
часть его концепции. Язык предоставляет средства для создания надёжных предмет-
но-ориентированных типов, позволяющих писать элегантный код. Данная триада прин-
ципов, безусловно, сделала классический язык C++ мощным и эффективным. В новых
версиях стандарта в язык добавлено множество новых абстракций, облегчающих труд
программиста. Однако при этом создатели языка нигде не поступились тремя указанны-
ми выше принципами ради прочих возможных выгод. Это оказалось возможным благо-
даря поддержке языком метапрограммирования, что, в свою очередь, стало следствием
полноты механизма шаблонов по Тьюрингу, неожиданной для самих создателей языка.
За более подробной информацией о метапрограммировании на шаблонах (англ. tem-
plate meta programming, TMP) и о полноте по Тьюрингу отсылаем читателя к любимой
поисковой системе.

 11 / 32

44    Современный язык C++ и его ключевые идиомы

Усовершенствования языка, повышающие качество кода
За последнее десятилетие мир языков программирования претерпел значи-
тельные изменения, и эти изменения не могли не отразиться и на новом об-
личье языка С++. Большинство нововведений в современном стандарте этого
языка направлено на поддержку усложнённых абстракций, элементов функ-
ционального программирования и параллельной обработки. Многие совре-
менные языки обладают сборщиками мусора, возлагая сложность управле-
ния памятью на среду выполнения программ. Стандарт языка C++, однако, не
предполагает автоматической сборки мусора. Положенная в основу языка C++
гарантия нулевой стоимости абстракций (означающая в том числе и нулевые
накладные расходы на неиспользуемую функциональность) и стремление мак-
симизировать эффективность исполняемого кода вынуждают для достижения
того же уровня абстракции, что и в языках наподобие C#, Java или Scala, при-
бегать к особым ухищрениям на этапе компиляции и к приёмам метапрограм-
мирования. Некоторые из этих приёмов описаны в следующих разделах, чита-
тель может также изучить эти темы самостоятельно. Сайт http://en.cppreference.
com может послужить хорошим источником для всех, кто желает углубить свои
знания о языке C++.

Автоматический вывод типов
Компиляторы современного языка C++ способны проделать чрезвычайно по-
лезную работу, самостоятельно выводя типы заданных программистом выра-
жений. Большинство современных языков программирования поддержива-
ет вывод типов, не является исключением и обновлённый язык C++. Данная
идея позаимствована из языков функционального программирования, таких
как Haskell и ML. Так, механизмы вывода типов стали доступны в языках C#
и Scala. Напишем небольшую программу для первого знакомства с выводом
типов в языке C++.
#include <iostream>
#include <vector>
using namespace std;
int main() {
 vector<string> vt = {"first", "second", "third", "fourth"};
 // указать тип явно
 for (vector<string>::iterator it = vt.begin(); it != vt.end(); it++)
 cout << *it << " ";
 // поручить вывод типа компилятору
 for (auto it2 = vt.begin(); it2 != vt.end(); it2++)
 cout << *it2 << " ";
 return 0;
}

Ключевое слово auto в объявлении переменной означает, что её тип должен
быть вычислен компилятором, исходя из выражения, использованного для её
инициализации, – в частности, на основе типов функций, входящих в это вы-

 12 / 32

http://en.cppreference.com
http://en.cppreference.com

Усовершенствования языка, повышающие качество кода    45

ражение. В показанном примере выигрыш от автоматического вывода типа
невелик. Однако, по мере того как усложняются объявления переменных, всё
существеннее становится выгода от перекладывания вывода типов на компи-
лятор. Всюду далее в этой книге мы будем широко использовать автоматиче-
ский вывод типов для упрощения кода. Напишем теперь ещё одну программу,
чтобы отчетливее продемонстрировать вывод типов в действии.
#include <iostream>
#include <vector>
#include <initializer_list>
using namespace std;
int main() {
 vector<double> vtdbl = {0, 3.14, 2.718, 10.00};
 auto vt_dbl2 = vtdbl; // тип будет выведен
 auto size = vt_dbl2.size(); // size_t
 auto &rvec = vtdbl; // ссылка на объект выведенного типа
 cout << size << endl;
 // тип итератора выведет компилятор
 for (auto it = vtdbl.begin(); it != vtdbl.end(); ++it)
 cout << *it << " ";
 // тип переменной it2 выводится как итератор по вектору
 for (auto it2 = vt_dbl2.begin(); it2 != vt_dbl2.end(); ++it2)
 cout << *it2 << " ";
 // это присваивание изменит первый элемент вектора vtdbl
 rvec[0] = 100;
 // пройти по вектору и убедиться, что присваивание сработало
 for (auto it3 = vtdbl.begin(); it3 != vtdbl.end(); ++it3)
 cout << *it3 << " ";
 return 0;
}

Этот фрагмент кода демонстрирует, как использовать аппарат вывода типов
при разработке на современном языке C++. В язык также добавлено новое клю-
чевое слово, позволяющее запросить тип произвольного выражения. В общем
случае эта конструкция имеет вид decltype(<выражение>). Следующий пример
программы покажет, как пользоваться данным ключевым словом.
#include <iostream>
using namespace std;
int foo() { return 10; }
char bar() { return 'g'; }
auto fancy() -> decltype(1.0f) { return 1; } // тип возврата - float
int main() {
 // тип переменной x такой, как тип возврата функции foo(),
 // а тип переменной y - как тип возврата функции bar()
 decltype(foo()) x;
 decltype(bar()) y;
 cout << typeid(x).name() << endl;
 cout << typeid(y).name() << endl;
 struct A { double x; };
 const A* a = new A();

 13 / 32

46    Современный язык C++ и его ключевые идиомы

 decltype(a->x) z; // тип переменной z - double
 decltype((a->x)) t= z; // тип - double&
 cout << typeid(z).name() << endl;
 cout << typeid(t).name() << endl;
 cout << typeid(decltype(fancy())).name() << endl;
 return 0;
}

Конструкция decltype обрабатывается во время компиляции, она позволя-
ет задать тип переменной по образцу типа какого-либо выражения, также она
может использоваться для указания возвращаемого типа функции, как явству-
ет из примера с функцией fancy().

Единообразный синтаксис инициализации
В классической версии языка C++ имелось несколько синтаксических форм
инициализации объектов, каждая для своих целей. В современном языке C++
появился единый синтаксис инициализации – в коде из раздела о выводе ти-
пов можно увидеть примеры его применения. Язык предоставляет вспомо-
гательные классы, позволяющие разработчикам использовать преимущества
единообразной инициализации в своих классах.
#include <iostream>
#include <vector>
#include <initializer_list>
using namespace std;
template <class T>
struct Vector_Wrapper {
 std::vector<T> vctr;
 Vector_Wrapper(std::initializer_list<T> l) : vctr(l) {}
 void Append(std::initializer_list<T> l)
 { vctr.insert(vctr.end(), l.begin(), l.end());}
};
int main() {
 Vector_Wrapper<int> vcw = {1, 2, 3, 4, 5}; // инициализация списком
 vcw.Append({6, 7, 8}); // инициализация аргумента списком
 for (auto n : vcw.vctr) { std::cout << n << ' '; }
 std::cout << '\n';
}

В этом примере показано, как применить список инициализации в классе,
созданном самим программистом.

Вариадические шаблоны
Начиная с версии стандарта C++ 11 язык поддерживает вариадические шабло-
ны. Вариадическим называется шаблон класса или функции, имеющий произ-
вольное число параметров. В более ранних стандартах языка C++ шаблон всег-
да принимал фиксированное число параметров. Хотя вариадичность шаблонов
поддерживается как на уровне классов, так и на уровне функций, в этом разде-
ле будем заниматься исключительно вариадическими функциями, поскольку

 14 / 32

Усовершенствования языка, повышающие качество кода    47

они широко используются при создании программ в функциональном стиле,
для метапрограммирования, то есть для генерации кода во время компиляции,
а также при определении операции композиции функций.
//Variadic.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
// база для рекурсивной компиляции
int add() { return 0; } // условие завершения рекурсии
// вариадический шаблон функции:
// компилятор сгенерирует конкретную функцию,
// исходя из количества и типов аргументов,
// с которыми она вызвана
template<class T0, class ... Ts>
decltype(auto) add(T0 first, Ts ... rest) {
 return first + add(rest ...);
}
int main() {
 int n = add(0,2,3,4);
 cout << n << endl;
 return 0;
}

В этом примере компилятор генерирует функции, исходя из числа и типов
аргументов, переданных при вызове. Компилятор понимает, что под именем
add скрывается шаблон функции с переменным числом типов-параметров,
и генерирует исполняемый код, рекурсивно разбирая список фактических
аргументов. Эта рекурсия, осуществляемая во время компиляции, обрывает-
ся, когда обработан будет весь список аргументов, переданных функции при
вызове. Для этого служит базовый случай, то есть функция без аргументов.
Следующий пример иллюстрирует, как использовать вариадические шаблоны
вместе с т. н. «совершенной передачей» (англ. perfect forwarding) для создания
функции с переменным числом аргументов произвольных типов, сохраняя
при этом преимущества строгой типизации.
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
// База рекурсии: печатать значения простых типов
void EmitConsole(int value)
 { cout << "Integer: " << value << endl; }
void EmitConsole(double value)
 { cout << "Double: " << value << endl; }
void EmitConsole(const string& value)
 {cout << "String: "<< value << endl; }

 15 / 32

48    Современный язык C++ и его ключевые идиомы

Три перегруженных варианта функции EmitConsole печатают свой аргумент
на консоль. Таким образом, в программе определены функции для печати зна-
чений типа int, double и std::string. Используя эти функции в качестве базы
рекурсии, создадим функцию, принимающую произвольное число аргументов
различных типов по универсальным ссылкам и использующую совершенную
передачу этих аргументов в последующие функции1.
template<typename T>
void EmitValues(T&& arg)
 { EmitConsole(std::forward<T>(arg)); }
template<typename T1, typename... Tn>
void EmitValues(T1&& arg1, Tn&&... args) {
 EmitConsole(std::forward<T1>(arg1));
 EmitValues(std::forward<Tn>(args)...);
}
int main() {
 EmitValues(0,2.0,"Hello World",4);
 return 0;
}

Ссылки rvalue
Программисты, имеющие достаточно большой опыт работы с языком C++, хо-
рошо знают, что ссылки играют роль псевдонимов для переменных и что при-
сваивание нового значения или иная модифицирующая операция над ссылкой
вызывает изменение и той переменной, на которую она ссылается. Эта раз-
новидность ссылок, поддерживаемая начиная с первых версий языка C++, от-
носится к категории lvalue (от англ. left value), так как эти ссылки потенциально
могут стоять в левой части операции присваивания2. Следующий пример кода
демонстрирует использование ссылок lvalue.
//---- Lvalue.cpp
#include <iostream>
using namespace std;
int main() {
 int i=0;
 cout << i << endl; // выводит 0

1	 Этот пример не вполне иллюстрирует преимущества совершенной передачи, так как
функции, использующиеся в качестве базы рекурсии, принимают свои аргументы
либо по значению, либо по константной ссылке. Для полноты примера стоило бы
пополнить базу рекурсии функциями с аргументом типа ссылки rvalue. – Прим. перев.

2	 Для полноты картины следует также упомянуть о константных ссылках. Если пара-
метр функции объявлен с типом t const&, где t – произвольный тип, то при вызове
в него в качестве аргумента может передаваться временный объект (скажем, резуль-
тат, возвращаемый некоторой функцией), являющийся, очевидно, rvalue. Кроме того,
ссылка типа t const&, хотя и не может находиться в левой части присваивания в силу
константности, всё равно считается lvalue: в современном языке C++ определяющим
признаком для категории выражения является уже не его роль в присваивании, а его
способность индивидуализировать объект. – Прим. перев.

 16 / 32

Усовершенствования языка, повышающие качество кода    49

 int& ri = i;
 ri = 20;
 cout << i << endl; // выводит 20
 return 0;
}

Здесь переменная ri, объявленная с типом int&, является ссылкой lvalue.
В современном языке C++ появилось также понятие ссылки rvalue. К категории
rvalue, по определению, относятся те и только те выражения, что не являются
lvalue; говоря упрощённо, это то, что может употребляться лишь в правой час
ти операции присваивания1. В современном языке C++, в отличие от классиче-
ской версии, стало возможным связывать ссылки со значениями rvalue.

/// Rvaluref.cpp
#include <iostream>
using namespace std;
int main() {
 int&& j = 42;int x = 3,y=5; int&& z = x + y; cout << z << endl;
 z = 10; cout << z << endl;j=20;cout << j << endl;
}

Ссылка rvalue обозначается двумя знаками ссылки: &&. Следующая програм-
ма должна продемонстрировать использование ссылок rvalue в качестве аргу-
ментов функции.

// RvaluerefCall.cpp
#include <iostream>
using namespace std;
void TestFunction(int & a) {cout << a << endl;}
void TestFunction(int && a){
 cout << "rvalue references" << endl;
 cout << a << endl;
}
int main() {
 int&& j = 42;
 int x = 3,y=5;
 int&& z = x + y;
 TestFunction(x + y); // вызовётся функция с аргументом rvalue

1	 Такое изложение слишком упрощённо и без дополнительных уточнений может
создать у читателя искажённое представление о предмете. Так, константная ссыл-
ка, очевидно, не может использоваться в левой части присваивания и тем не менее
представляет собой lvalue, так как инидивидуализирует объект. С другой стороны,
если функция f() возвращает объект класса, для которого перегружена операция
присваивания, то операторы вида f()=x (где x – объект подходящего типа) вполне
законны. Роль выражения в операторе присваивания могла считаться критерием
его принадлежности к категориям rvalue и lvalue лишь в языке C, тогда как в языке
C++ трактовка этих понятий изменена. Кроме того, следует напомнить, что в совре-
менном языке C++, помимо rvalue и lvalue, есть ещё три категории: glvalue, xvalue
и prvalue. Для профессионального программирования необходимо основательное
знакомство с данной темой. – Прим. перев.

 17 / 32

50    Современный язык C++ и его ключевые идиомы

 TestFunction(j); // вызовется функция с аргументом lvalue
 return 0;
}

Главная выгода от использования ссылок rvalue проявляется в связи с управ-
лением памятью. В языке C++ с самого начала поддерживались конструкторы
копирования и перегрузка операции присваивания. Обычно они копируют
данные из объекта в объект. Однако с помощью ссылок rvalue можно избе-
жать трудоёмкого полного копирования из временного объекта, возникшего
как промежуточный результат вычисления. Этой теме посвящён следующий
раздел.

Семантика перемещения
В языке C++ определяемые программистом классы могут содержать конструк-
торы копирования, операции присваивания и деструкторы (в том числе вирту-
альные). Это бывает нужно для корректного управления ресурсами, которыми
владеет объект, при его клонировании и при присваивании его существующе-
му объекту1. Однако копирование завёрнутых в объект данных часто обходится
слишком дорого, и тогда перенос этих данных во владение другого объекта (как
правило, с помощью указателей) может значительно ускорить работу програм-
мы. Современный язык C++ позволяет разработчикам определить для своих
классов конструктор перемещения и перемещающую операцию присваивания,
избегая тем самым копирования данных из больших объектов. Ссылки rvalue
в качестве аргументов методов играют роль подсказок компилятору: следует
использовать именно эти, перемещающие версии конструктора копирования
или операции присваивания, если указанный при вызове аргумент представ-
ляет собой временный объект.

//----- FloatBuffer.cpp
#include <iostream>
#include <vector>
using namespace std;
class FloatBuffer {
 double *bfr; int count;
public:
 FloatBuffer():bfr(nullptr),count(0){}
 FloatBuffer(int pcount):
 bfr(new double[pcount]), count(pcount)
 {}
 // Конструктор копирования

1	 Для старых версий стандарта языка C++ сформулировано т. н. «правило трёх»: если
в классе присутствует хотя бы один из трёх следующих методов (конструктор копи-
рования, перегруженная операция присваивания и деструктор), должны быть опре-
делены и остальные. С появлением ссылок rvalue в стандарте C++ 11 оно расшири-
лось до «правила пяти»: к перечню методов добавлены конструктор перемещения
и перемещающая операция присваивания. – Прим. перев.

 18 / 32

Усовершенствования языка, повышающие качество кода    51

 FloatBuffer(const FloatBuffer& other):
 count(other.count), bfr(new double[other.count])
 { std::copy(other.bfr, other.bfr + count, bfr); }
 // Копирующая операция присваивания
 FloatBuffer& operator=(const FloatBuffer& other) {
 if (this != &other) {
 delete[] bfr; // освободить имеющийся буфер
 count = other.count;
 bfr = new double[count]; // создать новый буфер
 std::copy(other.bfr, other.bfr + count, bfr);
 }
 return *this;
 }

 // перемещающий конструктор
 FloatBuffer(FloatBuffer&& other): bfr(nullptr), count(0) {
 cout << "перемещающий конструктор" << endl;
 // при перемещении не нужно копировать данные из объекта,
 // можно просто забрать себе указатель на буфер
 bfr = other.bfr;
 count = other.count;
 // объект-источник более не владеет этими данными
 other.bfr = nullptr;
 other.count = 0;
 }

 // перемещающая операция присваивания
 FloatBuffer& operator=(FloatBuffer&& other) {
 if (this != &other) {
 // освободить существующий буфер
 delete[] bfr;
 // забрать себе данные из объекта-источника
 bfr = other.bfr;
 count = other.count;
 // объект-источник более не владеет этими данными
 other.bfr = nullptr;
 other.count = 0;
 }
 return *this;
 }
};

int main() {
 // Создать вектор объектов и добавить в него элементы.
 // Поскольку библиотека STL поддерживает семантику
 // перемещения, будут вызваны перемещающие операции.
 vector<FloatBuffer> v;
 v.push_back(FloatBuffer(25));
 v.push_back(FloatBuffer(75));
 return 0;
}

 19 / 32

52    Современный язык C++ и его ключевые идиомы

Функция std::move, используемая при передаче аргументов в другие функ-
ции, подсказывает компилятору, что объект-аргумент можно перемещать, тог-
да компилятор подставит вызов подходящего метода (например, перемеща-
ющего присваивания или перемещающего конструктора), помогая избежать
накладных расходов на копирование данных. В сущности, функция std::move
представляет собой статическое преобразование операцией static_cast к типу
ссылки rvalue.

Умные указатели
Управление временем жизни объектов в языке C++ всегда было хлопотным
делом. Если разработчик окажется недостаточно внимательным, может про-
изойти утечка памяти (т. е. ситуация, когда объект продолжает существо-
вать в памяти, хотя все указатели на него утеряны) или, того хуже, обраще-
ние к уже уничтоженному объекту (т. е. обратная ситуация, когда объект уже
уничтожен, а программа ещё пытается пользоваться указателем на него). Ум-
ные указатели – это классы-обёртки над «сырыми» указателями, обладающие
перегруженными операциями разыменования (*) и косвенного обращения
(->). Умные указатели могут брать на себя управление временем жизни объ-
екта, вести подсчёт ссылок на него, освобождать память при исчезновении
последней ссылки и, таким образом, выполнять роль ограниченного сбор-
щика мусора. В современном языке C++ имеются следующие классы умных
указателей:

�� unique_ptr<T>;
�� shared_ptr<T>;
�� weak_ptr<T>.

Класс unique_ptr<T> представляет собой такую обёртку над «сырым» указате-
лем, которая реализует исключительное владение объектом. Следующий при-
мер кода демонстрирует использование этого класса.
#include <iostream>
#include <deque>
#include <memory>
using namespace std;
int main(int argc , char **argv) {
 // умный указатель на двухстороннюю очередь
 unique_ptr< deque<int> > dq(new deque<int>());
 // наполнить значениями через перегруженную операцию ->
 dq->push_front(10);dq->
 dq->push_front(20);
 dq->push_back(23);
 dq->push_front(16);
 dq->push_back(41);

 auto dqiter = dq->begin();
 while (dqiter != dq->end())
 { cout << *dqiter << "\n"; dqiter++; }

 20 / 32

Усовершенствования языка, повышающие качество кода    53

 // выход из области видимости умного указателя влечёт
 // вызов его деструктора, который уничтожает объект
 return 0;
}

Принцип действия второй разновидности умных указателей, std::shared_ptr,
основан на подсчёте ссылок на каждый объект. Объект уничтожается, когда по-
следний умный указатель на него исчезает или перестаёт указывать на данный
объект.
#include <iostream>
#include <memory>
#include <stdio.h>
using namespace std;

// объекты типа shared_ptr<T> можно передавать по значению:
// копия этого умного указателя указывает на тот же объект,
// а конструктор копирования увеличивает счётчик ссылок.
void foo_byvalue(std::shared_ptr<int> i) { (*i)++;}

// передача объекта shared_ptr<T> по ссылке не создаёт копию
void foo_byreference(std::shared_ptr<int>& i) { (*i)++; }

int main(int argc, char **argv)
{
 auto sp = std::make_shared<int>(10);
 foo_byvalue(sp);
 foo_byreference(sp);
 // должно быть выведено значение 12
 std::cout << *sp << std::endl;
 return 0;
}

Умный указатель std::weak_ptr тоже представляет собой обёртку над «сы-
рым» указателем, однако объектом не владеет. Он создаётся как копия указа-
теля shared_ptr. Сколько бы ни существовало одновременно копий указателя
weak_ptr, это никак не влияет на «родительский» указатель shared_ptr и его ко-
пии. Когда все указатели shared_ptr на некоторый объект уничтожаются, унич-
тожается и сам объект, тогда все указывающие на него указатели weak_ptr ста-
новятся пустыми. Следующая программа демонстрирует подход, с помощью
которого можно распознать пустой указатель.
#include <iostream>
#include <deque>
#include <memory>

using namespace std;
int main(int argc , char **argv)
{
 std::shared_ptr<int> ptr_1(new int(500));
 std::weak_ptr<int> wptr_1 = ptr_1;

 21 / 32

54    Современный язык C++ и его ключевые идиомы

 {
 std::shared_ptr<int> ptr_2 = wptr_1.lock();
 if(ptr_2)
 {
 cout << *ptr_2 << endl; // будет выполнено
 }
 // выход и области видимости объекта ptr_2
 }

 ptr_1.reset(); // объект уничтожается

 std::shared_ptr<int> ptr_3= wptr_1.lock();
 if(ptr_3)
 cout << *ptr_3 << endl;
 else
 cout << "Указатель пуст" << endl;

 return 0;
}

В более старых версиях стандарта языка C++ вместо этих трёх был един-
ственный тип умного указателя под названием auto_ptr, из последующих вер-
сий стандарта он исключён. Вместо него следует использовать тип unique_ptr.

Лямбда-функции
Одно из важнейших нововведений, появившихся в языке C++, – это лямбда-
функции или лямбда-выражения. Это анонимные функции, которые можно
определять непосредственно в том месте, где они используются, что упрощает
устройство программы, код становится заметно яснее и изящнее.

Вместо того чтобы давать строгое определение лямбда-функции, напишем
пример кода, который подсчитывает количество положительных чисел в кон-
тейнере vector<int>. Функция count_if из библиотеки STL делает то, что нужно:
в заданном диапазоне итераторов подсчитывает элементы, удовлетворяющие
некоторому условию.
// LambdaFirst.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
 auto num_vect = vector<int>{ 10, 23, -33, 15, -7, 60, 80};
 // лямбда-функция для распознавания положительных чисел
 auto filter = [](int const value) {return value > 0; };
 auto cnt= count_if(
 begin(num_vect), end(num_vect), filter);
 cout << cnt << endl;
 return 0;
}

 22 / 32

Усовершенствования языка, повышающие качество кода    55

В этом фрагменте кода переменной filter в качестве значения присваива-
ется анонимная функция, затем она подаётся как аргумент в функцию count_if
из стандартной библиотеки. Теперь напишем ещё одну простую лямбда-функ-
цию, которую, однако, определим непосредственно в том месте, где она ис-
пользуется. Воспользуемся функцией accumulate из библиотеки STL, чтобы вы-
числить сумму всех элементов контейнера.
//-------------- LambdaSecond.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
#include <numeric>
using namespace std;
int main() {
 auto num_vect =
 vector<int>{ 10, 23, -33, 15, -7, 60, 80};
 // определение бинарной операции поместить в аргумент
 auto accum = std::accumulate(
 std::begin(num_vect), std::end(num_vect), 0,
 [](auto const s, auto const n) {return s + n;});
 cout << accum << endl;
}

Функциональные объекты и лямбда-функции
При программировании на классических версиях языка C++, особенно при
использовании библиотеки STL (например, для фильтрации контейнеров по
условию или свёртки контейнеров по некоторой операции) широко использо-
вались функциональные объекты, то есть объекты классов, обладающих пере-
груженной операцией функционального применения. Ниже следует пример
кода.
// LambdaThird.cpp
#include <iostream>
#include <numeric>
using namespace std;

// функциональные объекты для сложения и умножения чисел
template <typename T>
struct addition{
 T operator () (T init, T a) { return init + a; }
};
template <typename T>
struct multiply {
 T operator () (T init, T a) { return init * a; }
};

int main()
{
 double v1[3] = {1.0, 2.0, 4.0};

 23 / 32

56    Современный язык C++ и его ключевые идиомы

 auto sum = accumulate(v1, v1 + 3, 0.0, addition<double>());
 cout << "сумма = " << sum << endl;
 sum = accumulate(v1, v1+3, 0.0,
 [] (double a, double b) { return a +b; });
 cout << "сумма = " << sum << endl;
 auto mul = accumulate(v1, v1 + 3, 1.0, multiply<double>());
 cout << "произведение = " << mul << endl;
 mul = accumulate(v1, v1+3, 1,
 [] (double a, double b) { return a *b; });
 cout << "произведение = " << mul << endl;
 return 0;
}

Следующая программа иллюстрирует использование лямбда-функций
в простейшем алгоритме сортировки. Сначала покажем, как реализовать сор
тировку с помощью обычных функций, затем напишем эквивалентный код на
основе лямбда-функций. Этот код написан в обобщённом стиле: тип элемен-
тов массива сделан параметром шаблона; код опирается на предположение,
что это либо встроенный в язык числовой тип, либо пользовательский тип, для
которого определена операция сравнения.
// LambdaFourth.cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// обобщённые функции для сравнения и обмена
template <typename T>
bool Cmp(T const& a , T const& b) { return (a > b); }
template <typename T>
void Swap(T& a, T& b) { T c = a; a = b; b = c; }

Шаблоны функций Cmp и Swap понадобятся ниже для сравнения двух элемен-
тов массива и их обмена.
template <class T>
void SelectionSort(T *arr, int length) {
 for (int i = 0; i < length-1; ++i)
 for (int j = i+1; j < length; ++j)
 if (Cmp(arr[i], arr[j]))
 Swap(arr[i], arr[j]);
}

Имея в руках функции Cmp и Swap, можно без труда написать алгоритм сорти-
ровки выбором. Нужно всего лишь сравнивать первый элемент ещё не отсор
тированной части массива с каждым из остающихся элементов и, если функ-
ция сравнения Cmp вернёт значение «истина», менять эти элементы местами
с помощью функции Swap.
template <typename T>
void SelectionSorLambda(T *arr, int length) {
 auto CmpLambda = [] (const auto& a, const auto& b)

 24 / 32

Усовершенствования языка, повышающие качество кода    57

 { return (a > b); };
 auto SwapLambda = [] (auto& a , auto& b)
 { auto c = a; a = b; b = c; };
 for (int i = 0; i < length-1; ++i)
 for (int j = i + 1; j < length; ++j)
 if (CmpLambda(arr[i], arr[j]))
 SwapLambda(arr[i], arr[j]);
}

В этом фрагменте сравнение и обмен элементов массива оформлены в виде
лямбда-функций. Таким образом, механизм лямбда-функций позволяет раз-
местить небольшой блок исполняемого кода в теле функции непосредственно
в том месте, где он нужен, и далее обращаться с ним как с функцией. В опреде-
лении тела лямбда-функции используется тот же синтаксис, что и в обычных
функциях. Лямбда-функцию можно присвоить переменной в качестве значе-
ния, передать в другую функцию в качестве аргумента или вернуть из функции
в качестве её результата. В этом примере значениями переменных CmpLambda
и SwapLambda становятся анонимные функции, реализация которых почти не
отличается от обычных функций Cmp и Swap, показанных выше. Более подроб-
ные сведения о лямбда-функциях читатель может найти на странице http://
en.cppreference.com/w/cpp/language/lambda.
int main(int argc , char **argv){
 double ar1[4] = { 20, 10, 15, -41 };
 SelectionSort(ar1, 4);
 for (int i = 0; i != 4; ++i)
 cout << ar1[i] << "\n";

 double ar2[4] = { 20, 10, 15, -41 };
 SelectionSorLambda(ar2, 4);
 for (int i = 0; i != 4; ++i)
 cout << ar2[i] << "\n";

 return 0;
}

Последний фрагмент кода демонстрирует применение двух алгоритмов сор
тировки.

Композиция, карринг и частичное применение функций
Одно из преимуществ лямбда-функций состоит в том, что они позволяют со-
единять две функции воедино, т. е. дают возможность выразить композицию
функций в строго математическом смысле (читателю рекомендуется прочесть
подробнее о композиции функций в контексте математики и функциональ-
ного программирования, воспользовавшись любимой поисковой системой).
Следующая программа иллюстрирует эту идею. Здесь показана весьма упро-
щённая реализация, создание полностью универсальной версии выходит за
рамки данной главы.

 25 / 32

http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda

58    Современный язык C++ и его ключевые идиомы

//------------ Compose.cpp
//------ g++ -std=c++ Compose.cpp
#include <iostream>
using namespace std;

// базовый случай для рекурсивной компиляции
template <typename F, typename G>
auto Compose(F&& f, G&& g)
{ return [=](auto x) { return f(g(x)); };}

// рекурсия по аргументам во время компиляции
template <typename F, typename... R>
auto Compose(F&& f, R&&... r){
 return [=](auto x) { return f(Compose(r...)(x)); };
}

Функция Compose представляет собой вариадический шаблон функции. Ком-
пилятор будет рекурсивно генерировать код, разбирая последовательность ар-
гументов, пока не обработает их все. В этом коде использована конструкция
[=], которая указывает компилятору захватить значения всех переменных, до-
ступных в текущей области видимости, и включить их в замыкание лямбда-
функции. Читателю рекомендуется узнать побольше о замыканиях и захвате
переменных в приложении к функциональному программированию. В языке
C++ поддерживаются способы захвата переменных по значению и по ссылке
(обозначается [&]), также можно в явном виде перечислять имена захватывае-
мых переменных (например, [&var1, =var2]).

Парадигма функционального программирования основывается на мате-
матической теории, называемой лямбда-исчислением, начала которой были
заложены американским математиком Алонзо Чёрчем. В лямбда-исчислении
рассматриваются исключительно унарные функции; для работы с функциями
нескольких аргументов применяется приём, называемый каррингом (в честь
математика Хаскелла Карри), состоящий в преобразовании их в функции од-
ного аргумента1. Воспользовавшись лямбда-функциями и чуть поменяв способ
записи функций, можно сымитировать карринг и на языке C++.

1	 Понятие карринга заслуживает более развёрнутого комментария. Рассмотрим функ-
цию f от двух аргументов. Тогда смысл выражения f(x, y) таков: это значение функции
f на конкретных значениях аргументов (первый аргумент равен x, второй – y). Для
карринга необходимо посмотреть на функцию f под другим углом. Пусть значение
первого аргумента фиксировано и равно x, а значение второго не определено. Тогда
функция f от двух аргументов превращается в функцию f(x) от одного оставшегося
аргумента. Иными словами, f(x), где x – произвольное, но фиксированное значение,
есть результат частичного применения функции f (имеющей два аргумента) к перво-
му аргументу. Зададимся теперь некоторым значением y второго аргумента, тогда
получим f(x, y) = (f(x)) (y), то есть результат применения к единственному аргументу y
функции f(x). Тем самым функция f предстаёт как функция типа X->(Y->Z), значени-
ем которой на единственном аргументе является, в свою очередь, функция одного
оставшегося аргумента. – Прим. перев.

 26 / 32

Усовершенствования языка, повышающие качество кода    59

auto CurriedAdd3(int x) {
 return [x](int y) { // захват переменной x
 return [x, y](int z){ return x + y + z; };
 };
};

Частичное применение функций преобразовывает функцию от некоторо-
го числа аргументов в функцию от меньшего их числа. Если функции подано
меньше аргументов, чем она ожидает, результатом частичного применения
становится функция, ожидающая оставшихся аргументов. Когда и оставшие-
ся аргументы получат определённые значения, функция сможет выработать
определённое значение. С точки зрения программирования частичное при-
менение функции можно трактовать как некую разновидность кеширования
аргументов, пришедших первыми, до тех пор, пока не поступят остальные.

В следующих фрагментах кода используются такие конструкции, как вариа
дические шаблоны и пакеты параметров. Пакет параметров шаблона – это
параметр шаблона, который принимает ноль или более аргументов шаблона
(аргументов-значений, аргументов-типов или аргументов-шаблонов). Пакет
параметров функции – это параметр функции, который может принимать ноль
или более аргументов фукнции. Шаблон, обладающий хотя бы одним пакетом
параметров, называется вариадическим шаблоном. Хорошее понимание паке-
тов параметров и вариадических шаблонов необходимо для понимания кон-
струкций наподобие sizeof... в следующем коде.
template <typename... Ts>
auto PartialFunctionAdd3(Ts... xs) {
 static_assert(sizeof...(xs) <= 3);

 if constexpr (sizeof...(xs) == 3){
 // Base case: evaluate and return the sum.
 return (0 + ... + xs);
 }
 else{
 // Recursive case: bind `xs...` and return another
 return [xs...](auto... ys){
 return PartialFunctionAdd3(xs..., ys...);
 };
 }
}

int main() {
 // композиция двух функций
 auto val = Compose(
 [](int const a) { return std::to_string(a); },
 [](int const a) { return a * a; })(4); // val = "16"
 cout << val << std::endl; // напечатает 16

 // вызов каррированной функции
 auto p = CurriedAdd3(4)(5)(6);

 27 / 32

60    Современный язык C++ и его ключевые идиомы

 cout << p << endl;

 // композиция многих функций
 auto func = Compose(
 [](int const n) { return std::to_string(n); },
 [](int const n) { return n * n; },
 [](int const n) { return n + n; },
 [](int const n) {return std::abs(n); });
 cout << func(5) << endl;

 // частичное применение функции
 PartialFunctionAdd3(1, 2, 3);
 PartialFunctionAdd3(1, 2)(3);
 PartialFunctionAdd3(1)(2)(3);

 return 0;
}

Обёртки над функциями
Классы-обёртки над функциями позволяют заключать функции, функцио-
нальные объекты и лямбда-функции в объекты, допускающие копирование.
Тип класса-обёртки зависит от прототипа завёрнутой в него функции. Шаблон
std::function<прототип> из заголовочного файла <functional> и есть универсаль-
ный класс-обёртка.
// FuncWrapper.cpp, требуется C++ 17 (-std=c++1z)
#include <functional>
#include <iostream>
using namespace std;

// просто функция
void PrintNumber(int val){ cout << val << endl; }

// класс с перегруженной операцией вызова
struct PrintNumber {
 void operator()(int i) const { std::cout << i << '\n';}
};

// понадобится для вызова метода
struct FooClass {
 int number;
 FooClass(int pnum) : number(pnum){}
 void PrintNumber(int val) const {
 std::cout << number + val<< endl;
 }
};

int main() {
 // обёртка над обычной функцией
 std::function<void(int)> displaynum = PrintNumber;
 displaynum(0xF000);

 28 / 32

Операция композиции функций    61

 // вызов посредством std::invoke
 std::invoke(displaynum,0xFF00);

 // обёртка над лямбда-функцией
 std::function<void()> lambdaprint = []()
 { PrintNumber(786); };
 lambdaprint();
 std::invoke(lambdaprint);

 // обёртка над методом класса
 std::function<void(const FooClass&, int)>
 classdisplay = &FooClass::PrintNumber;
 // создать экземпляр
 const FooClass fooinstance(100);
 classdisplay (fooinstance,100);
}

В дальнейшем мы будем широко пользоваться классом-обёрткой std::func
tion, чтобы обращаться с функциями, как с данными.

Операция композиции функций
Стандартная оболочка командной строки в операционных системах семейства
Unix позволяет перенаправлять вывод одной команды на вход другой, вы-
страивая таким образом сколь угодно длинные цепочки программ-фильтров.
Когда при создании кода в функциональном стиле из относительно простых
функций строятся более сложные, код быстро становится сложным для пони-
мания из-за глубокой вложенности. Именно по этой причине название функ-
ционального языка Lisp, первоначально означающее «обработка списков» (list
processing), в шутку расшифровывают как Lots of Irritating and Silly Parentheses
(множество раздражающих и дурацких скобок). Однако теперь, благодаря но-
вым возможностям языка C++, можно перегрузить операцию |, превратив её
в композицию функций, т. е. операцию, сочленяющую две функции воедино –
подобно тому, как сочленяются команды в командной оболочке системы Unix
или в консоли PowerShell системы Windows. Операция композиции | широко
используется в библиотеке RxCpp для соединения функций между собой. Сле-
дующий код поможет разобраться, как функции соединяются в цепочки. Этот
код, впрочем, лишь демонстрирует, как это вообще возможно, и годится только
для учебных целей.
#include <iostream>
using namespace std;

struct AddOne {
 template<class T>
 auto operator()(T x) const { return x + 1; }
};

struct SumFunction {

 29 / 32

62    Современный язык C++ и его ключевые идиомы

 // функция двух аргументов
 template<class T>
 auto operator()(T x, T y) const { return x + y;}
};

В показанном выше фрагменте кода объявлен набор классов с перегружен-
ной операцией функционального применения, которые будут использованы
для построения цепочек функций. Теперь нужен механизм, позволяющий пре-
вращать произвольные функции в замыкания.
// унарная функция с замыканием,
// использован пакет параметров вариадического шаблона
template<class F>
struct PipableClosure : F{
 template<class... Xs>
 PipableClosure(Xs&&... xs) : // Xs – универсальная ссылка
 F(std::forward<Xs>(xs)...) // совершенная передача
 {}
};

// преобразователь функции в замыкание
template<class F>
auto MakePipeClosure(F f) {
 return PipableClosure<F>(std::move(f));
}

// замыкание для функции двух аргументов
template<class F>
struct PipableClosureBinary {
 template<class... Ts>
 auto operator()(Ts... xs) const {
 return MakePipeClosure(
 [=](auto x) -> decltype(auto)
 { return F()(x, xs...);});
 }
};

// операция композиции,
// использована совершенная передача
template<class T, class F>
decltype(auto) operator|(T&& x, const PipableClosure<F>& pfn)
{
 return pfn(std::forward<T>(x));
}

int main() {
 // замыкание унарной функции
 const PipableClosure<AddOne> fnclosure = {};
 int value = 1 | fnclosure| fnclosure;
 std::cout << value << std::endl;

 // замыкание функции двух аргументов
 const PipableClosureBinary<SumFunction> sumfunction = {};

 30 / 32

Прочие возможности языка    63

 int value1 = 1 | sumfunction(2) | sumfunction(5) | fnclosure;
 std::cout << value1 << std::endl;
}

В главной функции создаётся экземпляр шаблонного класса PipableClosure,
в котором в качестве параметра подставлен класс AddOne, обладающий поведе-
нием унарной функции; затем строится цепочка из исходного значения и двух
применений этой функции. Этот фрагмент кода должен вывести на печать
число 3. Далее создаётся экземпляр класса PipableClosureBinary и составляется
цепочка из функций как двух, так и одного аргумента.

Прочие возможности языка
В предыдущих разделах разобраны наиболее важные семантические новшест
ва, появившиеся начиная со стандарта C++ 11. Цель всей этой главы состоит
в том, чтобы осветить языковые средства, помогающие создавать выразитель-
ный и современный программный код. В стандарте C++ 17 появился ещё ряд
полезных возможностей. Расскажем здесь о некоторых из них.

Выражения-свёртки
В стандарт C++ 17 добавлена поддержка выражений-свёрток, упрощающих
генерацию вариадических функций. Компилятор выполняет сопоставление
с образцом и генерирует код, как бы отгадывая намерение программиста. Сле-
дующий фрагмент кода демонстрирует эту идею.
// Folds.cpp
// Требуется поддержка C++ 17 (-std=c++1z)
#include <functional>
#include <iostream>

using namespace std;
template <typename... Ts>
auto AddFoldLeftUn(Ts... args) { return (... + args); }
template <typename... Ts>
auto AddFoldLeftBin(int n,Ts... args){ return (n + ... + args);}
template <typename... Ts>
auto AddFoldRightUn(Ts... args) { return (args + ...); }
template <typename... Ts>
auto AddFoldRightBin(int n,Ts... args) {
 return (args + ... + n);
}
template <typename T,typename... Ts>
auto AddFoldRightBinPoly(T n,Ts... args) {
 return (args + ... + n);
}
template <typename T,typename... Ts>
auto AddFoldLeftBinPoly(T n, Ts... args) {
 return (n + ... + args);
}

int main() {

 31 / 32

64    Современный язык C++ и его ключевые идиомы

 auto a = AddFoldLeftUn(1,2,3,4);
 cout << a << endl;
 cout << AddFoldRightBin(a,4,5,6) << endl;

 // свёртка справа налево
 auto b = AddFoldRightBinPoly(
 "C++ "s,"Hello "s,"World "s);
 cout << b << endl;

 auto c = AddFoldLeftBinPoly(
 "Hello "s,"World "s, "C++ "s);
 cout << c << endl;
}

Эта программа должна напечатать следующий текст:

10
25
Hello World C++
Hello World C++

Сумма типов: тип variant
Несколько заумное определение типа std::variant звучит как «объединение
(union), безопасное с точки зрения типов»1. В качестве параметра этому шаб
лону можно передать сколь угодно длинный перечень типов. Тогда в каждый
момент времени объект будет содержать значение какого-либо одного из этих
типов-аргументов. При попытке «достать» из объекта std::variant значение не
того типа, который в нём в настоящее время содержится, будет выброшено ис-
ключение типа std::bad_variant_access. В следующем примере кода это исклю-
чение не обрабатывается.

#include <variant>
#include <string>
#include <cassert>
#include <iostream>
using namespace std;
int main(){
 std::variant<int, float,string> v, w;
 v = 12.0f; // содержит значение типа float
 cout << std::get<1>(v) << endl;
 w = 20; // присвоить значение типа int
 cout << std::get<0>(w) << endl;
 w = "hello"s; // присвоить строку
 cout << std::get<2>(w) << endl;
}

1	 Куда более любопытно определение в терминах теории категорий как копроизве-
дения. Интересующийся читатель может легко найти информацию об этом в сети. –
Прим. перев.

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Циклы по диапазонам и наблюдатели    65

Прочее
В новом стандарте языка C++ появилась также поддержка многопоточного
и параллельного программирования, гарантий памяти, асинхронного выпол-
нения – этим вопросам посвящены следующие две главы. Также в языке по-
явился тип std::optional (обёртка для значения, которое может отсутствовать)
и std::any (обёртка для значения любого типа). Одним из важнейших нововве-
дений стало добавление параллельных версий для большинства алгоритмов из
библиотеки STL.

Циклы по диапазонам и наблюдатели
В этом разделе будет показано, как создать собственный класс, объекты кото-
рого можно подставлять в цикл по диапазону; этот пример проиллюстрирует,
как все изученные выше языковые средства применять совместно для созда-
ния современного, идиоматичного кода. Реализуем класс, предстающий для
клиента как последовательность чисел из определённого интервала, а вместе
с ним реализуем ряд вспомогательных приспособлений, поддерживающих
итерацию по этим значениям с помощью цикла по диапазону. Сперва напи-
шем версию, основанную на понятии итератора (или перечислителя) и под-
держивающую циклы по диапазонам. Затем, путём некоторых ухищрений,
преобразуем её в реализацию, основанную на идее наблюдателя, т. е. на основ-
ном интерфейсе реактивного программирования. Впрочем, представленная
здесь реализация наблюдателя годится лишь для иллюстративных целей и не
претендует на уровень промышленного решения.

В приведённом ниже коде класс iterable сделан вложенным в класс пере-
числимого интервала.
// объекты можно использовать в конструкциях наподобие
// for (auto l : EnumerableRange<5, 25>())
// { std::cout << l << ' '; }
#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>
#include <functional>
using namespace std;

template<long Start, long End>
class EnumerableRange {
public:
 class iterable : public std::iterator<
 std::input_iterator_tag, // category (категория)
 long, // value_type (тип значения)
 long, // difference_type (тип разности)
 const long*, // pointer type (тип указателя)
 long> // reference type (тип ссылки)
 {

 1 / 32

66    Современный язык C++ и его ключевые идиомы

 long current_num = Start;
 public:
 reference operator*() const { return current_num; }
 explicit iterable(long val = 0): current_num(val) {}
 iterable& operator++() {
 current_num = (End >= Start)
 ? current_num + 1
 : current_num - 1;
 return *this;
 }
 iterable operator++(int) {
 iterable retval = *this;
 ++(*this);
 return retval;
 }
 bool operator==(iterable other) const
 { return current_num == other.current_num; }
 bool operator!=(iterable other) const
 { return !(*this == other); }
 };

В показанном выше фрагменте кода объявлен класс-шаблон EnumerableRange
с двумя параметрами-значениями (нижняя и верхняя границы диапазона)
и вложенный в него класс iterable, порождённый от стандартного класса-шаб
лона std::iterator – последнее необходимо для того, чтобы данный тип мож-
но было использовать в конструкции цикла по диапазону (англ. range-based
for). Теперь нужно определить два открытых метода, begin и end, которые также
необходимы клиентскому коду для прохода в цикле по такой последователь
ности.
 iterable begin() { return iterable(Start); }
 iterable end()
 { return iterable(End >= Start ? End + 1 : End - 1); }
};

Таким образом, объявленный выше класс можно использовать в конструк-
циях вида
 for (auto l : EnumerableRange<5, 25>())
 { std::cout << l << ' '; }

В предыдущей главе был объявлен интерфейс IEnumerable<T>. Наш замысел
состоял в том, чтобы как можно точнее придерживаться документации к биб
лиотеке Reactive eXtensions. Классы, представленные здесь, весьма похожи на
реализацию интерфейсов IEnumerable<T> и IEnumerator<T> из предыдущей гла-
вы. Как уже говорилось ранее, семантику втягивания можно преобразовать
в семантику вталкивания, если немного переработать код. Создадим класс
наблюдателя Observer, обладающий тремя методами. В определениях этих
методов воспользуемся классом-обёрткой над функциями из стандартной
библиотеки.

 2 / 32

Циклы по диапазонам и наблюдатели    67

struct Observer {
 std::function<void(const long&)> ondata;
 std::function<void()> oncompleted;
 std::function<void(const std::exception &)> onexception;
};

Класс ObservableRange, показанный ниже, хранит в себе перечень подписчи-
ков в виде контейнера std::vector. Всякий раз, когда источник генерирует оче-
редное значение из диапазона, все подписчики оповещаются о событии. Если
вызывать обработчики событий из асинхронного метода, потребитель окажет-
ся хорошо изолирован от источника данного потока значений. Классы в этом
примере не реализуют интерфейсы IObservable и IObserver, но они всё равно
позволяют подписываться на события с помощью метода subscribe.
template<long Start, long End>
class ObservableRange {
private:
 // контейнер наблюдателей
 std::vector<std::pair<const Observer&, int>> _observers;
 int _id = 0;

Подписчиков будем хранить в контейнере в виде пар. Первым компонентом
пары будет ссылка на наблюдателя, а вторым – целое число, однозначно иден-
тифицирующее подписчика1. С помощью этих идентификаторов наблюдатели
могут отписываться от источника событий.
 class iterable : public std::iterator<
 std::input_iterator_tag, // category (категория)
 long, // value_type (тип значения)
 long, // difference_type (тип разности)
 const long*, // pointer type (тип указателя)
 long> // reference type (тип ссылки)
 {
 long current_num = Start;
 public:
 reference operator*() const { return current_num; }
 explicit iterable(long val = 0) : current_num(val) {}
 iterable& operator++() {
 current_num = (End >= Start)
 ? current_num + 1
 : current_num - 1;
 return *this;
 }
 iterable operator++(int) {
 iterable retval = *this;
 ++(*this);
 return retval;
 }

1	 Вероятно, лучшим решением был бы ассоциативный контейнер std::map. – Прим.
перев.

 3 / 32

68    Современный язык C++ и его ключевые идиомы

 bool operator==(iterable other) const
 { return current_num == other.current_num; }
 bool operator!=(iterable other) const
 { return !(*this == other); }
 };

 iterable begin()
 { return iterable(Start); }
 iterable end()
 { return iterable(End >= Start ? End + 1 : End - 1); }

 // генерировать значения из диапазона;
 // этот метод следовало бы вызывать с помощью std::asnyc
 void generate_async() {
 auto& subscribers = _observers;
 for (auto l : *this)
 for (const auto& obs : subscribers) {
 const Observer& ob = obs.first;
 ob.ondata(l);
 }
 }

public:
 // генерация последовательности; метод generate_async лучше
 // вызывать через std::async, чтобы сразу вернуть управление
 void generate() { generate_async(); }

 // подписка наблюдателей
 virtual int subscribe(const Observer& call) {
 _observers.emplace_back(call, ++_id);
 return _id;
 }

 // отписка наблюдателя не реализована для краткости примера
 virtual void unsubscribe(const int subscription) {}
};

int main() {
 // воспользоваться циклом по диапазону
 for (long l : EnumerableRange<5, 25>())
 { std::cout << l << ' '; }
 std::cout << endl;

 // создать источник – экземпляр класса ObservableRange
 auto j = ObservableRange<10,20>();
 // создать наблюдателя
 Observer test_handler;
 test_handler.ondata = [=](const long & r)
 { cout << r << endl; };
 // подписать наблюдателя на события от источника
 int cnt = j.subscribe(test_handler);

 4 / 32

Итоги    69

 j.generate(); // запустить генератор

 return 0;
}

Итоги
В этой главе были изучены новые и усложнённые возможности языка C++, ко-
торыми нужно свободно владеть, чтобы создавать программы в реактивном
стиле (да и вообще любые современные программы). Рассказано о выводе
типов, вариадических шаблонах (т. е. шаблонах с переменным числом пара-
метров), ссылках rvalue, семантике перемещения, лямбда-функциях, основах
функционального программирования, композиции функций, показаны при-
меры реализации итераторов и источников событий. В следующей главе чита-
тель узнает о средствах параллельного программирования, поддерживаемых
современным стандартом языка C++.

 5 / 32

Глава 3
Параллельное

и многопоточное
программирование

на языке C++

С выходом стандарта C++ 11 в языке появилась превосходная поддержка па-
раллельного программирования. Ранее для управления потоками приходилось
пользоваться библиотеками, специфическими для определённой платформы.
Корпорация Microsoft разработала собственный прикладной интерфейс для
управления потоками, тогда как многие другие платформы (такие как GNU
Linux или macOS) следуют модели потоков, определённой в стандарте POSIX.
Закрепление средств многопоточного программирования на уровне стандарта
языка помогает программистам создавать переносимый код, одинаково хоро-
шо работающий на различных платформах.

Когда в 1998 г. вышел первоначальный стандарт языка C++, комитет, зани-
мающийся разработкой языка, был твёрдо убеждён, что управление потоками,
файловые системы, графические интерфейсы пользователя и многое другое
лучше оставить на долю библиотек, зависящих от конкретной платформы.
Герб Саттер (Herb Sutter) опубликовал в «Журнале д-ра Добба» (Dr. Dobbs Jour-
nal) статью под заглавием «Бесплатного супа больше не будет» (The Free Lunch
Is Over), оказавшую значительное влияние на профессиональное сообщество,
в которой пропагандировал такие средства программирования, которые по-
зволяют извлекать максимум пользы из набиравших тогда популярность мно-
гоядерных процессоров. Задаче распараллеливания программ вполне отвечает
модель функционального программирования. Такие языковые средства, как
потоки, лямбда-функции, семантика перемещения и гарантии памяти, помо-
гают разработчикам создавать многопоточный параллельный код без лишних
хлопот. Цель этой главы состоит в том, чтобы рассказать разработчикам о биб

 6 / 32

Что такое параллельное программирование    71

лиотечных средствах многопоточного программирования и дать рекоменда-
ции по их использованию.

В этой главе будут освещены следующие вопросы:
�� что такое параллельное программирование;
�� как написать многопоточную программу Hello World;
�� как управлять временем жизни и ресурсами потоков;
�� обмен данными между потоками;
�� как структуру данных сделать потокобезопасной.

Что такое параллельное программирование
Говоря упрощённо, параллельность означает способность выполнять более од-
ного действия одновременно. Понятие параллельности можно приложить ко
множеству ситуаций из нашей повседневной жизни: например, к поеданию
воздушной кукурузы во время просмотра фильма или к пользованию обеими
руками одновременно для двух различных действий и т. д. Однако что же па-
раллельность значит для компьютера?

Компьютерные системы обрели способность переключать задачи уже много
десятилетий назад, и долгое время существуют многозадачные операционные
системы. Чем вызвана внезапная повторная вспышка интереса к параллельным
вычислениям? Производители микропроцессоров постоянно наращивали их
вычислительную мощность, помещая всё больше транзисторов на кремниевый
кристалл. На очередном этапе этой гонки дальнейшее наращивание плотности
размещения элементов оказалось уже невозможным из-за фундаментальных
физических ограничений. Процессоры той эпохи обладали единственным по-
током выполнения команд, а выполнение нескольких потоков достигалось за
счёт переключения между потоками. С точки зрения внутреннего устройства
процессора, в каждый момент времени выполнялся лишь один поток, но по-
скольку переключение между потоками происходило весьма часто и быстро (по
меркам человеческого восприятия), у пользователей создавалось впечатление,
что несколько программ выполняется в самом деле одновременно.

Около 2005 г. корпорация Intel объявила о выходе нового многоядерного
процессора (т. е. процессора, на схемотехническом уровне способного дей-
ствительно выполнять несколько потоков команд одновременно), что в кор-
не изменило картину. Вместо того чтобы нагружать единственный процессор
всеми задачами, поочерёдно переключаясь между ними, многоядерный про-
цессор дал возможность в самом деле выполнять их параллельно. Но это поста-
вило перед программистами новую задачу: писать свои программы так, что-
бы использовать эту предоставляемую аппаратурой возможность. Кроме того,
проявилось ещё одно затруднение: истинная, поддерживаемая аппаратурой
параллельная обработка имеет ряд отличий от иллюзии, создаваемой пере-
ключением между задачами. До появления многоядерных процессоров про-
изводители аппаратуры соревновались в наращивании тактовой частоты; если
бы тенденция оставалась неизменной, отметка в 10 ГГц была бы достигнута

 7 / 32

72    Параллельное и многопоточное программирование на языке C++

до конца первого десятилетия XXI века. Однако ориентир в гонке производи-
тельности резко сменился, и теперь производители процессоров наращивают
количество ядер при относительно неизменной частоте. Как писал Герб Саттер
в статье «Бесплатного супа больше не будет» (http://www.gotw.ca/publications/
concurrency-ddj.htm), «приложения должны стать параллельными, если вы хо-
тите на все 100 % использовать растущую пропускную способность процес-
соров, которые уже начали появляться на рынке и будут править бал на нем
в последующие несколько лет»1. Автор статьи предупреждает программистов,
что даже те, кто ранее не видел необходимости в параллельных вычислениях,
должны теперь считаться с этим при разработке программ.

Современная стандартная библиотека языка C++ предоставляет набор ин-
струментов для поддержки многопоточного и параллельного программиро-
вания. Это, во-первых, класс std::thread вместе с объектами синхронизации,
такими как std::mutex, std::lock_guard, std::unique_lock, std::condition_variable
и др., – всё это вместе позволяет программистам писать многопоточный код,
оставаясь в пределах стандарта. Во-вторых, для поддержки параллельности на
основе задач (как в платформе .Net и языке Java) в язык C++ введены классы
std::future и std::promise, работающие всегда в паре и позволяющие отделить
вызов функции от ожидания её результата.

Наконец, для борьбы с лишними затратами на управление потоками в стан-
дартную библиотеку включён класс std::async, который мы подробно разберём
в следующей главе, посвящённой разработке неблокирующих параллельных
программ (по меньшей мере, минимизирующих блокировки, насколько воз-
можно).

	 Многопоточность означает, что два или более потоков вычислений могут стартовать, вы-
полняться и завершаться в перекрывающиеся отрезки времени (как в модели с разделе-
нием времени). Параллельность означает, что две (или более) задачи могут выполняться
на самом деле одновременно (скажем, на разных ядрах одного процессора). Многопо-
точность главным образом позволяет улучшить время отклика системы, тогда как парал-
лельность даёт возможность наиболее эффективно использовать ресурсы системы.

Здравствуй, мир потоков!
Давайте же начнём создавать свою первую программу, основанную на классе
std::thread. Чтобы компилировать примеры программ из этой главы, читателю
понадобится компилятор с поддержкой стандарта C++ 11 или более позднего.
Сначала возьмём в качестве образца классическую, простейшую программу
«Здравствуй, мир», прежде чем переходить к многопоточной реализации.
// Спасибо Деннису Ритчи и Брайану Кернигану за этот обычай
#include <iostream>
int main()

1	 Цит. по русскому переводу статьи: https://habr.com/post/145432/.

 8 / 32

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://habr.com/post/145432/

Здравствуй, мир потоков!    73

{
 std::cout << "Hello world\n";
 return 0;
}

Эта программа просто выводит текст «Hello World» (англ. «Здравствуй, мир»)
на стандартное устройство вывода (как правило, на консоль). Теперь рассмот
рим программу, которая делает то же самое, но использует для этого фоновый
поток, также часто называемый рабочим потоком.
#include <iostream>
#include <string>
#include <thread>

// Будет выполняться в отдельном потоке
void thread_proc(std::string msg)
{
 std::cout << "thread_proc says: " << msg;
}

int main()
{
 // Создать поток и выполнить в нём функцию 'thread_proc'
 std::thread t(thread_proc, "Hello World\n");

 // Дождаться завершения потока и завершить программу
 t.join();
}

Первое отличие этого примера от простейшей реализации – это подключе-
ние стандартного заголовочного файла <thread>. В нём объявлены все функции
и классы для работы с потоками. Однако объявления классов, обеспечивающих
синхронизацию и атомарный доступ к данным, расположены в других файлах.
Читатели, знакомые со средствами управления потоками системы Windows
и стандарта POSIX, знают, что всякому потоку нужна своя начальная функция.
Данному принципу следует также и стандартная библиотека. В этом приме-
ре функция thread_proc становится начальной функцией потока, создаваемого
в функции main. Начальная функция (в данном случае заданная посредством
указателя) передаётся в конструктор объекта t типа std::thread, и конструктор
начинает выполнение нового потока.

Наиболее заметное отличие этой реализации от предыдущей состоит в том,
что новое приложение выводит сообщение на консоль из нового (фонового,
рабочего) потока, и, таким образом, приложение в целом выполняется в два
потока. Как только рабочий поток запущен на выполнение, главный поток про-
должает свою работу. Если бы главный поток не ждал завершения второго по-
тока, функция main завершилась бы сразу, что привело бы к завершению всего
приложения – независимо от того, завершились ли остальные потоки. Для это-
го и необходимо вызывать функцию join, перед тем как завершится главный
поток, – он должен дождаться окончания вспомогательного потока t.

 9 / 32

74    Параллельное и многопоточное программирование на языке C++

Управление потоками
Выполнение приложения начинается (после выполнения некоторых систем-
ных действий) с функции main, играющей роль точки входа в программу, и для
этого создаётся поток по умолчанию. Таким образом, каждая программа об-
ладает хотя бы одним потоком выполнения. Во время своего выполнения про-
грамма может создавать любое число дополнительных потоков, пользуясь для
этого средствами стандартной библиотеки или специфическими средствами
конкретной платформы. Эти потоки могут выполняться параллельно, если
в наличии имеется достаточное число процессорных ядер. Если же потоков
оказывается больше, чем ядер процессора, то уже невозможно выполнять все
потоки полностью одновременно. Следовательно, в этом случае тоже будет
иметь место переключение между потоками. Сколько бы потоков ни создава-
лось из главного потока, все они выполняются параллельно с главным пото-
ком или делят с ним ресурс процессора. Кроме того, когда вместе с функцией
main завершается начальный поток, завершается вся программа: это приводит
к завершению всех остальных её потоков. Поэтому, если дочерние потоки про-
должают выполнять важную работу, главному потоку необходимо дождаться
их нормального завершения, прежде чем завершаться самому. Рассмотрим по
дробнее, как происходят запуск потоков и ожидание их окончания.

Запуск потока
В предыдущем примере мы видели, что указатель на функцию передаётся
в качестве аргумента в конструктор объекта std::thread, и поток запускается.
Переданная функция начинает выполняться в отдельном потоке. Таким обра-
зом, запуск нового потока осуществляется конструктором объекта std::thread.
Кроме передачи указателя на функцию, есть и другие способы проинициали-
зировать объект-поток. Функциональный объект также можно использовать
в качестве аргумента при создании потока. Вообще говоря, стандартная биб
лиотека языка C++ гарантирует, что объекты класса std::thread могут работать
с любыми сущностями, которые можно вызывать как функции (т. е. с сущно-
стями, обладающими операцией функционального применения). Тем самым
стандарт поддерживает инициализацию потоков такими аргументами:

�� указатели на функции (как показано в примере);
�� функциональные объекты, т. е. объекты с перегруженной операцией вы-

зова;
�� лямбда-функции.

Всё, что может быть вызвано, может быть кандидатом для создания потока.
Покажем пример того, как создавать поток из объекта с перегруженной опера-
цией вызова.
class parallel_job
{
public:

 10 / 32

Управление потоками    75

 void operator() () {
 some_implementation(); // какая-то реализация
 }
};

parallel_job job;
std::thread t(job);

В процессе создания потока объект job копируется в его адресное простран-
ство – следовательно, функциональный объект должен поддерживать копиро-
вание. Если копирование невозможно или нежелательно, его можно избежать,
воспользовавшись функцией std::move, как показано ниже:
std::thread t(std::move(job));

Конечно, перемещение вместо копирования произойдёт и в том случае, если
передать временный объект (т. е. выражение категории rvalue), что может быть
оформлено в коде следующим образом:
std::thread t(parallel_job());

Эту строчку, впрочем, можно ошибочно принять за объявление функции, ко-
торая принимает указатель на функцию и возвращает объект типа std::thread.
Можно избежать путаницы, если воспользоваться единым синтаксисом ини-
циализации, например:
std::thread t{ parallel_job{} };

Избежать этой же путаницы можно и иным способом: с помощью дополни-
тельной пары скобок, как показано в следующем примере:
std::thread t((parallel_job()));

Ещё один интересный способ создавать потоки состоит в том, чтобы в кон-
структор объекта std::thread передавать лямбда-функцию. Лямбда-функции
могут захватывать локальные переменные, тем самым устраняя потребность
в передаче аргументов. Хотя лямбда-функции могут оказаться весьма удобны-
ми, когда нужно создать анонимную функцию, связанную с текущим контек-
стом, это не значит, что их стоит использовать всюду. Ниже показан пример
создания потока на основе лямбда-функции:
std::thread t([] () { some_implementation(); });

Присоединение к потоку
Читатель мог заметить, что в примере многопоточной программы «Здав-
ствуй, мир» в самом конце функции main, т. е. перед завершением програм-
мы, стоит вызов t.join(). Вызов метода join для объекта, инкапсулирующего
рабочий поток, гарантирует, что поток, вызвавший этот метод, дождётся за-
вершения потока, завёрнутого в объект. Без такого вызова может оказаться,
что раньше, чем вспомогательный поток начнёт свою работу, главный поток

 11 / 32

76    Параллельное и многопоточное программирование на языке C++

завершится, что вызовет немедленное завершение всех созданных им вспо-
могательных потоков.

Метод join либо ждёт, пока поток не завершится, либо не делает ничего, если
поток уже завершился. Для более тонкого управления потоками предназначе-
ны иные механизмы, такие как двоичные семафоры (англ. mutex), условные
переменные (condition variable), фьючерсы (future), о которых будет рассказано
в следующих разделах этой главы и в следующей главе. Метод join освобождает
память, используемую объектом-потоком, и тем самым гарантирует, что объ-
ект более не связан ни с каким выполняющимся потоком. Это означает, что
метод join можно вызывать лишь один раз для каждого объекта-потока. После
вызова метода join метод joinable того же объекта вернёт значение false. Чтобы
лучше понять метод join, предыдущий пример с функциональным объектом
можно изменить следующим образом:
class parallel_job
{
 int& _iterations;

public:
 parallel_job(int& iterations):
 _ iterations(iterations)
 {}

 void operator() () {
 for (int i = 0; i < _iterations; ++i)
 {
 some_implementation(i); // какая-то реализация
 }
 }
};

void func()
{
 int local_var = 10000;
 parallel_job job(local_var);
 std::thread t(job);
 if (t.joinable())
 t.join();
}

В этом примере функция func перед своим завершением проверяет, выпол-
няется ли ещё созданный в ней поток t. С помощью метода joinable функция
проверяет, можно ли подключиться к этому потоку (разумеется, в данном при-
мере он всегда вернёт значение true), и если проверка дала положительный
результат, подключается и ожидает его завершения.

Теперь попробуем предотвратить ожидание функцией func своего дочерне-
го потока. Существует стандартный механизм, позволяющий потоку продол-
жать свою работу даже после завершения функции, в которой он был запущен,
а именно метод detach.

 12 / 32

Управление потоками    77

 if (t.joinable())
 t.detach();

Однако есть ряд тонкостей, о которых нужно задуматься прежде, чем отсо
единяться от потока методом detach. В данном примере поток t, скорее все-
го, всё ещё будет выполняться в момент завершения функции func. Как видно
из показанного выше исходного кода, поток использует ссылку на локальную
переменную функции func, что очевидно приведёт к серьёзной ошибке, так
как на стеке по этому же адресу наверняка будут размещены другие данные
(в большинстве вычислительных архитектур). Такую опасность всегда нужно
иметь в виду, прежде чем применять в своей программе метод detach. Обыч-
ный способ защититься от неё – сделать поток самодостаточным, а необходи-
мые для работы потока данные копировать в него, а не передавать в совмест-
ное пользование через указатели.

Передача аргументов в поток
Выше мы разобрались, как запускать поток и ожидать его завершения. Теперь
разберём, как при инициализации потока передавать аргументы для функции,
которая будет в потоке выполняться. В качестве примера рассмотрим вычис-
ление факториала числа.
class Factorial
{
private:
 long double _fact;

public:
 Factorial() : _fact (1)
 {}

 void operator() (int number)
 {
 _fact = 1;
 for (int i = 1; i <= number; ++i)
 {
 _fact *= i;
 }

 std::cout
 << "Факториал числа "
 << number
 << " равен "
 << _fact
 << std::endl;
 }
};

int main()
{

 13 / 32

78    Параллельное и многопоточное программирование на языке C++

 Factorial fact;
 std::thread t1(fact, 10);
 t1.join();
}

Как видно из этого примера, чтобы в отдельном потоке запустить функцию
(или функциональный объект) с определёнными аргументами, нужно передать
эти аргументы в конструктор объекта std::thread. При этом нужно понимать,
что значения этих аргументов копируются во внутреннее хранилище потока.
Как мы уже убедились выше, потоку для нормального выполнения необходи-
мы собственные копии всех аргументов – в противном случае могут возникать
ошибки из-за окончания времени жизни локальных переменных. Чтобы луч-
ше изучить передачу аргументов в поток, обратимся снова к нашему первому
примеру «Здравствуй, мир»:
void thread_proc(std::string msg);
std::thread t(thread_proc, "Hello World\n");

Здесь функция thread_proc принимает один аргумент типа std::string, однако
при создании потока передаётся значение типа const char*. Это значение по-
ступает на самом деле в конструктор объекта std::thread, там оно преобразо-
вывается в объект типа std::string и копируется во внутреннее пространство
потока. Таким образом, клиентский код передаёт значение типа const char*,
а в поток попадает объект типа std::string. Этот механизм неявного преоб-
разования нужно иметь в виду, выбирая тип аргумента для функции потока.
Посмотрим, что получится, если передать в конструктор потока указатель на
локальный массив символов:
void thread_proc(std::string msg);
void func() {
 char buf[512] = "Hello World\n";
 std::thread t(thread_proc, buf);
 t.detach();
}

Аргумент, переданный в конструктор потока, – это указатель на массив buf,
объявленный локально в функции func. Есть теоретическая возможность, что
функция func завершится до того, как массив символов buf будет преобразо-
ван в объект типа std::string. Это может привести к неопределённому поведе-
нию. Данную проблему можно решить, если в явном виде привести массив buf
к типу std::string перед передачей в конструктор объекта std::thread:
 std::thread t(thread_proc, std::string(buf));

Рассмотрим теперь случай, когда потоку действительно необходимо изме-
нять объект по ссылке, полученной через аргумент. В обычном случае кон-
структор потока создаёт копию значения, переданного ему в качестве аргу-
мента, именно для того, чтобы сделать невозможной передачу в поток ссылки
на локальную переменную, однако стандартная библиотека содержит и сред-

 14 / 32

Использование лямбда-функций    79

ство для передачи аргумента по ссылке. Во многих реальных системах можно
видеть примеры того, как с одной и той же структурой данных работает не-
сколько потоков. Ниже показан пример того, как передать в поток ссылку.
void update_data(shared_data& data);

void another_func() {
 shared_data data;
 std::thread t(update_data, std::ref(data));
 t.join();
 do_something_else(data);
}

В этом примере аргумент, передаваемый в конструктор объекта std::thread,
обёрнут функцией std::ref, благодаря чему в функцию потока гарантированно
попадёт ссылка на фактически переданный аргумент. Читатель наверняка об-
ратил внимание на то, что функция update_data в соответствии с прототипом
принимает ссылку на объект типа shared_data, тогда зачем же нужна обёртка
std::ref над аргументом, который и без того является ссылкой? Чтобы понять
это, рассмотрим следующий код:
 std::thread t(update_data, data);

Конечно же, функция update_data трактует переданный ей аргумент типа
shared_data как ссылку. Однако объект data является аргументом не этой функ-
ции, а конструктора объекта-потока, который просто копирует этот объект во
внутренние структуры данных. Поэтому, когда выполнение потока дойдёт до
вызова функции update_data, ей будет передана ссылка на локальную копию ар-
гумента, а не ссылка на исходный объект-аргумент. Обёртывание аргумента
в функцию std::ref, напротив, обеспечивает передачу именно ссылки на сам
объект data.

