
Cкользкие места C++

Как избежать проблем

при проектировании и компиляции

ваших программ

Стефан К. Дьюхэрст

Москва, 2017

C++ Gotchas

Avoiding Common Problems

in Coding and Design

Stephen C. Dewhurst

Addison-Wesley

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Стефан К. Дьюхэрст

Скользкие места C++

Как избежать проблем
при проектировании и компиляции

ваших программ

УДК 004.4
ББК 32.973.26-018.2

Д92

Стефан К. Дьюхэрст
Д92 Скользкие места С++. Как избежать проблем при проектировании и компи-

ляции ваших программ. – М.: ДМК Пресс. – 264 с.: ил.

ISBN 9785-97060-475-5

УДК 004.4
ББК 32.973.26-018.2

Original English language edition published by Pearson Education, Inc. Copyright ©

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой
бы то ни было форме и какими бы то ни было средствами без письменного разрешения
владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но поскольку вероят-
ность технических ошибок все равно существует, издательство не может гарантировать
абсолютную точность и правильность приводимых сведений. В связи с этим издательство
не несет ответственности за возможные ошибки, связанные с использованием книги.

Copyright © by Pearson Education, Inc.

 © Ïåðåâîä íà ðóññêèé ÿçûê, îôîðìëåíèå,

ÄÌÊ

Вы держите в руках руководство по тому, как не допускать и исправлять 99% ти-
пичных, разрушительных и просто любопытных ошибок при проектировании и реали-
зации программ на языке C++. Эту книгу можно рассматривать также, как взгляд по-
священного на нетривиальные особенности и приемы программирования на C++.

Обсуждаются как наиболее распространенные «ляпы», имеющиеся почти в лю-
бой программе на C++, так и сложные ошибки в использовании синтаксиса, пре-
процессора, преобразований типов, инициализации, управления памятью и ресур-
сами, полиморфизма, а также при проектировании классов и иерархий. Все ошибки
и их последствия обсуждаются в контексте. Подробно описываются способы разре-
шения указанных проблем.

Автор знакомит читателей с идиомами и паттернами проектирования, с помо-
щью которых можно решать типовые задачи. Читатель также узнает много нового
о плохо понимаемых возможностях C++, которые применяются в продвинутых
программах и проектах. На сайте http://www.semantics.org можно найти полный
код примеров из книги.

В книге рассказывается, как миновать наиболее серьезные опасности, подсте-
регающие программиста на C++. Программисты найдут в ней практические реко-
мендации, которые позволят им стать настоящими экспертами.

Издание предназначено для всех программистов, желающих научиться писать
правильные и корректно работающие программы на языке С++.

Пресс
ISBN 978-5-97060-475-5 (рус.)

ISBN 978-0-321-12518-7 (англ.)

èçäàíèå,

Содержание

Предисловие .. 9

Благодарности ... 13

Глава 1. Основы
Совет 1. Избыточное комментирование ... 15

Совет 2. Магические числа ... 17

Совет 3. Глобальные переменные .. 19

Совет 4. Отличайте перегрузку от инициализации аргументов

по умолчанию ... 21

Совет 5. О неправильной интерпретации ссылок 22

Совет 6. О неправильной интерпретации const 25

Совет 7. Не забывайте о тонкостях базового языка 26

Совет 8. Отличайте доступность от видимости 29

Совет 9. О неграмотности .. 33

Лексика ... 33

Нулевые указатели .. 34

Акронимы .. 35

Совет 10. Не игнорируйте идиомы ... 35

Совет 11. Не мудрствуйте лукаво ... 38

Совет 12. Не ведите себя как дети ... 40

Глава 2. Синтаксис

Совет 13. Не путайте массивы с инициализаторами 42

Совет 14. Неопределенный порядок вычислений 43

Порядок вычисления аргументов функции 43

Порядок вычисления подвыражений ... 44

Порядок вычисления размещающего new 45

Операторы, которые фиксируют порядок вычислений 46

Некорректная перегрузка операторов ... 47

Совет 15. Помните о предшествовании ... 47

Приоритеты и ассоциативность ... 47

Проблемы, связанные с приоритетом операторов 48

Проблемы, связанные с ассоциативностью 49

Совет 16. Подводные камни в предложении for 50

Совет 17. Принцип «максимального куска» .. 53

66666 СодержаниеСодержаниеСодержаниеСодержаниеСодержание

Совет 18. О порядке следования спецификаторов в объявлениях 54

Совет 19. Функция или объект? .. 55

Совет 20. Перестановка квалификаторов типа 55

Совет 21. Автоинициализация .. 56

Совет 22. Статические и внешние типы .. 58

Совет 23. Аномалия при поиске операторной функции 58

Совет 24. Тонкости оператора -> ... 60

Глава 3. Препроцессор

Совет 25. Определение литералов с помощью #define 62

Совет 26. Определение псевдофункций с помощью #define 64

Совет 27. Не увлекайтесь использованием директивы #if 66

Использование директивы #if для отладки 66

Использование #if для переносимости .. 68

А как насчет классов? .. 69

Практика – критерий истины ... 70

Совет 28. Побочные эффекты в утверждениях 70

Глава 4. Преобразования

Совет 29. Преобразование посредством void * 73

Совет 30. Срезка .. 76

Совет 31. Преобразование в указатель на константу 78

Совет 32. Преобразование в указатель на указатель на константу 79

Совет 33. Преобразование указателя на указатель на базовый класс 82

Совет 34. Проблемы с указателем на многомерный массив 82

Совет 35. Бесконтрольное понижающее приведение 84

Совет 36. Неправильное использование операторов преобразования .. 84

Совет 37. Непреднамеренное преобразование с помощью

конструктора .. 88

Совет 38. Приведение типов в случае множественного наследования ... 91

Совет 39. Приведение неполных типов .. 92

Совет 40. Приведения в старом стиле .. 93

Совет 41. Статические приведения .. 94

Совет 42. Инициализация формальных аргументов

временными объектами ... 97

Совет 43. Время жизни временных объектов 100

Совет 44. Ссылки и временные объекты... 101

Совет 45. Неоднозначность при использовании dynamic_cast 104

Совет 46. Контравариантность ... 108

Глава 5. Инициализация

Совет 47. Не путайте инициализацию и присваивание 111

77777СодержаниеСодержаниеСодержаниеСодержаниеСодержание

Совет 48. Правильно выбирайте область видимости переменной 114

Совет 49. Внимательно относитесь к операциям копирования 116

Совет 50. Побитовое копирование объектов классов 119

Совет 51. Не путайте инициализацию и присваивание
в конструкторах .. 121

Совет 52. Несогласованный порядок членов в списке инициализации ... 123

Совет 53. Инициализация виртуальных базовых классов 124

Совет 54. Инициализация базового класса
в конструкторе копирования .. 128

Совет 55. Порядок инициализации статических данных
во время выполнения ... 131

Совет 56. Прямая инициализация и инициализация копированием ... 133

Совет 57. Прямая инициализация аргументов 136

Совет 58. Что такое оптимизация возвращаемого значения? 137

Совет 59. Инициализация статических членов в конструкторе 141

Глава 6. Управление памятью и ресурсами

Совет 60. Различайте выделение и освобождение памяти

для скаляров и для массивов ... 143

Совет 61. Контроль ошибок при выделении памяти 146

Совет 62. Подмена глобальных new и delete 148

Совет 63. Об области видимости и активации функций-членов new

и delete ... 150

Совет 64. Строковые литералы в выражении throw 151

Совет 65. Обрабатывайте исключения правильно 154

Совет 66. Внимательно относитесь к адресам локальных объектов ... 157

Исчезающие фреймы стека ... 157

Затирание статических переменных .. 158

Идиоматические трудности ... 159

Проблемы локальной области видимости 159

Исправление ошибки путем добавления static............................... 160

Совет 67. Помните, что захват ресурса есть инициализация 161

Совет 68. Правильно используйте auto_ptr ... 164

Глава 7. Полиморфизм

Совет 69. Кодирование типов .. 168

Совет 70. Невиртуальный деструктор базового класса 172

Неопределенное поведение .. 172

Виртуальные статические функции-члены 173

Всех обманем .. 174

Исключения из правил ... 175

Совет 71. Сокрытие невиртуальных функций 176

Совет 72. Не делайте шаблонные методы слишком гибкими 179

Совет 73. Перегрузка виртуальных функций 180

88888 СодержаниеСодержаниеСодержаниеСодержаниеСодержание

Совет 74. Виртуальные функции с аргументами по умолчанию 181

Совет 75. Вызовы виртуальных функций из конструкторов

и деструкторов ... 183

Совет 76. Виртуальное присваивание .. 185

Совет 77. Различайте перегрузку, переопределение и сокрытие 187

Совет 78. О реализации виртуальных функций

и механизма переопределения .. 192

Совет 79. Вопросы доминирования ... 197

Глава 8. Проектирование классов

Совет 80. Интерфейсы get/set .. 201

Совет 81. Константные и ссылочные данные-члены 204

Совет 82. В чем смысл константных функций-членов? 206

Синтаксис .. 206

Простая семантика и механизм работы ... 207

Семантика константной функции-члена .. 208

Совет 83. Различайте агрегирование и использование 210

Совет 84. Не злоупотребляйте перегрузкой операторов 214

Совет 85. Приоритеты и перегрузка ... 216

Совет 86. Операторы, являющиеся членами

и друзьями класса .. 217

Совет 87. Проблемы инкремента и декремента 218

Совет 88. Неправильная интерпретация шаблонных операций

копирования .. 221

Глава 9. Проектирование иерархий

Совет 89. Массивы объектов класса .. 224

Совет 90. Не всегда один контейнер можно подставить

вместо другого... 226

Совет 91. Что такое защищенный доступ? ... 229

Совет 92. Применение открытого наследования

для повторного использования кода .. 232

Совет 93. Конкретные открытые базовые классы 235

Совет 94. Не пренебрегайте вырожденными иерархиями 236

Совет 95. Не злоупотребляйте наследованием 237

Совет 96. Управление на основе типов... 240

Совет 97. Космические иерархии ... 242

Совет 98. Задание «интимных» вопросов объекту 244

Совет 99. Опрос возможностей .. 248

Список литературы ... 252

Предметный указатель .. 253

Предисловие

Эта книга – результат почти двадцатилетней работы, полной мелких разочаро-
ваний, серьезных ошибок, бессонных ночей и выходных, добровольно проведен-
ных за клавиатурой компьютера. Я включил в нее 99 глав, в которых описы-
ваются «скользкие места» (gotcha) в языке C++, которые иногда являются
источниками распространенных ошибок и путаницы, а иногда просто вызывают
интерес. С большинством из них я сталкивался лично (как это ни печально).

У слова «gotcha» довольно туманная история и множество определений.
В этой книге мы будем понимать под ним типичную проблему, возникающую при
проектировании и программировании на языке C++, которую можно предотвра-
тить. В книге описаны самые разные проблемы такого рода: мелкие синтаксиче-
ские тонкости, серьезные огрехи при проектировании и поведение, которое про-
тивно всем «нормам общежития».

Почти десять лет, как я начал включать замечания об отдельных скользких
местах в материалы курса по C++, который я читаю. Мне казалось, что, обращая
внимание студентов на типичные ошибки и просчеты, и одновременно показывая,
как следует решать задачу правильно, я буду способствовать тому, что новые по-
коления программистов на C++ не станут повторять грехов своих предшест-
венников. В общем и целом, эта идея оказалась удачной, и меня попросили подгото-
вить собрание взаимосвязанных скользких мест для презентации на конференциях.
Презентации завоевали популярность (не я один такой?), в результате чего я полу-
чил предложение написать книгу на эту тему.

Когда заходит речь о том, как не поскользнуться при работе с C++ или испра-
вить последствия ошибки, нельзя не затронуть такие смежные вопросы, как наи-
более распространенные паттерны проектирования, идиомы и технические дета-
ли языка.

Эта книга не о паттернах проектирования, но мы часто будем ссылаться на
них как на средство обойти скользкое место. Названия паттернов по традиции
принято писать с большой буквы, например: Template Method (Шаблонный Ме-
тод) или Bridge (Мост). При упоминании паттерна мы вкратце опишем его суть,
если это не слишком сложно, но за подробным обсуждением отсылаем к работам,
специально посвященным паттернам. Более полное описание конкретных паттер-
нов, равно как и глубокое обсуждение этой темы в общем, можно найти в книге
Эриха Гаммы и др. «Design patterns»*. Описания паттернов Acyclic Visitor (Ацик-
лический ациклический Посетительпосетитель), Monostate (Моносостояниемо-
носостояние) и Null Object (Пустой пустой Объектобъект) можно найти в книге

* Имеется русский перевод: Гамма и др. «Паттерны проектирования». (Прим. перев.)

1010101010 ПредисловиеПредисловиеПредисловиеПредисловиеПредисловие

Robert Martin «Agile Software Development» («Разработка программ с удовольст-
вием»).

С точки зрения скользких мест, у паттернов проектирования есть два важных
свойства. Во-первых, каждый паттерн – это описание апробированной, неизмен-
но приносящей успех техники проектирования, которую можно адаптировать под
конкретные условия, возникающие при решении новых задач. Во-вторых, и это
даже более важно, само упоминание о том, что в приложении используется тот
или иной паттерн, документирует не только примененную технику, но также при-
чины и результаты ее применения.

Например, если мы видим, что при проектировании программы был использо-
ван паттерн Bridge, то сразу понимаем, что реализация абстрактного типа данных
разбита на интерфейсный класс и класс реализации. Кроме того, мы знаем, что
сделано это было для того, чтобы разорвать связь между интерфейсом и реализа-
цией, в результате чего изменение реализации никак не затронет пользователей
интерфейса. Знаем мы и то, какие накладные расходы во время выполнения вле-
чет за собой такое разделение, как организован исходный код, реализующий абст-
рактный тип данных, и целый ряд других деталей. Название паттерна – это недву-
смысленная ссылка на кладезь информации и опыта, стоящий за соответствующей
техникой. Обдуманное и правильное применение паттернов и связанной с ними
терминологии при проектировании и документировании программ помогает по-
нять код и не споткнуться на скользком месте.

C++ — это сложный язык программирования, а чем сложнее язык, тем важнее
употребление идиом. В контексте языка программирования под идиомой пони-
мается широко распространенная и имеющая всем понятный смысл комбинация
низкоуровневых языковых средств, приводящая к появлению высокоуровневой
конструкции. Такова же роль паттернов в проектировании программ. Поэтому мы
и можем говорить об операциях копирования, функциональных объектах, интел-
лектуальных указателях и возбуждении исключений в C++, не опускаясь до уров-
ня деталей реализации.

Важно подчеркнуть, что идиома — это не просто известная комбинация языко-
вых средств, но и определенные ожидания относительно того, как эта комбинация
будет себя вести. Каков смысл операции копирования? Чего ожидать в случае воз-
буждения исключения? Многие советы в этой книге касаются распознавания
идиом и их использования в проектировании и кодировании. Можно сказать и
так: многие из описанных скользких мест — не что иное, как игнорирование ка-
кой-то идиомы C++, а для решения проблемы часто всего-то и нужно, что следо-
вать подходящей идиоме (см. «Совет 10»).

Немало глав в этой книге посвящено описанию некоторых нюансов языка,
которые часто понимают неправильно, что и приводит к проблемам. Хотя некото-
рые примеры могут показаться надуманными, но незнание соответствующего ма-
териала не позволит вам стать настоящим экспертом по C++. Эти «закоулки»
сами по себе могли бы стать предметом весьма любопытных и полезных исследо-
ваний. Существуют они в C++ не без причины, а опытные программисты нередко
прибегают к ним при разработке нетривиальных приложений.

1111111111ПредисловиеПредисловиеПредисловиеПредисловиеПредисловие

Между «скользкими местами» и паттернами проектирования можно провести
и еще одну аналогию: важность изложения предмета на сравнительно простых
примерах. Простые паттерны очень важны. В некотором смысле они даже важнее
технически более трудных паттернов, поскольку выше вероятность их широкого
применения.

Точно также, описанные в этой книге скользкие места сильно разнятся по
сложности: от простого увещевания действовать как ответственные профессиона-
лы (см. «Совет 12») до предупреждения избегать неверной интерпретации правила
доминирования при виртуальном наследовании (см. «Совет 79»). Но по аналогии
с паттернами, в повседневной практике призыву подходить к делу ответственно
скорее найдется место, нежели правилу доминирования.

Через всю книгу красной нитью проходят две темы. Первая – это исключи-
тельная важность соглашений. Особенно актуально это для такого сложного язы-
ка, как C++. Следование принятым соглашениям позволяет эффективно и точно
доносить свои мысли до других людей. Вторая тема – это осознание того факта,
что написанный нами код кому-то предстоит сопровождать. Сопровождение мо-
жет быть прямым (и тогда наша программа должна быть понятна компетентному
специалисту), или косвенным и (в этом случае нужно быть уверенным, что код
останется правильным, даже если его поведение будет модифицировано в резуль-
тате изменений, которые будут внесены в отдаленном будущем).

Настоящая книга построена в виде собрания коротких эссе, в каждом из кото-
рых описывается одна или несколько взаимосвязанных проблем и даются советы,
как избежать их или устранить последствия. Я не уверен, что можно написать
внутренне целостную книгу на эту тему в силу «анархической» природы мате-
риала. Тем не менее, материал разбит на главы в соответствии с общей природой
проблем или областями, в которых они обычно встречаются.

Кроме того, при обсуждении одного скользкого места неизбежно приходится
затрагивать и другие. Когда это имеет смысл, то есть практически всегда, я даю
прямые отсылки. Связность изложения внутри одной темы иногда также оказы-
вается под вопросом. Часто, прежде чем переходить к описанию проблемы, нужно
представить контекст, в котором она проявляется. А это, в свою очередь, влечет за
собой обсуждение какой-то техники, идиомы, паттерна или нюанса языка и может
далеко увести от темы раздела. Я старался свести такое «растекание мыслию по
древу» к минимуму, но, думается, было бы нечестно отказаться от него полнос-
тью. Для эффективного программирования на C++ нужно осознанно применять
знания из таких разных областей, что практически невозможно вообразить, как
исследовать этиологию этого процесса, не прибегая к подобным эклектичным
рассуждениям.

Разумеется, вовсе не обязательно – и даже не рекомендуется – читать эту кни-
гу подряд, от «Совета 1» к «Совету 99». Прием лекарства в таких дозах может
навеки отвратить вас от программирования на C++. Гораздо лучше начать с того
места, на котором вам уже случалось поскользнуться, или с того, которое кажется
вам интересным, а потом следовать по ссылкам. А можно вообще читать в случай-
ном порядке.

1212121212 ПредисловиеПредисловиеПредисловиеПредисловиеПредисловие

В тексте применяется ряд типографских эффектов, призванных облегчить ус-
воение материала. Во-первых, неправильный или не рекомендуемый код напеча-
тан на сером фоне, а правильный – на белом. Во-вторых, приведенный в тексте
код для краткости и ясности слегка отредактирован. Поэтому примеры не
будут компилироваться без дополнительного кода. Исходный код для нетри-
виальных примеров можно скачать с сайта автора по адресу www.semantics.org.
Для таких случаев в тексте приводится сокращенный путь, например: gotcha00/
somecode.cpp.

И напоследок одно предостережение: чего ни в коем случае не следует делать
со «скользкими местами», так это повышать их в статусе до идиом или паттернов.
Один из признаков правильного использования паттерна или идиомы состоит
в том, что идея ее применения в данном контексте возникает подсознательно,
спонтанно.

Распознавание же скользкого места можно уподобить условному рефлексу на
опасность: обжегшись на молоке, дуешь на воду. Но, как и в случае спичек и огне-
стрельного оружия, совершенно необязательно обжигаться или получать рану
в голову самому, чтобы научиться распознавать опасности опасность и сто-
рониться ее. Обычно бывает достаточно предупреждения. Считайте эту книгу
средством прямо смотреть в глаза опасностям, подстерегающим вас в темных за-
коулках C++.

Стефан К. Дьюхэрст
Карвер, Массачусетс

июль 2002

Благодарности

Редакторы часто удостаиваются лишь краткого упоминания в благодарностях,
например, такого: «... я также благодарен своему редактору, который, наверное,
чем-то занимался, пока я корпел над рукописью». Но без моего редактора , Дэбби
Лафферти (Debbie Lafferty), эта книга вообще не увидела бы света. Когда я явил-
ся к ней с малоинтересным предложением написать заурядный учебник по про-
граммированию, она предложила вместо этого расширить главу, посвященную
скользким местам. Я отказывался. Она настаивала. Последнее слово осталось за
ней. К счастью, Дэбби была достаточно тактична, во всяком случае, извечного ре-
дакторского: «Ну, мы же вам говорили», я от нее не слышал. Ну и, кроме того, она-
то уж точно кое-чем занималась, пока я корпел над рукописью.

Я также выражаю благодарность рецензентам, которым делились своим вре-
менем и опытом, чтобы эта книга получилась лучше. Рецензировать сырую руко-
пись – занятие небыстрое, часто утомительное, иногда вызывающее раздражение.
Это акт профессиональной любезности, не приносящий почти никаких матери-
альных выгод (см. «Совет 12»). Я весьма ценю глубокие, а иногда колкие коммен-
тарии своих рецензентов. Советами по техническим вопросам и нормам обще-
ственной морали, исправлениями, фрагментами кода и ехидными замечаниями со
мной поделились Стив Клэмидж (Steve Clamage), Томас Гшвинд (Thomas
Gschwind), Брайан Керниган (Brian Kernighan), Патрик МакКиллен (Patrick
McKillen), Джеффри Олдэм (Jeffrey Oldham), Дэн Сакс (Dan Saks), Мэттью Уил-
сон (Matthew Wilson) и Леор Золман (Leor Zolman).

Леор начал рецензировать книгу задолго до того, как появилась рукопись, по-
скольку посылал мне ядовитые комментарии на публикации в Web ранних вари-
антов некоторых из описанных в этой книге скользких мест. Сара Хьюинс (Sarah
Hewins) – мой лучший друг и самый строгий критик – заслужила оба эти титула,
рецензируя разные версии рукописи. Дэвид Р. Дьюхэрст (David R. Dewhurst) час-
то откладывал весь проект на неопределенное время. Грег Комей (Greg Comeau)
любезно позволил мне пользоваться своим замечательным и полностью поддер-
живающим стандарт C++ компилятором для проверки кода.

Как и любая нетривиальная книга по C++, эта является плодом трудов многих
людей. На протяжении ряда лет мои студенты, клиенты и коллеги обогащали мой,
не сказать, чтобы счастливый, опыт преодоления скользких мест C++, а многие
помогали находить решения проблем. Шаблон Select в «Совете 11» и полити-
ка OpNewCreator из «Совета 70» были впервые были опубликованы к книге
Andrei Alexandrescu «Modern C++ Design»*.

* Имеется русский перевод: Андрей Александреску «Современное проектирование
на C++», издательский дом «Вильямс», 2002. (Прим. перев.)

1414141414 БлагодарностьБлагодарностьБлагодарностьБлагодарностьБлагодарность

С проблемой возврата ссылки на константный аргумент, описанной в «Совете
44», я впервые столкнулся в книге Cline и др. «C++ FAQ» («Часто задаваемые воп-
росы по C++»), после чего она немедленно стала появляться в коде, написанном
моими клиентами. Там же описывается упомянутый в «Совете 73» способ, позво-
ляющий уйти от применения перегруженных виртуальных функций.

Шаблон Cptr из «Совета 83» – это модифицированная версия шаблона
CountedPtr, описанного в книге Nicolai Josuttis «The C++ Standard Library»
(Стандартная библиотека C++).

Скотт Мейерс немало написал о нежелательности перегрузки операторов &&,
||, и , в своей книге «More Effective C++»*. В книге «Effective C++»* он подробно
обсуждает необходимость возврата результата бинарного оператора по значению,
о чем идет речь в(см. «Совете 58», а в книге «Effective STL» (Эффективное ис-
пользование STL) описывает неправильное применение шаблона auto_ptr
(см. «Совет 68»). Упомянутая в «Совете 87» техника возврата константного зна-
чения из операторов постфиксного инкремента и декремента также описана
в книге «More Effective C++».

От Дэна Сакса я впервые услышал убедительные аргументы в пользу файла
с опережающими объявлениями («Совет 8»). Он же первым описал «сержантс-
кий оператор» («Совет 17») и убедил меня не проверять выход за границы диапа-
зона значений при инкременте и декременте перечислений («Совет 87»).

* Имеется русский перевод: Скотт Мейерс «Наиболее эффективное использование
C++», издательство ДМК, 2000. (Прим. перев.)

** Имеется русский перевод: Скотт Мейерс «Эффективное использование C++», из-
дательство ДМК, 2000. (Прим. перев.)

Глава 1. Основы

Тот факт, что некоторая проблема описана в разделе «Основы», не означает, что
она не может быть серьезной или часто встречающейся. На самом деле, широкое
распространение ошибок, описанных в этой главе, — гораздо больший повод для
обеспокоенности, нежели чем технически более серьезные проблемы, которые об-
суждаются в последующих главах. Сама простота и фундаментальность рассмат-
риваемых ниже ошибок подразумевает, что в той или иной степени они встреча-
ются почти в любом коде на C++.

Совет 1. Избыточное комментирование
Многие комментарии не нужны. Из-за них труднее читать и сопровождать

код, а часто они только сбивают с толку сопровождающего программу программи-
ста. Рассмотрим следующий пример:

a = b; // ïðèñâîèòü ïåðåìåííîé a çíà÷åíèå b

Этот комментарий ничего не сообщает о смысле предложения сверх того, что
уже написано в самом коде, поэтому он бесполезен. Даже хуже, чем бесполезен.
Он мешает. Во-первых, он отвлекает читателя от кода, увеличивая объем текста,
который тот должен воспринять. Во-вторых, сопровождающему добавляется ра-
боты, поскольку комментарии приходится изменять, если модифицируется текст
программы. В-третьих, при сопровождении этим часто пренебрегают.

c = b; // ïðèñâîèòü ïåðåìåííîé a çíà÷åíèå b

Добросовестный программист, сопровождающий программу, не может просто
предположить, что комментарий не соответствует действительности. Он обязан
проследить за ходом исполнения программы, чтобы понять, : то ли это ошибка, то
ли любезность (c является ссылкой на a), то ли некоторая тонкость (присваива-
ние значения переменной c в дальнейшем каким-то образом приведет к присваи-
ванию того же значения переменной a). С самого начала не следовало сопровож-
дать эту строку комментарием:

a = b;

Этот код и так совершенно ясен, без всяких комментариев, которые могут
стать неверными в ходе сопровождения. Это Данное замечание вполне согласует-
ся с выстраданным наблюдением, что самый эффективный код – это тот, который
не написан. То же относится и к комментариям: лучшим является комментарий,
который не нужно писать, поскольку и без него код самодокументирован.

Примеры излишних комментариев также часто встречаются в определениях
классов либо в результате неверно понятого стандарта кодирования, либо в про-
граммах начинающих программистов:

1616161616 ОсновыОсновыОсновыОсновыОсновы

class C {
// Îòêðûòûé èíòåðôåéñ
public:
C(); // êîíñòðóêòîð ïî óìîë÷àíèþ
~C(); // äåñòðóêòîð

// . . .
};

Такое впечатление, что читаешь какую-то шпаргалку. Если программисту, ко-
торый сопровождает вашу программу, надо напоминать, что означает метка
public:, ему вряд ли стоит ему вообще поручать сопровождение. Ни один из
этих комментариев ничего не дает опытному программисту на C++, а только за-
громождает код и увеличивает шансы на внесение ошибок в ходе сопровождения.

class C {
// Public Interface
protected:
C(int); // êîíñòðóêòîð ïî óìîë÷àíèþ

public:
virtual ~C(); // äåñòðóêòîð

// . . .
};

У программистов часто есть серьезный стимул не писать «лишних» строк
в исходном тексте. Как это ни смешно звучит, но если некоторую конструкцию
(функцию, открытый интерфейс класс и так далее) можно рационально и, следуя
принятым соглашениям, уместить на одной «странице», то есть примерно в 30—
40 строк, то ее легче понять. Если она переходит на вторую страницу, то понять ее
вдвое сложнее. А если необходима и третья, то сложность восприятия увеличи-
вается примерно в четыре раза.

Особенно отвратительна привычка помещать историю изменений в виде ком-
ментариев в начале или в конце файлов с исходными текстами:

/* 6/17/02 SCD èñïðàâèë äóðàöêóþ îøèáêó */

Это полезная информация или сопровождающий просто хвастается? Ком-
ментарий станет абсолютно ненужным через неделю-другую после вставки, но
торчать в тексте он будет годами, отвлекая внимание многих сопровождающих.
Куда лучше оставлять такие комментарии в системе управления версиями; исход-
ный текст программы на C++ – не место для списка вещей, предназначенных для
стирки.

Один из лучших способов избежать комментариев и сделать код понятным и
удобным для сопровождения: следовать простому и четко сформулированному
соглашению об именовании и выбирать имена так, чтобы они отражали назначе-
ние сущности (функции, класса, переменной и так далее). Особенно важны имена
аргументов в объявлениях. Взгляните на следующую функцию, которая прини-
мает три аргумента одного и того же типа:

/*

Èñòî÷íèê âûïîëíÿåò äåéñòâèå íàä öåëüþ.
Arg1 - êîä äåéñòâèÿ, arg2 - èñòî÷íèê, arg3 - öåëü.

*/
void perform(int, int, int);

1717171717

Вроде бы ничего страшного, но представьте, что аргументов не три, а семь или
восемь. Может быть, стоит поступить так:

void perform(int actionCode, int source, int destination);

Уже лучше, хотя еще необходим однострочный комментарий, описывающий,
что делает функция (но не как она это делает). Имена формальных аргументов
в объявлениях хороши тем, что, в отличие от комментариев, они сопровождаются
вместе с остальным кодом, хотя прямого отношения к семантике программы и не
имеют. Не могу представить себе программиста, который изменил бы смысл второго
и третьего аргумента функции perform, не изменив их имена, но так и вижу легионы
программистов, которые проведут такую модификацию, забыв про комментарий.

Кэти Старк (Kathy Stark) лучше всех выразила эту мысль в своей книге
«Programming in C++» (Программирование на C++): «Если в программе исполь-
зуются осмысленные и мнемонические имена, то необходимость в дополнитель-
ных комментариях возникает лишь изредка. Если же используемые имена ничего
не означают, то маловероятно, что комментарий сделает код яснее.»

Еще один способ свести число комментариев к минимуму – пользоваться
стандартными или хорошо известными компонентами:

printf("Hello, World!"); // âûâåñòè "Hello, World" íà ýêðàí

Этот комментарий бесполезен, к тому же и верен-то не всегда. Дело не в том,
что стандартные компоненты обязательно самодокументированы, а в том, что они
уже хорошо документированы и всем известны.

swap(a, a+1);
sort(a, a+max);
copy(a, a+max, ostream_iterator<T>(cout,"\n"));

Поскольку swap, sort и copy – стандартные компоненты, дополнительный
комментарий к ним только засоряет текст и вносит неточность в описание стан-
дартных операций.

Я отнюдь не хочу сказать, что любой комментарий по природе своей вреден.
Напротив, часто они комментарии необходимы, но их нужно сопровождать, а это
обычно сложнее, чем сопровождать сам исходный текст, который они призваны
документировать. Комментарий не должен повторять очевидное или нести ин-
формацию, которую лучше хранить в каком-нибудь другом месте. Задача не
в том, чтобы любой ценой избавиться от комментариев, а в том, что свести их
объем к минимуму, необходимому для того, чтобы код было проще понять и со-
провождать.

Совет 2. Магические числа
Здесь под «магическими числами» я понимаю числовые литералы, употребляе-

мые в контексте, где следовало бы воспользоваться именованными константами:

class Portfolio {
// . . .
Contract *contracts_[10];
char id_[10];

};

Совет 2. Магические числаСовет 2. Магические числаСовет 2. Магические числаСовет 2. Магические числаСовет 2. Магические числа

1818181818 ОсновыОсновыОсновыОсновыОсновы

Основная проблема, связанная с магическими числами, в том, что у них нет
никакой внятной семантики; они могут означать все, что угодно. Число 10 – это
всего лишь 10, а не максимальное число контрактов или длина идентификатора.
Поэтому при чтении или сопровождении кода приходится выяснять, что означает
каждый литерал. А это работа ненужная и часто приводящая к не совсем правиль-
ным результатам работа.

Например, в примере выше может оказаться, что портфель заказов изначаль-
но был спроектирован неудачно, поскольку он может содержать не более десяти
заказов. Это маловато, поэтому в какой-то момент мы решаем увеличить емкость
до 32. (Если бы мы задумались о безопасности и корректности, то воспользова-
лись бы стандартным классом vector). Но теперь нам предстоит просмотреть все
исходные файлы, в которых используется класс Portfolio, найти все вхожде-
ния литерала 10 и понять, какие из них относятся к числу заказов.

На самом деле, все может обстоять еще хуже. В больших проектах, сущест-
вующих на протяжении длительного времени, иногда информация о том, что мак-
симальное число заказов равно 10, просачивается наружу и используется
в коде, который вообще не включает заголовочного файла Portfolio:

for(int i = 0; i < 10; ++i)
// ...

Означает ли число 10 в этом фрагменте максимальное число заказов? Или
длину идентификатора? Или что-то совсем из другой оперы?

Случайное сочетание числовых литералов в одном контексте может давать
самые отвратительные примеры кодирования:

if(Portfolio *p = getPortfolio())
for(int i = 0; i < 10; ++i)
p->contracts_[i] = 0, p->id_[i] = '\0';

Теперь сопровождающему надо как-то разорвать связь между инициализа-
цией различных компонентов Portfolio, которые и не должны были находиться
в одном месте, если бы не случайное совпадение значений двух разных по своей
сути величин. Нет никакого оправдания для создания такого рода проблем, когда
избежать их можно было бы совсем простым способом:

class Portfolio {
// . . .

enum { maxContracts = 10, idlen = 10 };
Contract *contracts_[maxContracts];
char id_[idlen];

};

Перечисления не занимают памяти в исполняемом коде, их применение не
вызывает никаких накладных расходов, зато мы получаем осмысленные имена
обозначаемых ими понятий в нужной области видимости.

Не столь очевидный недостаток магических чисел – неопределенность их
типа, в результате чего для хранения числа может потребоваться разный объем
памяти. Например, тип литерала 40000 зависит от платформы. Оно может быть
представлено как типом int, так и типом long. Если мы не хотим создавать себе
проблемы (например, из-за неоднозначности перегрузки) при переносе програм-

1919191919

мы на новую платформу, лучше точно сказать, что мы имеем в виду, а не полагать-
ся на компилятор:

const long patienceLimit = 40000;

И еще одна неприятность состоит в том, что литералы не имеют адреса. Про-
является она нечасто, но иногда бывает полезно указать на константу или связать
с ней ссылку:

const long *p1 = &40000; // îøèáêà!
const long *p2 = &patienceLimit; // Ïðàâèëüíî.

const long &r1 = 40000; // äîïóñòèìî, îäíàêî ñì. ñîâåò 44
const long &r2 = patienceLimit; // Ïðàâèëüíî.

Достоинств у магических чисел нет, а недостатков масса. Пользуйтесь пере-
числениями или инициализированными константами.

Совет 3. Глобальные переменные
Редко для объявления глобальной переменной находятся оправдания. Гло-

бальные переменные затрудняют повторное использование и сопровождение
кода. Первое связано с тем, что любой код, ссылающийся на глобальную перемен-
ную, тем самым зависит от нее и, значит, может использоваться только вместе
с этой переменной. Сопровождение же усложняется из-за того, что трудно понять,
где именно используется данная глобальная переменная, поскольку доступ к ней
имеет любая часть программы.

Глобальные переменные увеличивают число зависимостей между компонен-
тами, поскольку часто служат примитивным механизмом передачи сообщений.
Даже если глобальные переменные работают, устранить их из большой програм-
мы оказывается практически невозможно. Это если они работают. Так как гло-
бальные переменные никак не защищены, всякий, кто недавно приступил к со-
провождению программы, может случайно вывести из строя те ее части, которые
зависят от глобальных переменных.

