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Предисловие
Вэнди,

Ричарду и

Бену, Эмили

Элизабет

Дж. Г. С.

Юн

L-Q. L.

и Бетани
А. Л.

Когда я впервые увидел эту книгу, я почувствовал зависть. В конце концов желание
создать библиотеку, подобную Boost Graph Library (BGL), привело меня к открытию
обобщенного программирования. В 1984 году я вошел в профессорско-преподава-
тельский состав Политехнического университета в Бруклине, имея некоторые, еще
довольно смутные, идеи построения библиотек программных компонентов. По прав-
де говоря, они были на втором плане: в то время мои истинные интересы касались
формальных обоснований естественного языка, кое в чем напоминающего Органона
Аристотеля, но более полного и формального. Я был, наверное, единственным доцен-
том на кафедрах информатики и электротехники, кто собирался получить должность,
внимательно изучая категории Аристотеля. Интересно заметить, что дизайн Standard
Template Library (STL), в частности лежащий в основе онтологии объектов, базиру-
ется на моем понимании того, что отношение «целое-часть» является основополага-
ющим отношением, которое описывает реальный мир, и что оно вообще не похоже на
отношение «элемент-множество», известное нам из теории множеств. Реальные
объекты не имеют общих частей: моя нога не является еще чьей-то ногой. То же самое
можно сказать и о контейнерах STL. Например операции std:: 1 i s t : : spl i се переме-
щают части из одного контейнера в другой подобно операции по пересадке органов:
моя почка — это моя почка, до тех пор, пока ее не пересадят кому-нибудь другому.

В любом случае, я был твердо убежден, что программные компоненты должны
быть функциональными и основываться на системе функционального програм-
мирования Джона Бэкуса (John Backus's FP system). Единственной новой идеей
было то, что функции могут быть связаны с некоторыми аксиомами. Например,
«алгоритм русского крестьянина», позволяющий вычислить п-ю степень за O(log n)
шагов, подходит для любого объекта, для которого определена бинарная ассо-
циативная операция. Другими словами, я верил, что алгоритмы должны быть
связаны с тем, что сейчас мы называем концепциями (см. раздел 2.3 этой книги),
которые я обозначал как структурные типы (structure types), а теоретики называют
многосортными алгебрами (multi-sorted algebras).

Удачей для меня было то, что в Политехническом университете был замечатель-
ный человек — Аарон Кершенбаум, обладавший глубокими знаниями в области
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алгоритмов на графах и стремлением их реализовать. Аарон заинтересовался
моими попытками расчленить программы на простые примитивы и провел много
времени, обучая меня графовым алгоритмам и работая со мной над их реализацией.
Он также показал мне, что есть фундаментальные вещи, которые нельзя сделать
в функциональном стиле без высоких изменений в сложности. Хотя я часто мог
реализовать алгоритмы, требующие линейного времени, в функциональном стиле
без изменения асимптотической сложности, реализовать на практике алгоритмы
с логарифмическим временем без изменения сложности на линейную я не мог.
В частности, Аарон объяснял мне, почему очередь по приоритетам столь важна для
алгоритмов на графах. Он был хорошо осведомлен в этом вопросе: Кнут в его книге
по Stanford GraphBase [22] приписывает авторство Аарону в применении частично
упорядоченных бинарных деревьев (binary heaps) к алгоритмам Прима и Дейкстры.

Мы очень обрадовались, когда смогли получить алгоритмы Прима и Дейкст-
ры как два случая одного обобщенного алгоритма (высокоуровневого). Это про-
сто замечательно, что код BGL схож с нашим кодом (см. например сноску в разде-
ле 13.4.2). Следующий пример на языке Scheme показывает, как два алгоритма
были реализованы в терминах одного высокоуровневого алгоритма. Единствен-
ная разница заключается в том, как комбинируются значения расстояний: сложе-
нием у Дейкстры и выбором второго операнда у Прима:

(define dijkstra
(make-scan-based-algorithm-with-mark

make-heap-with-membership-and-values + < ))

(define prim
(make-scan-based-algorithm-with-mark

make-heap-with-membership-and-values (lambda (x у) у) < ))

На поиск подходящего языка программирования для эффективной реализа-
ции подобного стиля у меня ушло почти десять лет. Наконец я нашел C++, кото-
рый помог мне создавать программы, полезные для общества. Более того, C++
серьезно повлиял на мой проект, основанный на модели машины для С. Шабло-
ны и перегрузка функций — вот особенности C++, позволившие создать STL.

Я часто слышу от людей выражения недовольства по поводу перегрузки в C++,
но, как это обычно бывает для большинства полезных механизмов, перегрузка может
быть использована неправильно. Для разработки полезных абстракций перегрузка
незаменима. Если мы обратимся к математике, то многие ее идеи получили разви-
тие именно благодаря перегрузке. В качестве примера можно привести расширение
понятия чисел от натуральных к целым, к рациональным, к гауссовым, к jo-адическим
числам и т. д. Можно легко догадаться о некоторых вещах без знания точных опреде-
лений. Если я вижу выражение, в котором используются операции сложения и умно-
жения, я предполагаю наличие дистрибутивности. Если я вижу знак «меньше» и сло-
жение, то предполагаю, что если а< Ь, то а + с< b + с (я редко складываю несчетные
количества). Перегрузка позволяет нам переносить знание от одного типа к другому.

Важно понять, что можно писать обобщенные алгоритмы, просто используя
перегрузку, без шаблонов, но это требует много нажатий на клавиши. То есть для
каждого класса, например удовлетворяющего требованиям итератора произволь-
ного доступа, нужно вручную определять все относящиеся к нему алгоритмы. Это
утомительно, но осуществимо (нужно определять только сигнатуры: тела будут
те же). Нужно заметить, что настраиваемые модули (generics) в языке Ада требу-
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ют ручной реализации и, поэтому, не так полезны, поскольку каждый алгоритм
нужно реализовывать вручную. Шаблоны C++ решают эту проблему, позволяя
определять такие вещи единожды.

Еще есть вещи, нужные в обобщенном программировании, но непредставимые
в C++. Обобщенные алгоритмы — это алгоритмы, которые работают с объектами,
обладающими похожими интерфейсами. Не идентичными, как в объектно-ориен-
тированном программировании, а именно похожими. Использование не только
бинарных методов вызывает проблему (см. раздел 2.1.3), интерфейсы фактически
описываются с помощью одного типа (односортная алгебра). Если мы вниматель-
но посмотрим на объекты вроде итераторов, то увидим, что они могут быть описа-
ны только в терминах нескольких типов: тип самого итератора, тип значения и тип
расстояния. Другими словами, необходимо три типа, чтобы определить интерфей-
сы для одного типа. В C++ для этого нет нужного аппарата. В результате мы не
можем определить итераторы и, следовательно, откомпилировать обобщенные
алгоритмы. Например, если мы определим алгоритм reduce таким образом:

template <class Inputlterator. class BinaryOperationWithIdentity>
typename iterator_traits<lnputlterator>::value_type
reduce(Inputlterator first. Inputlterator last.

BinaryOperationWithldentity op)

typedef typename iterator_traits<lnputlterator>::value_type T;
if (first == last) return identity_element(op);
T result - *first;
while (++first !» last) result - op(result. *first):

}

 r e t u r n r e s u l t ;

но вместо ++fi rst != last напишем ++first < last, никакой компилятор не смо-
жет обнаружить ошибку в месте определения. Хотя стандарт ясно декларирует,
что operator< не нужен для итераторов ввода, у компилятора нет возможности знать
об этом. Требования к итераторам сформулированы только на словах. Мы пыта-
емся программировать с концепциями (многосортными алгебрами) на языке, в ко-
тором для них нет поддержки.

Насколько сложно расширить C++, чтобы действительно позволить этот стиль
программирования? Во-первых, нам нужно ввести концепции как новое средство
интерфейса. Например, мы можем определить следующие концепции:

concept SemiRegular : Assignable. DefaultConstructible {};
concept Regular : SemiRegular. EqualityComparable {}:
concept Inputlterator : Regular. Incrementable {

SemiRegular value_type:
Integral distance_type;
const value_type& operator*»:

value_type(Inputlterator)
reduce(Inputlterator first. Inputlterator last.

BinaryOperationWithldentity op)
(value_type(Input Iterator) == argument_type(BinaryOperationWithldentity))
{

if (first — last) return identity_element(op);
value_type(Inputlterator) result • *first;
while (++f1rst !" last) result - op(result, *f1rst);
return result;

}
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Обобщенные функции (generic functions) — это функции, которые принимают
концепции как аргументы и в добавление к списку аргументов имеют список ог-
раничений типов. Теперь полная проверка типов может быть выполнена в месте
определения, без рассмотрения мест вызова или в местах вызова без рассмотре-
ния тела алгоритма.

Иногда требуется несколько реализаций одной и той же концепции. Напри-
мер, для слияния возможна следующая запись:

Outputlterator merge(lnputlterator[l] firstl, Inputlterator[l] lastl.
Inputlterator[2] first2, Inputlterator[2] Iast2,
Outputlterator result)

(bool operator<(value_type(lnputlterator[l]). value_type(lnputlterator[2])),
value_type(lnputlterator[l]) == value_type(lnputlterator[2]).
output_type(OutputIterator) — value_type(lnputlterator[2]));

Заметим, что это слияние не такое эффективное, как в STL. Невозможно соеди-
нить список чисел с плавающей запятой и вектор чисел двойной точности в дек це-
лых чисел. Но алгоритмы STL часто производят неожиданные и, по моему мнению,
нежелательные преобразования типов. Если нужно слить числа с двойной точностью
и числа с плавающей запятой в целые, лучше использовать явный функциональ-
ный объект для сравнения и специальный итератор вывода для преобразования.

В языке C++ поддерживается два различных механизма абстракции: объектно-
ориентированный подход и шаблоны. Использование объектно-ориентированного
подхода позволяет точно определить интерфейс и провести диспетчеризацию време-
ни исполнения. Вместе с этим диспетчеризация бинарных или мультиметодов неосу-
ществима, а связывание времени исполнения часто неэффективно. Шаблоны пред-
назначены для более сложных интерфейсов и разрешены во время компиляции.
Серьезным препятствием для их использования разработчиками программного обес-
печения является тот факт, что в шаблонах отсутствует разделение между интерфей -
сами и реализацией. Например, недавно я пытался откомпилировать пример STL-
программы из десяти строк, используя один из наиболее популярных компиляторов
C++... Я был в шоке, увидев несколько страниц неразборчивых сообщений об ошиб-
ках. Можно предположить, что введение концепций объединит возможности обоих
подходов и уберет офаничения, накладываемые ими. Кроме того, можно представить
концепции в виде виртуальных таблиц, распространяющихся на указатели к описате-
лям типов: виртуальная таблица для итератора ввода содержит не только указатели
на operator* и operator++, но и указатели на актуальный тип итератора, тип его значе-
ния и тип расстояния. А затем можно ввести указатели и ссылки на концепции!

Обобщенное программирование — это сравнительно молодое направление
в программировании. Я счастлив наблюдать, что небольшая попытка, начатая
двадцать лет назад Дэйвом Массером, Дипаком Капуром, Аароном Кершенбау-
мом и мной, привела к появлению библиотек нового поколения, таких как BGL
и MTL. Я должен поздравить Университет Индианы с лучшей командой по обоб-
щенному программированию в мире. Я уверен, что они сотворят и другие чудеса!

Александр Степанов.
Пало-Альто, Калифорния. Сентябрь, 2001'

Я бы хотел поблагодарить Джона Вилкинсона, Марка Мапассэ, Марка Наджорка и Джереми Сика
за многие ценные предложения.
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Графовая абстракция — это мощный инструмент решения задач, используемый
для описания отношений между дискретными объектами. Практические задачи
могут быть смоделированы в виде графов для различных областей, например та-
ких, как маршрутизация пакетов в Интернете, проектирование телефонной сети,
системы сборки программного обеспечения, поисковые машины WWW, молеку-
лярная биология, системы автоматизированного планирования дорожного мар-
шрута, научные вычисления и т. п. Достоинством графовой абстракции является
тот факт, что найденное решение проблемы теории графов может быть использо-
вано для решения проблем в широком диапазоне областей. Например, задача на-
хождения выхода из лабиринта и задача нахождения групп взаимно достижимых
веб-страниц могут быть решены с помощью поиска в глубину — важнейшего по-
ложения из теории графов. При сосредоточении на сути этих задач, а именно на
графовой модели, описывающей дискретные объекты и отношения между ними,
специалисты по теории графов нашли решения не просто для «горстки» отдель-
ных проблем, а для целых семейств задач.

Сразу же возникает вопрос. Если теория графов всеобще и широко применяет-
ся для произвольных сфер задач, не должно ли программное обеспечение, реализу-
ющее графовые алгоритмы, быть таким же универсальным в применении? Может
показаться, что теория графов — это идеальная область для повторного использо-
вания программного кода. Однако до сих пор потенциальное повторное использо-
вание было далеко от реальности. Графовые задачи редко встречаются в чистой
теоретико-графовой форме, они чаще включены в более крупные проблемы, за-
висящие от области применения. В результате данные, которые можно смодели-
ровать как граф, зачастую явно не представлены как граф, и тогда они заклады-
ваются в некоторую структуру данных, специфичную для приложения. Даже
в случае, когда данные приложения явно представлены в виде графа, конкретное
представление, выбираемое программистом, может не совпадать с представлением,
ожидаемым библиотекой. Более того, различные приложения могут накладывать
разные ограничения к временной и пространственной сложности графовых струк-
тур данных.
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Эти особенности являются серьезной проблемой для разработчика библиотеки
алгоритмов на графах, который хочет предоставить повторно используемое про-
граммное обеспечение. Невозможно предусмотреть все возможные структуры
данных, которые могут потребоваться, и написать различные версии графового
алгоритма специально для каждой из них. В настоящее время алгоритмы на гра-
фах пишутся в терминах той структуры данных, которая наиболее удобна для ал-
горитма, и пользователи должны преобразовывать их структуры данных к такому
формату, чтобы применить алгоритм. Это неэффективное решение, поглощаю-
щее время программиста и вычислительные ресурсы. Часто затраты на преобра-
зования оказываются слишком высокими, и программист переписывает алгоритм
в терминах своей собственной структуры данных. Этот подход отнимает время
и способствует появлению ошибок, а также имеет тенденцию приводить к недо-
статочно эффективным решениям, поскольку программист приложения может
не быть экспертом в области графовых алгоритмов.

Обобщенное программирование

Стандартная библиотека шаблонов (Standard Template Library, STL) [40] по-
явилась в 1994 году и была сразу принята в стандарт C++. STL — библиотека
взаимозаменяемых компонентов для решения многих фундаментальных задач
на последовательностях элементов. Отличие библиотеки STL от предлагаемых
ранее библиотек состоит в том, что каждый STL-алгоритм может работать с ши-
роким набором последовательных структур данных: связные списки, массивы,
множества и т. п. Абстракция итератора обеспечила интерфейс между контей-
нерами и алгоритмами, и шаблонный механизм C++ предоставил нужную гиб-
кость в реализации без потери эффективности. Каждый алгоритм в STL являет-
ся шаблоном функции, параметризованным по типам итераторов, с которыми
он работает. Любой итератор, который удовлетворяет минимальному набору
требований, может быть использован независимо от структуры данных, обходи-
мой итератором. Системный подход, использованный в STL для построения
абстракций и взаимозаменяемых компонентов, называется обобщенным програм-
мированием.

Обобщенное программирование хорошо зарекомендовало себя при решении
проблемы повторного использования кода для библиотек алгоритмов на гра-
фах. В рамках обобщенного программирования алгоритмы на графах могут быть
сделаны более гибкими и легко используемыми в большом наборе приложений.
Каждый графовый алгоритм пишется не в терминах специфической структуры
данных, а для графовой абстракции, которая может быть реализована многими
различными структурами данных. Написание обобщенных графовых алгорит-
мов имеет дополнительное преимущество, являясь более естественным. Абст-
ракция, свойственная псевдокоду описания алгоритма, сохраняется в обобщен-
ной функции.

Библиотека Boost Graph Library (BGL) — это первая библиотека графов Сн—,
применяющая понятия обобщенного программирования при создании алгорит-
мов на графах.
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Немного из истории BGL

Boost Graph Library появилась как библиотека обобщенных графовых компонен-
тов (Generic Graph Component Library, GCCL) в лаборатории научных вычисле-
ний (Lab for Scientific Computing, LSC). Эта лаборатория под руководством про-
фессора Эндрю Ламсдэйна охватывала различные сферы деятельности, зани-
малась исследованиями алгоритмов, программного обеспечения, инструментов
и систем времени выполнения для вычислительной науки и техники1. Особое вни-
мание было уделено разработке промышленного, высокопроизводительного про-
граммного обеспечения с использованием современных языков программирова-
ния и методов, в том числе обобщенного программирования.

Вскоре после того как была выпущена STL, в LSC началась работа по приме-
нению обобщенного программирования к научным расчетам. Библиотека матрич-
ных шаблонов (Matrix Template Library, MTL) была одним из первых проектов.
Многие уроки, усвоенные во время создания MTL, были учтены при проектиро-
вании и реализации GGCL.

Одним из важных классов вычислений линейной алгебры в научных расчетах
является класс вычислений с разреженными матрицами, в котором графовые ал-
горитмы играют большую роль. Когда лаборатория LSC разрабатывала методы
обработки разреженных матриц для MTL, необходимость в высокопроизводитель-
ных повторно используемых (и обобщенных) графовых алгоритмах стала очевид-
на. Однако ни в одной из графовых библиотек, доступных в то время (LEDA, GTL,
Stanford GraphBase), не использовался обобщенный стиль программирования
в отличие от STL или MTL. Таким образом, данные библиотеки не удовлетво-
ряли требованиям LSC в гибкости и производительности. Другие исследователи
также были заинтересованы в создании обобщенной библиотеки алгоритмов на
графах для C++. Во время встречи с Бьерном Страуструпом мы познакомились
с некоторыми людьми из «AT&T», тоже нуждавшимися в такой библиотеке. Дру-
гая ранняя работа в области графовых алгоритмов включала отдельные примеры
кодов, написанных Александром Степановым, а также Дитмаром Кюлем в его ма-
гистерской диссертации.

Джереми Сик, вдохновленный домашними упражнениями по алгоритмам для
своего курса, начал создавать прототипы интерфейса и некоторых графовых классов
весной 1998 года с учетом более ранних разработок. Затем Лай-Кван Ли разработал
первую версию GGCL, которая стала его магистерским диссертационным проектом.

В следующем году авторы начали сотрудничать с Александром Степановым и Мэ-
тью Остерном. В это время реализация Степанова для компонент связности на ос-
нове непересекающихся множеств была добавлена к GGCL, и началась работа по
документированию концепций для GGCL подобно документации Остерна для STL.

В том же году авторам стало известно о Boost, и они были обрадованы тем, что
нашли организацию, заинтересованную в создании высококачественных библиотек

С тех пор LSC была преобразована в лабораторию открытых систем (Open Systems Laboratory, OSL).
Хотя название и местоположение изменились, программа работы остается прежней. Дополнительная
информация находится на веб-сайте OSL http://www.osl.iu.edu.



18 Введение

C++ с открытыми исходными кодами. В Boost было несколько человек, уделяв-
ших внимание обобщенным графовым алгоритмам, и одним из этих людей был
Дитмар Кюль. Некоторые обсуждения обобщенных интерфейсов для графовых
структур привели к пересмотру GGCL и появлению в ней новых интерфейсов,
очень похожих на те, что есть в Boost Graph Library сейчас.

4 сентября 2000 года GGCL была формально рецензирована под руководством
Дэвида Абрахамса и стала Boost Graph Library. Первый выпуск BGL состоялся
27 сентября 2000 года. BGL не является «замороженной» библиотекой. Она про-
должает расти и развиваться для наибольшего удовлетворения потребностей сво-
их пользователей. Мы приглашаем читателей присоединиться к группе Boost для
работы над расширением BGL.

Что такое Boost?
Boost — сетевое сообщество, которое поддерживает разработку и проводит кол-
легиальную оценку свободных библиотек для C++. Особое внимание уделяется
переносимым и высококачественным библиотекам, которые хорошо работают
совместно (и «в том же духе») со стандартной библиотекой C++. Члены сообще-
ства предоставляют предложения (проекты и реализации библиотек) для объек-
тивной оценки. Сообщество Boost (под управлением менеджера по рецензирова-
нию) рассматривает библиотеку, обеспечивает обратную связь с участниками
и принимает решение о включении библиотеки в набор Boost-библиотек. Биб-
лиотеки доступны с веб-сайта http://www.boost.org. Кроме того, список рассылки
Boost является важным местом для обсуждения планов и организации сотрудни-
чества.

Получение и установка программного
обеспечения BGL

Библиотека алгоритмов на графах Boost Graph Library доступна как часть коллек-
ции библиотек Boost. Свежий выпуск библиотек Boost можно загрузить с помо-
щью браузера по следующим адресам: http://www.boost.org/boost_all.zip (zip-архив
для Windows), http://www.boost.org/boost_all.tar.gz (для Unix), а также по FTP из
каталога ftp://boost.sourceforge.net/pub/boost/release/.

Zip-архив коллекции библиотек Boost можно разархивировать программой
WinZip или ее аналогом. Таг-архив для Unix можно разархивировать с помощью
такой команды:

gunzip -cd boost_a11.tar.gz | tar xvf -

В результате создается каталог, имя которого состоит из слова boost и номера
версии: например, разархивирование версии 1.31.0 создает каталог boost_l_31_0.
В этом каталоге находятся два важных подкаталога: boost и libs. Подкаталог boost
содержит заголовочные файлы для всех библиотек коллекции. Подкаталог libs
имеет отдельные подкаталоги для каждой библиотеки в коллекции. Эти подката-
логи содержат файлы исходных кодов и документации к данным библиотекам.
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Сориентироваться в архиве можно, открыв в браузере веб-страницу boost_l_31_0/
index.htm.

Заголовочные файлы BGL находятся в каталоге boost/graph/. Однако для BGL
нужны и другие заголовочные файлы, так как в библиотеке используются различ-
ные компоненты Boost. Гипертекстовая документация находится в каталоге libs/
graph/doc/, а исходные коды примеров — в libs/graph/example/. В каталоге libs/
graph/test/ содержатся тестовые наборы для BGL. Исходные файлы для реализации
анализаторов Graphviz-файлов и программ печати расположены в libs/graph/src/.

Кроме того, что описано далее, для использования BGL не требуется компи-
ляция и сборка. Все, что необходимо, — это добавить каталог заголовочных фай-
лов Boost к пути поиска заголовочных файлов. Например, если в Windows 2000
библиотека версии 1.31.0 разархивирована в корень диска С, для компиляторов
Borland, GCC и Metrowerks добавьте -Ic:/boost_l_31_0 к командной строке ком-
пилятора, а для Microsoft Visual C++ — /1 "с: /boost_l_31_0". Для интегрированных
сред разработки (IDE) укажите с: /boost_l_31_0 (или то, во что вы переименовали
этот каталог) к пути поиска заголовочных файлов, используя соответствующий
диалог. Перед применением BGL-интерфейсов к LEDA или Stanford GraphBase
последние должны быть установлены согласно инструкциям к ним. Для ис-
пользования функции read_graphviz() (для чтения Graphviz-файлов «AT&T»)
необходимо собрать и скомпоновать дополнительную библиотеку из каталога
boost_l_31_0/libs/graph/src.

Библиотека Boost Graph Library написана на ISO/IEC Standard C++ и компи-
лируется большинством компиляторов C++. Чтобы получить последнюю инфор-
мацию о поддержке различных компиляторов, на веб-сайте Boost загрузите стра-
ницу «Compiler Status» по адресу http://www.boost.org/status/compiler_status.html.

Как пользоваться книгой
Эта книга является одновременно руководством пользователя и справочным по-
собием по BGL. Она предназначена для того, чтобы читатель смог использовать
BGL для решения задач на графах, встречающихся в реальной жизни. Книга до-
лжна представлять интерес для программистов, желающих более углубленно изу-
чить обобщенное программирование. Хотя сейчас уже достаточно много книг
о том, как использовать обобщенные библиотеки (что почти всегда означает при-
менение стандартной библиотеки STL), в очень немногих действительно описыва-
ется, как создать обобщенное программное обеспечение. Тем не менее обобщенное
программирование — это жизненно важная, новая парадигма разработки програм-
много обеспечения. Мы надеемся, что с помощью примеров из этой книги читатель
научится программировать обобщенно (а не только использовать обобщенные
библиотеки), применять и расширять принципы обобщенного программирования
за пределы контейнерных типов и алгоритмов STL.

В качестве третьего помощника к руководству пользователя и справочному
пособию выступит сам исходный код библиотеки BGL. Код BGL предназначен
не только для обучения и образования, но и для реального использования.

Для студентов, изучающих графовые алгоритмы и структуры данных, BGL
предоставляет обширный набор алгоритмов. Студент может сконцентрироваться
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на изучении важной теории, на которой основаны графовые алгоритмы, без рис-
ка «увязнуть» и отвлечься на слишком большое количество деталей реализа-
ции.

Для профессиональных программистов BGL предлагает высококачественные
реализации структур данных и алгоритмов. Программисты смогут значительно
сократить время разработки за счет надежности библиотеки. Время, которое было
бы затрачено на разработку (и отладку) сложных графовых структур данных и ал-
горитмов, может быть использовано для других дел. Более того, гибкий интер-
фейс BGL позволит программистам применять графовые алгоритмы в ситуаци-
ях, когда граф может существовать лишь неявно.

Для теоретиков эта книга дает стимул к использованию обобщенного програм-
мирования для реализации теоретико-графовых алгоритмов. Алгоритмы, напи-
санные с применением интерфейса BGL, смогут широко применяться и иметь
возможность повторного использования в различных областях.

Мы предполагаем, что читатель хорошо понимает C++. Мы не пытаемся на-
учить читателя C++ в этой книге, так как для этого есть много хороших источни-
ков (мы особенно рекомендуем [42] и [25]). Мы также подразумеваем некоторое
знакомство с STL (см. [34] и [3]). Однако мы представляем наиболее передовые
возможности C++, использованные для реализации обобщенных библиотек в це-
лом и BGL в частности.

В книге также вводятся необходимые понятия теории графов, но без особо-
го рассмотрения. Для детального знакомства с элементарной теорией графов
см. [10].

Грамотное программирование
Примеры программ в этой книге представлены с использованием стиля грамот-
ного программирования (literate programming style), разработанного Дональдсж
Кнутом. Стиль грамотного программирования состоит в написании исходного
кода и документации в одном и том же файле. Затем специальная программа пре-
образует файл в «чистый» файл исходного кода и в файл документации с красиво
напечатанным исходным кодом. При грамотном программировании легче гаран-
тировать, что примеры кодов в книге действительно компилируются и запуска-
ются и что они соответствуют тексту.

Исходный код для каждого примера разбит на части. Части могут содержать
ссылки на другие части. Например, ниже приведена часть, названная «Определе-
ние функции сортировки слияниями», которая ссылается на другие части, назван-
ные «Разделить массив пополам и отсортировать каждую половину» и «Слить
обе половины». Примеры часто могут начинаться с части, которая является схе-
мой всего вычисления, после чего следуют части, заполняющие детали. Напри-
мер, следующий шаблон функции является обобщенной реализацией алгорит-
ма сортировки слияниями [10]. В алгоритме два шага: сортировка каждой части
и слияние частей:

< Определение функции сортировки слияниями > •
template <typename RandomAccessIterator. typename Compare>
void merge_sort(RandomAccessIterator first.

RandomAccessIterator last, Compare cmp)
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i f (first + 1 < last) {
< Разделить массив пополам и отсортировать каждую половину >
( Слить обе половины )

Обычно размер каждой части ограничен несколькими строками кода, которые
выполняют определенную задачу. Имена для частей выбраны так, чтобы переда-
вать суть этой задачи.

< Разделить массив пополам и отсортировать каждую половину > •
RandomAccessIterator mid - f i r s t + ( last - f irst)/?;
merge_sort(f irst, mid, cmp):
inerge_sort(mid, last , cmp);

Функция std:; inp1acejnerge() осуществляет основную работу этого алгорит-
ма, создавая единый отсортированный массив из двух массивов:

( Слить обе половины ) и
std::inplace_merge(first, mid, last, cmp):

Иногда для названия используется имя файла. Это означает, что часть записа-
на в отдельный файл. Многие примеры в этой книге записаны в файлах и могут
быть найдены в каталоге libs/graph/example/ в поставке Boost. В следующем при-
мере название функции merge_sort() записано в заголовочном файле:

( merge-sort.hpp ) •
fifndef MERGE_SORT_HPP
#define MERGE_SORT_HPP

< Определение функции сортировки слияниями )

#endif // MERGE_SORT_HPP
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Введение

В этой главе будут приведены общие положения о некоторых интерфейсах и ком -
понентах библиотеки для работы с графами Boost Graph Library (BGL). Мы на-
чнем с краткого обзора терминологии теории графов. В качестве примера хорошо
моделируемой графом системы будет выступать сеть интернет-маршрутизаторов.
Обобщенные интерфейсы, определяемые в BGL, описываются в разделе 1.2. Кон-
кретные графовые классы, реализующие эти интерфейсы, рассматриваются в раз-
деле 1.3. Некоторые сведения об обобщенных алгоритмах на графах приведены
в разделе 1.4 данной главы.

1.1. Немного терминологии из теории графов
Графовая модель сети интернет-маршрутизаторов показана на рис. 1.1. Маршру-
тизаторы помечены кружками с буквами, а соединения между ними подписаны
средними величинами задержек передачи сигнала (в миллисекундах).

1.2

Рис. 1.1. Сеть интернет-маршрутизаторов

Если придерживаться терминологии теории графов, каждый маршрутизатор
в примере сети является вершиной (vertex) (ее еще называют узлом), а каждое со-
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единение — ребром (edge) (или дугой). Граф G состоит из множества вершин V
и множества ребер Е, что можно записать как G = (V, Е). Количество элементов
множества вершин (число вершин графа) обозначается |V|, а число элементов
множества ребер — \Е |. Ребро записывается как пара, состоящая из вершин, кото-
рые соединяет ребро. Пара (и, и) обозначает ребро, соединяющее вершину и с вер-
шиной V.

Сеть маршрутизаторов (рис. 1.1) может быть выражена в нотации теории мно-
жеств следующим образом:

V" {a,b, c,d,e]
Е = {(a, b), (a, d), (b, d), (с, а), (с, е), (d, с), (d, e))
G-(V,E)

Граф может быть ориентированным или неориентированным, в зависимости
от того, ориентированы или нет ребра из множества ребер. Ребра ориентиро-
ванного графа обычно называются дугами (хотя далее мы будем пользоваться
термином ребро). Ребро ориентированного графа (орграфа) обозначается как
упорядоченная пара {и, v), где и — начальная вершина, a v — конечная вершина
ребра. Ребра (и, v) и (v, и) являются различными. В неориентированном графе
ребро соединяет вершины в обоих направлениях, поэтому порядок вершин в реб-
ре не имеет значения: (и, v) и (v, и) обозначают одно и то же ребро. Ребро, нача-
ло и конец которого совпадают, называется петлей. Такие ребра не допускаются
в неориентированном графе. Два или более ребра, соединяющие одни и те же
вершины, называются параллельными, а граф, имеющий такие ребра, — муль-
тиграфом.

Если граф содержит ребро {и, v), то говорят, что вершина v смежна с верши-
ной и. Для ориентированного графа ребро (и, v) является исходящим для верши-
ны и и входящим для вершины v. В неориентированном графе ребро {и, г>) инци-
дентно вершине и (и вершине v). Множества смежности вершин графа на рис. 1.1
описываются следующим образом:

Adjacent[a] = {b, d)
Adjacent[b] = [d]
Adjacent[c] = {a, e)
Adjacent[d\ ~ {c, e)
Adjacent[e] = {}

Далее записаны исходящие ребра для каждой вершины:

OutEdges[a] = {(a, b), (a, d)}
OutEdges[b] - {(b, d)}
OutEdges[c] - {(с, а), (с, е)}
OutEdges[d] = {(d, c), {d, e)}
OutEdges[e] = {}

Входящие ребра представлены аналогично:

InEdges[a] = {(с, а)}
InEdges[b] = {(a, b)}
InEdges[c] - {(d, с)}
InEdges[d] = {(a, d), (b, d)}
InEdges[e] - {(c, e), (d, e)}
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1.2. Графовые концепции

Одна из основных задач обобщенной библиотеки — определить интерфейсы,
которые позволят писать алгоритмы, не зависящие от конкретной структуры
данных. Заметим, что под интерфейсом подраззгмевается не только набор про-
тотипов функций, но и наборы синтаксических условий, таких как имена функ-
ций и их аргументов, семантических условий (вызываемые функции должны
иметь определенные эффекты), гарантии той или иной сложности по времени
и памяти.

Пользуясь терминологией из книги «Обобщенное программирование и STL»
(см. главу «Дополнение к библиографии), мы используем слово концепция (con-
cept) для обозначения этого более богатого определения интерфейса. Стандарт-
ная библиотека шаблонов (Standard Template Library, STL) определяет набор
концепций итераторов, которые обеспечивают обобщенный механизм обхода и до-
ступа к последовательностям объектов. Аналогично, рассматриваемая в этой книге
BGL определяет набор концепций для изучения графов и манипулирования ими.
В данном разделе мы рассмотрим эти концепции. Примеры раздела не относятся
к конкретным типам графов. Они написаны как шаблоны функций, где граф яв-
ляется параметром шаблона. Обобщенная функция, написанная с помощью BGL,
может применяться к любому типу графа из BGL или даже к типам графов, опре-
деленным пользователем. В разделе 1.3 мы обсудим конкретные графовые клас-
сы, поставляемые вместе с BGL.

1.2.1. Описатели вершин и ребер
В BGL вершинами и ребрами можно управлять при помощи «непрозрачных» ма-
нипуляторов, называемых описателями вершин (vertex descriptors) и описателя-
ми ребер (edge descriptors,). Графовые типы могут использовать различные типы
для своих описателей. Например, некоторые графовые типы применяют целые
числа, а другие — указатели. Типы дескрипторов1 для графового типа всегда дос-
тупны через класс graph_traits. Более подробная информация по использованию
классов свойств приведена в разделе 2.4, а класс graph_traits обсуждается, в част-
ности, в разделе 14.2.1.

Описатели вершин выполняют очень примитивные функции. Их можно со-
здать только при помощи конструктора, со значениями по умолчанию, затем ско-
пировать при необходимости или сравнить на равенство. Описатели ребер подоб-
ны описателям вершин, но предоставляют доступ к связанным с ними вершинам.
Следующий шаблон функции демонстрирует2 реализацию обобщенной функции
is_self_1oop(), определяющей, является ли ребро петлей:

template <typename Graph>
bool is_self_loop(typename graph_traits<Graph>::edge_descriptor e.

const Graph& g) {

' Термины «описатель» и «дескриптор» означают одно и то же. — Примеч. ред.
2 Из эстетических соображений для определения параметров шаблона мы используем typename вместо

его аналога class.
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typename graph_traits<Graph>: :vertex__descriptor u. v;
u = source(e. g);
v = target(e. g):
return u == v;

1.2.2. Отображение свойств
Графы становятся полезными в виде моделей для задач из специфических областей
при помощи ассоциирования объектов и величин с вершинами и ребрами. Напри-
мер, для графа на рис. 1.1 каждая вершина имеет имя, состоящее из одного симво-
ла, а каждое ребро — величину задержки передачи сигнала. В BGL прикрепленные
объекты или величины называются свойствами. Существует много возможностей
для реализации, которые могут быть использованы для ассоциирования свойства
с вершиной или ребром: члены структуры (struct); отдельные массивы, индекси-
рованные номером вершины или ребра; хэш-таблицы и т. п. Однако для написа-
ния обобщенных алгоритмов на графах нам нужен универсальный синтаксис для
доступа к свойствам, независимый от того, как они хранятся. Этот универсаль-
ный синтаксис определяется концепциями отображения свойства (property map).

Отображение свойства — это объект, обеспечивающий отображение из мно-
жества объектов-ключей во множество объектов-значений. Концепции отобра-
жений свойств определяют только три функции:

• get(p_map. key) — возвращает объект-значение для ключа key;

• put(p_map. key. value)—присваивает значение value объекту-значению, со-
ответствующему ключу key;

• p_map[key] — возвращает ссылку на объект-значение.

В следующем примере приведена обобщенная функция pnnt_vertex_name(),
которая выводит имя вершины v для данного отображения свойства namejnap:

template <typename VertexDescriptor. typename VertexNameMap>
void print vertex name(VertexDescriptor v. VertexNameMap namejnap)

—
std::cout « get(namejnap, v):

}
Аналогично задержка передачи сигнала для ребра может быть напечатана с по-

мощью функции pnnt_trans_delay():
template <typename Graph, typename TransDelayMap, typename VertexNameMap>
void printjtransjjelay(typename graph_traits<Graph>::edge_descriptor e.
const Graphs g. TransDelayMap delayjnap. VertexNameMap namejnap)
{

std::cout « "trans-delay(" « get(name_map. source(e. g)) « "."
« get(namejnap. target(e. g)) « ") = " « get (delayjnap. e):

}
Функции print_vertex_name() и print_trans_delay() будут использованы в сле-

дующем разделе.
Отображения свойств обсуждаются более подробно в главе 15, включая приемы

создания отображений свойств, определяемых пользователем. Способы добавления
свойств в граф и получения соответствующих отображений описаны в разделе 3.6.
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1.2.3. Обход графа
Абстракция «граф» состоит из нескольких видов наборов (collections): вершины и реб-
ра графа, исходящие и входящие ребра, смежные вершины для каждой вершины. По
аналогии с STL, BGL использует итераторы для обеспечения доступа к каждому из
этих наборов. Имеется пять видов итераторов для графов, один для каждого набора:

1. Итератор вершин используется для обхода всех вершин графа. Тип значе-
ния итератора вершин — описатель вершины.

2. Итератор ребер используется для обхода всех ребер графа. Тип значения
итератора ребер — описатель ребра.

3. Итератор исходящих ребер применяется для доступа ко всем исходящим
ребрам данной вершины и. Тип значения этого итератора — описатель реб-
ра. Каждый описатель ребра, выдаваемый этим итератором, имеет и в каче-
стве начальной вершины и смежную с и вершину в качестве конечной.

4. Итератор входящих ребер применяется для доступа ко всем входящим реб-
рам вершины v. Тип значения — описатель ребра. Каждый описатель ребра
выдаваемый этим итератором, имеет v в качестве конечной вершины и вер-
шину, к которой v является смежной, в качестве начальной вершины.

5. Итератор смежности делает доступными вершины, смежные данной. Тип
значения этого итератора — описатель вершины.

Как и описатели, каждый граф имеет свои собственные типы итераторов, до-
ступные из класса graph_traits. Для каждого из только что описанных итераторов
BGL интерфейс определяет функцию, возвращающую std:: pai г объектов-итера-
торов: первый итератор указывает на первый объект последовательности, а вто-
рой итератор указывает за ее конец. Функция print_vertex_name(), выводящая
на печать имена всех вершин в графе, приведена в листинге 1.1.

Листинг 1.1. Функция для печати имен вершин графа

template <typename Graph, typename VertexNameMap>
void print_vertex_names(const Graphs g. VertexNameMap namejnap)
{
std::cout « "vertices(g) = { ":

typedef typename graph_traits<Graph>: :vertex__iterator iter_t:
for (std::pair<iter_t. iter_t> p - vertices(g):

p.first != p.second: ++p.first) {
print_vertex_name(*p.first, namejnap): std::cout« ' ';

}
std::cout « "}" « std::endl:

}

Применение этой функции к объекту-графу, моделирующему сеть маршрути-
заторов (см. рис. 1.1), приводит к следующему результату:

vertices(g) = { a b с d e }

Функция print_trans_delay(), которая печатает задержки передачи сигнала,
прикрепленные к каждому ребру графа, приведена в листинге 1.2. В функции ис-
пользуется функция t ie() (из boost/tupLe/tupLe.hpp) для осуществления прямого
присваивания из std:: pai г в скалярные переменные f i rst и 1 ast.
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Листинг 1.2. Печать задержек

template <typename Graph, typename TransDelayMap, typename VertexNameMap>
void prirvt_trans_delays(const Graphs g, TransDelayMap trans_delay_map,

VertexNameMap namejnap)
{

typename graph_traits<Graph>::edge_iterator first, last;
for (tie(first, last) = edges(g); first != last: ++first) {

print_trans_delay(*first, g, trans_delay_map. name_map);
Std: :cout « std::endl;

Вывод этой функции для графа с рис. 1.1 следующий:

trans-delay(a.b) - 1.2
trans-delay(a.d) = 4.5
trans-delay(b.d) = 1.8
trans-delay(c.a) = 2.6
trans-delay(c.e) = 5.2
trans-delay(d.c) = 0.4
trans-delay(d.e) = 3.3

В дополнение к функциям verti ces () и edges () имеются out_edges (), i n_edges ()
и adjacent_vertices(), которые используют в качестве аргументов описатель вер-
шины и объект-граф и возвращают пару итераторов.

Многие алгоритмы не нуждаются во всем разнообразии доступных итерато-
ров, иногда графовые типы не могут предоставить эффективные реализации для
всех типов итераторов. Осторожнее применяйте в алгоритмах конкретные типы
графов, нельзя требовать от них исполнения неподдерживаемых операций. Если
вы попытаетесь использовать графовый тип, который не предоставляет требуе-
мую алгоритмом операцию, возникнет ошибка компиляции. Сопровождающая
такую ошибку информация поможет понять, какая операция не реализована.
В разделе 2.5 этот материал описан более детально.

Операции, доступные для данного графового типа, приведены в документации
к этому типу. Раздел «Модель для» из справочных глав 12-14 содержит инфор-
мацию о предоставляемых операциях, в нем перечислены концепции, поддержи-
ваемые данным графовым типом. Операции, требуемые некоторым алгоритмом,
даны в документации к алгоритму, где перечислены концепции, требуемые каж-
дым параметром алгоритма.

1.2.4. Создание и модификация графа
Библиотека BGL позволяет определить интерфейсы для добавления или удале-
ния вершин и ребер графа. В этом разделе мы рассмотрим небольшой пример со-
здания графа, моделирующего сеть маршрутизаторов, изображенных на рис. 1.1.
Сначала используется функция add_vertex() для добавления к графу пяти узлов,
представляющих маршрутизаторы. Функция add_edge() применяется для того,
чтобы добавить соединения между маршрутизаторами.

template <typename Graph, typename VertexNameMap. typename TransDelayMap>
void build_router_network(Graph& g, VertexNameMap namejnap,

TransDelayMap delayjnap)
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{
< Добавить маршрутизаторы к сети )
( Добавить соединения сети )

Функция add_vertex() возвращает описатель вершины для новой вершины.
Мы используем этот описатель для присваивания вершине имени в отображении
свойства имен:

< Добавить маршрутизаторы к сети ) •
typename graph_traits<Graph>::vertex_descriptor a. b, с. d. e:
а = add_vertex(g); name_map[a] = 'а'
b = add_vertex(g): name_map[b] - 'b'
с = add_vertex(g): name_map[c] = 'c'
d - add_vertex(g): name_map[d] - 'd';
e = add_vertex(g); name_map[e] = 'e':

Функция add_edge() возвращает std::pai г, где первый член пары — описатель
ребра для нового ребра, а второй — логический флаг, показывающий, добавлено
ли ребро (в некоторых графовых типах невозможно добавить ребро, если ребро
с тем же началом и концом уже есть в графе). Код добавления соединений сети
приведен в листинге 1.3.

Листинг 1.3. Добавление соединений сети

{ Добавить соединения сети ) •
typename graph_traits<Graph>::edge_descriptor ed:
bool inserted:

t ie(ed. inserted) = add_edge(a. b, g): delay_map[ed] = 1.2;
t ie(ed. inserted) - add_edge(a. d. g); delay_map[ed] - 4.5:
t ie(ed. inserted) = add_edge(b. d, g): delay_map[ed] = 1.8:
t ie(ed. inserted) = add_edge(c. a. g): delay_map[ed] - 2.6:
tieCed. inserted) = add_edge(c, e. g): delay_map[ed] т 5.2:
t ie(ed. inserted) = add_edge(d. с g): delay_map[ed] - 0.4;
t ie(ed, inserted) = add_edge(d. e. g); delay_map[ed] = 3.3:

В некоторых случаях более эффективно добавлять или удалять несколько вер-
шин или ребер одновременно, а не по одной. Интерфейс BGL имеет функцию
и для этого.

1.2.5. Посетители алгоритмов
Многие из алгоритмов STL имеют параметр объект-функцию, предоставляющий
механизм для настройки поведения алгоритма в конкретном приложении. Хоро-
шим примером является функция std:: sort(), имеющая параметр сотраге для за-
дания сравнения:

template <typename RandomAccessIterator. typename BinaryPredicate>
void sort(RandomAccessIterator first, RandomAccessIterator last.

BinaryPredicate compare)

Параметр compare является объектом-функцией (иногда используют название
«функтор»). Его применение проиллюстрировано в следующем примере.

Рассмотрим код программы для адресной книги. Сортировка массива адресов по
фамилии контактного лица может быть осуществлена вызовом функции std:: sort ()
с соответствующим объектом-функцией. Пример такой функции приведен далее:
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struct comparejastjiame {
bool operatorO (const address_info& x. const address_info& y) const {

return x.last_name < y.lastjiame:
}

Сортировка массива адресов производится вызовом функции std:: sort () с пе-

редачей специализированной функции сравнения.

std::vector<address_info> addresses:
// ...
compare_last_name compare;
std::sort(addresses.begin(), addresses.end(), compare);

Библиотека BGL предоставляет механизм, подобный функциональным объек-
там, для специализации алгоритмов на графах. Эти объекты называются посети-
телями алгоритмов (algorithm visitors). Посетитель BGL — объект из нескольких
функций. Вместо одного operator^) для функционального объекта посетитель BGL
определяет несколько функций, вызываемых в определенных событийных точ-
ках алгоритма (событийные точки изменяются для каждого алгоритма). Несмот-
ря на название, посетители в BGL несколько отличны от паттерна «посетитель»,
описанного в книге «Паттерны проектирования» [14] авторов Гамма Э., Хелм Р.,
Джонсон Р., Влиссидес Дж. («банда четырех»). Посетитель «банды четырех», пре-
доставляет механизм, выполняющий новые операции над объектной структурой
без модификации классов. Подобно посетителю «банды четырех» назначение по-
сетителя BGL — обеспечить механизм для расширения. Однако разница заключа-
ется в том, что посетитель в BGL расширяет алгоритмы, а не структуры объекта.

В листинге 1.4 приведен код вывода на экран интернет-маршрутизаторов
(см. рис. 1.1) путем расширения функции поиска в ширину breadth_f i rst_sea rch ()
с помощью посетителя. Посетитель печатает имя вершины при наступлении со-
бытия посещения вершины (см. раздел 4.1.1, где описана процедура поиска в ши-
рину). Класс посетителя определяется в соответствии с интерфейсом, описанным
в концепции BFSVisitor.

Листинг 1.4. Пример класса посетителя

template <typename VertexNameMap>
class bfs_name_printer : public default_bfs_visitor {
// Наследовать действия в событийных точках по умолчанию (пустые)
public;
bfs_name_printer(VertexNameMap njnap) : m_name_map(n_map) { }
template <typename Vertex, typename Graph>
void discover_vertex(Vertex u. const Graphs ) const {

std::cout « get(m_name_map, u) « ' ':

private:

VertexNameMap mjiamejnap;
}'•

Далее был создан объект-посетитель типа bf s_name_pri nter и передан функции
breadth_first_search(). Функция visitorO, использованная здесь, является час-
тью процедуры именованного параметра, которая описана в разделе 2.7.

bfs_name_printer<VertexNameMap> vis(name_map);
std::cout « "Порядок посещения вершин: ";
breadth_first_search(g. a, v i s i t o r ( v i s ) ) :
std::cout « std::end!:
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Это дает на выходе следующую запись:

Порядок посещения вершин: a b d с е

Ребра дерева поиска в ширину изображены на рис. 1.2. черными стрелками.

S -v

ь )

Рис. 1.2. Путь обхода во время поиска в ширину

1.3. Классы и адаптеры графов
Графовые типы, предоставляемые BGL, можно отнести к одной из двух категорий.
К первой относятся графовые классы, которые служат для хранения графов в памяти,
ко второй — графовые адаптеры (adapters), которые создают измененные представле
ния графов (views) или интерфейс к BGL графу, основанному на другом типе.

1.3.1. Классы графов
Библиотека BGL содержит два первичных графовых класса: список смежности
adjacency_l i st и матрица смежности adjacencyjnetri x.

Главный компонент для представления графов— adjacencyjist. Этот класс
обобщает традиционное представление графа в виде списка смежности. Граф
представляется набором вершин, каждая из которых хранится со своим набором
исходящих ребер. Фактическая реализация набора вершин и ребер может под-
страиваться под определенные нужды приложения. Класс adjacency_list имеет
несколько параметров шаблона: EdgeList, VertexList, Directed, VertexProperties,
EdgeProperties и GraphProperties.

• EdgeLi st и VertexLi st предназначены для классов, используемых для хране-
ния списка вершин и списка ребер графа. Эти параметры позволяют найти
компромисс между скоростью обхода и скоростью вставки/удаления, а так-
же выбрать уровень потребления памяти. Кроме того, параметр EdgeList
определяет, могут ли добавляться к графу параллельные вершины.

• Di rected определяет, является ли граф ориентированным, неориентирован-
ным или двунаправленным (bidirectional graph). Двунаправленный граф
предоставляет доступ не только к исходящим ребрам, но и к входящим.

• VertexProperti es, EdgeProperti es и GraphProperti es определяют типы свойств,
закрепленных за вершинами, ребрами и самим графом соответственно.
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Полная документация по классу adjacencyj ist находится в разделе 14.1.1.
Для представления плотных графов (таких графов, у которых \Е\ * |У| 2)

больше подходит класс adjacencyjnatri x. В adjacencyjnatri x доступ к произволь-
ному ребру (и, v) очень эффективен (это доступ за постоянное время). Этот
класс может служить для представления как ориентированных, так и неориен-
тированных графов и обеспечивать механизм для закрепления свойств за вер-
шинами и ребрами. Полная документация по классу adjacencyj i s t находится
в разделе 14.1.2.

Стоит заметить, что хотя все приводимые в этой книге примеры относительно
невелики (чтобы графическое изображение графа могло поместиться на одной
странице), графовые классы BGL являются эффективными по алгоритмам и тре-
буемой памяти. Они могут использоваться для представления графов с миллио-
нами вершин.

1.3.2. Адаптеры графов
Библиотека BGL включает в себя большое количество адаптеров графов. Первая
группа классов адаптирует любой BGL-граф для реализации нового поведения.
Для этого применяются следующие адаптеры графов:

• reverse_graph — адаптер, обращающий направления ребер ориентированного
графа таким образом, что входящие вершины ведут себя как исходящие и на-
оборот;

• filtered_graph — адаптер, создающий представление графа, где два объек-
та-функции выступают предикатами, контролирующими видимость вершин
и ребер в новом графе.

Также BGL обеспечивает поддержку объектов и структур данных, не являю-
щихся графовыми классами BGL. Эта поддержка осуществляется через классы-
адаптеры и перегруженные функции (overloaded functions). Ниже приведено опи-
сание этих интерфейсов.

• edge_l i st — адаптер, который создает BGL-граф из выхода итератора ре-
бер.

• Пакет программ Stanford GraphBase поддерживается перегруженными функ-
циями из заголовочного файла boost/graph/stanford_graph.hpp. В результате
GraphBase-тип Graph* адаптируется к графовому интерфейсу BGL.

• LEDA (популярный объектно-ориентированный пакет) включает структу-
ры данных и алгоритмы для графов. Тип GRAPH<vtype, etype> из LEDA адап-
тируется к графовому интерфейсу BGL с помощью перегруженных функ-
ций из файла boost/graph/leda_graph.hpp.

• Тип std:: vector<std:: 1 i st<i n t » из STL преобразуется в граф благодаря пе-
регруженным функциям из файла boost/graph/vector_as_graph.hpp.

Интерфейс BGL более детально описан в справочнике по концепциям в гла-
ве 12. Каждый графовый класс реализует некоторые (или все) из этих концеп-
ций. Класс adjacencyj i s t можно считать канонической реализацией (моделью)
BGL-графа, поскольку он иллюстрирует все базовые идеи и интерфейсы BGL-
графов.

2 Зак. 375
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1.4. Обобщенные алгоритмы на графах
Алгоритмы на графах из BGL являются обобщенными. Они чрезвычайно гибки»;
по типам структур данных графов, к которым они могут применяться, и по возмож -
ностям специализации для решения широкого диапазона задач. Сначала мы рас-
смотрим функцию topological_sort() для двух различных типов графов, а затем
продемонстрируем работу обобщенного алгоритма функции depthjfi rst_search()
применительно к реализации topol ogical_sort().

1.4.1. Обобщенный алгоритм топологической
сортировки
Топологическое упорядочение ориентированного графа — это такое упорядочение
его вершин, при котором если в графе присутствует ребро (и, v), то вершина и
появляется до вершины v в упорядочении. Шаблон функции topological_sort()
имеет два аргумента: граф для упорядочения и итератор вывода. Алгоритм запи-
сывает вершины в итератор вывода в обратном топологическом порядке.

Топологические упорядочения, например, применяются в задачах планирова-
ния. На рис. 1.3 изображен граф, вершинами которого являются подлежащие вы-
полнению задания, а ребра показывают зависимости между заданиями (напри-
мер, получить деньги в банкомате нужно перед покупкой продуктов).

2: получить деньги
в банкомате

6: съесть ужин

• * - • - ^

Рис. 1.3. Граф зависимостей между заданиями
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В следующих двух разделах будет показано, как применить алгоритм тополо-
гической сортировки к этой задаче. В каждом разделе для иллюстрации обобщен-
ной природы алгоритмов BGL использован свой тип графа.

Использование топологической сортировки с вектором списков
Вначале мы применяем топологическую сортировку к графу, построенному с по-
мощью std:: vector< std:: 1 i st<i nt> >. Код программы топологической сортиров-
ки графа приведен в листинге 1.5.

Листинг 1.5. Топологическая сортировка графа. Файл topo-sortl.cpp

< topo-sortl.cpp ) =
#include <deque> // для хранения упорядоченных вершин
#include <vector>
#include < l i s t >
#include <iostream>
#incl ude <boost/graph/vector_as_graph.hpp>
#i ncl ude <boost/graph/topologi cal_sort.hpp>
i n t mainO

{
using namespace boost;
( Создать метки для каждого задания >
< Создать граф >
< Выполнить топологическую сортировку и вывести результат >
return EXIT_SUCCESS:

}

Вершины графа представлены целыми числами от нуля до шести, поэтому
удобно хранить метки вершин в массиве. В листинге 1.6 приведен код для созда-
ния соответствующих меток.

Листинг 1.6. Создание меток для заданий

< Создать метки для каждого задания ) з
const char* tasks[ ] = {

"получить деньги в банкомате",
"забрать детей из школы",
"купить продукты",
"привести детей на тренировку",
"забрать детей с тренировки",
"приготовить ужин",
"съесть ужин".

}:

const int n_tasks - sizeof (tasks) / sizeof (char*):
Граф реализован в виде вектора списков. Каждая вершина графа связана ин-

дексом вектора. Таким образом, размер вектора определяется количеством вер-
шин в графе. Список по этому же индексу используется для представления ребер,
исходящих от данной вершины к другим вершинам графа. Каждое ребро (и, v)
добавляется к графу помещением числа для v в список и. Используемая структу-
ра данных проиллюстрирована на рис. 1.4.

Благодаря функциям из boost/graph/vector_as_graph.hpp вектор списков соот-
ветствует BGL-концепции VertexLi stGraph, а значит, может быть использован
в функции topological_sortО. Код создания графа приведен в листинге 1.7
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Рис. 1.4. Представление графа зависимостей заданий в виде вектора списков

Листинг 1.7. Создание графа

( Создать граф > =
std::vector< std::list<int> > g(n_tasks):
g[0].push_back(3);
g[l].push_back(3);
g[l].push_back(4):
g[2].push_back(l);
g[3].push_back(5):
g[4].push_back(6);
g[5].push_back(6);

Чтобы применить topol ogi cal _sort (), необходимо подготовить место для хране-
ния результатов. В BGL-алгоритме топологической сортировки вывод записыва-
ется в обратном топологическом порядке (так как это можно реализовать эффек-
тивнее). Восстановление топологического порядка требует обращения упоря-
дочения, вычисленного алгоритмом. В следующем примере (листинг 1.8) исполь-
зуется std:: dequeue в качестве структуры данных для вывода результатов, так как
std::dequeue может делать вставку в начало за постоянное время, что нужно для
получения обратного порядка. Кроме того, вызов topol ogical_sort() требует од-
ного из двух: 1) задания отображения свойства для цветовой окраски вершин;
2) задания отображения из вершин в целые числа, чтобы алгоритм мог создать
свое собственное отображение свойства для отметки этапов прохождения по гра-
фу. Поскольку в нашем примере вершины уже являются целыми числами, мы
просто задаем тождественное отображение свойства i denti ty_property_map как ото-
бражение индексов вершин. Функция vertex_index_map() используется для зада-
ния именованных параметров (см. раздел 2.7). Код топологической сортировки
и вывода результата приведен в листинге 1.8.

Листинг 1.8. Топологическая сортировка и вывод результата

( Выполнить топологическую сортировку и вывести результат ) =
std::deque<int> topo_order:

topological_sort(g.
std::front_inserter(topo_order).
vertex_index_map(identity_property_map())):

int n = 1:
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for (std::deque<int>::iterator i = topo_order.begin();
i != topo_order.end(); ++i, ++n) {

Std::cout « tasks[*i] « std::end!:
}

В результате показан порядок, при котором задания могли бы быть выполне-
ны с учетом заданных зависимостей:

получить деньги в банкомате
купить продукты
приготовить ужин
забрать детей из школы
привести детей на тренировку
забрать детей с тренировки
съесть ужин

Использование топологической сортировки с классом
adjacencyjist
Для демонстрации гибкости обобщенного алгоритма topological_sort() будем ис-
пользовать совершенно другой тип графа: шаблон класса adjacencyjist. Так как
функция topol ogical _sort () является шаблоном, в нем могут быть использованы гра-
фовые структуры произвольного типа. Все, что необходимо, — это чтобы тип удовле-
творял концепции, требуемой алгоритмом. Первые два параметра шаблона класса
ad jacency_l i st определяют конкретную используемую внутреннюю структуру. Пер-
вый аргумент l i s t s указывает, что std: : l ist используется для каждого списка ис-
ходящих ребер. Второй аргумент vecS свидетельствует о том, что std:: vector ис-
пользуется как основа списка смежности. Эта версия класса ad jacencyj i st аналогична
по характеру вектору списков, которым мы пользовались в предыдущем разделе.

( Создать объект для списка смежности ) •
adjacency lisMistS, vecS. directedS> g(n_tasks):

Функция add_edge() предоставляет интерфейс для вставки ребер в граф класса
adjacencyjist (и в любые другие графы, поддерживающие концепцию EdgeMu-
tableGraph). Если std::vector используется в качестве основы списка смежности,
тип описателя вершин для adjacency_1ist будет целым числом. Но использовать
целые числа для задания вершин возможно не во всех графовых типах.

В остальном программа аналогична предыдущему примеру (см. листинг 1.5), за
исключением того, что вместо заголовочного файла vector_as_graph.hpp используется
файл adjacency_list.hpp. В листинге 1.9 приведен код программы топологиче-ской
сортировки графа (две части из предыдущего раздела использованы повторно).

Листинг 1.9. Топологическая сортировка графа. Файл topo-sort2.cpp

< topo-sort2.cpp 18 > =
#1 ncl ude <vector> продолжение *

( Добавить ребра к списку смежности
add
add"
add
add
add'
add
add"

edge(0, 3,
[edged. 3.
"edged. 4.
"edge(2. 1,
~edge(3, 5,
"edge(4, 6,
edge(5. 6.

9):
9):
g):
g);
g);
g):

g):
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Листинг 1.9 {продолжение)

#iinclude <deque>
#include <boost/graph/topological_sort.hpp>
#include <boost/graph/adjacency_li st.hpp>
int mainO
{
using namespace boost;
< Создать метки для каждого задания )
( Создать объект для списка смежности )
( Добавить ребра к списку смежности )
< Выполнить топологическую сортировку и вывести результат )
return EXIT_SUCCESS;

}

1.4.2. Обобщенный алгоритм поиска в глубину
Реализация topol ogi cal_sort() в BGL состоит всего из нескольких строк, так как
этот алгоритм может использовать функцию depthjfi rst_search(), как это обычно
и делается в учебниках. Реализация состоит из комбинации depth_fi rst_search()
и посетителя, устанавливающего порядок, в котором вершины проходят через
событийную точку «закончить вершину» поиска в глубину. Объяснение того, по-
чему таким образом действительно вычисляется топологическое упорядочение,
дано в разделе 3.3.

В листинге 1.10 описывается алгоритмический посетитель, который записы-
вает вершины при их прохождении через соответствующую событийную точку
поиска в глубину. Чтобы сделать этот класс более общим, упорядочение вершин
записывается в итераторе вывода, так что пользователь может выбрать метод вы-
вода сам.

Листинг 1.10. Посетитель для записи посещаемых вершин

template <typename Outputlterator>
class topo_sort_visitor : public default_dfs_visitor {
// наследовать действия по умолчанию (пустые)
public:

topo_sort_visitor(OutputIterator iter) : m_iter(iter) { }
template <typename Vertex, typename Graph>
void finish_vertex(Vertex u. const Graph&) { *m_iter++ = u; }

private:
Outputlterator m_iter;

}:

Итак, topological_sort() реализуется запуском алгоритма поиска в глубину
depth_first_search() с topo_sort_visitor() в качестве параметра.

template <typename Graph, typename Outputlterator>
void topological_sort(Graph& g. Outputlterator result_iter) {

topo_sort_visitor<OutputIterator> vis(resultjter);
depth_first_search(g. visitor(vis));



Обобщенное
программирование
в C++

2.1. Введение
Обобщенное программирование (ОП, generic programming, GP) — методология
проектирования и реализации программ, которая разделяет структуры данных
и алгоритмы через использование абстрактных спецификаций требований. В C++
для обобщенного программирования характерно использование параметрического
полиморфизма шаблонов (templates) с акцентом на производительность. Методо-
логия обобщенного программирования была использована нами при создании
библиотеки BGL. Для понимания устройства и структуры BGL читателю необхо-
димо иметь хорошие знания в области обобщенного программирования. В силу
своей относительной новизны (по крайней мере, в сообществе пользователей C++)
мы решили дать в этой главе введение в обобщенное программирование. Также
будут обсуждаться основные приемы ОП в C++, базирующиеся на шаблонах. Эти
приемы — не просто набор «фокусов»: совместно они образуют новый подъязык
в рамках C++.

Абстрактные спецификации требований в обобщенном программировании
подобны прежнему понятию абстрактных типов данных. Абстрактный тип дан-
ных — это спецификация типа. Она состоит из описания подходящих операций
и задает семантику этих операций, зачастую включая пред- и постусловия и акси-
омы (или инварианты) [30]. Классический пример абстрактного типа данных —
стек с методами записи («push») и извлечения («pop») данных. Есть много спосо-
бов реализации стека: массив переменного размера, связный список и другие, но
детали реализации не важны для пользователя стека до тех пор, пока реализация
удовлетворяет спецификации абстрактного типа данных.

В обобщенном программировании понятие абстрактного типа данных рас-
ширяется. Вместо определения спецификации для отдельного типа мы описыва-
ем семейство типов, которые имеют общий интерфейс и семантическое поведение
(semantic behavior). Набор требований, описывающий интерфейс и семантическое
поведение, называется концепцией (concept). Алгоритмы, сконструированные
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в обобщенном стиле, можно применить к любым типам, удовлетворяющим тре-
бованиям этого алгоритма. Эта способность использовать различные типы с одной
и той же переменной (или параметром функции) называется полиморфизмом.

2.1.1. Полиморфизм в объектно-ориентированном
программировании
В объектно-ориентированном программировании (ООП) полиморфизм реализу-
ется посредством виртуальных функций и наследования, что называется поли-
морфизмом подтипов. Требования концепции к интерфейсу могут быть записаны
как виртуальные функции в абстрактном базовом классе. Предусловия и инвари-
анты соответствуют утверждениям (assertions), когда это возможно. Конкретные
классы наследуют из абстрактного базового класса и определяют реализации этих
функций. Говорят, что конкретные классы являются подтипами (или производ-
ными классами) базового класса. Обобщенные функции пишутся в терминах аб-
страктного класса, а во время выполнения вызовы функций осуществляются для
конкретного типа объекта (в C++ через таблицы виртуальных функций). Любой
подтип абстрактного базового класса взаимозаменяем и может быть использован
в обобщенной функции.

Классическим примером концепции из математики является аддитивная абелева
группа — это множество элементов с ассоциативной операцией сложения, имею-
щее обратный элемент и нуль [45]. Мы можем представить эту концепцию в C++,
определив абстрактный базовый класс следующим образом:

// Концепция AdditiveAbelianGroup как абстрактный базовый класс
class AdditiveAbelianGroup {
public:

virtual void add(AdditiveAbelianGroup* y) = 0:
virtual AdditiveAbelianGroup* inverseO = 0;
virtual AdditiveAbelianGroup* zeroO = 0;

}:
Используя этот абстрактный базовый класс, мы можем написать универсаль-

ную функцию sum():

AdditiveAbelianGroup* sum(array<AdditiveAbelianGroup*> v)
г

Addi t iveAbel ianGroup* t o t a l = v [ 0 ] - > z e r o ( ) :
f o r ( i n t i - 0; i < v . s i z e O ; ++i)

t o t a l - > a d d ( v [ i ] ) ;
r e t u r n t o t a l :

}

Функция sum() будет работать с любым массивом, тип элемента которого про-
изводен от AdditiveAbelianGroup. Примерами таких типов могут служить числа
и векторы.

class Real : public AdditiveAbelianGroup {
// ...

}:
class Vector : public AdditiveAbelianGroup {
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2.1.2. Полиморфизм в обобщенном программировании
В обобщенном программировании полиморфизм реализуется с помощью шабло-
нов классов или функций. Шаблоны обеспечивают параметрический полиморфизм.
Ниже функция sum() записана как шаблон. Наличие базового класса Additive-
Abel i anGroup уже не нужно, хотя мы оставили его в качестве имени параметра шаб-
лона для удобства и документирования.

template <typename AdditiveAbelianGroup>
AdditiveAbelianGroup sum(array<AdditiveAbelianGroup> v)
I
AdditiveAbelianGroup total = v[0].zero():
for (int i = 0: i < v.sizeO; ++i)
total.add(v[i]):

return total;
j

В C++ концепция выражается в наборе требований к аргументу шаблона, что-
бы шаблон класса или функции мог быть успешно скомпилирован и исполнен.

Хотя концепции присутствуют в обобщенном программировании неявно, они
очень важны и должны быть тщательно документированы. В настоящее время
такая документация обычно появляется в комментариях к коду или в книгах, та-
ких как «Обобщенное программирование и STL» (см. главу «Дополнение к биб-
лиографии»). Вернемся к примеру с AdditiveAbelianGroup, но уже в качестве кон-
цепции AdditiveAbelianGroup.

// концепция AdditiveAbelianGroup (аддитивная абелева группа)
// правильные выражения:
// x.add(y) // добавить
// у = x.inverseO // обратить
// у = x.zeroO // ноль
// семантика:

Конкретные типы, удовлетворяющие требованиям AdditiveAbelianGroup, не обя-
зательно должны наследовать от некоторого базового класса. Типы аргументов
шаблона подставляются в шаблон функции при инстанцировании (во время ком-
пиляции). Для описания отношения между конкретными типами и концепция-
ми, которым они удовлетворяют, используется термин модель. Например, Real
и Vector являются моделями концепции AdditiveAbelianGroup.

struct Real { // нет наследования

I.
struct Vector { // нет наследования

// ...
}:

2.1.3. Сравнение ОП и ООП
До сих пор мы не совсем точно описывали обобщенное программирование как «про-
граммирование с шаблонами», а объектно-ориентированное — как «программиро-
вание с наследованием». Это может быть несколько неправильно истолковано, так
как суть этих методологий только косвенно связана с шаблонами и наследованием.
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Если говорить более формально, обобщенное программирование основано на па-
раметрическом полиморфизме, тогда как объектно-ориентированное — на поли-
морфизме подтипов. В C++ эти полиморфизмы реализованы в виде шаблонов
и наследования, но другие языки могут предлагать для этого иные механизмы
Например, расширение сигнатур (signatures extension) в GNU C++ [4] обеспечи-
вает альтернативную форму полиморфизма подтипов. Мулыпиметоды (в таких
языках, как CLOS [21]) предлагают семантику, более близкую к параметрическо-
му полиморфизму, но с диспетчеризацией вызовов времени выполнения (в отли-
чие от диспетчеризации во время компиляции шаблонов).

Тем не менее, поскольку мы выбрали стандартный C++, было бы полезно со-
поставить ОП и ООП, сравнив наследование (и виртуальные функции) с шабло-
нами в контексте C++.

Виртуальные функции медленнее шаблонных функций

Вызов виртуальной функции выполняется медленнее, чем вызов шаблонной функ-
ции (последний столь же быстр, как и вызов обычной функции), так как вызов
виртуальной функции включает в себя лишнее разыменование указателя для на-
хождения метода в таблице виртуальных функций. Сами по себе эти «накладные
расходы» могут быть незначительными, но они способны косвенно повлиять на
скомпилированный код: например, не позволить оптимизирующему компилято-
ру встроить функцию в код (как встраиваемую функцию, inline-функцию) и при-
менить дальнейшие оптимизации полученного кода.

Конечно, размер издержек на виртуальные функции всецело зависит от объ-
ема производимых в функции вычислений. Для компонентов уровня итераторов
и контейнеров STL или итераторов графов BGL потери при вызове функции мо-
гут оказаться значительными. Производительность на этом уровне сильно зави-
сит оттого, являются ли функции вроде operator++() встраиваемыми. По этой
причине шаблоны являются единственным выбором для реализации эффектив-
ных, низкоуровневых, повторно используемых компонентов, подобных тем, что
можно найти в STL или BGL.

Диспетчеризация времени выполнения в сравнении
с диспетчеризацией во время компиляции

Диспетчеризация времени выполнения виртуальных функций и наследование
являются, вне всякого сомнения, одними из лучших свойств объектно-ориен-
тированного программирования. Для некоторых видов компонентов диспет-
черизация времени выполнения является безусловным требованием, так как
решения могут приниматься на основании информации, доступной только во
время выполнения. В этом случае виртуальные функции и наследование необ-
ходимы.

Шаблоны не могут предложить диспетчеризацию времени выполнения, но они
обеспечивают значительную гибкость во время компиляции. Фактически, если
диспетчеризация может быть выполнена во время компиляции, шаблоны обеспе-
чивают большую гибкость, чем наследование, так как не ограничивают типы ар-
гументов шаблона родством с определенным базовым классом (но об этом мы
поговорим позже).
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Размер кода: виртуальные функции малы, шаблоны велики

Распространенной проблемой в шаблонном программировании является «раз-
бухание» кода из-за неправильного использования шаблонов. Тщательно спро-
ектированные компоненты на основе шаблонов не увеличивают объем кода по
сравнению с их аналогами, построенными на наследовании. Основной способ
управлять размером кода — отделить функциональность, зависящую от типов
шаблона, от функциональности, от них не зависящей. Примером этого может слу-
жить реализация std:: 1 i st в библиотеке STL от фирмы SGI.