Использование лямбда-функций
Убедимся же теперь в том, насколько в многопоточном программировании по-
лезны лямбда-функции. Следующий фрагмент кода создаёт пять потоков и по-
мещает их в контейнер. Каждый поток создаётся на основе лямбда-функции.
Каждый поток получает свой номер (текущее значение счётчика цикла), за-
хваченный по значению.
int main()
{
 std::vector<std::thread> threads;
 for (int i = 0; i < 5; ++i)
 {
 threads.push_back(std::thread(
 [i]() { std::cout << "Поток " << i << std::endl; }));
 }

 15 / 32

80    Параллельное и многопоточное программирование на языке C++

 std::cout << "\nГлавная функция";

 std::for_each(
 threads.begin(),
 threads.end(),
 [](std::thread &t) { t.join(); });

 return 0;
}

Контейнер threads содержит в себе пять потоков, запущенных в теле цикла.
Главный поток присоединяет эти потоки снова к себе (т. е. ожидает их заверше-
ния) в конце функции main. Результат выполнения этого кода может выглядеть,
например, так:
Поток 0
Поток 4
Поток 1
Поток 3
Поток 2
Главная функция

Текст, печатаемый программой, наверняка будет отличаться при каждом за-
пуске. Эта программа может служить хорошим примером недетерминирован-
ности, внутренне присущей многопоточному программированию. В следую-
щем разделе мы займёмся тем, как объекты типа std::thread ведут себя при
перемещении.

Управление владением
В примерах, разобранных ранее в этой главе, читатель мог заметить, что функ-
ция, запустившая новый поток, должна либо дождаться его завершения с по-
мощью метода join, либо, вызвав метод detach, утратить связь с этим потоком
и отпустить его. В современном стандарте языка C++ есть множество типов
данных, объекты которых можно перемещать, но нельзя копировать, и тип
std::thread – один из них. Это означает, что никакие два объекта не могут вла-
деть одним и тем же потоком, но исключительное владение потоком может
передаваться от одного объекта std::thread к другому посредством семантики
перемещения.

Есть много ситуаций, в которых может понадобиться передача владения по-
током от объекта к объекту, например если функция, создавшая поток, хочет
завершиться, не дожидаясь его окончания. Тогда она может передать владение
потоком той функции, из которой вызвана сама, вернув ей в качестве значе-
ния объект типа std::thread. Другим примером может быть передача потока
в функцию в качестве аргумента, чтобы она дождалась его завершения. В обо-
их случаях цель может быть достигнута путём передачи владения потоком от
одного объекта-обёртки к другому.

Чтобы пояснить сказанное, определим две функции, которые позднее будем
запускать в различных потоках:

 16 / 32

Использование лямбда-функций    81

void function1()
{
 std::cout << "Функция 1\n";
}

void function2()
{
 std::cout << " Функция 2\n";
}

Теперь рассмотрим главную функцию, которая запускает эти функции в от-
дельных потоках.
int main()
{
 std::thread t1(function1);
 // Передача владения потоком от объекта t1 к t2
 std::thread t2 = std::move(t1);

Сначала создаётся новый объект-поток t1. Затем владение потоком перехо-
дит от него к объекту t2, для чего используется функция std::move, вследствие
чего создание объекта t2 выполняется перемещающим конструктором. С этого
момента объект t1 более не связан ни с каким выполняющимся потоком. По-
ток, в котором выполняется функция function1, теперь связан с объектом t2.
Пусть далее следует строка
 t1 = std::thread(function2);

Здесь запускается новый поток вместе с созданием объекта-обёртки. Вы-
ражение в правой части присваивания является rvalue, поэтому выполняется
перемещающая операция присваивания, которая передаёт владение потоком
из временного объекта в правой части объекту t1. Обратим внимание, что по-
скольку в правой части присваивания стоит выражение категории rvalue, нет
необходимости оборачивать это значение функцией std::move. Рассмотрим те-
перь следующие строки:
 // пустой объект, не владеющий никаким потоком
 std::thread t3;
 // Владение потоком передаётся от t2 объекту t3
 t3 = std::move(t2);

Объект t3 создаётся конструктором по умолчанию, без запуска какого-либо
потока. Затем поток, которым владеет объект-обёртка t2, передаётся объекту t3
в исключительное владение посредством перемещающей операции присваи
вания, на что указывает использование функции std::move.
 // ожидать объект t2 не нужно: он уже не связан с потоком
 if (t1.joinable()) t1.join();
 if (t3.joinable()) t3.join();
 return 0;
}

 17 / 32

82    Параллельное и многопоточное программирование на языке C++

Наконец, перед завершением программы необходимо дождаться заверше-
ния всех созданных в ней потоков. В данном случае только объекты t1 и t3 свя-
заны с выполняющимися потоками.

Допустим теперь, что перед обращениями к методу join имеется такая строка:

 t1 = std::move(t3);

Объект t1 в этой точке программы уже связан с потоком, в котором выпол-
няется функция function2. Когда оператор присваивания пытается передать
в этот, уже занятый объект владение потоком из объекта t3 (а именно потоком,
в котором выполняется функция function1), программа аварийно завершается
(с помощью функции std::terminate). Этим гарантируется корректное поведе-
ние деструктора объектов std::thread.

Поддержка семантики перемещения классом std::thread позволяет переда-
вать владение потоком наружу из функции. Следующий фрагмент кода демон-
стрирует это:

void func()
{
 std::cout << "func()\n";
}

std::thread thread_creator()
{
 return std::thread(func);
}

void thread_wait_func()
{
 std::thread t = thread_creator();
 t.join();
}

Функция thread_creator возвращает объект типа std::thread, связанный с по-
током, в котором выполняется функция func. Функция thread_wait_func вызывает
функцию thread_creator, получает от неё объект-поток1. Вызов функции являет-
ся выражением категории rvalue, он используется для инициализации нового
объекта типа std::thread. Тем самым владение потоком передаётся локальному
объекту t, затем функция использует его, чтобы дождаться завершения потока.

Совместный доступ потоков к данным
Выше мы изучили создание потоков и несколько способов управления ими.
Теперь разберём, как обеспечить совместный доступ нескольких потоков к об-

1	 Строго говоря, последовательность действий несколько отличается от этой упрощён-
ной модели благодаря оптимизации возврата значения из функции, известной как
«исключение копирования» (англ. copy elision).

 18 / 32

Совместный доступ потоков к данным    83

щим данным. Возможность доступа к одним и тем же данным из различных
потоков имеет исключительное значение для параллельного программирова-
ния. Сначала разберём, какие проблемы могут возникнуть при совместном до-
ступе потоков к общим данным.

Проблем никаких возникнуть не может, если общие данные, к которым об-
ращаются потоки, неизменяемы (т. е. открыты только для чтения), поскольку
чтение данных тем или иным потоком никак на них не влияет и, следователь-
но, остальные потоки прочтут те же самые данные. Трудности возникают там,
где потоки получают возможность модифицировать общие данные.

Когда потоки, имеющие доступ к сложной структуре данных, одновременно
пытаются вносить в неё изменения, это легко может привести к нарушению
инвариантов, характеризующих целостность этой структуры. Пусть, напри-
мер, в контейнерном объекте хранятся некоторые элементы и счётчик этих
элементов, и пусть над контейнером выполняется не совсем элементарная
модифицирующая операция. Это может быть, скажем, удаление элемента из
самобалансирующегося дерева или двухсвязного списка. Если один поток без
специальных мер безопасности читает данные из контейнера, в то время как
другой поток занимается удалением элемента, вполне может случиться, что
читающий поток увидит структуру данных с частично удалённым элементом1
и, следовательно, нарушенным инвариантом. Это может привести к непопра-
вимому повреждению структуры данных и к краху программы.

	 Инвариантом называют совокупность соотношений, истинность которых должна сохра-
няться на протяжении всего времени жизни объекта. Вписывание контрольных утверж-
дений в программный код с целью автоматической проверки инвариантов помогает
сделать код надёжным. Кроме того, это ещё и прекрасный способ документирования
кода, а также хорошая защита от дефектов, возникающих при модификации кода. Более
подробную информацию можно найти в Википедии по ссылке https://en.wikipedia.org/
wiki/Invariant_(computer_science).

Попытки вносить изменения в общие данные из разных потоков нередко
приводят программу в состояние гонок (англ. race condition) – по-видимому,
наиболее частую причину ошибок в параллельных программах. Данный тер-
мин означает, что потоки наперегонки пытаются выполнить свои действия
над данными. Таким образом, общий результат их деятельности зависит от
порядка выполнения операций в разных потоках, от их относительной скоро-
сти. Чаще всего под гонками потоков понимают именно такие, потенциально
приводящие к ошибкам гонки. Конечно, если каждый из потоков работает ис-
ключительно над своими данными, никакие гонки между ними не могут при-
вести к ошибкам. Опасность гонок обычно связана с тем, что изменение общей

1	 Более конкретно, элемент уже удалён из списка, а счётчик элементов ещё не умень-
шен на единицу; или, при удалении второго из трёх элементов двухсвязного списка,
указатель на следующий элемент для первого элемента уже переставлен на третий,
тогда как третий элемент всё ещё считает предыдущим второй и т. д. – Прим. перев.

 19 / 32

https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)

84    Параллельное и многопоточное программирование на языке C++

структуры данных требует изменения двух или более составляющих её эле-
ментов данных (как удаление элемента из сбалансированного дерева или из
двухсвязного списка). Поскольку модификация затрагивает разные значения
и выполняется разными машинными командами, другой поток вполне может
начать обращение к структуре данных между этими командами, т. е. когда мо-
дификация структуры данных выполнена лишь наполовину.

Состояние гонок часто бывает крайне трудно обнаружить и ещё труднее вос-
произвести, поскольку доступный наблюдению эффект очень сильно зависит
от случайных факторов, влияющих на очерёдность выполнения потоков. Едва
ли не главная сложность при разработке параллельных программ как раз и со-
стоит в предотвращении всевозможных гонок между потоками.

Есть несколько способов борьбы с нежелательными гонками потоков. Наи-
более простой и распространённый из них состоит в использовании прими-
тивов синхронизации, основанных на взаимной блокировке потоков. Общая
структура данных помещается в некоторую оболочку, механизмы которой пре-
дотвращают одновременный доступ нескольких потоков. Далее в этой главе
будет подробно рассказано о различных примитивах синхронизации и спосо-
бах их использования.

Другое решение состоит в том, чтобы так переработать структуры данных
и их инварианты, чтобы целостность данных и корректность операций над
ними гарантировались даже при одновременном доступе из нескольких по-
токов. Такой подход к написанию программ, известный как неблокирующее
программирование, довольно сложен. Неблокирующее программирование
на языке C++ и лежащая в его основе модель памяти обсуждаются в главе 4
«Асинхронное программирование и неблокирующая синхронизация в языке
C++».

Наконец, изменения структур данных можно обрабатывать в режиме транз
акций, подобно тому, как обрабатываются модификации баз данных. Данная
тема выходит за рамки настоящей книги и далее обсуждаться не будет.

Теперь приступим к изучению самого важного из стандартных средств син-
хронизации доступа к общим данным, а именно двоичного семафора, или
мьютекса.

Двоичные семафоры
Двоичный семафор, также называемый мьютексом (англ. mutex), – это меха-
низм, используемый в параллельном программировании для борьбы с гонка-
ми потоков. Основное назначение двоичного семафора состоит в том, чтобы не
дать потоку войти в критическую секцию, пока другой поток находится в своей
критической секции. Семафор может находиться в открытом и запертом со-
стоянии, с его помощью поток может просигнализировать, что вошёл в кри-
тическую секцию, требующую исключительного доступа. Когда поток входит
под семафор, последний запирается, и другие потоки, стремящиеся войти под
него, вынуждены ждать, пока первый поток не освободит семафор. В стандарте

 20 / 32

Совместный доступ потоков к данным    85

C++ 11 стандартная библиотека пополнилась классом std::mutex, который реа-
лизует эту функциональность.

Класс std::mutex содержит методы lock и unlock для входа в критическую сек-
цию и выхода из неё. Работая с критическими секциями посредством этих
методов, нужно тщательно следить за тем, чтобы всякому захвату семафора
методом lock соответствовало его освобождение методом unlock, в противном
случае остальные потоки будут до бесконечности ожидать своей очереди на
вход в критическую секцию.

Вернёмся к примеру кода, которым выше было проиллюстрировано созда-
ние потоков на основе лямбда-функции. Анализируя этот пример, мы отме-
тили, что текст, выводимый на консоль параллельно работающими потоками,
перемешивается – т. е. имеет место состояние гонок между потоками за доступ
к потоку std::cout как к единому глобальному ресурсу. Перепишем этот код,
используя объект std::mutex для исключительного доступа к устройству вывода.
#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

std::mutex m;

int main()
{
 std::vector<std::thread> threads;

 for (int i = 0; i < 5; ++i)
 {
 threads.push_back(std::thread([i]() {
 m.lock();
 std::cout << "Поток " << i << std::endl;
 m.unlock();
 }));
 }

 std::for_each(
 threads.begin(),
 threads.end(),
 [](std::thread &t) { t.join(); });

 return 0;
}

Результат работы этой программы может выглядеть так:
Поток 2
Поток 4
Поток 0
Поток 1
Поток 3

 21 / 32

86    Параллельное и многопоточное программирование на языке C++

В этой программе двоичный семафор используется для защиты общего ре-
сурса (каковым является устройство вывода std::cout) от одновременного до-
ступа из нескольких потоков (а именно от одновременного выполнения ими
операций вывода). В отличие от первой версии данного примера, наличие кри-
тической секции надёжно предохраняет от смешивания сообщений, выводи-
мых разными потоками (хотя порядок сообщений остаётся непредсказуемым).
Методы lock и unlock вызываются в каждом потоке поочерёдно, чем и обеспе-
чивается согласованная работа всей системы.

Следует, однако, отметить, что прямое использование методов lock и unlock
класса std::mutex – это плохая практика, так как в подобном случае програм-
мист вынужден самостоятельно заботиться о том, чтобы освобождать сема-
фор на всех возможных путях выполнения, ведущих к выходу из критической
секции, включая и аварийный выход по исключению. Чтобы справиться с этой
трудностью, в стандартной библиотеке языка C++ предусмотрен специальный
шаблонный класс std::lock_guard, воплощающий для двоичных семафоров зна-
менитую идиому RAII (англ. Resource Acquisition Is Initialization – захват ресурса
есть инициализация). Конструктор объекта данного класса захватывает и сема-
фор, а деструктор освобождает его. Объявление этого класса содержится в стан-
дартном заголовочном файле <mutex>. Воспользовавшись классом-обёрткой
std::lock_guard, предыдущий пример можно переписать следующим образом:
#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

std::mutex m;

int main()
{
 std::vector<std::thread> threads;

 for (int i = 0; i < 5; ++i)
 {
 threads.push_back(std::thread([i]() {
 std::lock_guard<std::mutex> guard(m);
 std::cout << "Поток " << i << std::endl;
 }));
 }

 std::for_each(
 threads.begin(),
 threads.end(),
 [](std::thread &t) { t.join(); });

 return 0;
}

Двоичный семафор, общий для критических секций всех потоков, пред-
ставлен в этом примере глобальной переменной, тогда как обёртывающий его

 22 / 32

Совместный доступ потоков к данным    87

объект типа std::lock_guard локален и создаётся каждый раз, когда очередной
поток входит в критическую секцию. Как только объект создан и выполнение
потока пошло дальше, можно быть уверенными, что двоичный семафор за-
хвачен. Как только выполнение потока выходит за область видимости объекта
guard, автоматически вызывается его деструктор, что приводит к освобожде-
нию семафора.

	 Чрезвычайно важная для программирования на языке C++ идиома RAII означает, что
время жизни того или иного ресурса (такого как дескриптор файла, соединение с ба-
зой данных, сетевое соединение, динамически выделенная область памяти, владение
семафором и т. д.) привязано к времени жизни объекта-обёртки. Читатель может найти
информацию об идиоме RAII в Википедии по ссылке https://en.wikipedia.org/wiki/Re-
source_acquisition_is_initialization.

Предотвращение тупиков
Самая большая опасность, подстерегающая программиста при работе с двоич-
ными семафорами, – это тупик. Легко представить себе пример тупика в реаль-
ной жизни. Чтобы послушать музыку, человеку нужны одновременно два ре-
сурса: плеер и наушники. Если на двоих братьев имеется один такой комплект,
вполне возможна ситуация, когда они захотят послушать музыку совершенно
одновременно, при этом один из них положит руку на плеер, а другой в это же
время схватит наушники. Теперь первый будет ожидать, пока освободятся на-
ушники, а второй – ждать плеер. Каждый в конечном счёте ждёт себя самого,
так как именно его ждёт тот, кого ждёт он сам. Это ожидание способно длиться
до бесконечности, если только один из них не уступит из любви к ближнему.

То же самое происходит в программе, если братьев заменить потоками,
а плеер и наушники – двумя семафорами. Пусть каждый из двух потоков бла-
гополучно захватывает по одному семафору и затем пытается получить дру-
гой. Первый поток не может продолжить работу, так как второй семафор занят
вторым потоком. Поэтому первый поток никогда не отпустит первый семафор,
но именно его ждёт второй поток и из-за этого не может отпустить второй се-
мафор. Эта ситуация и называется тупиком, или мёртвой блокировкой (англ.
deadlock).

Избежать тупика бывает довольно просто, если различные семафоры слу-
жат для защиты различных ресурсов и каждый поток в каждый момент време-
ни нуждается лишь в одном из них. Однако на практике встречаются и более
сложные ситуации. Лучшее, что можно здесь посоветовать, – это во всех по-
токах захватывать семафоры в одном и том же порядке, это делает тупик не-
возможным1.

1	 В примере с братьями, желающими послушать музыку, это выглядело бы так: каждый
из них в первую очередь захватывает только плеер; затем, только если это удалось,
захватывает наушники. Тогда очевидно, что ровно одному из них повезёт, а другому
останется ждать, пока музыкой насладится первый, что, конечно же, лучше, чем бес-
конечно долгое ожидание в тупике.

 23 / 32

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

88    Параллельное и многопоточное программирование на языке C++

Рассмотрим в качестве примера программу, состоящую из двух потоков.
Пусть один поток выводит на печать чётные, а другой – нечётные числа. Для
синхронизации этих потоков будем использовать два двоичных семафора. Об-
щим ресурсом, который нужно защитить от одновременного доступа, является
устройство вывода std::cout. Код этой программы, потенциально заводящей
в тупик, приведён ниже.
// Глобальные семафоры
std::mutex evenMutex;
std::mutex oddMutex;

// Функция для печати чётных чисел
void printEven(int max)
{
 for (unsigned i = 0; i <= max; i +=2)
 {
 oddMutex.lock();
 std::cout << i << ",";
 evenMutex.lock();
 oddMutex.unlock();
 evenMutex.unlock();
 }
}

Функция printEven, как видно из её определения, печатает на консоль чётные
числа от 0 до заданной верхней границы max. Определим подобную ей функцию
printOdd для печати нечётных чисел из того же диапазона, как показано ниже.
// Функция для печати нечётных чисел
void printOdd(int max)
{
 for (unsigned i = 1; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}

Теперь остаётся определить главную функцию, которая запускает два от-
дельных потока для печати чётных и нечётных чисел, соответственно, на ос-
нове показанных выше функций.
int main()
{
 auto max = 100;

 std::thread t1(printEven, max);
 std::thread t2(printOdd, max);

 24 / 32

Совместный доступ потоков к данным    89

 if (t1.joinable())
 t1.join();
 if (t2.joinable())
 t2.join();

 return 0;
}

Как видно из кода, доступ к глобальному ресурсу std::cout защищён двумя
семафорами: oddMutex и evenMutex, причём функции printOdd и printEven захваты-
вают их в разном порядке. Этот код наверняка попадёт в тупик, так как каждый
поток пытается ждать освобождения семафора, захваченного другим потоком,
и при этом держит занятым семафор, который нужен другому потоку, чтобы
отпустить первый семафор. Попытка выполнить эту программу естественно
приведёт к зависанию (кроме чрезвычайно маловероятного случая, если ите-
рации циклов в первом и втором потоках будут выполняться строго поочерёд-
но). Как уже говорилось выше, тупика можно избежать, если во всех потоках
соблюдать одинаковый порядок захвата семафоров, как показано ниже.
void printEven(int max)
{
 for (unsigned i = 0; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}

void printOdd(int max)
{
 for (unsigned i = 1; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}

Однако такой код слишком тяжёл для понимания, ведь программисту нуж-
но обеспечить одинаковый порядок операций во всех функциях, работающих
с этими семафорами. Выше было рассказано, как идиома RAII помогает сделать
код проще и безопаснее, если речь идёт о захвате одного семафора. Для безо-
пасного захвата нескольких семафоров в стандартной библиотеке имеется ещё
одно средство – функция std::lock, которая захватывает два или более семафо-
ров одновременно, атомарным действием, гарантированно предотвращая ту-

 25 / 32

90    Параллельное и многопоточное программирование на языке C++

пик. Если все семафоры, переданные ей в качестве аргументов, свободны, они
будут захвачены; в противном случае эта функция не захватывает ни одного
до тех пор, пока не сможет захватить все. Ниже показано, как использовать её
в нашем примере с печатью чётных и нечётных чисел.
void printEven(int max)
{
 for (unsigned i = 0; i <= max; i +=2)
 {
 std::lock(evenMutex, oddMutex);
 std::lock_guard<std::mutex> lk_even(
 evenMutex, std::adopt_lock);
 std::lock_guard<std::mutex> lk_odd(
 oddMutex, std::adopt_lock);
 std::cout << i << ",";
 }
}

void printOdd(int max)
{
 for (unsigned i = 1; i <= max; i +=2)
 {
 std::lock(evenMutex, oddMutex);
 std::lock_guard<std::mutex> lk_even(
 evenMutex, std::adopt_lock);
 std::lock_guard<std::mutex> lk_odd(
 oddMutex, std::adopt_lock);
 std::cout << i << ",";
 }
}

При входе в очередную итерацию цикла функция std::lock захватывает оба
семафора. Затем создаются два объекта-обёртки типа std::lock_guard, по одно-
му для каждого семафора. Каждому из них в конструктор, помимо семафора,
передаётся аргумент std::adopt_lock, который означает, что семафор уже захва-
чен и, следовательно, конструктору нужно лишь принять владение семафором,
а не пытаться захватывать его. Тогда деструкторы объектов-обёрток обеспечат
освобождение семафоров, даже если внутри критической секции произойдёт
исключение.

В заключение подчеркнём, что функция std::lock помогает избежать ту-
пика, если все потоки используют её для одновременного захвата несколь-
ких семафоров. Конечно же, эта функция не поможет, если некоторые по-
токи продолжают захватывать семафоры по отдельности в произвольном
порядке.

Тупики – это одна из самых трудных для обнаружения и исправления оши-
бок, какие только могут возникнуть в многопоточных программах. Чтобы из-
бежать тупика, от программиста требуется большая аккуратность и самодис-
циплина.

 26 / 32

Совместный доступ потоков к данным    91

Условные переменные
Выше мы разобрали, как с помощью двоичных семафоров синхронизировать
обращения нескольких потоков к общему ресурсу. Однако синхронизация на
основе семафоров может оказаться чересчур сложной и без должной осторож-
ности может завести систему в тупик. В этом разделе рассмотрим более прос
той механизм на основе ожидания событий с использованием так называемых
условных переменных.

В случае синхронизации на основе семафоров поток, выполняющий крити-
ческую секцию, может быть заблокирован любым другим потоком. Кроме того,
если ожидание завершения какого-либо потока реализовать путём периоди-
ческого опроса флага состояния, защищённого семафором, это приведёт к не-
оправданному расходу процессорного времени. Время, которое можно было
бы эффективно использовать для других потоков, в этом случае тратилось бы
на ожидание семафора.

Для решения этой проблемы в стандартной библиотеке языка C++ предусмот
рены два вида условных переменных: std::condition_variable и std::condition_
variable_any. Оба класса объявлены в заголовочном файле <condition_variable>,
обоим для работы нужен некоторый семафор. Различие между ними состоит
в том, что объект типа std::condition_variable может работать исключитель-
но со стандартным двоичным семафором std::mutex, тогда как объект типа
std::condition_variable_any допускает любую сущность, ведущую себя подобно
семафору (т. е. обладающую семантикой семафора), отсюда и суффикс «any»
(любой). Большая общность и гибкость достаются не бесплатно: объекты типа
std::condition_variable_any потребляют больше памяти и обладают меньшим
быстродействием. Поэтому их стоит использовать только тогда, когда нестан-
дартные семафоры действительно необходимы по какой-то причине.

Ниже показано, как знакомую из предыдущего раздела программу с двумя
потоками для генерации чётных и нечётных чисел реализовать по-новому, ис-
пользуя условные переменные.
std::mutex numMutex;
std::condition_variable syncCond;
auto bEvenReady = false;
auto bOddReady = false;

void printEven(int max)
{
 for (unsigned i = 0; i <= max; i +=2)
 {
 std::unique_lock<std::mutex> lk(numMutex);
 syncCond.wait(lk, []{return bEvenReady;});
 std::cout << i << ",";
 bEvenReady = false;
 bOddReady = true;
 syncCond.notify_one();
 }
}

 27 / 32

92    Параллельное и многопоточное программирование на языке C++

Текст программы начинается с глобального объявления двоичного семафо-
ра, условной переменной и двух флагов, чтобы их можно было использовать
в обоих потоках. Функция printEven, выполняющаяся в отдельном потоке, пе-
чатает чётные числа, начиная с 0. При входе в тело цикла для захвата сема-
фора используется объект-обёртка типа std::unique_lock вместо изученного
ранее типа std::lock_guard, причина чего станет вскоре понятна. Затем функ-
ция вызывает метод wait (ожидать) для условной переменной (объекта типа
std::condition_variable), передавая ему в качестве аргументов только что соз-
данную обёртку над семафором и предикат – лямбда-функцию, выражающую
условие, наступления которого необходимо ждать. Вместо последней можно
использовать любую сущность, которую можно вызвать, и получить возвра-
щаемое значение логического типа. В данном примере предикат просто воз-
вращает значение глобального флага bEvenReady («чётный готов») – таким обра-
зом, функция продолжит своё выполнение, когда этот флаг получит значение
«истина». Если предикат возвращает значение «ложь», функция wait освободит
семафор и станет ждать сигнала от других потоков. Именно поэтому для управ-
ления семафором должен использоваться тип std::unique_lock, позволяющий
отпирать и снова запирать семафор1.

Как только очередное значение отправлено на стандартное устройство вы-
вода std::cout, флаг bEvenReady («чётный готов») сбрасывается, а флаг bOddReady
(«нечётный готов») взводится. Затем для условной переменной вызывается
метод notify_one («известить одного»), это пробуждает второй поток, отвечаю-
щий за нечётные числа, и заставляет его проверить, взведён ли его флаг. Реа-
лизация этого второго потока вполне симметрична первому:

void printOdd(int max)
{
 for (unsigned i = 1; i <= max; i +=2)
 {
 std::unique_lock<std::mutex> lk(numMutex);
 syncCond.wait(lk, []{return bOddReady;});
 std::cout << i << ",";
 bEvenReady = true;
 bOddReady = false;
 syncCond.notify_one();
 }
}

Функция printOdd выполняется во втором рабочем потоке и печатает не-
чётные числа начиная с 1. Подобно функции printEven, каждая итерация цикла
сначала ждёт наступления события, используя для этого условную перемен-
ную, семафор и флаг, объявленные в глобальной области видимости. В проти-
воположность предыдущей функции эта функция ждёт, пока истинным станет

1	 Объект типа std::lock_guard запирает семафор ровно один раз, в конструкторе, и осво
бождает тоже однократно – в деструкторе. – Прим. перев.

 28 / 32

Потокобезопасный стек    93

флаг готовности нечётного bOddReady, затем сбрасывает его и устанавливает
флаг готовности чётного bEvenReady. Потом вызов метода notify_one для услов-
ной переменной извещает поток, занимающийся чётными числами, что он
может продолжить работу. Таким образом, два потока будут выполнять свои
итерации строго поочерёдно.
int main()
{
 auto max = 100;
 bEvenReady = true;

 std::thread t1(printEven, max);
 std::thread t2(printOdd, max);

 if (t1.joinable())
 t1.join();
 if (t2.joinable())
 t2.join();

 return 0;
}

Главная функция программы просто создаёт два потока: поток t1, в кото-
ром выполняется функция printEven, и поток t2, связанный с функцией printOdd.
Чтобы поочерёдное выполнение двух потоков могло начаться, устанавливает-
ся флаг, разрешающий работу потока с чётными числами.

Потокобезопасный стек
К настоящему моменту читатель изучил, как запускать потоки и управлять
ими, как синхронизировать операции, выполняемые в различных потоках при
совместном доступе к общему ресурсу. При разработке реальных программных
систем данные, как правило, бывают организованы в более или менее сложные
структуры, которые нужно выбирать подходящим образом, чтобы обеспечить
необходимую производительность системы. В этом разделе мы разберём, как
с использованием двоичных семафоров и условных переменных реализовать
стек, пригодный для работы в многопоточной среде. Этот класс будет обёрткой
над стандартным классом std::stack, объявление которого находится в стан-
дартном заголовочном файле <stack>. Наш потокобезопасный стек, в отличие
от стандартного, будет поддерживать несколько вариантов операции выталки-
вания (pop) – это не только поможет пользователям класса писать более лако-
ничный код, но и даст возможность нам более отчётливо показать, как струк-
туру данных, изначально ориентированную на последовательный доступ,
погрузить в параллельную среду.
template <typename T>
class Stack
{

 29 / 32

94    Параллельное и многопоточное программирование на языке C++

private:
 std::stack<T> myData;
 mutable std::mutex myMutex;
 std::condition_variable myCond;

public:
 Stack() = default;
 ~Stack() = default;
 Stack& operator=(const Stack&) = delete;

 Stack(const Stack& that)
 {
 std::lock_guard<std::mutex> lock(that.myMutex);
 myData = that.myData;
 }

Объект класса-шаблона Stack содержит в себе объект стандартного шаблон-
ного класса std::stack (полезную нагрузку), а также двоичный семафор и ус-
ловную переменную. Конструктор и деструктор нашего класса получают реа
лизацию по умолчанию, генерируемую самим компилятором; копирующая
операция присваивания запрещена, чтобы код, пытающийся выполнить такое
присваивание, невозможно было даже скомпилировать1. Конструктор копиро-
вания, однако, разрешён: основную работу выполняет копирующий конструк-
тор завёрнутого в наш объект стандартного стека, нам остаётся лишь заблоки-
ровать доступ других потоков к объекту-источнику.
 void push(T new_val)
 {
 std::lock_guard<std::mutex> local_lock(myMutex);
 myData.push(new_val);
 myCond.notify_one();
 }

Метод push (вталкивание в стек нового значения) представляет собой доволь-
но простую обёртку над одноимённым методом стандартного стека, завёрну-
того в наш объект. При этом состояние нашего объекта защищено от модифи-
кации другими потоками: семафор, управляющий исключительным доступом
к объекту, захватывается объектом std::lock_guard. Далее следует вызов мето-
да notify_one для условной переменной – если до вталкивания элемента стек
был пуст, и при этом какой-то другой поток заблокирован, ожидая появления
данных в стеке, он получит оповещение. Такое ожидание данных реализовано
в двух вариантах операции pop, о которых речь пойдёт ниже.
 bool try_pop(T& return_value)
 {
 std::lock_guard<std::mutex> local_lock(myMutex);

1	 Вряд ли такое решение можно назвать оправданным. Нет препятствий к тому, чтобы
разрешить присваивание, реализовав его по образцу копирующего конструктора. –
Прим. перев.

 30 / 32

Потокобезопасный стек    95

 if (myData.empty()) return false;
 return_value = myData.top();
 myData.pop();
 return true;
 }

Метод try_pop получает в качестве аргумента ссылку на переменную того же
типа, что и хранящиеся в стеке значения. Возвращает метод значение логи-
ческого типа: «истина» или «ложь». Этот метод не ждёт, пока в стеке появятся
данные. Если в момент вызова стек пуст, метод просто возвращает значение
false. В противном случае он изымает из стека верхний элемент, присваивает
его по ссылке-аргументу и возвращает значение true. Поскольку данный метод
сразу завершается в обоих случаях, ему не нужно ждать условную переменную,
и для управления семафором вполне достаточно объекта типа std::lock_guard.
Все разнообразные варианты операции pop нашего класса реализованы на ос-
нове метода top (возвращает верхний элемент стандартного стека), вслед за
которым сразу вызывается метод pop (который у стандартного стека удаляет
верхний элемент, ничего при этом не возвращая).
 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> local_lock(myMutex);
 if (myData.empty()) return std::shared_ptr<T>();
 std::shared_ptr<T> return_value(
 std::make_shared<T>(myData.top()));
 myData.pop();
 return return_value;
 }

Здесь мы видим иной вариант метода try_pop, который не принимает аргу-
ментов и возвращает умный указатель. Как и в предыдущем случае, операция
под названием try_pop никогда не ждёт появления элементов в стеке, а завер-
шается сразу – отсюда использование объекта std::lock_guard для захвата сема-
фора. Этот метод возвращает умный указатель на значение, снятое с верхушки
стека (если оно существует) или пустой умный указатель (если стек пуст).
 void wait_n_pop(T& return_value)
 {
 std::unique_lock<std::mutex> local_lock(myMutex);
 myCond.wait(
 local_lock,
 [this]{ return !myData.empty(); });
 return_value = myData.top();
 myData.pop();
 }

 std::shared_ptr<T> wait_n_pop()
 {
 std::unique_lock<std::mutex> local_lock(myMutex);
 myCond.wait(

 31 / 32

96    Параллельное и многопоточное программирование на языке C++

 local_lock,
 [this]{ return !myData.empty(); });
 std::shared_ptr<T> return_value(
 std::make_shared<T>(myData.top()));
 return return_value;
 }
};

Две версии операции pop, разобранные ранее, не ожидали, пока в стеке
появятся данные – для пустого стека они немедленно завершались, тем или
иным способом сообщая о неудаче. Ожидание реализовано в двух последних
методах с использованием условной переменной. В одном из них значение,
снятое с верхушки стека, передаётся наружу через аргумент типа ссылки, дру-
гой возвращает значение, завёрнутое в умный указатель1. В обоих методах для
управления семафором используется объект std::unique_lock, так как именно
его можно передать в качестве аргумента методу wait класса std::condition_
variable. Предикат, передаваемый в метод wait вторым аргументом, проверяет,
пуст ли стек. Если стек пуст, метод wait временно освобождает семафор и ждёт,
пока условная переменная не получит оповещение – а получить она его может
только из метода push. Как только, в результате операции push, предикат вернёт
значение «истина», метод wait_n_pop продолжит свою работу. Первая из двух
его версий снимет элемент с верхушки стека и присвоит его по ссылке, вто-
рая – вернёт обёрнутым в умный указатель.

Итоги
В этой главе мы разобрали средства многопоточного программирования, име-
ющиеся в стандартной библиотеке языка C++. В частности, рассказано о том,
как запускать потоки и управлять ими, как передавать аргументы для запуска
функции в отдельном потоке, о передаче владения потока от объекта к объек-
ту, о совместном доступе потоков к общим данным и о других аспектах. Чита-
тель узнал, что любую сущность языка C++, выглядящую как функция, можно
запустить на выполнение в отдельном потоке. Разобран ряд примеров того,
как в потоках запускать различные виды сущностей: обычные функции, объ-
екты типа std::function, лямбда-выражения и функциональные объекты. В этой
главе было рассказано о примитивах синхронизации, поддерживаемых стан-
дартной библиотекой: простейших двоичных семафорах std::mutex и об объек-
тах-обёртках std::lock_guard и std::unique_lock, которые реализуют идиому RAII
для захвата и автоматического освобождения семафоров, тем самым избавляя

1	 Это совершенно излишне. Довольно и одного метода, возвращающего само снятое со
стека значение, т. е. метода T wait_n_pop(). В самом деле, передавать значение через
выходной параметр нужно только для того, чтобы возвращаемым значением функ-
ции сделать признак удачи или неудачи; а возвращать умный указатель нужно лишь
затем, чтобы в случае неудачи вернуть пустой указатель. У метода же, который всегда
дожидается появления данных, неудачи быть не может. – Прим. перев.

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Итоги    97

программиста от необходимости освобождать семафоры своими руками. Так-
же рассмотрены условные переменные (std::condition_variable), представляю-
щие собой ещё одно средство синхронизации потоков. Таким образом, данная
глава закладывает фундамент для понимания многопоточного программиро-
вания на языке C++ и готовит читателя к восприятию следующих глав, посвя-
щённых идиомам функционального программирования.

В следующей главе речь пойдёт о других инструментах многопоточного
и параллельного программирования, поддерживаемых стандартной библио-
текой языка C++, таких как параллельная обработка на основе задач и небло-
кирующая синхронизация.

 1 / 32

Глава 4
Асинхронное

программирование
и неблокирующая

синхронизация в языке C++

В предыдущей главе были рассмотрены средства управления потоками, под-
держиваемые стандартной библиотекой языка C++, и различные способы соз-
дания потоков, управления ими и синхронизации. Однако организовывать
архитектуру программы на основе потоков – это довольно низкоуровневый
подход, а получаемый при этом код бывает подвержен разнообразным ошиб-
кам: помимо изученных выше гонок и тупиков, упомянем ещё динамический
тупик (англ. livelock) – ситуацию, при которой потоки не заблокированы и, на
первый взгляд, продолжают работать, но при этом большую часть вычисли-
тельных ресурсов тратят на попытки синхронизировать своё выполнение,
чем на полезные вычисления. Помимо потоков, современный стандарт язы-
ка C++ поддерживает также модели памяти с гарантиями, что позволяет со-
вершенно иначе взглянуть на разработку параллельных программ. Для того
чтобы язык программирования был параллельным в самой своей основе, он
должен предоставлять разработчику определённые гарантии относительно
доступа к памяти и порядка, в котором выполняются операции над ней. Если
для синхронизации потоков пользоваться такими средствами, как семафоры,
условные переменные или сигналы, смоделированные на основе фьючерсов,
программисту нет нужды задумываться о модели памяти: порядок выполне-
ния операций в этом случае задан в явном виде. Но, зная модели памяти и её
гарантии, оказывается возможным сделать параллельный код более быстрым
за счёт полного исключения блокировок и ожиданий. Блокировки удаётся за-
менить так называемыми атомарными операциями – этот приём будет рас-
смотрен ниже.

 2 / 32

Асинхронные задачи в языке C++    99

Как было отмечено в главе 2 «Современный язык C++ и его ключевые идио
мы», нулевая стоимость абстракции была и остаётся одним из наиболее важ-
ных принципов языка C++. С момента своего возникновения это язык си-
стемного программирования, и комитет по стандартизации сумел сохранить
равновесие между поддержкой высокоуровневых механизмов абстрагирова-
ния и способностью языка выражать управление ресурсами на низком уровне,
что необходимо для написания системных программ. В частности, в стандарт-
ную библиотеку включены так называемые атомарные типы вместе с набо-
ром относящихся к ним операций, позволяющие управлять ходом выполне-
ния программы с высокой степенью детализации. Комитет по стандартизации
опубликовал подробное описание модели памяти, а язык пополнился набором
библиотек, позволяющих программистам сполна извлекать из этого пользу.

В предыдущей главе было рассказано, как синхронизировать действия, вы-
полняемые в разных потоках, с помощью условных переменных. В этой главе
займёмся средствами из стандартной библиотеки для организации асинхрон-
ных вычислений на основе задач, в том числе так называемыми фьючерсами.
Таким образом, в главе будут разобраны следующие темы:

�� асинхронные вычисления на основе задач и их поддержка языком C++;
�� модель памяти в языке C++;
�� атомарные типы и атомарные операции;
�� синхронизируемые операции и порядок доступа к памяти;
�� разработка неблокирующих структур данных.

Асинхронные задачи в языке C++
Задачей называют вычисление, которое потенциально может выполняться
параллельно с другими вычислениями. Поток – это форма существования за-
дачи в операционной системе. В предыдущей главе мы увидели, что задачу
можно создать и сразу запустить на выполнение, сконструировав объект типа
std::thread, – для этого вычисление, которое предстоит выполнять парал-
лельно, нужно передать в конструктор данного объекта в качестве аргумента.
Таким способом можно создать задачу из любой сущности, которую можно
вызвать подобно функции: это может быть не только функция, но также функ-
циональный объект или лямбда-выражение. Однако данный подход к орга-
низации параллельных вычислений на основе явного управления потоками
слишком обременителен, так как потоки суть технические детали, от которых
хотелось бы абстрагироваться. Предпочтителен был бы подход, при котором
программист инициирует именно задачу, а система сама решает, создавать ли
под неё новый поток и когда это делать. Программирование в терминах задач,
по сравнению с программированием потоков, выполняется на более высоком
концептуальном уровне и освобождает разработчика от таких подробностей,
как управление потоками и блокировками. Для поддержки параллельных за-
дач в стандартной библиотеке языка C++ существуют следующие средства:

 3 / 32

100    Асинхронное программирование и неблокирующая синхронизация в языке C++

�� фьючерсы и обещания для работы с результатами выполнения параллель-
ных задач;

�� класс packaged_task, помогающий запускать задачи и получать результа-
ты их выполнения;

�� функция async, которая запуск задачи делает подобным вызову обычной
функции.

Фьючерсы и обещания
Параллельные задачи в языке C++ ведут себя подобно каналам, по которым
продвигаются данные. Через один конец, часто называемый обещанием
(promise), данные поступают в канал, а после обработки достигают второго
его конца, который называется фьючерсом (future). Важная черта фьючерсов
и обещаний состоит в том, что они позволяют передавать данные от одной за-
дачи к другой без явного использования блокировок или иных механизмов
синхронизации. За передачу данных отвечает сама по себе система, т. е. среда
выполнения. Идея, лежащая в основе такого способа сочленения задач, прос
та: когда задача желает передать вычисленное значение другой задаче, она
отправляет его в обещание. Тогда внутренние механизмы стандартной биб
лиотеки позаботятся о том, чтобы фьючерс, связанный с этим обещанием,
получил данное значение. Затем иные задачи смогут, в свою очередь, читать
значение из этого фьючерса. Работа механизма обещаний и фьючерсов схе-
матически показана на следующем рисунке (рекомендуется рассматривать её
справа налево).

фьючерс обещание

значение

Фьючерсы бывают особенно полезны, если задаче (или потоку) нужно ожи-
дать однократного события. Чтобы через фьючерс просигнализировать о на-
ступлении события, нужно, чтобы фьючерс выдал определённое значение,
для этого значение нужно установить в соответствующее фьючерсу обещание.
Тогда задача, ожидающая этот фьючерс, автоматически продолжит своё вы-
полнение и получит переданное значение. Пока задача выполняется, её фью-
черс может содержать или не содержать данные. В результате своего выпол-

 4 / 32

Асинхронные задачи в языке C++    101

нения задача может поместить значение во фьючерс (тем самым просигналив
событие всем задачам, которые этого ожидают), и в дальнейшем оно не может
быть изменено.

Шаблоны классов, предназначенные для программирования асинхронных
задач, объявлены в стандартном заголовочном классе <future>. В стандарт-
ной библиотеке имеются фьючерсы двух разновидностей: единичные (тип
std::future<T>) и множественные (тип std::shared_future<T>). Различие между
ними примерно такое же, как между двумя видами умных указателей (типы
std::unique_ptr<T> и std::shared_ptr<T>). Так, на один результат асинхронного
вычисления (или, что то же самое, на одно событие) может ссылаться только
один объект типа std::future<T>. В случае же типа std::shared_future<T>, напро-
тив, сколько угодно объектов может быть связано с одним событием. При этом
все объекты одновременно покажут готовность события, когда оно наступит.
Параметр этих шаблонов – это тип данных, характеризующих событие (или,
что то же самое, тип результата асинхронного вычисления). Специализации
этих шаблонов типом void (т. е. типы std::future<void> и std::shared_future<void>)
стоит использовать, если никакие данные с событием не связаны (иными сло-
вами, если сам факт наступления события и составляет все данные). Несмотря
на то что фьючерсы используются для обмена данными между потоками, сами
эти объекты не занимаются синхронизацией доступа к себе со стороны по-
токов. Если несколько потоков хотят обратиться к одному объекту std::future,
они должны защитить объект семафором или иными механизмами синхрони-
зации.

Классы std::future и std::promise работают в паре в процессе выполнения за-
дачи и ожидания её результатов. Если дан объект f типа std::future<T>, к связан-
ному с ним объекту типа T (результату задачи) можно обратиться с помощью
метода get класса std::future<T>. Симметричным образом, имея объект типа
std::promise<T>, можно установить ему значение с помощью метода set_value
или установить состояние ошибки с помощью метода set_exception, в обоих
случаях установленное состояние станет доступно через метод get соответ-
ствующего фьючерса. Следующий пример демонстрирует, как поместить зна-
чение в объект-обещание (в функции func1) и как это значение извлекается из
объекта-фьючерса (в функции func2).
// обещание pr связано с запущенной задачей
void func1(std::promise<T>& pr)
{
 try
 {
 T val;
 process_data(val); // вычислить значение
 // значение будет получено через future<T>::get()
 pr.set_value(val);
 }
 catch(...)
 {

 5 / 32

102    Асинхронное программирование и неблокирующая синхронизация в языке C++

 // исключение будет получено в future<T>::get()
 pr.set_exception(std::current_exception());
 }
}

В этом фрагменте кода сначала делается попытка каким-то образом вычис-
лить требуемое значение – оно помещается в локальную переменную val типа
T. Если это удалось (т. е. если из функции process_data не было выброшено ис-
ключение), это значение устанавливается в объект-обещание pr. Если возника-
ет исключение, оно тоже отправляется в этот объект. Рассмотрим теперь, как
можно применить результат вычисления.
// фьючерс ft связан с уже запущенной задачей
void func2(std::future<T>& ft)
{
 try
 {
 // если соответствующему обещанию установлено состояние
 // ошибки, следующий вызов выбросит исключение, иначе –
 // вернёт установленное в обещании значение
 T result = ft.get();
 handle_value(result); // обработать полученные данные
 }
 catch(…)
 {
 // обработать исключение
 }
}

В этой функции делается попытка получить из фьючерса значение – резуль-
тат выполнения соответствующей ему задачи. Если её обещанию было уста-
новлено значение, метод get отработает нормальным образом и вернёт это
значение, которое можно дальше обрабатывать. Если же в обещание было по-
мещено исключение, оно и будет выброшено методом get, и в нашей функции
должна быть предусмотрена его обработка. В следующем разделе будет рас-
сказано о классе std::packaged_task, после этого можно будет завершить данный
пример, показав, как связать воедино обещание и фьючерс.

Класс std::packaged_task
Теперь пришло время показать, как создать асинхронно выполняемую задачу
и через фьючерс получить результат её выполнения. Для запуска задач и по-
следующей работы с ними посредством фьючерсов в стандартной библиотеке
служит класс-шаблон std::packaged_task. Он берёт на себя создание фьючерса,
связанного с задачей, и позволяет запускать её в отдельном потоке, освобож-
дая программиста от необходимости своими руками управлять блокировками
для доступа к результату вычислений. Иначе говоря, объект типа std::packaged_
task представляет собой обёртку над функцией, которую нужно выполнить,
и объектом-обещанием. Данная обёртка управляет сохранением в обещании

 6 / 32

Асинхронные задачи в языке C++    103

результата работы функции, будь то вычисленное ею значение или выброшен-
ное исключение. Метод get_future класса std::packaged_task отдаёт фьючерс,
связанный с этим обещанием. Клиентскому коду доступен именно фьючерс –
работа с объектом-обещанием скрыта глубоко в реализации самой обёртки.
Рассмотрим следующий пример, где с помощью объекта std::packaged_task соз-
даётся асинхронная задача на основе функции, вычисляющей сумму элемен-
тов контейнера.
// вычислить сумму элементов вектора
int calc_sum(std::vector<int> v)
{
 int sum = std::accumulate(v.begin(), v.end(), 0);
 return sum;
}

int main()
{
 // создать задачу на основе функции
 std::packaged_task<int(std::vector<int>)> task(calc_sum);

 // получить фьючерс этой задачи
 std::future<int> result = task.get_future();

 std::vector<int> nums{1,2,3,4,5,6,7,8,9,10};

 // задачу запустить в потоке, передав исходные данные
 std::thread t(std::move(task), std::move(nums));

 t.join();

 // получить результат выполнения асинхронной задачи
 int sum = result.get();

 std::cout << "Сумма " << sum << std::endl;
 return 0;
}

Шаблон класса std::packaged_task принимает в качестве параметра тип функ-
ции, на основе которой предполагается создавать задачу. В конструктор экзем-
пляра этого класса передаётся указатель на функцию. Затем из сконструиро-
ванной задачи можно извлечь её фьючерс с помощью метода get_future. При
создании потока на основе задачи использована функция std::move – экзем-
пляры класса std::packaged_task нельзя копировать, а можно лишь перемещать.
Дело в том, что в объекты данного класса завёрнуты системные ресурсы, за
освобождение которых отвечает деструктор, поэтому лишь один объект мо-
жет ими владеть. При создании потока ему в конструктор вместо указателя на
функцию передаётся созданная на её основе задача, в остальном запуск потока
выглядит так же, как и раньше. Наконец, метод get получает результат выпол-
нения асинхронной задачи, он и выводится на печать.

 7 / 32

104    Асинхронное программирование и неблокирующая синхронизация в языке C++

С таким же успехом объекты класса std::packaged_task можно создавать и на
основе лямбда-выражений, что может оказаться удобным, если в асинхронном
режиме требуется запустить небольшой блок кода:
std::packaged_task<int(std::vector<int>)> task(
 [](std::vector<int> v) {
 return std::accumulate(v.begin(), v.end(), 0);
});

Основное предназначение фьючерсов состоит в том, чтобы клиентский код
мог запрашивать результат асинхронно выполняемой задачи, не утруждая
себя механизмами синхронизации потоков. В данном примере в отдельном
потоке выполняется функция вычисления суммы, а главный поток пользуется
вычисленным ею значением.

Функция std::async
В современном стандарте языка C++ имеется механизм, позволяющий поме-
щать вызов функции в отдельную задачу, которая может выполняться как па-
раллельно, так и в потоке, запрашивающем её результат. Это функция-шаблон
std::async, которая скрывает от пользователя внутренние механизмы управле-
ния потоками. Функция std::async принимает объект, допускающий вызов (от
указателя на функцию до объекта пользовательского класса с перегруженной
операцией вызова) и возвращает объект класса std::future, в котором сохраня-
ется результат вызова или выброшенное из него исключение. Давайте перепи-
шем наш предыдущий пример с асинхронным вычислением суммы элементов
вектора, в этот раз используя функцию std::async.
// вычислить сумму элементов вектора
int calc_sum(std::vector<int> v)
{
 int sum = std::accumulate(v.begin(), v.end(), 0);
 return sum;
}

int main()
{
 std::vector<int> nums{1,2,3,4,5,6,7,8,9,10};

 // запустить асинхронную задачу и получить её фьючерс
 std::future<int> result(std::async(
 std::launch::async, calc_sum, std::move(nums)));

 // получить результат выполнения асинхронной задачи
 int sum = result.get();

 std::cout << "Сумма " << sum << std::endl;
 return 0;
}

Главная выгода от использования функции std::async для асинхронных за-
дач состоит в том, что запуск задачи и получение её результата весьма просто

 8 / 32

Асинхронные задачи в языке C++    105

оформляются в тексте программы и хорошо отделяются от подробностей её
выполнения. Как видно из приведённого выше кода, функция std::async при-
нимает следующие аргументы:

�� флаг, определяющий политику запуска асинхронной задачи. В данном
примере значение std::launch::async означает, что задачу сразу после
создания нужно запустить в отдельном потоке выполнения. Если же
вместо него указать флаг std::launch::deferred, то новый поток не соз-
даётся, вместо этого во фьючерс помещается так называемое отложен-
ное, или ленивое, вычисление: задача будет выполнена лишь тогда, ког-
да клиентский код вызовет метод get её фьючерса. Если при создании
задачи указать комбинацию обоих этих флагов, то система сама решит,
запустить задачу в новом потоке или превратить её в отложенное вы-
числение. Наконец, если вообще не указывать этот аргумент, это также
означает, что политику запуска выберет система;

�� второй аргумент – это то, что должно выполняться в виде задачи. Это мо-
жет быть указатель на функцию, лямбда-выражение, объект любого типа
с перегруженной операцией вызова. В данном примере задача создаётся
на основе функции calc_sum;

�� далее следуют в любом количестве аргументы для функции (или функ-
ционального объекта). В данном примере для асинхронного запуска
функции нужен один аргумент – контейнер, сумму элементов которого
предстоит вычислить.

Конечно, этот пример можно было бы реализовать и с использованием
лямбда-выражения:
std::future<int> result(async(
 std::launch::async,
 [](std::vector<int> v)
 {
 return std::accumulate(v.begin(), v.end(), 0);
 },
 std::move(nums)));

Лямбда-выражение, занявшее место указателя на функцию, просто возвра-
щает результат функции std::accumulate. Если асинхронная задача достаточно
проста, этой возможностью стоит воспользоваться, чтобы сделать код изящнее.

Программист, использующий в своём коде асинхронные вызовы, более не
обязан вникать в подробности потоков и блокировок: внутренние механиз-
мы стандартной библиотеки делают эту работу сами. Взамен программист по-
лучает свободу мыслить на более высоком уровне абстракции: какие задачи
должны быть выполнены программой в том или ином порядке, с той или иной
степенью распараллеливания, с каким угодно фактическим числом потоков.
Система сама определит наилучшее число потоков, исходя из числа имеющих-
ся в наличии процессорных ядер и степени их загруженности. Однако с этим
связано и очевидное ограничение на использование асинхронных задач, в слу-
чае если задачи обращаются к общему ресурсу, требующему блокировки.

 9 / 32

106    Асинхронное программирование и неблокирующая синхронизация в языке C++

Модель памяти в языке C++
Язык C++ с момента своего возникновения был однопоточным языком. Хотя
программисты и создавали на нём многопоточные программы, но для это-
го им приходилось пользоваться низкоуровневыми средствами конкретных
платформ – сам по себе язык поддержки потоков не предоставлял. Современ-
ный язык C++ можно с полным основанием назвать языком многопоточного,
параллельного и асинхронного программирования. Стандартом языка опреде-
лены механизмы управления потоками и задачами, оформленные в виде биб
лиотечных функций и классов, – со многими из них читатель познакомился
в этой и предыдущей главах. Поскольку данные средства входят в стандартную
библиотеку, в спецификации языка строго определено, как они должны вести
себя, независимо от платформы и среды выполнения. Выработка единого, ло-
гически безупречного и не зависящего от платформы аппарата потоков, за-
дач, примитивов синхронизации и т. д. – грандиозная задача, и комитет по
стандартизации справился с ней великолепно. В рамках этой задачи комитет
разработал и описал стандартную модель памяти, на которой только и может
основываться единообразное поведение программы на разных платформах.
Модель памяти состоит из двух аспектов:

�� структурного, к которому относится способ расположения данных в па-
мяти;

�� динамического, к которому относится порядок доступа к памяти и вы-
полнения операций над хранящимися в ней данными – в том числе из
параллельных потоков.

С точки зрения языка C++, все данные состоят из объектов. Спецификация
языка определяет объект как область в памяти, обладающую определённым
типом и временем жизни. Объекты могут принадлежать как встроенным ти-
пам (таким как типы int, double или тип указателя), так и типам, которые объ-
явил программист. Некоторые объекты содержат в себе подобъекты, иные их
не содержат. При всех различиях, однако, неизменным остаётся главное: зна-
чение любой переменной есть некоторый объект (это относится в том числе
к переменным, которые сами являются членами объектов), а всякий объект
располагается в определённом месте в памяти. Рассмотрим, что это означает
для параллельного программирования.

Параллельный доступ к памяти
Для многопоточных приложений всё зависит от того, к каким участкам памяти
обращаются их потоки. Если потоки всегда имеют дело каждый со своей об-
ластью памяти, всё прекрасно. Но если хотя бы два потока хотя бы иногда об-
ращаются к одному и тому же месту в памяти, программисту нужно быть очень
осторожным. Как мы уже знаем из главы 3, попытки одновременного чтения
разными потоками из одного участка памяти ещё не могут привести к проб

 10 / 32

Соглашение о порядке модификации памяти    107

лемам, однако как только один из потоков пытается изменить общие данные,
доступные для чтения другому потоку, появляется опасность гонки потоков.

Неприятностей, связанных с гонками, можно избежать только одним спосо-
бом: заставить потоки обращаться к общему участку памяти в определённом
порядке. В главе 3 рассказывалось об одном из самых распространённых ме-
ханизмов – блокировке с использованием семафоров. Другой способ, которо-
му и посвящён данный раздел, состоит в том, чтобы воспользоваться атомар-
ностью некоторых простейших операций над простейшими типами данных
и с их помощью организовать порядок доступа потока к данным. В последую-
щих разделах читатель увидит, что на основе атомарных операций можно даже
смоделировать высокоуровневые примитивы синхронизации.

	 Атомарной называют операцию, которая выполняется целиком, до конца, не может быть
прервана посередине переключением контекста и даже при наличии других парал-
лельных потоков защищена от их вмешательства. Таким образом, атомарная операция
полностью защищена от прерываний, сигналов, других процессов и потоков. Читатель
может узнать больше из следующей статьи: https://en.wikipedia.org/wiki/Linearizability.

Следует подчеркнуть, что если порядок доступа потоков к общей памяти не
гарантирован никакими специальными механизмами (например, семафорами),
атомарные операции сами по себе никак не защищают от гонки данных, то есть
от ситуации, когда два потока вносят несовместимые изменения в разные участ-
ки сложной структуры памяти. Атомарные операции предохраняют от повреж-
дения (в частности, от неопределённого значения, которое может возникнуть
при одновременном выполнении двух операций присваивания) лишь отдельно
взятую переменную достаточно простого типа (как правило, целочисленную).

Соглашение о порядке модификации памяти
В течение всего времени выполнения программы все её потоки обязаны
соблюдать определённые соглашения о порядке модификаций, вносимых
ими в память. Всякая программа выполняется в среде, включающей в себя
поток команд, регистры процессора, динамически распределяемую память,
стек, буферы памяти, виртуальную память и т. д. Соглашение о порядке мо-
дификации – это своего рода договор между программистом и этой системой,
который определяется моделью памяти. Со стороны системы за соблюдение
договора отвечают компилятор (вместе с редактором связей), который пре-
вращает текст программы в исполняемый машинный код, процессор, который
исполняет поток машинных команд, кеш и механизмы виртуальной памяти.
Программиста договор обязывает соблюдать при написании программ опре-
делённые правила – это открывает системе возможность глубокой оптими-
зации кода. В свою очередь, для соблюдения этого набора правил по работе
с памятью программисту приходят на помощь атомарные типы и атомарные
операции, появившиеся в стандартной библиотеке.

 11 / 32

https://en.wikipedia.org/wiki/Linearizability

108    Асинхронное программирование и неблокирующая синхронизация в языке C++

Эти операции не просто атомарны – они синхронизируют выполнение про-
граммы и накладывают на него определённые ограничения. По сравнению
с блокирующими высокоуровневыми примитивами синхронизации (такими
как двоичные семафоры и условные переменные), о которых шла речь в гла-
ве 3, использование модели памяти позволяет в широких пределах варьиро-
вать степень синхронизации и налагаемые ею ограничения, подстраивая их
под свои потребности. Пожалуй, главное, что нужно вынести из изучения мо-
дели памяти в языке C++, состоит в следующем: несмотря на то что язык C++
пополнился множеством современных идиом и конструкций, он был и оста-
ётся ещё и языком системного программирования, и в этом качестве язык
получил инструменты для управления доступом к памяти на низком уровне,
позволяя тем самым создавать чрезвычайно оптимизированные программы.

Атомарные операции и типы в языке C++
Неатомарная операция в общем случае может быть прервана на середине пе-
реключением потоков – тогда другие потоки увидят данные в промежуточном
и, как правило, некорректном состоянии. Как отмечалось в главе 3, инвариан-
ты структур данных, совместно используемых несколькими потоками, в таких
случаях оказываются нарушенными. Это особенно характерно для таких опе-
раций над структурой данных, которые включают модификацию нескольких
простых значений. Хорошим примером может служить наполовину выполнен-
ное удаление элемента из сбалансированного двоичного дерева. Если другой
поток вклинивается посередине этой операции и пытается читать данные из
этого дерева (или, того хуже, внести в него своё изменение), результат может
быть совершенно непредсказуемым.

Атомарными называются такие операции, которые не могут быть прерва-
ны до полного завершения, – таким образом, никакой другой поток не может
увидеть промежуточный результат атомарной операции. Если любая операция
над объектами некоторого типа атомарна, то и сам тип называют атомарным.
Язык C++ получил поддержку атомарных типов на уровне стандартной биб
лиотеки.

Атомарные типы
Включённые в стандартную библиотеку средства для поддержки атомарных
типов можно найти в заголовочном файле <atomic>. Любая реализация языка
обязана гарантировать атомарность всех операций над объектами этих типов.
Даже если аппаратная архитектура не поддерживает атомарность операций
для тех или иных типов данных, реализация стандартной библиотеки долж-
на собственными механизмами её обеспечить. Атомарные типы из стандарт-
ной библиотеки обладают статической функцией-членом is_lock_free, которая
возвращает логическое значение true (истина), если атомарность этого типа
поддерживается аппаратно, т. е. операции над этим типом напрямую реали-

 12 / 32

Атомарные типы    109

зованы посредством атомарных машинных команд; в противном же случае,
если функция is_lock_free возвращает значение false, атомарность операций
над объектами данного типа обеспечивается с помощью блокирующих при-
митивов синхронизации.

Исключением из общего правила является тип1 std::atomic_flag. Стандарт
требует истинной, т. е. аппаратно поддерживаемой, атомарности этого типа.
Поэтому функция is_lock_free для него не определена за ненадобностью. С дру-
гой стороны, это весьма простой тип с очень бедным набором операций: это
лишь метод clear (сбросить флаг) и метод test_and_set (установить флаг и вер-
нуть его предыдущее значение).

Остальные атомарные типы представлены в стандартной библиотеке как
специализации шаблона std::atomic<> типом-параметром, атомарность опера-
ций над которым нужно обеспечить. По сравнению с типом std::atomic_flag,
набор операций у этих типов заметно богаче, однако не у всех из них гаран-
тируется аппаратная поддержка атомарности, свободная от блокирующей
синхронизации. Наличие аппаратной атомарности зависит от целевой плат-
формы. Впрочем, на большинстве распространённых платформ присутствует
аппаратная поддержка операций над встроенными в язык типами.

Вместо шаблона std::atomic<> с типом-параметром можно также использо-
вать соответствующие псевдонимы, показанные в следующей таблице.

Псевдоним Специализация шаблона
atomic_bool std::atomic<bool>

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>
std::atomic_uchar std::atomic<unsigned char>
std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>
std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>
std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>
std::atomic_llong std::atomic<long long>
std::atomic_ullong std::atomic<unsigned long long>
std::atomic_char16_t std::atomic<char16_t>

std::atomic_char32_t std::atomic<char32_t>

std::atomic_wchar_t std::atomic<wchar_t>

Помимо этих атомарных обёрток над всеми встроенными типами, стан-
дартная библиотека содержит ещё и обёртки (как в форме специализаций

1	 Под флагом в программировании понимают переменную логического типа, причём
значение «истина» называют установленным флагом, а значение «ложь» – сброшен-
ным. – Прим. перев.

 13 / 32

110    Асинхронное программирование и неблокирующая синхронизация в языке C++

шаблона, так и в виде псевдонимов) над числовыми типами с фиксированной
разрядностью (например, std::uint32_t) и другими числовыми типами, объяв-
ленными в стандартной библиотеке (например, std::size_t). Имена атомарных
типов образованы по единому образцу: к имени стандартного числового типа
спереди прибавляется префикс atomic_. Атомарные версии стандартных число-
вых типов перечислены в следующей таблице.

Псевдоним Специализация шаблона
std::atomic_size_t std::atomic<size_t>

std::atomic_intptr_t std::atomic<intptr_t>

std::atomic_uintptr_t std::atomic<uintptr_t>

std::atomic_ptrdiff_t std::atomic<ptrdiff_t>

std::atomic_intmax_t std::atomic<intmax_t>

std::atomic_uintmax_t std::atomic<uintmax_t>

std::atomic_int_least8_t std::atomic<int_least8_t>

std::atomic_uint_least8_t std::atomic<uint_least8_t>

std::atomic_int_least16_t std::atomic<int_least16_t>

std::atomic_uint_least16_t std::atomic<uint_least16_t>

std::atomic_int_least32_t std::atomic<int_least32_t>

std::atomic_uint_least32_t std::atomic<uint_least32_t>

std::atomic_int_least64_t std::atomic<int_least64_t>

std::atomic_uint_least64_t std::atomic<uint_least64_t>

std::atomic_int_fast8_t std::atomic<int_fast8_t>

std::atomic_uint_fast8_t std::atomic<uint_fast8_t>

std::atomic_int_fast16_t std::atomic<int_fast16_t>

std::atomic_uint_fast16_t std::atomic<uint_fast16_t>

std::atomic_int_fast32_t std::atomic<int_fast32_t>

std::atomic_uint_fast32_t std::atomic<uint_fast32_t>

std::atomic_int_fast64_t std::atomic<int_fast64_t>

std::atomic_uint_fast64_t std::atomic<uint_fast64_t>

Помимо специализаций шаблона std::atomic<> для множества стандартных
числовых типов, у него есть и общее определение, куда в качестве параметра
можно подставить любой пользовательский тип данных. Имеется также спе-
циализация для любых типов указателей. Набор операций, поддерживаемых
в общем случае (т. е. когда шаблон параметризован пользовательским типом),
невелик: это метод load (получить текущее значение из атомарной обёртки),
метод store (поместить новое значение в атомарную обёртку), exchange (обме-
нять значения в атомарной и обычной переменной) и методы compare_exchange_
weak и compare_exchange_strong (сравнить значение атомарной переменной со
значением обычной переменной и, если они совпали, поместить в атомарную
переменную новое значение – всё за одну атомарную операцию). У всех ато-
марных операций есть необязательный аргумент, управляющий порядком до-
ступа к памяти: как обычные, неатомарные операции доступа к данной пере-
менной должны упорядочиваться вокруг атомарной операции. Модели памяти

 14 / 32

Атомарные типы    111

и упорядочивание доступа будут подробнее разобраны в последующих разде-
лах этой главы. Сейчас достаточно иметь в виду, что атомарные операции де-
лятся на три разновидности:

�� операции записи;
�� операции чтения;
�� операции чтения-модификации-записи.

С каждым видом атомарных операций есть своё подмножество допустимых
способов упорядочивания доступа. Если данный параметр не указывать, по
умолчанию принимается самый сильный в смысле предоставляемых гаран-
тий, но в то же время и наихудший в смысле быстродействия метод упорядо-
чивания доступа.

В отличие от фундаментальных типов языка C++, соответствующие атомар-
ные типы-обёртки не поддерживают копирование и присваивание. Иными
словами, для этих типов в явном виде запрещены конструкторы копирования
и операции присваивания. Дело в том, что в копировании или присваивании
участвуют два объекта, а атомарность может быть аппаратно гарантирована
только для операций над одним объектом. В самом деле, для копирования или
присваивания нужно получить значение из одного атомарного объекта и за-
писать его во второй атомарный объект. Комбинация из двух атомарных опе-
раций сама не обязана быть атомарной, так как другой поток может вклинить-
ся между этими операциями. У атомарных типов имеются операции неявного
приведения к соответствующим неатомарным фундаментальным типам.

Рассмотрим теперь подробно, какие операции можно выполнять над каж-
дым из стандартных атомарных типов, начиная с типа std::atomic_flag.

Тип std::atomic_flag
Тип std::atomic_flag моделирует флаг, т. е. логическое значение, и является
простейшим из всех имеющихся в стандартной библиотеке атомарных типов.
Это единственный атомарный тип, для которого гарантирована неблокирую-
щая реализация всех операций на любой платформе. С другой стороны, этот
тип обладает очень бедным набором операций, поэтому его стоит использо-
вать лишь в качестве строительного блока для создания более сложных конст
рукций.