Пытаясь обосновать использование глобальных переменных, часто говорят,
что они, мол, удобны. Это иллюзорный или эгоистический аргумент, поскольку
сопровождение программы обычно продолжается дольше, чем первоначальная
разработка. Предположим, что некоторой некой системе требуется доступ к неко-
торому глобальному «окружению», которое (так сформулировано в требованиях)
всегда существует в единственном числе. К несчастью, мы решили остановиться
на глобальной переменной:

extern Environment * const theEnv;

Требования тоже со временем изменяются. Незадолго до поставки продукта
заказчику обнаружилось, что одновременно может существовать два окружения.
Или три. А, может быть, их число задается во время запуска программы. Или во-
обще может динамически изменяться. Как водится, исправление нужно внести
в последнюю минуту. В большом проекте, где применяются строго регламентиро-
ванные процедуры контроля версий, для изменения каждого файла может потре-
боваться немало времени, даже если модификация минимальна и очевидна. На

Совет 3. Глобальные переменныеСовет 3. Глобальные переменныеСовет 3. Глобальные переменныеСовет 3. Глобальные переменныеСовет 3. Глобальные переменные

2020202020 ОсновыОсновыОсновыОсновыОсновы

это могут уйти недели или месяцы. А откажись мы от использования глобальной
переменной, все заняло бы пять минут:

Environment *theEnv();

Достаточно инкапсулировать доступ в функцию, и мы сможем реализовать
обобщение за счет перегрузки или инициализации аргументов по умолчанию, не
внося существенных изменений в исходный текст:

Environment *theEnv(EnvCode whichEnv = OFFICIAL);

Еще одна, не столь очевидная проблема, касающаяся глобальных переменных, –
это необходимость статической инициализации во время выполнения. Если на-
чальное значение статической переменной нельзя вычислить на этапе компиля-
ции, то приходится это делать на этапе выполнения, и тогда последствия могут
быть катастрофическими (см. «Совет 55»).

extern Environment * const theEnv = new OfficialEnv;

Если доступ к глобальной информации контролирует функция или класс, то
задание начального значения можно отложить до момента, когда это будет безо-
пасно:

�� gotcha03/environment.h

class Environment {
public:
static Environment &instance();
virtual void op1() = 0;
// . . .

protected:
Environment();
virtual ~Environment();

private:
static Environment *instance_;
// . . .

};

�� gotcha03/environment.cpp

// . . .
Environment *Environment::instance_ = 0;

Environment &Environment::instance() {
if(!instance_)

instance_ = new OfficialEnv;
return *instance_;

}
extern Environment * const theEnv = new OfficialEnv;

В данном случае мы применили простую реализацию паттерна Singleton
(Одиночка) для выполнения отложенной «инициализации» (строго говоря, это
присваивание) статического указателя на окружение и потому можем быть увере-
ны, что никогда не возникнет более одного объекта Environment. Обратите вни-
мание, что в классе Environment нет открытого конструктора, поэтому для по-
лучения статического указателя пользователь вынужден воспользоваться
функцией-членом instance. Поэтому создание объекта Environment отклады-
вается до момента первого обращения.

2121212121

Environment::instance().op1();

Важнее, однако, тот факт, что контролируемый доступ позволяет гибко адап-
тировать паттерн Singleton к изменяющимся требованиям, не затрагивая других
частей исходного текста. Позже, если мы сделаем программу многопоточной или
разрешим существование нескольких экземпляров окружения, достаточно будет
модифицировать реализацию Singleton точно так же, как мы выше модифициро-
вали функцию-обертку.

Избегайте использования глобальных переменных. Для достижения тех же
результатов имеются более безопасные и гибкие механизмы.

Совет 4. Отличайте перегрузку
от инициализации аргументов по умолчанию
Перегрузка функций имеет мало общего с инициализацией аргументов по

умолчанию. Но эти два языковых средства часто путают, поскольку они могут
порождать внешне схожие интерфейсы. Тем не менее, внутренняя семантика та-
ких интерфейсов совершенно различна:

�� gotcha04/c12.h

class C1 {
public:
void f1(int arg = 0);
// . . .

};

�� gotcha04/c12.cpp

// . . .
C1 a;
a.f1(0);
a.f1();

Проектировщик класса C1 решил применить в объявлении функции f1 аргу-
мент с начальным значением по умолчанию. В результате пользователь C1 может
при вызове f1 указать аргумент явно или опустить его, подразумевая значение 0.
В обоих показанных выше вариантах последовательность вызова будет одной и
той же:

�� gotcha04/c12.h

class C2 {

 public:

 void f2();

 void f2(int);

 // . . .

};

�� gotcha04/c12.cpp

// . . .

C2 a;

a.f2(0);

a.f2();

Совет 4Совет 4Совет 4Совет 4Совет 4

2222222222 ОсновыОсновыОсновыОсновыОсновы

Класс C2 реализован совершенно иначе. У пользователя есть выбор между
двумя различными функциями с одним и тем же именем f2. Какая из них будет
вызвана, зависит от числа переданных аргументов. В предыдущем примере вызы-
валась одна и та же функция. Здесь же вызываются разные функции, то есть се-
мантика принципиально иная.

Различие между этими двумя интерфейсами станет еще нагляднее, если мы
попытаемся взять адреса функций-членов C1::f1 и C2::f2:

�� gotcha04/c12.cpp

void (C1::*pmf)() = &C1::f1; //îøèáêà!
void (C2::*pmf)() = &C2::f2;

При данной реализации класса C2 указатель pmf будет ссылаться на функ-
цию-член f2 без аргументов. Поскольку переменная pmf указывает на функцию-
член без аргументов, то компилятор инициализирует его указателем на первую
версию f2. В случае же класса C1 мы получим ошибку компиляции, поскольку
существует лишь одна функция-член с именем f1, и она принимает аргумент типа
int.

Обычно перегрузка применяется для того, чтобы подчеркнуть, что несколько
функций имеют схожую семантику, но разные реализации. Инициализация же по
умолчанию, как правило, служит лишь для того, чтобы упростить вызов функции.
Перегрузка и аргументы по умолчанию – это разные языковые средства, у них
различные цели и разное поведение. Отличайте одно от другого. (См. также «со-
веты Совет 73» и «Совет 74»).

Совет 5. О неправильной интерпретации
ссылок
Со ссылками связаны две распространенные ошибки. Во-первых, их часто пу-

тают с указателями. Во-вторых, не пользуются ими тогда, когда это имеет прямой
смысл. Во многих случаях использование указателей в C++ – это пережиток C, и
употребление ссылок было бы уместнее.

Ссылка – это не указатель. Ссылка – эт, ао другое имя того, чем она инициали-
зируется. По существу, к ссылке можно применить только одну операцию – ини-
циализацию. Затем она становится просто еще одним способом обратиться
к сущности, которой инициализирована. (См. однако «Совет 44»). У ссылки нет
адреса, иногда под нее даже память не отводится.

int a = 12;
int &ra = a;
int *ip = &ra; // ip ññûëàåòñÿ íà a
a = 42; // ra == 42

По этой причине нельзя объявлять ссылку на ссылку, указатель на ссылку или
массив ссылок. (Хотя комитет по стандартизации C++ рассматривает возможность
разрешить ссылки на ссылки, по крайней мере, в некоторых контекстах.)

int &&rri = ra; // îøèáêà!
int &*pri; // îøèáêà!
int &ar[3]; // îøèáêà!

2323232323

К ссылкам неприменимы квалификаторы const и volatile, так как псевдо-
нимы не могут быть ни const, ни volatile, хотя ссылка может ссылаться на
сущность, объявленную как const или volatile. Попытка объявить ссылку
const или volatile приводит к ошибке компиляции:

int &const cri = a; // êîìïèëÿòîð âûäàñò îøèáêó . . .
const int &rci = a; // Ïðàâèëüíî

Странно, но C++ не запрещает применять квалификаторы const и volatile
к имени типа, являющегося ссылкой. Ошибка в этом случае не выдается, но ква-
лификатор игнорируется.

typedef int *PI;
typedef int &RI;
const PI p = 0; // êîíñòàíòíûé óêàçàòåëü

const RI r = a; // ïðîñòî ññûëêà!

Не существует нулевых ссылок, как и ссылок на void:

C *p = 0; // íóëåâîé óêàçàòåëü
C &rC = *p; // íåîïðåäåëåííîå ïîâåäåíèå
extern void &rv; // îøèáêà!

Ссылка – это всего лишь псевдоним, а псевдоним должен на что-то ссылаться.
Заметим однако, что ссылка не обязательно должна относиться к имени прос-

той переменной. Иногда бывает удобно связать ссылку с lvalue (см. «Совет 6»),
являющемуся результатом вычисления более сложного выражения:

int &el = array[n-6][m-2];
el = el*n-3;
string &name = p->info[n].name;
if(name == "Joe")

process(name);

Возврат ссылки из функции позволяет выполнить присваивание результату
вызова. Канонический пример – функция взятия индекса в абстрактном массиве:

�� gotcha05/array.h

template <typename T, int n>
class Array {
public:
T &operator [](int i)

{ return a_[i]; }
const T &operator [](int i) const

{ return a_[i]; }
// . . .

private:
T a_[n];

};

Возврат ссылки делает возможным естественный синтаксис присваивания
элементу массива:

Array<int,12> ia;
ia[3] = ia[0];

Ссылки можно использовать и для возврата дополнительных значений из
функции:

Name *lookup(const string &id, Failure &reason);

Совет 5Совет 5Совет 5Совет 5Совет 5

2424242424 ОсновыОсновыОсновыОсновыОсновы

// . . .
string ident;
// . . .
Failure reasonForFailure;
if(Name *n = lookup(ident, reasonForFailure)) {

// Ïîèñê çàâåðøèëñÿ óñïåøíî . . .
}
else {

// Îøèáêà ïîèñêà. Âûÿñíèòü ïðè÷èíó . . .
}

Результат приведения объекта к ссылочному типу принципиально отличается
от приведения к тому же типу, но без ссылки:

char *cp = reinterpret_cast<char *>(a);
reinterpret_cast<char *&>(a) = cp;

В первом случае целое преобразуется в указатель. (Мы предпочли оператор
reinterpret_cast приведению в старом стиле – (char *)a. См. «Совет 40».).
В результате мы получили копию того же числа, интерпретируемую как указатель.

Смысл второго предложения совершенно иной. В результате приведения
к ссылочному типу сам целочисленный объект интерпретируется как указатель.
Он становится lvalue, ему можно присваивать значение. (Получим ли мы при
этом дамп памяти – другой вопрос. Применение reinterpret_cast в общем
случае считается «непереносимой конструкцией».) Попытка добиться аналогич-
ного результата путем приведения к не-ссылочному типу закончится неудачей,
так как мы получаем rvalue, а не lvalue:

reinterpret_cast<char *>(a) = 0; // îøèáêà!

Ссылка на массив сохраняет информацию о его размерности. При взятии ука-
зателя эта информация теряется:

int ary[12];
int *pary = ary; // óêàçûâàåò íà ïåðâûé ýëåìåíò
int (&rary)[12] = ary; // ññûëàåòñÿ íà âåñü ìàññèâ
int ary2[3][4];

int (*pary2)[4] = ary2; // óêàçûâàåò íà ïåðâûé ýëåìåíò
int (&rary2)[3][4] = ary2; // ññûëàåòñÿ íà âåñü ìàññèâ

Этим свойством иногда можно воспользоваться при передаче массива в ка-
честве аргумента функции. (Смсм. «Совет 34».).

Можно также связать ссылку с функцией:

int f(double);
int (* const pf)(double) = f; // êîíñòàíòíûé óêàçàòåëü íà ôóíêöèþ
int (&rf)(double) = f; // ññûëêà íà ôóíêöèþ

На практике различие между константным указателем на функцию и ссылкой
на функцию невелико, разве что указатель можно явно разыменовать. Поскольку
ссылка является псевдонимом, к ней такая операция неприменима, но можно не-
явно преобразовать ее в указатель на функцию, а затем уже разыменовать:

a = pf(12.3); // èñïîëüçîâàòü óêàçàòåëü
a = (*pf)(12.3); // èñïîëüçîâàòü óêàçàòåëü

a = rf(12.3); // èñïîëüçîâàòü ññûëêó
a = f(12.3); // èñïîëüçîâàòü ôóíêöèþ

2525252525

a = (*rf)(12.3); // ïðåîáðàçîâàòü ññûëêó â óêàçàòåëü è ðàçûìåíîâàòü
a = (*f)(12.3); // ïðåîáðàçîâàòü ôóíêöèþ â óêàçàòåëü è ðàçûìåíîâàòü

Отличайте ссылки от указателей.

Совет 6. О неправильной интерпретации const
Идея константности в C++ проста, но может не соответствовать вашему пред-

взятому мнению о том, что такое константа.
Для начала обратите внимание на различие в объявлении переменной как

константы и ее инициализации литералом:

int i = 12;
const int ci = 12;

Целочисленный литерал 12 – это не константа. Это литерал. У него нет адреса,
и его значение никогда не изменится. Целочисленная переменная i – это объект.
У нее есть адрес, а ее значение изменяемо. Константная целочисленная перемен-
ная ci – тоже объект. У нее есть адрес, но (в данном случае) ее значение останется
неизменным.

Мы говорим, что i и ci можно использовать в качестве lvalue, тогда как лите-
рал 12 может быть только rvalue. Эта терминология берет начало от псевдовыра-
жения L = R, из которого видно, что lvalue может стоять в левой части операции
присваивания, а rvalue – только в правой его части. Однако, к языку C++, равно
как и к стандартному C, это определение не вполне применимо, поскольку ci –
это lvalue, но присваивать ему ничего нельзя, то есть это неизменяемое lvalue. Мо-
жете считать, что lvalue – это имена ячеек, которые могут содержать значения,
тогда как rvalue – просто значения, с которыми не связан никакой адрес.

int *ip1 = &12; // îøèáêà!
12 = 13; // îøèáêà!
const int *ip2 = &ci; // ïðàâèëüíî
ci = 13; // îøèáêà!

Лучше всего считать, что слово const в объявлении ip2 выше означает ограни-
чение на то, какие операции можно производить над ci через указатель ip2, а не
на то, что вообще можно делать с ci. Рассмотрим объявление указателя на const:

const int *ip3 = &i;
i = 10; // ïðàâèëüíî
*ip3 = 10; // îøèáêà!

Здесь мы имеем указатель на целочисленную константу, которая ссылается на
целое, не являющееся константой. Применение const в этом случае просто нала-
гает ограничение на возможные способы использования ip3. Никто не гаран-
тирует, что переменная i не может изменяться, говорится лишь, что ее нельзя
изменить через указатель ip3. Еще более удивительной является комбинация
квалификаторов const и volatile:

extern const volatile time_t clock;

Наличие квалификатора const означает, что нам не разрешено модифициро-
вать значение переменной clock, а квалификатор volatile говорит, что значе-
ние clock, тем не менееменее, может (и будет) изменяться.

Совет 6Совет 6Совет 6Совет 6Совет 6

2626262626 ОсновыОсновыОсновыОсновыОсновы

Совет 7. Не забывайте
о тонкостях базового языка
Большинство программистов на C++ убеждены, что уж они-то прекрасно

знают ту часть языка, которую можно назвать «базовой», то есть унаследован-
ную от C. Однако даже самые опытные из них иногда пребывают в неведении
относительно некоторых «темных» деталей операторов и предложений базового
C/C++.

Вряд ли кто-нибудь назовет логические операторы «темной деталью», но на-
чинающие программисты на C++ пользуются ими недостаточно уверенно. Разве у
вас не вызывает у вас раздражения такой код:

bool r = false;
if(a < b)
 r = true;

Вместо такого:

bool r = a<b;

Надо ли считать до восьми, увидев следующие строки:

�� gotcha07/bool.cpp

int ctr = 0;
for(int i = 0; i < 8; ++i)
if(options & 1<<(8+i))
if(ctr++) {

cerr << "Âûáðàíî ñëèøêîì ìíîãî îïöèé";
break;

}

Или лучше написать так:

�� gotcha07/bool.cpp

typedef unsigned short Bits;
inline Bits repeated(Bits b, Bits m)

{ return b & m & (b & m)-1; }
// . . .
if(repeated(options, 0XFF00))

cerr << "Âûáðàíî ñëèøêîì ìíîãî îïöèé";

Разве что-то случилось с булевской логикой?
Аналогично, многие программисты не знают о том, что результат вычисления

условного оператора – это lvalue (см. «Совет 6»), если оба потенциальных результата
являются lvalue. Из-за этого пробела в знаниях им приходится писать такой код:

// âàðèàíò 1
if(a < b)

a = val();
else if(b < c)

b = val();
else

c = val();

// âàðèàíò 2
a<b ? (a = val()) : b<c ? (b = val()) : (c = val());

2727272727

Альтернатива с применением lvalue, очевидно, короче:

// âàðèàíò #3

(a<b?a:b<c?b:c) = val();

Хотя такое эзотерическое знание может показаться не столь полезным, как
уверенное владение булевской логикой, но во многих контекстах C++ допускают-
ся только выражения (например, в списках инициализации членов в конструкто-
ре, в выражениях throw и так далее).

Обратите еще внимание на то, что величина val в вариантах 1 и 2 встречается
несколько раз, а в варианте 3 – всего один. Если val – функция, то большого
значения это не имеет. Однако, если val – макрос препроцессора, то многократ-
ные расширения могут произвести нежелательные побочные эффекты (см. «Со-
вет 26»). В таких контекстах применение эффективного условного оператора вме-
сто предложения if может оказаться существенным. Вообще говоря, я не
рекомендую применять такую конструкцию повсеместно, но знать о ее существо-
вании все же полезно. Она может пригодиться опытному программисту на C++
в тех редких случаях, когда без нее не обойтись, или она по какой-то причине она
предпочтительнее прочих. В язык C++ она включена не без причины.

Как это ни странно, но многие плохо понимают семантику встроенного опера-
тора взятия индекса. Все мы знаем, что этот оператор можно применять к именам
массивов и к указателям:

int ary[12];

int *p = &ary[5];

p[2] = 7;

Встроенный оператор взятия индекса – это просто сокращенная запись для
некоторых арифметических операций с указателями и разыменования. Выраже-
ние p[2] в точности эквивалентно *(p+2). Многие программисты на C++ с опы-
том работы на C знают также, что разрешено использовать отрицательные значе-
ния индексов, так что выражение p[-2] корректно и эквивалентно *(p-2) или,
если хотите, *(p+-2). Однако, похоже, не всем известно, что сложение коммута-
тивно, поэтому большинство программистов на C++ удивляются, увидев, что
можно индексировать целое указателем:

(-2)[p] = 6;

Но это же простое преобразование: p[-2] эквивалентно *(p+-2), а это,
в свою очередь, эквивалентно *(-2+p), что есть в точности (-2)[p] (скобки нуж-
ны потому, что приоритет оператора [] выше, чем у унарного минуса).

Какое применение может найти это тривиальное наблюдение? Для начала от-
метим, что коммутативность оператора взятия индекса имеет место только для
его встроенного использования применительно к указателям. Иными словами,
видя выражение типа 6[p], мы можем сразу сказать, что это встроенный опера-
тор, а не перегруженная версия operator [] (хотя p не обязательно указатель
или массив). Кроме того, это отличная тема для разговоров на вечеринке. Впро-
чем, прежде чем применять подобный синтаксис в промышленном коде, позна-
комьтесь с «Советом 11».

СоветСоветСоветСоветСовет 77777

2828282828 ОсновыОсновыОсновыОсновыОсновы

Для большинства программистов на C++ предложение switch относится
к числу базовых. Многие даже не осознают, насколько оно базовое. Абстрактный
синтаксис предложения switch очень прост:

switch(expression) statement

А вот следствия из такого простого синтаксиса бывают поразительными.
Обычно за выражением expression в switch следует блок. Внутри него имеется

несколько меток case, которые, по существу, представляют собой не что иное, как
вычисляемый goto внутри блока. Первая тонкость, с которой сталкиваются начи-
нающие программисты на C и C++, –это «проваливание». Это значит, что, в отли-
чие от многих других современных языков программирования, после того как ис-
полнение внутри switch дошло до нужной метки, работа считается выполненной.
Куда направится программа дальше, целиком зависит от программиста:

switch(e) {
default:
theDefault:

cout << "default" << endl;
// ïðîâàëèâàåìñÿ . . .

case 'a':
case 0:

cout << "group 1" << endl;
break;

case max-15:
case Select<(MAX>12),A,B>::Result::value:

cout << "group 2" << endl;
goto theDefault;

}

Когда «проваливание» применяется осознанно (а не по ошибке, как бывает
чаще,) принято оставлять комментарий, сообщающий тем, кто будет сопровож-
дать программу, что автор именно это имел в виду. В противном случае сопровож-
дающий не преминет вставить ненужный break.

Отметим, что метки case должны быть целочисленными константными выра-
жениями. Иными словами, компилятор должен иметь возможность вычислить их
значения на этапе компиляции. Но, как показывает приведенный выше несколько
надуманный пример, в том, как определить константное выражение, вам предос-
тавлена большая свобода. Выражение case может принадлежать интегральному
типу или быть объектом, преобразуемым в интегральный тип. Например, e могло
бы быть именем объекта класса, в котором объявлен оператор преобразования в
интегральный тип.

Обратите внимание, что абстрактный синтаксис предложения switch допуска-
ет даже менее структурированные конструкции, чем показано выше. В частности,
метки case могут находиться в любом месте switch и не обязательно на одном и
том же уровне:

switch(expr)
default:
if(cond1) {

case 1: stmt1;
case 2: stmt2;

}

2929292929

else {
if(cond2)

case 3:stmt2;
else

case 0: ;
}

Такая конструкция может показаться бессмысленной (и так оно и есть), но
и подобные экзотические аспекты базового языка иногда бывают полезны. На-
пример, описанное свойство предложения switch используется для реализации
эффективного обхода сложной внутренней структуры данных в одном компиля-
торе C++:

�� gotcha07/iter.cpp

bool Postorder::next() {
switch(pc)
case START:
while(true)
if(!lchild()) {

pc = LEAF;
return true;

case LEAF:
while(true)

if(sibling())
break;

else
if(parent()) {

pc = INNER;
return true;

case INNER: ;
}
else {

pc = DONE;
case DONE: return false;

}
}

}

В этом коде мы воспользовались непривычными особенностями скромного
предложения switch в целях реализации семантики сопрограммы для операции
next, применяемой при обходе дерева.

Я получал резко негативные, иногда даже оскорбительные отзывы на исполь-
зование всех приведенных выше конструкций. Согласен, что не стоит взваливать
такой код на хрупкие плечи начинающего программиста сопровождения, но, бу-
дучи хорошо инкапсулированы и должным образом документированы, подобные
изыски могут найти себе место в оптимизированном или узкоспециализирован-
ном коде. Знакомство с эзотерическими возможностями базового языка тоже бы-
вает полезно.

Совет 8. Отличайте доступность от видимости
В языке C++ не реализовано сокрытие данных; реализованы только различ-

ные уровни доступа. Закрытые и защищенные члены класса не являются невиди-

СоветСоветСоветСоветСовет 8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости

3030303030 ОсновыОсновыОсновыОсновыОсновы

мыми, они лишь недоступны. Как и в случае со многими другими видимыми, но
недоступными объектами (например, менеджерами), это может стать источником
проблем.

Самая очевидная проблема состоит в том, что приходится перекомпилировать
весь код, в котором используется некоторый класс, даже если изменились только
«невидимые» аспекты реализации. Рассмотрим простой класс, в который был до-
бавлен новый член данных:

class C {
public:

C(int val) : a_(val),
b_(a_) // äîáàâëåíî
{}
int get_a() const { return a_; }
int get_b() const { return b_; } // äîáàâëåíî

private:

int b_; // äîáàâëåíî
int a_;

};

Здесь изменилось несколько аспектов класса, часть из них видима, а часть - –
нет.

К видимым относится изменение размера класса, поскольку был добавлен
новый член данных. Это отразится на всем коде, в котором встречаются объек-
ты этого класса, производится разыменование или арифметические операции
над указателями на объекты класса или еще каким-то образом упоминаются раз-
мер класса либо имена его членов. Отметим также, что добавление нового члена
данных изменило смещение члена a_ от начала класса, следовательно, все су-
ществующие ссылки на член a_ и указатели на него стали недействительными.
Кроме того, некорректным стало поведение списка инициализации членов в кон-
структоре, поскольку b_ инициализируется неопределенным значением (см. «Со-
вет 52»).

Основные невидимые изменения касаются семантики неявного конструктора
копирования и оператора присваивания, которые генерируются для класса C ком-
пилятором. По умолчанию, они определены как встраиваемые функции и, следо-
вательно, вставляются в любой код, где инициализируются или копируются
объекты C (см. «Совет 49»).

В результате описанной модификации класса C (не будем обращать внимание
на вышеупомянутую ошибку) приходится перекомпилировать почти весь код, где
C используется. В больших проектах это может занять немало времени. Если
класс C определен в заголовочном файле, то перекомпиляции подлежит весь код,
который включает этот файл (или файлы, включающие его). В какой-то мере ис-
править ситуацию можно, воспользовавшись «опережающими» (то есть непол-
ными) объявлениями класса C в контекстах, где полная информация о нем не
нужна:

class C;

Наличие такого неполного объявления все же позволяет объявлять указатели
и ссылки на C при условии, что мы не выполняем никаких операций, для которых

3131313131

нужно знать размер C или его членов. В частности, это относится к случаю, когда
объект C является подобъектом базового класса (см. «Совет 39»).

Этот подход может оказаться эффективным, но чтобы избежать сложностей
при сопровождении, неполное объявление класса должно браться их того же ис-
точника, что и определение класса. Иначе говоря, автор сложного компонента,
который предполагается использовать подобным образом, должен предоставить
заголовочный файл с опережающими объявлениями.

Например, если полное определение класса C находится в файле c.h, то мож-
но предоставить еще и файл cfwd.h, в котором находятся только неполные
объявления классов. В тех случаях, когда полное определение C не нужно, можно
будет включить cfwd.h вместо c.h Предоставлять файл с опережающими
объявлениями необходимо потому, что в будущем определение C может изме-
ниться и стать несовместимым с прежним опережающим объявлением. Напри-
мер, то, что раньше было классом C , может превратиться в typedef:

template <typename T>
class Cbase {

// . . .
};
typedef Cbase<int> C;

Ясно, что автор заголовочного файла c.h стремился экранировать пользова-
телей класса C от изменений в нем, но теперь любой код, в котором встречается
неполное объявление C, перестанет компилироваться:

#include "c.h"
// . . .
class C; // îøèáêà! C - ýòî èìÿ typedef’à, à íå êëàññà

Наличие файла cfwd.h позволило бы избежать таких проблем. Этот подход
применен в реализации части iostream стандартной библиотеки, где заголовоч-
ный файл iosfwd соответствует файлу iostream.

Чаще необходимость перекомпилировать код, в котором используется класс
C, затрудняет наложение «заплат» (обычно исправлений ошибок) на установлен-
ные программы. Возможно, самый эффективный способ отделить интерфейс
класса от его реализации и, следовательно, добиться истинного сокрытия данных
заключается в применении паттерна Bridge (Мост).

Паттерн Bridge подразумевает разделение класса на две части: интерфейс и
реализацию:

�� gotcha08/cbridge.h

class C {
public:
C(int val);
~C();
int get_a() const;
int get_b() const;

private:
Cimpl *impl_;

};

�� gotcha08/cbridge.cpp

class Cimpl {

СоветСоветСоветСоветСовет 8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости8. Отличайте доступность от видимости

3232323232 ОсновыОсновыОсновыОсновыОсновы

public:
Cimpl(int val) : a_(val), b_(a_) {}
~Cimpl() {}
int get_a() const { return a_; }
int get_b() const { return b_; }

private:

int a_;

int b_;

};

C::C(int val)

: impl_(new Cimpl(val)) {}

C::~C()

{ delete impl_; }

int C::get_a() const

{ return impl_->get_a(); }

int C::get_b() const

{ return impl_->get_b(); }

Интерфейсная часть содержит исходный интерфейс класса C, тогда как его
реализация перенесена в отдельный файл, скрытый от пользователей. В новой
версии класса C есть только указатель на реализацию, а все остальное, в том числе
и функции-члены, клиентскому коду не видны. Любые изменения в реализации C,
не затрагивающиекоторые не затрагивают интерфейс класса, теперь не выйдут за
пределы одного-единственного файла реализации.

С использованием паттерна Bridge, очевидно, связаны некоторые накладные
расходы во время выполнения, поскольку теперь для представления C требуются
два объекта, а не один, и, кроме того, все функции-члены вызываются косвенно и
не могут встраиваться. Однако, возможность многократно сократить время ком-
пиляции и обновлять клиентский код без перекомпиляции часто перевешивает
эти издержки. Такая методика успешно применяется уже много лет и получила
немало забавных названий, в частности, «идиома pimpl» и «улыбка Чеширского
кота».

Недоступные члены также могут влиять на семантику производных классов и
базовых классов, если к последним производится доступ через интерфейс произ-
водного класса. Например, рассмотрим следующий базовый и производный
класс:

class B {
 public:
 void g();
 private:
 virtual void f(); // äîáàâëåíà
};
class D : public B {
 public:
 void f();
 private:
 double g; // äîáàâëåí
};

3333333333

Добавление закрытой виртуальной функции в базовый класс B сделало вирту-
альной функцию f() в производном классе, которая раньше виртуальной не
была. Добавление закрытого члена данных в класс D скрыло функцию с тем же
именем, унаследованную от B. Наследование часто называют повторным исполь-
зованием в виде «прозрачного ящика», поскольку изменения существенно затра-
гивают и базовый, и производный классы.

Сгладить остроту этих проблем помогает, в частности, следование простому
соглашению об именовании, в соответствии с которым имена следует разделять
по функциональности. Как правило, лучше всего применять различные соглаше-
ния для имен типов, закрытых членов данных и всех остальных имен. В этой кни-
ге мы будем писать имена типов с заглавной буквы, в конец имен данных-членов
(все они закрыты!) добавлять пробел, а остальные имена (за немногими исклю-
чениями) начинать с маленькойсо строчной буквы. Если бы мы следовали этому
соглашению в примере выше, то функция-член g() базового класса не оказалась бы
скрытой в классе D. Всеми силами противьтесь искушению ввести сложное согла-
шение об именовании, поскольку придерживаться его, скорее всего, не будете.

И еще. Никогда не пытайтесь кодировать тип переменной в ее имени. Напри-
мер, выбор для целочисленного индекса имени iIndex сильно затрудняет пони-
мание и сопровождение кода. Во-первых, имя должно описывать абстрактную се-
мантику программной сущности, а не то, как она реализована (абстракция данных
может относиться даже к предопределенным типам). Во-вторых, тип переменной
нередко изменяется, и тогда возникает несоответствие с именем. Имя переменной
становится в этом случае источником дезинформации о ее типе.

Другие подходы обсуждаются в советах 70, 73, 74 и 77.

Совет 9. О неграмотности
Когда несколько лет назад широкий мир вторгся в пределы уютного замкну-

того мирка C++, он принес с собой ряд достойных порицания оборотов и приемов
кодирования. В этом разделе я попробую научить вас правильному идиоматично-
му употреблению лексики C++, применяемой при описании его поведения.

Лексика
В таблице 1.1 перечислены наиболее распространенные ошибки словоупот-

ребления и показано, как надо говорить правильно.

Таблица 1.1. Типичные ошибки словоупотребления

и правильные варианты

Неправильно Правильно

Чисто виртуальный базовый класс Абстрактный класс
Метод Функция-член
Виртуальный метод ???
Разрушен (Destructed) Уничтожен (Destroyed)

Оператор приведения Оператор преобразования

СоветСоветСоветСоветСовет 9. О неграмотности9. О неграмотности9. О неграмотности9. О неграмотности9. О неграмотности

3434343434 ОсновыОсновыОсновыОсновыОсновы

Нет такого понятия как «чисто виртуальный» базовый класс. Есть чисто вир-
туальные функции, а класс, который содержит такую функцию и не переопреде-
ляет ее, называется абстрактным.

В C++ нет методов. Это в языках (Java и Smalltalk) методы. Говоря об объек-
тно-ориентированном проектировании и желая выказать особую претенциоз-
ность, вы можете употребить термины «сообщение» и «метод», но при переходе
к обсуждению реализации вашего проекта на C++ все же пользуйтесь терминами
«вызов функции» и «функция-член».

Некоторые , в остальном вполне квалифицированные специалисты по C++, го-
ворят «destructed» (разрушен) в противоположность «constructed» (сконструиро-
ван). Это просто безграмотный английский! Правильно говорить «destroyed»
(уничтожен).

В C++ действительно есть операторы приведения (cast operator), или пре-
образования типов (type conversion operator). Их четыре: static_cast,
dynamic_cast, const_cast и reinterpret_cast. Но термин «оператор
приведения» (cast operator) часто неправильно употребляют применительно
к оператору преобразования, являющемуся функцией-членом класса, который
описывает, как объект класса можно преобразовать в другой тип:

class C {

operator int *()const; // îïåðàòîð ïðåîáðàçîâàíèÿ
// . . .

};

Разумеется, оператор преобразования разрешается вызывать и явно (с помо-
щью оператора приведения), если только вы знаете, что есть что.

См. также обсуждение различий между константным указателем и указателем
на const в «Совете 31».

Нулевые указатели
Было время, когда программа на C++ могла «рухнуть», если для представле-

ния нулевого указателя использовался символ препроцессора NULL.

void doIt(char *);
void doIt(void *);
C *cp = NULL;

Проблема в том, что NULL определяется по-разному на разных платформах:

#define NULL ((char *)0)
#define NULL ((void *)0)
#define NULL 0

Из-за этого переносимость программы на C++ оказывалась под угрозой:

doIt(NULL); // çàâèñèò îò ïëàòôîðìû èëè íåîäíîçíà÷íî
C *cp = NULL; // îøèáêà?

На самом деле, непосредственно представить нулевой указатель в C++
нельзя, но гарантируется, что числовой литерал 0 можно преобразовать в нулевой
указатель любого типа. Именно так программисты на C+ обычно обеспечивают
переносимость и корректность своего кода. В стандарте сказано, что определения

3535353535

типа (void *)0 недопустимы, так что технических проблем с использованием
NULL в любом случае не возникнет (правда, сам факт, что это символ препроцес-
сора, заставляет глядеть на негоотноситься к нему с подозрением). Тем не менее,
настоящие программисты на C++ по-прежнему представляют нулевой указатель
литералом 0. Применяя любой другой способ, вы рискуете показаться безнадежно
старомодным.

Акронимы
У программистов на C++ есть какая-то болезненная приверженность к акро-

нимам, хотя и не в такой тяжелой форме, как у менеджеров. В следующий раз,
когда ваш коллега заявит, что «RVO неприменима к POD, поэтому лучше опреде-
лить копирующий ctor», обратитесь к таблице 1.2.

Таблица 1.2. Значение некоторых распространенных акронимов

Акроним Значение

POD (Plain old data) Добрые старые данные, структура в смысле C

POF (Plain old function) Добрая старая функция, функция в смысле C

RVO (Return value optimization) Оптимизация возвращаемого значения

NRV (Named RVO) Оптимизация именованного возвращаемого

значения

ctor (Constructor) Конструктор

dtor (Destructor) Деструктор

ODR (One definition rule) Правило одного определения

Совет 10. Не игнорируйте идиомы
Давно замечено, что лучшие писатели иногда не обращают внимания на прави-
ла риторики. Но в таких случаях читатель обнаруживает в предложении ка-
кие-то достоинства, с лихвой компенсирующие нарушение правил. Если бы
автор не был уверен в том, что делает, то, вероятно, постарался бы следовать
писаным правилам. (Strunk and White «The Elements of Style»1).

Эта цитата из классического руководства по англоязычной прозе часто приво-
дится и в книгах, посвященных стилю программирования. Я полностью согласен
и с самой цитатой, и со скрывающимся за ней подтекстом – ограничивать свои
проявления. И все же я нахожу ее не вполне удовлетворительной, поскольку, бу-
дучи вырвана из контекста, она ничего не говорит о том, почему в общем случае
лучше придерживаться правил риторики и в чем эти правила заключаются. Мне
всегда больше нравилось принадлежащее Уайту сравнение со звериной тропой,
чем олимпийская непогрешимость Странка:

1 Автором этой цитаты на самом деле является Вильям Странк, поскольку она появи-
лась в первом издании книги, еще до того как она была извлечена из забвения Уайтом
в 1959 году.

СоветСоветСоветСоветСовет 10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы

3636363636 ОсновыОсновыОсновыОсновыОсновы

Живой язык можно сравнить со звериной тропой: ее протоптали сами звери,
и они идут по ней или сходят с нее, следуя своим желаниям или потребностям.
От ежедневного употребления тропа меняет направление. Зверь не обязан лю-
бой ценой идти по узкой тропе, которую сам же и проложил с учетом особенно-
стей местности, но часто поступает именно так, потому что это удобно, а, сойдя
с нее, он не будет знать, где находится и куда направляется (E. B. White, из
статьи в журнале «The New Yorker»).

Языки программирования не так сложны, как естественные, и нашей цели –
написания понятного кода – достичь не так сложно, как писать ясную, отточен-
ную прозу. Но все же язык программирования, подобный C++, сложен настолько,
что для эффективного программирования на нем приходится прибегать к целому
ряду стандартных оборотов и идиом. Язык C++ не содержит непререкаемых пред-
писаний, то есть допускает заметную гибкость, но идиоматическое использование
его средств - это способ эффективно и понятно донести идею проекта до аудито-
рии. Незнание идиом или сознательное пренебрежение ими ведет к путанице и
неправильному применению.

Многие рекомендации из этой книги предполагают свободное владение и
употребление идиом в процессе проектирования и кодирования на C++. Часть
упоминаемых «скользких мест» – это просто результат отхода от той или иной
идиомы. А чтобы решить проблему, часто не требуется ничего большего, чем сле-
дование подходящей идиоме. И тому есть причина: набор идиом кодирования и
проектирования на C++ создан и постоянно совершенствуется в результате уси-
лий всего сообщества программистов на этом языке. Подходы, оказавшиеся не-
работоспособными или утратившие актуальность, перестают применяться и от-
брасываются. Выживают лишь те идиомы, которые эволюционируют вместе
с окружением. Знание — и употребление на практике — идиом проектирования и
кодирования — один из лучших способов создания ясных, эффективных и удоб-
ных для сопровождения программ и проектов на C++.