Проблема бинарного метода

При использовании подтипов (наследования и виртуальных функций) для реа-
лизации операций, работающих с двумя или более объектами, возникает серьезная
проблема. Эта проблема известна как «проблема бинарного метода» [8]. Класси-
ческим примером (приведен далее) этой проблемы является интерфейс класса
Point (точка, заданная координатами на плоскости), имеющий функцию-метод
класса equal О. Эта проблема особенно актуальна для BGL, поскольку многие из
определяемых в BGL типов (дескрипторы вершин, ребер и итераторы) требуют
наличия операции operator==() подобно equal () для класса Point.

Следующий абстрактный базовый класс описывает интерфейс класса Point.

class Point {
public:

virtual bool equal(const Point* p) const = 0:

}:

Используя этот интерфейс, разработчик библиотеки может написать «обоб-
щенную» функцию, которая получает аргументы любого производного от Point
типа и выводит, являются ли они равными.

void print_equal(const Point* a, const Point* b) {
std::cout « std::boolalpha « a->equal(b) « std::endl:

}
Рассмотрим теперь реализацию некоторого «точечного» типа, скажем, класса

цветных точек ColorPoint. Предположим, что в программе это будет единствен-
ный «точечный» класс, который мы будем использовать. В этом случае достаточ-
но определить равенство между двумя объектами Col orPoi nt, не определяя равен-
ства между цветными точками и точками других видов.

class ColorPoint : public Point {
public:

ColorPoint (float x. floaty, std: :string c) : x(x), y(y). color(c) { }
virtual bool equal(const ColorPoint* p) const

{ return color == p->color && x == p->x && у == p->y: }
protected:

f loat x. y:
std: :str ing color:

}:

При попытке использовать этот класс выясняется, что функция Col orPoi nt:: equal ()
не заместила Poi nt : : equal (). При создании экземпляра Col orPoi nt возникает следую-
щая ошибка:
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error: object of abstract class type "ColorPoint" is not allowed:
pure virtual function "Point::equal" has no overrider

ошибка: объект абстрактного типа класса "ColorPoint" не разрешается
создавать:
чистая виртуальная функция "Point::equal" не замещена

Получается, что по правилу типизации тип параметра функции-метода класса
в производных классах должен быть либо тот же, либо базовым классом такого
же типа, как у параметра в базовом классе. В случае с классом Col orPoi nt параметр
для equal () должен быть Point, а не ColorPoint. Однако это изменение приводит
к другой проблеме. Внутри функции equal () аргумент класса Point должен быть
приведен к типу ColorPoint для выполнения сравнения. Добавление этого приве-
дения означает, что на этапе компиляции остается неизвестным, является ли про-
грамма, использующая ColorPoint, типобезопасной. Методу equal О по ошибке
может быть передан объект другого «точечного» класса, вызвав исключение вре-
мени выполнения. Ниже описан класс Col orPoi nt2, в котором параметр equal О
изменен на Point, а также добавлено приведение к нужному типу:

class ColorPoint2 : public Point {
public:

ColorPoint2(float x. float y, std::string s) : x(x). y(y), color(s) { }
virtual bool equal(const Point* p) const {

const ColorPoint2* cp = dynamic_cast<const ColorPoint2*>(p);
return color — cp->color && x — cp->x && у == cp->y;

}
protected:

f loat x. y:
std: :str ing color:

}:
Теперь предположим, что вместо виртуальных функций мы бы использовали

шаблоны функций для выражения полиморфизма. Тогда функция print_equal')
могла бы быть написана так:

template <typename PointType>
void print_equal2(const PointType* a. const PointType* b) {

std::cout « std::boolalpha « a->equal(b) « std::endl:
}
Для использования этой функции класс цветных точек не нуждается в насле-

довании из класса точек, и проблемы с приведением типов не возникает. При вы-
зове print_equal2() с двумя объектами типа ColorPoint параметр PointType прини-
мает значение ColorPoint, что приводит только к вызову ColorPoint::equal О. Тем
самым поддерживается безопасность типов.

ColorPoint* a = new ColorPoint(0.0. 0.0. "blue"):
ColorPoint* b = new ColorPoint(0.0. 0.0. "green"):
print_equal2(a, b):
Так как BGL реализована на шаблонах функций, проблема бинарного метода

нам не угрожает. И наоборот, эта проблема возникала бы на каждом шаге, если
BGL была основана на виртуальных функциях.

2.2. Обобщенное программирование и STL
Предметная область STL затрагивает основные алгоритмы из информатики (на-
пример, структуры массивов и списков, алгоритмы поиска и сортировки). Было
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много «фундаментальных» библиотек, которые пытались предоставить всеобъ-
емлющий набор структур данных и алгоритмов. От них STL отличается примене-
нием обобщенного программирования (процессом и практикой).

Как объясняют в своей книге [35] Массер и Степанов, процесс ОП в примене-
нии к некоторой задаче состоит из следующих основных шагов:

1. Обнаружение полезных и эффективных алгоритмов.

2. Определение их обобщенного представления (то есть параметризация каж-
дого алгоритма таким образом, чтобы требований к обрабатываемым дан-
ным было как можно меньше).

3. Описание набора (минимальных) требований, при удовлетворении кото-
рых эти алгоритмы могут быть выполнены эффективно.

4. Создание среды разработки (framework), основанной на классификации тре-
бований.

Этот процесс отражен в структуре и устройстве компонентов STL.
На практике процесс минимизации и проектирования среды разработки подра-

зумевает такую структуру, где алгоритмы не зависят от конкретных типов данных,
с которыми работают. Вернее, алгоритмы пишутся для обобщенных специфика-
ций, которые были установлены в ходе анализа потребностей этих алгоритмов.

В алгоритмах обычно требуется выполнять обход структуры данных и получать
доступ к ее элементам. Если структуры данных предоставляют стандартный интер-
фейс для обхода и доступа, обобщенные алгоритмы могут быть смело смешаны
и согласованы со структурами данных (в терминологии STL — контейнерами).

Главным помощником в задаче разделения алгоритмов и контейнеров в STL
является итератор (иногда его называют обобщенным указателем). Итераторы
предоставляют механизм для обхода контейнеров и доступа к элементам. Интер-
фейс между алгоритмом и контейнером строится на основе требований к итера-
тору, которым должен соответствовать тип итераторов данного контейнера. Обоб-
щенные алгоритмы наиболее гибки, когда они написаны в терминах итераторов
и не полагаются на конкретный вид контейнера.

Итераторы подразделяются на несколько категорий (видов), например: Input-
Iterator, Forwardlterator, RandomAccesslterator. Взаимосвязь между контейнерами,
алгоритмами и итераторами представлена на рис. 2.1.

Рис. 2.1. Отделение контейнеров и алгоритмов с помощью итераторов

Библиотека STL определяет набор требований для каждого вида итераторов.
В требованиях говорится, какие операции (допустимые выражения) определены
для данного итератора и каков смысл каждой операции. Для примера рассмотрим
некоторые требования к итератору произвольного доступа из STL (он включает
в себя требования к Forwardlterator), приведенные в табл. 2.1. Тип X означает
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итераторный тип, Т — указываемый тип, U — тип члена Т. Объекты а, Ь, и г — ите-
раторы, m — член Т, п — целое число.

Таблица 2.1. Некоторые требования к итератору произвольного доступа из STL

Выражение Тип результата Примечание

*а — *Ь

!(а == Ь)

b - а > О

Разыменование а

(*а).т

Из г == s следует ++r == ++s

Из г == s следует --г == — s

Такой же, как п от ++г

{tmp = a: return tmp += n;}

(а < b) ? distance(a. b) : -

*(a + n)

Пример вычислений с накоплением
В качестве конкретного примера рассмотрим алгоритм accumul ate(), который по-
следовательно применяет бинарную операцию к начальному значению и каждо-
му элементу контейнера. Произведем суммирование элементов контейнера, ис-
пользуя операцию сложения. Следующий код показывает, как можно реализовать
accumulate() на C++. Аргументы first и last — это итераторы, отмечающие на-
чальный и запредельный элементы последовательности. Все аргументы функции
параметризованы по типу, таким образом, алгоритм может быть использован с лю-
бым контейнером, который моделирует концепцию Inputlterator. При прохожде-
нии последовательности итератор применяет тот же синтаксис, что и указатели;
в частности, operator++() переводит итератор на следующую позицию в последо-
вательности. В табл. 2.1 перечислено несколько других способов продвижения
итераторов (главным образом для итератора произвольного доступа). Для доступа
к элементу контейнера, на который указывает итератор, можно использовать опе-
рацию разыменования operator*() или операцию индексирования operator!] О —
для доступа по смещению от текущей позиции итератора.

template <typename Inputlterator. typename T. typename BinaryOperator>
T accumulatednputlterator f irst. Inputlterator last, T init.

BinaryOperator binary_cp)
{

for (; first !- last; ++first)
init = binary_op(init. *first);

return init;
}
Для демонстрации гибкости интерфейса, предоставляемого итератором, мы

используем шаблон функции accumul ate() с вектором и со связным списком (и то
и другое из STL) (листинг 2.1).
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Листинг 2.1. Демонстрация интерфейса итератора

// использование accumulateO с вектором
std::vector<double> x(10. 1.0):
double suml:
suml - std::accumulate(x.begin(), x.endO, 0.0, std: :plus<double>()):

// использование accumulateO со связным списком
std::list<double> у:
double sum2;
// копирование значения вектора в список
std: :copy(x.begin(), x.endO, std::back inserter(y)):
sum2 = std: :accumulate(y .beginO , y.endO, 0.0, std: :plus<double>()):
assert(suml ~ sum2): // они должны быть равны

2.3. Концепции и модели
В предыдущем разделе был приведен пример требований к RandomAccessIterator.
Мы также наблюдали, как Inputlterator был применен в качестве требования для
функции accumul ate() и как были использованы этой функцией std:: 1 i s t : : i terator
и std:: vector:: iterator. В этом разделе будут определены термины для описания
отношений между наборами требований, функций и типов.

В контексте обобщенного программирования термин «концепция» употреб-
ляется для описания набора требований, которым должен удовлетворять аргу-
мент шаблона, чтобы функция или класс работали правильно. В тексте использо-
ван специальный шрифт для того, чтобы отличать имена концепций.

Примеры определений концепций можно найти в стандарте C++. Многие из
них относятся к итераторам. Кроме того, полную документацию по концепциям,
использованным в STL, можно найти в книге Мэттью Остерна «Обобщенное про-
граммирование и STL» (см. главу «Дополнение к библиографии») и на веб-сайте,
посвященном SGI STL http://www.sgi.com/tech/stl/. Эти концепции часто приме-
няются в определениях концепций BGL.

2.3.1. Наборы требований
Требования к концепциям состоят из набора допустимых выражений, ассоции-
рованных типов, инвариантов и гарантии сложности. Тип моделирует концепцию,
если он удовлетворяет набору ее требований. Концепция может дополнять требо-
вания другой концепции. Это называется уточнением (refinement) концепции.

• Допустимые выражения — это выражения C++, которые должны успешно
компилироваться для типов, заданных в выражении, чтобы они считались
моделирующими концепцию.

• Ассоциированные типы — вспомогательные типы, имеющие некоторое отно-
шение к типу Т, моделирующему концепцию. Требования концепции обычно
содержат утверждения об ассоциированных типах. Например, требования
к итератору обычно включают ассоциированный тип val ue_type и необходи-
мость того, чтобы объекты, возвращаемые операцией разыменования итера-
тора, были именно данного типа. В C++ принято использовать класс свойств
(traits class) для отображения типа Т в ассоциированные типы концепции.
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• Инварианты — такие характеристики типов, которые должны быть посто-
янно верны на этапе выполнения программы. Инварианты часто принимают
форму пред- и постусловий. Когда предусловие не выполняется, поведение
операции не определено и может приводить к ошибкам. Такая ситуация
возникает в библиотеке BGL. Некоторые библиотеки предоставляют отла-
дочные версии, которые используют утверждения или генерируют исклю-
чения при нарушении предусловия. Будущие версии BGL, возможно, бу-
дут делать так же.

• Гарантии сложности — это максимальные пределы того, как долго может
происходить выполнение одного из допустимых выражений или сколько
различных ресурсов может потребовать это вычисление.

2.3.2. Пример: Inputlterator
В этом разделе мы рассмотрим Inputlterator как пример концепции. Во-первых,
концепция Inputlterator является уточнением Tri vi a lite rat о г, которая, в свою оче-
редь уточняет Assignable и EqualityComparable. Таким образом, Inputlterator удов-
летворяет всем требованиям TriviaLIterator (который удовлетворяет требованиям
Assignable и EqualityComparable).

Таким образом тип, моделирующий Inputlterator, будет иметь оператор разы-
менования, он может быть скопирован, присвоен, значения этого типа можно срав-
нивать с другими объектами-итераторами с помощью операций == и !".

Концепция Inputlterator требует наличия операций преинкремента и пост-
инкремента. Эти требования обозначены следующими допустимыми выраже-
ниями. Объекты i и j являются экземплярами типа Т, моделирующего Input-
Iterator.

i - j // присваивание (из Assignable)
Т i(j): // копирование (из Assignable)
1 — j // проверка на равенство (из EqualityComparable)
i !- j // проверка на неравенство (из EqualityComparable)
*i // разыменование (из Trivial Iterator)
++i // преинкремент
i++ // постинкремент

Класс std: :iterator_traits предоставляет доступ к ассоциированным типам
итераторного типа. Тип объекта, на который указывает итератор (назовем его X),
может быть определен через value_type класса свойств. Другими ассоциирован-
ными типами являются reference, pointer, difference_type и iterator_category.
Ассоциированные типы и классы свойств обсуждаются более детально в разде-
ле 2.4. В следующем шаблоне функции мы используем класс iterator_traits для
получения va I ue_type итератора и разыменовываем итератор:

template <typename Iterator» void dereference_example(Iterator i)
i

typename iterator_traits<Iterator>::value_type t:
t - * i ;

Что касается гарантий сложности, все действия Inputlterator должны выпол-
няться за постоянное время. Примерами типов, моделирующих Inputlterator, яв-
ляются std: :1 ist<int>::iterator, double* и std: :istream iterator<char>.
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Цель определения концепций становится яснее при рассмотрении реализаций
обобщенных алгоритмов. Ниже следует реализация функции std: :for_each().
Внутри функции к объектам-итераторам fI rst и 1 ast применяются ровно четыре
операции: сравнение с помощью operator !=(), инкремент operator++(), разымено-
вывайте operator*() и создание копии. Чтобы эта функция успешно откомпили-
ровалась и правильно работала, аргументы-итераторы должны поддерживать как
минимум эти четыре операции. Концепция Inputlterator включает данные опера-
ции (и еще некоторые), так что это разумный выбор для лаконичного описания
требований к for_each().

template <typename Inputlterator. typename Function>
Function for_each(Inputlterator first. Inputlterator last, Function f )
{
for ( ; first !- last: ++first)

f (*first):
return f ;

2.4. Ассоциированные типы и классы свойств
Одним из наиболее важных механизмов, используемых в обобщенном програм-
мировании, является класс свойств (traits class), который был предложен Ната-
ном Мэйерсом [36]. Механизм класса свойств может показаться немного неесте-
ственным при первом знакомстве (из-за синтаксиса), но суть этой идеи проста.
Очень важно научиться использовать классы свойств, так как они постоянно при-
меняются в обобщенных библиотеках вроде STL и BGL.

2.4.1. Ассоциированные типы в шаблонах функций
Класс свойств — это просто способ определения информации о типе, без которого мы
бы о нем вообще ничего не узнали. Например, рассмотрим обобщенную функцию sum():

template <typename Array>
X sum(const Array& v. int n)

X total - 0:

for (int i = 0: i < n; ++i)
total += v[i];

return total;
}

С точки зрения этой шаблонной функции о шаблонном типе Array известно не-
многое. Например, тип элементов этого массива не задан. Однако эта информация
необходима для объявления локальной переменной total, которая должна быть того
же типа, что и элементы Array. Поэтому имя X здесь — только макропеременная, ко-
торую нужно заменить на что-то другое, чтобы получить корректную функцию sum().

2.4.2. Определители типов, вложенные в классах
Для того чтобы получить информацию о типе, можно применить операцию раз-
решения области видимости :: для доступа к операторам typedef, вложенным
внутрь класса. Например, класс массива может выглядеть так:
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class my_array {
public:

typedef double value_type: // тип элемента массива
doubles operator[ ] ( i n t i ) {

return m_data[i]:
}:

private:
double* m_data;

}:
Тип элемента массива можно получить через array: :value_type. Обобщенная

функция sum() реализуется с использованием этого приема следующим образом
(заметьте, что X были заменены на typename Array:: val ue_type'):

template <typename Array>

typename Array::value_type sum(const ArrayS v, int n)

{
typename Array::value_type total = 0:
for (int i - 0: i < n: ++i)

total +- v[i];
return total:

В этой функции sum() применение вложенного typedef целесообразно, пока Array
является классом, имеющим внутри себя typedef. Однако существуют случаи, при
которых иметь вложенный typedef непрактично или просто невозможно. Допус-
тим, нам захочется использовать обобщенную функцию sum() с классом сторон-
них производителей, который не предоставляет требуемый typedef. Или понадо-
бится функция sum() со встроенным типом вроде doubl e*:

int n = 100:
double* х = new double[n]:
sum(x, n);

В обоих случаях это вполне возможно, так как функциональные требования
для использования выполнены: оператор operator[]() работает и с double*, и с во-
ображаемым классом сторонних производителей. Ограничением для применения
является необходимость передачи информации от классов, которые мы хотим
использовать, в функцию sum().

2.4.3. Определение класса свойств
Решением этой задачи является класс свойств — шаблон класса, единственое на-
значение которого — обеспечение отображения из одного типа в другие типы, фун-
кции, константы. Механизм языка C++, позволяющий шаблону класса создавать
такое отображение, называется специализацией шаблона (template specialization).
Отображение достигается созданием различных версий класса свойств для опреде-
ленных параметров-типов. Мы покажем, как это работает, создав класс a rray_traits
для использования функции sum().

Шаблонный класс a rray_t raits строится на основе типа Array и позволяет оп-
ределить value_type (тип элемента) массива. По умолчанию (полностью ша-

Когда тип слева от операции разрешения области видимости:: каким-либо образом зависит от аргумента
шаблона, используйте ключевое слово typename перед типом.
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блонный) предполагается, что массив — тип со вложенным typedef, такой как
my_array:

template <typename Array>
struct array_traits {

typedef typename Array::value_type value_type;
}:
Теперь возможно создать специализацию шаблона array_traits для обработки

ситуации, когда аргумент шаблона является встроенным типом, например doubl e*:

template <> struct array_traits<dout>1e*> {
typedef double value_type;

};

Классы сторонних производителей, скажем, johns_int_array, могут быть при-
способлены к нашим нуждам аналогично:

template <> struct array_traits<johns_int_array> {
typedef int value_type:

}:
Функция sum(), написанная с использованием класса array_traits, показана

ниже. Чтобы осуществить доступ к типу для переменной total, мы извлекаем
va1ue_type из array_traits.

template <typename Array>
typename array_traits<Array>::value_type sum(const Array& v, Int n)
{

typename array_traits<Array>::value_type total = 0;
for (int i - 0; i < n; ++i)

total += v[ i ] ;
return total;

2.4.4. Частичная специализация
Писать отдельный класс свойств для каждого указательного типа непрактично
и нежелательно. Ниже показано, как использовать частичную специализацию для
организации array_traits для всех типов указателей. Компилятор C++ сопоста-
вит аргумент шаблона, заданный при инстанцировании traits_cl ass, и все опре-
деленные специализации для Т* и выберет наиболее подходящую специализацию.
Частичная специализация для Т* подойдет для любого типа-указателя. Для doubl e*
компилятором будет выбрана полная специализация (приведенная в разделе 2.4.3.)
как более подходящая для конкретного типа-указателя.

template <typename T>
struct array_traits<T*> {

typedef T value_type:

Частичная специализация может также быть использована для создания вер-
сии array_traits для шаблона класса стороннего производителя.

template <typename T>
struct array_traits<johns_array<T> > {
typedef T value_type:

}
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Наиболее известным применяемым классом из класса свойств является itera-
tor_trai ts для STL. Библиотека BGL также использует классы свойств, такие как
graph_traits и property_traits. Обычно класс свойств применяется с конкретной
концепцией или семейством концепций. Класс iterator_traits работает с семей-
ством итераторных концепций, класс graph_traits работает с семейством графо-
вых концепций BGL.

2.4.5. Диспетчеризация тегов
Диспетчеризация тегов (tag dispatching) — это прием, часто работающий «рука
об руку» с классами свойств. В нем используется перегрузка функций для дис-
петчеризации, основанной на свойствах типа. Хорошим примером является реа-
лизация функции std: :advance() в STL, которая по умолчанию осуществляет ин-
кремент итератора п раз. В зависимости от вида итератора могут применяться
различные оптимизации в реализации данной функции. Если итератор обеспечи-
вает произвольный доступ, функция advance() может быть легко и очень эффек-
тивно реализована с помощью i += п. Если итератор двунаправленный, то возмо-
жен вариант с отрицательным п, поэтому необходимо осуществить декремент
итератора п раз. Отношение между внешним полиморфизмом и классами свойств
состоит в том, что свойство, которое будет использовано для диспетчеризации
(в нашем случае iterator_category), доступно через trai ts_cl ass.

В следующем примере (листинг 2.2) функция advance() использует класс itera-
tor^ га its для определения iterator_category. Затем она выполняет вызов перегру-
женной функции advancejji spatch(). Подходящая функция advance_di spatch() вы-
бирается компилятором на основе того, к какому типу (теговому классу в листинге
ниже) будет отнесен iterator_category. Тег — это простой класс, основным назначе-
нием которого является передача определенного свойства для использования в те-
говой диспетчеризации. Принято давать теговым классам имена, оканчивающиеся
на _tag. Мы не определяем перегруженную функцию для forwardj terator_tag, так
как этот случай обрабатывается перегруженной функцией из input_iterator_tag.

Листинг 2.2. Пример диспетчеризации тегов

struct inputjterator_tag {};
struct output_iterator_tag {}:
struct forward_iterator_tag : public input_iterator_tag {};
struct bidirectional_iterator_tag : public forward_iterator_tag {};
struct random_access_iterator_tag : public bidirectional_iterator_tag {};

template <typename Inputlterator, typename Distance>
void advance_dispatch(lnputlterator& i. Distance n, input_iterator_tag)

{ while (n--) ++i; }

template <typename Bidirectionallterator. typename Distance>
void advance_dispatch(BidirectionalIterators i, Distance n,

bidirectional_iterator_tag)
{

i f (n >= 0)
while (n--) ++i:

else
while (n++) - - i ;
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template <typename RandomAccessIterator, typename Distance>
void advance_dispatch(RandomAccessIterator& i, Distance n.

random_access_iterator_tag)
{ i += n: }

template <typename Inputlterator, typename Oistance>
void advance(lnputlterator& i. Distance n)
{

typedef typename iterator__traits<lnputlterator>: :iterator_category Cat;
advance_dispatch(i, n, CatO):

}
Класс graph_traits из BGL включает три категории: di rected_category, edge_pa-

rallel_category и traversa1_category. Теги для этих категорий могут быть исполь-
зованы в диспетчеризации аналогично iterator_category.

2.5. Проверка концепции
Важным аспектом использования обобщенной библиотеки является применение под-
ходящих классов в качестве аргументов шаблона к алгоритмам. То есть необходимо,
чтобы применяемые классы моделировали концепции, указанные в требованиях ал-
горитма. Если используется неподходящий класс, компилятор выдаст сообщения
об ошибке, но расшифровать эти сообщения пользователю библиотеки шаблонов мо-
жет быть достаточно сложно [2,41]. Компилятор может выдать буквально страни-
цы трудночитаемых сообщений, даже если допущена совсем небольшая ошибка.

Ниже, в листинге 2.3, допущена типичная ошибка, где функция std:: sort О
применяется к массиву объектов. В этом случае operator<() не реализован для типа
foo — это означает, что foo нарушает требования LessThanComparable (которые даны
в документации к std: :sort()).

Листинг 2.3. Ошибка: невыполнение требований концепции

#include <algorithm>
class foo { }:
int maindnt. char*[ ])
{

foo array_of_foo[10]:
std::sort(array_of_foo, array_of_foo + 10):
return 0;

Сообщение об ошибке, возникающее в результате, нелегко понять, и все, за ис-
ключением наиболее опытных программистов C++, попадут в очень непростое
положение, пытаясь найти источник возникновения ошибки из данного сообще-
ния. В сообщении не упоминается концепция LessThanComparable, требования ко-
торой были нарушены, но показаны многие внутренние функции, вызываемые
из std:: sort (). Помимо этого, нет указания на строку, в которой произошла ошиб-
ка. В нашем случае это вызов std:: sort (). Вот как выглядит сообщение об ошибке:

stljieap.h: In function void adjust_heap<foo*.int.foo>(foo*.int.int.foo):
stl_heap.h:214: instantiated from makejieap<foo*.foo.ptrdiff_t>(foo*.

foo*.foo*.ptrdiff_t*)
stl_heap.h:225: instantiated from make_heap<foo*>(foo*,foo*)
stl_algo.h:1562: instantiated from partial_sort<foo*,foo>(foo*,foo*,

foo*,foo*)
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st1_algo.h:1574: instantiated from partial_sort<foo*>(foo*,foo*.foo*)
stl_algo.h:1279: instantiated from introsort_loop<foo*.foo,int>(foo*.

foo*.foo*.i nt)
stl_algo.h:1320: instantiated from here
stl_heap.h:115: no match for foo. & < foo &

2.5.1. Классы для проверки концепций
Для преодоления этой проблемы мы придумали идиому C++ для принудитель-
ной проверки на соответствие концепции, которую мы назвали проверкой концеп-
ции [39]. Соответствующий код находится в библиотеке проверки концепций
BCCL (Boost Concept Checking Library) [6]. Для каждой концепции BCCL пре-
доставляет класс проверки концепции, такой как, например, следующий класс для
LessThanComparable. Требуемые допустимые выражения для концепции проверя-
ются в функции-методе класса constraintsO.

template <typename T>
struct LessThanComparableConcept {
void constraintsO {

(bool)(a < b):
}

T a, b;

}:

По заданным пользователем аргументам шаблона в начале обобщенного алго-
ритма с использованием functi on_requi res () из BCCL инстанцируется класс про-
верки концепции.

linclude <boost/concept_check.hpp>
template <typename Iterator»
void safe_sort(Iterator first. Iterator last)

typedef typename std::iterator_traits<Iterator>::value_type T:
function_requires< LessThanComparableConcept<T> >();
// другие требования ...
s t d : : s o r t ( f i r s t . l a s t ) ;

}

Теперь, если safe_sort() будет использован неправильно, сообщение об ошиб-
ке (приведенное далее) будет намного понятнее: оно короче, обозначено место
ошибки, приведено имя нарушенной концепции, внутренние функции алгоритма
не фигурируют в сообщении.

boost/concept_check.hpp: In method
void boost::LessThanComparableConcept<foo>::constraintsO:

boost/concept_check.hpp:31: instantiated from
boost::function_requires<boost::LessThanComparableConcept<foo> >()

sort_eg.cpp:ll: instantiated from safe_sort<foo*>(foo*. foo*)
sort_eg.cpp:21: instantiated from here
boost/concept_check.hpp:260: no match for foo & < foo &

В библиотеке BGL применяются проверки концепций для обеспечения пользо-
вателей более правильными сообщениями об ошибках. Для каждой графовой
концепии создан соответствующий класс проверки концепции, определенный
в заголовочном файле boost/graph/graph_concepts.hpp. В начале каждого алгорит-
ма в BGL проверяются концепции каждого аргумента. Сообщения об ошибках
из graph_concepts.hpp, скорее всего, свидетельствуют о том, что какой-нибудь из
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типов одного из аргументов некоторого алгоритма нарушает требования этого ал-
горитма к концепции.

2.5.2. Прототипы концепций
Дополнительной к проверке концепций задачей является верификация того, что за
документированные требования обобщенного алгоритма действительно реализу-
ются алгоритмом. Эту задачу мы называем покрытием концепции (concept covering).
Обычно авторы библиотек проверяют покрытие вручную, что приводит к ошиб-
кам. Мы же разработали идиому для C++, которая использует проверку типов ком-
пилятора C++ [39] для автоматизации этой задачи. Код для покрытия концепций
также находится в BCCL. Библиотека BCCL имеет прототип-класс для каждой
концепции, применяемой в стандартной библиотеке. Прототип-класс представля-
ет собой минимальную реализацию концепции. Для проверки того, покрывает ли
концепция алгоритм, создается объект прототип-класса и передается алгоритму.

В следующем примере программа пытается проверить, покрываются ли требова-
ния std: :sort() итератором, моделирующим RandomAccessIterator, который имеет
тип значения LessThanComparable.

#include <algorithm>
#include <boost/concept_archetype.hpp>
int mainO

using namespace boost;
typedef less_than_comparable_archetype<> T;
random_access_iterator_archetype<T> r i :
std::sort(ri. r i ) ;

}

На самом деле эта программа не будет успешно скомпилирована, так как те
концепции не покрывают требования std:: sort О к аргументам своего шаблона.
Результирующее сообщение об ошибке показывает, что алгоритм также требует,
чтобы тип значения был CopyConstructible.

nul1_archetype(const null_archetype<int> &) is private

Алгоритму требуется не только конструктор копирования, но и операция при-
сваивания. Эти требования объединяются в концепции Assignable. Следующий код
показывает реализацию прототип-класса для Assignable. Прототип-класс снабжен
параметром шаблона Base для того, чтобы можно было комбинировать прототи-
пы. Для проверки std:: sort О нам нужно соединить прототип-классы для концеп-
ций Assignable и LessThanComparable.

template <typename Base = nu11_archetype<> >
class assignable_archetype : public Base {

typedef assignable_archetype self :
public:

assignable_archetype(const self &) { }
self & operator=(const self &) { return *this; }

}:
Библиотека BGL содержит прототип-классы для каждой графовой концепции

в заголовочном файле boost/graph/graph_archetypes.hpp. Тестовые программы ве-
рификации спецификаций для всех алгоритмов BGL с использованием графо-
вых прототипов находятся в каталоге libs/graph/test/.
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2.6. Пространство имен
Как и в других Boost-библиотеках, каждый компонент Boost Graph Library опре-
делен в пространстве имен boost для того, чтобы избежать конфликта имен с дру-
гими библиотеками и приложениями. В этом разделе мы покажем, как получить
доступ к классам и функциям BGL в пространстве имен boost.

2.6.1. Классы
Получить доступ к классам BGL можно несколькими способами. В следующем коде
показаны три способа доступа к классу adjacencyl ist из пространства имен boost.

{ // Применить префикс пространства имен
boost::adjacency_list<> g:

)
{ // Внести класс в текущую область видимости оператором using
using boost::adjacencyjist:
adjacency_list<> g;

}

{ // Внести все компоненты Boost в текущую область видимости

using namespace boost;

adjacency_list<> g:
}

Для краткости и ясности представления в примерах кода в этой книге опу-
щен префикс boost::, как если бы оператор using namespace boost; был задан
в объемлющей области видимости. Для кода, в котором применяются Boost-биб-
лиотеки, мы рекомендуем использовать префикс boost:: в заголовочных файлах
и либо указывать его же в исходных файлах, либо применять там операторы using
с явным указанием классов. Старайтесь не использовать просто using namespace
boost:, так как это может привести к конфликтам имен. Однако внутри функ-
ций (то есть в ограниченной области видимости) опасность появления конф-
ликтов мала и usi ng namespace можно использовать.

2.6.2. Поиск Кенига
Операции на графах
Интерфейс BGL состоит из перегруженных функций, определенных для каждого
графового типа. Например, функция num_vertices() имеет один аргумент, объект-
граф, и возвращает количество вершин. Эта функция перегружается для каждого
графового класса BGL. Интересно (и, как мы увидим, к счастью), перегруженные
функции могут вызываться без уточнения имени функции пространством имен.
Используя процесс, называемый поиском Кенига, компилятор C++ рассматрива-
ет тип аргумента для перегруженных функций и ищет перегруженные функции
в пространстве имен аргумента^.

' Поиск Кенига назван так в честь его первооткрывателя Эндрю Кенига (Andrew Koenig). Иногда его
называют поиском, зависимым от аргумента.
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В следующем примере приведена демонстрация поиска Кенига. Рассмотрим
случай, когда используются графовые классы из двух различных графовых биб-
лиотек. Каждая библиотека имеет свое собственное пространство имен, внутри
которого определен графовый класс и функция numj/erti ces().

namespace libjack {
class graph { /* ... */ }:
int num_vertices(const graphS) { / * . . . * / }

}

namespace l i b j i l l {
class graph { /* ... */ };
int num_vertices(const graphS) { / * . . . * / }

}

Предположим, что пользователь хочет применить некоторый обобщенный гра-
фовый алгоритм, скажем, boost::pail (), к обоим графовым типам.

int maint)

libjack::graph gl;
boost::pail(gl):
libjill: :graph g2;
boost::pail(g2):

}

Внутри boost: :pai 1 () присутствует вызов num_vertices(). В этой ситуации было
бы желательно, чтобы при использовании графа из 1 i bjack вызывалась функция
l i b j a c k : :num_vertices(), а если граф из l i b j i l 1 — то 1 ib_ji 11: :num_vertices().
Поиск Кенига, как свойство языка C++, позволяет это сделать. Если вызов функ-
ции не уточнен указанием пространства имен, компилятор C++ будет осуществ-
лять поиск в пространстве имен аргументов с целью определения правильной
функции для вызова.

namespace boost {
template <typename Graph>
void pail(Graphs g)
{

typename graph_traits<Graph>::vertices_size_type
N = num_vertices(g); // Разрешится в поиске Кенига

// ...

}
} // namespace boost

Графовые алгоритмы
Графовые алгоритмы из BGL отличаются от операций над графами тем, что они
являются шаблонами функций, а не перегруженными функциями. Тем самым
поиск Кенига неприменим к графовым алгоритмам BGL и получить к ним доступ
можно только посредством префикса пространства имен boost:: или с использо-
ванием других методов, описанных в разделе 2.6.1. Например, для вызова алго-
ритма breadth_first_search() префикс boost:: необходим:

boost::breadth_first_search(g, start, visitor(vis)):
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2.7. Именованные параметры функций
Многие алгоритмы BGL имеют длинный список параметров, чтобы обеспечить
максимальную гибкость. Однако часто такая гибкость не требуется и было бы
достаточным использовать значения по умолчанию для большинства парамет-
ров. Например, рассмотрим следующий шаблон функции, имеющий три аргу-
мента.

template <typename X, typename Y, typename Z>
void f (X x. Y y. Z z);

Пользователь должен иметь возможность передачи любого числа аргументов
(и даже ни одного), а не указанные параметры должны получить значения по умол-
чанию. Также необходима возможность передачи аргумента для параметра у,
но не для х или z. Некоторые языки программирования имеют прямую под-
держку этих возможностей, называемых именованными параметрами (named
parameters или keyword parameters). При применении именованных параметров
в качестве признака для привязки параметров аргументам используется не по-
рядок параметров (как это принято), а имя, свое у каждого аргумента.

// Если бы C++ поддерживал именованные параметры, мы могли бы написать:
int а;
int b:
f (z=b. x=a): // связать b с параметром z. а с параметром х

// у получает значение аргумента по умолчанию

Конечно, C++ не поддерживает именованные параметры, но это свойство
может быть реализовано с помощью небольшой хитрости. Библиотека BGL
включает класс, называемый bgl_named_params, который имитирует именованные
параметры, позволяя строить списки параметров1. В следующем коде приве-
ден пример вызова функции bel lman_ford_shortest_path() с использованием тех-
ники именованных параметров. Каждый из аргументов передается функции,
чье имя показывает, с каким параметром связать аргумент. Заметьте, что име-
нованные параметры разделены не запятой, а точкой. На класс bg1_named_params
не ссылаются явно — он создается неявно при вызове weight_map(), а затем спи-
сок аргументов расширяется путем вызовов к di stance_map() и predecessorjnapC).

bool г = boost::bellman_ford_shortest_paths(g, int(N).
boost::weight_map(weight).
distance_map(&distance[O]).
predecessor_map(Sparent[0])):

Порядок, в котором следуют аргументы, неважен, пока каждому аргументу
соответствует правильная функция. Приведенный ниже вызов функции bel lman_-
ford_shortest_paths() эквивалентен приведенному выше.

bool г = boost::bellman_ford_shortest_paths(g, int(N).
boost::predecessor_map(&parent[0]).
distance_map(&distance[O]).
weightjnap(weight));

Это обобщение идиомы, описанной в [41].
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Как уже было сказано, концепции играют центральную роль в обобщенном про-
граммировании. Концепции — это определения интерфейсов, позволяющие ал-
горитму использовать много различных компонентов. Библиотека алгоритмов
на графах (BGL, Boost Graph Library) определяет большой набор концепций,
затрагивающий различные аспекты работы с графом, такие как обход графа
или изменение его структуры. В данной главе мы познакомим читателя с эти-
ми концепциями, а также дадим мотивацию к выбору той или иной концепции
BGL.

Из описания процесса обобщенного программирования (см. главу 2 в начале)
мы знаем, что концепции выявляются при анализе алгоритмов, используемых для
решения проблем в определенных областях. В данной главе мы изучим проблему
отслеживания зависимостей файлов в системе сборки. Для каждой подзадачи бу-
дут рассмотрены обобщенные, универсальные решения. В результате мы полу-
чим обобщенный алгоритм на графе и его приложение к задаче нахождения зави-
симостей между файлами.

«По пути» мы также рассмотрим более «земные», но необходимые темы, такие
как создание графового объекта и наполнение его вершинами и ребрами.

3.1. Зависимости между файлами
Обычным применением для графов является представление зависимостей. Про-
граммисты сталкиваются с зависимостями между файлами каждый день при ком-
пиляции программ. Информация об этих зависимостях используется такими про-
граммами, как make, или средами разработки вроде Visual C++ для определения
того, какие файлы должны быть перекомпилированы при генерации новой вер-
сии программы (или, в общем случае, для выполнения некоторой цели) после
изменений в файлах с исходным кодом.

На рис. 3.1 изображен граф, у которого имеется отдельная вершина для каж-
дого файла с исходным кодом, объектного файла и библиотеки, использованных
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в программе кШегарр. Ребро этого графа показывает, что целевой объект некото-
рым образом зависит от другого (например, заголовочный файл включается в ис-
ходный файл, а объектный файл компилируется из исходного).

zig.cpp ) ( boz.h ) ( zag-CPP ) ( yow.h ) ( dax.h ) ( bar.cpp ) ( zow.h ) (foo.cpp

Рис. З . 1 . Граф зависимостей между файлами

Ответы на многие вопросы, возникающие при разработке системы сборки, та-
кой как make, могут быть сформулированы в терминах графа зависимостей. Нас
может интересовать следующее:

1. Если необходимо собрать все цели, в каком порядке это должно быть сде-
лано?

2. Присутствуют ли в зависимостях циклы? Цикл в зависимостях являет-
ся ошибкой, и должно быть выдано соответствующее сообщение об
ошибке.

3. Сколько шагов нужно сделать для сборки всех целей? Сколько шагов необ-
ходимо осуществить для сборки всех целей, если независимые цели соби-
рать параллельно (например, на сети рабочих станций или на многопроцес-
сорном компьютере)?

В следующих разделах эти вопросы ставятся в терминах графов и разрабаты-
ваются графовые алгоритмы для их решения. Граф, представленный на рис. 3.1.
используется во всех примерах.

3.2. Подготовка графа
Перед тем как мы сможем решать поставленные выше вопросы, нам необходимо
иметь представление графа зависимостей между файлами в памяти. То есть нам
нужно, используя BGL, построить графовый объект.
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3.2.1. Решаем, какой графовый класс использовать
В BGL имеется несколько графовых классов, из которых можно выбирать. Хотя
в силу обобщенного характера алгоритмов BGL можно использовать любой оп-
ределенный пользователем графовый класс, мы ограничимся только классами
из BGL. Основными классами в BGL являются adjacencyjist и adjacencyjnatrix.
Первый целесообразно использовать во многих случаях, особенно для представле-
ния разреженных графов. Граф файловых зависимостей содержит очень малое
число ребер для одной вершины, то есть он является разреженным. Класс adjacen-
cyjnatrix подходит для представления плотных графов, но очень невыгоден для
разреженных.

В этой главе используется исключительно adjacencyj i st, хотя многое из пред-
ставленного можно без изменений использовать с классом adjacencyjnatrix, так
как он имеет почти идентичный интерфейс с adjacencyj i st. Здесь мы используем
тот же вариант adjacencyjist, как и в разделе 1.4.1.

typedef adjacencyj ist<
lists. // Хранить исходящие ребра каждой вершины в std::list
vecS. // Хранить набор вершин в std::vector
directedS // Граф файловых зависимостей ориентированный
> file_dep_graph;

3.2.2. Строим граф с помощью итераторов ребер
В разделе 1.2.4 мы показали, как можно использовать функции add_vertex()
и add_edge() для создания графа. Эти функции добавляют вершины и ребра по од-
ному за вызов, но во многих случаях необходимо добавить несколько ребер за один
вызов. Для этого класс adjacencyjist имеет конструктор, который принимает
на входе два итератора, определяющих блок ребер. Итератором ребер может быть
любой Inputlterator, который разыменовывается в std: :paiг целых чисел (i,j),
представляющих ребро графа. Целые числа i и j представляют вершины, где
О < г < \V| и 0 <)' < \V\. Параметры п и т показывают соответственно количество
вершин и ребер в графе. Эти параметры необязательны, но их применение увели-
чивает скорость создания графа. Параметр свойств графа р присоединяется к гра-
фовому объекту. Прототип конструктора, использующего итераторы ребер, запи-
сывается следующим образом:

template <typename Edgelterator>
adjacencyjistCEdgelterator first, Edgelterator last.

vertices_size_type n = 0. edges_size_type m = 0.
const GraphPropertiesS p = GraphPropertiesO)

В следующем коде показано применение «реберного» конструктора для созда-
ния графа. Итератор std:: i streamj terator служит основой итератора ввода, чита-
ющего данные о ребрах из файла. В файле задано число вершин графа, после чего
приведены пары чисел, обозначающие ребра. Второй итератор ввода (создавае-
мый со значениями по умолчанию) является «заглушкой» для конца ввода. Ите-
ратор std: :i streamj terator передается напрямую конструктору графа.

std::ifstream file_in("makefile-dependencies.dat"):
typedef graph_traits<file_dep_graph>::vertices_size_type size_type;
size_type n_vertices;
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f i l e j i n » n_vertices: // прочесть число вершин
std::istream_iterator<std::pair<size_type. size_type> >

input_begin(f i le_in), input_end:
fi1e_dep_graph g(input_begin, input_end, n_vertices);

Поскольку тип значения std: :istream_iterator — это std: :pair, итератор ввода
нужно определить для std:: pai г.

namespace std {
template <typename T>
std: :istream& operator»(std: :istream& in. std: :pair<T.T>& p) {

in » p.first » p.second:
return in:

3.3. Порядок компиляции
Первый вопрос касался определения порядка сборки всех целевых объектов. Ос-
новной заботой здесь является обеспечение того, чтобы до сборки данной цели
были построены все цели, от которых она зависит. Это та же самая задача, кото-
рую мы рассматривали в разделе 1.4.1, когда планировали выполнение заданий.

3.3.1. Топологическая сортировка через поиск в глубину
Как уже упоминалось в разделе 1.4.2, топологическое упорядочение может быть
получено с использованием алгоритма поиска в глубину (depth-first search). На-
помним, что при поиске в глубину посещаются все вершины в графе, начиная
с любой вершины, и затем выбирается новое ребро. В следующей вершине выби-
рается другое ребро для нового шага. Этот процесс продолжается, пока не захо-
дит в тупик (вершина без исходящих ребер до еще не посещенных вершин). За-
тем алгоритм возвращается на последнюю посещенную вершину, у которой есть
другая, еще не пройденная, смежная вершина. После того как будут посещены все
вершины, которых можно достичь из выбранной в начале вершины, выбирается
еще одна из непройденных вершин, и поиск продолжается. Ребра, которые алго-
ритм обошел в каждом из этих поисков, образуют дерево поиска в глубину, а все
такие поиски дают лес поиска в глубину. Лес поиска в глубину не уникален для
данного графа. Обычно можно найти несколько допустимых лесов для данного
графа, так как порядок посещения вершин не фиксирован. Каждое уникальное
упорядочение имеет свое дерево поиска в глубину.

Существуют две полезные метрики при поиске в глубину — порядок посеще-
ния и порядок окончания обработки вершины. Представим целочисленный счет-
чик, значение которого в начале равно нулю. Каждый раз при первом посещении
вершины значение счетчика записывается как момент посещения для данной вер-
шины и увеличивается на единицу. Аналогично, когда произведен обход всех вер-
шин, достижимых из данной, значение счетчика записывается как момент окон-
чания данной вершины. Значение счетчика посещения родительской вершины
всегда меньше, чем у дочерней. И наоборот, значение счетчика окончания обра-
ботки меньше у дочерней вершины, чем у родительской. Поиск в глубину на гра-
фе файловых зависимостей показан на рис. 3.2. Ребра деревьев поиска в глубину
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отмечены черными стрелками, а у вершин подписаны значения их счетчиков по-
сещения и окончания обработки (через косую черту).

.h 15/1?)(dax.h 1/1О(Ьаг.срр 23/24) (zow.h 21/22) (foo.cpp 25/26ig.cpp 27/28) (boz.h 17/20) ftag.cpp 29

Рис. 3.2. Поиск в глубину на графе файловых зависимостей

Связь между топологическим упорядочением и поиском в глубину можно объяс-
нить, рассмотрев три различных случая в некоторой точке алгоритма поиска в глу-
бину, где проверяется ребро (и, v). В каждом случае значение счетчика в момент окон-
чания обработки v всегда меньше того же значения для и. Таким образом, моменты
окончания обработки задают топологическое упорядочение (в обратном порядке).

1. Вершина v еще не посещена. Это означает, что v будет потомком и и значе-
ние счетчика окончания обработки вершины будет меньше, чем у и, так как
при поиске в глубину потомки и обрабатываются прежде, чем и.

2. Вершина v была посещена ранее в другом дереве поиска в глубину. Значит,
значение счетчика окончания обработки г> меньше, чем и.

3. Вершина v была посещена ранее в этом же дереве поиска в глубину. Если
это случилось, граф содержит цикл и его топологическое упорядочение не-
возможно. Цикл — это путь из ребер, такой, что первая и последняя верши-
на пути — одна и та же.

Главной частью поиска в глубину является рекурсивный алгоритм, который
вызывает самого себя для каждой смежной вершины. Мы создадим функцию
topo_sort_dfs(), которая реализует поиск в глубину, модифицированный для вы-
числения топологического упорядочения. Первая версия этой функции будет не-
обобщенной функцией, решающей задачу «в лоб». В следующих разделах мы вне-
сем изменения, которые позволят создать обобщенный алгоритм.

Параметры topo_sort_dfs() включают в себя граф, стартовую вершину, указа-
тель на массив для записи топологического порядка, а также массив для записи
посещенных вершин. Указатель topo_order устанавливается на конец массива и за-
тем уменьшается для получения прямого топологического порядка из обратного.
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Заметьте, что topoorder передается по ссылке, поэтому его декремент модифици-
рует оригинал объекта при каждом рекурсивном вызове (если бы topo_order пере-
давался по значению, декремент влиял бы только на копию исходного объекта).
В листинге 3.1 приведена реализация функции topo_sort_dfs().

Листинг 3.1. Функция topo_sort_dfs()

void topo_sort_dfs(const file_dep_graph& g. vertex_t u.
vertex_t*& topo_order. int* mark)

{
mark[u] = 1 ; // 1 означает "посещенная", 0 - "еще не посещенная"

( Для каждой смежной вершины сделать рекурсивный вызов )

*--topo_order - и;

}

ТИПЫ vertex_t и edge_t являются соответственно дескрипторами вершин и ре-
бер для f i I e_dep_graph.

typedef graph_traits<file_dep_graph>::vertex_descriptor vertex_t;
typedef graph_traits<file_dep_graph>::edge_descriptor edge_t:

3.3.2. Маркировка вершин с использованием
внешних свойств
Каждая вершина во время поиска должна быть посещена только один раз. Для
записи факта посещения вершины мы можем пометить ее в массиве, содержащем
пометки для всех вершин. В общем случае будет использоваться термин внешнее
хранилище свойств (external property storage) в качестве названия при сохранении
свойств вершин или ребер в структуре данных вроде массива или хэш-таблицы,
отдельной от графового объекта. Пометки — только одно из свойств, которые можно
хранить в структурах данных, внешних по отношению к графу. Значения свойств
ищутся по ключу, который может быть легко получен из дескриптора вершины или
ребра. В нашем примере мы используем версию adjacencyj ist, где дескрипторы
вершин — целые числа от нуля до num_vertices(g) - 1. Поэтому дескрипторы вер-
шин сами могут быть использованы в качестве индексов к массиву пометок.

3.3.3. Доступ к смежным вершинам
В функции topo_sort_dfs() нам необходимо получить доступ к вершинам, смежным
с вершиной и. Концепция AdjacencyGraph определяет интерфейс для доступа к смеж-
ным вершинам. Функция adjacent_vertices() получает вершину и граф в качестве
аргументов и возвращает пару итераторов, чей тип значения — дескриптор вершин.
Первый итератор указывает на первую смежную вершину, а второй — за конец
последовательности смежных вершин. Смежные вершины выдаются итераторами
в произвольном порядке. Оба этих итератора имеют тип ad j acency_i terator из клас-
са graph_traits. В справочном разделе по adjacency_1ist (раздел 14.1.1) написано,
что тип ad jacencyj i st моделирует концепцию AdjacencyGraph, а значит, мы можем
корректно использовать функцию adjacent_verti ces() с нашим графом файловых
зависимостей. Код для обхода смежных вершин в topo_sort_dfs() показан ниже:

< Для каждой смежной вершины сделать рекурсивный вызов > =
graph_traits<file_dep_graph>::adjacency_iterator vi, vi_end:
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for (tieCvi. vi_end) = adjacent_vertices(u. g): vi != vi_end; ++vi)
i f (mark[*vi] — 0)

topo_sort_dfs(g, *vi, topo_order, mark);

3.3.4. Обход всех вершин
Один из способов гарантировать, что упорядочение будет получено для каждой
вершины графа (а не только для вершины, достигаемой из некоторой стартовой
вершины), — поместить вызов topo_sort_dfs() в цикл по всем вершинам графа.
Интерфейс для обхода всех вершин графа определен в концепции VertexListGraph.
Функция verti ces () получает графовый объект и возвращает пару итераторов вер-
шин. Цикл по всем вершинам и создание массива пометок приведены в функции
topo_sort() (листинг 3.2).

Листинг 3.2. Функция topo_sort()

void topo_sort(const file_dep_graph& g, vertex_t* topo_order)

std::vector<int> mark(num_vertices(g). 0);
graph_traits<file_dep_graph>::vertex_iterator vi. vi_end:
for (tie(vi. vi_end) = vertices(g): vi != vi_end; ++vi)

i f (mark[*vi] == 0)
topo_sort_dfs(g. *vi. topo_order, &mark[0]):

Для удобства нам нужно преобразовать вершины-числа в ассоциированные
с ними имена целей. Список имен целей (в порядке, соответствующем номеру вер-
шины) хранится в файле, так что возможно прочитать этот файл и сохранить имена
в массиве, который затем будет использован для печати имен вершин.

std::vector<std::string> name(num_vertices(g));
std: Mfstream name_in("makefile-target-names.dat"):
graph_traits<file_dep_graph>::vertex_iterator vi. vi_end:
for (tieCvi, vi_end) = vertices(g): vi !- vi_end: ++vi)

name_in » name[*vi]:

Теперь мы создадим массив order для хранения результатов и применим функ-
цию топологической сортировки.

std::vector<vertex_t> order(num_vertices(g)):
topo_sort(g. &order[0] + num_vertices(g)):
for (int i = 0: i < num_vertices(g): ++1)

std::cout « name[order[i]] « std::endl:

В результате получится следующий список:

zag.cpp
zig.cpp
foo.cpp
bar.cpp
zow.h
boz.h
zig.o
vow hdax.h
zag.o
foo.o
bar.o

Зак. 375
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libfoobar.a
libzigzag.a
killerapp

3.4. Циклические зависимости
Одним из важных предположений в предыдущем разделе было то, что граф файло-
вых зависимостей не имеет циклов. Как установлено в разделе 3.3.1, граф с цик-
лами не имеет топологического упорядочения. Формально верный Makefile не бу-
дет иметь циклов, но наша система сборки должна обнаруживать такие ошибки и
сообщать о них.

Поиск в глубину может быть использован и для задачи выявления циклов. Если
он будет применен к графу с циклом, одна из ветвей дерева поиска замкнется на
себе, то есть, найдется ребро из вершины к одному из ее предков по дереву. Назо-
вем такое ребро черным. Появление черного ребра можно обнаружить, если мы
изменим схему отметки вершин. Вместо того чтобы отмечать каждую вершину
как посещенную или не посещенную, мы будем использовать трехцветную схему:
белый цвет будет обозначать не посещенную вершину, серый — посещенную, но не
обработанную (в процессе поиска потомков), и черный — вершину, посещенную
вместе со всеми потомками. Трехцветная схема полезна для некоторых графовых
алгоритмов, поэтому заголовочный файл boost/graph/properties.hpp определяет
следующий перечислимый тип:

enum default_color_type { white_color, gray_color. black_color };

Цикл в графе идентифицируется по серой смежной вершине — это означает,
что ребро замыкается на предке. Код в листинге 3.3 представляет версию поиска
в глубину, модифицированную для обнаружения циклов.

Листинг 3.3. Поиск в глубину с обнаружением циклов

bool has_cycle_dfs(const fi1e_dep_graph& g. vertex_t u.
default_color_type* color) •

{
color[u] = gray_color;
graph_traits<file_dep_graph>::adjacency_iterator vi, vi_end;
for (tie(vi. vi_end) = adjacent_vertices(u, g): vi != vi_end: ++vi)

i f (color[*vi] == white_color)
if (has_cycle_dfs(g, *vi, color))

return true: // если обнаружен цикл, то немедленный возврат
else i f ( c o l o r [ * v i ] — gray_color) // *vi является предком

return true:
color[u] = black_color:
return false:

}
Как и в топологической сортировке, в функции has_cycle() (листинг 3.4) ре-

курсивный вызов помещен внутрь цикла по всем вершинам, так что возможно
охватить при проверке все деревья поиска в графе.

Листинг 3.4. Функция has_cycle()

bool has_cycle(const file_dep_graph& g)
{

std: :vector<default_color_type> color(num_vertices(g). white_color):



3.5. «На пути» к обобщенному поиску в глубину: посетители 6 7

graph_traits<file_dep_graph>::vertex_iterator v i , vi_end:
for ( t ie(v i , vi_end) = vertices(g): vi != vi_end: ++vi)

i f (color[*vi] — white_color)
i f (has_cycle_dfs(g. *vi, &color[0]))

return false:

3.5. «На пути» к обобщенному поиску
в глубину: посетители
На данный момент мы имеем две законченные функции: topo_sort() и has_cycle(),
каждая из которых реализована в виде поиска в глубину, хотя и немного по-разно-
му. Однако их существенная схожесть дает прекрасную возможность для повтор-
ного использования кода. Было бы намного лучше, если бы мы имели один алго-
ритм для поиска в глубину, который являлся обобщением topo_sort() и has_cycl e()
и использовал параметры для специализации поиска в глубину в каждой из задач.

Дизайн библиотеки STL подсказывает нам, как можно создать подходящим
образом параметризованный алгоритм поиска в глубину. Многие из алгоритмов
STL могут быть специализированы параметром в виде определенного пользова-
телем объекта-функции. Нам хотелось бы параметризовать поиск таким же спо-
собом, реализовав в topo_sort() и has_cycl е() передачу объекта-функции.

К сожалению, в нашем случае ситуация несколько более сложная, чем в типич-
ном алгоритме STL. В частности, есть несколько различных мест, где должны проис-
ходить специализированные действия. Например, функция topo_sort() записы-
вает упорядочение в самом конце рекурсивной функции topo_sort_df s (), тогда как
has_cycle() требует включения действия внутри цикла по смежным вершинам.

Решением этой проблемы является применение объекта-функции с более чем
одним членом для обратного вызова. Вместо единственной функции operatorO
мы используем класс с несколькими функциями-методами класса, вызываемыми
из различных мест (событийных точек). Такой объект-функция называется посе-
тителем алгоритма (algorithm visitor). Посетитель для алгоритма поиска в глу-
бину будет иметь пять функций: discover_vertex(), tree_edge(), back_edge(),
forward_or_cross_edge() и f i ni sh_vertex(). Также вместо итерации по смежным вер-
шинам мы будем обходить исходящие ребра. Это позволит передавать дескрипто-
ры ребер функциям посетителя и тем самым предоставлять больше информации
посетителю, определенному пользователем. Следующий код функции поиска
в глубину, приведенный в листинге 3.5, имеет параметр шаблона для посетителя.

Листинг 3.5. Функция поиска в глубину с посетителем

template <typename Visitor>
void dfs_vl(const file_dep_graph& g, vertex_t u.

default_color_type* color. Visitor vis)
{

color[u] = gray_color:
vis.discover_vertex(u, g):
graph_traits<file_dep_graph>::out_edge_iterator ei. ei_end:
for ( t ie(ei . ei_end) = out_edges(u. g); ei != ei_end; ++ei) {

i f (color[target(*ei . g)] == white_color) {
vis.tree edge(*ei. g):

продолжение ё>
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Листинг 3.5 {продолжение)

dfs_vl(g. target(*ei. g). color, vis);
} else i f (color[target(*ei, g)] == gray_color)

vis.back_edge(*ei. g);
else

vis.forward_or_cross_edge(*ei. g):
}
color[u] = black_color;
vis.finish_vertex(u. g):

}

template <typename Visitor>
void generic_dfs_vl(const file_dep_graph& g. Visitor vis)

std::vector<default_color_type> color(num_vertices(g). white_color):
graph_traits<file_dep_graph>::vertex_iterator vi, vi_end;
for (tie(vi. vi_end) = vertices(g); vi != vi_end; ++vi) {

i f (color[*vi] == white_color)
dfs_vl(g, *vi, &color[0]. vis);

Пять функций-методов класса посетителя обеспечивают необходимую гиб-
кость, но пользователь, которому нужно, скажем, только одно действие, не дол-
жен писать четыре пустые функции-метода класса. Эта проблема может быть лег-
ко решена созданием посетителя по умолчанию, из которого могут быть созданы
посетители, определяемые пользователем (листинг 3.6).

Листинг З.б. Структура посетителя со значениями по умолчанию

struct default_dfs_visitor {
// посещение вершины
template <typename V. typename G>
void discover_vertex(V. const G&) { }
// встретилось ребро дерева
template <typename E, typename G>
void tree__edge(E. const G&) { }
// встретилось обратное ребро
template <typename E. typename G>
void back__edge(E, const G&) { }
// встретилось прямое или поперечное ребро
template <typename E. typename G>
void forward_or_cross_edge(E. const G&) { }
// окончание обработки
template <typename V. typename G>
void f i n i s h vertex(V. const G&) { }

Для демонстрации того, что обобщенный алгоритм поиска в глубину может ре-
шить наши проблемы, мы переделаем функции topo_sort() и has_cyc1e(). Во-пер-
вых, нам нужно создать посетителя, записывающего топологическое упорядоче-
ние в событийной точке «окончание обработки вершины». Код этого посетителя
выглядит так:

struct topo_visitor : public default_dfs_visitor {
topo_visitor(vertex_t*& order) : topo_order(order) { }
void finish_vertex(vertex_t u. const file_dep_graph&) {
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*--topo_order - и;

vertex_t*& topo_order;
}:

Только две строки содержатся в коде функции topo_sort () при ее реализации с ис-
пользованием обобщенного поиска в глубину. В первой строке создается объект-по-
сетитель, а во второй происходит вызов обобщенного поиска.

void topo_sort(const file_dep_graph& g, vertex_t* topo_order)
{

topo_visitor vis(topo_order);
generic_dfs_vl(g, vis);

}
Для реализации функции has_cycl e() мы используем посетителя, который за-

писывает наличие цикла, когда встречается обратное ребро (back edge).

struct cycle_detector : public default_dfs_visitor {
cycle_detector(bool& cycle) : has_cycle(cycle) { }
void back_edge(edge t. const file_dep_graph&) {

has_cycle = true:
}
bool& has_cycle;

Новая функция has_cycl e() создает объект обнаружения цикла и передает его
обобщенному алгоритму поиска в глубину.

bool has_cycle(const file_dep graphs g)
{

bool has_cycle - false:
cycle_detector vis(has_cycle);
generic_dfs_vl(g. vis);

}

 r e t u r n "as.cycle:

3.6. Подготовка графа: внутренние свойства
Прежде чем перейти к следующему вопросу по файловым зависимостям, уделим
немного внимания другому типу графа. В предыдущих разделах мы использова-
ли массивы для хранения такой информации, как имена вершин. Когда свойства
вершин и ребер имеют то же время жизни, что и сам граф, может быть более удоб-
ным включить их непосредственно в графовый объект (назовем такие свойства
внутренними). При написании собственного графового класса можно включить
поля-методы класса для этих свойств в структуру вершины или ребра.

Класс adjacencyj i st имеет параметры шаблона VertexProperti es и EdgeProperti es,
позволяющие присоединять (приписывать) произвольные свойства к вершинам
и ребрам. Эти параметры шаблона предполагают класс property<Tag, T> в качестве
типа аргумента. Здесь Tag — тип, задающий свойство, а Т устанавливает тип объекта-
свойства. Существует некоторое количество предопределенных свойств (см. раз-
дел 15.2.3), таких как vertex_name_t и edge_weight_t. Например, для присоедине-
ния std:: stri ng к каждой вершине можно использовать следующий тип-свойство:

property<vertex name t. std::string>

- -
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Если предопределенных тегов свойств недостаточно, можно создать новый тег.
Один из способов — определить тип-перечисление с именем vertex_xxx_t или edge_xxx_t,
который содержит перечисление с тем же именем (без _t). Затем можно использовать
B0OST_INSTALL_PROPERTY для специализации классов свойств property_ki nd и propertyjium1.
Зададим свойство периода компиляции в виде стоимости (cost), которое мы будем
использовать в следующем разделе для вычисления полного времени компиляции.

namespace boost {
enum vertex_compile_cost_t { vertex_compile_cost =111 }; // уникальный

номер
BOOST_INSTALL_PROPERTY(vertex. compile_cost):

)

Класс property имеет необязательный третий параметр. Он нужен для вложе-
ния нескольких классов property с добавлением множества свойств каждой вер-
шине или ребру. В листинге 3.7 приведен код создания нового typedef для графа,
при этом одновременно добавляются свойства вершин и ребер.
Листинг 3.7. Определение типа для графа со свойствами

typedef adjacency_list<
lists, // Хранить исходящие ребра в std::list
lists, // Хранить набор вершин в std::list
directedS. // Граф файловых зависимостей ориентированный
// свойства вершин
property<vertex_name_t, std::string,

property<vertex_compi1e_cost_t, f1 oat,
property<vertex_di stance_t. f1 oat.

property<vertex_color_t, default_color_type> > > >,
// свойства ребер
property<edge_weight_t, float>
> file_dep_graph2;

Мы также изменили второй аргумент шаблона adjacencyjlist с vecS на l i s ts .
Это приводит к важным последствиям. Удаление вершины из графа теперь вы-
полняется за постоянное время (с vecS удаление вершины линейно по числу вер-
шин и ребер). С другой стороны, тип дескриптора вершины больше не является
целым числом, поэтому хранить свойства в массивах и использовать вершину как
смещение больше нельзя. Однако отдельное хранилище теперь не требуется, так
как мы сохраняем свойства вершин в графе.

В разделе 1.2.2 было введено понятие отображения свойств. Напомним, что ото
бражение свойств — это объект, который может быть использован для преобразо
вания ключа (например, вершины) в значение (например, название вершины).
Когда были заданы свойства для adjacency_l i st (как мы только что сделали), ото-
бражения для этих свойств могут быть получены с применением интерфейса
PropertyGraph. Следующий код показывает пример получения двух отображений
свойств: одного — для названий вершин и другого — для времени компиляции.
Класс свойств propertyjnap предоставляет тип отображения свойств.

typedef property_map<file_dep_graph2, vertex_name_t>::type name_map_t:
typedef property_map<file_dep_graph2. vertex_compi ie_cost_t>::type

compi1e_cost_map_t;
typedef propertyjnap'<file_dep_graph2. vertex_distance_t>: :type

Определение новых тегов свойств было бы значительно проще, если бы больше компиляторов C++
удовлетворяли стандартам.
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distance_map_t;
typedef property_map<file_dep_graph2, vertex_color_t>::type color_map_t:
Функция get () возвращает объект отображения свойств:
name_map_t namejiap = get(vertex_name, g);
compi 1 e_cost_map_t compile_cost_map = get(vertex_compile_cost. g);
distance_map_t distance_map - get(vertex_distance, g):
color_map_t color_map - get(vertex_color. g);
Данные по оценке времени компиляции для каждой цели в make-файле будут

храниться в отдельном файле. Файл читается при помощи std:: i fstream, и свойства
записываются в граф с использованием отображения свойств namejnap и com-
pi 1e_cost_map. Эти отображения свойств моделируют LvaluePropertyMap, а значит,
имеют операцию operator^ ] (), которая отображает из дескрипторов вершин в ссыл-
ки на соответствующие объекты свойств вершин.

std: :ifstream name_inCmakefi1e-target-names.dat"):
std: :ifstream compile_cost_inCtarget-compile-costs.dat");
graph_traits<file_dep_graph2>::vertex_iterator vi, vi_end:
for (tie(vi, vi_end) = vertices(g): vi != vi_end; ++vi) {

name_in » name_map[*vi]:
compile_cost_in » compi1e_cost_map[*vi];

}
В следующих разделах мы изменим функции топологической сортировки и поис-

ка в глубину, чтобы использовать интерфейс отображений свойств для доступа к свой-
ствам вершин вместо жесткого прописывания доступа через указатель на массив.

3.7. Время компиляции
Следующие вопросы, на которые нам нужно ответить: «Сколько времени займет
компиляция?» и «Сколько времени займет компиляция на параллельном компью-
тере?» На первый вопрос ответить легко. Мы просто суммируем время компиля-
ции для всех вершин графа. Ради интереса выполним это вычисление с помощью
функции std: accumulate. Чтобы использовать данную функцию, нужны итера-
торы, которые при разыменовании дают стоимость компиляции для вершины.
Итераторы вершин графа не предоставляют подобной возможности, так как при
разыменовании выдают дескрипторы вершин. Вместо них мы применим класс
graph_property_i ter_range (см. раздел 16.8) для генерации подходящих итераторов.

graph_property_iter_range<file_dep_graph2.
vertex_compile_cost_t>::iterator ci. ci_end;

tie(ci. ci_end) = get_property_iter_range(g. vertex_compi1e_cost):
std::cout « "полное время последовательной компиляции: "

« std::accumulate(ci. ci_end. 0.0) « std::endl:

Вывод этого участка кода будет таким:
полное время последовательной компиляции: 21.3

Теперь предположим, что мы имеем параллельный суперкомпьютер с сотня-
ми процессоров. При наличии независимых друг от друга целей они могут компи-
лироваться одновременно на разных процессорах. Сколько времени будет зани-
мать компиляция? Для ответа на этот вопрос необходимо найти критический путь
через граф файловых зависимостей. Иначе говоря, нам нужно найти самый длин-
ный путь через граф.
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Вклады различных целей во время компиляции файла libfoobar.a изображены
на рис. 3.3. Черными стрелками обозначены зависимости файла libfoobar.a. Пред-
положим, что мы уже определили, когда закончится компиляция bar.o и foo.o.
Тогда время компиляции для libfoobar.a будет максимумом времен компиляции
для bar.o и foo.o плюс время их компоновки в файл библиотеки.

Теперь, когда известно, как вычислить «расстояние» («distance») для каждой
вершины, возникает вопрос: в каком порядке мы должны обойти вершины? Понят-
но, что если есть ребро (и, и), принадлежащее графу, то нужно вычислить рассто-
яние для и перед v, так как вычисление расстояния для v требует знания расстоя-
ния до и. Теперь необходимо просмотреть вершины в топологическом порядке.

killerapp
ч- '

Рис. 3.3. Вклады различных целей во время компиляции libfoobar.a

3.8. Обобщенная топологическая сортировка
и поиск в глубину
Так как был заменен тип графа с f 11 e_dep_graph на f 11 e_dep_graph2, стало невозмож-
ным использовать функцию topo_sort(), разработанную в разделе 3.4. Несоответ-
ствие касается не только графового типа, но и массива col or, использованного в де-
neric_dfs_vl(), который показывает, что дескрипторы вершин являются целыми
числами (это неверно для fi!e_dep_graph2). Эти проблемы ведут к созданию даже
более общей версии топологической сортировки и лежащего в ее основе поиска
в глубину. Параметризация функции topo_sort () осуществляется в несколько этапов:

1. Отдельныйтип file_dep_graph заменяется на параметр шаблонабгарЬ. Простая
смена параметра шаблона ничего не даст, если нет стандартного интерфейса
всех типов графов, которые мы хотим использовать с алгоритмом. Здесь при-
ходят на помощь концепции обхода графов из BGL. Для topo_sort() нам ну-
жен тип графа, который моделирует концепции VertexListGraph и IncidenceGraph.
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2. Использование vertex_t* для вывода упорядочения является слишком жест-
ким ограничением. Общий способ вывода последовательности элементов пред-
полагает применение итератора вывода, как это происходит в алгоритмах STL.
Это дает пользователю намного больше вариантов для хранения результатов.

3. Нам нужно добавить параметр для отображения цветов. Необходимо учесть
только самые существенные моменты. Функция topo_sort() должна иметь
возможность отображать дескриптор вершины в объект-маркер для данной
вершины. Библиотека Boost Property Map Library (см. главу 15) определя-
ет минимальный интерфейс для осуществления этого отображения. В на-
шем случае используется интерфейс LvaluePropertyMap. Внутреннее отобра-
жение coiorjnap, полученное из графа в разделе 3.6, реализует интерфейс
LvaluePropertyMap, так же как и массив цветов из раздела 3.3.4. Указатель на
массив цветовых маркеров может быть применен как отображение свойств
благодаря перегруженным функциям из boost/property_map.hpp, которые
адаптируют указатели под интерфейс LvaluePropertyMap.

В листинге 3.8 приведена реализация обобщенного toposor tO. Далее будут
обсуждаться обобщенные topo_vi si tor Hgeneric_dfs_v2().