Объект типа std::atomic_flag всегда нужно инициализировать константой
ATOMIC_FLAG_INIT, чтобы привести флаг в сброшенное состояние:
std::atomic_flag flg = ATOMIC_FLAG_INIT;

Это единственный атомарный тип в стандартной библиотеке, объекты ко-
торого нуждаются в подобной инициализации, где бы они ни были объявлены.
Когда объект проинициализирован, над ним можно выполнять лишь три опе-
рации: уничтожить объект, сбросить флаг и (за одно атомарное действие) уста-
новить флаг и вернуть его прежнее значение. Это, соответственно, деструктор,
метод clear и метод test_and_set. С точки зрения классификации, описанной

 15 / 32

112    Асинхронное программирование и неблокирующая синхронизация в языке C++

в конце предыдущего раздела, метод clear представляет собой операцию запи-
си, тогда как метод test_and_set есть операция чтения-модификации-записи.
flg.clear();
bool val = flg.test_and_set(std::memory_order_relaxed);

В этом фрагменте кода вызов метода clear сбрасывает флаг (т. е. записывает
в него логическое значение «ложь»), используя порядок доступа к памяти по
умолчанию (а именно порядок std::memory_order_seq_cst, самый сильный из воз-
можных, – он гарантирует не только атомарность, но и согласованную после-
довательность операций чтения и записи, см. ниже). Вызов метода test_and_set
в следующей строке содержит аргумент, явно указывающий слабый (и более
быстрый) порядок доступа к памяти: от операции требуется лишь атомарность,
а на последовательность обращений к памяти никакие условия не налагаются.

Предельная простота типа std::atomic_flag и его операций делает его идеаль-
ным строительным материалом для так называемого цикла ожидания (англ.
spin-lock). Это примитив синхронизации, который ведёт себя подобно двоич-
ному семафору, т. е. обладает операциями захвата и освобождения; если захват
уже выполнен, повторная операция захвата блокирует поток до тех пор, пока
не произойдёт освобождение. В данном случае операция захвата представляет
собой цикл, который постоянно проверяет флаг состояния блокировки – отсю-
да и термин «цикл ожидания».
class spin_lock
{
 std::atomic_flag flg;

public:
 spin_lock() : flg(ATOMIC_FLAG_INIT)
 {}

 void lock()
 {
 // вход в критическую секцию: выполнять цикл, пока флаг
 // "занято" не сброшен, и сразу снова установить его
 while (flg.test_and_set(std::memory_order_acquire));
 }

 void unlock()
 {
 // выход из критической секции: сбросить флаг "занято"
 flg.clear(std::memory_order_release);
 }
};

Переменная-член flg типа std::atomic_flag отвечает за состояние объекта:
занят или свободен, сразу после создания объект находится в состоянии «сво-
боден». В методе lock цикл будет выполняться до тех пор, пока флаг показы-
вает, что объект занят. На каждой итерации цикла не делается никаких иных

 16 / 32

Атомарные типы    113

операций, кроме проверки значения флага. Если поток, который в настоящее
время держит блокировку, вызовет метод clear и тем самым сбросит флаг, опе-
рация test_and_set вернёт значение «ложь» (что обеспечит выход из цикла ожи-
дания) и одновременно с этим снова установит флаг в значение «истина», т. е.
«занято». Таким образом, наш класс действительно позволяет добиться взаим-
ной блокировки потоков.

В силу крайней ограниченности набора операций тип std::atomic_flag не
может выполнять роль атомарного логического типа. В частности, в нём нет
операции, которая бы просто получала текущее значение флага, не модифици-
руя его. Поэтому перейдём к типу std::atomic<bool>, который поддерживает все
операции, характерные для логического типа.

Тип std::atomic<bool>
В отличие от типа std::atomic_flag, тип std::atomic<bool> представляет собой
полноценный логический тип. Однако ни копирование, ни присваивание объ-
ектов этого типа невозможно. Объект данного типа можно инициализировать
значением true или false. В дальнейшем такому объекту можно присвоить зна-
чение обычного (неатомарного) типа bool:
std::atomic<bool> flg(true);
flg = false;

Следует отметить одну важную особенность операции присваивания, общую
для всех атомарных типов: в отличие от операций присваивания для обычных
типов, она возвращает не ссылку на объект из левой части операции, а присво-
енное значение неатомарного типа. В самом деле, если бы результатом при-
сваивания была ссылка, выполнивший присваивание поток мог бы увидеть
значение, присвоенное каким-то другим потоком, что противоречит самому
понятию атомарной операции. Возврат значения неатомарного типа, напро-
тив, устраняет нежелательное взаимное влияние потоков подобного рода:
программист может быть уверен, что значение, возвращённое операцией при-
сваивания, – это то же самое значение, которое только что было присвоено
атомарному объекту.

Перейдём к рассмотрению операций, поддерживаемых типом std::ato
mic<bool>. Прежде всего это операция store, которая записывает в атомарный
объект новое значение true или false (для сравнения, операция clear, опре-
делённая для типа std::atomic_flag, позволяет записать в объект лишь значе-
ние false). Конечно же, эта операция записи атомарна. Подобным же образом
вместо операции test_and_set, определённой для типа std::atomic_flag, тип
std::atomic<bool> обладает более общим методом exchange, который заменя-
ет хранившееся в атомарном объекте значение любым новым и возвращает
старое значение. Этот метод представляет собой атомарную операцию вида
«чтение-модификация-запись». Кроме того, тип std::atomic<bool> поддержи-
вает простой, немодифицирующий запрос текущего значения, хранящегося

 17 / 32

114    Асинхронное программирование и неблокирующая синхронизация в языке C++

в атомарном объекте, – это метод load, являющийся, согласно нашей класси-
фикации, операцией чтения.
std::atomic<bool> flg;
flg.store(true);
bool val = flg.load(std::memory_order_asquire);
val = flg.exchange(false, std::memory_order_acq_rel);

Помимо этого, в типе std::atomic<bool> имеется ещё одна операция чтения-
модификации-записи, реализующая широко распространённую идею срав-
нения и обмена (англ. compare-and-swap, CaS). Эта операция записывает
в атомарный объект новое (т. н. желаемое) значение только в том случае, если
его текущее значение равняется значению некоторой переменной (т. н. ожи-
даемому значению). Если же текущее значение атомарного объекта отлично
от ожидаемого, текущее значение присваивается той переменной, в которой
хранилось ожидаемое значение. Атомарные типы из стандартной библиоте-
ки содержат два метода, реализующих данную операцию, – это методы com-
pare_exchange_weak и compare_exchange_strong, называемые соответственно слабой
и сильной операциями. Оба метода для всех атомарных типов возвращают
значение логического типа: значение true, если запись произведена, и значе-
ние false в противном случае.

Метод compare_exchange_weak может завершиться неудачей (т. е. не выполнить
запись нового значения и вернуть значение false), даже если текущее значе-
ние атомарного объекта совпадает с ожидаемым. Это может произойти на не-
которых аппаратных платформах, где отсутствует процессорная инструкция
атомарного сравнения и обмена, т. е. если процессор не может гарантировать
выполнения всей этой сложной операции как единого целого. Когда операци-
онной системе приходится на такой платформе обслуживать больше потоков,
чем имеется в наличии процессоров, поток, пытающийся выполнить сравне-
ние и обмен, может быть прерван переключением на другой поток посередине
операции (скажем, когда сравнение уже выполнено, а обмен – ещё нет). Эта
ситуация известна как ложный отказ.

Поскольку операция compare_exchange_weak может завершиться ложным отка-
зом, её часто помещают в цикл, как в следующем примере:
bool expected = false;
std::atomic<bool> flg;
...
while (!flg.compare_exchange_weak(expected, true));

Цикл в этом примере продолжает выполнять сравнение и обмен до тех пор,
пока переменная expected не изменит своё значение с false на true, преодолев,
возможно, неоднократные ложные отказы.

Метод compare_exchange_strong, напротив, возвращает значение false лишь
в том случае, если текущее значение атомарного объекта отличалось от ожида-
емого. Это позволяет избежать циклов, подобных показанному выше, с много-
кратными попытками установить атомарной переменной новое значение.

 18 / 32

Атомарные типы    115

Сильные и слабые операции сравнения и обмена могут принимать два не-
обязательных аргумента, задающих порядок доступа к памяти в двух случаях:
при успешном и при неуспешном сравнении текущего значения с ожидаемым.
bool expected = false;
std::atomic<bool> flg;
flg.compare_exchange_weak(
 expected,
 true,
 std::memory_order_acq_rel,
 std::memory_order_acquire);
flg.compare_exchange_weak(
 expected,
 true,
 std::memory_order_release);

Если никакой порядок доступа к памяти явно не задан, по умолчанию для
успешного и неуспешного сравнений используется порядок std::memory_or-
der_seq_cst. Если указан порядок доступа лишь для случая успешного срав-
нения, он же используется и при неуспехе, с тем лишь отличием, что семан-
тика освобождения (release) при этом игнорируется. Так, например, порядок
std::memory_order_acq_rel превратится в порядок std::memory_order_acquire, а по-
рядок std::memory_order_release – в порядок std::memory_order_relaxed.

Точные определения всех порядков доступа к памяти и их особенности бу-
дут подробно изложены позже в этой главе. Сейчас, однако, рассмотрим группу
атомарных целочисленных типов.

Стандартные атомарные целочисленные типы
Подобно типу std::atomic<bool>, атомарные целочисленные типы из стандарт-
ной библиотеки не поддерживают ни копирование, ни присваивание объек-
тов. Вместо этого их можно инициализировать значениями соответствующих
неатомарных типов и можно им присваивать такие значения. Помимо непре-
менного для всех атомарных типов метода is_lock_free, стандартные атомар-
ные целочисленные типы, такие как std::atomic<int>, std::atomic<unsigned long
long>, также обладают методами load, store, exchange, compare_exchange_weak и com-
pare_exchange_strong с такой же семантикой, как в типе std::atomic<bool>.

Целочисленные атомарные типы поддерживают разнообразные арифмети-
ческие операции, такие как fetch_add, fetch_sub, fetch_and, fetch_or и fetch_xor,
комбинированные операции с присваиванием (+=, -=, &= и ^=), а также префикс-
ные и постфиксные операции инкремента и декремента ++ и --.

Арифметические функции, такие как fetch_add и fetch_sub, выполнив нужное
арифметическое действие, возвращают старое значение атомарного объекта –
в отличие от соответствующих перегруженных комбинированных операций
с присваиванием (например, += и -=), которые возвращают новое значение.
Операции пре- и постинкремента и декремента следуют обычным для язы-
ков C и C++ соглашениям: постфиксные варианты этих операций возвращают
старое значение объекта, а префиксные – новое. Следующий простой пример

 19 / 32

116    Асинхронное программирование и неблокирующая синхронизация в языке C++

демонстрирует свойства различных операций над атомарными целочислен-
ными объектами.
int main()
{
 std::atomic<int> value;

 std::cout << "Возвращённое значение: " << value.fetch_add(5) << '\n';
 std::cout << "Значение после операции: " << value << '\n';

 std::cout << "Возвращённое значение: " << value.fetch_sub(3) << '\n';
 std::cout << "Значение после операции: " << value << '\n';

 std::cout << "Возвращённое значение: " << value++ << '\n';
 std::cout << "Значение после операции: " << value << '\n';

 std::cout << "Возвращённое значение: " << ++value << '\n';
 std::cout << "Значение после операции: " << value << '\n';

 value += 1;
 std::cout << "Значение после операции: " << value << '\n';

 value -= 1;
 std::cout << "Значение после операции: " << value << '\n';
 return 0;
}

Результат выполнения этого кода должен выглядеть следующим образом:
Возвращённое значение: 0
Значение после операции: 5
Возвращённое значение: 5
Значение после операции: 2
Возвращённое значение: 2
Значение после операции: 3
Возвращённое значение: 4
Значение после операции: 4
Значение после операции: 5
Значение после операции: 4

Все типы, перечисленные выше в таблице, за исключением типов std::atomic_
flag и std::atomic<bool>, – это атомарные целочисленные типы. Рассмотрим те-
перь специализацию атомарного шаблона для типа указателя, т. е. семейство
типов std::atomic<T*>.

Тип std::atomic<T*> и арифметика указателей
Помимо обычного для всех атомарных типов набора операций load, store,
exchange, compare_exchange_weak и compare_exchange_strong, атомарные типы ука-
зателей содержат также характерные для типов указателей арифметические
операции. Методы fetch_add и fetch_sub обеспечивают атомарное прибавление
целого числа к указателю и вычитание числа из указателя, как и соответствую-

 20 / 32

Атомарные типы    117

щие им перегруженные операции += и -=, а также операции пре- и постинкре-
мента и декремента ++ и --.

Эти операции работают точно так же, как и операции арифметики обычных,
неатомарных указателей. Например, пусть объект obj типа std::atomic<some_
class*> указывает на первый элемент массива объектов класса some_class. Тогда
операция obj+=2 меняет значение этого объекта таким образом, что отныне он
указывает на третий элемент массива и возвращает обычный (неатомарный)
указатель типа some_class* на этот объект. Как отмечалось в предыдущем раз-
деле, посвящённом атомарным целочисленным типам, функции наподобие
fetch_add и fetch_sub, изменив значение атомарного объекта, возвращают его
старое значение, т. е. в данном примере они вернули бы указатель на первый
элемент массива.

Атомарные операции, оформленные в виде функций, также позволяют про-
граммисту задавать отдельным аргументом порядок доступа к памяти, на-
пример:
obj.fetch_add(3, std::memory_order_release);

Поскольку операции fetch_add и fetch_sub относятся к операциям чтения-
модификации-записи, в них можно использовать любой порядок доступа
к памяти, определённый в стандартной библиотеке. Перегруженным комби-
нированным операциям с присваиванием (+= и -=) и операциям инкремента
и декремента невозможно передать дополнительный аргумент, поэтому в них
всегда используется самая сильная семантика доступа, а именно std::memory_
order_seq_cst.

Общий случай шаблона std::atomic<>
В наиболее общем случае класс-шаблон std::atomic<> позволяет создавать
атомарные версии пользовательских типов данных (англ. user-defined type,
UDT). Чтобы пользовательский тип можно было использовать атомарным
образом, при его разработке нужно следовать определённым правилам. Тип
std::atomic<udt> для пользовательского класса udt можно образовать, если этот
класс обладает тривиальной операцией копирующего присваивания. Это зна-
чит, что пользовательский класс udt не должен содержать виртуальных функ-
ций и не должен иметь виртуальный базовый класс, и его операция копиро-
вания должна быть по умолчанию сгенерирована компилятором. Этим же
свойством – наличием тривиальной операции копирующего присваивания –
должны обладать все базовые классы и нестатические члены-данные класса
udt. Соблюдение всех этих условий позволяет компилятору реализовать копи-
рующее присваивание просто побайтным копированием представления объ-
екта в памяти (например, функцией memcpy). Иными словами, для присваивания
из объекта в объект не требуется выполнять какой-либо пользовательский код.

Помимо требования, относящегося к операции присваивания, пользова-
тельский класс udt должен допускать побитовое сравнение на равенство. Это

 21 / 32

118    Асинхронное программирование и неблокирующая синхронизация в языке C++

означает, что для сравнения двух объектов на равенство должно быть доста-
точным сравнить их представления в памяти – например, функцией memcmp.
Только соблюдение этих условий гарантирует возможность атомарных опера-
ций сравнения и обмена.

У типа, который получается из стандартного атомарного шаблона подста-
новкой некоторого пользовательского типа udt, т. е. у типа std::atomic<udt>,
интерфейс ограничен методами load, store, exchange, compare_exchange_weak и com-
pare_exchange_strong, а также операцией присваивания атомарному объекту
значения неатомарного типа udt и операцией преобразования атомарного
объекта к типу udt.

Порядок доступа к памяти
Выше мы рассмотрели атомарные типы и атомарные операции, определённые
в стандартной библиотеке. Большая часть операций над атомарными типами
позволяет в явном виде задавать порядок доступа к памяти. Пришло время
разобрать, в чём состоит смысл и каковы типичные применения различных
порядков доступа. Основная идея, лежащая в основе атомарных операций,
состоит в синхронизации доступа к данным со стороны множества потоков,
и для этого требуется определённым образом ограничить порядок выполне-
ния машинных операций над памятью. Например, если запись данных в па-
мять происходит раньше, чем чтение из этого же участка памяти, многопоточ-
ная система работает корректно. В противном случае вероятна ошибка. Всего
в стандартной библиотеке определено шесть вариантов упорядочивания до-
ступа к памяти, которые можно использовать в операциях над атомарными
типами: memory_order_relaxed, memory_order_consume, memory_order_acquire, memory_
order_release, memory_order_acq_rel и memory_order_seq_cst. Если порядок доступа
к памяти не задан явно, для всех атомарных операций по умолчанию исполь-
зуется порядок memory_order_seq_cst.

Эти шесть вариантов можно разделить на три категории:
�� последовательно согласованный порядок: memory_order_seq_cst;
�� порядки доступа с захватом и освобождением: memory_order_consume, memo-
ry_order_acquire, memory_order_release, memory_order_acq_rel;

�� ослабленный порядок: memory_order_relaxed.
Цена, которую приходится платить за эти модели упорядоченного досту-

па потерей быстродействия, различна и зависит от архитектуры процессора.
Наличие различных моделей упорядоченного доступа позволяет высококва-
лифицированному программисту получать максимум выгоды, применяя, где
нужно, более быстрые модели, по сравнению с надёжным, но медленным по-
следовательно согласованным порядком доступа. Однако для того, чтобы вы-
брать наиболее подходящую модель упорядочения доступа, нужно хорошо по-
нимать, как каждая из этих моделей влияет на поведение программы. Начнём
рассмотрение с последовательно согласованного порядка доступа.

 22 / 32

Порядок доступа к памяти    119

Последовательно согласованный порядок доступа
Понятие последовательной согласованности было введено Лэсли Лэмпортом
в 1979 г. Последовательная согласованность предоставляет две гарантии ка-
сательно хода выполнения программы. В первую очередь это гарантия того,
что машинные инструкции, осуществляющие доступ к памяти, выполняются
точно в том же порядке, в котором они записаны в исходном коде, – за сохра-
нение порядка инструкций отвечает компилятор. Во-вторых, это гарантии от-
носительно глобального порядка выполнения атомарных операций разными
потоками.

Для программиста внесение в поведение программы глобального порядка,
которому следуют все операции во всех потоках, словно по единым часам, мо-
жет послужить важным преимуществом, но оно же может оказаться и недо-
статком.

Важная черта последовательной согласованности состоит в том, что про-
грамма со множеством параллельных потоков работает в точности так, как
задумано, но достигается это ценой значительного объёма вспомогательных
операций, выполняемых системой. Следующая программа может служить
простым примером, знакомящим с особенностями последовательно согласо-
ванных вычислений.

std::string result;
std::atomic<bool> ready(false);

void thread1(){
 while(!ready.load(std::memory_order_seq_cst));
 result += "согласованность";
}

void thread2(){
 result = "последовательная ";
 ready = true;
}

int main(){
 std::thread t1(thread1);
 std::thread t2(thread2);
 t1.join();
 t2.join();

 std::cout << "Результат : " << result << '\n';
}

В этой программе потоки thread1 и thread2 синхронизируются с помощью
последовательной согласованности. В силу последовательной согласованности
операций выполнение этой программы вполне детерминировано, и результат
её работы всегда будет выглядеть следующим образом:

 23 / 32

120    Асинхронное программирование и неблокирующая синхронизация в языке C++

Результат: последовательная согласованность

Поток thread1 выполняет цикл до тех пор, пока атомарная переменная ready
не получит значение true. Как только поток thread2 присвоит переменной
ready значение true, поток thread1 продолжит свою работу, поэтому операции
над строковой переменной result всегда происходят в одном и том же по-
рядке. В общем случае использование последовательно согласованного по-
рядка доступа позволяет каждому потоку видеть операции, выполняющие-
ся в других потоках, происходящими в одном и том же порядке, поскольку
выполнение всех потоков следует единым часам. В данном примере именно
наличие единой оси времени позволяет использовать цикл в качестве при-
митива синхронизации. В следующем разделе рассмотрим семантику захва-
та и освобождения.

Семантика захвата и освобождения
Пора заняться более тонкими способами упорядочения доступа к памяти,
имеющимися в стандартной библиотеке языка C++. Здесь начинается та об-
ласть, в которой наивные представления о порядке выполнения операций из
нескольких потоков перестают работать, так как при такой модели доступа
к памяти уже нет глобальных часов, по которым могли бы синхронизировать-
ся атомарные операции разных потоков. Семантика захвата и освобождения
поддерживает синхронизацию лишь различных атомарных операций над од-
ной и той же атомарной переменной. Конкретнее, операция чтения из атомар-
ной переменной, выполняемая одним потоком, может быть синхронизирова-
на с операцией записи в эту же атомарную переменную, выполняемой другим
потоком. Чтобы организовать правильное взаимодействие между потоками
через атомарную переменную, программисту нужно увидеть в логике их рабо-
ты отношение «происходит ранее» и вынудить потоки к его соблюдению. Это
делает работу с моделью захвата и освобождения более сложной, но в то же
время увлекательной. Использование семантики захвата и освобождения – это
шаг на пути к неблокирующему программированию, поскольку программисту
нет нужды заботиться о синхронизации целых потоков: всё, о чём нужно заду-
мываться, – это правильный порядок доступа к одной атомарной переменной
из нескольких потоков.

Как уже говорилось выше, главная идея, лежащая в основе семантики за-
хвата и освобождения, состоит в синхронизации операции освобождения ато-
марной переменной одним потоком с операцией её захвата другим потоком
вместе с накладыванием условия упорядоченности доступа. Как явствует из на-
звания, операция захвата на краткое время блокирует атомарную переменную
и предполагает чтение значения из атомарной переменной – таковы функции
load и test_and_set. Соответственно, операции освобождения снимают блоки-
ровку переменной, это характерно для таких операций, как store и clear.

Если проводить аналогию с блокирующими примитивами синхронизации,
захват и освобождение атомарной переменной подобны захвату и освобожде-

 24 / 32

Порядок доступа к памяти    121

нию двоичного семафора. Таким образом, получается некое подобие критиче-
ской секции, защищающей, однако, лишь одну атомарную переменную – ника-
кую операцию над этой переменной нельзя перенести за пределы критической
секции, перед или после неё. Напротив, любые операции над переменной мож-
но безопасно внести в критическую секцию, поскольку в этом случае обраще-
ние к переменной переносится из незащищённого участка в защищённый. Это
отображено на следующей диаграмме.

Переменные

Переменные

Операции в критической секции

Таким образом, критическая секция ограничена двумя односторонне про-
ницаемыми барьерами: барьером захвата (операция может переноситься
сквозь него вперёд) и барьером освобождения (сквозь него операции могут
переноситься назад). Подобный способ рассуждения работает также для запус
ка потока и вызова метода join, захвата и освобождения двоичного семафора
и вообще для любых примитивов синхронизации, имеющихся в стандартной
библиотеке.

Cинхронизация в данном случае имеет место на уровне атомарной пере-
менной, а не на уровне целых потоков. Воспользуемся этим, чтобы усовершен-
ствовать реализацию цикла ожидания на основе стандартного атомарного
типа std::atomic_flag.
class spin_lock
{
 std::atomic_flag flg;

public:
 spin_lock() : flg(ATOMIC_FLAG_INIT)
 {}

 void lock()
 {
 // захватить и войти в цикл ожидания
 while (flg.test_and_set(std::memory_order_acquire));
 }

 void unlock()

 25 / 32

122    Асинхронное программирование и неблокирующая синхронизация в языке C++

 {
 // освободить
 flg.clear(std::memory_order_release);
 }
};

Здесь функция lock по сути своей является захватывающей операцией. В от-
личие от предыдущей реализации, где по умолчанию использовалась после-
довательно согласованная модель доступа к памяти, в этом коде явно задан
флаг захватывающего порядка доступа. Симметричным образом функция un-
lock представляет собой операцию освобождения ресурса, и в её реализации
порядок доступа к памяти, использовавшийся по умолчанию, заменён явно
указанной семантикой освобождения. Тем самым относительно тяжеловесная
синхронизация атомарных операций с последовательной согласованностью
заменена более дешёвой и быстрой семантикой захвата и освобождения.

Если этот цикл ожидания предполагается применять для более чем двух по-
токов, обычной семантики захвата, соответствующей значению std::memory_or-
der_acquire, будет недостаточно, так как метод lock в этом случае превратится
в операцию захвата и освобождения. Соответственно, модель доступа к памя-
ти должна быть заменена на модель std::memory_order_acq_rel.

Таким образом, мы выяснили, что последовательно согласованный порядок
доступа к памяти обеспечивает глобальную синхронизацию доступа между по-
токами, тогда как порядок с захватом и освобождением налагает ограничения
лишь на порядок операций чтения и записи, выполняемых над одной атомар-
ной переменной из нескольких потоков. Рассмотрим же теперь, в чём состоит
ослабленный порядок доступа.

Ослабленный порядок доступа к памяти
Операции над переменными атомарного типа, выполняемые с ослабленным
порядком доступа, т. е. с флагом std::memory_order_relaxed, вообще не синхрони-
зируются между потоками. В отличие от остальных моделей упорядоченного
доступа, доступных в стандартной библиотеке, эта модель не налагает никаких
ограничений на порядок выполнения операций различными потоками. Се-
мантика ослабленного порядка гарантирует лишь, что не может быть изменён
компилятором (например, в целях оптимизации) порядок операций над одной
и той же атомарной переменной, выполняемых в одном потоке, – это требова-
ние называют гарантией неизменного порядка модификации. Таким обра-
зом, ослабленный порядок доступа гарантирует лишь атомарность операций
и неизменный порядок модификации. Следовательно, остальные потоки мо-
гут видеть модификации переменной в произвольном порядке.

Ослабленный порядок доступа можно с успехом использовать в тех случаях,
когда синхронизация и правильный порядок доступа потоков к переменной не
требуются, а атомарность операций нужна лишь как вспомогательный меха-
низм для повышения производительности. Типичным примером может быть
инкремент счётчика, от которого требуется лишь, чтобы все операции инкре-

 26 / 32

Порядок доступа к памяти    123

мента в конечном счёте были выполнены, – таков, в частности, счётчик ссылок
умного указателя std::shared_ptr. Декремент этого счётчика, выполняющийся
в деструкторе умного указателя, напротив, требует синхронизации путём за-
хвата и освобождения, так как деструктору необходимо точно знать, когда зна-
чение счётчика достигнет нуля.

Рассмотрим простой пример, в котором атомарный счётчик с ослабленным
порядком доступа используется для подсчёта запущенных потоков.
std::atomic<int> count = {0};

void func()
{
 count.fetch_add(1, std::memory_order_relaxed);
}

int main()
{
 std::vector<std::thread> v;
 for (int n = 0; n < 10; ++n)
 {
 v.emplace_back(func);
 }

 for (auto& t : v)
 {
 t.join();
 }

 std::cout << "Число потоков : " << count << '\n';
}

В этой программе функция main запускает десять потоков, в каждом из ко-
торых выполняется функция func. Эта функция из каждого потока по одному
разу наращивает на единицу целочисленный счётчик, используя для этого
атомарную операцию fetch_add. Эта функция, в отличие от имеющихся в типе
std::atomic<int> перегруженных комбинированных арифметических операций
с присваиванием и перегруженных операций инкремента и декремента, может
принимать в качестве аргумента модель упорядоченного доступа к памяти,
и в этом примере ей передаётся ослабленная модель std::memory_order_relaxed.
В самом деле, для корректного выполнения потоков совершенно не важно,
в каком порядке будут выполняться операции инкремента, лишь бы они были
выполнены все, – а это гарантируется атомарностью операции.

Таким образом, показанная выше программа печатает общее число запу-
щенных потоков, т. е. выводит следующий текст:
Число потоков : 10

Конечно, результат работы этой программы остался бы неизменным, какую
бы модель доступа к памяти ни использовать, однако именно ослабленная

 27 / 32

124    Асинхронное программирование и неблокирующая синхронизация в языке C++

модель, свободная от любых ограничений на порядок выполнения операций,
обеспечивает наибольшую скорость выполнения.

До сих пор мы изучали различные модели доступа к памяти, предоставляе-
мые ими гарантии и влияние этих гарантий на поведение разных атомарных
и неатомарных операций. Посмотрим же теперь, как применить атомарные
операции для создания неблокирующей структуры данных.

Неблокирующая очередь
Как читатель, безусловно, знает, данные в реальных программных системах
обычно организованы в определённые структуры, каждая модификация кото-
рых требует внесения нескольких согласованных изменений в разные участки
памяти. Если нужен доступ к структуре данных сразу из нескольких потоков,
производительность может стать серьёзной проблемой. Так, в главе 3 читатель
увидел, как реализовать стек, пригодный для использования в многопоточной
среде. Его реализация была построена на двоичных семафорах и условных пе-
ременных, а захват семафора может потребовать значительного времени про-
цессора. Чтобы пояснить создание неблокирующих структур данных, разберём
в качестве примера очень простую очередь, основанную на модели произво-
дителей и потребителей (англ. producer/consumer), в которой для синхрониза-
ции используются не блокирующие примитивы, а исключительно атомарные
переменные. Это, безусловно, повысит быстродействие системы. Вместо того
чтобы использовать обёртки над стандартными структурами данных, созда-
дим свою реализацию с нуля. Для простоты предположим, что имеется един-
ственный производитель и ровно один потребитель.
template<typename T>
class Lock_free_Queue
{
private:
 struct Node
 {
 std::shared_ptr<T> my_data;
 Node* my_next_node;
 Node() : my_next_node(nullptr)
 {}
 };

 std::atomic<Node*> my_head_node;
 std::atomic<Node*> my_tail_node;

 Node* pop_head_node()
 {
 Node* const old_head_node = my_head_node.load();
 if(old_head_node == my_tail_node.load())
 {
 return nullptr;
 }

 28 / 32

Неблокирующая очередь    125

 my_head_node.store(old_head_node->my_next_node);
 return old_head_node;
 }

Класс Lock_free_Queue содержит объявление вложенного типа с именем Node
(элемент списка) со своими членами-данными, которые представляют значе-
ние, хранящееся в элементе, и указатель на следующий элемент списка. Далее
в классе Lock_free_Queue объявлены две переменные-члена – атомарные указа-
тели на объекты только что объявленного типа Node. В одной из этих перемен-
ных хранится указатель на первый элемент списка, а во второй – указатель на
последний элемент. Наконец, объявлен и реализован закрытый метод pop_head_
node, который позволяет извлечь из списка первый элемент, если хотя бы один
элемент в списке есть1, при этом используются лишь атомарные операции.
Атомарные операции в этом методе следуют последовательно согласованному
порядку доступа к памяти, принятому по умолчанию.
public:
 Lock_free_Queue() :
 my_head_node(new Node),
 my_tail_node(my_head_node.load())
 {}

 Lock_free_Queue(const Lock_free_Queue&) = delete;
 Lock_free_Queue& operator=(const Lock_free_Queue&) = delete;

 ~Lock_free_Queue()
 {
 while(Node* const old_head_node = my_head_node.load())
 {
 my_head_node.store(old_head_node->my_next_node);
 delete old_head_node;
 }
 }

Конструктор объекта Lock_free_Queue создаёт объект типа Node и делает его
одновременно головой и хвостом списка. Чтобы избежать ситуации, когда не-
сколько объектов владеет одной и той же динамической структурой данных,
конструктор копирования и копирующая операция присваивания для этого
класса запрещены. Деструктор последовательно удаляет все элементы списка.
 std::shared_ptr<T> dequeue()
 {
 Node* old_head_node = pop_head_node();
 if(!old_head_node)
 {

1	 Следует обратить внимание, что в списке всегда присутствует один фиктивный
элемент, он нужен для того, чтобы при вставке нового элемента в конец очереди
его можно было поместить на заранее заготовленное место. Следовательно, фразу
«в списке есть хотя бы один элемент» следует понимать как «хотя бы один, не считая
фиктивного». – Прим. перев.

 29 / 32

126    Асинхронное программирование и неблокирующая синхронизация в языке C++

 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const result(old_head_node->my_data);
 delete old_head_node;
 return result;
 }

 void enqueue(T new_value)
 {
 std::shared_ptr<T> new_data(std::make_shared<T>(new_value));
 Node* p = new Node;
 Node* const old_tail_node = my_tail_node.load();
 old_tail_node->my_data.swap(new_data);
 old_tail_node->my_next_node = p;
 my_tail_node.store(p);
 }
};

В последнем фрагменте кода показана реализация двух главных операций
над очередью1, это вталкивание нового элемента в конец очереди (enqueue)
и взятие имеющегося элемента из начала очереди (dequeue). Использование
атомарных операций load и store обеспечивает отношение «происходит ранее»
между методами enqueue и dequeue.

Итоги
В этой главе рассмотрены предоставляемые стандартной библиотекой средства
для организации параллельных вычислений на основе задач. Читатель изучил,
как использовать фьючерсы и обещания, класс std::packaged_task и функцию
std::async. Также в главе рассказано о новой, ориентированной на параллель-
ные вычисления модели памяти, закреплённой в современном стандарте
языка C++. Вслед за этим были рассмотрены атомарные типы данных и опе-
рации над ними. Один из самых важных аспектов, связанных с атомарными
операциями, – это разнообразие моделей упорядоченного доступа к памяти
со своими специфическими гарантиями. Вместе взятые, две последние главы
позволят нам в дальнейшем понять аспекты реактивной модели программи-
рования, связанные с параллельным выполнением потоков.

В следующей главе мы от рассмотрения самого по себе языка C++ и тонко-
стей параллельного программирования перейдём к изучению интерфейсов,
лежащих в основе реактивной модели программирования. Приступим же
к изучению наблюдателей!

1	 Неблокирующее программирование и, в частности, разработка неблокирующих
структур данных – обширная и усложнённая область, представленное в этой главе
изложение представляется слишком кратким и фрагментарным, а использованный
автором пример – недостаточно информативным. Читателю стоит обратиться к спе-
циализированным источникам. – Прим. перев.

 30 / 32

Глава 5
Знакомство

с наблюдаемыми
источниками

В последних трёх главах были изучены появившиеся в языке C++ нововведе-
ния: поддержка потоков, примитивы синхронизации, средства неблокирую-
щего программирования и др. Рассмотрение этих вопросов можно считать
необходимым подготовительным шагом перед серьёзным изучением реак-
тивной модели программирования. Следование реактивной модели требует
хорошего владения функциональной парадигмой, средствами параллель-
ного программирования, планировщиками, функциональными объектами,
шаблонами проектирования и методами обработки потоков событий – и это
лишь краткий список. Выше мы разобрали или хотя бы коснулись таких тем,
как функциональное программирование и функциональные объекты; кро-
ме того, в предыдущей главе затронуты некоторые аспекты планирования
задач. В этой главе будет описан чудесный мир шаблонов проектирования,
что позволит понять суть реактивного программирования вообще и в особен-
ности идею наблюдателей. В следующей главе речь пойдёт о работе с пото-
ками событий, это позволит затем перейти к изучению библиотеки RxCpp.
Популярность идеи шаблонов проектирования достигла критической массы
с выходом в 1994 г. книги «Приёмы объектно-ориентированного проектиро-
вания. Паттерны проектирования» коллектива авторов, известных как «Бан-
да четырёх» (англ. Gang of Four, сокращённо GoF). В ней представлен каталог
из 23 шаблонов проектирования, разделённых на три группы: порождающие
шаблоны, структурные шаблоны и шаблоны поведения. В каталоге Банды че-
тырёх шаблон «Наблюдатель» отнесён к группе шаблонов поведения. Главная
мысль, которую данная глава должна донести до читателя, состоит в том, что
реактивную модель программирования можно понять через призму прочно
вошедших в обиход классических шаблонов проектирования. В этой главе бу-
дут разобраны следующие вопросы:

 31 / 32

128    Знакомство с наблюдаемыми источниками

�� классический шаблон «Наблюдатель»;
�� ограничения, присущие шаблону «Наблюдатель»;
�� обобщённый взгляд на шаблоны проектирования и, в частности, на

наблюдателей;
�� моделирование иерархий, свойственных реальному миру, с помощью

шаблона «Композит»;
�� придание композитам гибкого поведения с использованием шаблона

«Посетитель»;
�� «уплощение» многоуровневых композитов в одноуровневые структуры

с помощью шаблона «Итератор»;
�� как «вывернуть наизнанку» итератор, преобразовав его в пару наблюда-

емый источник – наблюдатель.

Шаблон «Наблюдатель»
Описанный в книге «Банды четырёх» шаблон «Наблюдатель» известен так-
же под названием «Издатель-подписчик». Его основная идея проста. Объект
EventSource (источник событий) связан отношением типа «один ко многим»
с объектами EventSink (приёмник событий), которые постоянно ожидают опо-
вещений о событиях. Объект EventSource должен обладать механизмом, позво-
ляющим любому объекту-приёмнику подписаться на получение оповещений
(возможно, избранных типов). Один объект-источник может испускать мно-
жество событий, в общем случае различных типов. Один объект EventSource
может рассылать оповещения тысячам подписчиков, или приёмников, всякий
раз, когда происходит значимое изменение его состояния или вообще нечто
важное в его сфере ответственности. Для этого объект EventSource проходит
по списку своих подписчиков и посылает оповещение каждому из них. Кни-
га «Банды четырёх» была написана в эпоху, когда повсеместно преобладало
последовательное, однопоточное программирование. Вопросы параллельной
обработки главным образом принято было связывать со спецификой отдельно
взятых платформ или, в крайнем случае, с интерфейсом управления потоками
в стандарте POSIX. Напишем простую программу на языке C++, чтобы проде-
монстрировать суть шаблона «Наблюдатель» в целом. Цель этого упражнения
состоит в том, чтобы быстро понять данный шаблон, поэтому вопросы надёж-
ности и эффективности отодвинуты на второй план. Следующий код самодо-
статочен и вполне очевиден.
#include <iostream>
#include <vector>
#include <memory>
using namespace std;

// упреждающее объявление класса-приёмника событий
template<class T>
class EventSourceValueObserver;

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Шаблон «Наблюдатель»    129

// упрощённая реализация источника событий
template<class T>
class EventSourceValueSubject {
 vector<EventSourceValueObserver<T> *> sinks;
 T State; // это должен быть тип значения

public:
 EventSourceValueSubject() { State = 0; }
 ~EventSourceValueSubject() {
 for (auto *n : sinks) { delete n; }
 sinks.clear();
 }

 bool Subscribe(EventSourceValueObserver<T> *sink)
 { sinks.push_back(sink);}

 void NotifyAll() {
 for (auto sink : sinks) { sink->Update(State); }
 }

 T GetState() { return State; }
 void SetState(T pstate) { State = pstate; NotifyAll(); }
};

В представленном выше фрагменте кода реализован простейший источник
событий, обладающий состоянием какого-то достаточно простого (например,
целочисленного) типа. Современный стандарт языка C++ содержит богатый
набор средств, позволяющий во время компиляции определить, правильный
ли тип-параметр пытается передать пользователь. Однако, поскольку этот
пример призван лишь пояснить суть наблюдателей, не станем загромождать
код, выписывая ограничения на тип-параметр. В будущем стандарте C++ 20
должны появиться так называемые концепты (подобные ограничениям или
классам типов в некоторых других языках), которые позволят описывать
требования к типам-параметрам в ясной и компактной форме, не прибегая
к нынешнему тяжеловесному синтаксису. В реальных программных системах
источник событий может хранить в себе сколь угодно сложное состояние, со-
стоящее из множества переменных или потоков значений. Подписчики долж-
ны оповещаться о любом изменении этого состояния. В нашем примере, когда
пользователь данного класса меняет его состояние, вызвав его метод SetState,
автоматически вызывается метод NotifyAll. Последний, в свою очередь, прохо-
дит по списку приёмников и для каждого из них вызывает метод Update. Тогда
приёмники могут выполнить свои специфические обработчики. Мы не ста-
нем реализовывать в данном примере другие методы (в частности, метод для
отписки от оповещений), чтобы сфокусировать внимание на главном.
// класс приёмника событий (наблюдателя), общий случай
template <class T>
class EventSourceValueObserver{
 T OldState;

 1 / 32

130    Знакомство с наблюдаемыми источниками

public:
 EventSourceValueObserver() { OldState = 0; }

 virtual ~EventSorceValueObserver() {}

 virtual void Update(T State) {
 cout << "Старое состояние " << OldState << endl;
 OldState = State;
 cout << " Новое состояние " << State << endl;
 }
};

В классе EventSourceValueObserver реализован метод Update, который позволяет
каждому подписчику по-своему реагировать на изменения, о которых сооб-
щает источник. В этом примере приёмник просто печатает на консоль старое
и новое состояния. В реальных программных системах приёмник в ответ на
оповещение может, например, перерисовать какие-то элементы графического
интерфейса или же передать обновлённое состояние дальше по цепочке объ-
ектов-обработчиков, разослав собственное оповещение. Создадим ещё один
класс приёмника события, унаследованный от класса EventSourceValueObserver.
// специализированный наблюдатель
class AnotherObserver : public EventSourceValueObserver<double>
{
public:
 AnotherObserver(): EventSourceValueObserver() {}
 virtual ~AnotherObserver() {}
 virtual void Update(double State) {
 cout << " Specialized Observer" << endl;
 }
};

Эта специализированная версия наблюдателя призвана продемонстриро-
вать, что подписчики, совместно работающие в одной системе, могут отно-
ситься к разным классам (которые, конечно, должны все иметь общего пред-
ка – в нашем примере это класс EventSourceValueObserver<T>). Показанный здесь
специализированный наблюдатель также не делает ничего сложного.
int main() {
 unique_ptr<EventSourceValueSubject<double>>
 evsrc(new EventSourceValueSubject<double>());
 // создать наблюдателей и подписать их на получение оповещений
 evsrc->Subscribe(new AnotherObserver());
 evsrc->Subscribe(new EventSourceValueObserver<double>());

 // изменить состояние источника событий, это должно
 // привести к вызову метода Update обоих наблюдателей
 evsrc->SetState(100);

 return 0;
}

 2 / 32

Ограниченность классического шаблона «Наблюдатель»    131

В этом последнем фрагменте кода создаётся источник событий, затем
к нему подключаются два подписчика. Теперь можно менять состояние источ-
ника и быть уверенными, что оповещение об этом придёт всем подписчикам.
В этом и состоит суть шаблона «Наблюдатель». В обычных объектно-ориенти-
рованных системах, не основанных на данном шаблоне, работа с объектами
происходит по следующей схеме:

�� создать объект;
�� вызвать метод этого объекта, чтобы вычислить некоторое значение или

изменить его состояние;
�� сделать что-то полезное с полученным значением или с новым состоя-

нием объекта.
В случае же шаблона «Наблюдатель», однако, схема получается иной:
�� создать объект-источник событий;
�� подписать наблюдателей на оповещения этого источника;
�� изменить состояние объекта-источника;
�� в объектах-приёмниках обработать значение или состояние, полученное

от источника.
Вынесение метода обработки обновлённого состояния позволяет лучше раз-

граничить обязанности объектов и добиться более чёткого разделения систе-
мы на независимые модули. Шаблон «Наблюдатель» предоставляет хороший
инструмент для создания программ, управляемых событиями. Потребитель
событий не сам опрашивает источник о новых событиях, а, напротив, получает
их автоматически. Большинство современных библиотек для создания графи-
ческих интерфейсов основано на этом принципе.

Ограниченность классического шаблона «Наблюдатель»
Книга «Банды четырёх» была написана в эпоху, когда повсеместно домини-
ровало последовательное, однопоточное программирование. Представленная
в книге архитектура и реализация шаблона «Наблюдатель» обладают рядом не-
достатков, если оценивать, исходя из современных представлений о програм-
мировании. Вот лишь некоторые из них:

�� слишком тесная взаимозависимость отправителей и наблюдателей;
�� временем жизни источника событий управляют наблюдатели1;
�� наблюдатели (приёмники событий) могут заблокировать работу источ-

ника;
�� реализация небезопасна при использовании в многопоточной среде;
�� за фильтрацию событий отвечают приёмники. Было бы гораздо луч-

ше, если бы данные фильтровал тот, кто ими владеет, – в данном случае

1	 С этим утверждением автора трудно согласиться: даже в примере программного кода
и предыдущего раздела зависимость противоположна – источник событий управ-
ляет временем жизни подписчиков. Эту зависимость легко разорвать, если убрать
деструктор из класса источника, а вместо обычных указателей использовать умные
указатели std::shared_ptr. – Прим. перев.

 3 / 32

132    Знакомство с наблюдаемыми источниками

фильтровать следовало бы на стороне источника перед рассылкой опо-
вещений;

�� большую часть времени наблюдатели не выполняют никакой полезной
работы, потребляя ресурсы;

�� в идеальном случае источнику событий вообще не следует знать своих
подписчиков. Вместо этого пусть он оповещает об изменении некую
среду, которая сама должна отвечать за рассылку события всем нужным
адресатам. Более высокая степень изоляции отправителей и получате-
лей в этом случае позволила бы применить такие полезные техники, как
агрегирование событий, преобразование событий, фильтрация собы-
тий и приведение данных о событии к тому или иному каноническому
виду – и этот список отнюдь не полон.

С проникновением в практику программирования на языке C++ средств, заим-
ствованных из функциональной парадигмы, таких как неизменяемые данные,
композиция функций, трансформация данных чистыми функциями, неблокиру-
ющее параллельное программирование и др., появилась возможность преодо-
леть ограничения классического шаблона «Наблюдатель». Решение, выработан-
ное современной индустрией программного обеспечения, основано на понятии
наблюдаемого источника как дальнейшего развития идеи источника событий.

Прилежный читатель уже при изучении классического шаблона «Наблюда-
тель» мог увидеть потенциал для применения асинхронной модели програм-
мирования. В самом деле, источник событий может вызывать метод Update сво-
их подписчиков асинхронно, вместо того чтобы осуществлять вызовы строго
последовательно. Используя, как при стрельбе самонаводящимися ракетами,
принцип «запусти и забудь», можно устранить жёсткую связь источника со-
бытий с приёмниками. Фактическое обращение к методам подписчиков может
происходить в фоновом потоке, асинхронной задаче, пакетной задаче или по-
средством любого другого механизма, подходящего для конкретной ситуации.
Одно из преимуществ асинхронной рассылки оповещений состоит в том, что
если какой-то из получателей окажется заблокирован (например, войдёт в бес-
конечный цикл или аварийно прекратит работу), остальные получатели всё
равно получат свои оповещения. Асинхронный способ рассылки оповещений
работает по следующей схеме.

Программист определяет методы для обработки данных, исключений и си-
туации окончания потока данных.

�� Интерфейс наблюдателя, или приёмника событий, должен содержать
методы OnData, OnError и OnCompleted.

�� Каждый приёмник событий должен воплощать этот интерфейс.
�� Каждый наблюдаемый источник должен обладать методами для подпис

ки и отписки.
�� Приёмник событий должен подписаться на получение событий от опре-

делённого наблюдаемого источника, обратившись к его методу подписки.
�� Всякий раз, когда происходит некоторое событие, наблюдатели (приём-

ники) получают оповещения от наблюдаемого источника.

 4 / 32

Обобщённый взгляд на шаблоны проектирования    133

Часть этой логики уже была описана в главе 1 при первом знакомстве с реак-
тивным программированием. Там не упоминалась лишь возможность асинхрон-
ной обработки событий. В данной главе мы ещё раз рассмотрим этот комплекс
понятий. Опыт, полученный автором в ходе выступлений на технические темы
и бесед с разработчиками, свидетельствует, что нет смысла начинать изучение
сразу с модели наблюдаемых источников. Многие разработчики с трудом по-
нимают архитектуру, основанную на наблюдаемых источниках, поскольку им
не вполне ясно, какую проблему эта архитектура решает. Поэтому мы и нача-
ли с классического шаблона «Наблюдатель», подготовив тем самым почву для
изучения наблюдаемых источников и, в частности, наблюдаемых потоков.

Обобщённый взгляд на шаблоны проектирования
Идея шаблонов проектирования начала завоёвывать всеобщее признание в то
самое время, когда программисты всего мира силились осмыслить сложный
комплекс проблем, связанных с разработкой объектно-ориентированных про-
грамм. Книга «Банды четырёх» и представленный в ней каталог шаблонов
предоставили сообществу разработчиков стройную систему подходов для раз-
работки больших систем. В то же время вопросы параллельной и многопоточ-
ной обработки отнюдь не находились в центре внимания авторов знаменитого
каталога (по крайней мере, в их работе интерес к данной теме не отражен).

Выше мы убедились, что обработка событий на основе классического шабло-
на «Наблюдатель» не свободна от ряда недостатков и ограничений, что в ряде
случаев может привести к серьёзным трудностям. Каков выход из этого по-
ложения? Нужно всего лишь окинуть всю задачу обработки событий свежим
взглядом, отступив на шаг назад. При этом мы вторгнемся на время в область
философии, чтобы под новым углом посмотреть на задачу, решить которую
призвана реактивная модель программирования, в особенности программи-
рование на основе наблюдаемых потоков. Всё это поможет нам гладко перейти
от классических шаблонов «Банды четырёх» к миру реактивного программи-
рования и лежащим в его основе структурам функциональной парадигмы.

Материал этого раздела несколько абстрактен и приведён здесь с целью
пояснить основополагающие принципы, на которых построен материал всей
главы. Наш путь к объяснению наблюдаемых источников начнется с шабло-
нов «Композит» и «Посетитель», также изложенных в работе «Банды четырёх»,
и шаг за шагом будет приближать к основному предмету рассмотрения. Этот
подход к разъяснению сложных понятий позаимствован из адвайта-веданты1,

1	 Помимо краткого изложения, представленного здесь автором, следует упомянуть
принцип тождества, занимающий в философии адвайты центральное место: Брах-
ман (упрощённо говоря, абсолютная мировая душа) тождествен индивидуальной
душе, а следствие тождественно причине. Множественность явлений материального
мира в конечном счете есть иллюзия, так как каждое из них уже изначально заклю-
чено в Брахмане. Поэтому изучение сложного предмета можно начинать, восходя по
лестнице простых частных случаев, всё равно они суть одно. – Прим. перев.

 5 / 32

134    Знакомство с наблюдаемыми источниками

одного из мистико-философских учений Индии. Впрочем, изложение будет
вестись в терминах западной философии. Если этот материал покажется чита-
телю слишком абстрактным, его можно пропустить.

Гуру Натараджа (1895–1973) – индийский философ, внесший значительный
вклад в развитие и популяризацию адвайта-веданты, философской школы,
в основе которой лежит представление о недвойственности высшей силы, на-
правляющей всех нас. Согласно его изложению адвайты, всё, что мы видим во-
круг, будь то люди, животные или растения, суть проявления абсолюта, на сан-
скрите называемого Брахманом. Единственное положительное утверждение,
которое можно сделать о Брахмане, сводится к триаде «бытие – сознание (так-
же суть) – блаженство» (санскр. сат, чит, ананд). Для философии веданты вооб-
ще характерен подход к определению сущности через описание её противопо-
ложности и метод доказательства от противного. В своей книге, озаглавленной
«Всеобъемлющая философия» (англ. Unitive Philosophy), Натараджа связывает
понятия сат, чит и ананд с тремя главными разделами, сформировавшими-
ся в западной философии, – соответственно онтологией (учением о бытии),
гносеологией (иначе эпистемологией – учением о познании) и аксиологией
(учением о ценностях). В следующей таблице показано отображение триады
сат-чит-ананд на родственные им философские категории.

Сат Чит Ананд
Бытие Суть Блаженство
Онтология Гносеология Аксиология
Кто я? Что я могу знать? Что мне делать?
Структура Поведение Предназначение

1

В веданте как семействе философских школ и в особенности в адвайте как
одной из них всё мироздание рассматривается как единство бытия, созна-
ния и блаженства. В дальнейшем мы будем опираться на эту таблицу, чтобы
отобразить проблемы разработки программного обеспечения на категории
структуры, поведения и предназначения. Любую систему в мире можно рас-
сматривать с этих трёх точек зрения: структурной, поведенческой и целе-
вой. Каноническую структуру объектно-ориентированных систем составляют
иерархии2. Разрабатывая программу, мы моделируем интересующий фрагмент
мира в виде иерархий и применяем некоторые канонические методы для их
обработки. Каталог «Банды четырёх» содержит шаблон «Композит», отнесён-
ный к категории структурных шаблонов и предназначенный для выстраива-
ния иерархии объектов, и шаблон «Наблюдатель», отнесённый к поведенче-
ским и предназначенный для обработки таких иерархий.

1	 Авторское соотнесение категории ананд с аксиологией отнюдь не бесспорно. Прак-
сеология также могла бы занять место в этой таблице. – Прим. перев.

2	 В классических изложениях теории ООП говорят об иерархии классов и иерархии
объектов. По сути, автор предлагает дополнить канон ООП иерархией целей. – Прим.
перев.

 6 / 32

Объектно-ориентированная модель программирования и иерархии    135

Объектно-ориентированная модель программирования
и иерархии
Этот раздел носит преимущественно теоретический характер. Читателям, не
искушённым в шаблонах «Банды четырёх», он может показаться излишне
сложным. В таком случае лучше пропустить этот раздел и перейти к разбору
примера работающей программы. Когда пример вполне изучен, можно вер-
нуться к изучению настоящего раздела.

Объектно-ориентированный подход хорош для моделирования разнообраз-
ных иерархий. Фактически иерархии можно считать канонической моделью
данных в объектно-ориентированных системах. Среди всех шаблонов «Банды
четырёх» для моделирования иерархий объектов лучше всего подходит шаб
лон «Композит». Он классифицируется как структурный шаблон. Часто рядом
с шаблоном «Композит» используется и шаблон «Посетитель». Последний
хорошо подходит для обработки композитных объектов, т. е. для придания
иерархическим объектам некоторого поведения. Тем самым во многих реаль-
ных программных системах шаблоны «Композит» и «Посетитель» образуют
неразрывную пару. Конечно, один и тот же композитный объект можно обра-
батывать различными посетителями. Например, при разработке компилято-
ра абстрактное синтаксическое дерево (англ. abstract syntax tree, AST) удобно
представить объектом-композитом, а проверка типов, оптимизация и генера-
ция кода, статический анализ и другие операции над ним могут быть реализо-
ваны посредством различных посетителей.

Одно из неудобств, возникающих при применении посетителя совместно
с композитом, состоит в том, что реализация посетителя должна быть осве-
домлена о структуре композита, чтобы правильно выполнить обход всех вхо-
дящих в него подобъектов. Более того, это способно сильно привести к лави-
нообразному разрастанию кода в случаях, когда посетителю нужно обработать
определённым образом отобранное подмножество данных из иерархического
композита. Ведь для каждого критерия фильтрации объектов мог бы понадо-
биться отдельный класс посетителя1. Каталог «Банды четырёх» содержит ещё
один шаблон, также относящийся к группе поведенческих, а именно «Итера-
тор» – любой программист на языке C++ наверняка знаком с этим понятием.
Шаблон «Итератор» удобен для обработки данных, организованных в контей-
неры, внутренняя структура которых несущественна. Иерархическую струк-

1	 Данная проблема представляется несколько преувеличенной. Выбор посетителем
объектов по неограниченному разнообразию критериев можно выразить неболь-
шим объёмом кода, прибегнув к таким шаблонам «Банды четырёх», как «Декоратор»
или «Стратегия». В первом случае на объект-посетитель, отвечающий за обработку
данных, нужно наложить декоратор, который игнорирует посещаемый объект, если
он не удовлетворяет нужному критерию. Во втором случае в интерфейсе объекта-
посетителя должна быть изначально предусмотрена возможность параметризации
некоторым предикатом (стратегией отбора). – Прим. перев.

 7 / 32

136    Знакомство с наблюдаемыми источниками

туру данных произвольной сложности можно разгладить – концептуально
представить в виде линейной последовательности элементов, то есть привес
ти к виду, удобному для обработки с помощью итератора. Примером может
служить итератор, осуществляющий обход дерева в ширину или в глубину. Для
прикладного программиста дерево через призму такого итератора выглядит
линейной последовательностью. Приведение иерархии к виду, удобному для
обхода итератором, концептуально состоит в её уплощении. Следует, однако,
отметить, что итераторы в силу их втягивающей семантики несколько ограни-
чены, поэтому нашим следующим шагом будет подойти к задаче с противопо-
ложной стороны и принять семантику вталкивания, воспользовавшись идеей
наблюдаемого источника и наблюдателя как усовершенствованной версией
шаблона «Наблюдатель». Данный раздел может показаться читателю излишне
абстрактным, в этом случае можно проработать оставшуюся часть главы, вер-
нуться и тогда уже понять, что здесь имеется в виду. Пока что можно подыто-
жить наше рассмотрение следующим образом:

�� иерархические структуры данных можно моделировать на основе шаб
лона «Композит»;

�� для обработки композитных объектов можно использовать шаблон «По-
сетитель»;

�� композиты произвольной сложности можно приводить к линейному,
плоскому виду, применяя для их обхода итераторы;

�� итераторам присуща семантика втягивания, нужно посмотреть на них
с обратной стороны, чтобы получить семантику вталкивания;

�� тем самым получается подход к реализации систем, основанный на
наблюдаемых источниках и наблюдателях;

�� наблюдаемые источники и итераторы образуют зеркальную пару: втал-
кивание данных одной стороной соответствует их втягиванию другой
стороной.

Займёмся реализацией всего перечисленного, чтобы основательно понять
наблюдаемые источники.

Обработка выражений с помощью шаблонов «Композит»
и «Посетитель»
Чтобы проиллюстрировать путь от каталога шаблонов «Банды четырёх»
к наблюаемым источникам, нам в качестве сквозного примера понадобится
калькулятор на четыре действия. Поскольку древовидная структура выраже-
ния иерархична по своей природе, для её моделирования хорошо подходит
шаблон «Композит». Ради компактности кода мы не станем здесь заниматься
созданием синтаксического анализатора.
#include <iostream>
#include <memory>
#include <list>

 8 / 32

Обработка выражений с помощью шаблонов «Композит» и «Посетитель»    137

#include <stack>
#include <functional>
#include <thread>
#include <future>
#include <random>
#include "FuncCompose.h" // в репозитории
using namespace std;
// Перечень операций, поддерживаемых вычислителем
enum class OPERATOR {
 ILLEGAL, PLUS, MINUS, MUL, DIV, UNARY_PLUS, UNARY_MINUS
};

Здесь объявлен тип-перечисление, который представляет четыре бинар-
ные арифметические операции (сложение, вычитание, умножение и деление)
и две унарные (плюс и минус), а также состояние ошибки вычислений. Помимо
ряда стандартных заголовочных файлов, подключён наш собственный файл
FuncCompose.h, который можно найти в системе GitHub, в репозитории с мате
риалами к данной книге. В этом файле реализованы функция Compose и опера-
ция композиции функций (|). Тем самым мы получаем возможность строить
композиции функций-преобразователей в стиле конвейеров командной обо-
лочки Unix.
// Хранит стандартное число с плавающей точкой
class Number;

// Узлы синтаксического дерева:
class BinaryExpr; // – для бинарной операции
class UnaryExpr; // – для унарной операции

class IExprVisitor; // Интерфейс посетителя

// Базовый для всех классов узлов синтаксического дерева
class Expr {
 public:
 // двойная диспетчеризация: делегировать посетителю
 // обработку конкретного типа узла
 virtual double accept(IExprVisitor& expr_vis) = 0;
 virtual ~Expr() {}
};

// Интерфейс посетителя с методами для обработки разных типов узлов
struct IExprVisitor{
 virtual double Visit(Number& num) = 0;
 virtual double Visit(BinaryExpr& bin) = 0;
 virtual double Visit(UnaryExpr& un) = 0;
};

Класс Expr представляет собой базовый класс, общий для всех типов узлов, из
которых состоят абстрактные синтаксические деревья выражений. Для нашей
цели, демонстрации совместной работы посетителей и композитов «Банды
четырёх», вполне хватит трёх типов узлов: констант, бинарных и унарных опе-

 9 / 32

138    Знакомство с наблюдаемыми источниками

раций. Метод accept класса Expr получает на вход ссылку на объект-посетитель
и обеспечивает вызов в посетителе метода-обработчика, соответствующего
фактическому типу данного узла. Для этого текст реализации данного метода во
всех порождённых классах должен выглядеть одинаково. Чтобы лучше понять
принцип действия этой системы в целом, читателю рекомендуется отыскать
в интернете материалы о двойной диспетчеризации и о шаблоне «Посетитель».

Интерфейс посетителя IExprVisitor содержит методы для обработки всех
конкретных типов узлов, которые могут встретиться в дереве выражения. В на-
шем примере это методы для обработки числовых констант, бинарных и унар-
ных операций. Рассмотрим реализацию классов, представляющих узлы дерева.
Начнём с класса Number.
// класс-обёртка над числом с плавающей точкой
class Number : public Expr {
 double NUM;
public:
 double getNUM() { return NUM; }
 void setNUM(double num) { NUM = num; }
 Number(double n) { this->NUM = n; }
 ~Number() {}
 double accept(IExprVisitor& expr_vis) {
 return expr_vis.Visit(*this);
 }
};

Этот класс представляет собой надстройку над встроенным типом числа
с плавающей точкой двойной точности. Его код вполне очевиден, и всё, на что
стоит обратить внимание, – это реализация метода accept. Этот метод при-
нимает в качестве аргумента ссылку на объект-посетитель (IExprVisitor&). Всё
предназначение этого метода состоит в том, чтобы переадресовать вызов по-
сетителю – именно тому его методу-обработчику, который отвечает за кон-
кретный тип узла. В данном случае это будет метод Visit(Number&). Рассмотрим
теперь класс, представляющий бинарные операции:
// выражение с бинарной операцией
class BinaryExpr : public Expr {
 Expr* left; Expr* right;
 OPERATOR OP;
public:
 BinaryExpr(Expr* l,Expr* r , OPERATOR op) {
 left = l;
 right = r;
 OP = op;
 }
 OPERATOR getOP() { return OP; }
 Expr& getLeft() { return *left; }
 Expr& getRight() { return *right; }
 ~BinaryExpr() {
 delete left;
 delete right;

 10 / 32

Обработка выражений с помощью шаблонов «Композит» и «Посетитель»    139

 }
 double accept(IExprVisitor& expr_vis) {
 return expr_vis.Visit(*this);
 }
};

Класс BinaryExpr моделирует выражение, составленное с помощью бинарной
операции1 из левого и правого подвыражений-операндов. В нашем примере
бинарные операции – это сложение, вычитание, умножение и деление. Опе-
ранды могут быть представлены любыми классами из нашей иерархии: каж-
дый из операндов может, независимо от другого, быть объектом класса Number,
BinaryExpr или UnaryExpr. Таким образом, древовидная структура выражения
может достигать какой угодно высоты, а терминальными вершинами в нашем
примере всегда будут объекты класса Number. Перейдём к реализации класса,
моделирующего унарную операцию.
// выражение с унарной операцией
class UnaryExpr : public Expr {
 Expr * right;
 OPERATOR op;
public:
 UnaryExpr(Expr *operand , OPERATOR op) {
 right = operand;
 this-> op = op;
 }
 Expr& getRight() { return *right; }
 OPERATOR getOP() { return op; }
 virtual ~UnaryExpr() { delete right; right = 0; }
 double accept(IExprVisitor& expr_vis) {
 return expr_vis.Visit(*this);
 }
};

Класс UnaryExpr моделирует выражение, полученное применёнением унар-
ной операции к подвыражению-операнду. В нашем примере присутствуют
операции «унарный плюс» и «унарный минус». Подвыражение представлено
объектом любого класса, порождённого от абстрактного базового класса Expr:
это может быть объект класса Number (число), BinaryExpr (бинарное выражение)
или UnaryExpr.

Теперь, когда реализации всех типов узлов дерева построены, обратимся
к реализации интерфейса посетителя. Ниже представлены два посетителя, от-
вечающие за две различные операции над выражениями.

1	 Предложенное автором решение не идеально. В частности, в объектах классов Bina-
ryExpr и UnaryExpr код операции представлен значениями одного и того же типа-пере-
числения OPERATOR. Но это значит, что архитектура не препятствует появлению бес-
смысленных объектов – скажем, объекта класса UnaryExpr с кодом операции деления
DIV. Использование «сырых» указателей также вряд ли стоит считать образцом для
подражания. – Прим. перев.

 11 / 32

140    Знакомство с наблюдаемыми источниками

// посетитель, вычисляющий значение выражения
class TreeEvaluatorVisitor : public IExprVisitor {
public:
 double Visit(Number& num) { return num.getNUM(); }

 double Visit(BinaryExpr& bin) {
 OPERATOR temp = bin.getOP();
 double lval = bin.getLeft().accept(*this);
 double rval = bin.getRight().accept(*this);
 return (temp == OPERATOR::PLUS)
 ? lval + rval
 : (temp == OPERATOR::MUL)
 ? lval*rval
 : (temp == OPERATOR::DIV)
 ? lval/rval
 : lval-rval;
 }

 double Visit(UnaryExpr& un) {
 OPERATOR temp = un.getOP();
 double rval = un.getRight().accept(*this);
 return (temp == OPERATOR::UNARY_PLUS)
 ? +rval
 : -rval;
 }
};

Представленный выше класс посетителя осуществляет обход абстрактного
синтаксического дерева выражения в глубину и рекурсивно, от листовых уз-
лов к корневому, вычисляет значение выражения. Создадим теперь такой об-
работчик выражений, который бы переводил выражение в обратную польскую
форму записи1.
// посетитель для перевода выражения в обратную польскую запись
class ReversePolishEvaluator : public IExprVisitor {
public:
 double Visit(Number& num) {
 cout << num.getNUM() << " " << endl;
 return 42;
 }

 double Visit(BinaryExpr& bin) {
 bin.getLeft().accept(*this);
 bin.getRight().accept(*this);
 OPERATOR temp = bin.getOP();

1	 К сожалению, автор предлагает читателю в качестве примера код, страдающий со-
вершенно недопустимыми изъянами. Основной результат работы данного посети-
теля выражен побочным эффектом (выводом текста в поток std::cout), тогда как воз-
вращаемое посетителем значение фиктивно. Приведение этого кода к мало-мальски
приемлемому виду оставляем читателю в качестве самостоятельного упражнения. –
Прим. перев.

 12 / 32

Обработка выражений с помощью шаблонов «Композит» и «Посетитель»    141

 auto const op = (temp==OPERATOR::PLUS)
 ? " + "
 : (temp==OPERATOR::MUL)
 ? " * "
 : (temp == OPERATOR::DIV) ?
 " / "
 : " - ";
 cout << op;
 return 42;
 }

 double Visit(UnaryExpr& un) {
 OPERATOR temp = un.getOP();
 un.getRight().accept(*this);
 cout << (temp == OPERATOR::UNARY_PLUS) ?" (+) " : " (-) ";
 return 42;
 }
};

Обратную польскую форму записи выражений часто ещё называют пост-
фиксной, так как знак операции в ней пишется после операндов. Данная форма
записи позволяет вычислять значение выражения с помощью стека. Постфикс-
ная запись выражений составляет основу архитектуры стековых виртуальных
машин, к которым относятся виртуальная машина Java и среда выполнения
.Net CLR.

Теперь осталось написать функцию main, чтобы продемонстрировать работу
системы в целом.
int main() {
 unique_ptr<Expr> a(
 new BinaryExpr(
 new Number(10.0),
 new Number(20.0),
 OPERATOR::PLUS));

 unique_ptr<IExprVisitor> eval(new TreeEvaluatorVisitor());
 double result = a->accept(*eval);
 cout << "Результат вычисления => " << result << endl;

 unique_ptr<IExprVisitor> exp(new ReversePolishEvaluator());
 cout << "Выражение в постфиксной записи:" << endl;
 a->accept(*exp);
 return 0;
}

В этом фрагменте кода создаётся композитный объект (экземпляр класса
BinaryExpr), затем создаются два посетителя (экземпляры классов TreeEvalu-
atorVisitor и ReversePolishEvaluator). Вызов метода accept запускает обработку
выражения каждым из этих посетителей. В результате выполнения програм-
мы пользователь увидит значение выражения и его представление в обратной
польской форме.

 13 / 32

142    Знакомство с наблюдаемыми источниками

Таким образом, в этом разделе читатель узнал, как создавать композитные
объекты1 и обрабатывать их с помощью посетителей, реализующих единый
интерфейс. Композиты совместно с посетителями могут иметь множество раз-
личных применений – например, обход каталога в файловой системе, обработ-
ка данных в формате XML, обработка текстовых документов и т. д. Широко рас-
пространено мнение, что тот, кто понял шаблоны «Композит» и «Посетитель»,
тем самым понял и весь каталог шаблонов «Банды четырёх».

Выше было показано, что шаблоны «Композит» и «Посетитель» образуют
пару и отвечают, соответственно, за структурный и поведенческий аспекты
системы, а также, в некоторой степени, за её целевое предназначение. Сле-
дует учесть, что реализация шаблона «Посетитель» основывается на пред-
положении, что известно внутреннее устройство композитного объекта. Это
нежелательно, так как противоречит основополагающему для ООП принципу
абстрагирования от деталей реализации. Чтобы справиться с этим затрудне-
нием, создателю многоуровневого композита стоит продумать механизм для
«разглаживания» иерархии объектов в нечто, концептуально выглядящее ли-
нейным списком, – в большинстве случаев это оказывается возможным. Это
позволит пользователю таких композитов работать с объектами-компонента-
ми через единый, основанный на итераторах интерфейс. Программный интер-
фейс, основанный на итераторах, хорош также для программирования в функ-
циональном стиле. Рассмотрим этот подход подробнее.