Любой компетентный профессиональный программист должен всегда забо-
титься о том, чтобы и код, и проект существовали в контексте какой-то идиомы.
Зная о существовании идиом, мы уже можем решать, остаться ли на узкой тропе
или осознанно сойти с нее, чтобы достичь стоящей перед нами цели. Но придер-
живаться идиом выгодно, а игнорировать их рискованно.

Я бы не хотел, чтобы у вас создалось неправильное впечатление, будто идио-
мы C++ – это своего рода смирительная рубашка, управляющая всеми аспектами
процесса проектирования. Вовсе нет. При правильном использовании идиомы
могут облегчить как само проектирование, так и документирование проекта, ни-
как не ограничивая при этом свободу творчества проектировщика. Но бывает, что
даже самая разумная и широко распространенная идиома не укладывается
в контекст проекта, и тогда проектировщик вынужден уйти с протоптанных доро-
жек.

Одна из самых известных и полезных идиом C++ связана с операцией копиро-
вания. Каждый абстрактный тип данных в C++ должен принять какое-то решение
по поводу оператора присваивания и конструктора копирования. Программист

3737373737

должен либо разрешить компилятору сгенерировать их, либо написать самостоя-
тельно, либо запретить их использование вовсе (см. «Совет 49»).

Если программист сам кодирует эти операции, то мы точно знаем, что они дол-
жны были быть написаны. Но «стандартный» способ их написания с годами ме-
нялся. И в этом одно из преимуществ идиом по сравнению с незыблемыми прави-
лами: идиома эволюционирует, чтобы соответствовать контексту, в котором
применяется.

class X {

public:

X(const X &);

X &operator =(const X &);

// . . .

};

Хотя язык C++ допускает большую свободу в определении операций копиро-
вания, но почти всегда имеет смысл объявлять их, как показано выше: обе опера-
ции принимают ссылку на константу, а оператор присваивания невиртуальный и
возвращает ссылку на не-const. Ясно, что ни одна из этих операций не должна из-
менять свой аргумент. Это просто бессмысленно.

X a;
X b(a); // a íå èçìåíèòñÿ
a = b; // b íå èçìåíèòñÿ

Но бывают и исключения. К стандартному шаблону auto_ptr предъявляют-
ся необычные требования. Это дескриптор ресурса, который должен освободить
выделенную из кучи память, когда она больше не нужна.

void f() {
auto_ptr<Blob> blob(new Blob);
// . . .

// àâòîìàòè÷åñêîå óäàëåíèå âûäåëåííîé äëÿ Blob ïàìÿòè
}

Прекрасно, но что если допустить к этому коду неопытного студента?

void g(auto_ptr<Blob> arg) {
// . . .

// àâòîìàòè÷åñêîå óäàëåíèå âûäåëåííîé äëÿ Blob ïàìÿòè
}
void f() {

auto_ptr<Blob> blob(new Blob);
g(blob);
// ïîâòîðíîå óäàëåíèå âûäåëåííîé äëÿ Blob ïàìÿòè!!!

}

Можно было бы запретить для auto_ptr операции копирования, но это силь-
но ограничило бы его применимость и сделало бы невозможными целый ряд по-
лезных идиом, связанных с auto_ptr. Другой вариант – включить в auto_ptr
счетчик ссылок, но тогда возросли бы накладные расходы. В стандарте при реали-
зации auto_ptr было принято решение сознательно отойти от идиомы операции
копирования:

template <class T>
class auto_ptr {

СоветСоветСоветСоветСовет 10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы10. Не игнорируйте идиомы

3838383838 ОсновыОсновыОсновыОсновыОсновы

public:
auto_ptr(auto_ptr &);
auto_ptr &operator =(auto_ptr &);
// . . .

private:

T *object_;
};

(В стандартном auto_ptr реализован также ряд шаблонных функций-членов,
соответствующих нешаблонным операциям копирования, но к ним применимы
аналогичные рассуждения. См. также «Совет 88».) Здесь правая часть каждой опе-
рация неконстантна! Когда auto_ptr инициализируется или присваивается дру-
гому auto_ptr, источник инициализации или присваивания отказывается от
владения выделенным из кучи объектом, на который указывал, для чего сбрасы-
вает в нуль внутренний указатель на объект.

Как часто бывает при отходе от идиоматического употребления, первона-
чально вокруг правильного способа использования auto_ptr возникла путани-
ца. Однако такой отход от известной идиомы позволил разработать целый ряд но-
вых полезных идиом, касающихся владения объектами, а применение объектов
auto_ptr как «источников» и «стоков» данных стало плодотворной идеей
в проектировании. Иными словами, осознанный отказ от известной и успешно
применяемой идиомы привел к появлению семейства новых идиом.

Совет 11. Не мудрствуйте лукаво
Языки C++ и С, похоже, привлекают излишне большое число желающих по-

рисоваться. (Приходилось вам когда-нибудь слышать о конкурсе «Озадачиваю-
щий Eiffel»?) Такие программисты, вероятно, думают, что кратчайшим путем
между двумя точками является большая окружность в евклидовом пространстве
на сфере.

О чем я говорю? В кругах, близких к C++ (евклидовых или нет) хорошо из-
вестно, что форматирование кода нужно только для удобства чтения человеком;
с точки зрения семантики программы важна лишь последовательность лексем.
Последнее, впрочем, весьма важно; так, следующие две строки означают совер-
шенно разные вещи (см. однако «Совет 87»).

a+++++b; // îøèáêà!

a+++ ++b; // ïðàâèëüíî.

как и такие две строки (см. «Совет 17»):

ptr->*m; // ïðàâèëüíî.

ptr-> *m; // îøèáêà!

А потому многие программисты на C++ делают вывод, что форматирование
не существенно для семантики программы, лишь бы поток символов правильно
разбивался на лексемы. Как бы ни объявлять переменную, в одной или в несколь-
ких строках, результат будет одинаковым. (Некоторые отладчики и другие ин-
струментальные средства оперируют номерами строк, а не более точным индика-
тором места в программе. Это вынуждает программистов применять неудобное

3939393939

или неестественное разбиение на строки, чтобы получить внятные сообщения об
ошибках, поставить точку прерывания и так далее. Но это не проблема C++ как
такового, а вопрос для проектировщиков сред разработки.)

long curLine = __LINE__; // íîìåð òåêóùåé ñòðîêè
long curLine

= __LINE__
; // òî æå ñàìîå îáúÿâëåíèå

Но эти программисты ошибаются. Взгляните на простой механизм выбора
типа на этапе компиляции, применяемый в технологии метапрограммирования
шаблонов:

�� gotcha11/select.h

template <bool cond, typename A, typename B>
struct Select {

typedef A Result;
};

template <typename A, typename B>
struct Select<false, A, B> {

typedef B Result;

};

Во время конкретизации шаблона Select на этапе компиляции вычисляется
условие, а затем в зависимости от булевского результата конкретизируется та или
иная версия шаблона. Это, по сути дела, предложение if этапа компиляции, кото-
рое говорит: «Если условие истинно, то вложенным типом Result будет A, иначе
B».

�� gotcha11/lineno.cpp

Select< sizeof(int)==sizeof(long), int, long >::Result temp = 0;

В этом предложении переменная temp будет иметь тип int, если типы int и
long занимают одно и то же число байтов в памяти. В противном случае temp
объявляется как long.

Обратимся вновь к объявлению curLine. Зачем тратить лишнее место для
размещения long, если это необязательно? Давайте-ка прибегнем к неоправдан-
но сложному трюку:

�� gotcha11/lineno.cpp

const char CM = CHAR_MAX;
const Select<__LINE__<=CM,char,long>::Result curLine = __LINE__;

Работает (и даже правильно), но строка стала слишком длинной, и програм-
мист, который стал сопровождать программу после вас, ее немного переформати-
ровал:

�� gotcha11/lineno.cpp

const Select<__LINE__<=CM,char,long>::Result
curLine = __LINE__;

И тем самым внес ошибку. Можете ее найти?
Что если это объявление встретится в строке с номером CHAR_MAX (а зна-

чение этой константы может быть совсем небольшим, обычно 127)? Тогда тип

СоветСоветСоветСоветСовет 11. Не мудрствуйте лукаво11. Не мудрствуйте лукаво11. Не мудрствуйте лукаво11. Не мудрствуйте лукаво11. Не мудрствуйте лукаво

4040404040 ОсновыОсновыОсновыОсновыОсновы

curLine окажется char, и инициализирована она будет максимальным значени-
ем, допустимым для этого типа. Стоит нам поместить инициализатор на следую-
щую строку, как мы попытаемся инициализировать значение типа char величи-
ной на единицу большей максимального значения для этого типа. В результате
номер строки окажется отрицательным числом (вероятно, 128). Умно, ничего не
скажешь.

Излишнее «умничанье» – это типичная проблема программистов на C++. По-
мните, что почти всегда лучше придерживаться соглашений, выражать свои мыс-
ли ясно, пусть даже это приведет к чуть менее эффективной программе, чем про-
являть ненужное хитроумие, которое приводит к запутанным и не пригодным для
сопровождения программам.

Совет 12. Не ведите себя как дети
Мы, программисты, всегда готовы раздавать советы, но с трудом соглашаемся

следовать им сами. Мы посылаем проклятия в адрес глобальных переменных,
плохих имен, магических чисел и тому подобного, но зачастую вставляем их
в собственные программы. Этот феномен многие годы не давал мне покоя, пока
в одном журнале я не прочел статью, описывающую аналогичное поведение
у подростков. По-видимому, молодым людям свойственно критиковать риско-
ванное поведение других, но в силу какой-то «странной фантазии» считать, что,
если они будут сами вести себя так, то ничего страшного не случится. Программис-
ты, как класс, тоже страдают от задержки эмоционального развития.

Мне приходилось работать над проектами, в которых некоторые программис-
ты не только отказывались следовать стандартам кодирования, но угрожали уво-
литься, если их будут заставлять делать отступ из четырех, а не из двух пробелов.
Встречал я и ситуации, когда одна группа отказывалась приходить на собрания,
если там присутствовали представители другой группы. Я видел, как программи-
сты намеренно не документируют и всячески затуманивают код, чтобы больше
никто не мог его сопровождать. Я наблюдал, как талантливые в общем-то про-
граммисты отказывать принимать советы слишком старых/слишком молодых/
слишком «правильных»/увлекающихся пирсингом коллег, и из-за этого разража-
лись случались катастрофы.

Каким бы ни был уровень эмоционального развития профессионального
программиста, у него, как у любого взрослого человека или, по крайней мере,
профессионала, есть обязанности. (Познакомьтесь с позицией Ассоциации
вычислительных машин по этому поводу, изложенной в «Кодексе этического и
профессионального поведения ACM» (ACM Code of Ethics and Professional
Conduct), а также с «Кодексом этического и профессионального поведения разра-
ботчика программного обеспечения» (Software Engineering Code of Ethics and
Professional Practice)).

Во-первых, выбранная нами профессия обязывает выполнять работу качест-
венно в соответствии с наивысшими стандартами.

Во-вторых, у нас есть обязанности перед обществом и планетой, на которой
мы обитаем. Наша профессия – это в равной мере и наука, и ее практическое при-

4141414141

менение. Если наш труд не помогает сделать мир, в котором мы живем, лучше, то
это пустая трата нашего таланта, времени и, в конечном итоге, жизни.

В-третьих, наш долг перед сообществом – делиться своим опытом, если того
требует политика правительства. Наше общество становится все более технологи-
ческим, а самые важные решения обычно принимают люди, разбирающиеся
в юриспруденции или политике, но технически безграмотные. Например, в одном
штате когда-то действовал закон, по которому число �? приравнивалось к 3. Это
смешной пример (правда, колесный транспорт немного трясло, пока закон не от-
менили), чего не скажешь о многих других решениях, принятых недостаточно ин-
формированными людьми. Наш долг – предоставить участникам политических
дебатов рациональное техническое и количественное обоснование.

В-четвертых, наш долг перед коллегами – работать совместно. Это означает,
что необходимо следовать местным стандартам кодирования и проектирования
(если они недостаточно хороши, надо попытаться их изменить, но не игнориро-
вать), писать код, удобный для сопровождения, прислушиваться к чужому мне-
нию и делиться собственным опытом.

Это не следует расценивать, как призыв быть «рубахой-парнем» или безого-
ворочно принимать корпоративную униформу или видение мира. Некоторые мои
знакомые, профессионалы, работать с которыми было очень приятно, странно
одевались, имели нетрадиционные политические взгляды и необычные привыч-
ки. Но все они с уважением относились ко мне лично и к моим идеям (не стесня-
ясь ругать меня, когда я того заслуживал, и указывать на мои ошибки), и, присту-
пая к работе со мной, честно стремились достичь тех целей, которые мы перед
собой поставили.

В-пятых, наш долг перед другими – делиться своими знаниями и опытом.
В-шестых, у каждого из нас есть долг перед самим собой. Ваша работа и ваши

мысли должны вас удовлетворять, вы не должны раскаиваться в выборе профес-
сии. Если вы занимаетесь своим делом с удовольствием, если оно является
неотъемлемой частью вашей жизни, то перечисленные выше обязанности пока-
жутся не обузой, а радостью.

СоветСоветСоветСоветСовет 12. Не ведите себя как дети12. Не ведите себя как дети12. Не ведите себя как дети12. Не ведите себя как дети12. Не ведите себя как дети

Глава 2. Синтаксис

Язык C++ обладает сложной лексической и синтаксической структурой. Частич-
но сложность унаследована от C, а частично необходима для поддержки опреде-
ленных языковых средств.

В этой главе мы рассмотрим ряд скользких мест, имеющих отношение к син-
таксису. Некоторые из них правильнее было бы назвать опечатками, которые, тем
не менее, компилируются и приводят к неожиданным результатам во время ис-
полнения. Другие иллюстрируют проблему слабой связи между синтаксической
структурой фрагмента кода и его поведением при выполнении. Третьи обусловле-
ны гибкостью синтаксиса, из-за чего два программиста могут прийти к разным
выводам относительно семантики одного и того же кода.

Совет 13. Не путайте массивы
с инициализаторами
Мы ведь можем распределить массив из 12 целых чисел в куче, не так ли? Ко-

нечно:

int *ip = new int(12);

Пока все хорошо. А теперь воспользуемся этим массивом. Когда он перестанет
быть нужным, почистим за собой:

for(int i = 0; i < 12; ++i)
ip[i] = i;

delete [] ip;

Обратите внимание на пустые квадратные скобки. Их наличие говорит компи-
лятору, что ip указывает на массив, а не на одиночное целое число. А так ли это?

На самом деле, ip указывает именно на одиночное целое, инициализирован-
ное значением 12. Мы сделали типичную опечатку, спутав круглые и квадратные
скобки. И доступ внутри цикла (ко всем элементам, кроме имеющего индекс 0), и
удаление некорректны. Но компилятор вряд ли сможет обнаружить эту ошибку.
Поскольку указатель может указывать как на единственный объект, так и на мас-
сив объектов, то синтаксически как обращение к элементам по индексу внутри
цикла, так и удаление массива правильны. И разочарование постигнет нас только
во время исполнения.

А, возможно, и тогда все обойдется. Обращаться к памяти за границей объекта
нельзя (хотя язык разрешает указывать на адрес, следующий непосредственно за
последним элементом объекта). Удалять скаляр как массив тоже неправильно. Но
из того, что вы делаете нечто незаконное, еще не следует, что вас обязательно пой-
мают (вспомните про Уолл Стрит). На некоторых платформах этот код может

4343434343

выполниться нормально, а на других приведет к аварийному завершению про-
граммы. Или программа будет вести себя нестабильно в зависимости от того, как
пользуется кучей конкретный поток или процесс. Корректно память выделяется
так:

int *ip = new int[12];

Но еще лучше не выделять память вовсе, а воспользоваться стандартной биб-
лиотекой:

std::vector<int> iv(12);
for(int i = 0; i < iv.size(); ++i)

iv[i] = i;

// ÿâíîãî óäàëåíèÿ íåò ...

Стандартный шаблон vector почти так же эффективен, как встроенный мас-
сив, но он безопаснее, с ним проще работать, и он самодокументирован. В общем
случае отдавайте предпочтение классу vector, а не низкоуровневым массивам.
Кстати, такая же синтаксическая проблема может возникнуть и при простом
объявлении, только ее обычно легче обнаружить:

int a[12]; // ìàññèâ èç 12 öåëûõ

int b(12); // öåëîå, èíèöèàëèçèðîâàííîå çíà÷åíèåì 12

Совет 14. Неопределенный порядок
вычислений
Происхождение C++ от C нигде не проявляется с такой очевидностью, как

при рассмотрении порядка вычислений. Это ловушка, в которую легко попадают
непосвященные. В этом разделе мы покажем несколько проявлений одной и той же
проблемы: и C, и С++ предоставляют компилятору большую свободу при определе-
нии того, как вычислять выражение. Эта гибкость позволяет оптимизировать код,
но программист должен быть внимателен и избегать необоснованных предполо-
жений о порядке вычислений.

Порядок вычисления аргументов функции

int i = 12;
int &ri = i;
int f(int, int);
// . . .

int result1 = f(i, i *= 2); // íå ïåðåíîñèìî

Порядок вычисления аргументов функции не определен. Поэтому функции f
могут быть переданы аргументы 12 и 24 или 24 и 24. Осмотрительный програм-
мист не станет модифицировать аргумент, который появляется более одного раза
в списке аргументов, но и это не спасает:

int result2 = f(i, ri *= 2); // íå ïåðåíîñèìî
int result3 = f(p(), q()); // êàê ïîâåçåò

В первом случае ri – это псевдоним i, поэтому о значении result2 можно
сказать не больше, чем о значении result1. Во втором случае мы предположили,

СоветСоветСоветСоветСовет 1313131313

4444444444 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

что порядок, в котором вызываются функции p и q, не имеет значения. Но даже
если это сейчас и так, то в будущем может измениться, а такое ограничение на
реализацию p и q нигде не документировано.

Лучше избегать побочных эффектов при вычислении аргументов функции:

result1 = f(i, i*2);
result2 = f(i, ri*2);
int a = p();
result3 = f(a, q());

Порядок вычисления подвыражений
Порядок вычисления подвыражений также не фиксирован:

a = p() + q();

Функция p может вызываться раньше q, а может и позже. Правила предше-
ствования и ассоциативности операторов не влияют на порядок вычислений:

a = p() + q() * r();

Функции p, q и r могут вычисляться в любом из шести возможных порядков.
Тот факт, что у оператора умножения более высокий приоритет, гарантирует
лишь, что результаты вызова q и r будут перемножены до того, как выполнится
сложение с результатом вызова q. Аналогично, левая ассоциативность оператора
«плюс» не гарантирует определенного порядка вызова функций p, q и r в примере
ниже; можно лишь утверждать, что результаты вызовов будут складываться слева
направо:

a = p() + q() + r();

Скобки тоже не помогут:

a = (p() + q()) * r();

Сначала действительно будет выполнено сложение результатов вызова p и q,
но будет ли функция r вызвана до или после этого, мы не знаем. Единственный
надежный способ зафиксировать порядок вычисления подвыражений, явно за-
вести временные переменные:

a = p();

int b = q();
a = (a + b) * r();

Как часто возникает такая проблема? Достаточно часто, чтобы испортить один-
другой выходной каждый год. На рис. 2.1 показан фрагмент абстрактного синтакси-
ческого дерева, используемого в реализации арифметического калькулятора.

Следующая реализация не переносима.

�� gotcha14/e.cpp

int Plus::eval() const

{ return l_->eval() + r_->eval(); }
int Assign::eval() const

{ return id->set(e_->eval()); }

Проблема в реализации функции Plus::eval: порядок вычисления левого и
правого поддерева не определен. Имеет ли это значение для сложения? Ведь оно

4545454545

должно быть коммутативным, не так ли? Но рассмотрим вычисление следующего
выражения:

(a = 12) + a

Рис. 2.1. Иерархия узлов абстрактного синтаксического дерева

для простого калькулятора (фрагмент). У узла Plus есть левое

и правое поддерево; у оператора присваивания только одно поддерево,

 представляющее его правую часть

В зависимости от порядка вычисления левого и правого поддеревьев в функ-
ции Plus::eval значением этого выражения может быть как 24, так и предыду-
щее значение a плюс 12. Если от нашего калькулятора требуется, чтобы присваи-
вание выполнялось раньше сложения, то в реализации Plus::eval необходимо
задействовать временную переменную:

�� gotcha14/e.cpp

int Plus::eval() const {
int lft = l_->eval();
return lft + r_->eval();

}

Порядок вычисления размещающего new
Надо признать, что эта проблема возникает не часто. Синтаксис размещающе-

го оператора new допускает передачу аргументов не только инициализатору
(обычно конструктору) размещаемого объекта, но и функции operator new, ко-
торая производит выделение памяти.

Thing *pThing =
new (getHeap(), getConstraint()) Thing(initval());

Первый список аргументов передается функции operator new, которая мо-
жет принимать аргументы, а второй – конструктору класса Thing. Общее за-
мечание относительно порядка вычисления аргументов функции применимо
к каждому из этих двух списков. Мы не знаем, что будет вычислено раньше: аргу-
менты для operator new или для конструктора Thing, хотя точно знаем, что
функция operator new будет вызвана раньше конструктора (поскольку нам
нужно сначала получить память для объекта, который мы собираемся инициа-
лизировать).

СоветСоветСоветСоветСовет 1414141414

4646464646 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

Операторы, которые фиксируют порядок вычислений
На поведение некоторых операторов можно положиться в большей степени,

если они употребляются самостоятельно. Так, оператор «запятая» фиксирует по-
рядок вычисления своих подвыражений:

result = expr1, expr2;

В этом выражении сначала вычисляется expr1, затем expr2, а затем резуль-
тат присваивается переменной result. Этим можно воспользоваться для напи-
сания необычно выглядящего кода:

return f(), g(), h();

Правда, автору этого кода надо бы пройти курс социализации. Применяйте
более традиционный стиль кодирования, если хотите облегчить жизнь тем, кто
будет сопровождать вашу программу:

f();

g();
return h();

Единственное общеупотребительное применение оператор «запятая» нахо-
дит в части оператора for, где происходит увеличение переменной цикла, если та-
ких переменных более одной:

for(int i = 0, j = MAX; i <= j; ++i, —j) // ...

Отметим, что первая запятая в объявлении i и j – это не оператор «запятая»,
а часть объявления двух переменных типа int.

 «Закорачивающие» логические операторы && и || более полезны, они позво-
ляют записывать сложные выражения кратко и идиоматично:

if(f() && g()) // ...
if(p() || q() || r()) // ...

Первое выражение означает: «Вызвать f. Если результат ложный, то и все ус-
ловие ложно. Если же результат истинный, вызвать g. Значением всего условия
будет результат вычисления g.» Второе условие читается так: «Вызвать p, q и r в
этом порядке. Если все три вызова возвращают ложь, то все условие ложно;
в противном случае, условие истинно.» Учитывая, насколько компактнее эти опе-
раторы позволяют сделать код, неудивительно, что программисты на C и С++
применяют их с такой готовностью.

Тернарный условный оператор («?:») также фиксирует порядок вычисления
своих аргументов:

expr1 ? expr2 : expr3

Сначала вычисляется первое выражение – условие; в зависимости от резуль-
тата вычисляется второе или третье выражение. Результатом всего оператора яв-
ляется результат вычисления последнего выражения.

a = f()+g() ? p() : q();

В данном случае у нас имеются некоторые гарантии относительно порядка
вычислений. Мы знаем, что f и g будут вызваны раньше p и q (хотя и не знаем,
в каком точно порядке) и что из двух функций p и q будет вызвана ровно одна.

4747474747

Для удобства чтения было бы неплохо добавить скобки, хотя, строго говоря, они
излишни.

a = (f()+g()) ? p() : q();

В противном случае сопровождающий по незнанию или в спешке может пред-
положить (неверно), что сложение выполняется позже условного оператора:

a = f()+(g() ? p() : q());

Некорректная перегрузка операторов
Однако, как бы ни были полезны встроенные версии этих операторов, пере-

гружать их не стоит. В C++ перегрузка операторов – это «синтаксическая припра-
ва», не более чем приятный для взгляда синтаксис вызова функции. Например,
можно было бы перегрузить оператор &&, так чтобы он принимал два аргумента
типа Thing:

bool operator &&(const Thing &, const Thing &);

Если использовать этот оператор в инфиксной нотации, то сопровождающий
может предположить, что он допускает «закорачивание», как и встроенный опе-
ратор. Однако это не так:

Thing &tf1();
Thing &tf2();
// ...
if(tf1() && tf2()) // ...

Семантически этот код эквивалентен вызову функции:

if(operator &&(tf1(), tf2())) // ...

А выше мы видели, что в этом случае вызываются обе функции tf1 и tf2,
причем порядок вызова не определен. То же самое относится к операторам
operator || и operator,. К счастью, перегружать operator ?: запрещается.

Совет 15. Помните о предшествовании
В этом разделе мы не будем говорить, кто должен сидеть рядом с Послом

на званом обеде: Графиня или Баронесса (у этой задачи все равно нет решения).
Нет, мы собираемся обсудить, как наличие нескольких уровней приоритетности
операторов в выражениях на языке C++ может стать причиной докучных
проблем.

Приоритеты и ассоциативность
Обычно от наличия разных уровней приоритетности операторов язык только

выигрывает, поскольку это позволяет проще записывать сложные выражения, не
отвлекаясь на скобки. (Заметим, однако, что все равно полезно расставлять скоб-
ки в длинных и не очевидных с первого взгляда выражениях. Но в простых, не
вызывающих сомнения случаях ненужные скобки лучше опускать.)

a = a + b * c;

СоветСоветСоветСоветСовет 15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании

4848484848 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

В этом выражении оператор * имеет наивысший приоритет, поэтому связан-
ное им выражение вычисляется первым. У оператора присваивания самый низ-
кий приоритет, поэтому эта операция выполняется последней.

b = a = a + b + c;

Здесь мы знаем, что операции сложения выполняются раньше присваиваний,
поскольку приоритет оператора + выше, чем у оператора =, но какое сложение и
какое присваивание будет выполняться первым? Для ответа на этот вопрос надо
принять во внимание ассоциативность операторов. В C++ есть левоассоциатив-
ные и правоассоциативные операторы. Левоассоциативный оператор, каковым
является +, теснее связан с аргументом в левой части. Поэтому сначала складыва-
ются a и b, а потом к результату прибавляется c.

Оператор присваивания правоассоциативен, так что сначала результат вы-
числения a+b+c присваивается a, после чего значение a присваивается b. В неко-
торых языках встречаются неассоциативные операторы; если, к примеру, опера-
тор @ неассоциативен, то выражение a@b@c недопустимо. Но в нашем «родном»
C++ неассоциативных операторов нет.

Проблемы, связанные с приоритетом операторов
Библиотека iostream спроектирована так, чтобы свести употребление скобок к

минимуму:

cout << "a+b = " << a+b << endl;

Приоритет оператора + выше, чем у оператора сдвига влево, поэтому компи-
лятор разбирает это выражение так, как нам нужно: сначала вычисляется a+b,
а потом результат отправляется в cout.

cout << a ? f() : g();

В этом примере использование единственного в C++ тернарного оператора
становится источником неприятностей, но не потому, что ?: тернарный; дело
в том, что его приоритет ниже, чем у оператора <<. Таким образом, это выражение
означает, что нужно «сдвинуть» a в cout, а результат вычисления этого выраже-
ния использовать в качестве условия в операторе ?:. Трагизм ситуации заключа-
ется в том, что это совершенно корректный код! (Потоковый объект, в частности,
cout обладает оператором operator void *, который неявно преобразует свой
операнд к типу void *, а он может быть преобразован в false или true в зависи-
мости от того, является указатель нулевым или нет.) Поэтому здесь приходится
воспользоваться скобками:

cout << (a ? f() : g());

Если вы хотите, чтобы вас считали совершенно нормальным человеком, може-
те сделать еще один шаг:

if(a)
cout << f();

else
cout << g();

Здесь, конечно, нет той изысканности, что в предыдущем примере, зато код
легко читать и сопровождать.

4949494949

Не многие программисты на C++ попадают в ловушки, связанные с приорите-
том оператора указания на объекты, поскольку хорошо известно, что у операторов -
> и . очень высокий приоритет. Следовательно, выражение a = ++ptr->mem озна-
чает: «инкрементировать член mem объекта, на который указывает ptr». Если бы
мы хотели сначала инкрементировать указатель, то надо было бы написать так: a
= (++ptr)->mem или так: ++ptr; a = ptr->mem; или уж на худой конец так:
a = (++ptr, ptr->mem).

Указатели на члены классов — это совсем другая история. Их следует разыме-
новывать в контексте объекта класса (см. «Совет 46»). Для этого существуют два
специальных оператора: ->* для перехода от указателя на член к указателю на
объект класса и .* – для перехода от указателя на член к самому объекту класса.

Указатели на функции-члены часто становятся причиной головной боли, но
серьезных синтаксических проблем не вызывают:

class C {

// ...
void f(int);
int mem;

};
void (C::*pfmem)(int) = &C::f;
int C::*pdmem = &C::mem;

C *cp = new C;
// ...
cp->*pfmem(12); // îøèáêà!

Ошибку компиляции мы получаем потому, что оператор вызова функции имеет
более высокий приоритет, чем оператор ->*, но мы не можем вызвать функцию-
член по указателю, не разыменовав ее предварительно. Скобки здесь необходимы:

(cp->*pfmem)(12);

С указателями на данные-члены дело обстоит сложнее. Рассмотрим следую-
щее выражение:

a = ++cp->*pdmem

Переменная cp – это тот же указатель на объект класса, что и выше, а pdmem –
не имя члена, а указатель на член. В данном случае, поскольку у оператора ->*
приоритет выше, чем у ++, то cp сначала инкрементируется, а потом уже разыме-
новывается указатель на член. Если только cp не указывает внутрь массива объ-
ектов, то такое разыименование, скорее всего, кончится бедой.

Мало найдется программистов на C++, которые хорошо понимают, что такое
указатели на члены класса. Чтобы упростить в дальнейшем сопровождение вашей
программы, старайтесь быть проще, когда работаете с ними:

++cp;
a = cp->*pdmem;

Проблемы, связанные с ассоциативностью
В C++ большинство операторов левоассоциативны, а неассоциативных опе-

раторов нет вовсе. Но это не мешает в остальном вполне образованным програм-
мистам пытаться использовать операторы примерно так:

СоветСоветСоветСоветСовет 15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании15. Помните о предшествовании

5050505050 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

int a = 3, b = 2, c = 1;
// ...
if(a > b > c) // êîððåêòíî, íî, ñêîðåå âñåãî, îøèáî÷íî

Этот код абсолютно корректен, но, скорее всего, ошибочен. Значение выраже-
ния 3>2>1, конечно же, false. Оператор «больше», как и большинство операто-
ров в C++, левоассоциативен, поэтому сначала вычисляется подвыражение 3>2,
которое равно true. Теперь у нас осталось выражение true>1. Значение true
преобразуется в целое число, после чего вычисляется выражение 1>1, которое
равно false.

В данном случае программист, вероятно, хотел записать условие a>b && b>c.
Если в силу каких-то неочевидных причин программист действительно хотел выра-
зить то, что написано в тексте, то лучше было бы сделать это так: a>b?1>c:0>c
или, быть может, так: (c-(a>b))<0. То и другое выглядит достаточно странно,
чтобы привлечь более пристальное внимание сопровождающего. И это тот слу-
чай, когда комментарий не повредил бы. (См. «Совет 1».)

Совет 16. Подводные камни
в предложении for
В языке C++ есть несколько мест, где разрешено объявлять переменную с огра-

ниченной областью видимости, отличающейся от блока. Например, можно объя-
вить переменную в условии предложения if. Она будет видна в предложениях,
управляемых этим условием, причем в обеих ветвях.

if(char *theName = lookup(name)) {
// ñäåëàòü ÷òî-òî ñ name ...

}
// çäåñü theName ïîêèäàåò îáëàñòü âèäèìîñòè

Раньше такую переменную пришлось бы объявлять вне предложения if, по-
этому она оставалась бы видимой и дальше, после того как мы закончили с ней
работать. Чем не источник неприятностей?

char *theName = lookup(name);
if(theName) {

// ñäåëàòü ÷òî-òî ñ name ...
}
// theName çäåñü âñå åùå äîñòóïíà ...

Вообще говоря, всегда лучше ограничить область видимости переменной той
частью программы, где она используется. В ходе сопровождения по причинам,
которые я не в состоянии понять, «висящие» переменные часто повторно исполь-
зуют для каких-то невообразимых целей. Поэтому они оказывают на докумен-
тирование и сопровождение программы, мягко говоря, «негативный» эффект.
(См. также «Совет 48»).

theName = new char[ISBN_LEN]; // íóæåí áóôåð äëÿ ISBN

То же самое относится к предложению for: переменную цикла можно объя-
вить в первой части заголовка:

for(int i = 0; i < bufSize; ++i) {

5151515151

if(!buffer[i])
break;

}
if(i == bufSize) // ðàíüøå áûëî êîððåêòíî, òåïåðü íåò; i âíå îáëàñòè

// âèäèìîñòè

// ...

Много лет такая запись в C++ была допустима, но потом область действия
переменной цикла изменилась. Раньше она простиралась от точки объявления
(непосредственно перед инициализатором, см. «Совет 21») до конца блока,
объемлющего предложение for. После изменения семантики область видимости
стала ограничена сами предложением for. Большая часть программистов пола-
гает, что такое изменение разумно по многим причинам: оно более согласованно
с другими частями языка, упрощает оптимизацию циклов и так далее. Но вместе
с тем приходится исправлять старые программы, которые зависели от этой семан-
тики.

А иногда этот процесс бывает болезненным. Оцените возможность скрытого
изменения смысла следующего кода:

int i = 0;

void f() {

for(int i = 0; i <bufSize; i++) {

if(!buffer[i])

break;

}

if(i == bufSize) // i èç îáëàñòè âèäèìîñòè ôàéëà!

// . . .

}

К счастью, подобные ошибки редки, и хороший компилятор предупредит вас о
возникновении такой ситуации. Отнеситесь к предупреждению серьезно (и не от-
ключайте режим выдачи предупреждений) и старайтесь избегать сокрытия имен
из внешних областей видимости именами, объявленными во внутренних областях.
И перестаньте пользоваться глобальными переменными. (См. «Совет 3».)

Как ни странно, самое зловредное воздействие изменение области действия в
предложении for оказало на способ записи таких предложений программистами:

int i;

for(i = 0; i < bufSize; ++i) {

if(isprint(buffer[i]))

massage(buffer[i]);

// . . .

 if(some_condition)

continue;

// . . .

}

Это код на C, а не на C++. Да, у него есть достоинство: его смысл одинаков и
для старой, и для новой семантики; но давайте посмотрим, что мы теряем. Во-пер-
вых, переменная цикла остается видимой после выхода из предложения for. Во-
вторых, переменная i не инициализирована. Ни то, ни другое не смертельно, ког-
да код только разрабатывается. Но в ходе сопровождения менее опытный

СоветСоветСоветСоветСовет 1616161616

5252525252 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

программист может попытаться использовать неинициализированную перемен-
ную i как перед входом в предложение for, так и после выхода из него, то есть в
момент, когда, по мысли автора, i уже не должно существовать.

Другая проблема в том, что из-за этого изменения некоторые программисты
вообще перестают пользоваться предложением for:

int i = 0;

while(i < bufSize) {

if(isprint(buffer[i]))

massage(buffer[i]);

// . . .

if(some_condition)

continue; // áåäà!

// . . .

++i;

}

Дело в том, что предложения while и for не эквивалентны. Например, если
в теле цикла есть предложение continue, то в семантике программы происходит
трудноуловимое изменение. В данном случае она войдет в бесконечный цикл,
а это обычно ясно свидетельствует об ошибке. Но не всегда можно рассчитывать
на такую удачу.

Если вам повезло работать исключительно на платформах, где поддержи-
вается новая семантика предложения for, то лучше всего будет адаптировать свои
программы, как только выйдет обновленная версия компилятора.

К несчастью, чаще бывает так, что код должен компилироваться на разных
платформах, где семантика предложения for несовместима. В таком случае кажет-
ся логичным написать все предложения for так, чтобы они имели один и тот же
смысл при любом способе трансляции.

int i;

for(i = 0; i < bufSize; ++i) {

if(isprint(buffer[i]))

massage(buffer[i]);

// . . .

}

Но я все же рекомендую переписать все предложения for в соответствии с но-
вой семантикой. Чтобы обойти проблемы с областью видимости переменной цик-
ла, можно погрузить предложение for в блок:

{for(int i = 0; i < bufSize; ++i) {

if(isprint(buffer[i]))

massage(buffer[i]);

// . . .

}}

Выглядит достаточно уродливо, чтобы на это обратили внимание и удалили
лишний блок, как только появится такая возможность. Кроме того, эта конструк-
ция явно свидетельствует о намерении автора написать предложение for с учетом
новой семантики, а не оставлять эту модификацию тому, кто будет сопровождать
программу.