Листинг 3.8. Функция topo_sort(), вторая версия
template <typename Graph, typename Outputlterator, typename ColorMap>
void topo_sort(const Graphs g, Outputlterator topo_order, ColorMap color)
{

topo_visitor<OutputIterator> vis(topo_order);
generic_dfs_v2(g. vis, color);

}
Сейчас класс topo_vi si tor является шаблоном класса (листинг 3.9), который нуж-

но приспособить под итератор вывода. Вместо декремента вставляется инкремент
итератора вывода (декремент итератора вывода запрещен). Для получения того
же самого обращения, как в первой версии topo_sort(), пользователь может пере-
дать внутрь обратный итератор или, например, итератор вставки в начало списка.

Листинг 3.9. Класс topo_visitor
template <typename Outputlterator>
struct topo_visitor : public default_dfs_visitor {

topo_visitor(OutputIteratorS order) : topo_order(order) { }
template <typename Graph>
void finish_vertex(typename graph_traits<Graph>::vertex_descriptor u.

const GraphS)
{ *topo_order++ = u; }
Outputlterator& topo_order;

}:
Обобщенный поиск в глубину (листинг 3.10) изменяется через параметриза-

цию типа графа и отображение цветов. Так как неизвестен тип цвета, необходимо
зап росить тип его значений (с помощью класса свойств property t r a i t s ) у ColorMap.
Вместо использования констант, таких как white_color, мы применяем цветовые
функции, определенные в color_traits.

Листинг 3.10. Обобщенная функция generic_dfs_v2()
template <typename Graph, typename Visitor, typename ColorMap>
void generic dfs v2(const Graphs g, Visitor vis. ColorMap color)

продолжение &
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Листинг 3.10 {продолжение)

{
typedef color_traits<typename

property_tгаits<ColorMap>::value_type> ColorT;
typename graph_traits<Graph>::vertex_iterator v i , vi_end:
for ( t i e ( v i . vi_end) = vert ices(g): vi != vi_end: ++vi)

c o l o r [ * v i ] = ColorT::white();
for ( t i e ( v i , vi_end) = vertices(g); vi != vi_end; ++vi)

i f ( c o l o r [ * v i ] == ColorT::white())
dfs_v2(g. * v i . color, v is ) ;

}

Логическое содержание dfs_vl не требует изменений, однако нужно произве-
сти небольшие модификации из-за параметризации типа графа. Вместо жесткого
задания vertex_t в качестве дескриптора вершины мы извлекаем соответствую-
щий дескриптор вершины из графового типа, используя класс свойств graphjxaits.
Полностью обобщенная версия функции поиска в глубину приведена в листин-
ге 3.11. Она, в сущности, аналогична depth_first_ visit О из BGL

Листинг 3.11. Функция dfs_v2()
template <typename Graph, typename ColorMap, typename Visitor>
void dfs_v2(const Graphs g,

typename graph_traits<Graph>::vertex_descriptor u,
ColorMap color, Visitor vis)

{
typedef typename property_traits<ColorMap>::value_type color_type:
typedef color_traits<color_type> ColorT:
color[u] - ColorT::gray():
vis.discover_vertex(u. g):
typename graph_traits<Graph>::out_edge_iterator ei. ei_end:
for (tie(ei. ei_end) = out_edges(u. g): ei != ei_end: ++ei)

i f (color[target(*ei. g)] == ColorT::white()) {
vis.tree_edge(*ei. g);
dfs_v2(g. target(*ei. g). color, vis):

} else i f (color[target(*ei. g)] == ColorT::gray())
vis.back_edge(*ei. g):

•e l^e ., ,* •
vis.forward_or_cross_edge(*ei. g);
color[u] = ColorT::black():
vis.finish_vertex(u. g):

}
Реальные функции BGLdepth_first_search() и topological_sort() очень похо-

жи на обобщенные функции, которые мы разработали в этом разделе. Детальный
пример использования функции depth_first_search() рассмотрен в разделе 4.2,
а полное описание depth_f i rst_sea rch () приведено в разделе 13.2.3. Документация
по topological sort() дана в разделе 13.2.5.

3.9. Время параллельной компиляции

Теперь, когда мы имеем обобщенные топологическую сортировку и поиск в глуби-
ну, можно решать задачу определения полного времени компиляции на параллель-
ном компьютере. Во-первых, проведем топологическую сортировку, сохранив ре-
зультаты в векторе topo_order. Затем мы передадим обратный итератор в topo_sort ()
для того, чтобы получить прямой топологический порядок (а не обратный).
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std::vector<vertex_t> topo_order(num_vertices(g));
topo_sort(g. topo_order.rbegin(). colorjnap);

Перед вычислением времен компиляции необходимо подготовить отображение
расстояний (его мы будем использовать для хранения результатов вычислений
времени компиляции) (листинг 3.12). Для вершин, которые не имеют входящих
ребер (будем считать их исходными вершинами), инициализируем их расстояние
нулем, так как компиляция этих целей в make-файле может начаться сразу. Всем
другим вершинам присваивается бесконечное значение расстояния. Найдем ис-
ходные вершины, помечая все вершины с входящими в них ребрами.

Листинг 3.12. Подготовка к вычислению времен компиляции
graph_traits<file_dep_graph2>::vertex_iterator i, i_end:
graph_traits<file_dep_graph2>::adjacency_iterator vi. vi end;

// найти исходные вершины путем пометки всех вершин с входящими ребрами
for (tied. i_end) = vertices(g): i !- i_end; ++i)
color_map[*i] - white_color;

for (tied. i_end) = vertices(g); i != i_end; ++i)
for (tie(vi, vi_end) = adjacent_vertices(*i. g); vi !» vi_end; ++vi)
color_map[*vi] - black_color;

// инициализируем расстояния в 0, а для исходных вершин
присваиваем время компиляции

for (tied. i_end) = vertices(g): i != i_end; ++i)
if (color_map[*i] -= white_color)
distance_map[*i] = compile_cost_map[*i]:

else
distance_map[*i] = 0:

Теперь все готово для вычисления расстояния. Мы проходим через все вершины,
записанные в topo_order, и для каждой из них обновляем расстояние (полное время
компиляции) до каждой смежной вершины. Это несколько отличается от того, что
описано выше. До этого мы говорили о том, что от каждой вершины мы смотрели
«вверх»' по графу для вычисления расстояния до этой вершины. Сейчас же мы пе-
реформулировали вычисления так, что мы проталкиваем расстояния «вниз» по гра-
фу. Причина такого изменения состоит в том, что для прохождения «вверх» требу-
ется доступ к входящим ребрам вершины, а этого наш тип графа не предоставляет.

std::vector<vertex_t>::iterator ui;
for (ui = topo_order.begin(): ui != topo_order.end(); ++ui) {

vertex_t u = *ui;
for (tie(vi. vi_end) = adjacent_vertices(u. g): vi != vi_end; ++vi)

if (distance_map[*vi] < distance_map[u] + compile_cost_map[*vi])
distance_map[*vi] = distance_raap[u] + compile_cost_map[*vi];

}
Максимальное значение расстояния среди всех вершин дает нам искомое пол-

ное время параллельной компиляции. Для создания итераторов свойств по рас-
стояниям вершин вновь применяется graph_property_i ter_range. Функция std:: max_el e-
ment() используется для нахождения максимума.

graph_property_iter_range<file_dep_graph2.
vertex_distance_t>::iterator ci. ci_end:

tie(ci. ci_end) = get_property_iter_range(g, vertex_distance);

Против направления стрелок. — Примеч. перев.
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std::cout « "полное время параллельной компиляции: "
« *std::max_element(ci. ci_end) « s td: :erd l ;

В результате будет выведена такая запись:
полное время параллельной компиляции: 11.9

Для каждой цели в make-файле, изображенном на рис. 3.4, показаны два чис-
ла, означающие время его собственной компиляции и время, за которое он будет
скомпилирован при параллельной компиляции. Критический путь обозначен чер-
ными стрелками.

Рис. 3.4. Время компиляции и аккумулированное время компиляции для каждой вершины

3.10. Итоги
В этой главе мы применили BGL для получения ответов на вопросы, которые могут
возникнуть при создании системы сборки программного обеспечения: в каком по-
рядке нужно собирать цели make-файла? Нет ли циклических зависимостей?
Сколько времени займет компиляция? Ответы на эти вопросы были получены
при рассмотрении топологического упорядочения ориентированного графа и его
вычислении алгоритмом поиска в глубину.

При реализации решений для представления графа файловых зависимостей
мы использовали класс adjacency_l i st из BGL. Была написана простая реализация
топологической сортировки и обнаружения циклов. После определения общих
мест кода он был преобразован в обобщенную реализацию поиска в глубину. Мы
использовали посетителей алгоритма для параметризации поиска в глубину и за-
тем написали конкретных посетителей для реализации топологической сортиров-
ки и обнаружения циклов.

Мы также рассмотрели различные варианты класса adjacencyjist, которые
позволили приписать свойства (имя вершины и время компиляции) к вершинам
графа. После этого поиск в глубину стал более обобщенным благодаря парамет-
ризации графового типа и метода доступа к свойствам. Наконец, были примене-
ны топологическая сортировка и поиск в глубину для вычисления времени ком-
пиляции всех файлов на параллельном компьютере.
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4.1. Поиск в ширину
Поиск в ширину (breadth-first search, BFS) — один из основных способов получе-
ния информации о графе, который можно применить при решении множества
различных задач. Библиотека BGL имеет обобщенную реализацию поиска в ши-
рину в виде алгоритма breadth_first_search(). Этот функциональный шаблон па-
раметризован, поэтому может быть использован во многих ситуациях. В данном
разделе будет описан и применен для вычисления чисел Бэкона алгоритм поиска
в ширину.

4.1.1. Определения
Поиск в ширину — обход графа, который посещает все вершины, достижимые
из данной исходной вершины. Порядок посещения вершин определяется рассто-
янием от исходной вершины до каждой вершины графа. Ближние вершины посе-
щаются раньше, чем более удаленные.

Алгоритм поиска в ширину можно представить себе в виде волны, которая
распространяется от камня, брошенного в воду. Вершины на гребне одной волны
находятся на одинаковом расстоянии от исходной вершины. Поиск в ширину для
простого графа показан на рис. 4.1. Порядок посещения вершин имеет последова-
тельность {d}, {/, g}, {с, h, b, e), {а} (вершины сгруппированы по их расстоянию от
вершины d).

При посещении вершины v ребро (и, v), которое привело к ее посещению, на-
зывается древесным ребром. Все вместе древесные ребра образуют дерево поиска
в ширину с корнем в исходной вершине. Для данного древесного ребра {и, v) вер-
шина и называется предком, или родителем, для v. Древесные ребра на рис. 4.1.
обозначены черными линиями, а все остальные — серыми.

Вершины графа помечены кратчайшим расстоянием от исходной вершины d.
Кратчайшее расстояние 5(s, v) от некоторой вершины 5 до вершины v — мини-
мальное количество ребер в любом пути из s в v. Кратчайший путь — путь, длина
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которого равна 8(s, о). Понятно, что кратчайший путь может быть не единствен-
ным. Главной особенностью поиска в ширину является то, что вершины с более
короткими кратчайшими путями посещаются прежде вершин с большими.

Рис. 4.1. Распространение поиска в ширину по графу

В главе 5 мы займемся вычислениями кратчайших путей, в которых длина пути
определяется суммой весов, приписанных ребрам пуги, а не просто числом ребер пути.

4.1.2. Шесть степеней Кевина Бэкона
Интересное приложение поиска в ширину возникает в популярной игре «Шесть
степеней Кевина Бэкона». Идея игры состоит в том, чтобы связать некоего акте-
ра1 с Кевином Бэконом через цепочку актеров, которые снимались в кино вместе,
менее чем за шесть шагов. Например, Теодор Хесбург (заслуженный президент
Университета Нотр-Дам в отставке) снимался в фильме «Rudy» с актером Герри
Беккером, который снимался в фильме «Sleepers» вместе с Кевином Бэконом.
По каким-то неизвестным нам причинам три студента, Майк Джинелли, Крэй
Фасе и Брайан Тертл, решили, что Кевин Бэкон является центральной фигурой
индустрии развлечений. Математики играют в похожую игру, вычисляя свое чис-
ло Эрдеша, которое является числом работ, написанных в соавторстве, — это чис-
ло отделяет их от известного Пауля Эрдеша.

Игра «Шесть степеней Кевина Бэкона» на самом деле является задачей на гра-
фе. Для того чтобы представить эту задачу в виде графа, нужно назначить верши-
ну каждому актеру и создать ребра между двумя вершинами в том случае, если
актеры снимались в одном фильме. Поскольку отношения между актерами сим-
метричны, ребра не имеют направлений и граф получается неориентированным.

Проблема нахождения череды актеров до Кевина Бэкона становится традици-
онной графовой задачей нахождения пути между двумя вершинами. Поскольку

Под актерами мы будем понимать и актрис.
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мы хотим найти путь с длиной менее шести шагов, в идеале было бы неплохо най-
ти кратчайший путь между вершинами. Как было показано в предыдущем разде-
ле, поиск в ширину может быть использован для нахождения кратчайших путей.
Подобно числу Эрдеша, мы будем называть длину кратчайшего пути от данного
актера к Кевину Бэкону числом Бэкона. В следующем примере будет показано,
как использовать функцию breadth_fi rst_search(), чтобы вычислить числа Бэко-
на для группы актеров.

Входной файл и создание графа
В данном примере будет использована небольшая часть фильмов и актеров из базы
данных по кинофильмам Internet Movie Database1. Файл example/kevin_bacon.txt
содержит список пар актеров, которые снимались в одном и том же фильме. Как
показано в следующем фрагменте, каждая строка файла содержит имя актера, на-
звание фильма и имя другого актера из этого же фильма. В качестве разделителя
используется точка с запятой.

Patrick Stewart;Prince of Egypt. The (1998):Steve Martin

Для начала прочитаем файл с помощью std: :ifstream и создадим граф на его
основе.

std::ifstream datafile("./kevin-bacon.dat"):
if (! datafile) {

std::cerr « "No ./kevin-bacon.dat file" « std::endl:
return EXITJAILURE;

}
Для представления графа используется adjacency_list, a undirectedS служит

признаком того, что граф неориентированный. Как и в разделе 3.6, для присваи-
вания вершинам имен актеров, а ребрам — названия фильмов класс property ис-
пользуется для добавления этих свойств вершинам и ребрам.

typedef adjacency_list<vecS. vecS. undirectedS.
property<vertex_name_t. std: :sthng>.
property<edge_name_t. std: :sthng> > Graph;

Graph g;

Для доступа к свойствам объекты отображений свойств должны быть получе-
ны из графа. Следующий код готовит эти отображения, которые позднее исполь-
зуются дескрипторами вершин и ребер для доступа к связанным с ними именам.

typedef property_map<Graph. vertex_name_t>::type actor_name_map_t:
actor_name_map_t actorjiame = get(vertex_name. g);
typedef property_map<Graph, edge_name_t>::type movie_name_map_t;
movie_name_map_t connectingjnovie = get(edge_name. g):

Файл читается построчно и разбирается в список лексем, разделенных точка-
ми с запятой. Для создания «виртуального» контейнера лексем используется биб-
лиотека лексического разбора Boost Tokenizer Library. Код для разбора файла дан-
ными приведен в листинге 4.1.

Internet Movie Database используется факультетом информатики Университета Вирджинии для фа-
фа к их «Оракулу Бэкона».
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Листинг 4.1. Разбор файла с данными

for (std::string line: std::getlineCdatafile.line): ) {
char delimiters_separator<char> sep(false, "", " ; " ) :
tokenizer<> line_toks(line. sep):
tokenizer<>::iterator i = line_toks.begin();
( Взять имя первого актера и добавить вершину к графу )
< Сохранить название фильма в переменной )
< Взять имя второго актера и добавить к графу )
< Добавить ребро, связывающее двух актеров, к графу )

}
Каждая строка ввода соответствует ребру графа, инцидентному двум вершинам,

которые определяются именами актеров. Название фильма приписывается к реб-
ру как свойство. Одной из проблем в создании этого графа из такого формата
файла является то, что он представляет собой поток ребер. Хотя добавить ребро
к файлу несложно, проще добавлять к нему вершины. Вершины появляются толь-
ко в контексте соединяющих их ребер, причем во входном потоке вершина может
появиться несколько раз. Для обеспечения однократного включения вершины
в граф используется отображение имен актеров в вершины. По мере добавления
вершин к графу последующее появление той же вершины (уже в составе другого
ребра) может быть связано с правильной вершиной, уже находящейся в графе.
Это легко достигается использованием std:: map.

typedef graph_traits<Graph>::vertex_descriptor Vertex;
typedef std::map<std::string, Vertex> NameVertexMap:
NameVertexMap actors:

Первая лексема каждой строки — это имя актера. Если актера еще нет в ото-
бражении, вершина добавляется к графу, свойству вершины name присваивается
имя актера, а дескриптор вершины записывается в отображение (листинг 4.2).
Если актер уже находится в отображении, функция std:: map:: i nsert () возвраща-
ет итератор, указывающий на позицию соответствующей вершины в графе.

Листинг 4.2. Добавление имени первого актера как вершины в графе

( Взять имя первого актера и добавить вершину к графу > •
std::string actors_name = *i++:
NameVertexMap::iterator pos:
bool inserted;
Vertex u. v;
tie(pos. inserted) = actors.insert(std: :makej)air(actors_name, VertexO));
i f (inserted) {

u = add_vertex(g);
actor_name[u] = actors_name:
pos->second = u:

} else {
u = pos->second;

Вторая лексема (название фильма) закрепляется за ребром, соединяющим двух
актеров. Однако ребро не может быть создано, пока нет дескрипторов вершин для
обоих актеров. Поэтому название фильма сохраняется для последующего исполь-
зования.

< Сохранить название фильма в переменной > •
std::string moviejiame - *i++:
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Третьей лексемой является имя второго актера. Для включения в граф соот-
ветствующей вершины используется тот же способ, что и для первого актера.

( Взять имя второго актера и добавить к графу ) s
tietpos, inserted) = actors.insert(std: :make_pair(*i, VertexO));
if (inserted) {

v = add_vertex(g):
actor_name[v] = * i ;
pos->second = v;

} else v = pos->second:

На последнем шаге добавляем ребро между актерами и записываем название
объединяющего их фильма. Так как для параметра EdgeLi st используется sets, то
параллельные ребра не попадают в граф.

( Добавить ребро, связывающее двух актеров, к графу > •
graph_traits<Graph>::edge_descriptor e;
t i e ( e , inserted) = add_edge(u, v. g);
i f (inserted) connecting_movie[e] = moviejname;

Вычисление чисел Бэкона с помощью поиска в ширину
В нашем подходе для вычисления чисел Бэкона с помощью поиска в ширину числа
Бэкона вычисляются для всех вершин графа и поэтому необходимо где-нибудь
их хранить. Так как мы используем adjacencyj i st с параметром VertexLi st=vecS, де-
скрипторы вершин являются целыми числами из диапазона [0, | V |). Числа Бэко-
на могут быть записаны в std:: vector, индексом которого будет дескриптор вершины.

std::vector<int> bacon_number(num_vertices(g)):

Алгоритм breadth_first_search() принимает три аргумента: граф, исходную
вершину и именованные параметры. Исходная вершина должна быть вершиной,
соответствующей Кевину Бэкону, и может быть получена из отображения actors
(имя-вершина). Число Бэкона для самого Кевина Бэкона равно, разумеется, нулю.

Vertex src = actors["Kevin Bacon"];
bacon_number[src] = 0;

Для вычисления чисел Бэкона фиксируются расстояния вдоль кратчайших
путей. В частности, когда поиск в ширину находит древесную дугу (и, v), расстоя-
ние для v может быть вычислено как d[v] <— d[u] + 1. Для вставки этого действия
в алгоритм поиска в ширину определим класс-посетитель bacon_number_recorder,
моделирующий концепцию BFSVisitor. Вычисление расстояния будет осуществ-
ляться в функции-методе класса tree_edge() в событийной точке «встретилось
древесное ребро». Класс bacon_number_recorder унаследован от defaul t_bfs_vi si tor
с реализацией по умолчанию (пустой) остальных функций-методов класса для
оставшихся событийных точек (листинг 4. 3). Чтобы сделать посетителя более
универсальным, для доступа к расстоянию до вершины используется обобщен-
ный интерфейс LvaluePropertyMap.

Листинг 4.3. Класс bacon_number_recorder

template <typename DistanceMap>
class bacon number recorder : public default bfs visitor {
public:

bacon_number_recorder(DistanceMap dist) : d(dist) { } продолжение &
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Листинг 4.3 {продолжение)

template <typename Edge, typename Graph>
void tree_edge(Edge e. const Graphs g) const {
typename graph_traits<Graph>::vertex_descriptor

u = source(e. g). v = target(e, g):
d[v] = d[u] + 1:

}
private:

DistanceMap d:
}:

// Функция для удобства
template <typename DistanceMap>
bacon_number_recorder<DistanceMap>
record_bacon_number(DistanceMap d)

return bacon_number_recorder<DistanceMap>(d);

}

Теперь все готово для вызова breadth_fi rst_search(). Аргумент посетителя яв-
ляется именованным параметром, поэтому его необходимо передать, применив
функцию visitor О. В качестве отображения расстояний здесь используется ука-
затель на начало массива baconjnumber.

breadth_first_search(g, src,
visitor(record_bacon_number(&bacon_number[0])));

Число Бэкона для каждого актера выводится в цикле по вершинам графа.

graph_traits<Graph>::vertex_iterator i. end:
for (tie(i. end) - vertices(g): i !• end: ++i) {

std::cout « actor_name[*i] « " имеет число Бэкона "

« bacon_number[*i] « std::endl:
}
Ниже представлен фрагмент вывода полученной программы.

William Shatner имеет число Бэкона 2
Denise Richards имеет число Бэкона 1
Kevin Bacon имеет число Бэкона О
Patrick Stewart имеет число Бэкона 2
Steve Martin имеет число Бэкона 1

4.2. Поиск в глубину
Поиск в глубину является основной частью многих графовых алгоритмов. Поиск
в глубину использует и алгоритм нахождения сильно связной компоненты
(см. раздел 13.5.2), и алгоритм топологической сортировки (см. раздел 13.2.5).
Также поиск в глубину полезен и сам по себе. Например, его можно использовать
для вычисления достижимости и обнаружения циклов в графе (см. раздел 3.4).

Последняя возможность делает поиск в глубину полезным и для оптимизиру-
ющего компилятора, которому необходимо выявлять циклы в графе потока уп-
равления программы. В данном разделе описывается, как использовать функции
depth_first_search() и depth_first_visit() при рассмотрении примера обнаруже-
ния и определения границ циклов в графе потока управления.
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4.2.1. Определения
Поиск в глубину посещает каждую вершину графа ровно один раз. При выборе
следующего изучаемого ребра поиск в глубину всегда выбирает ход «глубже»
в граф (откуда и происходит его название). То есть поиск в глубину выбирает
следующую смежную еще не посещенную вершину, пока не дойдет до вершины,
у которой нет смежных не посещенных вершин. Затем алгоритм возвращается
к предыдущей вершине и продолжает идти вдоль еще не исследованных ребер, вы-
ходящих из этой вершины. После того как поиск в глубину посетил все достижи-
мые вершины (из конкретной исходной вершины), он выбирает одну из еще не
посещенных вершин и продолжает работу. При этом процессе создается множе-
ство деревьев поиска в глубину, которые вместе образуют лес поиска в глубину.
Распространение поиска в глубину на неориентированном графе показано на
рис. 4.2. Для каждого ребра обозначен порядок его прохождения.

Подобно алгоритму поиска в ширину, алгоритм поиска в глубину помечает
вершины цветами для отслеживания продвижения поиска по графу. Первоначаль-
но все вершины имеют белый цвет. Когда алгоритм посещает вершину, он окра-
шивает ее в серый цвет. После посещения всех потомков вершины она окрашива-
ется в черный цвет.

Поиск в глубину присваивает ребрам графа три категории: древесное ребро (tree
edge), обратное ребро (back edge) и прямое или поперечное ребро (forward or cross
edge). Древесное ребро — это ребро из леса поиска в глубину, который строит-
ся (явно или неявно) в процессе обхода графа. Более точно, ребро (и, v) явля-
ется древесным, если v была впервые посещена после прохождения ребра (и, v).
Во время поиска в глубину древесные ребра могут быть идентифицированы по
белому цвету вершины v. Вершина и называется предком, или родителем, верши-
ны v в дереве поиска, если {и, v) является древесным ребром. Обратное ребро со-
единяет вершину с одним из его потомков в дереве поиска.

Рис. 4.2. Распространение поиска в глубину по графу
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Этот тип ребра выявляется, если конечная вершина v исследуемого ребра (и, v)
имеет серый цвет. Петли считаются обратными ребрами. Прямое ребро — реб-
ро (и, v), не принадлежащее дереву поиска, которое соединяет вершину и с по-
томком v в дереве поиска. К поперечным относятся ребра, не входящие в пре-
дыдущие три категории. Если конечная вершина v изучаемого ребра окрашена
черным, то это либо прямое ребро, либо поперечное ребро (хотя мы не знаем, ка-
кое именно).

Существует много лесов поиска в глубину для данного графа, а значит, много
различных (и одинаково правильных) способов классифицировать ребра. Одним
из вариантов реализовать поиск в глубину является использование стека. Поиск
в глубину во время обработки вершины помещает в стек смежные вершины и из-
влекает одну вершину в качестве следующей для обработки. Другим (эквивалент-
ным этому) способом является использование рекурсивных функций.

Одним из интересных свойств поиска в глубину является то, что моменты по-
сещения и окончания обработки вершин образуют структуру скобок. Если мы
будем писать открывающую скобку при посещении вершины, а закрывающую —
при окончании обработки вершины, результатом будет набор правильно вложен
ных скобок. Здесь мы приведем скобочную структуру графа с рис. 4.2 после при-
менения поиска в глубину. Поиск в глубину является ядром других графовых
алгоритмов, включая топологическую сортировку и два алгоритма поиска связ-
ных компонент. Он может быть использован и для нахождения циклов (см. раз-
дел 3.4).

(а (с (f (g (d (b (e e) b) d) g)(h h) f) c) a) (i ( j j ) i)

4.2.2. Нахождение циклов в графах
потоков управления программы
Нашей задачей в этом разделе является использование поиска в глубину для на-
хождения циклов в графе потока управления программы. Пример графа потоков
показан на рис. 4.3. Каждый прямоугольник представляет базовый блок, содержа-
щий последовательность инструкций с одной точкой входа и одной точкой выхо-
да. Если между двумя блоками есть ребро как (В{, В6), то Вх — предшественник В:;

и В 6 - последователь для Bv Цикл определяется как набор блоков, где все блоки
достижимы один из другого вдоль некоторого пути графа потоков [32].

Нахождение циклов в графе потоков управления состоит из двух шагов. На
первом шаге ищутся все обратные ребра в графе. Каждое обратное ребро (u, v)
идентифицирует цикл, поскольку v — предшественник и в дереве поиска в глуби-
ну, и добавление (и, v) завершает цикл. Вершина v называется головой цикла. По-
иск в глубину используется для нахождения обратных ребер графа. Ребро (В7, В,)
(рис. 4.3) является примером обратного ребра. Второй шаг состоит в определе-
нии того, какие вершины какому циклу принадлежат.

Эти два шага объединены в шаблоне функции fi nd_l oops () (листинг 4.4). Эта
функция имеет три параметра: вершину entry, граф g и контейнер для хранения
вершин каждого цикла. Тип Graph должен моделировать BidirectionalGraph, чтобы
можно было иметь доступ как к входящим, так и к исходящим ребрам графа (ли-
стинг 4.7). Тип Loop является контейнером, элементы которого — наборы вершин.
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Обратные ребра из первого шага хранятся в векторе back_edges, a col orjnap приме-
няется для отслеживания продвижения поиска в глубину.

Entry

/

в,
\

е3

•

Рис. 4.3. Граф потоков управления программы

Листинг 4.4. Шаблон функции find_loops()

( Шаблон функции find_loops > ш
template <typename Graph, typename Loops>
void find_loops(

typename graph_traits<Graph>::vertex_descriptor entry.
const Graph& g,
Loops& loops) // Контейнер с набором вершин

•

function_requires< BidirectionalGraphConcept<Graph> >();
typedef typename graph_traits<Graph>::edge_descriptor Edge:
typedef typename graph_traits<Graph>::vertex_descriptor Vertex;
std::vector<Edge> back_edges;
std::vector<default_color_type> color_map(num_vertices(g));
< Найти все обратные ребра графа >
< Найти все вершины каждого цикла >

На первом шаге создается back_edge_recorder из DFSVisitor, который будет запи-
сывать обратные ребра во время поиска в глубину. Чтобы сделать этот класс по-
вторно используемым, механизм хранения обратных ребер не задан, а парамет-
ризован как Outputlterator. Класс back_edge_recorder, как обычно, наследует из
defaul t_df s_vi si tor, с тем чтобы иметь пустые заглушки для функций событийных
точек, которые back_edge_recorder не определяет. Реализовать нужно только функ-
цию-метод класса back_edge(). В листинге 4.5 приведены коды шаблона класса
back_edge_recorder и функции для порождения объектов этого класса.
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Листинг 4.5. Класс регистратора обратных ребер

< Класс регистратора обратных ребер ) •
template <typename Outputlterator>
class back_edge_recorder : public default_dfs_visitor {
public:

back_edge_recorder(OutputIterator out) : m_out(out) { }
template <typename Edge, typename Graph>
void back_edge(Edge e. const Graph&) { *m_out++ - e; }

private:
Outputlterator m_out;

}:
// Функция для порождения объектов
template <typename Outputlterator>
back_edge_recorder<OutputIterator^
make_back_edge_recorder(OutputIterator out) {

return back edge recorder<0utputlterator>(out);
} " "
Теперь все готово для вызова функции поиска в глубину. Мы выбираем

depth_fi rst_vi s i t ( ) вместо depth_fi rst_search(), так как все вершины графа пото-
ков достижимы из исходной вершины. Поэтому вершина entry передается внутрь
как начальная точка поиска. Третий аргумент — посетитель, который будет реги-
стрировать обратные ребра. Аргумент для make_back_edge_recorder() должен быть
итератором вывода, адаптер std: :back_insert_iterator используется для записи
в вектор обратных ребер. Последний параметр — depth_first_visit() — предназ-
начен для отображения цветового свойства, которое поиск в глубину будет ис-
пользовать при отслеживании продвижения по графу. Это отображение создает-
ся итератором вектора colorjnap (см. раздел 15.2.2).

< Найти все обратные ребра графа ) в
d e p t h _ f i r s t _ v i s i t ( g , entry,

make_back_edge_recorder(std::back_inserter(back_edges)),
make_iterator_property_map(color_map.begin(). get(vertexj ndex, g ) ) ) ;

На втором шаге процесса определения циклов мы устанавливаем, какие вер-
шины входят в каждый цикл (листинг 4.6). Для каждого обратного ребра, найден-
ного на первом шаге, вызывается функция compute_loop_extent(), которая нахо-
дит все вершины, принадлежащие циклу.

Листинг 4.6. Нахождение всех вершин каждого цикла

< Найти все вершины каждого цикла ) •
for (std::vector<Edge>::size_type i = 0: i < back_edges.size(): ++1) {
loops.push_back(typename Loops: :value_typeO):
compute_loop_extent(back_edges[i], g. loops.backO):

}

Чтобы вершина v принадлежала циклу обратного ребра {t, h), v должна быть
достижима из h и t должна быть достижима из ». Поэтому функция compute_
loop_extent() (листинг 4.7) состоит из трех шагов: вычисление всех вершин, до-
стижимых из головной вершины, вычисление всех вершин, из которых достижим
хвост цикла, и пересечение этих двух множеств вершин.

Листинг 4.7. Вычисление границ цикла

( Вычислить границы цикла ) •

template <typename Graph, typename Set>
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void compute_loop_extent(
typename graph_traits<Graph>::edge_descriptor back_edge.
const Graphs g, Set& loop set)
r

function_requires< BidirectionalGraphConcept<Graph> >():
typedef typename graph_traits<Graph>::vertex_descriptor Vertex:
typedef color_traits<default_color_type> Color:

Vertex loopjiead, loop_tail:
loop_tail - source(back_edge. g):
loopjiead = target Сback_edge, g):

( Вычислить границы цикла: достижимы из головы )
< Вычислить границы цикла: достижимы к хвосту )
< Вычислить границы цикла: пересечение наборов достижимости >

Для вычисления всех вершин, достижимых из головной вершины цикла, сно-
ва используется depth_fi rst_vi sit(). В этом случае не требуется определять ново-
го посетителя, поскольку нужно только знать, какие вершины были посещены,
а это может быть определено по цвету уже после запуска поиска в глубину. Вер-
шины, окрашенные в черный или серый (но не в белый) цвет, были посещены
в ходе поиска в глубину. Цветовые свойства хранятся в векторе reachabl e_f rom_head.
Все вершины, достижимые из блока Bv показаны на рис. 4.4.

Рис. 4.4. Вершины, доступные из блока

< Вычислить границы цикла: достижимы из головы ) =
std::vector<default_color_type>

reachable_from_head(num_vertices(g), Color::white()):
depth_f i rs t_v is i t (g, loopjiead, defaul t_dfs_v is i tor() .

makej terator_property_map(reachable_fromjnead.begi n ( ) .
get(vertex_index, g ) ) ) ;
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На втором шаге необходимо вычислить все вершины, из которых достижим
блок В7. Для этого выполним поиск в глубину «против течения». То есть вместо
обхода по исходящим ребрам каждой вершины обходятся входящие ребра. Функ-
ция depth_f i rst_vi s i t () из BGL применяет функцию out_edges () для доступа к сле-
дующим вершинам, однако она может быть применена к нашей ситуации, если
мы используем адаптер reverse_graph. Этот адаптер берет BidirectionalGraph и вы-
дает представление графа, в котором исходящие и входящие ребра поменялись
местами.

Следующий код показывает, как это может быть сделано. Все вершины, из ко
торых доступен блок В7, отображены на рис. 4.5.

( Вычислить границы цикла: достижимы к хвосту ) =
std: :vector<default_color_type> reachable_to_tail(rium_vertices(g)):
reverse_graph<Graph> reverse_g(g):
depth_first_visit(reverse_g. loop_ta i l . defaul t_dfs_v is i tor() .

make_iterator_property_map(reachable_to_tail .beginO.
get(vertex_index. g ) ) ) ;

На последнем шаге вычисления вершин, принадлежащих циклу, осуществля-
ется пересечение двух полученных ранее множеств достижимости. Вершина вно-
сится в 1 oop_set в случае, если она достижима из головной вершины и если «хвост»
достижим из нее.

{ Вычислить границы цикла: пересечение наборов достижимости ) з
typename graph_traits<Graph>: : v e r t e x j t e r a t o r v i , vi_end:

for ( t i e ( v i . vi_end) = vert ices(g): vi != vi_end: ++vi)
i f (reachable_from_head[*vi] != Color::white()

&& reachable_to_tai l[*vi] !- Color::white())
loop_set. insert(*v i) :

Рис. 4.5. Вершины, из которых доступен блок В7



Задачи
нахождения
кратчайших путей

В этой главе мы решаем некоторые задачи маршрутизации пакетов с использова-
нием алгоритмов нахождения кратчайших путей. В первом разделе проблема крат-
чайшего пути объясняется в общем виде и напоминаются некоторые определе-
ния. Второй раздел является кратким введением в пакетную маршрутизацию.
Третий и четвертый разделы описывают два наиболее часто используемых про-
токола маршрутизации пакетов и представляют реализацию их основных алго-
ритмов с помощью BGL.

5.1. Определения
Путем называется последовательность вершин <v0, vv ..., vk> в графе G = (V, Е),
такая, что каждое из ребер (х>„ vX4l) находится в наборе Е(каждая вершина соеди-
нена со следующей вершиной последовательности). В задаче нахождения крат-
чайшего пути каждое ребро (и, v) имеет вес w(u, v). Вес пути (или длина пути)
определяется как сумма весов каждого ребра пути:

4-1
w(p) = Yw(vitvi+l).

i-0
Вес Ъ{и, v) кратчайшего пути из вершины и в вершину v — это минимум весов

всех возможных путей из и в о. Если пути из и в v не существует, 5(м, v) - »:

f min{w(p):u-+v}

Кратчайшим путем называется любой путь, вес которого равен весу кратчай-
шего пути. Пример кратчайшего пути показан на рис. 5.1.

Задача кратчайшего пути между двумя вершинами состоит в нахождении крат-
чайшего пути, соединяющего две данные вершины. Задача кратчайших путей из
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одной вершины заключается в нахождении кратчайшего пути от заданной верши-
ны до всех других вершин графа. Набор кратчайших путей, исходящих из одной
вершины, называется деревом кратчайших путей. Задача кратчайшего пути меж-
ду всеми парами вершин графа состоит в нахождении кратчайших путей из каж-
дой вершины графа в каждую другую.

Рис. 5.1. Кратчайший путь от вершины а до е обозначен черными стрелками

Как оказалось, для решения задачи кратчайшего пути между двумя вершина-
ми не существует алгоритмов, которые были бы асимптотически более быстры-
ми, чем алгоритмы для решения задачи кратчайших путей из одной вершины,
Библиотека BGL включает в себя два классических метода для решения задачи
кратчайшего пути из одной вершины: алгоритм Дейкстры и алгоритм Беллмана-
Форда. Также BGL включает алгоритм Джонсона для нахождения кратчайших
путей между всеми парами вершин.

Алгоритмы нахождения кратчайших путей широко применяются во многих
областях. Одним из важных современных применений является маршрутизация
пакетов в Интернете. Протоколы, которые управляют информационными паке-
тами при передаче через Интернет, используют алгоритмы кратчайших путей для
сокращения времени прохождения пакета до его назначения.

5.2. Маршрутизация в Интернете
Когда компьютер отправляет сообщение другому компьютеру с использованием
интернет-протокола (IP), содержимое сообщения укладывается в пакет. Каждый
пакет помимо данных сообщения (полезная составляющая) включает метаданные,
такие так адреса источника и приемника, длина данных, порядковый номер и т. п.
Если сообщение большое, данные разбиваются на меньшие части, каждая из ко-
торых пакуется отдельно. Индивидуальные части снабжены порядковыми номе-
рами, так что исходное сообщение может быть собрано на принимающей стороне.

Если адрес назначения для пакета находится вне локальной сети, пакет от-
правляется с исходной машины на интернет-маршрутизатор (internet router).
Маршрутизатор направляет получаемые пакеты другим маршрутизаторам, исходя
из таблицы маршрутизации, которая создается на основании протоколов маршру-
тизации. Путешествуя с одного маршрутизатора на следующий (то есть совершая
переход, hop), пакеты прибывают на место назначения. Если сеть перегружена,
некоторые пакеты могут быть потеряны. Для надежной доставки применяются
протоколы более высокого уровня, например протокол управления передачей (Trans-
mission Control Protocol, TCP). Он использует квитирование (установление свя-
зи) между отправителем и получателем, чтобы потерянные пакеты передавались
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вновь. Программа системы Unix traceroute (или ее Windows-аналог tracert) мо-
жет быть использована для прослеживания пути от вашего компьютера к другим
узлам Интернета.

Конечная цель процесса маршрутизации состоит в доставке пакетов до пункта
назначения как можно быстрее. На продолжительность доставки пакета влияет
множество факторов, например количество переходов (hops), задержки внутри
маршрутизаторов, задержки передачи между маршрутизаторами, пропускная спо-
собность сети и т. д. Протокол маршрутизации должен выбирать наилучшие пути
между маршрутизаторами — эта информация хранится в таблице маршрутизации.

Задача маршрутизации может быть смоделирована в виде графа, в котором
каждая вершина является маршрутизатором, а каждое прямое соединение между
маршрутизаторами — ребром. Ребру приписаны такие данные, как задержка и про-
пускная способность. Граф для простой сети маршрутизаторов представлен
на рис. 5.2. У соединений обозначены средние задержки передачи. Теперь задача
маршрутизации сведена к задаче кратчайших путей.

Г \

1.2ms j j , G

\ ^
F

Рис. 5.2. Интернет-маршрутизаторы, соединенные друг с другом

5.3. Алгоритм Беллмана-Форда и маршрутизация
с помощью вектора расстояний
Некоторые из первых интернет-протоколов маршрутизации, например протокол
маршрутной информации (Routing Information Protocol, RIP) [19], использовали
вектор расстояний. Основная идея RIP — поддерживать на каждом маршрутизато-
ре оценку расстояния до всех других маршрутизаторов и периодически сравнивать
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эти записи со своими соседями. Если маршрутизатор узнает о более коротком пути
до некоторого пункта назначения от одного из своих соседей, он обновляет запись
о расстоянии до этого пункта и изменяет свою таблицу маршрутизации так, что-
бы пакеты в этот пункт шли через данного соседа. По прошествии некоторого вре-
мени оцененные расстояния, хранимые таким распределенным способом, гаран-
тированно сходятся к истинным расстояниям, давая маршрутизаторам точную
информацию о наилучшем пути.

Алгоритм протокола RIP является распределенной формой алгоритма Беллма-
на-Форда для нахождения кратчайшего пути из одной вершины [5,13]. Основной
шаг алгоритма Беллмана-Форда называется релаксацией ребра и соответствует
сравнению своих записей с соседями. Операция релаксации, примененная к ре-
бру {и, v), выполняет следующее обновление:

d[v] = min(w(u, v) + d[u],d[v]).

Алгоритм Беллмана-Форда содержит цикл по всем ребрам графа, в котором
релаксация применяется к каждому ребру. Алгоритм повторяет цикл | V | раз, поел е
чего расстояния гарантированно сокращаются до минимально возможных (если,
конечно, в графе нет цикла с отрицательным весом). Если в графе есть отрицатель-
ный цикл, то в нем будут неправильно минимизированные ребра, то есть найдет-
ся ребро (и, v), такое что w(u, v) + d[u] < d[v], где w — вес, ad — расстояние. Для
проверки того, что минимизация прошла успешно, алгоритм делает дополнитель-
ный проход и возвращает истину, если это так, и ложь — в противном случае.

Функция bel I man_f ord_shortest_paths () реализует алгоритм Беллмана-Форда.
В следующем разделе будет показано, как использовать ее для решения задачи
маршрутизации. Схема файла bellman-ford-internet.ерр программы приведена
в листинге 5.1.

Листинг 5.1. Файл bellman-ford-internet.cpp

< bellman-ford-internet.cpp ) •
iinclude <iostream>
finclude <boost/array.hpp>
#i nclude <boost/graph/edge_li st.hpp>
#include <boost/graph/bel1man_ford_shortest_paths.hpp>

int mainO
r

using namespace boost;
< Подготовить сеть маршрутизаторов )
< Присвоить веса ребрам )
< Создать хранилище для свойств вершин )
( Вызвать алгоритм Беллмана-Форда )
< Вывести расстояния и родителей )
return EXIT SUCCESS;

j

Первый аргумент функции bel I man_ford_shortest_paths () является графовым
объектом. Тип этого графового объекта должен моделировать концепцию Edge-
ListGraph. Многие из графовых классов BGL моделируют EdgeListGraph и, следова-
тельно, могут быть использованы с этим алгоритмом. Здесь мы применим шаб-
лон класса edgej ist , который является адаптером. Он позволяет представлять
множество значений итератора в виде графа. Тип значений итератора должен быть
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std:: pai г — пара дескрипторов вершин. Дескрипторы вершин могут быть практи-
чески любого типа, хотя мы используем целые числа для удобства применения их
в качестве индексов в массивах.

В нашем случае ребра хранятся в boost:: array, где каждое ребро есть std:: pai г.
Каждой вершине приписан идентификационный номер, заданный с помощью
перечисления. Параметры шаблона для edge_l 1 st содержат тип итератора, тип
значения итератора и тип разности итераторов1. Код по подготовке сети маршру-
тизаторов приведен в листинге 5.2.

Листинг 5.2. Подготовка сети маршрутизаторов

( Подготовить сеть маршрутизаторов > =
II Идентификационные номера для маршрутизаторов (вершин)
enum { А, В, С. D, Е. F. G, H. n_vertices };
const int n_edges = 11;
typedef std::pair<int, int> Edge:

// Список соединений между маршрутизаторами, сохраненный в массиве
array<Edge. n_edges> edges = { { Edge(A. B). Edge(A, С).

EdgetB. D), Edge(B. E). Edge(C. E), Edge(C. F). Edge(D. H).
Edge(D. E), Edge(E. H). Edge(F. G). EdgetG. H) } };

// Указание типа графа и определение графового объекта
typedef edge_list<array<Edge. n_edges>::iterator> Graph;
Graph g(edges.begin(). edges.endO);

Для передачи веса ребра (задержек передачи) в алгоритм нужно определить ото-
бражение весового свойства ребра, моделирующее концепцию ReadablePropertyMap.
По умолчанию параметр weightmapO является внутренним отображением свой-
ства веса ребра графа, которое может быть получено с помощью get (edge_wei ght, g).
Поскольку класс edge_l i st не поддерживает определенные пользователем внут-
ренние отображения свойств, веса ребер должны храниться не в нем и аргумент
отображения свойства должен быть передан в функцию явно. Класс edgel i st пре-
доставляет отображение свойства ребро-индекс, так что индексы ребер могут быть
использованы как смещения в массиве свойств ребер. В нашем случае там хра-
нятся задержки передачи. Приведенный ниже код создает массив значений за-
держек передачи.

( Присвоить веса ребрам > •
// Значения задержек передачи для каждого ребра
array<float. n_edges> delay -

{ { 5.0. 1.0. 1.3. 3.0. 10.0. 2.0. 6.3. 0.4, 1.3, 1.2, 0.5 } }:

Массив del ay обеспечивает хранение весов ребер, но не предоставляет интер-
фейс отображения свойств, требуемый алгоритмом для отображения дескрипто-
ров ребер в вес. Необходимый интерфейс отображения свойств предоставляется
классом-адаптером iterator_property_map из библиотеки Boost Property Map
Library. Этот класс преобразует итератор (такой, как итератор для массива значе-
ний задержек) в LvaluePropertyMap. Удобным средством для создания адаптера яв-
ляется вспомогательная функция make_iterator_property_map(). Первый аргумент —

1 Для компиляторов с работающей версией std::iterator_traits шаблонные параметры edge_list типа
значения и тина разности не нужны, так как имеются правильные параметры по умолчанию.
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итератор, второй — отображение из ребер в индексы ребер, и третий аргумент —
объект типа значений итератора, который нужен только для вывода типа. Вызов
функции make_iterator_property_map() может быть таким:

< Создать отображение свойства для задержек ) •
make_iterator_property_map(delay.begin(), get(edge_index. g), delay[0])

В качестве значения, возвращаемого функцией, служит созданный объект-
адаптер, который затем передается функции Беллмана-Форда. Функция get О
извлекает отображение edge_i ndex из объекта-графа и является частью интерфей-
са PropertyGraph.

Вершинам графа приписано несколько свойств. Как и на рис. 5.2, вершины
обозначены буквами (это их имена). Метки расстояний требуются для записи длин
кратчайших путей. Наконец, отображение предков parent используется для запи-
си дерева кратчайших путей. Для каждой вершины в графе отображение предков
записывает родителя данной вершины в соответствии с деревом кратчайших пу-
тей, то есть каждое ребро (parent[u], u) является ребром в дереве кратчайших пу-
тей.

Класс edge_l 1 st не обеспечивает методы для задания свойств вершин (верши-
ны — только целые числа). Свойства хранятся в отдельных массивах с номером
вершины в качестве индекса (листинг 5.3). Начальным значением расстояний
является бесконечность, и родителем каждой вершины первоначально устанав-
ливается она сама.

Листинг 5.3. Создание хранилища свойств вершин

< Создать хранилище для свойств вершин > s
// Определение хранилищ для некоторых "внешних" свойств вершин
char name[ ] = "ABCDEFGH";
array<int. n_vertices> parent:
for (int i = 0; i < n_vertices: ++i)

parent[i] = i ;
array<float, n_vertices> distance:
distance.assign(std::numeric_limits<float>::max()):
// Обозначим А как исходную вершину
distanced] = 0:

Поскольку описатели вершин графа edge_l 1 st являются целыми числами, ука-
затели на массивы свойств подходят в качестве отображений свойств, так как Boost
Property Map Library включает специализации для встроенных типов указателей
(см. раздел 15.2.1).

Ниже показан вызов bellman_ford_shortest_paths(). Расстояния кратчайших
путей записаны в векторе расстояний, а родитель каждой вершины (в соответ-
ствии с деревом кратчайших путей) записан в вектор родителей.

< Вызвать алгоритм Беллмана-Форда > •
bool г = be11man_ford_shortest_paths(g. int(n_vert ices).

weight_map( < Создать отображение свойства для задержек ) ).
di stance_map(&di stance[0]).
predecessor_map(&parent[0])):

Программа завершается выводом предков и расстояний для каждого маршру-
тизатора в сети или выводит предупреждение пользователю об отрицательном
цикле в сети.
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( Вывести расстояния и родителей ) •
i f (г)

for ( i n t i = 0: i < n_vertices: ++i)
std::cout « name[i] « ": " « distanced]

« " " « name[parent[i]] « std::endl;
else

std::cout « "отрицательный цикл" « std::endl;

Для нашего примера программа выдаст следующее:

А:
В:
С:
D:
Е:
F:
G:
Н:

0
5
1
6.
6.
3
4.
4.

3
7

2
7

А
А
А
В
D
С
F
G

Таким образом, работая в обратную сторону через предков, мы можем видеть,
что кратчайший путь от маршрутизатора А до маршрутизатор Я есть (A,C,F,G,H).

5.4. Маршрутизация с учетом состояния линии
и алгоритм Дейкстры
Уже к началу 1980-х годов появились сомнения в масштабируемости маршрути-
зации по вектору расстояний. Проблемы вызывали следующие два аспекта:

• В среде, где топология сети часто изменяется, маршрутизация по вектору
расстояний сходилась слишком медленно, чтобы поддерживать точную ин-
формацию о расстояниях.

• Сообщения с обновлениями содержали расстояния до всех узлов, так что
размер сообщения рос вместе с размером всей сети.

Для решения этих проблем была разработана маршрутизация с учетом состо-
яния линии (Link-State Routing) [28, 37]. При такой маршрутизации каждый мар-
шрутизатор хранит графовое представление топологии всей сети и вычисляет
свою таблицу маршрутизации по этому графу, используя алгоритм Дейкстры. Для
поддержания графа в актуальном состоянии маршрутизаторы совместно исполь-
зуют информацию о состоянии линий: какие линии открыты («up»), а какие нет
(«down»). Когда возможности связи изменяются, по всей сети распространяется
информация в виде объявления состояния линии.

Поскольку совместно использовать нужно только локальную информацию
(связь с соседями), маршрутизация с учетом состояния линии не страдает от про-
блем с большим размером сообщения, как это происходит при маршрутизации по
вектору расстояний. Кроме того, так как каждый маршрутизатор вычисляет свои
собственные кратчайшие расстояния, реакция на изменения в сети и перевычис-
ление точных таблиц маршрутизации занимает намного меньше времени. Недо-
статком маршрутизации с учетом состояния линии является то, что она требует
от маршрутизатора больше вычислений и памяти. Но даже с учетом этого данный
вид маршрутизации признан эффективным и формализован в виде протокола
маршрутизации с определением кратчайшего маршрута (Open Shortest Path First
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protocol, OSPF) [33]. Сейчас он является одним из предпочитаемых протоколов
для внутренней маршрутизации между шлюзами.

Алгоритм Дейкстры находит все кратчайшие пути из исходной вершины до
каждой вершины графа, последовательно наращивая множество вершин 5, для
которых известен кратчайший путь. На каждом шаге алгоритма вершина из мно-
жества V- S с наименьшей меткой расстояния добавляется к S. Затем исходящие
ребра вершины релаксируются с использованием того же способа, что и в алго-
ритме Беллмана-Форда, по формуле d[v] ~ min(w(u, v) + d[u],d[v]). Затем алго-
ритм повторяет цикл, обрабатывая следующую вершину из V- S с наименьшей
меткой расстояния. Алгоритм завершается, когда в 5 оказываются все вершины,
достижимые из исходной.

В оставшейся части этого раздела мы покажем, как использовать функцию
dijkstra_shortest_paths() из BGL при решении задачи поиска кратчайшего пути
из одной вершины в сети маршрутизаторов и как вычислять таблицу маршрути-
зации. Пример сети, описанной в RFC 1583, изображен на рис. 5.3. Интернет-мар-
шрутизаторы используют единый протокол маршрутизации. RT обозначает мар-
шрутизатор (router), N — сеть (network), под которой понимается блок адресов,
трактуемых как единый пункт назначения, Н — хост. Веса ребер указывают сто-
имость передачи.

Для демонстрации алгоритма Дейкстры мы вычислим дерево кратчайших пу-
тей для маршрутизатора RT6. Основные шаги программы показаны в листинге 5.4.

Листинг 5.4. Вычисление дерева кратчайших путей для маршрутизатора RT6

( ospf-example.cpp > =
i include <fstream> // для файлового ввода-вывода
linclude <boost/graph/graphviz.hpp> // для read/write_graphviz()
#i nclude <boost/graph/di jkstra_shortest_paths.hpp>
#include <boost/1exica1_cast.hpp>
i n t mainO
{
using namespace boost;
< Читать орграф из dot-файла Graphviz >
( Копировать орграф, преобразуя строковые метки в целые веса )
< Найти шестой маршрутизатор >
( Подготовить отображение свойства родителей
для записи дерева кратчайших путей )

< Выполнить алгоритм Дейкстры >
< Покрасить все ребра дерева кратчайших путей черным >
< Записать новый граф в dot-файл Graphviz >
< Записать таблицу маршрутизации для шестого маршрутизатора >
return EXIT_SUCCESS;

}

На первом шаге создается граф. Граф на рис. 5.3 представлен как dot-файл
Graphviz. Пакет Graphviz предоставляет инструменты для автоматической компо-
новки и рисования графов. Он доступен на сайте www.graphviz.org. Программы
Graphviz используют специальный формат файла для графов, называемый dot-фай-
лами. Библиотека BGL включает в себя анализатор для чтения этого формата в граф
BGL. Анализатор можно использовать с помощью функции read_graphviz(), опреде-
ленной в boost/graph/graphviz.hpp. Так как граф ориентированный, мы используем
тип GraphvizDi graph. Для неориентированного графа применяется тип GraphvizGraph.
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Рис. 5 . 3 . Интернет-маршрутизаторы в виде ориентированного графа

( Читать орграф из dot-файла Graphviz ) з
GraphvizDigraph g_dot;
r e a d _ g r a p h v i z ( " f i g s / o s p f - g r a p h . d o t " , g _ d o t ) ;

4 Зак. 375
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Тип GraphvizDi graph хранит свойства вершин и ребер как строки. Хотя строки
могут быть удобны для файлового ввода-вывода и печати, веса ребер должны быть
целыми числами, чтобы ими было легко манипулировать внутри алгоритма
Дейкстры. Таким образом, g_dot копируется в новый граф. Каждое ребро в типе
Graphvi zDi graph обладает рядом атрибутов, которые записаны в std:: map<std:: st ri ng.
std:: stri ng>. Веса ребер хранятся в атрибуте «label» каждого ребра. Эта метка пре-
образуется в int при помощи boost: :lexica1_cast, и затем ребро вставляется в но-
вый граф. Поскольку типы Graph и Graphvi zDi graph основаны на ad jacencyj i st с па-
раметром VertexList=vecS, типы дескрипторов вершин у обоих графов — целые
числа. Результат source(*ei. g_dot) может, таким образом быть непосредственно
использован в вызове add_edge() для графа д. Код копирования орграфа приведен
в листинге 5.5.

Листинг 5.5. Копирование орграфа

( Копировать орграф, преобразуя строковые метки в целые веса > •
typedef adjacencyj ist < vecS. vecS, directedS. no_property.

property < edge_weight_t, int > > Graph;
typedef graph_traits < Graph >::vertex_descriptor vertex_descriptor:
Graph g(num_vertices(g_dot)):
property_map < GraphvizDigraph, edge_attribute_t >::type

edge_attr_map = get(edge_attribute, g_dot):
graphjtraits < GraphvizDigraph >::edge_iterator e i , ei_end:
for ( t i e ( e i . ei_end) = edges(g_dot): ei != ei_end: ++ei) {

i n t weight = lexical_cast < int >(edge_attr_map[*ei]["label"]);
property < edge_weight_t, int >edge_property(weight);
add_edge(source(*ei, g_dot). target(*e i . g_dot), edge_property, g):

}

Для того чтобы шестой маршрутизатор стал исходной вершиной поиска крат-
чайших путей, нужно определить его дескриптор. Программа ищет вершину с мет-
кой атрибута «RT6».

< Найти шестой маршрутизатор ) =
vertex_descriptor router^six:
propertyjrap < GraphvizDigraph, vertex_attribute_t >::type

vertex_attr_map - get(vertex_attribute, g_dot);
graph_traits < GraphvizDigraph >::vertex_iterator v i , vi_end;
for ( t i e ( v i . vi_end) = vertices(g dot); vi != vi_end; ++vi)

i f ("RT6" == vertex_attr_map[*vT]["label"]) {
router_six = * v i ;
break;

}

Совместно кратчайшие пути от шестого маршрутизатора до других маршру-
тизаторов образуют дерево кратчайших путей. Эффективным способом для пред-
ставления такого дерева является запись родителей каждого узла в дереве. Здесь
мы просто используем std:: vector для записи родителей.

( Подготовить отображение свойства родителей
для записи дерева кратчайших путей ) ш
std:;vector < vertex_descriptor > parent(num_vertices(g)):
// Все вершины вначале являются своими родителям/
typedef graph_traits < Graph >::vertices_size_type size_type;
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for (size_type p = 0: р < num_vertices(g); ++р)
parent[p] - р:

Теперь все готово для вызова алгоритма Дейкстры. Мы передаем ему массив
родителей через именованный параметр predecessor_map().

( Выполнить алгоритм Дейкстры ) •
dijkstra_shortest_paths(g. router_six. predecessor_map(&parent[0]));

Для подготовки к выводу графа в dot-файл Graphviz мы «красим» цвета дре-
весных ребер в черный цвет. Древесные ребра были записаны в массив parent.
Для каждой вершины i ребро (parent[i], i) является древесным ребром, если не
выполняется равенство parent[i ] = i. В противном случае i — корневая или недо-
стижимая вершина.

< Покрасить все ребра дерева кратчайших путей в черный ) в
graph_traits < GraphvizDigraph >::edge_descriptor e:
for (size_type i = 0; i < num_vertices(g); ++i)

i f (parent[ i ] != i ) {
e = edge С parent [ i ] , i , g_dot). f i r s t :
edge_attr_map[e]["color"] = "black";

}

Теперь мы можем записать граф в dot-файл. Для ребер цветом по умолчанию
выберем серый (для недревесных ребер). Вычисленное дерево кратчайших путей
для шестого маршрутизатора представлено на рис. 5.4.

( Записать новый граф в dot-файл Graphviz ) =
graph_property < GraphvizDigraph, graph_edge_attribute_t >::type &

graph_edge_attr_map = get_property(g_dot. graph_edge_attribute):
graph_edge_attr_map["color"] = "grey";
write_graphviz("figs/ospf-sptree.dot". g_dot);

На последнем шаге вычисляется таблица маршрутизации для шестого мар-
шрутизатора. Таблица маршрутизации имеет три колонки: пункт назначения (des-
tination), следующий переход (hop) в сторону узла назначения и полное рас-
стояние до узла назначения. Для заполнения таблицы маршрутизации создаются
записи для каждого пункта назначения в сети. Информация для каждого узла
может быть получена обратным прохождением кратчайшего пути от назначения
до шестого маршрутизатора по отображению родителей. Узлы, являющиеся сво-
ими собственными родителями, пропускаются, так как это либо сам шестой мар-
шрутизатор, либо недостижимый узел.

< Записать таблицу маршрутизации для шестого маршрутизатора ) •
std::ofstream rtable("routing-table.dat");
rtable « "Dest Next Hop Total Cost" « std::endl;
for (tie(vi, vi_end) = vertices(g_dot); vi != vi_end: ++vi)

if (parent[*vi] != *vi) {
rtable « vertex_attr_map[*vi]["label"] « " ";
( Следовать по пути назад к шестому маршрутизатору по родителям )
}

Во время следования по пути из конечного пункта к шестому маршрутизатору
веса путей суммируются в path_cost. Мы также записываем дочерний узел теку-
щей вершины, так как по завершении цикла эта вершина будет использоваться
в качестве следующего перехода.
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Рис. 5.4. Дерево кратчайших путей для шестого маршрутизатора

< Следовать по пути назад к шестому маршрутизатору по родителям > •
vertex_descriptor v = * v i . c h i l d :
i n t path_cost = 0;
propertyjnap < Graph, edge_weight_t >::type
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weightjnap - get(edge_weight, g);
do {

path_cost += get(weightjnap. edge(parent[v], v, g).first);
child = v:
v » pa rent[v];

} while (v != parent[v]);
rtable « vertex_attr_map[child]["label"] « " ":
rtable « path_cost « std::endl;

Результирующая таблица маршрутизации выглядит так:

Назначение
Dest
RT1
RT2
RT3
RT4
RT5
RT7
Р.Г8
RT9
RTIO
RT11
RT12
N1
N2
N3
N4
N6
N7
N8
N9
N10
N12
N13
N14
N15
HI

След.переход
Next Hop
RT3
RT3
RT3
RT3
RT5
RTIO
RTIO
RTIO
RTIO
RTIO
RTIO
RT3
RT3
RT3
RT3
RTIO
RTIO
RTIO
RTIO
RTIO
RTIO
RT5
RT5
RTIO
RTIO

Полная стоимость
Total Cost
7
7
6
7
.6
8
8
11
7
10
11
10
10
7
8
8
12
10
11
13
10
14
14
17
21

-



Задача
минимального
остовного дерева

Библиотека Boost Graph Library реализует два классических алгоритма для нахож-
дения минимального остовного дерева: алгоритм Краскала [23] и алгоритм При-
ма [38]. Задача нахождения минимального остовного дерева появляется во многих
приложениях, таких как планирование телефонной сети, построение монтажной
электрической схемы, упаковка данных. В этой главе мы применяем алгоритмы
BGL к задаче планирования телефонной сети.

6.1. Определения
Задачу минимального остовного дерева можно определить следующим образом.
Для данного неориентированного графа G = (V, Е) необходимо найти ациклическое
подмножество его ребер TczE, которое соединяет все вершины в графе и общий
вес которого минимален. Общий вес остовного дерева — это сумма весов ребер из 7:

w(T) = ^ w(u,v).
(и,»)еГ

Ациклическое подмножество ребер, которое соединяет все вершины графа,
называется остовным деревом. Минимальным остовным деревом называется ос-
товное дерево Тс минимальным полным весом.

6.2. Планирование телефонной сети
Предположим, что в ваши обязанности входит проведение телефонных линий для
некоторого отдаленного региона. Регион состоит из нескольких городов и дорож -
ной сети. Проведение телефонной линии требует возможности подъезда на гру-
зовике, а значит, необходимости дороги вдоль всего маршрута линии. Ваш бюд-
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жет достаточно невелик и строительства новых дорог не предусматривает: теле-
фонные линии должны идти вдоль существующих дорог. Также желательно ми-
нимизировать общую длину телефонного кабеля, который потребуется для со-
единения всех населенных пунктов региона.

Поскольку регион малонаселен, такие факторы, как пропускная способность,
не рассматриваются. Пример отдаленного региона с городами, соединенными меж-
ду собой дорогами, в виде взвешенного графа представлен на рис. 6.1. Длины до-
рог обозначены в милях. Нашей целью является нахождение оптимального рас-
положения телефонных линий. Сначала мы решим эту задачу, используя алгоритм
Краскала, а затем с помощью алгоритма Прима.
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Рис. 6.1. Города, соединенные сетью дорог, в виде взвешенного графа
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6.3. Алгоритм Краскала

Алгоритм Краскала стартует с того, что каждая вершина является сама по себе
деревом, без ребер из множества Г, которое и составит минимальное остовное де-
рево. Затем алгоритм проверяет каждое ребро графа в порядке увеличения веса
ребра. Если ребро соединяет две вершины в разных деревьях, алгоритм сливает
эти деревья в одно и добавляет ребро к множеству Т. После того как все ребра
будут просмотрены, дерево Гпокроет граф (если он связный) и станет минималь-
ным остовным деревом графа.

Схема файла kruskal-telephone.cpp, в котором применяется функция kruskal _
minimum_spanning_tree() для вычисления наилучшего расположения телефонных
линий, представлена в листинге 6.1.

Листинг 6.1. Файл kruskal-telephone.cpp

< kruskal-telephone.cpp > •
#include <boost/config.hpp>
#include <iostream>
#include <fstream>
#i nclude <boost/1exi ca1_cast.hpp>
#i nclude <boost/graph/graphviz.hpp>
#incl ude <boost/graph/kruskal_min_spanning_tree.hpp>

int
mainO
{
using namespace boost:
< Ввести неориентированный граф из dot-файла Graphviz >
( Копировать неориентированный граф,
преобразуя строковые метки в целочисленные веса >

( Вызвать алгоритм Краскала и сохранить минимальное остовное дерево >
( Вычислить вес остовного дерева >
< Пометить древесные ребра черными линиями и вывести в dot-файл >
return EXIT_SUCCESS;

}

Граф, изображенный на рис. 6.1, хранится в dot-файле пакета Graphviz и счи-
тывается в память с помощью функции read_graphvi z () из boost/graph/graphviz.hpp.
Так как в этом примере граф неориентированный, используется тип Graphvi zGreph.

< Ввести неориентированный граф из dot-файла Graphviz > =
GraphvizGraph g_dot;
read_graphviz("figs/telephone-network.dot". g_dot):

Как и в разделе 5.4, метки ребер необходимо преобразовать из строк в целые
числа. Для этого нужно скопировать Graphvi zGraph в новый граф и применить
1 exi cal_cast для выполнения преобразования из строк в целые числа (листинг 6.2).

Листинг 6.2. Копирование неориентированного графа с преобразованием меток

{ Копировать неориентированный граф,
преобразуя строковые метки в целочисленные веса ) •

typedef adjacencyj ist < vecS, vecS, undirectedS. no_property,
property < edge_weight_t. int > > Graph;

Graph g(num_vertices(g_dot));
propertyjnap < GraphvizGraph, edge_attribute_t >::type
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edge_attr_map - get(edge_attribute, g_dot);
graph_traits < GraphvizGraph >::edge_iterator ei. ei_end;
for (tie(ei, ei_end) = edges(g_dot); ei != ei_end; ++ei) {

int weight = lexical_cast < int >(edge_attr_map[*ei]["label"]):
property < edge_weight_t. int >edge_property(weight):
add_edge(source(*ei. g_dot). target(*ei. g_dot), edge_property, g):

}
Вызов алгоритма Краскала требует, чтобы тип графа был одновременно Vertex-

ListGraph и EdgeListGraph. В разделе 14.1.1 в описании adjacencyjist показывает,
что выбранный нами тип Graph прекрасно подходит. Для хранения вывода алго-
ритма (ребер минимального остовного дерева) мы используем std:: vector mst
и применяем std: :back_inserter() для создания из него итератора вывода. Алго-
ритм Краскала имеет несколько именованных параметров. В нашем примере мы
ими не пользуемся, поэтому все они принимают значения по умолчанию. Ото-
бражение весов и отображение индексов вершин по умолчанию извлекаются из
графа (это внутренние свойства). Имя edge_wei g h t t объявлено как свойство типа
Graph, и отображение индексов вершин уже есть в ad jacencyj i st c VertexLi st=vecS.
Отображения предшественников и рангов (используются только в пределах ал-
горитма Краскала) по умолчанию создаются внутри алгоритма.

< Вызвать алгоритм Краскала и сохранить минимальное остовное дерево > *
std::vector < graph_traits < Graph >::edge_descriptor > mst;
kruskal_minimum_spanning_tree(g, std: :back_inserter(mst)):

Когда алгоритм завершил свою работу, минимальное остовное дерево хра-
нится в mst. Полный вес этого дерева вычисляется сложением весов ребер в mst.
В нашем примере полный вес для минимального остовного дерева составляет
145 миль.

( Вычислить вес остовного дерева ) =
propertyjnap < Graph, edge_weight_t >::type_weight = get(edge_weight. g);
i n t total_weight = 0;
for ( i n t e = 0: e < mst.sizeO; ++e)

total_weight +- get(weight, mst[e]);
std::cout « "полный вес: " « total_weight « std::end!;

Древесные ребра затем окрашиваются в черный цвет, и граф сохраняется в dot-
файле (листинг 6.3).

Листинг 6.3. Отмечаем древесные ребра для вывода

( Пометить древесные ребра черными линиями и вывести в dot-файл) •
typedef graph_traits < Graph >::vertex_descriptor Vertex;
for ( i n t i = 0: i < mst.sizeO; ++i) {

Vertex u = source(mst[i]. g), v = target(mst[ i ] , g):
edge_attr_map[edge(u. v. g _ d o t ) . f i r s t ] [ " c o l o r " ] • "black"; // черный цвет

}
std::ofstream out("figs/telephone-mst-kruskal.dot");
graph_property < GraphvizGraph. graph_edge_attribute_t >::type &

graph_edge_attrjnap = get_property(g_dot, graph_edge_attribute);
graph_edge_attr_map["color"] = "gray"; // серый цвет
graph_edge_attr_map["style"] = "bold"; // полужирный стиль
write_graphviz(out. g_dot);

Результирующее минимальное остовное дерево показано на рис. 6.2. Опти-
мальное расположение телефонных линий отображается черными линиями.
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Рис. 6.2. Минимальное остовное дерево для алгоритма Краскала

6.4. Алгоритм Прима
Алгоритм Прима наращивает минимальное остовное дерево по одной вершине за
раз (а не одно ребро за раз, как в алгоритме Краскала). Основная идея алгоритма
Прима состоит в последовательном добавлении вершин к минимальному остов-
ному дереву. Очередная вершина должна иметь общее ребро с минимальным ве-
сом, соединяющее ее с уже находящейся в дереве вершиной. Алгоритм Прима
очень похож на алгоритм Дейкстры. (На самом деле реализация алгоритма При-
ма в BGL есть просто вызов алгоритма Дейкстры со специально подобранными
функциями сравнения расстояний и объединения.)

В этом разделе алгоритм primjninirnurn_spanning_tree() применяется к той же са-
мой задаче планирования телефонной сети (см. рис. 6.1). Схема файла prim-tele-
phone.срр (листинг 6.4) подобна использованной в предыдущем разделе, хотя имеет-
ся некоторая разница в том, как алгоритм Прима выводит ребра остовного дерева.
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Листинг 6.4. Файл prim-telephone.срр

< prim-telephone.срр ) =
l include <iostream>
#include <fstream>
iinclude <vector>
#include <boost/lexical_cast.hpp>
#include <boost/graph/graphviz.hpp>
#incl ude <boost/graph/pri m_mi nimum_spanni ng_tree.hpp>

int mainO
{
using namespace boost:
< Ввести неориентированный граф из dot-файла Graphviz >
( Копировать неориентированный граф.
преобразуя строковые метки в целочисленные веса )

( Вызвать алгоритм Прима
и сохранить минимальное остовное дерево в предшественниках >

< Вычислить вес остовного дерева )
< Пометить древесные ребра черными линиями и вывести в dot-файл )
return EXITJUCCESS;

}

Первые два шага (чтение из dot-файла и копирование графа) те же самые, что
и в предыдущем примере. В вызове алгоритма Прима первый параметр — граф, а вто-
рой — отображение предшественников. Минимальное остовное дерево записывается
алгоритмом Прима в виде отображения предшественников. Для каждой вершины v
в графе parent[v] является родителем v в минимальном остовном дереве. Внутри
алгоритма parent[v] может быть многократно присвоен, но последнее присваивание
гарантированно устанавливает правильного родителя. Для точной настройки функ-
ции primjni nimum_spanni ng_tree() может быть применен ряд именованных парамет-
ров (мы оставляем значения по умолчанию). В нашем случае используются отобра-
жения весов ребер и индексов вершин, внутренние для типа Graph, а вспомогательные
отображения цветов и расстояний создаются внутри алгоритма. Значением по умол-
чанию для корневой вершины является *vertices(g) .first, что допустимо, так как
корень минимального остовного дерева произволен.