Разглаживание многоуровневых композитов
для итеративного доступа
Как уже говорилось выше, для реализации шаблона «Посетитель» програм
мисту нужно знать структуру объекта-композита. Это может привести к так
называемой протечкающей абстракции – ситуации, когда сквозь абстракцию
«просачиваются» подробности, для сокрытия которых данная абстракция как
раз и предназначалась. В каталоге «Банды четырёх» есть шаблон, который
поможет нам обходить дерево объектов, забыв о том, что это дерево. Прони-
цательный читатель уже наверняка догадался, что речь идёт о шаблоне «Ите-
ратор». Применение итератора фактически означает разглаживание иерар-
хического композита в линейную последовательность, поток компонентов.
Продолжая пример из предыдущего раздела, разберём алгоритм, который раз-
глаживает древовидное представление арифметического выражения. Прежде

1	 Чтобы полнее раскрыть тему композитов, стоит добавить, что классический шаблон
«Композит» предполагает соединение в одном объекте-композите произвольного
числа объектов-компонентов, а возможность создавать многоуровневые компози-
ты, как правило, не используется. В данном разделе, напротив, композиты (унарные
и бинарные выражения) содержат всегда фиксированное число компонентов (один
и два соответственно), зато на первый план выходит возможность строить древовид-
ные композиты произвольной высоты. – Прим. перев.

 14 / 32

Разглаживание многоуровневых композитов для итеративного доступа    143

всего нужно определить структуру данных, позволяющую хранить содержимое
абстрактного синтаксического дерева в виде линейной последовательности.
Каждый объект в этом списке должен представлять либо операцию, либо зна-
чение-операнд. Объявим следующий тип1:
// Вид узла: операция или значение
enum class ExprKind{
 ILLEGAL_EXP, OPERATOR, VALUE
};

// Представляет компонент выражения: операцию или значение
struct EXPR_ITEM {
 ExprKind knd;
 double Value;
 OPERATOR op;

 EXPR_ITEM():
 op(OPERATOR::ILLEGAL),
 Value(0),
 knd(ExprKind::ILLEGAL_EXP)
 {}

 bool SetOperator(OPERATOR op){
 this->op = op;
 this->knd = ExprKind::OPERATOR;
 return true;
 }

 bool SetValue(double value) {
 this->knd = ExprKind::VALUE;
 this->Value = value;
 return true;
 }

 string toString() {
 DumpContents();
 return "";
 }

private:
 void DumpContents() { /* код для краткости опустим */ }
};

1	 Представленное здесь решение не очень изящно: в каждом объекте типа EXPR_ITEM
содержатся сразу два поля, отвечающих за «полезную нагрузку»: числовое значение
и код операции, но при этом лишь одно из них (какое именно – зависит от значе-
ния поля kind) может иметь смысл. Между тем стандарт C++ 17 включает шаблон
std::variant, предназначенный именно для таких случаев: в любой момент времени
объект типа std::variant<T1,…,Tn> содержит значение ровно одного из типов-пара-
метров. В контексте данной главы стоит упомянуть, что стандартный механизм для
работы с такими объектами основан на шаблоне «Посетитель». – Прим. ред.

 15 / 32

144    Знакомство с наблюдаемыми источниками

В структуре данных std::list<EXPR_ITEM> будет храниться содержимое компози-
та-выражения, преобразованное в линейную последовательность узлов. Теперь
можно создать класс посетителя, который выполняет разглаживание композита.
// Разглаживающий посетитель
class FlattenVisitor : public IExprVisitor {
 list<EXPR_ITEM> ils;

 EXPR_ITEM MakeListItem(double num) {
 EXPR_ITEM temp;
 temp.SetValue(num);
 return temp;
 }

 EXPR_ITEM MakeListItem(OPERATOR op) {
 EXPR_ITEM temp;
 temp.SetOperator(op);
 return temp;
 }

public:
 FlattenVisitor() {}

 list<EXPR_ITEM> FlattenedExpr() { return ils; }

 double Visit(Number& num) {
 ils.push_back(MakeListItem(num.getNUM()));
 return 42;
 }

 double Visit(BinaryExpr& bin) {
 bin.getLeft().accept(*this);
 bin.getRight().accept(*this);
 ils.push_back(MakeListItem(bin.getOP()));
 return 42;
 }

 double Visit(UnaryExpr& un) {
 un.getRight().accept(*this);
 ils.push_back(MakeListItem(un.getOP()));
 return 42;
 }
};

Этот класс посетителя, получив объект-выражение, строит его представле-
ние в виде списка объектов типа EXPR_ITEM. Определим небольшую вспомога-
тельную функцию, которая скрывает от пользователя детали преобразования.
list<EXPR_ITEM> ExprList(Expr* r) {
 unique_ptr<FlattenVisitor> fl(new FlattenVisitor());
 r->accept(*fl);
 return fl->FlattenedExpr();
}

 16 / 32

Разглаживание многоуровневых композитов для итеративного доступа    145

Когда дерево объектов превращено в линейную последовательность, эле-
менты последней можно обрабатывать с помощью итераторов. Например,
линейную последовательность объектов, представляющих числовые значения
и операции, можно подать на вход стековой вычислительной машины. Реали-
зуем такую машину, начав со стека.
// Стек для вычисления выражений в обратной польской записи
class DoubleStack : public stack<double> {
public:
 DoubleStack() {}
 void Push(double a) { this->push(a); }
 double Pop() {
 double a = this->top();
 this->pop();
 return a;
 }
};

Представленный выше класс DoubleStack представляет собой обёртку над кон-
тейнером из стандартной библиотеки. Наличие такого промежуточного класса
позволит нам сделать дальнейший код более компактным. Теперь создадим вы-
числитель линеаризированных выражений. Алгоритм работы этого вычислите-
ля состоит в том, чтобы пройти по списку объектов типа EXPR_ITEM и для каждого
из них выполнить соответствующее действие: если этот элемент представля-
ет числовую константу – втолкнуть её значение в стек; если же элемент пред-
ставляет опрацию – извлечь из стека один или два операнда (в зависимости от
операции), применить к ним операцию и втолкнуть в стек её результат. Когда
весь список таким образом обработан, в стеке должно остаться ровно одно зна-
чение – оно и является результатом вычисления всего выражения.
// Итеративная обработка компонентов выражения
double Evaluate(list<EXPR_ITEM> ls) {
 DoubleStack stk;
 double n;
 for (EXPR_ITEM s : ls) {
 if (s.knd == ExprKind::VALUE)
 stk.Push(s.Value);
 else if (s.op == OPERATOR::PLUS)
 stk.Push(stk.Pop() + stk.Pop());
 else if (s.op == OPERATOR::MINUS)
 stk.Push(stk.Pop() - stk.Pop());
 else if (s.op == OPERATOR::DIV)
 {
 n = stk.Pop();
 stk.Push(stk.Pop() / n);
 }
 else if (s.op == OPERATOR::MUL)
 stk.Push(stk.Pop() * stk.Pop());
 else if (s.op == OPERATOR::UNARY_MINUS)
 stk.Push(-stk.Pop());

 17 / 32

146    Знакомство с наблюдаемыми источниками

 }

 return stk.Pop();
}

// Превратить дерево в список и сразу подать его на вычислитель
double Evaluate(Expr* r) { return Evaluate(ExprList(r)); }

Код данного интерпретатора выражений, заданных линейными списками,
вполне очевиден: он всего лишь просматривает список компонентов и для
каждого из них выполняет соответствующее действие. Представленный в пре-
дыдущем разделе код интерпретатора выражений, заданных в виде деревьев,
выглядел куда сложнее. Осталось написать лишь программу, демонстрирую-
щую работу этих функций.
int main() {
 unique_ptr<Expr> a(
 new BinaryExpr(
 new Number(10.0),
 new Number(20.0),
 OPERATOR::PLUS));
 double result = Evaluate(&(*a));
 cout << result << endl;
 return 0;
}

Операции отображения и фильтрации списков
Операция отображения map принимает в качестве аргументов список и неко-
торую функцию, применяет функцию к каждому элементу списка и из полу-
ченных результатов формирует новый список. Операция фильтрации filter
принимает на вход список и предикат и строит новый список из тех и толь-
ко тех элементов списка-аргумента, что удовлетворяют предикату. На этих
двух операциях строится конвейерная обработка последовательностей в духе
функционального программирования. Эти и подобные им операции называют
функциями высшего порядка, так как они фактически превращают функции,
работающие с отдельными элементами, в функции, работающие над списка-
ми. Ниже представлена одна из возможных реализаций функции map, работаю-
щая с любыми стандартными контейнерами1.
template <typename R, typename F>
R Map(R r, F&& fn) {
 std::transform(

1	 Данная реализация тривиальна и практического интереса не представляет, так как
требует, чтобы функция-преобразователь сохраняла тип аргумента. Можно предло-
жить читателю в качестве самостоятельного упражнения разработать такую функ-
цию Map, которая преобразовывает тип элементов контейнера. Для этого потребуется
овледеть метапрограммированием на шаблонах. – Прим. перев.

 18 / 32

Операции отображения и фильтрации списков    147

 std::begin(r),
 std::end(r),
 std::begin(r),
 std::forward<F>(fn));
 return r;
}

Покажем также возможную реализацию функции filter, работающую с кон-
тейнерами типа std::list и std::vector.
template <typename R, typename F>
R Filter(R r, F&& fn) {
 R ret(r.size());
 auto first = std::begin(r);
 auto const last = std::end(r);
 auto result = std::begin(ret);
 size_t inserted = 0;
 while (first != last) {
 if (fn(*first)) {
 *result = *first;
 ++inserted;
 ++result;
 }
 ++first;
 }
 ret.resize(inserted);
 return ret;
}

Конечно, в общем случае рекомендуется, где возможно, пользоваться сред-
ствами из стандартной библиотеки. Для фильтрации контейнеров в ней име-
ется функция std::copy_if, но нам было важно узнать общее число прошедших
через фильтр элементов, поэтому пришлось написать собственную реализа-
цию этой функции1.

1	 Данное утверждение не выдерживает никакой критики. Можно предложить, по мень-
шей мере, три способа обойтись стандартным алгоритмом, избежав его собственно-
ручной реализации. Во-первых, функция std::copy_if возвращает итератор на эле-
мент после последнего вставленного в контейнер-приёмник, обозначим его через
last_inserted. Если контейнер имеет тип std::vector<T>, то его итераторы относятся
к категории итераторов произвольного доступа (англ. random access), и количество
вставленных элементов легко узнать за время O(1) с помощью стандартной функции
std::distance(last_inserted - std::begin(ret)). Если же тип контейнера есть std::list<T>,
его итераторы принадлежат к категории двунаправленных (англ. bidirectional) и, сле-
довательно, не поддерживают операцию вычитания. Тогда функция std::distance от-
работает за время O(N), что в данном случае вполне приемлемо. Второй способ ещё
проще: функция erase, которая имеется в обоих классах, std::list<T> и std::vector<T>,
удаляет из контейнера сегмент между двумя заданными итераторами. В данном
случае нужно вызвать её следующим образом: ret.erase(last_inserted, std::end(ret)).
Наконец, третий, наиболее элегантный способ: не резервировать заранее место
в контейнере-приёмнике и воспользоваться специальным итератором для вставки
в конец контейнера (std::back_inserter). – Прим. перев.

 19 / 32

148    Знакомство с наблюдаемыми источниками

Следующая функция выводит содержимое списка на печать1:

void Iterate(list<EXPR_ITEM>& s) {
 for (auto n : s) { std::cout << n.toString() << '\n'; }
}

Теперь займёмся главной функцией, которая бы демонстрировала работу
всех этих конструкций. В ней используется композиция функций в конвейер.
Напомним, что реализация этой операции находится в заголовочном файле
FuncCompose.h.

int main() {
 unique_ptr<Expr> a(
 new BinaryExpr(
 new Number(10.0),
 new Number(20.0),
 OPERATOR::PLUS));
 // Разгладить дерево в список и отфильтровать его
 auto cd = Filter(
 ExprList(&(*a)),
 [](auto as) { return as.knd != ExprKind::OPERATOR; });
 // возвести в квадрат и умножить на 3
 auto cdr = Map(
 cd,
 [] (auto s) { s.Value *=3; return s; } |
 [] (auto s) { s.Value *= s.Value; return s; });
 Iterate(cdr);
 return 0;
}

Функция Filter создаёт новый список, содержащий лишь те элементы спис
ка-аргумента, которые содержат числовые константы из исходного выраже-
ния. Затем фукнция Map применяет композицию функций к этому списку объ-
ектов и возвращает новый список2.

1	 Читателю не стоит следовать этому образцу при создании собственных программ.
Для вывода содержимого контейнера на печать гораздо лучше подходит копирова-
ние контейнера с помощью функции std::copy в поток вывода посредством специ-
ального итератора std::ostream_iterator. – Прим. перев.

2	 Данный раздел предоставляет лишь элементарное введение в обработку контейне-
ров в функциональном стиле. Наиболее интересные аспекты оставлены без вни-
мания. Постараемся отчасти восполнить этот пробел. Предложенные автором реа-
лизации отображения и фильтрации строят контейнеры-результаты как структуры
данных в памяти, что может оказаться накладно, если контейнеры содержат боль-
шое число элементов. Для преодоления этой трудности предназначены так называ-
емые фильтрующие и преобразующие итераторы. Первые позволяют, не затрачи-
вая времени и памяти на построение нового контейнера, «смотреть» на контейнер
с исходными данными так, будто в нём видны лишь элементы, удовлетворяющие
предикаты. Подобным же образом вторые позволяют «смотреть» на элементы ис-
ходного контейнера сквозь функцию-преобразователь, то есть «видеть» не элемент,
хранящийся в контейнере, а значение функции-преобразователя. В терминологии

 20 / 32

От наблюдателей к наблюдаемым источникам    149

От наблюдателей к наблюдаемым источникам
В предыдущих разделах мы разобрали, как преобразовать иерархический объ-
ект в линейную последовательность компонентов, которую затем можно об-
рабатывать с помощью итератора. Шаблон «Итератор» предполагает, что по-
требитель данных втягивает их из контейнера, дальнейшая обработка данных
происходит уже на стороне потребителя. При этом возникает одна проблема:
источник данных слишком сильно связан с приёмником. Шаблон «Наблюда-
тель» мало помогает избавиться от этой связи.

Создадим класс, который сможет взять на себя функцию концентратора
событий – пусть именно на него подписываются приёмники данных. Иными
словами, добавим в систему промежуточное звено между источником и при-
ёмником событий. Одна из очевидных выгод от появления такого посредника
состоит в возможности агрегировать, преобразовывать и фильтровать события
до того, как они попадут к потребителю. Потребитель может просто передать
концентратору свои правила преобразования и фильтрации событий и деле-
гировать ему эту часть работы. Рассмотрим снова интерфейсы наблюдателя
и наблюдаемого источника данных.

struct OBSERVER {
 int id;
 std::function<void(const double)> ondata;
 std::function<void()> oncompleted;
 std::function<void(const std::exception &)> onexception;
};

struct OBSERVABLE {
 virtual bool Subscribe(OBSERVER *obs) = 0;
 // метод Unsubscribe в данном примере не используется
};

«Банды четырёх» фильтрующие и преобразующие итераторы представляют собой
декораторы над итераторами исходного контейнера. Помимо названных двух, су-
ществуют и иные декораторы над итераторами: декоратор, отбирающий из кон-
тейнера не более заданного числа элементов; декоратор, пропускающий заданное
число элементов; декоратор, «переворачивающий» контейнер, т. е. меняющий на-
правление итераторов на противоположное. Разумеется, эти декораторы можно
применять не только к итераторам стандартных контейнеров, но и к декорирован-
ным итераторам. Это позволяет определять сколь угодно сложные алгоритмы поэле-
ментной обработки контейнеров – скажем, в списке целых чисел удвоить каждый
элемент, отобрать из полученных значений те, что делятся на три, преобразовать
полученные числа в строки и выстроить в обратном порядке. Повторимся, что кон-
тейнеры с промежуточными результатами этих преобразований в памяти не хра-
нятся, а представляют собой виртуальные сущности, видимые исключительно через
итераторы. На сегодняшний день существует несколько библиотек, реализующих
описанную здесь функциональность. Наибольшую популярность завоевали биб
лиотеки Boost.Range и Range-v3, также интерес представляет библиотека think-cell
range. – Прим. перев.

 21 / 32

150    Знакомство с наблюдаемыми источниками

Понятия наблюдаемого источника и наблюдателя были вкратце освещены
в главах 1 и 2. Всякий объект, генерирующий события, должен воплощать интер-
фейс OBSERVABLE, а объект, принимающий события, должен обладать интерфей-
сом OBSERVER. Интерфейс OBSERVER обязывает объект иметь следующие методы:

�� метод ondata для приёма данных о событии;
�� метод onexception для обработки ошибок, возникших на стороне отпра-

вителя;
�� метод oncompleted, сигнализирующий об окончании потока данных.

Класс источника событий, воплощающий интерфейс OBSERVABLE, должен об-
ладать следующими методами:

�� метод Subscribe для подписки приёмника на оповещения от данного ис-
точника;

�� метод Unsubscribe для отписки от оповещений (в нашем примере не ис-
пользуется).

Ниже показана упрощённая реализация этих интерфейсов.
template<class T, class F, class M, class Marg, class Farg>
class EventSourceValueSubject: public OBSERVABLE {
 vector<OBSERVER> sinks;
 T *State;
 std::function<bool(Farg)> filter_func;
 std::function<Marg(Marg)> map_func;

Функции map_func и filter_func нужны для того, чтобы преобразовывать
и фильтровать сообщения перед их асинхронной рассылкой подписчикам.
Эти функции передаются в качестве параметров при инициализации объекта.
В данном упрощённом примере мы исходим из предположения, что источник
событий содержит лишь один объект-выражение. Вместо этого можно было
бы в источнике событий хранить список выражений и отправлять подписчи-
кам поток значений. При текущей реализации, однако, достаточно отправить
наблюдателям одиночное значение.
public:
 EventSourceValueSubject(Expr *n, F&& filter, M&& mapper) {
 State = n;
 map_func = mapper;
 filter_func = filter;
 NotifyAll();
 }

 ~EventSourceValueSubject() { sinks.clear(); }

 virtual bool Subscribe(OBSERVER *sink) {
 sinks.push_back(*sink);
 return true;
 }

В этом примере сделано предположение, что объектом-выражением владе-
ет не объект-источник событий, а внешний контекст, поэтому деструктор клас-

 22 / 32

От наблюдателей к наблюдаемым источникам    151

са EventSourceValueSubject не уничтожает выражение. В реальном приложении,
скорее всего, для управления временем жизни выражения использовался бы
умный указатель std::shared_ptr. Кроме того, для краткости мы не стали реа-
лизовывать метод отписки Unsubscribe. Конструктор источника событий в ка-
честве аргументов принимает объект-выражение, предикат для фильтрации
событий и функцию преобразования событий, которая может быть получена
композицией функций посредством операции |.
 void NotifyAll() {
 double ret = Evaluate(State);
 list<double> ls;
 ls.push_back(ret);
 auto result = Map(ls, map_func);
 auto resulttr = Filter(result, filter_func);
 if (resulttr.size() == 0) { return; }

Эта функция вычисляет значение выражения, завёрнутого в объект-источ-
ник событий, и помещает его в список. Функции Map и Filter преобразовы-
вают этот список и отбрасывают из него элементы (пока что единственный
элемент), не удовлетворяющие заданному условию. Может показаться, что
обрабатывать список из ровно одного элемента – излишнее усложнение про-
граммы, но в следующих разделах мы доработаем этот пример так, что список
будет состоять из произвольного числа элементов.
 double dispatch_number = resulttr.front();
 for (auto sink : sinks) {
 std::packaged_task<int()> task([&]() {
 sink.ondata(dispatch_number);
 return 1;
 });
 std::future<int> result = task.get_future();
 task();
 double dresult = result.get();
 }
 }

В этом фрагменте кода для каждого приёмника событий создаётся своя
асинхронная задача, завёрнутая в объект типа std::packaged_task, которая долж-
на доставить событие этому приёмнику. В реальных программных системах
для этого используется ещё одна вспомогательная сущность, называемая пла-
нировщиком (англ. scheduler). Благодаря асинхронному механизму рассылки
приёмники событий не могут заблокировать объект-источник. В этом состоит
одно из важнейших преимуществ наблюдаемого источника событий.
� T* GetState() { return State; }

 void SetState(T *pstate) {
 State = pstate;
 NotifyAll();
 }
};

 23 / 32

152    Знакомство с наблюдаемыми источниками

Эти вспомогательные методы позволяют получить из объекта-источника
событий его текущее выражение и поместить в него новое выражение.

Для демонстрации работы нашей системы понадобится много тестовых ис-
ходных данных. Следующая функция использует генератор случайных чисел
с равномерным законом распределения и генерирует случайные выражения.
Равномерное распределение выбрано наугад, читатель может вместо него под-
ставить любое другое и посмотреть, как изменится результат выполнения про-
граммы.
�Expr *getRandomExpr(int start, int end) {
 std::random_device rd;
 std::default_random_engine reng(rd());
 std::uniform_int_distribution<int> uniform_dist(start, end);
 double mean = uniform_dist(reng);
 return new BinaryExpr(
 new Number(mean*1.0),
 new Number(mean*2.0),
 OPERATOR::PLUS);
}

Теперь остаётся написать главную функцию, демонстрирующую работу всех
описанных выше частей. Сначала она создаёт объект класса EventSourceValue-
Subject, передавая ему начальные параметры: выражение, фильтр и преобра-
зователь сообщений:
int main() {
 unique_ptr<Expr> a(
 new BinaryExpr(
 new Number(10.0),
 new Number(20.0),
 OPERATOR::PLUS));
 EventSourceValueSubject<
 Expr,
 std::function<bool(double)>,
 std::function<double(double)>,
 double,
 double>
 temp(
 &(*a),
 [] (auto s) {return s > 40.0;},
 [] (auto s) {return s+s;} | [] (auto s) {return s*2;});

Функция-преобразователь образована композицией из двух лямбда-выра-
жений. Подобным образом можно состыковывать сколь угодно длинные це-
почки функций. В следующих главах, когда речь пойдёт о библиотеке RxCpp,
мы будем часто пользоваться этим приёмом.
 OBSERVER obs_one ;
 obs_one.ondata = [](const double r) {
 cout << "*Значение " << r << endl;
 };

 24 / 32

Итоги    153

 OBSERVER obs_two ;
 obs_two.ondata = [] (const double r) {
 cout << "**Значение " << r << endl;
 };

Здесь созданы два объекта-наблюдателя, а их полям ondata присвоены лямб-
да-функции. Остальные поля-обработчики в этом примере не используются.
Их было бы несложно реализовать, но для иллюстрации принципа действия
реактивной системы довольно обработчика ondata.
 temp.Subscribe(&obs_one);
 temp.Subscribe(&obs_two);

Два объекта-наблюдателя подписаны на получение обновлений от объекта-
источника.
 Expr *expr = 0;
 for (int i= 0; i < 10; ++i) {
 cout << "-----------------------" << i << " " << endl;
 expr = getRandomExpr(i*2, i*3);
 temp.SetState(expr);
 std::this_thread::sleep_for(2s);
 delete expr;
 }
}

Последний фрагмент кода генерирует случайные выражения и подставля-
ет их в объект-источник событий. Последний вычисляет значение выражения,
преобразовывает его и, если преобразованное значение удовлетворяет усло-
вию фильтрации, рассылает его всем наблюдателям. Напомним, что реализо-
ванный нами источник событий не может быть заблокирован недобросовест-
ным приёмником, так как работает асинхронно.

Таким образом, мы разобрали следующие вопросы:
�� моделирование абстрактного синтаксического дерева выражения на ос-

нове шаблона «Композит»;
�� обработка композитных объектов с помощью шаблона «Посетитель»;
�� разглаживание дерева в линейную последовательность объектов и обра-

ботка последней с помощью итераторов, реализующих семантику втя-
гивания;

�� «выворачивание» итератора и превращение его в источник событий,
основанный на семантике вталкивания.

Итоги
В этой главе мы изучили обширный материал и ещё более приблизились к по-
стижению реактивной модели программирования. Читатель узнал о шаблоне
«Банды четырёх» под названием «Наблюдатель» и о его недостатках. Неболь-
шой экскурс в философию понадобился, чтобы объяснить триединый взгляд
на мироздание: с точки зрения структуры, поведения и целевого назначения

 25 / 32

154    Знакомство с наблюдаемыми источниками

сущего. Затем была изучена неразрывная пара шаблонов «Композит» и «По-
сетитель» в приложении к задаче обработки абстрактных синтаксических де-
ревьев. Далее читатель узнал, как иерархический, многоуровневый композит
«выровнять» в линейный список, элементы которого можно перебирать с по-
мощью итератора. Наконец, немного изменив архитектуру системы, мы по-
лучили наблюдаемые источники событий. Обычно такие источники работают
с потоками событий, но в нашем упрощённом примере источник генерировал
одиночное событие. Вопросам обработки потоков событий посвящена следую-
щая глава, тем самым будет завершена подготовительная работа, необходимая
для изучения реактивного программирования.

 26 / 32

Глава 6
Введение

в программирование
потоков событий

на языке C++

Эта глава – последняя в череде подготовительных глав, предваряющих рассказ
о реактивном программировании на языке C++. Причина, по которой перед
рассмотрением основного предмета книги пришлось сделать столь простран-
ное введение, состоит в том, что реактивная модель программирования объ-
единяет в себе множество понятий из различных разделов программирования,
и все они необходимы для придания ей стройности и прочности. Чтобы на-
учиться мыслить по-реактивному, программист должен хорошо владеть объ-
ектно-ориентированным и функциональным стилями программирования,
встроенными в язык средствами работы с потоками, техниками неблокирую-
щего параллельного программирования, моделью асинхронных задач, шабло-
нами проектирования, алгоритмами планировщика задач, моделью потоков
данных, декларативным стилем программирования и даже в некоторой степе-
ни теорией графов! Эта книга начиналась с обзора моделей событийно-управ-
ляемого программирования, лежащих в основе нескольких графических обо-
лочек, и связанных с ними способов структурирования кода вокруг обработки
событий. Затем в главе 2 были рассмотрены важнейшие новшества, появив-
шиеся в стандарте языка C++. Глава 3 была посвящена появившимся в языке
средствам для работы с параллельными потоками вычислений, а в главе 4 рас-
сказано об асинхронных задачах и техниках неблокирующего программирова-
ния. Наконец, в главе 5 реактивная модель программирования была показана
сквозь призму шаблонов проектирования «Банды четырёх». Осталось разо-
брать обработку потоков событий. В этой главе будут рассмотрены следующие
вопросы:

 27 / 32

156    Введение в программирование потоков событий на языке C++

�� в чем состоит модель программирования, основанная на потоках данных;
�� преимущества программирования в терминах потоков данных;
�� обработка потоков данных на языке C++ с использованием общедоступ-

ных библиотек;
�� обработка потоков данных с помощью встраиваемого в язык C++ пред-

метно-ориентированного языка Streamulus;
�� обработка потоков событий как частного случая потоков данных.

Что такое программирование потоков данных
Прежде чем погружаться в подробности модели программирования потоков
данных, отступим на шаг назад и проследим параллели с моделью програм-
мирования, присущей языку команд в стандарте POSIX. В сценариях команд-
ного интерпретатора, как правило, всякая команда есть программа и всякая
программа есть команда. Команды можно сочленять, подавая выход одной
программы на вход другой, чтобы вместе они обеспечивали выполнение опре-
делённой задачи. Более того, для решения сложных задач можно выстраивать
сколь угодно длинные цепочки команд. Работу таких цепочек можно предста-
вить себе в виде потока данных, последовательно проходящего через различ-
ные фильтры и преобразователи. Сочленение команд в цепочки можно назы-
вать их композицией. В реальном мире встречаются ситуации, когда большую
и сложную программу удаётся заменить небольшим командным сценарием,
который выстраивает композицию из нескольких простых программ. Этот же
принцип можно воплотить и в программе на языке C++, если данные, подава-
емые на вход функции, представить в виде потока, последовательности или
списка одиночных элементов. Передача данных с выхода одной функции (или
функционального объекта) на вход следующей может происходить через стан-
дартный контейнер, играющий роль промежуточного буфера.

	 Однажды ведущий колонки «Жемчужины программирования» Джон Бентли1 обратился
к живой легенде программирования, профессору Стэнфордского университета Д. Кнуту
с просьбой написать подробно откомментированную программу, которая в поступаю-
щем на её вход тексте отыскивает n наиболее часто встречающихся слов и печатает их
в алфавитном порядке вместе с частотами их встречаемости. Решение Д. Кнута состояло
из десяти страниц кода на языке Паскаль и включало в себя придуманную Кнутом спе-
циально для этой задачи хитроумную структуру данных! Дуглас Макилрой, автор реали-
зации конвейера для командной оболочки UNIX, предложил собственное решение этой
задачи, состоящее из шести команд, соединённых конвейером:

tr -cs A-Za-z '\n' | tr A-Z a-z | sort | uniq -c
| sort -rn | sed ${1}q

Вот какова мощь композиции команд!

1	 Позднее на основе материалов этой колонки Дж. Бентли выпустил знаменитую и по-
ныне книгу «Жемчужины творчества программистов», которую, пользуясь случаем,
хочется порекомендовать читателю. – Прим. перев.

 28 / 32

Прикладное программирование с использованием библиотеки Streams    157

Преимущества модели программирования потоков данных
Ставший традиционным объектно-ориентированный подход к программи-
рованию хорошо подходит для моделирования разнообразных иерархий. Об-
работка иерархических структур данных, как правило, значительно сложнее
обработки линейных последовательностей. В модели программирования,
основанной на потоках данных, входные данные можно рассматривать как
поток однородных элементов, заключённый в некоторый контейнер, а резуль-
таты обработки – как линейную коллекцию других однородных элементов. Об-
работка не изменяет сами по себе исходные объекты данных, а строит на их
основе новые объекты и помещает их в новый контейнер. Воспользовавшись
приёмами обобщённого программирования на языке C++, можно реализовать
систему обработки потоков данных, абстрагированную от фактического типа
контейнеров, используемых для хранения промежуточных данных. Перечис-
лим некоторые из преимуществ такой модели программирования:

�� модель потоков данных упрощает логическую структуру программы;
�� потоки данных способствуют применению ленивой модели вычислений

и функционального стиля обработки данных;
�� модель потоков данных способствует распараллеливанию вычислений

(в том числе и потому, что исходные данные не подвергаются измене-
ниям);

�� модель позволяет легко строить композиции сложных функций из более
простых;

�� модель способствует программированию в декларативном стиле;
�� модель позволяет агрегировать, фильтровать и преобразовывать данные

от различных источников;
�� модель потоков данных способствует изоляции источников данных от

обработчиков;
�� программный код получается более очевидным и логичным;
�� модель потоков данных хорошо совмещается с моделью асинхронных

задач и асинхронной передачей данных;
�� при создании своих алгоритмов обработки данных можно пользоваться

сотнями потоковых операций, доступных в открытых источниках.

Прикладное программирование с использованием
библиотеки Streams
Для создания прикладных программ на основе модели потоков данных удобно
пользоваться общедоступной библиотекой Streams, созданной Дж. Шайнерма-
ном (Jonah Scheinerman). Исходный код библиотеки можно найти по адресу
https://github.com/jscheiny/Streams, а документацию к ней – по адресу https://
jscheiny.github.io/Streams/api.html. Библиотеку можно кратко охарактеризовать
следующим образом (согласно странице библиотеки в системе GitHub):

 29 / 32

https://github.com/jscheiny/Streams
https://jscheiny.github.io/Streams/api.html
https://jscheiny.github.io/Streams/api.html

158    Введение в программирование потоков событий на языке C++

Streams – это библиотека для программирования на языке C++, которая
предоставляет возможность ленивых вычислений и преобразования данных
в функциональном стиле, упрощая использование контейнеров и алгоритмов
из стандартной библиотеки. Библиотека Streams поддерживает множество
операций, характерных для функционального программирования, например
поэлементное отображение map, поэлементную фильтрацию filter, свёртку по
бинарной операции reduce, а также множество других полезных операций: объ-
единение, пересечение и разность множеств, преобразование последователь-
ности значений в последовательности её частичных сумм и смежных разно-
стей и многие другие.

Можно ожидать, что программист, хорошо освоивший стандартную биб
лиотеку шаблонов (англ. standard template library, STL), будет себя комфорт
но чувствовать и с библиотекой Streams. Контейнеры библиотеки STL в ней
трактуются как потоки исходных данных. В библиотеке используются идиомы
функционального программирования, поддержка которых появилась в совре-
менном стандарте языка C++, также в ней реализован ленивый принцип вы-
числений. Идея ленивых вычислений чрезвычайно важна в контексте нашего
рассмотрения, она лежит в основе как функционального программирования,
так и реактивной модели программирования.

Ленивые вычисления
При всём разнообразии языков программирования в них воплощены лишь два
способа передачи аргументов в вызываемые функции:

�� аппликативный порядок (англ. applicative order, AO);
�� нормальный порядок (англ. normal order, NO).

При аппликативном порядке аргументы вычисляются вызывающей сторо-
ной, затем передаются вызываемой функции. Большая часть широко распро-
странённых языков программирования (в том числе и язык C++) следует этому
принципу. В случае же нормального порядка вычисление значений аргумен-
тов откладывается до тех пор, пока они не понадобятся в ходе выполнения
вызванной функции1. Некоторые языки функционального программирования,

1	 Связанные между собой понятия ленивых вычислений и нормального порядка вы-
числений заслуживают более развёрнутого описания. Рассмотрим выражение f(0,
g(1)). Оно означает вызов функции f c двумя аргументами, значение первого уже
дано в готовом виде, тогда как второй аргумент задан, в свою очередь, выражени-
ем, требующим вычисления. При аппликативном порядке вычислений (например,
в языке C++) будет сначала вычислено значение выражения g(1) и сохранено в не-
которой области памяти (говоря упрощённо, во вспомогательной переменной),
затем будет вызвана функция f с передачей двух уже имеющихся в наличии зна-
чений аргументов. При нормальном же порядке вычислений всё, что фактически
передаётся функции f в качестве второго аргумента, – это информация о том, что
значение данного аргумента можно будет вычислить в любой момент, если оно по-
надобится (а именно вызвав функцию g с передачей значения 1). При этом вполне

 30 / 32

Ленивые вычисления    159

в частности Haskell, F# и ML, основываются на нормальном порядке вычис-
лений. Для языков функционального программирования характерна рефе-
ренциальная прозрачность, означающая в том числе и отсутствие побочных
эффектов у вызова функций. Поэтому, в принципе, допустимо любое выраже-
ние, встретившееся в ходе выполнения программы, вычислять лишь один раз
для каждого значения аргумента и помещать результат в таблицу; если в бу-
дущем встретится то же выражение с теми же значениями входящих в него
аргументов, можно просто отыскать в таблице уже вычисленное значение
и использовать его повторно. Таким образом, принцип ленивых вычислений
(не вычислять выражение до тех пор, пока его значение не понадобится) тесно
переплетён с референциальной прозрачностью и функциональной чистотой
(не имеет значения, когда и сколько раз вычислять значение функции при од-
них и тех же аргументах). В языке C++ нет встроенной поддержки ленивого по-
рядка вычислений, но её можно реализовать стандартными средствами языка
при известной изобретательности.

Пример программы для обработки потока данных
Для первого знакомства с библиотекой Streams напишем небольшую програм-
му, которая генерирует поток чисел и вычисляет сумму квадратов первых де-
сяти из них.

#include "Stream.h"
using namespace std;
using namespace stream;
using namespace stream::op;

int main()
{
 int total = MakeStream::counter(1)
 | map_([] (int x) { return x * x; })
 | limit(10)
 | sum();

 cout << total << endl;
 return 0;
}

Из этого кода видно, что источник данных, их дальнейшие обработчики
и приёмник окончательного результата соединены в конвейер. В начале кон-

может оказаться, что машине вообще не придётся выполнять функцию g – если при
данном значении первого аргумента значение второго не требуется для вычисления
значения функции f. Это фундаментальное отличие между двумя порядками вычис-
лений способно кардинальным образом изменить само понятие программы и под-
ход к программированию. Так, нормальный порядок вычислений резко расширяет
возможности рекурсии и позволяет работать с бесконечными структурами данных,
которые строятся бесконечной рекурсией. – Прим. перев.

 31 / 32

160    Введение в программирование потоков событий на языке C++

вейера стоит генератор бесконечной последовательности целых чисел, начи-
ная с 1, далее каждое число возводится в квадрат, из полученной бесконечной
последовательности квадратов берутся первые десять значений, которые по-
даются на вход сумматора.

Агрегирование значений в парадигме потоков данных
Теперь, когда мы разобрали элементарные основы программирования пото-
ков данных на примере библиотеки Streams, разберём более сложный при-
мер – программу, которая вычисляет среднее арифметическое значений, хра-
нящихся в контейнере std::vector.
#include "Stream.h"
#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>
using namespace std;
using namespace stream;
using namespace stream::op;

int main() {
 std::vector<double> a = { 10,20,30,40,50 };
 // преобразовать контейнер в поток данных и просуммировать
 auto val = MakeStream::from(a)
 | reduce(std::plus<void>());
 // вычислить среднее арифметическое
 cout << val/a.size() << endl;
 return 0;
}

В этой программе сначала создаётся стандартный вектор чисел, затем на его
основе создаётся поток значений, над которым выполняется свёртка по опера-
ции сложения (с помощью стандартного функционального объекта std::plus).
В конце алгоритма накопленная сумма элементов делится на число элементов
в исходном векторе.

Погружение стандартных контейнеров в парадигму
потоков данных
Библиотека Streams позволяет прозрачно работать с контейнерами библиоте-
ки STL. Следующий пример демонстрирует, как вектор исходных данных пре-
образуется в поток, затем к каждому элементу потока данных применяется
функция-преобразователь, а полученный в результате этого поток значений
снова преобразуется в вектор. Вектор, построенный из потока данных, можно
обрабатывать обычным способом, с помощью итератора.

#include "Stream.h"
#include <iostream>

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Ленивые вычисления    161

#include <vector>
#include <algorithm>
#include <functional>
#include <cmath>
using namespace std;
using namespace stream;
using namespace stream::op;

double square(double a) { return a*a; }

int main() {
 std::vector<double> values = { 1,2,3,4,5 };

 std::vector<double> outputs = MakeStream::from(values)
 | map_([] (double a) { return a*a;})
 | to_vector();

 for(auto pn : outputs)
 cout << pn << endl;

 return 0;
}

Библиотека Streams снабжена весьма подробной документацией и много-
численными примерами, что позволяет любому пользователю создавать с её
помощью высококачественные прикладные программы. Читателю стоит озна
комиться со справочным руководством по адресу https://jscheiny.github.io/
Streams/api.html.

Несколько слов о библиотеке Streams
Библиотека Streams в целом представляет собой тщательно спроектирован-
ный программный продукт с чёткой и понятной системой абстракций. Любой
программист, привычный к функциональному программированию и потоку
данных, сможет уверенно освоить её за считанные часы. Читатели, знакомые
лишь с библиотекой STL, также сочтут библиотеку Streams интуитивно понят-
ной. Что касается положенной в основу библиотеки программной модели, то
функции, составляющие её программный интерфейс, можно разделить на сле-
дующие категории:

�� ядро (инициализация потоков данных);
�� генераторы (создание потоков данных);
�� операции преобразования потоков данных, обладающие внутренним

состоянием;
�� преобразователи потоков данных, не имеющие состояния;
�� завершающие операции.

В документации, ссылка на которую приведена выше, каждая из этих кате-
горий освещена подробно.

 1 / 32

https://jscheiny.github.io/Streams/api.html
https://jscheiny.github.io/Streams/api.html

162    Введение в программирование потоков событий на языке C++

Программирование потоков событий
Из предыдущего раздела читатель составил представление о модели про-
граммирования, основанной на понятии потока данных. Если же данные,
объединённые в поток, представляют собой события, можно говорить о про-
граммировании потоков событий как об особом частном случае. В сообществе
программистов событийно-управляемые архитектуры считаются наиболее
подходящей моделью для создания современных программ для множества
различных предметных областей. Хорошим примером программной системы,
основанной на модели потоков событий, может служить система управления
версиями. Системы управления версиями имеют дело с событиями множества
разновидностей: это может быть выгрузка кода в локальную копию, запись из-
менений, откат изменения, создание ветки и др.

Преимущества программирования на основе потоков событий
Объединение событий в потоки и их обработка каскадом преобразователей
и фильтров даёт ряд преимуществ по сравнению с традиционными подходами
к событийно-управляемому программированию, некоторые из которых пере-
числены ниже:

�� источники и приёмники событий изолированы друг от друга;
�� приёмники могут обрабатывать события, не обременяя себя подробно-

стями их источников;
�� к потокам событий можно применять высокоуровневые операции пре-

образования и фильтрации;
�� преобразование и фильтрация могут применяться к результатам агреги-

рования сообщений;
�� события можно передавать для обработки по сети;
�� обработку событий можно легко сделать параллельной.

Библиотека Streamulus и её программная модель
Библиотека Streamulus, разработанная Ирит Катриэль (Irit Katriel), значитель-
но упрощает программирование потоков событий благодаря положенной в её
основу модели, включающей предметно-ориентированный встроенный язык
(англ. domain-specific embedded language, DSEL). Чтобы понять суть этой про-
граммной модели, рассмотрим пример программы, которая направляет поток
данных в объект пользовательского класса, агрегирующий полученные значе-
ния.
#include "streamulus.h"
#include <iostream>
using namespace std;
using namespace streamulus;

struct print {
 static double temp;

 2 / 32

Программирование потоков событий    163

 print() { }
 template<typename T>
 T operator()(const T& value) const
 {
 print::temp += value;
 std::cout << print::temp << std::endl;
 return value;
 }
};

double print::temp = 0;

Этот функциональный объект накапливает в статической переменной1 сум-
му переданных ему чисел. При каждом обращении к объекту данного класса
как к функции (этот вызов осуществляется через промежуточный объект типа
Streamify<print>, см. ниже) текущее накопленное значение выводится на кон-
соль. Некоторые подробности станут яснее из следующего кода:
void hello_stream()
{
 using namespace streamulus;
 // создать входной поток данных с именем "Input Stream"
 InputStream<double> s = NewInputStream<double>(
 "Input Stream",
 true /* выводить подробную информацию: да */);
 // создать ядро обработки потоков событий
 Streamulus streamulus_engine;

С помощью функции-шаблона NewInputStream<T> создаётся поток действи-
тельных чисел. Второй аргумент логического типа определяет, будет ли си-
стема выводить на консоль подробные сведения о движении данных из этого
потока: передав в этот аргумент значение false, можно отключить данный ре-
жим. Чтобы привести в действие всю систему в целом, нужно создать и запус
тить ядро обработки потоков данных. В частности, ядро само осуществляет
топологическую сортировку объектов-потоков, чтобы определить, в каком на-
правлении и в каком порядке должны передаваться изменения, происходящие
в потоках данных.
 // Для каждого значения из входного потока данных:
 // прибавить к накопителю суммы и напечатать текущую сумму
 streamulus_engine.Subscribe(Streamify<print>(s));

Функция-шаблон Streamify<f> превращает определённый выше функцио-
нальный класс print, способный обработать отдельно взятое число, в операцию
по обработке потока данных. Операции над потоками данных иногда называ-

1	 Вряд ли нужно обосновывать, насколько неудачно это решение. Наличие глобаль-
ного состояния, разделяемого всеми объектами класса, делает невозможной парал-
лельную обработку нескольких потоков данных разными объектами этого класса. –
Прим. перев.

 3 / 32

164    Введение в программирование потоков событий на языке C++

ют стропами, от английского stream operator. Программист может объявлять
собственные стропы, хотя в большинстве случаев вполне хватает возможно-
стей функции Streamify. Внутри себя она создаёт один функциональный объект
функционального класса и оборачивает его в строп. Затем эта операция под-
ключается в качестве обработчика к созданному ранее потоку данных s.
 // Поместить значения во входной поток данных
 InputStreamPut<double>(s, 10);
 InputStreamPut<double>(s, 20);
 InputStreamPut<double>(s, 30);
}

int main()
{
 hello_stream();
 return 0;
}

Этот фрагмент кода помещает в поток данных некоторые начальные значе-
ния. По мере появления данных во входном потоке система будет автоматиче-
ски вызывать подключённые к нему обработчики. В нашем случае обработчик
будет печатать накопленную сумму полученных из потока значений.

Этот элементарный пример позволяет составить общее представление об
устройстве и принципе действия программ, основанных на системе Streamu-
lus. Рассмотрим теперь более сложную программу, лучше иллюстрирующую
возможности библиотеки. Следующая программа пропускает поток данных
сквозь каскад функций одного аргумента. Этот пример также демонстри-
рует, насколько свободно можно обращаться с операциями над потоками
данных.
#include "streamulus.h"
#include <iostream>
using namespace std;
using namespace streamulus;

// функциональные объекты для преобразования числовых значений
struct twice {
 template<typename T>
 T operator()(const T& value) const { return value*2; }
};

struct neg {
 template<typename T>
 T operator()(const T& value) const{ return -value; }
};

struct half{
 template<typename T>
 T operator()(const T& value) const { return 0.5*value; }
};

 4 / 32

Программирование потоков событий    165

Эти классы служат обёртками над чисто арифметическими операциями.
Так, функциональный объект класса twice удваивает аргумент, объект класса
neg меняет знак аргумента на противоположный, а объект класса half умень-
шает значение аргумента наполовину.
struct print{
 template<typename T>
 T operator()(const T& value) const{
 std::cout << value << std::endl;
 return value;
 }
};

struct as_string
{
 template<typename T>
 std::string operator()(const T& value) const {
 std::stringstream ss;
 ss << value;
 return ss.str();
 }
};

Как работают эти два функциональных объекта, вполне очевидно. Первый
из них выводит значение аргумента на консоль и возвращает свой аргумент
неизменным. Второй переводит значение своего аргумента, какого бы типа
оно ни было, в текстовую строку, используя для преобразования стандартный
класс строкового потока std::stringstream.
void DataFlowGraph(){
 // создать именованный поток чисел
 InputStream<double> s = NewInputStream<double>(
 "Input Stream",
 false /* печатать отладочную информацию: нет */);
 Streamulus streamulus_engine;
 // определить граф обработки событий
 Subscription<double>::type val2 = streamulus_engine.Subscribe(
 Streamify<neg>(
 Streamify<neg>(
 Streamify<half>(2*s))));
 Subscription<double>::type val3 = streamulus_engine.Subscribe(
 Streamify<twice>(val2*0.5));
 streamulus_engine.Subscribe(
 Streamify<print>(
 Streamify<as_string>(val3*2)));
 // послать данные во входной поток данных
 for (int i=0; i<5; i++)
 InputStreamPut(s, (double)i);
}

int main(){

 5 / 32

166    Введение в программирование потоков событий на языке C++

 DataFlowGraph();
 return 0;
}

В функции DataFlowGraph в первую очередь создаётся поток исходных данных
типа действительных чисел двойной точности. После инициализации ядра си-
стемы строится длинный конвейер операций по обработке потоков данных,
которые, в свою очередь, получены из операций над отдельными значениями
с помощью функции Streamify<f>. Последнюю можно считать разновидностью
операции композиции функций одного аргумента. Когда все детали механиз-
ма настроены, можно привести его в действие, отправив данные во входной
поток данных посредством функции InputStreamPut.

Устройство библиотеки Streamulus: взгляд изнутри
Для того чтобы распространять изменения от одних потоков данных к дру-
гим, внутренние механизмы библиотеки Streamulus используют графы. Вер-
шинами этого графа являются обработчики сообщений, а рёбра – буферы,
в которых хранятся сообщения на пути от одного обработчика к другому.
Библиотека Streamulus берёт на себя построение графа зависимостей между
переменными, моделирующими потоки сообщений. Порядок, в котором пе-
ременные извещаются об обновлениях, определяется топологической сорти-
ровкой этого графа.

С точки зрения математики, граф – это множество вершин (или узлов), со-
единённых рёбрами. В прикладных задачах вершины служат моделями неко-
торых сущностей (городов, людей, дел и т. д.), а рёбра – моделями некоторых
отношений между ними (соответственно, наличие транспортного сообщения
между городами, дружбы или подчинения между людьми, зависимости дела
от результатов другого дела). В кибернетике, особенно там, где речь идёт о все-
возможных расписаниях и об анализе зависимостей между разными сущно-
стями, особенно удобны графы специального вида – направленные ацикли-
ческие графы (англ. directed acyclic graph, DAG), также называемые гамаками.
Гамак представляет собой орграф (т. е. граф, у которого каждое ребро имеет
определённое направление: ведёт от одной вершины к другой, но не наоборот)
без циклов (начиная свой путь от какой угодно вершины и следуя только по
рёбрам, невозможно вернуться в исходную вершину). Замечательная особен-
ность гамаков – возможность топологической сортировки вершин. Вершины
гамака можно выстроить в линейной последовательности так, чтобы для лю-
бой вершины a все вершины, достижимые из a, стояли после неё. Из всех гра-
фов топологическая сортировка возможна только для гамаков. В общем случае
для одного гамака топологическую сортировку можно выполнить более, чем
одним способом. Так, для представленного на рисунке графа можно построить
следующие топологические сортировки:

 6 / 32

Программирование потоков событий    167

�� 5, 7, 3, 11, 8, 2, 9, 10 – слева направо, сверху вниз;
�� 3, 5, 7, 8, 11, 2, 9, 10 – сначала вершины с наименьшими возможными

номерами;
�� 5, 7, 3, 8, 11, 10, 9, 2 – в первую очередь без рёбер;
�� 7, 5, 11, 3, 10, 8, 9, 2 – сначала вершины с наибольшими возможными но-

мерами;
�� 5, 7, 11, 2, 3, 8, 9, 10 – в первую очередь сверху вниз, затем слева направо;
�� 3, 7, 8, 5, 11, 10, 2, 9 – без определённого правила.

Обработка выражений в библиотеке Streamulus
Рассмотрим, как библиотека Streamulus обрабатывает выражения, на примере
следующего простого потока данных:
InputStream<int>::type x = NewInputStream<int>("X");
Engine.Subscribe(-(x+1));

Выражение -(x+1) задаёт поток данных и, с точки зрения внутренних меха-
низмов библиотеки, преобразуется в показанный ниже граф. Напомним, что
термин «строп» (англ. strop) означает «операция над потоком данных» (stream
operation). Каждая вершина графа представляет один строп.

Когда вершины и рёбра графа созданы, производится топологическая сор
тировка с целью определить порядок вычисления компонентов выражения.
Результат сортировки показан на следующем рисунке (пометка «TO» означает
«topological order», т. е. топологический порядок):

 7 / 32

168    Введение в программирование потоков событий на языке C++

Ядро системы Streamulus обходит вершины и рёбра графа, чтобы опреде-
лить правильный порядок выполнения строп и тем самым порядок распро-
странения данных по графу. Затем стропы размещаются ядром в линейной по-
следовательности согласно топологическому порядку. В дальнейшем они будут
выполняться именно в этой линейной последовательности.

	 Ядро системы Streamulus использует для этих манипуляций библиотеку proto из кол-
лекции Boost. Вся обработка деревьев выражений возлагается на неё. Чтобы полно-
стью разобраться в исходном коде библиотеки Streamulus, читателю понадобится
основательное знание метапрограммирования на шаблонах, особенно техники, из-
вестной под названием шаблон выражения. Напомним, что метапрограммирование –
это создание кода, который на этапе компиляции генерирует код, предназначенный
для выполнения. Возможность метапрограммирования первоначально не была преду
смотрена авторами языка C++, но в 1994 г. Эрвином Унру (Erwin Unruh) было обнару-
жено, что имеющийся в языке механизм шаблонов полон по Тьюрингу, т. е., в принципе,
позволяет на этапе компиляции выполнять любые вычисления – в том числе и генери-
ровать код.

Библиотека Spreadsheet для оповещения
об изменениях данных
Электронные таблицы (англ. spreadsheet) часто называют наиболее характер-
ным примером реактивных систем. Лист электронной таблицы представляет
собой матрицу ячеек. Значения некоторых ячеек просто вводятся пользова-
телем, но у некоторых иных могут вычисляться по формулам и зависеть от
значений других ячеек. Всякий раз, когда значение какой-либо ячейки изме-
няется, это изменение должно распространиться на все ячейки, зависящие от
неё. Но когда меняется значение какой-либо зависимой ячейки, от неё могут
зависеть, в свою очередь, другие ячейки – таким образом, изменение долж-
но распространиться дальше. Программирование электронных таблиц стано-
вится довольно простым делом, если в распоряжении программиста имеет-
ся такая библиотека, как Streamulus. К счастью, автор библиотеки Streamulus
разработала ещё одну библиотеку, надстроенную над ней и предназначенную
именно для работы с каскадами изменений, подобных тем, что имеют место
в электронных таблицах.

 8 / 32

Программирование потоков событий    169

	 Предназначенная для языка C++ библиотека Spreadsheet позволяет программировать
в стиле электронных таблиц, т. е. создавать в своей программе переменные, ведущие
себя подобно ячейкам таблицы. Каждой такой переменной-ячейке можно назначить вы-
ражение, зависящее от других переменных-ячеек. Изменения распространяются по це-
почкам зависимости ячеек, как в настоящих электронных таблицах. Библиотека Spread-
sheet была создана для демонстрации богатых возможностей библиотеки Streamulus
и состоит исключительно из заголовочных файлов. В ней также используются библиоте-
ки из коллекции Boost. Более подробную информацию читатель может найти по адресу
https://github.com/iritkatriel/spreadsheet.

Разберём пример программы, прилагающийся к библиотеке Spreadsheet
и включённый в репозиторий с примерами кода к данной книге.
#include "spreadsheet.hpp"
#include <iostream>
int main (int argc, const char * argv[]) {
 using namespace spreadsheet;
 Spreadsheet sheet;

 Cell<double> a = sheet.NewCell<double>();
 Cell<double> b = sheet.NewCell<double>();
 Cell<double> c = sheet.NewCell<double>();
 Cell<double> d = sheet.NewCell<double>();
 Cell<double> e = sheet.NewCell<double>();
 Cell<double> f = sheet.NewCell<double>();

В главной функции программы сначала создаётся объект «таблица» (Spread-
sheet), который управляет жизнью и функционированием своих объектов-яче-
ек. Затем в контексте этой таблицы создаётся несколько объектов типа «ячей-
ка» (Cell), содержащих действительные числа с двойной точностью. После
создания ячеек можно заняться вписыванием в них как значений, так и вы-
ражений, содержащих ссылки на другие ячейки.
 c.Set(SQRT(a()*a() + b()*b()));
 a.Set(3.0);
 b.Set(4.0);
 d.Set(c()+b());
 e.Set(d()+c());

После каждого изменения ячейки методом Set автоматически происходит
распространение этого изменения по всем ячейкам, зависящим от неё. За ор-
ганизацию потоков данных отвечает библиотека Streamulus.
 std::cout << " a=" << a.Value()
 << " b=" << b.Value()
 << " c=" << c.Value()
 << " d=" << d.Value()
 << " e=" << e.Value()
 << std::endl;

Этот фрагмент кода печатает на консоль получившиеся в итоге значения
ячеек. Теперь можно назначить ячейкам новые выражения и значения, тем

 9 / 32

https://github.com/iritkatriel/spreadsheet

170    Введение в программирование потоков событий на языке C++

самым перестроив граф потоков данных и заново запустив каскад изменений
в зависимых ячейках:
 c.Set(2*(a()+b()));
 c.Set(4*(a()+b()));
 c.Set(5*(a()+b()));
 c.Set(6*(a()+b()));
 c.Set(7*(a()+b()));
 c.Set(8*(a()+b()));
 c.Set(a());

 std::cout << " a=" << a.Value()
 << " b=" << b.Value()
 << " c=" << c.Value()
 << " d=" << d.Value()
 << " e=" << e.Value()
 << std::endl;

 std::cout << "Всего хорошего!\n";
 return 0;
}

Исходный код библиотеки Spreadsheet стоит того, чтобы его внимательно
изучить и разобраться в его внутреннем устройстве. Эта библиотека – превос-
ходный пример применения библиотеки Streamulus надёжного и изящного
программирования прикладных задач.

Библиотека RaftLib – ещё один инструмент обработки
потоков данных
С библиотекой RaftLib стоит ознакомиться любому, кто интересуется парал-
лельным программированием или программированием в модели потоков
данных. Исходный код этой библиотеки находится в открытом доступе по
адресу https://github.com/RaftLib/RaftLib. На странице библиотеки дано следую-
щее описание:

	 Библиотека RaftLib для языка C++ поддерживает параллельные вычисления над потока-
ми данных. С помощью перегруженной операции сдвига вправо (наподобие операции
записи в потоки стандартной библиотеки C++, которыми обычно пользуются для мани-
пуляций со строками) можно связывать между собой параллельно работающие ядра1.
Библиотека RaftLib позволяет избежать явного управления потоками посредством меха-
низмов pthread, std::thread, OpenMP и любых других библиотек для работы с потоками.
Последние часто используются недостаточно правильно, что приводит к недетермини-

1	 Ядрами, согласно принятой в данной библиотеке терминологии, называются отно-
сительно независимые программные еденицы, осуществляющие генерацию или об-
работку потоков данных. Каждое ядро отвечает за свою небольшую операцию над
потоком данных. Таким образом, создать программу на основе библиотеки RaftLib –
значит создать множество ядер и соединить их между собой каналами передачи дан-
ных. – Прим. перев.

 10 / 32

https://github.com/RaftLib/RaftLib

Программирование потоков событий    171

рованному поведению программ. Модель, положенная в основу библиотеки RaftLib, по-
зволяет использовать неблокирующий доступ по принципу очереди к каналам передачи
данных, соединяющим ядра. Система в целом содержит многочисленные средства для
автоматического распараллеливания вычислений, оптимизации и для удобства пользо-
вания, позволяющие относительно легко создавать высокопроизводительные приклад-
ные программы.

В этой книге мы не будем освещать все подробности библиотеки RaftLib
из-за недостатка места. Прекрасный доклад автора библиотеки Джоната-
на Берда (Jonathan Beard) можно найти по адресу https://www.youtube.com/
watch?v=IiQ787fJgmU. Рассмотрим небольшой пример кода, демонстрирующий
библиотеку в действии.
#include <raft>
#include <raftio>
#include <cstdlib>
#include <string>

class hi : public raft::kernel
{
public:
 hi() : raft::kernel()
 {
 output.addPort<std::string>("0");
 }

 virtual raft::kstatus run()
 {
 output["0"].push(std::string("Hello World\n"));
 return raft::stop;
 }
};

int main()
{
 /** создать ядро для вывода строк на печать **/
 raft::print<std::string> p;
 /** создать ядро, генерирующее приветствие **/
 hi hello;
 /** создать карту соединений ядер **/
 raft::map m;
 /** связать два параллельно работающих ядра **/
 m += hello >> p;
 /** запустить систему **/
 m.exe();
 return EXIT_SUCCESS;
}

От программиста требуется создать свои ядра для вычислений, нужных для
решения прикладной задачи, затем использовать перегруженную операцию >>

 11 / 32

https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU

172    Введение в программирование потоков событий на языке C++

для организации потоков данных между ядрами. Чтобы узнать больше об этой
замечательной библиотеке, читателю рекомендуется обратиться к документа-
ции (её можно найти на странице по приведённому выше адресу) и к приме-
рам программ, включённым в состав библиотеки.

Потоки данных и реактивное программирование
Для нашего рассмотрения важно, что в модели реактивного программирова-
ния события образуются как потоки данных, распространяющиеся от обра-
ботчика к обработчику по определённому графу. Для этого объекты данных,
характеризующие события, нужно накапливать в каких-то контейнерных
структурах данных, из которых можно сделать потоки данных. Иногда, особен-
но если данных очень много, для сортировки и отбора событий применяют-
ся вероятностные и статистические методы. Сгенерированный поток данных
можно фильтровать по некоторым критериям и подвергать преобразованиям
на стороне источника, т. е. до того, как доставлять оповещения наблюдателям,
ожидающим данных. От источников событий требуется, чтобы они следовали
принципу «отправь и забудь» в отношении объектов-событий, чтобы избежать
взаимного влияния источников и приёмников. За выбор моментов времени
для доставки данных о событиях отвечает планировщик, который приводит
в движение весь конвейер обработки событий асинхронным образом. Таким
образом, ключевые элементы реактивного программирования – это:

�� наблюдаемые источники данных, они же – потоки данных, в которых за-
интересованы обработчики;

�� наблюдатели, т. е. сущности, которые заинтересованы в данных от наблю
даемых источников и подписываются на уведомления от них;

�� планировщик – сущность, которая решает, когда тот или иной поток дан-
ных может продвигаться дальше по графу обработчиков;

�� операции в стиле функционального программирования для фильтрации
и преобразования событий.

Если описать принцип действия реактивной системы предельно сжато,
то планировщик как центральная часть этой системы приводит в действие
наблюдаемый источник данных, управляет асинхронной фильтрацией и пре-
образованием событий и оповещает подписчиков о новых событиях, как по-
казано на схеме.

 12 / 32

Итоги    173

Реактивное программирование

Преобразование

Итоги
В этой главе мы рассмотрели программирование потоков событий. Подход
к событиям как к потокам обладает рядом преимуществ по сравнению с тра-
диционной моделью обработки событий. Открывал главу рассказ о библиотеке
Streams и лежащей в её основе модели программирования. Далее рассматрива-
лось несколько программ, помогающих ближе познакомиться с библиотекой
и её семантикой. Библиотека Streams снабжена превосходной документаци-
ей, и читателю рекомендуется изучить её, чтобы побольше узнать о возмож-
ностях библиотеки. После библиотеки Streams было рассказано о библиотеке
Streamulus, которая предоставляет программисту встраиваемый предметно-
ориентированный язык для управления потоками данных. Проанализирова-
но несколько примеров программ, прилагающихся к библиотеке. Также дана
краткая характеристика библиотеки RaftLib – ещё одной удобной библиоте-
ки для программирования потоков данных. Темой обработки потоков дан-
ных как модели программирования завершается изучение предварительного
материала, необходимого для понимания реактивной модели программиро-
вания в целом и библиотеки RxCpp в частности. В следующей главе начнётся
изучение библиотеки RxCpp и, на её примере, знакомство с разработкой реак-
тивных систем.

 13 / 32

Глава 7
Знакомство с моделью

маршрутов данных
и библиотекой RxCpp

С этой главы начинается полное погружение в модель реактивного програм-
мирования. Предшествующие главы можно считать подготовительным ма-
териалом, приближающим к пониманию парадигмы реактивного програм-
мирования, в первую очередь функционального. Оглядываясь назад, можно
вспомнить рассмотренные ранее темы:

�� модели обработки событий, лежащие в основе различных платформ
пользовательского графического интерфейса;

�� новые средства, появившиеся в современном стандарте языка C++, вклю-
чая элементы функционального программирования;

�� средства поддержки многопоточного параллельного программирова-
ния, включённые в стандарт языка;

�� модели неблокирующего программирования как шаг в направлении де-
кларативного стиля;

�� шаблоны разработки и их современные версии, модель наблюдаемых
источников;

�� модель потоков событий.
Парадигма функционального реактивного программирования (ФРП)

зиждется на всех этих элементах, объединённых в строгую систему.
Говоря упрощённо, реактивное программирование – это не что иное, как

программирование асинхронных потоков данных. Применяя к потокам раз-
личные операции, можно решать различные вычислительные задачи. Первый
вопрос при разработке реактивной программы – как представить исходные
данные в виде потоков, каким бы ни был источник этих данных. Потоки со-
бытий также называют наблюдаемыми источниками, а подписчиков называют
ещё наблюдателями и обработчиками. Между источниками и наблюдателями
располагаются операции над потоками: фильтры и преобразователи.

 14 / 32

Парадигма маршрутов данных    175

Поскольку, как правило, предполагается, что источник данных не претерпе-
вает изменений, по мере того как данные проходят сквозь операции, одни и те
же данные могут проходить от источника к наблюдателю различными путями.
Неизменность источников открывает возможности для произвольного, асин-
хронного порядка выполнения операций, а координация работы системы во
времени может возлагаться на отдельную программную сущность, называе-
мую планировщиком. Таким образом, наблюдаемые источники, наблюдатели,
операции над потоками и планировщики составляют скелет программы в мо-
дели ФРП.

В этой главе будут рассмотрены следующие темы:
�� краткое введение в вычислительную парадигму, основанную на марш-

рутах данных;
�� введение в библиотеку RxCpp и присущую ей модель программирова-

ния;
�� простейшие примеры программ с использованием библиотеки RxCpp;
�� операции над потоками в библиотеке RxCpp;
�� графическое изображение реактивных операций с помощью цветных

шариков;
�� планировщики;
�� аномалии операций разглаживания (flat) и сцепления (concat);
�� различные операции над потоками.

Парадигма маршрутов данных 1

Обычно программисты при создании программ мыслят в терминах маршру-
тов управления. Это означает составлять программу из множества небольших
операторов (присваиваний, их последовательного сочленения, условий и цик
лов) и подпрограмм (в том числе рекурсивных), работающих над состоянием
памяти. Для управления ходом вычислений используются такие конструкции,
как условный оператор if-else, операторы цикла while или for и рекурсия. Если
программа, написанная в этой парадигме, предполагает параллельное выпол-
нение нескольких потоков, доступ к общим данным требует особой тщатель-
ности и часто подвержен трудноуловимым ошибкам. Доступ к изменяемым
данным, видимым из нескольких потоков, приходится окружать двоичными
семафорами и другими примитивами синхронизации.

1	 В русском языке термин «поток» в контексте программирования обладает, по мень-
шей мере, тремя значениями: он соответствует английским терминам thread (поток
выполнения в параллельном программировании, предмет главы 3), stream (поток
как абстрагированный источник данных) и flow («русло», по которому протекают
данные). При переводе работ, посвящённых одной узкой теме, омонимия не достав-
ляет хлопот, однако в данной книге активно используются все три понятия. Потоки
выполнения (thread) от потоков-источников (stream) легко отличить по контексту,
а для термина «flow» пришлось выбрать альтернативный перевод: «маршрут». –
Прим. перев.

 15 / 32

176    Знакомство с моделью маршрутов данных и библиотекой RxCpp

С точки зрения компилятора результатом синтаксического разбора исход-
ного текста становится построение абстрактного синтаксического дерева,
которое используется в дальнейшем для проверки типов и генерации кода.
В сущности, абстрактное синтаксическое дерево – это структурная модель
программы, позволяющая проводить как анализ маршрутов данных, необ-
ходимый для оптимизации размещения данных в регистрах процессора, так
и анализ хода выполнения, необходимый для оптимизации последователь-
ности машинных команд. Хотя программист размышляет о своей программе
в терминах хода выполнения, компилятор (по крайней мере, некоторая его
часть) рассматривает программу также и сквозь призму маршрута данных.
Таким образом, приходим к выводу, что граф маршрутизации данных скрыто
присутствует в любой программе.

В парадигме маршрутов данных вычисление в явном виде построено на ос-
нове графа, вершины которого соответствуют вычислительным операциям,
а рёбра – путям передачи данных между вершинами. Если на расположенные
в вершинах графа вычислительные операции наложить дополнительные огра-
ничения (например, потребовать, чтобы поступивший на вход операции ори-
гинал данных сохранялся неизменным – вместо внесения изменений в этот
объект операция может лишь создавать на его основе новые объекты), можно
использовать все возможности параллельной обработки. Планировщик дол-
жен искать возможности для параллельного выполнения операций с помощью
топологической сортировки графа обработки данных. При построении графа
программист пользуется потоками данных (stream) для представления рёбер
и потоковыми операциями для моделирования вершин. Это можно делать
в декларативном стиле, в частности оформляя операции над потоками в виде
лямбда-выражений, работающих исключительно со своими аргументами.
В мире функционального программирования есть свой общепринятый набор
простейших операций над потоками: например, операции map (поэлементное
преобразование), reduce (свёртка по операции), filter (отбор элементов, удов-
летворяющих условию), take (взятие заданного числа элементов). Системы,
реализующие данную вычислительную модель, опираются на важное требова-
ние – данные должны быть представлены в виде потоков. На этой парадигме,
в частности, основана библиотека TensorFlow, предназначенная для машин-
ного обучения. Библиотеку RxCpp также можно считать средством организа-
ции вычислений через маршрутизацию данных, хотя в ней создание графа
обработки данных выглядит не столь явным, как в библиотеке TensorFlow. По-
скольку для функционального программирования характерен ленивый способ
вычисления, граф обработки данных создаётся путём конструирования кон-
вейера из потоков данных и асинхронных операций над потоками.

Знакомство с библиотекой RxCpp
В оставшейся части книги для написания реактивных программ будет исполь-
зоваться библиотека RxCpp. Эта библиотека, предназначенная для програм-

 16 / 32

Знакомство с библиотекой RxCpp    177

мирования на языке C++, состоит исключительно из заголовочных файлов.
Её исходный код можно загрузить из репозитория системы GitHub по адресу
https://github.com/ReactiveX/RxCpp. В библиотеке RxCpp широко используются
новшества современного стандарта языка, такие как классы для управления
потоками, лямбда-выражения, композиции и преобразования функций и про-
чие, помогающие реализовать структуры реактивного программирования.
Библиотека RxCpp выстроена по той же схеме, что и широко известные биб
лиотеки Rx.net и RxJava.

Как и в других каркасах для реактивного программирования, здесь есть ряд
основополагающих понятий, с которыми нужно хорошо разобраться, прежде
чем браться за написание своей первой сточки кода. К ним относятся:

�� наблюдаемые потоки данных;
�� наблюдатели (или подписчики);
�� операции над потоками;
�� планировщики.