5353535353

Совет 17. Принцип «максимального куска»
Что вы делаете, столкнувшись с подобным выражением?

++++p->*mp

А не доводилось ли вам сталкиваться с «сержантским оператором»?1

template <typename T>
class R {

// ...
friend ostream &operator <<< // ñåðæàíòñêèé îïåðàòîð?

T >(ostream &, const R &);
};

Не задавались ли вы вопросом, корректно ли следующее выражение?

a+++++b

Добро пожаловать в мир «больших кусков». На одной из ранних стадий транс-
ляции программы на C++ работает так называемый «лексический анализатор»,
задача которого , разбить входной поток на отдельные лексические единицы или
лексемы. Встретив последовательность символов типа ->*, лексический анализа-
тор может выделить три лексемы (-, > и *), две лексемы (-> и *) или одну лексему
(->*), и все это будет разумно. Чтобы избежать неоднозначности, анализатор все-
гда выделяет самую длинную из возможных лексем: «максимальный кусок» .

Выражение a+++++b недопустимо, как и выражение a+++++b; нельзя приме-
нять операцию постинкремента к rvalue, каковым является выражение a++. Если
вы хотели применить постинкремент к a, а затем прибавить результат к тому, что
получается после прединкремента b, то надо было вставить хотя бы один пробел:
a+++++b. Если вы питаете хоть малейшее уважение к тем, кто будет читать ваш
код, то добавите и еще один, хотя, строго говоря, он не обязателен: a+++++b.
И никто не станет критиковать вас, если вы включите еще и скобки: (a++)+(++b).

Принцип «максимального куска» решает намного больше проблем, чем по-
рождает, но есть два случая, когда он мешает. Первый – это конкретизация шаб-
лонов аргументами, которые сами являются шаблонами. Например, стандартная
библиотека позволяет объявить список (list) из векторов (vector) строк
(string):

list<vector<string>> lovos; // îøèáêà!

К несчастью, две соседних закрывающих угловых скобки интерпретируются в
этом случае как оператор сдвига, и мы получаем синтаксическую ошибку. Необ-
ходим пробел:

list< vector<string> > lovos;

Другая ситуация возникает, когда используется значение по умолчанию для
аргумента, являющегося указателем:

void process(const char *= 0); // îøèáêà!

1 Три лычки (<<<) нашиваются на погоны сержантов армии США (Прим. перев.)

СоветСоветСоветСоветСовет 17. Принцип «максимального куска»17. Принцип «максимального куска»17. Принцип «максимального куска»17. Принцип «максимального куска»17. Принцип «максимального куска»

5454545454 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

Здесь компилятор думает, что мы пытаемся использовать оператор присваи-
вания в объявлении формального аргумента. Синтаксическая ошибка. Эта ошиб-
ка проходит по категории «по заслугам и награда»; ничего не случилось бы, если
бы автор дал формальному аргументу какое-то имя. Оно не только стало бы самой
лучшей документацией, но и предотвратило бы ошибку из-за применения прин-
ципа «максимального куска»:

void process(const char *processId = 0);

Совет 18. О порядке следования
спецификаторов в объявлениях
С точки зрения языка порядок следования спецификаторов в объявлениях не

имеет значения:

int const extern size = 1024; // äîïóñòèìî, íî ñòðàííî

Но без основательных причин не стоит нарушать соглашение, лучше следо-
вать сложившемуся де факто стандарту упорядочения спецификаторов: специфи-
катор компоновки, квалификатор типа, тип.

extern const int size = 1024; // íîðìàëüíî

Каков тип переменной ptr ниже?

int const *ptr = &size;

Правильно. Это указатель на константное целое, но вы не поверите, сколько
программистов считают, что это объявление константного указателя на целое:

int * const ptr2 = &size; // îøèáêà!

Конечно же, это два совсем разных типа, поскольку первый может ссылаться
на константное целое, а второй – нет. В разговорной речи многие программисты
называют указатели на константные данные «const-указателями». Это неудачная
идея, так как правильный смысл (указатель на константные данные) дойдет, как
это ни забавно, только до невежд и собьет с толку любого компетентного програм-
миста на C++, который поверит вам на слово (константный указатель на не-кон-
стантные данные).

Следует признать, что в стандартной библиотеке есть понятие const_iterator,
обозначающее – и этому нет прощения – итератор, который ссылается на констант-
ные элементы; сам итератор константным не является. (Но из того, что у комитета
по стандартизации выдался тяжелый день, не следует, что вы должны повторять его
ошибку.) Проводите различие между «указателем на const» и «константным ука-
зателем». (См. «Совет 31»).

Поскольку технически порядок спецификаторов в объявлениях не важен, то
указатель на const можно объявить двумя способами:

const int *pci1;
int const *pci2;

Некоторые эксперты по C++ рекомендуют вторую форму, поскольку, по их
мнению, в сложных объявлениях указателей она легче читается:

int const * const *pp1;

5555555555

Размещение квалификатора const последним в списке спецификаторов по-
зволяет читать модификаторы указателя в обратном порядке, то есть справа нале-
во: pp1 – это указатель на константный указатель на const int. Традиционное
расположение такого простого прочтения не допускает.

const int * const *pp2; // òî æå, ÷òî pp1

Однако эта запись не намного сложнее предыдущей, а программисты, которые
будут читать и сопровождать код, содержащий такие вычурные объявления, веро-
ятно, смогут в них разобраться. Важнее то, что указатели на указатели и другие
подобные им объявления встречаются редко, особенно в тех интерфейсах, на ко-
торые могут натолкнуться менее опытные программисты. Как правило, они скры-
ты глубоко в недрах реализации. Гораздо чаще встречаются указатели на констан-
ты, поэтому имеет смысл следовать соглашению, чтобы избежать недопонимания:

const int *pci1; // ïðàâèëüíî: óêàçàòåëü íà const

Совет 19. Функция или объект?
Когда объект инициализируется конструктором по умолчанию, не следует

указывать пустой список инициализации, поскольку компилятор интерпретирует
его как объявление функции:

String s("Semantics, not Syntax!"); // ÿâíûé èíèöèàëèçàòîð

String t; // èíèöèàëèçàöèÿ ïî óìîë÷àíèþ

String x(); // îáúÿâëåíèå ôóíêöèè

Эта неоднозначность внутренне присуща языку C++. По существу, при разра-
ботке стандарта «подбросили монету» и решили: пусть x будет объявлением фун-
кции. Отметим, что в выражениях new такая неоднозначность не возникает:

String *sp1 = new String(); // íèêàêîé íåîäíîçíà÷íîñòè ...

String *sp2 = new String; // òî æå, ÷òî è âûøå

Вторая форма предпочтительнее, поскольку она более распространена и орто-
гональна по отношению к объявлению объектов.

Совет 20. Перестановка квалификаторов типа
Не существует такого понятия, как константный или изменяющийся массив,

поэтому квалификаторы типы (const или volatile), указанные для массива,
будут автоматически переставлены на правильную позицию в объявлении типа:

typedef int A[12];

extern const A ca; // ìàññèâ èç 12 êîíñòàíòíûõ öåëûõ

typedef int *AP[12][12];

volatile AP vm; // äâóìåðíûé ìàññèâ volatile-óêàçàòåëåé íà int

volatile int *vm2[12][12]; // äâóìåðíûé ìàññèâ óêàçàòåëåé íà volatile int

Это разумно, так как массив – это не что иное, как своего рода литеральный
указатель на свои элементы. С ним не ассоциировано никакой памяти, которая
может быть константной или изменяющейся, поэтому квалификаторы могут при-
меняться только к его элементам. Однако имейте в виду, что компиляторы часто

СоветСоветСоветСоветСовет 1111188888

5656565656 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

некорректно реализуют эту операцию в сложных случаях. Например, компилятор
решил (ошибочно), что тип переменной vm выше совпадает с типом vm2.

В отношении объявлений функций все обстоит несколько хитрее. В прошлом
наиболее распространенные реализации C++ допускали аналогичную переста-
новку квалификаторов и для них:

typedef int FUN(char *);

typedef const FUN PF; // ðàíüøå: ôóíêöèÿ, âîçâðàùàþùàÿ const int

// òåïåðü: íåäîïóñòèìî

Ныне стандарт говорит, что квалификатор типа можно применять в объявле-
нии функции к typedef

,
y «верхнего уровня», и что typedef можно использо-

вать только для объявления нестатической функции-члена:

typedef int MF() const;

MF nonmemfunc; // îøèáêà!

class C {

MF memfunc; // ïðàâèëüíî.

};

Наверное, лучше избегать такого использования. Современные компиляторы
не всегда реализуют его правильно, а читателей-людей оно только запутывает.

Совет 21. Автоинициализация
Каково значение внутренней переменной var в следующем коде?

int var = 12;

{
 double var = var;
 // ...

Не определено. В C++ имя попадает в область действия перед началом разбо-
ра инициализатора, поэтому любая ссылка на это имя внутри инициализатора
оказывается ссылкой на необъявленную переменную! Мало найдется программи-
стов, которые захотят написать такое странное объявление, но наткнуться на по-
добную проблему можно в результате копирования кода из другого места:

int copy = 12; // êàêàÿ-òî ãëóáîêî óïðÿòàííàÿ ïåðåìåííàÿ

// ...

int y = (3*x+2*copy+5)/z; // âûðåçàòü ...

// ...

void f() {

// íóæíà êîïèÿ íà÷àëüíîãî çíà÷åíèÿ y ...

int copy = (3*x+2*copy+5)/z; // è âñòàâèòü ñþäà!

// ...

Препроцессор может привести к такой же ошибке, как небрежное копирова-
ние (см. «Совет 26»).

int copy = 12;

#define Expr ((3*x+2*copy+5)/z)

// ...

void g() {

int copy = Expr; // äåæà âþ, âñå ïîâòîðèëîñü ...

// ...

5757575757

Другое проявление той же проблемы возникает, когда выбранное соглашение
об именовании не различает имена типов и не-типов:

struct buf {

char a, b, c, d;

};

// . . .

=== Page 54 ===

void aFunc() {

char *buf = new char[sizeof(buf)];

// . . .

Локальное имя buf относится (вероятно) к 4-байтовому буферу, достаточно
большому, чтобы вместить значение типа char *. Эта ошибка могла бы оставать-
ся незамеченной очень долго, особенно, если размер структуры struct buf слу-
чайно окажется таким же, как размер указателя. Если соглашение об именовании
таково, что имена типов нельзя спутать с именами не-типов, то такая проблема
никогда не возникнет (см. «Совет 12»).

struct Buf {

 char a, b, c, d;

};
// ...

void aFunc() {

 char *buf = new char[sizeof(Buf)]; // ïðàâèëüíî

 // ...

Теперь мы знаем, как избежать канонических проявлений этого «скользкого
места»:

int var = 12;
{

double var = var;
// ...

А что вы скажете насчет такой вариации на ту же тему?

const int val = 12;
{

enum { val = val };
// ...

Каково значение перечисляемой константы val? Тоже не определено? По-
думайте как следует. Ее значение равно 12, и причина в том, что точка объявления
перечисляемой константы val, в отличие от объявления переменной, расположе-
на после инициализатора (или, говоря более формально, после определения пере-
числяемой константы). Значение val после знака = в enum относится к константе в
объемлющей области видимости. Продолжая эту тему, мы можем рассмотреть
еще более запутанную ситуацию:

const int val = val;

{

enum { val = val };

// ...

К счастью, такое определение перечисляемой константы недопустимо. Ини-
циализатор здесь не является целым константным выражением, поскольку ком-

СССССоветоветоветоветовет 21. Автоинициализация21. Автоинициализация21. Автоинициализация21. Автоинициализация21. Автоинициализация

5858585858 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

пилятор не может определить значение val из объемлющей области видимости
на этапе компиляции.

Совет 22. Статические и внешние типы
Нет таких вещей в C++. Однако опытные программисты часто сбивают с тол-

ку начинающих объявлениями, подобными показанному ниже. На первый взгляд
кажется, что к типу применен спецификатор компоновки (см. «Совет 11»):

static class Repository {
// ...

} repository; // ñòàòè÷åñêèé
Repository backUp; // íå ñòàòè÷åñêèé

Хотя указывать для типа вид компоновки не запрещено, этот спецификатор
всегда относится к объекту или функции, но не к самому типу. Лучше выражать
свои намерения яснее:

class Repository {

// ...

};

static Repository repository;

static Repository backUp;

Отметим, что вместо спецификатора компоновки static лучше пользовать-
ся безымянным пространством имен:

namespace {
Repository repository;
Repository backUp;

}

Теперь имена repository и backUp имеют внешнюю компоновку и, стало
быть, могут применяться для большего числа целей, чем статические имена (на-
пример, при конкретизации шаблонов). Однако, как и статические имена, они не-
доступны вне текущей единицы трансляции.

Совет 23. Аномалия при поиске
операторной функции
Перегруженные операторы – это, в действительности, просто обычные функ-

ции, являющиеся или не являющиеся членами класса, при вызове которых можно
использовать инфиксный синтаксис. Это не более чем «синтаксическая припра-
ва»:

class String {
public:
String &operator =(const String &);
friend String operator +(const String &, const String &);

String operator –();
operator const char *() const;
// ...

};
String a, b, c;

5959595959

// ...
a = b;
a.operator =(b); // òî æå ñàìîå
a + b;
operator +(a, b); // òî æå ñàìîå
a = -b;
a.operator =(b.operator –()); // òî æå ñàìîå
const char *cp = a;
cp = a.operator const char *(); // òî æå ñàìîå

Очевидно, что инфиксная нотация намного понятнее. Обычно мы пользуемся
этой нотацией при вызове перегруженных операторов; в конце концов, именно
для этого мы операторы и перегружаем.

Но бывают и исключения, когда обычный синтаксис вызова функции выгля-
дит понятнее инфиксного. Стандартный пример – обращение к оператору при-
сваивания, определенному в базовом классе, из реализации оператора присваива-
ния в производном классе:

class A {
protected:
A &operator =(const A &);
// . . .

};
class B : public A {
public:
B &operator =(const B &);
// . . .

};

B &B::operator =(const B &b) {
if(&b != this) {

A::operator =(b); // ïîíÿòíåå ÷åì
// (*static_cast<A*const>(this))=b

// ïðèñâîèòü çíà÷åíèÿ ëîêàëüíûì ÷ëåíàì
}
return *this;

}

Функциональная форма вызова также применяется вместо инфиксной, когда
последняя выглядит настолько странно (хотя и абсолютно корректна), что чита-
тель будет вынужден потратить пару минут на то, чтобы понять ее смысл:

value_type *Iter::operator ->() const
{ return &operator *(); } // âìåñòî &*(*this)

Существуют, кроме того, неоднозначные ситуации, в которых явное предпоч-
тение нельзя отдать ни тому, ни другому синтаксису:

bool operator !=(const Iter &that) const
{ return !(*this == that); } // èëè !operator ==(that)

Заметим, однако, что порядок поиска имени для инфиксной и функциональ-
ной формы различен. И это может приводить к неожиданным результатам:

class X {
public:
X &operator %(const X &) const;

void f();

СССССоветоветоветоветовет 22. Статические и внешние типы22. Статические и внешние типы22. Статические и внешние типы22. Статические и внешние типы22. Статические и внешние типы

6060606060 СинтаксисСинтаксисСинтаксисСинтаксисСинтаксис

// . . .
};
X &operator %(const X &, int);
void X::f() {

X &anX = *this;
anX % 12; // ïðàâèëüíî, íå ÷ëåí
operator %(anX, 12); // îøèáêà!

}

Когда используется функциональная форма, для поиска имени функции при-
меняется стандартная процедура. Если речь идет о функции-члене X::f, компи-
лятор сначала ищет функцию с именем operator % в классе X. Если имя найде-
но, он не будет продолжать поиск других функций с тем же именем в объемлющих
областях видимости.

К несчастью, мы передаем бинарному оператору три аргумента. Поскольку у
функции-члена operator % есть неявный аргумент this, то наличие еще и двух
явных аргументов говорит компилятору о том, что мы пытаемся превратить би-
нарный оператор % в тернарный. Правильно было бы либо явно сказать, что это
не функция-член (::operator %(anX, 12)), либо передать ожидаемое число
аргументов функции-члену (operator %(anX)).

При использовании инфиксной нотации компилятор будет искать функцию-
член operator % и одноименную функцию, не являющуюся членом, в области
видимости левого операнда. В случае выражения anX % 12 компилятор найдет
две функции-кандидата и выберет функцию, не являющуюся членом, как и должно
быть.

Совет 24. Тонкости оператора ->
Встроенный оператор -> бинарный: левым операндом является указатель,

а правым — имя члена класса. Перегруженный же оператор-> – унарная функ-
ция-член!

�� gotcha24/ptr.h

class Ptr {
 public:
 Ptr(T *init);
 T *operator ->();
 // . . .
 private:

 T *tp_;
};

Обращение к перегруженной функции -> должно вернуть нечто, что можно
передать оператору -> для доступа к члену.

�� gotcha24/ptr.cpp

Ptr p(new T);
p->f(); // p.operator ->()->f()!

Можно взглянуть на эту ситуация так: лексема -> не «поглощается» перегру-
женной версией operator ->, а остается во входном потоке и рано или поздно
будет востребована встроенным оператором ->. Как правило, при перегрузке опе-

6161616161

ратора -> добавляется та или иная семантика, делающая из него «интеллек-
туальный указатель»:

�� gotcha24/ptr.cpp

T *Ptr::operator ->() {
if(today() == TUESDAY)

abort();
else

return tp_;

}

Мы уже упоминали, что перегруженный operator -> должен возвращать
«нечто», что позволит получить доступ к члену. Это «нечто» не обязано быть
встроенным указателем, а может оказаться объектом класса, который и сам пере-
определяет operator ->:

�� gotcha24/ptr.h

class AugPtr {
public:

AugPtr(T *init) : p_(init) {}
Ptr &operator ->();
// . . .

private:
Ptr p_;

};

�� gotcha24/ptr.cpp

Ptr &AugPtr::operator ->() {
if(today() == FRIDAY)

cout << '\a' << flush;
return p_;

}

Это дает возможность распределить обязанности между несколькими интел-
лектуальными указателями:

�� gotcha24/ptr.cpp

AugPtr ap(new T);

ap->f(); // ap.operator ->().operator ->()->f()!

Отметим, что последовательность активаций operator -> всегда определя-
ется по статическому типу объекта, содержащего operator ->, и цепочка обра-
щений к функции-членуoperator -> обрывается, когда получен встроенный
указатель. Например, применение -> к AugPtr всегда даст такую последователь-
ность вызовов: сначала AugPtr::operator ->, затем Ptr::operator ->, за-
тем встроенный ->, применяемый к указателю типа T *. (См. более реалистич-
ный пример использования operator -> в «Совете 83».)

СССССоветоветоветоветовет 24. Тонкости оператора ->24. Тонкости оператора ->24. Тонкости оператора ->24. Тонкости оператора ->24. Тонкости оператора ->

Глава 3. Препроцессор

Обработка текста программы на C++ препроцессором – это, наверное, самая опас-
ная фаза трансляции. Препроцессор видит только лексемы («слова», из которых
состоит исходный текст программы) и не обращает внимания на синтаксические
и семантические особенности языка. Можно сказать, что препроцессор не осозна-
ет собственной мощи и, как многие сильные, но глупые существа, способен причи-
нить немало вреда.

Основной вывод настоящей главы: применяйте препроцессор там, где нужно
много «силы», но мало знаний о C++, и не подпускайте его ни к чему, требующему
«тонкого обращения».

Совет 25. Определение литералов
с помощью #define
Программисты на C++ не пользуются директивой #define для определения

литералов, поскольку в C++ это может стать причиной ошибок и непереносимос-
ти. Рассмотрим привычное для C применение #define:

#define MAX 1<<16

Основной недостаток символов препроцессора в том, что препроцессор рас-
ширяет их до того, как их имел возможность увидеть собственно компилятор
C++. Препроцессор ничего не знает о правилах видимости, действующих в C++.

void f(int);
void f(long);
// ...

f(MAX); // êàêàÿ f?

К тому моменту, как компилятор приступает к разрешению перегрузки, сим-
вол препроцессора MAX оказывается всего лишь целым значением 1<<16. В зави-
симости от платформы число 1<<16 может иметь тип int или long. Следова-
тельно, на разных платформах могут вызываться разные функции f.

Директива #define не обращает внимания на области видимости. Очень
многие средства C++ инкапсулированы в пространствах имен. У такого подхода
много достоинств, включая то, что разные средства не вступают в конфликт друг с
другом. К сожалению, #define «плюет» на границы пространств имен:

namespace Influential {
define MAX 1<<16

// ...
}
namespace Facility {
const int max = 512;

6363636363

// ...
}
// ...
int a[MAX]; // áåäà!

Программист забыл импортировать имя max, к тому же неправильно написал
вместо него MAX. Но препроцессор просто заменил MAX на 1<<16, поэтому код все
равно компилируется. «Интересно, почему программа потребляет так много па-
мяти...».

Решить все эти проблемы можно, воспользовавшись инициализированной
константой:

const int max = 1<<9;

Теперь max имеет один и тот же тип на любой платформе, и имя max подчиня-
ется обычным правилам областей видимости. Отметим, что использование max
почти так же эффективно, как и применение #define, поскольку компилятору
разрешено не выделять для этой константы память, а просто подставить ее на-
чальное значение всюду, где она используется в качестве rvalue. Однако, посколь-
ку имя max – это все же lvalue (только неизменяемое, см. «Совет 6»), то
у него есть адрес, и мы можем указать на него. Для литерала это было бы невоз-
можно:

const int *pmax = &Facility::max;
const int *pMAX = &MAX; // îøèáêà!

С директивой #define связана еще одна проблема: подстановки, выполняе-
мые препроцессором, имеют лексический, а не синтаксический характер. В при-
мере выше определение MAX с помощью #define не вызвало проблем, но посмот-
рите, как легко они могут появиться:

int b[MAX*2];

Поскольку мы не заключили выражение в правой части #define в скобки, то
сейчас мы пытаемся объявить поистине огромный массив целых чисел:

int b[1<<16*2];

Да, эта ошибка – всего лишь результат неправильного употребления #define,
но она вообще не могла бы возникнуть, если бы мы воспользовались инициализи-
рованной константой.

Та же проблема существует и для области видимости класса. В примере ниже
мы хотим, чтобы значение было доступно внутри класса и больше нигде. Тради-
ционно в C++ для таких целей применяют перечисления:

class Name {
// ...
void capitalize();
enum { nameLen = 32 };
char name_[nameLen];

};

Перечисляемая константа nameLen не занимает памяти и доступна только в
области видимости класса, которая, разумеется, включает и все функции-члены:

void Name::capitalize() {
for(int i = 0; i < nameLen; ++i)

СССССоветоветоветоветовет 2525252525

6464646464 ПрепроцессорПрепроцессорПрепроцессорПрепроцессорПрепроцессор

if(name_[i])
name_[i] = toupper(name_[i]);

else
break;

}

Разрешается также, хотя не все компиляторы еще поддерживают эту возмож-
ность, объявлять и инициализировать константные статические данные-члены
интегральных типов целочисленным константным выражением внутри тела
класса (см. «Совет 59»).

class Name {

// . . .
static const int nameLen_ = 32;

};
// . . .
const int Name::nameLen_; // çäåñü íåò èíèöèàëèçàòîðà!

Однако может случиться, что компилятор не сумеет оптимизировать код так,
чтобы не выделять память под такой статический член данных, поэтому лучше
для определения простых целочисленных констант лучше пользоваться старыми
добрыми перечислениями.

Совет 26. Определение псевдофункций
с помощью #define
В языке C директива #define часто применяется для определения псевдо-

функций, когда снижение накладных расходов на вызов функции считается важ-
нее безопасности:

#define repeated(b, m) (b & m & (b & m)-1)

Разумеется, и такое использование препроцессора ведет к обычным для него
проблемам. В частности, приведенное выше определение некорректно:

typedef unsigned short Bits;
enum { bit01 = 1<<0, bit02 = 1<<1, bit03 = 1<<2, // ...
Bits a = 0;
const Bits mask = bit02 | bit03 | bit06;

// ...
if(repeated(a+bit02, mask)) // áåäà!

// ...

Здесь мы допустили типичную ошибку: забыли расставить скобки. Правиль-
ное определение не оставляет места никаким случайностям:

#define repeated(b, m) ((b) & (m) & ((b) & (m))-1)

За исключением побочных эффектов. Стоит слегка изменить обращение к
этой псевдофункции, и результат окажется и неправильным, и неоднозначным:

if(repeated(a+=bit02, mask)) // áîëüøàÿ áåäà!
 // ...

При вычислении первого аргумента возникает побочный эффект. Если бы
repeated была настоящей функцией, то побочный эффект проявлялся бы только
один раз, еще перед вызовом функции. Но при имеющемся определении repeated

6565656565

он проявляется дважды, причем порядок не определен (см. «Совет 14»). Псевдо-
функции особенно опасны тем, что в тексте программы неотличимы от настоящих
функций, хотя имеют совершенно другую семантику. Из-за такого сходства даже
опытные программисты на C++ иногда пользуются псевдофункциями непра-
вильно, так как думают, что вызывают обычную функцию.

В C++ почти всегда псевдофункции следует предпочесть встраиваемую функ-
цию, поскольку она-то обладает обычной для функций семантикой, такой же, как
у невстраиваемых функций:

inline Bits repeated(Bits b, Bits m)
{ return b & m & (b & m)-1; }

Макросы, используемые в качестве псевдофункций, подвержены тем же про-
блемам с областью видимости, как и макросы-константы (см. «Совет 25»).

�� gotcha26/execbump.cpp

int kount = 0;
#define execBump(func) (func(), ++kount)

// . . .
void aFunc() {

extern void g();
int kount;
while(kount++ < 10)

execBump(g); // èíêðåìåíòèðîâàòü ëîêàëüíóþ kount!

}

Пользователь псевдофункции execBump не знал (будем надеяться), что в ней
используется переменная kount и непреднамеренно модифицировал значение
локальной переменной kount вместо глобальной. Лучше бы в этом случае напи-
сать настоящую функцию:

�� gotcha26/execbump.cpp

int kount = 0;
inline void execBump(void (*func)())

{ func(); ++kount; }

Во встраиваемой функции идентификатор kount во время компиляции свя-
зывается с глобальной переменной. Это имя не будет ссылаться на какую-либо
другую переменную kount в момент вызова функции. (Но это не оправдывает
самого факта использования глобальной переменной; см. «Совет 3».)

Еще лучше было бы воспользоваться функциональным объектом, чтобы по-
высить степень инкапсуляции счетчика:

�� gotcha26/execbump.cpp

class ExecBump { // ïàòòåðí Monostate. ñì Ñîâåò 69.
public:
void operator ()(void (*func)())

{ func(); ++count_; }
int get_count() const

{ return count_; }
private:
static int count_;

};
// ...

СССССоветоветоветоветовет 2626262626

6666666666 ПрепроцессорПрепроцессорПрепроцессорПрепроцессорПрепроцессор

int ExecBump::count_ = 0;
// ...
void aFunc() {

extern void g();
ExecBump exec;

int count = 0;
while(count++ < 10)

exec(g);
}

Использование псевдофункций бывает оправдано сравнительно редко, разве
что если речь идет о символах препроцессора __LINE__, __FILE__, __DATE__ и
__TIME__:

�� gotcha28/myassert.h

#define myAssert(e) ((!(e))?void(std::cerr << "Îøèáêà: " \
 << #e << " ñòðîêà " << __LINE__ << std::endl): void())

См. также «Совет 28».

Совет 27. Не увлекайтесь использованием
директивы #if

Использование директивы #if для отладки
Как мы обычно вставляем в программу отладочный код? Всем известно, что

с помощью препроцессора:

void buggy() {

#ifndef NDEBUG
 // îòëàäî÷íûé êîä ...
#endif
 // ðàáî÷èé êîä ...
#ifndef NDEBUG
 // ñíîâà îòëàäî÷íûé êîä ...

#endif
}

И все ошибаются. Почти у каждого давно работающего программиста найдет-
ся кошмарная история о том, как отладочная версия отлично работала, но стоило
определить символ NDEBUG, как промышленная программа таинственно работать
переставала.

А ничего таинственного здесь нет. Ведь мы по сути дела обсуждаем две совсем
разные программы, пусть они и сгенерированы из одних и тех же исходных фай-
лов. Пришлось один и тот же исходный текст даже откомпилировать дважды, что-
бы убедиться хотя бы в его синтаксической правильности. Правильный подход –
отказаться от идеи отладочной версии и писать единственную программу:

void buggy() {
if(debug) {

// îòëàäî÷íûé êîä ...
 }

6767676767

// ðàáî÷èé êîä ...

if(debug) {

// ñíîâà îòëàäî÷íûé êîä ...

}

}

А как же быть с отладочным кодом? Он останется в исполняемом файле про-
мышленной версии? И на него будет расходоваться память? А на обработку лиш-
них ветвей условного предложения будет тратиться время? Нет, если отладочно-
го кода в исполняемом файле не будет. Компиляторы прекрасно справляются
с задачей выявления и удаления неиспользуемого кода. Намного лучше, чем это
делаем мы с помощью директив #ifdef. Нужно лишь ясно выразить свое намере-
ние:

const bool debug = false;

Выражение debug в стандарте названо «целочисленным константным выра-
жением». Каждый компилятор C++ должен уметь вычислять подобные констант-
ные выражения на этапе компиляции; так транслируются границы массивов, мет-
ки case и длины битовых полей. Любой сколько-нибудь качественный
компилятор сможет убрать недостижимый код вида

if(false) {

// íåäîñòèæèìûé êîä ...

}

Да-да, даже тот компилятор, на который вы жаловались своему руководству
последние пять лет, тоже справится с этим. И, хотя в конечном итоге недостижи-
мый код будет удален, компилятор предварительно выполнит его полный анализ
и статический семантический контроль. Следуя определению константного выра-
жения, данному в стандарте, компилятор сумеет удалить недостижимый код, ох-
раняемый даже более сложными выражениями, например:

if(debug && debuglvl > 5 && debugopts&debugmask) {

// ïîòåíöèàëüíî íåäîñòèæèìûé êîä ...

}

Компилятор сумеет устранить ненужный код и в более сложных случаях. На-
пример, можно попытаться задействовать мою любимую встраиваемую функцию
в условном выражении:

typedef unsigned short Bits;

inline Bits repeated(Bits b, Bits m)

{ return b & m & (b & m)-1; }

// ...

if(debug && repeated(debugopts, debugmask)) {

// ïîòåíöèàëüíî íåäîñòèæèìûé êîä ...

error("Ðàçðåøåíà òîëüêî îäíà îïöèÿ");

}

Однако, при наличии вызова функции (все равно, встраиваемой или нет) вы-
ражение перестает быть константным, поэтому не гарантируется, что компилятор
станет вычислять его на этапе компиляции, поэтому недостижимый код может и
остаться в программе. Если вы настаиваете на удалении кода, то такое решение не

СССССоветоветоветоветовет 2727272727

6868686868 ПрепроцессорПрепроцессорПрепроцессорПрепроцессорПрепроцессор

переносимо. Некоторые программисты, слишком долгое время работавшие на C,
могут предложить такой выход из положения:

#define repeated(b, m) ((b) & (m) & ((b) & (m))-1)

Не делайте этого (см. «Совет 26»).
Отметим, что иногда оставлять в приложении условно компилируемый код

даже полезно, например, чтобы задать значения констант на этапе компиляции:

const bool debug =
#ifndef NDEBUG

false
#else

true
#endif
;

Впрочем, и такая малая толика условно компилируемого кода не обязательна.
В общем случае, лучше выбирать между отладочной и промышленной версией
в файле сборки проекта (makefile или аналогичный механизм).

Использование #if для переносимости
 «Однако, – начинаете вы с видом знатока – мой код не должен зависеть от

платформы. Поэтому я использую #if, чтобы учесть специфику разных плат-
форм». И в доказательство своей правоты вы демонстрируете примерно такой
код:

void operation() {
// ïåðåíîñèìûé êîä

#ifdef PLATFORM_A
// ÷òî-òî ñäåëàòü ...
a(); b(); c();

#endif
#ifdef PLATFORM_B

// ñäåëàòü òî æå ñàìîå ...

d(); e();
#endif
}

Этот код не является платформенно-независимым. Он зависит от многих
платформ. Любое изменение на любой из платформ потребует не только переком-
пиляции исходных текстов, но и внесения изменений в них для всех платформ.
Вы добились максимальной зависимости от платформы: достижение, достойное
восхищения, правда, несколько непрактичное.

Но это еще ерунда по сравнению с настоящей проблемой, затаившейся в реали-
зации функции operation. Функции – это абстракции. Функция operation –
это абстракция некоторой операции, которая по-разному реализована на разных
платформах. Работая на языке высокого уровня, мы часто можем использовать
один и тот же код для реализации одной абстракции на разных платформах. На-
пример, выражение a = b + c, где a, b и c – значения типа int, для разных процес-
соров транслируется в разные команды, но его смысл таков, что (вообще говоря)
исходный текст на любой платформе будет один и тот же. Так бывает не всегда,

6969696969

особенно если наша операция определена в терминах, зависящих от операцион-
ной системы или функций из конкретной библиотеки.

Из реализации функции operation видно, что «то же самое» должно происхо-
дить на обеих поддерживаемых платформах, и так оно, наверное, в начале и было.
Но в ходе сопровождения ошибки обычно обнаруживаются и исправляются на ка-
кой-то одной платформе. Вы и ахнуть не успеете, как смысл функции operation
на разных платформах перестанет совпадать, и вам придется сопровождать два со-
вершенно разных приложения. Отметим, что такое различие в поведении оказалось
требованием, потому что пользователи уже привыкли к платформенно-зависимой
семантике operation и стали полагаться на нее. Правильнее было бы с самого на-
чала реализовать функцию operation так, чтобы она обращалась к платформен-
но-зависимому коду через не зависящий от платформы интерфейс:

void operation() {

// ïåðåíîñèìûé êîä ...
doSomething(); // ïåðåíîñèìûé èíòåðôåéñ ...

}

Когда абстракция выделяется явно, вероятность того, что в ходе сопровожде-
ния ее семантика на различных платформах сохранится, значительно повышает-
ся. Объявление функции doSomething должно находиться в платформенно-
зависимой части исходного текста. Разные реализации doSomething определя-
ются в разных платформенно-зависимых исходных файлах (если doSomething –
встраиваемая функция, она должна быть определена в платформенно-зависимом
заголовочном файле). Выбор платформы производится в файле сборки проекта
makefile. Не надо никаких #if. К тому же, добавление или удаление какой-то
платформы не потребует внесения изменений в исходный текст.

А как насчет классов?
Как и функция, класс является абстракцией. У всякой абстракции есть реали-

зация, которая может выбираться либо на этапе компиляции, либо на этапе вы-
полнения. Как и в случае функции, использование директивы #if для выбора ре-
ализации класса сопряжено с опасностями:

class Doer {
if ONSERVER

ServerData x;
else

ClientData x;
endif

void doit();
// . . .

};
void Doer::doit() {

if ONSERVER
// ÷òî-òî äåëàåòñÿ äëÿ ñåðâåðà ...

else
// ÷òî-òî äåëàåòñÿ äëÿ êëèåíòà ...

endif
}

СССССоветоветоветоветовет 2727272727

7070707070 ПрепроцессорПрепроцессорПрепроцессорПрепроцессорПрепроцессор

Строго говоря, этот код не является незаконным, если только символ ONSERVER,
встречающийся в определении класса Doer, не будет определяться и отменяться в
разных единицах трансляции. Но иногда очень хотелось бы запретить такой код.
Часто бывает, что разные версии Doer определяются в разных единицах трансля-
ции, а затем компонуются вместе без ошибок. Ошибки, возникающие при этом во
время выполнения, обычно бывает очень трудно найти.

К счастью, такой способ внесения ошибок в программу теперь не так широко
распространен, как в прежние времена. Очевидный способ выразить подобную
вариативность, — воспользоваться полиморфизмом:

class Doer { // ïëàòôîðìåííî-íåçàâèñèìûé
public:
virtual ~Doer();
virtual void doit() = 0;

};
class ServerDoer : public Doer { // ïëàòôîðìåííî-çàâèñèìûé

void doit();
ServerData x;

};
class ClientDoer : public Doer { // ïëàòôîðìåííî-çàâèñèìûé

void doit();
ClientData x;

};

Практика – критерий истины
Мы рассмотрели некоторые довольно простые примеры попыток с помощью

одного исходного текста представить разные программы. Складывается впечат-
ление, что с помощью идиом и паттернов совсем несложно будет переделать ис-
ходный текст так, чтобы сопровождать его стало удобнее.

К сожалению, реальность часто оказывается куда сложнее. Как правило, ис-
ходный текст параметризуется не одним символом (скажем, NDEBUG), а несколь-
кими, причем каждый из них может принимать несколько значений, и эти симво-
лы используются в сочетании друг с другом. Выше мы показали, что каждая
комбинация символов и их значений порождает новое приложение со своим абст-
рактным поведением. С практической точки зрения, даже если и возможно отде-
лить друг от друга приложения, определяемые этими символами, переделка неиз-
бежно приведет к изменению поведения хотя бы на одной платформе.