< Вызвать алгоритм Прима
и сохранить минимальное остовное дерево в предшественниках > =

typedef graph_traits<Graph>::vertex_descriptor Vertex;
std::vector<Vertex> parent(num_vertices(g)):
primjninimum_spanning_tree(g, &parent[O]);

Когда минимальное остовное дерево записано в массиве pa rent, общий вес вычис-
ляется в цикле по всем вершинам графа сложением весов всех ребер (parent[v], v).
Если pa rent [ v ] = v, это означает, что либо v является корневой вершиной дерева, либо
она не была в той же компоненте связности, что и остальные вершины. В любом слу-
чае (parent[v], v) не является ребром остовного дерева и должно быть пропущено.
Вычисление для графа, изображенного на рис. 6.1, дает тот же результат — 145 миль.

( Вычислить вес остовного дерева > з
property_map<Graph, edge_weight_t>::type_weight = get(edge_weight. g):
int total_weight = 0;
for (int v = 0: v < num_vertices(g): ++v)

if (parent[v] != v)
total_weight += get(weight. edge(parent[v], v. g).first);

std:;cout « "полный вес: " « total_weight « std;:endl:
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Для наглядности ребра минимального остовного дерева отмечены черными ли -
ниями и после записываются в dot-файл. Результирующее минимальное остов-
ное дерево показано на рис. 6.3. Заметьте, что дерево здесь немного отличается от
полученного алгоритмом Краскала. Вместо ребра между Magnetawan и Кеагпу
имеется ребро между Magnetawan и Sprucedale. Это подчеркивает тот факт, что
минимальные остовные деревья не уникальны: для конкретного графа их может
быть более одного.

Рис. 6.З. Минимальное остовное дерево для алгоритма Прима

( Пометить древесные ребра черными линиями и вывести в dot-файл ) з
for ( i n t u = 0; u < num__vertices(g): ++u)

i f (parent[u] != u)
edge_attr_map[edge(parent[u]. u, g _ d o t ) . f i r s t ] [ " c o l o r " ] = "black";

std::ofstream out("figs/telephone-mst-prim.dot");
graph_property < GraphvizGraph, graph_edge_attribute_t >::type &

graph_edge_attr_map = get_property(g_dot. graph_edge_attribute);
graph_edge_attr_map["color"] = "gray";
write_graphviz(out, g_dot);



Компоненты
связности

Основным вопросом для сети является вопрос о достижимости одних вершин из
других. Например, хорошо спроектированный веб-сайт должен иметь достаточно
ссылок между страницами, чтобы все страницы были достижимы с главной стра-
ницы. Кроме того, хорошим тоном является наличие ссылок на главную страни-
цу или хотя бы на предыдущую страницу в серии последовательных страниц.
В ориентированном графе группы вершин, достижимые друг из друга, называют-
ся сильными компонентами связности*.

Изучение 200 миллионов веб-страниц показывает, что 56 миллионов страниц
Интернета составляют одну большую сильную компоненту связности [7]. Это ис-
следование также показало, что если рассматривать данный граф как неориенти-
рованный, большую компоненту связности составляют 150 миллионов страниц
и 50 миллионов страниц оторваны от этой большой компоненты (они находятся
в своих, гораздо меньших, компонентах связности).

Библиотека BGL предоставляет две функции для вычисления всех компонент
связности: первая для однократного вычисления (граф не меняется) и вторая для
случая, когда граф может расти. Библиотека BGL также реализует алгоритм Та-
рьяна для вычисления сильных компонент связности графа за линейное время.

В следующем разделе мы рассмотрим некоторые определения и затем приме-
ним функции из BGL для компонентов связности к Всемирной паутине WWW
(World Wide Web).

7.1. Определения
Путем называется последовательность вершин, в которой каждая вершина пути
соединена со следующей ребром. Если существует путь из вершины и в да, то мы
будем говорить, что вершина w достижима из вершины и. Компонента связнос-
ти — это группа вершин неориентированного графа, в которой каждая вершина

Иногда они называются бикомпонентами, сильными компонентами. — Примеч. перев.
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достижима из любой другой. Сильная компонента связности — это группа вер-
шин ориентированного графа, которые обоюдно достижимы друг из друга. От-
ношение достижимости для неориентированных графов является отношением
эквивалентности: оно рефлексивно, симметрично и транзитивно. Множество
объектов, для которых выполняется отношение эквивалентности, образуют класс
эквивалентности. Одна компонента связности является, таким образом, классом
эквивалентности по отношению достижимости. Аналогично, сильная компонен-
та связности является классом эквивалентности для отношения обоюдной дости-
жимости. В результате эти два отношения разбивают вершины графа на непере -
секающиеся подмножества.

7.2. Связные компоненты и связность Интернета

Компоненты связности неориентированного графа вычисляются с применением
поиска в глубину. Идея заключается в том, чтобы прогнать поиск в глубину на
графе и отметить все вершины в одном дереве поиска в глубину как принадле-
жащие одной компоненте связности. Реализация функции connected_components (:
из BGL содержит вызов depth_fi rst_search() со специальным объектом-посети-
телем, который присваивает каждой обнаруженной вершине номер текущей ком-
поненты и увеличивает номер на единицу в событийной точке «начальная вер-
шина».

На рис. 7.1 представлена сеть интернет-маршрутизаторов, у которой ребра со-
ответствуют прямым соединениям. Шаги для вычисления компонент связности
такой сети следующие: 1) прочитать данные о сети в память; 2) представить их
в виде графа BGL; 3) вызвать функцию connected_components(). Каждой вершине
графа присваивается целое число, отмечающее компоненту, к которой вершина
принадлежит. Схема файла cc-internet.cpp приведена в листинге 7.1.

Листинг 7.1. Файл cc-internet.cpp

< cc-internet.cpp > •
finclude <fstream>
find ude <vector>
#include <string>
#i nclude <boost/graph/connected_components.hpp>
#include <boost/graph/graphviz.hpp>

int mainO

{
using namespace boost:
( Считать граф в память )
( Создать вектор для назначения компонент >
< Вызвать функцию connected_components() >
< Окрасить вершины в зависимости от компонент и записать в dot-файл )

}

Данные для графа на рис. 7.1 считываются из файла cc-internet.dot, записанно-
го в формате dot-файла Graphviz. Выбран тип Graphvi zGraph, а не Graphvi zDi graph,
так как граф является неориентированным.
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Рис. 7.1. Сеть интернет-маршрутизаторов
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( Считать граф в память } ш
GraphvizGraph g;
read_graphviz("figs/cc-internet.dot". g):

Для хранения целых чисел для каждой вершины, обозначающих компоненту,
используется вектор component размером num_vertices(g).

( Создать вектор для назначения компонент ) =
std::vector<int> component(num_vertices(g));

Первый аргумент в вызове connected_components() является графовым типом
который должен моделировать VertexListGraph и IncidenceGraph. Тип Graphvi zGrapl"
подходит, поскольку моделирует эти концепции. Второй аргумент — отобра-
жение свойства для преобразования вершин в номера компонент. Отображение
свойств создается адаптером iterator_propertyjnap, который служит оболочкой
для итератора, указывающего на начало вектора component. Функция соппес-
ted_components() возвращает количество найденных компонент и записывает
назначения компонент для каждой вершины в вектор component. Алгоритм
connected_components() также имеет именованный параметр для отображения цве-
тов, используемый при поиске в глубину. В нашем случае для параметра уста-
новлено значение по умолчанию. Алгоритм создает отображение цветов внутри
себя и использует отображение индексов вершин графа для индексирования
этого массива.

< Вызвать функцию connected_components() ) •
int num_comp = connected_components(g,

make_iterator_propertyjTiap(component.begin(),
get(vertex_index, g), component[0]));

Для визуализации результатов вычисления каждой вершине присваиваются
цвета в соответствии с номером компоненты. Затем граф записывается в dot-
файл.

Результаты окраски вершин представлены на рис. 7.2.

( Окрасить вершины в зависимости от компонент и записать в dot-файл ) •
property_map < GraphvizGraph. vertex_attribute_t >::type

vertex_attr_map = get(vertex_attr ibute, g);
s td: :s t r ing c o l o r [ ] - {"white", "gray", "black", " l ightgray"};

// белый, серый, черный, светло-серый
graph_traits < GraphvizGraph >::vertex_iterator v i . vi_end;
for ( t i e ( v i . vi_end) » vert ices(g): vi != vi_end; ++vi) {

vertex_attr_map[*vi]["color"] - co1or[component[*vi]];
vertex_at t r jnap[*v i ] ["sty le"] = " f i l l e d " : // стиль - заполненный
i f (vertex_attr_map[*vi]["color"] — "black")

vertex_attr_map[*vi]["fontcolor"] - "white": // цвет шрифта - белый

}
write_graphviz("figs/cc-internet-out.dot", g);
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Рис. 7.2. Компоненты связности
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7.3. Сильные компоненты связности
и ссылки веб-страниц
Набор связанных ссылками веб-страниц можно абстрактно представить в виде'
ориентированного графа (рис. 7.3). Наша задача в этом разделе — вычислить силь-
ные компоненты связности для этого графа.

Схема файла scc.cpp для вычисления компонент связности представлена в лис-
тинге 7.2. Сначала данные графа будут прочитаны из dot-файла Graph viz в память.
Затем создается место для хранения назначений компонент для вершин, которые
будут вычислены алгоритмом. После этого вызывается алгоритм strong_components (),
и его результаты используются для окрашивания вершин графа в зависимости от
номеров сильных компонент связности.

anubis.dkuug.dk) (sourceforge.net

(www.lsc.nd.edu) (www.hp.com) (wvw.yahoogroups.com)

(www.lam-mpi.org)

\www. boston. corn)

Рис. 7.3. Граф, представляющий ссылки по URL между веб-страницами

Листинг 7.2. Файл scc.cpp

< scc.cpp > =
finclude <boost/config.hpp>
finclude <fstream>
#include <map>
#include <string>
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#incl tide <boost/graph/strong_components. hpp>
#i nclude <boost/graph/graphvi z.hpp>

int
mainO

using namespace boost;
( Считать ориентированный граф в память >
< Выделить место для назначения компонент )
< Вызвать функцию strong_components() >
< Окрасить вершины в зависимости от номеров компонент
и записать их в dot-файл )

return EXIT_SUCCESS:
}

Данные графа считываются из файла scc.dot с использованием типа Graphviz-
Digraph (так как граф ориентированный).

( Считать ориентированный граф в память > •
GraphvizDigraph g:
read_graphviz("figs/scc.dot". g);

В вызове st rong_components () адаптер associ ati ve_propertyjnap используется для
обеспечения интерфейса отбражения свойств, требуемого функцией. Этот адап-
тер создает отображение свойств из AssociativeContainer, например из std: :map.
Выбор std: :map для реализации отображений свойств довольно неэффективен
в нашем случае, но демонстрирует гибкость интерфейса отображения свойства.
Дескриптор вершины для GraphvizDigraph является целым числом, поэтому он
имеет требуемую std: :map операцию «меньше».

( Выделить место для назначения компонент > •
typedef graph_traits < GraphvizDigraph >::vertex_descriptor vertex_t;
std:.-map < vertex_t. int >component:

Результаты вызова strong_components() помещаются в массив component, где
каждой вершине сопоставлен номер компоненты. Номера компонент идут от
нуля до num_comp - 1. Граф, передаваемый функции strong_components(), дол-
жен быть моделью концепций VertexListGraph и IncidenceGraph. И действительно,
он соответствует этим критериям. Второй аргумент — отображение компонент —
должен быть ReadWritePropertyMap. Есть еще несколько именованных парамет-
ров, которые могут быть заданы, но все они предназначены для внутренних вспо-
могательных отображений. По умолчанию алгоритм создает массивы для этих
отображений свойств и использует индекс вершины графа как смещение в этих
массивах.

( Вызвать функцию strong_components() ) и
i n t num_comp = strong_components(g. make_assoc_property_map(component)):

Программу завершает окрашивание вершин в соответствии с компонентами,
которым они принадлежат. Вывод записывается в dot-файл. Граф с сильными
компонентами связности представлен на рис. 7.4.
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Рис. 7.4. Сильные компоненты связности

( Окрасить вершины в зависимости от номеров компонент
и записать их в dot-файл > •

property_map < GraphvizDigraph. vertex_attribute_t >::type
vertex_attr_map = get(vertex_attr ibute, g):

s td: :s t r ing c o l o r [ ] - {"white", "gray", "black", " l ightgray"}:
// белый. серый, черный, светло-серый

graph_traits < GraphvizDigraph >::vertex_iterator v i , vi_end;
for ( t i e ( v i . vi_end) = vert ices(g); vi != vi_end; ++vi) {

vertex_attr jnap[*v i ]["color"] = color[component[*vi]];
vertex_attr_map[*vi]["style"] = " f i l l e d " ; // стиль - заполненный
i f (vertex_attr_map[*vi]["color"] =» "black")

vertex_attr_map[*vi]["fontcolor"] = "white": // цвет шрифта - белый

}
write_graphviz("figs/scc-out.dot". g):



Максимальный
поток

Задача максимального потока — это задача определения того, как много некото-
рого количества (например, воды) может пройти через сеть. Алгоритмы для ре-
шения задачи максимального потока имеют длинную историю. Первый алгоритм
принадлежит Форду и Фалкерсону [12]. Лучший же из известных на сегодня ал-
горитмов общего назначения — алгоритм проталкивания предпотока (push-relabel
algorithm) Гольдберга [9, 16, 17], основанный на понятии предпотока (preflow),
введенном Карзановым [20]. Библиотека BGL содержит два алгоритма для вычи-
сления максимального потока: алгоритм Эдмондса-Карпа (улучшение оригиналь-
ного алгоритма Форда-Фалкерсона) и алгоритм проталкивания предпотока.

8.1. Определения
Потоковая сеть (flow network) — это ориентированный граф G = (V, Е) с верши-
ной истока s и вершиной стока t. Каждое ребро имеет положительную веществен-
ную пропускную способность, и на каждой паре вершин задана потоковая функ-
ция /. Потоковая функция должна удовлетворять трем ограничениям:

f(u,v)<c(u,v) V(u, v)eVxV (ограничение пропускной способности)

f(u, v) = - f(v, и) V(w, v) € V х V (антисимметричность)

2_, f(u, v) = 0 VueV - Is, t\ (сохранение потока)

Поток — чистый поток, входящий в вершину стока t. Остаточная пропускная
способность ребра есть г (и, v) = c(u, v) - f(u, v). Ребра с г (и, v) > 0 называются ос-
таточными ребрами Ef и порождают граф Gf = (V, Ej). Ребро с г (и, v) = 0 называ-
ется насыщенным.
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Задача максимального потока состоит в определении максимально возможного
значения для | / | и соответствующих значений для каждой пары вершин в графе

Важным свойством потоковой сети является тот факт, что максимальный по
ток связан с пропускной способностью наиболее узкого места сети.

По теореме о максимальном потоке и минимальном разрезе [12] максималь
ное значение потока от вершины истока до вершины стока в потоковой сети рав-
но минимальной пропускной способности среди всех (5, Т) разрезов. (5, Т)-раз
рез — это разделение вершин графа на два множества 5 и Г, где s e S и t е Т. Любое
ребро с начальной вершиной в S и конечной в Гявляется прямым ребром разреза,
а ребро с начальной вершиной в Г и конечной в 5 — обратным ребром разреза.
Пропускная способность разреза — это сумма пропускных способностей прямых
ребер (обратные ребра игнорируются). Так что если мы рассмотрим пропускные
способности всех разрезов, отделяющих s и t, и выберем разрез с минимальной
пропускной способностью, она будет равна пропускной способности максималь-
ного потока в сети.

8.2. Реберная связность
При проектировании телефонной сети, сети передачи данных крупного предпри-
ятия или соединений маршрутизаторов для высокоскоростного сегмента сети
Интернет очень важным вопросом, который задают себе инженеры, является ус-
тойчивость сети к повреждениям. К примеру, если кабель окажется перерезан-
ным, имеются ли другие кабели, по которым может проходить информация? В те-
ории графов это называются реберной связностью графа — минимальное число
ребер, при разрезании которых получаются две несвязные компоненты (предпо-
лагается, что первоначально граф имел одну компоненту связности). Мы будем
использовать a(G) для обозначения реберной связности графа. Множество ребер
в разрезе, приводящем к увеличению числа компонент связности, называется се -
чением (minimum disconnecting set). Вершины графа разделяются по двум компо-
нентам 5* и5*, поэтому для обозначения минимального разреза мы будем исполь-
зовать [S", 5*]. Оказывается, что вычисление реберной связности может быть
сведено к последовательности решений задач о максимальном потоке. В этом раз -
деле мы рассмотрим алгоритм вычисления реберной связности неориентирован-
ного графа [27].

Пусть а(м, v) обозначает минимальное число ребер, которое может быть разре-
зано для разъединения вершин UHV друг от друга. Если эти две вершины являют-
ся источником и стоком и пропускная способность каждого ребра равна единице,
то разрез с минимальной пропускной способностью (вычисленной по алгоритму
максимального потока) совпадет с минимальным разрезом. Таким образом, ре-
шив задачу максимального потока, мы также определим минимальное число ре-
бер, которые должны быть разрезаны для разъединения двух вершин. Теперь для
того, чтобы найти реберную связность графа, алгоритм максимального потока
нужно запустить для каждой пары вершин. Минимум всех этих попарных мини-
мальных разрезов будет минимальным разрезом всего графа.

Выполнять алгоритм максимального потока для каждой пары вершин слиш-
ком накладно, поэтому лучше сократить количество пар, которые требуется рас-
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смотреть. Этого можно достигнуть с помощью специального свойства сечения
[S', S"]. Пусть р — вершина минимальной степени, а 5 — ее степень. Если а( G) = 5,
то S* есть простор. Если a(G) < 8 - 1, то оказывается, что для любого подмноже-
ства 5" (назовем его S), множество всех вершин, не являющихся соседними для
вершин из 5, должно быть не пусто. Это означает, что минимальный разрез может
быть найден, если начать с 5 = р, выбрать вершину k из множества не соседних
вершин S, вычислить а( р, к) и затем добавить k к S. Этот процесс повторяется,
пока множество не соседних вершин 5 не станет пустым.

Мы реализуем алгоритм реберной связности как шаблон функции, который
использует BGL-интерфейс VertexListGraph. Функция возвращает реберную связ-
ность графа, и ребра в несвязном множестве (disconnected set) записываются ите-
ратором вывода. Схема функции вычисления реберной связности приведена в ли-
стинге 8.1.

Листинг 8.1. Алгоритм вычисления реберной связности

( Алгоритм вычисления реберной связности > •
template < typename VertexListGraph, typename Outputlterator >
typename graph_traits < VertexListGraph >::degree_size_type
edge_connectivity(VertexListGraph & g, Outputlterator disconnecting_set)

{
( Определить типы )
< Определить переменные >
( Создать граф потоковой сети из неориентированного графа >
{ Найти вершину минимальной степени и вычислить соседей S и не соседей S )
< Главный цикл )
( Вычислить прямые ребра разреза )
return с:

}

В первой части реализации (листинг 8.2) создаются некоторые определения
типов, чтобы иметь более короткие имена для доступа к типам из свойств графа.
Потоковый граф (ориентированный граф) создается на основе неориентирован-
ного входного графа д, поэтому используется графовый класс adjacencyj 1 St.

Листинг 8.2. Определение типов

( Определить типы ) =
typedef typename graph_traits <

VertexListGraph >::vertex_descriptor vertex_descriptor;
typedef typename graph_traits <

VertexListGraph >::degree_size_type degree_size_type;
typedef co lor_t ra i ts < default_color_type > Color:
typedef typename a d j a c e n c y j i s t _ t r a i t s < vecS. vecS,

directedS >::edge_descriptor edge_descriptor;
typedef adjacencyj ist < vecS. vecS. directedS, no_property.

property < edge_capacityj;. degree_size_type.
property < edge_residual_capacity_t. degree_sizej:ype,
property < edge_reverse_t, edge_descriptor > > > > FlowGraph:

В листинге 8.3 мы используем std:: set для множества S и множества соседей S
(переменная nei ghbor_S), поскольку при вставке должна гарантироваться уникаль-
ность. Множество 5 * (переменная Sstar) и множество не соседей S (переменная
nonneighbor_S) представлены std:: vector в связи с тем, что мы знаем, что вставля-
емые элементы будут уникальными.
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Листинг 8.3. Определение переменных

( Определить переменные ) •
vertex_descriptor u. v. p. к:
edge_descriptor e l , e2:
bool inserted;
typename graphjtra i ts < VertexListGraph >::vertex_iterator v i . vi_end;
degree_size_type delta. alpha_star, alphajSjk:
std::set < vertex_descriptor > S. neighbor_S;
std: -.vector < vertex_descriptor > S_star, nonneighborjS;
std::vector < default_color_type > color(num_vertices(g)):
std::vector < edge_descriptor > pred(num_vertices(g});

Граф ПОТОКОВОЙ сети создается на основе входного графа (листинг 8.4). Каж-
дое ребро потокового графа имеет три свойства: пропускную способность, невяз-
ку и обратное ребро. Доступ к этим свойствам осуществляется через объекты-ото-
бражения свойств: cap, res_cap и rev_edge соответственно.

Листинг 8.4. Создание графа потоковой сети из неориентированного графа

< Создать граф потоковой сети из неориентированного графа ) =
FlowGraph flow_g(num_vertices(g)): // потоковый граф
typename propertyjnap < FlowGraph, edge_capacity_t >::type

cap = get(edge_capacity. flow_g);
typename propertyjnap < FlowGraph, edge_residual_capacity_t >::type

res_cap = get(edge_residua!_capacity, flow_g):
typename propertyjnap < FlowGraph. edge_reversejt >::type

revjedge = get(edge_reverse. flow_g);

typename graphjtra i ts < VertexListGraph >::edge_itarator e i . ei_end:
for ( t i e ( e i . ei_end) = edges(g); ei !- ei_end: ++ei) {

u = source(*ei. g) . v = target(*e i , g):
t i e ( e l . inserted) - add_edge(u, v, flow_g);
cap[el] = 1:
t ie(e2, inserted) = add_edge(v. u, flow_g):
cap[e2] - 1;
revjedge[el] = e2;
rev_edge[e2] = e l ;

В главном алгоритме функциональные блоки выделены в отдельные функции
(листинг 8.5). В первом блоке в цикле по всем вершинам графа находится верши-
на минимальной степени.

Листинг 8.5. Функция нахождения вершины минимальной степени

( Функция нахождения вершины минимальной степени ) •
template < typename Graph >
std: .-pair < typename graph_traits < Graph >: :vertex_descriptor.

typename graphjtraits < Graph >::degree_size_type >
minjdegree_vertex(Graph & g)
{

typename graphjtrai ts < Graph >::vertexjdescriptor p;
typedef typename graphjtraits < Graph >::degree sizejtype sizejtype;
sizejtype delta = std::numeric_limits < sizejtype >::max();
typename graphjtraits < Graph >::vertex_iterator i . iend:
for ( t i e d , iend) = vert ices(g); i != iend; ++i)

i f (degree(*i. g) < delta)
{

delta - degree(*i, g):
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р = * i ;
}

return std::make_pair(p. delta):
}

Необходимо обеспечить возможность вставки каждого соседа вершины (и мно-
жества вершин) во множество. Это осуществляется через adjacent_vertices().
Мы предполагаем, что итератор вывода сходен с std:: i n s e r t j tera tor для std:: set.
Вспомогательные функции приведены в листинге 8.6.

Листинг 8.6. Вспомогательные функции вывода соседей

{ Вспомогательные функции вывода соседей > =
template < typename Graph, typename Outputlterator >
void neighbors(const Graph & g.

typename graph_traits < Graph >::vertex_descriptor u,
Outputlterator result)

{
typename graph_traits < Graph >::adjacency_iterator ai, aend;
for (tie(ai, aend) = adjacent_vertices(u, g): ai !- aend; ++ai)
*result++ = *ai;

template < typename Graph, typename Vertexlterator,
typename Outputlterator >

void neighbors(const Graph & g, Vertexlterator first,Vertexlterator last.
Outputlterator result)

{
for (; first != last: ++first)

neighbors(g. *first, result):

На начальном шаге алгоритма (листинг 8.7) осуществляется поиск вершины
минимальной степени/?, затем S = р, а после этого вычисляются соседи и не сосе-
ди S. Мы используем std: :set_difference() для вычисления V- 5, где У— множе-
ство вершин графа.

Листинг 8.7. Поиск вершины и вычисление соседей и не соседей S

< Найти вершину минимальной степени и вычислить соседей S и не соседей S > з
tie(p, delta) = min_degree_vertex(g);
S_star.push_back(p):
alpha_star = delta:
S.insert(p):
neighbor_S.insert(p):
neighbors(g, S.beginO, S.endO. std: :inserter(neighbor_S,

neighbor_S.begin())):
std::set difference(vertices(g).first, vertices(g).second,

neighbor^, begino. neighbors, end О .
std::back_inserter(nonneighbor_S)):

Итерации алгоритма заканчиваются, когда множество не соседей 5 становит-
ся пустым. В каждом шаге алгоритма (листинг 8.8) максимальный поток между р
и не соседом k вычисляется с помощью алгоритма Эдмондса-Карпа (см. раз-
дел 13.7.1). Вершины, окрашенные не в белый цвет, во время нахождения макси-
мального потока соответствуют всем вершинам на одной стороне минимального
разреза. Таким образом, если размер разреза на данный момент наименьший, ок-
рашенные (не белые) вершины записываются в 5*, затем k добавляется в S, соседи
и не соседи 5 вычисляются заново.
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Листинг 8.8. Главный цикл

( Главный цикл ) =
while (!nonneighbor_S.empty()) {

k - nonneighbor_S.front();
alpha_S_k • edmunds_karp_max_flow

(flow_g. p. k. cap. res_cap. rev^edge, &color[0]. &pred[0]);
i f (alpha_S_k < alpha_star) {

alpha_star = alpha_S_k;
S_star.clearO:
for (tieCvi. vi_end) - vertices(f1ow_g): vi !- vi_end; ++vi)

i f (color[*vi] != Color::white())
S_star.push_back(*vi);

}
S.insert(k);
neighbor_S.insert(k);
neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin())):
nonneighbor_S.clearO:
std::set_difference(vertices(g) . f i rst , verticesCg).second.

neighborJB.beginO, neighbor_S.end().
std::back_inserter(nonneighbor_S)): •

}
На завершающем этапе (листинг 8.9) осуществляется поиск ребер разреза, ко-

торые имеют одну вершину в 5*, а другую в 5*. Эти ребра записываются через
итератор вывода disconnect!ng_set (несвязное множество), а количество ребер
в разрезе возвращается оператором return.

Листинг 8.9. Вычисление прямых ребер разреза

( Вычислить прямые ребра разреза ) =
std::vector < bool > in_S_star(num_vertices(g). false):
typename std::vector < vertex_descriptor >::iterator si ;
for (si " S_star.begin(): si != S_star.end(); ++si)

in_S_star[*si] = true;
degree_size_type с = 0;
for (si = S_star.begin(); si != S_star.end(); ++si) {

typename graph_traits <Vertexl_istGraph>: :out_edge_iterator ei. ei_end:
for ( t ie(ei , ei_end) = out_edges(*si. g); ei != ei_end: ++ei)

i f (!in_S_star[target(*ei, g)]) {
*disconnecting_set++ • *ei:

Файл edge-connectivity.cpp, в котором реализован алгоритм нахождения ребер-
ной связности, приведен в листинге 8.10.

Листинг 8.10. Файл edge-connectivity.cpp

( edge-connectivity.cpp ) •
#include <algorithm>
#include <uti1ity>
#include <boost/graph/edmunds_karp_max_flow.hpp>
#i nclude <boost/graph/push_relabel_max_f1ow.hpp>
#include <boost/graph/adjacency_li st.hpp>
#include <boost/graph/graphvi z.hpp>

namespace boost {
< Функция нахождения вершины минимальной степени >
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< Вспомогательные функции вывода соседей )
( Алгоритм вычисления реберной связности >

}

i n t mainO {
using namespace boost:
GraphvizGraph g:
read_graphviz("figs/edge-connectivity.dot". g):

typedef graph_traits < GraphvizGraph >::edge_descriptor edge_descriptor:
typedef graph__traits < GraphvizGraph >: :degree_size_type degree_size_type:
std::vector < edge_descriptor > disconnecting_set:
degree_size_type с =

edge_connectivity(g. std::back_inserter(disconnecting_set)):

std::cout « "Реберная связность: " « с « "." « std::endl:

property_map < GraphvizGraph. vertex_attribute_t >::type
attrjnap = get(vertex_attribute, g):

std::cout « "Сечение: {":
for (std::vector < edge_descriptor >: : i terator i =
disconnecting_set.begin(); i != disconnecting_set.end(): ++i)
std::cout « "(" « attr_map[source(*i.

« attr_map[target(*i. g)]
std::cout « " } . " « std::endl:
return EXIT_SUCCESS;

В результате работы файла edge-connectivity.cpp выводится следующее:

Реберная связность: 2.
Сечение: { (D.E) (D.H) }.

Граф, к которому был применен алгоритм нахождения реберной связности
(листинг 8.10), представлен на рис. 8.1.

Рис. 8 . 1 . Пример графа для реберной связности



Неявные графы:
обход конем

Задача обхода конем состоит в нахождении такого пути для коня, чтобы он побы-
вал на каждой клетке шахматной доски пхп ровно один раз. Обход конем являет
ся примером гамильтонового пути. Гамильтонов путь — это простой замкнутый
путь, который проходит через каждую вершину графа только один раз. При обхо
де конем клетка шахматной доски считается вершиной графа. Ребра графа опре
деляются в соответствии с шахматными правилами для хода коня (например, на
две клетки вверх и на одну в сторону). В этом разделе мы используем для нахожде-
ния пути коня обобщенный алгоритм поиска с возвратом. Алгоритм с возвратом
является алгоритмом грубой силы и достаточно медлителен, поэтому мы также
покажем, как улучшить алгоритм, применив эвристику Варнсдорфа [46]. Задача
нахождения гамильтонова цикла является NP-полной [15] (при большой размер-
ности она не может быть решена за разумное время). Пример обхода конем тра-
диционной шахматной доски 8 x 8 показан на рис. 9.1.
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Рис. 9.1. Пример обхода конем шахматной доски
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Одной из особенностей этого примера является отсутствие явной структуры
(вроде класса adjacency_list) для представления графа. Вместо этого неявная
структура графа kni ghts_tour_graph следует из допустимых ходов коня на доске.

9.1. Ходы конем как граф
Граф kni ghts_tour_graph является моделью AdjacencyGraph, поэтому нам нужно ре-
ализовать функцию adjacent_vertices(), возвращающую пару итераторов смеж-
ности. Итератор смежности трактует каждую из клеток, в которую может перей-
ти конь, вершиной, смежной данной.

Набор возможных ходов коня хранится в массиве следующим образом:

typedef std::paiг < int. int > Position;
Position knight_jumps[8] = { Position(2. -1), PositionCl. -2),
PositionM, -2). Position(-2, -1), Position(-2, 1).
Positional. 2). Positiond. 2). Position(2. 1) }:

Итератор km ght_ad jacency_i terator содержит несколько полей данных-членов:
текущую позицию на доске m_pos, индекс m_i в массиве ходов knightjumps и указа-
тель на граф m_g. Инкремент итератора смежности (операция operator++()) увели-
чивает m_i. Новая позиция может быть некорректной (за пределами доски), поэто-
му может понадобиться еще раз увеличить m_i, что и делает функция-метод класса
va1id_position(). Первая позиция тоже может быть некорректна, поэтому
valid_position() вызывается также и в конструкторе итератора смежности. Ука-
затель на шахматную доску необходим для того, чтобы можно было определить ее
размер (так как доска может быть произвольного размера). При разыменовании
итератора смежности (operator*0) возвращается смещение текущей позиции в
текущем векторе ходов. Реализация итератора kni ght_adjacency_i terator приведе-
на в листинге 9.1. Вспомогательная функция boost: :forward_iterator_hel per ис-
пользуется для автоматической реализации операции operator++(i nt) посредством
operator++() и операции operator !=() посредством operator==().

Листинг 9.1. Итератор смежности knight_adjacency_iterator

struct knight_adjacency_iterator:
public boost::forward_iterator_helper < knight_adjacency_iterator,

Position, std::ptrdiff_t. Position *. Position > {
knight_adjacency_iterator() { }
knight_adjacency_iterator(int i i . Position p,

const knights_tour_graph & g) : m_pos(p), m_g(&g), m_i(ii) {
valid_position(): }
Position operator *() const { return m_pos + knight_jumps[m_i]: }
void operator++ () { ++m_i; valid_position(): }
bool operator == (const knight_adjacency_iterator & x) const {

return m_i == x.m_i: }
protected:

void valid_position();
Position m_pos;
const knights_tour_graph * m_g:
i nt m_i:

i.
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В функции-методе класса va I i d_pos i t i on () счетчик ходов увеличивается до тех
пор, пока не будет найдена позиция на доске или не будет достигнут конец массива.

void knight_adjacency_iterator::valid_position() {
Position new_pos = m_pos + knight_juraps[m_i]:
while (m_i < 8 && (new_pos.first < 0 || new_pos.second < 0

| new_pos.first >- m_g->m_board_size
I new_pos.second >= m_g->m_board_size)) {

++m_i;

new_pos = m_pos + knight_jumps[m_i];

Функция adjacent_vertices() создает пару итераторов смежности, используя О
для начальной позиции итератора ходов и 8 для конечной позиции итератора
ходов.

std::pair < knights_tour_graph::adjacency_iterator.
knights_tour_graph::adjacency_iterator >

adjacent_vertices(knights_tour_graph::vertex_descriptor v.
const knights_tour_graph & g) {

typedef knights_tour_graph::adjacency_iterator Iter:
return std::make_pair(Iter(O, v, g). Iter(8, v. g));

}

Класс knights_tour_graph (листинг 9.2) содержит только размер доски (как по-
ле) и операторы typedef, требуемые для AdjacencyGraph. Функция num_vertices()
возвращает число клеток на доске.

Листинг 9.2. Класс knights_tour_graph

struct knights_tour_graph
{

typedef Position vertex_descriptor;
typedef std::pair < vertex_descriptor, vertex_descriptor >

edge_descriptor;
typedef knight_adjacency_iterator adjacency_iterator;
typedef void out_edge_iterator:
typedef void in_edge_iterator;
typedef void edgejterator;
typedef void vertex_iterator:
typedef int degree_size_type:
typedef int vertices_size_type;
typedef int edges_size_type:
typedef directed_tag directed_category;
typedef disallow_parallel_edge_tag edge_paranel_category:
typedef adjacency_graph_tag traversal_category;
knights_tour_graph(int n): m_board_size(n) { }
int m_board_size:

}:
int num_vertices(const knights_tour_graph & g) {

return g.m_board_size * g.m_board_size;
}

Теперь, когда ходы конем отображены в графовом интерфейсе Boost, мы мо-
жем рассмотреть отдельные графовые алгоритмы, которые могут быть использо-
ваны для решения задачи обхода конем шахматной доски.
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9.2. Поиск с возвратом на графе
Идея алгоритма поиска с возвратом на графе (backtracking graph search) подобна
поиску в глубину в том, что путь исследуется до тех пор, пока не будет обнаружен
тупик. Поиск с возвратом отличается тем, что после достижения тупика алгоритм
возвращается обратно, снимая пометки с тупикового пути, перед тем как продол-
жить поиск по другому пути. В листинге 9.3 поиск с возвратом реализован с помо-
щью стека (вместо рекурсии), а порядок посещения каждой вершины записывается
с помощью отображения свойства. Стек состоит из пар отметка времени — вершина,
так что правильная отметка посещения доступна после возвращения из тупика. По-
иск завершается, когда все вершины посещены или все возможные пути исчерпаны.

Хотя граф, определенный в предыдущем разделе, был неявным и представлял,
в частности, обход шахматной доски конем, он тем не менее моделирует концепцию
Graph из BGL, то есть алгоритм поиска с возвратом реализован для концепции Graph,
а не для конкретного графа обхода конем. Получившийся в результате алгоритм
можно повторно использовать для любой структуры данных, моделирующей Graph.

Листинг 9.3. Алгоритм поиска с возвратом

template < typename Graph, typename TimePropertyMap >
boo! backtracking_search(Graph & g.

typename graphjtraits < Graph >::vertexjjescriptor src,
TimePropertyMap timejnap)

{
( Создать стек и инициализировать отметку времени >
S.push(std::make_pair(time_stamp, src)):
while (IS.emptyO) { // цикл пока стек не пуст

( Получить вершину со стека, записать время и проверить завершение >
( Положить все смежные вершины на стек >
( Если в тупике, откатиться >

} // while (IS.emptyO)
return false;

}

Для записи вершин, которые нужно проверить, используется std:: stack. Вер-
шина заносится в стек вместе с отметкой посещения.

< Создать стек и инициализировать отметку времени > =
typedef typename graph_traits < Graph >::vertexj jescriptor Vertex:
typedef std::pair < i n t . Vertex > P;
std::stack < P > S:
int time_stamp = 0:

Следующий шаг — записать отметку посещения для вершины графа наверху
стека и проверить, не занесены ли уже в стек все вершины графа. В последнем
случае алгоритм успешно завершается.

( Получить вершину со стека, записать время и проверить завершение ) =
Vertex x: .
tie(time_stamp. x) -S.topO:
put(time_map. x. time_stamp);
// все вершины посещены, успех!
if (time_stamp == num_vertices(g) - 1)

return true;



128 Глава 9 • Неявные графы: обход конем

Теперь просматриваются все смежные вершины, и если смежная вершина еще
не была посещена, она кладется в стек. Отсутствие смежных вершин — признак
тупика.

( Положить все смежные вершины на стек ) •
boo! deadend - true: // переменная для индикации тупика
typename graph_traits < Graph >::adjacency_iterator i. end:
for (tied, end) = adjacent_vertices(x, g): i != end; ++1)
if (get(time_map, *i) == -1) {
S.push(std::make_pair(time_stamp + 1, *i));
deadend = false;

}

Если алгоритм достигает тупика, вершины выталкиваются из стека, пока не:
будет найдена еще не исследованная вершина. В процессе возврата отметки посе
щения для каждой вершины сбрасываются, поэтому, возможно, эти же вершины
будут достигнуты по более подходящему пути.

( Если в тупике, откатиться ) з
if (deadend) { // если тупик
put(time_map, x. -1):
S.popO:
tie(time_stamp, x) = S.topO:
while (get(time_map. x) != -1) {

// откатить стек до последней не исследованной вершины
put(time_map. x, -1):
S.popO:
tie(time_stamp. x) = S.topO;

9.3. Эвристика Варнсдорфа
Эвристика Варнсдорфа для выбора следующей клетки для хода заключается
в упреждающем просмотре каждого из возможных ходов для определения тоге,
сколько дальнейших ходов возможны из этой клетки. Назовем это числом после-
дователей. Клетка с наименьшим числом последователей выбирается для следу-
ющего хода. Причина, по которой эта эвристика работает, в том, что, посещая в на-
чале наиболее ограниченные вершины, мы избегаем потенциальных тупиков.
Следующая функция number_of_successors() в листинге 9.4 вычисляет число по-
следователей вершины.

Листинг 9.4. Функция number_of_successors()

template < typename Vertex, typename Graph, typename TimePropertyMap >
int number_of_successors(Vertex x. Graph & g, TimePropertyMap timejnap)

int s_x - 0;
typename graph_traits < Graph >::adjacency_iterator i. end;
for (tied, end) - adjacent_vertices(x, g); i != end; ++1)
if (get(time_map, *i) — -1)

return s_x;
}
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Реализация эвристики Варнсдорфа (листинг 9.5) начинается с алгоритма с воз-
вратом, но вместо заталкивания смежных вершин в стек сначала происходит сор-
тировка вершин по количеству последователей. Сортировка выполняется при
помещении смежных вершин в очередь по приоритету (priority queue). После за-
несения вершин в очередь они извлекаются оттуда и помещаются в стек. Пустая
очередь сигнализирует о тупике.

Листинг 9.5. Реализация эвристики Варнсдорфа

template < typename Graph, typename TimePropertyMap >
bool warnsdorff(Graph & g,

typename graph_traits < Graph >::vertex_descriptor src,
TimePropertyMap timejriap)

{
< Создать стек и инициализировать отметку времени )
S.push(std::make_pair(time_stamp, src));
while (IS.emptyO) {

( Получить вершину со стека, записать время и проверить завершение )
// поместить смежные вершины в локальную очередь по приоритету
std::priority_queue < P. std::vector < P >. compare_first > Q;
typename graph_traits < Graph >::adjacency_iterator i, end;
int num_succ;
for (tied, end) - adjacent_vertices(x. g); i !- end: ++i)

if (get(time_map, *i) == -1) {
num_succ » number_of_successors(*i. g. timejnap);
Q.push(std::make_pair(num_succ. *i)):

bool deadend = Q. empty О :
// переместить вершины из локальной очереди в стек
for (: IQ.emptyO: Q.popO) {

tie(num_succ. x) = Q.topO:
S.push(std::make_pair(time_stamp + 1. x));

if (deadend) {
put(time_map. x. -1);
S.popO:
tie(time_stamp. x) = S.topO:
while (get(time_map. x) != -1) {

// откатить стек до последней не исследованной вершины
put(time_rnap. x, -1);
S.popO;
tie(time_stamp. x) = S.topO:

} // while (IS.emptyO)
return false:

)
•
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Хотя основной задачей Boost Graph Library является поддержка разработки новых
приложений и графовых алгоритмов, существует довольно много кодов, которые мо-
гут получить выгоду от использования BGL. Одним из путей использования алго-
ритмов BGL с существующими графовыми структурами данных является копирова-
ние данных из старого формата в BGL-граф, который затем используется в алгоритмах
BGL. Проблема с этим подходом заключается в том, что не всегда удобно и эффек-
тивно выполнять это копирование. Другим подходом является использование суще-
ствующих структур непосредственно, используя «обертку» для BGL-интерфейса.

Паттерн Адаптер [14] — это один из механизмов для обеспечения нового ин-
терфейса для существующего класса. Этот подход обычно требует, чтобы адап-
тируемый объект хранился внутри нового класса, предоставляющего желаемый
интерфейс. При адаптации BGL-графа вложенности объекта не требуется, по-
скольку графовый интерфейс BGL полностью состоит из независимых (глобаль-
ных) функций. Такой интерфейс вместо создания нового графового класса
требует только перегрузки независимых функций, из которых он состоит. В раз-
деле 10.3 мы покажем, как это делается, во всех деталях.

Библиотека BGL включает перегруженные функции для типа GRAPH из LED A [29],
типа Graph* из Stanford GraphBase, а также для std:: vector из STL. LEDA — попу-
лярная объектно-ориентированная библиотека для комбинаторных вычислений,
включающая графовые алгоритмы и структуры данных. Stanford GraphBase, на-
писанная Дональдом Кнутом, является набором графовых данных, генераторов
графов и программ, которые выполняют алгоритмы на этих графах.

В следующих разделах мы покажем примеры использования структур данных
из LEDA и SGB с алгоритмами BGL. Затем мы рассмотрим реализацию адапти-
рующих функций из BGL для графов LEDA, приводя пример того, как нужно
писать адаптеры для других графовых библиотек.

В разделе 1.4.1 мы демонстрировали гибкость алгоритмов BGL, применяя
topological_sort() к графам, представленным вектором списков, к графам в ви-
де boost: :adjacency_list и std: :vector<std: : l i s t < i n t » . Мы продолжим этот при-
мер — планирование выполнения взаимозависимых заданий — в следующих двух
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разделах, сначала используя LEDA-тип GRAPH, а затем — тип Graph от Stanford
GraphBase (SGB).

10.1. Использование топологической сортировки
из BGL с графом из LEDA
Заголовочный файл boost/graph/leda_graph.hpp содержит перегруженные функции,
которые адаптируют параметризованный тип GRAPH из LEDA к интерфейсу BGL.
BGL-интерфейс к LEDA GRAPH описан в разделе 14.3.5. Интерфейс между LEDA
и BGL был протестирован с версией LEDA 4.1, одной из свободно распространя-
емых версий LEDA. В дополнение к leda_graph.hpp библиотека LEDA должна быть
установлена, настроены пути к заголовочным и библиотечным файлам, a LEDA-
библиотеки использованы при сборке программы. Более детальный материал на-
ходится в документации LEDA.

В листинге 10.1 приведена схема программы планирования заданий, на этот
раз используя GRAPH из LEDA для представления зависимостей между заданиями.

Листинг 10.1. Схема программы планирования заданий
( topo-sort-with-leda.cpp ) •
#i nclude <vector>
#i nclude <string>
#include <boost/graph/topological_sort.hpp>
#i nclude <boost/graph/1eda_graph.hpp>
// Отменить определение макросов LEDA. конфликтующих с C++ Standard Library
#undef str ing
iundef vector

i n t mainO {
using namespace boost;
< Создать граф LEDA с вершинами, обозначенными заданиями >
( Добавить ребра к графу LEDA )
( Выполнить топологическую сортировку графа LEDA )
return EXIT_SUCCESS;

}

Класс GRAPH из LEDA позволяет пользователю присоединить объекты-свой-
ства к вершинам и ребрам графа, поэтому здесь мы прикрепляем имена (в форме
std::stri ng) к вершинам. Мы используем обычную функцию add_vertex() для до-
бавления вершин к 1 eda_g и передаем имена заданий как объект-свойство для
присоединения к вершине. Дескрипторы вершин, возвращенные из add_vertex(),
хранятся в векторе, так что можно быстро использовать нужную вершину при
добавлении ребер. Код для создания графа LEDA приведен в листинге 10.2.

Листинг 10.2. Создание графа LEDA для задачи планирования заданий
( Создать граф LEDA с вершинами, обозначенными заданиями > •
typedef GRAPH < s t d : : s t r i n g , char >graph_t:
graph_t leda_g:
typedef graph_traits < graph_t >: :vertex_deschptor vertex_t;
std::vector < vertex_t > vert(7):
vert[O] • add_vertex(std::string("забрать детей из школы"). leda__g);
v e r t [ l ] = add_vertex(std::string("купить продукты"). leda_g);
vert[2] • add_vertex(std::string("nofly4HTb деньги в банкомате"). leda_g):
vert[3] = add_vertex(std::string("npnBecTH детей на тренировку"). leda_g):
vert[4] = add_vertex(std: :string("npnroTOBHTb ужин"), leda_g): r,™nn™,ou, ̂  о

ПрОДОЛЖсНИс *У
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Листинг 10.2 {продолжение)
vert[5] - add_vertex(std::striпдС'забрать детей с тренировки"). leda_g);
vert[6] = add_vertex(std::string("съесть ужин"), 1eda_g);

Следующий шаг — добавление ребер к графу. Вновь мы используем обычную
функцию add edgeO.

< Добавить ребра к графу LEDA > =
add_edge(vert[O], vert[3]. leda_g):
add_edge(vert[l], vert[3], leda_g):
add_edge(vert[l]. vert[4]. leda_g);
add_edge(vert[2]. vert[l], leda_g);
add_edge(vert[3], vert[5]. leda_g):
add_edge(vert[4]. vert[6]. leda_g):
add_edge(vert[5], vert[6], leda_g):

Теперь, когда граф построен, можно вызвать topol ogical_sort(). Благодаря ин-
терфейсу между LED А и BGL GRAPH из LED А может быть использован в неизмен-
ном виде с BGL-функцией. Мы просто передаем объект 1 eda_g в этот алгоритм.
Функция topol ogi cal_sort() требует отображения свойства окраски вершин, поэто-
му мы используем массив вершин LED A node_array для отображения вершин в цве-
та. Функция 1 eda_node_property_map() также определена в boost/graph/leda_graph.hpp
и создает адаптер, который удовлетворяет концепции LvaluePropertyMap в контек-
сте node_array. В вектор topo_order записывается обратное топологическое упоря-
дочение. Затем вектор переворачивается, и выводится упорядочение. Операция
operator[ ] () класса GRAPH из LED А используется для доступа к названию задания
для каждой вершины. Код топологической сортировки приведен в листинге 10.3.

Листинг 10.3. Выполнение топологической сортировки
( Выполнить топологическую сортировку графа LEOA > •
std::vector < vertex_t > topo_order;
node_array < default_color_type > color_array(leda_g):

topological_sort(leda_g. std::back_inserter(topo_order).
color_map(make_leda_node_propertyjnap(color_array))):

std::reverse(topo_order.begin(). topo_order.end());
int n = 1:
for (std::vector < vertex_t >::iterator i = topo_order.begin():

i != topo_order.end(); ++1, ++n)
std::cout « n « ": " « leda_g[*i] « std::endl:

10.2. Использование топологической сортировки
из BGL с графом из SGB
Библиотека Stanford GraphBase определяет структуру Graph, которая реализует
структуру данных в стиле списка смежности. Перегруженные функции в boost/
graph/stanford_graph.hpp адаптируют структуру Graph к интерфейсу BGL. Помимо
включения заголовочного файла stanford_graph.hpp необходимо, чтобы была уста-
новлена библиотека SGB и применен файл изменения PROTOTYPES (из дистрибу-
тива SGB). Это необходимо потому, что оригинальные заголовочные файлы SGB
не определяют прототипы функций согласно стандарту ANSI, что требуется для
компилятора C++. При компиляции программы с использованием SGB-BGL ин-
терфейса необходимо установить пути к заголовочным файлам и библиотекам для
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SGB, нужно также собрать программу с библиотекой SGB. Интерфейс между BGL
и SGB задокументирован в разделе 14.3.4. Пример топологической сортировки
для графа из SGB приведен в листинге 10.4.

Листинг 10.4. Топологическая сортировка графа из SGB
< topo-sort-with-sgb.cpp > з
f include <vector>
finclude <string>
i inciude <iostream>
#i nclude <boost/graph/topologica1_sort.hpp>
#include <boost/graph/stanford_graph.hpp>

i n t mainO {
using namespace boost;
( Создать SGB-граф >
< Создать метки для заданий >
( Добавить ребра к SGB-графу >
( Выполнить топологическую сортировку на SGB-графе >
gb_recycle(sgb_g);
return EXIT_SUCCESS:

Мы создаем SGB-граф вызовом SGB-функции gb_new_graph().
( Создать SGB-граф ) •
const i n t n_vertices - 7;
Graph *sgb_g - gb_new_graph(n_vertices):

Далее мы записываем метки для заданий (вершины) в граф. От дескриптора
вершины в SGB легко перейти к целому числу, используя sgb_vertex_i djnap, опре-
деленный в stanford_graph.hpp, поэтому хранение меток в массиве удобно.

( Создать метки для заданий > •
const char *tasks[] = {

"забрать детей из школы".
"купить продукты".
"получить деньги в банкомате".
"привести детей на тренировку".
"приготовить ужин",
"забрать детей с тренировки",
"съесть ужин"

}:

const int n_tasks = sizeof(tasks) / sizeof(char *);
SGB-граф хранит вершины графа в массиве, поэтому можно получить доступ

к любой вершине по индексу в массиве. Функция gb_ne_edge() принимает два ар-
гумента Vertex* и вес ребра (нам он не важен).

< Добавить ребра к SGB-графу )
gb_new_arc(sgb_g->vertices
gb_new_arc(sgb_g->vertices
gb_new_arc(sgb_g->vertices
gb_new_arc(sgb_g->vertices
gb_new_arc(sgb_g->vertices

0. sgb_g->vertices
sgb_g->vertices
sgb_g->vertices
sgb_g->vertices

3, sgb_g->vertices

3. 0);
3, 0);
4, 0);
1, 0):
5, 0);
6, 0);gb_new_arc(sgb_g->vertices + 4, sgb_g->vertices

gb_new_are(sgb_g->vertices + 5. sgb_g->vertices + 6, 0);
Затем осуществляется топологическая сортировка. Мы передаем в алгоритм

сам SGB-граф. На этот раз вместо явного создания отображения цветов мы позво-
лим алгоритму самому создать его. Однако для этого функция topol ogi cal _sort ()
нуждается в отображении вершин в целые числа. Интерфейс между SGB и BGL
обеспечивает такое отображение свойства. Отображение вершин в индексы можно
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получить вызовом get (vertex_i ndex, sgb_g). Код топологической сортировки при -
веден в листинге 10.5.

Листинг 10.5. Вычисление топологической сортировки SGB-графа
( Выполнить топологическую сортировку на SGB-графе > •
typedef graph_traits < Graph * >::vertex_descriptor vertex_t;
std::vector < vertex_t > topo_order;
topological_sort(sgb_g, std::back_inserter(topo_order).

vertex_indexjnap(get(vertex_index, sgb_g))):
int n = 1;
for (std::vector < vertexjt >::reverse_iterator i - topo_order.rbegin():

i != topo order.rend(); ++i, ++n)
std::cout « n « ": " « tasks[get(vertex_index. sgb_g)[*i]]
« std::endl:

10.3. Реализация адаптеров графов
Написать адаптер для других графовых библиотек и структур данных совсем не
сложно. В качестве примера создания новых адаптеров этот раздел предлагает
детальное объяснение реализации интерфейса BGL для графа из LED А.

Первое, с чем нужно определиться, — это какие из концепций будет реализовы -
вать BGL граф. Следующие концепции легко реализовать поверх классов из
LEDA: VertexListGraph, BidirectionalGraph, VertexMutableGraph и EdgeMutableGraph.

Все типы, ассоциированные с графовым классом из BGL, можно получить с по •
мощью класса graph_t raits. Этот класс свойств может быть частично специализи -
рован для графового класса GRAPH из LED А1 (листинг 10.6). Типы node и edge яв-
ляются эквивалентами дескрипторов вершин и ребер. Класс GRAPH предназначен
для ориентированных графов, поэтому мы выбираем тег directed_tag для direc-
ted_category. Так как класс GRAPH автоматически не запрещает вставку параллельных
ребер, в нашем случае устанавливается allow_paranel_edge_tag для edge_paга 1 -
1 el_category. Функция number_of_nodes () из LED А возвращает целое число, поэтому
данный тип указан для vertices_size_type. Тип тега, используемый для traver-
sal_category, должен отражать моделируемые графом концепции обхода, поэтому
мы создаем теговый класс, наследующий от bidirectional_graph_tag, adjacency_-
graph_tag и vertex_l i st_graph_tag. Типы итераторов описаны далее в этом разделе.

Листинг 10.6. Свойства графов в LEDA
( Свойства графов для LEDA-графа > •
namespace boost {

struct leda_graph_traversal_category :
public v i r tual bidirectional_graph_tag,
public v i r tual adjacency_graph_tag.
public v i r tual vertex_list_graph_tag { }:

template < typename V, typename E>
struct graph_traits< GRAPH<V.E> > {

typedef node vertex_descriptor;
typedef edge edge_descriptor:
typedef directed tag directed_category:

Некоторые нестандартные компиляторы, например Visual C++6.0, не поддерживают частичную специа-
лизацию. Для доступа к ассоциированным типам в этом случае класс свойств должен быть полностью
специализирован для конкретных типов вершин и ребер. В альтернативном варианте может быть
применен класс-оболочка, содержащий LEDA-граф и требуемые вложенные определения типов.
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typedef allow_parallel_edge_tag edge_parallel_category;
typedef leda_graph_traversal_category traversal_category;
typedef int vertices_size_type:
typedef int edges_size_type:
typedef int degree_size_type:

< Тип итератора исходящих вершин )
// другие typedef для итераторов ...

}:
} // namespace boost

Сначала мы напишем функции source() и targetC) для концепции IncidenceGraph,
которая является частью концепции BidirectionalGraph. Мы используем тип GRAPH из
LED А в качестве параметра для графа и graph_traits для задания параметра ребра
и возвращаемого типа для вершины. Хотя типы LED А могут быть применены для
вершины и ребра, на практике лучше использовать graph_traits. Тогда, если при-
дется изменить ассоциированный тип вершины или ребра, это можно сделать в од-
ном месте внутри специализации graph_traits, а не во всем коде программы. Так
как LEDA предоставляет функции sou гее О и target О, мы просто их вызываем.

< Получение начальной и конечной вершины ребра для графа из LEDA ) •
template <class vtype. class etype>
typename graph_traits< GRAPH<vtype.etype> >::vertex_descriptor
source(typename graph_traits< GRAPH<vtype.etype> >::edge_descriptor e,

const GRAPH<vtype,etype>& g)
{

return source(e);

// по аналогии для конечной вершины

Следующая функция из IncidenceGraph — out_edges(). Эта функция возвраща-
ет пару итераторов по исходящим ребрам. Поскольку в LEDA применяются ите-
раторы в стиле STL, их нужно реализовать. Написание итераторов, которые со-
вместимы со стандартом C++, может быть сложным процессом. К счастью, в Boost
имеется удобная утилита для реализации итераторов — класс iterator_adaptor.
Этот класс позволяет пользователю создавать совместимые со стандартами ите-
раторы, просто предоставляя классы правил (policy class). В листинге 10.7 приве-
ден класс правил для итератора исходящих ребер. В LEDA сам объект-ребро ис-
пользуется как итератор. Он имеет функции Succ_Adj_Edge() и Pred_Adj_Edge()
для перемещения к следующему или предыдущему ребру.

Листинг 10.7. Правила для итератора исходящих ребер
( Правила для итератора исходящих ребер > •
struct leda_out_edge_iterator_policies
{

stat ic void initialize(leda_edge& ) { }

template <typename Iter>
stat ic void incrementIter& i )
{ i.baseO = Succ_Adj_Edge(i .baseO. 0): }

template <typename Iter>
stat ic void decrement Iter& i )
{ i.baseO = Pred_Adj_Edge(i .baseO, 0): }

template <typename Iter>
stat ic leda_edge dereference(const Iter& i )
return i.baseO: }

продолжение
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Листинг 10.7 {продолжение)
template <typename Iter>

static bool equal(const Iter& x. const Iter& y)
{ return x.baseO ==y.base(); }

}:
Теперь iterator_adaptor используется в качестве типа edgejterator. Первые два

параметра шаблона для edgejterator — адаптируемый класс и класс правил. Сле-
дующие параметры указывают ассоциированные типы итератора, такие как тип
значения и тип ссылки.

( Тип итератора исходящих вершин > •
typedef iterator_adaptor<leda_edge, leda_out_edge_1terator_policies.

leda_edge. const leda_edge&. const leda_edge*.
std::forward_iterator_tag. s t d : : p t r d i f f _ t
> out_edge_iterator:

После определения итератора исходящих ребер в классе свойств можно опре-
делить функцию outedgesO. В следующем определении (листинг 10.8) возвра-
щаемое значение должно быть парой итераторов исходящих вершин, так что мы
используем std:: pai r и затем graph_trai ts для доступа к итераторным типам. В теле
функции мы создаем итераторы исходящих ребер, передавая первое ребро для
первого итератора и ноль — для второго (в LEDA с помощью нуля обозначается
окончание последовательности). Ноль в качестве аргумента к Fi rst_Ad j_Edge() го-
ворит LEDA, что мы хотим обрабатывать исходящие ребра, а не входящие.

Листинг 10.8. Функция out_edges() для LEDA
( Функция out_edges() для LEDA > •
template <typename V, typename E>
std::pair<typename graph_traits< GRAPH<V.E> >::out_edge_iterator.

typename graph_traits< GRAPH<V,E> >::out_edge_iterator >
out_edges(typename graph_traits< GRAPH<V,E> >::vertex_descriptor u,

const GRAPH<V.E>& g)

typedef typename graph_traits< GRAPH<V,E> >::out_edge_iterator Iter:
return std::make_pair( Iter(First_Adj_Edge(u.O)). Iter(O) );

}

Остальные типы итераторов и интерфейсных функций пишутся аналогично.
Полный код для интерфейса оболочки к LEDA находится в boost/graph/leda_graph.hpp.
В листинге 10.9 мы используем проверку концепций BGL, чтобы быть уверенны-
ми в правильности реализации интерфейса с BGL. Эти проверки не тестируют
поведение времени исполнения (это тестируется в test/graph.срр).

Листинг 10.9. Проверка концепции реализованного интерфейса
( leda-concept-check.cpp > •
finclude <boost/graph/graph_concepts.hpp>
#include <boost/graph/leda_graph.hpp>

int main()

{
using namespace boost:
typedef GRAPH<int. int> Graph;
function_requires < VertexListGraphConcept<Graph> >();
function_requires < BidirectionalGraphConcept<Graph> >():
function_requires < VertexMutableGraphConcept<Graph> >():
function_requires < EdgeMutableGraphConcept<Graph> >():
return EXIT SUCCESS;



Руководство т Щ
по производительности

В этой главе мы обсудим влияние того или иного выбранного графа из семейства
графов BGL ad jacency_l i st на производительность. Цель этой главы — дать пользо-
вателям BGL некоторые базовые сведения о том, какие из типов графов могут
быть наиболее эффективны в различных ситуациях. Мы представим серию тес-
тов, отображающих производительность различных базовых операций несколь-
ких разновидностей adjacencylist из BGL. Исследованы скорости выполнения
операций над разреженными и плотными графами с использованием двух раз-
личных компиляторов (Microsoft Visual C++ и GNU C++).

Как основной компонент BGL-графа, adjacencyjist помогает пользовате-
лям контролировать фактические структуры данных, применяемые для внут-
ренних структур графа. Первые два параметра шаблона, EdgeLi st и VertexLi st,
используются для выбора фактических контейнеров для представления по-
следовательностей исходящих ребер и вершин соответственно. Пользователи
могут применять vecS, l i s t s или sets для EdgeLi st для выбора контейнеров
std::vector, std: : l i s t или std: :set соответственно. Они также могут указать
vecS или 1 i stS для выбора std: : vector или std: : 1 i st соответственно в качестве
основы.

11.1. Сравнения графовых классов
Мы сравнивали производительность различных вариантов adjacency_l i st. Эк-
сперименты покрывают большинство базовых операций над графами: вставка
и удаление вершин и ребер, обход графа по вершинам, ребрам и исходящим
ребрам каждой вершины. Тесты были выполнены с разреженными и плотными
графами малого (100 вершин), среднего (1000 вершин) и большого (10 000 вер-
шин) размера. Для разреженного графа число ребер в 10 раз больше числа
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вершин. Для плотного графа полное число ребер равно квадрату числа вер-
шин.

Замеры времени проводились на компьютере Dell с двумя процессорами
по 733 МГц, с памятью 512 Мбайт. Тесты были продублированы для двух ком-
пиляторов: Microsoft Visual C++ 6.0 и GNU C++ 2.95.3 (под cygwin). Для Vi-
sual C++ был установлен режим оптимизации по скорости. Для GNU C+ +
были установлены опции -03 и -funroll -loops. Заметим, что реализация adjacen-
cy^ i st использует компоненты из STL, которая поставляется вместе с компи-
лятором.

В таймере применялась переносимая POSIX-функция clock(), которая имеет
довольно низкое разрешение. По этой причине эксперименты выполнялись в цик-
ле до тех пор, пока затраченное время не превысило минимальное разрешение
по крайней мере в сто раз. Каждый тест был повторен 3 раза, и взято минималь-
ное время из этих трех прогонов. Мы заметили, что стандартное отклонение в из-
мерениях времени составляет приблизительно 10 %.

Далее приведен полный набор графовых типов, использованных в тестах. Так-
же указаны аббревиатуры, которые были применены в результирующих диаг-
раммах.

• vec
adjacency_list<vecS. vecS, directedS, property<vertex_distance_t, int>,

property<edge_weight_t. int> >

• list

adjacency_list<listS. vecS. directedS, property<vertex_distance_t. int>.
property<edge_weight_t. int> >

• set

adjacency_list<setS. vecS, directedS, property<vertex_distance_t, int>.
property<edge_weight_t. int> >

• listlist
adjacency_list<listS, lists. directedS, propert.y<vertex_distance_t, int>,

property<edge_weight_t. int> >

11.1.1. Результаты и обсуждение

Добавление ребер и вершин
В первом эксперименте чередуются вызовы в add_vertex() и add_edge(), пока число
ребер графа не достигнет \Е | ребер и | V | вершин. Результаты эксперимента показа-
ны на рис. 11.1. Победитель в этом эксперименте — один из классов adjacencyj i st
с параметром VertexLi st—1 i stS.

Добавление ребер
В этом тесте добавляются Е ребер к графу, который уже имеет | V | вершин. Ре-
зультаты показаны на рис. 11.2. Очевидным победителем для Visual C++ являет-
ся adjacency_l 1 st с VertexLi st=vecS, независимо от размера и разреженности графа.
При использовании GNU C++ побеждает класс adjacency_list с EdgeLi st=l i stS
для разреженного графа.
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Удаление ребер

В этом тесте добавляются и удаляются \Е | ребер графа с | V | вершинами. Результа-
ты показаны на рис. 11.3. Результат неясен для графов малого размера. Однако
ясно, что adjacencyjist с параметром VertexLi st=setS является победителем для
больших графов.
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Рис. 11.3. Результаты измерения времени для эксперимента
с удалением ребер

Удаление вершин

В этом тесте добавляются | V | вершин и \Е | ребер к графу, а затем удаляются все
вершины. Результаты показаны на рис. 11.4. Очевидным победителем является
l i s t l i s t , который специально разработан для этой операции. Другие варианты
adjacencyj i st имеют очень плохую производительность, так как эта операция вы-
полняется не за постоянное время.

Очистка вершин

В этом тесте сначала добавляются | V | вершин и \Е | ребер к графу, а потом очища-
ются и удаляются все вершины. Операция clearj/ertexO обходит граф, удаляя
все ребра, относящиеся к вершине. Результаты показаны на рис. 11.5. При увели-
чении размера графа adjacencyjist с параметром VertexList=vecS становится по-
бедителем.
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Обход вершин

В этом тесте обходятся все вершины графа, читая значение внутреннего свой-
ства каждой вершины. Результаты показаны на рис. 11.6. Среди первых трех
типов графа нет четкого победителя. Обход вершин был быстрым для этих
классов, так как они имеют одинаковый параметр Vertexl_ist=vecS. Для боль-
ших графов типа l i s t l i s t обход был медленнее, так как они используют Ver-
texList=listS.
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Рис. 11.6. Результаты измерения времени для эксперимента
с обходом множества вершин

Обход ребер

В этом тесте обходятся все ребра графа, читая значение внутреннего свойства каж-
дого ребра. Результаты показаны на рис. 11.7. Явным победителем здесь является
adjacency_l i st с параметром EdgeLi st=vecS.

Обход исходящих ребер

В этом тесте обходятся все исходящие ребра каждой вершины графа, при счи-
тывании значения внутреннего свойства каждой вершины и каждого исходяще-
го ребра. Результаты показаны на рис. 11.8. Явным победителем здесь является
adjacency l i s t сEdgeList=vecS.
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11.2. Итоги главы
Разные комбинации альтернатив являются различными вариантами компромис-
са между скоростью обхода и скоростью добавления и удаления. Следующие по-
ложения являются результатами наших экспериментов.

• Использование vecS для EdgeLi st обычно обеспечивает эффективный обход
по исходящим ребрам.

• Использование vecS для VertexLi st обычно обеспечивает эффективный об-
ход множества вершин.

• Эффективное удаление вершин поддерживается sets для EdgeLi St. В част-
ности, для последовательности исходящих ребер можно было бы исполь-
зовать std: -.set.

• Для эффективного добавления ребер нужно применять vecS или 11 stS для
EdgeLi st.

• Если удаление вершин происходит часто, нужно использовать lists для
VertexLi st, так как std:: 11st а качестве основы выполняет удаление верши-
ны за постоянное время.

• Для очистки вершин хорошим выбором для VertexLi st является vecS (функ-
ция clear_vertex() может использоваться для удаления всех инцидентны:1:
ребер).
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Таблица 12.1 {продолжение)

Выражение Возвращаемый тип или описание

BidirectionalGraph уточняет IncidenceGraph

graph_traits<G>::in_edge_iterator

in_edges(v, g)
in_degree(v, g)
degree(e, g)

AdjacencyGraph уточняет Graph

graph_traits<G>::adjacency_iterator

adjacent_vertices(v, g)

VertexListGraph уточняет Graph

graph_traits<G>::vertex_iterator
graph_traits<G>::vertices_size_type

num_vertices(g)
vertices(g)

EdgeListGraph уточняет Graph

graph_traits<G>::edge_descriptor
graph_traits<G>::edge_iterator
graph_traits<G>::edges_size_type

num_edges(g)
edges(g)
source(e, g)
target(e, g)

AdjacencyMatrix уточняет Graph

edge(u, v, g)

Итерация по входящим ребрам

std ::pair<in_edge_iterator, in_edge_iterator>
degree_size_type
degree_size_type

Итерация по смежным вершинам.

std::pair<adjacency_iterator, adjacency_iterator:

Итерация по набору вершин графа
Целый беззнаковый тип для представления
числа вершин

vertices_size_type
std::pair<vertex_iterator, vertex_iterator>

Тип объекта для обозначения ребер
Итерация по набору ребер графа
Целый беззнаковый тип для представления
числа ребер

edges_size_type
std::pair<edge_iterator, edge_iterator>
vertex_descriptor
vertex_descriptor

std::pair<edge_descriptor, bool>

12.1.1. Неориентированные графы
Интерфейс, который BGL предоставляет для доступа и манипуляции неориенти-
рованными графами, тот же, что и для ориентированных графов. Интерфейс один,
так как есть определенная эквивалентность между неориентированными и ори-
ентированными графами. То есть любой неориентированный граф может быть
представлен как ориентированный, если неориентированное ребро (м, v) заменить
двумя ориентированными (м, v) и (v, и). Такой ориентированный граф называет-
ся ориентированной версией неориентированного графа. На рис. 12.2 показан не-
ориентированный граф и его ориентированная версия. Заметим, что для каждого
ребра неориентированного графа ориентированный граф имеет два ребра. Таким
образом, BGL использует функцию out_edges () (или 1 n_edges ()) для доступа к ин-
цидентным ребрам в неориентированном графе. Аналогично sourceO и target О
применяются для доступа к вершинам. Сначала это может показаться противоре-
чивым фактом. Но, учитывая эквивалентность между неориентированными и ори-
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ентированными графами, BGL позволяет применять многие алгоритмы как к ори-
ентированным, так и к неориентированным графам.

Рис. 12.2. Неориентированный граф и его ориентированный эквивалент

Следующий пример в листинге 12.1 демонстрирует использование out_edges (),
source() и target О с неориентированным графом. Хотя обычно направление ребра
не принимается во внимание для неориентированных графов, в случае применения
функции out_edges () к вершине и начальная вершина для дескриптора ребра все-
гда и, а конечная — смежная с и. В функции in_edges(), соответственно, наоборот.