В библиотеке RxCpp большая часть вычислений выполняется посредством
наблюдаемых потоков данных. Библиотека предоставляет множество средств
для создания наблюдаемых потоков на основе разнообразных источников
данных. В роли источников могут выступать диапазоны значений, контейне-
ры библиотеки STL и многие другие сущности. Между наблюдаемыми потока-
ми и присоединёнными к ним приёмниками данных (наблюдателями) можно
размещать операции. Поскольку функциональный стиль программирования
поддерживает композицию функций, между наблюдаемым потоком и под-
писчиком можно поместить сколь угодно длинную цепочку операций, которая
при этом выглядит как единая операция. Используемый в библиотеке плани-
ровщик заботится о том, что всякий раз, когда данные появляются в каком-
то из наблюдаемых потоков, они немедленно будут пропущены через нуж-
ные операции, а подписчикам будет разослано оповещение (если после всех
преобразований и фильтров по-прежнему есть, о чём оповещать). Работа на-
блюдателя начинается лишь тогда, когда с приходом оповещения вызывается
нужный метод-обработчик (в частности, лямбда-выражение). Таким образом,
наблюдатели могут заниматься исключительно основной задачей, за которую
они и отвечают.

Библиотека RxCpp и её модель программирования
В этом разделе мы создадим несколько программ, которые помогут читателю
понять модель программирования, лежащую в основе библиотеки RxCpp. Цель
этих примеров – проиллюстрировать основные понятия реактивного програм-
мирования, поэтому программы будут довольно очевидными. Код примеров
вполне достаточен, для того чтобы программисты включали его в свои реаль-
ные проекты с минимальными изменениями. В приведённых ниже примерах
источники данных будут основываться на диапазонах значений, контейнерах
библиотеки STL и др.

 17 / 32

https://github.com/ReactiveX/RxCpp

178    Знакомство с моделью маршрутов данных и библиотекой RxCpp

Простой пример взаимодействия источника с наблюдателем
Напишем программу, которая поможет понять модель программирования, за-
ложенную в библиотеке RxCpp. В этой программе будет один поток данных
в качестве наблюдаемого источника и один подписанный на него наблюдатель.
Программа будет генерировать последовательность чисел от 1 до 12 с помощью
специального класса range. После создания диапазона значений и надстроен-
ного над ним наблюдаемого источника данных к последнему присоединяется
подписчик. В результате своего выполнения эта программа напечатает на кон-
соль последовательность чисел с дополнительным текстом.
#include "rxcpp/rx.hpp"
#include <iostream>

int main() {
 // создать поток чисел
 auto observable = rxcpp::observable<>::range(1, 12);

 // подписка на события OnNext и OnCompleted
 observable.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });

 return 0;
}

Приведённая выше программа напечатает на консоль по одному сообще-
нию для каждого числа и затем ещё одно сообщение «OnCompleted». Этот пример
демонстрирует, как создавать наблюдаемый поток и как с помощью метода
subscribe присоединять к нему наблюдателей.

Фильтрация и преобразование потоков данных
Следующий пример поможет читателю понять, как работают операции fil-
ter и map над потоками. Метод filter вычисляет предикат на каждом элементе
входного потока, и если при этом получается значение «истина», элемент пе-
редаётся в выходной поток. Метод map применяет функцию-преобразователь
к каждому элементу входного потока и полученные при этом значения отправ-
ляет в выходной поток.
#include "rxcpp/rx.hpp"
#include <iostream>

int main() {
 auto values = rxcpp::observable<>::range(1, 12)
 .filter([](int v){ return v % 2 == 0; })
 .map([](int x) { return x*x; });
 values.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

 18 / 32

Создание собственных наблюдаемых источников    179

Эта программа генерирует поток целых чисел и пропускает этот поток через
фильтр: операция filter отбирает из потока только чётные числа. Получив-
шийся в результате фильтрации поток подаётся на преобразователь map, кото-
рый возводит в квадрат каждый его элемент. В завершение поток результатов
печатается на консоль.

Создание потока из контейнера
Хотя модель реактивного программирования в первую очередь предназначена
для обработки данных, поступающих в непредсказуемые моменты на протя-
жении длительных промежутков времени, реактивный поток данных можно
построить и из контейнера стандартного типа. Это может пригодиться при
интеграции имеющегося кода, основанного на библиотеке STL, в реактивную
систему. Для преобразования контейнера в поток служит метод iterate.
#include "rxcpp/rx.hpp"
#include <iostream>
#include <array>

int main() {
 std::array<int, 3> a={{1, 2, 3}};
 auto values = rxcpp::observable<>::iterate(a);
 values.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;

}

Создание собственных наблюдаемых источников
В разобранных ранее примерах программ наблюдаемые потоки данных соз-
давались либо из диапазона значений, либо из контейнера, заранее наполнен-
ного значениями. Теперь нужно рассмотреть, как создать свой наблюдаемый
поток данных с нуля. Или почти с нуля.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
int main() {
 auto ints = rxcpp::observable<>::create<int>(
 [](rxcpp::subscriber<int> s){
 s.on_next(1);
 s.on_next(4);
 s.on_next(9);
 s.on_completed();
 });
 ints.subscribe(
 [](int v){printf("OnNext: %d\n", v);},
 [](){printf("OnCompleted\n");});
 return 0;
}

 19 / 32

180    Знакомство с моделью маршрутов данных и библиотекой RxCpp

В этом примере объект ints представляет собой наблюдаемый источник дан-
ных целого типа, к которому могут подключаться наблюдатели или подпис-
чики. Поведение источника ints задано в коде следующим образом: каков бы
ни был подписчик, сообщить ему (путём вызова его метода on_next) три числа,
затем (посредством метода on_completed) известить об окончании потока.

Конкатенация потоков
Два имеющихся потока данных можно сцепить между собой, образовав но-
вый поток, что может быть удобно в некоторых случаях. Разберём, как работает
конкатенация, с помощью примера:
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto o1 = rxcpp::observable<>::range(1, 3);
 auto o2 = rxcpp::observable<>::range(4, 6);
 auto values = o1.concat(o2);
 values.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Операция concat присоединяет один поток к концу другого, сохраняя поря-
док элементов в каждом из них.

Отписка от потока данных
Следующий пример показывает, как отсоединить наблюдателя от наблюдае-
мого источника, тем самым прекратив отсылку ему оповещений от данного
источника. В этой программе показан лишь один из возможных способов, за
более подробными сведениями следует обратиться к документации.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto subs = rxcpp::composite_subscription();
 auto values = rxcpp::observable<>::range(1, 10);
 values.subscribe(
 subs,
 [&subs](int v){
 printf("OnNext: %d\n", v);
 if (v == 6)
 subs.unsubscribe(); // отписаться
 },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

 20 / 32

Операции над потоками данных    181

Визуальное представление потоков данных
Реактивные потоки данных непросто изобразить графически, так как данные
проходят по ним асинхронно. И всё же разработчикам реактивных систем уда-
лось придумать подходящий способ визуализации потоков данных – диаграм-
мы из разноцветных шариков1. Начнём с небольшой программы, основанной
на операции map.
#include "rxcpp/rx.hpp"
#include <iostream>

int main() {
 auto values = rxcpp::observable<>::range(1, 10)
 .map([](int x) { return x*x; });
 values.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Вместо того чтобы долго описывать правила рисования диаграмм из раз-
ноцветных шариков, просто покажем пример диаграммы, изображающей ра-
боту операции map.

В верхней части диаграммы находится ось времени, на которой расположе-
ны элементы исходного потока данных. Ниже изображена операция, которая
всякому шарообразному элементу данных ставит в соответствие ромбовид-
ный. В самом низу расположена ось времени, представляющая собой как бы
проекцию верхнего потока данных сквозь операцию.

Операции над потоками данных
Одно из главных преимуществ потоко-ориентированного подхода к обработке
данных состоит в том, что к потокам можно применять преобразования в сти-
ле функционального программирования. Если воспользоваться терминологи-

1	 В англоязычной литературе – marble diagrams. Слово «marble» (в прямом значении –
мрамор) в данном случае означает шарик из цветного стекла с прожилками. – Прим.
перев.

 21 / 32

182    Знакомство с моделью маршрутов данных и библиотекой RxCpp

ей библиотеки RxCpp, обработка осуществляется посредством операций. Под
операциями понимают не что иное, как фильтрацию, отображение, агрегацию
и свёртку потоков. В предыдущих разделах было показано на примерах, как
работают операции map, filter и take.

Операция average
Операция average вычисляет среднее арифметическое значений, полученных
от источника данных. Поддерживаются и другие статистические операции, на-
пример:

�� min (наименьшее значение);
�� max (наибольшее значение);
�� count (число элементов);
�� sum (сумма значений).

Ниже показан пример кода, иллюстрирующий применение операции ave
rage. Эта же схема подходит и для прочих операций из приведённого выше
списка.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto values = rxcpp::observable<>::range(1, 20).average();
 values.subscribe(
 [](double v){ printf("Среднее: %lf\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Данная программа выведет на печать одно значение – среднее арифметиче-
ское чисел от 1 до 19.

Операция scan
Данная операция применяет функцию двух аргументов к очередному элементу
входного потока и предыдущему результату применения этой функции, запо-
минает полученное значение и из этих значений формирует выходной поток.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 int count = 0;
 auto values = rxcpp::observable<>::range(1, 20).
 scan(
 0,
 [&count](int seed, int v){
 count++;

 22 / 32

Операции над потоками данных    183

 return seed + v;
 });
 values.subscribe(
 [&](int v){ printf("Среднее: %f\n", (double)v/count); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Эта программа выводит на экран последовательность из девятнадцати бе-
гущих средних: для каждого целого числа из диапазона от 1 до 19 выводится
среднее арифметическое чисел от 1 до этого числа.

Соединение операций в конвейер
Библиотека RxCpp позволяет соединять потоковые операции между собой,
строя сколь угодно длинные цепочки. Для этого служит операция композиции
(|), благодаря ей программисты могут пользоваться привычным синтаксисом
командной оболочки Unix. Использование этой операции позволяет писать
код так, чтобы его смысл был понятен всякому. В следующем примере пока-
зана композиция из двух операций: генерации диапазона и поэлементного
отображения значений.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
namespace Rx {
using namespace rxcpp;
using namespace rxcpp::sources;
using namespace rxcpp::operators;
using namespace rxcpp::util;
}
using namespace Rx;
#include <iostream>

int main() {
 auto ints = rxcpp::observable<>::range(1,10) |
 map([] (int n) {return n*n; });

 ints.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Работа с планировщиками
Из предыдущих разделов читатель узнал многое о наблюдаемых потоках дан-
ных, операциях над потоками и наблюдателях. В частности, о том, что между
наблюдаемым источником и наблюдателем можно поместить реактивные
операции для преобразования или фильтрации потоков. Парадигма функцио-
нального программирования велит писать чистые функции (т. е. функции без

 23 / 32

184    Знакомство с моделью маршрутов данных и библиотекой RxCpp

побочных эффектов и глобального изменяемого состояния), следствием чего
становится возможность обрабатывать данные в произвольном порядке. По-
рядок, в котором выполняются операции, не важен, если гарантируется, что
данные на входе операций не могут быть изменены. Поскольку типичная ре-
активная программа состоит из многих наблюдателей и источников, управ-
ление очерёдностью операций можно поручить отдельному модулю – плани-
ровщику. Библиотека RxCpp по умолчанию ставит все операции в тот поток
выполнения, из которого вызывался метод subscribe для подписки на собы-
тия. Библиотека также позволяет указать другой поток выполнения, для этого
служат методы observe_on и subscribe_on. Кроме того, некоторые операции над
наблюдаемыми источниками принимают планировщик в качестве одного из
своих аргументов – если эти операции могут выполняться в потоке, которым
управляет планировщик.

В библиотеке RxCpp поддерживаются два вида планировщиков:
�� непосредственный планировщик ImmediateScheduler;
�� планировщик с циклом обработки событий ImmediateScheduler.

По умолчанию библиотека RxCpp однопоточна. Однако программист может
по своему желанию настроить многопоточный режим работы. Основы управ-
ления планированием операций иллюстрирует следующий пример.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>
#include <thread>

int main(){
 // Генерировать последовательность значений
 auto values = rxcpp::observable<>::range(1,4).
 map([](int v){ return v*v; });
 // показать дескриптор главного потока
 std::cout << "Главный поток => "
 << std::this_thread::get_id()
 << std::endl;
 // наблюдатель в другом потоке выполнения
 values.observe_on(rxcpp::synchronize_new_thread()).
 as_blocking().subscribe(
 [](int v) {
 std::cout << "Поток наблюдателя => "
 << std::this_thread::get_id()
 << " " << v << std::endl;
 },
 [](){ std::cout << "OnCompleted" << std::endl; });

 // показать дескриптор главного потока
 std::cout << "Главный поток => "
 << std::this_thread::get_id()
 << std::endl;
 return 0;
}

 24 / 32

Операции над потоками данных    185

Чтобы видеть, в каком потоке выполняется та или иная операция, програм-
ма выводит на консоль числовой идентификатор, который есть у каждого по-
тока согласно стандарту языка. Эта программа выведет на консоль следующий
текст, из которого очевидно, что подписчик работает в потоке, отличном от
главного потока программы:
Главный поток => 1
Поток наблюдателя => 2 1
Поток наблюдателя => 2 4
Поток наблюдателя => 2 9
Поток наблюдателя => 2 16
OnCompleted
Главный поток => 1

Следующая программа иллюстрирует использование метода subscribe_on.
В поведении методов observe_on и subscribe_on есть тонкое различие, которое
разберём в следующей главе. Следующий пример кода призван продемонстри-
ровать декларативные средства управления планировщиком.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>
#include <thread>
#include <mutex>
// Для глобальной синхронизации вывода.
std::mutex console_mutex;

// вывести идентификатор текущего потока
void CTDetails() {
 console_mutex.lock();
 std::cout << "Поток => "
 << std::this_thread::get_id()
 << std::endl;
 console_mutex.unlock();
}

// отдать управление другим потокам
void Yield(bool y) {
 if (y) { std::this_thread::yield(); }
}

int main(){
 auto threads = rxcpp::observe_on_event_loop();
 auto values = rxcpp::observable<>::range(1);

 // запланировать на выполнение в другом потоке
 auto s1 = values.
 subscribe_on(threads).
 map([](int prime) {
 CTDetails();
 Yield(true);
 return std::make_tuple("1:", prime);

 25 / 32

186    Знакомство с моделью маршрутов данных и библиотекой RxCpp

 });
 // запланировать в ещё одном потоке
 auto s2 = values.
 subscribe_on(threads).
 map([](int prime) {
 CTDetails();
 Yield(true) ;
 return std::make_tuple("2:", prime);
 });

 s1.merge(s2).
 take(6).as_blocking().
 subscribe(rxcpp::util::apply_to(
 [](const char* s, int p) {
 CTDetails();
 console_mutex.lock();
 printf("%s %d\n", s, p);
 console_mutex.unlock();
 }));
 return 0;
}

На один источник данных values подписаны два наблюдателя, причём каж-
дый ставится на выполнение в своём потоке. В результате выполнения этой
программы на консоль выводится текст, свидетельствующий о том, что под-
писчики работают параллельно.

Сага о двух операциях: как разглаживать потоки потоков
Часто источником недоразумений для программистов оказываются операции
flat_map и concat_map. Различие между ними впрямь довольно тонко, его мы
и разберём в этом разделе. Сначала рассмотрим пример программы, в которой
использована операция flat_map.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>
namespace rxu = rxcpp::util;
#include <array>

int main() {
 std::array<std::string, 4> a =
 {{"Praseed", "Peter", "Sanjay","Raju"}};
 auto values = rxcpp::observable<>::iterate(a).flat_map(
 [] (std::string v) {
 std::array<std::string,3> salutation =
 {{ "Mr.", "Monsieur", "Sri" }};
 return rxcpp::observable<>::iterate(salutation);
 },
 [](std::string f, std::string s) { return s + " " + f; });
 values.subscribe(

 26 / 32

Операции над потоками данных    187

 [] (std::string f) { std::cout << f << std::endl; },
 []() { std::cout << "Здравствуй, мир" << std::endl; });
 return 0;
}

Эта программа «перемножает» содержимое двух контейнеров и выводит ре-
зультат в произвольном порядке. Ниже приведён результат её работы. Одна из
выгод от этой операции состоит в возможности дополнительно обрабатывать
поток после применения операции преобразования элементов.
Mr. Praseed
Monsieur Praseed
Mr. Peter
Sri Praseed
Monsieur Peter
Mr. Sanjay
Sri Peter
Monsieur Sanjay
Mr. Raju
Sri Sanjay
Monsieur Raju
Sri Raju
Здравствуй, мир

На следующей диаграмме изображен принцип работы этой операции. Опе-
рация flat_map к каждому элементу потока данных применяет лямбда-функ-
цию, которая одному входному значению ставит в соответствие целый поток
результатов. Затем производится слияние полученных потоков в один выход-
ной поток. На диаграмме показано, что красный шарик преобразуется в два
ромба того же цвета, а ромбы, полученные из зелёного и синего шаров, оказы-
ваются перемешанными в потоке результатов.

Теперь рассмотрим программный код с операцией concat_map. Этот код почти
неотличим от предыдущего. Единственное изменение состоит в замене опера-
ции flat_map на concat_map.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"

 27 / 32

188    Знакомство с моделью маршрутов данных и библиотекой RxCpp

#include <iostream>
namespace rxu = rxcpp::util;
#include <array>

int main() {
 std::array<std::string, 4> a =
 {{"Praseed", "Peter", "Sanjay","Raju"}};
 auto values = rxcpp::observable<>::iterate(a).concat_map(
 [] (std::string v) {
 std::array<std::string,3> salutation =
 {{ "Mr.", "Monsieur", "Sri" }};
 return rxcpp::observable<>::iterate(salutation);
 },
 [](std::string f, std::string s) { return s + " " + f; });
 values.subscribe(
 [] (std::string f) { std::cout << f << std::endl; },
 []() { std::cout << "Здравствуй, мир" << std::endl; });
 return 0;
}

Вот результат работы этой программы. Легко видеть, что данные в потоке
результатов не перемешаны, а расположены в строгом порядке.
Mr. Praseed
Monsieur Praseed
Sri Praseed
Mr. Peter
Monsieur Peter
Sri Peter
Mr. Sanjay
Monsieur Sanjay
Sri Sanjay
Mr. Raju
Monsieur Raju
Sri Raju
Здравствуй, мир

На следующей диаграмме показано, как работает операция concat_map. В от-
личие от предыдущего случая, обработка теперь синхронизирована: сначала
в потоке результатов стоят все красные элементы, затем зелёные, после них –
синие.

 28 / 32

Операции над потоками данных    189

Итак, операция flat_map вырабатывает результаты в перемешанном поряд-
ке, тогда как операция concat_map строит выходной поток в точно том же поряд-
ке, что ожидалось. В чём же настоящее различие между ними? Чтобы сделать
разницу более очевидной, рассмотрим две операции: concat и merge. А имен-
но разберёмся, каким образом работает конкатенация (склеивание) потоков.
Обычно эта операция присоединяет всё содержимое второго потока после эле-
ментов первого потока, сохраняя исходный порядок элементов, как явствует
из следующего примера.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>
#include <array>

int main() {
 auto o1 = rxcpp::observable<>::range(1, 3);
 auto o2 = rxcpp::observable<>::range(4, 6);
 auto values = o1.concat(o2);

 values.subscribe(
 [](int v) { printf("OnNext: %d\n", v); },
 []() { printf("OnCompleted\n"); });
 return 0;
}

На следующей диаграмме показано, что происходит, когда к двум потокам
данных применяется операция concat. Новый поток создаётся путём прибав-
ления содержимого второго потока к первому. Порядок элементов при этом
сохраняется.

Теперь посмотрим, что получается, если к потокам применить операцию
merge. Следующая программа демонстрирует эту операцию в действии.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>
namespace rxu=rxcpp::util;
#include <array>

 29 / 32

190    Знакомство с моделью маршрутов данных и библиотекой RxCpp

int main() {
 auto o1 = rxcpp::observable<>
 ::timer(std::chrono::milliseconds(15))
 .map([](int) { return 1; });
 auto o2 = rxcpp::observable<>::error<int>(
 std::runtime_error("Error from source\n"));

 auto o3 = rxcpp::observable<>
 ::timer(std::chrono::milliseconds(5))
 .map([](int) { return 3; });

 auto base = rxcpp::observable<>
 ::from(o1.as_dynamic(), o2, o3);

 auto values = base.merge();

 values.subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](std::exception_ptr eptr) {
 printf("OnError %s\n", rxu::what(eptr).c_str());
 },
 [](){ printf("OnCompleted\n"); });

 return 0;
}

На следующей диаграмме показано, как работает операция merge над двумя
потоками данных. Содержимое выходного потока представляет собой чередо-
вание элементов двух входных потоков в произвольном порядке.

Теперь можно описать различие между операциями flat_map и concat_map: оно
состоит в том, каким способом комбинируются потоки значений. Операция
flat_map реализована на основе операции merge, тогда как операция concat_map
основана на операции concat. В случае операции merge порядок элементов в вы-
ходном потоке не имеет значения, а операция concat всегда помещает элемен-
ты второго входного потока после элементов первого – отсюда и различный
порядок результатов у программ, иллюстрирующих работу операций flat_map
и concat_map.

 30 / 32

Операции над потоками данных    191

Прочие важные операции
Из предыдущих разделов должна уже быть понятна суть реактивной модели
программирования, так как разобраны все основные темы: потоки данных,
наблюдатели, операции над потоками и планировщики. В библиотеке RxCpp
поддерживается ещё ряд операций, о которых стоит знать, чтобы лучше вы-
ражать логику работы программ. В этом разделе будут рассмотрены операции
tap и buffer. Начнём с операции tap, которая позволяет заглянуть в содержимое
потока данных.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 // создать поток с помощью операции map
 auto ints = rxcpp::observable<>::range(1,3).
 map([] (int n) { return n*n; });
 // применить операцию tap для трассировки потока
 auto values = ints.tap(
 [](int v) { printf("Tap - OnNext: %d\n", v); },
 []() {printf("Tap - OnCompleted\n"); });
 // выполнить действия с потоком
 values.subscribe(
 [](int v){ printf("Subscribe - OnNext: %d\n", v); },
 [](){ printf("Subscribe - OnCompleted\n"); });
 return 0;
}

Теперь рассмотрим операцию defer. В качестве аргумента она принимает
фабрику потоков – то есть функцию (или функциональный объект), которая
создаёт поток данных только тогда, когда какой-то наблюдатель подписывает-
ся на эти данные. Работу этой функции иллюстрирует следующая программа.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto observable_factory = [] () {
 return rxcpp::observable<>::range(1,3)
 .map([] (int n) { return n*n; });
 };
 auto ints = rxcpp::observable<>::defer(observable_factory);
 ints.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] () { printf("OnCompleted\n"); });

 ints.subscribe(
 [] (int v) { printf("2nd OnNext: %d\n", v); },
 [] () { printf("2nd OnCompleted\n"); });
}

 31 / 32

192    Знакомство с моделью маршрутов данных и библиотекой RxCpp

Метод buffer, поддерживаемый классами потоков данных, принимает в каче-
стве аргумента целое число и создаёт новый поток данных, чьи элементы – это
контейнеры значений, взятых из исходного потока, причём размер этих кон-
тейнеров ограничен заданным числом. Это позволяет наблюдателям обрабаты-
вать элементы не по одному, а «пачками», как показано в следующем примере.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto values = rxcpp::observable<>::range(1, 10).buffer(2);
 values.subscribe(
 [](std::vector<int> v){
 printf("OnNext:{");
 std::for_each(
 v.begin(),
 v.end(),
 [](int a){ printf(" %d", a); });
 printf("}\n");
 },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Операция timer принимает в качестве аргумента интервал времени и, воз-
можно, необязательный аргумент – планировщик и создаёт поток данных.
Библиотека содержит несколько вариантов этой функции. В следующем при-
мере показан один из них.
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <iostream>

int main() {
 auto scheduler = rxcpp::observe_on_new_thread();
 auto period = std::chrono::milliseconds(1);
 auto values = rxcpp::observable<>::timer(period, scheduler)
 .finally([](){ printf("Конец\n"); });

 values.as_blocking().subscribe(
 [](int v){ printf("OnNext: %d\n", v); },
 [](){ printf("OnCompleted\n"); });
 return 0;
}

Беглый взгляд на ещё не изученное
Реактивную модель программирования можно считать результатом слияния
следующих компонентов:

�� вычисления на потоках данных;

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Итоги    193

�� декларативный стиль программирования;
�� функциональный стиль программирования;
�� параллельная обработка;
�� программирование в терминах потоков событий;
�� применение идиом и шаблонов проектирования.

Чтобы понять данный предмет во всей его полноте, нужно много практико-
ваться с описанной здесь моделью программирования. Поначалу упражнения
могут показаться не слишком осмысленными, но рано или поздно произойдёт
качественный скачок, после которого сложится понимание всей модели цели-
ком. До сих пор были рассмотрены следующие вопросы:

�� наблюдаемые источники (потоки) данных и наблюдатели;
�� базовые и вспомогательные операции над потоками данных;
�� средства планирования операций: базовые и средней сложности.

Это лишь начало, для по-настоящему глубокого знакомства с реактивной
моделью программирования предстоит изучить ещё множество вопросов:

�� горячие и холодные источники данных (глава 9);
�� подробности реактивных компонентов (глава 9);
�� усложнённые средства управления планировщиками (глава 9);
�� особенности программирования графических интерфейсов (глава 9);
�� усложнённые операции над потоками данных (глава 9);
�� реактивные шаблоны проектирования (глава 10);
�� обеспечение надёжности программ (глава 12).

Итоги
В этой главе освещен довольно обширный круг вопросов, относящихся как
к основаниям реактивной модели программирования вообще, так и к библио-
теке RxCpp в частности. Открывал главу концептуальный обзор вычислитель-
ной парадигмы, основанной на маршрутизации данных, следующие разделы
были посвящены написанию простейших реактивных программ. После зна-
комства с графическим языком, позволяющим описывать функционирование
реактивных систем, было рассказано об основных операциях, поддерживае-
мых библиотекой RxCpp. Затем было введено важное для дальнейшего изуче-
ния понятие планировщика. Завершал главу рассказ о различии между опера-
циями flat_map и concat_map и краткий обзор ряда других полезных операций
над потоками данных. В следующей главе будет рассказано о горячих и холод-
ных источниках данных, об усложнённых средствах планирования операций
и о многом другом, не затронутом в этой главе.

 1 / 32

Глава 8
Ключевые элементы

библиотеки RxCpp

В предыдущей главе началось знакомство читателя с библиотекой RxCpp и её
программной моделью. Ряд примеров был призван пояснить, как работает эта
библиотека. Описаны наиболее важные её части. В этой главе читателю пред-
лагается более глубоко изучить основные механизмы библиотеки RxCpp и ре-
активной модели программирования в целом, включая следующие вопросы:

�� наблюдаемые источники данных (Observable);
�� наблюдатели и их разновидность – подписчики;
�� темы (Subject) как дальнейшее развитие идеи наблюдаемых источников;
�� планировщики;
�� операции над потоками.

В сущности, главные принципы реактивного программирования сводятся
к следующим.

�� Наблюдаемые источники – это потоки данных, на оповещения от кото-
рых могут подписываться наблюдатели.

�� Тема – это комбинация наблюдаемых источников данных и наблюдате-
лей.

�� Планировщики запускают на выполнение действия, связанные с опера-
циями, и заставляют данные продвигаться от источников к наблюдате-
лям.

�� Операции над потоками – это функции, которые преобразовывают одни
наблюдаемые источники данных в другие наблюдаемые источники.

Наблюдаемые источники данных
В предыдущей главе были показаны многочисленные примеры наблюдае-
мых источников данных и присоединённых к ним подписчиков. Приоткроем
теперь их внутреннее устройство: во всех разобранных ранее примерах на-
блюдаемый источник данных (observable) создавал вспомогательный объект –
производитель данных (producer). Задача производителя – производить поток

 2 / 32

Наблюдаемые источники данных    195

событий. При этом задача наблюдаемого источника самого по себе состоит
в том, чтобы подключить подписчиков к производителю. Прежде чем двигать-
ся дальше, остановимся ещё раз на анатомии наблюдаемого источника и его
функционировании.

�� Наблюдаемый источник данных (observable) ведёт себя подобно функ-
ции, которая принимает объект-наблюдатель (observer) в качестве аргу-
мента и возвращает новую функцию.

�� Наблюдаемый источник данных присоединяет объект-наблюдатель
к объекту-производителю; сам же производитель непосредственно для
наблюдателя невидим.

�� Производитель вырабатывает данные для наблюдаемого источника.
�� Наблюдатель (observer) – это объект, обладающий методами on_next, on_
error и on_completed.

Что такое объект-производитель
Из производителя (producer) появляются данные наблюдаемого источника.
В роли производителей могут выступать окна, таймеры, соединения Web-
Socket, древовидные документы, итераторы по коллекциям или контейнерам
и многие другие сущности. Производителем способно быть всё, из чего можно
получать данные, которые в дальнейшем предполагается передавать наблюда-
телю через метод on_next.

Горячие и холодные источники данных
В большинстве примеров из предыдущей главы объекты-производители соз-
давались в процессе работы операций над наблюдаемыми источниками. Од-
нако производитель может быть создан и отдельно от такой операции, тогда
последней передаётся лишь ссылка на уже имеющийся объект-производитель.
Наблюдаемый источник данных (observable), который содержит лишь ссылку
на объект-производитель, называется горячим. Напротив, наблюдаемый ис-
точник, который сам создаёт себе производителя и владеет им, называется
холодным. Чтобы пояснить эти понятия, покажем сначала пример холодного
источника.
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {
 // планировщик
 auto eventloop = rxcpp::observe_on_event_loop();
 // холодный источник
 auto values = rxcpp::observable<>
 ::interval(std::chrono::seconds(2)).take(2);

Функция interval возвращает холодный источник данных, поскольку имен-
но эта функция создаёт объект-производитель, генерирующий поток событий.

 3 / 32

196    Ключевые элементы библиотеки RxCpp

Холодный источник начинает генерировать данные только тогда, когда к нему
подключается подписчик или наблюдатель. Даже если наблюдатель подклю-
чится с задержкой, это не повлияет на результат – он всё равно получит от ис-
точника все данные. Это иллюстрирует следующий фрагмент кода:
 // подписаться дважды
 values.subscribe_on(eventloop).subscribe(
 [](int v){ printf("[1] onNext: %d\n", v); },
 [](){ printf("[1] onCompleted\n"); });
 values.subscribe_on(eventloop).subscribe(
 [](int v){ printf("[2] onNext: %d\n", v); },
 [](){ printf("[2] onCompleted\n"); });

 // пустая блокирующая подписка, чтобы увидеть результат
 values.as_blocking().subscribe();

 // подождать две секунды
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000))
 .subscribe([&](long){ });

 return 0;
}

Результат работы этой программы показан ниже. Порядок сообщений может
различаться от запуска к запуску, поскольку порядок выполнения операций
в параллельных потоках недетерминирован. Однако задержка между первой
и второй подписками не может привести к потере данных.
[1] onNext: 1
[2] onNext: 1
[2] onNext: 2
[1] onNext: 2
[2] onCompleted
[1] onCompleted

Горячие источники данных
Холодный источник данных можно превратить в горячий с помощью метода
publish. Вследствие такого преобразования подписчики, подключившиеся к ис-
точнику слишком поздно, пропустят сообщения, отправленные источником
до этого. Горячий источник генерирует данные независимо от того, подписан
ли на него хоть один наблюдатель. Эту особенность демонстрирует следующая
программа:
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {
 auto eventloop = rxcpp::observe_on_event_loop();
 // создать холодный источник и превратить его в горячий
 auto values = rxcpp::observable<>

 4 / 32

Наблюдаемые источники данных    197

 ::interval(std::chrono::seconds(2))
 .take(2)
 .publish();

 // подписаться дважды
 values.subscribe_on(eventloop).subscribe(
 [](int v){ printf("[1] onNext: %d\n", v); },
 [](){ printf("[1] onCompleted\n"); });

 values.subscribe_on(eventloop).subscribe(
 [](int v){ printf("[2] onNext: %d\n", v); },
 [](){ printf("[2] onCompleted\n"); });

 // запустить генерацию событий
 values.connect();
 // блокирующая подписка
 values.as_blocking().subscribe();

 // подождать две секунды
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000))
 .subscribe([&](long){ });

 return 0;
}

Следующий пример показывает ещё один механизм, поддерживаемый
библиотекой RxCpp, а именно метод publish_synchronized. С точки зрения про-
граммного интерфейса, отличие от предыдущего случая совсем невелико. Рас-
смотрим текст программы:
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {
 auto eventloop = rxcpp::observe_on_event_loop();
 // создать холодный источник и превратить его в горячий
 auto values = rxcpp::observable<>
 ::interval(std::chrono::seconds(2))
 .take(5)
 .publish_synchronized(eventloop);

 // подписаться дважды
 values.subscribe(
 [](int v){ printf("[1] onNext: %d\n", v); },
 [](){ printf("[1] onCompleted\n"); });

 values.subscribe(
 [](int v){ printf("[2] onNext: %d\n", v); },
 [](){ printf("[2] onCompleted\n"); });

 // запустить генерацию событий

 5 / 32

198    Ключевые элементы библиотеки RxCpp

 values.connect();
 // блокирующая подписка
 values.as_blocking().subscribe();

 // подождать две секунды
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000))
 .subscribe([&](long){ });

 return 0;
}

Программа напечатает на консоль следующий текст. Легко убедиться, что
операции над потоком вполне синхронизированы, сообщения выводятся
в строгом порядке.
[1] onNext: 1
[2] onNext: 1
[1] onNext: 2
[2] onNext: 2
[1] onNext: 3
[2] onNext: 3
[1] onNext: 4
[2] onNext: 4
[1] onNext: 5
[2] onNext: 5
[1] onCompleted
[2] onCompleted

Горячие источники данных и механизм повтора
Горячий источник испускает данные независимо от того, получают ли их под-
писчики. Иногда это бывает нежелательно. В реактивном программировании
существует механизм, позволяющий запоминать невостребованные данные
в буфере, чтобы опоздавшие подписчики получили о них оповещения. Чтобы
сделать горячий источник буферизированным, следует воспользоваться мето-
дом replay. Разберём программу, которая демонстрирует в действии полезный
приём работы с горячими источниками данных – повтор отложенных в буфере
сообщений.
//---------- ReplayAll.cpp
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {
 auto values = rxcpp::observable<>::interval(
 std::chrono::milliseconds(50),
 rxcpp::observe_on_new_thread())
 .take(5).replay();

 // подписаться сразу

 6 / 32

Наблюдатели и подписчики    199

 values.subscribe(
 [](long v){printf("[1] OnNext: %ld\n", v);},
 [](){printf("[1] OnCompleted\n");});
 // запуск
 values.connect();
 // выдержать паузу перед подпиской
 rxcpp::observable<>::timer(std::chrono::milliseconds(125))
 .subscribe([&](long) {
 values.as_blocking().subscribe(
 [](long v){ printf("[2] OnNext: %ld\n", v); },
 [](){ printf("[2] OnCompleted\n"); });
 });

 // подождать две секунды
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });

 return 0;
}

Чтобы создавать реактивные программы, программисту нужно хорошо по-
нимать семантическое различие между горячими и холодными источниками
данных. В этом разделе затронуты лишь некоторые аспекты данного различия.
Более подробные сведения можно найти в документации к библиотеке RxCpp
и, шире, к системе ReactiveX. В сети имеется множество статей, посвящённых
данной теме.

Наблюдатели и подписчики
Наблюдатель (observer) подписывается на оповещения от определённого на-
блюдаемого источника данных (observable). О наблюдателях речь шла в пре-
дыдущей главе. Теперь в центре нашего внимания будет подписчик – как
комбинация наблюдателя и подписки. Подписчик обладает способностью от-
писываться от оповещений, тогда как наблюдатель в строгом смысле умеет
лишь подписываться. Следующая программа поможет пояснить разницу меж-
ду этими понятиями.
#include "rxcpp/rx.hpp"
int main() {
 // создать объект-подписку
 auto subscription = rxcpp::composite_subscription();
 // создать объект-подписчик
 auto subscriber = rxcpp::make_subscriber<int>(
 subscription,
 [&subscription] (int v) {
 printf("OnNext: --%d\n", v);
 if (v == 3)
 subscription.unsubscribe();
 },

 7 / 32

200    Ключевые элементы библиотеки RxCpp

 [](){ printf("OnCompleted\n"); });

 rxcpp::observable<>::create<int>(
 [] (rxcpp::subscriber<int> s) {
 for (int i = 0; i < 5; ++i) {
 if (!s.is_subscribed())
 break;
 s.on_next(i);
 }
 s.on_completed();
 }).subscribe(subscriber);

 return 0;
}

Чтобы создавать сложные программы со множеством параллельных по-
токов и гибким поведением, возможность отказываться от подписки весьма
удобна. Читателю стоит глубже изучить эту тему, обратившись к документации
по библиотеке RxCpp.

Единство наблюдаемого и наблюдателя
Темой (Subject) называют программную сущность, которая является одно-
временно наблюдателем (observer) и наблюдаемым источником данных (ob-
servable). Такой объект помогает рассылать оповещения от одного источника
множеству наблюдателей. С его помощью можно реализовать такие усложнён-
ные техники, как буферизация данных. Объект-тему можно использовать для
преобразования горячего источника данных в холодный. В библиотеке RxCpp
реализованы четыре разновидности объектов-тем:

�� SimpleSubject;
�� BahaviorSubject;
�� ReplaySubject;
�� SynchronizeSubject.

Рассмотрим простую программу, в которой объект-тема подписывается на
получение данных от источника и сам выступает в качестве источника для дру-
гих наблюдателей.
#include <rxcpp/rx.hpp>
#include <memory>
int main() {
 // создать объект-тему
 rxcpp::subjects::subject<int> subject;

 // получить интерфейс источника
 auto observable = subject.get_observable();
 // подписаться дважды
 observable.subscribe([](int v) { printf("1----%d\n",v); });
 observable.subscribe([](int v) { printf("2----%d\n",v); });

 // получить интерфейс подписчика

 8 / 32

Единство наблюдаемого и наблюдателя    201

 auto subscriber = subject.get_subscriber();
 // оповестить о нескольких значениях
 subscriber.on_next(1);
 subscriber.on_next(4);
 subscriber.on_next(9);
 subscriber.on_next(16);

 // выждать две секунды
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000))
 .subscribe([](long){});
 return 0;
}

Тема разновидности BehaviorSubject представляет собой разновидность объ-
екта-темы, который хранит текущее (т. е. последнее сгенерированное) значе-
ние. Всякий новый подписчик немедленно получает оповещение о текущем
значении. Во всех прочих отношениях этот объект ведёт себя так же, как и тема
разновидности SimpleSubject. Темы вида BehaviorSubject называют также свой-
ствами (property) и ячейками (cell). Это может быть полезно в случаях, когда
определённая область памяти подвергается последовательным обновлени-
ям, как при транзакциях. Следующая программа демонстрирует такой объект
в действии.
#include <rxcpp/rx.hpp>
#include <memory>
int main() {
 rxcpp::subjects::behavior<int> behsubject(0);
 auto observable = behsubject.get_observable();
 observable.subscribe([](int v) { printf("1----%d\n",v); });
 observable.subscribe([](int v) { printf("2----%d\n",v); });
 auto subscriber = behsubject.get_subscriber();
 subscriber.on_next(1);
 subscriber.on_next(2);

 int n = behsubject.get_value();
 printf ("Последнее значение: %d\n", n);
 return 0;
}

Разновидность тем ReplaySubject обладает способностью хранить ранее
сгенерированные значения. При создании такого объекта можно настроить,
сколько именно последних значений он должен запоминать. Это очень удобно
при работе с горячими источниками данных. Ниже показаны прототипы раз-
личных вариантов конструктора replay:
replay(
 Coordination cn,
 composite_subscription cs=composite_subscription());

replay(
 std::size_t count,

 9 / 32

202    Ключевые элементы библиотеки RxCpp

 Coordination cn,
 composite_subscription cs=composite_subscription());
replay(
 rxsc::scheduler::clock_type::duration period,
 Coordination cn,
 composite_subscription cs=composite_subscription());
replay(
 std::size_t count,
 rxsc::scheduler::clock_type::duration period,
 Coordination cn,
 composite_subscription cs=composite_subscription());

Ниже приведён пример, поясняющий семантику тем ReplaySubject.
#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[]) {

 // создать объект-тему ReplaySubject
 rxcpp::subjects::replay<int,rxcpp::observe_on_one_worker>
 replay_subject(10, rxcpp::observe_on_new_thread());

 // получить интерфейс источника
 auto observable = replay_subject.get_observable();
 // подписаться
 observable.subscribe([](int v) { printf("1----%d\n",v); });

 // получить интерфейс подписчика и оповестить о данных
 subscriber.on_next(1);
 subscriber.on_next(2);

 // добавить подписчика:
 // обычная тема потеряла бы старые значения,
 // но этот объект хранит их в буфере
 observable.subscribe([](int v) { printf("2----%d\n",v); });

 // выждать две секунты
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000))
 .subscribe([](long){ });
 return 0;
}

Таким образом, в этом разделе рассмотрены три варианта объектов-тем.
Основное их предназначение состоит в том, чтобы через интерфейс подпис-
чика объединять события, получаемые от различных источников, и через ин-
терфейс источника предоставлять их группе других подписчиков. Темы типа
SimpleSubject делают только это: служат одновременно источниками и подпис-
чиками и работают как промежуточные узлы передачи потока данных. Темы
типа BehaviorSubject позволяют отслеживать изменение какого-либо свойства
или переменной на протяжении некоторого времени. Темы типа ReplaySubject
помогают избежать потери данных вследствие поздней подписки. Наконец,

 10 / 32

Планировщики    203

темы типа SynchronizeSubject обладают встроенными механизмами синхрони-
зации, но их мы здесь рассматривать не будем.

Планировщики
Библиотека RxCpp поддерживает декларативный механизм управления парал-
лельными потоками выполнения благодаря входящей в её состав надёжной под-
системе – планировщику вычислений. Данные, поступающие от наблюдаемого
источника, отправляются по графу распространения изменений множеством
различных маршрутов. Давая подсказки конвейеру обработки данных, можно
сделать так, чтобы вычислительные операции ставились на выполнение в один
поток, в несколько параллельных потоков или в фоновый поток. Это позволяет
выражать замысел программиста более отчётливо.

Декларативная модель планирования операций в библиотеке RxCpp воз-
можна благодаря неизменности объектов данных, поступающих на вход вы-
числительных операций. Когда операция применяется к потоку данных, это
означает, что на вход она принимает источник данных (observable), а резуль-
татом такого применения становится новый источник данных. Данные, при-
ходящие в операцию, не модифицируются – вместо этого на выходе операции
создаются новые объекты данных. Это обстоятельство позволяет обрабатывать
элементы потока независимо друг от друга в параллельных потоках, не забо-
тясь о синхронизации. Подсистема планировщика библиотеки RxCpp содер-
жит следующие сущности:

�� собственно планировщик (scheduler);
�� рабочий поток (worker);
�� координация (coordination);
�� координатор (coordinator);
�� единица планирования (schedulable);
�� ось времени (time line).

Библиотека RxCpp версии 2 обязана своей архитектурой планировщика си-
стеме RxJava. В частности, оттуда позаимствована идиома рабочего потока. Ра-
бота планировщика основывается на следующих важных принципах:

�� планировщик обладает осью времени;
�� планировщик может создавать сколько угодно рабочих потоков, привя-

занных к этой оси времени;
�� каждый рабочий поток содержит очередь единиц планирования;
�� единица планирования обладает функцией (также называемой действи-

ем, action) и имеет определённое время жизни;
�� координация работает как фабрика координаторов и обладает своим

планировщиком;
�� каждый координатор обладает своим рабочим потоком и выступает фаб

рикой для:
	 –  координированных единиц планирования;
	 –  координированных источников данных и подписчиков.

 11 / 32

204    Ключевые элементы библиотеки RxCpp

В примерах реактивных программ из предыдущих разделов на самом деле
использовались планировщики, хотя их функционирование и сам факт су
ществования не был виден сквозь программный интерфейс. Напишем теперь
простую программу, которая поможет понять, как планировщик работает «под
капотом».
#include "rxcpp/rx.hpp"
int main() {
 // получить координацию
 auto coordination = rxcpp::serialize_new_thread();

 // создать рабочий поток из координации
 auto worker = coordination.create_coordinator().get_worker();

 // создать действие
 auto sub_action = rxcpp::schedulers::make_action(
 [] (const rxcpp::schedulers::schedulable&) {
 printf("Action Executed in Thread # : %d\n",
 std::this_thread::get_id());
 });

 // создать единицу планирования –
 // привязать действие к рабочему потоку
 auto scheduled = rxcpp::schedulers
 ::make_schedulable(worker, sub_action);
 // запланировать единицу на выполнение
 scheduled.schedule();

 return 0;
}

В библиотеке RxCpp все операции, ожидающие на вход несколько потоков
данных, а также операции, имеющие отношение к физическому времени, в ка-
честве одного из аргументов принимают функцию координации. Вот некото-
рые из функций координации, поддерживаемых библиотекой:

�� identity_immediate();
�� identity_current_thread();
�� identity_same_worker(worker w);
�� serialize_event_loop();
�� serialize_new_thread();
�� serialize_same_worker(worker w);
�� observe_on_event_loop();
�� observe_on_new_thread().

В предыдущем примере мы своими руками создали и запланировали на вы-
полнение некоторое действие (заданное лямбда-выражением), точно выписав
все подробности этого. Теперь покажем более декларативные приёмы работы
с планировщиком. Напишем программу, которая ставит задачи на выполне-
ние, используя функцию координации.

 12 / 32

Планировщики    205

#include "rxcpp/rx.hpp"
int main()
{
 // функция координации
 auto coordination = rxcpp::identity_current_thread();
 // получить объект-координатор и создать рабочий поток
 auto worker = coordination.create_coordinator().get_worker();
 // момент начала работы и периодичность операций
 auto start = coordination.now() +
 std::chrono::milliseconds(1);
 auto period = std::chrono::milliseconds(1);
 // создать наблюдаемый источник с возможностью повторения
 auto values = rxcpp::observable<>::interval(start,period)
 .take(5)
 .replay(2, coordination);
 // первая подписка с использованием рабочего потока
 worker.schedule([&] (const rxcpp::schedulers::schedulable&) {
 values.subscribe(
 [] (long v) {
 printf(
 "#1 -- %d : %ld\n",
 std::this_thread::get_id(),
 v);
 },
 [] () { printf("#1 --- OnCompleted\n");});
 });

 worker.schedule([&] (const rxcpp::schedulers::schedulable&) {
 values.subscribe(
 [] (long v) {
 printf(
 "#2 -- %d : %ld\n",
 std::this_thread::get_id(),
 v);
 },
 [] () { printf("#2 --- OnCompleted\n");});
 });

 // запустить генерацию значений
 worker.schedule([&](const rxcpp::schedulers::schedulable&) {
 values.connect();
 });

 // блокирующая подписка, чтобы дождаться результатов
 values.as_blocking().subscribe();

 return 0;
}

В этой программе создаётся горячий источник данных с возможностью по-
втора сгенерированных данных для поздних подписчиков. Также создаётся
рабочий поток, чтобы система могла ставить на выполнение обработку данных

 13 / 32

206    Ключевые элементы библиотеки RxCpp

по подпискам и присоединять наблюдателей к наблюдаемым источникам. Тем
самым программа демонстрирует работу планировщиков в библиотеке RxCpp.

Методы observe_on и subscribe_on
Операции observe_on и subscribe_on ведут себя несколько различным образом,
что часто становится источником недоразумений для тех, кто делает первые
шаги в реактивном программировании. Операция observe_on влияет на поток,
в котором выполняются операции и наблюдатели, расположенные «ниже по
течению» в графе маршрутизации данных. Операция же subscribe_on влияет на
обработчики данных как выше, так и ниже по течению. Следующая программа
демонстрирует тонкое различие в поведении этих методов. Сначала напишем
программу с использованием операции observe_on.
#include "rxcpp/rx.hpp"
int main(){
 // идентификатор главного потока
 printf("Главный поток: %d\n",
 std::this_thread::get_id());

 // операция map выполняется в главном потоке,
 // подписчик работает в новом потоке
 rxcpp::observable<>::range(0,15)
 .map([] (int i) {
 printf(
 "Map %d: %d\n",
 std::this_thread::get_id(),
 i);
 return i;
 })
 .take(5)
 .observe_on(rxcpp::synchronize_new_thread())
 .subscribe([&](int i){
 printf(
 "Sub %d : %d\n",
 std::this_thread::get_id(),
 i);
 });

 // выждать две секунды
 rxcpp::observable<>
 ::timer(std::chrono::milliseconds(2000))
 .subscribe([] (long) { });

 return 0;
}

Результат выполнения этой программы будет таким:
Главный поток: 1
Map 1: 0
Map 1: 1

 14 / 32

Планировщики    207

Sub 2: 0
Map 1: 2
Sub 2: 1
Map 1: 3
Sub 2: 2
Map 1: 4
Sub 2: 3
Sub 2: 4

Этот текст ясно показывает, что операция map отрабатывает в главном по-
токе программы, тогда как подписанная на данные лямбда-функция ставится
на выполнение в новом потоке. Отсюда очевидно, что применение метода ob-
serve_on влияет на диспетчеризацию только следующих после неё операций.
Теперь посмотрим, как изменится поведение программы, если заменить ме-
тод observe_on на метод subscribe_on.
#include "rxcpp/rx.hpp"
int main(){
 // идентификатор главного потока
 printf("Главный поток: %d\n",
 std::this_thread::get_id());

 // операция map и подписчик
 // работают в новом потоке
 rxcpp::observable<>::range(0,15)
 .map([] (int i) {
 printf(
 "Map %d: %d\n",
 std::this_thread::get_id(),
 i);
 return i;
 })
 .take(5)
 .subscribe_on(rxcpp::synchronize_new_thread())
 .subscribe([&](int i){
 printf(
 "Sub %d : %d\n",
 std::this_thread::get_id(),
 i);
 });

 // выждать две секунды
 rxcpp::observable<>
 ::timer(std::chrono::milliseconds(2000))
 .subscribe([] (long) { });

 return 0;
}

Данная программа печатает на консоль следующий текст:
Главный поток: 1
Map 2: 0

 15 / 32

208    Ключевые элементы библиотеки RxCpp

Map 2: 1
Sub 2: 0
Map 2: 2
Sub 2: 1
Map 2: 3
Sub 2: 2
Map 2: 4
Sub 2: 3
Sub 2: 4

Легко видеть, что обе функции, и преобразователь данных, и подписчик,
отработали в отдельном потоке. Этот пример отчётливо демонстрирует, что
метод subscribe_on устанавливает поток выполнения для всех операций, встре-
чающихся на текущем маршруте данных.

Планировщик с циклом выполнения run_loop
Библиотека RxCpp не содержит встроенного планировщика, который ставит
все задачи на выполнение в главном потоке. Однако хорошего приближения
к такому поведению можно добиться, воспользовавшись классом планиров-
щика run_loop. В следующем примере источник данных работает в фоновом по-
токе, а функция-подписчик выполняется в главном потоке программы. Чтобы
добиться такого поведения, используются методы observe_on и subscribe_on.
#include "rxcpp/rx.hpp"
int main() {
 // идентификатор главного потока
 printf("Главный поток %d\n", std::this_thread::get_id());

 // объект-планировщик, выполняющий
 // свой цикл обработки в главном потоке
 rxcpp::schedulers::run_loop rlp;

 // координация
 auto main_thread = rxcpp::observe_on_run_loop(rlp);
 // рабочий поток
 auto worker_thread = rxcpp::synchronize_new_thread();
 // объект-подписка
 rxcpp::composite_subscription scr;

 rxcpp::observable<>::range(0, 15)
 .map([] (int i) {
 // выполняется в рабочем потоке
 printf("Map %d: %d\n", std::this_thread::get_id(), i);
 return i;
 })
 .take(5)
 .subscribe_on(worker_thread)
 .observe_on(main_thread)
 .subscribe(scr, [&] (int i) {
 // выполняется в главном потоке

 16 / 32

Операции над потоками данных    209

 printf("Sub %d: %d\n", std::this_thread::get_id(), i);
 });

 //------------ Execute the Run Loop
 while (scr.is_subscribed() || !rlp.empty()) {
 while (!rlp.empty() && rlp.peek().when < rlp.now()) {
 rlp.dispatch();
 }
 }

 return 0;
}

Эта программа напечатает на консоль такой текст:
Главный поток: 1
Map 2: 0
Map 2: 1
Sub 1: 0
Sub 1: 1
Map 2: 2
Map 2: 3
Sub 1 : 2
Map 2: 4
Sub 1: 3
Sub 1: 4

Можно убедиться, что функция-преобразователь, которую операция map
применяет к каждому элементу потока данных, выполняется в рабочем пото-
ке, а функции-подписчики работают в главном потоке программы. Это достиг-
нуто с помощью трюка с применением методов subscribe_on и observe_on одного
за другим – их свойства были рассмотрены в предыдущем разделе.

Операции над потоками данных
Операция над потоком данных – это сущность, которая применяет опреде-
лённую функцию к каждому элементу потока данных и образует тем самым
новый поток. При этом объекты данных, поступающие на вход, остаются неиз-
менными – операция представляет собой чистую функцию (в том смысле, ко-
торый этот термин имеет в парадигме функционального программирования).
В примерах программ, рассмотренных в предыдущих разделах, встречалось
множество разнообразных операций над потоками. В главе 9 будет показано,
как создавать собственные операции. Именно благодаря тому, что операция не
изменяет исходные данные, и становится возможным декларативное управле-
ние планировщиком. Операции над потоками данных в реактивном програм-
мировании можно разделить на следующие категории:

�� операции создания потоков;
�� операции преобразования данных;
�� операции фильтрации;

 17 / 32

210    Ключевые элементы библиотеки RxCpp

�� операции комбинирования данных;
�� операции обработки ошибок;
�� вспомогательные операции;
�� логические операции;
�� математические операции.

Кроме того, есть несколько операций, не подпадающих ни под одну из этих
категорий. Сделаем краткий обзор важнейших операций каждой категории.

Операции создания потоков
К этой разновидности относятся операции, которые помогают создавать
разнообразные наблюдаемые источники с теми или иными данными. Выше
приводились примеры использования функций create, from, interval и range.
Рекомендуем читателю освежить в памяти эти примеры, а также обратиться
к документации по библиотеке RxCpp за более подробной информацией. Крат-
кая сводка этой группы операций дана в следующей таблице.

Имя Описание
create Создаёт наблюдаемый источник, который для каждого нового подписчика выполняет

определённую функцию (как правило, вызывает методы подписчика в определённой
последовательности)

defer Создаёт промежуточный объект-источник, который при подключении каждого нового наблю-
дателя выполняет определённую фабричную функцию для создания настоящего источника

empty Создаёт источник, который не выдаёт никаких данных и сразу сообщает о завершении
потока данных

from Создаёт источник, который в качестве своих данных выдаёт значения, переданные через
аргументы

interval Создаёт источник, который в качестве своих данных выдаёт значения из определённого
диапазона

just Создаёт источник, который выдаёт единственное значение
range Создаёт источник, данные для которого берутся из диапазона итераторов (в частности,

из контейнера)
never Создаёт источник, который никогда ничего не выдаёт (ни данных, ни признака завершения

потока)
repeat Создаёт источник, который бесконечно повторяет определённую последовательность

значений
timer Создаёт источник, который выдаёт значение после заданного промежутка времени
throw Создаёт источник, который выдаёт только сигнал ошибки

Операции преобразования данных
Эта группа операций позволяет создать новый наблюдаемый источник на ос-
нове данных из другого источника. Исходный источник при этом изменений
не претерпевает. К каждому элементу исходного потока применяется некото-
рая функция-преобразователь.

 18 / 32

Операции над потоками данных    211

Имя Описание
buffer Данные нового источника – это смежные, непересекающиеся, ограниченные по длине

«пачки» данных исходного источника
flat_map К каждому элементу x исходного потока применяется функция, возвращающая поток новых

значений y; затем к каждой паре (x, y) применяется ещё одна функция и из возвращаемых
ею значений формируется поток результатов

group_by Элементы нового источника – это группы значений из исходного источника, выделенных
по определённому ключу

map Элементы нового источника – результаты применения определённой функции к элементам
исходного источника

scan Элементы нового источника – результаты последовательных применений
функции-аккумулятора

window Элементы нового источника – в свою очередь, источники данных, содержащие смежные,
непересекающиеся, ограниченные по длине «пачки» данных исходного источника

Операции фильтрации
Возможность фильтровать потоки данных – это одна из наиболее часто встре-
чающихся задач. Естественно, что библиотека RxCpp содержит множество
операций для фильтрации данных. Критерии фильтрации обычно задаются
функциями-предикатами или лямбда-выражениями. Некоторые наиболее ин-
тересные фильтры показаны в таблице.

Имя Описание
debounce Элемент попадает в выходной поток, если в течение определённого промежутка

времени исходный источник данных не генерировал никаких данных
distinct В выходной поток попадают только различающиеся между собой значения

из входного потока
element_at В выходной поток попадает значение, стоящее во входном потоке под заданным

номером
filter В выходной поток попадают только те значения из входного потока, которые

удовлетворяют определённому предикату
first В выходной поток попадает только значение, поступившее из входного потока

первым
ignore_eleements В выходной поток попадает только сигнал окончания исходного потока
last В выходной поток попадает только значение, поступившее из входного потока

последним
sample В выходной поток попадают значения, поступившие из входного потока последними

в каждом периоде времени одинаковой длительности
skip В выходной поток попадают все значения из входного потока, за исключением

определённого числа значений в начале потока
skip_last В выходной поток попадают все значения из входного потока, за исключением

определённого числа значений в конце потока
take В выходной поток попадает только определённое число значений в начале потока
take_last В выходной поток попадает только определённое число значений в конце потока

 19 / 32

212    Ключевые элементы библиотеки RxCpp

Операции комбинирования данных
Одна из основных целей реактивной модели программирования состоит в том,
чтобы ослабить, насколько возможно, связь источника данных с наблюдате-
лем. Поэтому очевидна необходимость в промежуточных операциях, позво-
ляющих тем или иным способом соединять между собой несколько потоков
данных. В библиотеке RxCpp имеется ряд таких операций.

Имя Описание
combine_latest Когда очередной элемент поступает от какого-либо из двух источников, последние

значения от обоих источников комбинируются заданной функцией, и её результат
помещается в выходной поток

merge Слияние нескольких источников данных в один: значение, полученное от любого
источника-аргумента, попадает в выходной поток

start_with Помещает в выходной поток заданную последовательность значений, затем помещает
все значения из источника-аргумента

switch_on_next Превращает наблюдаемый источник данных, значения которого суть источники
данных, в свою очередь, в единый источник данных: в выходной поток помещаются
элементы, получаемые от элемента, полученного последним из источника источников

zip Комбинирует значения, получаемые от нескольких наблюдаемых источников, с помощью
заданной функции, и помещает в выходной поток возвращённые ею значения

Операции обработки ошибок
Поток, выдаваемый наблюдаемым источником, может содержать не только
данные и признак нормального завершения, но и сигнал ошибки. Следующие
операции позволяют организовать их обработку.

Имя Описание
catch Не поддерживается библиотекой RxCpp
retry Передавать на выход все данные, полученные из входного потока, пока он выдаёт данные;

если входной поток выдаёт ошибку, подключаться к нему заново (количество повторных
попыток ограничено)

Вспомогательные операции
В этой группе собраны разнообразные полезные инструменты для работы с ис-
точниками данных.

Имя Описание
finally Передать на выход без изменений все данные из входного потока, а после его

завершения выполнить определённое действие
observe_on Задать планировщик, посредством которого должна быть организована доставка

данных от наблюдаемого источника к наблюдателю
subscribe Подписать наблюдателя на оповещения от наблюдаемого источника
subscribe_on Задать планировщик, которым должен пользоваться наблюдаемый источник, когда

на него подписывается наблюдатель
scope Создать ресурс, поддерживающий операцию освобождения, время жизни которого

совпадает со временем работы наблюдаемого источника

 20 / 32

Операции над потоками данных    213

Логические операции
Операции из этой группы имеют дело с логическими значениями и провер
ками условий, а также управляют потоками данных в зависимости от этих
условий.

Имя Описание
all Выдать в выходной поток логическое значение «истина», если все элементы

входного потока удовлетворяют заданному предикату; в противном случае выдать
значение «ложь»

amb Передать на выход содержимое того из нескольких входных потоков, который
первым выдаст данные или сигнал завершения

contains Выдать в выходной поток логическое значение «истина», если во входном потоке
встретилось заданное значение

default_if_empty Если входной поток пуст, выдать в выходной поток заранее заданное значение
sequence_equal Выдать в выходной поток значение «истина», если оба входных потока завершаются

нормальным образом и выдают одни и те же значения; в противном случае выдать
в выходной поток значение «ложь»

skip_until Пропустить начальные элементы входного потока до первого элемента,
удовлетворяющего некоторому предикату

skip_while Пропустить начальные элементы входного потока, пока они удовлетворяют
некоторому предикату

take_until Передавать на выход элементы входного потока до первого элемента,
удовлетворяющего некоторому предикату

take_while Передавать на выход элементы входного потока, пока они удовлетворяют
некоторому предикату

Математические операции и агрегирование потоков
Эти операции работают с потоком значений как с одним целым и превращают
весь поток в единственное итоговое значение.

Имя Описание
average Вычислить среднее арифметическое элементов входного потока и выдать это значение

в выходной поток
concat Передать на выход содержимое обоих входных потоков, не допуская их перемешивания
count Подсчитать число элементов во входном потоке и выдать это число в выходной поток
max Определить наибольшее значение во входном потоке и выдать его в выходной поток
min Определить наименьшее значение во входном потоке и выдать его в выходной поток
reduce Выполнить свёртку всех значений из входного потока по бинарной операции и выдать

окончательный результат в выходной поток
sum Подсчитать сумму значений из входного потока и выдать её в выходной поток

Операции для управления подключениями
К этой группе относятся операции, которые позволяют тонко настраивать по-
ведение наблюдаемых источников данных при подписке.

 21 / 32

214    Ключевые элементы библиотеки RxCpp

Имя Описание
connect Запустить генерацию данных наблюдаемым источником
publish Преобразовать обычный наблюдаемый источник в источник с управляемыми подключениями
ref_count Преобразовать наблюдаемый источник с управляемыми подключениями в обычный

источник
replay Обеспечить доставку всем подписчикам (даже подключившимся позже) одних и тех же

данных

Итоги
Эта глава призвана привести читателя к пониманию того, как различные ча-
сти библиотеки RxCpp и отдельные элементы реактивной модели программи-
рования вместе образуют целостную картину. Главу открывал разговор о на-
блюдаемых источниках данных, затем рассматривались особенности горячих
и холодных источников. Далее речь шла о механизме подписки и способах его
использования. В следующем разделе рассказывалось об объектах-темах, ко-
торые сочетают в себе свойства наблюдаемого источника и наблюдателя, в том
числе об их разновидностях, поддерживающих дополнительную функцио-
нальность. Затем следовал разбор важной темы – планировщиков и способов
их тонкой настройки. Завершал главу обзор основных категорий операций,
поддерживаемых в библиотеке RxCpp. В следующей главе читатель узнает, как
применить все эти сведения для разработки реальных программ с графиче-
ским интерфейсом пользователя на основе библиотеки Qt.

 22 / 32

Глава 9
Реактивное

программирование
графических интерфейсов

на основе каркаса Qt

Каркас Qt (произносится «кьют» как английское слово «cute», означающее
как «находчивый, остроумный», так и «миловидный») предоставляет про-
граммисту целую экосистему для создания на языке C++ кроссплатфор-
менных и многоплатформенных приложений с графическим интерфейсом.
Если при создании программ ограничить себя исключительно переносимым
ядром библиотеки, можно извлечь немалую выгоду, написав приложение
один раз и затем компилируя его для каких угодно платформ, – в этом со-
стоит поддерживаемая библиотекой парадигма. Впрочем, библиотека Qt по-
зволяет использовать и специфические возможности отдельных платформ –
например, при написании приложений для ОС Windows поддерживается
технология ActiveX.

Нередко библиотека Qt оказывается предпочтительнее библиотеки MFC,
даже если приложение создаётся только для ОС Windows. Это вполне объяс-
няется сочетанием крайней простоты программирования (для работы нужно
довольно небольшое подмножество языка C++) с необычайным богатством
возможностей. Целью разработчиков каркаса Qt изначально была, конечно
же, кроссплатформенная разработка приложений. Переносимость приложе-
ний между платформами, не требующая модификации их кода, разнообразие
возможностей, открытый исходный код самой библиотеки, а также наличие
подробной, постоянно обновляемой документации делают этот каркас чрез-
вычайно удобным для программистов. Всё это обеспечило каркасу Qt процве-
тание на протяжении почти четверти столетия – с момента выпуска его первой
версии в 1995 г.

 23 / 32

216    Реактивное программирование графических интерфейсов на основе каркаса Qt

Каркас Qt предоставляет программистам единую и всеохватывающую сре-
ду для создания разнообразных приложений: так, поддерживаются графиче-
ские интерфейсы пользователя, программный интерфейс к движку WebKit для
отображения веб-страниц, обработка мультимедийных данных, интерфейс
к файловой системе, технология OpenGL и многое другое. Рассказ обо всех
возможностях этой замечательной системы потребовал бы отдельной книги.
Задача настоящей главы – представить краткое введение в разработку реак-
тивных приложений с графическим пользовательским интерфейсом на основе
каркаса Qt и библиотеки RxCpp. Основы реактивной модели программирова-
ния были изучены ранее в главах 7 и 8. Пришло время применить изученное
на практике! Библиотека Qt обладает собственной хорошо продуманной систе-
мой обработки событий, и читателю нужно сначала хорошо изучить эти её осо-
бенности, чтобы затем добавить к ним возможности библиотеки RxCpp. В этой
главе будут рассмотрены следующие вопросы:

�� вводный курс разработки графических интерфейсов пользователя с ис-
пользованием каркаса Qt;

�� программа «Здравствуй, мир» на основе библиотеки Qt;
�� модель обработки событий в каркасе Qt: сигналы, слоты и метаобъект-

ный компилятор;
�� интеграция библиотеки RxCpp с моделью событий библиотеки Qt;
�� создание собственных операций над потоками данных средствами биб

лиотеки RxCpp.

Введение в программирование интерфейсов пользователя
на основе каркаса Qt
Каркас Qt предназначен для разработки кроссплатформенных приложений, то
есть позволяет создавать программы, одинаково хорошо компилирующиеся
в исполняемый код для различных платформ, не требующие для этого моди-
фикации исходного кода и работающие с такой же производительностью, как
и приложения, специально написанные под конкретную платформу. Помимо
приложений с графическим интерфейсом пользователя, эта система бывает
полезна и для написания консольных приложений с интерфейсом командной
строки, но всё же основное её предназначение – это создание графических ин-
терфейсов.

Приложения, основанные на библиотеке Qt, обычно пишутся на языке C++,
однако существуют интерфейсы привязки к другим языкам. Данная библиоте-
ка позволяет справиться со многими трудностями, характерными для разра-
ботки на языке C++, благодаря многообразному интерфейсу прикладного про-
граммирования и мощным инструментам разработки. Каркас Qt поддерживает
множество компиляторов (и связанных с ними инструментальных наборов),
включая компиляторы GCC, clang и Visual C++. Система Qt также предоставляет
разработчикам инструмент Qt Quick для разработки логики взаимодействия

 24 / 32

Введение в программирование интерфейсов пользователя на основе каркаса Qt    217

пользователя с приложением, включающий в себя язык QML – декларативный
язык сценариев, предназначенный для моделирования визуальных интерфей-
сов и основанный на языке ECMAScript. Всё это значительно упрощает быструю
разработку приложений для мобильных платформ, причём та же самая логика
может быть написана вручную, если требуется максимально возможная произ-
водительность. Совместное использование языков ECMAScript и C++ позволяет
сочетать простоту декларативного стиля с высокой производительностью.

Каркас Qt в настоящее время разрабатывается и поддерживается компанией
Qt Company. Данное ПО доступно как под открытой, так и под коммерческой
лицензией. В первых версиях библиотеки использовались собственная графи-
ческая подсистема и набор визуальных элементов, что позволяло создавать
графические интерфейсы, выглядящие совершенно одинаково на различных
платформах, а также подражать внешнему виду любой платформы (напри-
мер, в системе GNU Linux получить графический интерфейс в стиле ОС Win-
dows). Это позволяло разработчикам легко переносить приложения между
платформами и свести к минимуму зависимость приложений от конкретных
платформ. Однако из-за несовершенства данного механизма в последующих
версиях библиотеки Qt перешли к использованию визуальных элементов целе-
вой платформы и соответствующих системных вызовов. Это решило проблемы,
возникавшие ранее с собственной графической подсистемой, но платой за это
стала потеря единого, независимого от целевой платформы внешнего вида при-
ложений. Библиотека Qt обладает превосходным программным интерфейсом
привязки для языка программирования Python, получившим название PyQt.

Есть несколько важных принципов, которые программисту нужно осмыс-
лить, прежде чем использовать библиотеку Qt в своей работе. В следующих
разделах будут кратко разобраны основы объектной модели, модель сигналов
и слотов, система обработки событий и система мета-объектов.