Но подобная переделка рано или поздно становится необходимостью, когда
невозможно точно определить абстрактную семантику программы, а чтобы уста-
новить, является ли код синтаксически корректным, приходится выполнять сот-
ни компиляций с разными значениями символов. Гораздо лучше вообще не при-
бегать к использованию #if для создания разных версий программы.

Совет 28. Побочные эффекты в утверждениях
Мне не нравятся многие способы использования директивы #define, но я

готов смириться со стандартным макросом assert, который определен в заго-

7171717171

ловке <cassert>. Я даже призываю пользоваться им, при условии, конечно, что
это делается правильно. А вот с правильным использованием часто возникают
сложности.

Хотя есть много вариаций, но обычно макрос assert определяется как-то так:

�� gotcha28/myassert.h

#ifndef NDEBUG

#define assert(e) ((e) \

? ((void)0) \

:__assert_failed(#e,__FILE__,__LINE__))

#else

#define assert(e) ((void)0)

#endif

Если символ NDEBUG определен, значит, речь идет не об отладочной версии, и
assert является пустышкой. В противном случае assert расширяется (в дан-
ной реализации) в условное выражение, в котором проверяется некоторое усло-
вие. Если это условие ложно, выдается диагностическое сообщение и вызывается
функция abort.

В общем случае использовать assert лучше, чем вставлять комментарии, до-
кументирующие предусловия, постусловия и инварианты. Если отладка включе-
на, то assert выполняет проверку условий во время выполнения, поэтому его не
так легко игнорировать, как комментарий (см. «Совет 1»). В отличие от коммен-
тариев, утверждения assert, ставшие некорректными, обычно исправляются,
так как на вызов abort трудно не обратить внимания:

�� gotcha28/myassert.cpp

template <class Cont>

void doit(Cont &c, int index) {

assert(index >= 0 && index < c.size()); // #1

assert(process(c[index])); // #2

// ...

}

Но в примере выше мы применили assert неправильно. В строке с меткой #2
ошибка очевидна, так как внутри assert вызывается функция, которая может
иметь побочный эффект. В таком случае поведение программы будет зависеть от
того, определен символ NDEBUG или нет. При таком использовании отладочная
версия программы может работать правильно, а промышленная – нет. Стоит
включить отладку, и ошибка исчезает. Выключаете - и ...

Строка с меткой #1 не так очевидна. Функция-член size класса Cont, по всей
видимости, константная, поэтому у нее не должно быть побочных эффектов. Так?
Не так. Ничто, кроме привычного смысла имени size (размер), не обещает се-
мантики константности. Но даже если функцияsize константна, нет гарантии,
что ее вызов не приведет к побочным эффектам. Даже если логическое состояние c
при вызове не изменится, может измениться физическое состояние (см. «Совет 82»).
И, наконец, не забывайте, что утверждения служат для «вылавливания» ошибок.
Пусть даже обращение к size не окажет влияния на последующее поведение
кода, но ведь в ее реализации могут быть ошибки. Хотелось бы, чтобы использова-

СоветСоветСоветСоветСовет 28. Побочные эффекты в утверждениях28. Побочные эффекты в утверждениях28. Побочные эффекты в утверждениях28. Побочные эффекты в утверждениях28. Побочные эффекты в утверждениях

7272727272 ПрепроцессорПрепроцессорПрепроцессорПрепроцессорПрепроцессор

ние assert вскрывало ошибки, а не прятало их. При правильном употреблении
можно избежать даже потенциального побочного эффекта при проверке условия:

template <class Cont>
void doit(Cont &c, int index) {

const int size = c.size();

assert(index >= 0 && index < size); // ïðàâèëüíî
// ...

Конечно, утверждения – это не панацея, но они занимают свою нишу, распо-
ложенную где-то между комментариями и исключениями, и помогают докумен-
тировать программы и обнаруживать некорректное поведение. Основной недо-
статок утверждений заключается в том, что assert – это псевдофункция и, как
таковая, страдает от всех болезней, присущих псевдофункциям (см. «Совет 26»).
Но вместе с тем она стандартна, поэтому ее негативные стороны хорошо известны.
При правильном употреблении утверждения могут оказаться очень полезными.

Глава 4. Преобразования

Сложность системы типов в языке C++ вполне соответствует его выразительной
мощи. Но и без того не простая концепция осложняется наличием определяемых
пользователем преобразований, которые могут неявно применяться на этапе ком-
пиляции. Возможность расширять язык C++ путем добавления новых абстракт-
ных типов данных возлагает на проектировщика ответственность за создание бе-
зопасной, эффективной и внутренне непротиворечивой системы типов.
Поскольку типы в C++ контролируются в основном статически, то эффективный
дизайн должен замаскировать внутреннюю сложность.

К сожалению, плохое кодирование может испортить даже самый удачный
проект. В этой главе мы рассмотрим некоторые типичные ошибки, которые сво-
дят на нет статическую безопасность типов. Мы также познакомимся с некоторы-
ми аспектами C++, которые часто понимаются неверно, что тоже может приво-
дить к компрометации статической системы безопасности типов.

Совет 29. Преобразование посредством void *
Даже программисты на C знают, что void * – это близкий родственник при-

ведения, от которого надо по возможности держаться подальше. Как и в случае
приведения, преобразование типизированного указателя в void * приводит к
утрате всей полезной информации о типе. Обычно при использовании void *
исходный тип указателя можно «запомнить» и затем восстановить. Если восста-
новить тип корректно, то все будет прекрасно работать (с той оговоркой, что необ-
ходимость запоминать тип для последующего приведения означает дополнитель-
ную работу для проектировщика):

void *vp = new int(12);
// ...
int *ip = static_cast<int *>(vp); // áóäåò ðàáîòàòü

К сожалению, даже такое простое применение void * открывает двери для
проблем, связанных с переносимостью. Напомним, что для относительно безопас-
ного и переносимого приведения типа (когда без него не обойтись) лучше приме-
нять оператор static_cast. Например, static_cast пригоден для преобразо-
вания указателя на базовый класс в указатель на открыто наследующий ему
производный класс. Для небезопасных, платформенно-зависимых преобразова-
ний мы вынуждены применять оператор static_cast. Так, этот оператор мож-
но использовать для преобразования целого в указатель или между двумя указа-
телями несвязанных типов:

char *cp = static_cast<char *>(ip); // îøèáêà!
char *cp = reinterpret_cast<char *>(ip); // ðàáîòàåò.

7474747474 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Наличие в программе static_cast недвусмысленно говорит и вам, и чита-
телям вашей программы, что вы не только выполняете приведение типов, но и де-
лаете это потенциально не переносимым способом. Использование для той же цели
void * в качестве промежуточного типа скрывает эту важную информацию:

char *cp = static_cast<char *>(vp); // ïîìåñòèòü àäðåñ int â char *!

Дело обстоит еще хуже. Рассмотрим пользовательский интерфейс, который
позволяет сохранить, а затем извлечь адрес объекта «Widget»:

typedef void *Widget;
void setWidget(Widget);
Widget getWidget();

Пользователи такого интерфейса понимают, что должны запомнить тип
Widget, для которого вызывается функция setWidget, чтобы потом эту инфор-
мацию можно было восстановить:

// Â êàêîì-òî çàãîëîâî÷íîì ôàéëå ...

class Button {

 // ...

};

class MyButton : public Button {

// ...

};

// ãäå-òî â äðóãîì ìåñòå ...

MyButton *mb = new MyButton;

setWidget(mb);

// ñîâñåì â äðóãîì ìåñòå ...

Button *b = static_cast<Button *>(getWidget()); // ìîæåò è ñðàáîòàòü!

Обычно такой код будет работать, пусть даже мы теряем какую-то информацию
о типе при извлечении Widget. Сохраненный Widget ссылался на MyButton,
а после восстановления превратился в Button. Причина, по которой этот код ча-
сто оказывается работоспособным, связана со способом размещения объекта в па-
мяти.

Обычно та часть объекта производного класса, которая относится к базовому
классу, имеет смещение 0 относительно начала объекта в памяти, то есть по-
добъект базового класса трактуется как первый член данных производного клас-
са. А данные собственно производного класса размещаются ниже, как показано на
рис. 4.1. Поэтому адрес объекта производного класса такой же, как у объекта его
базового класса. (Заметим, однако, что стандарт гарантирует правильность ре-
зультата, только если адрес, хранящийся в переменной типа void *, преобразует-
ся точно в тот же тип, который был у объекта до преобразования его в void *.
О том, как такой код может работать неправильно даже в случае одиночного на-
следования, см. «Совет 70».)

Однако этот код нестабилен, поскольку в ходе сопровождения в него может
быть внесена ошибка. В частности, так произойдет в случае вполне корректного
применения множественного наследования:

// Â êàêîì-òî çàãîëîâî÷íîì ôàéëå ...
class Subject {

7575757575

// ...
};
class ObservedButton : public Subject, public Button {

// ...
};
// ãäå-òî â äðóãîì ìåñòå ...
ObservedButton *ob = new ObservedButton;
setWidget(ob);
// ...
Button *badButton = static_cast<Button *>(getWidget()); // áåäà!

Проблема в том, как объект производного класса размещается в памяти в слу-
чае множественного наследования. У объекта ObservedButton есть части, при-
надлежащие двум базовым классам, и лишь адрес одной из них совпадает с адре-
сом объекта в целом. Как правило, объект первого базового класса (в данном
случае Subject) размещается со смещением 0 от начала объекта производного
класса, за ним следует память, занятая объектами последующих базовых классов
(в данном случае Button), и в самом конце – дополнительные данные-члены, оп-
ределенные в производном классе (см. рис. 4.2.). В случае множественного насле-
дования у одного объекта оказывается несколько адресов.

Рис. 4.1. Типичное размещение объекта производного класса

в памяти при одиночном наследовании

Обычно это не составляет проблемы, поскольку компилятору известны все
смещения, и он может выполнить нужную корректировку:

Button *bp = new ObservedButton;
ObservedButton *obp = static_cast<ObservedButton *>(bp);

В примере выше bp правильно указывает на часть Button объекта Observed-
Button, а не на начало самого объекта. Когда мы приводим указатель на Button

Рис. 4.2. Типичное размещение объекта производного
класса в памяти при множественном наследовании.
Объект ObservedButton содержит подобъекты своих базовых классо
в Subject и Button. Из-за потери информации badButton ссылается

на адрес, не принадлежащий объекту Button

СоветСоветСоветСоветСовет 2929292929

7676767676 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

к указателю на ObservedButton, компилятор добавляет к адресу смещение, так
что теперь указатель направлен на начало объекта ObservedButton. Это не-
сложно, потому что компилятор может воспользоваться своим знанием о смеще-
ниях подобъектов каждого базового класса, если только ему известны типы базо-
вого и производного классов.

А вот тут-то и возникает проблема. Воспользовавшись функцией setWidget,
мы отбросили всю полезную информацию о типе. Теперь при приведении резуль-
тата, возвращенного getWidget, к типу Button компилятор не в состоянии вы-
полнить корректировку адреса. И, следовательно, указатель на Button фактичес-
ки указывает на Subject!

У указателей на void есть свои применения, как и у приведений типов, но
злоупотреблять ими не стоит. Никогда не следует включать void * в интерфейс,
одна часть которого требует от пользователя указать информацию, потерянную
при работе с другой частью.

Совет 30. Срезка
Срезка происходит тогда, когда объект производного класса копируется

в объект базового класса. В результате данные и поведение, специфичные для
производного класса, «срезаются», что обычно приводит к ошибке или непред-
сказуемому поведению.

class Employee {

public:

virtual ~Employee();

virtual void pay() const;

// . . .

protected:

void setType(int type)

 { myType_ = type; }

private:

int myType_; // ïëîõàÿ ìûñëü, ñì. ñîâåò 69

};

class Salaried : public Employee {

// ...

};

Employee employee;

Salaried salaried;

employee = salaried; // ñðåçêà!

Присваивание объекта salaried объекту employee совершенно законно,
так как Salaried «является разновидностью» Employee, но результат, скорее
всего, будет не таким, как вы ожидаете. После присваивания поведение employee,
включая как виртуальные, так и невиртуальные его функции, будет таким, как
определено в классе Employee. Никакие данные-члены, специфичные для класса
Salaried, не копируются.

Хуже всего то, что состояние объекта employee – это копия части объекта
salaried, унаследованной от класса Employee. Что же в этом плохого? Дело
в том, что объект производного класса Salaried может хранить в унаследован-

7777777777

ной от Employee базовой части значения, специфичные для Salaried, которые
для объекта класса Employee не имеют смысла (см. «Совет 91»).

В качестве иллюстрации предположим, что классы, производные от Employee,
хранят в своих Employee-подобъектах какой-то код, идентифицирующий тип.
(Сразу отмечу, что это неудачный способ проектирования, я привожу его лишь в
качестве иллюстрации. См. «Совет 69».) После срезки объект employee будет вес-
ти себя как Employee, заявляя при этом, что он Salaried.

На практике противоречия между состоянием и поведением срезанного
объекта бывают гораздо тоньше, а потому и разрушительнее.

Чаще всего срезка возникает, когда объект производного класса передается по
значению для инициализации формального параметра, являющегося объектом
базового класса.

void fire(Employee victim);
// ...
fire(salaried); // ñðåçêà!

Избежать этой проблемы можно, передавая объект не по значению, а по ссыл-
ке (или по указателю). В таком случае никакой срезки не будет, поскольку объект
производного класса никуда не копируется, а формальный аргумент становится
лишь псевдонимом фактического (см. «Совет 5»).

void rightSize(Employee &asset);
// ...

rightSize(salaried); // ñðåçêè íåò

Со срезкой могут быть связаны и другие проблемы, но это бывает гораздо
реже. Например, можно скопировать подобъект базового класса из одного объек-
та производного класса в другой объект производного класса, правда, уже иного:

Employee *getNextEmployee(); // ïîëó÷èòü îáúåêò êëàññà, ïðîèçâîäíîãî îò
// Employee

// ...
Employee *ep = getNextEmployee();
*ep = salaried; // ñðåçêà!

Возникновение проблем из-за срезки, как правило, является свидетельством
глубоких изъянов при проектировании иерархии классов. Лучший и самый про-
стой способ никогда не сталкиваться со срезкой - – избегать конкретных базовых
классов (см. «Совет 93»).

class Employee {
 public:
 virtual ~Employee();
 virtual void pay() const = 0;
 // . . .
};
void fire(Employee); // îøèáêà, ê ñ÷àñòüþ
void rightSize(Employee &);// ïðàâèëüíî
Employee *getNextEmployee(); // ïðàâèëüíî
Employee *ep = getNextEmployee(); // ïðàâèëüíî
*ep = salaried; // îøèáêà, ê ñ÷àñòüþ
Employee e2(salaried); // îøèáêà, ê ñ÷àñòüþ

Невозможно создать объект абстрактного базового класса, поэтому большая
часть ситуаций, приводящих к срезке, будет перехвачена еще на этапе компиляции.

СоветСоветСоветСоветСовет 30. Срезка30. Срезка30. Срезка30. Срезка30. Срезка

7878787878 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Отметим, что изредка срезка применяется намеренно, чтобы модифицировать
поведение или тип объекта производного класса. Обычно в таких случаях данные
не срезаются, а срезка просто «иначе интерпретирует» данные базового класса,
наделяя их поведением производного. Такая техника полезна, хотя применяется
редко, и никогда не должна раскрываться как часть доступного пользователям
интерфейса.

Совет 31. Преобразование в указатель
на константу
Для начала разберемся с терминологией. «Константный указатель», или

«const-указатель», – это указатель, являющийся константным. Это не значит, что
то, на что он указывает, является константой. Да, в стандартной библиотеке C++
есть понятие const_iterator, обозначающее неконстантный итератор, указы-
вающий внутрь последовательности константных элементов, но это симптом
«проектирования комитетом» или другой похожей болезни.

const char *pci; // óêàçàòåëü íà êîíñòàíòó

char * const cpi = 0; // êîíñòàíòíûé óêàçàòåëü

char const *pci2; // óêàçàòåëü íà êîíñòàíòó, ñì. ñîâåò 18

const char * const cpci = 0; // êîíñòàíòíûé óêàçàòåëü íà êîíñòàíòó

char *ip; // óêàçàòåëü

Стандарт допускает преобразования, «повышающие степень константности».
Например, можно скопировать указатель на не-константу в указатель на констан-
ту. Среди прочего, это позволяет передавать указатель на неконстантный символ
стандартным функциям strcmp или strlen, несмотря на то, что согласно объяв-
лению, они принимают указатель на константу. Интуитивно мы понимаем, что,
разрешая указателю на константу ссылаться на неконстантные данные, мы не на-
рушаем ограничения, налагаемого объявлением. Мы также понимаем, что обрат-
ное неверное, поскольку в этом случае мы получили бы больше прав, чем допуска-
ет объявление данных:

size_t strlen(const char *);

// ...

int i = strlen(cpi); // ïðàâèëüíî ...

pci = ip; // ïðàâèëüíî ...

ip = pci; // îøèáêà!

Заметим, что язык занимает консервативную позицию: может быть, мо-
дифицировать данные, на которые ссылается указатель на константу, и до-
пустимо в том смысле, что не приведет к немедленному дампу памяти. Так быва-
ет, если данные на самом деле не константны или, хотя и константны, но
платформа не размещает их в памяти, доступной только для чтения. Однако
квалификатор const – это скорее выражение намерений проектировщика, не-
жели физическое свойство. Можно считать, что язык подкрепляет желание про-
ектировщика.

7979797979

Совет 32. Преобразование в указатель
на указатель на константу

Простота идеи, лежащей в основе преобразования в указатель на константу,
не распространяется на случай преобразования в указатель на указатель на кон-
станту. Рассмотрим попытку преобразовать указатель на указатель на char в ука-
затель на указатель на const char (то есть char** в const char**):

char **ppc;
const char **ppcc = ppc; // îøèáêà!

Выглядит безобидно, но, как и многие, на первый взгляд, безобидные преобра-
зования, открывает путь к обходу системы типов:

const T t = init;

T *pt;

const T **ppt = &pt; // îøèáêà, ê ñ÷àñòüþ

*ppt = &t; // ïîìåñòèòü const T * â T *!

*pt = value; // ïîïðîùàåìñÿ ñ t!

Эта животрепещущая тема обсуждается в разделе 4.4. стандарта, под заголов-
ком «Преобразования квалификаторов». (Технически, ключевые слова const и
volatile называются «квалификаторы типа», но в стандарте C++ часто приме-
няется термин «cv-квалификаторы». Я предпочитаю первое название.) Там мы
находим следующие простые правила, определяющие, когда преобразование воз-
можно:

Преобразование может добавить cv-квалификаторы на любом уровне много-
уровневых указателей, кроме первого, при соблюдении следующих правил:

Два указательных типа T1 и T2 подобны, если существует тип T и целое число n > 0
такое, что:

T1 есть cv1, 0 указателей на cv1, 1 указатель на ... cv1 , n – 1 указатель на cv1, n T
и

T2 есть cv2, 0 указателей на cv2, 1 указатель на ... cv2, n – 1 указатель на cv2, n T
где каждый cvi, j – это const, volatile, const volatile или ничего.

Другими словами, два указателя подобны, если у них одинаковый базовый
тип и одно и то же число «звездочек». Так, типы char * const ** и const
char ***const подобны, а int * const * и int *** – нет.

n-кортеж, состоящий из cv-квалификаторов, следующих за первым в указательном
типе, например, cv1, 1 , cv1, 2 , … , cv1, n в указательном типе T1, называется сигнатурой
cv-квалификации указательного типа. Выражение типа T1 можно преобразовать
в тип T2 тогда и только тогда, когда выполнены следующие условия:

— Указательные типы подобны.
— Для каждого j > 0, если const входит в cv1, j, то const входит в cv2, j, и то же

верно для volatile.
— Если cv1, j и cv2, j различны, то const входит в каждый cv2 , k для 0 < k < j.

СоветСоветСоветСоветСовет 3131313131

8080808080 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Вооружившись этими правилами и терпением, мы можем установить закон-
ность следующих преобразований указателей:

int * * * const cnnn = 0;
// n==3, signature == none, none, none

int * * const * ncnn = 0;
// n==3, signature == const, none, none

int * const * * nncn = 0;
// signature == none, const, none

int * const * const * nccn = 0;
// signature == const, const, none

const int * * * nnnc = 0;
// signature == none, none, const

// ïðèìåðû ïðèìåíåíèÿ ïðàâèë
ncnn = cnnn; // ïðàâèëüíî
nncn = cnnn; // îøèáêà!
nccn = cnnn; // ïðàâèëüíî
ncnn = cnnn; // ïðàâèëüíî
nnnc = cnnn; // îøèáêà!

Как ни странно звучат эти правила, необходимость в их применении возника-
ет довольно часто. Рассмотрим типичную ситуацию:

extern char *namesOfPeople[];
for(const char **currentName = namesOfPeople; // îøèáêà!

*currentName; currentName++) // ...

В моей практике типичная реакция на эту ошибку заключалась в отправке от-
чета поставщику компилятора, применении const_cast для снятия констант-
ности и получении затем дампа памяти. Но, как обычно бывает, прав компилятор,
а не разработчик.

Рассмотрим более специфическую версию приведенного выше примера:

typedef int T;
const T t = 12345;
T *pt;
const T **ppt = (const T **)&pt; // îïàñíîå ïðèâåäåíèå!
*ppt = &t; // ïîìåñòèòü const T * â T *!
*pt = 54321; // ïîïðîùàåìñÿ ñ t!

Трагическая сторона этого кода состоит в том, что ошибка может оставаться
незамеченной годами, пока не проявится во время рутинного сопровождения.
Например, мы можем использовать значение t:

cout << t; // âåðîÿòíî, áóäåò âûâåäåíî 12345

Поскольку компилятору разрешено подставлять инициализатор константы
вместо самой константы, это предложение, вероятно, выведет значение 12345
даже после того, как мы изменили его на 54321. Но позже чуть-чуть иное исполь-
зование t выведет ошибку на чистую воду:

const T *pct = &t;
// ...
cout << t; // áóäåò âûâåäåíî 12345

cout << *pct; // áóäåò âûâåäåíî 54321!

Зачастую лучше избегать сложностей, связанных с указателями на указатели,
и пользоваться ссылками или стандартной библиотекой. Например, в C принято

8181818181

передавать адрес указателя (то есть указатель на указатель), чтобы модифициро-
вать значение самого указателя:

�� gotcha32/gettoken.cpp

// get_token âîçâðàùàåò óêàçàòåëü íà ñëåäóþùóþ öåïî÷êó

// ñèìâîëîâ, îãðàíè÷åííûõ ñèìâîëàìè, âõîäÿùèìè â ws.

// Óêàçàòåëü, ïåðåäàííûé â êà÷åñòâå àðãóìåíòà, ïîñëå âîçâðàòà áóäåò

// óêàçûâàòü íà ñèìâîë, ñëåäóþùèé çà âûäåëåííîé ëåêñåìîé.

char *get_token(char **s, char *ws = " \t\n") {

char *p;

do

for(p = ws; *p && **s != *p; p++);

while(*p ? *(*s)++ : 0);

char *ret = *s;

do

for(p = ws; *p && **s != *p; p++);

while(*p ? 0 : **s ? (*s)++ : 0);

if(**s) {

**s = '\0';

++*s;

}

return ret;

}

extern char *getInputBuffer();

char *tokens = getInputBuffer();

// ...

while(*tokens)

 cout << get_token(&tokens) << endl;

В C++ предпочтительно передавать аргумент-указатель как ссылку на не-
константу. Это делает реализацию функции несколько чище и, что важнее, она
перестает быть такой запутанной:

�� gotcha32/gettoken.cpp

char *get_token(char *&s, char *ws = " \t\n") {

char *p;

do

for(p = ws; *p && *s != *p; p++);

while(*p ? *s++ : 0);

char *ret = s;

do

for(p = ws; *p && *s != *p; p++);

 while(*p ? 0 : *s ? s++ : 0);

 if(*s) *s++ = '\0';

 return ret;

}

// . . .

while(*tokens)

cout << get_token(tokens) << endl;

Исходный пример можно реализовать более безопасно с помощью компонен-
тов из стандартной библиотеки:

extern vector<string> namesOfPeople;

СоветСоветСоветСоветСовет 3232323232

8282828282 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Совет 33. Преобразование указателя
на указатель на базовый класс
С похожей ситуацией мы сталкиваемся, когда имеем дело с указателем на ука-

затель на производный класс:

D1 d1;
D1 *d1p = &d1; // ïðàâèëüíî
B **ppb1 = &d1p; // îøèáêà, ê ñ÷àñòüþ
D2 *d2p;
B **ppb2 = &d2p; // îøèáêà, ê ñ÷àñòüþ
*ppb2 = *ppb1; // òåïåðü d2p óêàçûâàåò íà D1!

Выглядит знакомо? Как свойство константности не сохраняется, если ввести
еще один уровень косвенности, так не сохраняется и свойство «является». Хотя
указатель на производный класс «является» указателем на открытый базовый
класс, но указатель на указатель на производный класс уже не является указате-
лем на указатель на открытый базовый класс. Как и в случае с примером const,
ситуация, в которой проявляется ошибка, на первый взгляд, выглядит надуман-
ной. Однако легко привести пример, в котором эта ошибка возникает из-за плохо
спроектированного интерфейса, усугубленного неправильным его использова-
нием:

void doBs(B *bs[], B *pb) {
for(int i = 0; bs[i]; ++i)

if(somecondition(bs[i], pb))

bs[i] = pb; // oops!

}

// ...

extern D1 *array[];

D2 *aD2 = getMeAD2();
doBs((B **)array, aD2); // è ñíîâà îñòàåòñÿ ïîæåëàòü ïðèâåäåíèÿì ñìåðòè

И здесь разработчик счел, что компилятор ошибся, и решил обойти систему
типов за счет приведения. Но в данном случае значительная доля вины лежит на
проектировщике интерфейса функции. Безопаснее было бы воспользоваться кон-
тейнером, который не обманешь приведением, как массив.

Совет 34. Проблемы с указателем
на многомерный массив
В языках C и C++ есть лишь рудиментарная поддержка массивов. По сути

дела, имя массива – это всего лишь указательный литерал, который ссылается на
первый элемент массива:

int a[5];

int * const pa = a;

int * const *ppa = &pa;

const int alen = sizeof(a)/sizeof(a[0]); // alen == 5

Единственное практическое различие между именем массива и константным
указателем заключается в том, что в результате применения оператора sizeof

8383838383

к имени массива мы получаем размер массива, а не указателя. Ну и еще имя масси-
ва не занимает памяти и, следовательно, не имеет адреса. Выразимся точнее:
у массива есть адрес, и этот адрес обозначается именем массива, но само имя мас-
сива адреса не имеет:

int *ip = a; // a - óêàçàòåëü íà ïåðâûé ýëåìåíò ìàññèâà

int (*ap)[5] = &a; // &a - àäðåñ ìàññèâà, à íå èìåíè a

int (*ap2)[sizeof(a)/sizeof(a[0])] = &a; // òî æå ñàìîå

int **pip = &ip; // &ip - àäðåñ óêàçàòåëÿ, à íå ìàññèâà

Также обстоит дело и с многомерными массивами, точнее, с массивами масси-
вов. Но помните, что типом первого элемента в многомерном массиве является
массив, а не базовый тип:

int aa[2][3];
const int aalen = sizeof(aa)/sizeof(aa[0]); // aalen = 2

Таким образом, aa – это, по существу, литеральный указатель на первый эле-
мент массива, состоящего из трех целых чисел, а вовсе не указатель на целое. Это
может приводить к странным, хотя технически корректным, результатам:

void processElems(int *, size_t);
void processElems(void *, size_t);
// ...

processElems(a, alen);
processElems(aa, aalen); // áåäà!

Первое обращение к перегруженной функции processElems соответствует
версии, принимающей аргумент типа int *; имя массива a – это просто замаски-
рованный int *. Второе обращение соответствует версии processElems, кото-
рая принимает void *, и вряд ли программист это имел в виду. Тип имени много-
мерного массива – указатель на его первый элемент, то есть массив конкретного
размера, а не указатель на базовый тип массива. Не существует неявного преобра-
зования из int(*)[3] (это указатель на массив из трех целых) в int *, но есть
такое преобразование в void *.

int (* const paa)[3] = aa;

int (* const *ppaa)[3] = &paa;

void processElems(int (*)[3], size_t);
// ...

processElems(aa, aalen); // ïðàâèëüíî

С многомерными массивами вообще трудно работать. Лучше воспользоваться
контейнерами из стандартной библиотеки или специальными контейнерами, ко-
торые реализуют абстрактный многомерный массив. Если в конкретной задаче не
требуются именно встроенные многомерные массивы, то обычно лучше инкапсу-
лировать их. Безответственно предлагать наивному пользователю такой интер-
фейс:

int *(*(*aryCallback)(int *(*)[n]))[n];

Это (ну, разумеется) не что иное, как указатель на функцию, которая прини-
мает указатель на массив из n указателей на int и возвращает указатель того же
типа. Ладно, это всего лишь доведенная до абсурда демонстрация. (См. «Совет 11».)
С помощью typedef все можно существенно упростить:

СоветСоветСоветСоветСовет 3333333333

8484848484 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

typedef int *(*PA)[n];
PA (*aryCallback)(PA); // òàê ãóìàííåå

Совет 35. Бесконтрольное понижающее
приведение
Приведение указателя на базовый класс к указателю на производный класс

(«понижающее приведение») может в результате дать некорректный адрес, как
показано на рис. 4.3. При выполнении арифметических операций над приводи-
мым указателем компилятор предполагает, что адрес базового класса принадле-
жит базовой части производного класса:

class A { public: virtual ~A(); };
class B { public: virtual ~B(); };
class D : public A, public B {};
class E : public B {};
B *bp = getMeAB(); // ïîëó÷èòü îáúåêò êëàññà, ïðîèçâîäíîãî îò B
D *dp = static_cast<D*>(bp); // áåçîïàñíî???

Лучше всего проектировать иерархию классов так, чтобы понижающие при-
ведения были не нужны; систематическое использование понижающих приведе-
ний – признак неудачного дизайна. Если понижающее приведение все-таки необ-
ходимо, то стоит обратиться к оператору dynamic_cast, который во время
выполнения производит проверку корректности приведения:

if(D *dp = dynamic_cast<D *>(bp)) {
// ïðèâåäåíèå óñïåøíî

}
else {

// îøèáêà ïðèâåäåíèÿ

}

Совет 36. Неправильное использование
операторов преобразования
Чрезмерное использование операторов преобразования усложняет код. По-

скольку компилятор применяет их неявно, то наличие слишком большого числа
операторов преобразования в классе может стать причиной неоднозначности:

Рис. 4.3. Результат некорректного статического приведения:

приведение указателя на подобъект B объекта E к указателю на D

8585858585

class Cell {
public:
// ...
operator int() const;
operator double() const;
operator const char *() const;
typedef char **PPC;
operator PPC() const;
// è ò.ä...

};

Класс Cell отвечает столь многим требованиям, что пользователи часто по-
лучают более одного ответа, и тогда возникает неоднозначность во время ком-
пиляции. Хуже того, когда неоднозначность не возникает и программа компили-
руется без ошибки, трудно сказать точно, какое именно неявное преобразование
применил компилятор. В общем случае, когда требуется слишком много преобра-
зований, лучше отказаться от операторов преобразования вовсе и ограничиться
более прямолинейными явными функциями преобразования:

class Cell {
public:
// ...
int toInt() const;
double toDouble() const;
const char *toPtrConstChar() const;
char **toPtrPtrChar() const;
// è ò.ä...

};

Как правило, в классе должно быть не более одного оператора преобразова-
ния. Если их два, надо приглядеться к дизайну внимательнее. Когда их три и боль-
ше, надо менять дизайн.

Даже единственный оператор преобразования в сочетании с конструктором
может стать причиной неоднозначности:

class B;

class A {
public:
A(const B &);
// ...

};

class B {
public:
operator A() const;
// ...

};

Есть два способа неявно преобразовать B в A: конструктор класса A и оператор
преобразования из класса B. Результат – неоднозначность:

extern A a;
extern B b;
a = b; // îøèáêà! íåîäíîçíà÷íîñòü
a = b.operator A(); // ïðàâèëüíî, íî âûãëÿäèò ñòðàííî
a = A(b); // îøèáêà! íåîäíîçíà÷íîñòü

СоветСоветСоветСоветСовет 3535353535

8686868686 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Обратите внимание, что не существует прямого способа вызвать конструктор
или получить его адрес. Поэтому выражение A(b) – это не вызов конструктора,
хотя подобные выражения часто являются результатом вызова конструкторов.
Это требование преобразовать b к типу A любым возможным способом, и оно по-
прежнему неоднозначно. (К сожалению, большинство компиляторов не выдают
в этом случае ошибку и пользуются для выполнения преобразования конструкто-
ром класса A.)

Обычно лучше отказаться от операторов преобразования, объявить констук-
тор с одним аргументом explicit и избегать неявных преобразований за исклю-
чением тех случаев, когда они действительно необходимы. Если имеются и не-
explicit конструкторы, и операторы преобразования, эвристическое правило
таково: пользуйтесь конструкторами для преобразования из определенных
пользователем типов, а операторами преобразования – только для преобразова-
ния во встроенные типы.

Назначение операторов преобразования: более тесно интегрировать абстракт-
ный тип данных в существующую систему типов путем предоставления неявных
преобразований, построенных по образцу преобразований, которые поддерживают
встроенные типы. Было бы ошибкой применять оператор преобразования для реа-
лизации «дополнительных» преобразований:

class Complex {

// ...

operator double() const;

};

Complex velocity = x + y;

double speed = velocity;

class Container {

// ...

virtual operator Iterator *() const = 0;

};

Container &c = getNewContainer();

Iterator *i = c;

Здесь проектировщик класса Complex хотел дать средства для вычисления
длины вектора, определяемого комплексным числом. Однако пользователь этого
интерфейса может предположить, что преобразование к типу double возвращает
вещественную часть комплексного числа, или его мнимую часть, или угол векто-
ра, или придумать еще какую-нибудь разумную интерпретацию. Смысл преобра-
зования неясен.

Проектировщик абстрактного интерфейса Container хотел реализовать
паттерн Factory Method (фабричный метод), который возвращает указатель на
итератор для конкретного контейнера, производного от класса Container. Од-
нако мы не преобразовываем Container в Iterator, следовательно, реализа-
ция фабричного метода в виде преобразования только вводит в заблуждение и по-
тому не годится. Кроме того, в будущем могут возникнуть проблемы, если
Фабричному Методу потребуется передать аргумент. Поскольку оператор преоб-
разования не может принимать аргументов, то его придется заменить не-оператор-

8787878787

ной функцией. Это заставит всех пользователей класса Container искать в своих
программах и переделывать неявные обращения к оператору преобразования.

Гораздо лучше оставить операторам преобразования то, для чего они предназ-
начены, то есть преобразования. Во всех рассмотренных случаях предпочтитель-
нее воспользоваться не-операторными функциями:

class Complex {
// ...
double magnitude() const;

};
Complex velocity = x + y;
double speed = velocity.magnitude();

class Container {
// ...
virtual Iterator *genIterator() const = 0;

};
Container &c = getNewContainer();
Iterator *i = c.genIterator();

Я утверждаю, что эта рекомендация относится даже к случаю простого преоб-
разования к типу bool (а иногда и void *), цель которого, – сообщить, находит-
ся ли объект в пригодном для использования состоянии:

class X {
 public:
 virtual operator bool() const = 0;
 // ...
};
// . . .
extern X &a;
if(a) {
 // a ïðèãîäåí äëÿ èñïîëüçîâàíèÿ ...

И здесь «дополнительная функциональность» оператора преобразования
только приводит к неточности. В будущем мы можем захотеть различать недейст-
вительные, непригодные для использования и запорченные объекты. Лучше вы-
ражать свои намерения более определенно:

class X {
public:
virtual bool isValid() const = 0;
virtual bool isUsable() const = 0;
// ...

};
// ...
if(a.isValid()) {

// ...

В части iostream стандартной библиотеки операторы преобразования исполь-
зуются, чтобы быстро проверить состояние потока:

if(cout) // cout â õîðîøåì ñîñòîÿíèè?

// ...

Это обеспечивает функция operator void *, и приведенное выше предло-
жение должно транслироваться примерно так:

if(static_cast<bool>(cout.operator void *())) // ...

СоветСоветСоветСоветСовет 3636363636

8888888888 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Если поток iostream в плохом состоянии, то оператор преобразования возвра-
щает нулевой указатель, в противном случае, ненулевой указатель. Поскольку
преобразование из указателя в тип bool относится к числу предопределенных, то
им можно воспользоваться для проверки состояния потока. К несчастью, его так-
же можно использовать для задания значения указателя на void:

void *coutp = cout; // ñòðàííî è ïî÷òè áåñïîëåçíî
cout << cout << cin << cerr; // ïå÷àòàåò êàêèå-òî void *

Однако, наличие преобразования из iostream в void *, хотя и выглядит
странно, но не вызывает столько проблем, сколько могло бы вызвать преобразова-
ние к типу bool:

cout >> 12; // ê ñ÷àñòüþ, íå êîìïèëèðóåòñÿ

Здесь мы допустили типичную ошибку: применили к потоку вывода оператор
сдвига вправо вместо оператора сдвига влево. Если бы можно было преобразовать
поток вывода непосредственно в bool, то это предложение компилировалось бы.
Объект cout был бы преобразован в значение типа boolкоторое, в свою очередь,
было бы преобразовано в int, и результат был бы сдвинут на 12 битов вправо.
Очевидно, что преобразование cout в void * предпочтительнее, но еще лучше
было бы отказаться от операторов преобразования вовсе и предоставить ясную и
недвусмысленную функцию-член:

if(!cout.fail())
// ...