Листинг 12.1. Демонстрация некоторых функций для неориентированного графа
template <typename UndirectedGraph> void undirected_graph_demol() {

const int V = 3;
UndirectedGraph undigraph(V);
typename graph_traits<UndirectedGraph>::vertex_descriptor zero. one. two;
typename graph_traits<UndirectedGraph>::out_edge_iterator out, out_end;
typename graph_traits<UndirectedGraph>::in_edge_iterator in, in_end;

zero = vertex(0. undigraph):
one - vertexd. undigraph):
two = vertex(2, undigraph);
add_edge(zero, one, undigraph);
add_edge(zero. two. undigraph):
add_edge(one, two, undigraph);

std::cout « "исходящие(О): ":
for (tie(out, out_end) = out_edges(zero. undigraph); out != out_end;

++out)
std::cout « *out:

Std::COUt « Std::endl « "входящие(О): ";
for (tie(in. in_end) - in_edges(zero. undigraph); in != in_end; ++in)
std: :cout « *in;

std: :cout « std::endl;

Вывод будет следующим:

исходящие(О): (0,1) (0,2)
входящие(О): (1,0) (2.0)

Хотя интерфейс для неориентированных и ориентированных графов одинаков,
имеются некоторые отличия в поведении функций, поскольку равенство ребер
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graph_traits<G>::directed_category

Теги для этой категории: di rected_tag и undi rected_tag.

• graph_traits<G>::edge_parallel_category

Описывает, позволяет ли графовый класс осуществлять вставку параллель-
ных ребер (ребра с одной и той же парой начальной и конечной вершин). Два
тега: al Iow_paral Iel_edge_tag и disallow_paralle1_edge_tag.

• graph_traits<G>::traversal_category

Описывает виды обхода итераторами, которые поддерживает данный граф.
Следующие классы тегов определены:

struct incidence_graph_tag { };
struct adjacency_graph_tag { }:
struct bidirectional_graph_tag : public virtual incidence_graph_tag { };
struct vertex_list_graph_tag { };
struct edge_list_graph_tag { }:
struct adjacency_matrix_tag { };

1 2 . 1 . 3 . I n c i d e n c e G r a p h

Концепция IncidenceGraph обеспечивает интерфейс для эффективного доступа
к исходящим ребрам каждой вершины графа. Исходящие ребра (out-edges) дос-
тупны через итераторы исходящих ребер. Функция out_edges(v, g) по данному
дескриптору вершины v и графу g возвращает пару итераторов исходящих вер-
шин. Первый итератор указывает на первое исходящее ребро вершины v, а второй
итератор — за конец последовательности ребер. Разыменование итератора исхо-
дящих вершин возвращает дескриптор ребра. Инкремент итератора перемещает
его к следующему исходящему ребру. Порядок появления исходящих ребер при
итерации не фиксирован, хотя конкретная реализация графа может иметь неко-
торое упорядочение.

Уточнение для
Graph

Ассоциированные типы
Ниже приведены ассоциированные типы для концепции IncidenceGraph.
• graph_traits<G>::edge_descr1ptor

Дескриптор ребра соответствует уникальному ребру в графе. Он должен быть
DefaultConstructible, Assignable и EqualityComparable.

• graph_traits<G>::out_edge_iterator

Итератор исходящих ребер для вершины v обеспечивает доступ к исходя-
щим ребрам вершины v. Тип значения итератора — edge_descriptor от свое-
го графа. Итератор исходящих вершин должен отвечать требованиям Mult-
Passlnputlterator.

• graph_traits<G>::degree_size_type

Это беззнаковый целый тип, представляющий число исходящих или инцидент-
ных ребер вершины.



12.1. Концепции обхода графов 1 5 3

Допустимые выражения
Ниже приведены допустимые выражения для концепции IncidenceGraph.
• source(e, g)

Тип результата: vertex_descriptor.

Семантика: возвращает дескриптор вершины и для ребра (и, v), представлен-
ного через е.

Предусловие: е — допустимый дескриптор ребра графа д.

• target(е. д)

Тип результата: vertex_descriptor.

Семантика: возвращает дескриптор вершины для ребра v {и, р), представлен-
ного через е.

Предусловие: е — допустимый дескриптор ребра графа д.

• out_edges(v, g)

Т и п результата: std: :pair<out_edge_iterator,out_edge_iterator>.

Семантика: возвращает пару итераторов, обеспечивающих доступ к исходя-
щим ребрам (для ориентированных графов) или инцидентным ребрам (для
неориентированных графов) вершины у. Вершина v появляется как начальная
во всех исходящих ребрах. Вершины, смежные с v, являются конечными в ис-
ходящих ребрах (неважно, ориентированный граф или нет).

Предусловие: v — допустимый дескриптор вершины графа д.

• out_degree(v. g)

Тип результата: degree_size_type.

Семантика: возвращает число исходящих ребер (для ориентированных гра-
фов) или число инцидентных ребер (для неориентированных графов) вер-
шины V.

Предусловие: v — допустимый дескриптор вершины графа д.

Гарантии сложности
Функции source(), target О и out_edges() должны выполняться за постоянное вре-
мя. Функция out_degree() должна выполняться за линейное время по количеству
исходящих ребер вершины.

- 1 - 1 1 И P . . J - _ х . - I / - .
1 2 . 1 . 4 . B i d i r e c t i o n a l G r a p h

Концепция BidirectionalGraph уточняет IncidenceGraph: добавляется требование
для эффективного доступа к входящим ребрам каждой вершины. Эта концеп-
ция выделена из IncidenceGraph, потому как предоставление эффективного
доступа к входящим ребрам ориентированного графа обычно требует больше
памяти, а многие алгоритмы не требуют доступа к таким ребрам. Для неориен-
тированных графов это несущественно, так как дополнительная память не тре-
буется.
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Уточнение для
IncidenceGraph

Ассоциированные типы
Ниже приведен ассоциированный тип для концепции BidirectionalGraph.
• graph_traits<G>::in_edge_iterator

Итератор входящих ребер для вершины v обеспечивает доступ к входящим
ребрам вершины v. Тип значения итератора — edge_descriptor от своего графа.
Итератор исходящих вершин должен отвечать требованиям MultiPassInput-
Iterator.

Допустимые выражения
Ниже приведены допустимые выражения для концепции BidirectionalGraph.
• in_edges(v. g)

Тип результата: std: :pair<in_edge_iterator. in_edge_iterator>.

Семантика: возвращает пару итераторов, обеспечивающих доступ к входящим
ребрам (для ориентированных графов) или инцидентным ребрам (для неори-
ентированных графов) вершины v. Вершина v появляется как конечная во всех
входящих ребрах. Вершины, для которых вершина v — смежная, являются на-
чальными во входящих ребрах (неважно, ориентированный граф или нет).

Предусловие: v — допустимый дескриптор вершины графа д.
• in_degree(v, g)

Тип результата: degree_size_type.

Семантика: возвращает число входящих ребер (для ориентированных графов)
и число инцидентных ребер (для неориентированных графов) вершины v.

Предусловие: v — допустимый дескриптор вершины графа д.
• degree(v, g)

Тип результата: degree_size_type.

Семантика: возвращает число входящих и исходящих ребер (для ориентиро-
ванных графов) и число инцидентных ребер (для неориентированных графов)
вершины v.

Предусловие: v — допустимый дескриптор вершины графа д.

Гарантии сложности
Функция i n_edges () должна выполняться за постоянное время, функция i n_degree () —
за линейное время, по числу входящих ребер.

12.1.5. AdjacencyGraph

Концепция AdjacencyGraph определяет интерфейс для доступа к смежным верши-
нам. Смежные вершины могут быть также получены как конечные вершины ис-
ходящих ребер. Однако для некоторых алгоритмов исходящие ребра не нужны
и более удобно получать доступ к смежным вершинам непосредственно.
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Уточнение для
Graph

Ассоциированные типы
Ниже приведен ассоциированный тип для концепции AdjacencyGraph.
• graph_traits<G>::adjacency_iterator

Итератор смежности для вершины v предоставляет доступ к вершинам, смеж-
ным с вершиной v. Тип значения итератора смежности — дескриптор верши-
ны своего графа. Итератор должен отвечать требованиям MultiPassInputlterator.

Допустимые выражения
Ниже приведено допустимое выражение для концепции AdjacencyGraph.
• adjacent_vertices(v. g)

Т и п результата: std: :pair<adjacency_iterator,adjacency_iterator>.

Семантика: возвращает диапазон значений итератора, обеспечивающий дос-
туп к вершинам, смежным с вершиной v. Более конкретно: это эквивалентно
получению конечных вершин для каждого исходящего ребра вершины v.

Предусловие: v — допустимый дескриптор вершины графа д.

Гарантии сложности
Функция adjacent_verti ces() должна отрабатывать за постоянное время.

12.1.6. VertexListGraph

Концепция VertexListGraph определяет требования для эффективного обхода всех
вершин графа.

Уточнение для
Graph

Ассоциированные типы
Ниже приведены ассоциированные типы для концепции VertexListGraph.
• g га ph_t raits <G>::vertex_iterator

Итератор вершин (получаемый через verti ces (g)) обеспечивает доступ ко всем
вершинам графа. Тип итератора должен отвечать требованиям MultiPassInput-
Iterator. Тип значения итератора вершин должен быть дескриптором вершины.

• graph_traits<G>::vertices_size_type

Это беззнаковый целый тип, которым можно представить число вершин
в графе.

Допустимые выражения
Ниже приведены допустимые выражения для концепции VertexListGraph.
• vertices(g)
Тип результата: std: :pair<vertex_iterator. vertex_iterator>.
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Семантика: возвращает диапазон значений итератора, обеспечивая доступ ко
всем вершинам графа д.

• num vertices(g)

Тип результата: vertices size type.
_

Семантика: возвращает число вершин в графе д.
Гарантии сложности
Функция verti ces О должна отрабатывать за постоянное время. Время выполне-
ния функции num_vertices() должно линейно зависеть от числа вершин.

12.1.7. EdgeListGraph

Концепция EdgeListGraph уточняет концепцию Graph. Дополнительным требова-
нием является обеспечение эффективного доступа ко всем ребрам графа.

Уточнение для
Graph

Ассоциированные типы
Ниже приведены ассоциированные типы для концепции EdgeListGraph.
• graph_traits<G>::edge_descriptor

Дескриптор ребра соответствует уникальному ребру в графе. Он должен быть
DefaultConstructible, Assignable и EqualityComparable.

• graph_traits<G>::edge_iterator

Итератор ребер (полученный через edges (g)) обеспечивает доступ ко всем реб-
рам графа. Тип edgeiterator должен соответствовать требованиям Inputlterator.
Тип значения итератора ребер должен быть таким же, как у дескриптора ребер
данного графа.

• graph_traits<G>::edges_size_type

Это беззнаковый целый тип, используемый для представления числа ребер
в графе.

Допустимые выражения
Ниже приведены допустимые выражения для концепции EdgeListGraph.
• edges(g)

Тип результата: std: :pair<edge_iterator, edge_iterator>.

Семантика: возвращает диапазон значений итератора для доступа ко всем реб-
рам графа д.

• source(e, g)

Тип результата: vertex_descriptor.

Семантика: возвращает дескриптор вершины для начальной вершины и ре-
бра (и, v), заданного через е.

Предусловие: е — допустимый дескриптор ребра графа д.
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• target(e. g)

Тип результата: vertex_descri ptor.

Семантика: возвращает дескриптор вершины для конечной вершины v ре-
бра (и, v), заданного через е.

Предусловие: е — допустимый дескриптор ребра графа д.

• nurn edges(g)

Тип результата: edges_size_type.

Семантика: возвращает количество ребер в графе д.

Гарантии сложности
Функции edges(), source() и target О должны отрабатывать за постоянное время.
Функция num_edges() должна выполняться за линейное по числу ребер время.

12.1.8. AdiacencyMatrix

Концепция AdjacencyMatrix уточняет концепцию Graph и имеет дополнительное
требование обеспечения эффективного доступа к любому ребру в графе по задан-
ным начальной и конечной вершинам.

Уточнение для
Graph

Допустимые выражения
Ниже приведено допустимое выражение для концепции AdjacencyMatrix.
• edge(u. v, g)

Тип результата: std:: pa i r<edge_descri ptor. boo! >.

Семантика: возвращает пару, состоящую из флага, показывающего, существу-
ет ли в графе g ребро между и и v, и дескриптора ребра, если такое найдено.

Предусловие: u, v — допустимые для графа g дескрипторы вершин.

Гарантии сложности
Функция edge() должна возвращать результат за постоянное время.

12.2. Концепции для изменения графов
Этот раздел описывает BGL-интерфейс для модификации графа, то есть добавле-
ния и удаления вершин и ребер, изменения значений закрепленных за вершинами
и ребрами свойств. Как и концепции для обхода графа, концепции модификации
графа раздроблены на множество простых, для того чтобы предоставить разработ-
чикам алгоритмов хороший выбор концепций для описания требований алгорит-
мов. В табл. 12.2 приведены допустимые выражения и ассоциированные типы для
каждой концепции, а на рис. 12.3 показаны отношения уточнения между концеп-
циями модификации графов. Некоторые из концепций, изображенных на рис. 12.1,
также фигурируют на рис. 12.3, но все их отношения уточнения пропущены.
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Graph

VertexMutableGraph • VertexMutablePropertyGraph

EdgeMutablePropertyGraph

EdgeMutableGraph

MutablelncidenceGraph

MutableBidirectionalGraph

BidirectionalGraph

EdgeListGraph ->• MutableEdgeListGraph

Рис. 12.3. Концепции для изменения графов и отношения уточнения между ними

Таблица 12.2. Краткая сводка концепций для изменения графа
и доступа к свойствам графа

Выражение Возвращаемый тип или описание

VertexMutableGraph уточняет Graph

addvertex(g)
remove_vertex(v, g)

EdgeMutableGraph уточняет Graph

clear_vertex(v, g)
add_edge(u, v, g)
remove_edge(u, v, g)
remove_edge(e, g)

MutablelncidenceGraph уточняет IncidenceGraph и EdgeMutableGraph

remove_edge(eiter, g) void
remove_out_edge_if(u, p, g) void

MutableBidirectionalGraph уточняет MutablelncidenceGraph и BidirectionalGraph

vertex_descriptor
void

void
std::pair<edge_descriptor, bool>
void
void

remove_edge(eiter, g) void

remove_out_edge_if(u, p, g) void

MutableEdgeListGraph уточняет EdgeMutabLeGraph и EdgeListGraph

remove_edge_if(p, g) void

PropertyGraph уточняет Graph

property_map<G, PropertyTag>::type Тип для изменяемого отображения свойства
вершины

property_map<G, Property- Тип для неизменяемого отображения
Tag>::const_type свойства вершины
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Выражение Возвращаемый тип или описание

get(ptag, g) Функция для получения объекта-отображения
свойства вершины

get(ptag, g, x) Получить значение свойства для вершины
или ребра х

put(ptag, g, x, v) Положить значение свойства для вершины
или ребра х равным v

VertexMutablePropertyGraph уточняет VertexMutableGraph и PropertyGraph

add_vertex(vp, g) vertex_descriptor

EdgeMutablePropertyGraph уточняет EdgeMutableGraph и PropertyGraph

add_edge(u, v, ep, g) std::pair<edge_descriptor, bool>

1 2 . 2 . 1 . V e r t e x M u t a b l e G r a p h

Концепция VertexMutableGraph — граф, модифицируемый по множеству вершин
(vertex mutable), может быть изменен добавлением или удалением вершин. Уп-
равление памятью выполняется при реализации графа. Пользователь графа толь-
ко вызывает add_vertex() и remove_vertex(), а реализация делает все остальное.

Уточнение для
Graph, DefaultConstructible

Допустимые выражения
Ниже приведены допустимые выражения для концепции VertexMutableGraph.
• add vertex(g)

-
Тип результата: vertex_descri ptor.
Семантика: добавляет новую вершину к графу. Возвращает дескриптор вер-
шины для новой вершины.
• remove_vertex(u. g)

Тип результата: void.
. Семантика: удаляет вершину и из множества вершин графа.

Предусловия: и — допустимый дескриптор вершины графа g и нет ребер, ин-
цидентных вершине и. Функция clear_vertex() может быть использована для
удаления всех инцидентных ребер.

Постусловия: num_vertices(g) уменьшается на единицу; вершина и больше не
находится во множестве вершин графа, а ее дескриптор больше не может быть
использован.

Гарантии сложности
Концепция VertexMutableGraph дает следующие гарантии сложности:

• вставка вершины происходит гарантированно за амортизированное посто-
янное время;

• удаление вершины должно происходить не дольше чем за О(\Е | + \V |).
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1 2 . 2 . 2 . E d g e M u t a b l e G r a p h

Концепция EdgeMutableGraph — граф, модифицируемый по множеству ребер (edge
mutable), может быть изменен добавлением или удалением ребер. Управление
памятью выполняется при реализации графа. Пользователь графа только вызы-
вает add_edge() и remove_edge(), а реализация делает все остальное.

Уточнение для
Graph

Допустимые выражения
Ниже приведены допустимые выражения для концепции EdgeMutableGraph.

• add_edge(u. v. g)

Тип результата: std: :pair<edge_descriptor. bool>.

Семантика: пытается вставить ребро (и, v) в граф, возвращая вставленное реб
ро или параллельное ребро и флаг, который показывает, было ли ребро встав
лено. Эта операция не должна «портить» дескрипторы вершин или итераторы
по вершинам графа, но она может сделать недействительными дескрипторы
ребер или итераторы по ребрам. Порядок, в котором новое ребро появится при
обходе итераторами ребер графа, не определен.
Предусловие: (и, о)являются вершинами графа.

Постусловие: (и, v) находится в наборе ребер графа. Возвращенный дескриптор
ребра имеет вершину и в качестве начальной и v — в качестве конечной. Если
граф позволяет иметь параллельные ребра, то возвращаемый флаг будет исти
ной. Если параллельные ребра в графе не разрешаются и ребро {и, v) уже есть
в графе, флаг будет иметь значение «ложь». Если ребра {и, v) еще не было в гра-
фе, флаг будет иметь значение «истина».

• remove_edge(u, v. g)

Тип результата: void.

Семантика: удалить ребро (и, v) из графа. Если граф позволяет иметь парал-

лельные ребра, функция удаляет все вхождения (и, v) в граф.

Предусловие: {и, v) является ребром из графа д.

Постусловие: {и, v) больше не является ребром графа д.

• remove_edge(e, g)

Тип результата: void.

Семантика: удалить ребро е из графа.

Предусловие: е является ребром графа д.

Постусловие: е больше не является ребром графа д.

• clear_vertex(u, g)

Тип результата: void.

Семантика: удалить все ребра, инцидентные вершине и графа.

Предусловие: и является допустимым дескриптором вершины для д.

Постусловие: и не участвует ни в одном из ребер графа в качестве начальной

или конечной вершины.
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Гарантии сложности
Концепция EdgeMutableGraph дает следующие гарантии сложности:

• вставка ребра должна происходить за амортизированное постоянное время
или за время, равное O(log(|£ |/| V|)), если выполняются проверки для пре-
дотвращения добавления параллельных ребер;

• удаление ребра выполняется гарантированно за время О(\Е |);

• очистка вершины от инцидентных ребер выполняется не более чем за О(\Е | +
+ \V\).

1 2 . 2 . 3 . M u t a b i e l n c i d e n c e G r a p h

Концепция MutabielncidenceGraph обеспечивает возможность удаления ребер из
списка исходящих ребер вершины.

Уточнение для
IncidenceGraph и EdgeMutableGraph

Допустимые выражения
Ниже приведены допустимые выражения для концепции MutabielncidenceGraph.

• remove_edge(eiter, g)

Тип результата: void.
Семантика: удаляет ребро, на которое указывает enter, из графа, где eiter —
итератор исходящих вершин графа.
Предусловие: *eiter является ребром графа.

Постусловие: *eiter больше не является ребром графа д.j у У i ч*

• remove_out_edge_if(u. p. д)

1ип результата: void.

Семантика: удаляет все исходящие ребра вершины и, для которых предикат р
возвращает истинное значение. Это выражение требуется, только если граф
также моделирует IncidenceGraph.

Предусловие: и является допустимым дескриптором вершины графа д.
Постусловие: р возвращает ложь для всех исходящих ребер вершины и и все
исходящие ребра, для которых р давал ложь, до сих пор находятся в графе.

Гарантии сложности
Концепция MutabielncidenceGraph дает следующие гарантии сложности:

• функция remove_edge() должна выполняться за постоянное время;

• функция remove_out_edge_if() должна выполняться за линейное по числу
исходящих ребер время.

1 2 . 2 . 4 . M u t a b l e B i d i r e c t i o n a l G r a p h

Концепция MutableBidirectionalGraph определяет интерфейс для удаления ребер
из списка входящих ребер вершины.

6 Зак 375
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Уточнение для
BidirectionalGraph и MutablelncidenceGraph

Допустимые выражения
Ниже приведено допустимое выражение для концепции MutabLeBidirectionaLGraph.

• remove_in_edge_if(v, p, g)

Тип результата: void.
Семантика: удаляет все входящие ребра вершины v, для которых р возвращает
истину.

Предусловие: v — допустимый дескриптор вершины графа д.

Постусловие: р возвращает ложь для всех входящих ребер вершины и и все
входящие ребра, для которых р давал ложь, до сих пор находятся в графе.

Гарантии сложности
Концепция MutabLeEdgeListGraph дает следующую гарантию сложности:

• функция remove_i n_edge_i f () выполняется за линейное по числу входящих
вершин время.

1 2 . 2 . 5 . M u t a b l e E d g e L i s t G r a p h

Концепция MutableEdgeListGraph предоставляет возможность удалять ребра из списка
ребер графа.

Уточнение для
EdgeMutabLeGraph

Допустимые выражения
Ниже приведено допустимое выражение для концепции MutableEdgeList-

Graph.

• remove_edge_if(p. g)

Тип результата: void.
Семантика: удаляет все ребра из графа д, для которых р возвращает истину.
Постусловие: р возвращает ложь для всех ребер в графе и граф до сих пор со-
держит все ребра, для которых р первоначально возвращал ложь.

Гарантии сложности
Концепция MutableEdgeListGraph дает следующую гарантию сложности:

• функция remove_edge_i f () должна выполняться за линейное время по числу
ребер в графе.

1 2 . 2 . 6 . P r o p e r t y G r a p h

Концепция PropertyGraph — граф, который имеет некоторое свойство, связанное
с каждой из вершин или ребер графа. Так как данный граф может иметь несколь-
ко свойств, связанных с каждой вершиной или ребром, для обозначения свойства
могут быть использованы теги. В описании требований PropertyTag — это тип тега,
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a tag — объект типа PropertyTag. Граф предоставляет функцию, которая возвраща-
ет объект—отображение свойства.

Уточнение для
Graph

Ассоциированные типы
Ниже приведены ассоциированные типы для концепции PropertyGraph.
• property_map<G. PropertyTag>::type

Тип отображения свойства для свойства, заданного PropertyTag. Этот тип дол-
жен быть изменяемым LvaluePropertyMap с таким же типом ключа, как у де-
скриптора вершины или ребра графа.

• property_map<G. PropertyTag>::const_type

Тип константного отображения свойства для свойства, заданного PropertyTag.
Этот тип должен быть неизменяемым LvaluePropertyMap с таким же типом клю-
ча, как у дескриптора вершины или ребра графа.

Допустимые выражения
Ниже приведены допустимые выражения для концепции PropertyGraph.
• getCptag. g)

Тип результата: property_map<G. PropertyTag>: :type, если g является изменяе-
мым — и property_map<G. PropertyTag>:: const_type — в противном случае.

Семантика: возвращает отображение свойства для свойства, заданного типом
PropertyTag. Объект ptag используется только ради своего типа.

• getCptag. g. x)
Тип результата: property_traits<PMap>: :value_type.

Семантика: возвращает значение свойства (заданного типом PropertyTag), свя-
занного с объектом х (вершина или ребро). Объект ptag используется только
ради своего типа. Эта функция эквивалентна get (get (ptag. g). x).

Гарантии сложности
Функция get О должна выполняться за постоянное время.

12.2.7. VertexMutablePropertyGraph

Концепция VertexMutablePropertyGraph — это VertexMutableGraph и PropertyGraph с до-
полнительными функциями для указания значений свойств при добавлении вер-
шин к графу.

Уточнение для
VertexMutableGraph и PropertyGraph

Ассоциированные типы
Ниже приведен ассоциированный тип для концепции VertexMutablePropertyGraph.

• vertex_property<G>::type
Тип объекта-свойства, закрепленного за вершиной.
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Допустимые выражения
Ниже приведено допустимое выражение для концепции VertexMutaЫеРropertyG гарh.

• add_vertex(vp, g)

Тип результата: vertex_descriptor.

Семантика: добавляет новую вершину к графу и копирует vp в объект-свойство
для новой вершины. Возвращается дескриптор вершины для новой вершины.

Гарантии сложности
Концепция VertexMutabLePropertyGraph дает следующую гарантию сложности:

• add_vertex() гарантированно выполняется за амортизированное постоянное

время.

1 2 . 2 . 8 . E d g e M u t a b l e P r o p e r t y G r a p h

Концепция EdgeMutablePropertyGraph — это EdgeMutableGraph и PropertyGraph с до-
полнительными функциями для задания значений свойств при добавлении ребер
к графу.

Уточнение для
EdgeMutableGraph и PropertyGraph

Ассоциированные типы
Ниже приведен ассоциированный тип для концепции EdgeMutablePropertyGraph.

• edge_property<G>::type

Тип объекта-свойства, закрепленного за ребром.

Допустимые выражения
Ниже приведено допустимое выражение для концепции EdgeMutablePropertyGraph.

• add_edge(u. v, ep. g)

Тип результата: std: :pair<edge_descriptor, bool>.

Семантика: вставляет ребро (и, v) в граф и копирует объект ер в объект-свой-
ство для этого ребра.
Предусловие: u, v являются допустимыми дескрипторами вершин графа д.

Гарантии сложности
Концепция EdgeMutablePropertyGraph дает следующую гарантию сложности:

• вставка ребра должна происходить либо за амортизированное постоянное
время, либо за O(log(|£ |/| V |)), если при вставке проверяется недопустимость
добавления параллельных ребер.

12.3. Концепции посетителей
Концепции посетителей (visitor concepts) играют такую же роль в BGL, как и функ-
торы (functors) в STL. Функторы предоставляют механизм для расширения алго-
ритмов. Посетители позволяют пользователям вставлять свои собственные one-
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рации в различных точках графового алгоритма. В отличие от алгоритмов STL
алгоритмы на графах обычно имеют несколько событийных точек, в которые
пользователь может вставить обратный вызов (callback) через функтор. Таким
образом, посетители имеют не единственный метод operator^), как у функтора,
а несколько методов, соответствующих различным событийным точкам. В этом
разделе мы определим концепции посетителей для основных алгоритмов BGL.

Как функциональные объекты в STL, посетители передаются по значению
в алгоритмы BGL. Это означает, что нужно быть очень осторожным при сохране-
нии состояния в объектах-посетителях.

Обозначения, использованные в этом разделе, приведены ниже:

• V — тип, моделирующий концепцию посетителя;

• vis — объект типа V;

• G — тип, являющийся моделью Graph;

• g — объект типа G;

• е — объект типа graph_traits<G>: :edge_descriptor;

• s, u — объекты типа graph_traits<G>: :vertex_descriptor.

1 2 . 3 . 1 . BFSVis i tor

Концепция BFSVisitor определяет интерфейс посетителя для поиска в ширину
breadth_fi rst_search(). Пользователи могут определить класс с интерфейсом BFSVisitor
и передавать объект этого класса алгоритму breadth_f i rst_sea rch (), дополняя дей-
ствия, производимые во время поиска по графу.

Уточнение для
CopyConstructible

Допустимые выражения
Ниже приведены допустимые выражения для концепции BFSVisitor.

• vis.initialize_vertex(u. g)

Тип результата: void.

Семантика: вызывается для каждой вершины графа перед началом поиска в графе.

• vis.discover_vertex(u. g)

Тип результата: void.
Семантика: вызывается, когда алгоритм встречает некоторую вершину и впер-
вые. Все другие вершины, более близкие к исходной вершине, были уже про-
смотрены, а вершины, расположенные дальше от исходной, — еще нет.

• vis.examine_edge(e. g)

Тип результата: void.

Семантика: вызывается для каждого исходящего ребра каждой, только что по-
сещенной вершины.

• vis.tree_edge(e. g)

Тип результата: void.
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Семантика: если рассматриваемое ребро е входит в дерево поиска, вызывается эта
функция. Вызов функции всегда предваряется вызовом функции exami ne_edge(),

• vis.non_tree_edge(e. g)

Тип результата: void.
Семантика: если рассматриваемое ребро е не входит в дерево поиска, вызыва-
ется эта функция. Вызов функции всегда предваряется вызовом функции
examine_edge(). Для ориентированных графов такое ребро должно быть либо
обратным, либо поперечным, для неориентированных — поперечным.

• vis.gray_target(e. g)

Тип результата: void.
Семантика: эта функция вызывается, если рассматриваемое ребро — ребро
цикла и если его конечная вершина окрашена в серый цвет во время рассмо
трения. Вызов функции всегда предваряется вызовом функции cycle_edge().
Серый цвет означает, что ребро находится в данный момент в очереди.

• vis.black target(e. g)

Тип результата: void.

Семантика: эта функция вызывается, если рассматриваемое ребро является
ребром цикла и если его конечная вершина окрашена в черный цвет во время
просмотра. Вызов функции всегда предваряется вызовом функции cycl e_edge().
Черный цвет означает, что вершина уже была удалена из очереди.

• vis.finish_vertex(u. g)

Тип результата: void.

Семантика: эта функция вызывается для вершины после того, как все ее исхо-
дящие ребра были добавлены к дереву поиска и все смежные вершины про-
смотрены (но перед тем, как были рассмотрены их исходящие ребра).

1 2 . 3 . 2 . DFSVisitor

Концепция DFSVisitor определяет интерфейс посетителя для поиска в глубину
depth_first_search(). Пользователи могут определить класс с интерфейсом DFSVisitor
и передавать объект этого класса алгоритму depth_first_search(), дополняя дей-
ствия, производимые во время поиска по графу.

Уточнение для
CopyConstructible

Допустимые выражения
Ниже приведены допустимые выражения для концепции DFSVisitor.

• vis.initialize_vertex(u. g)

Тип результата: void.
Семантика: вызывается для каждой вершины графа перед началом поиска
в графе.

• vis.start_vertex(s, g)

Тип результата: void.
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Семантика: вызывается для исходной вершины перед началом поиска в графе.

• vis.discover_vertex(u. g)

Тип результата: void.

Семантика: вызывается, когда алгоритм встречает некоторую вершину и
впервые.

• vis.examine_edge(e. g)

Тип результата: void.

Семантика: вызывается для каждой исходящей вершины после ее посеще-
ния.

• vis.tree_edge(e. g)

Тип результата: void.
Семантика: вызывается для каждого ребра, когда оно становится частью дере-
ва поиска.

• vis.back_edge(e. g)

Тип результата: void.
Семантика: вызывается для обратных ребер графа. Для неориентированного
графа имеется некоторая неопределенность между древесными ребрами и об-
ратными ребрами, поскольку (и, v) и (v, и) являются одним и тем же ребром,
но обе функции tree_edge() и back_edge() вызываются. Одним из способов раз-
решения этой неопределенности является запись древесных ребер, а затем от-
брасывание обратных ребер, которые уже отмечены как древесные. Простым
способом записывать древесные ребра является запись предшественников
в функции tree_edge().

• vis.forward_or_cross_edge(e. g)

Тип результата: void.
Семантика: вызывается для прямого или поперечного ребра в графе. Этот ме-
тод никогда не вызывается при поиске в неориентированном графе.

• vis.finish vertexCu. g)

Тип результата: void.
Семантика: вызывается для вершины и после того, как finishvertexO была
вызвана для всех вершин дерева поиска с корнем в вершине и. Если вершина и
является листом дерева поиска, функция finish_vertex() вызывается для вер-
шины и после просмотра всех исходящих из и ребер.

1 2 . 3 . 3 . Di jkstraVisitor

Концепция DijkstraVisitor определяет интерфейс посетителя для di jkstra_shortest_-
paths () и подобных алгоритмов. Пользователь может создать класс, согласованный
с этим интерфейсом, и затем передать объекты класса в di jkstra_shortest_paths()
для расширения действий, производимых во время поиска по графу.

Уточнение для
CopyConstructible
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Допустимые выражения
Ниже приведены допустимые выражения для концепции DijkstraVisitor.

• vis.discover_vertex(u. g)

Тип результата: void.

Семантика: вызывается, когда алгоритм встречает некоторую вершину и впервые.

• vis.examine_edge(e. g)

Тип результата: void.
Семантика: вызывается для каждого исходящего ребра каждой вершины пос-
ле ее посещения.

• vis.edge_relaxed(e. g)

Тип результата: void.
Семантика: пусть (и, v) — это ребро е, d — отображение расстояний, a w — ото-
бражение весов. Если во время обхода d[u] + w(u, v) < d[v], то ребро требует
релаксации (его расстояние сокращается) и вызывается этот метод.

• vis.edge_not_relaxed(e. g)

Тип результата: void.

Семантика: если во время обхода ребро не требует релаксации, то вызывается
этот метод.

• vis.finish_vertex(u. g)

Тип результата: void.

Семантика: вызывается для вершины после того, как все ее исходящие ребра
были добавлены к дереву поиска и все смежные вершины были просмотрен].i
(но перед тем, как были рассмотрены их исходящие ребра).

1 2 . 3 . 4 . Bel I m a n Ford Visitor

Концепция BellmanFordVisitor определяет интерфейс посетителя для bel lman_ford -
shortest_paths(). Пользователь может создать класс с интерфейсом BellmanForc-
Visitor и затем передать объекты класса в bel I man_ford_shortest_paths() через пара-
метр vi si tor () для расширения действий, производимых во время поиска по граф>'.

Уточнение для
CopyConstructible

Допустимые выражения
Ниже приведены допустимые выражения для концепции Bellman FordVisitor.
• vis.initialize_vertex(s, g)

Тип результата: void.

Семантика: вызывается для каждой вершины графа перед началом поиска
в графе.

• vis.examine_edge(e. g)

Тип результата: void.

Семантика: вызывается для каждого ребра графа num_vertices(g) раз.
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• vis.edge_relaxed(e. g)

Тип результата: void.

Семантика: пусть (и, v) — ребро е, d — отображение расстояний, w — отобра-
жение весов. Если d[u] + w(u, v) < d[v], то ребро требует релаксации (его рас-
стояние сокращается) и вызывается этот метод.

• vis.edge_not_relaxed(e. g)

Тип результата: void.

Семантика: если во время обхода ребро не требует релаксации (см. выше), то
вызывается этот метод.

• vis.edge_mi ni mi zed(e. g)

Тип результата: void.

Семантика: после num_vert i ces (g) итераций по набору ребер графа делается одна
последняя итерация для проверки того, каждое ли ребро было минимизирова-
но. Если ребро минимизировано, то вызывается эта функция. Ребро (и, v) ми-
нимизировано, если d[u] + w(u, v) > d[v].

• vis.edge_notjninimized(e. g)

Тип результата: void.

Семантика: если ребро не минимизировано, то вызывается эта функция.
Это случается, когда в графе есть отрицательный цикл.



Алгоритмы BGL

13.1. Обзор

В этой главе представлена детальная информация по применению всех алгорит-
мов в Boost Graph Library.

Обобщенные алгоритмы BGL разделены на следующие категории:

1. Основные алгоритмы поиска.

2. Кратчайшие пути.

3. Минимальное остовное дерево.

4. Компоненты связности.

5. Максимальный поток.

6. Упорядочение вершин.

Все алгоритмы реализованы как шаблоны функций, где тип графа является
параметром шаблона. Это позволяет использовать функцию с любым типом гра-
фа, который моделирует требуемые концепции. Описание каждого алгоритма со-
держит список требуемых графовых концепций, а описание каждого графового
класса включает список концепций, которые граф моделирует. По перекрестным
ссылкам через концепции можно определить, какие типы графов с какими алго-
ритмами могут быть использованы.

Кроме того, алгоритмы иногда параметризуются отображениями свойств, как
например, отображение расстояний для алгоритмов кратчайших путей. Это дает
пользователю контроль над тем, как свойства хранятся и извлекаются. Алгорит-
мы также параметризованы по типу посетителя, что позволяет пользователю за-
дать обратные вызовы (call-backs), которые будут выполнены в определенных
событийных точках алгоритма.
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13.1.1. Информация об алгоритме
Информация об алгоритме будет представлена в виде следующих подразделов:
«Прототипы», «Описание», «Где определен», «Параметры», «Именованные па-
раметры», «Предусловия», «Сложность», «Пример».

Прототипы
Раздел справочника по каждому алгоритму начинается с прототипа функции.
По именам параметров шаблона обычно можно судить о назначении параметра,
а иногда также о требуемой параметром концепции. Однако точные требования
для каждого параметра даны в разделе описания параметров.

Последний параметр для многих функций — bgl _named_pa rams. Он служит для под-
держки именованных параметров, что описано в разделе 2.7 и также рассматривается
здесь. Если после params написано = al I defaul ts, то для всех именованных пара-
метров имеются значения по умолчанию, и эти параметры могут быть опущены.

Описание
В описании функции мы определяем задачу, которую решает эта функция, объяс-
няем терминологию теории графов или идеи, которые необходимы для понима-
ния задачи. Затем мы описываем семантику функций с точки зрения ее воздей-
ствия на параметры.

Где определен
В этом разделе указан заголовочный файл, который должен быть включен в про-
грамму (с помощью #i ncl ude) для пользования функцией.

Параметры
Здесь приводится список всех обычных параметров функции (именованные рас-
смотрены в следующем разделе). Обычные параметры обязательны (для них нет
значений по умолчанию).

Каждый параметр попадает в одну из следующих категорий:
• IN

параметры читаются функцией и используются для получения информации.
Функция никак не изменяет эти параметры;

• OUT

параметры записываются функцией. Результаты работы функции хранятся
в OUT-параметрах;

• UTIL

параметры требуются для работы алгоритма, однако содержимое объектов,
используемых как UTIL-параметры, обычно не интересно для пользователя.
Эти параметры обычно как читаются, так и записываются.

Именованные параметры
Как сказано в разделе 2.7, BGL использует специальную технику для повышения
удобства работы с функциями с большим набором параметров, когда многие
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параметры имеют значения по умолчанию. В этом разделе перечисляются все име-
нованные параметры для функции, с использованием такой же классификации,
что и для обычных параметров. Кроме того, для каждого именованного параметра
приведено значение по умолчанию.

Предусловия
В этом разделе мы описываем любые предусловия для функции. Обычно это вклю-
чает требования к состоянию параметров отображений свойств.

Сложность
Временная сложность для каждого алгоритма дана в 0-обозначениях. Сложность
по памяти всегда не больше O(|F|), если не указано обратное.

Пример
Для демонстрации использования алгоритма приводится простой пример.

13.2. Базовые алгоритмы

13.2.1. breadth_first_search
template <typename Graph, typename P. typename T. typename R>void breadth_first_search(Graph& g,typename graph_traits<Graph>::vertex_descriptor s.const bgl_named_params<P, T. R>& params)
Функция breadth_first_search() выполняет поиск в ширину [31] ориентиро-

ванного или неориентированного графа. При поиске в ширину сначала посеща-
ются вершины, которые расположены ближе к исходной вершине, а потом более
дальние вершины. В этом контексте расстояние определяется как число ребер
в кратчайшем пути от исходной вершины. Функция breadth_fi rst_search() может
использоваться для вычисления кратчайших путей из одной вершины ко всем
достижимым вершинам и длин соответствующих кратчайших путей. Определе-
ния, связанные с алгоритмом поиска в ширину, и детальный пример приведены
в разделе 4.1.

Поиск в ширину использует две структуры данных для реализации обхода:
цветную метку для каждой вершины и очередь. Еще не просмотренные вершины
окрашены белым, серым обозначены пройденные вершины, у которых еще есть
смежные белые. Черные вершины — уже посещенные вершины, причем вершины,
смежные с данными, окрашены в серый или черный цвет. Алгоритм продолжает
работу, удаляя вершину и из очереди и исследуя каждое исходящее ребро {и, v).
Если смежная вершина v ранее не посещалась, она окрашивается в серый цвет
и помещается в очередь. После рассмотрения всех исходящих ребер вершина и
окрашивается в черный цвет и процесс повторяется. Псевдокод для алгоритма по-
иска в ширину приведен ниже. В псевдокоде показаны вычисления предшествен-
ников р, отметки посещения d и отметки окончания обработки t. По умолча-
нию функция breadth_fi rst_search() не вычисляет эти свойства, однако имеются
предопределенные посетители, которые могут быть использованы для этого.
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ПОИСК_В_ШИРИНУ(С, s)
для каждой вершины и е V[G]
color[u] <- БЕЛЫЙ
d[u] <— оо

7l\u\*r-U

color[s] «- С£РЬ/Я

4s] «- О
В_ОЧЕРЕДЬ(<2,5)

пока ( Q * 0 )

а < - ИЗ_ОЧЕРЕДИ(Й)

для каждой вершины v e Adj[u]

если (со/ог[о] = БЕЛЫЙ)

color[v] <- СЕРЫЙ

d[v] <- d[u] + 1

7t[v]<r-U

В_ОЧЕРЕДЬ«2,О)
иначе
если (сойя|»] = СЕРЫЙ)

иначе

со/ог[м] <- ЧЕРНЫЙ
возвратить

> инициализировать вершину и

> посетить вершину s

> рассмотреть вершину и

> рассмотреть ребро (и, v)

> (и, v) — древесное ребро

> посетить вершину v

> (и, v) — не древесное ребро

> (и, v) имеет серый конец

> (и, v) имеет черный конец

> завершение обработки вершины и

Функция breadth_first_search() может быть расширена действиями опреде-
ленными пользователем, которые вызываются в некоторых событийных точках.
Действия должны быть представлены в форме объекта-посетителя, то есть объ-
екта, отвечающего требованиям BFSVisitor. В указанном выше псевдокоде собы-
тийные точки обозначены в комментариях. По умолчанию функция breadth_-
fi rst_search() не производит никаких действий, даже не записывает расстояния
или предшественников. Однако это может быть легко добавлено определением
посетителя.

Где определен
Алгоритм поиска в ширину находится в boost/graph/breadth_first_search.hpp.

Параметры
Ниже приведены параметры функции breadth_fi rst_search().

• IN: Graph& g

Ориентированный или неориентированный граф, который должен быть моде-
лью Vertex Li stG ra ph и IncidenceGraph.

• IN: vertex_descriptor s

Исходная вершина, с которой начинается поиск.
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Именованные параметры
Ниже приведены именованные параметры функции breadth_fi rst_search().

• IN: visitor(BFSVisitor vis)

Объект-посетитель, который активизируется внутри алгоритма в событийных
точках, указанных в концепции BFSVisitor.

По умолчанию: def aul t_bf s_vi si tor.

• UTIL/OUT: color_map(ColorMap color)

Используется алгоритмом для отслеживания продвижения по графу. Тип Col ог-
Мар должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вер-
шины графа, тип значения col orjnap должен быть моделью ColorValue.

По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами типа default_color_type размером num_vertices(). Он использует ijnap
для отображения индексов.

• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [О, \V\), Этот пара-
метр необходим только при использовании отображения свойства цвета по
умолчанию. Тип VertexIndexMap должен моделировать ReadablePropertyMap. Тип
значения отображения должен быть целочисленным типом. В качестве типа
ключа отображения должен задаваться дескриптор вершины графа.

По умолчанию: get(vertex_index, g).

• UTIL: buffer(Buffer& Q)

Очередь используется для определения порядка, в котором будут рассматри
ваться вершины. Если используется очередь вида FIFO («первым вошел —
первым вышел»), обход графа будет происходить в обычном для поиска в ши-
рину порядке. Могут быть использованы и другие типы очередей. Например,
алгоритм Дейкстры может быть реализован с использованием очереди по прио-
ритету. Тип Buffer должен моделировать концепцию Buffer.

По умолчанию: boost::queue.

Предусловия
Очередь должна быть пуста.

Сложность
Временная сложность порядка О(\Е\ + \V\). Пространственная сложность в наи-
худшем случае равна 0(1 Й ) .

Пример
В примере (листинг 13.1) показано применение алгоритма поиска в ширину для
графа, изображенного на рис. 13.1. Древесные ребра поиска в ширину обозначены
черными линиями. Программа записывает порядок, в котором поиск в ширину
посещает вершины графа. Исходный код для этого примера находится в файле
example/bfs-exampLe.cpp.
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Рис. 13.1. Поиск в ширину на графе

Листинг 13.1. Применение алгоритма поиска в ширину

< Посетитель записи времени для поиска в ширину > э
template < typename TimeMap > class bfs_time_visitor
: public default_bfs_visitor {

typedef typename property_traits < TimeMap >::value_type T:
public:

bfs_time_visitor(TimeMap tmap. T & t):m_timemap(tmap). m_time(t)
template < typename Vertex, typename Graph >
void discover_vertex(Vertex u. const Graph & g) const {

put(m_timemap. u, m_time++):
}
TimeMap m_timemap;
T & m time:

( bfs-example.cpp ) •

#include <boost/graph/adjacencyji st.hpp>
#i nclude <boost/graph/breadth_fi rst_search.hpp>
#i nclude <boost/pendi ng/i ndi rect_cmp.hpp>
#include <boost/pending/integer^range.hpp>

#indude <iostream>

using namespace boost:

( Посетитель записи времени для поиска в ширину )

int mainO {
using namespace boost:
// Выбрать графовый тип, который мы будем использовать
typedef adjacencyjist < vecS, vecS, undirectedS > graph_t;
// Подготовить идентификаторы вершин и имена
enum { г, s, t. u. v. w, x, y. N }:
const char *name = "rstuvwxy";
// Указать ребра графа
typedef std::pair < int. int >E:
E edge_array[] - { E(r. s), E(r, v), E(s. w). E(w, r), E(w, t).

E(w. x), E(x, t), E(t. u). E(x. y), E(u, y)
}
// Создать графовый объект
const int n_edges • sizeof(edge_array) / sizeofCE): продолжение £
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Листинг 13.1 {продолжение)

typedef graph_traits<graph_t>::vertices_size_type v_size_t;
graph_t g(edge_array. edge_array + n_edges. v_si,:e_t(N));

// Определения типов
typedef graph_traits < graph_t >::vertexj jescriptor Vertex;
typedef graph_traits < graph_t >::vertices_size_type Size;
typedef Size* l i t e r ;

// Вектор для хранения свойства "время посещения" для каждой вершины
std::vector < Size > dtime(numj/ertices(g));

Size time = 0;
bfs_time_visitor < Size * >vis(&dtime[0]. time);
breadth first search(g, vertexts. g). visitor(vis));

// Использовать std::sort для сортировки вершин по времени посещения
std: :vector<graph_traits<graph_t>;:vertices_size type > discover_order(N):
integer_range < int >range(0. N);
std::copy(range.beginO. range.end(). discover_order.begin()):
std::sort(discover_order.begin(). discover_order.end(),

indirect_cmp < liter. std::less < Size > >(&dtime[0])):

std::cout « "порядок посещения: ";
for ( i n t i = 0: i < N; ++i)

std::cout « name[discover_order[i]] « " ";
Std::cout « Std::endl;

return EXITJUCCESS;

}

Вывод будет таким:

порядок посещения: s r w v t x u y

1 3 . 2 . 2 . b r e a d t h _ f i r s t _ v i s i t

template <typename IncidenceGraph, typename P. typename T, typename R>
void breadth_first_visit(IncidenceGraph& g,

typename graph_traits<IncidenceGraph>::vertex_descriptor s.
const bgl_named_params<P. T. R>& params):

Эта функция аналогична breadth_fi rst_search() за исключением того, что цве-
товые маркеры не инициализируются в алгоритме. Пользователь должен сам ок-
расить вершины в белый цвет перед вызовом алгоритма. Поэтому требуемый тип
графа — IncidenceGraph вместо VertexListGraph. Также эта разница позволяет иметь
большую гибкость в отображении цветовых свойств. Например, можно использо-
вать отображение, которое реализует функцию исключительно для подмножества
вершин, что может быть более эффективно для памяти, поскольку поиск достига-
ет только небольшой части графа.

Параметры
Ниже приведены параметры функции breadth_f~> rst_vi s it О.

• IN: IncidenceGraph& g

Ориентированный или неориентированный граф, который должен быть моде-
лью IncidenceGraph.
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• IN: vertex_descriptor s

Исходная вершина, с которой начинается поиск.

Именованные параметры
Ниже приведены именованные параметры функции breadth_first_visit().

• IN: vi sitor(BFSVi si tor vis)

Объект-посетитель, который активизируется внутри алгоритма в событийных
точках, указанных в концепции BFSVisitor.
По умолчанию: bfs visitor<null visitor>.

• IN/UTIL/OUT: color_map(ColorMap color)

Используется алгоритмом для отслеживания продвижения по графу. Цвет каж-
дой вершины должен быть инициализирован до вызова breadth_f i rst_sea rch ().
Тип Col огМар должен быть моделью ReadWritePropertyMap, тип ключа — дескрип-
тор вершины графа, тип значения colorjnap должен быть моделью CoLorValue.
По умолчанию: get(vertex_color. g).

• UTIL: buffer(Buffer& Q)

Очередь используется для определения порядка, в котором вершины будут
посещены. Если используется очередь вида FIFO («первым вошел — первым
вышел»), обход графа будет происходить в обычном для поиска в ширину по-
рядке. Могут быть использованы и другие типы очередей. Например, алгоритм
Дейкстры может быть реализован с использованием очереди по приоритету.
Тип Buffer должен моделировать концепцию Buffer.
По умолчанию: boost: : queue.

1 3 . 2 . 3 d e p t h _ f i r s t _ s e a r c h

template <typename Graph, typename P. typename T, typename R>
void depth_first_search(Graph& g. const bgl_named_params<P. T. R>& params)
Функция depth_f i rst_sea rch () выполняет поиск в глубину в ориентированном или

неориентированном графе. Когда возможно, поиск в глубину выбирает вершину,
смежную с текущей, для следующего посещения. Если все смежные вершины уже по-
сещены или у вершины нет смежных вершин, алгоритм возвращается на последнюю
вершину, у которой есть не посещенные соседи. Когда все достижимые вершины про-
смотрены, алгоритм выбирает вершину из оставшихся не посещенных и продолжает
обход. Алгоритм завершается, когда пройдены все вершины графа. Поиск в глубину
полезен для классификации ребер графа и для наведения упорядочения вершин.
В разделе 4.2 описаны различные свойства поиска в глубину и рассмотрен пример.

Подобно поиску в ширину, цветные пометки используются для отслеживания
посещенных вершин. Белый цвет обозначает не посещенные вершины, серый —
посещенные, но имеющие смежные не посещенные вершины. Черным обознача-
ется посещенная вершина, у которой нет белых соседей.

Функция depth_f i rst_search() активизирует заданные пользователем действия в
определенных событийных точках. Это дает механизм для приспособления обобщен-
ного алгоритма поиска в глубину ко многим ситуациям, в которых он может быть
использован. В следующем ниже псевдокоде событийные точки поиска в глубину
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обозначены в метках справа. Действия, определяемые пользователем, должны
быть заданы в форме объекта-посетителя — объекта, чей тип удовлетворяет тре-
бованиям для DFSVisitor. В псевдокоде показаны вычисления предшественников к,
отметок посеодения d и отметок окончания обработки /. По умолчанию функция
depth_first_search() не вычисляет этих свойств, однако пользователь может оп-
ределить объекты-посетители для этого.

> инициализировать вершину и

ПОИСК_В_ГЛУБИНУ(С)
для каждой вершины и е V
color [и] <- БЕЛЫЙ
я [и] = и
time <г- О
для каждой вершины и е V
если (color [и] = БЕЛЫЙ)
call ПОИСК_
В_ГЛУБИНУ_ПОСЕЩЕНИЕ( G,u) > исходная вершина и
возвратить (р, d, f)
ПОИСК_В_ГЛУБИНУ_ПОСЕЩЕНИЕ(С и)
color [v] <- СЕРЫЙ
d[u] <r- time 4- time + 1
для каждой вершины v e Adj[u]
если (color [v] = БЕЛЫЙ)
7r[v] = U
color [v] 4- СЕРЫЙ
call ПОИСК_
В_ГЛУБИНУ_ПОСЕЩЕНИЕ(С,
иначе если (color [v] = СЕРЫЙ)

иначе если (color[v] = ЧЕРНЫЙ)

> посетить вершину и

> рассмотреть ребро (и, v)

> (и, v) — древесное ребро

> (и, v) — обратное ребро

Е> (и, v) — прямое или поперечное ребро

> завершение обработки вершины иcolor [и] <г- ЧЕРНЫЙ
f [и] <- time <- time + 1

Где определен
Алгоритм поиска в глубину находится в boost/graph/depth_first_search.hpp.

Параметры
Ниже приведен параметр функции depth_fi rst_search().

• IN: Graphs g

Ориентированный или неориентированный граф, который должен быть моде-
лью VertexListGraph и IncidenceGraph.

Именованные параметры
Ниже приведены именованные параметры функции depth_fi rst_search().

• IN: visitor(DFSVisitor vis)
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Объект-посетитель, который активизируется внутри алгоритма в событийных
точках, указанных в концепции DFSVisitor.
По умолчанию: default_dfs_vi si tor.

• UTIL/OUT: colorjnap(ColorMap color)

Используется алгоритмом для отслеживания продвижения по графу. Тип Col огМар
должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вершины
графа, тип значения color_map должен быть моделью CoLorValue.
По умолчанию: i terator_property_map, созданный из вектора std:: vector с эле-
ментами THnadefault_color_type размером num_vertices(). Он использует ijnap
для отображения индексов.

• IN: vertex_indexjriap(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [О, \V\). Этот параметр
необходим, только когда используется отображение свойства цветовой окрас-
ки по умолчанию. Тип VertexIndexMap должен моделировать ReadablePropertyMap.
Тип значения отображения должен быть целочисленным типом. В качестве
типа ключа отображения должен использоваться тип дескриптора вершины.
По умолчанию: get(vertex_index. g).

Сложность
Временная сложность порядка О(\Е\ + \V\) и пространственная порядка О(|V\).

Пример
В примере (листинг 13.2) показан поиск в глубину для графа, изображенного
на рис. 13.2. Ребра леса поиска в глубину обозначены черными линиями. Исход-
ный код этого примера находится в файле example/dfs-example.cpp.

Рис. 13.2. Поиск в глубину на графе

Листинг 13.2. Применение алгоритма поиска в глубину
( Посетитель поиска в глубину для записи времен посещения

и окончания обработки вершин > =
template < typename TimeMap >

продолжение
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Листинг 13.2 {продолжение)

class dfs_time_visitor:public default_dfs_visitor {
typedef typename property_traits < TimeMap >::value_type T:

public:
dfs_time_visitor(TimeMap dmap. TimeMap fmap. T & t)

: m dtimemap(dmap), m_ftimeinap(fmap). m_time(t) {
} "
template < typename Vertex, typename Graph >
void discover_vertex(Vertex u. const Graph & g) const {

put(m_dtimemap. u, m_time++):
}
template < typename Vertex, typename Graph >
void finish_vertex(Vertex u, const Graph & g) const {

put(m_ftimemap, u, m_time++);
}
TimeMap m_dtimemap;
TimeMap m_ftimemap;
T & m_time;

< dfs-example.cpp > •
linclude <boost/graph/adjacency_list.hpp>
#include <boost/graph/depth_fi rst_search. hpp>
#i nclude <boost/pendi ng/i nteger_range.hpp>
#i ncl ude <boost/pendi ng/i ndi rect_cmp.hpp>
linclude <iostream>
using namespace boost:
< Посетитель поиска в глубину для записи времен посещения
и окончания обработки вершин )

int mainO {
// Выбрать графовый тип, который мы будем использовать
typedef adjacency_list < vecS, vecS, directedS > graph_t:
typedef graph_traits < graph_t >::vertices_size_type sizejtype:
// Подготовить идентификаторы вершин и имена
enum
{ u. v, w, х, у, z, N }:
char name[] = { V . '»', 'w', 'x', 'y', 'z' }:
// Указать ребра графа
typedef std::pair < int. int >E;
E edge_array[] = { E(u. v). E(u. x), E(x. v). E(y, x),

E(v. y). E(w. y). E(w. z). E(z. z)

graph_t g(edge_array, edge_array + sizeof(edge_array) / sizeof(E). N);

// Определения типов
typedef boost::graph_traits < graph_t >::vertex_descriptor Vertex:
typedef size_type* liter;

// Векторы для хранения свойств "время посещения"
и "время окончания обработки" для каждой вершины

std::vector < size_type > dtime(num_vertices(g));
std::vector < size_type > ftime(num_vertices(g)):
size_type t = 0;
dfs_time_visitor < size_type * >vis(&dtime[0], &ftime[0], t);

depth_first_search(g, visitor(vis)):

// Использовать std::sort для сортировки вершин по времени посещения
std::vector < size_type > discover_order(N):
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integer_range < size_type > г(0. N);
std: :copy(r.begin(), r.endO. discover_order.begin());
std::sort(discover_order.begin(), discover_order.end(),

indirect_cmp < l i t e r , std:: less < size_type > >(&dtime[0]));
std::cout « "порядок посещения: ";
i n t i :
for ( i = 0: i < N: ++i)

std::cout « name[discover_order[i]] « " ":

std::vector < sizejtype > finish_order(N);
std: :copy(r.begin(). r.endO. f inish_order.begin()):
std: :sort(finish__order.begin(), fmish_order.end().

indirect_cmp < l i t e r , std:: less < size_type > >(&ft ime[0])):
std::cout « std::endl « "порядок окончания обработки: ":
for ( i = 0; i < N: ++i)

std::cout « name[finish_order[i]] « " ":
std::cout « std::endl:
return EXIT SUCCESS:

1

Вывод будет таким:
порядок посещения: u v у х w z

порядок окончания обработки: х у v u г w

1 3 . 2 . 4 . d e p t h _ f i r s t _ v i s i t

template <typename IncidenceGraph. typename DFSVisitor, typename ColorMap>
void dept,h_first_visit(IncidenceGraph& G,

typename graph_traits<IncidenceGraph>::vertex_descriptor s,
DFSVisitor vis. ColorMap color):

Функция depth_fi rst_vi sit О — рекурсивная часть поиска в глубину. Главная
задача этой функции — реализовать depth_f i rst_sea rch (), но иногда она может быть
полезна сама по себе. Для дополнительной информации см. описание depth_fi rst_-
searchO.

Где определен
Функция depth_fi rst_v 1 si t () находится в boost/graph/depth_first_search.hpp.

Параметры
Ниже приведены параметры функции depth_first_visit().

• IN: IncidenceGraph& g

Ориентированный или неориентированный граф, который должен быть моде-
лью IncidenceGraph.

• IN: vertex_descriptor s

Исходная вершина, с которой нужно начинать поиск.

• IN: DFSVisitor visitor

Объект-посетитель, который активизируется внутри алгоритма в событийных
точках, указанных в концепции DFSVisitor.

• UTIL: ColorMap color

Используется алгоритмом для отслеживания продвижения по графу. Тип Со! огМар
должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вершины
графа, тип значения colorjnap должен быть моделью ColorValue.
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Сложность
Временная сложность порядка О(|£|) и пространственная — порядка O(\V|).

13.2.5. t o p o l o g i c a l _ s o r t

template <typename Graph, typename Outputlterator.
typename P, typename T, typename R>

void topological_sort(Graph& G. Outputlterator result,
const bgl_namedj)arams<P. T. R>& params = all defaults)

Функция topological_sort() реализует алгоритм топологической сортировки,
который создает линейное упорядочение вершин, такое, что если ребро (и, v) при-
сутствует в графе, то и стоит в упорядочении раньше, чем г>. Граф должен быть
ориентированным ациклическим графом.

Обратное топологическое упорядочение записывается итератором вывода result.
поэтому его нужно обратить для получения нормального топологического порядка.
Есть несколько способов это сделать. Можно создать std:: vector размером |У| для
сохранения вывода и затем использовать обратный итератор вектора для итератора
result. Или можно использовать итератор вставки в конец back_insert_1 terator с пу-
стым вектором, а затем применить std:: reverse!). Еще одна альтернатива — итератор
вставки в начало front_i nsert jterator с контейнером вроде std:: 1 i st или std:: deque.

Реализация включает простой вызов поиска в глубину [ 10]. В разделе 1.4.1 есть
пример использования топологической сортировки для планирования заданий,
а в главе 3 топологическая сортировка применяется при написании обрбщенного
графового алгоритма.

Где определен
Алгоритм топологической сортировки находится в boost/graph/topologicaL_sort.hpp.

Параметры
Ниже приведены параметры функции topological_sortО.

• IN: Graphs g

Ориентированный или неориентированный граф, который должен быть моде-
лью VertexListGraph и IncidenceGraph.

• IN: Outputlterator result

Вершины выводятся этим итератором в обратном топологическом порядке. Тип
Outputlterator должен принимать дескрипторы вершин как выход, и тип ите-
ратора должен быть моделью Outputlterator.

Именованные параметры
Ниже приведены именованные параметры функции topol ogical_sort О.

• UTIL/OUT: colorjnapCColorMap color)

Используется алгоритмом для отслеживания продвижения по графу. Тип Col огМар
должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вершины
графа, тип значения color_map должен быть моделью ColorValue.
По умолчанию: iterator_property_map, созданный из вектора std::vector с эле-
ментами THnadefault_color_type, размером nurn_vertices(). Он использует ijnap
для отображения индексов.
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• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [0, | V |). Этот параметр
необходим, только когда используется отображение свойств цветовой окрас-
ки по умолчанию. Тип VertexIndexMap должен моделировать ReadablePropertyMap.
Тип значения отображения должен быть целочисленным типом. В качестве
типа ключа отображения требуется задавать тип дескриптора вершины.
По умолчанию: get(vertex_index. g).

Сложность
Временная сложность порядка O(|V| + \Е\) и пространственная

Пример
См. раздел 1.4.1, где дан пример использования top~logical_sort().

13.3. Алгоритмы кратчайших путей
13.3.1. dijkstra_shortest_paths

template <typename Graph, typename P. typename T. typename R>void dijkstra_shortest_paths(const Graphs g.typename graph_traits<Graph>::vertex_descriptor s,const bgl_named_params<P. T, R>& params)
Алгоритм Дейкстры [10, 11] решает задачу нахождения кратчайших путей из

одной вершины на взвешенном, ориентированном или неориентированном графе
для неотрицательных весов ребер. Для случая, когда у некоторых ребер имеются
отрицательные веса, лучше использовать алгоритм Беллмана-Форда, а когда все
веса равны единице, применяется алгоритм поиска в ширину. Описание задачи
кратчайшего пути приведено в разделе 5.1.

Есть два варианта получения результата из функции di jkst ra_shortest_paths ().
Первый — предоставить отображение свойства расстояний через параметр di stan-
cejnapO. В этом случае кратчайшее расстояние от исходной вершины до любой
другой в графе будет записано в отображении расстояний. Второй вариант — за-
писать дерево кратчайших путей в отображение предшественников: для каждой
вершины и е V, я [и] будет предшественником и в дереве кратчайших путей (если,
конечно, не выполняется л [и] = и, так как в этом случае и либо является исходной,
либо недостижима из исходной). В дополнение к этим двум вариантам пользова-
тели могут предоставить своего собственного посетителя, который может произ-
водить определенные действия в любой из событийных точек.

Алгоритм Дейкстры находит все кратчайшие пути из одной исходной вершины
к любой другой вершине, итеративно наращивая множество вершин S, к которым
он знает кратчайший путь. На каждом шаге алгоритма добавление следующей
вершины к S определяется очередью по приоритету. Очередь содержит вершины
из множества V - 5, а значением приоритета является их метка расстояния — дли-
на кратчайшего пути, который известен на данный момент для каждой вершины1.

Алгоритм, использованный здесь, сохраняет память, не помещая все вершины V- 5 в очередь по прио-
ритету, а только те вершины из V - S, которые были посещены и поэтому имеют расстояние меньше
бесконечности.
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Вершина и в начале очереди добавляется к 5, а каждое из ее исходящих ребер
релаксируется. Если расстояние до вершины и в сумме с весом исходящего ребра
меньше, чем метка расстояния для вершины v, то оценка расстояния для верши-
ны v уменьшается. После этого алгоритм обрабатывает следующую вершину с го-
ловы очереди. Алгоритм завершается, когда очередь пуста.

Алгоритм использует цветовые маркеры (белый, серый и черный) для отсле-
живания принадлежности вершины некоторому множеству. Черные вершины
принадлежат 5, белые — множеству V- 5. Белые вершины еще не посещались,
а серые находятся в очереди по приоритетам. По умолчанию алгоритм заводит
массив для хранения цветовых маркеров для каждой вершины графа. Вы можете
предоставить свое собственное хранилище и получать доступ к цветам с помо-
щью именованного параметра color_map().

Ниже приведен псевдокод алгоритма Дейкстры для вычисления кратчайших
путей из одной вершины. Здесь w обозначает вес ребра, d — метка расстояния,
л — предшественник каждой вершины, используемый для кодирования дерева
кратчайших путей. Q — очередь по приоритету, которая поддерживает операцию
УМЕНЬШИТЬ_КЛЮЧ. Событийные точки для алгоритма обозначены рядом
с метками справа.

ДЕЙКСТРА(С,5,да)

для каждой вершины и е V t> инициализировать вершину и

d\u] <г- оо

тг[и]<-и

color[u] <- БЕЛЫЙ

color[s] <- СЕРЫЙ

d[s] <- О

ВСТАВИТЬ((2, s) > посетить вершину s

пока ( Q * 0 )

и <г- ВЗЯТЬ_МИНИМАЛЬНОЕ (Q) > рассмотреть вершину и

для каждой вершины v e Adj[u] > рассмотреть ребро (и, v)

если {w{u, v) + d[u] < d[v])

d[v] <- w(u, v) + d[u] > ребро (и, v) релаксируется

7t[v] <- и

если (color[v] - БЕЛЫЙ)

color[v] <- СЕРЫЙ

BCTABHTb(Q, v) > посетить вершину v

иначе если (color [v] = СЕРЫЙ)

УМЕНЬШИТЬ_КЛЮЧ(2, v, w(u, v) + d[u\)

иначе

> ребро (и, v) не релаксируется

color [и] <- ЧЕРНЫЙ > завершение обработки вершины и

возвратить (d, л )
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Где определен
Алгоритм Дейкстры находится в boost/graph/dijkstra_shortest_paths.hpp.

Параметры
Ниже приведены параметры функции di jkstra_shortest_paths().

• IN: const Graph& g

Графовый объект, к которому применяется алгоритм. Тип Graph должен быть
моделью VertexListGraph и IncidenceGraph.

• IN: vertex_descriptor s

Исходная вершина. Все расстояния вычисляются от этой вершины, и в ней
находится корень дерева кратчайших путей.

Именованные параметры
Именованные параметры функции di jkstra_shortest_paths() приведены ниже.

• IN: weight_map(WeightMap wjrap)

Вес или «длина» каждого ребра в графе. Тип WeightMap должен быть моделью
ReadablePropertyMap. Дескриптор ребра требуется задавать в качестве типа ключа
для отображения весов. Тип значения отображения весов должен быть таким
же, как тип значения для отображения расстояний.
По умолчанию: get(edge_weight. g).

• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [О, |V|). Этот пара-
метр необходим для эффективного обновления структуры данных при релак-
сации ребра. Тип VertexIndexMap должен моделировать ReadablePropertyMap. Тип
значения отображения должен быть целочисленным типом. Тип дескриптора
вершины графа требуется задавать в качестве типа ключа отображения.
По умолчанию: get(vertex_index, g).

• OUT: predecessor_map(PredecessorMap pjnap)

Отображение предшественников записывает ребра минимального остовного
дерева. По завершении алгоритма ребра (л [и], и) У и е V находятся в мини-
мальном остовном дереве. Если л [и] = и, это означает, что либо и является ис-
ходной вершиной, либо и недостижима из исходной. Тип PredecessorMap дол-
жен быть ReadWritePropertyMap с типами ключа и вершины такими же, как тип
дескриптора вершины графа.
По умолчанию: dummy_property_map.

• UTIL/OUT: distance_map(DistanceMap d_map)

Вес кратчайшего пути из исходной вершины в каждую вершину графа записан
в этом отображении свойств. Вес кратчайшего пути — это сумма весов ребер,
из которых состоит путь. Тип DistanceMap должен моделировать ReadWrite-
PropertyMap. Тип дескриптора вершины графа должен задаваться в качестве типа
ключа отображения расстояний. Тип значения — элемент типа Monoid, состоя-
щий из функционального объекта combi ne и объекта zero для нейтрального эле-
мента (см. главу 16). Также тип значения расстояния должен обеспечивать
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StrictWeakOrdering (ослабленное строгое упорядочение), что и дает объект-функ-
ция compare.
По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами того же типа, что и тип значения WeightMap, размером num_vertices().
Он использует imap для отображения индексов.

• IN: distance_combine(BinaryFunction combine)

Объект-функция, являющийся операцией концепции Monoid для типа значе-
ния расстояния. Этот функциональный объект складывает длины для получе-
ния полной длины пути.
По умолчанию: cl osed_pl us<D>, где D — тип значения отображения расстояний.
Тип closed_plus определен в boost/graph/relax.hpp.

• IN: distance_compare(BinaryPredicate compare)

Объект-функция, который задает StrictWeakOrdering на значениях расстояний.
Используется для определения того, какой из путей короче.

По умолчанию: std: :less<D>, где D — тип значения отображения расстояний.

• IN: distance_inf(D inf)

Объект inf должен давать наибольшее значение любого объекта D. То есть
compare(d. i n f ) == true для любого d != inf. Тип D — тип значения DistanceMap.

По умолчанию: std: :numeric_limits<D>: :max().
• IN: distance_zero(D zero)

Значение должно быть нейтральным элементом для Monoid, состоящего из
значений расстояний и объекта-функции combi ne. Тип D — тип значения для
DistanceMap.

По умолчанию: D.

• UTIL/OUT: color_map(ColorMap cjnap)

Используется во время выполнения алгоритма для маркировки вершин. В на-
чале алгоритма вершины имеют белый цвет и становятся серыми, когда они
попадают в очередь. Они перекрашиваются в черный при удалении из очере
ди. В конце алгоритма все вершины, достижимые из исходной, имеют чер-
ный цвет. Остальные вершины будут белыми. Тип Col огМар должен быть мо-
делью ReadWritePropertyMap. Дескриптор вершины требуется задавать в качестве
типа ключа для отображения, и тип значения отображения должен моделиро-
вать Col orValue.
По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами типа defaul t_col or_type, размером num_verti ces (). Он использует ijnap
для отображения индексов.

• IN: visitor(Vis v)

Используйте этот параметр для задания действий, которые должны выполнять
ся в определенных событийных точках внутри алгоритма. Тип Vi s должен быть
моделью DijkstraVisitor.
По умолчанию: defaul t_di jkstra_vi si tor.
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Сложность
Временная сложность порядка О((| V\ + \Е |) log |V|) или просто О(\Е | log |F|), если
все вершины достижимы из исходной вершины.

Пример
Исходный код примера из листинга 13.3 находится в файле example/dijkstra-
example.cpp. Граф, использованный в этом примере, показан на рис. 13.3. Ребра
в дереве кратчайших путей обозначены черными линиями.