Объектная модель библиотеки Qt
Ключевыми критериями качества каркасов для создания графических интер-
фейсов являются как эффективность выполнения, так и гибкость вместе с вы-
соким уровнем абстракции. Объектная модель, встроенная в язык C++, обес
печивает крайне высокую эффективность, однако её статическая сущность
может оказаться обременительной в некоторых классах задач. Каркас Qt со-
единяет высокое быстродействие, присущее языку С++, с очень гибкой объект-
ной моделью. Важнейшие составные части библиотеки Qt – это:

�� механизм сигналов и слотов для общения объектов друг с другом;
�� механизм свойств объекта, поддерживающих чтение и запись зна

чений;
�� мощный аппарат событий, включая средства фильтрации событий;
�� таймеры с богатыми функциональными возможностями, обеспечиваю

щие плавную асинхронную работу графических интерфейсов прило
жения;

 25 / 32

218    Реактивное программирование графических интерфейсов на основе каркаса Qt

�� механизм интернационализации приложений с контекстно-зависи-
мым переводом;

�� собственная реализация умных указателей, которые автоматически
обнуляются при уничтожении объекта;

�� возможность динамического преобразования типов даже между раз-
ными библиотеками.

Большая часть этой функциональности реализована штатными средствами
языка С++ в виде классов, порождённых от базового класса QObject. Для реализа-
ции оставшихся элементов, таких как сигналы и слоты или механизм свойств,
требуется система метаобъектов, поддерживаемая особым инструментом –
компилятором метаобъектов (meta-object compiler, MOC), включённым
в состав каркаса Qt. Система метаобъектов представляет собой расширение
языка C++, которое делает его более приспособленным для программирова-
ния графических интерфейсов. Этот инструмент работает как предваритель-
ный компилятор, который генерирует вспомогательный код, основываясь на
специальных синтаксических конструкциях в исходном коде. Рассмотрим не-
которые классы, играющие важную роль в объектной модели библиотеки Qt.

Имя Описание
QObject Базовый класс для всех остальных классов библиотеки Qt
QPointer Шаблон умного указателя на объект класса, производного от класса QObject
QSignalMapper Класс, отвечающий за пересылку сигналов от известных отправителей
QVariant Тип-объединение наиболее важных типов данных
QMetaClassInfo Метаданные класса (т. е. объект-хранилище различной информации о каком-либо

классе)
QMetaEnum Метаданные о типе перечисления
QMetaMethod Метаданные о функции-члене класса
QMetaObject Метаданные об объекте
QMetaProperty Метаданные о свойстве
QMetaType Класс для управления именованными типами в системе метаобъектов
QObjectCleanupHandler Класс для управления временем жизни объектов классов, порождённых

от класса QObject

Объекты в библиотеке Qt обычно трактуются не как значения, а как иден-
тичности. Идентичности клонируются, а не копируются или присваиваются.
Клонирование – более сложная операция, чем копирование или присваивание
значений. По этой причине конструкторы копирования и операции присваи-
вания удалены из класса QObject и его подклассов.

Сигналы и слоты
Сигналы и слоты – это механизм, используемый в библиотеке Qt, чтобы орга-
низовать общение между объектами. Механизм сигналов и слотов занимает
центральное место в архитектуре библиотеки Qt и особенно важен для програм-
мирования графических интерфейсов. С помощью этого механизма элементы

 26 / 32

Введение в программирование интерфейсов пользователя на основе каркаса Qt    219

визуального интерфейса получают оповещения об изменениях, происходящих
в других элементах интерфейса. Вообще говоря, этот механизм обеспечивает
общение любых объектов, наследующих класс QObject. Например, когда пользо-
ватель нажимает мышью на кнопку Закрыть, об этом приходит оповещение,
а его обработка автоматически вызывает метод close объекта-окна.

Механизм сигналов и слотов представляет собой альтернативу традици-
онной для программирования на языках C и C++ технике функций обратного
вызова. Объект испускает сигнал всякий раз, когда происходит определённое
событие. Все классы визуальных элементов управления в каркасе Qt обладают
предопределёнными сигналами. Кроме того, разработчик может создать свой
класс визуального элемента, порождённый от библиотечного класса, и объ
явить в нём новые сигналы. Слотом называется специальная функция-обра-
ботчик, которая автоматически вызывается в ответ на сигнал. Как и в случае
сигналов, классы визуальных элементов обладают множеством предопреде-
лённых слотов, но разработчик может добавлять в порождённых классах и свои
слоты и подписывать их на те или иные сигналы.

На следующей диаграмме, взятой из официальной документации по библио
теке Qt (http://doc.qt.io/archives/qt-4.8/signalsandslots.html), показано, как проис-
ходит общение объектов через сигналы и слоты.

Сигналы и слоты представляют собой механизм коммуникации с чрезвы-
чайно слабой связью между участниками: класс, испускающий сигнал, ничего
не знает о слотах (возможно, нескольких), которые его примут. Этот механизм
представляет собой прекрасный пример систем, работающих по принципу
«выстрели и забудь». Внутренние механизмы библиотеки гарантируют, что

 27 / 32

http://doc.qt.io/archives/qt-4.8/signalsandslots.html

220    Реактивное программирование графических интерфейсов на основе каркаса Qt

если сигнал соединён со слотом, этот слот автоматически будет вызван с нуж-
ными аргументами и в нужный момент времени. Как сигналы, так и слоты
могут принимать сколько угодно параметров каких угодно типов. Механизм
в целом превосходно обеспечивает корректную работу с типами. Для связыва-
ния сигнала со слотом их сигнатуры должны полностью совпадать – поэтому
ошибки несоответствия типов может обнаружить компилятор.

Все классы, порождённые от класса QObject прямо или косвенно (т. е. от его
подклассов, как, например, класс QWidget), могут обладать сигналами и слота-
ми. Сигналы могут испускаться объектом, когда в нём происходит изменение,
которое может представлять интерес для других объектов. При этом сам объ-
ект не обязан знать, есть ли у этого сигнала получатели. К одному сигналу мо-
жет подключиться сколь угодно много слотов. Подобным же образом к одному
слоту можно подключить сколько угодно сигналов (возможно, от разных объ-
ектов-источников). Можно даже подключить сигнал к другому сигналу, строя
тем самым цепочки сигналов.

Таким образом, система сигналов и слотов образует чрезвычайно гибкий
и расширяемый механизм программирования.

Подсистема событий
События, как они понимаются в каркасе Qt, происходят в самом приложении
или вследствие действий пользователя, о которых приложению следует знать.
События представлены объектами класса QEvent и порождённых от него под-
классов. Получать и обрабатывать события может объект любого класса, по-
рождённого от класса QObject, но особенно это характерно для классов визуаль-
ных элементов интерфейса.

Всякий раз, когда происходит событие, создаётся экземпляр соответствую-
щего подкласса класса QEvent, затем он передаётся адресату – объекту класса
QObject (или его подкласса) – путём вызова его метода event. Сам по себе этот
метод не обрабатывает событие. Вместо этого он, исходя из фактического типа
объекта-события, вызывает функцию-обработчик, наиболее подходящую для
этого типа, и возвращает логическое значение «истина». Если же подходяще-
го обработчика не нашлось, событие игнорируется, а метод event возвращает
значение «ложь».

Некоторые события (например, события классов QCloseEvent и QMoveEvent)
проистекают из самого приложения; некоторые другие, как события QMou-
seEvent и QKeyEvent, приходят от оконной системы; прочие же – скажем, событие
QTimerEvent, возникают из иных источников. Большинство событий оформляет-
ся в виде подклассов класса QEvent, в которых имеются поля данных и методы,
выражающие специфические для этого типа событий параметры и поведение.
Например, в классе QMouseEvent имеются методы x и y, с помощью которых объ-
ект-адресат может узнать положение указателя мыши.

Каждый объект-событие содержит целочисленный идентификатор, характе-
ризующий тип события, который можно получить с помощью метода type – им

 28 / 32

Введение в программирование интерфейсов пользователя на основе каркаса Qt    221

удобнее всего пользоваться во время выполнения программы, чтобы быстро
выяснить, каков фактический класс объекта-события.

Обработчики событий
В общем случае обработка событий осуществляется путём вызова подходящих
виртуальных функций-обработчиков. Именно эти виртуальные функции от-
ветственны за правильные действия в ответ на то или иное событие. Если вир-
туальная функция, реализованная в специфическом подклассе, отвечает лишь
за часть необходимой обработки, может понадобиться обращение к реализа-
ции из базового класса.

В следующем примере показан метод специфического, созданного програм-
мистом класса визуального элемента, который обрабатывает исключительно
щелчки левой кнопкой мыши. Нажатия всех остальных кнопок отправляются
для обработки базовому классу QLabel.

void my_QLabel::mouseMoveEvent(QMouseEvent *e) {
 if (e->button() == Qt::LeftButton) {
 // нажатия левой кнопкой обрабатывать здесь
 qDebug() << "X: " << e->x() << "Y: " << e->y() << "\n";
 }
 else {
 // нажатия остальных кнопок оставить базовому классу
 QLabel::mouseMoveEvent(e);
 }
}

Если разработчик порождённого класса хочет полностью подменить всю
функциональность базового, он должен реализовать в виртуальной функции
все возможные случаи события. Если же требуется лишь расширить поведе-
ние базового класса, можно реализовать своими руками лишь интересующие
аспекты поведения, а обработку всех прочих случаев делегировать базовому
классу.

Отправка событий
Во многих приложениях, основанных на каркасе Qt, бывает нужно генери-
ровать собственные типы событий и обрабатывать их наравне с событиями,
встроенными в каркас. Это несложно сделать: достаточно создать экземпляр
своего класса события и послать его на обработку посредством методов send-
Event или postEvent класса QCoreApplication.

Метод sendEvent выполняется синхронно: он немедленно выполняет обра-
ботку события. У всех событий есть метод isAccepted, который позволяет узнать,
было ли это событие принято или отвергнуто последним из вызванных для
него обработчиков.

Метод postEvent работает асинхронно. Он помещает объект-событие в оче-
редь для последующей обработки. На следующей итерации главного цикла об-

 29 / 32

222    Реактивное программирование графических интерфейсов на основе каркаса Qt

работки событий накопленные в очереди события направляются на обработку
с некоторыми оптимизациями. Например, если в очередь добавлено несколь-
ко событий типа «размер окна изменён», то на обработку отправляется лишь
одно, соответствующее окончательному размеру окна, что позволяет избежать
многократной перерисовки содержимого окна.

Система метаобъектов
Система метаобъектов составляет основу для реализации механизма сигна-
лов и слотов, механизма динамических свойств объекта и рефлексии – работы
с информацией о типах и времени выполнения.

Система метаобъектов опирается на три ключевых элемента:
�� класс QObject – общий предок всех классов, для которых предполагается

использовать механизмы метаобъектов;
�� макрос Q_OBJECT, который нужно вписать в объявление класса, в нём за-

работали метаобъектные механизмы;
�� метаобъектный компилятор MOC, который для каждого класса, порож-

дённого от класса QObject, генерирует код реализации его метаобъектной
функциональности.

Метаобъектный компилятор MOC отрабатывает до того, как исходный код
поступает собственно компилятору с языка C++. Встретив в исходном коде ка-
кого-либо класса макрос Q_OBJECT, компилятор MOC создаёт ещё один исход-
ный файл с реализацией метаобъектной функциональности для этого класса.
Затем обычный компилятор языка C++ обрабатывает модули, созданные раз-
работчиком, и эти сгенерированные метаобъектным компилятором файлы.

Программа «Здравствуй, мир» на основе библиотеки Qt
Пора заняться разработкой графического приложения на языке С++ с исполь-
зованием каркаса Qt. Для того чтобы продолжить изучение следующих разде-
лов, читателю рекомендуется загрузить библиотеку, инструментарий и инте-
грированную среду разработки Qt Creator с официального сайта (https://www.
qt.io/download). Примеры, приведённые далее в этой главе, полностью подпа-
дают под условия открытой лицензии LGPL и состоят исключительно из кода
на языке C++, который читатель может ввести вручную. Каркас Qt в целом
разработан интуитивно понятным и приятным в использовании, чтобы целое
приложение можно было создать, набирая код вручную, без использования ин-
тегрированной среды разработки.

	 Система Qt Creator представляет собой кроссплатформенную интегрированную среду
разработки для языков C++, JavaScript и QML и входит, как часть инструментария раз-
работки графических приложений, в состав каркаса Qt. Эта среда разработки содержит
отладчик и встроенный визуальный редактор графических интерфейсов. Возможности
редактора исходных текстов включают подсветку синтаксиса и автоматическое допол-
нение. В системах GNU Linux и FreeBSD среда Qt Creator использует компилятор из кол-

 30 / 32

https://www.qt.io/download
https://www.qt.io/download

Программа «Здравствуй, мир» на основе библиотеки Qt    223

лекции GCC. В системе Windows среда при стандартной инсталляции может использо-
вать компиляторы MinGW или MSVC, также при компиляции среды из исходного кода её
можно настроить на использование отладчика Microsoft Console Debugger. Ещё можно
настроить среду на использование компилятора clang. За более подробной информаци-
ей отсылаем к Википедии (https://en.wikipedia.org/wiki/Qt_Creator).

Начнём с простой программы «Здравствуй, мир», которая создаёт и отобра-
жает на экране окно со статическим текстом.
#include <QApplication>
#include <QLabel>

int main(int argc, char **argv) {
 QApplication app(argc, argv);
 QLabel label("Здравствуй, мир Qt!");
 label.show();
 return app.exec();
}

В этой программе используются два заголовочных файла: QApplication и QLa-
bel. Имена заголовочных файлов в библиотеке Qt всегда совпадают с имена-
ми классов, что чрезвычайно удобно. Класс QApplication отвечает за управле-
ние ресурсами приложения. В каждом приложении, основанном на каркасе
Qt, должен быть ровно один объект этого класса. Его конструктор принимает
переданные программе параметры командной строки, а метод exec запускает
главный цикл обработки событий.

	 Цикл обработки событий выполняется постоянно, пока работает приложение, и отвечает
за постановку событий в очередь, выборку их из очереди в соответствии с приоритетами
и отправку объектам для обработки. В приложениях, построенных по принципу обра-
ботки событий, часть функциональности обычно бывает реализована в виде пассивного
интерфейса и вызывается исключительно в ответ на определённые события. Обычно
цикл обработки событий продолжает свою работу до тех пор, пока не происходит пре-
рывающее событие – например, пока пользователь не нажмёт на кнопку закрытия глав-
ного окна приложения.

Класс QLabel – простейший из визуальных элементов в библиотеке Qt. Это
текстовая метка, т. е. окно (возможно, дочернее для другого окна) с текстом.
В этом примере текстовая метка при инициализации получает текст «Здрав-
ствуй, мир Qt!». Когда данное приложение вызывает метод show этого объекта,
текстовая метка отображается на экране. В данном случае она является глав-
ным окном приложения, поэтому обладает собственной рамкой, заголовком
и кнопками минимизации, максимизации и закрытия.

Для того чтобы собрать это приложение, помимо исходного текста на языке
C++, нужен ещё файл проекта – оформленное на особом языке описание того,
из каких исходных файлов проект состоит и как их компилировать. Чтобы соз-
дать файл проекта и собрать приложение, нужно выполнить следующие дей-
ствия:

 31 / 32

https://en.wikipedia.org/wiki/Qt_Creator

224    Реактивное программирование графических интерфейсов на основе каркаса Qt

�� создать директорию для проекта и сохранить файл с исходным кодом на
языке C++ в эту директорию;

�� открыть консоль и проверить версию установленной в системе утили-
ты qmake (часть инструментария Qt) с помощью команды qmake -v. Если
система не может найти эту утилиту, нужно добавить её расположение
в файловой системе к переменной среды PATH;

�� перейти в директорию проекта, т. е. сделать её текущей директорией,
и выполнить команду qmake -project. Это приведёт к созданию файла про-
екта, который имеет расширение .pro;

�� открыть файл проекта и после имеющегося в нём слова INCLUDEPATH до-
бавить следующий текст:
INCLUDEPATH += .
QT += widgets

�� запустить утилиту qmake без параметров командной строки. На основе
файла проекта будет создан make-файл с подробными правилами сборки
приложения;

�� запустить утилиту make (или, в зависимости от текущей платформы, за-
меняющие её утилиты nmake или gmake) – это приведёт к сборке прило
жения;

�� теперь можно запустить приложение – на экране появится небольшое
окно с приветствием;

�� если позднее вносятся изменения в исходный код уже имеющихся ис-
ходных файлов, для построения приложения нужно повторить лишь
шаг 6. Если в проект добавлены новые исходные файлы, нужно вписать
их в файл проекта и повторить с шага 5.

	 Эта пошаговая инструкция годится для подготовки и сборки практически любых прило-
жений, основанных на каркасе Qt, могут лишь различаться изменения, вносимые в файл
проекта. Всюду далее этой главе при разборе примеров фраза «сконфигурировать, по-
строить и запустить» означает именно эту последовательность шагов.

Прежде чем переходить к более сложным и интересным примерам, давайте
немного позабавимся. Изменим в исходном коде строку, в которой инициали-
зируется объект класса QLabel, следующим образом:
QLabel label("<h2><i>Здравствуй, мир</i> Qt!<h2>");

Затем заново соберём и запустим приложение. Как показывает этот пример,
библиотека Qt позволяет легко менять внешний вид пользовательского интер-
фейса с помощью языка разметки HTML.

В следующем разделе будет показано, как обрабатывать события и как ис-
пользовать механизм сигналов и слотов для обмена информацией между объ-
ектами.

Powered by TCPDF (www.tcpdf.org)

 32 / 32

События, сигналы и слоты на примере    225

События, сигналы и слоты на примере
В этот разделе нам предстоит создать приложение, которое обрабатывает со-
бытия от мыши, адресованные текстовой метке. Для этого понадобится расши-
рить стандартный обработчик событий от мыши, реализованный в классе QLa-
bel, породив от него свой подкласс. Окончательной обработкой этих событий
будет заниматься диалоговое окно, в котором размещена такая модифициро-
ванная текстовая область. Логика данного приложения в общих чертах такова.

�� Создать собственный класс my_QLabel, порождённый от встроенного в биб
лиотеку класса QLabel, и расширить в нём метод, ответственный за обра-
ботку событий от мыши (таких как перемещение мыши, нажатие кнопки
и выход указателя мыши за границы этого графического объекта).

�� Определить в классе my_QLabel собственные сигналы и испускать их, когда
происходят соответствующие события.

�� Создать собственный класс диалогового окна на основе библиотечного
класса QDialog, вручную назначить координаты и размеры размещённых
в нём графических элементов, включая и модифицированную текстовую
область, которая умеет обрабатывать события от мыши.

�� В этом классе определить слоты для обработки сигналов от визуально-
го объекта my_QLabel – пусть они отображают информацию в диалоговом
окне.

�� В главной функции приложения, после создания экземпляра класса QApp
lication, инициализировать диалоговое окно и запустить главный цикл
приложения.

�� Создать файл проекта, собрать приложение и запустить его.

Создание собственного визуального объекта
Начнём с объявления класса в заголовочном файле:
#ifndef MY_QLABEL_H
#define MY_QLABEL_H

#include <QLabel>
#include <QMouseEvent>

class my_QLabel : public QLabel
{
 Q_OBJECT
public:
 explicit my_QLabel(QWidget *parent = nullptr);

 void mouseMoveEvent(QMouseEvent *evt);
 void mousePressEvent(QMouseEvent* evt);
 void leaveEvent(QEvent* evt);

 int x, y;

 1 / 32

226    Реактивное программирование графических интерфейсов на основе каркаса Qt

signals:
 void Mouse_Pressed();
 void Mouse_Position();
 void Mouse_Left();
};

#endif // MY_QLABEL_H

Классы QLabel и QMouseEvent, которые используются в этом коде, объявлены
в одноимённых заголовочных файлах, директивы для их включения располо-
жены в начале кода. Класс my_QLabel сделан порождённым от класса QLabel, что
позволяет унаследовать поведение по умолчанию и переопределить только
то, что должно отличаться. Поскольку библиотечный класс QLabel порождён от
класса QObject, наш класс получает в наследство и механизмы обработки сиг-
налов.

Макрос Q_OBJECT в объявлении класса извещает метаобъектный компиля-
тор о том, что для нашего класса my_QLabel нужно сгенерировать специальный
код. Этот генерируемый код необходим для поддержки данным классом сигна-
лов и слотов, рефлексии и механизма динамических свойств.

Помимо конструктора, объявление этого класса содержит методы для обра-
ботки трёх событий от мыши: перемещение, нажатие кнопки и выход за грани-
цы визуального объекта. Кроме того, две общедоступные1 переменные-члена
целого типа содержат текущие координаты указателя мыши. Наконец, в сек-
ции signals объявлены три специфических сигнала, которыми данный объект
оповещает своих наблюдателей о каждом из трёх событий.

Рассмотрим теперь, как эти методы реализованы в соответствующем мо
дуле.
#include "my_qlabel.h"

my_QLabel::my_QLabel(QWidget *parent): QLabel(parent), x(0), y(0)
{}

void my_QLabel::mouseMoveEvent(QMouseEvent *evt)
{
 this->x = evt->x();
 this->y = evt->y();

 emit Mouse_Position();
}

Конструктор нашего класса принимает один аргумент, указатель на визуаль-
ный элемент интерфейса, родительский для данного объекта, – таково общее
правило, которому следуют все визуальные классы библиотеки Qt. Этот указа-

1	 Вряд ли нужно обосновывать крайнюю неудачность такого проектного решения.
Следовало бы снабдить сигнал Mouse_Position (как и соответствующий ему слот) двумя
аргументами. – Прим. перев.

 2 / 32

События, сигналы и слоты на примере    227

тель просто передаётся в конструктор базового класса. Кроме того, в конструк-
торе присваиваются начальные значения координатам мыши. В обработчике
события перемещения (mouseMoveEvent) значения этих переменных обновляют-
ся, затем объект испускает сигнал Mouse_Position. Позднее будет показано, как
объект диалогового окна соединяет этот сигнал со своим слотом и перерисо-
вывает своё содержимое.
void my_QLabel::mousePressEvent(QMouseEvent *evt)
{
 emit Mouse_Pressed();
}

void my_QLabel::leaveEvent(QEvent *evt)
{
 emit Mouse_Left();
}

Обработчик события mousePressEvent (нажатие кнопки мыши) генерирует
сигнал Mouse_Pressed, а обработчик события leaveEvent (выход указателя мыши
за границу визуального элемента) испускает сигнал Mouse_Left. Эти сигналы,
как будет показано далее, также подключены к соответствующим слотам диа-
логового окна, владеющего данным объектом, и эти слоты, в свою очередь,
вызывают перерисовку содержимого окна. Таким образом, создание собствен-
ного класса визуального элемента на основе библиотечного класса закончено.

Создание главного диалогового окна приложения
Теперь, когда класс текстовой области, способной реагировать на события
мыши, реализован, пора заняться классом диалогового окна, который управля-
ет расположением своих графических элементов и обрабатывает сигналы, ге-
нерируемые объектом класса my_QLabel. Начнём с заголовочного файла dialog.h.
#ifndef DIALOG_H
#define DIALOG_H

#include <QDialog>

class my_QLabel;
class QLabel;

class Dialog : public QDialog
{
 Q_OBJECT

public:
 explicit Dialog(QWidget *parent = 0);
 ~Dialog();

private slots:
 void Mouse_CurrentPosition();

 3 / 32

228    Реактивное программирование графических интерфейсов на основе каркаса Qt

 void Mouse_Pressed();
 void Mouse_Left();

private:
 void initializeWidgets();
 my_QLabel *label_MouseArea ;
 QLabel *label_Mouse_CurPos;
 QLabel *label_MouseEvents;
};

#endif // DIALOG_H

В этом фрагменте кода объявлен класс Dialog, порождённый от библио-
течного класса QDialog. Для классов QLabel и my_QLabel достаточно одних лишь
упреждающих объявлений, их полные объявления будут нужны только в мо-
дуле с реализацией диалогового окна. Как уже отмечалось выше, объявление
класса, участвующего в обмене сигналами (а также пользующегося рефлек-
сией и обладающего динамическими свойствами), должно содержать макрос
Q_OBJECT.

В классе диалогового окна, помимо конструктора и деструктора, объявлены
закрытые слоты, которые можно подключить к сигналам класса my_QLabel. Сло-
ты представляют собой обыкновенные методы, и их можно вызывать обыч-
ным способом, однако у слотов есть одна особенность: их можно подключать
к сигналам. Так, в данном примере слот Mouse_CurrentPosition можно подклю-
чить к сигналу Mouse_Position класса my_QLabel, который испускается из обра-
ботчика mouseMoveEvent. Подобным же образом слоты Mouse_Pressed и Mouse_Left
можно подключить к одноимённым событиям, которые генерируют, соответ-
ственно, обработчики mousePressEvent и leaveEvent.

Наконец, в закрытой секции этого класса объявлены поля-указатели на ви-
зуальные элементы, которыми владеет данное окно, и функция initializeWid-
gets, отвечающая за инициализацию и размещение этих элементов.

Реализация диалогового окна размещена в представленном ниже файле dia-
log.cpp.
#include "dialog.h"
#include "my_qlabel.h"
#include <QVBoxLayout>
#include <QGroupBox>

Dialog::Dialog(QWidget *parent): QDialog(parent)
{
 this->setWindowTitle("Обработка событий от мыши");
 initializeWidgets();

 connect(
 label_MouseArea,
 SIGNAL(Mouse_Position()),
 this,

 4 / 32

События, сигналы и слоты на примере    229

 SLOT(Mouse_CurrentPosition()));
 connect(
 label_MouseArea,
 SIGNAL(Mouse_Pressed()),
 this, SLOT(Mouse_Pressed()));
 connect(
 label_MouseArea,
 SIGNAL(Mouse_Left()),
 this,
 SLOT(Mouse_Left()));
}

В конструкторе устанавливается текст, отображающийся в заголовке диало-
гового окна. Затем вызывается функция initializeWidgets, о которой речь пой-
дёт вскоре. После этого три вызова функции connect соединяют сигналы, выда-
ваемые объектом label_MouseArea класса my_QLabel, с соответствующими слотами
класса Dialog.
void Dialog::Mouse_CurrentPosition()
{
 label_Mouse_CurPos->setText(
 QString("X = %1, Y = %2")
 .arg(label_MouseArea->x)
 .arg(label_MouseArea->y));
 label_MouseEvents->setText("Мышь движется");
}

Функция Mouse_CurrentPosition – это слот, на который поступают сигналы
о каждом перемещении мыши по объекту label_MouseArea класса my_QLabel. Эта
функция меняет текст, отображаемый в визуальном объекте label_Mouse_CurPos,
на новые значения координат мыши, а элементу label_MouseEvents устанавли-
вает текст «Мышь движется».
void Dialog::Mouse_Pressed()
{
 label_MouseEvents->setText("Нажата кнопка мыши");
}

Функция Mouse_Pressed – это слот, привязанный к сигналу, который выдаётся
всякий раз, когда пользователь нажимает кнопку мыши внутри объекта label_
MouseArea (нашего визуального элемента, отлавливающего события мыши). Эта
функция показывает в элементе label_MouseEvents диалогового окна сообщение
«Нажата кнопка мыши».
void Dialog::Mouse_Left()
{
 label_MouseEvents->setText("Мышь ушла");
}

Наконец, всякий раз, когда мышиный указатель выходит за границу ви
зуального объекта label_MouseArea, этот объект получает событие leaveEvent, об-

 5 / 32

230    Реактивное программирование графических интерфейсов на основе каркаса Qt

работчик которого испускает сигнал Mouse_Left, а он, в свою очередь, соединён
с одноимённым слотом диалогового окна. Функция-слот Mouse_Left меня-
ет текст в элементе label_MouseEvents диалогового окна на сообщение «Мышь
ушла».

Остаётся разобрать функцию initializeWidgets, которая создаёт дочерние ви-
зуальные элементы и размещает их в диалоговом окне.
void Dialog::initializeWidgets()
{
 label_MouseArea = new my_QLabel(this);
 label_MouseArea->setText("Площадка для мыши");
 label_MouseArea->setMouseTracking(true);
 label_MouseArea->setAlignment(
 Qt::AlignCenter|Qt::AlignHCenter);
 label_MouseArea->setFrameStyle(2);

В этом фрагменте создаётся объект label_MouseArea созданного нами класса
my_QLabel. Затем настраиваются его свойства: отображаемый текст, режим от-
слеживания событий от мыши в его области, выравнивание по центру окна
и толщина границы.
 label_Mouse_CurPos = new QLabel(this);
 label_Mouse_CurPos->setText("X = 0, Y = 0");
 label_Mouse_CurPos->setAlignment(
 Qt::AlignCenter|Qt::AlignHCenter);
 label_Mouse_CurPos->setFrameStyle(2);

 label_MouseEvents = new QLabel(this);
 label_MouseEvents->setText("Последнее событие");
 label_MouseEvents->setAlignment(
 Qt::AlignCenter|Qt::AlignHCenter);
 label_MouseEvents->setFrameStyle(2);

Похожим образом инициализируются и настраиваются два других визуаль-
ных элемента, это обычные текстовые поля библиотечного типа QLabel. В од-
ном из них будут отображаться координаты мыши, в другом – последнее полу-
ченное от неё событие.
 QGroupBox *groupBox = new QGroupBox("Мышиные новости", this);
 QVBoxLayout *vbox = new QVBoxLayout;
 vbox->addWidget(label_Mouse_CurPos);
 vbox->addWidget(label_MouseEvents);
 vbox->addStretch(0);
 groupBox->setLayout(vbox);

 label_MouseArea->move(40, 40);
 label_MouseArea->resize(280,260);
 groupBox->move(330,40);
 groupBox->resize(200,150);
}

 6 / 32

События, сигналы и слоты на примере    231

Под конец создаётся объект класса QVBoxLayout, который представляет собой
контейнер визуальных элементов, автоматически управляющий расположе-
нием своих элементов. Данный тип контейнера выстраивает все свои элемен-
ты по вертикали. Объекты label_Mouse_CurPos и label_MouseEvents добавляются
в этот контейнер. Создаётся визуальный объект – группа, ему устанавливается
текст заголовка, а в качестве содержимого группы устанавливается вертикаль-
ный контейнер. В последнюю очередь устанавливаются координаты и разме-
ры двух прямоугольных областей, из которых состоит диалоговое окно. Созда-
ние и конфигурирование внешнего вида окна окончено.

Запуск приложения
Теперь пора разобрать модуль main.cpp, который отвечает за создание
и отображение главного окна.

#include "dialog.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 Dialog dialog;
 dialog.resize(545, 337);
 dialog.show();
 return app.exec();
}

Этот код практически не отличается от кода приветственного приложения,
о котором шла речь ранее. Отличие состоит в том, что здесь создаётся экземп
ляр класса Dialog, подробно описанного в предыдущем разделе, а также уста-
навливается размер этого окна с помощью метода resize. Тем самым исходный
код приложения разобран полностью. Для его сборки и запуска понадобится
ещё файл проекта, который приведём здесь полностью.

QT += widgets

SOURCES += \
 main.cpp \
 dialog.cpp \
 my_qlabel.cpp

HEADERS += \
 dialog.h \
 my_qlabel.h

Теперь всё готово, чтобы собрать и запустить приложение. На экране по-
явится следующее диалоговое окно:

 7 / 32

232    Реактивное программирование графических интерфейсов на основе каркаса Qt

Если курсор мыши попадёт в панель, расположенную в левой части окна,
координаты мыши начнут отображаться в верхнем из двух текстовых полей,
расположенных справа, а в нижнем поле будет написано, что мышь движется.
Если нажать любую кнопку мыши, пока её указатель по-прежнему находится
в левой панели, сообщение об этом появится во втором текстовом поле. На-
конец, когда указатель мыши покидает панель, об этом также отображается
сообщение.

Из этого раздела читатель узнал, как средствами каркаса Qt создавать диа-
логовые окна, наполнять их визуальными элементами, управлять взаимным
расположением элементов и другими подобными вещами. Также было расска-
зано о тонкой настройке визуального элемента (в данном примере – поля со
статическим текстом) и о том, как обрабатывать системные события. Помимо
этого, было показано, как соединять объекты посредством сигналов и слотов,
объявленных самим разработчиком. Все эти сведения вместе взятые пригоди-
лись при разработке приложения, которое перехватывает события от мыши,
произошедшие в его окне, и отображает сведения об этих событиях.

Займёмся теперь разработкой другого приложения, которое тоже перехва-
тывает события от мыши, произошедшие в визуальном элементе, и отобра-
жает координаты указателя в другом элементе. Однако на этот раз обработка
события будет осуществляться по-другому: первоначально перехватываемые
средствами каркаса Qt, события будут проходить через механизмы подписки,
предоставляемые библиотекой RxCpp, а затем снова попадать в графические
объекты библиотеки Qt.

Интеграция библиотек RxCpp и Qt
В предыдущих разделах представлен беглый обзор каркаса Qt «с высоты
птичьего полёта». В частности, были разобраны средства обработки системных
событий и высокоуровневый механизм сигналов и слотов. В двух предыдущих

 8 / 32

Интеграция библиотек RxCpp и Qt    233

главах изучалась библиотека RxCpp и присущая ей модель программирования.
Среди прочего было рассмотрено множество полезных и интересных реактив-
ных операций.

Этот раздел посвящён разработке приложения, обрабатывающего события
от мыши, происходящие в визуальном элементе, как и приложение из пре-
дыдущего примера. Однако на этот раз вместо испускания сигналов в обра-
ботчике события будет использоваться подписка на низкоуровневые события
каркаса Qt средствами библиотеки RxCpp и последующая фильтрация потока
событий. События, оставшиеся после фильтрации, будут отправляться подпис-
чикам, снова в каркас Qt.

Реактивная фильтрация событий из каркаса Qt
Как уже отмечалось выше, каркас Qt обладает надёжным механизмом обра-
ботки системных событий. Нужно каким-то образом перекинуть мост между
концептуальными схемами библиотек Qt и RxCpp. Разбор нашего приложения
стоит начать с класса, который служит прослойкой между двумя событийными
механизмами (заголовочный файл rx_eventfilter.h).
#ifndef RX_EVENTFILTER_H
#define RX_EVENTFILTER_H

#include <rxcpp/rx.hpp>
#include <QEvent>

namespace rxevt
{
 // фильтр-транслятор событий
 class EventEater: public QObject
 {
 public:
 EventEater(
 QObject* parent,
 QEvent::Type type,
 rxcpp::subscriber<QEvent*> s) :
 QObject(parent),
 eventType(type),
 eventSubscriber(s)
 {}

 ~EventEater()
 {
 eventSubscriber.on_completed();
 }

Из библиотеки RxCpp подключается заголовочный файл rxcpp/rx.hpp, в ко-
тором содержатся объявления классов subscriber и observable, а из библиотеки
Qt нужен класс QEvent, объявленный в одноимённом файле. Всё, что объявлено
в файле rx_eventfilter.h, помещается в пространстве имён rxevt. Класс EventEat-

 9 / 32

234    Реактивное программирование графических интерфейсов на основе каркаса Qt

er фильтрует события, передавая на дальнейшую обработку только те, которые
имеют определённый тип, заданный при инициализации объекта, и игнори-
руя все остальные. Для этого служат два поля этого класса. Во-первых, это поле
eventSubscriber – реактивный подписчик, обрабатывающий данные типа QEvent.
Во-вторых, поле eventType, в котором хранится тип интересующих подписчика
событий.

В конструкторе класса EventEater происходит обращение к конструктору
базового класса – ему передаётся указатель на объект-владелец, чьи события
данный фильтр будет обрабатывать. Полям eventSubscriber и eventType присваи-
ваются начальные значения: реактивный подписчик, ответственный за даль-
нейшую обработку событий, и тип события, который нужно отбирать.
 bool eventFilter(QObject* obj, QEvent* event)
 {
 if(event->type() == eventType)
 {
 eventSubscriber.on_next(event);
 }

 return QObject::eventFilter(obj, event);
 }

Эта функция, определённая в базовом классе QObject, переопределена таким
образом, что отправляет событие реактивному подписчику в том случае, если
его тип совпадает с указанным при инициализации. Объект класса EventEater
получает на вход через функцию eventFilter события любых типов. Эта функ-
ция может запретить дальнейшую обработку события или отправить событие
объекту-адресату. Она возвращает значение «истина», если событие должно
быть отброшено, значение «ложь» означает разрешение на дальнейшую об-
работку.
 private:
 QEvent::Type eventType;
 rxcpp::subscriber<QEvent*> eventSubscriber;
 };

Теперь напишем вспомогательную функцию, которая позволяет любой объ-
ект из каркаса Qt преобразовать в наблюдаемый источник из библиотеки Rx-
Cpp.
 // функция-фабрика, создающая наблюдаемый источник событий
 rxcpp::observable<QEvent*> from(
 QObject* qobject,
 QEvent::Type type)
 {
 if(!qobject) return rxcpp::sources::never<QEvent*>();

 return rxcpp::observable<>::create<QEvent*>(
 [qobject, type](rxcpp::subscriber<QEvent*> s) {
 qobject->installEventFilter(

 10 / 32

Интеграция библиотек RxCpp и Qt    235

 new EventEater(qobject, type, s));
 }
);
 }

} // rxevt

#endif // RX_EVENTFILTER_H

Эта функция работает следующим образом. Механизм обработки сигналов
в библиотеке Qt позволяет назначить (с помощью метода installEventFilter)
некоторый объект (производный от класса QObject) предварительным фильт
ром событий, адресованных другому объекту (также производному от класса
QObject). Это весьма мощный инструмент. В нашем случае в качестве объек-
та-фильтра используется объект нашего класса EventEater. Таким образом,
функция from, получая на вход указатель qobject и интересующий тип событий,
создаёт наблюдаемый источник, который всякий раз при подключении наблю-
дателя создаёт объект-прослойку и устанавливает её фильтром событий для
объекта qobject.

Создание окна и размещение его элементов
Напишем теперь код, который создаёт окно с двумя расположенными на нём
визуальными элементами. Один из них будет следить за перемещением мыши,
как в предыдущем примере, а другой – отображать сведения о событиях, при-
ходящих от мыши, и её текущих координатах.

Модуль main.cpp удобно разделить на две части и рассматривать их по от-
дельности. Начнём с той из них, которая отвечает за создание и размещение
визуальных объектов.
#include <QApplication>
#include <QLabel>
#include <QWidget>
#include <QVBoxLayout>
#include <QMouseEvent>
#include "rx_eventfilter.h"

int main(int argc, char *argv[]) {
 QApplication app(argc, argv);
 // создать главное окно
 auto widget = std::unique_ptr<QWidget>(new QWidget());
 widget->resize(280,200);

 // создать и настроить область для отслеживания мыши
 auto label_mouseArea = new QLabel("Площадка для мыши");
 label_mouseArea->setMouseTracking(true);
 label_mouseArea->setAlignment(
 Qt::AlignCenter|Qt::AlignHCenter);
 label_mouseArea->setFrameStyle(2);

 // создать и настроить область для отображения сообщений

 11 / 32

236    Реактивное программирование графических интерфейсов на основе каркаса Qt

 auto label_coordinates = new QLabel("X = 0, Y = 0");
 label_coordinates->setAlignment(
 Qt::AlignCenter|Qt::AlignHCenter);
 label_coordinates->setFrameStyle(2);

Заголовочный файл rx_eventfilter.h был рассмотрен ранее – в нём нахо-
дится определение класса-прослойки, который перехватывает события, адре-
сованные какому-либо объекту, производному от класса QObject, и выступает
наблюдаемым источником, который можно сопрягать с другими средствами
библиотеки RxCpp. В отличие от предыдущего примера, в этой программе не
создаётся собственный класс диалогового окна – вместо этого просто создаёт-
ся объект библиотечного класса QWidget, затем на нём размещаются два визу-
альных элемента типа QLabel (статический текст), чьим размещением управ-
ляет вертикальный контейнер. Здесь же устанавливается начальный размер
главного окна. Кроме того, как и в предыдущем примере, для визуального
элемента, играющего роль площадки для мыши, устанавливается режим пере-
хвата событий.
 // настроить растяжимость элементов в контейнере
 label_mouseArea->setSizePolicy(
 QSizePolicy::Expanding, QSizePolicy::Expanding);
 label_coordinates->setSizePolicy(
 QSizePolicy::Expanding, QSizePolicy::Expanding);

 auto layout = new QVBoxLayout;
 layout->addWidget(label_mouseArea);
 layout->addWidget(label_coordinates);
 layout->setStretch(0, 4);
 layout->setStretch(1, 1);
 widget->setLayout(layout);

Здесь устанавливается растягивающая политика управления размером для
обоих элементов окна по обеим координатам. Однако площадка для мыши
и область сообщений обладают различной жёсткостью при растяжении.

Наблюдатели для различных типов событий
Вторая часть функции main осуществляет подписку реактивных наблюдателей
на три типа событий от мыши: события перемещения, нажатия и двойного
щелчка.
 // событие перемещения
 rxevt::from(label_mouseArea, QEvent::MouseMove)
 .subscribe([&label_coordinates](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(
 QString("Перемещение: X = %1, Y = %2")
 .arg(me->x())
 .arg(me->y()));
 });

 12 / 32

Интеграция библиотек RxCpp и Qt    237

Функция rxevt::from была создана нами и подробно рассмотрена выше.
На основе объекта из системы Qt она создаёт реактивный наблюдаемый ис-
точник событий одного определённого типа, заданного вторым аргументом.
Конкретно в этом фрагменте в реактивный источник преобразуется визуаль-
ный объект label_mouseArea, при этом отбираются исключительно события типа
QEvent::MouseMove. На получившийся наблюдаемый источник подписывается
функция-наблюдатель, которая меняет текст в области сообщений: теперь там
будет отображено, что последнее событие – это перемещение, и текущие коор-
динаты мыши.
 // событие щелчка
 rxevt::from(label_mouseArea, QEvent::MouseButtonPress)
 .subscribe([&label_coordinates](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(
 QString("Нажатие X = %1, Y = %2")
 .arg(me->x())
 .arg(me->y()));
 });

Этот фрагмент во всём подобен предыдущему, за исключением того, что
для второго реактивного источника отбираются события типа QEvent::Mouse
ButtonPress. Обработчик выводит текст о том, что произошедшее событие есть
нажатие, и координаты, в которых оно произошло.
 // событие двойного щелчка
 rxevt::from(label_mouseArea, QEvent::MouseButtonDblClick)
 .subscribe([&label_coordinates](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(
 QString("Двойной щелчок: X = %1, Y = %2")
 .arg(me->x())
 .arg(me->y()));
 });

 widget->show();
 return app.exec();
}

События типа QEvent::MouseButtonDblClick (двойной щелчок) обрабатываются
по той же схеме, что и два предыдущих, в обработчике отличается лишь текст
сообщения. Завершают функцию main отображение главного окна посредством
функции show и запуск главного цикла обработки событий.

Файл проекта Mouse_EventFilter.pro, необходимый для сборки приложения,
показан ниже.
QT += core widgets
CONFIG += c++14
TARGET = Mouse_EventFilter
INCLUDEPATH += include

 13 / 32

238    Реактивное программирование графических интерфейсов на основе каркаса Qt

SOURCES += \
 main.cpp
HEADERS += \
 rx_eventfilter.h

Библиотека RxCpp состоит исключительно из заголовочных файлов. В ди-
ректории проекта создана поддиректория include, в которую скопированы
файлы этой библиотеки. Эта поддиректория добавлена к списку путей INCLUDE-
PATH, который задаёт для компилятора места для заголовочных файлов. Теперь
у читателя есть всё, чтобы собрать и запустить приложение.

Знакомство с библиотекой RxQt
Библиотека RxQt – это библиотека с открытым исходным кодом, написанная
поверх библиотеки RxCpp. Её задача состоит в том, чтобы упростить обработ-
ку событий и сигналов из каркаса Qt средствами реактивного программи-
рования. Чтобы понять, как устроена эта библиотека, рассмотрим в качестве
примера ещё одно приложение, которое тоже следит за событиями от мыши
и фильтрует их, но на этот раз для фильтрации будут использоваться средства
реактивной библиотеки. Исходный код библиотеки RxQt можно загрузить из
репозитория https://github.com/tetsurom/rxqt.
#include <QApplication>
#include <QLabel>
#include <QMouseEvent>
#include "gravity_qlabel.h"
#include "rxqt.hpp"

int main(int argc, char *argv[]) {
 QApplication app(argc, argv);

 auto widget = new QWidget();
 widget->resize(350, 300);
 widget->setCursor(Qt::OpenHandCursor);

 auto xDock = new QLabel(widget);
 xDock->setStyleSheet("QLabel {background-color: red}");
 xDock->resize(9,9);
 xDock->setGeometry(0, 0, 9, 9);

 auto yDock = new QLabel(widget);
 yDock->setStyleSheet("QLabel {background-color: blue}");
 yDock->resize(9,9);
 yDock->setGeometry(0, 0, 9, 9);

Этот блок кода создаёт главное окно приложения – объект класса QWidget.
В этом окне размещаются два графических объекта типа QLabel, которые игра-
ют в приложении роль отметок на координатных осях. Одна метка, окрашен-
ная в красный цвет, должна перемещаться вдоль верхней границы окна и от-
мечать координату X, а другая, синяя, – вдоль левой границы (координата Y).

 14 / 32

https://github.com/tetsurom/rxqt

Интеграция библиотек RxCpp и Qt    239

 rxqt::from_event(widget, QEvent::MouseButtonPress)
 .filter([](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 return (Qt::LeftButton == me->buttons());
 })
 .subscribe([&](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 widget->setCursor(Qt::ClosedHandCursor);
 xDock->move(me->x(), 0);
 yDock->move(0, me->y());
 });

В этом фрагменте кода функция rxqt::from_event создаёт реактивный наблю-
даемый источник, т. е. объект типа rxcpp::observable<QEvent*>. Из всех событий,
относящихся к объекту widget (т. е. главному окну приложения), сам источник
отбирает лишь нажатия кнопки мыши и игнорирует остальные события. Затем
к нему применяется операция фильтрации, которая оставляет в потоке собы-
тий нажатия только левой кнопки. Наконец, на события из этого источника
подписывается в качестве наблюдателя лямбда-функция, которая меняет вид
указателя мыши на хватающую ладонь (за это отвечает метод setCursor с аргу-
ментом Qt::ClosedHandCursor), а также устанавливает координаты двух меток.
Новое значение координаты X метки xDock устанавливается равным текущей
координате X указателя мыши, а координата Y этой метки остаётся нулевой.
Тем самым данная метка отмечает проекцию указателя мыши на верхнюю гра-
ницу окна. Подобным же образом для объекта yDock устанавливается значение
координаты Y, как у указателя мыши: этот объект отмечает проекцию указате-
ля на левую границу окна.
 rxqt::from_event(widget, QEvent::MouseMove)
 .filter([](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 return (Qt::LeftButton == me->buttons());
 })
 .subscribe([&](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 xDock->move(me->x(), 0);
 yDock->move(0, me->y());
 });

В этом блоке кода таким же способом, как и в предыдущем фрагменте, соз-
даётся наблюдаемый источник данных средствами библиотеки RxQt. Источник
представляет собой поток событий типа перемещения мыши, при этом фильтр
отбирает только перемещения при нажатой левой кнопке. Лямбда-функция,
подписанная на события из этого потока, делает то же, что и подписчик из
предыдущего фрагмента, – поддерживает в актуальном состоянии проекции
мышиного указателя на координатные оси.
 rxqt::from_event(widget, QEvent::MouseButtonRelease)
 .subscribe([&widget](const QEvent* e) {
 widget->setCursor(Qt::OpenHandCursor);

 15 / 32

240    Реактивное программирование графических интерфейсов на основе каркаса Qt

 });

 widget->show();
 return app.exec();
}

Ещё один наблюдаемый источник отбирает события отпускания кнопки
мыши. Его подписчик меняет вид указателя мыши на раскрытую ладонь. Далее
следуют две привычные строки: отображение главного окна и запуск главного
цикла обработки событий.

Чтобы сделать наше приложение более забавным, добавим на окно ещё
одну плавающую метку, похожую на объекты xDock и yDock. При нажатой кноп-
ке мыши эта метка будет следовать за указателем, словно привязанная к нему
силой притяжения. Сначала объявим для такой притягивающейся метки от-
дельный класс1.
#ifndef GRAVITY_QLABEL_H
#define GRAVITY_QLABEL_H

#include <QLabel>

class Gravity_QLabel: public QLabel {
public:
 explicit Gravity_QLabel(QWidget *parent = nullptr):
 QLabel(parent), prev_x(0), prev_y(0)
 {}

 int prev_x, prev_y;
};

#endif // GRAVITY_QLABEL_H

Теперь нужно вернуться к функции main и создать в главном окне визуаль-
ный объект – экземпляр только что объявленного класса Gravity_QLabel.
 auto gravityDock = new Gravity_QLabel(widget);
 gravityDock->setStyleSheet(
 "QLabel {background-color: green}");
 gravityDock->resize(9, 9);
 gravityDock->setGeometry(0, 0, 9, 9);

Всякий раз, когда происходит нажатие на левую кнопку мыши, объекту gra
vityDock нужно устанавливать координаты, совпадающие с текущими коорди-
натами мыши. Для этого в первую из трёх лямбда-функций, отвечающую за
обработку события QEvent::MouseButtonPress, нужно добавить новую строку:
 gravityDock->move(me->x(),me->y());

1	 Логика этого класса весьма неудачна: открытое для всех клиентов состояние и пол-
ное отсутствие собственного поведения противоречат самой идее класса. – Прим.
перев.

 16 / 32

Итоги    241

При перемещении мыши с нажатой левой кнопкой нужно менять коорди-
наты объекта gravityDock так, чтобы он следовал за указателем мыши, стре-
мясь его догнать. Для этого в лямбда-функцию, обрабатывающую события
QEvent::MouseMove, добавим строки:
 gravityDock->prev_x = gravityDock->prev_x * .96
 + me->x() * .04;
 gravityDock->prev_y = gravityDock->prev_y * .96
 + me->y() * .04;
 gravityDock->move(
 gravityDock->prev_x,
 gravityDock->prev_y);

Согласно этому алгоритму, новое положение метки gravityDock состоит на
96 % из её предыдущего положения и на 4 % из координат мыши.

Теперь приложение можно собрать, запустить и убедиться, что метки следу-
ют, каждая своим способом, за координатами мышиного указателя. Тем самым
закончена разработка приложения, демонстрирующего взаимодействие меха-
низма событий из каркаса Qt с реактивными средствами библиотеки RxCpp
через посредство библиотеки RxQt.

Итоги
В этой главе рассматривались вопросы реактивного программирования графи-
ческих пользовательских интерфейсов с использованием каркаса Qt. Открывал
главу краткий обзор возможностей, предоставляемых данным каркасом для
разработки графических приложений. Далее следовало изложение основных
понятий каркаса Qt: важнейших классов, системы метаобъектов, механизма
сигналов и слотов. На основе этих сведений было создано простейшее прило-
жение «Здравствуй, мир» с текстовым полем в качестве главного окна. Затем
был рассмотрен пример приложения, которое следило за положением указа-
теля мыши. Этот пример позволил лучше понять средства обработки событий
и использование механизма сигналов и слотов для общения объектов между
собой. После этого был разобран пример ещё одного приложения, обрабаты-
вающего события от мыши, но на этот раз использующего средства библиотеки
RxCpp для подписки на события и их фильтрации. Тем самым было показано,
как использовать библиотеку RxCpp в среде графического интерфейса, чтобы
приложение в целом отвечало реактивной модели программирования. В за-
ключительном разделе рассматривалась библиотека RxQt с открытым исход-
ным кодом, предназначенная для интеграции библиотек Qt и RxCpp.

 17 / 32

Глава 10
Шаблоны и идиомы

реактивного
программирования

на языке С++

В предыдущих главах было немало рассказано о том, как применять реактив-
ную модель программирования при разработке на языке C++. Была изучена
библиотека RxСpp и присущая ей модель программирования, основные эле-
менты этой библиотеки и реактивное программирование пользовательских
интерфейсов.

В этой главе будут рассмотрены следующие вопросы:
�� общие сведения о шаблонах проектирования и их внедрении в практику

разработки;
�� связь шаблонов проектирования с идиомой реактивного программиро-

вания;
�� некоторые шаблоны и идиомы реактивного программирования.

Объектно-ориентированное программирование
и шаблоны проектирования
Идеи объектно-ориентированного программирования (ООП) достигли крити-
ческой массы в начале 1990-х годов благодаря широкому распространению хо-
роших компиляторов языка C++. Многие программисты начала 90-х силились
понять, что такое ООП и как на практике применить его в больших проектах.
До появления всеохватывающей среды обмена знаниями, которой позднее
стал интернет, это было и впрямь нелегко. Первые энтузиасты ООП писали
технические отчёты, публиковали статьи в академических и популярных жур-
налах и проводили семинары, на которых распространяли идеи ООП. Ведущие

 18 / 32

Объектно-ориентированное программирование и шаблоны проектирования    243

журналы для программистов, такие как Dr. Dobb’s Journal и C++ Report, завели
у себя регулярные колонки, посвящённые ООП.

Возникла острая необходимость в передаче знания от знатоков к всё рас-
ширяющемуся сообществу программистов, но именно этого и не происходи-
ло. Легендарный немецкий математик Карл Фридрих Гаусс советовал всегда
учиться у мастеров. Хотя Гаусс имел в виду прежде всего математику, этот
принцип вполне справедлив и для любой достаточно сложной области челове-
ческой деятельности. Однако в случае программирования мастеров было всё
ещё слишком мало, и модель обучения через наставничество дала сбой.

	 Джеймс Коплиен (James Coplien) опубликовал в 1991 г. книгу под названием «Advanced
C++ Programming Styles and Idioms»1, в которой речь шла о шаблонах нижнего уровня
(идиомах), связанных с языком программирования C++. Хотя сегодня на эту работу не
очень часто ссылаются, авторы считают её выдающейся книгой и превосходным катало-
гом лучших практических приёмов объектно-ориентированного программирования.

Эрих Гамма начал работу над каталогом шаблонов проектирования в рам-
ках своей диссертации, вдохновившись идеями архитектора-градостороителя
Кристофера Александера. В знаменитой работе Александера (в соавторстве
с Сарой Исикава и Мюреем Сильверштейном) было замечено, что при проекти-
ровании зданий и городских районов часто повторяются одни и те же шаблоны.
Если выделить эти шаблоны, описать их в виде каталога и сделать всеобщим
достоянием, можно значительно облегчить работу градостроителей – ведь те-
перь они могут вести проектирование, оперируя целыми шаблонами. Именно
эта идея впечатлила Эриха Гамму. Вскоре ещё трое специалистов, пришедших
к подобным идеям, Ральф Джонсон, Джон Влиссидес и Ричард Хелм, объеди-
нили свои усилия с Гаммой и создали каталог из двадцати трёх шаблонов про-
ектирования, ныне ласково именуемый каталогом «Банды четырёх». Их книга
о шаблонах объектно-ориентированного программирования2 вышла в изда-
тельстве Addison Wesley в 1994 г., сразу стала исключительно популярна в среде
программистов и дала мощный толчок шаблонно-ориентированной разработ-
ке программ. Каталог «Банды четырёх» охватывал шаблоны, возникающие на
этапе проектирования программ.

В 1996 г. группа инженеров из компании Siemens опубликовала труд, оза-
главленный «Шаблонно-ориентированная архитектура программных систем»
(Pattern-Oriented Software Architecture, POSA), в центре внимания которого на-
ходились архитектурные аспекты построения программных систем. Каталог
шаблонов POSA был изложен в серии из пяти книг, вышедших в издательстве
John Wiley and Sons. Впоследствии к коллективу авторов присоединился Дуг
лас Шмидт, создатель библиотеки ACE (Adaptive Communication Environment –
адаптивная среда обмена данными) для поддержки сетевого взаимодействия

1	 Коплиен Дж. Программирование на C++. Классика CS. СПб.: Питер, 2005. 479 с.
2	 Приемы объектно-ориентированного проектирования. Паттерны проектирования /

Э. Гамма, Р. Хелм, Р. Джонсон, Дж. Влиссидес. СПб.: Питер, 2014. 366 с.

 19 / 32

244    Шаблоны и идиомы реактивного программирования на языке С++

и системы TAO (сокращение от «The ACE ORB», т. е. «ORB для библиотеки ACE»,
где ORB – в свою очередь, сокращение от Object Request Broker – объектный
брокер запросов). Он же позднее стал главой консорциума OMG (Object Mana
gement Group), занимающегося разработкой и продвижением объектно-ориен-
тированных технологий и стандартов, таких как технология CORBA (Common
Object Request Broker Architecture – общая архитектура объектных брокеров
запросов) и язык UML (Unified Modelling Language – унифицированный язык
моделирования).

За этими двумя прорывами последовала лавина других работ. Наиболее зна-
чимыми стали следующие каталоги шаблонов:

�� «Шаблоны корпоративных приложений» Мартина Фаулера с соавтора-
ми;

�� «Шаблоны интеграции корпоративных приложений» Грегора Хоупа
и Бобби Вульфа;

�� «Основные паттерны J2EE» Дипака Алера;
�� «Проблемно-ориентированное проектирование» Эрика Эванса;
�� «Корпоративные шаблоны и архитектуры, управляемые моделями»

Джима Арлоу и Иллы Нойштадта.
Эти книги, весьма примечательные сами по себе, имеют заметный уклон

в область разработки корпоративных программных систем, переживавшую
в ту пору свой расцвет. Для разработчиков на языке C++ наиболее важными
были и остаются каталоги «Банды четырёх» и POSA.

Основные каталоги шаблонов
Шаблоном называют типовую, пригодную для многократного применения
архитектурную конструкцию, составляющую решение некоторой проблемы,
часто возникающую при разработке программных систем. Для удобства шаб
лонам дают имена. Чаще всего шаблоны систематизируют в своего рода репо-
зиториях или каталогах. Некоторые из них публикуются в виде книг. Самый
знаменитый и широко используемый из них – каталог «Банды четырёх».

Шаблоны «Банды четырёх»
«Банда четырёх», как называют в шутку коллектив авторов, дала первый
толчок движению за внедрение шаблонов в практику разработки программ.
В центре внимания этой четвёрки находились архитектура и проектирование
объектно-ориентированных программных систем. Идеи Кристофера Алек-
сандера хорошо подошли и для индустрии программного обеспечения и на
шли применение в областях архитектуры приложений, параллельного про-
граммирования, информационной безопасности и во многих других. «Банда
четырёх» разделила свой каталог на три раздела: структурные, порождающие
и поведенческие шаблоны. В их работе для пояснения идеи шаблонов исполь-

 20 / 32

Основные каталоги шаблонов    245

зованы языки C++ и Smalltalk. Однако описанные там шаблоны перенесены
на большинство существующих ныне языков программирования. Рассмотрим
следующую таблицу.

№ Область Шаблоны
1 Порождение Абстрактная фабрика, Строитель, Фабричный метод, Прототип, Одиночка
2 Структура Адаптер, Мост, Композит, Декоратор, Фасад, Приспособленец, Заместитель
3 Поведение Цепочка обязанностей, Команда, Интерпретатор, Итератор, Посредник, Хранитель,

Наблюдатель, Состояние, Стратегия, Шаблонный метод, Посетитель

Авторы уверены, что основательное знакомство с шаблонами «Банды четы-
рёх» необходимо любому программисту. Эти шаблоны встречаются повсюду,
независимо от предметной области. Они позволяют рассуждать и общаться
об устройстве программной системы, абстрагируясь от конкретного языка.
Шаблоны «Банды четырёх» широко применяются в обособленных мирах, сло-
жившихся вокруг платформы .NET и языка Java. Разработчики каркаса Qt тоже
широко использовали эти шаблоны для создания интуитивно удобной модели
программирования.

Каталог POSA
Фундаментальный пятитомный труд «Шаблонно-ориентированная архитек-
тура программных систем» (Pattern-Oriented Software Architecture, POSA),
в котором рассматриваются специализированные шаблоны для разработки
критически важных подсистем, оказал значительное влияние на разработку
ПО. Этот каталог особенно полезен для разработчиков, занимающихся такими
особо важными подсистемами крупных программных систем, как механизмы
хранения баз данных, механизмы коммуникации для распределённых систем,
связующее ПО (middleware) и т. д. Особенность данного каталога шаблонов со-
стоит в том, что он особенно хорошо подходит для программирования на язы-
ке C++. Перечень шаблонов, вошедших в пять вышедших томов, представлен
в следующей таблице.

№ Область Шаблоны
1 Архитектура Слои, Конвейеры и фильтры, Доска объявлений, Брокер,

Модель–представление–контроллер (model-view-controller, MVC),
Представление–абстракция–контроллер, Микроядро, Рефлексия

2 Проект Целое–часть, Главный–дублёр, Заместитель, Обработчик команд,
Обработчик представлений, Передатчик–приёмник,
Клиент–диспетчер–сервер, Издатель–подписчик

3 Доступ и конфигурация Фасад обёртки, Конфигуратор компонентов, Перехватчик, Интерфейс
расширения

4 Обработка событий Реактор, Проактор, Признак асинхронного завершения,
Приёмщик–соединитель

5 Синхронизация Блокировка в области видимости, Блокировка со стратегией,
Потокобезопасный интерфейс, Блокировка с двойной проверкой

 21 / 32

246    Шаблоны и идиомы реактивного программирования на языке С++

№ Область Шаблоны
6 Параллельное

программирование
Активный объект, Следящий объект, Синхронно-асинхронная работа,
Ведущий–ведомый, Память потока

7 Доступ к ресурсам Искатель, Ленивый доступ, Жадный доступ, Частичный доступ
8 Жизненный цикл

ресурсов
Кеширование, Фонд ресурсов, Координатор, Менеджер жизненного
цикла ресурсов

9 Освобождение ресурсов Лизинг, Изгнание
10 Распределённые

вычисления
Подборка шаблонов из различных каталогов в контексте
распределённого программирования

11 Методология В отдельный том вынесены общие вопросы метауровня, касающиеся
понятия шаблона в общем виде, языков шаблонов и их использования

Каталог POSA стоит внимательно изучать ради глубокого понимания осно-
вополагающих принципов, на которых зиждется архитектура крупных про-
граммных систем, простирающихся по всему земному шару. По мнению авто-
ров, этот каталог получил гораздо меньше внимания, чем заслужил.

Ещё раз о шаблонах проектирования
Связь между шаблонами «Банды четырёх» и реактивным программированием
глубже, чем может показаться на первый взгляд. Шаблоны проектирования из
каталога «Банды четырёх» относятся главным образом к объектно-ориенти-
рованной парадигме. Реактивное же программирование в большей степени
связано с функциональной парадигмой, потоками данных и параллельной об-
работкой. Как уже говорилось ранее, реактивное программирование позволяет
восполнить некоторые недостатки классических шаблонов «Банды четырёх» –
в частности, об этом шла речь в начале главы 5.

Объектно-ориентированный подход к разработке программ направлен в ос-
новном на моделирование иерархий. Например, шаблон «Композит» представ-
ляет собой удобное средство для моделирования иерархических отношений
вида «целое–часть». Всюду, где присутствует композит, можно ожидать и на-
бор объектов-посетителей, работающих с ним сообща – посетители позволяют
единообразно обрабатывать иерархические отношения вида «общее–частное».
Иными словами, пара шаблонов «Композит–посетитель» может служить кано-
ническим инструментом для создания объектно-ориентированных систем.

Реализация посетителя должна обладать некоторым знанием о структуре
композита1. Обработка сложных структур данных на основе шаблона «Посе-

1	 Это утверждение, настойчиво повторяемое авторами (см. главу 5), по меньшей мере,
спорно. Знание о внутренней структуре композита может быть инкапсулировано
в самом композите – в частности, метод AcceptVisitor класса Composite может от-
вечать за поочерёдный обход всех своих подобъектов объектом-посетителем. Иной
возможный подход состоит в том, чтобы интерфейс объекта-композита предостав-
лял способ обхода своих подобъектов: например, итератор по подобъектам или ме-
тод for_each для применения функции-обработчика к каждому подобъекту. В обоих
случаях посетитель взаимодействует с композитом через интерфейс, абстрагирую-
щий от внутреннего устройства композита. – Прим. перев.

 22 / 32

Ещё раз о шаблонах проектирования    247

титель» чрезмерно усложняется по мере того, как растёт число различных по-
сетителей. Появление в системе преобразователей и фильтров ещё более за-
путывает картину.

На помощь приходит шаблон «Итератор», который хорошо подходит для по-
элементного прохода по разного рода последовательностям, потокам, спискам
элементов. Сочетая средства объектно-ориентированного и функционального
программирования, можно легко фильтровать и преобразовывать последо-
вательности. Разработанная корпорацией Microsoft технология встроенного
в язык программирования языка запросов (Language-integrated query, LINQ)
и технология обработки потоков, появившаяся в 8-й версии языка Java, служат
отличными примерами мощи итераторов.

Но как же быть с преобразованием иерархических структур данных в ли-
нейные последовательности элементов? Большую часть иерархий можно «раз-
гладить» в поток элементов для дальнейшей обработки. Всё это вместе взятое
приводит к следующей логике обработки данных:

�� моделировать иерархию данных с помощью шаблона «Композит»;
�� разгладить иерархию в линейную последовательность, используя шаб

лон «Посетитель»;
�� для обхода получившейся последовательности использовать шаблон

«Итератор»;
�� применить к элементам последовательности комбинацию фильтров

и преобразователей1, полученные результаты направить для дальней-
шей обработки.

Описанный выше подход называют втягивающим. Потребители, или клиен-
ты, сами осуществляют запрос к источнику данных (или событий), тем самым
втягивая в себя из источника элемент за элементом. Эта схема обладает следу-
ющими недостатками:

�� втягивание клиентом данных, которые впоследствии окажутся ему не
нужны;

�� преобразователи и фильтры применяются к данным на стороне приём-
ника, а не источника;

�� приёмник данных (клиент) может заблокировать источник данных
(сервер);

�� данный подход плохо подходит для асинхронной обработки2.
Все эти трудности можно преодолеть, просто перевернув архитектуру вверх

ногами: пусть теперь сервер асинхронно вталкивает свои данные в поток,
а приёмник данных лишь реагирует на новые данные, поступающие из пото-

1	 Для этой цели хорошо подходит шаблон «Декоратор». Так, для фильтрации после-
довательности данных нужно на итератор навесить декоратор, который пропускает
элементы, не удовлетворяющие предикату. – Прим. перев.

2	 Отнюдь не бесспорное утверждение. Скажем, в стандарте C++ 17 имеются десятки
алгоритмов параллельной обработки последовательностей на основе итераторов. –
Прим. перев.

 23 / 32

248    Шаблоны и идиомы реактивного программирования на языке С++

ка. При таком устройстве системы становится легко разместить фильтрацию
и преобразование данных на стороне сервера, т. е. источника данных. Отсюда
же автоматически получаем возможность обрабатывать на стороне клиента
только те данные, которые ему действительно нужны: клиент может просто
игнорировать ненужные элементы потока. В целом схема вталкивания данных
выглядит следующим образом:

�� данные трактуются как потоки элементов и как наблюдаемые источники;
�� к потокам данных можно применять операции поэлементного преоб-

разования и фильтрации, в том числе операции высшего порядка (т. е.
принимающие функции в качестве аргументов);

�� операция всегда принимает на вход наблюдаемый источник и выдаёт
в качестве результата новый наблюдаемый источник;

�� клиент может подписаться на оповещения от какого-либо наблюдаемого
источника;

�� наблюдатели обладают стандартизированными механизмами обработ-
ки сообщений.

Таким образом, налицо тесная связь между шаблонами объектно-ориен-
тированного проектирования и реактивным программированием. Если при
сочетании этих двух парадигм руководствоваться здравым смыслом, можно
получить высококачественный, хорошо расширяемый и поддерживаемый
программный код. В предыдущих главах читатель изучил, как видоизменить
объектно-ориентированные шаблоны «Композит» и «Посетитель», чтобы раз-
гладить иерархическую структуру данных и тем самым воспользоваться шаб
лоном «Итератор». Было рассмотрено, как усовершенствовать привычную
схему итеративной обработки последовательностей одним небольшим изме-
нением: сделав так, чтобы, испустив событие, источник мог сразу о нём забыть.
В следующем разделе эти принципы будут проиллюстрированы написанием
конкретных примеров кода.

От шаблонов проектирования
к реактивному программированию
Несмотря на то что движение за внедрение шаблонов в практику программи-
рования в основном связано с объектно-ориентированной парадигмой, а ре-
активное программирование основано на функциональном подходе, между
ними довольно много общего. В предыдущей главе говорилось, что:

�� объектно-ориентированная парадигма хорошо подходит для моделиро-
вания структурных аспектов систем;

�� парадигма функционального программирования хороша для моделиро-
вания поведенческих аспектов систем.

Чтобы лучше продемонстрировать связь между объектно-ориентирован-
ным и реактивным программированием, напишем программу, которая про-
ходит по всем файлам и поддиректориям заданной директории.

 24 / 32

От шаблонов проектирования к реактивному программированию    249

Для обработки дерева файловой системы понадобится композитная струк-
тура с узлами двух типов (унаследованных от общего базового класса EntryNode):

�� класс FileNode, представляющий информацию о файле;
�� класс DirectoryNode, представляющий информацию о директории.