Совет 37. Непреднамеренное преобразование
с помощью конструктора
Конструктор с одним аргументом описывает как инициализацию, так и преоб-

разование. Подобно оператору преобразования, компилятор может неявно при-
менять конструктор для преобразования типов. Иногда это бывает удобно:

class String {

public:
String(const char *);
operator const char *() const;
// . . .

};
String name1("Fred"); // íåïîñðåäñòâåííàÿ èíèöèàëèçàöèÿ
name1 = "Joe"; // íåÿâíîå ïðåîáðàçîâàíèå
const char *cname = name1; // íåÿâíîå ïðåîáðàçîâàíèå
String name2 = cname; // íåÿâíîå ïðåîáðàçîâàíèå,

// èíèöèàëèçàöèÿ êîïèðîâàíèåì
String name3 = String(cname); // ÿâíîå ïðåîáðàçîâàíèå,

// èíèöèàëèçàöèÿ êîïèðîâàíèåì

(см. «Совет 56».) Однако неявные преобразования с помощью конструктора час-
то приводят к непонятному коду и появлению тонких ошибок. Рассмотрим шаб-
лон контейнера, реализующего стек фиксированного размера:

template <class T>
class BoundedStack {

8989898989

public:

BoundedStack(int maxSize);

~BoundedStack();

bool operator ==(const BoundedStack &) const;

void push(const T &);

void pop();

const T &top() const;

// ...

};

В нашем типе BoundedStack есть обычные для стека операции push, pop и
так далее, а также возможность сравнивать два стека на равенство. При создании
экземпляра BoundedStack<T> необходимо указать максимальный размер

BoundedStack<double> s(128);

s.push(37.0);

s.push(232.78);

// ...

К несчастью, конструктор с одним аргументом может быть применен для пре-
образования в тех случаях, когда мы предпочли бы получить ошибку компиляции:

if(s == 37) { // áåäà!
 // ...

В данном случае мы, скорее всего, хотели записать условие типа s.top() =
= 37. Но компилятор ничего не скажет, поскольку может преобразовать целое
значение 37 в объект типа BoundedStack<double> и передать его в качестве
аргумента функции BoundedStack<double>::operator ==. По существу,
компилятор генерирует такой код:

BoundedStack<double> stackTemp(37);

bool resultTemp(s.operator ==(stackTemp));

stackTemp.~BoundedStack<double>();

if(resultTemp) {

// ...

Этот код, хотя и допустим, но некорректен и влечет высокие накладные расхо-
ды. Безопаснее было бы объявить конструктор класса BoundedStack с ключе-
вым словом explicit. Оно сообщает компилятору, что данный конструктор
нельзя применять для неявных преобразований, хотя явное использование в та-
ком качестве и не запрещено:

template <class T>

class BoundedStack {

public:

explicit BoundedStack(int maxSize);

// ...

};

// ...

if(s == 37) { // îøèáêà, ê ÷àñòüþ

// ...

if(s.top() == 37) { // ïðàâèëüíî, ïðåîáðàçîâàíèÿ íåò

// ...

if(s == static_cast< BoundedStack<double> >(37)) { // ïðàâèëüíî ...

// ...

СоветСоветСоветСоветСовет 3737373737

9090909090 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Докучливых неявных преобразований следует опасаться гораздо больше, чем
изредка возникающей необходимости применить явное преобразование, поэто-
му большинство конструкторов с одним аргументом рекомендуется объявлять
explicit.

Отметим, что наличие ключевого слова explicit в объявлении конструкто-
ра влияет также на то, какой синтаксис инициализации допустим при объявлении
объекта класса. Слегка изменим объявление класса String выше и посмотрим,
какие виды инициализации после этого станут законными:

class String {
public:
explicit String(const char *);

operator const char *() const;
// ...

};
String name1("Fred"); // ïðàâèëüíî.
name1 = "Joe"; // îøèáêà!
const char *cname = name1; // íåÿâíîå ïðåîáðàçîâàíèå, ïðàâèëüíî.

String name2 = cname; // îøèáêà!
String name3 = String(cname); // ÿâíîå ïðåîáðàçîâàíèå, ïðàâèëüíî.

Неявная генерация временного объекта, имеющая место при инициализа-
ции name2 копированием, теперь ошибочна, равно как и аргумент функции
String::operator =. Инициализация name3 по-прежнему допустима, посколь-
ку это преобразование явное (хотя все же было бы лучше для инициализации при-
менить static_cast; см. «Совет 40»). Как обычно, непосредственная инициали-
зация предпочтительнее инициализации копированием (см. «Совет 56»).

Прежде чем оставить темуexplicit, рассмотрим поучительную, хотя и вы-
шедшую из моды, технику имитации семантики explicit в отсутствие этого
ключевого слова:

class StackInit {
public:

StackInit(size_t s) : size_(s) {}

int getSize() const { return size_; }

private:

int size_;

};

template <class T>

class BoundedStack {

public:
BoundedStack(const StackInit &init);
// ...

};

Поскольку конструктор класса BoundedStack не объявлен explicit, компи-
лятор попытается неявно преобразовать любой объект StackInit в Bounded-
Stack. Однако компилятор не будет пытаться преобразовать в StackInit целое
число с последующим неявным преобразованием StackInit в BoundedStack.
Стандарт четко говорит, что разрешено только одно неявное определенное поль-
зователем преобразование:

BoundedStack<double> s(128); // ïðàâèëüíî.

9191919191

BoundedStack<double> t = 128; // ïðàâèëüíî.
if(s == 37) { // îøèáêà!

// ...

Этот прием дает почти такое же поведение, как и ключевое слово explicit.
Объявления s и t допустимы, так как для преобразования 128 в StackInit нуж-
но только одно пользовательское преобразование. Но компилятор не будет пы-
таться преобразовать значение 37 в BoundedStack<double>, поскольку для
этого требуется два преобразования: из int в StackInit и из StackInit
в BoundedStack<double>.

Совет 38. Приведение типов
в случае множественного наследования
В случае множественного наследования у объекта может быть несколько ад-

ресов. Подобъект каждого базового класса может иметь собственный уникальный
адрес, и каждый такой адрес считается корректным адресом всего объекта. (В пло-
хо спроектированных иерархиях с одиночным наследованием объект тоже может
иметь два действительных адреса. См. «Совет 70».)

class A { /* . . .*/ };
class B { /* . . .*/ };
class C : public A, public B { /* . . .*/ };
// ...
C *cp = new C;
A *ap = cp; // ïðàâèëüíî
B *bp = cp; // ïðàâèëüíî

В приведенном выше примере память для подобъекта B объекта C, скорее все-
го, будет располагаться с фиксированным смещением – «дельтой» – от начала
объекта C. Преобразование указателя cp на производный класс в указатель B *
поэтому сводится к корректировке cp на дельту. Это преобразование безопасно
относительно типов и автоматически выполняется компилятором.

Возможность существования нескольких адресов у объекта заставляет C++
точно определять семантику сравнения указателей:

if(bp == cp) // ...

В этом предложении мы не спрашиваем, состоят ли два указателя из одной и
той же комбинации битов. Нет, смысл его другой: «Указывают ли эти указатели
на один и тот же объект?» Реализация такой проверки может быть довольно
сложной, но все равно остается эффективной, безопасной и автоматической. Ве-
роятно, компилятор реализует сравнение указателей как-то так:

if(bp ? (char *)bp-delta==(char *)cp : cp==0)

Для преобразования, учитывающего дельта-арифметику над адресами объек-
тов классов, годятся приведения как нового, так и старого стиля. Однако, в отли-
чие от рассмотренных выше преобразований, нет никакой гарантии, что в резуль-
тате приведения получится действительный адрес. (Оператор dynamic_cast
дает такую гарантию, но с ним связаны другие проблемы. См. советы 97, 98 и 99.)

B *gimmeAB();

СоветСоветСоветСоветСовет 3838383838

9292929292 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

bp = gimmeAB();
cp = static_cast<C *>(bp); cp = (C *) bp;
typedef C *CP;
cp = CP(bp);

Все три приведения выполняют операции дельта-арифметики над bp, но ре-
зультат будет правильным лишь, если объект B, на который указывает bp, есть
часть объемлющего объекта C. Если это не так, то получится неверный адрес, как в
случае такого вот «креативного» кода в стиле C:

cp = (C *)((char *)bp–delta)

Оператор reinterpret_cast делает именно то, что подразумевает его на-
звание: интерпретирует комбинацию битов, переданную в качестве аргумента,
как нечто иное, не модифицируя сами биты. Иначе говоря, он «отключает» дель-
та-арифметику. (Если быть совершенно точным, то стандарт говорит, что такое
приведение зависит от реализации, но принято считать, что речь идет об «отклю-
чении прохода по иерархии». Тем не менее, стандарт не гарантирует именно тако-
го поведения, поэтому reinterpret_cast может изменить битовую структуру
указателя.)

cp = reinterpret_cast<C *>(bp); // äà ÿ õî÷ó ïîëó÷èòü äàìï ïàìÿòè ...

Все описанные выше приведения требуют, чтобы объект, на который направлен
указатель типа C *, принял на себя больше ответственности, чем обещает его интер-
фейс. Проект плох изначально, поскольку мы слишком мало знаем о возможностях
объекта и используем статическое приведение типа, чтобы заставить его сыграть
роль, к которой он, возможно, не готовился. Лучше всего избегать статических при-
ведений объектов классов. Позже я приведу аргументы в пользу того, что и динами-
ческих приведений следует избегать. Вот тогда картина будет полной.

Совет 39. Приведение неполных типов
У неполных типов нет определения, тем не менее на них можно объявлять

указатели и ссылки, а также функции, которые принимают аргументы и возвра-
щают результат в виде таких типов. Эта общепринятая и полезная практика:

class Y;

class Z;

Y *convert(Z *);

Проблема возникает тогда, когда программист заходит слишком далеко; неве-
дение – благо только до определенного предела:

Y *convert(Z *zp)
 { return reinterpret_cast<Y *>(zp); }

Здесь применение reinterpret_cast необходимо, поскольку у компилято-
ра нет никакой информации о взаимосвязи между типами Y и Z. Поэтому лучшее,
что он может предложить, – «интерпретировать» комбинацию битов, составляю-
щую указатель на Z, как указатель на Y. Иногда это может даже сработать:

class Y { /* . . .*/ };
class Z : public Y { /* . . .*/ };

9393939393

Вполне может статься, что подобъект Y базового класса, содержащийся
в объекте Z, имеет тот же адрес, что и весь объект в целом. Но в будущем такое
положение может измениться, и в ходе сопровождения приведение перестанет
быть корректным. (См. «Совет 38» и «Совет 70».)

class X { /* . . .*/ };

class Z : public X, public Y { /* . . .*/ };

Использование reinterpret_cast, скорее всего, отключает дельта-ариф-
метику, поэтому мы получаем неверный адрес Y.

На самом деле, reinterpret_cast – это не единственная возможность, по-
скольку в нашем распоряжении есть еще и приведения в старом стиле. На первый
взгляд, это может показаться даже более удачным решением, поскольку при таких
приведениях дельта-арифметика выполняется, если у компилятора достаточно
информации. Однако в действительности эта гибкость лишь усугубляет пробле-
му, поскольку выглядящие одинаковыми преобразования могут давать совершен-
но разные результаты в зависимости от того, какая информация доступна компи-
лятору:

Y *convert(Z *zp)

 { return (Y *)zp; }

// ...

class Z : public X, public Y { // ...

// ...

Z *zp = new Z;

Y *yp1 = convert(zp);

Y *yp2 = (Y *)zp;

cout << zp << ' ' << yp1 << ' ' << yp2 << endl;

Значение yp1 будет соответствовать zp или yp2 в зависимости от того, нахо-
дится ли определение convert до или после определения класса Z.

Ситуация может стать намного сложнее, если convert – шаблонная функ-
ция, конкретизируемая в разных объектных файлах. В таком случае результат
приведения может зависеть от причуд компоновщика (см. «Совет 11»).

В данном случае предпочтительнее использовать reinterpret_cast, а не
приведения в старом стиле, поскольку, если уж результат будет неправильным, то
при любых обстоятельствах. Но я бы воздержался и от того, и от другого.

Совет 40. Приведения в старом стиле
Не пользуйтесь приведениями в старом стиле. Они слишком мощны и слиш-

ком просты в применении. Рассмотрим такой заголовочный файл:

// emp.h

// ...

const Person *getNextEmployee();

// ...

Он используется в приложении повсеместно, в том числе и в таком фрагменте:

#include "emp.h"

// ...

Person *victim = (Person *)getNextEmployee();

СоветСоветСоветСоветСовет 39. Приведение неполных типов39. Приведение неполных типов39. Приведение неполных типов39. Приведение неполных типов39. Приведение неполных типов

9494949494 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

dealWith(victim);
// ...

Отметим, что любое отбрасывание константности потенциально опасно и не
переносимо. Предположим, однако, что автор этого кода обладает большим да-
ром провидения, чем все мы, и решил, что именно в этом случае приведение кор-
ректно и переносимо. Но код все равно неправилен по двум причинам. Во-пер-
вых, запрошенное преобразование гораздо сильнее, чем необходимо. Во-вторых,
автор впал в ребяческий грех, понадеявшись на «вторичную семантику»: в коде
предполагается, что наблюдаемое, но официально не подтвержденное поведе-
ние абстракции, выражаемой функцией getNextEmployee, будет поддержано
и в будущем.

По сути дела, использование getNextEmployee в данном случае предпола-
гает, что первоначальная реализация функции никогда не изменится. Разумеется,
это не так. Вскоре программист, сопровождающий файл emp.h, поймет, что ра-
ботники (Employee) – это не просто люди (Person), и исправит ошибку:

// emp.h
// ...
const Employee *getNextEmployee();

// ...

К сожалению, приведение по-прежнему остается допустимым, хотя смысл его
теперь изменился: оно не просто отбрасывает константность объекта, но и меняет
набор операций, применимых к этому объекту. Используя приведение, мы гово-
рим компилятору, что знаем о типах больше, чем он. Изначально, может, так оно и
было, но после изменения заголовочного файла, скорее всего, никто не удосужил-
ся просмотреть все места, где он используется, и распоряжение, отданное компи-
лятору, перестало быть разумным. Если бы мы воспользовались подходящим
приведением в новом стиле, то компилятор сумел бы обнаружить изменение и
выдал бы сообщение об ошибке:

#include "emp.h"
// ...
Person *victim = const_cast<Person *>(getNextEmployee());
dealWith(victim);

Отметим, что использование const_cast, хотя и, несомненно, лучше приве-
дения в старом стиле, все же опасно. Мы по-прежнему полагаемся на предположе-
ние о том, что официально не заявленная – и, быть может, случайная – связь меж-
ду функциями getNextEmployee и dealWith, которая и делает возможным
применение const_cast, будет существовать и дальше.

Совет 41. Статические приведения
Под «статическими» мы понимаем, кто бы мог подумать, «не динамические»

приведения типов. Под такое определение попадает не только оператор
static_cast, но и reinterpret_cast, const_cast, а также приведения
в старом стиле.

Основная проблема статических приведений заключается именно в их статич-
ности. Используя такую конструкцию, мы просим компилятор согласиться

9595959595

с нашим мнением о возможностях объекта, а не с тем, что он видит. Хотя часто
статические приведения дают код, который в момент разработки был правилен,
но он не адаптируется автоматически при последующих изменениях структуры
типа объекта. Поскольку эти изменения обычно находятся далеко от места приве-
дения, то человек, сопровождающий программу, не всегда модифицирует соот-
ветствующий код. В то же время дополнительный эффект приведения типов со-
стоит в отключении диагностики, которую компилятор в противном случае не
преминул бы выдать.

Приведения – необязательно зло, но прибегать к ним нужно, соблюдая уме-
ренность, так, чтобы изменение кода, удаленного от места приведения, не делало
последнее некорректным. С практической точки зрения, из этих требований
вытекает, что в общем случае следует избегать приведения абстрактных типов
данных и – в особенности – абстрактных типов в иерархии наследования.

Рассмотрим следующую простую иерархию:

class B {

public:

virtual ~B();

virtual void op1() = 0;

};

class D1 : public B {

public:

void op1();

void op2();

virtual int thisop();

};

С ней ассоциирована функция, которая служит фабрикой для создания объек-
тов, производных от класса B. Первоначально в иерархии мог быть всего один
производный класс, поэтому реализация тривиальна:

B *getAB() { return new D1; }

Но затем самому автору или сопровождающему мог понадобиться доступ
к определенной в классе D1 функциональности объекта, возвращенного функ-
цией getAB. Правильный подход в этом случае, перепроектировать программу
так, чтобы тип объекта был известен статически. Если это невозможно или неце-
лесообразно, то можно прибегнуть к оператору dynamic_cast (после самокри-
тичного анализа). Использование статического приведения почти никогда не
приводит к добру, что мы и наблюдаем ниже:

B *bp = getAB();
D1 *d1p = static_cast<D1 *>(bp);

d1p->op1();
d1p->op2();
int a = d1p->thisop();

Этот код работает только потому, что возвращаемый объект действительно
имеет тип D1. Но такое везение долго не продлится, и в иерархию рано или поздно
будет добавлен новый класс вместе с обновленной фабрикой:

class D2 : public B {
 public:

СоветСоветСоветСоветСовет 41. Статические приведения41. Статические приведения41. Статические приведения41. Статические приведения41. Статические приведения

9696969696 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

void op1();
void op2();
virtual char thatop();

};
// ...

B *getAB() {
if(rand() & 1)

return new D1;
else

return new D2;
}

Обратите внимание, что эти изменения вполне могли затронуть совсем дру-
гую часть программы, в которую не часто заглядывает человек, сопровождающий
код, который содержит статическое приведение. Остается только надеяться, что
из-за модификации функции getAB придется хотя бы перекомпилировать этот
код, но даже это не гарантируется. Да и если код все же будет перекомпилирован,
статическое приведение типов все равно подавляет диагностику компилятора.
Почти ничего нельзя сказать о том, как поведет себя этот код, если getAB вернет
объект типа D2, но вполне возможно, что он даже будет кое-как работать. Ниже
в комментариях описано обычно наблюдаемое поведение:

B *bp = getAB(); // âîçâðàùàåò D2
D1 *d1p = static_cast<D1 *>(bp); // äåëàåì âèä, ÷òî D2 - ýòî D1
d1p->op1(); // #1: âûçûâàåòñÿ D2::op1!
d1p->op2(); // #2: âûçûâàåòñÿ D1::op2!!
int a = d1p->thisop(); // #3: âûçûâàåòñÿ D2::thatop!!!

Несмотря на отсутствие гарантий такого поведения, строка с меткой #1, ве-
роятно, будет работать «правильно». Но, конечно, лучше бы вызывать функцию
op1 через интерфейс базового класса, так как в этом случае правильное поведение
гарантируется.

Строка с меткой #2 более проблематична. Это вызов невиртуальной функции-
члена класса D1. Увы, мы запрашиваем ее у объекта класса D2, а это приводит к
неопределенному поведению во время выполнения. Может даже и сработать.

Но самыми большими неприятностями грозит строка с меткой #3. Статичес-
ки мы вызываем виртуальную функцию-член thisop класса D1, которая возвра-
щает int. Динамически же вызывается функция-член thatop класса D2, возвра-
щающая char. Если этот код и не вызовет аварийного завершения программы, то
мы попытаемся скопировать char в int.

Применение статического приведения типов часто означает, по меткому на-
блюдению Скотта Мейерса, что «нарушены договоренности между вами и ком-
пилятором». По сути дела, статическое приведение не только требует от компиля-
тора каких-то действий «потому что я так сказал» (подобный тон при разговоре
с человеком гарантирует конец всякого полезного общения), но и является при-
знаком неуважения к открытому интерфейсу, предлагаемому абстрактным типом
данных, который вы приводите к другому. Конечно, отыскание продуманного ре-
шения с учетом объявленных возможностей объекта требует больше времени и
умения, чем грубое приведение типа, зато результатом будет более стабильный,
переносимый и удобный для использования код или интерфейс.

9797979797

Совет 42. Инициализация формальных
аргументов временными объектами
Рассмотрим класс String, в котором объявлены операторы проверки на ра-

венство и неравенство:

class String {
public:
String(const char * = "");
~String();
friend bool operator ==(const String &, const String &);
friend bool operator !=(const String &, const String &);
// . . .

private:
char *s_;

};
inline bool
operator ==(const String &a, const String &b)

{ return strcmp(a.s_, b.s_) == 0; }

inline bool
operator !=(const String &a, const String &b)

{ return !(a == b); }

Отметим, что в данном конкретном случае используется не-explicit кон-
структор с одним аргументом и операторы не являются членами класса. Тем са-
мым мы приглашаем пользователей оценить достоинства неявных преобразова-
ний для упрощения своего кода:

String s("Hello, World!");
String t("Yo!");
if(s == t) {

// ...
}
else if(s == "Howdy!") { // íåÿâíîå ïðåîáðàçîâàíèå

// ...
}

Проверка первого условия s == t эффективна. Два формальных аргумента-
ссылки функции operator == инициализируются соответственно s и t, после
чего для выполнения сравнения вызывается функция strcmp. Если компилятор
решит встроить operator == (а он, вероятно, так и сделает, если не включен
режим отладки), то во время выполнения все сведется к простому вызову strcmp.

Проверка второго условия s == «Howdy!» не так эффективна, хотя и пра-
вильна. Чтобы инициализировать второй аргумент operator ==, компилятор
должен создать временный объект String и инициализировать его строковым
литералом «Howdy!». После возврата из функции временный объект должен
быть уничтожен. По существу, этот код эквивалентен следующему:

String temp("Howdy!");
bool result = operator ==(s, temp);
temp.~String();
if(result) {

// ...

}

СоветСоветСоветСоветСовет 4242424242

9898989898 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

В данном случае удобство неявного преобразования может компенсировать
дополнительные накладные расходы, поскольку реализация как класса String,
так и пользовательского кода оказывается короткой и прозрачной.

Однако, по крайней мере, в двух случаях неявное преобразование неприемле-
мо. Первый — это, конечно, когда такие преобразования применяются очень ин-
тенсивно и вызывают заметное снижение быстродействия или увеличивают по-
требление памяти. Второй случай возникает, когда наличие преобразования из
const char * в String приводит к неоднозначности и сложности в других
местах класса String, и его проектировщик решает сделать конструктор String
explicit.

Эту проблему легко решить перегрузкой операторов проверки на равенство
объектов класса String:

class String {

public:
explicit String(const char * = "");
~String();
friend bool operator ==(const String &, const String &);
friend bool operator !=(const String &, const String &);
friend bool operator ==(const String &, const char *);

friend bool operator !=(const String &, const char *);
friend bool operator ==(const char *, const String &);
friend bool operator !=(const char *, const String &);
// ...

};

Теперь для любой допустимой комбинации аргументов существует точное со-
ответствие, и компилятору не нужно генерировать временные объекты String. К
сожалению, сам класс String при этом становится тяжелее и труднее для пони-
мания, поэтому такой подход к оптимизации рекомендуется лишь, если профили-
рование доказало его целесообразность.

Начинающие программисты на C++ часто допускают типичную ошибку: пе-
редают объекты по значению в ситуации, где лучше бы передавать их по ссылке.
Рассмотрим функцию, которая принимает аргумент типа String:

String munge(String s) {
 // ñäåëàòü ÷òî-òî ñ s ...
 return s;
}
// ...
String t("Munge Me");

t = munge(t);

Трудно найти добрые слова в адрес этого кода, но для программистов, только
приступающих к изучению C++, он не редкость. При вызове munge необходимо
вызвать конструктор копирования для инициализации формального аргумента s,
затем конструктор копирования для создания возвращаемого значения и, нако-
нец, деструктор для уничтожения локальной переменной s. Поскольку мы при-
сваиваем результат обработки t функцией munge самой этой переменной t, то
хочется надеяться, что компилятор поймет это и сделает оператор присваивания
«пустышкой». Напрасные надежды. Компилятор обязан поместить возвращенное

9999999999

munge значение во временную переменную (которая позже должна быть уничто-
жена), поэтому присваивание не будет оптимизировано. Таким образом, мы име-
ем шесть вызовов функций.

Гораздо лучше переписать функцию munge так, чтобы она принимала ссылку
на переменную типа String:

void munge(String &s) {
// ñäåëàòü ÷òî-òî ñ s ...

}
// ...
munge(t);

Всего один вызов функции. У этих двух версий несколько различающаяся се-
мантика: теперь любое изменение s внутри munge отражается на самом фактичес-
ком аргументе, а не на возвращаемом значение. (Это различие может стать суще-
ственным, если внутри munge произойдет исключение или munge вызовет
другую функцию, которая ссылается на t.) Но в целом сложность уменьшилась,
код стал компактнее и быстрее.

Передача по ссылке особенно важна при реализации шаблонов, так как невоз-
можно заранее предсказать, во что обойдется передача аргумента в случае той или
иной конкретизации:

template <typename T>
bool operator >(const T &a, const T &b)

{ return b < a; }

Накладные расходы при передаче аргумента по ссылке фиксированы, невысо-
ки и не зависят от типа аргумента. Не исключено, что аргументы некоторых ти-
пов, например, встроенных или небольших простых классов эффективнее переда-
вать по значению. Если это так важно, шаблон можно перегрузить (если это
шаблон функции) или специализировать (если это шаблон класса).

Eсть случаи, когда принято передавать аргументы по значению. Так, в стан-
дартной библиотеке шаблонов C++ по значению передаются «функциональные
объекты». (Функциональным объектом называется объект класса, в котором пе-
регружен оператор вызова функции. Это такой же объект, как и любой другой, но
при работе с ним допустим синтаксис вызова функции.)

Например, можно объявить функциональный объект, который будет высту-
пать в роли «предиката», то есть функции, выносящей вердикт «да или нет»
о своем аргументе:

struct IsEven : public std::unary_function<int,bool> {
bool operator ()(int a)

{ return !(a & 1); }
};

У объекта IsEven нет ни данных-членов, ни виртуальных функций, ни конст-
руктора, ни деструктора. Передача такого объекта по значению обходится недорого
(а часто и вовсе бесплатно). На самом деле, при работе с STL считается хорошим
тоном передавать функциональные объекты как анонимные временные объекты:

extern int a[n];
int *thatsOdd = partition(a, a+n, IsEven());

СоветСоветСоветСоветСовет 4242424242

100100100100100 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

Выражение IsEven() создает анонимный временный объект типа IsEven,
который передается по значению алгоритму partition (см. «Совет 43»). Конеч-
но, такое соглашение подразумевает, что функциональные объекты, используе-
мые совместно с STL, невелики и могут быть эффективно переданы по значению.

Совет 43. Время жизни временных объектов
При некоторых обстоятельствах компилятор вынужден создавать временные

объекты. Стандарт говорит, что время жизни такого объекта простирается от точ-
ки создания до конца самого внешнего объемлющего выражения (в стандарте это
называется «полным выражением»). Типичная проблема заключается в том, что
программа зависит от существования уже уничтоженных временных объектов:

class String {
public:
// ...
~String()

{ delete [] s_; }
friend String operator +(const String &, const String &);
operator const char *() const

{ return s_; }
private:
char *s_;

};
// ...
String s1, s2;
printf("%s", (const char *)(s1+s2)); // #1

const char* p = s1+s2; // #2
printf("%s", p); // #3

При реализации бинарного оператора + в классе String часто требуется, что-
бы возвращаемое значение сохранялось во временной переменной. Так обстоит
дело в обоих приведенных выше примерах. В предложении с меткой #1 результат
вычисления s1+s2 помещается во временный объект, который затем преобразу-
ется в const char * и передается функции printf. После возврата из printf
временный объект типа String уничтожается. Код работает, потому что времен-
ный объект существует на протяжении всего времени, пока используется.

В предложении #2 результат вычисления s1+s2 помещается во временный
объект, который, как и раньше, преобразуется в const char *. Но разница
в том, что он уничтожается сразу после инициализации указателя p. Когда p пере-
дается printf, он указывает на буфер, принадлежащий уже разрушенному
объекту String. Неопределенное поведение.

Самое неприятное последствие этой ошибки в том, что программа может про-
должать работать (по крайней мере, во время тестирования). Например, когда
временный объект String удаляет свой буфер для хранения символов, оператор
удаления массива может просто помечать память как неиспользуемую, не изме-
няя ее содержимого. Если эта память не задействована для другой цели между
строками #2 и #3, то будет казаться, что программа работает нормально. Но стоит
использовать этот код в многопоточном приложении, как он начнет время от вре-
мени «рушиться».

101101101101101

Лучше воспользоваться сложным выражением или явно объявить временный
объект с увеличенным временем жизни:

String temp = s1+s2;

const char *p = temp;

printf("%s", p);

Заметим, однако, что ограниченное время жизни временных объектов часто
можно обратить себе на пользу. При использовании стандартной библиотеки
очень распространена практика адаптации компонентов с помощью функцио-
нальных объектов:

class StrLenLess
: public binary_function<const char *, const char *, bool> {

public:
bool operator() (const char *a, const char *b) const

{ return strlen(a) < strlen(b); }
};
// ...
sort(start, end, StrLenLess());

Выражение StrLenLess() заставляет компилятор сгенерировать аноним-
ный временный объект, который существует до возврата из алгоритма sort. Аль-
тернатива – воспользоваться явно поименованной переменной – длиннее и засо-
ряет текущую область видимости бесполезным именем (см. «Совет 48»).

StrLenLess comp;

sort(start, end, comp);

// comp âñå åùå â îáëàñòè âèäèìîñòè ...

Еще одна неприятность, связанная со временем жизни временных объектов,
может возникнуть в унаследованном коде, написанном для компилятора, создан-
ного до принятия стандарта. Раньше не было четких правил определения времени
жизни временных объектов. В результате некоторые компиляторы уничтожали
такие объекты в конце того блока, где они появились на свет, другие – в конце
предложения и так далее. Переделывая унаследованный код, внимательно отно-
ситесь к внешне незаметным изменениям семантики из-за изменившегося време-
ни жизни временных объектов.

Совет 44. Ссылки и временные объекты
Ссылка – это псевдоним своего инициализатора (см. «Совет 7»). После ини-

циализации ссылку можно употреблять везде, где употребляется сам инициализа-
тор, без изменения семантики. Ну почти...

int a = 12;

int &r = a;

++a; // òî æå, ÷òî ++r

int *ip = &r; // òî æå, ÷òî &a

int &r2 = 12; // îøèáêà! 12 - ýòî ëèòåðàë

Ссылка должна быть инициализирована lvalue; грубо говоря, это означает, что
инициализатор должен иметь не только значение, но и адрес (см. «Совет 6»). В
случае ссылок на константы ситуация несколько осложняется. Инициализатор

СоветСоветСоветСоветСовет 43. Время жизни временных объектов43. Время жизни временных объектов43. Время жизни временных объектов43. Время жизни временных объектов43. Время жизни временных объектов

102102102102102 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

ссылки на константу по-прежнему должен быть lvalue, но компилятор в этом слу-
чае имеет право создать lvalue из инициализатора, который lvalue не является.

const int &r3 = 12; // ïðàâèëüíî.

Ссылка r3 – это псевдоним для анонимного временного значения типа int,
которое было неявно создано и инициализировано компилятором. Обычно время
жизни созданных компилятором временных объектов ограничено самым вне-
шним объемлющим выражением. Однако в данном случае стандарт гарантирует,
что временный объект будет существовать столько же, сколько и ссылка, которую
он инициализирует. Отметим, что временный объект никак не связан с породив-
шим его инициализатором, поэтому следующий неприглядный и опасный код, к
счастью, не отразится на значении литерала 12:

const_cast<int &>(r3) = 11; // ïðèñâîèòü çíà÷åíèå âðåìåííîìó îáúåêòó
// èëè óìåðåòü ...

Компилятор также изготовит временный объект для инициализатора-lvalue,
тип которого отличается от типа инициализируемой им ссылки:

const string &name = "Fred"; // ïðàâèëüíî.
short s = 123;

const int &r4 = s; // ïðàâèëüíî.

Здесь мы испытываем некоторое семантическое затруднение, так как идея
ссылки как псевдонима инициализатора оказывается под угрозой. Легко забыть,
что инициализатор ссылки – это на самом деле анонимный временный объект,
а не то, что мы видим в исходном тексте. Например, любое изменение перемен-
ной s типа short никак не отразится на ссылке r4:

s = 321; // r4 still == 123

const int *ip = &r4; // ýòî íå &s

Действительно ли это проблема? Может стать таковой с вашей помощью.
Взгляните на следующую попытку достичь переносимости за счет применения
typedef. Быть может, существует глобальный для всего проекта заголовочный
файл, в котором подменяются платформенно-зависимые имена для типов целых
разных размеров:

// Çàãîëîâî÷íûé ôàéë big/sizes.h

typedef short Int16;

typedef int Int32;

// ...

// Çàãîëîâî÷íûé ôàéë small/sizes.h

typedef int Int16;

typedef long Int32;

// ...

(Обратите внимание, что мы не пользуемся директивами #if, чтобы впих-
нуть все typedef’ы для всех платформ в один файл. Этот непродуманный посту-
пок способен отравить вам выходные, подпортить репутацию и сломать жизнь.
См. «Совет 27».) В этом нет ничего плохого, если все разработчики будут пользо-
ваться именно такими именами. Увы, они поступают так далеко не всегда:

#include <sizes.h>

103103103103103

// . . .
Int32 val = 123;
const int &theVal = val;
val = 321;
cout << theVal;

Если мы ведем разработку на «большой» платформе, то theVal – это псевдо-
ним val, и мы выводим в cout значение 321. Если позже мы решим воспользо-
ваться предполагаемой независимостью от платформы и перекомпилируем код
для «маленькой» платформы, то theVal уже будет ссылаться на временный
объект, и в поток будет выведено 123. Изменение семантики произошло «молча»
и обычно не так заметно, как изменившаяся выходная информация.

Еще одна потенциальная проблема заключается в том, что инициализация
ссылки на константу может привести к затруднениям со временем жизни времен-
ных объектов. Мы уже видели, что компилятор обеспечит таким временным
объектам столь же долгую жизнь, как инициализированным ими ссылкам, и вроде
бы никакой опасности не предвидится. Но взгляните на следующую простую
функцию:

const string &
select(bool cond, const string &a, const string &b) {

if(cond)

return a;
else

return b;
}
// . . .
string first, second;
bool useFirst = false;

// . . .
const string &name = select(useFirst, first, second); // ïðàâèëüíî

На первый взгляд, абсолютно безобидная функция. Она ведь просто возвра-
щает один из своих аргументов. Но проблема именно в предложении return. Вот
другая функция, в которой проблема проявляется более наглядно:

const string &crashAndBurn() {
string temp("Fred");
return temp;

}

// . . .
const string &fred = crashAndBurn();
cout << fred; // áåäà!

Здесь мы явно возвращаем ссылку на локальную переменную. После возврата
локальная переменная уже не существует, так что у пользователя этой функции
остается ссылка на уничтоженный объект. К счастью, большинство компиляторов
предупредят о такой ситуации. Но в примере ниже на предупреждение не рассчи-
тывайте, компилятор просто не в состоянии его выдать:

const string &name = select(useFirst, "Joe", "Besser");
cout << name; // áåäà!

Проблема в том, что второй и третий аргументы функции select – это ссыл-
ки на константы, поэтому они будут инициализированы временными строковыми

СоветСоветСоветСоветСовет 44. Ссылки и временные объекты44. Ссылки и временные объекты44. Ссылки и временные объекты44. Ссылки и временные объекты44. Ссылки и временные объекты

104104104104104 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

объектами. Хотя эти временные строки и не локальны по отношению к функции
select, но существовать будут лишь до конца самого внешнего объемлющего
выражения, а оно кончается после возврата из select, но до того, как возвращен-
ное значение используется. Возможный выход из положения – погрузить вызов
функции в большее выражение:

cout << select(useFirst, "Joe", "Besser"); // ðàáîòàåò, íî î÷åíü õðóïêî

Такой код будет работать, если его писал эксперт, но сломается в руках но-
вичка.

Безопаснее избегать возврата формального аргумента, который является
ссылкой на константу. Для функции select в нашем распоряжении по меньшей
мере два разумных варианта. Стандартный тип string не является полиморф-
ным (то есть не имеет виртуальных функций), а потому можно предполагать, что
ссылочные аргументы связаны с объектами типа string, а не производного от
него. Таким образом, можно возвращать строку по значению, не опасаясь срезки,
но при этом неизбежны накладные расходы на вызов конструктора копирования
string для инициализации возвращаемого значения:

string
select(bool cond, const string &a, const string &b) {

if(cond)
return a;

else
return b;

}

Другой вариант – объявить формальные аргументы ссылками на не-констан-
ты, тогда компилятор выдаст ошибку, если для их инициализации потребуется
создавать временные объекты. В результате предыдущий пример просто переста-
нет компилироваться:

string &
select(bool cond, string &a, string &b) {

if(cond)
return a;

else
return b;

}

Ни то, ни другое решение не кажется особо привлекательным, но все-таки это
лучше, чем оставить в программе возможность для проявления ошибки.