Рис. 13.3. Граф, использованный в примере для алгоритма Дейкстры

Листинг 13.3. Пример алгоритма Дейкстры
typedef adjacency_list < lists. vecS. directedS.

no_property. property < edge_weight_t. int > > graph_t:
typedef graph_traits < graph_t >::vertex_descriptor vertex_descriptor;
typedef graph_traits < graph_t >::edge_descriptor edge_descriptor;
typedef std::pair<int. int> Edge;

const int numjiodes - 5:
enum nodes { A . B, C O . E } :
char narae[] = "ABCDE";
Edge edge_array[] = { Edge(A, C). Edge(B, B). Edge(B. D), Edge(B, E),

Edge(C. B). Edge(C, D). Edge(O. E). Edge(E. A), Edge(E. B)

int weights!!] = { 1 , 2 , 1, 2. 7, 3, 1. 1, 1 };
int nutn arcs - sizeof(edge array) / sizeof(Edge):

graph_t g(edge_array, edge_array + num_arcs, weights, numjiodes);
property_map<graph_t, edge_weight_t>::type weightmap = get(edge_weight, g);

std::vector<vertex_descriptor> p(num_vertices(g)):
std::vector<int> d(num_vertices(g)):
vertex_descriptor s = vertex(A. g):

dijkstra_shortest_paths(g. s, predecessor_map(&p[0]).distance_map(&d[0]));

std::cout « "Расстояния и родители:" « std::endl:
graph_traits < graph_t >::vertex_iterator v i . vend:

продолжение
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Листинг 13.3 {продолжение)

for (tie(vi, vend) = vertices(g): vi ! = vend: ++vi) {
std::cout « "distanceC « name[*vi] « ") = " « d[*vi] « ". ":
std::cout « "parent(" « name[*vi] « ") = " « name[p[*vi]] « std::

endl;

Std: :cout « std: :endl:
Программа выводит следующее:
Расстояния и родители:
distance(A) = 0, parent(A) = A
distance(B) = 6. parent(B) - Е
distance(C) = 1. parent(C) - А
distance(D) - 4, parent(D) - С
distance(E) - 5. parent(E) = D

1 3 . 3 . 2 . b e l l m a n _ f o r d _ s h o r t e s t _ p a t h s

template <typename EdgeListGraph. typename Size,
typename P, typename T. typename R>

bool bellman_ford_shortest_paths(EdgeListGraph& g. Size N,
const bgljiamed_params<P. T, R>& params)

Алгоритм Беллмана-Форда [5, 10,13, 26] решает задачу кратчайших путей из
одной вершины для графа с положительными и отрицательными весами ребер.
Постановка задачи кратчайших путей приведена в разделе 5.1. Если вам нужно
решать задачу кратчайших путей для положительных весов ребер, алгоритм Дей -
кстры предоставляет более эффективную альтернативу. Если веса всех ребер рав -
ны единице, поиск в ширину подходит еще больше.

Перед вызовом функции be! I man_ford_shortest_paths () пользователь должен на-
значить исходной вершине расстояние ноль (или нейтральный элемент Monoid,
состоящий из значений расстояния и функции combi ne), а всем другим вершинам —
бесконечное расстояние (наибольшее значение расстояния согласно упорядоче-
нию, определяемому функциональным объектом compare). Обычно std:: numeri c_ i -
mits<D>: :max() является подходящим выбором для бесконечности, где D —тип зна-
чения отображения расстояний. Алгоритм Беллмана-Форда выполняется в цикле
по всем ребрам в графе, с применением операции релаксации к каждому ребру.
В следующем псевдокоде v является вершиной, смежной с u, w отображает ребра
на вес, d — отображение расстояний, которое записывает длину кратчайшего пути
до каждой рассмотренной на данный момент вершины.

РЕЛАКСАЦИЯ {u, v, w, d)

если (w(u, v) + d[u] < d[v\)

d[v] <r- w(u, v) + d[u]

Алгоритм повторяет этот цикл |У| раз, после чего гарантируется, что расстоя-
ния до каждой вершины были сокращены до минимально возможных, если в гра-
фе нет отрицательных циклов. Если отрицательный цикл присутствует, в графе
будут ребра, которые не минимизированы до конца, то есть будут ребра (и, v), для
которых w(u, v) + d[u] < d[v]. Алгоритм проходит циклом по всем вершинам еше
раз, чтобы проверить, что все ребра были минимизированы, возвращая истину,
если это так, и «ложь» в противном случае.



13.3. Алгоритмы кратчайших путей 189

Имеется два основных способа получения результатов из функции bel lman_-
ford_shortest_paths(). Если пользователь представляет отображение расстояний
через параметр distancejnapO, то кратчайшее расстояние из исходной вершины
до каждой другой вершины в графе записывается в изображение расстояний (ко-
нечно, если функция возвращает истинное значение). Пользователь может также
записать дерево кратчайших путей, задавая отображение свойства предшествен-
ников через параметр predecessor_map(). В дополнение к этим способам можно ис-
пользовать своего собственного посетителя, который будет выполнять действия
в любых событийных точках алгоритма (см. Bellman FordVisitor). Если вы заинтере-
сованы только в некоторых событийных точках, создайте своего собственного по-
сетителя из defau1t_beTlman_vi si tor для того, чтобы ненужные действия были за-
менены пустыми в не интересующих вас событийных точках.

Где определен
Алгоритм Беллмана-Форда находится в boost/graph/bellrnan_ford_shortest_paths.hpp.

Параметры
Ниже приведены параметры функции bel lman_ford_shortest_paths().

• IN: EdgeListGraphS g

Ориентированный или неориентированный граф, который должен быть моде-
лью EdgeListGraph.

• IN: Size N

Количество вершин в графе. Тип Size должен быть целочисленным типом.

Именованные параметры
Именованные параметры функции bel lman_ford_shortest_paths() приведены ниже.

• IN: weight_map(WeightMap w)

Вес (также известный как «длина» или «стоимость») каждого ребра в графе.
Тип Wei ghtMap должен быть моделью ReadablePropertyMap. Типом ключа для этого
отображения свойства должен быть дескриптор ребра графа. Тип значения
для отображения весов такой же, как и тип значения отображения расстояний.
По умолчанию: get(edge_weight. g).

• OUT: predecessor_map(PredecessorMap pjnap)

Отображение предшественников записывает ребра минимального остовного
дерева. По завершении алгоритма ребра (я[м], и) VM e V находятся в мини-
мальном остовном дереве. Если ж [и] = и, то и является исходной вершиной
или вершиной, которая недостижима из исходной. Тип PredecessorMap должен
быть моделью концепции ReadWritePropertyMap, чьи типы ключа и значений та-
кие же, как у дескриптора вершины графа.

По умолчанию: dummy_property_map.

• UTIL/OUT: distance_map(DistanceMap djnap)

Вес кратчайшего пути из исходной вершины s в каждую вершину графа запи-
сан в этом отображении свойства. Вес кратчайшего пути — это сумма весов
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ребер, из которых состоит путь. Тип DistanceMap должен моделировать Read-
WritePropertyMap. Тип дескриптора вершины графа требуется задавать в качестве
типа ключа отображения расстояний. Тип значения — элемент типа Monoid,
состоящий из функционального объекта combi ne и объекта zero для нейтраль-
ного элемента. Также тип значения должен быть моделью StrictWeakOrdering
(ослабленное строгое упорядочение), что обеспечивает объект-функция
compare.
По умолчанию: get(vertex_distance. g).

• IN: visitorCBeTlmanFordVisitor v)

Объект-посетитель, который активизируется внутри алгоритма в событийных
точках, указанных в концепции Bellman FordVisitor. Посетитель по умолчанию —
defaul t_bel lman_vi sitor, не делает в событийных точках ничего.
По умолчанию: defaul t_bel I man_vi si tor.

• IN: distance_combine(BinaryFunction combine)

Объект-функция, являющийся операцией концепции Monoid для типа значе
ния расстояния. Этот функциональный объект складывает длины для получе-
ния полной длины пути.
По умолчанию: el osed_p! us<D>, где D — тип значения отображения расстояний
c!osed_p1us определен в boost/graph/relax.hpp.

• IN: distance_compare(BinaryPredicate compare)

Объект-функция, который задает StrictWeakOrdering на значениях расстояний
Используется для определения того, какой из путей короче.
По умолчанию: std:: 1 ess<D>, где D — тип значения отображения расстояний,

Сложность
Временная сложность порядка O(\V| x \Е |).

Пример
Исходный код примера из листинга 13.4 находится в файле example/bellman-
example.cpp. Граф, использованный в примере, показан на рис. 13.4.

Листинг 13.4. Применение алгоритма Беллмана-Форда
епшп { u . v . x . y . z . N } ;
char name[] = { V , V , ' х ' . ' у ' , 'z' }:
typedef std: :pair < i n t . i n t >E:
const i n t n_edges = 10;
E edge_array[] - { E(u, y ) . E(u. x). E(u. v) . E(v, u),

E(x. y ) . ECx. v). E(y. v). E(y. z) . ECz. u). E(z.x) }:
i n t weight[n_edges] = { -4. 8. 5. -2, 9. -3. 7. 2. 6, 7 }:

typedef adjacencyj ist < vecS. vecS, directedS,
no_property. property < edge_weight_t. int > > Graph:

Graph g(edge_array. edge_array + n_edges. N):

graph_traits < Graph >::edge_iterator e i . ei_end:
property__map<Graph. edge_weight_t>: :type weight_pmap = get(edge_weight. g);
i n t i = 0;
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for (tie(ei. ei_end) - edges(g); ei != ei_end: ++ei. ++i)
weight_pmap[*ei] = weight[i];

std::vector<int> distanced ,̂ std::numeric_limits < short >::max());
std::vector<std::s i ze_t> pa rent(N):
for (i = 0: i < N: ++i)

parent[i] - i:
distance[z] = 0:

boo! г = bellman_ford_shortest_paths
(g. i n t (N), weight_map(weight_pmap).distance_map(&distance[O]).

predecessor_map(&parent[0]));

i f ( r )
for ( i = 0 ; i < N; ++i)

std::cout « name[i] « ": " « std::setw(3) « distance[i]
« " " « name[parent[i]] « std::endl:

else
std::cout « "отрицательный цикл" « std::endl:

Расстояние и предшественник для каждой вершины такие:

и: 2 v
v: 4 х
х: 7 z
у: -2 и
z: 0 z

РИС. 13.4. Граф, использованный в примере алгоритма Беллмана-Форда

1 3 . 3 . 3 . j o h n s o n _ a l l _ p a i r s _ s h o r t e s t _ p a t h s

template <typename Graph, typename DistanceMatrix.
typename P. typename T, typename R>

bool johnson_all_pairs_shortest_paths(Graph& g. DistanceMatrix& D.
const bgl_named_params<P, T. R>& params = al l defaults)
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Функция johnson_al l_pairs_shortest_paths() (алгоритм Джонсона) находит
кратчайшие расстояния между всеми парами вершин графа. Алгоритм возвраща-
ет fal se, если в графе присутствует отрицательный цикл, и true в противном слу-
чае. Расстояние между каждой парой вершин хранится в матрице расстояний D.
Это один из наиболее требовательных ко времени графовых алгоритмов, так как
он имеет временную сложность порядка O(\V\ \E | log |V\).

Где определен
Алгоритм Джонсона находится в boost/graph/johnson_all_pairs_shortest_paths.hpp.

Параметры
Параметры функции johnson_an_pairs_shortest_paths() приведены ниже.

• IN: const Graph& g -

Графовый объект, к которому применяется алгоритм. Тип Graph должен быть
моделью VertexListGraph, IncidenceGraph и EdgeListGraph.

• OUT: DistanceMatrix& D

Кратчайшая длина пути из вершины иви хранится в D[M][W].

Именованные параметры
Именованные параметры функции johnson_al l_pai rs_shortest_paths() приведены
ниже.

• IN: weight_map(WeightMap wjnap)

Вес или «длина» каждого ребра в графе. Тип WeightMap должен быть моделью
ReadabLePropertyMap. Типом ключа для этого отображения свойства должен быть
дескриптор ребра графа. Тип значения для отображения весов такой же, как
и тип значения отображения расстояний.
По умолчанию: get (edge_weight. g).

• UTIL: weight_map2(WeightMap2 w_map2)

Вспомогательное отображение весов. Тип WeightMap2 должен быть моделью
ReadablePropertyMap. Типом ключа для этого отображения свойства должен быт*
дескриптор ребра графа. Тип значения для отображения весов такой же, как
и тип значения отображения расстояний.
По умолчанию: get (edge_wei ght2. g).

• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [О, |У|). Этот пара-
метр необходим для эффективного обновления структуры данных при релак-
сации ребра. Тип Vertex IndexMap должен моделировать ReadablePropertyMap. Тип
значения отображения должен быть целочисленным типом. Тип дескриптора
вершины графа требуется задавать в качестве типа ключа отображения.
По умолчанию: get (vertex_i ndex. g).

• UTIL/OUT: distance_map(DistanceMap d_map)

Вес кратчайшего пути из исходной вершины s в каждую вершину графа g запи-
сан в этом отображении свойства. Вес кратчайшего пути — это сумма весов
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ребер, из которых состоит путь. Тип Di stanceMap должен моделировать ReadWrite-
PropertyMap. Тип дескриптора вершины графа должен задаваться в качестве типа
ключа отображения расстояний. Тип значения — элемент типа Monoid, состоя-
щий из операции сложения и объекта zero для нейтрального элемента. Также
тип значения должен быть моделью LessThanComparable.

По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами типа, как тип значения Wei ghtMap, размером num_verti ces (). Он исполь-
зует ijnap для отображения индексов.

• IN: distance_zero(D zero)

Значение должно быть нейтральным элементом для Monoid, со значением рас-
стояний и операции сложения. Тип D — тип значения для Di stanceMap.
По умолчанию: DO.

Сложность
Временная сложность порядка O(\V\ \Е\ log |F|).

Пример
Алгоритм Джонсона для кратчайших путей между всеми парами вершин (лис-
тинг 13.5) применен к графу со с. 568 «Introduction to Algorithms» [10], который
также показан на рис. 13.5. Результирующая матрица D[u][v] дает кратчайший
путь от вершины UKV.

о

Рис. 13.5. Граф, использованный в примере алгоритма Джонсона

Листинг 13.5. Алгоритм Джонсона для кратчайших путей
между всеми парами вершин

typedef adjacency_list<vecS. vecS, directedS. no_property.
property< edge_weight_t. int. property< edge_weight2_t, int > > > Graph:

const int V = 6:
typedef std::pair < int, int >Edge;

Edge edge_array[] »
{ Edge(O. 1). Edge(O. 4). EdgefO. 2), Edged. 3), Edged. 4).
Edge(2. 1). Edge(3. 2). Edge(3. 0). Edge(4. 3)

' продолжение £

7 Чак 375
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Листинг 13.5 {продолжение)

const std::size_t E = sizeof(edge_array) / sizeof(Edge):

Graph g(edge_array, edge_array + E, V):

property_map < Graph, edge_weight_t >::type w = get(edge_weight, g);
int weights[] = { 3, -4. 8. 1, 7. 4. -5. 2. 6 };
int *wp = weights;

graph_traits < Graph >::edge_iterator e, e_end:
for (boost::tie(e, e_end) = edges(g): e != e_end; ++e)

w[*e] = *wp++:

std::vector < int >d(V, std::numeric_limits < int >::max()):
int D[V][V];

johnson_all_pairs_shortest_paths(g. D. distance_map(&d[O])):

Ниже приведена результирующая матрица расстояний:

0
1
2
3
4
5

0
0

inf
inf
inf
inf
inf

1
0
0
3
7
2
8

2
-1
1
0
4

-1
5

3
-5
-3
-4
0

-5
1

4
0
2
1
5
0
6

5
-4
-4
-1
3

-2
0

13.4. Алгоритмы минимальных осговных деревьев

13.4.1. kruskal_minimum_spanning_tree
template <typename Graph, typename Outputlterator.

typename P. typename T, typename R>
void kruskal_minimum_spanning_tree(Graph& g,

Outputlterator spanning_tree_edges,
const bgl_named_params<P. T, R>& params = all defaults)

Функция kruskal jmmmum_spanrnng_tree() находит минимальное остовное де-
рево в неориентированном графе со взвешенными ребрами. Минимальное остов-
ное дерево — это набор ребер, который соединяет все вершины в графе, где общий
вес ребер дерева минимизирован. Функция kruskal jTiinimum_spanmng_tree() выво-
дит ребра остовного дерева итератором spanning_tree_edges, используя алгоритм
Краскала[10, 18,23,44].

Алгоритм Краскала начинается с того, что каждая вершина является сама по
себе деревом, без ребер из множества Г, в котором будет строиться минимальное
остовное дерево. Затем алгоритм рассматривает каждое ребро графа в порядке
увеличения веса ребра. Если ребро соединяет две вершины в разных деревьях,
алгоритм сливает эти деревья в одно и добавляет ребро к множеству Т. Мы ис-
пользуем объединение по рангу и эвристики сжатия пути для обеспечения быст-
рой реализации операций над непересекающимися множествами (СДЕЛАТЬ-
МНОЖЕСТВО, НАЙТИ-МНОЖЕСТВО и ОБЪЕДИНИТЬ-МНОЖЕСТВА).
Ниже приведен псевдокод алгоритма Краскала.
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КРАСКАЛ_МИН_ОСТ_ДЕРЕВО(С, w)

для каждой вершины и е V

СДЕЛАТЬ_МНОЖЕСТВО(5, и)

Т<-0

для каждого ребра (и, v) e E в порядке неуменьшения веса

если НАЙТИ_МНОЖЕСТВО(5, и) Ф НАЙТИ_МНОЖЕСТВО(5, V)

ОБЪЕДИНИТЬ_МНОЖЕСТВА(5, и, v)

возвратить Т

Где определен
Алгоритм Краскаланаходится в boost/graph/kruskal_mimmum_spanning_tree.hpp.

Параметры
Ниже приведены параметры функции kruskal_minimum_spanning_tree().

• IN: const Graph& g

Неориентированный граф. Тип Graph должен быть моделью VertexListGraph
и EdgeListGraph.

• IN: Outputlterator spanning_tree_edges

Ребра минимального остовного дерева выводятся этим Outputlterator.

Именованные параметры
Именованные параметры функции kruskal_minimum_spanning_tree() приведены ниже.

• IN: weight_map(WeightMap wjnap)

Вес или «длина» каждого ребра в графе. Тип WeightMap должен быть моделью
ReadablePropertyMap, и тип его значения — LessThanComparable. Типом ключа для
этого отображения свойства должен быть дескриптор ребра графа.
По умолчанию: get(edge_weight, g).

• UTIL: rank_map(RankMap rjnap)

Тип RankMap должен быть моделью ReadWritePropertyMap. Тип дескриптора вер-
шины графа требуется задавать в качестве типа ключа отображения ранга. Тип
значения отображения ранга должен быть целого типа.

По умолчанию: iterator_propertyjnap, созданный из вектора std:: vector с эле-
ментами целого типа, размером numverticesO. Он использует ijrap для ото-
бражения индексов.

• UTIL: predecessor_map(PredecessorMap pjnap)

Тип PredecessorMap должен быть моделью ReadWritePropertyMap. Тип ключа и тип
значения отображения предшественников должны быть типом дескриптора
вершин графа.

По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами — дескрипторами вершин, размером num_vertices(g). Он использует
i_map для отображения индексов.
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• IN: vertexJndex_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [0, | V |). Этот параметр
необходим, если значения по умолчанию использованы для отображений ранга
и предшественников. Тип VertexIndexMap должен моделировать ReadablePropertyMap.
Тип значения отображения должен быть целочисленным типом. Тип дескрип-
тора вершины графа требуется задавать в качестве типа ключа отображения.
По умолчанию: get(vertex_index. g).

Сложность
Временная сложность порядка О(\Е | log \Е |).

Пример
Исходный код примера из листинга 13.6 находится в файле example/kruskal-example. cpp.
Граф, использованный в этом примере, показан на рис. 13.6.

Рис. 13.6. Граф, использованный в примере алгоритма Краскала

Листинг 13.6. Пример использования алгоритма Краскала

typedef adjacencyjist < vecS. vecS. undirectedS.
no_property. property < edge_weight_t. int > > Graph;

typedef graph_traits < Graph >::edge_descriptor Edge:
typedef graph_traits < Graph >::vertex_descriptor Vertex:
typedef std::pair<int. int> E:

const int numjnodes = 5;
E edge_array[] - { E(0. 2). E(l. 3). Ed, 4), E(2. 1), E(2. 3).

E(3. 4). E(4, 0). E(4, 1)
}:
int weights[] = { 1 , 1 , 2. 7. 3. 1. 1. 1 }:
int num_edges = sizeof(edge_array) / sizeof(E):
Graph g(edge_array. edge_array + num_edges. weights, num_nodes):

property_map < Graph. edge_weight_t >::type weight = get(edge_weight. g);
std::vector < Edge > spanning_tree;

kruskal_minimum_spanning_tree(g. std::back_inserter(spanning_tree));

std::cout « "Ребра остовного дерева:" « std::endl:
for (std::vector < Edge >:iterator ei = spanning_tree.begin():

ei !- spanning_tree.end(): ++ei) {
std::cout « source(*ei, g) « " <--> " « target(*ei, g)
« " с весом " « weight[*ei] « std::endl;
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Вывод этот программы следующий:

Ребра остовного дерева:
0 <--> 2 с весом 1
3 <--> 4 с весом 1
4 <--> 0 с весом 1
1 <--> 3 с весом 1

1 3 . 4 . 2 . p r i m _ m i n i m u m _ s p a n n i n g _ t r e e

template <typename Graph, typename PredecessorMap,
typename P. typename T, typename R>

void primjninimiim_spanning_tree(Graph& G, PredecessorMap pjnap,
const bgl_named_params<P. T. R>& params = all defaults)

Функция pnm_minimum_spanmng_tree() находит минимальное остовное дерево
в неориентированном графе со взвешенными ребрами. Минимальное остовное де-
рево — это набор ребер, который соединяет все вершины в графе, где общий вес
ребер дерева минимизирован. Функция pri mjni ni mum_spanni ng_tree() выводит ребра
остовного дерева в отображении предшественников: для каждой вершины v e V,
p[v] является родителем v в вычисленном минимальном остовном дереве. Реали-
зация использует алгоритм Прима [10, 18, 38, 44].

Алгоритм Прима наращивает минимальное остовное дерево по одной вер-
шине за раз, что очень похоже на построение кратчайших путей алгоритмом Дей-
кстры1. На каждом шаге алгоритм выбирает ребро для добавления к минималь-
ному остовному дереву. Это ребро — кратчайшее из всех, что соединяют любые
вершины в дереве с вершинами вне дерева. Алгоритм использует очередь по
приоритету для того, чтобы делать этот выбор эффективно. Если вершина и пер-
вая в очереди по приоритету, то ребро (р[м], и) является следующим наикрат-
чайшим ребром и добавляется к дереву. Псевдокод этого алгоритма приведен
ниже.

ПРИМ_МИН_ОСТ_ДЕРЕВО(С, г, w)

для каждой вершины и е V > инициализировать вершину и

d[u] <- оо

л[и] <— и

color[u\ <- БЕЛЫЙ

colour] <- СЕРЫЙ

d[r] <- 0

В_ОЧЕРЕДЬ(<2, г) > посетить вершину г

пока Q, * 0

и <- ИЗ_ОЧЕРЕДИ((2) > рассмотреть вершину и

для каждой вершины v е Л(//[м] > рассмотреть ребро (и, v)

Фактически реализация BGL алгоритма Прима — это вызов алгоритма Дейкстры с особенными аргу-
ментами для параметров distance_compare() и distance_combine().
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d[v] <- w[u, v] > релаксация ребра (и, v)

n[v]<r~u

если (color[v] = БЕЛЫЙ)

color[v] <- СЕРЫЙ

В_ОЧЕРЕДЬ((2, v) > посетить вершину v

иначе если (color[v] = СЕРЫЙ)

ОБНОВИТЬ(Р& v)

иначе

> ребро {и, v) не релаксируется

color[u] <- ЧЕРНЫЙ > завершение обработки вершины и

возвратить (ж)

Где определен
Алгоритм Прима находится в boost/graph/prim_minirnum_spanning_tree.hpp.

Параметры
Ниже приведены параметры функции prim_minirnum_spanning_tree().

• IN: const Graph& g

Графовый объект, к которому применяется алгоритм. Тип Graph должен быть
моделью VertexListGraph и IncidenceGraph.

• OUT: PredecessorMap pjnap

Отображение предшественников записывает ребра минимального остовного
дерева. По завершении алгоритма ребра (тг[и], и) VM e V находятся в мини-
мальном остовном дереве. Если л [и] = и, то и является исходной вершиной
или вершиной, которая недостижима из исходной. Тип PredecessorMap должен
быть моделью концепции ReadWritePropertyMap, чьи типы ключа и значений та-
кие же, как у дескриптора вершины графа.

Именованные параметры
Именованные параметры функции prim_minimum_spanning_tree() приведены
ниже.

• IN: root_vertex(vertex_descriptor г)

Вершина, которая будет корнем минимального остовного дерева. Выбор кор-
невой вершины произволен, он не влияет на способность алгоритма находить
минимальное остовное дерево.
По умолчанию: *vertices(g). fi rst.

• IN: weight_map(WeightMap wjrap)

Вес или «длина» каждого ребра в графе. Тип WeightMap должен быть моделью
ReadablePropertyMap. Типом ключа для этого отображения свойства должен быть
дескриптор ребра графа. Тип значения для отображения весов такой же, как
и тип значения отображения расстояний.
По умолчанию: get (edge_wei ght. g).
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• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [0, | V |). Этот параметр
необходим для эффективного обновления структуры данных на куче при ре-
лаксации ребра. Тип VertexIndexMap должен моделировать ReadablePropertyMap.
Тип значения отображения должен быть целочисленным типом. Тип дескрип-
тора вершины графа должен быть задан в качестве типа ключа отображения.
По умолчанию: get(vertex_index. g).

• UTIL: distance_map(DistanceMap d_map)

Вес кратчайшего пути из исходной вершины s в каждую вершину графа g запи-
сан в этом отображении свойства. Вес кратчайшего пути — это сумма весов ре-
бер, из которых состоит путь. Тип Di stanceMap должен моделировать ReadWrite-
PropertyMap. Тип дескриптора вершины графа требуется задавать в качестве типа
ключа отображения расстояний. Тип значения — элемент типа Monoid, состоящий
из операции сложения и объекта zero для нейтрального элемента (строимого
по умолчанию). Также тип значения должен быть моделью LessThanCom parable.
По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами типа, как тип значения WeightMap, размером num_vertices(). Он исполь-
зует i_map для отображения индексов.

• UTIL/OUT: color_map(ColorMap с_тар)

Используется во время выполнения алгоритма для маркировки вершин. В нача-
ле вершины имеют белый цвет и становятся серыми, когда попадают в оче-
редь. Они перекрашиваются в черный при удалении из очереди. В конце алгорит-
ма вершины, достижимые из исходной, имеют черный цвет. Все остальные
вершины будут белыми. Тип Col огМар должен быть моделью ReadWritePropertyMap.
Дескриптор вершины должен быть задан в качестве типа ключа для отображе-
ния, и тип значения отображения должен моделировать ColorVaLue.
По умолчанию: iterator_property_map, созданный из вектора std:: vector с эле-
ментами типа defaul t_col or_type, размером num_verti ces (). Он использует i _map
для отображения индексов.

Сложность
Временная сложность порядка О(\Е \ log \V|).

Пример
Исходный код примера из листинга 13.7 находится в файле example/prim-example.cpp.

Листинг 13.7. Пример использования алгоритма Прима
typedef adjacencyjist < vecS. vecS. undirectedS.

property<vertex_distance_t. int>. property < edge_weight_t. int > > Graph:
typedef std::pair < int. int >E;
const int numjiodes = 5:
E edges[] = { E(0. 2). E(l.l). Ed. 3). Ed. 4). E(2. 1). E(2. 3).

E(3. 4). E(4, 0)

int weights[] = { 1 , 2 . 1. 2, 7. 3. 1. 1 };

Graph g(edges. edges + sizeof(edges) / sizeof(E). weights, numjiodes):
продолжение £>



200 Глава 13 • Алгоритмы BGL

Листинг 13.7 {продолжение)

property_map<Graph. edge_weight_t>::type weightmap = get(edge_weight. g);

std::vector < graph_traits < Graph >: :vertex_deschptor >
p(num_vertices(g));

prim minimum spanning tree(g. &p[0]);

for (std::size_t i = 0: i !- p.sizeO: ++i)
if (p[i] !- i)

std::cout « "parent[" « i « "] = " « p[i] « std::endl:
else

std::cout « "parent[" « i « "] = no parent" « std::endl;

Вывод этой программы такой:

parent[O] - О
parent[l] - 3
parent[2] = О
parent[3] = 4
parent[4] = 0

13.5. Статические компоненты связности

13.5.1. connected_components
template <typename Graph, typename ComponentMap.

typename P. typename T. typename R>
typename property_traits<ComponentMap>::value_type
connected_components(const Graphs g, ComponentMap c.

const bgl_named_params<P, T. R>& params = all defaults)

Функция connected_components () вычисляет компоненты связности неориенти-
рованного графа, используя подход, основанный на поиске в глубину. Компонен-
та связности — это группа вершин неориентированного графа, в которой каждая
вершина достижима из любой другой. Если компоненты связности нужно вычис-
лять для растущего графа, то метод, основанный на непересекающихся множествах
(функция incremental_components()), является более быстрым. Для статических
графов поиск в глубину быстрее [10].

Результат алгоритма записывается в отображение свойства компоненты с, ко-
торое содержит номера компонент для каждой вершины. Полное число компо-
нент — возвращаемое значение этой функции.

Где определен
Алгоритм связанных компонент находится в boost/graph/connected_components.hpp.

Параметры
Ниже приведены параметры функции connected_components().

• IN: const Graphs g

Неориентированный граф. Тип графа должен быть моделью Vertex Li stG ra ph
и IncidenceGraph.

• OUT: ComponentMap с



13.5. Статические компоненты связности 2 0 1

Алгоритм вычисляет, сколько компонент связности находятся в графе, и при-
сваивает каждой компоненте целочисленную метку. Затем алгоритм записы-
вает, какой компоненте принадлежит каждая вершина графа, в отображение
свойства компонент. Тип ComponentMap должен быть моделью WritablePropertyMap.
Тип значения должен быть vertices_size_type графа. Тип ключа— тип де-
скриптора вершины графа.

Именованные параметры
Ниже приведены именованные параметры функции connected_components().

• UTIL: color_map(ColorMap color)

Используется алгоритмом для отслеживания продвижения по фафу. Тип Col огМар
должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вершины
графа, тип значения col orjnap должен быть моделью ColorValue.
По умолчанию: i terator_propertyjnap, созданный из вектора std:: vector с эле-
ментами типа default_color_type, размером num_vertices(). Он использует ijnap
для отображения индексов.

• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [0, | V |). Этот параметр
необходим, только когда используется отображение свойства цветовой окрас-
ки по умолчанию. Тип VertexIndexMap должен моделировать ReadablePropertyMap.
Тип значения отображения должен быть целочисленным типом. Тип дескрип-
тора вершины графа должен быть задан в качестве типа ключа отображения.
По умолчанию: get(vertex_index. g).

Сложность
Временная сложность для сильных компонент связности порядка О(\ V \ + \Е |). Вре-
менная сложность для компонент связности того же порядка.

Пример
Вычисление компонент связности неориентированного графа приведено в лис-
тинге 13.8.

Листинг 13.8. Вычисление компонент связности неориентированного графа

< connected-components.срр > =
#include <boost/config.hpp>
#i nclude <iostream>
#include <vector>
#i nclude <boost/graph/connected_components.hpp>
#include <boost/graph/adjacency_li st.hpp>

i n t mainO {
using namespace boost:
typedef adjacency_list < vecS. vecS. undirectedS > Graph:
typedef graph_traits < Graph >::vertex_descriptor Vertex:

const int N = 6:
Graph G(N):
add_edge(O, 1. G):

продолжение £
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Листинг 13.8 {продолжение)

add_edge(l. 4. G):
add_edge(4. 0. G);
add_edge(2. 5. G):

std::vector<int> c(num_vertices(G)):
int num = connected_components

(G. make_iterator_property_map(c.begin(). get(vertex_index, G),

Std: :cout « Std: :endl;
std::vector < int >::iterator 1;
std::cout « "Общее число компонент: " « num « std::endl;
for (i = c.beginO; i != c.endO; ++i)

std::cout « "Вершина " « i - c.beginO
« " в компоненте " « *i « std::endl:

std::cout « std::endl :
return EXIT_SUCCESS:

Вывод будет следующим:

Общее число компонент: 3
Вершина 0 в компоненте О
Вершина 1 в компоненте О
Вершина 2 в компоненте 1
Вершина 3 в компоненте 2
Вершина 4 в компоненте О
Вершина 5 в компоненте 1

1 3 . 5 . 2 . s t r o n g _ c o m p o n e n t s

template <class Graph, class ComponentMap. class P. class T. class R>
typename property_traits<ComponentMap>::value_type
strong_components(Graphs g. ComponentMap comp,
const bgl_named_params<P, T, R>& params = all defaults)

Функция strong_components () вычисляет сильные компоненты связности ориен-
тированного графа с использованием алгоритма Тарьяна, который основан на по-
иске в глубину [43].

Результат алгоритма записывается в отображение свойства компонент comp,
которое содержит номер компоненты для каждой вершины. Идентификационные
номера изменяются от нуля до числа компонент в графе минус один. Полное чис-
ло компонент — возвращаемое значение этой функции.

Где определен
Алгоритм Тарьяна находится в boost/graph/strong_components.hpp.

Определения
Сильная компонента связности ориентированного графа G = (V, Е) — максимальный
набор вершин (/сУ, такой, что для каждой пары вершин UWVQUМЫ имеем как -
путь из и в v, так и путь из v в и, то есть м и н достижимы друг из друга.

Ниже дано неформальное описание алгоритма Тарьяна для вычисления силь-
ных компонент связности. В основном это вариация поиска в глубину с дополни-
тельными действиями в событийных точках «посещение вершины» и «окончание
обработки вершины». Можно думать о действиях в точке «посещение вершины»
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как о выполняемых «на пути вниз» по дереву поиска в глубину (от корня к листь-
ям), а о действиях в точке «окончание обработки вершины» — как о выполняе-
мых «на пути вверх».

Три вещи должно произойти по пути вниз. Для каждой посещенной вершины и
мы записываем отметку посещения d[u], помещаем и во вспомогательный стек и при-
сваиваем root[u] - и. Поле root в итоге будет отображать каждую вершину на самую
верхнюю вершину в той же сильной компоненте связности. Устанавливая root[u] = и,
мы начинаем с ситуации, когда каждая вершина — компонента сама по себе.

Опишем теперь то, что происходит по пути вверх. Предположим, что мы только
что закончили посещение всех вершин, смежных с некоторой вершиной и. Теперь
можно рассмотреть каждую из смежных вершин снова, проверяя корень каждой из
них. Корень, имеющий наименьшее значение метки посещения, назовем корнем а.
Затем мы сравниваем а с вершиной и и рассматриваем следующие случаи:

1. Если d[a] < d[u], то мы знаем, что а — предок и в дереве поиска в глубину,
и значит, мы имеем цикл и и должна быть в одной сильной компоненте связ-
ности с а. Тогда мы присваиваем root[u] = а и продолжаем путь назад, вверх
по дереву поиска в глубину.

2. Если а = и, то мы знаем, что и должна быть самой верхней вершиной подде-
рева, определяющего сильные компоненты связности. Все вершины в этом
поддереве расположены ниже в стеке по отношению к вершине м, так что
мы выталкиваем вершины из стека, пока не достигнем и, и отмечаем каж-
дую как принадлежащую той же самой компоненте.

3. Если d[a] > d[u], то смежные вершины находятся в разных сильных компонен-
тах связности. Мы продолжаем путь назад вверх по дереву поиска в глубину.

Параметры
Ниже приведены параметры функции strong_components().

• IN: const Graph& g

Ориентированный граф. Тип графа должен быть моделью VertexListGraph
и IncidenceGraph.

• OUT: ComponentMap comp

Алгоритм вычисляет количество компонент связности в графе и присваивает
каждой компоненте целочисленную метку. Затем алгоритм записывает, какой
компоненте связности принадлежит каждая вершина графа, записывая номер
компоненты в отображение свойства компонент. Тип ComponentMap должен быть
моделью WritablePropertyMap. Тип значения требуется задавать целым числом,
лучше таким же, как vertices_size_type графа. Тип ключа должен быть типом
дескриптора вершины.

Именованные параметры
Ниже приведены именованные параметры функции strong_components().

• UTIL: root_map(RootMap r_map)

Используется алгоритмом для записи кандидатов в корневые вершины для
каждой вершины. В конце работы алгоритма у каждой сильной компоненты
связности всего одна корневая вершина и get(r_map, v) возвращает корневую
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вершину для той компоненты, в которую входит v. RootMap должен быть ReadWrite-
PropertyMap, где тип ключа и тип значения должны совпадать с типом дескрип-
тора вершины в графе.

По умолчанию: 1 terator_property_map, созданный из вектора std:: vector описа-
телей вершин, размером num_vertices(g). Использует i_map для отображения
индексов.

• UTIL: discover_time(TimeMap tjnap)

Используется алгоритмом для отслеживания упорядочения вершин поиска
в глубину. TimeMap должен быть моделью ReadWritePropertyMap и его тип значе-
ния должен быть целым типом. Тип ключа должен быть дескриптором верши-
ны графа.

По умолчанию: iterator_property_map, созданный из вектора std:: vector целых
чисел, размером num_vertices(g). Использует imap для отображения индексов

• UTIL: color_map(ColorMap cjnap)

Используется алгоритмом для отслеживания продвижения по графу. Тип Col огМар
должен быть моделью ReadWritePropertyMap, тип ключа — дескриптор вершины
графа, тип значения color_map должен быть моделью ColorVaLue.

По умолчанию: iterator_property_map, созданный из вектора std::vector с эле-
ментами типа defaul t_col or_type, размером num_verti ces (). Он использует i_map
для отображения индексов.

• IN: vertex_index_map(VertexIndexMap ijnap)

Отображает каждую вершину в целое число из диапазона [О, N), где N — число
вершин графа. Этот параметр необходим, только когда используется значение
по умолчанию для одного из других именованных параметров. Тип Vertexlndex
Map должен моделировать ReadablePropertyMap. Тип значения отображения дол-
жен быть целочисленным типом. Тип дескриптора вершины графа требуется
задавать в качестве типа ключа отображения.
По умолчанию: get (vertex index, g).

Сложность
Временная сложность для алгоритма нахождения сильных компонент связност! i
порядка О(|У| + [£|).

Смотри также
Для дополнительной информации смотрите connected_components () и i incremental _com-
ponentsO.

Пример
Вычисление сильных компонент связности для ориентированного графа приве-
дено в листинге 13.9.

Листинг 13.9. Вычисление сильных компонент связности для ориентированного графа

< strong-components.срр > •
finclude <boost/config.hpp>
#include <vector>
finclude <iostream>
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#1 nclucte <boost/graph/strong_components.hpp>
#i nclude <boost/graph/adjacencyj i st.hpp>

int mainO {
using namespace boost:
typedef adjacencyjist < vecS. vecS. directedS > Graph;
const int N = 6;
Graph G(N):
add__edge(0, 1, G): add_edge(l. 1. G): add_edge(l, 3. G);
add_edge(l. 4, G): add_edge(3, 4. G); add_edge(3. 0. G);
add_edge(4. 3. G): add_edge(5. 2, G):

std::vector<int> c(N):
int num = strong_components

(G, make_iterator_property_map(c.begin(), get(vertex_index. G),

std::cout « "Общее число компонент: " « num « std::endl;
std::vector < int >::iterator i;
for (i = c.beginO; i != c.endO: ++i)

std::cout « "Вершина " « i - c.beginO
<< " в компоненте " « *i « std::endl:

return EXIT_SUCCESS:

Программа выводит следующее:

Общее число компонент: 3
Вершина 0 в компоненте О
Вершина 1 в компоненте О
Вершина 2 в компоненте 1
Вершина 3 в компоненте О
Вершина 4 в компоненте О
Вершина 5 в компоненте 2

13.6. Растущие компоненты связности
Этот раздел описывает семейство функций и классов, которые вычисляют ком-
поненты связности неориентированного графа. Алгоритм, который используется
здесь, основан на структуре данных для представления непересекающихся мно-
жеств (disjoint-sets) [10, 44], которая является лучшим средством для ситуаций,
когда граф растет (к нему добавляются ребра) и информация о компонентах связ-
ности нуждается в постоянном обновлении. Класс непересекающихся множеств
(НМ) описан в разделе 16.6.

Следующие операции являются основными функциями для вычисления
и поддержания компонент связности. Использованные здесь объекты — граф д,
НМ-объект ds и вершины и и v.

• Initial i ze_i incremental _components (g. ds)

Основная инициализация структуры непересекающихся множеств. Каждая
вершина графа g в своем собственном множестве.

• incremental_components(g.ds)

Компоненты связности вычисляются на основе ребер в графе g и информации,
включенной в НМ-объект ds.
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• ds.find_set(v)

Выдает информацию о компоненте для вершины v из НМ-объекта.

• ds.union_set(u.v)

Обновляет НМ-объект, когда ребро (и, v) добавляется к графу.

Сложность
Временная сложность для всего процесса порядка O(\V| + |£|а(|£ |, |V|)), где \Е | —
полное число ребер в графе (в конце процесса) и | V | — число вершин, а — функция,
обратная функции Аккермана. Последняя имеет взрывной рекурсивно-экспонен-
циальный рост. Значит, обратная ей функция растет крайне медленно. На практи-
ке а(т, п) < 4, что означает временную сложность немного больше, чем O(\V\ + \E [).

Пример
В примере из листинга 13.10 мы поддерживаем компоненты связности графа при до-
бавлении ребер, используя структуру данных непересекающихся множеств. Полный
исходный код этого примера находится в файле example/incrernental-cornponents-eg.cpp.

Листинг 13.10. Пример увеличивающихся компонент связности

// .Создать граф
typedef adjacencyj ist < vecS. vecS. undirectedS > Graph;
typedef graph_traits < Graph >: :vertex_descriptor Vertex:
const i n t N = 6:
Graph G(N):
add_edge(O. 1. G):
add_edge(l, 4. G);
// создать НМ-объект. для которого нужны свойства ранга и родителя вершины
std::vector < Vertex > rank(num_vertices(G)):
std::vector < Vertex > parent(num_vertices(G));
typedef graph_traits<Graph>::vertices_size_type* Rank:
typedef Vertex* Parent;
disjoint_sets < Rank. Parent > ds(&rank[O]. &parent[O]);

// определить компоненты связности, сохраняя результат в НМ-объекте
initialize_incremental_components(G, ds):
incremental_coinponents(G. ds):

// Добавить еще пару вершин и обновить непересекающиеся множества
graph_traits < Graph >::edge_descriptor e;
bool f l a g :
t i e ( e . f lag) = add_edge(4, 0, G);
ds.union_set(4. 0);
t i e ( e . f lag) = add_edge(2, 5. G);
ds.union_set(2. 5);

graph_traits < Graph >::vertex_iterator i t e r . end;
for ( t i e ( i t e r , end) = vertices(G); i t e r != end; ++iter)

std::cout « "представитель[" « * i t e r « " ] = " «
ds.f ind_set(* i ter) « std: :endl : :

std::cout « std::endl:

typedef component_index < unsigned int Components:
Components components(parent.begin(), parent.endO):
for (Components: :size_type i = 0: i < components.sizeO: ++i) {
std::cout « "компонента " « i « " содержит: ";
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for (Components::value_type:iterator j = components[i].begin();
j != components[i].end(); ++j)

std::cout « *j « " ":
std::cout « std: :endl:

}

Вывод будет следующим:

представитель[О] = 1
представитель[1] = 1
представитель^] - 5
представитель^] = 3
представитель^] = 1
представитель[5] - 5

компонента 0 содержит: 4 1 0
компонента 1 содержит: 3
компонента 2 содержит: 5 2

Где определен
Все функции этого раздела определены в boost/graph/incremental_components.hpp.

1 3 . 6 . 1 . initialize_incremental_components

template <typename VertexListGraph, typename DisjointSets>
void initia1ize_incremental_co[nponents(VertexListGraph& G. DisjointSets& ds)
Функция initialize_incremental_components() инициализирует структуру не-

пересекающихся множеств для алгоритма увеличивающихся компонент связнос-
ти, делая каждую вершину неориентированного графа членом своей собственной
компоненты.

Сложность
Временная сложность порядка О(|У|).

13.6.2. incremental_components

template <typename EdgeMstGraph, typename DisjointSets>
void incremental_components(EdgeListGraph& g. DisjointSetsS ds)

Функция incrementa1_components() вычисляет компоненты связности неориен-
тированного графа, включая результаты в НМ-структуру данных.

Сложность
Временная сложность порядка О(\Е |).

13.6.3. same_component

template <typename Vertex, typename DisjointSets>
bool same_component(Vertex u. Vertex v. DisjointSetsS ds)

Функция same_component() определяет, находятся л и а и в в той же самой ком-
поненте.

Сложность
Временная сложность — О(сс(|£|, \V\)).
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1 3 . 6 . 4 . c o m p o n e n t _ i n d e x

component_i ndex<Index>

Класс component_i ndex обеспечивает представление данных для компонент графа,
подобное контейнеру STL. Каждая компонента является контейнероподобным
объектом, и объект componentj ndex обеспечивает доступ к объектам компоненты
через operator!;]. Объект component J ndex инициализируется свойством родителей
в непересекающихся множествах, вычисленных функцией 1 ncremental_components ().

Параметры шаблона
• Index — целый беззнаковый тип, используемый для подсчета компонент.

Где определен
Класс componentj ndex находится в boost/graph/incremental_components.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы класса componentj ndex.

• componentj ndex:: value J;y pe

Тип для объекта-компоненты. Тип компоненты имеет следующие члены.

• componentj ndex:: si ze_type

Тип, используемый для представления числа компонент.

Функции — методы класса
Ниже приведены функции — методы класса componentj ndex.
• template <typename ComponentsContainer>

componentj ndex:: componentj ndex(const ComponentsContainer& c)
Создает component J ndex, используя информацию из контейнера компонент с,
который был результатом выполнения incren~ental_components.

• template <typename Parentlterator>
componentj ndex: :componentJndex(ParentIterator first, Parentlterator last.)

Создает индекс компонент из «родителей», вычисленных функцией incre-
mental _components().

• value_type componentJndex: :operator[ ](size_type i) const

Возвращает i -ю компоненту графа.

• size_type componentj ndex:: si ze() const

Возвращает число компонент графа.

Ассоциированные типы для компоненты
Тип val ue_type для componentj ndex — компонента, которая имеет следующие ассо-
циированные типы.

• valuejype: :va1ue_type

Тип значения для объекта-компоненты — идентификатор вершины.

• valuejtype::iterator
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• value_type::const_iterator

Этот итератор может быть применен для обхода всех вершин компоненты.
Данный итератор разыменовывается в идентификатор вершины.

Функции — методы класса компоненты
Тип va I ue_type для component_i ndex является представлением компоненты и имеет
следующие функции — методы класса.

• iterator beginO const

Возвращает итератор, указывающий на первую вершину компоненты.

• iterator end О const

Возвращает итератор, указывающий на последнюю вершину компоненты.

13.7. Алгоритмы максимального потока

13.7.1. edmunds_karp_max_flow
template <typename Graph, typename P, typename T. typename R>typename detail::edge_capacity_value<Graph. P. T, R>::typeedmunds_karp_max_flow(Graph& g.typename graph_traits<Graph>::vertex_descriptor src.typename graph_traits<Graph>::vertex_descriptor sink.const bgl_named_params<P. T, R>& params = all defaults)
Функция edmunds_karp_max_fl ow() вычисляет максимальный поток в сети (см. гла-

ву 8). Максимальный поток является возвращаемым значением этой функции.
Функция также вычисляет значения потока f(u, v) V(u, v) e E, которые возвра-
щаются в форме остаточной мощности r(u, v) = с(и, v) -f(u, v).

Где определен
Алгоритм находится в boost/graph/edmundsj<arp_max_now.hpp.

Параметры
Ниже приведены параметры функции edmunds_karp_max_fl ow().

• IN: Graph& g

Ориентированный граф. Тип графа должен быть моделью VertexListGraph и Inci-
denceGraph. Для каждого ребра (и, v) обратное ребро (v, и) также должно быть
в графе.

• IN: vertex_descriptor src

Исходная вершина для графа потоковой сети.

• IN: vertexjdescnptor sink

Сток для графа потоковой сети.

Именованные параметры
Ниже приведены именованные параметры функции edmunds_karp_max_f1ow().

• IN: capacity_map(CapacityEdgeMap cap)
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Отображение свойства мощности ребра. Тип должен быть моделью констант-
ной LvaluePropertyMap. Тип ключа отображения должен быть типом дескрипто-
ра ребра графа.
По умолчанию: get(edge_capacity. g).

• OUT: residual_capacity_map(ResidualCapacit.yEdgeMap res)

Отображение свойства остаточной мощности ребра. Тип должен быть моде-
лью изменяемой LvaluePropertyMap. Тип ключа отображения должен быть ти-
пом дескриптора ребра графа.
По умолчанию: get(edge_residual_capacity. g).

• IN: reverse_edge_map(ReverseEdgeMap rev)

Отображение свойства ребра, которое отображает каждое ребро графа (и, v) в об-
ратное ребро (v, и). Это отображение должно быть моделью константной Lvalue-
PropertyMap. Тип ключа отображения должен быть типом дескриптора ребра графа.

По умолчанию: get(edge_reverse. g).

• UTIL: predecessor_map(PredecessorMap pjnap)

Это отображение предшественников отличается от обычного отображения
предшественников тем, что тип значения является типом дескриптора ребра,
а не вершины. Тип ключа для этого отображения — дескриптор вершины.
По умолчанию: i terator_property_map, созданный из вектора std:: vector описате -
лей ребер, размером num_vertices(g). В качестве индекса отображения исполь-
зуется ijnap.

• UTIL: color_map(ColorMap cjnap)

ЭТО отображение используется во внутренних вычислениях. Тип Со! огМар дол-
жен быть моделью ReadWritePropertyMap. Дескриптор вершины требуется зада-
вать в качестве типа ключа отображения, и тип значения отображения должен
быть моделью ColorValue.

По умолчанию: iterator_property_map, созданный из вектора std::vector эле-
ментов типа default_color_type, размером num_vertices(g). В качестве индекса
отображения используется ijnap.

• IN: vertex_index_map(VertexIndexMap indexjrap)

Это отображение необходимо, если применялось отображение цветов по умол-
чанию или отображение предшественников по умолчанию. Каждая вершина
графа отображается в целое число из диапазона [О, \V\). Отображение должно
быть моделью константной LvaluePropertyMap. Тип ключа отображения должен
совпадать с типом дескриптора вершины графа.
По умолчанию: get (vertexj ndex. g).

Пример
Программа в листинге 13.11 читает пример задачи максимального потока (граф
с мощностями ребер) из файла в формате DIMACS [1].

Листинг 13.11. Решение задачи максимального потока

< edmunds-karp-eg.cpp ) =
iinclude <boost/config.hpp>
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#include <iostream>
#include <string>
#incl ude <boost/graph/edmunds_karpjnaxjflow.hpp>
#include <boost/graph/adjacencyj ist.hpp>
#incl ude <boost/graph/readjJimacs.hpp>
#i nclude <boost/graph/graph_uti1i ty.hpp>

int mainO {
using namespace boost:

typedef adjacency_list_traits < vecS. vecS, directedS > Traits:
typedef adjacencyjist < lists. vecS. directedS,

property < vertexjiamejt. std::string >.
property < edgej;apacity_t. long.
property < edge_residualĵ apacityjc, long.
property < edge_reverse_t. Traits: :edgejjescriptor > > > > Graph:

Graph g:

propertyjnap < Graph. edge_capacity_t >::type
capacity - get(edgej:apacity. g):

propertyjnap < Graph. edge_reverse_t >::type rev = get(edge_reverse. g):
propertyjnap < Graph. edge_residualjrapacityjt >::type

residualj;apacity - get(edge_residualj:apacity, g);

Traits::vertexjJescriptor s, t :
readjJimacsjnax_flow(g. capacity, rev, s, t ) :

long flow = edmunds_karpjnax_flow(g. s, t ) :

Std::cout « "С Полный поток:" « std::endl;
std::cout « "s " « flow « std::endl « std::endl:

std::cout « "с значения потока:" « std::endl:
graphjtra i ts < Graph >: :vertexj i terator u j i t e r , ujand;
graphjtraits < Graph >: :outjadge_iterator e i , e_end:
for ( t i e t u j i t e r . ujand) = vert ices(g): u j t e r != uj?nd: ++uj iter)

for ( t i e ( e i . ejand) = outj idges(*u_iter, g): ei != ejand: ++ei)
i f (capacity[*ei] > 0)

std::cout « "f " « *u_iter « " " « target(*e i , g) « " "
« (capacity[*ei] - residual_capacity[*ei]) « std::endl:

return EXIT SUCCESS:

Программа выводит следующее:

Полный поток:
13

значения потока:
0 6 3
0 1 6
0 2 4

f 1 5 1
0 0
3 5

f 1
f I
f 2 4 4
f 2 3 0
f 2 0 0
f 3 7 5
f 3 2 0
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f 3

f 5 4
f 5 7 5
f 6 7 3
f 6 4 О
f 7 6 О
f 7 5 О

1 3 . 7 . 2 . p u s h _ r e l a b e l _ m a x _ f l o w

template <typename Graph, typename P. typename T. typename R>
typename detail::edge_capacity_value<Graph, P, T, R>::type
push_relabel_max_flow(Graph& g.

typename graph_traits<Graph>::vertex_descriptor src.
typename graph_traits<Graph>::vertex_descriptor sink,
const bgl_named_params<P. T, R>& params)

Функция push_rel abel_max_f 1 ow() вычисляет максимальный поток сети (см. гла-
ву 8). Максимальный поток является возвращаемым значением этой функции.
Функция также вычисляет значения потока/(м, с) V(M, V) G E, которые возвраща-
ются в форме остаточной мощности г (и, v) ~ c(u, v) - /(и, v). Сеть с ребрами, от-
меченными значениями потока и мощности, изображена на рис. 13.7.

Имеется несколько особых требований к входному графу и параметрам отобра-
жений свойств для этого алгоритма. Во-первых, ориентированный граф G = (V, Е),
представляющий сеть, должен быть расширен так, чтобы для любого ребра из
Е в него вошло также и обратное ребро. То есть входной граф должен быть
Gm(V,{E\JE7}). Аргумент rev для ReverseEdgeMap должен отображать каждое ребро
в исходном графе на обратное ребро, то есть (и, v) —> (v, и) V'(и, v) e E. Аргумент
cap от Capaci tyEdgeMap должен отображать каждое ребро в £на положительное чис-
ло, а каждое ребро в Е т в 0. Другими словами, отображение мощности должно
удовлетворять этим ограничениям: с(ы, v) > 0 и с(р, и) = 0 для каждого (м, v) e E.

Рис. 13.7. Потоковая сеть, в которой ребра помечены значениями потока и мощности

Где определен
Алгоритм находится в boost/graph/push_relabeUTiax_flow.hpp.

Параметры
Ниже приведены параметры функции push_relabel_max_flow().
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• IN: Graph& g

Ориентированный граф. Графовый тип должен быть моделью VertexListGraph
и IncidenceGraph. Для каждого ребра (и, v) обратное ребро (v, и) также должно
быть в графе.

• IN: vertex_descriptor src

Исходная вершина для графа потоковой сети.

• IN: vertex_descriptor sink

Сток для графа потоковой сети.

Именованные параметры
Ниже приведены именованные параметры функции push_relabel_max_flow().

• IN: capacity_map(CapacityEdgeMap cap)

Отображение свойства реберной мощности. Тип должен быть моделью кон-
стантной LvaluePropertyMap. Тип ключа отображения должен быть дескрипто-
ром ребра графа.
По умолчанию: get(edge_capacity, g).

• OUT: res1dual_capacity_map(ResidualCapacityEdgeMap res)

Отображение свойства остаточной реберной мощности. Тип должен быть мо-
делью неконстантной LvaluePropertyMap. Тип ключа отображения должен быть
дескриптором ребра графа.
По умолчанию: get(edge_residual_capacity, g).

• IN: reverse_edge_map(ReverseEdgeMap rev)

Отображение свойства ребра, которое отображает каждое ребро (и, v) в графе на
обратное ребро (и, и). Отображение должно быть моделью константной Lvalue-
PropertyMap. Тип ключа отображения должен быть дескриптором ребра графа.
По умолчанию: get(edge_reverse. g).

• IN: vertex_index_map(VertexIndexMap indexjiap)

Это отображает каждую вершину на целое в диапазоне [О, N ), где N — количе-
ство вершин в графе. Отображение должно быть моделью константной Lvalue-
PropertyMap. Тип ключа отображения должен быть дескриптором ребра графа.
По умолчанию: get(vertex_index. g).

Пример
Пример в листинге 13.12 читает пример задачи максимального потока (граф
с мощностями ребер) из файла в формате DIMACS [1].

Листинг 13.12. Решение задачи максимального потока методом
проталкивания предпотока

( push-relabel-eg.cpp ) =
iinclude <boost/config.hpp>
#1nclude <iostream>
#include <string>
#include <boost/graph/push_relabel_max_flow.hpp>
#i ncl ude <boost/graph/adjacencyj i st. hpp>
#include <boost/graph/read_dimacs.hpp>
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Листинг 13.12 (продолжение)

using namespace boost:
typedef adjacency_list_traits < vecS. vecS, directedS > Traits:
typedef adjacencyjist < vecS, vecS. directedS.

property < vertex_name_t, std:-.string >,
property < edge_capacity_t. long.
property < edge_residual_capacity_t. long,
property < edge_reverse_t. Traits::edge_descriptor > > > > Graph;

Graph g;

property_map < Graph, edge_capacity_t >::type
capacity = get(edge_capacity, g);

property_map < Graph. edge_residual_capacity_t >::type
residual_capacity = get(edge_residual_capacity. g):

property_map < Graph. edge_reverse_t >::type rev = get(edge_reverse. g):
Traits::vertex_descriptor s. t:
read_dimacs_max_flow(g, capacity, rev, s, t):

long flow = push_relabel_max_flow(g, s. t);

std::cout « "c The total flow:" « std::endl;
Std::cout « "s " « flow « std::endl « std::endl;
std::cout « "c flow values:" « std::endl;
graph_traits < Graph >::vertex_iterator u_iter, u_end:
graph_traits < Graph >::out_edge_iterator ei, e_end;
for (tie(u_iter, u_end) • vertices(g): u_iter != u_end; ++u_iter)

for (t ie(ei. e_end) = out_edges(*u_iter, g); ei Г- e__end: ++ei)
i f (capacity[*ei] > 0)

std::cout « "f " « *u_iter « " " « target(*ei, g) « " "
« (capacity[*ei] - residual_capacity[*ei]) « std::endl:

return EXIT_SUCCESS:
}

Программа выводит следующее:

с Полный поток:
s 13

с значения потока:
f 0 6 3
f 0 1 0
f 0 2 10
f 1 5 1
f 1 0 0
f 1 3 0
f 2 4 4
f 2 3 6
f 2 0 0
f 3 7 5
f 3 2 0
f 3 1 1
f 4 5 4
f 4 6 0
f 5 4 0
f 5 7 5
f 6 7 3
f 6 4 0
f 7 6 0
f 7 5 0
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14.1. Классы графов

14.1.1. adjacencyjist
adjacency_list<EdgeList. VertexList, Directed,VertexProperties. EdgeProperties. 6raphProperties>
Класс ad jacencyj i st реализует интерфейс BGL-графа, используя несколько раз-

личных вариантов традиционного представления графа в виде списка смежности.
Представление графа в виде списка смежности содержит последовательность

исходящих ребер для каждой вершины. Для разреженных графов это экономит
место по сравнению с матрицей смежности, поскольку памяти требуется только
порядка О(| V j + \Е\), а не 0(|У|2). Кроме того, доступ к исходящим ребрам для каж-
дой вершины может быть сделан эффективным. Представление ориентированно-
го графа в виде списка смежности показано на рис. 14.1.

Рис. 14.1. Представление ориентированного графа в виде списка смежности

Параметры шаблона класса adjacency_1ist предоставляют много возможнос-
тей, это позволяет вам выбрать наиболее подходящий вариант класса. Параметр
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шаблона VertexLi st класса adjacency_l i st задает вид контейнера для представле-
ния последовательности вершин (прямоугольник на рис. 14.1). Параметр шабло-
на EdgeLi st задает вид контейнера для представления последовательности исхо-
дящих ребер для каждой вершины (овалы на рис. 14.1). Выбор EdgeLi st и VertexLi st
определяет затраты памяти и эффективность различных операций на графе. Воз-
можные варианты и компромиссы рассмотрены далее в этом разделе.

Параметр шаблона Di rected указывает, является ли граф ориентированным, не-
ориентированным или ориентированным с доступом к входящим и исходящим ре-
брам (который мы называем двунаправленным). Двунаправленный граф требует
в 2 раза больше места (на каждое ребро), чем ориентированный, так как каждое
ребро появляется как в списке исходящих, так и в списке входящих ребер. Представ-
ление в виде списка смежности неориентированного графа показано на рис. 14.2.
Двунаправленное представление ориентированного графа показано на рис. 14.3.

Рис. 14.2. Представление неориентированного графа в виде списка смежности

D

В

Рис. 14.3. Двунаправленное представление списка смежности ориентированного графа

Пример
В следующем примере (листинг 14.1) граф используется для представления генеа-
логического дерева.

Листинг 14.1. Работа с фамильным деревом

{ family-tree-eg.cpp ) •
iinclude <iostream>
finclude <vector>
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linclude <string>
#i nclude <boost/graph/adjacencyJi st.hpp>
#include <boost/tuple/tuple.hpp>

enum family { Jeanie. Debbie, Rick, John, Amanda, Margaret. Benjamin. N };

int mainO {
using namespace boost;
const char *name[] - { "Jeanie". "Debbie". "Rick",

"John", "Amanda". "Margaret". "Benjamin"

adjacencyjist <> g(N):
add_edge(Jeanie. Debbie, g);
add_edge(Jeanie. Rick, g);
add_edge(Jeanie. John, g);
add_edge(Debbie, Amanda, g);
add_edge(Rick. Margaret, g);
add_edge(John. Benjamin, g):

graph_traits < adjacencyjist <> >: :vertex_iterator i. end:
graph_traits < adjacencyjist <> >: :adjacencyjterator ai. a_end;
property_map < adjacencyjist <>, vertexjndexj; >::type

indexjnap = get(vertexJndex, g);

for (tied , end) = vertices(g): i != end; ++i
std::cout « name[get(index_map. * i ) ] ;
tie(ai. a_end) = adjacent_vertices(*i . g);
i f (ai == a_end)

std::cout « " не имеет детей";
else

std::cout « " является родителем для ":
for (; ai != a_end; ++ai) {

std::cout « name[get(index_map, *ai)];
if (boost:rnext(ai) != a_end)

std: : cout « ", ":

std::cout « std: :endl;

return EXIT SUCCESS;

Эта программа выводит следующее:

Jeanie является родителем для Debbie, Rick. John
Debbie является родителем для Amanda
Rick является родителем для Margaret
John является родителем для Benjamin
Amanda не имеет детей
Margaret не имеет детей
Benjamin не имеет детей
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Параметры шаблона
Ниже приведены параметры шаблона класса adjacencyJ1 St.

EdgeLi st Контейнер для представления списка ребер
каждой вершины.
По умолчанию: vecS.

VertexLi st Контейнер для представления множества вер-
шин графа.
По умолчанию: vecS.

Di rected Определяет, является ли граф ориентирован-
ным, неориентированным или ориентирован-
ным с двунаправленным доступом к ребрам
(доступ к исходящим и входящим ребрам).
Соответствующие значения: di rectedS, undi -
rectedS и bidirectionalS.
По умолчанию: di rectedS.

VertexProperti es Задает внутреннее хранилище для свойств
вершин.
По умолчанию: no_property.

EdgeProperti es Задает внутреннее хранилище для свойств
ребер.
По умолчанию: no_property.

GraphProperti es Задает хранилище для свойств графа.
По умолчанию: no_property.

Модель для
DefaultConstructible, CopyConstructible, Assignable, VertexListGraph, EdgeListGraph, Incidence-
Graph, AdjacencyGraph, VertexMutableGraph и EdgeMutableGraph.

Также ad jacencyj i st моделирует концепцию BidirectionalGraph, когда Di rected=bi -
di recti onal S или Di rected=undi rectedS, и моделирует VertexMutablePropertyGraph и Ed-
geMutablePropertyGraph, когда добавляются соответствующие внутренние свойства.

Где определен
Класс adjacencyjist находится в файле boost/graph/adjacency_List.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы класса ad jacencyj i st.

• graph_traits<adjacency_list>::vertex_descriptor

Тип дескрипторов вершин, ассоциированный с adjacency_11 st.
(Требуется для Graph.)

• graph_traits<adjacencyjist>::edge_descriptor

Тип дескрипторов ребер, ассоциированный с ad jacencyj i st.
(Требуется для Graph.)

• graph_traits<adjacencyjist>: :vertexjterator

Тип итераторов, возвращаемый vertices().
(Требуется для VertexListGraph.)
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• graph_traits<adjacency_list>::edge_iterator
Тип итераторов, возвращаемый edges О.
(Требуется для EdgeListGraph.)
• graph_traits<adjacency_list>::out_edge_iterator
Тип итераторов, возвращаемый out_edges().
(Требуется для IncidenceGraph.)
• graph_traits<adjacency_list>::i n_edge_i terator

Этот тип доступен для неориентированных или двунаправленных списков
смежности, но не для ориентированных. Итератор in_edge_i terator — тип ите-
ратора, возвращаемый функцией in_edges().
(Требуется для BidirectionalGraph.)

• graph traits<adjacency list>::adjacency iterator
- - -

Тип итераторов, возвращаемый adjacent_vertices().
(Требуется для AdjacencyGraph.)
• graph_traits<adjacency_list>::directed_category
Предоставляет информацию о том, является ли граф ориентированным (di гес-
ted_tag) или неориентированным (undi rected_tag).
(Требуется для Graph.)
• graph_traits<adjacency_list>: :edge_parallel_category
Дает информацию о том, позволяет ли граф вставку параллельных ребер (ребер,
у которых одна и та же начальная и конечная вершины). Два возможных тега:
al I ow_paral I el_edge и di sal 1 ow_para! 1 el_edge_tag. Варианты с sets и hash_setS не
позволяют задавать параллельные ребра, тогда как другие варианты позволяют.
(Требуется для Graph.)

• graph_traits<adjacency_list>::traversal_category

Категория обхода (traversal category) отражает поддерживаемые графовым
классом виды итераторов. Для списка смежности это включает итераторы вер-
шин, ребер, исходящих ребер и итераторы смежности. Итератор входящих ре-
бер доступен для неориентированных и двунаправленных, но не для ориенти-
рованных списков смежности.

• graph_traits<adjacency_list>::vertices_size_type

Тип используется для представления числа вершин в графе.
(Требуется для VertexListGraph.)

• graph_traits<adjacency_1ist>::edges_size_type

Тип используется для представления числа ребер в графе.
(Требуется для EdgeListGraph.)

• graph_traits<adjacency_list>::degree_size_type

Тип используется для представления числа исходящих ребер в графе.
(Требуется для IncidenceGraph.)
• property_map<adjacencyji st, PropertyTag>::type

property_map<adjacency_list. PropertyTag>::const_type

Тип отображения для свойств вершины или ребра графа. Свойство задается ар-
гументом Property Tag шаблона и должно совпадать с одним из свойств из Vertex-
Properties или EdgeProperties для графа.
(Требуется для PropertyGraph.)
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Функции — методы
Ниже приведены функции — методы класса adjccency_l i st.

• adjacency_list(const GraphPropertiesS p =
GraphPropertiesO)

Конструктор по умолчанию. Создает пустой объект-граф с нулевым числом
вершин и ребер.

(Требуется для DefaultConstructible.)

• adjacency_list(vertices_size_type n. const GraphProperties& p =
GraphPropertiesO)

Создает объект-граф с п вершинами и без ребер.

• template <typename Edgelterator>
adjacency_list(EdgeIterator f i r s t , Edgelte~ator last,

vertices_size_type n, edges_size_type m = 0,
const GraphProperties& p = GraphPropertiesO)

Создает граф с п вершин и т ребер. Ребра заданы в списке ребер из диапазона
[first, last). Если п или т равно нулю, число вершин или ребер вычисляется
по списку ребер. Тип значения для Edgelterator должен быть std:: pal г, где в паре
используется целый тип. Целые числа соответствуют вершинам, и все они
должны относиться к диапазону [0, п).

• template <typename Edgelterator.
typename EdgePropertiesIterators

adjacency_list(Edgelterator f i r s t .
Edgelterator last. EdgePropertiesIterator epj ter .
vertices_size_type n. edges_size_type m = 0,
const GraphProperties& p = GraphPropertiesO)

Создает графовый объект с п вершин и т ребер. Ребра заданы в списке ребер
из диапазона [first, last). Если п или т равно нулю, число вершин или ребер
вычисляется по списку ребер. Тип значения для Edgelterator должен быть
std:: pai г, где в паре используется целый тип. Целые числа соответствуют вер-
шинам, все они должны относиться к диапазону [0, п). Тип value_type итерато-
ра ep_iter должен совпадать с параметром шаблона EdgeProperties.

Функции — не методы
Ниже приведены функции — не методы класса adjacencyj i st.

• std::pair<vertex_iterator. vertex_iterator>
vertices(const adjacency_list& g)

Возвращает пару итераторов, обеспечивающую доступ к множеству вершин
графа g.

(Требуется для VertexListGraph.)

• std::pai r<edge_iterator. edge_iterator>
edges(const adjacency_list& g)

Возвращает пару итераторов, обеспечивающую доступ к набору ребер графа g.

(Требуется для EdgeListGraph.)
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• std::pair<adjacency_iterator, adjacency_iterator>
adjacent_verti ces(vertex_descri ptor v,

const adjacency_list& g)

Возвращает пару итераторов, обеспечивающую доступ к вершинам, смежным
с вершиной v графа g.
(Требуется для AdjacencyGraph.)

• std::pa i r<out_edge_i terator. out_edge_1terator>
out_edges(vertex_descriptor v. const adjacency_list& g)

Возвращает пару итераторов, обеспечивающую доступ к исходящим ребрам
вершины v графа g. Если граф является неориентированным, этот итератор
обеспечивает доступ ко всем ребрам, инцидентным вершине v.
(Требуется для IncidenceGraph.)

• std::pair<in_edge_iterator. in_edge_iterator>
in_edges(vertex_descriptor v, const adjacency_list& g)

Возвращает пару итераторов, обеспечивающую доступ к входящим ребрам вер-
шины v графаg. Эта операция недоступна, если для параметра шаблона Di rected
указано di rectedS, и доступна, если используются undirectedS и bidirectionalS.
(Требуется для BidirectionalGraph.)

• vertex_descriptor source(edge_descriptor e.
const adjacency_list& g)

Возвращает начальную вершину ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e.
const adjacency_list& g)

Возвращает конечную вершину ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriptor u.
const adjacency_1ist& g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)

• degree_size_type in_degree(vertex_descriptor u,
const adjacency_list& g)

Возвращает число ребер, входящих в вершину и. Операция доступна, только
если параметр шаблона Directed был задан как bidirectionalS.
(Требуется для BidirectionalGraph.)