Для обработки иерархий, содержащих элементы этих двух типов, понадо-
бятся различные посетители. В данном примере их будет два:

�� посетитель для печати имён файлов и директорий;
�� посетитель для преобразования композитной иерархии в линейный

список имён.
Погрузимся же без лишних слов в решение задачи. Рассмотрим следующий

код:
//---------- DirReact.cpp
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
#include <string>
#include <vector>
// удалить в системах POSIX
#include <windows.h>
#include <functional>
#include <thread>
#include <future>
using namespace std;
// Упреждающие объявления:
// модель дерева директорий и файлов
class FileNode;
class DirectoryNode;
// интерфейс посетителя
class IFileFolderVisitor;

Упреждающие объявления подсказывают компилятору, что такими-то име-
нами можно пользоваться как именами классов, однако определение этим
классам будет дано в другом месте программы. Это позволяет сократить объ-
ём кода. Объект класса FileNode будет хранить в себе имя файла и его размер.
Объект класса DirectoryNode содержит имя директории и список объектов, пред-
ставляющих файлы и поддиректории этой директории. Для обработки иерар-
хии объектов FileNode и DirectoryNode предназначен интерфейс IFileFolderVisi-
tor. Ниже показаны дальнейшие объявления:
// информация о файле
struct FileInformation {
 string name;
 long size;
 FileInformation(string const& pname, long psize)
 : name(pname), size(psize)
 {}
};

 25 / 32

250    Шаблоны и идиомы реактивного программирования на языке С++

// базовый для классов узлов иерархии
class EntryNode {
protected:
 string name;
 int isdir;
 long size;
public:
 virtual bool Isdir() = 0;
 virtual long getSize() = 0;
 virtual void Accept(IFileFolderVisitor& ivis) = 0;
 virtual ~EntryNode() {}
};

Чтобы композит можно было наполнять разнородными объектами, нужен
общий базовый класс для всех конкретных узлов иерархии. В данном приме-
ре это класс EntryNode1. В нём хранятся имя, размер файла и признак директо-
рии. Помимо трёх виртуальных функций, которые должны быть реализованы
в подклассах, в нём есть и виртуальный деструктор. Виртуальность гаранти-
рует вызов правильного деструктора при уничтожении полиморфного объ-
екта.
// интерфейс посетителя
class IFileFolderVisitor{
public:
 virtual void Visit(FileNode& fn)=0;
 virtual void Visit(DirectoryNode& dn)=0;
 virtual IFileFolderVisitor() {}
};

Когда структура данных имеет вид иерархического композита, есть смысл
организовать обработку такой иерархии посредством посетителя. Для каждо-
го типа узла, который может входить в иерархию, в интерфейсе посетителя
должен быть свой метод visit. Кроме того, в каждом классе узла иерархии дол-
жен быть свой метод accept, который принимает объект-посетитель в качестве
аргумента и делегирует работу тому его методу visit, который соответствует
фактическому типу данного узла. Этот приём называется двойной диспетче-
ризацией вызовов.
// Узел, соответствующий файлу
class FileNode : public EntryNode {
public:
 FileNode(string pname, long psize) {
 isdir = 0;

1	 Как архитектура, так и качество кода, предложенного авторами, далеко от идеально-
го. Параметр «размер» имеет смысл лишь для файлов, но не для директорий, поэтому
нет смысла выносить его на уровень базового класса EntryNode. Далее, при наличии
в базовом классе поля isdir (которое следовало бы сделать константным) нет смысла
делать метод Isdir (который также следовало бы объявить со спецификатором const)
виртуальным. То же справедливо для поля size и метода getSize. – Прим. перев.

 26 / 32

От шаблонов проектирования к реактивному программированию    251

 name = pname;
 size = psize;
 }
 ~FileNode() {
 cout << "Деструктор объекта FileNode " << name << endl;
 }
 virtual bool Isdir() { return isdir == 1; }
 string getname() { return name; }
 virtual long getSize() { return size; }
 virtual void Accept(IFileFolderVisitor& ivis) {
 ivis.Visit(*this);
 }
};

Конструктор класса FileNode сохраняет в поля объекта имя файла и его раз-
мер. В этом классе реализованы все чистые виртуальные методы, объявленные
в базовом классе EntryNode. Метод accept делегирует вызов правильному методу
посетителя.

// Узел, представляющий директорию
class DirectoryNode : public EntryNode {
 list<unique_ptr<EntryNode>> files;
public:
 DirectoryNode(string pname) {
 files.clear();
 isdir = 1;
 name = pname;
 }

 ~DirectoryNode() {
 files.clear();
 }

 list<unique_ptr<EntryNode>>& GetAllFiles() { return files; }

 bool AddFile(string pname , long size) {
 files.push_back(
 unique_ptr<EntryNode>(
 new FileNode(pname,size)));
 return true;
 }

 bool AddDirectory(DirectoryNode *dn) {
 files.push_back(unique_ptr<EntryNode>(dn));
 return true;
 }

 bool Isdir() { return isdir == 1; }
 string getname() { return name; }
 void setname(string pname) { name = pname; }
 long getSize() {return size; }

 27 / 32

252    Шаблоны и идиомы реактивного программирования на языке С++

 void Accept(IFileFolderVisitor& ivis) {
 ivis.Visit(*this);
 }
};

Класс DirectoryNode моделирует директорию1. В нём содержится список фай-
лов и поддиректорий. Для хранения в одном списке объектов двух разных ти-
пов используется умный указатель на базовый класс. Конечно же, в этом классе
реализованы все чистые виртуальные функции, объявленные в базовом классе
EntryNode. Методы AddFile и AddDirectory служат для наполнения списка дочер-
них узлов. При обходе директории с использованием специфических функций
конкретной ОС данный объект будет наполняться дочерними узлами через эти
два метода. За это должен отвечать следующий класс.

1	 Следует обратить внимание читателя на совершенно неудовлетворительное качест
во кода, который предложен здесь в качестве примера для подражания. Выбор спис
ка в качестве структуры данных для хранения дочерних узлов неудачен: согласно
специфике предметной области, дочерние элементы не должны иметь одинаковых
имён, тогда как список не гарантирует уникальности элементов. Уникальность ав-
томатически обеспечивают ассоциативные контейнеры std::map и std::unordered_map.
Как конструктор, так и деструктор содержат очистку списка дочерних узлов: files.
clear(). Это излишне: на момент входа в тело конструктора список files уже создан
посредством своего конструктора по умолчанию и поэтому гарантированно пуст.
Симметричным образом после выполнения тела деструктора какого-либо объек-
та выполняется деструкция всех его подобъектов. Деструкция списка files, в свою
очередь, предполагает деструкцию всех его элементов. Тем самым в конструкторе
и деструкторе делается излишняя работа. Вместе с тем для другого поля не делается
необходимая работа: неинициализированным остаётся поле size, унаследованное от
базового класса, в этом поле находятся неинициализированные данные (т. н. «му-
сор»). Далее, легко убедиться, что реализация методов Isdir, getname и getSize в обо-
их порождённых классах (FileNode и DirectoryNode) одинакова, поэтому нет никакого
смысла делать их виртуальными. Метод GetAllFiles нуждается в «исправлении име-
ни»: он возвращает список не одних лишь файлов, а файлов и директорий, поэтому
имя GetChildren подошло бы лучше. Ещё хуже, что этот метод возвращает неконстант-
ную ссылку на поле files, тем самым позволяя клиенту портить состояние объекта.
Строки в качестве аргументов (например, в конструктор и в метод setname) следо-
вало бы передавать по константной ссылке или по ссылке rvalue, а никак не по зна-
чению. Возврат значения логического типа из методов AddFile и AddDirectory лишён
всякого смысла: во-первых, в данной реализации эти методы всегда возвращают
значение «истина», а во-вторых, даже теоретически невозможно представить себе
ситуацию, когда добавление элемента в список может закончиться неудачей. В ме-
тоде AddFile объект типа FileNode создаётся посредством операции new, а затем полу-
ченный «сырой» указатель передаётся в конструктор умного указателя std::unique_
ptr – между тем азбучная истина состоит в том, что для этого следует применять
функцию std::make_unique. Наконец, передача «сырого» указателя в метод AddDirectory
с его дальнейшим оборачиванием в умный указатель недопустима абсолютно: ведь
вызывающий контекст сохраняет в своём владении необёрнутый указатель и может
либо уничтожить объект, либо обернуть его в ещё один умный указатель, что неми-
нуемо приведёт к краху программы. – Прим. перев.

 28 / 32

От шаблонов проектирования к реактивному программированию    253

// вспомогательный класс,
// должен быть реализован отдельно для каждой ОС
class DirHelper {
public:
 static DirectoryNode *SearchDirectory(
 const std::string& refcstrRootDirectory)
 {
 // выполнить обход директории средствами ОС
 // и построить объект класса DirectoryNode
 return DirNode;
 }
};

Устройство класса DirHelper будет различно для системы Windows и систем
стандарта POSIX (в частности, систем GNU Linux и macOS), поэтому его код
в этой книге не приводится. Полностью исходный код можно найти на сайте
данной книги. Этот класс должен всего лишь рекурсивно обойти директорию
и наполнить объект класса DirectoryNode дочерними узлами.
// посетитель, который печатает содержимое директории
class PrintFolderVisitor : public IFileFolderVisitor {
public:
 void Visit(FileNode& fn) { cout << fn.getname() << endl; }
 void Visit(DirectoryNode& dn) {
 cout << "In a directory " << dn.getname() << endl;
 list<unique_ptr<EntryNode>>& ls = dn.GetAllFiles();
 for (auto& itr : ls) { itr.get()->Accept(*this); }
 }
};

Класс PrintFolderVisitor представляет собой посетителя, который выводит на
консоль информацию о файлах и директориях. Этот класс служит примером
реализации посетителя для композитного объекта. В нашем случае композит
содержит подобъекты двух типов, и реализация посетителя выходит довольно
простой. Однако в случаях, когда типов узлов иерархии достаточно много, соз-
дание посетителей оказывается непростой задачей. Особенно сложным может
оказаться создание фильтрующих и поэлементно преобразовывающих посе-
тителей, в которых зачастую приходится применять уловки, специфичные для
конкретных задач.

Рассмотрим функцию, которая приводит в действие всю систему. Её текст
приведён ниже.
void TestVisitor(string directory) {
 // просканировать директорию, включая поддиректории
 DirectoryNode *dirs = DirHelper::SearchDirectory(directory);
 if (dirs == 0) { return; }
 PrintFolderVisitor *fs = new PrintFolderVisitor();
 dirs->Accept(*fs);
 delete fs;
 delete dirs;
}

 29 / 32

254    Шаблоны и идиомы реактивного программирования на языке С++

Эта функция рекурсивно обходит дерево директорий, начиная с заданной,
и строит композитный объект типа DirectoryNode. Затем для печати содержимо-
го директории на консоль создаётся и запускается посетитель PrintFolderVisi-
tor. Завершает пример главная функция:

int main(int argc, char *argv[]) {
 TestVisitor("D:\Java");
 return 0;
}

Разглаживание иерархии и линейный проход
Реализации посетителя нужно обладать некоторым знанием о внутренней
структуре композита. Для некоторых композитов бывает нужно реализовать
десятки посетителей. В особенности сложно бывает реализовать поэлемент-
ное преобразование и фильтрацию узлов посредством интерфейса посетите-
ля. Каталог шаблонов «Банды четырёх» содержит шаблон «Итератор», который
удобно использовать для прохода по линейной последовательности элемен-
тов. Вопрос теперь состоит в том, как превратить иерархическую структуру
объектов в линейную, чтобы её можно было обработать с помощью итератора.
Большую часть иерархий можно разгладить в список, последовательность или
поток, применив для этого специальный объект-посетитель. Создадим такой
посетитель для нашего примера. Его код представлен ниже.

// разгладить дерево директорий в линейный список
class FlattenVisitor : public IFileFolderVisitor {
 list <FileInformation> files;
 string CurrDir;
public:
 FlattenVisitor() { CurrDir = ""; }
 ~FlattenVisitor() { files.clear(); }
 list<FileInformation> GetAllFiles() { return files; }
 void Visit(FileNode& fn) {
 files.push_back(FileInformation {
 CurrDir + "\" + fn.getname(),
 fn.getSize()
 });
 }

 void Visit(DirectoryNode& dn) {
 CurrDir = dn.getname();
 files.push_back(FileInformation(CurrDir, 0));
 list<unique_ptr<EntryNode>>& ls = dn.GetAllFiles();
 for (auto& itr : ls) { itr.get()->Accept(*this); }
 }
};

 30 / 32

Разглаживание иерархии и линейный проход    255

Класс FlattenVisitor строит список объектов, содержащих информацию
о файлах и директориях1. Для каждой директории перебираются все располо-
женные в ней файлы и поддиректории, и для каждой из них вызывается метод
accept в соответствии с уже знакомой читателю схемой двойной диспетчери-
зации. Создадим теперь функцию, которая приводит в действие описанный
здесь объект-посетитель и возвращает список объектов типа FileInformation,
который можно обрабатывать с помощью итератора.
list<FileInformation> GetAllFiles(string dirname) {
 list<FileInformation> ret_val;
 // просканироать содержимое директории, включая поддиректории
 DirectoryNode *dirs =DirHelper::SearchDirectory(dirname);
 if (dirs == 0) { return ret_val; }
 FlattenVisitor *fs = new FlattenVisitor();
 dirs->Accept(*fs);
 ret_val = fs->GetAllFiles();
 delete fs;
 delete dirs;
 return ret_val;
}

int main(int argc, char *argv[]) {
 list<FileInformation> rs = GetAllFiles("D:\Java");
 for(auto& as : rs)
 cout << as.name << endl;
 return 0;
}

Объект класса FlattenVisitor рекурсивно обходит иерархическую структуру,
заключённую в объекте класса DirectoryNode, и наполняет список полными име-
нами файлов. Разгладив иерархию в список, можно далее работать с ним по-
средством итератора.

Таким образом, мы разобрали, как моделировать иерархию объектов с по-
мощью шаблона «Композит» и как в случае необходимости привести иерархи-
ческую структуру данных к линейному виду, удобному для применения шаб
лона «Итератор». В следующем разделе будет показано, как итератор, в свою
очередь, может быть преобразован в наблюдаемый источник. Для реализации
наблюдаемого источника будет использоваться библиотека RxCpp, при этом
проталкивание объектов данных от источника к приёмнику будет осуществ
ляться по принципу «выстрелил и забыл».

1	 Этот код совершенно некорректен. Как этот посетитель обработает полное имя фай-
ла A\B\C\file1.txt? Ещё более интресная ошибка возникнет, если в некоторой дирек-
тории D находятся на одном уровне поддиректория E и файл file2.txt, и посетитель
сначала зайдёт в поддиректорию E, выйдет из неё и займётся файлом file2.txt. Ка-
кое полное имя он занесёт в список? Помимо того, код написан весьма неряшливо.
Например, нет необходимости инициализировать поле CurDir пустой строкой в кон-
структоре, ведь это и без того делает конструктор по умолчанию. – Прим. перев.

 31 / 32

256    Шаблоны и идиомы реактивного программирования на языке С++

От итераторов к наблюдаемым источникам
Шаблон «Итератор» – это стандартный механизм для выборки данных из кон-
тейнеров библиотеки STL, а также разного рода потоков и объектов-генерато-
ров. Итераторы хорошо подходят для данных, определённым образом органи-
зованных в пространстве памяти. В сущности, это означает, что потребителю
заранее известно, сколько элементов данных ему нужно или что данные уже
имеются в наличии. Однако нередко бывает так, что элементы данных при-
ходят асинхронно, в непредсказуемые моменты времени, а потребитель не
может знать заранее, сколько таких элементов ещё придёт в будущем. В таких
случаях программисту приходится либо смириться с тем, что итератор может
ждать неопределённо долго, либо идти на уловки с тайм-аутом. Тогда семанти-
ка вталкивания представляется лучшим решением. Благодаря поддержке тем
(subjects) в библиотеке RxCpp можно воспользоваться преимуществами под-
хода «выстрелил и забыл». Создадим класс, который испускает информацию
о содержимом директории в виде последовательности объектов.
// Упрощённая реализация шаблона "Активный объект"
template <class T>
struct ActiveObject {
 rxcpp::subjects::subject<T> subj;

 // выстрелил и забыл
 void FireNForget(T & item) {
 subj.get_subscriber().on_next(item);
 }

 rxcpp::observable<T> GetObservable() {
 return subj.get_observable();
 }

 ActiveObject(){}
 ~ActiveObject() {}
};

// Этот класс использует механизм "выстрелил и забыл"
// для проталкивания данных (событий) к приёмнику
class DirectoryEmitter {
 string rootdir;
 // самодостаточный активный объект
 ActiveObject<FileInformation> act;
public:
 DirectoryEmitter(string s) {
 rootdir = s;
 // подписка
 act.GetObservable().subscribe(
 [] (FileInformation item) {
 cout << item.name << ":" << item.size << endl;
 });

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Шаблон «Ячейка»    257

 }

 bool Trigger() {
 std::packaged_task<int()> task(
 [&] () { EmitDirEntry(); return 1; });
 std::future<int> result = task.get_future();
 task();
 // если раскомментировать следующую строку, метод
 // будет работать синхронно, дожидаясь результата,
 // иначе метод завершается немедленно, а вталкивание
 // данных выполняется асинхронно
 // double dresult = result.get();
 return true;
 }

 // пройти по списку файлов, к каждому
 // применить активный объект
 bool EmitDirEntry() {
 list<FileInformation> rs = GetAllFiles(rootdir);
 for (auto& a : rs) { act.FireNForget(a); }
 return false;
 }
};

int main(int argc, char *argv[]) {
 DirectoryEmitter emitter("D:\Java");
 emitter.Trigger();
 return 0;
}

В классе DirectoryEmitter использована конструкция packaged_task из арсенала
современного языка C++, которая позволяет выполнять асинхронные вызовы
по принципу «выстрелил и забыл». В данном примере присутствует закоммен-
тированная строка, которая, если её раскомментировать, заставляет метод ра-
ботать синхронно.

Шаблон «Ячейка»
Читатель уже хорошо знает, что реактивное программирование в целом по-
строено вокруг обработки последовательности значений, сменяющих друг
друга со временем. Возможны две трактовки таких временны́х последователь-
ностей.

�� Ячейка. Это единичная сущность (переменная, область в памяти), зна-
чение в которой время от времени изменяется. Такие хранилища изме-
няемых значений называют ещё свойствами, или поведениями.

�� Поток. Это последовательность элементов данных, каждый из которых
остаётся неизменным. Со временем последовательность пополняет-
ся новыми элементами. В контексте наблюдаемых источников обычно
пользуются именно этой трактовкой данных.

 1 / 32

258    Шаблоны и идиомы реактивного программирования на языке С++

Ниже будет показан упрощённый пример программирования в терминах
обновляемой ячейки. При этом будет воплощена лишь базовая функциональ-
ность. Представленный ниже код нуждается в существенной доработке для
использования в реальных проектах. В частности, эту реализацию можно оп-
тимизировать, если добавить к ней класс CellController (контроллер ячеек),
который бы централизованно принимал оповещения об обновлениях от всех
ячеек. Затем этот контроллер мог бы инициировать каскад обновлений других
ячеек в соответствии с графом зависимостей. Представленная здесь упрощён-
ная реализация лишь демонстрирует, что метафора изменяемых ячеек пред-
ставляет собой достаточно хороший инструмент для организации вычислений
по цепочке зависимостей.
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
using namespace std;

class Cell {
private:
 std::string name;
 std::map<std::string, Cell*> parents;
 rxcpp::subjects::behavior<double> *behsubject;

public:
 string get_name() { return name; }
 void SetValue(double v) {
 behsubject->get_subscriber().on_next(v);
 }

 double GetValue() {
 return behsubject->get_value();
 }

 rxcpp::observable<double> GetObservable() {
 return behsubject->get_observable();
 }

 Cell(std::string pname) {
 name = pname;
 behsubject = new rxcpp::subjects::behavior<double>(0);
 }

 ~Cell() {
 delete behsubject;
 parents.clear();
 }

 bool GetCellNames(string& a, string& b) {
 if (parents.size() !=2) { return false; }

 2 / 32

Шаблон «Ячейка»    259

 int i = 0;
 for(auto p : parents) {
 (i == 0) ? a = p.first : b = p.first;
 i++;
 }
 return true;
 }

 // в этом примере у ячейки должно быть ровно два родителя
 bool Recalculate() {
 string as , bs;
 if (!GetCellNames(as,bs)) { return false; }
 auto a = parents[as];
 auto b = parents[bs];
 SetValue(a->GetValue() + b->GetValue());
 return true;
 }

 bool Attach(Cell& s) {
 if (parents.size() >= 2) { return false; }
 parents.insert(pair<std::string,Cell*>(s.get_name(),&s));
 s.GetObservable().subscribe(
 [=] (double a) { Recalculate(); });
 return true;
 }

 bool Detach(Cell& s) { /* не реализовано */ }
};

В данном предельно упрощённом примере предполагается, что у каждой
ячейки есть ровно две родительские ячейки, т. е. две ячейки, от которых она
непосредственно зависит. Если значение хотя бы одной из родительских ячеек
изменилось, значение текущей ячейки должно быть вычислено заново. В этом
примере, ради краткости кода, реализована единственная зависимость от ро-
дительских ячеек: операции сложения. За вычисление нового значения зави-
симой ячейки отвечает метод recalculate.
int main(int argc, char *argv[]) {
 Cell a("a");
 Cell b("b");
 Cell c("c");
 Cell d("d");
 Cell e("e");
 // присоединить ячейки a и b к ячейке c,
 // теперь c == a + b
 c.Attach(a);
 c.Attach(b);
 // присоединить ячейки с и d к ячейке e,
 // теперь e == c + d == a + b + d
 e.Attach(c);
 e.Attach(d);

 3 / 32

260    Шаблоны и идиомы реактивного программирования на языке С++

 a.SetValue(100); // должно напечатать 100
 cout << "Значение " << c.GetValue() << endl;
 b.SetValue(200); // должно напечатать 300
 cout << "Значение " << c.GetValue() << endl;
 b.SetValue(300); // должно напечатать 400
 cout << "Значение " << c.GetValue() << endl;
 d.SetValue(-400); // должно напечатать 0
 cout << "Значение " << e.GetValue() << endl;
}

Эта главная функция демонстрирует распространение изменений по зави-
симым ячейкам. Произведённое вручную изменение значения вызывает кас
кад изменений в зависимых ячейках.

Шаблон «Активный объект»
Активный объект – это объект, который позволяет разорвать жёсткую связь
между вызовом метода и его выполнением. Активные объекты представляют
собой инструмент для реализации асинхронных вызовов по принципу «вы-
стрелил и забыл». К активному объекту может быть подключен планировщик,
ответственный за обработку запросов на выполнение. Данный шаблон скла-
дывается из следующих шести частей:

�� объект-посредник, предоставляющий клиентам интерфейс с общедо-
ступными методами;

�� интерфейс, посредством которого активному объекту можно послать за-
прос на выполнение метода;

�� список ожидающих выполнения запросов от клиентов;
�� планировщик, который решает, в каком порядке обслуживать запросы;
�� реализация методов активного объекта;
�� функция обратного вызова, общая переменная или иной механизм, по-

зволяющий клиенту получить запрошенный результат.
Рассмотрим в подробностях реализацию активного объекта. Следующий

пример кода создан для демонстрационных целей. Код, предназначенный для
использования в реальном проекте, потребовал бы некоторых дополнитель-
ных усовершенствований, однако соблюдение всех промышленных критериев
качества сделало бы код слишком объёмным для нашего рассмотрения.
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
#include <string>
#include <vector>
#include <windows.h>
#include <functional>
#include <thread>
#include <future>
using namespace std;

 4 / 32

Шаблон «Активный объект»    261

// упрощённая реализация активного объекта
template <class T>
class ActiveObject {
 // диспетчер
 rxcpp::subjects::subject<T> subj;

protected:
 ActiveObject() {
 subj.get_observable().subscribe([=] (T s) {
 Execute(s);
 });
 }

 virtual void Execute(T s) {}

public:
 // выстрелил и забыл
 void FireNForget(T item) {
 subj.get_subscriber().on_next(item);
 }

 rxcpp::observable<T> GetObservable() {
 return subj.get_observable();
 }

 virtual ~ActiveObject() {}
};

В приведённом выше коде экземпляр класса subject<T> используется в ка
честве механизма оповещения исполнителя о новых запросах на асинхронный
вызов методов. Метод FireNForget отправляет значение аргумента в объект-
тему subj через посредство её метода get_subscriber. Этот метод немедленно
возвращает выполнение вызвавшему контексту, а тем временем скрытые от
клиента асинхронные механизмы обеспечат (возможно, в какой-то момент
времени в будущем) вызов метода Execute с этим значением аргумента. Пред-
полагается, что данный класс будет использоваться в качестве базового для
пользовательских классов, содержащих конкретную реализацию метода Exe
cute. Рассмотрим пример такого класса.
class ConcreteObject : public ActiveObject<double> {
public:
 ConcreteObject() {}
 virtual void Execute(double a) {
 cout << "Hello World....." << a << endl;
 }
};

int main(int argc, char *argv[]) {
 ConcreteObject temp;
 for (int i=0; i<=10; ++i)
 temp.FireNForget(i*i);
 return 0;
}

 5 / 32

262    Шаблоны и идиомы реактивного программирования на языке С++

В этом фрагменте кода объявляется пользовательский класс, обладающий
функциональностью активного объекта и реализующий конкретный алгоритм
обработки Execute с аргументом вещественного типа. Главная функция мно-
гократно посылает активному объекту запросы на асинхронное вычисление,
в результате чего вызывается переопределённый метод Execute.

Шаблон «Ресурс взаймы»
Как и явствует из названия, этот шаблон проектирования предполагает выдачу
ресурса во временное пользование вызываемой функции. При этом выполня-
ется следующая последовательность действий:

�� создаётся необходимый для работы функции ресурс;
�� ресурс передаётся функции во временное пользование;
�� функция выполняет свою работу, используя выданный ресурс, и возвра-

щает управление вызывавшему контексту;
�� ресурс уничтожается.

Выдача ресурса взаймы с гарантированным последующим освобождением
помогает избежать утечки ресурсов. В следующем фрагменте кода показан
пример реализации этого шаблона.
#include <rxcpp/rx.hpp>
using namespace std;
// Пример реализации ресурса, выдаваемого взаймы.
// Объект открывает файл и не допускает просачивания
// дескриптора файла в клиентский код. Файл остаётся
// в исключительном владении данного объекта
class ResourceLoan {
 FILE *file;
 string filename;
public:
 ResourceLoan(string pfile) {
 filename = pfile;
 file = fopen(filename.c_str(),"rb");
 }

 // прочитать до 1024 байт в буфер. Буфер и фактический
 // размер прочитанных данных отдать пользовательской
 // функции на обработку
 int ReadBuffer(function<int(char pbuffer[], int val)> func) {
 if (file == nullptr) { return -1; }
 char buffer[1024];
 int result = fread (buffer, 1, 1024, file);
 return func(buffer,result);
 }

 // деструктор закрывает файл
 ~ResourceLoan() { fclose(file);}
};

 6 / 32

Шаблон «Шина событий»    263

// Демонстрация работы объявленного выше класса
int main(int argc, char *argv[]) {
 ResourceLoan res("a.bin");
 int nread;

 // напечатать и вернуть размер прочитанных данных
 auto rlambda = [] (char buffer[] , int val) {
 cout << "Size " << val << endl;
 return val;
 };

 // дескриптор файла скрыт от пользовательской функции
 while ((nread = res.ReadBuffer(rlambda)) > 0) {}

 // при выходе за область видимости объекта ResourceLoan
 // файл автоматически закрывается
 return 0;
}

Шаблон «Ресурс взаймы» действительно позволяет избежать утечки ресур-
сов. Объект-обёртка остаётся единственным владельцем ресурса и никогда не
отдаёт его клиенту. Однако клиент может делать с этим ресурсом всё, что угод-
но, через предоставляемый обёрткой безопасный интерфейс. Освобождение
ресурса происходит автоматически при уничтожении обёртки. Приведённая
выше главная функция демонстрирует использование такого объекта.

Шаблон «Шина событий»
Шина событий работает как посредник между источниками и приёмниками
событий. Источник, или производитель, испускает события и направляет их
на общую шину, а объекты, подписанные на события, автоматически полу-
чают оповещения. Этот шаблон может считаться частным случаем шаблона
«Посредник»1. Реализация шины событий состоит из следующих основных
элементов:

�� производители – объекты, испускающие события;
�� потребители – объекты, в конечном счёте получающие события для об-

работки;
�� контроллеры – объекты, выступающие одновременно производителями

и потребителями событий.
Ниже представлен пример реализации шины событий. Контроллеры в дан-

ном примере не реализованы для краткости.
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>

1	 Кроме того, очевидна его связь с шаблоном «Наблюдатель». – Прим. перев.

 7 / 32

264    Шаблоны и идиомы реактивного программирования на языке С++

using namespace std;

// Объект-событие
struct EVENT_INFO{
 int id;
 int err_code;
 string description;

 EVENT_INFO() {
 id = err_code = 0;
 description ="default";
 }

 EVENT_INFO(int pid, int perr_code, string pdescription) {
 id = pid;
 err_code = perr_code;
 description = pdescription;
 }

 void Print() {
 cout
 << "id & Error Code"
 << id
 << ":"
 << err_code
 << ":"
 << description
 << endl;
 }
};

Структура EVENT_INFO моделирует событие и содержит следующие поля:
�� идентификатор события;
�� код ошибки;
�� описание события.

Следующий отрывок кода вполне очевиден:
// эту функцию будут вызывать потребители
template <class T>
void DoSomeThingWithEvent(T ev)
{ ev.Print(); }

// упреждающее объявление
template <class T>
class EventBus;

// производитель отправляет события на шину
template <class T>
class Producer {
 string name;
public:
 Producer(string pname) { name = pname; }

 8 / 32

Шаблон «Шина событий»    265

 bool Fire(T ev, EventBus<T> *bev) {
 bev->FireEvent(ev);
 return false;
 }
};

Реализация производителя событий весьма проста. Метод Fire принимает
шину – объект типа EventBus<T>, параметризованный подходящим типом T, –
и вызывает у шины метод FireEvent. Реализация потребителя выглядит не-
сколько сложнее. Ниже представлен её код.
// потребитель подписывается на события
template <class T>
class Consumer {
 string name;
 // объект subscription позволяет отписаться
 rxcpp::composite_subscription subscription;

public:
 Consumer(string pname) { name = pname;}

 // подключить потребителя к шине
 bool Connect(EventBus<T> *bus) {
 // предотвратить двойную подписку
 if (subscription.is_subscribed())
 subscription.unsubscribe();
 // создать новую подписку
 subscription = rxcpp::composite_subscription();
 auto subscriber = rxcpp::make_subscriber<T>(
 subscription,
 [=] (T value) { DoSomeThingWithEvent<T>(value); },
 [] () { printf("OnCompleted\n");});
 // собственно, подписаться
 bus->GetObservable().subscribe(subscriber);
 return true;
 }

 // в деструкторе – отписаться
 ~Consumer() { Disconnect(); }

 bool Disconnect() {
 if (subscription.is_subscribed())
 subscription.unsubscribe();
 }
};

Принцип действия потребителя событий довольно прост. Метод Connect от-
вечает за подписку потребителя на события, исходящие от предоставляемого
шиной объекта-темы – от той его стороны, которая выступает наблюдаемым
источником. Если при этом потребитель уже был подписан на события, старая
подписка отменяется.

 9 / 32

266    Шаблоны и идиомы реактивного программирования на языке С++

// реализация шины событий
template <class T>
class EventBus {
private:
 std::string name;
 // объект-тема, на который подписываются потребители
 rxcpp::subjects::behavior<T> *replaysubject;

public:
 EventBus<T>() {
 replaysubject = new rxcpp::subjects::behavior<T>(T());
 }

 ~EventBus() {delete replaysubject;}

 // подключить потребителя к шине
 bool AddConsumer(Consumer<T>& b) {b.Connect(this);}

 // испустить событие
 bool FireEvent (T& event) {
 replaysubject->get_subscriber().on_next(event);
 return true;
 }

 string get_name() { return name;}

 rxcpp::observable<T> GetObservable() {
 return replaysubject->get_observable();
 }
};

Шина данных работает как трубопровод для транспортировки событий от
производителей к потребителям. Внутренние механизмы шины опираются на
объект-тему, который выступает наблюдаемым источником данных, извещая
потребителей. В приведённой здесь упрощённой реализации оставлены без
внимания аспекты функционирования шины в многопоточной среде. Остаётся
показать только главную функцию, которая приводит в действие всю систему.
int main(int argc, char *argv[]) {
 // создать шину событий
 EventBus<EVENT_INFO> program_bus;
 // создать производителя и двух потребителей
 // подключить потребителей к шине
 Producer<EVENT_INFO> producer_one("первый производитель");
 Consumer<EVENT_INFO> consumer_one("потребитель А");
 Consumer<EVENT_INFO> consumer_two("потребитель Б");
 program_bus.AddConsumer(consumer_one);
 program_bus.AddConsumer(consumer_two);

 // испустить событие
 EVENT_INFO ev;
 ev.id = 100;

 10 / 32

Итоги    267

 ev.err_code = 0;
 ev.description = "Здравствуй, мир";
 producer_one.Fire(ev,&program_bus);

 // испустить ещё одно событие, создав нового производителя
 ev.id = 100;
 ev.err_code = 10;
 ev.description = "Произошла ошибка";
 Producer<EVENT_INFO> producer_two("второй производитель");
 producer_two.Fire(ev,&program_bus);
 return 0;
}

Главная функция выполняет следующие действия.
1.	 Создание шины событий.
2.	 Создание производителя событий.
3.	 Создание потребителей событий.
4.	� Генерация событий, которые автоматически отправляются на шину

и приходят потребителям.
В этой главе мы разобрали лишь небольшую часть шаблонов проектирова-

ния, удобных для создания реактивных программ. В центре нашего внимания
находились взаимосвязи между шаблонами «Банды четырёх» и принципами
реактивного программирования. Авторы убеждены, что модель реактивного
программирования представляет собой не что иное, как усовершенствованную
версию классических шаблонов «Банды четырёх». Реализация этих усовершен-
ствований средствами языка программирования стала возможной благодаря
появлению в них средств, характерных для функциональной парадигмы. Со-
четание объектно-ориентированного и функционального стилей программи-
рования представляется наилучшим подходом к созданию современного кода
на языке C++. Эта идея лежит в основе настоящей главы.

Итоги
В этой главе читатель погрузился в чудесный мир шаблонов и идиом програм-
мирования. Глава открывалась разбором шаблонов «Банды четырёх», затем
были изложены более специализированные шаблоны реактивного програм-
мирования. На примерах показаны шаблоны «Ячейка», «Активный объект»,
«Ресурс взаймы» и «Шина событий». Понимание связей между классическими
шаблонами «Банды четырёх» и принципами реактивного программирования
поможет читателю шире взглянуть на данный предмет.

Следующая глава посвящена разработке микросервисов на языке C++.

 11 / 32

Глава 11
Реактивные микросервисы

на языке C++

В предыдущих главах рассмотрен ряд важных аспектов реактивного програм-
мирования на языке C++, в том числе:

1)	 реактивная модель программирования и её концептуальные основания;
2)	 библиотека RxCpp и присущая ей модель программирования;
3)	� реактивное программирование пользовательских интерфейсов с ис-

пользованием библиотек Qt и RxCpp;
4)	� шаблоны проектирования и их связь с реактивной моделью программи-

рования.
Если ещё раз окинуть взором разобранные ранее примеры, можно заметить,

что они замкнуты в себе, т. е. обрабатывают лишь те события, которые гене-
рируются этим же вычислительным процессом. При этом уделялось большое
внимание средствам параллельного и многопоточного программирования
и синхронизации доступа к общей памяти (на эти задачи в значительной сте-
пени ориентированы библиотеки Rx.Net и RxJava). Система Akka и ряд подоб-
ных ей позволяют перенести модель реактивного программирования в мир
распределённых систем. С помощью системы Akka можно программировать
реактивную логику взаимодействия между различными процессами. Реактив-
ная модель программирования хороша также для программирования серверов
и клиентов, общающихся между собой по интерфейсу REST. Библиотека RxJs
широко используется для создания кода клиентской стороны, выполняюще-
гося в браузере и работающего с сервером по интерфейсу REST. Библиотеку
RxCpp тоже можно использовать для программирования веб-клиентов, агре-
гирующих информацию от нескольких серверов. Средства библиотеки RxCpp
можно с пользой применять и в консольных приложениях, и в приложениях
с графическим пользовательским интерфейсом. Ещё одна возможная область
применения этой библиотеки состоит в агрегировании данных от множества
мелких сервисов для поставки их веб-клиентам.

В этой главе будет рассматриваться задача создания веб-приложения на
языке C++ с использованием специальной библиотеки для поддержки интер-

 12 / 32

Язык C++ и веб-программирование    269

фейса REST как на серверной, так и на клиентской стороне. В процессе решения
этой задачи будет рассмотрено, что такое микросервисы и как их использовать
в своих разработках. Также речь будет идти о том, как применить библиотеку
RxCpp вместе с обёрткой над библиотекой libcurl для коммуникации с удалён-
ными приложениями по протоколу REST и для обработки веб-страниц. В ка
честве примера, демонстрирующего этот подход в действии, будет использо-
вана библиотека RxCurl, созданная Кирком Шупом (Kirk Shoop) первоначально
для его анализатора данных из системы Twitter.

Язык C++ и веб-программирование
В наши дни большая часть приложений, предназначенных для работы в среде
веб, разрабатывается на языках Python, Java, C#, PHP и других языках особо вы-
сокого уровня. Однако даже для обеспечения работы таких приложений обыч-
но бывают нужны обратные прокси-серверы и веб-серверы, такие как Nginx,
Apache, IIS, на которые возлагается обработка потока сообщений, создаваемо-
го приложениями. Такие серверы, предназначенные для высокоэффективной
обработки интенсивных потоков данных, обычно пишутся на языке C++. Также
по причинам, связанным с эффективностью, на языке C++ написаны популяр-
ные веб-браузеры и клиентские библиотеки для протокола HTTP, такие как lib-
www, libсurl или WinInet.

Одна из причин популярности статически типизированных языков Java
и C#, как и языков с динамической типизацией Python, Ruby и PHP, состоит
в том, что первые поддерживают механизмы рефлексии, а вторые – т. н. «ути-
ную» типизацию. Оба этих механизма позволяют веб-приложениям динами-
чески подгружать обработчики для разных типов запросов и разных типов
содержимого сообщений. Читателю рекомендуется самостоятельно отыскать
и изучить сведения о рефлексии и «утиной» типизации.

Модель программирования REST
REST (от англ. REpresentational State Transfer, передача состояния представ-
ления) – это архитектурный стиль взаимодействия компонентов распреде-
лённого приложения, описанный одним из создателей протокола HTTP Роем
Филдингом в своей диссертации. На сегодняшний день это одна из наиболее
популярных технологий взаимодействия между клиентами и серверами в со-
ставе распределённой системы. Архитектура REST сфокусирована на понятии
ресурса и хорошо согласуется с шаблоном CRUD, широко применяемым при
создании корпоративных информационных систем. Вместе с архитектурой
REST для представления передаваемых данных часто используется формат
JSON (JavaScript Object Notation) – в отличие от протокола SOAP, для которого
характерно использование формата XML. Модель программирования, связан-
ная с архитектурой REST, опирается на «глаголы» – методы запросов, опреде-
лённые в протоколе HTTP. Метод определяет, какого рода действие должно

 13 / 32

270    Реактивные микросервисы на языке C++

быть выполнено над ресурсом, идентифицируемым адресной строкой. Чаще
всего используются следующие методы запросов:

�� POST – создание нового ресурса;
�� GET – чтение данных из ресурса;
�� PUT – внесение изменений в существующий ресурс (также может рабо-

тать и подобно методу POST, создавая новый ресурс);
�� DELETE – удаление ресурса.

Библиотека REST SDK для языка C++
Пакет C++ REST SDK корпорации Microsoft – это набор средств программиро-
вания на языке C++, предназначенный для организации клиент-серверных
взаимодействий, обеспечивающий высокую производительность, присущую
компиляции в машинный код, и использующий мощь современных средств
асинхронного программирования, поддерживаемых языком. Цель этой биб
лиотеки состоит в том, чтобы помочь разработчикам на языке C++ в подклю-
чении к веб-сервисам и взаимодействии с ними. Для этого пакет поддерживает
следующую функциональность:

�� клиент и сервер протокола HTTP;
�� формат представления данных JSON;
�� асинхронные потоки данных;
�� клиент протокола WebSocket;
�� протокол авторизации oAuth.

Библиотека C++ REST SDK опирается на богатые средства управления асин-
хронными задачами, предоставляемые библиотекой параллельных шаблонов
PPL. Асинхронные задачи из библиотеки PPL предоставляют программисту
мощную модель асинхронного программирования на основе новых средств
языка C++. Библиотека C++ REST SDK поддерживает платформы Windows desk-
top, Windows Store (UWP), Linux, macOS, Unix, iOS и Android.

Программирование HTTP-клиента с использованием
библиотеки C++ REST SDK
Модель программирования, лежащая в основе библиотеки C++ REST SDK, асин-
хронна по своей сути, но также предоставляет возможность для синхронных
вызовов. Следующая программа демонстрирует асинхронные вызовы функ-
ций из программного интерфейса HTTP-клиента. Программа получает данные
веб-страницы с сервера и сохраняет их в файле. В ней используются так назы-
ваемые продолжения задач (continuations) – средство, позволяющее собирать
асинхронные действия в цепочки, указывая, что по окончании одной задачи
должна быть выполнена некоторая другая. При этом с точки зрения пользова-
тельского кода вся такая цепочка выглядит как одна асинхронная задача.
#include <cpprest/http_client.h>
#include <cpprest/filestream.h>

 14 / 32

Библиотека REST SDK для языка C++    271

#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <fstream>
#include <random>
#include "cpprest/json.h"
#include "cpprest/http_listener.h"
#include "cpprest/uri.h"
#include "cpprest/asyncrt_utils.h"

// Пример использования REST SDK:
// клиентское приложение для загрузки веб-страницы

using namespace utility; // разные полезные функции
using namespace web; // URI и общая функциональность
using namespace web::http; // протокол HTTP, общие средства
using namespace web::http::client; // клиент протокола HTTP
using namespace concurrency::streams; // асинхронные потоки

int main(int argc, char* argv[]) {
 auto fileStream = std::make_shared<ostream>();
 // открыть файл для записи
 pplx::task<void> requestTask =
 fstream::open_ostream(U("google_home.html"))
 .then([=] (ostream outFile) {
 *fileStream = outFile;
 // создать HTTP-клиент
 http_client client(U("http://www.google.com"));
 // построить URI
 uri_builder builder(U("/"));
 // послать запрос
 return client.request(
 methods::GET, builder.to_string());
 })
 .then([=] (http_response response) {
 printf(
 "Received response status code:%un",
 response.status_code());
 return response.body()
 .read_to_end(fileStream->streambuf());
 })
 .then([=] (size_t) { return fileStream->close(); });

 // Никакие действия пока не выполняются:
 // лишь построена цепочка асинхронных задач.
 // Теперь выполнить её и обработать ошибки.
 try {
 requestTask.wait();
 }
 catch (const std::exception &e) {

 15 / 32

http://www.google.com

272    Реактивные микросервисы на языке C++

 printf("Error exception:%sn", e.what());
 }

 getchar(); // приостановить выполнение
 return 0;
}

Эта программа иллюстрирует стиль программирования, основанный на
компоновке асинхронных задач с помощью механизма продолжений. Боль-
шая часть этого кода отвечает за составление цепочки действий, тогда как соб-
ственно выполнение программой своей основной задачи сводится к одному
вызову метода wait для этой цепочки. Впрочем, библиотека позволяет про-
граммировать и в более привычном синхронном стиле. Читателю рекоменду-
ется обратиться к документации за более подробной информацией.

Программирование HTTP-сервера
В предыдущем разделе было показано, как создать HTTP-клиента на языке
C++ с помощью библиотеки REST SDK. Для этого был использован программ-
ный интерфейс, основанный на асинхронных задачах и продолжениях. Про-
грамма отправляла на сервер запрос, получала веб-страницу и сохраняла её
в файл. Теперь пора заняться разработкой HTTP-сервера на основе той же
библиотеки REST SDK. Средства библиотеки позволяют настраивать прослу-
шивание определённого порта в ожидании веб-запроса и назначать обработ-
чики для каждого типа веб-запроса: например, для запросов типа GET, PUT
и POST.
// (директивы включения заголовочных файлов опущены)
// Простой веб-сервер на основе библиотеки REST SDK
using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;

// класс-обёртка над классом http_listener
// из библиотеки REST SDK
class SimpleServer {
public:
 SimpleServer(utility::string_t url);
 ~SimpleServer() {}
 pplx::task<void> Open() { return m_listener.open(); }
 pplx::task<void> Close() { return m_listener.close(); }

private:
 // обработчики для разных типов HTTP-запросов
 void HandleGet(http_request message);
 void HandlePut(http_request message);
 void HandlePost(http_request message);
 void HandleDelete(http_request message);

 16 / 32

Библиотека REST SDK для языка C++    273

 // точка входа запросов
 http_listener m_listener;
};

Класс SimpleServer – по сути своей обёртка над библиотечным классом http_
listener. Этот класс умеет слушать входящие запросы по протоколу HTTP и по-
зволяет устанавливать обработчики для каждого типа запроса (GET, PUT, POST
и т. д.). Всякий раз, когда по сети приходит новый запрос, объект класса http_
listener вызывает соответствующий обработчик и передаёт запрос ему.
SimpleServer::SimpleServer(utility::string_t url)
 : m_listener(url)
{
 using namespace std::placeholders;
 // подписка методов-обработчиков на запросы нужных типов
 m_listener.support(
 methods::GET,
 std::bind(&SimpleServer::HandleGet, this, _1));
 m_listener.support(
 methods::PUT,
 std::bind(&SimpleServer::HandlePut, this, _1));
 m_listener.support(
 methods::POST,
 std::bind(&SimpleServer::HandlePost, this, _1));
 m_listener.support(
 methods::DEL,
 std::bind(&SimpleServer::HandleDelete, this, _1));
}

Показанный выше фрагмент кода настраивает объект класса http_listener,
устанавливая функции-обработчики для различных типов запросов. В этом
примере поддерживаются запросы четырёх типов: GET, PUT, POST и DELETE –
это наиболее распространённые команды, поддерживаемые большинством
систем, основанных на архитектуре REST.
// В этом упрощённом примере вся обработка запроса
// заключается в том, чтобы напечатать информацию о
// запросе на консоль и вернуть код "200 OK" вместе
// с сообщением об успешном завершении
void SimpleServer::HandleGet(http_request message) {
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK,L"GET: успешно выполнено");
};

void SimpleServer::HandlePost(http_request message) {
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"POST: успешно выполнено");
};

void SimpleServer::HandleDelete(http_request message) {
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"DELETE: успешно выполнено");
}

 17 / 32

274    Реактивные микросервисы на языке C++

void SimpleServer::HandlePut(http_request message) {
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"PUT: успешно выполнено");
};

Представленный выше код построен по единому образцу, понятному для
любого разработчика. Всё, что делает каждый из четырёх обработчиков, – это
вывод на консоль параметров запроса и отсылка клиенту ответа об успешном
выполнении операции. В следующем разделе будет показано, как обратиться
к этим четырём функциям нашего сервера с помощью утилит postman и curl.
// умный указатель на единственный экземпляр объекта-сервера
std::unique_ptr<SimpleServer> g_http;

// запустить сервер, назначив ему адрес
void StartServer(const string_t& address) {
 // построить URI для прослушивания
 uri_builder uri(address);
 uri.append_path(U("dbdemo/"));
 auto addr = uri.to_uri().to_string();

 // создать экземпляр сервера и запустить обработку запросов
 g_http = std::make_unique<SimpleServer>(addr);
 g_http->Open().wait();

 // сообщить пользователю о старте сервера
 ucout
 << utility::string_t(U("Готов к приёму запросов: "))
 << addr
 << std::endl;

 return;
}

// закрыть соединение, дождаться завершения асинхронной операции
void ShutDown() {
 g_http->Close().wait();
 return;
}

// сконфигурировать и запустить систему в целом
int wmain(int argc, wchar_t *argv[]) {
 utility::string_t port = U("34567");
 if (argc == 2) {
 port = argv[1];
 }

 // построить базовый адрес сервера
 utility::string_t address = U("http://localhost:");
 address.append(port);

 StartServer(address);

 18 / 32

Тестирование HTTP-сервера с помощью утилит curl и postman    275

 std::cout << "Нажмите ввод для завершения." << std::endl;
 std::string line;
 std::getline(std::cin, line);
 ShutDown();
 return 0;
}

Главная функция программы создаёт экземпляр класса-обёртки, используя
для этого вспомогательную функцию StartServer, запуская тем самым функ
ционирование сервера. Затем главная функция ожидает нажатия клавиши
«Ввод» и останавливает сервер. Запустив это приложение, можно воспользо-
ваться утилитами postman и curl, чтобы проверить его в действии.

Тестирование HTTP-сервера с помощью утилит curl
и postman
Инструмент curl – это кроссплатформенная утилита с интерфейсом командной
строки, доступная в системах Windows, GNU Linux, macOS и в других системах
стандарта POSIX. Эта утилита позволяет передавать данные по сети посред-
ством различных прикладных протоколов, основанных на стеке TCP/IP. Под-
держиваются такие широко распространённые протоколы, как HTTP, HTTPS,
FTP, FTPS, SCP, TETP, DICT, TELNET и LDAP.

Воспользуемся утилитой curl, чтобы продемонстрировать работу HTTP-
сервера, реализованного в предыдущем разделе. При вызове утилиты ей не-
обходимо через параметры командной строки передать тип запроса, адрес
ресурса (URI) и, возможно, дополнительные данные. В частности, команды для
отсылки на сервер запросов типа GET и PUT выглядят следующим образом:
curl -X GET -H "Content-Type: application/json" http://localhost:34567/dbdemo/
curl -X PUT http://localhost:34567/dbdemo/ -H "Content-Type: application/json" -d
'{"SimpleContent":"Value"}'

Эти две команды можно поместить в файл сценария для оболочки команд-
ной строки или подать непосредственно с консоли. Результатом их выполне-
ния должен стать текст:
GET: успешно выполнено
PUT: успешно выполнено

Изучив документацию к утилите curl, читатель сможет самостоятельно про-
верить работу остальных методов протокола HTTP.

Postman – это мощное инструментальное средство для тестирования сер-
висов, работающих по протоколу HTTP. Сначала это был побочный проект
индийского программиста по имени Абхинав Астана. Данный инструмент
был разработан как подключаемый модуль для браузера Chrome, вскоре его
популярность превзошла самые смелые ожидания автора. Ныне инструмент
превратился в самодостаточный программный продукт, вокруг которого сфор-

 19 / 32

276    Реактивные микросервисы на языке C++

мировалась компания, руководимая Астаной. Читатель может бесплатно ис-
пробовать продукт postman и протестировать с его помощью свой сервер.

Создание HTTP-клиента с помощью библиотеки libcurl
Выше был приведён пример использования утилиты curl. Следует сказать, что
она представляет собой обёртку над библиотекой libcurl. В этом разделе будет
показано, как создать собственное приложение-клиент для протокола HTTP
на основе этой библиотеки. Это приложение позволит обращаться к REST-
интерфейсу сервера.
// пример использования библиотеки libcurl
#include <stdio.h>
#include <curl/curl.h>

int main() {
 CURL *curl;
 CURLcode res;

 // инициализация библиотеки
 curl = curl_easy_init();
 if(curl) {
 // установить адрес
 curl_easy_setopt(
 curl,
 CURLOPT_URL,
 "http://example.com");

 // включить поддержку перенаправлений
 curl_easy_setopt(
 curl,
 CURLOPT_FOLLOWLOCATION,
 1L);

 // всё настроено, можно принимать данные
 res = curl_easy_perform(curl);
 if (res != CURLE_OK) {
 // ошибка
 cout
 << "Произошла ошибка: "
 << curl_easy_strerror(res)
 << endl;
 }

 curl_easy_cleanup(curl);
 }

 return 0;
}

Эта программа запрашивает веб-страницу по адресу http://example.com, по-
лучает её содержимое и выводит его на консоль. Модель программирования,

 20 / 32

http://example.com
http://example.com

Тестирование HTTP-сервера с помощью утилит curl и postman    277

лежащая в основе библиотеки libcurl, очень проста, библиотека хорошо доку-
ментирована. На сегодняшний день это одна из наиболее популярных библио-
тек, предоставляющих приложениям доступ к протоколам TCP/IP.

Реактивная библиотека-обёртка RxCurl
Главную роль в разработке библиотеки RxCpp сыграл Кирк Шуп, ныне рабо-
тающий в корпорации Microsoft. Однажды он решил создать приложение,
анализирующее содержимое сети Twitter (https://github.com/kirkshoop/twitter),
чтобы на этом примере продемонстрировать различные аспекты реактивно-
го программирования. Среди прочих подзадач в рамках этого проекта было
и создание обёртки над библиотекой libcurl, которая бы позволяла проводить
обработку веб-запросов типа GET и POST в реактивном стиле. Авторы данной
книги расширили первоначальную реализацию, добавив поддержку методов
PUT и DELETE. Рассмотрим код библиотеки RxCurl, доступный вместе с исход-
ными кодами примеров к книге:
// Простой клиент, получающий данные по протоколу
// HTTP с использованием библиотеки RxCurl

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <map>
#include <chrono>
using namespace std;
using namespace std::chrono;

// библиотеки curl и RxCpp
#include <curl/curl.h>
#include <rxcpp/rx.hpp>
using namespace rxcpp;
using namespace rxcpp::rxo;
using namespace rxcpp::rxs;

// модифицированная библиотека RxCurl
#include "rxcurl.h"
using namespace rxcurl;

int main() {
 // создать фабрику HTTP-запросов
 string url = "http://example.com";
 auto factory = create_rxcurl();
 auto request = factory.create(
 http_request{url, "GET",{}, {}}) |
 rxo::map([] (http_response r) {
 return r.body.complete;
 });

Сначала результатом инициализации библиотеки становится объект facto-
ry – фабрика HTTP-запросов, затем с помощью этой фабрики создаётся запрос

 21 / 32

https://github.com/kirkshoop/twitter
http://example.com

278    Реактивные микросервисы на языке C++

(объект request), а к нему с помощью метода map прикрепляется функция-об-
работчик ответа. Тем самым запрос превращается в наблюдаемый источник.
Тип http_request играет ключевую роль в подобных веб-приложениях, её опре-
деление представлено ниже:
struct http_request {
 string url;
 string method;
 std::map<string, string> headers;
 string body;
};

Вернёмся к примеру приложения и рассмотрим следующий фрагмент кода:
 // выполнить блокирующий запрос
 observable<string> response_message;
 request.as_blocking().subscribe(
 [&] (observable<string> s) {
 response_message = s.sum();
 },
 [] () {});

На запрос, преобразованный в наблюдаемый источник данных (объект re-
quest), можно подписать функцию-обработчик. Обработчик события on_next
вызывается всякий раз при получении успешного ответа от веб-сервера. В дан-
ном случае обработчиком выступает лямбда-функция, которая агрегирует (по-
средством метода sum) данные из всех ответов и строит таким образом строку
с полным текстом запрошенного ресурса. Как только формирование текста из
отдельных ответов завершится, этот текст становится доступен в наблюдае-
мом источнике response_message.
 // получить ответ от веб-сервера
 string html;
 response_message.as_blocking().subscribe(
 [&html] (string temp) { html = temp; },
 [] () {});

 // напечатать результат на консоль
 cout << html << endl;
 return 0;
}

На данные из наблюдаемого источника response_message подписывается лямб-
да-функция, которая полученную из источника строку помещает в переменную
html. Наконец, остаётся вывести на консоль текст из этой переменной. Читателю
рекомендуется самостоятельно изучить, как устроен заголовочный файл rxcurl.h.

Использование формата JSON с протоколом HTTP
Долгое время формат XML держал фактическую монополию на способ пред-
ставления данных, составляющих содержимое запроса к веб-сервисам. Так,

 22 / 32

Использование формата JSON с протоколом HTTP    279

он почти исключительно используется в сервисах, основанных на протоколе
SOAP. Однако с распространением архитектуры REST всё шире для представ-
ления данных стал использоваться формат JSON (JavaScript Object Notation).
В следующей таблице показаны представления одной и той же структуры дан-
ных в этих двух форматах.

XML JSON
<person>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd
Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumber>
 <type>home</type>
 <number>212 555-1234</number>
 </phoneNumber>
 <phoneNumber>
 <type>fax</type>
 <number>646 555-4567</number>
 </phoneNumber>
 <gender>
 <type>male</type>
 </gender>
</person>

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
],
 "gender": {
 "type": "male"
 }
}

Формат JSON поддерживает следующие типы данных:
�� текстовая строка;
�� число;
�� объект (в свою очередь, заданный в формате JSON);
�� массив;
�� логическое значение.

Создадим для примера объект, содержащий в себе значения всех этих типов:
�� name: строковый тип со значением "John";
�� age: числовой тип со значением 35;
�� spouse: объект в нотации JSON;
�� siblings: массив (элементы которого суть строки);
�� employed: логическое значение «истина».

Представление данного объекта в целом выглядит так:
{
 "name": "John",
 "age": 35,
 "spouse": {

 23 / 32

280    Реактивные микросервисы на языке C++

 "name": "Joanna",
 "age":30,
 "city":"New York"
 },
 {
 "siblings": ["Bob", "Bill", "Peter"]
 },
 { "employed":true }
}

Познакомившись с форматом JSON и его основными элементами, напишем
простую программу, демонстрирующую работу с этим форматом средствами
библиотеки REST SDK.

// Консольное приложение для демонстрации средств
// для работы с форматом JSON в библиотеке REST SDK
using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;

// структура данных для примера
struct EMPLOYEE_INFO {
 utility::string_t name;
 int age;
 double salary;

 // преобразование текста в формате JSON в объект данных
 static EMPLOYEE_INFO JSonToObject(
 const web::json::object & object)
 {
 EMPLOYEE_INFO result;
 result.name = object.at(U("name")).as_string();
 result.age = object.at(U("age")).as_integer();
 result.salary = object.at(U("salary")).as_double();
 return result;
 }

Статический метод JSonToObject превращает код в формате JSON в объект
типа EMPLOYEE_INFO. Функция json::object::at возвращает ссылку на подобъект,
находящийся в объекте по заданному ключу. Для извлечения значений прос
тых типов (числовой, строковый, логический) используются методы as_string,
as_integer, as_double, as_bool.

 // преобразование объекта данных в текст в формате JSON
 web::json::value ObjectToJson() const
 {
 web::json::value result = web::json::value::object();
 result[U("name")] = web::json::value::string(name);
 result[U("age")] = web::json::value::number(age);

 24 / 32

Использование формата JSON с протоколом HTTP    281

 result[U("salary")] = web::json::value::number(salary);
 return result;
 }
};

Метод ObjectToJson преобразовывает экземпляр типа EMPLOYEE_INFO в пред-
ставление в формате JSON. Для преобразования значений простых типов ис-
пользуются статические методы класса web::json::value, в данном примере
string, и number.

Следующий фрагмент кода создаёт и наполняет данными JSON-объект.
// создание объекта с подобъектами и массивом
void MakeAndShowJSONObject()
{
 // создать JSON-объект
 json::value group;
 group[L"Title"] = json::value::string(U("Native Developers"));
 group[L"Subtitle"] = json::value::string(
 U("C++ devekioers on Windws/GNU LINUX"));
 group[L"Description"] = json::value::string(
 U("A Short Description here "));

 // создать объект-элемент массива
 json::value item;
 item[L"Name"] = json::value::string(U("Praseed Pai"));
 item[L"Skill"] = json::value::string(U("C++ / java "));
 // создать ещё один объект-элемент массива
 json::value item2;
 item2[L"Name"] = json::value::string(U("Peter Abraham"));
 item2[L"Skill"] = json::value::string(U("C++ / C# "));
 // создать JSON-массив
 json::value items;
 items[0] = item;
 items[1] = item2;

 // сделать массив подобъектом имеющегося объекта
 group[L"Resources"] = items;

 // преобразовать JSON-объект в текстовое представление
 utility::stringstream_t stream;
 group.serialize(stream);

 // отобразить строку
 std::wcout << stream.str();
}

Теперь рассмотрим главную функцию, демонстрирующую работу функций,
описанных выше.
int wmain(int argc, wchar_t *argv[])
{
 EMPLOYEE_INFO dm;

 25 / 32

282    Реактивные микросервисы на языке C++

 dm.name = L"Sabhir Bhatia";
 dm.age = 50;
 dm.salary = 10000;
 wcout << dm.ObjectToJson().serialize() << endl;

Здесь создаётся объект структурного типа EMPLOYEE_INFO, и его полям присва-
иваются определённые значения. Затем он преобразовывается в JSON-объект
с помощью метода ObjectToJson и далее, посредством метода serialize, в тексто-
вое представление.
 utility::string_t port =
 U("{\"Name\":\"Alex\", \"Age\":55, \"salary\":20000}");
 web::json::value json_par;
 json::value obj = json::value::parse(port);
 wcout << obj.serialize() << endl;

Этот фрагмент демонстрирует, как преобразовать текстовое представление
в JSON-объект и обратно. Наконец, посмотрим в действии фукнцию, которая
«на лету» строит объект сложной структуры:
 MakeAndShowJSONObject();
 getchar();
 return 0;
}

Использование библиотеки C++ REST SDK
для создания сервера
В этом разделе используется код из блестящей статьи Мариуса Бансилы, посвя-
щённой библиотеке C++ REST SDK и доступной по адресу https://mariusbancila.ro/
blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/.
В частности, оттуда позаимствована реализация ассоциативного хранилища
данных. Авторы книги выражают коллеге свою благодарность.

Создадим микросервис, основанный на архитектуре REST, применив при
этом всё изученное ранее о библиотеке C++ REST SDK. В этой разработке най-
дёт своё применение также и RxCurl Кирка Шупа, к которой авторы добавили
поддержку методов PUT и DELETE. Наш REST-сервис будет поддерживать сле-
дующие методы:

�� GET: возвращает список всех хранящихся на сервере пар «ключ-значе
ние». Ответ должен иметь формат {ключ1: значение1, ключ2: значение2, …};

�� POST: возвращает список значений по заданным в запросе ключам. За-
прос должен быть в формате [ключ1, ключ2, …], а ответ – в формате {ключ1:
значение1, ключ2: значение2, …};

�� PUT: сохраняет на сервере набор пар «ключ-значение». Метод ожидает
запроса в формате {ключ1: значение1, ключ2: значение2, …};

�� DELETE: удаляет заданные в запросе ключи и связанные с ними значе-
ния. Запрос должен иметь вид [ключ1, ключ2, …].

 26 / 32

https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/

Использование библиотеки C++ REST SDK для создания сервера    283

Начнём разбор кода с реализации.
#include <cpprest/http_client.h>
#include <cpprest/filestream.h>
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <fstream>
#include <random>
#include <set>

#include "cpprest/json.h"
#include "cpprest/http_listener.h"
#include "cpprest/uri.h"
#include "cpprest/asyncrt_utils.h"

#ifdef _WIN32
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
#else
include <sys/time.h>
#endif

using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;

// выводит на консоль текстовое представление JSON-объекта
void DisplayJSON(json::value const & jvalue){
 wcout << jvalue.serialize() << endl;
}

// Функция, проделывающая основную работу.
// Принимает в качестве аргументов запрос
// и функцию-обработчик, ответственную за
// обработку конкретного типа запроса
void RequestWorker(
 http_request& request,
 function<void(json::value const&, json::value&)> handler)
{
 auto result = json::value::object();
 request
 .extract_json()
 .then([&result, &handler] (pplx::task<json::value> task) {
 try {
 auto const & jvalue = task.get();

 27 / 32

284    Реактивные микросервисы на языке C++

 if (!jvalue.is_null())
 handler(jvalue, result); // вызвать обработчик
 }
 catch (http_exception const & e) {
 wcout << L"Ошибка! " << e.what() << endl;
 }
 })
 .wait();
 request.reply(status_codes::OK, result);
}

Функция RequestWorker, расположенная в глобальном пространстве имён,
принимает два аргумента: запрос и функцию-обработчик, которая, в свою оче-
редь, должна иметь два аргумента:

�� тело запроса в виде JSON-объекта;
�� ссылку на JSON-объект, в который нужно поместить ответ на запрос.

Функция RequestWorker вычленяет текст запроса, интерпретирует его как
JSON-объект и передаёт на обработку в задачу-продолжение. Приёмником для
результата обработки запроса выступает ссылка на локальную переменную
этой функции.

Для выполнения нашим сервером своей основной задачи понадобится соз-
дать ассоциативное хранилище, т. е. хранилище пар «ключ-значение», имити-
рующее функциональность настоящих баз данных.
// Игрушечная база данных из одной таблицы с ключом типа строки
class HttpKeyValueDBEngine {
 // данные хранятся здесь
 map<utility::string_t, utility::string_t> storage;
public:
 HttpKeyValueDBEngine() {
 storage[L"Praseed"]= L"45";
 storage[L"Peter"] = L"28";
 storage[L"Andrei"] = L"50";
 }

Для простоты реализации соответствие между ключами и значениями бу-
дем хранить в стандартном ассоциативном контейнере из библиотеки STL.
В конструкторе база данных наполняется некоторыми начальными значения
ми. Далее следуют обработчики для четырёх типов запросов, которые выпол-
няют соответствующие действия над этим контейнером.
 // Обработчик для метода GET:
 // Пройти по всему контейнеру и поместить ключи
 // и значения в поток ответа
 void GET_HANDLER(http_request& request) {
 auto resp_obj = json::value::object();
 for (auto const & p : storage)
 resp_obj[p.first] = json::value::string(p.second);
 request.reply(status_codes::OK, resp_obj);
 }

 28 / 32

Использование библиотеки C++ REST SDK для создания сервера    285

Метод1 GET_HANDLER должен вызываться объектом-слушателем, когда он при-
нимает HTTP-запрос и обнаруживает, что это запрос типа GET. В этом обработ-
чике создаётся пустой JSON-объект и по очереди наполняется значениями из
внутреннего хранилища. Затем этот объект помещается в HTTP-запрос в ка
честве ответа, который и будет возвращён клиенту.
 // Обработчик для метода POST
 // Получив из запроса список ключей, вернуть их значения
 void POST_HANDLER(http_request& request) {
 RequestWorker(
 request,
 [&](json::value const & jvalue, json::value & result)
 {
 // вывести на консоль для диагностики
 DisplayJSON(jvalue);

 for (auto const & e : jvalue.as_array()) {
 if (e.is_string()) {
 auto key = e.as_string();
 auto pos = storage.find(key);

 if (pos == storage.end()) {
 // этот ключ не найден
 result[key] = json::value::string(
 L"not found");
 }
 else {
 // добавить пару ключ-значение в ответ
 result[pos->first] =
 json::value::string(pos->second);
 }
 }
 }
 });
 }

Метод POST_HANDLER ожидает, что тело запроса будет содержать массив строк.
Метод проходит в цикле по этому массиву и, рассматривая каждый элемент
как ключ, получает из хранилища соответствующее ему значение. Полученные
при этом пары «ключ-значение» накапливаются в JSON-объекте, который бу-
дет возвращён клиенту в качестве ответа. Если некоторые из указанных в за-
просе ключей отсутствуют в хранилище, вместо значения клиенту возвраща-
ется сообщение о том, что такой ключ не найден.

1	 Качество предложенного авторами архитектурного решения лежит ниже порога до-
пустимого. Один и тот же класс HttpKeyValueDBEngine отвечает как за хранение данных,
представляя собой обёртку над библиотечным классом std::map, так и за подробности
протокола HTTP, тем самым грубо нарушая принцип единственной ответственности
(single responsibility) – один из основополагающих принципов красивой архитекту-
ры объектно-ориентированных систем. – Прим. перев.

 29 / 32

286    Реактивные микросервисы на языке C++

 // Обработчик для метода PUT:
 // Добавить новые ключи или обновить значения имеющихся
 void PUT_HANDLER(http_request& request) {
 RequestWorker(
 request,
 [&](json::value const & jvalue, json::value & result)
 {
 DisplayJSON(jvalue);
 for (auto const& e: jvalue.as_object()) {
 if (e.second.is_string()) {
 auto key = e.first;
 auto value = e.second.as_string();

 if (storage.find(key) == storage.end()) {
 // известить клиента о новом ключе
 result[key] =
 json::value::string(L"<put>");
 }
 else {
 // известить, что ключ обновлён
 result[key] =
 json::value::string(L"<updated>");
 }

 storage[key] = value;
 }
 }
 });
 }

Обработчик для метода PUT получает из запроса JSON-объект, представля-
ющий собой список пар «ключ-значение». Проходя по этому списку, алгоритм
для каждого ключа определяет, есть ли уже такой ключ в хранилище. В ответе
клиент для каждого ключа получает сообщение о том, был ли этот ключ добав-
лен впервые или обновлён.

 // Обработчик для метода DELETE:
 // Удалить из хранилища заданный список ключей
 void DEL_HANDLER(http_request& request) {
 RequestWorker(
 request,
 [&](json::value const & jvalue, json::value & result)
 {
 // просканировать список ключей
 // и отбросить несуществующие
 set<utility::string_t> keys;
 for (auto const & e : jvalue.as_array()) {
 if (e.is_string()) {
 auto key = e.as_string();
 auto pos = storage.find(key);

 30 / 32

Использование библиотеки C++ REST SDK для создания сервера    287

 if (pos == storage.end()) {
 result[key] =
 json::value::string(L"<failed>");
 }
 else {
 result[key] =
 json::value::string(L"<deleted>");
 // добавить в список на удаление
 keys.insert(key);
 }
 }
 }
 // удалить отобранные ключи
 for (auto const & key : keys)
 storage.erase(key);
 });
 }
};

Метод DEL_HANDLER ожидает, что содержимое запроса окажется массивом
строк-ключей. Сначала метод проходит по элементам этого массива и для
каждой строки определяет, существует ли в хранилище такой ключ. Если су-
ществует, то ключ добавляется ко множеству тех ключей, которые фактически
должны быть удалены, а в ответ добавляется сообщение о том, что этот ключ
удалён. В противном случае в ответ добавляется сообщение, что попытка уда-
ления этого ключа вызвала ошибку.