Совет 45. Неоднозначность
при использовании dynamic_cast
Ясное дело, вам стыдно. Вы даже не хотите обсуждать эту тему с коллегами.

Возможно, это неблагоприятно отразится на личных взаимоотношениях с ними.
Но, если вас приперли к стенке, если вы оказались один на один с плохо спроекти-
рованным модулем, столкнулись с невыполнимыми требованиями, выставленны-
ми начальством, и необходимостью закончить все к завтрашнему дню, то, может
быть, имеет смысл обратиться к dynamic_cast.

105105105105105

Предположим, что вам нужно определить, соответствует ли конкретный
объект, представляющий экран, экрану для ввода или какому-нибудь другому.
Проблема в том, что вы вклинились в какой-то код общего характера, относящий-
ся к экранам любого вида. Первое ваше побуждение – расширить интерфейс эк-
ранных типов, чтобы они предоставляли необходимую информацию.

class Screen {

public:

//...

virtual bool isEntryScreen() const

{ return false; }

};

class EntryScreen : public Screen {

public:

bool isEntryScreen() const

{ return true; }

};

// . . .

Screen *getCurrent();

// . . .

if(getCurrent()->isEntryScreen())

 // . . .

Но этот подход позволил бы задавать слишком «интимные» вопросы объекту
класса Screen. Базовый класс Screen явно предлагает задать такой вопрос:
«А не являешься ли ты объектом EntryScreen?» Ну, раз уж шлюзы открыты, то
ничто не помешает тем, кто будет сопровождать программу, задать и еще более
личные вопросы (см. «Совет 98»):

class Screen {

public:

//...

virtual bool isEntryScreen() const

{ return false; }

virtual bool isPricingScreen() const

{ return false; }

virtual bool isSwapScreen() const

{ return false; }

// è òàê äî áåñêîíå÷íîñòè ...

};

Конечно, наличие такого интерфейса почти наверняка гарантирует, что его
будут использовать:

// ...

if(getCurrent()->isEntryScreen())

// ...

else if(getCurrent()->isPricingScreen())

// ...

else if(getCurrent()->isSwapScreen())

// ...

А это уже почти предложение switch, только более медленное и неудобное
для сопровождения. Меньшее зло – сцепить зубы и все-таки один раз воспользо-
ваться оператором dynamic_cast. Хочется надеяться, что приведение будет дос-

СоветСоветСоветСоветСовет 4545454545

106106106106106 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

таточно глубоко упрятано, чтобы не стать примером для подражания, и когда-ни-
будь во время основательной переработки кода будет удалено:

if(EntryScreen *es = dynamic_cast<EntryScreen *>(sp)) {
// ñäåëàòü ÷òî-òî ñ ýêðàíîì äëÿ ââîäà ...

}

Если приведение завершилось успешно, то es будет указывать на Entry-
Screen, и это может означать, что объект действительно принадлежит классу
EntryScreen или является подобъектом более специализированного объекта.
Но что означает неудачное приведение?

Оператор dynamic_cast может возвращать нуль по одной из четырех причин.
Во-первых, приведение может быть некорректным. Если sp не указывает на объект
класса EntryScreen или производного от него, то приведение не пройдет. Во-вто-
рых, если sp равно нулю, то нулевым будет и результат приведения. В-третьих, при-
ведение к недоступному базовому классу или из такого класса тоже закончится не-
удачей. И, наконец, причиной провала может стать неоднозначность.

Неоднозначности, возникающие в ходе преобразования типов, редко встре-
чаются в хорошо спроектированных иерархиях. Но если иерархия построена не-
удачно или к ней неправильно обращаются, то можно попасть в беду.

На рис. 4.4 показана простая иерархия с множественным наследованием.
Предположим, что тип A полиморфен (имеет виртуальную функцию) и что ис-
пользуется только открытое наследование. В таком случае у объекта D будет два
подобъекта типа A, то есть по меньшей мере один из них является невиртуальным
базовым классом:

D *dp = new D;
A *ap = dp; // îøèáêà! íåîäíîçíà÷íîñòü
ap = dynamic_cast<A *>(dp); // îøèáêà! íåîäíîçíà÷íîñòü

Инициализация ap неоднозначна, так как может относиться к любому из двух
разумных адресов A. Но поскольку мы имеем адрес одного из двух подобъектов A,
ссылка на все остальные подтипы в иарархии уже будет однозначной:

B *bp = dynamic_cast<B *>(ap); // ðàáîòàåò
C *cp = dynamic_cast<C *>(ap); // ðàáîòàåò

На какой бы подобъект A ни указывал ap, преобразование его в указатель на
подобъекты B или C либо на весь объект D однозначна, поскольку полный объект
содержит лишь по одному экземпляру каждого такого подобъекта.

Интересно отметить, что если бы оба подобъекта A были виртуальными базо-
выми классами, то неоднозначность не возникла бы, поскольку объект D содержал
бы единственный подобъект A:

D *dp = new D;

A *ap = dp; // ïðàâèëüíî, íåîäíîçíà÷íîñòè íåò
ap = dynamic_cast<A *>(dp); // ïðàâèëüíî, íåîäíîçíà÷íîñòè íåò

Но ее можно снова ввести, чуть усложнив иерархию, как показано на рис. 4.5.
В этой модифицированной иерархии нет прежней неоднозначности, поскольку
объект D все еще содержит единственный подобъект A:

A *ap = new D; // íåîäíîçíà÷íîñòè íåò

107107107107107

Зато теперь неоднозначность проявляется по-другому:

E *ep = dynamic_cast<E *>(ap); // íåîäíîçíà÷íîñòü!

Указатель ap можно преобразовать в один из двух подобъектов E. Эту нео-
днозначность можно обойти, если выразить свои намерения яснее:

E *ep = dynamic_cast<B *>(ap); // ðàáîòàåò

Объект D содержит единственный подобъект B, поэтому преобразование A * в
B * однозначно, а для последующего преобразования B * в его открытый базовый
класс не нужно приведения. Заметим, однако, что такое решение требует включе-
ния в код детальной информации о структуре иерархии ниже классов A и E. Лучше
упростить иерархию, чтобы избежать появления динамической неоднозначности.

Рис. 4.4. Иерархия с множественным наследованием без виртуальных

базовых классов. Объект класса D содержит два подобъекта класса A

Рис. 4.5. Иерархия с множественным виртуальным

и невиртуальным наследованием нескольких подобъектов одного типа.

Полный объект D содержит единственный подобъект A с двумя подобъектами E

Раз уж мы рассматриваем оператор dynamic_cast, то должны остановиться
на некоторых тонкостях его семантики. Во-первых, этот оператор не обязательно
динамичен, то есть может и не выполнять проверки во время выполнения. Когда
выполняется приведение указателя (или ссылки) на производный класс к одному
из его открытых базовых классов, проверка не нужна, поскольку компилятор мо-
жет установить допустимость приведения статически. Разумеется, в таком случае
применять dynamic_cast вообще не имеет смысла, так как преобразование из
производного класса в открытый базовый относится к числу предопределенных.
(Хотя правила языка в этом отношении могут показаться излишними, часто это

СоветСоветСоветСоветСовет 4545454545

108108108108108 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

упрощает программирование шаблонов, когда типы, которыми мы манипули-
руем, заранее неизвестны.)

Кроме того, допустимо приводить указатель или ссылку на полиморфный тип
к void *. В этом случае результатом будет начало «самого производного» (наи-
более глубокого расположенного в иерархии наследования) или полного объекта,
на который направлен указатель. Конечно, мы так и не знаем, на что указываем, но
хотя бы понимаем, куда ...

Совет 46. Контравариантность
Правила преобразования указателей на члены класса логичны, но зачастую

противоречат интуиции. Знакомство с реализацией указателей на члены поможет
прояснить ситуацию.

Указатель направлен на некоторую область памяти; он содержит адрес, кото-
рый нужно разыменовать, чтобы получить доступ к содержимому памяти. (В коде
ниже встречаются два порочных приема: открытый член данных и сокрытие не-
виртуальной функции базового класса. Я поступил так только для иллюстрации,
не нужно расценивать это как завуалированное приглашение поступать подоб-
ным образом. См. «Совет 8» и «Совет 71».)

class Employee {
public:
double level_;
virtual void fire() = 0;
bool validate() const;

};
class Hourly : public Employee {
public:
double rate_;
void fire();
bool validate() const;

};
// ...
Hourly *hp = new Hourly, h;
// ...
*hp = h;

Отметим, что адрес члена данных конкретного объекта – это еще не указатель
на член. Это лишь простой указатель, ссылающийся на конкретный член конкрет-
ного объекта:

double *ratep = &hp->rate_;

Указатель на член – это вообще не указатель. Указатель на член не содержит
никакого адреса и не ссылается ни на какой конкретный объект или ячейку памя-
ти. А ссылается он на конкретный член неопределенного объекта. Поэтому, чтобы
разыменовать указатель на член, необходим объект:

double Hourly::*hvalue = &Hourly::rate_;
hp->*hvalue = 1.85;

h.*hvalue = hp->*hvalue;

Операторы .* и ->* – это бинарные операторы, которые разыменовывают
указатель на член при наличии объекта класса или указателя на объект соответст-

109109109109109

венно (см., «Совет 15» и «Совет 17»). Указатель на член hvalue был инициализи-
рован так, чтобы он указывал на член rate_ класса Hourly, а затем разыменован
для доступа к члену rate_ конкретного объекта h класса Hourly или объекта, на
который указывает hp.

Указатель на член данных обычно реализуется в виде смещения. То есть при
взятии адреса члена данных, как в случае &Hourly::rate_, мы получаем число
байтов от начала объекта класса, которому принадлежит данный член. Как правило,
это значение увеличивается на 1, оставляя значение 0 для представления нулевого
указателя на член данных. Разыменование указателя на член данных обычно зак-
лючается в прибавлении хранящего в указателе смещения (уменьшенного на 1) к
адресу объекта класса. Затем получающийся указатель разыменовывается для по-
лучения доступа к нужному члену объекта класса. Например, выражение

h.*hvalue = 1.85

могло бы быть оттранслировано так:

*(double *)((char *)&h+(hvalue-1)) = 1.85

Рассмотрим еще один указатель на член данных:

double Employee::*evalue = &Employee::level_;
Employee *ep = hp;

Поскольку Hourly «является разновидностью» Employee, то можно разы-
меновать указатель evalue на член данных с помощью указателя на объект и
того, и другого класса. Это хорошо известное предопределенное преобразование
из производного класса в открытый базовый:

ep->*evalue = hp->*evalue;

Объект Hourly можно подставлять вместо Employee. Но попытка выпол-
нить аналогичное преобразование с указателями на члены не проходит:

evalue = hvalue; // îøèáêà!

Не существует преобразования из указателя на член производного класса
в указатель на член его открытого базового класса. Зато обратное преобразование
допустимо:

hvalue = evalue; // ïðàâèëüíî

Это явление называется «контравариантностью»; предопределенные преобра-
зования для указателей на члены классы в точности противоположны их аналогам
для обычных указателей на классы. (Не путайте контравариантность с ковариант-
ными типами возвращаемых значений; см. «Совет 77».) Немного поразмыслив, вы
поймете, какая логика стоит за этими противоречащими интуиции правилами.
Поскольку Hourly «является разновидностью» Employee, то он содержит
Employee в качестве подобъекта. Следовательно, любое смещение от начала
Employee является также смещением и от начала Hourly. Напротив, некоторые
смещения от начала Hourly уже недействительны для Employee. Отсюда выте-
кает, что указатель на член открытого базового класса можно безопасно преобра-
зовать в указатель на член производного класса, но не наоборот:

T SomeClass::*mptr;
. . . ptr->*mptr . . .

СоветСоветСоветСоветСовет 46. Контравариантность46. Контравариантность46. Контравариантность46. Контравариантность46. Контравариантность

110110110110110 ПреобразованияПреобразованияПреобразованияПреобразованияПреобразования

В этом фрагменте указатель ptr можно преобразовать в указатель на объект
типа SomeClass или любого открыто наследующего ему. Указатель на член mptr
может содержать адрес члена SomeClass или адрес любого доступного базового
класса SomeClass.

Контравариантность применима также к указателям на функции-члены. Это
в такой же мере противоречит интуиции и вместе с тем не менее осмысленно:

void (Employee::*action1)() = &Employee::fire;

(hp->*action1)(); // Hourly::fire
bool (Employee::*action2)() const = &Employee::validate;
(hp->*action2)(); // Employee::validate

Реализации указателей на функции у разных производителей различаются,
но обычно представляют собой небольшую структуру. В ней содержится инфор-
мация, необходимая для того, чтобы отличать виртуальные функции от невир-
туальных, а также другие платформенно-зависимые данные, относящиеся к дета-
лям реализации структуры объектов при наследовании. Первый вызов из примера
выше (через указатель action1) сводится к косвенному виртуальному вызову
функции-члена Hourly::fire, поскольку &Employee::fire – это указатель
на виртуальную функцию-член. Вызов через action2 приводит к вызову функ-
ции &Employee::validate, так как &Employee::validate – указатель на
невиртуальную функцию.

action2 = &Hourly::validate; // îøèáêà!
bool (Hourly::*action3)() = &Employee::validate; // ïðàâèëüíî

И снова контравариантность. Запрещено присваивать адрес функции validate
производного класса указателю на член базового класса, но можно инициализи-
ровать указатель на член производного класса адресом функции-члена базового
класса. Как и в случае указателей на члены данных, причина кроется в безопасно-
сти доступа к членам. Реализация Hourly::validate может попытаться обра-
титься к членам данных (и функциям), которые отсутствуют в классе Employee.
С другой стороны, все члены, доступные функции Employee::validate, до-
ступны и в классе Hourly.

Глава 5. Инициализация

Семантика инициализации в C++ сложна, изобилует тонкостями и очень важна.
Причины сложности лежат очень глубоко. Программирование на C++ скла-

дывается в основном из использования классов для реализации абстрактных ти-
пов данных. По сути дела, мы расширяем базовый язык за счет включения в него
новых типов. Мы связаны двумя обязательствами. С одной стороны, дизайн язы-
ка программирования должен обеспечивать создание удобных для использова-
ния, интегрируемых типов. С другой стороны, компилятор должен эффективно
транслировать нашу реализацию абстрактных типов данных. Детали инициали-
зации и копирования объектов классов очень важны для эффективного использо-
вания абстракций данных в промышленном коде.

Не менее, чем эффективность, важна, конечно, и корректность. Незнание
сложной семантики инициализации в C++ может привести к неправильному
использованию языка.

В этой главе мы рассмотрим, как реализуется инициализация и как убедить ком-
пилятор оптимизировать определенные пользователем операции инициализации и
копирования. Кроме того, мы познакомимся с некоторыми типичными ошибками,
возникающими из-за неправильного понимания семантики инициализации.

Совет 47. Не путайте инициализацию
и присваивание
С технической точки зрения, присваивание и инициализация имеют мало обще-

го. Это различные операции, и применяются они в разных ситуациях. Инициализа-
ция – это процесс превращения неформатированной памяти в объект. Когда речь
идет об объекте класса, при этом могут быть задействованы внутренние механиз-
мы для предоставления виртуальных функций и виртуальных базовых классов,
информации о типе во время выполнения и другой зависящей от типа информации
(см. «Совет 53» и «Совет 78»). Присваивание – это процесс замены существующего
состояния готового объекта новым состоянием. Присваивание не отражается на
внутренних механизмах, определяющих зависящее от типа поведение объекта.
Присваивание никогда не применяется к неформатированной памяти.

Но если семантика конструирования путем копирования важна при одних об-
стоятельствах, то есть шанс, что при других обстоятельствах важна семантика
присваивания копированием, и наоборот. Если забыть, что присваивание и ини-
циализацию надо рассматривать совместно, возможны ошибки:

class SloppyCopy {
public:

112112112112112 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

SloppyCopy &operator =(const SloppyCopy &);
// Ïðèìå÷àíèå: êîìïèëÿòîð ãåíåðèðóåò SloppyCopy(const SloppyCopy &)
// ïî óìîë÷àíèþ ...

private:
T *ptr;

};

void f(SloppyCopy); // ïåðåäà÷à ïî çíà÷åíèþ

SloppyCopy sc;
f(sc); // ïñåâäîíèì òîãî, íà ÷òî óêàçûâàåò óêàçàòåëü;

// âîçìîæíî, îøèáêà

Передача аргументов выполняется путем инициализации, а не присваивания;
формальный аргумент функции f инициализируется фактическим аргументом
sc. Инициализацию производит конструктор копирования класса SloppyCopy.
Если в этом классе конструктор копирования не объявлен явно, то его сгенери-
рует компилятор. В данном случае созданная компилятором версия будет рабо-
тать некорректно (см. «Совет 49» и «Совет 53»).

Существует идиома, в основе которой лежит предположение о том, что хотя
конструирование и присваивание копированием – это разные операции, но они
должны иметь сходную семантику:

extern T a, b;
b = a;

T c(a);

В этом фрагменте пользователь типа T ожидает, что значения b и c будут со-
гласованы. Другими словами, для последующих операций должно быть безраз-
лично, получил ли объект типа T свое значение в результате присваивания или
инициализации. Это предположение о согласованности настолько глубоко укоре-
нилось в сообществе программистов на C++, что даже стандартная библиотека
опирается на него:

�� gotcha47/rawstorage.h

template <class Out, class T>
class raw_storage_iterator

: public iterator<output_iterator_tag,void,void,void,void> {
public:
raw_storage_iterator& operator =(const T& element);
// ...

protected:
Out cur_;

};
template <class Out, class T>
raw_storage_iterator<Out, T> &
raw_storage_iterator<Out,T>::operator =(const T &val) {

T *elem = &*cur_; // ïîëó÷èòü óêàçàòåëü íà ýëåìåíò
new (elem) T(val); // îïåðàòîð ðàçìåùåíèÿ è êîíñòðóêòîð êîïèðîâàíèÿ
return *this;

}

Класс raw_storage_iterator применяется для разметки неинициализи-
рованной памяти. Обычно оператор присваивания требует, чтобы оба его аргу-
мента были инициализированными объектами, иначе может возникнуть пробле-

113113113113113

ма, когда во время присваивания будет произведена попытка «очистить» левый
аргумент перед установкой нового значения. Например, если объект, которому
присваивается новое значение, содержит указатель на буфер, выделенный из
кучи, то оператор присваивания обычно сначала освобождает эту память. Если же
объект не инициализирован, то удаление указателя может привести к неопреде-
ленному поведению:

�� gotcha47/rawstorage.cpp

struct X {
T *t_;
X &operator =(const X &rhs) {

if(this != &rhs)
{ delete t_; t_ = new T(*rhs.t_); }

return *this;
}
// . . .

};
// . . .
X x;
X *buf = (X *)malloc(sizeof(X)); // íåôîðìàòèðîâàííàÿ ïàìÿòü ...
X &rx = *buf; // ãðÿçíûé òðþê ...

rx = x; // âåðîÿòíî, îøèáêà!

Алгоритм copy из стандартной библиотеки копирует входную последова-
тельность в выходную, вызывая для копирования каждого элемента оператор
присваивания:

template <class In, class Out>
Out std::copy(In b, In e, Out r) {

while(b != e)
*r++ = *b++; // ïðèñâîèòü èñõîäíûé ýëåìåíò öåëåâîìó

return r;

}

Применение copy к неинициализированному массиву объектов класса X,
скорее всего, закончится катастрофой:

�� gotcha47/rawstorage.cpp

X a[N];
X *ary = (X *)malloc(N*sizeof(X));
copy(a, a+N, ary); // ïðèñâàèâàíèå íåôîðìàòèðîâàííîé ïàìÿòè!

Присваивание несколько напоминает (но не идентично!) уничтожение с после-
дующим вызовом конструктора копирования. Класс raw_storage_iterator ре-
ализует присваивание неформатированной памяти, интерпретируя присваивание
как конструирование путем копирования, но без «уничтожения», которое может
вызвать проблемы. Это будет работать только в предположении, что присваивание
и конструирование копированием дают примерно одинаковые результаты.

�� gotcha47/rawstorage.cpp

raw_storage_iterator<X *, X> ri(ary);
copy(a, a+N, ri); // ðàáîòàåò!

Отсюда не следует, что проектировщик класса X должен быть хорошо знаком
со всеми (возможно, непростыми и запутанными) деталями стандартной библио-

СоветСоветСоветСоветСовет 4747474747

114114114114114 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

теки, чтобы реализовать свой класс правильно. Но он обязан знать общее идиома-
тическое предположение о согласованности присваивания и инициализации ко-
пированием. Абстрактный тип данных, который не поддерживает такую согласо-
ванность, не может эффективно использоваться совместно со стандартной
библиотекой и будет не так полезен, как согласованный в этом смысле класс.

Часто программисты впадают в заблуждение, думая, что в следующем предло-
жении как-то задействовано присваивание:

T d = a; // ýòî íå ïðèñâàèâàíèå

Знак = в данном случае – не оператор присваивания, а указание на то, что d
инициализируется значением a. И это правильно, иначе мы стали бы что-то при-
сваивать неформатированной памяти (см. «Совет 56).

Совет 48. Правильно выбирайте область
видимости переменной
Одна из самых типичных ошибок при программировании на C и C++ – это

использование неинициализированных переменных. Этой проблемы вообще не
должно существовать! Отделение объявление переменной от ее инициализации
редко дает какие-то преимущества:

int a;
a = 12;
string s;
s = "Joe";

Это же просто глупо. Целое число будет иметь неопределенное значение до
выполнения присваивания в следующей строке. Строка корректно инициализи-
руется своим конструктором по умолчанию, но это значение сразу же затирается
последующим оператором присваивания (см. также «Совет 51»). В обоих случаях
инициализацию надо было совместить с объявлением:

int a = 12;
string s("Joe");

Реальная опасность состоит в том, что в ходе сопровождения между объявле-
нием неинициализированной переменной и первым присваиванием ей может
быть вставлен какой-то код. Типичный сценарий не так тривиален, как в примере
выше:

bool f(const char *s) {
size_t length;
if(!s) return false;

length = strlen(s);
char *buffer = (char *)malloc(length+1);
// ...

}

Здесь переменная length не только не инициализирована, она еще и должна
была бы быть константой. Автор этого кода забыл, что в C++, в отличие от C,
объявление является предложением; точнее это «предложение объявления», так
что объявление может находиться в любом месте, где допустимо предложение:

115115115115115

bool f(const char *s) {
if(!s) return false;
const size_t length = strlen(s);
char *buffer = (char *)malloc(length+1);
// ...

}

Рассмотрим еще одну распространенную ошибку, которая обычно вносится
на этапе сопровождения. Код, подобный показанному ниже, встречается сплошь и
рядом:

void process(const char *id) {
Name *function = lookupFunction(id);
if(function) {

// ...
}

}

В объявлении переменной function пока что нет ничего плохого, но при со-
провождении может возникнуть проблема. Мы уже говорили выше, что сопро-
вождающие часто используют имеющиеся локальные переменные для совершен-
но других целей. Почему? Наверное, просто потому, что они уже есть:

void process(const char *id) {
Name *function = lookupFunction(id);
if(function) {

// ñäåëàòü ÷òî-òî ñ ôóíêöèåé ...
}
else if(function = lookupArgument(id)) {

// îáðàáîòàòü àðãóìåíò ...
}

}

Пока еще не ошибка, хотя думается мне, что код обработки аргумента окажет-
ся довольно сложным для неподготовленного читателя («В этой части кода всю-
ду, где написано 'function', имеется в виду 'argument'.») Но что случится, если ав-
тор первоначальной версии решит немного подправить обработку функции?

void process(const char *id) {
Name *function = lookupFunction(id);
if(function) {

 // ñäåëàòü ÷òî-òî ñ ôóíêöèåé ...
}
else if(function = lookupArgument(id)) {

 // îáðàáîòàòü àðãóìåíò ...
}
// ...
if(function) {

// ñäåëàòü ÷òî-òî åùå ñ ôóíêöèåé ...
}

}

Теперь мы, возможно, попытаемся обработать аргумент как функцию.
Обычно лучше всего ограничивать область видимости имени той частью кода,

где автор намеревался его использовать. Имена, которые находятся в области ви-
димости, но больше не используются, подобны ничем не занятым подросткам; они
просто болтаются без дела, напрашиваясь на неприятности. В первоначальной

СоветСоветСоветСоветСовет 4848484848

116116116116116 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

версии следовало бы ограничить область видимости переменной function учас-
тком программы, где она действительно нужна:

void process(const char *id) {
if(Name *function = lookupFunction(id)) {

// ...

}
}

Ограничение области видимости имени переменной подавляет искушение ис-
пользовать его повторно, в результате окончательная реализация функции после
изменения станет более рациональной:

void process(const char *id) {
if(Name *function = lookupFunction(id)) {

// ...
postprocess(function);

}
else if(Name *argument = lookupArgument(id)) {

// ...
}

}

Язык C++ признает важность инициализации и ограничения области видимо-
сти имен. Он предоставляет программисту ряд средств, позволяющих гарантиро-
вать, что каждое имя инициализировано и находится в области видимости, точно
соответствующей предполагаемому использованию.

Совет 49. Внимательно относитесь
к операциям копирования
C++ очень серьезно относится к операциям копирования. Они исключитель-

но важны в программировании на этом языке и в особенности это касается клас-
сов. Операции копирования настолько важны, что если вы не определите их для
класса, то компилятор сделает это за вас. А иногда компилятор даже может проиг-
норировать ваши определения и подставить свои. В одних случаях сгенерирован-
ные компилятором операции корректны, в других – нет. Поэтому важно четко
понимать, что компилятор ожидает от операции копирования.

Отметим, что конструктор копирования и копирующий оператор присваива-
ния (наряду с другими конструкторами и деструктором) не наследуются от базо-
вых классов. Следовательно, каждый класс должен самостоятельно реализовать
для себя копирование.

По умолчанию конструктор копирования реализует почленную инициали-
зацию. Это не имеет ничего общего с принятым в C побитовым копированием
структур. Рассмотрим пример реализации простого класса:

template <int maxlen>
class NBString {
public:
explicit NBString(const char *name);
// . . .

private:

117117117117117

std::string name_;
size_t len_;
char s_[maxlen];

};

В предположении, что операции копирования не определены, компилятор
сгенерирует их автоматически. Они будут открытыми встраиваемыми членами.

NBString<32> a("String 1");
// ...
NBString<32> b(a);

Неявный конструктор копирования выполняет почленную инициализацию,
вызывая конструктор копирования класса string для инициализации члена
b.name_ значением a.name_, члена b.len_ – значением a.len_, а элементов мас-
сива b.s_ – значениями соответствующих элементов массива a.s_. (На самом
деле, из-за какой-то необъяснимой прихоти, стандарт говорит, что «скалярным»
типам, к которым относятся все встроенные типы, перечисления и указатели,
в неявном конструкторе копирования значения присваиваются, а не инициализи-
руются. Мне не понять, какими мотивами руководствовались члены комитета по
стандартизации, формулируя именно такое определение, но для скалярных типов
результат все равно будет один и тот же, будь то инициализация или присваи-
вание.)

b = a;

Аналогично, неявный оператор присваивания выполняет почленное присваи-
вание, вызывая оператор присваивания класса string для присваивания значения
a.name_ члену b.name_, значения a.len_ члену b.len_ и значения элементов мас-
сива a.s_ соответствующим элементам массива b.c_.

Такие определения неявных операций копирования дают правильную и тра-
диционную семантику копирования (см. также «Совет 81»). Но рассмотрим не-
много иную реализацию класса, представляющего именованную строку ограни-
ченной длины:

class NBString {

public:

explicit NBString(const char *name, int maxlen = 32)

: name_(name), len_(0), maxlen_(maxlen),

s_(new char[maxlen])

{ s_[0] = '\0'; }

~NBString()

{ delete [] s_; }

// ...

private:

std::string name_;

size_t len_;

size_t maxlen_;

char *s_;

};

Теперь конструктор задает максимальный размер строки, а память для хране-
ния символов больше не находится внутри объекта NBString. И операции копи-
рования, сгенерированные компилятором, перестают быть правильными:

СоветСоветСоветСоветСовет 4949494949

118118118118118 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

NBString c("String 2");
NBString d(c);
NBString e("String 3");
e = c;

В результате применения неявного конструктора копирования члены s_
объектов c и d указывают на один и тот же выделенный из кучи буфер. При унич-
тожении объектов c и d их деструкторы попытаются освободить одну и ту же об-
ласть памяти, то есть имеет место двойное удаление. С другой стороны, когда c
присваивается c, память, на которую указывал e.s_, окажется недоступной пос-
ле того, как e.s_ станет указывать туда же, куда указывает c.s_. При уничтоже-
нии же объектов возникнет та же проблема, что и выше. (См. также «Совет 53»,
где вкратце обсуждается, что происходит с оператором присваивания, сгенериро-
ванным компилятором, при наличии виртуальных базовых классов.)

Чтобы написать корректную реализацию, необходимо отказаться от услуг
компилятора и взяться за дело самостоятельно:

class NBString {
public:
// . . .

NBString(const NBString &);
NBString &operator =(const NBString &);

private:
std::string name_;

size_t len_;

size_t maxlen_;

char *s_;

};

// . . .

NBString::NBString(const NBString &that)

: name_(that.name_), len_(that.len_), maxlen_(that.maxlen_),

s_(strcpy(new char[that.maxlen_], that.s_))

{}

NBString &NBString::operator =(const NBString &rhs) {

if(this != &rhs) {

name_ = rhs.name_;

char *temp = new char[rhs.maxlen_];

len_ = rhs.len_;

maxlen_ = rhs.maxlen_;

delete [] s_;

s_ = strcpy(temp, rhs.s_);

}

return *this;

}

Любой проектировщик классов должен внимательно относиться к операциям
копирования. Их надо либо предоставлять явно (и не забывать изменять, когда
модифицируется реализация класса), либо поручить генерацию компилятору
(ревизуя это решение при каждом изменении реализации), либо вообще запре-
тить с помощью следующей идиомы:

class NBString {
public:
// ...

119119119119119

private:
NBString(const NBString &);
NBString &operator =(const NBString &);
// ...

};

Объявление без предоставления определения операций копирования закры-
тыми запрещает копирование объектов класса. Компилятор не будет пытаться ге-
нерировать неявные версии, и большая часть программы не будет иметь доступа к
закрытым членам. Любая попытка скопировать объект, предпринятая членами
класса или его друзьями, будет перехвачена на этапе компоновки.

Практически невозможно обмануть компилятор в вопросах реализации опе-
раций копирования. Ниже показаны изобретательные, но тщетные попытки тако-
го рода:

class Derived;
class Base {
public:
Derived &operator =(const Derived &);
virtual Base &operator =(const Base &);

};
class Derived : public Base {
public:
using Base::operator =; // ñêðûò
template <class T>
Derived &operator =(const T &); // íå îïåðàòîð ïðèñâàèâàíèÿ
Derived &operator =(const Base &); // íå îïåðàòîð ïðèñâàèâàíèÿ

};

Мы уже знаем, что операции копирования не наследуются, но using-объявле-
ние, которое импортирует пригодный для использования оператор присваивания
из невиртуального базового класса, не мешает компилятору сгенерировать соб-
ственную версию, которая скроет ту, что импортирована явно. (Отметим попутно,
что в базовом классе явно упомянут производный класс, а это признак плохого
дизайна. См. «Совет 69».)

Не поможет и реализация оператора присваивания в виде шаблонной функ-
ции; члены-шаблоны никогда не могут выступать в роли операций копирования
(см. «Совет 88»). Виртуальный оператор присваивания из базового класса пере-
определяется в производном классе, но переопределенный оператор присваива-
ния для копирования не используется (см. «Совет 76»). Язык C++ очень настой-
чив в этом отношении: либо пишите операции копирования сами, либо поручите
компилятору, третьего не дано.

Совет 50. Побитовое копирование
объектов классов
Нет ничего плохого в том, чтобы позволить компилятору автоматически сге-

нерировать операции копирования, хотя делать это стоит только для простых
классов или, если быть точным, для классов с простой структурой. Более того, для
простых классов даже лучше поручить эту работу компилятору из соображений

СоветСоветСоветСоветСовет 5050505050

120120120120120 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

эффективности. Рассмотрим класс, который по существу является лишь элемен-
тарным набором данных:

struct Record {
char name[maxname];
long id;

size_t seq;
};

Имеет прямой смысл дать компилятору возможность реализовать для него
операции копирования. Такие классы называются POD-классами (сокр. от Plain
Old Data – «добрые старые данные»; см. «Совет 9») и представляют собой обыч-
ные структуры в смысле языка C. Стандарт четко определяет, что неявные опера-
ции копирования в таких случаях должны следовать семантике, принятой для
C-структур, то есть быть побитовыми.

В частности, если на данной платформе есть машинная команда «быстро ско-
пировать n байтов», то компилятор может воспользоваться ей для побитового ко-
пирования. Такая оптимизация применима даже к не-POD классам. Так, опера-
ции копирования для нешаблонной версии класса NBString (см. «Совет 49»)
можно было бы реализовать, вызвав соответствующую операцию из класса string
для члена name_, а остаток объекта скопировать побитово.

Случается, что кодировщик класса решает взять на себя побитовое копирова-
ния. Обычно это ошибочное решение, так как компилятор знает о внутреннем ус-
тройстве класса и специфике платформы гораздо больше, чем программист. Руч-
ное побитовое копирование обычно оказывается и более медленным, и в большей
мере подверженным ошибкам, чем версия, сгенерированная компилятором:

class Record {

public:

Record(const Record &that)

{ *this = that; }

 Record &operator =(const Record &that)

{ memcpy(this, &that, sizeof(Record)); return *this; }

// . . .

private:

char name[maxname];

long id;

size_t seq;

};

Наша POD-структура Record превратилась в настоящий класс, поэтому мы
решили предоставить для нее явные операции копирования. Это излишне, так как
компилятор создал бы очень эффективные и правильные версии. Но настоящая
проблема возникает по мере эволюции класса:

class Record {
public:
virtual ~Record();
Record(const Record &that)

{ *this = that; }

Record &operator =(const Record &that)
{ memcpy(this, &that, sizeof(Record)); return *this; }

// . . .

121121121121121

private:

char name[maxname];

long id;

size_t seq;

};

Теперь картина уже не такая радужная. Побитовое копирование больше не
отвечает структуре класса. Добавление виртуальной функции заставляет компи-
лятор включить механизм ее реализации, обычно указатель на таблицу виртуаль-
ных функций (см. «Совет 78»).

Неявные операции копирования, сгенерированные компилятором, учиты-
вают наличие этого механизма: конструктор копирования правильно установит
указатель, а оператор присваивания не станет его модифицировать. Но наша реа-
лизация с применением memcpy затрет указатель на таблицу виртуальных функ-
ций сразу после того, как он будет установлен конструктором копирования. То же
самое сделает и оператор присваивания. Подобные ошибки могут возникать и при
многих других модификациях класса: наследовании виртуальному базовому
классу, добавлении члена данных, для которого определены нетривиальные опе-
рации копирования, использование указателей на не инкапсулированную память
и так далее.

В общем случае неразумно самостоятельно реализовывать побитовое ко-
пирование объекта любого класса, если только нет неоспоримых свидетельств
в пользу того, что это даст ощутимое увеличение производительности. Если вы
все-таки примете такое решение, не забывайте пересматривать его при каждом
изменении реализации класса.

Разумеется, применять побитовое копирование класса вне его реализации со-
всем уж не рекомендуется. Реализация операций копирования с помощью
memcpy рискована. Вольные игры с битами самоубийственны.

extern Record *exemplaryRecord;

char buffer[sizeof(Record)];
memcpy(buffer, exemplaryRecord, sizeof(buffer));

Автор этого кода, наверное, постеснялся (по крайней мере, должен бы) и зап-
рятал его подальше от файла с реализацией класса Record. Любое изменение
Record, несовместимое с побитовым копированием, не будет обнаружено, пока
не проявится во время выполнения. Если от написания подобного куда не уйти, то
нужно делать это так, чтобы вызывались собственные операции копирования
класса (см. «Совет 62») :

(void) new (buffer) Record(*exemplaryRecord);

Совет 51. Не путайте инициализацию
и присваивание в конструкторах
В конструкторе инициализируются все члены класса, нуждающиеся в ини-

циализации. Не присваиваются, а именно инициализируются. В инициализации
нуждаются константы, ссылки, объекты классов, имеющих конструкторы, и по-

СоветСоветСоветСоветСовет 5151515151

122122122122122 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

добъекты базовых классов. (Однако см. «Совет 81» касательно константных и
ссылочных данных-членов.)

class Thing {
public:
Thing(int);

};
class Melange : public Thing {
public:
Melange(int);

private:
const int aConst;
const int &aRef;
Thing aClassObj;

};
// ...
Melange::Melange(int)

{} // îøèáêè!