• vertices_size_type num_vertices(const adjacency_!ist& g)

Возвращает число вершин в графе g.

(Требуется для VertexListGraph.)

• edges_size_type num_edges(const adjacency_list& g)

Возвращает число ребер в графе g.
(Требуется для EdgeListGraph.)

•
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• vertex_descriptor vertex(vertices_size_type n,
const adjacency_list& g)

Возвращает я-ю вершину в списке вершин графа.

• std::pair<edge_descriptor. bool>
edge(vertex_descriptor u, vertex_descriptor v,

const adjacencyjists g)

Возвращает ребро, соединяющее вершину и с вершиной v в графе g.

(Требуется для AdjacencyMatrix.)

• std::pair<out_edge_iterator. out_edge_iterator>
edge_range(vertex_descriptor u, vertex_descriptor v,

const adjacency_list& g)

Возвращает пару итераторов исходящих ребер, дающих доступ ко всем парал-
лельным ребрам из и в v. Эта функция работает, только когда EdgeList для
adjacencyjist является контейнером, сортирующим исходящие ребра по ко-
нечным вершинам, а также когда параллельные ребра разрешены, multisets в ка-
честве EdgeLi st является таким контейнером.

• std::pair<edge_descriptor. bool>
add_edge(vertex_descriptor u. vertex_descriptor v.

adjacency_list& g)

Добавляет ребро (м, v) к графу и возвращает дескриптор ребра для нового ребра.
Для тех графов, которые не разрешают иметь параллельные ребра, в случае
если ребро уже присутствует в графе, дубликат добавлен не будет, а флаг bool
будет иметь значение «ложь». Также, если и и V являются дескрипторами од-
ной и той же вершины, а граф является неориентированным, создающее пет-
лю ребро добавлено не будет и флаг bool будет иметь значение «ложь». Когда
флаг ложен, дескриптор ребра не является правильным и его нельзя использо-
вать. Место нового ребра в списке исходящих ребер в общем случае не опреде-
лено, хотя задать порядок в списке исходящих ребер можно при выборе EdgeLi s;.
Если VertexLi st=vecS и если один из дескрипторов вершин и ИЛИ V (целые числа)
имеет значение, большее, чем текущее число вершин графа, граф увеличивается
таким образом, что число вершин становится равным std: :max(u.v) + 1. Если
EdgeLi st=vecS, добавление ребра делает недействительным любой итератор ис-
ходящих ребер (out_edge_iterator) для вершины и. То же самое происходит,
если EdgeList — определенный пользователем контейнер, итераторы которого
«портятся» при вызове push(container, x). Если граф является двунаправлен-
ным, то итераторы входящих ребер для v (in_edge_iterator) тоже «портятся».
Если граф является неориентированным, то любой итератор out_edge_iterator
для v также «портится». Если граф является ориентированным, add_edge() «пор-
тит» любой итератор ребер (out_edge).
(Требуется для EdgeMutableGraph.)

• std::pair<edge_descriptor. bool>
add_edge(vertex_descriptor u. vertex_descriptor v.

const EdgeProperties& p. adjacency_list& g)

Добавляет ребро (и, v) к графу и присоединяет р как значение внутреннего
свойства ребра. См. также описание предыдущей функции — не метода класса.
(Требуется для EdgeMutablePropertyGraph.)
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• void remove_edge(vertex_descriptor u. vertexjdeschptor v.
adjacency_list& g)

Удаляет ребро {и, v) из графа. Эта операция вызывает сбой во всех еще не об-
работанных дескрипторах ребер и итераторах, которые указывают на ребро
(м, »)• Кроме того, если в качестве EdgeLi st выбран vecS, тогда эта операция вы-
зывает сбой во всех итераторах, указывающих на элемент списка ребер верши-
ны и. То же самое происходит для вершины v в случае неориентированного
или двунаправленного графа. Аналогично, для ориентированных графов эта
операция вызывает сбой любого итератора ребер (edge_iterator).
(Требуется для EdgeMutableGraph.)

• void remove_edge(edge_descriptor e. adjacencyJistS g)

Удаляет ребро е из графа. Отличается от функции remove_edge(u. v. g) в слу-
чае мультиграфа. Эта функция удаляет единственное ребро графа, тогда как
функция edge(u. v. g) удаляет все ребра (и, v). Данная операция делает не-
действительными любые еще не обработанные дескрипторы ребер и итерато-
ры для ребра е. Кроме того, эта операция «портит» все итераторы, которые ука-
зывают на список ребер для target(e, g). Аналогично, для ориентированных
графов эта операция вызывает сбой любого итератора ребер.
(Требуется для EdgeMutableGraph.)

• void remove_edge(out_edge_iterator iter.
adjacency_list& g)

Имеет тот же эффект, что и remove_edge (*i ter, g). Разница состоит в том, что эта
функция выполняется за постоянное время в случае ориентированных графов,
тогда как remove_edge(e, g) имеет временную сложность порядка O(|£|/ |V|).
(Требуется для MutablelncidenceGraph.)

• template <typename Predicate>
void remove_out_edge_if (vertex_descriptor u.

Predicate predicate. adjacency_list& g)

Удаляет все исходящие ребра вершины и из графа, которые удовлетворяют пре-
дикату, то есть если предикат возвращает истину при применении к дескрип-
тору ребра, ребро удаляется. Эффект для дескриптора и итератора такой же,
что и при вызове remove_edge() для каждого из подлежащих удалению ребер.
(Требуется для MutablelncidenceGraph.)

• template <typename Predicate>
void remove_in_edge_if (vertex_descriptor v.

Predicate predicate, adjacency_list& g)

Удаляет все входящие ребра вершины v из графа, которые удовлетворяют пре-
дикату, то есть, если предикат возвращает истину при применении к дескрип-
тору ребра, ребро удаляется. Эффект для дескриптора и итератора такой же,
что и при вызове remove_edge() для каждого из подлежащих удалению ребер.
(Требуется для MutableBidirectionalGraph.)

• template <typename Predicate>
void remove_edge_if (Predicate predicate.

adjacency_list& g)
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Удаляет все ребра из графа, которые удовлетворяют предикату, то есть если
предикат возвращает истину при применении к дескриптору ребра, ребро
удаляется. Эффект для дескриптора и итератора такой же, что и при вызове
remove_edge() для каждого из подлежащих удалению ребер.
(Требуется для MutableEdgeListGraph.)

• vertex_descriptor add_vertex(adjacency_lis.t& g)

Добавляет вершину к графу и возвращает дескриптор вершины для вновь со-
зданной вершины.
(Требуется для VertexMutableGraph.)

• vertex_discriptor add_vertex(const VertexProperties& p.
adjacency_list& g)

Добавляет вершину к графу и возвращает дескриптор вершины для вновь со-
зданной вершины.
(Требуется для VertexMutabLePropertyGraph.)

• void clear_vertex(vertex_descriptor u. adjacency_list& g)

Удаляет все ребра, входящие и исходящие из вершины и. Вершина остается
во множестве вершин графа. Эффект для дескриптора и итератора такой же,
что и при вызове remove_edge() для всех ребер, у которых и — начальная или
конечная вершина.
(Требуется для EdgeMutableGraph.)

• void clear_out_edges(vertex_descriptor u.
adjacency_list& g)

Удаляет все ребра, исходящие из вершины и. Вершина остается во множестве вер-
шин графа. Эффект для дескриптора и итератора такой же, что и при вызове ге-
move_edge() для всех ребер, у которых и — начальная вершина. Эта операция не
применяется к неориентированным графам (вместо нее используйте el ear_vertex()).

• void clear_in_edges(vertex_descriptor u.
adjacency_list& g)

Удаляет все ребра, входящие в вершину и. Вершина остается во множестве
вершин графа. Эффект для дескриптора и итератора такой же, что и при вызо-
ве remove_edge() для всех ребер, у которых и — конечная вершина. Эта опера-
ция применима только к двунаправленным графам.

• void remove_vertex(vertex_descriptor u. adjacency_list& g)

Удаляет вершину и из множества вершин графа. Предполагается, что на мо-
мент удаления у этой вершины нет входящих или исходящих ребер. Чтобы
гарантировать такое состояние, можно заранее применить cl ear_vertex(). Если
параметр шаблона VertexLi st списка ad jacency_l i st — vecS, то все дескрипторы
вершин, дескрипторы ребер и итераторы для графа становятся недействитель-
ными. Встроенные свойства vertex_i ndex_t для каждой вершины после этой
операции будут перенумерованы таким образом, что индексы вершин по-преж-
нему образуют непрерывный диапазон [0, | V |). Если вы используете внешнее
хранилище свойств, основанное на встроенных индексах вершин, то внешнее
хранилище должно быть соответствующим образом перестроено. Другой воз-
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можностью является отказ от использования встроенного индекса вершин
в пользу использования свойства для добавления собственного индекса вер-
шин. Если вам необходимо часто использовать функцию remove_vertex(), I i stS
является гораздо лучшим выбором для шаблонного параметра VertexLi st.
(Требуется для VertexMutableGraph.)

• template <typename PropertyTag>
property_map<adjacency_list, PropertyTag>::type
get(PropertyTag, adjacency_list& g)

Возвращает изменяемый объект-отображение свойств для свойства вершины,
заданной PropertyTag. Property Tag должен совпадать с одним из свойств, задан-
ных в шаблонном параметре VertexProperties графа.
(Требуется для PropertyGraph.)

• template <typename PropertyTag>
propertyjnap<adjacencyjist, PropertyTag>: :const_type
get(PropertyTag, const adjacency_list& g)

Возвращает константный объект-отображение свойств для свойства вершины,
заданной PropertyTag. PropertyTag должен совпадать с одним из свойств, задан-
ных в шаблонном параметре VertexProperties графа.
(Требуется для PropertyGraph.)
• template <typename PropertyTag. typename X>

typename property_traits<
typename property_map<ad jacencyjli st.
PropertyTag>::const_type>::value_type

get(PropertyTag. const adjacency_list& g. X x)
Возвращает значение свойства для х, где х — дескриптор вершины или ребра.
(Требуется для PropertyGraph.)
• template <typename PropertyTag. typename X.

typename Value>
void put(PropertyTag. const adjacency_list& g, X x.

const Value& value)
Присваивает значение value свойству х, где х — дескриптор вершины или ре-
бра. Значение должно быть преобразуемым к typename property_traits<proper-
ty_map<adjacency_list. PropertyTag>: :type>: :value_type.
(Требуется для PropertyGraph.)
• template <typename GraphProperties,

typename GraphProperties>
typename property_value<GraphProperties,

GraphProperties>::type&
get_property(adjacency_list& g. GraphProperties);

Возвращает свойство, заданное по GraphProperti es и присоединенное к графовому
объекту д. Класс свойств property_value определен в boost/pending/property.hpp.

• template <typename GraphProperties.
typename GraphProperties>

const typename property_value<GraphProperties,
GraphProperties>::type&

get_property(const adjacency_list& g. GraphProperties);

8 Зак. 375
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Возвращает свойство, заданное по GraphProperties, присоединенное к графовому
объекту д. Класс свойств property_val ue определен в boost/pending/property.hpp.

Выбираем EdgeList и VertexList
В этом разделе уделено внимание тому, какую версию класса adjacencyjist ис-
пользовать в той или иной ситуации. Список смежности имеет очень много возможно-
стей для конфигурирования. Интересующие нас параметры EdgeList и VertexList
задают структуры данных, используемые для представления графа. Выбор EdgeL'i st
и VertexList влияет на временную сложность многих графовых операций и про-
странственную сложность графового объекта.

BGL использует контейнеры из STL, такие как вектор s td: : vector, список
std:: 1 i st и множество std:: set для представления множества вершин и структу-
ры смежности (входящие и исходящие ребра) графа. В качестве контейнера для
EdgeLi st и VertexLi st могут быть выбраны разные типы:

• vecS задает std:: vector.

• l i s t s задает s td : : l i s t .

• siistS задает s td: : s i i s t 1 .

• setS задает std::set.

• hash_setS задает std:: hash_set2.

Выбираем тип VertexList
Параметр VertexLi st определяет вид контейнера, который будет использован для
представления множества вершин или двумерной структуры графа. Контей-
нер должен быть моделью Sequence или RandomAccessContainer. В общем случае
l i s t s является хорошим выбором, если вам нужно быстро добавить и удалить
вершины. Но тогда появляются дополнительные накладные расходы по сравне-
нию с vecS.

Пространственная сложность: std:: 1 i st требует хранить больше информации
для каждой вершины, чем std:: vector, так как дополнительно хранит два указателя.

Временная сложность: выбор VertexList влияет на временную сложность сле-
дующих операций.

• add_vertex()

Эта операция выполняется за амортизированное постоянное время как для vecS,
так и для l i s t s (реализована с push_back()). Однако, когда тип VertexList=vecS
является типом vecS, время выполнения этой операции иногда больше из-за
того, что вектор приходится размещать в памяти заново, а весь граф копировать

• remove_vertex()

Эта операция выполняется за постоянное время для 1 i stS и за время О(\ V\ + \E\)
для vecS. Большая временная сложность vecS объясняется тем, что дескрипто-
ры вершин (которые в этом случае являются индексами, соответствующими

1 Если реализация STL, которую вы применяете, использует std::slist.
2 Если реализация STL, которую вы применяете, имеет std::hash_set. Например, SGI STL является

такой реализацией.
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месту в списке вершин) должны быть скорректированы в исходящих ребрах
всего графа.

• vertexO

Эта операция выполняется за постоянное время для vecS и O(|V|) для l i s t s .

Выбираем тип EdgeList
Параметр EdgeList определяет, какой вид контейнера используется для хранения
исходящих ребер (и, возможно, входящих тоже) для каждой вершины в графе.
Контейнеры, используемые для списков ребер, должны удовлетворять требова-
ниям либо Sequence, либо AssociativeContainer.

Одним из первых вопросов, которые необходимо рассмотреть при выборе
EdgeLi st, является то, хотите ли вы гарантировать отсутствие параллельных ребер
в графе. Если нужна гарантия того, что граф не станет мультиграфом, можно ис-
пользовать sets или hash_setS. Если вы хотите иметь мультиграф или знаете, что
параллельные ребра вставляться не будут, тогда можно выбрать один из типов-
последовательностей: vecS, l i s t s или slistS. Помимо этого, необходимо принять
во внимание разницу во временной и пространственной сложности для различ-
ных графовых операций. Мы используем | V| для обозначения общего числа вер-
шин графа и \Е | для числа ребер. Операции, которые здесь не рассмотрены, вы-
полняются за постоянное время.

Пространственная сложность: выбор EdgeList влияет на объем памяти, выде-
ляемой на одно ребро в графовом объекте. В порядке возрастания требуемого ме-
ста следуют: vecS, si i stS, 1 i stS, hash_setS и sets.

Временная сложность: в следующем описании временной сложности различ-
ных операций мы используем | £ | / | У | внутри обозначений с «большим О» для
выражения длины списка исходящих ребер. Строго говоря, это не совсем точно,
так как |£ | / |V| дает только среднее число ребер на вершину в графе. В худшем
случае число исходящих ребер для вершины равно |У| (если граф — не мульти-
граф). В разреженных графах \Е\ обычно намного меньше, чем \V\, и может рас-
сматриваться как константа.

• add_edge()

Когда EdgeList является UniqueAssociativeContainer (ассоциативный контейнер
с уникальными элементами) как std:: set, отсутствие параллельных ребер после
добавления ребра гарантировано. Дополнительное время поиска имеет времен-
ную сложность O(log( |£ | / |V|)) . Типы EdgeList, которые моделируют Sequence
(последовательность), не осуществляют такую проверку и поэтому add_edge()
выполняется за амортизированное постоянное время. Это означает, что если
вам безразлично, имеет ли граф параллельные ребра, или вы уверены, что па-
раллельные ребра не будут добавляться к графу, то лучше использовать осно-
ванный на последовательностях EdgeList. Функция add_edge() для последова-
тельного EdgeList реализована как push_front() или push_back(). Однако для
std: : l i s t и std: : s l i s t эта операция обычно выполняется быстрее, чем для
std:: vector, который иногда перемещается в памяти и копирует свои элементы.

• remove_edge()

Для последовательных типов EdgeLi st эта операция реализуется с использо-
ванием std: :remove_if(). Это означает, что среднее время равно |£|/|V|. Для
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основанных на множествах типов EdgeLi st используется функция — метод клас -
са erase(), которая имеет временную сложность log(|£ | / |V|).

• edge О

Временная сложность этой операции равна О(\Е | /1V |), когда тип EdgeLi st явля-
ется Sequence, и O(log(|£| /1 V|)), когда тип EdgeLi st является AssoriativeContainer.

• clear_vertex()

Для ориентированных графов с последовательным типом EdgeLi st временная
сложность порядка О(\Е\ + \V\), тогда как для EdgeLi st на основе ассоциатив-
ного контейнера операция выполняется быстрее, всего за О(\ V |log(|£ |/| V |)). Дл я
неориентированных графов данная операция имеет временную сложность по-
рядка О«\Е\ / \У\У) и O(|£|log(|£|/ |V|) / \V\).

• remove_vertex()

Временная сложность порядка О(\Е\ + \V\) вне зависимости от типа EdgeLi st

• out_edge_i terator::operator++()

Эта операция выполняется за постоянное время для всех типов EdgeLi st. Од-
нако имеется значительная разница (постоянный множитель) по времени меж-
ду различными типами. И это важно, поскольку операция является «рабочей
лошадкой» многих алгоритмов на графах. Скорость этой операции в порядке
ее уменьшения: vecS, si i stS, 1 i stS, sets, hash_setS.
• i n_edge_i terator::operator++()

См. выше.

• vertex_i terator::operator++()

Эта операция выполняется за постоянное время и достаточно быстро (выпол-
няется со скоростью инкремента указателя). Выбор OneD не влияет на скорость
этой операции.

• edge_iterator::operator++()

Данная операция выполняется за постоянное время и показывает похожее упо-
рядочение по скоростям, что и out_edge_i terator в отношении выбора EdgeLi st.
Обход всех ребер имеет временную сложность порядка О(\Е \ + \V\).

• adjacency_iterator::operator++()

Данная операция выполняется за постоянное время и показывает похожее упо-
рядочение по скоростям, что и out_edge_i terator в отношении выбора EdgeLi st.

Стабильность и сбои итераторов и дескрипторов
При изменении структуры графа (путем добавления или удаления ребер) необхо-
димо действовать осторожно. В зависимости от типа adjacency_l i st и от операции
некоторые объекты-итераторы и объекты-дескрипторы, указывающие на граф,
могут стать некорректными. Например, результаты выполнения кода в листин-
ге 14.2 неопределенны и могут оказаться разрушительными.

Листинг 14.2. Пример сбоя итераторов

// VertexList=vecS
typedef adjacency_list<listS, vecS> Graph:
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Graph G(N);

// Наполнить граф...

// Попытка удалить все вершины. Неверно!
graph_traits<Graph>::vertex_iterator vi. vi_end:
for (tie(vi. vi_end) = vertices(G); vi != vi_end; ++vi)

remove_vertex(*vi, G);

// Другая попытка удалить все вершины. Все равно неверно!
graph_traits<Graph>::vertex_iterator vi. vi_end. next:
tie(vi. vi_end) = vertices(G);
for (next = vi; vi != vi_end; vi - next) {

++next;

remove_vertex(*vi, G):
}
Причина этой проблемы в том, что мы вызываем remove_vertex(), который при

использовании adjacency_11st с Vertexl_ist=vecS вызывает сбой всех итераторов
и дескрипторов графа (в нашем случае — vi и vi_end), таким образом, ошибка по-
является в последующих итерациях цикла.

При использовании другого вида adjacency_l i st, где VertexLi st=l i stS, итерато-
ры не «портятся» при удалении вершин, если, конечно, итератор не указывал
на удаляемую вершину. Это демонстрирует код из листинга 14.3.

Листинг 14.3. Пример сбоя итераторов (2)

// VertexList=1istS
typedef adjacency_list<listS. listS> Graph:
Graph G(N):
// Наполнить граф...

// Попытка удалить все вершины. Неверно!
graph_traits<Graph>::vertex_iterator vi, vi_end:
for (tie(vi. vi_end) = vertices(G); vi != vi_end: ++vi)

remove_vertex(*vi, G):

// Удалить все вершины. Правильно.
graph_traits<Graph>::vertex_iterator vi, vi_end. next;
tie(vi, vi_end) = vertices(G);
for (next - vi; vi !- vi_end: vi = next) {

++next:

remove_vertex(*vi, G):
}
Наиболее безопасным и эффективным способом массового удаления ребер

из adjacency_l 1 st является применение функции remove_edge_i f ().
Вопрос корректности касается также дескрипторов вершин и ребер. Напри-

мер, предположим, что вы используете вектор дескрипторов вершин для от-
слеживания родителей (или предшественников) вершин в дереве кратчайших
путей (см. файл example/dijkstra-example.cpp). Вы создаете вектор родителей вы-
зовом di jkstra_shortest_paths(), а затем удаляете из графа вершину. После это-
го вы пытаетесь использовать вектор родителей, но поскольку все дескрипторы
вершин стали некорректны, результат также неверен. Это можно проследить
в листинге 14.4.
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Листинг 14.4. Пример сбоя дескрипторов вершин
std::vector<Vertex> parent(num_vertices(G));
std::vector<Vertex> distance(num_vertices(G));
dijkstra_shortest_paths(G. s. distance_map(&distance[O]).

predecessor_map(&parent[0])):

// Плохая идея! Дескрипторы вершин становятся некорректными
// в векторе родителей
remove_vertex(s, G):

// Получаем неверные результаты
for(tie(vi, vend) = vertices(G): vi != vend; ++vi!

std::cou.t « p[*vi] « " является родителем для " « *vi « std::endl:

При поиске причины сбоев итераторов и дескрипторов следует обратить вни-
мание, что затрагиваются дескрипторы и итераторы, не участвующие в операции
непосредственно. Например, выполнение remove_edge(u, v, g) всегда делает не-
действительными дескриптор ребра (и, v) или итератор, указывающий на (и, о),
независимо от вида adjacencyl ist. To есть в этом разделе нас волнуют эффекты,
которые вызывает remove_edge(u. v. g) для дескрипторов и итераторов, указыва-
ющих на отличные от (и, v) ребра.

В общем случае, если вы хотите, чтобы дескрипторы вершин и ребер были ста-
бильными (никогда не «портились»), следует использовать l i s t s или sets для
шаблонных параметров VertexList и EdgeList класса adjacencyjist. Если для вас
важнее затраты памяти и скорость обхода графа, используйте vecS для шабло! [-
ных параметров VertexList и/или EdgeList.

Ориентированные и неориентированные списки смежности
Класс ad jacency_l i st может быть использован для представления как ориентирова! [-
ных, так и неориентированных графов, в зависимости от аргумента, присвоенного
шаблонному параметру Di rected. Указанием di rectedS или bi di recti onal S выбирается
ориентированный граф, тогда как undi rectedS выбирает неориентированный. См. pa s-
дел 12.1.1, где дано описание различий между ориентированным и неориентирован-
ным графами в BGL. Выбор bidi recti onal S указывает, что граф предоставит функ-
цию i n_edges () в дополнение к функции out_edges (). Это требует двойных расходов
памяти на одно ребро (и служит причиной того, почему in_edges() необязательна).

Внутренние свойства
Свойства могут быть закреплены за вершинами и ребрами графа, заданного спис-
ком смежности, через интерфейс свойств (property interface). Шаблонные пара-
метры VertexProperties и EdgeProperties класса adjacency_1 is t подразумевают за-
полнение классом свойств, который определен следующим образом.

template <typename PropertyTag. typename T,
typename NextProperty = no_property>

struct property:
PropertyTag — это тип, который просто идентифицирует или дает уникальное

имя свойству. Имеются несколько предопределенных тегов (см. раздел 15.2.3),
и очень легко добавить новые. Для удобства BGL также предоставляет предопре-
деленные объекты теговых типов (в данном случае значения перечисления enum)
для использования в качестве аргументов к функциям, которые принимают объек-
ты-теги свойств (к ним относится, например, функция get() из adjacencyjist).
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Параметр Т свойства property обозначает тип значений свойств. Параметр Next -
Property позволяет указать следующее свойство, так что произвольное число
свойств может быть связано с одним и тем же графом.

Следующий код показывает, как свойства вершин и ребер могут быть исполь-
зованы при создании графа. Мы связали свойство «расстояние» со значениями
типа float и свойство «имя» со значениями типа std::string с вершинами графа.
С ребрами графа связано свойство «вес» со значениями типа float.

typedef property<distance_t, float.
property<name_t. std;;string> > VertexProperties;

typedef property<weight_t, float> EdgeProperties:
typedef adjacency_list<mapS, vecS, undirectedS.

VertexProperties. EdgeProperties> Graph:
Graph g(num_vertices): // построить графовый объект

Значения свойств могут быть прочитаны и записаны с использованием отобра-
жений свойств. Описание того, как извлечь отображения свойств из графа, см. в
разделе 3.6. Глава 15 целиком посвящена использованию отображений свойств.

Свойство индекса вершины
Если VertexLi st графа есть vecS, то граф имеет встроенное свойство «индекс», ко-
торое может быть получено через свойство vertexj ndex_t. Индексы находятся в ди-
апазоне [О, \V |), без пропусков. Когда вершина удаляется, индексы перестраива-
ются так, что опять находятся в соответствующем диапазоне и без пропусков.
Необходима некоторая осторожность при пользовании этими индексами для до-
ступа к свойствам, хранящимся вне графового объекта, поскольку пользователь
должен обновить внешнее хранилище в соответствии с новыми индексами.

Свойства ребер, созданные пользователем
Создание пользовательских типов свойств — достаточно простое дело. Нужно
только определить теговый класс для нового свойства. В следующем коде опреде-
ляются теговый класс для свойств «мощность» и «поток», которые мы закрепля-
ем за ребрами графа.

enum edge_capacity_t { edgejrapacity }:
enum edge_flow_t { edge_flow }:

namespace boost {

BOOST_INSTALL_PROPERTY(edge. flow);

BOOST_INSTALL_PROPERTY(edge. capacity):
}

Теперь вы можете использовать тег нового свойства в определении свойств
так же, как и один из встроенных тегов.

typedef property<capacity_t. int> Cap:
typedef property<f1ow_t. int. Cap> EdgeProperties;
typedef adjacency_list<vecS. vecS. no_property, EdgeProperties> Graph;

Как обычно, отображения свойств для этих свойств могут быть получены из
графа через функцию get О.

property_map<Graph. edge_capacity_t>::type
capacity = get(edge_capacity. G);

property_map<Graph. edge_f1ow_t>::type
flow - get(edge_flow, G);
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В файле edge_property.cpp приведен полный исходный код для рассмотренного
примера.

Свойства вершин, созданные пользователем
Закреплять за вершинами некоторые свойства так же легко, как закреплять их за
ребрами. Здесь мы хотим закрепить за вершинами графа имена людей.

enum vertex_first_name_t { vertex_fi rstjiame };
namespace boost {

BOOST_INSTALL_PROPERTY(vertex, firstjiame);
}
Теперь мы можем использовать новый тег в классе свойств property при сбор-

ке графового типа. Следующий код (листинг 14.5) показывает создание графово-
го типа и затем создание объекта-графа. Мы заполняем ребра и так же назначаем
имена вершинам. Ребра представляют информацию о том, «кто кому должен».

Листинг 14.5. Создание графового типа и объекта

typedef adjacency_list<vecS, vecS. directedS.
property<vertex_first_name_t, std::string> > MyGraphType:

typedef pair<int,int> Pair:
Pair edge_array[ll] = { Pair(O.l). Pair(0,2), Pair(0,3). Pair(0.4).

Pair(2.0). PairO.O). Pair(2,4), PairO.l).
Pair(3.4). Pair(4,0). Pair(4.1) };

MyGraphType G(5);
for (int 1-0; i < l l ; ++i)

add_edge(edge_array[i].first, edge_array[i].second, G):

property_map<MyGraphType. vertex_fi rst_name_t>::tyoe
name = get(vertex_firstjiame. G):

boost::put(name, 0, "Jeremy");
boost::put(name. 1. "Rich"):
boost::put(name, 2. "Andrew"):
boost::put(name. 3. "Jeff"):
name[4] = "Kinis": // можно и так

whoj)wes_who(edges(G).first. edges(G).second. G):

Функция who_owes_who(), написанная для этого примера, была реализована
в обобщенном стиле. Ввод задан классом-шаблоном, так что мы не знаем реального
типа графа. Для нахождения типа отображения свойства для свойства f 1 rstjrvame
нам необходимо использовать класс свойств ve"tex_property_map. Тип const_type
использован из-за того, что параметр-граф также является константой. Как только
мы получили тип отображения свойства, мы можем сделать заключение о типе
значений свойства, используя класс property_traits. В нашем примере известно,
что тип значения свойства — std:: stri ng, но написанная в таком обобщенном стиле
функция who_owes_who() может работать и с другими типами значений свойства.
Код функции приведен в листинге 14.6.

Листинг 14.6. Функция who_owes_who()

template <class Edgelter, class Graph>
void whoj)wes_who(EdgeIter f i r s t . Edgelter last, const Graph& G)
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{
// Доступ к типу средства доступа к свойству для этого графа
typedef typename propertyjnap<Graph, vertex_first_name_t>

::const_type NamePA;
NamePA name - get(vertex first name, G);

-

typedef typename boost::property_traits<NamePA>::value_type NameType;
NameType src_name, targ_name;

while (first !- last) {
src_name = boost::get(name, source(*first.G)):
targ_name = boost::get(name. target(*first.G));
cout « src_name « " должен "

« targ_name « " деньги" « endl:
++first:

}

}

Эта программа выводит следующее:

Jeremy должен Rich деньги
Jeremy должен Andrew деньги
Jeremy должен Jeff деньги
Jeremy должен Kinis деньги
Andrew должен Jeremy деньги
Andrew должен Kinis деньги
Jeff должен Jeremy деньги
Jeff должен Rich деньги
Jeff должен Kinis деньги
Kinis должен Jeremy деньги
Kinis должен Rich деньги

Полный исходный код этого примера можно найти в файле interior_proper-
tyjnap.cpp.

Настройка хранилища для списка смежности
Класс ad jacencyj i st реализован с использованием двух видов контейнеров. Один
из типов контейнеров содержит все вершины графа, а другой — список исходящих
ребер (и, возможно, входящих) для каждой вершины. BGL предоставляет классы-
селекторы для того, чтобы пользователь мог выбрать среди нескольких контей-
неров из STL. Также есть возможность для использования своего собственного
контейнерного типа. При настройке VertexList вам необходимо определить ге-
нератор контейнера. При настройке EdgeList нужно определить генератор кон-
тейнера и свойства параллельных ребер. Файл container_gen.cpp является при-
мером того, как использовать настройку хранилища.

Генератор контейнера
Класс ad jacencyj 1 st использует класс свойств, называемый contai ner_gen, для ото-
бражения селекторов EdgeLi st и VertexLi st на реальные контейнерные типы, при-
меняемые для хранения графа. Версия класса свойств по умолчанию приведена
в листинге 14.7 вместе с примером того, как класс специализируется для селекто-
ра l is ts .

Листинг 14.7. Версия класса свойств по умолчанию

namespace boost {
template <typename Selector, typename ValueType>

продолжение &
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Листинг 14.7 {продолжение)

truct container_gen { };
template <typename ValueType>
truct container_gen<listS, ValueType>

typedef std::list<ValueType> type;

Для использования другого контейнера на ваш выбор определите класс-селек-
тор и затем специализируйте container_gen для вашего селектора (листинг 14.8).

Листинг 14.8. Версия класса свойств со специализацией для селектора

struct custom_containerS { }; // ваш селектор
namespace boost {

// специализация для вашего селектора
template <typename ValueType>
struct container_gen<custom containers, ValueType> {
typedef custom_container<Va1ueType> type;

Могут возникнуть ситуации, когда вы хотите использовать контейнер, который
имеет больше шаблонных параметров, чем просто Val ueType. Например, вы можете
захотеть представить тип распределителя памяти (allocator type). Один из спосо-
бов сделать это — четко прописать в дополнительных параметрах в специализации
container_gen. Однако если вы хотите большей гибкости, то можно добавить шаб-
лонный параметр к классу-селектору. В следующем коде в листинге 14.9 показано,
как создать селектор, который позволяет задать распределитель памяти в std:: 11 St.

Листинг 14.9. Версия класса свойств со специализацией для селектора
и типа размещения

template <typename Allocator* struct list_with_allocatorS {};
namespace boost {

template <typename Alloc. typename ValueType>
struct container_gen<list_with_allocatorS<Alloc>. ValueType>
{
typedef typename Alloc:;tempiate_rebind<ValueType>::other Allocator;
typedef std::list<ValueType, Allocator» type;

}
// теперь вы можете определить граф. используя std::11st
// и специальное размещение
typedef adjacency_list< list_with_al1ocatorS< std::allocator<int> >,

vecS. directedS> MyGraph:

Свойства параллельных ребер
В дополнение к специализации класса contai ner_gen можно также специализировать
класс ра га 11 el_edge_trai ts для задания того, позволяет ли контейнерный тип имет ь
параллельные ребра (является Sequence) или не позволяет (является Associative-
Container).

template <typename StorageSelector>
struct parallel_edge_traits { };
template <> struct parallel_edge_traits<vecS> {

typedef allow_parallel_edge_tag type;
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template <> struct parallel_edge_traits<setS>
typedef disallow_parallel_edge_tag type:

Контейнер списка ребер: функции push() и eraseO
Необходимо указать adjacency_l 1 st как ребра могут быть эффективно добавлены
и удалены из контейнера списка ребер. Это выполняется перегрузкой функций
pushO и eraseO для собственного контейнерного типа. Функция pushO должна
возвращать итератор, указывающий на только что вставленное ребро, и логичес-
кий флаг, говорящий о том, было ли ребро вставлено. Если было задано al I ow_pa -
ral1el_edge_tag для paral lel_edge_t га its, то push О должна всегда вставлять ребро
и возвращать истину. Если было задано di sal I ow_paral 1 el_edge_tag, функция push О
должна возвратить ложь и не вставлять ребро, если такое ребро уже есть в кон-
тейнере, и итератор должен указывать на уже существующее ребро.

Следующие функции — pushO и eraseO (листинг 14.10) по умолчанию уже
написаны для контейнеров из STL. Семейство перегруженных функций push_di s-
patchO и erase_dispatch() обеспечивает различные способы вставки и удаления,
которые могут быть выполнены для стандартных контейнеров.

Листинг 14.10. Функции push() и erase()

template <typename Container, typename T>
std::pair<typename Container::iterator, bool>
push(Container& с const T& v)

return push_dispatch(c, v, container_category(c)):

1

template <typename Container, typename T>
void erase(Container& c. const T& x)
r

erase dispatchCc, x. container category(c)):—

1 4 . 1 . 2 . a d j a c e n c y _ m a t r i x

adjacency_matrix<Directed, VertexProperty. EdgeProperty. GraphProperty>

Класс adjacency_matrixpeaлизyeт интерфейс BGL-графа, используя несколько раз-
личных вариантов традиционной графовой структуры матрицы смежности. Для
графа с \V\ вершин используется матрица |V| x \V\, где каждый элемент ^являет-
ся логическим флагом, свидетельствующим о том, имеется ли ребро из вершины i
в вершину/ Представление графа в виде матрицы смежности покзано на рис. 14.4.

Преимуществом такого матричного формата над списком смежности являет-
ся то, что ребра вставляются и убираются за постоянное время. Есть и несколько
недостатков. Во-первых, объем используемой памяти имеет порядок O(jF|2) вме-
сто О(|V\ + \Е |) (где \Е | — число вершин графа). Во-вторых, операции по всем ис-
ходящим ребрам каждой вершины (как поиск в ширину) имеют временную слож-
ность О(| V\2)B отличие от О(\ V \ + \Е |) для списка смежности. Матрицу смежности
лучше использовать с плотными графами (где \Е\ « \Vf), а список смежности —
с разреженными (где \Е | намного меньше |V|2).



236 Глава 14 • Классы BGL

А

В

С

D

Е

F

А

0

0

1

0

0

1

в
0
0
0
0
0
0

с
0
1
1
0
0
0

D
0
0
0
0
1
0

Е

0

0

0

1

. 0

0

F

0

1

0

0

0

0

Рис. 14.4. Представление графа в виде матрицы смежности

Класс adjacencyjnatri x расширяет традиционную структуру данных, позволяя
прикреплять объекты к вершинам и ребрам посредством параметров шаблонов
свойств. Информацию по использованию внутренних свойств см. в разделе 3.6.

В случае неориентированного графа класс adjacencyjnatrix использует не всю
матрицу | V | х | V |, а только ее нижний треугольник (диагональ и ниже), поскольку
матрица для неориентированного графа симметрична. Это сокращает расходы
на хранение до (| V | х | V |)/2. Представление неориентированного графа в виде мат-
рицы смежности показано на рис. 14.5.
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Рис. 14.5. Представление неориентированного графа в виде матрицы смежности

Пример
В листинге 14.11 приведен пример построения графа, изображенного на рис. 14.4,
а в листинге 14.12 — изображенного на рис. 14.5.

Листинг 14.11. Создание графа (на рис. 14.4)

enum { А, В, С. D. E. F. N };
const char* name = "ABCDEF":

typedef adjacency_matrix<directedS> Graph;
Graph g(N):
add_edge(B, С g): add_edge(B. F. g);
add_edge(C. A, g); add_edge(C, С g);
add_edge(D. E. g): add_edge(E. D. g):
add_edge(F. A. g):

std::cout « "набор вершин: ";
pr int_vert ices(g. name);
std;;cout « std::endl;
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std::cout « "набор ребер: ";
print_edges(g, name);
std::cout « std: :endl;

std::cout « "исходящие ребра: " « std::endl:
print_graph(g, name):
Std::COUt « Std::endl;

Эта программа выводит следующее:

набор вершин: А В С D E F

набор ребер: (В.С) (B.F) (С,А) ( С О (D.E) (E.D) (F.A)

исходящие ребра:
А -->
В --> С F
С --> А С
D --> Е
Е --> D
F --> А

Листинг 14.12. Создание графа (на рис. 14.5)

enum { А. В. С, D. Е. F. N };
const char* name = "ABCDEF";

typedef adjacency_matrix<undirectedS> UGraph;
UGraph ugCN):
add_edge(B. С ug);
add_edge(B, F, ug);
add_edge(C. A. ug):
add_edge(D. E, ug);
add_edge(F, A. ug):

std::cout « "набор вершин: ";
print_vertices(ug, name):
std::cout « std::endl:

std::cout « "набор ребер: ":
print_edges(ug, name):
std::cout « std::endl;

std::cout « "инцидентные ребра: " « std::endl:
print_graphCug. name);
std::cout « std::endl;

Эта программа выводит следующее:

набор вершин: A B C D E F

набор ребер: (С,А) (С,В) (E.D) (F.A) (F.B)

инцидентные ребра:

А <--> С F
В <--> С F
С <--> А В
D <--> Е
Е <--> D
F <--> А В
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Где определен
Класс adjacencyjratrix находится в boost/graph/adjacency_matrix.hpp.

Параметры шаблона
Ниже приведены параметры шаблона класса adjacencyjnatrix.

Di rected Селектор для выбора графа: ориентированный
или неориентированный. Соответствующие
опции: di rectedS и undi rectedS.
По умолчанию: di rectedS.

VertexProperty Задает внутреннее хранилище свойств
вершин.

По умолчанию: no_property.

EdgeProperty Задает внутреннее хранилище свойств

ребер.

По умолчанию: no_property.

GraphProperty Задает внутреннее хранилище свойств
графа.

По умолчанию: no_property.

Модель для
VertexListGraph, EdgeListGraph, IncidenceGraph, AdjacencyGraph, AdjacencyMatrix, Vertex
MutablePropertyGraph и EdgeMutablePropertyGraph.

Требования к типам
Значение свойства должно быть DefaultConstructible и CopyConstructible.

Ассоциированные типы
Ниже приведены ассоциированные типы класса adjacencyjnatrix.

• graph_traits<adjacency_matrix>::vertex_descriptor

Тип дескрипторов вершин, ассоциированных с матрицей смежности.

(Требуется для Graph.)

• graph_traits<adjacency_matrix>::edge_descriptor

Тип дескрипторов ребер, ассоциированных с матрицей смежности.

(Требуется для Graph.)

• graphjtraits<adjacencyjnatrix>::vertex_iterator

Тип итераторов, возвращаемых функцией vertices О.

(Требуется для VertexListGraph.)

• graph_traits<adjacency_matrix>::edge_iterator

Тип итераторов, возвращаемых функцией edges ().

(Требуется для EdgeListGraph.)
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• graph_traits<adjacency_matrix>::out_edge_iterator

Тип итераторов, возвращаемых функцией out_edges().

(Требуется для IncidenceGraph.)

• graph_traits<adjacency_matrix>::adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices().

(Требуется для AdjacencyGraph.)

• graph_traits<adjacency_matrix>::directed_category

Предоставляет информацию о том, является граф ориентированным (direc-
ted_tag) или неориентированным (undirected_tag).

(Требуется для Graph.)

• graph_traits<adjacency_matrix>: :edge_paranel_category

Матрица смежности не позволяет вставлять параллельные ребра, так что тип
всегда disal low_paга! Ie1_edge_tag.

(Требуется для Graph.)

• graph_traits<adjacency_matrix>::vertices_size_type

Тип для работы с числом вершин в графе.

(Требуется для VertexListGraph.)

• graph_traits<adjacency_matrix>::edges_size_type
Тип для работы с числом ребер в графе.
(Требуется для EdgeListGraph.)

• graph_traits<adjacency_matrix>::degree_size_type
Тип для работы с числом исходящих ребер в графе.
(Требуется для IncidenceGraph.)
• propertyjnap<adjacency_matrix. PropertyTag>: :type

property_map<adjacency_matrix. PropertyTag>::const_type

Тип отображения для свойств вершины и ребра графа. Свойство задается ар-
гументом шаблона Property Tag и должно совпадать с одним из свойств, указан-
ных в VertexProperty или EdgeProperty графа.
(Требуется для PropertyGraph.)

Функции — методы
Ниже приведены функции — методы класса adjacencyjnatrix.

• adjacency_matrix(vertices_size_type n,
const GraphPropertyS p = GraphPropertyO) ;

Создает графовый объект с п вершин и без ребер.

• template <typename Edgelterator>
adjacency_matrix(EdgeIterator f irst. Edgelterator last.

vertices_size_type n.
const GraphPropertyS p = GraphPropertyO)
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Создает графовый объект с п вершин и ребрами, заданными списком ребер в ви-
де диапазона [first, last). Тип значения итератора Edgelterator должен быть
std: :pair, где тип внутри пары является целым типом. Целые числа соответ-
ствуют вершинам и должны находиться в диапазоне [0, п).

• template <typename Edgelterator, typename
EdgePropertyIterator>

adjacency_matrix(Edgelterator f i r s t , Edgelterator last.
EdgePropertylterator epj ter, vertices_size_type n,
const GraphProperty& p = GraphPropertyO)

Создает графовый объект с п вершин и ребрами, заданными списком ребер
в виде диапазона [first, last), и свойствами, заданными ep_i ter в списке свойстъ
ребер. Тип значения итератора Edgelterator должен быть std::paiг, где тип
внутри пары является целым типом. Целые числа соответствуют вершинау
и должны находиться в диапазоне [0, п). Тип значения e p j t e r должен быть
EdgeProperty.

Функции — не методы
Ниже приведены функции — не методы класса adjacencyjnatri x.

• std::pair<vertex_iterator, vertex_iterator>

vertices(const adjacency_matrix& g)
Возвращает пару итераторов, обеспечивающих доступ к множеству вершин
графа д.

(Требуется для VertexListGraph.)

• std::pair<edge_iterator. edge_iterator>

edges(const adjacency_matrix& g)
Возвращает пару итераторов, обеспечивающих доступ к набору ребер графа д.

(Требуется для EdgeListGraph.)

• std::pair<adjacency_iterator, adjacency_iterator>
adjacent_vertices(vertex_descriptor v.

const adjacency_matrix& g)

Возвращает пару итераторов, обеспечивающих доступ к множеству вершин,
смежных с данной вершиной v графа д.
(Требуется для AdjacencyGraph.)

• std::pair<out_edge_iterator. out_edge_iterator>
out_edges(vertex_descnptor v. const adjacency_matrix& g)

Возвращает пару итераторов, обеспечивающих доступ к исходящим ребрам
вершины v графа д. Если граф неориентированный, эти итераторы обеспечи-
вают доступ ко всем ребрам, инцидентным вершине v.
(Требуется для IncidenceGraph.)

• vertex_descriptor source(edge_descriptor e.
const adjacency_matrix& g)

Возвращает начальную вершину ребра е.

(Требуется для IncidenceGraph.)
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• vertex_descriptor target(edge_descriptor e,
const adjacency_matrix& g)

Возвращает конечную вершину ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriptor u.
const adjacency_matnx& g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)

• vertices_size_type num_vertices(const adjacency_matrix& g)

Возвращает число вершин в графе g.

(Требуется для VertexListGraph.)

• edges_size_type num_edges(const adjacency _matnx& g)

Возвращает число ребер в графе g.
(Требуется для EdgeListGraph.)

• vertex descriptor_vertex(vertices_size_type n.
const adjacency_matrix& g)

Возвращает п-ю вершину в списке вершин графа.

• std::pai r<edge_descriptor. bool>
edge(vertex_descriptor u. vertex_descriptor v,

const adjacency_matrix& g)

Возвращает ребро, соединяющее вершину и с вершиной в в графе д.

(Требуется для AdjacencyMatrix.)

• std: :pair<edge_descriptor, bool>
add_edge(vertex_descriptor u. vertex_descriptor v,

adjacencyjnatrix& g)

Добавляет ребро (и, v) к графу и возвращает дескриптор ребра для нового реб-
ра. Если ребро уже присутствует в графе, то повторно оно добавлено не будет
и логический флаг будет ложью. Эта операция не «портит» итераторы и де-
скрипторы графа.
(Требуется для EdgeMutableGraph.)

• std: :pair<edge_descriptor, bool>
add_edge(vertex_descriptor u. vertex_descriptor v.

const EdgeProperty& p, adjacency_matrix& g)

Добавляет ребро (и, v) к графу и присоединяет р как значение свойства ребра для
внутреннего хранения (см. также предыдущую функцию-метод класса add_edge ()).

• void remove_edge(vertex_descnptor u, vertex_descnptor v,
adjacency_matrix& g)

Удаляет ребро (и, v) из графа.
(Требуется для EdgeMutableGraph.)

• void remove_edge(edge_descriptor e, adjacency_matnx& g)

Удаляет ребро е из графа.
(Требуется для EdgeMutableGraph.)

9 Зак. 375
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• void clear_vertex(vertex_descriptor u.
adjacency_matrix& g)

Удаляет все ребра, исходящие и входящие, для вершины и. Вершина остается
во множестве вершин графа. Воздействие на корректность дескрипторов
и итераторов такое же, как если бы для всех этих ребер отдельно вызывалась
remove_edge().
(Требуется для EdgeMutableGraph.)

• template <typename Property>
property_map<adjacency_matrix. Property>::type
get(Property. adjacency_matrix& g)

Возвращает объект-отображение свойств, указанный с помощью Property (свой-
ство). Свойство должно совпадать с одним из свойств, указанных в шаблон-
ном аргументе VertexProperty графа.
(Требуется для PropertyGraph.)

• template <typename Property>
property_map<adjacencyjnatrix, Property>::const_type
get(Property. const adjacency_matrix& g)

Возвращает объект-отображение свойств, указанный с помощью Property (свой-
ство). Свойство должно совпадать с одним из свойств, указанных в шаблон
ном аргументе VertexProperty графа.
(Требуется для PropertyGraph.)

• template <typename Property, typename X>
typename property_traits< typename
property_map<adjacency_matrix. Property>::const_type

>::value_type
get(Property. const adjacency_matrix& g. X x)

Возвращает значение свойства для х, где х — дескриптор вершины или ребра.
(Требуется для PropertyGraph.)

• template <typename Property, typename X. typename Value>
void put(Property. const adjacency_matrix& g. X x,

const ValueS value)

Устанавливает значение свойства для х в val ue, где х — дескриптор вершины
или ребра. Значение value должно быть преобразуемым к типу значения ото-
бражения свойства, указанного тегом Property.
(Требуется для PropertyGraph.)

• template <typename GraphProperties.
typename GraphProperty>

typename property_value<GraphProperties.
GraphProperty>::type&

get_property(adjacency_matrix& g, GraphProperty);

Возвращает свойство, указанное GraphProperty, которое было закреплено за гра-
фовым объектом д. Класс свойств property_value определен в файле boost/
pending/property, hpp.

• template <typename GraphProperties.
typename GraphProperty>
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const typename property_value<GraphProperties.
GraphProperty>::type&

get_property(const adjacency_matrix& g. GraphProperty);

Возвращает свойство, указанное GraphProperty, которое закреплено за графо-
вым объектом д. Класс свойств property_va1 ue определен в файле boost/pendi ng/
property.hpp.

14.2. Вспомогательные классы

14.2.1. graph_traits
graph_traits<Graph>
Класс graph_traits обеспечивает механизм для доступа к ассоциированным

типам графового типа согласно определениям различных графовых концепций
BGL (см. раздел 12.1). Когда вы хотите использовать один из ассоциированных
типов графа, создайте экземпляр шаблона graph_traits с графовым типом и за-
дайте соответствующий дескриптор типа (typedef). Например, для получения типа
дескриптора вершины для некоторого графа можно выполнить следующее:

template <typename Graph> void my_graph_algorithm(Graph& g) {
// Получить экземпляр graph_traits с графовым типом Graph.
typedef boost::graph_traits<Graph> Traits:
// Описание типа для доступа к ассоциированному типу.
typedef typename Traits::vertex_descriptor Vertex:
// ...

}
Неспециализированная версия (по умолчанию) шаблона класса graph_traits

подразумевает, что графовый тип предоставляет составные дескрипторы типов
для всех ассоциированных типов. Эта версия приведена в листинге 14.13.

Листинг 14.13. Неспециализированная версия класса graphjxaits

namespace boost {
template <typename G>
struct graphjtraits {

// итераторы:
typedef typename G::vertex_descriptor vertex_descriptor:
typedef typename G::edge_descriptor edge_descriptor;
typedef typename G: :adjacencyJterator adjacency_iterator:
typedef typename G::out_edge_iterator out_edge_iterator:
typedef typename G::in_edge_iterator in_edge_iterator:
typedef typename G::vertex_iterator vertex_iterator:
typedef typename G: :edge_iterator edgej terator:
// категории
typedef typename G::directed_category directed_category;
typedef typename G::edge_parallel_category edge_parallel_category:
typedef typename G::traversal_category traversa1_category:
// типы размеров
typedef typename G::vertices_size_type vertices_size_type:
typedef typename G::edges_size_type edges_size_type;
typedef typename G::degree_size_type degree_size_type:

}:
} // namespace boost
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С другой стороны, graph_traits может быть специализирован по графовом}
типу. Например, следующий код специализирует graph_trai ts для структуры Graph
библиотеки Stanford GraphBase. Полностью оболочка для SGB-графов описана
в заголовочном файле boost/graph/stanford_graph.hpp.

namespace boost {
template <>
struct graph_traits<Graph*>

Если тип графа является шаблоном класса, то класс graph_traits может быть
частично специализирован. Это означает, что еще остаются некоторые «свобод-
ные» параметры. Ниже приведена частичная специализация graph_traits для па-
раметризованного типа GRAPH из LEDA. Полностью интерфейс оболочки для это-
го типа находится в файле boost/graph/leda_graph.hpp.

namespace boost {
template <typename vtype. typename etype>
struct graph_traits< GRAPH<vtype.etype> > {

Ни одна конкретная графовая концепция не требует, чтобы были определе-
ны все ассоциированные типы. При реализации графового класса, который дол-
жен удовлетворять одной или более графовым концепциям, для ассоцииро-
ванных типов, не затребованных этими концепциями, можно использовать vo" d
в качестве типа (когда используются составные дескрипторы типов внутри гра-
фового класса) или оставить typedef вне специализации graph_traits для этого
графового класса.

Теги категорий
Категория di rected_category должна быть дескриптором одного из следующих двух
типов.

namespace boost {
struct directed_tag { }:
struct undirected_tag { };

Категория edge_paral 1 el_category должна быть дескриптором одного из следу-
ющих двух типов.

namespace boost {
struct allow_parallel_edge_tag {};
struct disallow_parallel_edge_tag {};

Категория t га versa 1 _category должна быть дескриптором одного из следующих
типов или типа, который наследует от одного из этих классов.

namespace boost {
struct incidence_graph_tag { }:
struct adjacency_graph_tag { };
struct bidirectional_graph_tag :
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public virtual incidence_graph_tag { }:
struct vertex_list_graph_tag :

public virtual incidence_graph_tag.
public virtual adjacency_graph_tag { }:

struct edge_list_graph_tag { };
struct vertex_and_edge_list_graph_tag :

public virtual edgejist_graph_tag,
public virtual vertex_list_graph_tag { }:

struct adjacency_matrix_tag { };
}

Параметры шаблона
Ниже приведен параметр шаблона класса graph_traits.

Graph Графовый тип, модель для категории Graph.

Где определен
Класс graph_traits находится в файле boost/graph/graph_traits.hpp.

Методы
Ниже приведены методы класса graph_traits.

• graph_traits::vertex_descriptor

Тип дескрипторов вершин, ассоциированных с Graph.

• graph_traits::edge_descri ptor

Тип дескрипторов ребер, ассоциированных с Graph.

• graph_traits::vertex_iterator

Тип итераторов, возвращаемых функцией vertices().

• graph_traits::edge_iterator

Тип итераторов, возвращаемых функцией edges О.

• graph_tra its::out_edge_iterator

Тип итераторов, возвращаемых функцией out_edges().

• graph_traits: :adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices О.

• graph_traits::directed_category

Сообщает, является граф ориентированным или неориентированным.

• graph_traits::edge_parallel_category

Сообщает, позволяет ли граф иметь параллельные ребра.

• graph_traits::traversal_category

Сообщает, какие виды обхода обеспечиваются графом.

• graph_traits::vertices_size_type

Беззнаковый целый тип, используемый для работы с количеством вершин
в графе.

• graph_traits::edges_size_type

Беззнаковый целый тип, используемый для работы с количеством ребер в графе.
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• graph_traits::degree_size_type

Беззнаковый целый тип, используемый для работы с количеством исходящих
ребер в графе.

1 4 . 2 . 2 . a d j a c e n c y _ l i s t _ t r a i t s

adjacencyj istJ:raits<Edgel_ist, VertexList. Directed>

Класс adjacencyj i st_t raits предоставляет альтернативный метод для доступа
к некоторым ассоциированным типам класса adjacency_list. Главной причиной
создания этого класса является то, что иногда требуются свойства графа, значе-
ниями которых являются дескрипторы вершин или ребер. Если вы попытаетесь
использовать для этого graph_traits, возникнет проблема с взаимно-рекурсивны-
ми типами. Для решения этой проблемы предлагается класс adjacency_l i st j t rai ts,
который предоставляет пользователю доступ к типам дескрипторов вершин и ре-
бер, не требуя задания типов свойств графа.

template <typename EdgeList. typename VertexList, typename Directed>
struct adjacencyj ist_traits {

typedef ... vertex_descriptor;
typedef ... edge_descriptor;
typedef ... directed_category;
typedef ... edge_parallel_category;

}:

Где определен
Класс adjacencyj i s t _ t r a i t s находится в файле boost/graph/adjacency_List.hpp.

Параметры шаблона
Ниже приведены параметры шаблона класса adjacency_1 i st_trai ts.

EdgeLi st Тип селектора для реализации контейнера
ребер.

По умолчанию: vecS.

VertexLi st Тип селектора для реализации контейнера
вершин.
По умолчанию: vecS.

Di rected Селектор для выбора ориентированного или
неориентированного графа.

По умолчанию: di rectedS.

Модель для
DefaultConstructible и Assignable.

Методы
Ниже приведены методы класса adjacencyj i st _traits.

• adjacencyj ist_traits: :vertex_descriptor

Тип объектов, используемых для идентификации вершин графа.

• adjacencyj I st_trai ts: :edge_descnptor
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Тип объектов, используемых для идентификации ребер графа.

• adjacency_list_traits::directed_category

Сообщает, является ли граф неориентированным (undi rected_tag) или ориен-
тированным (di rected_tag).

• adjacency_1ist_traits::edge_parallel_category

Сообщает, позволяет ли граф добавлять параллельные ребра (allow_para1 -
lel_edge_tag) или автоматически удаляет их (di sail ow_pa rail el _edge_tag).

Смотри также
Дополнительная информация находится в описании класса ad jacencyj i st.

1 4 . 2 . 3 . a d j a c e n c y m a t r i x j r a i t s

adjacency_matrix_traits<Directed>

Класс adjacency_matrix_traits предоставляет альтернативный метод для доступа
к некоторым ассоциированным типам класса ad jacencyjnatrix. Главной причиной
создания этого класса является то, что иногда требуются свойства графа, значе-
ниями которых являются дескрипторы вершин или ребер. Если вы попытаетесь
использовать graph_trai ts для этого, возникнет проблема с взаимно-рекурсивными
типами. Для решения этой проблемы предлагается класс adjacency_matrix_traits,
который предоставляет пользователю доступ к типам дескрипторов вершин и ре-
бер, не требуя задания типов свойств графа.

template <typename Directed>
struct adjacency_matrix_traits {

typedef ... vertex_descriptor:
typedef ... edge_descriptor;
typedef ... directed_category;
typedef ... edge_parallel_category;

Где определен
adjacency_matrix_traits находится в файле boost/graph/adjacency_matrix.hpp.

Параметры шаблона
Ниже приведен параметр шаблона класса adjacency_matrix_traits.

Di rected Указывает, является граф ориентированным
или неориентированным.

По умолчанию: di rectedS.

Модель для
DefaultConstructible и Assignable.

Методы
Ниже приведены методы класса adjacency_matrix_traits.
• adjacency_matrix_traits::vertex_descriptor

Тип объектов, используемых для идентификации вершин графа.
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• adjacencyjnatnx_traits: :edge_descriptor

Тип объектов, используемых для идентификации ребер графа.

• adjacency_matrix_traits::directed_category

Сообщает, является граф неориентированным (undirected_tag) или ориенти
рованным (di rected_tag).

• adjacency_matrix_traits::edge_parallel_category

Матрица смежности не позволяет добавлять параллельные ребра, поэтому здесь
используется di sa 11 ow_pa га 11 el _edge_tag.

Смотри также
Дополнительная информация находится в описании класса adjacencyjnatrix.

1 4 . 2 . 4 . p r o p e r t y j n a p

property_map<Graph. PropertyTag>

Класс property_map — класс свойств для доступа к типу отображения свойства,
хранящемуся внутри графа. Специализация этого класса свойств требуется для
типов, которые моделируют концепцию PropertyGraph.

Пример
В следующем примере (листинг 14.14) создается граф с внутренним свойством
для хранения имен вершин, а затем осуществляется доступ к типу свойств имен
вершин с помощью класса свойств property_map. Объект - отображение свойства
получается из графа, с использованием функции get().

Листинг 14.14. Пример внутреннего хранения имен вершин

< property-map-traits-eg.cpp > •
finciude <boost/config.hpp>
linclude <string>
#include <boost/graph/adjacency_li st.hpp>
int mainO {

using namespace boost:
typedef adjacencyjist < l ists, l ists, directedS,

property < vertex_name_t, std::string > >graph_t;
graph_t g:
graph_traits < graph_t >::vertex_descriptor u = add_vertex(g):
propertyjnap < graph_t. vertex_name_t >::type

namejnap - get(vertex_name. g);
name_map[u] = "Joe":
std::cout « namejnap[u] « std::endl:
return EXIT_SUCCESS:

}

Программа выводит следующее:

Joe

Где определен
Класс propertyjnap находится в файле boost/graph/properties.hpp.

Параметры шаблона
Ниже приведены параметры шаблона класса propertyjnap.



14.2. Вспомогательные классы 249

Graph Тип графа, который должен быть моделью
PropertyGraph.

PropertyTag Теговый класс для задания свойства.

Модель для
Нет.

Общедоступные базовые классы
Нет.

Ассоциированные типы
Ниже приведены ассоциированные типы класса propertyjnap.

• property_map<Graph. PropertyTag>::type

Тип изменяемого отображения свойства для доступа к внутреннему свойству,
указанному PropertyTag.

• property_map<Graph. PropertyTag>::const_type

Тип константного отображения свойства для доступа к внутреннему свойству,
указанному PropertyTag.

Функции — методы класса
Нет.

Функции — не методы класса
Нет.

1 4 . 2 . 5 . p r o p e r t y

property<PropertyTag. T, NextProperty>

Класс property может использоваться с классами adjacency_l i st и adjacencyjna-
tr ix для указания видов свойств, закрепляемых за вершинами и ребрами графа
и за самим графовым объектом.

Параметры шаблона
Ниже приведены параметры шаблона класса property.

PropertyTag Тип для обозначения (придания уникально-
го имени) свойству. Имеются несколько
предопределенных тегов, и несложно опре-
делить новые. Для удобства BGL также пре-
доставляет предопределенные объекты
теговых типов (в данном случае — значений
перечисления enum) для их использования
в качестве аргументов функций, которые
ожидают объекты теговых типов (напри-
мер, как функции отображения свойства
get О к adjacency l i s t ) .

Т Этот тип указывает тип значений свойств.
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NextProperty Этот параметр позволяет типам свойств быть
вложенными, так что с графом может быть
связано любое количество свойств.
По умолчанию: no_property.

Где определен
Класс property находится в файле boost/pending/property.hpp.

Теги свойств
Следующие теги свойств (листинг 14.15) определены в boost/graph/properties.hpp

Листинг 14.15. Определения тегов свойств
namespace boost {

// Теги свойств ребер:
enum edge_name_t { edge_name }; // имя
enum edge_weight_t { edge_weight }: // вес
enum edge_index_t { edge_index }; // индекс
enum edge_capacity_t { edge_capacity }: // мощность
enum edge__residual_capacity_t { edge_residual_capacity };

// остаточная мощность
enum edge_reverse_t { edge_reverse }: // обратное
// Теги свойств вершин:
enum vertex_name_t { vertexjiame }: // имя
enum vertex_distance_t { vertex_distance }: // расстояние до вершины
enum vertex_index_t { vertex_index }; // индекс
enum vertex_color_t { vertex_color }; // цвет
enum vertex_degree_t { vertex_degree }: // степень
enum vertex_out_degree_t { vertex_out_degree };

// степень по исходящим ребрам
enum vertex_in_degree_t { vertex_in degree }:

// степень по входящим ребрам
enum vertex_discover_time_t { vertex_discover_time }:

// время посещения
enum vertex__finish_time_t { vertex_finish_time }:

// время окончания обработки
// Тег свойства графа:
enum graph_name_t { graphjiame }: // имя

BOOST_INSTALL_PROPERTY(vertex, index);
BOOST_INSTALL_PROPERTY(edge. index):

14.3. Графовые адаптеры

14.3.1. edgejist
edge_list<EdgeIterator, ValueType, OiffType>

Класс edge_11st — это адаптер, который превращает пару итераторов ребер
в класс, моделирующий EdgeListGraph. Тип значения (value_type) итератора ребер
должен быть std:: pai г (или, по крайней мере, иметь методы f i rst (первый) и second
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(второй)). Типы first_type и second_type должны быть одинаковыми и исполь-
зоваться в качестве дескриптора вершины графа. Типы шаблонных параметров
Val ueType и Di f fType нужны только в случае, если ваш компилятор не поддержива-
ет частичную специализацию. В противном случае они имеют правильные значе-
ния по умолчанию.

Пример
См. раздел 5.3, где дан пример использования edge_l i st.

Параметры шаблона
Ниже приведены параметры шаблона класса edgej i st.

Edgelterator Модель для Inputlterator, чей val ue_type дол-
жен быть парой дескрипторов вершин.

ValueType Тип значения для Edgelterator.

По умолчанию: std: :iterator_traits<EdgeIte-
rator>::value_type.

Di ffType Тип разности для Edgelterator.

По умолчанию: std: :iterator_traits<EdgeIte-
rator>: :difference_type.

Модель для
Класс edgej i s t поддерживается концепцией EdgeListGraph.

Где определен
Класс edge j i s t находится в файле boost/graph/edge_list.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы класса edgej i st.

• graph_traits<edge_list>::vertex_descriptor

Тип дескрипторов вершин, ассоциированный с edgej i st. Это тот же самый
тип, что и first_type для пары std: :pair, являющейся типом значения
для Edgelterator.

• graph_traits<edge_list>::edge_descriptor

Тип дескрипторов ребер, ассоциированный с edge_l i st.

• graph_traits<edge_list>::edge_iterator

Тип итераторов, возвращаемый функцией edges (). Категория iterator_category
для итератора ребер та же, что и у Edgelterator.

Функции — методы
Ниже приведена функция — метода класса edgej i st.

• edgeJistCEdgelterator f i r s t . Edgelterator last)

Создает графовый объект из п вершин с ребрами, заданными в списке ребер
из диапазона [first, last).
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Функции — не методы
Ниже приведены функции — не методы класса edgejl 1 St.

• std:: pai r<edge_iterator. edge_Herator>

edges(const edge_list& g)

Возвращает пару итераторов, обеспечивающих доступ к набору ребер графа с.

• vertex_descriptor source(edge_descriptor e.

const edgeJisU g)

Возвращает начальную вершину ребра е.

• vertex_descriptor target(edge_descriptor e.
const edge_list& g)

Возвращает конечную вершину ребра е.

1 4 . 3 . 2 . r e v e r s e _ g r a p h

reverse_graph<BidirectionalGraph>

Класс reverse_graph меняет местами входящие и исходящие ребра BidirectionalGraph
(двунаправленного) графа, эффективно транспонируя граф. Построение обращен-
ного графа выполняется за постоянное время, таким образом обеспечивая высоко-
эффективный способ для получения транспонированного представления графа.

Пример
Пример в листинге 14.16 взят из файла exampl.es/reverse-graph-eg.cpp.

Листинг 14.16. Обращение направлений ребер графа

typedef adjacencyjist < vecS. vecS. MdirectionalS > Graph;

Graph G(5);
add_edge(0,
add_edge(l.
add_edge(2.
add edge(4.

2.
4,
4.
0.

G):
G);

G);
G);

add
add"
add"
add"

edged.
"edge(2.
~edge(3.
edge(4.

1.
1,
1.
1.

G);
G);
G):
G);

add edged.
add_edge(2.
add_edge(3.

3.
3,
4.

G):
G);
G);

std::cout « "исходный граф:" « std::endl;
print_graph(G. get(vertex_index. G));

std::cout « std::endl « "обращенный граф:" « std::endl:
print_graph(make_reverse_graph(G), get(vertex_index. G));

Эта программа выводит следующее:

исходны
0 --> 2
1 --:
2 --:

• j

• 1
3 --> 1
4 --> 0

1 граф:

3 4
3 4
4
1

обращенный граф
0 --=
1

2 --:

4 -- =

> Л

• 1
• 0
• 1

• 1

2 3 4

2
2 3
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Параметры шаблона
Ниже приведен параметр шаблона класса reverse_graph.

Bi di rGraph Тип графа, для которого строится адаптер.

Модель для
Класс reverse_graph поддерживается концепциями BidirectionalGraph и (необяза-
тельно) VertexListGraph и PropertyGraph.

Где определен
Класс reverse_graph находится в файле boost/graph/reverse_graph.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы класса reverse_graph.

• graph_traits<reverse_graph>::vertex_descriptor

Тип дескрипторов вершин, ассоциированных с обращенным графом.

(Требуется для Graph.)

• graph_traits<reverse_graph>::edge_descriptor

Тип дескрипторов ребер, ассоциированных с обращенным графом.

(Требуется для Graph.)

• graph_traits<reverse_graph>::vertex_iterator

Тип итераторов, возвращаемых функцией vertices О.

(Требуется для VertexListGraph.)

• graph_traits<reverse_graph>::edge_iterator

Тип итераторов, возвращаемых функцией edges О.

(Требуется для EdgeListGraph.)

• graph_trai ts<reverse_graph>::out_edge_i terator

Тип итераторов, возвращаемых функцией out_edges().

(Требуется для IncidenceGraph.)

• graph_traits<reverse_graph>::adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices().

(Требуется для BidirectionalGraph.)

• graph_traits<reverse_graph>::directed_category

Предоставляет информацию о том, является граф ориентированным или нео-
риентированным.
(Требуется для Graph.)

• graph_traits<reverse_graph>::edge_parallel_category

Сообщает, позволяет ли граф осуществлять вставку параллельных ребер (ре-
бер с одинаковыми начальными и одинаковыми конечными вершинами). Теги:
anow_parallel_edge_tag и disallow_parallel_edge_tag. Варианты графов с пара-
метрами sets и hash_setS всегда используют di sal low_paral 1 el_edge_tag, тогда
как другие могут позволить включение параллельных ребер.
(Требуется для Graph.)
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• graph_traits<reverse_graph>::traversal_category

Категория обхода отражает, какие возможные виды итераторов поддержива-
ются графовым классом. Для reverse_graph это будет тот же тип, что и для
traversal_category исходного графа.
(Требуется для Graph.)

• graph_traits<reverse_graph>: :vertices_size__type

Тип для работы с числом вершин в графе.

(Требуется для VertexListGraph.)

• graph_traits<reverse_graph>::edge_size_type

Тип для работы с числом ребер в графе.

(Требуется для EdgeListGraph.)

• graph_traits<reverse_graph>::degree_size_type

Тип для работы с числом ребер, инцидентных вершине в графе.

(Требуется для IncidenceGraph.)

• property_map<reverse_graph. Property>::type
property_map<reverse_graph. Property>::const_type

Тип отображения свойств для свойств вершин и ребер графа. Конкретное свой-
ство указывается шаблонным аргументом Property и должно совпадать с од-
ним из свойств в VertexProperty или EdgeProperty графа.
(Требуется для Property Graph.)

Функции — методы
Ниже приведена функция — метод класса reverse_graph.

• reverse_graph(BidirectionalGraphs, g)

Конструктор. Создает обращенное (транспонированное) представление графа д.

Функции — не методы класса
Ниже приведены функции — не методы класса reverse_graph.

• template <class BidirectionalGraph>
reverse_graph<Bi directional Graph>
make_reverse_graph(BidirectionalGraph& g)

Вспомогательная функция для создания обращенного графа.

• std::pair<vertex_iterator, vertex_iterator>
vertices(const reverse_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к множеству вершин графа д.

(Требуется для VertexListGraph.)

• std::pair<out_edge_iterator. out_edge_iteretor>
out_edges(vertex_descriptor v, const reverse_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к набору исходящих
ребер вершины v графа д. Эти исходящие ребра соответствуют входящим ре-
брам исходного графа.
(Требуется для IncidenceGraph.)
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• std::pair<in_edge_iterator. in_edge_iterator>
in_edges(vertex_descriptor v. const reverse_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к набору входящих ре-
бер вершины v графа д. Эти входящие ребра соответствуют исходящим ребрам
исходного графа.
(Требуется для BidirectionalGraph.)

• std::pair<adjacency_iterator, adjacency_iterator>
adjacent_vertices(vertex_descnptor v.

const reverse_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к смежным вершинам
вершины v графа д.