// глобальный объект-хранилище данных
HttpKeyValueDBEngine g_dbengine;

Таким образом, реализован механизм хранения данных и четыре вида за-
просов к нему. Теперь нужно сделать эту базу данных доступной для внешнего
мира, превратив её в сервер, принимающий запросы по сети в соответствии
с архитектурой REST. Обработчики HTTP-запросов будут делегировать свою
работу методам разобранного выше класса HttpKeyValueDBEngine. Этот код весь-
ма похож на тот, который ранее был написан для класса SimpleServer.

class RestDbServiceServer
{
public:
 RestDbServiceServer(utility::string_t url);
 pplx::task<void> Open() { return m_listener.open(); }
 pplx::task<void> Close() { return m_listener.close(); }

private:
 void HandleGet(http_request message);
 void HandlePut(http_request message);
 void HandlePost(http_request message);
 void HandleDelete(http_request message);

 31 / 32

288    Реактивные микросервисы на языке C++

 http_listener m_listener;
};

RestDbServiceServer::RestDbServiceServer(utility::string_t url)
 : m_listener(url)
{
 using namespace std::placeholders;
 m_listener.support(
 methods::GET,
 std::bind(&RestDbServiceServer::HandleGet, this, _1));
 m_listener.support(
 methods::PUT,
 std::bind(&RestDbServiceServer::HandlePut, this, _1));
 m_listener.support(
 methods::POST,
 std::bind(&RestDbServiceServer::HandlePost, this, _1));
 m_listener.support(
 methods::DEL,
 std::bind(&RestDbServiceServer::HandleDelete, this, _1));
}

Показанный выше код привязывает функции-обработчики к соответствую
щим типам HTTP-запросов. Тела этих обработчиков выглядят практически
одинаково, так как они лишь делегируют вызовы соответствующим методам
класса-хранилища, который выполняет основную работу.

void RestDbServiceServer::HandleGet(http_request message) {
 g_dbengine.GET_HANDLER(message);
};

void RestDbServiceServer::HandlePost(http_request message) {
 g_dbengine.POST_HANDLER(message);
};

void RestDbServiceServer::HandleDelete(http_request message) {
 g_dbengine.DEL_HANDLER(message);
}

void RestDbServiceServer::HandlePut(http_request message) {
 g_dbengine.PUT_HANDLER(message);
};

// глобальный объект – экземпляр сервера
std::unique_ptr<RestDbServiceServer> g_http;

// инициализирует сервер
void StartServer(const string_t& address) {
 uri_builder uri(address);
 uri.append_path(U("dbdemo/"));
 auto addr = uri.to_uri().to_string();
 g_http = std::make_unique<RestDbServiceServer>(addr);

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Использование библиотеки C++ REST SDK для создания сервера    289

 g_http->Open().wait();
 ucout
 << utility::string_t(U("Сервер стартовал: "))
 << addr
 << std::endl;
}

void ShutDown() {
 g_http->Close().wait();
 return;
}

// запуск системы в целом
int wmain(int argc, wchar_t *argv[])
{
 utility::string_t port = U("34567");
 if (argc == 2) {
 port = argv[1];
 }

 utility::string_t address = U("http://localhost:");
 address.append(port);

 StartServer(address);
 std::cout << "Press ENTER to exit." << std::endl;

 std::string line;
 std::getline(std::cin, line);

 ShutDown();
 return 0;
}

Код HTTP-контроллера не отличается от кода, написанного ранее в этой
главе для проекта SimpleServer, и приведён здесь исключительно для полноты
примера. В целом данный пример иллюстрирует, как предоставить внешним
клиентам интерфейс к приложению по протоколу REST.

Таким образом, в этом разделе было рассмотрено, как программировать
обработчики для различных типов запросов протокола HTTP. Архитектурный
стиль, основанный на микросервисах, предполагает наличие у множества
конечных точек с REST-интерфейсами, каждая из которых работает незави-
симо от других (возможно, на разных машинах). Разбиение крупноблочного
серверного приложения на множество независимых микросервисов требует
высокого мастерства и сильно зависит от решаемых системой задач. Система
микросервисов обычно обладает также интерфейсом к внешнему миру, иног
да посредством отдельного агрегирующего сервиса. Для реализации логики
доступа к микросервисам, лежащей в основе работы агрегирующего серви-
са, удобно применять реактивную модель программирования, особенно если
учесть асинхронную природу приходящих по сети запросов.

 1 / 32

290    Реактивные микросервисы на языке C++

Обращение к REST-сервисам с помощью библиотеки
RxCurl
Библиотека RxCurl, созданная Кирком Шупом, первоначально поддерживала
лишь запросы типа GET и POST, так как именно они были нужны в приложе-
нии для анализа содержимого сети Twitter. Авторы этой книги модифициро-
вали библиотеку, добавив поддержку запросов типа PUT и DELETE. Следующий
фрагмент кода демонстрирует работу с запросом типа PUT. Читатель может об-
ратиться к заголовочному файлу rxcurl.h, чтобы узнать, как реализована под-
держка новых типов запросов.
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <map>
#include <chrono>
using namespace std;
using namespace std::chrono;
// использовать библиотеки Curl и Rxcpp
#include <curl/curl.h>
#include <rxcpp/rx.hpp>
using namespace rxcpp;
using namespace rxcpp::rxo;
using namespace rxcpp::rxs;
// модифицированная библиотека RxCurl
#include "rxcurl.h"
using namespace rxcurl;
rxcurl::rxcurl factory;

С помощью объекта factory и его метода create можно отправлять серверу
веб-запросы. Методу create нужны следующие параметры:

�� идентификатор ресурса (URI);
�� метод данного запроса;
�� дополнительные заголовки запроса;
�� тело запроса.

Для удобства сделана следующая функция-обёртка:
string HttpCall(
 string url,
 string method,
 std::map<string,string> headers,
 string body)
{
 auto request = factory.create(
 http_request{ url, method, headers, body }) |
 rxo::map([](http_response r){ return r.body.complete; });

Здесь создаётся объект, представляющий запрос, и ему назначается функ-
ция-обработчик, которая из полученного ответа вычленяет тело в виде тексто-

 2 / 32

Обращение к REST-сервисам с помощью библиотеки RxCurl    291

вой строки. Протокол HTTP вполне допускает присылку ответа по частям. Наш
код обеспечивает сборку этих частей воедино, для чего используется наблюда-
емый источник данных:
 // блокирующий вызов
 observable<string> response_message;
 request.as_blocking().subscribe(
 [&](observable<string> s){response_message = s.sum();},
 [] () {printf("");});

В этом фрагменте кода сделана блокирующая подписка на созданный ра-
нее наблюдаемый источник, поставляющий куски ответа на HTTP-запрос. Его
обработчик on_next склеивает между собой фрагменты ответа и получившийся
текст вталкивает в другой наблюдаемый источник. В реальном приложении
эта обработка, скорее всего, велась бы асинхронно, что потребовало бы неко-
торых дополнительных усилий и заметно удлинило бы код.
 // получить содержимое ответа
 string html;
 response_message.as_blocking().subscribe(
 [&html] (string temp) { html = temp; },
 [] () { printf(""); });
 return html;
}

Остаётся показать главную функцию, которая посылает на сервер ряд запро-
сов и выводит на консоль полученные ответы.
// привести систему в действие
int main() {
 // задать url сервера и проинициализировать фабрику запросов
 string url = "http://localhost:34567/dbdemo/";
 factory = create_rxcurl();
 // заголовки запроса
 std::map<string,string> headers;
 headers["Content-Type"] = "application/json";
 headers["Cache-Control"] = "no-cache";

 // вызвать метод GET для получения данных
 string html = HttpCall(url, "GET", headers, "");
 cout << html << endl;

 // получить значение по ключу
 string body = string("[\"Praseed\"]\r\n");
 html = HttpCall(url, "POST", headers, body);
 cout << html << endl;

 // добавить значения методом PUT
 body = string(
 "\r\n{\"Praveen\": \"29\", \"Rajesh\": \"41\"}\r\n");
 html = HttpCall(url, "PUT", headers, body);
 cout << html << endl;

 3 / 32

292    Реактивные микросервисы на языке C++

 // убедиться, что значения добавились
 html = HttpCall(url, "GET", headers, "");
 cout << "Новое состояние базы данных" << endl;
 cout << html << endl;

 // удалить запись с заданным ключом
 body = string("[\"Praseed\"]\r\n");
 html = HttpCall(url, "DELETE", headers, body);
 cout << "Результат удаления" << html << endl;
 html = HttpCall(url, "GET", headers, "");
 cout << "Новое состояние базы данных" << endl;
 cout << html << endl;
}

Как видно из этого кода, реализованная выше функция HttpCall удобна для
посылки разнообразных запросов и ожидания ответов на них. Этот пример
в целом демонстрирует применение библиотеки RxCpp. Библиотека позволяет
обрабатывать запросы также и в асинхронном стиле.

Несколько слов об архитектуре реактивных
микросервисов
Из предыдущих разделов читатель узнал, как воплотить контроллер микро-
сервиса на языке C++ с помощью библиотеки REST SDK. Реализованный нами
сервер ассоциативной базы данных вполне можно назвать микросервисом.
В реальных системах, построенных на базе микросервисов, каждый из них мог
бы быть размещён отдельно от других (возможно, на виртуальной машине или
в контейнере), а контроллер микросервисов, обслуживая запросы клиента, об-
ращался бы к этим совершенно независимым друг от друга сервисам. Получив
данные от нескольких микросервисов, контроллер должен агрегировать их,
чтобы построить ответ для клиента. Типичная архитектура приложения, по-
строенного из микросервисов, показана на следующем рисунке.

На этой диаграмме показано, что HTTP-клиент, реализующий архитектуру
REST, посылает запрос контроллеру микросервисов. Контроллер, в свою оче-

 4 / 32

Несколько слов об архитектуре реактивных микросервисов    293

редь, обращается с различными запросами к трём микросервисам, чтобы из
полученных от них данных собрать ответ для клиента. При этом микросервисы
могут быть как угодно распределены по физическим и виртуальным машинам.

Как писали Мартан Фаулер и Джеймс Льюис, «термин “Microservice Architec-
ture” получил распространение в последние несколько лет как описание спосо-
ба дизайна приложений в виде набора независимо развертываемых сервисов.
В то время как нет точного описания этого архитектурного стиля, существует
некий общий набор характеристик: организация сервисов вокруг бизнес-по-
требностей, автоматическое развертывание, перенос логики от шины сообще-
ний к приемникам (endpoints) и децентрализованный контроль над языками
и данными»1.

Микросервисы и основанная на них архитектура приложений сами по
себе составляют тему, достойную отдельной книги. Задача этой главы состо-
ит лишь в том, чтобы показать, как язык C++ может пригодиться при соз-
дании веб-приложений в этом стиле. Изложение темы в этой главе должно
подвести читателя к правильной расстановке акцентов. Реактивная модель
программирования хорошо подходит для агрегирования информации, по-
лученной асинхронным образом из различных источников, и предостав-
ления клиенту итогового результата её обработки. Именно агрегирование
сервисов составляет ключевую задачу, и над этим в первую очередь следует
думать читателю.

Говоря о микросервисной архитектуре, нужно хорошо понимать следующие
аспекты:

�� мелкоблочные сервисы;
�� разнородное хранение данных (polyglot persistence);
�� независимое развёртывание сервисов;
�� оркестровка и хореография сервисов;
�� реактивный стиль запросов к веб-сервисам.

Разберём эти темы подробно в следующих разделах.

Мелкоблочные сервисы
В прошлом сервисы, основанные на архитектурах SOA и REST, представляли
собой крупные монолиты. В пору зарождения веб-приложений приходилось
считаться со временем прохождения запросов и ответов по сети. Чтобы умень-
шить количество пересылаемых сообщений, разработчикам часто приходи-
лось изобретать композитные форматы данных, объединяя в одном сообще-
нии данные, различные по своей природе. Поэтому каждая конечная точка
распределённой системы, обладающая собственным URI, должна была вы-
полнять множество различных функций, нарушая тем самым принцип разде-
ления обязанностей. Архитектура, построенная на микросервисах, напротив,
требует от каждого сервиса выполнения единственной функции, и форматы

1	 Цит. по https://habr.com/ru/post/249183/. – Прим. перев.

 5 / 32

https://habr.com/ru/post/249183/

294    Реактивные микросервисы на языке C++

пересылаемых данных ориентированы именно на неё. Тем самым распреде-
лённая система разбивается на многочисленные мелкоблочные сервисы.

Разнородное хранение данных
Под английским словосочетанием «polyglot persistence» понимают такой под-
ход к организации хранения данных, при котором данные в одной системе рас-
полагаются в хранилищах разных типов, подходящих под конкретные условия.
Это название связано с термином «polyglot programming», означающим подход
к программированию, когда каждая часть крупной системы разрабатывается
на том языке, который наилучшим образом подходит для задач, возлагаемых
на эту часть. Так, например, в составе одной системы могут сочетаться язык
Java для серверной части, язык Scala для обработки потоков данных, язык C++
для задач, требующих максимальной эффективности, язык C# для веб-сервера
и, конечно же, языки TypeScript и JavaScript для написания кода, выполняемо-
го на стороне клиента. Что же касается хранилищ данных, то в одной системе
могут использоваться реляционные, документоориентированные, иерархиче-
ские СУБД, ассоциативные хранилища или специальные СУБД, ориентирован-
ные на хранение временны́х рядов.

Хорошим примером системы, в которой можно с пользой применить раз-
нородное хранение данных, может служить портал электронной коммерции.
Такая система имеет дело с данными нескольких различных категорий, от-
личающихся как объёмом, так и частотой изменения и массовостью доступа:
скажем, списки имеющихся товаров, корзина покупателя, архив выполненных
заказов, финансовые отчёты за периоды и по группам товаров. Вместо того
чтобы пытаться все эти данные разместить в одном хранилище, стоит для каж-
дой категории данных использовать свою технологию хранения. Таким обра-
зом, важной задачей для проектировщика становится выбор наилучшего хра-
нилища данных для каждой подсистемы.

Независимое развёртывание сервисов
Самое большое различие между архитектурой на основе микросервисов и тра-
диционной сервис-ориентированной архитектурой состоит в способе развёр-
тывания компонентов системы. С развитием технологий виртуализации и кон-
тейнеризации стало возможным развёртывать любое число сервисов быстро,
назависимо друг от друга, без какого бы то ни было участия человека. Широкое
внедрение практики DevOps заметно способствовало популярности независи-
мо развёртываемых сервисов и приложений. Процесс подготовки к работе но-
вой виртуальной машины под конкретную задачу, включая конфигурирование
её процессора, памяти, дисков, сетевых адаптеров, брандмауэра, балансиро-
вание нагрузки, масштабирование могут быть полностью автоматизированы
и определяться политиками, настроенными на облачном сервисе, таком как
AWS или Google Cloud. Имея настроенные политики и сценарии развёртыва-
ния, можно на лету создавать готовые к использованию микросервисы.

 6 / 32

Итоги    295

При разработке распределенных приложений на основе микросервисной
архитектуры непременно придётся то и дело сталкиваться с технологиями
контейнеризации. Подробное изложение вопросов контейнеризации, управ-
ления кластерами и практики DevOps выходит далеко за рамки этой книги.
Читатель может начать своё знакомство с данной темой с поиска по ключевым
словам «docker», «kubernetes», «инфраструктура как код».

Оркестровка и хореография сервисов
Начнём с понятия оркестровки. Речь идёт о том, чтобы объединить ряд сер-
висов в единую систему по заранее определённой схеме. Логика соединения
сервисов описана централизованно. Для повышения надёжности некоторые
из составляющих систему сервисов могут быть развёрнуты в нескольких эк-
земплярах. Задача агрегатора состоит в том, чтобы обращаться к каждому из
этих дублирующих сервисов независимо и поставлять клиентам агрегирован-
ные данные от них.

В случае же хореографии сервисов логика взаимодействия сервисов распре-
делена по всей системе без выделенного управляющего узла. Вызов, адресо-
ванный какому-либо сервису, может вызывать многочисленные обращения
сервисов друг к другу, перед тем как данные достигнут пункта назначения. Ор-
ганизация взаимодействия микросервисов по принципу хореографии требует
больше усилий, по сравнению с оркестровкой. Читатель может самостоятельно
найти более подробную информацию по данной теме в сети.

Реактивный стиль запросов к веб-сервисам
Задача обработки веб-запросов хорошо подходит для реактивной модели про-
граммирования. Чаще всего в ответ на действие пользователя в графическом
интерфейсе приложение посылает некоторый запрос на сервер. Обрабатывая
этот запрос, сервис-агрегатор посылает множество асинхронных запросов мик
росервисам, ответственным за те или иные подзадачи. Из полученных от них
ответов агрегатор собирает свой ответ, который отправляется пользователь-
скому интерфейсу. Все эти этапы обработки хорошо отображаются на понятия
потока сообщений, наблюдаемого источника, фильтра и операции над потока-
ми. В частности, для обработки асинхронных веб-запросов можно пользовать-
ся библиотекой RxCurl.

Итоги
В этой главе было рассмотрено применение реактивной модели программиро-
вания для разработки реактивных микросервисов на языке C++. В частности,
читатель узнал о программировании с использованием библиотеки REST SDK
от корпорации Microsoft. В данной библиотеке воплощена асинхронная модель
программирования, основанная на так называемых продолжениях задач. Для
создания клиентов, работающих по протоколу REST, можно воспользоваться

 7 / 32

296    Реактивные микросервисы на языке C++

библиотекой RxCurl, созданной Кирком Шупом, с некоторыми модификация-
ми, направленными на поддержку запросов типа PUT и DELETE. В этой главе
было показано, как в духе реактивного программирования реализовать REST-
сервер и работающий с ним клиент.

Следующая глава будет посвящена методам обработки ошибок и исключе-
ний с помощью средств, предоставляемых библиотекой RxCpp.

 8 / 32

Глава 12
Особые возможности потоков

и обработка ошибок

В этой книге рассмотрено уже немало вопросов, касающихся реактивного про-
граммирования на современном языке C++ и библиотеки RxCpp. Изложение на-
чиналось со вспомогательных тем, знакомство с которыми необходимо перед
погружением в мир реактивного программирования. Первые шесть глав были
посвящены главным образом этим предварительным вопросам и постепенно
знакомили читателя с основными понятиями и конструкциями реактивного
программирования вообще и библиотеки RxCpp в частности. Термин «функ
циональное реактивное программирование» использовался в широком смыс-
ле, как применение методов функционального программирования для напи-
сания реактивных программ. Некоторые авторы настаивают на более строгой
трактовке термина и не считают, что библиотеки из семейства Rx в полной
мере воплощают модель функционального реактивного программирования.
В любом случае, программисту нужно сделать над собой усилие и открыть своё
сознание для парадигмы декларативного программирования.

Традиционный подход к программированию состоит в том, чтобы изобре-
тать хитроумные структуры данных и алгоритмы их обработки. Эта методо-
логия хороша в тех случаях, когда программа манипулирует данными, раз-
вёрнутыми в пространстве. Если же ведущую роль в структуризации данных
начинает играть время, естественным следствием этого становится асинхрон-
ный способ обработки1. В реактивном программировании сложность структур
данных обычно ограничивается одними лишь потоками, операции по обра-
ботке данных навешиваются на потоки, а все разнообразные способы обра-

1	 Это утверждение авторов отнюдь не бесспорно. Так, в системах реального времени,
где требуется гарантированное время отклика на каждое входящее сообщение, асин-
хронная обработка с внутренне присущей ей недетерминированностью отнюдь не
выглядит наилучшим выбором. Напротив, многие задачи обработки массивов (т. е.
структур данных с очевидной пространственной структуризацией) превосходно
подходят для распараллеливания: скажем, суммирование, поиск наименьшего эле-
мента, некоторые алгоритмы сортировки. – Прим. перев.

 9 / 32

298    Особые возможности потоков и обработка ошибок

ботки элементов данных реализуются посредством единого механизма – опо-
вещения о событии с вызовом заданного действия. Читатель мог убедиться,
насколько этот подход упрощает программирование на языке C++ графиче-
ских интерфейсов, распределённых систем и даже консольных приложений.

В примерах из предыдущих глав для краткости не предусматривалась обра-
ботка исключений и, шире, каких-либо ошибок. Это упрощение было сделано
намеренно, так как давало возможность сосредоточить внимание на логике
приложения, его ключевых деталях и их взаимодействии. Теперь, когда все ос-
новополагающие аспекты реактивного программирования рассмотрены, пора
сосредоточить внимание на средствах обработки ошибок. Прежде чем погру-
зиться в обработку ошибок и исключений, необходимо сделать краткий обзор
важных характеристик реактивных систем. В этой главе будут рассмотрены
следующие вопросы:

1)	 обобщённый обзор характеристик реактивных систем;
2)	 операции для обработки ошибок в библиотеке RxCpp;
3)	 взаимодействие средств обработки ошибок с планировщиком;
4)	 примеры систем, основанных на обработке потоков событий.

Основные характеристики реактивных систем
Современный мир, как никогда прежде, требует от информационных систем на-
дёжности, масштабируемости и быстроты отклика. Понятие реактивного про-
граммирования сформировалось именно под давлением этой всё возрастающей
потребности. Согласно «Манифесту реактивных систем»1 (https://www.reactive
manifesto.org/), реактивные системы обладают следующими характеристиками.

�� Доступные: система отвечает своевременно, если это вообще возможно.
Доступность является краеугольным камнем удобного и полезного при-
ложения, но, помимо этого, она позволяет быстро обнаруживать пробле-
мы и эффективно их устранять. Доступные системы ориентированы на
обеспечение быстрого и согласованного времени отклика, устанавливая
надежные верхние границы, чтобы обеспечить стабильное качество об-
служивания. Такое предсказуемое поведение, в свою очередь, упрощает
обработку ошибок, повышает уверенность конечного пользователя в рабо-
тоспособности и способствует дальнейшему взаимодействию с системой.

�� Устойчивые: система остается доступной даже в случае отказов. Это
относится не только к высокодоступным, критически важным прило-
жениям – без устойчивости любая система при сбое теряет доступность.
Устойчивость достигается за счет репликации, сдерживания, изоляции
и делегирования. Эффект от отказов удерживаeтся внутри компонентов,
изолируя их друг от друга, что позволяет им выходить из строя и восста-
навливаться, не нарушая работу системы в целом. Восстановление каж-
дого компонента делегируется другому (внешнему) модулю, а высокая

1		 Цитируемый ниже русский перевод Манифеста взят с официального сайта. –
Прим. перев.

 10 / 32

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/

Основные характеристики реактивных систем    299

доступность обеспечивается за счет репликации там, где это необходи-
мо. Клиент компонента не отвечает за обработку его сбоев.

�� Гибкие: система остается доступной под разными нагрузками. Реактив-
ные системы способны реагировать на колебания в скорости входящих
потоков, увеличивая или уменьшая количество выделенных на их обслу-
живание ресурсов. Для этого архитектура не должна допускать наличия
централизованных узких мест или конкуренции за ресурсы, что позво-
ляет сегментировать или реплицировать компоненты, распределяя меж-
ду ними входные данные. Реактивные системы поддерживают предска-
зывающие и реактивные алгоритмы масштабирования, позволяя делать
измерения производительности в режиме реального времени. Гибкость
достигается применением экономически эффективных аппаратных
и программных платформ.

�� Основаны на обмене сообщениями: реактивные системы используют
асинхронный обмен сообщениями, чтобы установить границы между
компонентами и обеспечить слабую связанность, изоляцию и прозрач-
ность размещения. Эти границы также позволяют преобразовывать
и передавать информацию о сбое в виде сообщений. Открытый обмен
сообщениями делает возможными регулирование нагрузки, гибкость
и управление потоком, для чего в системе создаются и отслеживаются
очереди сообщений и в случае необходимости используется обратное
давление. Прозрачность размещения при взаимодействии на основе
сообщений позволяет применять к механизму обработки ошибок одни
и те же ограничения и семантику как в пределах одного компьютера, так
и в масштабах целого кластера. Благодаря неблокирующему взаимодей-
ствию принимающая сторона потребляет ресурсы только при активной
работе, что позволяет снизить накладные расходы.

Доступные

Основаны
на обмене

сообщениями

Гибкие Устойчивые

 11 / 32

300    Особые возможности потоков и обработка ошибок

Принципы реактивных систем применяются на всех уровнях, что позволяет
компоновать их между собой.

В этой главе речь будет идти в основном об устойчивости реактивных си-
стем, для достижения которой нужны средства обработки ошибок.

Средства обработки ошибок в библиотеке RxCpp
Ни одна программная система в реальном мире не бывает совершенной. Как
отмечалось в предыдущем разделе, устойчивость составляет одно из важ-
нейших качеств реактивной системы. То, насколько хорошо система умеет
обрабатывать ошибки и восстанавливаться после сбоев, определяет её успех
в будущем. Раннее обнаружение и незаметная извне обработка ошибок дела-
ют систему стройной и повышают её доступность для пользователей. По срав-
нению с императивным подходом, модель реактивного программирования
позволяет лучше отделить логику нормальной работы приложения от логики
обнаружения ошибки и обработки исключения.

В этой главе будет рассмотрено, как обрабатывать исключения и ошибки
с помощью библиотеки RxCpp. В библиотеке RxCpp определено множество
операций, позволяющих реагировать на оповещения типа on_error. Например,
с оповещением об ошибке можно сделать следующее:

�� красиво (т. е. выполнив все необходимые завершающие действия) пре-
кратить дальнейшую обработку сообщений из данного источника;

�� проигнорировать сигнал ошибки и для дальнейшей выборки данных
переключиться на резервный источник;

�� проигнорировать ошибку и вместо неполученных данных подставить
объект-заглушку;

�� проигнорировать ошибку и немедленно перезапустить источник данных;
�� проигнорировать ошибку и попытаться перезапустить источник дан-

ных, дав ему некоторое время на самовосстановление.
Все эти механизмы обработки возможны благодаря тому, что интерфейс

наблюдателя (observable) содержит три метода-обработчика:
�� для обработки очередного элемента данных;
�� для извещения о том, что в источнике больше нет и не будет данных;
�� для извещения о том, что в источнике данных произошёл сбой.

Метод on_error как раз и предназначен для обработки исключений, которые
могут возникнуть как в самом источнике, так и в какой-либо из навешенных
на него операций. Напомним сигнатуры трёх методов объекта-наблюдателя:

�� void observer::on_next(T);
�� void observer::on_completed();
�� void observer::on_error(std::exception_ptr);

Выполнение действия в ответ на ошибку
Когда в источнике данных возникает ошибка, её нужно обработать, оставив си-
стему в целом в корректном состоянии. Примеры использования библиотеки

 12 / 32

Средства обработки ошибок в библиотеке RxCpp    301

RxCpp, рассмотренные в предыдущих главах, содержали на стороне подпис-
чика лишь обработчики для сценариев on_next и on_completed. Однако у функ-
ции subscribe (подписаться) есть ещё один параметр – это функция-обработ-
чик для сценария on_error. Рассмотрим простую программу, демонстрирующую
подписку не только на данные, но и на ошибки.
#include "rxcpp/rx.hpp"
int main() {
 using namespace std;
 using namespace rxcpp;

 // создать источник данных, выдающий ошибку
 auto vals = observable<>::range(1, 3).concat(
 observable<>::error<int>(runtime_error(
 "Ошибка в источнике!")));
 vals.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] (exception_ptr ep) {
 printf("OnError: %s\n", util::what(ep).c_str());
 },
 [] () { printf("OnCompleted\n"); });
 return 0;
}

Второе из трёх лямбда-выражений, переданных в качестве аргументов ме-
тоду subscribe, представляет собой действие, которое подписчик должен вы-
полнить, реагируя на сигнал ошибки. Результатом выполнения данной про-
граммы станет следующий текст:
OnNext: 1
OnNext: 2
OnNext: 3
OnError: Ошибка в источнике!

В показанном выше примере источник данных сначала генерирует «нор-
мальные» данные, затем сам добавляет к потоку данных сигнал ошибки. Те-
перь посмотрим, как исключение распространяется вдоль потока данных
сквозь промежуточную сущность.
#include "rxcpp/rx.hpp"
int main() {
 rxcpp::rxsub::subject<int> sub;
 auto subscriber = sub.get_subscriber();
 auto observable = sub.get_observable();

 observable.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] (std::exception_ptr ep) {
 printf(
 "OnError: %s\n",
 rxcpp::util::what(ep).c_str());
 },
 [] () { printf("OnCompleted\n"); });

 13 / 32

302    Особые возможности потоков и обработка ошибок

Показанный выше фрагмент кода воздаёт объект-тему (subject) – объект, об-
ладающий свойствами одновременно наблюдателя и наблюдаемого источника
(см. главу 8). На наблюдаемую сторону этого объекта подписываются три функ-
ции-обработчика, которые просто печатают соответствующие сообщения на
консоль. Другая же сторона объекта, выступающая наблюдателем, использует-
ся ниже для того, чтобы наполнять этот поток данными и ошибками.
 for (int i = 1; i <= 10; ++i) {
 if (i > 5) {
 try {
 std::string().at(1);
 } catch (...) {
 auto eptr = std::current_exception();
 subscriber.on_error(eptr);
 }
 }
 subscriber.on_next(i * 10);
 }
 subscriber.on_completed();
 return 0;
}

Вызов метода on_next у объекта-подписчика (subscriber) помещает в поток
новое значение. Однако поток отвергнет попытку поместить очередное зна-
чение, если для него уже выполнялась функция on_completed, сигнализирующая
о нормальном завершении потока, или функция on_error, оповещающая о за-
вершении с ошибкой. Подобным же образом объект-тема проигнорирует по-
пытку нормального завершения потока (вызов метода on_completed), если для
этого потока уже вызван метод on_error. Если поток данных переходит в оши-
бочное состояние, никакие «нормальные» данные через него уже проходить
не могут.

Восстановление после ошибки
Как было показано в предыдущем разделе, возникновение ошибки в потоке
данных прекращает дальнейшую передачу данных по нему, а клиенты, подпи-
санные на этот поток, получают возможность выполнить какие-либо действия
в качестве реакции на ошибку. Однако в некоторых случаях может оказаться
желательным восстановить нормальное функционирование потока данных
даже после возникшей в нём ошибки. Для этого служит функция on_error_re-
sume_next, её применение иллюстрирует следующий пример.
#include "rxcpp/rx.hpp"
int main() {
 using namespace std;
 using namespace rxcpp;

 // поток данных с ошибкой
 auto values = observable<>::range(1, 3).concat(

 14 / 32

Средства обработки ошибок в библиотеке RxCpp    303

 observable<>::error<int>(runtime_error(
 "Ошибка в источнике!")))
 // восстановление и продолжение потока
 .on_error_resume_next([] (exception_ptr ep) {
 printf(
 "Восстановление после: %s\n",
 rxcpp::util::what(ep).c_str());
 return rxcpp::observable<>::range(4,6);
 });

 values.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] (std::exception_ptr ep) {
 printf(
 "OnError: %s\n",
 rxcpp::util::what(ep).c_str());
 },
 [] () { printf("OnCompleted\n"); });
 return 0;
}

Метод on_error_resume_next наблюдаемого источника задаёт функцию-обра-
ботчик, которая будет автоматически вызываться на стороне источника при
возникновении в нём ошибки. Как показано в данном примере, обработчик
возвращает новый поток данных – именно из него будут браться дальнейшие
данные. Таким образом, подписчик вообще не заметит ошибки в потоке дан-
ных – обработка ошибки и переключение на резервный источник будут осу-
ществлены самим потоком. В результате выполнения представленной выше
программы будет напечатан следующий текст:

OnNext: 1
OnNext: 2
OnNext: 3
Восстановление после: Ошибка в источнике!
OnNext: 4
OnNext: 5
OnNext: 6
OnCompleted

Этот подход позволяет наблюдаемому источнику в случае ошибки не только
продолжить генерацию потока данных, но и заменить сигнал ошибки на еди-
ничный специальный объект данных. Скажем, в предыдущем примере можно
было бы заменить обработчик ошибки следующим образом:

 .on_error_resume_next([] (exception_ptr ep) {
 printf(
 "Восстановление после: %s\n",
 rxcpp::util::what(ep).c_str());
 return rxcpp::observable<>::just(-1);
 });

 15 / 32

304    Особые возможности потоков и обработка ошибок

После такой замены результат работы программы выглядел бы так:
OnNext: 1
OnNext: 2
OnNext: 3
Восстановление после: Ошибка в источнике!
OnNext: -1
OnCompleted

Работу операции on_error_resume_next иллюстрирует следующая диаграмма.

Эта функция перехватывает ошибку, возникшую в наблюдаемом источнике,
и вместо испорченного ошибкой подставляет новый источник данных, тем са-
мым создавая у потребителей иллюзию, что никакой ошибки не было.

Операция on_error_resume_next приходит на помощь в различных ситуа-
циях, когда программисту нужно модифицировать распространение ошиб-
ки вдоль потока данных. Например, между генерацией первоначальных
данных и потреблением данных подписчиками поток может подвергаться
различным преобразованиям и фильтрациям. Как разъяснялось в главе 9,
это могут быть операции, определённые самим программистом на основе
операций, предоставляемых библиотекой. В таких случаях может оказаться
полезным использовать операцию on_error_resume_next на каждом промежу-
точном этапе обработки потока данных. Назначаемый этой функцией об-
работчик может подставить в поток не только «запасную» последователь-
ность данных или специальное значение, но и, в свою очередь, новый сигнал
ошибки, который и придёт подписчику. Рассмотрим, например, следующий
фрагмент кода:
auto processed_strm = Source_observable
 .map([] (const string& s) { return fff(s); })
 // преобразовать исключение
 .on_error_resume_next([] (std::exception_ptr) {
 return rxcpp::sources::error<string>(
 runtime_error(rxcpp::util::what(ep).c_str()));
 });

К каждому элементу исходного потока данных применяется функция-пре-
образователь fff. Если на каком-либо элементе в ней происходит исключение,
оно перехватывается с помощью функции on_error_resume_next, и вместо него
в поток помещается новое, преобразованное исключение.

 16 / 32

Средства обработки ошибок в библиотеке RxCpp    305

Обработка ошибки путём перезапуска источника данных
Часто на практике ошибка в реактивном потоке данных оказывается следстви-
ем временной неполадки в генераторе сообщений. В таких случаях хотелось
бы иметь возможность выждать, пока сбой не будет устранён на стороне гене-
ратора, и затем продолжить нормальную работу системы. В библиотеке RxCpp
есть подходящее средство. Лучше всего оно подходит для случаев, когда о по-
следовательности данных заранее известно, что в ней могут возникать кратко-
временные случайные ошибки.

Операция retry (англ. – попытаться заново) реагирует на оповещение on_er-
ror от источника данных. Вместо того чтобы передавать оповещение об ошибке
дальше, подписчикам, эта операция заново подписывается на тот же самый на-
блюдаемый источник. Это даёт наблюдаемому источнику новый шанс завер-
шить свою работу, без ошибок выдав все данные. Данные, выдаваемые наблю-
даемым источником после его перезапуска, снова направляются подписчикам
на их обработчики on_next. В зависимости от логики работы источника подпис-
чики могут повторно получить данные, которые уже были обработаны ими ра-
нее. Принцип действия данной операции иллюстрирует следующая диаграмма.

Ниже приведён пример программы, в которой используется операция retry.
#include "rxcpp/rx.hpp"
int main() {
 using namespace rxcpp;
 using namespace std;
 // три элемента, ошибка, повтор сначала
 auto values = observable<>::range(1, 3)
 .concat(observable<>::error<int>(runtime_error(
 "Ошибка в источнике!")))
 .retry()
 .take(5);

 // вывести содержимое потока
 values.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] () { printf("OnCompleted\n"); });
 return 0;
}

 17 / 32

306    Особые возможности потоков и обработка ошибок

В начале программы создаётся поток данных, в котором после трёх элемен-
тов намеренно вызывается ошибка. Обычный метод обработки такого пото-
ка обнаружил бы аварийное завершение потока. Однако к потоку применена
операция retry, которая игнорирует любые ошибки и всякий раз заставляет
поток работать сначала. Тем самым для наблюдателя он будет выглядеть бес-
конечным повторением одних и тех же трёх элементов. Чтобы избежать бес-
конечной работы программы, ограничим длину потока операцией take. Ниже
показан результат работы этой программы:
OnNext: 1
OnNext: 2
OnNext: 3
OnNext: 1
OnNext: 2
OnCompleted

Рассмотренная выше операция перезапускает поток неограниченно много
раз, сколько бы ошибок в нём ни возникло. Часто бывает желательно ограни-
чить число таких повторных попыток. Для этого служит перегруженная версия
функции retry, принимающая один целочисленный аргумент. Её применение
показано в следующем примере.
#include "rxcpp/rx.hpp"
int main() {
 using namespace rxcpp;
 using namespace std;
 // три элемента, ошибка, повтор сначала
 auto values = observable<>::range(1, 3)
 .concat(observable<>::error<int>(runtime_error(
 "Ошибка в источнике!")))
 .retry(2);

 // вывести содержимое потока
 values.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] (std::exception_ptr ep) {
 printf(
 "OnError: %s\n",
 rxcpp::util::what(ep).c_str());
 },
 [] () { printf("OnCompleted\n"); });
 return 0;
}

Результат работы этой программы таков:
OnNext: 1
OnNext: 2
OnNext: 3
OnNext: 1
OnNext: 2
OnNext: 3
OnError: Ошибка в источнике!

 18 / 32

Средства обработки ошибок в библиотеке RxCpp    307

Автоматическое выполнение завершающих действий
в случае ошибки
Как явствует из предыдущих примеров, при генерации потока данных в биб
лиотеке RxCpp может возникнуть исключение, при этом библиотека обеспечи-
вает корректное завершение потока и оповещение подписчиков о происшед-
шей ошибке. Операция finally может оказаться полезной, если поток данных
пользуется некоторыми внешними ресурсами и обязан освободить их при за-
вершении своей работы, будь оно нормальным или аварийным. Очевидно, что
на языке C++ написаны миллиарды строк кода различных систем, и многие
из них обладают собственными механизмами управления ресурсами. Поэтому
для использования технологии реактивного программирования совместно со
старым кодом необходимо как-то заставить реактивный код чистить за собой
ресурсы, полученные из других модулей. Именно для этого служит операция
finally.
#include "rxcpp/rx.hpp"
int main() {
 using namespace rxcpp;
 using namespace std;
 auto values = observable<>::range(1, 3)
 .concat(observable<>::error<int>(runtime_error(
 "Ошибка в источнике!")))
 // это действие выполнится при завершении потока
 .finally([] () { printf("Завершающее действие\n"); });

 values.subscribe(
 [] (int v) { printf("OnNext: %d\n", v); },
 [] (std::exception_ptr ep) {
 printf(
 "OnError: %s\n",
 rxcpp::util::what(ep).c_str());
 },
 [] () { printf("OnCompleted\n"); });
 return 0;
}

Операция finally присоединяет к наблюдаемому источнику данных функ-
цию-обработчик и гарантирует, что она будет выполнена после того, как по-
ток завершится (нормальным образом или с ошибкой) и подписчики получат
соответствующее оповещение. В результате выполнения этой программы на
консоль выводится следующий текст:
OnNext: 1
OnNext: 2
OnNext: 3
OnError: Ошибка в источнике!
Завершающее действие

Убедимся, что завершающее действие, назначенное для потока, выполня-
ется и в том случае, когда поток завершается без ошибки. Для этого уберём из

 19 / 32

308    Особые возможности потоков и обработка ошибок

кода программы обращение к методу concat, добавляющему в поток ошибку.
Тогда результат работы программы станет следующим:
OnNext: 1
OnNext: 2
OnNext: 3
Завершающее действие

Обработка ошибок и планировщики
Планировщики как одна из важнейших составных частей реактивных систем
рассматривались в главе 8. Планировщик занимается постановкой генерируе-
мых данных в очередь и их доставкой потребителям для обработки в соответ-
ствии с определённой дисциплиной координации выполнения. А именно об-
работка может осуществляться в текущем потоке выполнения, в главном цикле
обработки событий библиотеки RxCpp или в новом потоке. Программист может
в известной степени управлять работой планировщика посредством операций
observe_on, subscribe_on и некоторых других. В качестве аргумента эти операции
принимают дисциплину координации. По умолчанию библиотека RxCpp рабо-
тает в однопоточном режиме. Программисту нужно явно указывать, если опе-
рации требуется выполнять в отдельном потоке. Рассмотрим следующий код:
#include "rxcpp/rx.hpp"
#include <iostream>
#include <thread>

int main() {
 auto values = rxcpp::observable<>::range(1, 4)
 .map([] (int v) { return v*v; })
 .concat(rxcpp::observable<>::error<int>(
 std::runtime_error("Ошибка в источнике!")));

 // узнать идентификатор главного потока
 std::cout
 << "Главный поток => "
 << std::this_thread::get_id()
 << std::endl;

Здесь создаётся поток данных на основе заданного диапазона, затем каждое
число из этого потока возводится в квадрат. В конец потока намеренно добав-
лена генерация ошибки. Это позволит продемонстрировать, как механизмы
обработки ошибок взаимодействуют с планировщиками в библиотеке RxCpp.
 // наблюдатель работает в другом потоке
 values
 .observe_on(rxcpp::synchronize_new_thread())
 .as_blocking()
 .subscribe(
 [] (int v) {
 std::cout

 20 / 32

Обработка ошибок и планировщики    309

 << "Поток наблюдателя => "
 << std::this_thread::get_id()
 <<" "
 << v
 << std::endl;
 },
 [] (std::exception_ptr ep) {
 printf(
 "OnError: %s\n",
 rxcpp::util::what(ep).c_str());
 },
 [] () { std::cout << "OnCompleted" << std::endl; });

 // снова напечатать идентификатор главного потока
 std::cout
 << "Главный поток => "
 << std::this_thread::get_id()
 << std::endl;
 return 0;
}

Благодаря операции observe_on обработка данных из этого источника про-
исходит в отдельном потоке выполнения. Как и в предыдущих примерах, под-
писчик содержит функцию-обработчик ошибок. Эта программа должна напе-
чатать текст, подобный следующему (конечно же, идентификаторы потоков
выполнения будут различаться):
Главный поток => 5776
Поток наблюдателя => 12184 1
Поток наблюдателя => 12184 4
Поток наблюдателя => 12184 9
Поток наблюдателя => 12184 16
OnError: Ошибка в источнике!
Главный поток => 5776

Посмотрим теперь, как ведёт себя программа, если к источнику подключить
двух наблюдателей, каждый из которых работает в своём потоке.
#include "rxcpp/rx.hpp"
#include <mutex>
std::mutex printMutex;

int main() {
 rxcpp::rxsub::subject<int> sub;
 auto subscriber = sub.get_subscriber();
 auto observable1 = sub.get_observable();
 auto observable2 = sub.get_observable();

В этом фрагменте кода создаётся объект-тема, т. е. объект, выступающий од-
новременно наблюдаемым источником и наблюдателем. Из объекта создают-
ся один интерфейс наблюдателя и два интерфейса наблюдаемого источника,
каждому из которых предстоит работать в своём потоке.

 21 / 32

310    Особые возможности потоков и обработка ошибок

 auto onNext = [] (int v) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Поток источника => "
 << std::this_thread::get_id()
 << "\tOnNext: " << v << std::endl;
 };

 auto onError = [] (std::exception_ptr ep) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << " Поток источника => "
 << std::this_thread::get_id()
 << "\tOnError: "
 << rxcpp::util::what(ep).c_str() << std::endl;
 };

Эти две лямбда-функции будут в дальнейшем подписаны на оповещения
о данных и об ошибках. Чтобы символы, выводимые ими на консоль из разных
потоков, не смешивались друг с другом, доступ к стандартному устройству вы-
вода синхронизирован с помощью глобального семафора.

 // подписка в отдельном потоке
 observable1.
 observe_on(rxcpp::synchronize_new_thread()).
 subscribe(onNext, onError,
 [] () { printf("OnCompleted\n"); });

 // ещё одна подписка в другом потоке
 observable2.
 observe_on(rxcpp::synchronize_event_loop()).
 subscribe(onNext, onError,
 [] () { printf("OnCompleted\n"); });

На два наблюдаемых источника, полученных из объекта-темы, подписыва-
ются два наблюдателя, причём каждый наблюдатель работает в своём потоке.
А именно для первого наблюдателя создаётся отдельный поток, тогда как вто-
рой наблюдатель работает в цикле обработки событий библиотеки RxCpp.

 // наполнение потока значениями и ошибками
 for (int i = 1; i <= 10; ++i) {
 if (i > 5) {
 try {
 std::string().at(1);
 }
 catch (...) {
 auto eptr = std::current_exception();
 subscriber.on_error(eptr);
 }
 }
 subscriber.on_next(i * 10);
 }
 subscriber.on_completed();

 22 / 32

Обработка ошибок и планировщики    311

 // подождать две секунды
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000)).
 subscribe([&](long) {});
 return 0;
}

В этой части программы данные вталкиваются в наблюдаемый источник
через связанный с ним интерфейс наблюдателя. Также этот генератор наме-
ренно провоцирует исключение и передаёт его в поток данных. В результате
работы этой программы получается следующий текст, из которого видно, как
механизмы обработки ошибок взаимодействуют с планировщиком.
Поток источника => 2644 OnNext: 10
Поток источника => 2304 OnNext: 10
Поток источника => 2644 OnNext: 20
Поток источника => 2304 OnNext: 20
Поток источника => 2644 OnNext: 30
Поток источника => 2304 OnNext: 30
Поток источника => 2644 OnNext: 40
Поток источника => 2304 OnNext: 40
Поток источника => 2304 OnNext: 50
Поток источника => 2304 OnError: invalid string position
Поток источника => 2644 OnNext: 50
Поток источника => 2644 OnError: invalid string position

Приведённый выше пример показывает, как происходит рассылка оповеще-
ний двум различным подписчикам, подключенным к одному общему генера-
тору данных через промежуточный объект-тему и работающим в разных по-
токах. Теперь посмотрим, как планировщик пересылает сигналы об ошибках
в случае операции subscribe_on.
#include "rxcpp/rx.hpp"
#include <thread>
#include <mutex>
std::mutex printMutex;

int main() {
 // создание потоков данных
 auto values1 = rxcpp::observable<>::range(1, 4)
 .transform([](int v) { return v * v; });
 auto values2 = rxcpp::observable<>::range(5, 9)
 .transform([](int v) { return v * v; }).
 .concat(rxcpp::observable<>::error<int>(
 std::runtime_error("Ошибка в источнике!")));

Здесь показано создание двух наблюдаемых источников данных, причём
второй источник в конце генерирует сигнал ошибки.
 // запланировать на выполнение в отдельном потоке
 auto s1 = values1.subscribe_on(
 rxcpp::observe_on_event_loop());
 // запланировать в ещё одном потоке

 23 / 32

312    Особые возможности потоков и обработка ошибок

 auto s2 = values2.subscribe_on(
 rxcpp::synchronize_new_thread());

Этот фрагмент кода заставляет планировщик выполнять генерацию данных
для этих двух источников в двух отдельных потоках выполнения. А именно
данные для первого источника генерируются в потоке цикла обработки собы-
тий, а для второго источника создаётся новый поток.
 auto onNext = [](int v) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Поток => "
 << std::this_thread::get_id()
 << "\tOnNext: " << v << std::endl;
 };

 auto onError = [](std::exception_ptr ep) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Поток => "
 << std::this_thread::get_id()
 << "\tOnError: "
 << rxcpp::util::what(ep).c_str() << std::endl;
 };

Эти две лямбда-функции будут использованы ниже в качестве обработчи-
ков, подписанных на оповещения (как о данных, так и об ошибках) от наблю-
даемого источника. Вывод в консоль защищён семафором от одновременного
выполнения параллельными потоками. В оставшейся части программы новый
наблюдаемый источник строится путём соединения первых двух, и на него
подписывается один наблюдатель.
 // подписка на объединённый источник данных
 s1.merge(s2).as_blocking().subscribe(
 onNext, onError,
 []() { std::cout << "OnCompleted" << std::endl; });

 // напечатать идентификатор главного потока
 std::cout << "Главный поток => "
 << std::this_thread::get_id()
 << std::endl;
 return 0;
}

Результат работы этой программы (не считая конкретных значений иденти-
фикаторов и порядка выполнения потоков) будет таким:
Поток => 12380 OnNext: 1
Поток => 9076 OnNext: 25
Поток => 12380 OnNext: 4
Поток => 9076 OnNext: 36
Поток => 12380 OnNext: 9
Поток => 12380 OnNext: 16
Поток => 9076 OnNext: 49

 24 / 32

Примеры обработки потоков событий    313

Поток => 9076 OnNext: 64
Поток => 9076 OnNext: 81
Поток => 9076 OnError: Ошибка в источнике!
Главный поток => 10692

Примеры обработки потоков событий
Прежде чем завершать эту главу, рассмотрим на паре примеров разработку
событийно-управляемых систем с помощью библиотеки RxCpp. Эти приме-
ры должны продемонстрировать, насколько эффективной может оказаться
библиотека RxCpp при решении задач из реального мира. Наши примеры бу-
дут заниматься агрегированием данных в поток и обработкой прикладных
событий.

Агрегирование потоков данных
В этом разделе элементами потока данных будут объекты пользовательского
типа, моделирующего понятие сотрудника. Основная задача приложения со-
стоит в том, чтобы сгруппировать сотрудников по должности и по зарплате.
#include "rxcpp/rx.hpp"
namespace Rx {
 using namespace rxcpp;
 using namespace rxcpp::sources;
 using namespace rxcpp::subjects;
 using namespace rxcpp::util;
}

using namespace std;

struct Employee {
 string name;
 string role;
 int salary;
};

В показанном выше фрагменте объявляется удобный для частого исполь-
зования краткий псевдоним для нескольких пространств имён из библиотеки
RxCpp и структура данных, представляющая информацию о сотруднике. У это-
го структурного типа все поля открыты, а зарплата сделана целым числом.
int main() {
 Rx::subject<Employee> employees;

 // группировать по зарплате
 auto role_sal = employees
 .get_observable().
 .group_by(
 [](Employee& e) { return e.role; },
 [](Employee& e) { return e.salary; });

 25 / 32

314    Особые возможности потоков и обработка ошибок

В функции main создаётся объект-тема с целью запустить горячий источник
данных типа Employee. Данные, получаемые из этого источника, будут груп-
пироваться по должности и зарплате. Для этого используется определённая
в библиотеке RxCpp операция group_by, её результатом является наблюдаемый
источник наблюдаемых источников, каждый из которых, в свою очередь, со-
держит элементы исходного источника данных, имеющие одинаковое значе-
ние ключа.
 // комбинированная свёртка по трём операциям:
 // наименьшее, наибольшее, среднее
 auto result = role_sal
 .map([] (Rx::grouped_observable<string, int> group) {
 return group
 .count()
 .combine_latest(
 [=](int count, int min, int max, double average) {
 return make_tuple(group.get_key(), count, min, max, average);
 },
 group.min(),
 group.max(),
 group.map([] (int salary) -> double {
 return salary;
 }).average());
 })
 .merge();

Созданный ранее поток групп, объединённых по критериям должности
и зарплаты, подвергается здесь дальнейшему преобразованию: для каждой
должности вычисляется наименьшая, наибольшая и средняя зарплата. Лямб-
да-функция, стоящая под управлением операции combine_latest, вызывает-
ся тогда, когда известны значения всех её аргументов. В данном случае это
означает, что когда становится готова группа (объект group), к ней независимо
друг от друга применяются три операции-свёртки: min для поиска наименьше-
го значения, max для поиска наибольшего и average для нахождения среднего.
Когда эти три значения вычислены, вызывается эта лямбда-функция. Таким
образом, она вызывается по одному разу для каждой должности и набор всех
сотрудников, имеющих эту должность, сворачивает до одного объекта со свод-
ными данными по всей должности. Далее, поскольку всё это преобразование
стоит под управлением функции map и применяется к потоку групп, её резуль-
татом становится наблюдаемый источник наблюдаемых источников, т. е. объ-
ектов типа
observable<tuple<string, int, int, int, double>>

Наконец, операция слияния merge соединяет все эти наблюдаемые источни-
ки в один. Следовательно, результат всего выражения есть наблюдаемый ис-
точник объектов типа
tuple<string, int, int, int, double>

 26 / 32

Примеры обработки потоков событий    315

Операция слияния нужна в том числе и для того, чтобы предотвратить воз-
можную потерю данных: промежуточные наблюдаемые источники, получен-
ные в результате группировки, являются горячими, и их данные безвозвратно
теряются, если нет подписчика, готового их получить.
 // отобразить агрегированные данные
 result
 .subscribe(Rx::apply_to(
 [](string role, int count, int min, int max, double avg) {
 std::cout
 << role.c_str()
 << ":\tчисленность "
 << count
 << ", зарплаты ["
 << min
 << "-"
 << max
 << "], средняя "
 << avg
 << endl;
 }));

 // тестовые данные на вход
 Rx::observable<>::from(
 Employee{ "Джон", "Инженер", 60000 },
 Employee{ "Тирион", "Менеджер", 120000 },
 Employee{ "Арья", "Инженер", 92000 },
 Employee{ "Санса", "Менеджер", 150000 },
 Employee{ "Серсея", "Бухгалтер", 76000 },
 Employee{ "Джейми", "Инженер", 52000 }).
 subscribe(employees.get_subscriber());

 return 0;
}

На построенный выше поток данных подписывается наблюдатель, который
выводит результаты агрегирования на консоль. Наконец, чтобы привести си-
стему в действие, в исходный поток данных помещаются учетные записи со-
трудников. В реальном приложении это могут быть данные, вычитываемые из
файла, получаемые по сети или вырабатываемые параллельным потоком вы-
полнения. Запуск данной программы должен дать следующий результат:
Бухгалтер: численность 1, зарплаты [76000-76000], средняя 76000
Инженер: численность 3, зарплаты [52000-92000], средняя 68000
Менеджер: численность 2, зарплаты [120000-150000], средняя 135000

Событийно-управляемое приложение
Этот пример представляет собой консольное приложение, которое обрабаты-
вает события, представляющие примитивные операции пользовательского
интерфейса. Для обработки используется библиотека RxCpp. Это приложение

 27 / 32

316    Особые возможности потоков и обработка ошибок

можно было бы сделать и с графическим пользовательским интерфейсом, но
для краткости кода оставим его консольным.
#include <rxcpp/rx.hpp>
#include <cassert>
#include <cctype>
#include <clocale>

namespace Rx {
 using namespace rxcpp;
 using namespace rxcpp::sources;
 using namespace rxcpp::operators;
 using namespace rxcpp::util;
 using namespace rxcpp::subjects;
}

using namespace Rx;
using namespace std::chrono;

// коды событий
enum class AppEvent {
 Active,
 Inactive,
 Data,
 Close,
 Finish,
 Other
};

В начале листинга расположены, как обычно, директивы включения заголо-
вочных файлов, псевдонимы для пространств имён и объявление перечисли-
мого типа, представляющего коды различных событий, с которыми имеет дело
программа.
int main()
{
 //-------------------
 // A или a - Active – активный
 // I или i - Inactive – неактивный
 // D или d - Data – данные
 // C или c - Close – закрыть
 // F или f - Finish – завершить
 // прочие - Other – прочие
 auto events = Rx::observable<>::create<AppEvent>(
 [](Rx::subscriber<AppEvent> dest) {
 std::cout << "Введите команду:\n";
 for (;;) {
 int key = std::cin.get();
 AppEvent current_event = AppEvent::Other;

 switch (std::tolower(key)) {
 case 'a': current_event = AppEvent::Active; break;

 28 / 32

Примеры обработки потоков событий    317

 case 'i': current_event = AppEvent::Inactive; break;
 case 'd': current_event = AppEvent::Data; break;
 case 'c': current_event = AppEvent::Close; break;
 case 'f': current_event = AppEvent::Finish; break;
 default: current_event = AppEvent::Other;
 }

 if (current_event == AppEvent::Finish) {
 dest.on_completed();
 break;
 }
 else {
 dest.on_next(current_event);
 }
 }
 }).
 on_error_resume_next([](std::exception_ptr ep) {
 return rxcpp::observable<>::just(AppEvent::Finish);
 }).
 publish();

В этом фрагменте кода создаётся наблюдаемый источник данных типа AppE-
vent, т. е. поток кодов событий. Для первоначальной генерации данных исполь-
зуется ввод с консоли. Лямбда-функция в бесконечном цикле ожидает ввода
символа с клавиатуры и превращает символ в код события. Эта лямбда-функ-
ция выполняет в данном консольном приложении ту же роль, которую в гра-
фических приложениях играет главный цикл обработки событий. Операция
publish превращает холодный источник данных в горячий и устраняет зави-
симость источника данных от подключенных к нему наблюдателей. Это также
означает, что опоздавшим подписчикам всегда будет доставляться самое све-
жее событие, а не вся предыстория.

 // Фильтры событий:
 // вход в активный режим
 auto appActive = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Active;
 });

 // выход из активного режима
 auto appInactive = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Inactive;
 });

 // передача данных
 auto appData = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Data;
 });

 29 / 32

318    Особые возможности потоков и обработка ошибок

 // закрытие приложения
 auto appClose = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Close;
 });

Выше создано несколько дополнительных источников данных, получен-
ных путём отбора из исходного источника только событий определённого
типа. Например, объект appActive представляет собой поток событий, состоя-
щий исключительно из пришедших от пользователя событий типа AppEvent::
Active.
 auto dataFromApp = appActive
 .map([=] (AppEvent const& event) {
 std::cout
 << "**Вход в активный режим**\n"
 << std::flush;
 // собрать все события передачи данных
 // до выхода из активного режима
 return appData
 .take_until(appInactive)
 .finally([] () {
 std::cout << "**Выход из активного**\n";
 });
 })
 .switch_on_next() // обрабатывать только свежие события
 .take_until(appClose) // останов по событиям Finish/Close
 .finally([]() {
 std::cout << "**Завершение приложения**\n";
 });

 dataFromApp.subscribe(
 [](AppEvent const& event) {
 std::cout << "**Данные приложения**\n" << std::flush;
 });

 events.connect();

 return 0;
}

Получив от пользовательского интерфейса событие AppEvent::Active, прило-
жение переходит в активный режим и начинает принимать некие данные, что
в нашем примере смоделировано событием AppEvent::Data, и делает это до тех
пор, пока не получит событие AppEvent::Inactive, снова переводящее приложе-
ние в неактивный режим. Если в будущем приложение ещё раз получит собы-
тие AppEvent::Active, оно снова начнёт принимать данные. Если же от пользо-
вательского интерфейса приходит событие AppEvent::Close или AppEvent::Finish,
приложение завершается, однако при этом успевает выполнить определённые
действия – например, освободить системные ресурсы.

 30 / 32

Итоги    319

Итоги
В этой главе речь шла об обработке ошибок средствами библиотеки RxCpp,
а также о некоторых усложнённых подходах к обработке потоков событий. Гла-
ву открывал обзор ключевых характеристик, присущих реактивным системам
в общем случае, затем особое внимание было уделено одной из них – устойчи-
вости, для обеспечения которой требуются развитые средства обработки оши-
бок и сбоев. Рассматривался обработчик on_error – один из трёх, составляющих
интерфейс реактивного подписчика. Затем были разобраны операции on_er-
ror_resume_next, retry, позволяющие продолжить функционирование подпис-
чиков, несмотря на ошибку, возникшую в источнике данных. Также было рас-
сказано об операции finally, которая гарантирует выполнение определённых
завершающих действий независимо от того, завершился поток нормальным
образом или с ошибкой. В заключение были рассмотрены две программы, ил-
люстрирующие усложнённые приёмы обработки потоков данных. Первая из
них занималась разбиением на группы и последующим агрегированием по-
тока объектов, а вторая имитировала работу сложного приложения, принима-
ющего разнообразные команды.

 31 / 32

A
accumulate, 105
ACE, 243
adopt_lock, 90
all, 213
amb, 213
Android, 270
any, 65
async, 100, 104
ATL, 23
atomic<>, 117
atomic<bool>, 113
atomic_flag, 111, 121
auto, 44
average, 182, 213

B
Boost.Range, 149
buffer, 211

C
C#, 44
catch, 212
clear, 111
combine_latest, 212
compare_exchange_strong, 114, 116
compare_exchange_weak, 114, 116
concat, 213
condition_variable, 72, 91, 96
condition_variable_any, 91
connect, 23, 214, 228
contains, 213
copy_if, 147
count, 182, 213
create, 210
curl, 274, 275, 276

D
deadlock, 87
debounce, 211
decltype, 45

default_if_empty, 213
defer, 210
DELETE, 270, 273, 277, 282, 290
detach, 76, 80
distinct, 211

E
element_at, 211
empty, 210
exchange, 116

F
F#, 159
fetch_add, 116, 123
fetch_sub, 116
filter, 211
finally, 212
first, 211
flat_map, 211
from, 210
function, 60
future, 72, 100, 101, 104

G
GET, 270, 272, 275, 277, 282, 285, 290
group_by, 211

H
Haskell, 44, 159
HTTP, 269, 272, 275, 276, 278, 292

I
ignore_eleements, 211
interval, 210
IObservable, 26, 36, 67
IObserver, 26, 36, 67
iterator, 66

J
join, 75, 80
joinable, 76
JSON, 269, 278, 284
just, 210

Предметный указатель

Powered by TCPDF (www.tcpdf.org)

 32 / 32

Итоги    321

L
last, 211
launch, 105
libcurl, 269, 276, 277
Linux, 22, 70, 217, 222, 253, 270, 275
Lisp, 61
list, 147
livelock, 98
load, 116, 120
lock, 89
lock_guard, 72, 86, 90, 92, 94, 95
lvalue, 48

M
macOS, 22, 70, 253, 270, 275
map, 211
max, 182, 213
memory_order_acq_rel, 115, 118, 122
memory_order_acquire, 112, 115, 118, 122
memory_order_consume, 118
memory_order_relaxed, 112, 115, 118, 122
memory_order_release, 112, 115, 117, 118
memory_order_seq_cst, 115, 118
merge, 212
min, 182, 213
ML, 159
move, 52, 81
mutex, 72, 85, 91

N
never, 210
notify_one, 94

O
observe_on, 212
OMG, 244
optional, 65

P
packaged_task, 102, 104
POSA, 243
POSIX, 19, 70, 73, 128, 156, 253, 275
POST, 270, 282, 290
postman, 274
promise, 72, 100, 101
publish, 214
PUT, 270–277, 282, 286, 290

Q
QApplication, 223, 225
QCloseEvent, 220
QCoreApplication, 221
QDialog, 227, 228
QEvent, 220, 237
QKeyEvent, 220
QLabel, 225, 226, 230, 236
QMetaClassInfo, 218
QMetaEnum, 218
QMetaMethod, 218
QMetaObject, 218
QMetaProperty, 218
QMetaType, 218
QMouseEvent, 225
QMoveEvent, 220
QObject, 218, 219, 222, 236
Q_OBJECT, 22, 23, 222, 226–228
QObjectCleanupHandler, 218
QPointer, 218
QSignalMapper, 218
Qt, 22, 32, 37, 215–217, 221, 222, 232,
233, 245, 268
QTimerEvent, 220
QVariant, 218
QVBoxLayout, 231
QWidget, 220, 236

R
race condition, 83
RaftLib, 170
RAII, 86, 87
range, 210
Range-v3, 149
reduce, 213
ref, 79
ref_count, 214
repeat, 210
replay, 214
REST, 269, 282, 290
retry, 212
rvalue, 49
RxCpp, 36, 39, 61, 127, 152–178, 182–184,
191, 194, 199–216, 232–241, 255, 256,
268, 292, 300–315
RxCurl, 269, 277, 282, 290, 295

 1 / 4

322    Предметный указатель

S
sample, 211
Scala, 44
scan, 211
scope, 212
sequence_equal, 213
shared_future, 101
shared_ptr, 52, 101, 123
skip, 211
skip_last, 211
skip_until, 213
skip_while, 213
Spreadsheet, 168, 170
stack, 93
start_with, 212
static_cast, 52
store, 116, 120
Streams, 159
Streamulus, 162, 166, 167, 168
subscribe, 212
subscribe_on, 212
sum, 182, 213
switch_on_next, 212

T
take, 211
take_last, 211
take_until, 213
take_while, 213
terminate, 82
test_and_set, 111, 120
thread, 72, 80, 99
throw, 210
timer, 210

U
unique_lock, 72, 92, 96
unique_ptr, 52, 101
Unix, 61, 137, 183, 270
UNIX, 156

V
variant, 64, 143
vector, 147

W
weak_ptr, 52
WebSocket, 195, 270

window, 211
Windows, 17, 61, 73, 215, 217, 223, 253,
270, 275

Z
zip, 212

А
Абстрактное синтаксическое
дерево, 135
Абстракция нулевой стоимости, 40
Адвайта-веданта, 134
Активный объект, 260
Ананд, 134
Аппликативный порядок
вычислений, 158
Атомарная операция

запись, 111
общая характеристика, 108
чтение, 111
чтение-модификация-запись, 111

Атомарный тип, 108
общая характеристика, 108
указатель, 116
целочисленный, 115

Б
Банда четырёх, 127, 133, 135, 142, 149
Брахман, 134

В
Вариадический шаблон, 46
Взаимозаменяемость, 43
Вталкивание данных, 28
Втягивание данных, 28
Вывод типов, 44
Выразительность, 40

Г
Гонка потоков, 83, 84, 85, 107

Д
Двойная диспетчеризация, 137, 138,
250, 255
Декоратор, 149

З
Замыкание, 58

 2 / 4

Итоги    323

И
Инвариант, 83

К
Карринг, 57
Композиция функций, 57, 61
Критическая секция, 84

Л
Лямбда-функция, 54, 79

М
Многопоточное программирование, 70
Модель памяти, 106
Мьютекс, 84

Н
Наблюдаемый источник, 26, 27, 31,
127–136, 149, 151, 172–184, 193–195,
200, 203, 206, 210–213, 234–240, 248,
255–257, 265, 278, 291, 295, 302–307,
310–317
Наблюдатель, 12, 26–28, 31–36, 40,
65–67, 127–132, 136, 149, 150, 153,
172–186, 191–196, 199, 200, 206, 236,
237, 300, 302, 309–312, 317
Неблокирующая структура данных, 124

О
Обёртка над функцией, 60
Обещание, 100
Обработчик, 18, 24, 25, 67, 129, 138,
140, 153, 157, 164, 166, 172, 174, 206,
219–221, 227, 228, 233, 269, 272, 273,
278, 284–290, 301–305, 309
Оповещение, 26, 150
Ослабленный порядок доступа, 122

П
Параллельное
программирование, 70, 71
Планировщик, 151, 172–177, 183–185,
192, 194, 203–208, 260, 308, 311, 312
Подписка, 150

Подписчик, 26, 28, 32, 67, 128–132, 150,
172, 174, 177–180, 185, 186, 194–209,
233, 234, 239, 240, 245, 301–319
Порядок доступа к памяти, 118
Последовательная согласованность, 119

Р
Разглаживание композита, 142

С
Сат, 134
Семантика захвата и освобождения, 120
Семантика перемещения, 50
Семафор, 84
Сигнал, 217–232, 238
Слот, 217–222, 225, 228
Событие, 26, 150
Состояние гонок, 83
Сумма типов, 64

Т
Тупик, 87

динамический, 98

У
Умный указатель, 52
Условная переменная, 76, 91, 93, 98,
108, 124

Ф
Функциональный объект, 55
Функция высшего порядка, 146
Фьючерс, 100

Ч
Частичное применение, 57
Чит, 134

Ш
Шаблон проектирования, 127

итератор, 128, 135, 142
композит, 128, 135, 142
наблюдатель, 127, 128, 131–136, 149
посетитель, 128, 135, 138, 142, 143

 3 / 4

Книги издательства «ДМК Пресс» можно заказать
в торгово-издательском холдинге «Планета Альянс» наложенным платежом,

выслав открытку или письмо по почтовому адресу:
115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью),
по которому должны быть высланы книги;

фамилию, имя и отчество получателя.
Желательно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.a-planeta.ru.
Оптовые закупки: тел. (499) 782-38-89.

Электронный адрес: books@alians-kniga.ru.

Прасид Пай, Питер Абрахам

Реактивное программирование на С++

	 Главный редактор	 Мовчан Д. А.
dmkpress@gmail.com

	 Перевод	 Винник В. Ю.
	 Корректор	 Синяева Г. И.
	 Верстка	 Чаннова А. А.
	 Дизайн обложки	 Мовчан А. Г.

Формат 70×100 1/16.
Гарнитура «PT Serif». Печать офсетная.

Усл. печ. л. 26,33. Тираж 200 экз.

Веб-сайт издательства: www.dmkpress.com

Powered by TCPDF (www.tcpdf.org)

 4 / 4

http://www.a-planeta.ru
mailto:books%40alians-kniga.ru?subject=
mailto:dmkpress%40gmail.com?subject=
http://www.dmkpress.com

	reaktivnoe_programmirovanie_na_s_1-32
	reaktivnoe_programmirovanie_na_s_33-64
	reaktivnoe_programmirovanie_na_s_65-96
	reaktivnoe_programmirovanie_na_s_97-128
	reaktivnoe_programmirovanie_na_s_129-160
	reaktivnoe_programmirovanie_na_s_161-192
	reaktivnoe_programmirovanie_na_s_193-224
	reaktivnoe_programmirovanie_na_s_225-256
	reaktivnoe_programmirovanie_na_s_257-288
	reaktivnoe_programmirovanie_na_s_289-320
	reaktivnoe_programmirovanie_na_s_321-324