(Требуется для AdjacencyGraph.).

• vertex_descriptor source(edge_descriptor e,
const reverse_graph& g)

Возвращает начальную вершину ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e.
const reverse_graph& g)

Возвращает конечную вершину ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriptor u.
const reverse_graph& g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)

• degree_size_type in_degree(vertex_descriptor и.
const reverse_graph& g)

Возвращает число ребер, входящих в вершину и. Операция доступна, только
если был указан селектор bidi rectionalS.
(Требуется для BidirectionaLGraph).

• vertices_size_type num_vertices(const reverse_graph& g)

Возвращает число вершин в графе g.

(Требуется для VertexListGraph.)

• vertex_descriptor vertex(vertices_size_type n,
const reverse_graph& g)

Возвращает п-ю вершину в списке вершин графа.

• std: :pair<edge_descriptor. bool>
edge(vertex_descriptor u. vertex_descriptor v,

const reverse_graph& g)

Возвращает ребро, соединяющее вершину и с вершиной v.

(Требуется для AdjacencyMatrix.)

• template <class Property>
property_map<reverse_graph. Property>::type
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get(Property. reverse_graph& g)
template <class Property>

property_map<reverse_graph. Tag>::const_type
get(Property. const reverse_graph& g)

Возвращает объект-отображение свойств, указанный с помощью Property. Свой
ство должно совпадать с одним из свойств, указанных в шаблонном аргументе
VertexProperty графа.
(Требуется для PropertyGraph.)

• template <class Property, class X>
typename property_traits<property_map<reverse_graph,

Property>::const_type>::value_type
get(Property, const reverse_graph& g. X x)

Возвращает значение свойства для х, где х -- дескриптор вершины или ре-
бра.

• template <c1ass Property, class X. class Value>
void put(Property, const reverse_graph& g. X x.

const Va1ue& value)

Устанавливает значение свойства для х в va 1 ue, где х — дескриптор вершины или
ребра. Значение value должно быть преобразуемым к типу typename proper-
ty_traits<property_map<reverse_graph, Property>::type>::value_type

• template <class GraphProperties. class GraphProperty>
typename property_value<GraphProperties.

GraphProperty>::type&
get_property(reverse_graph& g. GraphProper~y):

Возвращает свойство, указанное GraphProperty, которое относится к графово-
му объекту. Класс свойств property_val ue определен в заголовочном файле boost/
pending/property.hpp.

• template <class GraphProperties. class GraphProperty>
const typename property_value<GraphProperties,

GraphProperty>::type&
get_property(const reverse_graph& g, GraphProperty);

Возвращает свойство, указанное GraphProperty, которое относится к графово-
му объекту. Класс свойств property_val ue определен в заголовочном файле boost/
pending/property.hpp.

1 4 . 3 . 3 . f i l t e r e d _ g r a p h

filtered_graph<Graph. EdgePredicate. VertexPredicate>

Класс filtered_graph является адаптером, который создает фильтрованное
представление графа. Функция-предикат для ребер и вершин определяет, ка-
кие вершины и ребра исходного графа показывать в фильтрованном графе. Лю-
бая вершина, для которой предикатная функция возвращает ложь, и любое реб-
ро, для которого предикатная функция возвращает ложь, будут показываться
удаленными в результирующем представлении графа. Класс filtered_graph не
создает копии исходного графа, но использует ссылки на него. Время жизни
исходного графа должно быть дольше любого использования фильтрованного
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графа. Объект fi ltered_graph не изменяет структуру исходного графа, хотя свой-
ства исходного графа можно изменить с помощью отображения свойств филь-
трованного графа.

Пример
Следующий функциональный объект, определяемый в листинге 14.17, являет-
ся примером предиката, который отфильтровывает ребра с неположительным
весом.

Листинг 14.17. Предикат, определяющий, имеет ли ребро положительный вес

template <typename EdgeWeightMap>
struct positive_edge_weight { // положительный вес ребра?
positive_edge_weight() { }
positive_edge_weight(EdgeWeightMap weight) : m__weight (weight) { }
template <typename Edge>
bool operatorO(const EdgeS e) const {

return 0 < boost::get(m_weight. e);
}

EdgeWeightMap m_weight;
}:
Пример в листинге 14.18 использует фильтрованный граф с описанным выше

предикатом positive_edge_weight для создания фильтрованного представления
небольшого графа. Ребра (А, С), (С,Е)я (Е, С) имеют нулевой вес и потому не по-
являются в фильтрованном графе.
Листинг 14.18. Граф, фильтрованный с помощью предиката

typedef adjacency_1ist<vecS. vecS, directedS.
no_property, property<edge_weight_t, int> > Graph:

typedef property_map<Graph, edge_weight_t>::type EdgeWeightMap;

enum { А. В, С D, E. N };
const char* name = "ABCDE";
Graph g(N):
add_edge(A. B. 2, g); add_edge(A. C. 0. g);
add_edge(C. D. 1, g); add_edge(C. E. 0, g);
add_edge(D, B, 3. g): add_edge(E. C. 0, g):

positive_edge_weight<EdgeWeightMap> filter(get(edge_weight. g)):
filtered_graph<Graph, positive_edge_weight<EdgeWeightMap> >

fg(g, f i l ter);

std::cout « "отфильтрованный набор ребер: ":
print_edges(fg, name);

std::cout « "отфильтрованные исходящие ребра:" « std::endl;
print_graph(fg. name):

Эта программа выводит следующее:

отфильтрованный набор ребер: (А,В) (CD) (D.B)
отфильтрованные исходящие ребра:
А --> В
В -->

Е -->
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Где определен
Класс filtered_graph находится в файле boost/graph/filtered_graph.hpp.

Параметры шаблона
Ниже приведены параметры шаблона класса fil tered_graph.

Graph Графовый тип для адаптации.

EdgePredi cate Функциональный объект, выбирающий, ка-
кие ребра исходного графа будут присутство-
вать в отфильтрованном графе. Должен быть
моделью Predicate. Тип аргумента — тип де-
скриптора ребра графа. Также предикат дол
жен быть DefaultConstructible

VertexPredi cate Функциональный объект, выбирающий, ка
кие вершины исходного графа будут присут-
ствовать в отфильтрованном графе. Должен
быть моделью Predicate. Тип аргумента — тип
дескриптора вершины графа. Также предикат
должен быть DefaultConstructible.

По умолчанию: keepal 1 (сохранить все)

Модель для •
Концепции, которые моделирует filtered_graph<Graph.EP.VP>, зависят от типа
Graph. Если Graph моделирует VertexListGraph, EdgeListGraph, IncidenceGraph, Bidirec-
tionalGraph, AdjacencyGraph или PropertyGraph, то же самое делает и f i1 tered_
graph<Graph,EP.VP>.

Ассоциированные типы
Ниже приведены ассоциированные типы класса filtered_graph.

• graph_traits<filtered_graph>::vertex_descriptor

Тип дескриптора вершины, ассоциированный с filtered_graph.

(Требуется для Graph.)

• graph_traits<filtered_graph>::edge_descriptor

Тип дескриптора ребра, ассоциированный с fi ltered_graph.

(Требуется для Graph.)

• graph_traits<fi1tered_graph>::vertex_iterctor

Тип итераторов, возвращаемых функцией vertices О. Тип vertex_iterator — тот
же самый, что и для исходного графа.
(Требуется для VertexListGraph.)

• graph_trai ts<fi1tered_graph>::edge_i terator

Тип итераторов, возвращаемых функцией edges О. Итератор моделирует кон-
цепцию MultiPassInputlterator.

(Требуется для EdgeListGraph.)

• graph_traits<filtered_graph>::out_edge_iterator
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Тип итераторов, возвращаемых функцией out_edges (). Итератор моделирует
концепцию МuItiPassln putlterator.
(Требуется для IncidenceGraph.)

• graph_traits<filtered_graph>::i n_edge_i terator

ТИП итераторов, возвращаемых функцией in_edges(). Итератор моделирует
концепцию MultiPassInputlterator.
(Требуется для BidirectionalGraph.)
• graph_traits<fi"ltered_graph>: :adjacency_iterator
Тип итераторов, возвращаемых функцией adjacentverticesO. Этот итератор
моделирует ту же концепцию, что и итератор исходящих вершин.
(Требуется для AdjacencyGraph.)

• graph_traits<filtered_graph>::directed_category

Сообщает, является граф неориентированным (undirected_tag) или ориенти-
рованным (directed_tag).
(Требуется для Graph.)

• graph_traits<filtered_graph>::edge_pa га П el_category

Сообщает, позволяет ли граф осуществлять вставку параллельных ребер (ре-
бер с одинаковыми начальными и одинаковыми конечными вершинами). Тот
же самый, что и edge_paгаП el _categoгу исходного графа.
(Требуется для Graph.)

• graph_traits<filtered_graph>::vertices_size_type

Используется для работы с количеством вершин в графе.

(Требуется для VertexListGraph.)

• graph_traits<filtered_graph>::edges_size_type

Используется для работы с количеством ребер в графе.

(Требуется для EdgeListGraph.)

• graph_traits<filtered_graph>::degree_size_type

Используется для работы с количеством исходящих ребер вершины.

(Требуется для IncidenceGraph.)

• property_map<filtered_graph. PropertyTag>::type
property_map<fi1tered_graph. PropertyTag>::const_type

Тип отображения свойств вершины или ребра в графе. Типы отображения
в адаптированном графе те же, что и в исходном.
(Требуется для PropertyGraph.)

Функции — методы
Ниже приведены функции — методы класса filtered_graph.

• filtered_graph(Graph& g. EdgePredicate ep)

Конструктор для представления графа g с отфильтрованными ребрами на ос-
новании предиката ер.

• filtered_graph(Graphs g. EdgePredicate ep,
VertexPredicate vp)
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Конструктор для отфильтрованного представления графа g на основании пре-
диката для ребер — ер, и для вершин — vp.

Функции — не методы
Функциональность, поддерживаемая классом f i 1tered_graph, зависит от лежаще-
го в основе исходного графа. Р1апример, если тип Graph не реализует in_edges(),
именно это будет делать отфильтрованный граф. Ниже перечислены возможные
функции, которые filtered_graph может поддерживать, если задан тип Graph, яв-
ляющийся моделью VertexListGraph, EdgeListGraph, IncidenceGraph, BidirectionaLGraph,
AdjacencyGraph, PropertyGraph и BidirectionalGraph.

• std::pair<vertex_iterator, vertex_iterator>

vertices(const fiHered_graph& g)
Возвращает пару итераторов, обеспечивающих доступ к множеству вершин
графа д.

(Требуется для VertexListGraph.)

• std::pair<edge_iterator, edge_iterator>
edges(const filtered_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к набору ребер графа д.

(Требуется для EdgeListGraph.)

• std::pair<adjacency_iterator, adjacency_iterator>
adjacent_vertices(vertex_descriptor v.

const f"iltered_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к смежным вершинам
вершины v в графе д.
(Требуется для AdjacencyGraph.)

• std::pair<out_edge_iterator. out_edge_iterator>
out_edges(vertex_descriptor v. const filt3red_graph& g)

Возвращает пару итераторов, обеспечивающих доступ к исходящим ребрам
вершины v в графе д. Если граф неориентированный, эти итераторы предос-
тавляют доступ ко всем ребрам, инцидентным вершине v.
(Требуется для IncidenceGraph.)

• vertex_descriptor source(edge_descriptor e.
const filtered_graph& g)

Возвращает начальную вершину для ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e,
const filtered_graph& g)

Возвращает конечную вершину для ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriptor u,
const filtered_graph& g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)
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• vertices_size_type num_vertices(const filtered_graph& g)

Возвращает число вершин в нижележащем графе д.

(Требуется для VertexListGraph.)

• edges_size_type num_edges(const filtered_graph& g)

Возвращает число ребер в графе g.

(Требуется для EdgeListGraph.)

• template <typename Property>
property_map<fTltered_graph. Property>::type
get(Property. filtered_graph& g)

template <typename Property>
property_map<filtered_graph, Property>::const_type
get(Property. const filtered_graph& g)

Возвращает объект-отображение свойств, заданный Property. Свойство Property
должно совпадать с одним из свойств в шаблонном аргументе VertexProperty
графа.

(Требуется для PropertyGraph.)

• template <typename Property, typename X>
typename property_traits<

typename property_map<fi1tered_graph.
Property>::const_type

>::value_type
get(Property, const filtered_graph& g. X x)

Возвращает значение свойства для х, где х — дескриптор вершины или ребра.

(Требуется для PropertyGraph.)

• template <typename Property, typename X, typename Value>
void put(Property, const filtered_graph& g. X x.

const Value& value)

Устанавливает значение свойства для х в value. Здесь х — дескриптор верши-
ны или ребра. Значение должно быть преобразуемо в тип значения указанного
свойства.
(Требуется для PropertyGraph.)

14.3.4. Указатель на SGB Graph
Graph*
Заголовочный файл boost/graph/stanford_graph.hpp из BGL адаптирует Stanford

GraphBase-указатель (SGB) [22] на Graph в граф, совместимый с BGL. Заметим,
что класс графового адаптера не используется, a Graph* из SGB сам становится
моделью нескольких графовых концепций (см. раздел «Модель для» ниже) с по-
мощью определения нескольких перегруженных функций.

Обязательно применяйте файл изменений PROTOTYPES к вашей установке SGB,
с тем чтобы заголовочные файлы SGB соответствовали ANSI С (и, значит, могли
компилироваться компилятором C++).

Мы благодарны Андреасу Шереру за помощь в реализации и документирова-
нии адаптера Graph* из библиотеки SGB.
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Пример
Примеры см. в файлах example/miles_span.cpp, example/roget_components.cpp
и example/girth.cpp.

Параметры шаблона
Нет.

Модель для
VertexListGraph, IncidenceGraph, AdjacencyGraph и PropertyGraph. Набор тегов свойств,
который можно использовать для SGB-графа, дан ниже в разделе «Свойства вер-
шин и ребер».

Где определен
Указатель на SGB Graph находится в файле boost/graph/stanford_graph.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы указателя на SGB Graph.

• graph_traits<Graph*>::vertex_descriptor

Тип дескриптора вершин, ассоциированный с SGB Graph*. Мы используем тип
Vertex* в качестве дескриптора вершины (где Vertex — typedef в заголовочном
файле gb_graph.h.)
(Требуется для Graph.)

• graph_traits<Graph*>::edge_descriptor

Тип дескриптора ребер, ассоциированный с SGB Graph*. Используется тип
boost:: sgb_edge_type. В дополнение к поддержке всех требуемых в BGL опера-
ций дескриптора вершины класс boost: :sgb_edge имеет следующий конструк-
тор: sgb_edge::sgb_edge(Arc* arc, Vertex* source).
(Требуется для IncidenceGraph.)

• graph_traits<Graph*>::vertex_iterator

Тип итераторов, возвращаемых функцией verticesO. Этот итератор должен
моделировать RandomAccessIterator.
(Требуется для VertexListGraph.)

• graph_traits<Graph*>::out_edge_iterator

Тип итераторов, возвращаемых функцией out_edges (). Если EdgeLi st=vecS, этот
итератор моделирует MultiPassInputlterator.
(Требуется для IncidenceGraph.)

• graph_traits<Graph*>::adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices(). Этот итератор
моделирует ту же концепцию, что и out_edge_iterator.
(Требуется для AdjacencyGraph.)

• graph_traits<Graph*>::directed_category

Предоставляет информацию о том, является граф ориентированным или неори-
ентированным. Так как SGB Graph* — ориентированный, этот тип — di rected_tag.
(Требуется для Graph.)
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• graph_traits<Graph*>::edge_pa га 11 el_category
Описывает возможности графа по вставке параллельных ребер (ребер с одина-
ковыми начальными и конечными вершинами). Graph* из SGB не препятствует
добавлению параллельных ребер, поэтому этот тип имеет а 11 ow_pa га 11 el _edge_tag.
(Требуется для Graph.)

• graph_traits<Graph*>::traversal_category

Graph* из SGB обеспечивает обход множества вершин, исходящих ребер и смеж-
ных вершин. Таким образом, тег категории обхода определен следующим об-
разом:

struct sgb_traversal_tag :
public virtual vertex_list_graph_tag,
public virtual incidence_graph_tag,
public virtual adjacency_graph_tag { };

(Требуется для Graph.)

• graph_traits<Graph*>::vertices_size_type

Тип используется для работы с количеством вершин в графе.
(Требуется для VertexListGraph.)

• graph_traits<Graph*>::edges_size_type

Тип используется для работы с количеством ребер в графе.
(Требуется для EdgeListGraph.)

• graph_traits<Graph*>::degree_size_type

Тип используется для работы с количеством исходящих ребер вершины.
(Требуется для IncidenceGraph.)

• property_map<Graph*, PropertyTag>::type
property_map<Graph*. PropertyTag>::const_type

Тип отображения для свойств вершин и ребер графа. Свойство задается шаб-
лонным аргументом Property Tag и должно быть одним из тегов, описанных ниже
в разделе «Свойства вершин и ребер».
(Требуется для PropertyGraph.)

Функции — методы
Указатель на SGB Graph функций — методов класс не имеет.

Функции — не методы
Ниже приведены функции — не методы указателя на SGB Graph.

• std::pair<vertex_iterator, vertex_iterator>
vertices(const Graph* g)

Возвращает пару итераторов, обеспечивающих доступ к набору вершин графа д.
(Требуется для VertexListGraph.)

• std::pair<edge_iterator. edge_iterator>
edges(const Graph* g)

Возвращает пару итераторов, обеспечивающих доступ к набору ребер д.
(Требуется для EdgeListGraph.)
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• std::pair<adjacency_iterator. adjacency_iterator>
adjacent_vertices(vertex_descriptor v. const Graph* g)

Возвращает пару итераторов, обеспечивающих доступ к вершинам, смежным
с вершиной v в графе д.
(Требуется для AdjacencyGraph.)

• std::pair<out_edge_iterator, out_edge_iterator>
out edges(vertex_descriptor v, const Graph* g)

Возвращает пару итераторов, обеспечивающих доступ к исходящим ребрам
вершины v в графе д. Если граф неориентированный, эти значения дают до-
ступ ко всем ребрам, инцидентным данной вершине v.
(Требуется для IncidenceGraph.)

• vertex_descriptor source(edge_descriptor e,
const Graph* g)

Возвращает начальную вершину ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e.
const Graph* g)

Возвращает конечную вершину ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriDtor u.
const Graph* g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)

• vertices_size_type num_vertices(const Graph* g)

Возвращает число вершин в графе g.

(Требуется для VertexListGraph.)

• edges_snze_type num_edges(const Graph* g)

Возвращает число ребер в графе g.

(Требуется для EdgeListGraph.)

• vertex_descriptor vertex(vertices_size_type n. const Graph* g)

Возвращает и-ю вершину в списке вершин графа.

• template <typename PropertyTag>
property_map<Graph*, PropertyTag>::type
get(PropertyTag. Graph* g)

template <typename PropertyTag>
property_map<Graph*. PropertyTag>::const_type
get(PropertyTag, const Graph* g)

Возвращает объект-отображение свойств, заданный PropertyTag.

(Требуется для PropertyGraph.)

• template <typename PropertyTag. typename X>
typename property_traits<

typename property_map<Graph*. PropertyTag>::const_type
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>: :value_type
get(PropertyTag. const Graph* g, X x)

Возвращает значение свойства для х, где х — дескриптор вершины или ребра.

(Требуется для PropertyGraph.)

• template <typename PropertyTag. typename X.
typename Value>

void put(PropertyTag. const Graph* g. X x.
const Value& value)

Устанавливает значение свойства для х в val ue. Здесь х — дескриптор верши-
ны или ребра. Значение должно быть преобразуемо в тип значения свойства,
соответствующий PropertyTag.
(Требуется для PropertyGraph.)

Свойства вершин и ребер
Структуры Vertex и Arc из SGB предоставляют вспомогательные поля для хране-
ния дополнительной информации. Мы предлагаем BGL-оболочки, которые обес-
печивают доступ к этим полям через отображения свойств. Кроме того, предос-
тавлены отображения индекса вершины и длины ребра. Объект-отображение свойств
может быть получен из SGB Graph* применением функции get О, описанной в пре-
дыдущем разделе, а тип отображения свойства — через класс свойств propertyjnap.

Указанные ниже теги свойств могут быть использованы для задания вспомо-
гательного поля, для которого требуется отображение свойства (листинг 14.19).

Листинг 14.19. Теги свойств для SGB Graph*
// Теги свойств вершин:
template <typename T> u_property:
emplate <typename T> v_property:
template <typename T> w_property;
template <typename T> x_property;
template <typename T> y_property:
template <typename T> z_property:

// Теги свойств ребер:
emplate <typename T> a_property:
template <typename T> b_property:

Шаблонный параметр Т для этих тегов ограничен типами в объединении uti 1,
декларированном в заголовочном файле gb_graph.h библиотеки SGB. Перечис-
лим эти типы: Vertex*, Arc*, Graph*, char* и long. Отображения свойств для вспомо-
гательных полей являются моделями LvatuePropertyMap.

Отображение свойств для индексов вершин может быть получено с помощью
тега vertex_i ndex_t и это отображение свойств моделирует ReadablePropertyMap.
Отображение свойств для длин ребер указывается тегом edge_l ength_t, и это ото-
бражение свойств — модель LvaluePropertyMap, чей тип значения — long.

14.3.5. GRAPH<V,E> из библиотеки LEDA
GRAPH<V.E>
Шаблон класса GRAPH из LEDA может быть напрямую использован как BGL-

граф благодаря перегруженным функциям, определенным в заголовочном файле
boost/graph/leda_graph.hpp.
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Реализация BGL-интерфейса для класса GRAPH из LED А обсуждалась в разделе 10.3
при написании адаптеров для графовых классов из сторонних графовых библиотек.

Пример
В листинге 14.20 приведен пример работы с LEDA графом, как если бы это был
BGL-граф.

Листинг 14.20. Работа с графом LEDA

#include <boost/graph/leda_graph.hpp>
finclude <iostream>
fundef string // макрос из LEDA
int mainO
{
using namespace boost;
typedef GRAPH < std::string. int >graph_t:
graph_t g:
g.new_node("Philoctetes");
g.newjiode("Heracles"):
g.new_node("Al arena");
g.new_node("Eurystheus"):
g.new_node("Amphitryon");
typedef propertyjnap < graph_t. vertex_all_t >::type NodeMap;
NodeMap node_name_map - get(vertex_all. g):
graph_traits < graph_t >::vertex_iterator vi. vi_end;
for (tietvi. vi_end) = vertices(g): vi !» vi_end; ++vi)

std::cout « node_name_map[*vi] « std::endl:
return EXIT_SUCCESS:

}
Эта программа выводит следующее:

Philoctetes
Heracles
Alcmena
Eurystheus
Amphitryon

Параметры шаблона
Ниже приведены параметры шаблона класса GRAPH.

V Тип объекта, прикрепленного к каждой вер -
шине в графе LEDA.

Е Тип объекта, прикрепленного к каждому ре -
бру в графе LEDA.

Модель для
VertexListGraph, BidirectionaLGraph и AdjacencyGraph. Также VertexMutablePropertyGraph
и EdgeMutabtePropertyGraph для тегов свойств vertex_al l_t и edge_a1 l_t, которые обес-
печивают доступ к объектам V и Е в графе LEDA. Тип GRAPH также является Ргорег-
tyGraph для vertex_i ndex_t и edge_i ndex_t, который предоставляет доступ к иденти-
фикационным (ID) номерам, которые LEDA присваивает каждому узлу (вершине).
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Где определен
Класс GRAPH находится в файле boost/graph/leda_graph.hpp.

Ассоциированные типы
Ниже приведены ассоциированные типы класса GRAPH.

• graph_traits<GRAPH>::vertex_descriptor

Тип дескрипторов вершин, ассоциированный с GRAPH. Используется тип node
из LEDA.
(Требуется для Graph.)

• graph_traits<GRAPH>::edge_descriptor

Тип дескрипторов ребер, ассоциированный с GRAPH. Используется тип edge
из LEDA.
(Требуется для Graph.)

• graph_traits<GRAPH>::vertex_iterator

Тип итераторов, возвращаемых функцией vertices О.
(Требуется для VertexListGraph.)

• graph_traits<GRAPH>::out_edge_iterator

Тип итераторов, возвращаемых функцией out_edges().
(Требуется для IncidenceGraph.)

• graph_traits<GRAPH>::in_edge_nterator

Тип итераторов, возвращаемых функцией in_edges().
(Требуется для BidirectionaLGraph.)

• graph_traits<GRAPH>::adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices().
(Требуется для AdjacencyGraph.)

• graph_traits<GRAPH>::directed_category

Тип GRAPH из LEDA — для ориентированных графов, поэтому здесь использу-
ется di rected_tag.
(Требуется для Graph.)

• graph_traits<GRAPH>::edge_parallel_category

Тип GRAPH из LEDA позволяет добавление параллельных ребер, поэтому здесь
используется allow_paral 1 el_edge_tag.
(Требуется для Graph.)

• graph_traits<GRAPH>::traversal_category

Описываемый тип графа представляет итераторы вершин, исходящих и вхо-
дящих ребер, итераторы смежности. Тип тега категории обхода следующий:
struct Ieda_graph_traversa1_category :

public virtual bidirectional_graph_tag.
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public virtual adjacency_graph_tag,
public virtual vertex_list_graph_tag { };

(Требуется для Graph.)

• graph_traits<GRAPH>::vertices_size_type

Тип используется для представления числа вершин графа, а это int.

(Требуется для VertexListGraph.)

• graph_traits<GRAPH>::edges_size_type

Тип используется для представления числа ребер графа, а это тоже i nt.

(Требуется для EdgeListGraph.)

• graph_trants<GRAPH>::degree_size_type

Тип используется для представления числа исходящих ребер графа — это i nt.

(Требуется для IncidenceGraph.)

• property_map<GRAPH. PropertyTag>::type
property_map<GRAPH, PropertyTag>::const_type

Тип отображения для свойств вершин и ребер в графе. Конкретное свойство
задается шаблонным аргументом Property Tag и должно быть одним из следую-
щих: vertex_index_t, edge_index_t, vertex_all_t или edge_all_t. Теги с «all» ис-
пользуются для доступа к объектам V и Е графа LEDA. Теги vertex_index_t
и edge_index_t обеспечивают доступ к идентификационным номерам, которые
LEDA присваивает каждому узлу и ребру.
(Требуется для PropertyGraph.)

Функции — методы
У класса GRAPH нет дополнительных функций — методов (так как это потребовало
бы модификации исходного кода LEDA)

Функции — не методы
Ниже приведены функции — не методы класса GRAPH.

• std::pair<vertex_iterator, vertex_iterator>
vertices(const GRAPH& g)

Возвращает пару итераторов, обеспечивающих доступ к множеству вершин
графа д.

(Требуется для VertexListGraph.)

• std::pair<edge_iterator. edge_iterator>
edgesCconst adjacency_matrix& g)

Возвращает пару итераторов, обеспечивающих доступ к набору ребер графа g

(Требуется для EdgeListGraph.)

• std::pair<adjacency_iterator. adjacency_iterator>
adjacent_verti ces(vertex_descri ptor v.

const adjacency_matrix& g)

Возвращает пару итераторов, обеспечивающих доступ к множеству вершин,
смежных с данной вершиной v графа д.
(Требуется для AdjacencyGraph.)
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• std::pai r<out_edge_iterator. out_edge_iterator>
out_edges(vertex_descriptor v. const GRAPHS g)

Возвращает пару итераторов, обеспечивающих доступ к исходящим ребрам
вершины v в графе д. Если граф неориентированный, эти значения дают до-
ступ ко всем ребрам, инцидентным вершине v.
(Требуется для IncidenceGraph.)

• std::pair<in_edge_iterator. in_edge_iterator>
in_edges(vertex_descriptor v. const GRAPHS g)

Возвращает пару итераторов, обеспечивающих доступ к входящим ребрам вер-
шины v в графе д. Операция недоступна, если в качестве шаблонного парамет-
ра Di rected было указано di rectedS, и доступна при undi rectedS и bidi recti ona 1S.
(Требуется для BidirectionalGraph.)

• vertex_descriptor source(edge_descriptor e,
const GRAPH& g)

Возвращает начальную вершину ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e.
const GRAPHS g)

Возвращает конечную вершину ребра е.

(Требуется для IncidenceGraph.)

• degree_size_type out_degree(vertex_descriptor u,
const GRAPHS g)

Возвращает число ребер, исходящих из вершины и.

(Требуется для IncidenceGraph.)

• degree_size_type in_degree(vertex_descriptor и.
const GRAPHS g)

Возвращает число ребер, входящих в вершину и. Эта операция доступна, толь-
ко если bidi rectionalS было указано в качестве шаблонного параметра Di rected.
(Требуется для BidirectionatGraph.)

• vertices_size_type num_vertices(const GRAPHS g)

Возвращает число вершин в графе g.

(Требуется для VertexListGraph.)

• edges_size_type num_edges(const GRAPHS g)

Возвращает число ребер в графе g.

(Требуется для EdgeListGraph.)

• std: :pair<edge_descriptor. bool>
add edge(vertex_descriptor u. vertex_descriptor v.

GRAPHS g)

Добавляет ребро (м, v) к графу и возвращает дескриптор ребра для вновь добав-
ленного ребра. Для этого графового типа логический флаг всегда будет ложным.
(Требуется для EdgeMutableGraph.)
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• std::pair<edge_descriptor. bool>
add_edge(vertex_descriptor u. vertex_descriptor v.

const E& ep. GRAPHS g)

Добавляет ребро {и, v) к графу и закрепляет за ним ер в качестве значения
для хранения внутреннего свойства.
(Требуется для EdgeMutabLePropertyGraph.)

• void remove_edge(vertex_descriptor u. vertex_descriptor v,
GRAPHS g)

Удаляет ребро {и, v) из графа.
(Требуется для EdgeMutabLeGraph.)

• void remove_edge(edge_descriptor e. GRAPHS g)

Удаляет ребро {и, v) из графа. Функция отличается от remove_edge (u. v, g) в слу -
чае мультиграфа: данная функция удаляет одно ребро, тогда как функция ге-
move_edge(u. v. g) удаляет все ребра {и, v).
(Требуется для EdgeMutableGraph.)

• vertex_descriptor add_vertex(GRAPHS g)

Добавляет вершину к графу и возвращает дескриптор вершины для новой
вершины.
(Требуется для VertexMutableGraph.)

• vertexjjescriptor add vertex(const VertexPropertiesS p.
GRAPHS g)

Добавляет вершину (и ее свойство) к графу и возвращает дескриптор верши-
ны для новой вершины.
(Требуется для VertexMutablePropertyGraph.)

• void clear_vertex(vertex_descriptor u. GRAPHS g)

Удаляет все ребра, исходящие и входящие, для данной вершины. Вершина ос-
тается во множестве вершин графа.
(Требуется для EdgeMutableGraph.)

• void remove_vertex(vertex_descriptor u. GRAPHS g)

Удаляет вершину и из множества вершин графа.
(Требуется для VertexMutableGraph.)

• template <typename PropertyTag>
property_map<GRAPH, PropertyTag>;:type
get(PropertyTag, GRAPHS g)

Возвращает изменяемый объект-отображение свойств для свойства вершины,
указанной с помощью Property Tag.
(Требуется для PropertyGraph.)

• template <typename PropertyTag>
property_map<GRAPH, PropertyTag>::const_type
get(PropertyTag. const GRAPHS g)

Возвращает константный объект-отображение свойств для свойства вершины,
указанной с помощью Property Tag.
(Требуется для PropertyGraph.)
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template <typename PropertyTag. typename X>
typename property_traits<

typename property_map<GRAPH. PropertyTag>::const_type
>::value_type
get(PropertyTag. const GRAPHS, g. X x)

Возвращает значение свойства для х, где х — дескриптор вершины или ребра.
(Требуется для PropertyGraph.)

template <typename PropertyTag. typename X.
typename Value>

void put(PropertyTag. const GRAPH& g. X x.
const Values value)

Устанавливает значение свойства для х в value. Здесь х — дескриптор верши-
ны или ребра.
(Требуется для PropertyGraph.)

14.3.6. std::vector<EdgeList>

std::vector<EdgeLi st>

Перегрузка функций в boost/graph/vector_as_graph.hpp делает возможным трак-
товать тип вроде std:: vector<std:: 1 i st<i n t» как граф.

Пример
В этом примере (листинг 14.21) мы создаем граф, используя контейнерные клас-
сы из стандартной библиотеки и применяя функцию pri nt_graph() из BGL (кото-
рая написана в терминах графового интерфейса BGL) для вывода графа.

Листинг 14.21. Вектор в качестве графа

( vector-as-graph.cpp > •

#include <vector>
#include <list>
#include <boost/graph/vector_as_graph.hpp>
#include <boost/graph/graph_uti1ity.hpp>

int main() {
enum { r, s. t , u, v, w, x, y, N }:
char named - "rstuvwxy":
typedef std::vector < std::list < int > > Graph;
Graph g(N);
g[r].push_back(v); g[s].push_back(r): g[s].push_back(r);
g[s].push_back(w); g[t].push_back(x); g[u].push_back(t):
g[w].push_back(t); g[w].push_back(x): g[x].push_back(y);
g[y].push_back(u);
boost::print_graph(g. name):
return 0:

}
Эта программа выводит следующее:

г --> v
S - - > Г Г W

t --> х
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и --> t
V -->
W --> t X
х --> у
У --> U

Где определен
Тип vector_as_graph находится в файле boost/graph/vector_as_graph.hpp.

Параметры шаблона
Ниже приведен параметр шаблона типа vector_as_graph.

EdgeLi st Container, в котором val ue_type позволяет пре-
образование к si ze_type для std:: vector (что-
бы значения можно было использовать в ка-
честве дескриптора вершины).

Модель для
VertexListGraph, IncidenceGraph и AdjacencyGraph.

Ассоциированные типы
Ниже приведены ассоциированные типы vector_as_graph.

• graph_traits<std: :vector>: :vertex_descnptor

Тип дескрипторов вершин, ассоциированных с графом.

(Требуется для Graph.)

• graph_traits<std::vector>::edge_descriptor

Тип дескрипторов ребер, ассоциированных с графом.

(Требуется для Graph.)

• graph_traits<std::vector>::vertex_iterator

Тип итераторов, возвращаемых функцией vertices().

(Требуется для VertexListGraph.)

• graph_traits<std::vector>::out_edge_iterator

Тип итераторов, возвращаемых функцией out edges ().

(Требуется для IncidenceGraph.)

• graph_traits<std::vector>::adjacency_iterator

Тип итераторов, возвращаемых функцией adjacent_vertices().
(Требуется для AdjacencyGraph.)

• graph_traits<std::vector>::directed_category

Графовый тип для ориентированных графов, поэтому здесь используется di -
rected_tag.
(Требуется для Graph.)

• graph_traits<std::vector>::edge_para!lel_category

Этот графовый тип позволяет иметь параллельные ребра, поэтому тип катего-
рии — al 1ow_paral I el_edge_tag.
(Требуется для Graph.)



14.3. Графовые адаптеры 273

• graph_traits<std::vector>::vertices_size_type

Тип, используемый для представления количества вершин в графе.

(Требуется для VertexListGraph.)

• graph_traits<std::vector>::degree_size_type

Тип, используемый для представления количества исходящих ребер для вер-
шины графа.
(Требуется для IncidenceGraph.)

Функции — методы
Нет дополнительных функций — методов класса.

Функции — не методы
Ниже приведены функции — не методы класса vector_as_graph.

• std::pair<vertex_iterator. vertex_iterator>
vertices(const stid::vector& g)

Возвращает пару итераторов, обеспечивающих доступ к множеству вершин графа д.
(Требуется для VertexListGraph.)

• std: :pair<adjacency_iterator.
adjacency_iterator> adjacent_vertices(vertex_descriptor v.

const std::vectors g)

Возвращает пару итераторов, обеспечивающих доступ к вершинам, смежным
вершине v в графе д.
(Требуется для AdjacencyGraph.)

• std::pai r<out_edge_iterator. out_edge_iterator>
out_edges(vertex_descriptor v. const std::vector& g)

Возвращает пару итераторов, обеспечивающих доступ к исходящим ребрам
вершины v в графе д. Если граф неориентированный, эти значения дают до-
ступ ко всем ребрам, инцидентным вершине v.
(Требуется для IncidenceGraph.)

• vertex_descriptor source(edge_descriptor e.
const std::vector& g)

Возвращает начальную вершину для ребра е.

(Требуется для IncidenceGraph.)

• vertex_descriptor target(edge_descriptor e.
const std::vectors g)

Возвращает конечную вершину для ребра е.
(Требуется для IncidenceGraph.)
• degree_size_type out_degree(vertex_descriptor u.

const std::vector& g)
Возвращает число ребер, исходящих из вершины и.
(Требуется для IncidenceGraph.)

• vertices_size_type num_vertices(const std::vector& g)

Возвращает число вершин в графе д.
(Требуется для VertexListGraph.)

10 Зак. 375



Библиотека
отображений
свойств

Большинство алгоритмов на графах требуют доступа к различным свойствам,
относящимся к вершинам и ребрам графа. Например, такие данные, как длина
или мощность ребра, могут быть необходимы для алгоритмов, равно как и вспомо-
гательные флаги, такие как цвет, для индикации посещения вершины. Существует
много способов хранить эти данные в памяти: от полей данных объектов-вершин
и объектов-ребер до массивов, индексированных некоторым индексом, или свойств,
вычисляемых при необходимости. Для отделения обобщенных алгоритмов от де-
талей представления свойств вводится абстракция, называемая отображением
свойств^.

Несколько категорий свойств доступа предоставляют различные возможности:
readable (только чтение). Свойство может быть только прочитано. Данные воз-

вращаются по значению. Многие отображения свойств для входных данных
задачи (таких, как веса ребер) могут определяться как отображения свойств
только для чтения.

writable (только запись). Свойство может быть только записано. Массив родите-
лей для записи путей в дереве поиска в ширину является примером отобра-
жения свойства, которое может быть определено как только для записи.

read/write (чтение и запись). Свойство может быть как записано, так и прочита-
но. Свойство расстояния для алгоритма кратчайших путей Дейкстры требует
как чтения, так и записи.

lvalue (1-значение). Свойство фактически расположено в памяти и есть возмож-
ность получить на него ссылку. Отображения свойств этой категории также
поддерживают как чтение, так и запись.

Для каждой категории отображений свойств определена теговая структура.

' В предыдущих статьях, описывающих BGL, концепция средства доступа была названа Decorator («укра-
шатель»), В магистерской диссертации Дитмара Кюля [24] средства доступа к свойствам названы
средствами доступа к данным (data accessors).
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namespace boost {
struct readable_property_map_tag { };
struct writable_property_map_tag { };
struct read_write_property_map_tag :

public readable_property_map_tag.
public writable_property_map_tag { };

struct lvalue_property_map_tag :
public read_write_property_map_tag { };

Подобно классу iterator_traits из STL, есть класс property_traits (листинг 15.1),
который может быть использован для выведения ассоциированных типов ото-
бражения свойств: типа ключа и типа значения, а также категории отображения
свойств. Имеется специализация property_trai ts, чтобы указатели могли быть ис-
пользованы как объекты отображений свойств.

Листинг 15.1. Класс property_traits

namespace boost {
template <typename PropertyMap>
struct property_traits {

typedef typename PropertyMap::key_type key_type:
typedef typename PropertyMap::value_type value_type:
typedef typename PropertyMap::reference reference:
typedef typename PropertyMap::category category;

}:
// специализация для использования указателей как отображений свойств
template <typename T>
struct property_traits<T*> {

typedef T valuejtype:
typedef T& reference;
typedef s t d : : p t r d i f f _ t key_type:
typedef lvalue_propertyjnap_tag category;

template <typename T>
struct property_traits<const T*> {

typedef T value_type:
typedef const T& reference;
typedef s t d : : p t r d i f f _ t key_type:
typedef lvalue_property_map_tag category;

}:

15.1. Концепции отображений свойств
Интерфейс отображений свойств состоит из набора концепций, которые определяют
общий механизм для отображения объектов-ключей на соответствующие объекты-
значения, скрывая, таким образом, детали реализации отображения от алгоритмов,
использующих отображения свойств. Для обеспечения большей гибкости, требо-
вания к отображениям свойств по типу объектов-ключей и значений специально
не определены. Поскольку операции отображений свойств — глобальные функции,
можно перегрузить функции отображения так, что будут использоваться почти
произвольные типы отображений свойств и типов ключей. Интерфейс отображе-
ний свойств состоит из трех функций: get(), put() и operator[]. В листинге 15.2
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показано, как эти три функции могут быть использованы для доступа к адресам
ассоциированным с разными людьми.

Листинг 15.2. Пример использования интерфейса отображения свойства

template <typename AddressMap>
void foo(AddressMap address)
{

typedef typename boost::property_traits<AddressMap>::
value_type value_type:

typedef typename boost::property_traits<AddressMap>::key_type key_type:
value_type old_address. new_address:
key_type fred = "Fred";
old_address = get(address. fred):
new_address = "384 Fitzpatrick Street"
put(address, fred, new_address):

key_type joe = "Joe":
value_type& joes_address - address[joe]:
joes_address = "325 Cushing Avenue":

}

Для каждого объекта-отображения свойств имеется набор допустимых клю-
чей, для которых отображение на объекты-значения определено. Вызов функции
отображения свойств для недопустимого ключа приводит к неопределенному по
ведению. Концепции отображений свойств не определяют, как это множество до
пустимых ключей создается или модифицируется. Функция, которая использует
отображение свойств, должна указывать ожидаемый набор допустимых ключей
в своих предусловиях.

Обозначения
В следующих разделах использованы такие обозначения:

• РМар — тип отображения свойств;

• ршар — объект отображения свойств типа РМар;

• key — объект типа property_traits<PMap>: :key_type;

• val — объект типа property_traits<PMap>: :value_type.

1 5 . 1 . 1 . R e a d a b l e P r o p e r t y M a p

Концепция ReadablePropertyMap предоставляет доступ по чтению к объекту-значе-
нию, ассоциированному с данным ключом, через вызов функции get(). Функция
get О возвращает копию объекта-значения.

Уточнение для
CopyConstructibLe

Ассоциированные типы
Ниже приведены ассоциированные типы концепции ReadablePropertyMap.

• property_traits<PMap>::value_type

Тип свойства.
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• property_traits<PMap>::reference

Тип, преобразуемый к типу значения.

• property_traits<PMap>::key_type

Тип объекта-ключа, используемого для поиска значения свойства. Отображе-
ние свойств может быть параметризовано по типу ключа, в некотором случае
этот тип может быть void.

• property_traits<PMap>::category

Категория свойства: тип, преобразуемый к readable_property_map_tag.

Допустимые выражения
Концепция ReadablePropertyMap имеет одно допустимое выражение.

• getCpmap, key)

Возвращает тип: reference.

Семантика: поиск свойства объекта, ассоциированного с ключом key.

1 5 . 1 . 2 . W r i t a b l e P r o p e r t y M a p

Концепция WritabLePropertyMap имеет возможность присваивать объект-значение,
ассоциированный с данным объектом-ключом, посредством функции put О.

Уточнение для
CopyConstructible

Ассоциированные типы
Ниже приведены ассоциированные типы концепции WritablePropertyMap.

• property_traits<PA>::value_type

Тип свойства.
• property_traits<PA>::key_type

Тип объекта-ключа, используемого для поиска значения свойства. Отображе-
ние свойств может быть параметризовано по типу ключа, в некотором случае
этот тип может быть void.

• property_traits<PA>::category

Категория свойства: тип, преобразуемый к writable_property_map_tag.

Допустимые выражения
Концепция WritablePropertyMap имеет одно допустимое выражение.

• put(pmap. key. vai)

Возвращает тип: void.

Семантика: присваивает val свойству, ассоциированному с ключом key.

1 5 . 1 . 3 . R e a d W r i t e P r o p e r t y M a p

Концепция ReadWritePropertyMap уточняет концепции ReadablePropertyMap
и WritablePropertyMap. ReadWritePropertyMap также добавляет требование, чтобы
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property_traits<PA>: :category имела т и п , преобразуемый к read_write_pro-
pertyjnap.

1 5 . 1 . 4 . L v a l u e P r o p e r t y M a p

Концепция LvaluePropertyMap обеспечивает доступ к ссылке на объект-свойство
(вместо копии объекта, как в get ()). LvaluePropertyMap может быть изменяемой и не-
изменяемой. Изменяемая Lval uePropertyMap возвращает ссылку, тогда как неизме-
няемая — ссылку на константу.

Уточнение для
ReadablePropertyMap для неизменяемой, ReadWritePropertyMap для изменяемой.

Ассоциированные типы
Ниже приведены ассоциированные типы концепции LvaluePropertyMap.

• property_traits<PMap>::reference

Ссылочный тип, который должен быть ссылкой или константной ссылкой
на val ue_type отображения свойств.

• property_traits<PMap>::category

Категория свойства: тип, преобразуемый к lvalue_property_map_tag.

Допустимые выражения
Концепция LvaluePropertyMap имеет одно допустимое выражение.

• pmap[key]

Возвращает тип: reference.
Семантика: получает ссылку на свойство, идентифицированное ключом.

15.2. Классы отображений свойств

15.2.1. propertyjraits
property_traits<PropertyMap>

Класс property_traits предоставляет механизм для доступа к ассоциированным
типам отображения свойств. Неспециализированная (использует значения по умол-
чанию) версия класса property_traits предполагает, что отображение свойства
предоставляет определения для всех ассоциированных типов.

namespace boost {
template <typename PA>
struct property_traits {
typedef typename PA::key_type key_type;
typedef typename PA::value_type value_type;
typedef typename PA:reference reference;
typedef typename PA::category category:

};
} // namespace boost

Задание типа category должно быть определением для одного из следующих
типов или типа, который наследует из одного из следующих типов:
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namespace boost {
struct readable_property_map_tag { }:
struct writable_property_map_tag { }:
struct read_write_property_map_tag : readable_property_map_tag.

writab1e_property_map_tag { };
struct lvalue_property_map_tag : read_write_property_map_tag { };

} // namespace boost

Часто удобно использовать указатель как объект-отображение свойств, тогда
key_type является целочисленным смещением. Такая специализация для ргорег-
ty_traits и перегрузка функций отображений приведены в листинге 15.3.

Листинг 15.3. Специализация для property_traits и перегрузка функций

namespace boost {
tempi ate <typename T>
struct property_traits<T*> {

typedef std::ptrdiff_t key_type:
typedef T value_type:
typedef value_type& reference;
typedef lvalue_property_map_tag category;

}:

template <typename T>
void put(T* pa. std: :ptrdiff__t k. const T& val) { pa[k] = val; }

template <typename T>
const T& get(const T* pa, std;;ptrdiff_t k) { return pa[k]: }

template <typename T>
T& at(T* pa. std::ptrdiff_t k) { return pa[k]; }

} // namespace boost

Параметры шаблона
Класс property_traits имеет один параметр шаблона.

• PropertyMap

Тип отображения свойств.

Где определен
Класс property_traits находится в файле boost/property_map.hpp.

Методы
Ниже приведены методы класса property_traits.

• property_traits::key_type

Тип объекта-ключа, используемого для поиска свойства.

• property_traits::value_type

Т и п свойства.

• property_traits: reference

Ссылка на тип значения.

• property_traits::category

Тег категории отображения свойств.
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1 5 . 2 . 2 . i t e r a t o r _ p r o p e r t y _ m a p

iterator_property_map<Iterator. IndexMap. T. R>

Адаптер i terator_property_map создает оболочку для типа, моделирующего Ran •
domAccessIterator для создания LvaluePropertyMap. Этот адаптер часто полезен для
создания отображения свойств из массива, где ключом являются целые числа-
смещения от начала массива, а массив содержит объекты-значения. Когда тип
ключа — целый, можно просто использовать identity_property_map для парамет-
ра шаблона IndexMap. В противном случае придется предоставить отображение
свойств, которое преобразует ключ в целое. Например, граф может иметь внут-
реннее свойство для vertexj ndex_t, которое может быть получено применением
класса property_map.

Пример
Пример в листинге 15.4 демонстрирует создание отображения свойств из массива.

Листинг 15.4. Пример создания отображения свойств

finclude <iostream>
#include <boost/property_map.hpp>

int mainO {
using namespace boost;
double x[] = { 0.2. 4.5. 3.2 }:
iterator_property_map < double *. identity_property_map.

double, doubles > pmap(x);
std::cout « "x[l] = " « get(pmap, 1) « std::endl:
put(pmap. 0. 1.7);
std;:cout « "x[0] - " « pmap[0] « std:;endl:
return 0;

}

Вывод будет следующий:

x[l] - 4.5
x[0] = 1.7

Где определен
Адаптер iterator_property_map находится в файле boost/graph/property_map.hpp.

Параметры шаблона
Ниже приведены параметры шаблона адаптера iterator_property_map.

Iterator Адаптируемый тип итератора. Должен моделировать
RandomAccessIterator

IndexMap Отображение свойств, которое преобразует тип
ключа в целое смещение. Должно быть моделью
ReadablePropertyMap

Т Тип значения итератора.

По умолчаникЛурепате
std::iterator_traits<Iterator>::value_type



15.2. Классы отображений свойств 281

R Тип ссылки итератора.
По умолчанию:
typename std::iterator_traits<Iterator>::reference

Модель для
LvaluePropertyMap

Ассоциированные типы
Все типы, требуемые для LvaluePropertyMap.

Функции — методы
Ниже приведены функции — методы адаптера iterator_propertyjnap.

• iterator_property_map(Iterator iter - IteratorO, IndexMap indexjnap =
IndexMapO)

Конструктор.

• template <typename Key>

• reference operator! ](Key k) const;

Возвращает*(iter +• get (indexjnap, k)).

Функции — не методы
Ниже приведены функции — не методы адаптера iterator_property_map.

• template <typename Iterator, typename IndexMap>

• iterator_property_map<Iterator, IndexMap.

• typename std: :iterator_traits<Iterator>::value_type.

• typename std::iterator_traits<Iterator>::reference>

• make_iterator_property_map(Iterator iter,

• IndexMap indexjnap)

Создать отображение свойств итератора.

15.2.3. Теги свойств
В листинге 15.5 приведены теги для некоторых свойств BGL.

Листинг 15.5. Теги свойств

namespace boost {
enum vertex_index_t { vertexjndex = 1 } : \\ индекс вершины
enum edge_index_t { edgejindex = 2 } ; \\ индекс ребра
enum edgejiamej; { edgejiame = 3 }; \\ имя ребра
enum edge_weight_t { edge_weight = 4 }; \\ вес ребра
enum vertex_name_t { vertex_name = 5 }: \\ имя вершины
enum graph_name_t { graphjiame = 6 }: \\ имя графа
enum vertexjj istance J : { vertex_distance = 7 } : \\ расстояние вершины
enum vertex_color_t { vertex_color = 8 }: \\ цвет вершины
enum vertex_degree_t { vertex_degree = 9 }; \\ степень вершины
enum vertex_in_degree_t { vertex_in_degree = 10 }:

\\ степень вершины по входящим ребрам продолжение #
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Листинг 15.5 {продолжение)

enum vertex_out_degree_t { vertex_out_degree = 11 };
\\ степень вершины по исходящим ребрам

enum vertex_discover_time_t { vertex_discover_time = 12 }:
\\ время посещения вершины

enum vertex_finish__time_t { vertex_finish_time - 1 3 }:
\\ время окончания обработки вершины

}
namespace boost {

\\ установить свойство
BOOST_INSTALL_PROPERTY(vertex, index);
B00ST_INSTALL_PROPERTY(edge. index);
BOOSTJNSTALL_PROPERTY(edge. name);

15.3. Создание пользовательских
отображений свойств

Главным назначением интерфейса отображений свойств является повышение
гибкости обобщенных алгоритмов. Это позволяет хранить свойства многими воз-
можными способами, в то же время предоставляя алгоритмам общий интерфейс.
Следующий раздел содержит пример использования отображений свойств для
адаптации к сторонней графовой библиотеке Stanford GraphBase (SGB) (см. раз-
дел 14.3.4). После этого мы рассмотрим реализацию отображения свойств с ис-
пользованием std: :map.

15.3.1. Отображения свойств для Stanford GraphBase
Адаптер BGL для Stanford GraphBase включает в себя отображение свойств для
доступа к различным полям структур Vertex и Arc из SGB. В этом разделе мы опи-
сываем одну из сторон реализации адаптера SGB в качестве примера реализации
отображений свойств.

SGB использует следующую структуру Vertex для хранения информации о вер-
шинах в графе. Указатель arcs — связный список исходящих ребер вершины. Поле
name и второстепенные поля от и до z — свойства вершины (uti 1 — это объедине-
ние C++ (union), позволяющее хранить различные сущности в вершине). Этот
раздел описывает, как создать отображение свойств для доступа к полю name.

typedef struct vertex_struct {
struct arc_struct* arcs:
char* name:
util u, v. w. x. y. z;

} Vertex;

Основная идея реализации этого отображения свойств — определение функ-
ций operator[](), get() и put() в терминах доступа к методам структуры данных.
Эту работу проще сделать с помощью класса put_get_hel per, в котором реализова-
ны put() и get О посредством operator[]. Следовательно, остается реализовать толь-
ко операцию operator^]. Кроме того, ассоциированные типы, требуемые отобра-
жением свойств, также должны быть определены.
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В листинге 15.6 приведена реализация sgb_vertex_name_map. Мы используем класс
put_get_hel per (он определен в boost/property_map.hpp) для упрощения создания этого
отображения свойств. Мы реализуем operator^] О, a put_get_hel per реализует put О
и get(). Первый аргумент-тип в шаблоне класса put_get_hel per — тип возвращаемо-
го значения для operator[], который в нашем случае есть char*. Второй аргумент —
тип самого отображения свойств. Тип reference должен действительно быть ссыл-
кой, только если отображение свойств должно быть Lval uePropertyMap. В нашем слу-
чае мы создаем ReadablePropertyMap. Адаптер SGB использует Vertex* для дескрип-
тора вершины vertex_descriptor графа, так что это key_type отображения свойств.
Листинг 15.6. Реализация sgb_vertex_name_map

class sgb_vertex_name_map
: public put_get_helper< char*, sgb_vertex_name_map > {

public:
typedef boost::readable_property_map_tag category:
typedef char* value_type:
typedef char* reference:
typedef Vertex* key_type;
reference operator[ KVertex* v) const { return v->name; }

}:

15.3.2. Отображение свойств из std::map
В предыдущем примере объект-отображение свойств не нуждался в сохранении
какого-либо состояния, так как объект-значение мог быть получен непосредственно
по ключу. Так бывает не всегда. Обычно ключ используется для поиска объекта-зна-
чения в некоторой вспомогательной структуре данных. Очевидным кандидатом
на такую структуру является std:: map. Отображение свойств, которое использует
std: :map в качестве реализации, нуждается в хранении указателя на этот ассоциа-
тивный контейнер. Мы сделали тип контейнера параметром шаблона, так что
отображение свойств может быть использовано с другими контейнерами, таки-
ми как hashjnap. Концепция, описывающая такой вид контейнера, называется
UniquePai rAssociati veContainer (листинг 15.7).

Листинг 15.7. Реализация associative_property_map
template <typename UniquePairAssociativeContainer>
class associative_property_map

: public put_get_helper<
typename UniquePairAssociativeContainer::value_type::second_type&.
associative_property_map<UniquePairAssociativeContainer> >

{
typedef UniquePairAssociativeContainer C;

public:
typedef typename C::key_type keyjtype;
typedef typename C::value_type::second_type value_type;
typedef value_type& reference:
typedef lvalue_property_map_tag category:
associative_property_map() : m_c(0) { }
associative_property_map(C& c) : m_c(&c) { }
reference operator[ ](const key_type& k) const {
return (*m_c)[k];

}



Вспомогательные
концепции, классы
и функции

16.1. Buffer
Концепция Buffer (буфер) — это нечто, во что можно поместить некоторые эле-
менты, а затем удалить. Концепция Buffer имеет очень мало требований. Она не
требует какого-то определенного порядка хранения элементов или порядка,
в котором они удаляются. Однако обычно имеется некоторое правило упорядо-
чения.

Обозначения
В данной главе будут использованы следующие обозначения:

В — тип, моделирующий Buffer;

Т — тип значения элементов В;

t — объект типа Т.

Требования
Чтобы тип моделировал Buffer, он должен иметь следующие методы класса.

• В::value_type

Тип объекта, хранимого в буфере. Тип значения должен быть Assignable.

• B::size_type

Беззнаковый целый тип для представления числа объектов в буфере.

• b.push(t)

Вставляет t в буфер. При этом b. size О увеличивается на единицу.

• Ь.рорО

Удаляет объект из Buffer. Это тот самый объект, который возвращает b.top().
При этом b. s i ze () уменьшается на единицу.
Предусловие: b. empty () — ложь.
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• b.topO

Возвращает ссылку (или константную ссылку) на некоторый объект в буфере.

Предусловие: b. empty () — ложь.

• b.sizeO

Возвращает число объектов в буфере.

Инвариант: b. size О >= 0.

• b.empty()

Тип возвращаемого значения — bool. Результат эквивалентен b. size() == 0.

Гарантии сложности
Для концепции Buffer имеются следующие гарантии сложности.

• pushO, pop() и sizeO должны выполняться не более чем за линейное время
от размера буфера.

• top О и empty () должны выполняться за амортизированное постоянное время.

Модели
std::stack,boost::mutable_queue, boost::priority_queue и boost::queue.

1 6 . 2 . C o l o r V a l u e

Концепция CoLorValue описывает требования к типу, используемому для значений
цветов. Многие алгоритмы BGL применяют отображение свойства «цвет» для
отслеживания продвижения алгоритма по графу. Тип значений цвета должен быть
EqualityComparable. Класс co1or_traits специализирован для Т так, чтобы были оп-
ределены следующие функции. Здесь Т — тип, который моделирует ColorValue.

• color_traits<T>::white()

Возвращает тип: Т.

Семантика: возвращает объект, который представляет белый цвет.

• color_traits<T>::gray()

Возвращает тип: Т.
Семантика: возвращает объект, который представляет серый цвет.

• color_traits<T>: :Ыаск()

Возвращает тип: Т.

Семантика: возвращает объект, который представляет черный цвет.

1 6 . 3 . M u l t i P a s s I n p u t l t e r a t o r

Концепция MultiPassInputlterator многопроходного итератора является уточнени-
ем In putlterator. Она добавляет требования, чтобы итератор мог быть использован
для неоднократного перебора всех значений, и если i t l == it2 Hi t l можно разы-
меновать, то *++itl == *++it2.
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Итератор MultiPassInputlterator подобен Forwardlterator. Разница состоит в том,
что Forwardlterator требует, чтобы тип reference был val ue_type&, тогда как MultiPass-
Inputlterator похож на Inputlterator в том, что тип reference должен быть преобра-
зуем к типу value_type.

1 6 . 4 . M o n o i d

Концепция Monoid описывает простой вид алгебраической системы. Она состоит
из множества элементов 5, бинарной операции и нейтрального элемента (identity
element). В C++ моноид представляет собой объект-функцию, реализующий би-
нарную операцию, множество объектов, представляющих элементы 5", и объект —
нейтральный элемент.

Уточнение для
Тип элемента множества 5 должен быть моделью Assignable и CopyConstructible.
Тип функционального объекта должен моделировать BinaryFunction.

Правильные выражения
Тип X — это тип элемента. Объекты a, b и с — объекты типа X, представляющие
элементы множества S. Объект 1 — объект типа X, обладающий свойствами нейт-
рального элемента (приведены ниже). Объект ор — это функциональный объект,
который реализует операцию на моноиде.

• ор(а, Ь)
Возвращает тип: X.
Семантика: см. ниже.

• а — b
Возвращает тип: bool.
Семантика: возвращает истину, если а и b представляют один и тот же элемент 5.

• а !- b
Возвращает тип: bool.
Семантика: возвращает истину, если а и b представляют разные элементы S.

Инварианты
• Замкнутость.

Результат ор(а. Ь) также является элементом S.

• Ассоциативность.
ор(ор(а. Ь). с) — ор(а. ор(Ь. с))
• Определение нейтрального элемента.
ор(а, i ) == а

1 6 . 5 . m u t a b l e _ q u e u e

mutable_queue<IndexedType. Container. Compare. ID>

Адаптер mutable_queue представляет собой специальный вид очереди по при-
оритетам (реализована с использованием кучи), которая имеет операцию обнов-
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ления (update). Это позволяет изменять порядок элементов в очереди. После того
как критерий упорядочения для объекта элемента х меняется, необходимо вызы-
вать Q.update(x). Чтобы эффективно находить х в очереди, необходимо написать
функтор (объект-функцию) для отображения х в уникальный идентификатор (ID),
который mutable_queue затем использует для отображения размещения элемента
в куче. Генерируемые идентификаторы должны быть от 0 до N, где ./V — значение,
переданное конструктору mutable_queue.

Параметры шаблона
Ниже приведены параметры шаблона адаптера mutable_queue.

• IndexedType

Если ID не поддерживается, то должна быть определена функция index(t)
(где t — объект типа IndexedType), которая возвращает некоторый целый
тип.

• Container
Модель для RandomAccessContainer. Тип значения контейнера должен быть та-
ким же, как тип IndexedType.
По умолчанию: std: :vector<IndexedType>.

• Compare
Модель для BinaryPredicate (бинарный предикат), которая получает объекты
типа IndexedType в качестве аргументов.
По умолчанию: std: :less<typename Container: :value_type>.

• ID

Модель для ReadablePropertyMap, которая принимает IndexedType в качестве типа
ключа, а возвращает некоторый целый тип в качестве типа значения.
По умолчанию: i dent i ty_property_map.

Методы
Ниже приведены методы адаптера mutable_queue.

• valuejtype
Тот же тип, что и IndexedType.

• size_type
Тип, используемый для представления размера очереди.

• mutable_queue(size_type n. const Compares с.
const ID& id = IDO)

Конструктор. Резервируется место для п элементов.

• template <class Inputlterator>
mutable_queue(lnputlterator first, Inputlterator last,
const Compares с const IDS id = IDO)

Конструктор. Контейнер std:: vector no умолчанию заполняется из диапазона
[first, last).
• bool empty О const

Возвращает истину, если очередь пуста.
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• void popО

Удаляет объект из очереди.

• value_type& top()

Возвращает ссылку на первый элемент очереди.

• value_type& front О

Другое имя для top().

• void push(const value_type& x)

Вставляет копию объекта х в очередь.

• void update(const value_type& x)

«Значение» элемента изменилось, и должно быть заново произведено упо-
рядочение кучи. Этот метод подразумевает, что имеется старый элемент
у в куче, для которого index (у) == index(x), и что х— новое значение эле-
мента.

16.6. Непересекающиеся множества

16.6.1. disjoint_sets
disjoint_sets<RankMap. ParentMap. FindCompress>
Класс di s joi nt_sets предоставляет операции шхнепересекающихся множествах

(НМ), иногда называемых структурой данных для объединения и поиска (union-
find data structure). Структура данных НМ поддерживает набор 5 = 5,, S2,..., Sk

непересекающихся множеств. Каждое множество идентифицируется своим
представителем, взятым из множества. Множества представлены корневыми
деревьями, которые закодированы в отображении свойства ParentMap. Для уско-
рения операций используются две эвристики: объединение по рангу и сжатие
путей.

Параметры шаблона
Ниже приведены параметры шаблона класса disjoint_sets.

RankMap Должен быть моделью ReadWritePropertyMap с целым
типом значения и типом ключа, совпадающим с ти-
пом элемента множества

ParentMap Должен быть моделью ReadWritePropertyMap. Типы
ключа и значения должны совпадать с типом элемен-
та множества

Fi ndCompres s Должен быть одним из функциональных объектов,
которые мы обсудим позднее в этом разделе.

По умолчанию: find_with_full_path_compression

Пример
Типичный образец использования непересекающихся множеств можно обнару-
жить в алгоритме kruskal jninimum_spanning_tree(). В примере в листинге 16.1 мы
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вызываем link О вместо union_set(), так как и и v получаются из find_set(), а зна-
чит, уже являются представителями своих множеств.

Листинг 16.1. Использование непересекающихся множеств

disjoint_sets<RankMap. ParentMap, FindCompress> dsets(rank. p);

for (ui = vertices(G).first: ui != vertices(G).second: ++ui)
dsets.make_set(*ui):

while ( IQ.emptyO ) {
e = Q.frontO;
Q.popO:
u • dsets.find_set(source(e)):
v = dsets.find_set(target(e)):
i f ( u != v ) {

*out++ - e:
dsets.link(u. v): // связывание

}
}

Методы
Ниже приведены возможные методы класса disjoint_sets.

• disjoint_sets(RankMap г. ParentMap p)

Конструктор.

• disjoint_sets(const disjoint_sets& x)

Конструктор копирования.

• template <typename Element>
void make sett lement x)

Создает множество из одного элемента, содержащего элемент х.

• template <typename Element>
void link (Element x. Element y)

Объединить два множества, представленные элементами х и у.

• template <typename Element>
void union_set(Element x. Element y)

Объединить два множества, содержащие элементы х и у. Это эквивалентно
link(find_set(x). find_set(y)).

• template <typename Element>
Element find set (Element x)

Возвращает представителя множества, содержащего элемент х.

• template <typename Element Iterators
std::size_t count_sets( Element Iterator f i r s t .

Element Iterator last)

Возвращает число непересекающихся множеств.

• template <typename Elementlterator>
void compress_sets(ElementIterator f i r s t .

Elementlterator last)

Выравнивает дерево родителей так, что родитель каждого элемента является
его представителем.
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Сложность
Временная сложность порядка 0(та(т, п)), где а — функция, обратная функции
Аккермана, т — число операций на непересекающихся множествах (make_set(),
find_set() и linkO) и п — число элементов. Функция, обратная функции Аккер-
мана, растет очень медленно, намного медленнее логарифма.

16.6.2. f ind_with_path_halving

f1nd_wi th_path_hal vi ng

Этот функтор находит вершину-представителя для компоненты, в которой
содержится элемент х, и в то же время сжимает дерево, используя деление пути
пополам.

template <typename ParentMap. typename Element>
Element operator О(ParentMap p. Element x)

1 6 . 6 . 3 . f i n d _ w i t h _ f u I l _ p a t h _ c o m pression

find with_full path_compression

Этот функтор находит вершину-представителя для компоненты, в которой
содержится элемент х, и в то же время сжимает дерево, используя полное сжатие
пути.

template <typename ParentMap. typename Element>
Element operatorO(ParentMap p, Element x)

16.7. tie
template <typename Tl. typename T2>
tuple<Tl. T2> tie(Tl& a. T2& b);

Эта функция из Boost Tuple Library (библиотека кортежей), написанная Яак-
ко Ярви, делает более удобной работу с функциями, которые возвращают пары
(или, в общем случае, кортежи). Функция tie() позволяет присваивать два значе-
ния пары двум различным переменным.

Где определена
Функция tie() находится в файле boost/tuple/tupLe.hpp.

Пример
В примере функция tie() используется вместе с функцией verticesO, которая
возвращает пару типа std: :pair<vertex_iterator. vertex_iterator>. Пара итерато-
ров присваивается переменным i и end.

graph_traits<graph t>: :vertex_iterator i, end:
for(tie(i. end) = vertices(g): i != end: ++i)
// ...

В листинге 16.2 приведен другой пример, который использует ti e() для рабо-
ты с std: -.set.
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Листинг 16.2. Пример использования функции tie().

#include <set>
#include <algorithm>
#include <iostream>
#inc1ude <boost/tuple/tuple.hpp>

int main() {
typedef std::set<int> SetT;
SetT::iterator i. end:
bool inserted:

int vals[5] - { 5. 2. 4. 9. 1 }:
SetT s(vals, vals + 5);
int newj/als[2] - { 3. 9 }:

for (int k = 0: k < 2; ++k) {
// Используем t i e ( ) со значением типа pair<iterator, bool>
b o o s t : : t i e d .inserted) = s.insert(new_vals[k]);
i f (!inserted)

std::cout « * i « " уже находилось во множестве."
« std::endl:

else std::cout « *i « " успешно вставлено." « std::endl;
}

return EXIT_SUCCESS:

}

Профамма выводит следующее:

3 успешно вставлено.
9 уже находилось во множестве.

1 6 . 8 . g r a p h _ p r o p e r t y _ i t e r _ r a n g e

graph_property_iter_range<Graph. PropertyTag>

Этот класс генерирует пару итераторов begin/end, которые предоставляют до-
ступ к свойству вершины для всех вершин в графе или к свойству ребра для всех
ребер в графе.

Пример
В примере (листинг 16.3) перебираются все вершины в графе, с присвоением строк
в свойство «имя». Затем снова перебираются все вершины и выводятся имена
в стандартный вывод.

Листинг 16.3. Файл graph-property-iter-eg.cpp

< graph-property-iter-eg.cpp > =
#include <string>
#include <boost/graph/adjacencyji st.hpp>
#include <boost/graph/property_iter_range.hpp>

int
mainO

продолжение •£>

ndl:
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Листинг 16.3 {продолжение)

{
using namespace boost:
typedef adjacencyjlist < l is ts. vecS. directedS,

property < vertex_name_t. std::string > >graph_t:
graph_t g(3):

const char *vertex_names[] = { "Kubrick". "Clark", "Hal" };
int i = 0;
graph_property_iter_range < graph_t. vertex_name_t >::iterator v. v_end:
for (tie(v, v_end) » get_property_iter_range(g. vertex_name):

v != v_end: ++v. ++i)
*v - vertex_names[i]:

tie(v, v_end) - get_property_iter_range(g, vertex_name):
std::copy(v. v_end. std::ostream_iterator < std::string >

Cstd::cout. " ")):
std::cout « std::endl;
return 0:

}

Программа выводит следующее:

Kubrick Clark Hal

Где определена
Класс graph_property_iter_range находится в файле boost/graph/propertyjter_range.hpp.

Параметры шаблона
Ниже приведены параметры шаблона класса graph_property_iter_range.

Graph Графовый тип должен быть моделью PropertyGraph.

Property Tag Тег указывает, к какому свойству ребра или верш и -
ны происходит доступ.

Ассоциированные типы
Ниже приведены ассоциированные типы класса graph_property_iter_range.

• graph_property_iter_range::iterator-

Изменяемый итератор, тип значения которого — свойство, указанное тегом

свойства.

• graph_property_iter_range::const_iterator

Константный итератор, тип значения которого — свойство, указанное тегом
свойства.

• graph_property_iter_range::type

Тип std: :pair<iterator, i t e r a t o r s

• graph_property_iter_range::const_type

Тип std: :pair<const_iterator. const_iterator>.

Функции — методы
He имеет.
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Функции — не методы
Ниже приведены функции — не методы класса graph_property_iter_range.

• tempiate<typename Graph, typename Tag>
typename graph_property_iter_range<Graph, Tag>::type
get_property_iter_range(Graph& graph, const Tag& tag)

Возвращает пару изменяемых итераторов, которые дают доступ к свойству,
указанному тегом. Итераторы пробегают по всем вершинам или по всем реб-
рам графа.

• tempiate<typename Graph, typename Tag>
typename graph_property_iter_range<Graph. Tag>::const_type
get_property_iter_range(const Graph& graph,

const Tag& tag)

Возвращает пару константных итераторов, которые дают доступ к свойству,
указанному тегом. Итераторы пробегают по всем вершинам или по всем ре-
брам графа.

•
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