Компилятор обнаружит в конструкторе класса Melange четыре ошибки: от-
сутствие инициализации базового класса и трех членов данных. Любая ошибка,
обнаруженная во время компиляции, не слишком серьезна, поскольку мы можем
исправить ее до того, как она отравит чью-нибудь жизнь:

Melange::Melange(int arg)

: Thing(arg), aConst(arg), aRef(aConst), aClassObj(arg)
{}

Настоящая проблема возникает тогда, когда программист забывает выпол-
нить инициализацию, но при этом все равно получается допустимый с точки зре-
ния компилятора код:

class Person {
public:
Person(const string &name);
// ...

private:
string name_;

};
// ...
Person::Person(const string &name)

{ name_ = name; }

Этот совершенно корректный код увеличивает размер и почти удваивает вре-
мя работы конструктора класса Person. У типа string есть конструктор, поэтому
его необходимо инициализировать. Но у него есть и конструктор по умолчанию,
который вызывается, в случае отсутствия явного инициализатора. Следовательно,
конструктор Person вызывает конструктор по умолчанию класса string, после
чего результат его работы немедленно переписывается оператором присваивания.
Гораздо лучше сразу инициализировать член string и забыть о нем:

Person::Person(const string &name)
: name_(name)
{}

В общем случае отдавайте предпочтение спискам инициализации членов, а не
присваиванию в теле конструктора.

123123123123123

Конечно, не нужно доводить эту рекомендацию до абсурда. Во всем нужна
умеренность. Рассмотрим конструктор нестандартного класса String:

class String {
public:
String(const char *init = "");
// ...

private:
char *s_;

};
// ...
String::String(const char *init)

: s_(strcpy(new char[strlen(init?init:"")+1],init?init:""))
{}

Здесь мы зашли слишком далеко, разумнее было бы выполнить присваивание
в теле конструктора:
String::String(const char *init) {

if(!init) init = "";
s_ = strcpy(new char[strlen(init)+1], init);

}

В списке инициализации членов нельзя инициализировать два вида членов:
статические данные-члены и массивы. Разговор о статических данных-членах от-
ложим до «Совета 59». Отдельным элементам массива значения должны быть
присвоены в теле конструктора. Альтернативой массиву, зачастую более предпоч-
тительной, служит стандартный контейнер, например, vector.

Совет 52. Несогласованный порядок членов
в списке инициализации
Порядок инициализации компонентов объекта класс фиксирован в стандарте

языка C++ (см. также «Совет 49»).
— Подобъекты виртуальных базовых классов, вне зависимости от того, как

далеко они расположены вверх по иерархии наследования.
— Невиртуальные непосредственные базовые классы в порядке перечисле-

ния в списке базовых классов.
— Данные-члены класса в порядке объявления.

Отсюда следует, что любой конструктор класса должен выполнять инициали-
зацию именно в этом порядке. Точнее говоря, порядок перечисления элементов
списка инициализации членов не имеет значения для компилятора:

class C {
public:
C(const char *name);

private:
const int len_;
string n_;

};
// . . .
C::C(const char *name)

: n_(name), len_(n_.length()) // îøèáêà!!!
{}

СоветСоветСоветСоветСовет 5252525252

124124124124124 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

Член len_ объявлен первым, поэтому он будет инициализирован раньше n_
несмотря на то, что в списке инициализации членов находится после n_. В данном
случае мы пытаемся вызвать функцию-член объекта, который еще не был иници-
ализирован, что дает неопределенный результат.

Считается хорошим тоном располагать элементы списка инициализации чле-
нов в том порядке, в котором объявлены базовые классы и данные-члены, иначе
говоря, в том порядке, в котором они будут инициализироваться в действительно-
сти. По мере возможности следует избегать зависимостей от порядка следования
членов в списке инициализации:

C::C(const char *name)
: len_(strlen(name)), n_(name)
{}

См. «Совет 67» о том, почему порядок инициализации не связан с порядком
следования членов в списке инициализации.

Совет 53. Инициализация виртуальных
базовых классов
Подобъект виртуального базового класса размещается в памяти иначе, чем

подобъект невиртуального базового класса. Члены невиртуального базового
класса размещаются так, будто это просто данные-члены производного класса
(рис. 5.1.). Поэтому внутри объекта может быть несколько подобъектов одного и
того же невиртуального базового класса.

class A { members };
class B : public A { members };
class C : public A { members };
class D : public B, public C { members };

Объект виртуального базового класса входит в объект производного класса
только один раз, даже если в графе наследования встречается неоднократно (как
на рис. 5.2):

class A { members };
class B : public virtual A { members };

Рис. 5.1. Типичное размещение в памяти объекта при условии множественного

невиртуального наследования. В объекте D есть два подобъекта A

125125125125125

class C : public virtual A { members };
class D : public B, public C { members };

Для простоты мы показали уже вышедший из обихода список реализации
виртуальных базовых классов с помощью указателей. В том месте, где в полном
объекте должен был бы появиться подобъект виртуального базового класса A, на
самом деле стоит указатель на общую память для всех подобъектов A. Чаще ссыл-
ка на разделяемый подобъект виртуального базового класса реализуется в виде
смещения или информации, которая хранится в таблице виртуальных функций.
Так или иначе, но последующее обсуждение применимо к любой реализации.

Как правило, память для разделяемого подобъекта виртуального базового
класса выделяется в конце полного объекта. В примере выше полный объект при-
надлежит классу D, а память для подобъекта класса A находится после всех членов
D. Объект, для которого «самым производным» классом является D, размещался
бы в памяти иначе.

Немного подумав, вы поймете, что только «самый производный» (располо-
женный дальше других от начала иерархии) класс точно знает, где должна нахо-
диться память для подобъекта виртуального базового класса. Объект типа B мо-
жет быть полным или подобъектом другого объекта. Поэтому именно на самый
производный класс возлагается обязанность инициализировать все подобъекты
виртуальных базовых классов в графе наследования. Ему и предоставляется ме-
ханизм для доступа к этим подобъектам.

В случае объекта, для которого самым производным является класс B, как на
рис. 5.3, конструкторы B должны были инициализировать подобъект A и устано-
вить указатель на него:

B::B(int arg)
: A(arg) {}

В случае объекта, для которого самым производным является класс D, как на
рис. 5.2, конструкторы D инициализируют подобъект A и указатели на B и C,
а равно непосредственные базовые классы D.

Рис. 5.2. Типичное размещение в памяти объекта при условии множественного

виртуального наследования. В объекте D есть только один подобъект A

СоветСоветСоветСоветСовет 5353535353

126126126126126 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

D::D(int arg)
: A(arg), B(arg), C(arg+1) {}

После того как подобъект A инициализирован конструктором D, он не будет
еще раз инициализироваться конструктором B или C. (Компилятор может добить-
ся этого, заставив конструктор D передавать некий флаг или указатель на A конст-
руктору B и C, говоря тем самым: «Да, кстати, не надо инициализировать A.» Ника-
кой мистики.) Взгляните еще на один конструктор D:

D::D()
: B(11), C(12) {}

Это типичный источник непонимания и ошибок при использовании вирту-
альных базовых классов. Конструктор D по-прежнему инициализирует виртуаль-
ный подобъект A, но делает это неявно, вызывая конструктор A по умолчанию.
Когда конструктор D вызывает конструктор подобъекта B, он не инициализирует
A заново, и потому явного обращения к конструктору A с аргументами не проис-
ходит.

Чтобы не усложнять программы, применяйте виртуальные базовые классы
только тогда, когда без них не обойтись. (Верно и обратное: если проект настоя-
тельно требует использования виртуальных базовых классов, не отказывайтесь от
них.) Обычно проще всего проектировать виртуальные базовые классы как «ин-
терфейсные». В интерфейсном классе нет никаких данных, а все его функции-
члены, как правило, чисто виртуальны (за исключением, быть может, деструкто-
ра). В нем нет конструктора вовсе или есть только простой конструктор по
умолчанию:

class A {
public:
virtual ~A();
virtual void op1() = 0;
virtual int op2(int src, int dest) = 0;

// ...
};
inline A::~A()

{}

Следование этому совету поможет избежать ошибок не только в конструкто-
рах, но и в операторах присваивания. В частности, стандарт говорит, что генери-

Рис. 5.3. Типичное размещение в памяти объекта
при условии одиночного виртуального наследования.
В объекте B имеется только один подобъект A,

но все равно ссылаться на него приходится косвенно

127127127127127

руемый компилятором оператор присваивания может выполнять присваивание
подобъекту виртуального базового класса многократно, но может этого и не де-
лать. Если все виртуальные базовые классы являются интерфейсными, то присва-
ивание – это пустая операция (вспомните, что такие механизмы реализации клас-
са, как указатель на таблицу виртуальных функций, задействуются только во
время инициализации, но не во время присваивания), так что ее многократное вы-
полнение ни к каким неприятностям не приводит.

Общее решение задачи реализации оператора присваивания в иерархии, со-
держащей виртуальные базовые классы, заключается в том, чтобы в каком-то
смысле имитировать семантику конструирования объектов, включающих по-
добъекты виртуальных базовых классов.

Рассмотрим первую реализацию приведенного выше класса D (рис. 5.1.), кото-
рая содержит два (невиртуальных) подобъекта A. Здесь, как и в случае конструк-
тора D, предоставляемый программистом оператор присваивания можно реализо-
вать целиком в терминах непосредственных базовых классов:

�� gotcha53/virtassign.cpp

D &D::operator =(const D &rhs) {
if(this != &rhs) {

B::operator =(*this); // ïðèñâîèòü çíà÷åíèå ïîäîáúåêòó B
C::operator =(*this); // ïðèñâîèòü çíà÷åíèå ïîäîáúåêòó C
// ïðèñâîèòü çíà÷åíèÿ ÷ëåíàì, ñïåöèôè÷íûì äëÿ D ...

}
return *this;

}

В этой реализации сделано разумное допущение о том, что базовые классы B и
C сами позаботятся о присваивании значений своим (невиртуальным) по-
добъектам. Но, как и при конструировании, этот простой поэтапный подход
к присваиванию для виртуального наследования не работает. И в этом случае
присваивать значения подобъектам виртуальных базовых классов должен самый
производный класс; он же должен как-то предотвратить повторное присваивание
промежуточным базовым классам:

�� gotcha53/virtassign.cpp

D &D::operator =(const D &rhs) {
if(this != &rhs) {

A::operator =(*this); // ïðèñâîèòü çíà÷åíèå âèðòóàëüíîìó A
B::nonvirtAssign(*this); // ïðèñâîèòü çíà÷åíèå B, íå òðîãàÿ

// ÷àñòü A
C::nonvirtAssign(*this); // ïðèñâîèòü çíà÷åíèå C, íå òðîãàÿ

// ÷àñòü A
// ïðèñâîèòü çíà÷åíèÿ ÷ëåíàì, ñïåöèôè÷íûì äëÿ D ...

}
return *this;

}

Здесь мы ввели в классы B и C специальные функции-члены, похожие на опе-
ратор присваивания. Работают они точно так же, как последний, но не выполняют
присваивание подобъектам виртуальных базовых классов. Это эффективно, но,
очевидно, сложно; кроме того, от D требуется «интимное» знакомство со структу-

СоветСоветСоветСоветСовет 5353535353

128128128128128 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

рой иерархии выше его непосредственных базовых классов. Стоит этой структуре
измениться, и класс D придется перерабатывать. Выше уже отмечалось, что на
роль виртуальных базовых классов лучше всего выбирать интерфейсные.

Из того, как размещаются в памяти подобъекты виртуальных базовых клас-
сов, вытекает одно следствие: запрещается выполнять статическое понижающее
приведение от виртуального базового класса к любому производному от него.

A *ap = gimmeanA();

D *dp = static_cast<D *>(ap); îøèáêà!
dp = (D *)ap; // îøèáêà!

Можно выполнить оператор reinterpret_cast для приведения от вир-
туального базового класса к производному. Как показано на рис. 5.4, это, скорее
всего, даст некорректный и непригодный для использования адрес. Единствен-
ный надежный способ выполнить понижающее приведение указателя или ссылки
на виртуальный базовый класс, воспользоваться оператором dynamic_cast (см.
«Совет 45»):

if(D *dp = dynamic_cast<D *>(ap)) {

// ñäåëàòü ÷òî-òî ñ dp ...
}

Однако систематическое употребление dynamic_cast — признак неудачно-
го проекта. (См. «Совет 98» и «Совет 99»).

Совет 54. Инициализация базового класса
в конструкторе копирования
Вот парочка простых компонентов:

class M {
public:
M();

Рис. 5.4. Вероятный эффект статического и динамического приведения

при множественном виртуальном наследовании. При такой реализации объект D

имеет три действительных адреса, и для корректного приведения нужно знать

смещения различных подобъектов от начала полного объекта

129129129129129

M(const M &);

~M();

M &operator =(const M &);

// . . .

};

class B {

public:

virtual ~B();

protected:

B();

B(const B &);

B &operator =(const B &);

// . . .

};

Воспользуемся ими для создания нового класса и попытаемся заставить ком-
пилятор проделать как можно большую часть работы:

class D : public B {
M m_;

};

Поскольку класс D не наследует конструкторы, деструктор и оператор присва-
ивания от своего базового класса, то компилятор сгенерирует эти операции само-
стоятельно, позаимствовав соответствующие реализации от компонентов (см.
«Совет 49»). Например, реализация конструктора по умолчанию D станет откры-
той встраиваемой функцией. Этот конструктор сначала вызовет конструктор по
умолчанию базового класса B, а затем конструктор по умолчанию члена M. Дест-
руктор, как обычно, выполнит действия в обратном порядке: сначала уничтожит
член, а потом вызовет деструктор базового класса.

Операции копирования интереснее. Сгенерированная компилятором версия
выполнит почленную инициализацию, как если бы мы написали:

D::D(const D &init)
: B(init), m_(init.m_)
{}

Сгенерированный компилятором оператор присваивания выполняет почлен-
ное присваивание, примерно так:

D &D::operator =(const D &that) {
B::operator =(that);
m_ = that.m_;
return *this;

}

Предположим, что мы добавили в класс новый член данных, в котором эти
операции не определены. Например, указатель на размещенный в куче объект X:

class D : public B {
public:
D();
~D();
D(const D &);

D &operator =(const D &);
private:
M m_;

СоветСоветСоветСоветСовет 5454545454

130130130130130 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

X *xp_; // íîâûé ÷ëåí äàííûõ

};

Теперь все эти операции придется написать явно. Конструктор по умолчанию
и деструктор не вызывает сложностей, и мы может поручить компилятору выпол-
нить большую часть работы:

D::D()

: xp_(new X)

{}

D::~D()

{ delete xp_; }

Компилятор неявно вызовет конструкторы по умолчанию и деструкторы для
базового класса и члена m_. Заманчиво было бы обойтись столь же малой кровью
при реализации конструктора копирования и копирующего оператора присваива-
ния, но не получится:

D::D(const D &init)

: xp_(new X(*init.xp_))

{}

D &D::operator =(const D &rhs) {

delete xp_;

xp_ = new X(*rhs.xp_);

return *this;

}

Обе эти реализации откомпилируются без ошибок, но во время выполнения
будут делать не то, что нужно. Наш конструктор копирования инициализирует
член xp_ копией того, на что указывает инициализатор xp_, но базовый класс и
член m_ инициализируются соответственно с помощью конструкторов B и M по
умолчанию, а не их конструкторами копирования. В случае присваивания значе-
ния подобъекта базового класса и члена m_ вообще не изменятся.

Раз уж вы не позволили компилятору написать за вас эти функции-члены, то
придется предоставить полную реализацию:

D::D(const D &init)

: B(init), m_(init.m_), xp_(new X(*init.xp_))

{}

D &D::operator =(const D &rhs) {

if(this != &rhs) {

B::operator =(rhs);

m_ = rhs.m_;

delete xp_;

xp_ = new X(*rhs.xp_);

}

return *this;

}

То же относится к конструктору по умолчанию и деструктору, но в данном
случае неявный вызов конструкторов по умолчанию для базового класса и
m_ обеспечивает правильное поведение. Я предпочитаю подход, при котором
приходится меньше нажимать на клавиши, но вы вольны выбрать и явное реше-
ние:

131131131131131

D::D()
: B(), m_(), xp_(new X)
{}

Совет 55. Порядок инициализации
статических данных во время выполнения
Все статические данные в программе на C++ инициализируются перед обра-

щением к ним. По большей части, инициализация производится во время загруз-
ки программы, еще до начала исполнения. Если явный инициализатор отсутству-
ет, данные инициализируются «нулями»:

static int question; // 0

extern int answer = 42;

const char *terminalType; // null

bool isVT100; // false

const char **ptt = &terminalType;

Эти операции инициализации происходят «одновременно», и их порядок не
играет роли.

Допустима также статическая инициализация во время выполнения. Но в этом
случае не дается никаких гарантий относительно порядка инициализации объек-
тов, находящихся в разных единицах трансляции. (Единица трансляции – это, по
существу, файл, полученный после обработки препроцессором.) Это часто приво-
дит к ошибкам, поскольку порядок инициализации может измениться даже, если
исходный текст остался неизменным:

// â ôàéëå term.cpp
const char *terminalType = getenv("TERM");

// â ôàéëå vt100.cpp
extern const char *terminalType;

bool isVT100 = strcmp(terminalType, "vt100")==0; // îøèáêà?

Существует неявная зависимость от порядка инициализации между
terminalType и isVT100, но язык C++ не дает, да и не может дать гарантий
относительно того, какая переменная будет инициализирована первой. Эта про-
блема обычно возникает при переносе работающей программы на другую плат-
форму, где случайно порядок статической инициализации переменных из разных
единиц трансляции оказался иным. Может она проявиться и в отсутствие каких-
либо модификаций кода, если внесены изменения в порядок сборки или компо-
нент, который раньше компоновался статически, теперь стал компоноваться ди-
намически.

Имейте в виду, что инициализация статических объектов классов также счи-
тается статической инициализацией во время выполнения:

class TermInfo {
public:
TermInfo()

: type_(::terminalType)
{}

СоветСоветСоветСоветСовет 5555555555

132132132132132 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

private:
std::string type_;

};
// ...
TermInfo myTerm; // ñòàòè÷åñêàÿ èíèöèàëèçàöèÿ âî âðåìÿ âûïîëíåíèÿ!

Лучший способ избежать проблем из-за статической инициализации во время
выполнения: свести к минимуму число внешних переменных, в том числе и стати-
чески инициализируемых данных-членов классов (см. «Совет 3»).

Если это не выход, то надо стремиться, чтобы зависимость от порядка ини-
циализации существовала только между переменными в одной единице трансля-
ции. В этом случае никакой неопределенности нет: статические переменные ини-
циализируются в том порядке, в котором встречаются в тексте. Например, если
определения terminalType и isVT100 записаны именно в таком порядке и
внутри одного файла, то проблем с переносимостью не возникнет. Но и при таком
подходе может возникнуть проблема, если какая-либо внешняя функция, в том
числе и член класса, воспользуется статической переменной, поскольку не исклю-
чено, что эта функция вызвана (прямо или косвенно) в ходе статической инициа-
лизации переменной, находящейся в другой единице трансляции:

extern const char *termType()
{ return terminalType; }

Еще одно решение – применить вместо инициализации отложенное (lazy) вы-
числение. Обычно это сводится к той или иной вариации на тему паттерна
Singleton (Одиночка) (см. «Совет 3»).

И в качестве последнего средства мы можем запрограммировать инициализа-
цию явно, применив какой-либо из стандартных приемов. Один такой прием на-
зывается «счетчиком Шварца», поскольку Джерри Шварц (Jerry Schwarz) приду-
мал и применил его в библиотеке iostream:

�� gotcha55/term.h

extern const char *terminalType;

// ïðî÷èå âåùè, íóæäàþùèåñÿ â èíèöèàëèçàöèè ...

class InitMgr { // ñ÷åò÷èê Øâàðöà

public:

InitMgr()

{ if(!count_++) init(); }

~InitMgr()

{ if(!—count_) cleanup(); }

void init();

void cleanup();

private:

static long count_; // îäèí íà âåñü ïðîöåññ

};

namespace { InitMgr initMgr; } // îäèí íà êàæäûé âêëþ÷àåìûé ôàéë

�� gotcha55/term.cpp

extern const char *terminalType = 0;

long InitMgr::count_ = 0;

void InitMgr::init() {

if(!(terminalType = getenv("TERM")))

133133133133133

terminalType = "VT100";
// äðóãèå îïåðàöèè èíèöèàëèçàöèè ...

}
void InitMgr::cleanup() {

// î÷èñòêà ...
}

Счетчик Шварца подсчитывает, сколько раз был включен заголовочный
файл, в котором он находится. Существует один на весь процесс экземпляр стати-
ческого члена count_ класса InitMgr. Однако при каждом включении файла
term.h создается новый объект типа InitMgr, и каждый из них требует стати-
ческой инициализации. Конструктор InitMgr, глядя на член count_, определя-
ет, первая ли это инициализация объекта InitMgr в процессе. Если да, то ини-
циализация выполняется.

Обратно, если процесс завершается нормально, то статические объекты,
имеющие деструкторы, будут уничтожены. При уничтожении каждого объекта
InitMgr его деструктор уменьшает счетчик count_ на 1. Когда count_ станет
равен нулю, выполняется необходимая очистка.

Хотя эта техника довольно надежна, особо бестолковое кодирование может
обмануть даже счетчик Шварца. Так что в общем случае старайтесь минимизиро-
вать употребление статических переменных и избегать статической инициализа-
ции во время выполнения.

Совет 56. Прямая инициализация
и инициализация копированием
Мне доводилось сталкиваться с довольно небрежными примерами инициали-

зации. Рассмотрим простой класс Y:

class Y {

public:

Y(int);

~Y();

};

Нередко следующие три способа инициализации такого объекта применяют
так, как будто они эквивалентны. Как будто это не имеет значения. Как будто.

Y a(1066);

Y b = Y(1066);

Y c = 1066;

Вообще-то, все три способа, скорее всего, приведут к генерации одного и того
же кода, тем не менее, они не эквивалентны. Инициализация a называется пря-
мой, ее результат в точности тот, что мы ожидаем; происходит непосредственное
обращение к конструктору Y::Y(int).

Инициализации b и c несколько сложнее. То и другое – инициализация копи-
рованием. В случае b мы просим создать временный анонимный объект типа Y,
инициализированный значением 1066. Затем этот объект передается в качестве
параметра конструктору копирования класса Y для инициализации b. В конце

СоветСоветСоветСоветСовет 5555566666

134134134134134 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

вызывается деструктор временного анонимного объекта. По сути дела мы попро-
сили компилятор сгенерировать код, подобный следующему:

Y temp(1066); // èíèöèàëèçèðîâàòü âðåìåííûé îáúåêò

Y b(temp); // êîíñòðóêòîð êîïèðîâàíèÿ

temp.~Y(); // âûçîâ äåñòðóêòîðà

Семантика инициализации c такая же, но анонимный временный объект со-
здается неявно.

Изменим реализацию Y, добавив собственный конструктор копирования, и
посмотрим, что получится:

class Y {

public:

Y(int);

Y(const Y &)

{ abort(); }

~Y();

};

Ясно, что объекты Y не хотят, чтобы их копировали. Но после перекомпиля-
ции программы все три инициализации выполняются нормально, процесс не за-
вершается. Что же происходит?

Дело в том, что стандарт явно разрешает компилятору преобразовывать про-
грамму с целью исключить порождение временных переменных и обращения
к конструктору копирования, генерируя тот же самый код, что и при прямой ини-
циализации. Отметим, что это не просто «оптимизация», поскольку изменяется
поведение программы (в данном случае процесс не завершается). Большинство
компиляторов C++ выполняют такое преобразование, хотя стандарт этого и не
требует. В условиях такой неопределенности лучше точно говорить, что вы имеете в
виду, и пользоваться прямой инициализацией в объявлениях объектов классов:

Y a(1066), b(1066), c(1066);

По какой-то странной прихоти у вас может возникнуть желание запретить
компилятору выполнять описанное преобразование, возможно, потому, что по-
рождение временных объектов и вызов конструктора копирования дают какой-то
побочный эффект. А, может, вы просто поставили себе целью написать большое и
медленное приложение. К сожалению, гарантировать нужную семантику нелегко,
так как любой совместимый со стандартом компилятор вправе применить такое
преобразование. О способе избежать его переносимым способом (без использова-
ния платформенно-зависимых директив #pragma или флагов компилятора)
даже думать страшно, так что просто взгляните на следующий код:

struct {

char b_[sizeof(Y)];

} aY; // âûðîâíåííûé áóôåð ðàçìåðà íå ìåíüøå Y

new (&aY) Y(1066); // ñîçäàòü âðåìåííûé îáúåêò

Y d(reinterpret_cast<Y &>(aY)); // êîíñòðóêòîð êîïèðîâàíèÿ

reinterpret_cast<Y &>(aY).~Y(); // óíè÷òîæèòü âðåìåííûé îáúåêò

Здесь почти продублирована семантика инициализации без преобразования.
(Память для aY, скорее всего, не будет позднее использована повторно во фрейме

135135135135135

стека так, как это было бы в случае сгенерированного компилятором временного
объекта. См. «Совет 66».) Но есть и более простые способы писать объемные и
медленные программы.

Говоря о рассматриваемом преобразовании, важно понимать, что компилятор
применяет его после того, как проверит семантику исходной программы. Если
инициализация до преобразования была некорректной, то будет выдано сообще-
ние об ошибке, даже если в результате преобразования можно было бы получить
правильный код. Рассмотрим такой класс X:

class X {
public:
X(int);
~X();

// . . .
private:
X(const X &);

};

X a(1066); // ïðàâèëüíî

X b = 1066; // îøèáêà!
X c = X(1066); // îøèáêà!

Для инициализации b и c без преобразования необходим доступ к конструкто-
ру копирования X, но автор X решил запретить копирование объектов X, сделав
конструктор копирования закрытым. И, хотя преобразование устранило бы необ-
ходимость в обращении к конструктору копирования, код все равно считается не-
корректным.

Как прямая инициализация, так и инициализация копированием применимы
не только к типам класса, но в этом случае результат предсказуем и переносим:

int i(12); // ïðÿìàÿ èíèöèàëèçàöèÿ
int j = 12; // êîïèðîâàíèå, ðåçóëüòàò òîò æå

При инициализации таких типов можете выбирать тот способ, который ка-
жется вам наиболее понятным. Но имейте в виду, что внутри шаблона, когда тип
переменной до конкретизации неизвестен, обычно все-таки лучше пользоваться
прямой инициализацией. Рассмотрим упрощенную версию алгоритма «длина
последовательности», параметризованного не только типом итератора (In), но и
типом числового счетчика (N):

�� gotcha56/seqlength.cpp

template <typename N, typename In>
void seqLength(N &len, In b, In e) {

N n(0); // èìåííî òàê, à ÍÅ "N n = 0;"
while(b != e) {

++n;
++b;

}
len = n;

}

При такой реализации использование прямой инициализации позволяет под-
ставить (согласен, это необычно) определенный пользователем числовой тип, ко-

СоветСоветСоветСоветСовет 5555566666

136136136136136 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

торый не допускает копирования. Если бы в реализации seqLength мы примени-
ли инициализацию объекта N копированием, это было бы невозможно.

С точки зрения простоты и переносимости лучше применять прямую инициа-
лизацию в объявлениях объектов классов или объектов, которые могут оказаться
объектами типа класса.

Совет 57. Прямая инициализация аргументов
Все мы знаем, что формальные аргументы инициализируются фактическими,

но как именно: прямо или копированием? Это легко проверить экспериментально:

class Y {
public:
Y(int);

~Y();
private:

Y(const Y &);
// ...

};
void f(Y yFormalArg) {

// ...
}
// ...
f(1337);

Если бы передача аргументов была реализована как прямая инициализация,
то вызов f был бы правильным. Если же она реализована в виде инициализации
копированием, то компилятор выдал бы сообщение о попытке неявного доступа
к закрытому конструктору копирования в классе Y. Большинство компиляторов
разрешают такой вызов, поэтому вроде бы напрашивается вывод, что передача
аргументов реализована как прямая инициализация. Но компиляторы не правы
или, по крайней мере, устарели в этом отношении. Стандарт говорит, что передача
аргументов должна быть реализована путем инициализации копированием, так
что приведенный выше вызов f некорректен. Инициализация yFormalArg пол-
ностью аналогична следующему объявлению:

Y yFormalArg = 1337; // îøèáêà!

Если вы хотите, чтобы ваш код был стандартным, переносимым и остался пра-
вильным после того, как все компиляторы будут вести себя в соответствии
с этим аспектом стандарта, то таких вызовов f следует избегать.

Возможны также некоторые проблемы с производительностью. Если бы функ-
ция, обращающаяся к f, имела доступ к закрытому конструктору копирования Y,
то этот вызов был бы правильным, но означал бы что-то в таком роде:

Y temp(1337);
yFormalArg(temp);
// òåëî f . . .
yFormalArg.~Y();
temp.~Y();

Другими словами, инициализация формального аргумента состояла бы из
следующих шагов: создание временного объекта, конструирование формального

137137137137137

аргумента путем копирования, уничтожение формального аргумент после воз-
врата из функции и уничтожение временного объекта. Четыре вызова функций,
не считая собственно обращения к f. К счастью, большинство компиляторов вы-
полняют преобразование программы с целью избавиться от создания временного
объекта и обращения к конструктору копирования, так что генерируемый код по-
лучается таким же, как при прямой инициализации:

yFormalArg(1337);

// òåëî f ...
yFormalArg.~Y();

Однако даже такое решение оптимально не во всех случаях. Что если аргу-
мент yFormalArg инициализируется объектом Y?

Y aY(1453);
f(aY);

В этом случае мы имеем конструирование yFormalArg путем копирования
aY и уничтожение yFormalArg после возврата из C. Гораздо лучше будет по воз-
можности вообще избегать передачи объектов класса по значению, используя
вместо этого передачу по ссылке на константу:

void fprime(const Y &yFormalArg);
// ...

fprime(1337); // ðàáîòàåò! êîíñòðóêòîð êîïèðîâàíèÿ íå âûçûâàåòñÿ
fprime(aY); // ðàáîòàåò, ýôôåêòèâíî.

В первом случае компилятор создает временный объект Y, инициализирован-
ный значением 1337, и использует его для инициализации ссылочного формально-
го аргумента. Временный объект уничтожается сразу после возврата из fprime.
(См. «Совет 44», в котором обсуждается серьезная опасность, сопряженная с воз-
вратом такого аргумента). С точки зрения эффективности это эквивалентно по-
казанному выше преобразованному решению, но зато является корректным кодом
на C++. Со вторым обращением к fprime вообще не связаны никакие накладные
расходы на создание временных объектов, а, кроме того, отпадает необходимость
в вызове деструктора после возврата из функции.

Совет 58. Что такое оптимизация
возвращаемого значения?
Часто функция должна возвращать результат по значению. Например, в классе

String ниже реализован бинарный оператор конкатенации, который обязан воз-
вращать вновь созданный объект String по значению:

class String {
public:
String(const char *);
String(const String &);
String &operator =(const String &rhs);
String &operator +=(const String &rhs);
friend String

operator +(const String &lhs, const String &rhs);
// ...

СоветСоветСоветСоветСовет 57. Прямая инициализация аргументов57. Прямая инициализация аргументов57. Прямая инициализация аргументов57. Прямая инициализация аргументов57. Прямая инициализация аргументов

138138138138138 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

private:
char *s_;

};

Как и в случае инициализации формального аргумента, инициализация воз-
вращаемого функцией значения выполняется путем обращения к конструктору
копирования:

String operator +(const String &lhs, const String &rhs) {
 String temp(lhs);
 temp += rhs;
 return temp;
}

Логически конструктор копирования инициализирует область, в которую
функция помещает результат, значением переменной temp, после чего объект
temp уничтожается. В общем случае компилятор реализует возврат, передавая
целевой объект в виде неявного аргумента функции, как если бы функция изна-
чально была написана следующим образом:

void

operator +(String &dest, const String &lhs, const String &rhs) {

String temp(lhs);

temp += rhs;

dest.String::String(temp); // êîíñòðóêòîð êîïèðîâàíèÿ

temp.~String();
}

Обратите внимание, что компилятор может сгенерировать подобное обраще-
ния к конструктору копирования, но нам это запрещено. Простые смертные долж-
ны прибегать к ухищрениям:

new (&dest) String(temp); // òðþê ñ ðàçìåùàþùèì new, ñì. Ñîâåò 62

Одно из следствий такого преобразования состоит в том, что, вообще говоря,
эффективнее инициализировать переменную класса значением, возвращаемым
некоторой функцией, чем путем присваивания:

String ab(a+b); // ýôôåêòèâíî
ab = a + b; // âîçìîæíî, íå î÷åíü ýôôåêòèâíî

В объявлении ab компилятор может скопировать результат вычисления a + b
прямо в ab. В случае присваивания это невозможно. Оператор присваивания для
объектов String – это функция-член, которая сначала уничтожает ab, а затем
повторно инициализирует его; поэтому никогда не надо даже пытаться присвоить
что-то неинициализированной памяти (см. «Совет 47»):

String &String::operator =(const String &rhs);

Для инициализации аргумента rhs функции-члена operator = в классе
String компилятор обязан скопировать значение a + b во временный объект,
инициализировать rhs его значением и разрушить этот объект после возврата из
operator =. Поэтому эффективности ради пользуйтесь инициализацией, а не
присваиванием.

Рассмотрим семантику инициализации копированием при возврате результа-
та вычисления выражения, тип которого отличается от объявленного типа воз-
вращаемого значения:

139139139139139

String promote(const char *str)
 { return str; }

Здесь семантика инициализации копированием требует, чтобы с помощью ар-
гумента str был инициализирован временный объект типа String, который за-
тем будет применен для конструирования возвращаемого значения путем копи-
рования. И в конце временный объект должен быть уничтожен. Однако
компилятору разрешено применять то же преобразование программы при иници-
ализации возвращаемого значения, что и при инициализации в объявлениях и
формальных параметров. Поэтому вполне может статься, что str будет использо-
вана для прямой инициализации возвращаемого значения путем вызова обычного
(некопирующего) конструктора String, избежав тем самым создания времен-
ного объекта. Преобразование программы, заключающееся в замене инициали-
зации копированием прямой инициализацией в контексте возврата значения
из функции, называется «оптимизация возвращаемого значения» (return value
optimization – RVO).

Программисты нередко пытаются повысить эффективность за счет таких низ-
коуровневых конструкций:

String operator +(const String &lhs, const String &rhs) {
char *buf = new char[strlen(lhs.s_)+strlen(rhs.s_)+1];
String temp(strcat(strcpy(buf, lhs.s_), rhs.s_));
delete [] buf;
return temp;

}

К сожалению, этот код может оказаться даже медленнее, чем показанная
выше реализация operator +. Мы выделяем память для локального буфера,
в котором строится конкатенация двух строк, но лишь для того, чтобы инициали-
зировать его содержимым временный возвращаемый объект String. После этого
буфер уже не нужен.

В подобных случаях иногда бывает полезно ввести в реализацию класса «вы-
числительный конструктор». Такой конструктор составляет неотъемлемую часть
класса и обычно делается закрытым. По существу, это лишь вспомогательная фун-
кция, реализованная в виде конструктора, чтобы получить доступ к специальным
средствам, которыми обладают только конструкторы, но не обычные функции-чле-
ны. Как правило, интерес представляет тот факт, что конструктор работает с неини-
циализированной памятью, а не с объектом. А это означает, что «очищать» нечего:

class String {

// ...

private:

String(const char *a, const char *b) { // âû÷èñëèòåëüíûé

s_ = new char[strlen(a)+strlen(b)+1];

strcat(strcpy(s_, a), b);

}

char *s_;

};

Такой вычислительный конструктор можно применять для эффективного
возврата по значению из других функций в реализации класса:

СоветСоветСоветСоветСовет 5858585858

140140140140140 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

inline String operator +(const String &a, const String &b)
{ return String(a.s_, b.s_); }

Напомним, что инициализация возвращаемого значения копированием ана-
логична инициализации в объявлении:
String retval = String(a.s_, b.s_);

Если компилятор вообще применяет преобразования к инициализации, то мы
получаем функциональный аналог прямой инициализации:

String retval(a.s_, b.s_);

Часто вычислительные конструкторы оказываются совсем простыми и могут
встраиваться. Обращающаяся к конструктору функция operator + теперь яв-
ляется подходящим кандидатом на встраивание, что приводит к очень эффектив-
ной реализации, не уступающей той, что закодирована вручную. Заметим, однако,
что вычислительные конструкторы обычно никак не улучшают открытый интер-
фейс типа. Поэтому их следует считать деталью реализации класса и объявлять
в закрытом разделе. Все без исключения вычислительные конструкторы с одним
аргументом должны быть объявлены explicit, чтобы компилятор не применял
их в процессе неявного преобразования типов (см. «Совет 37»).

Компиляторы C++ часто применяют в контексте возврата из функции еще одно
преобразование, известное под названием «оптимизация именованного возвращае-
мого значения» (named return value optimization – NRV). Оно похоже на RVO, но
позволяет использовать для хранения возвращенного значения именованную ло-
кальную переменную. Рассмотрим следующую реализацию operator +:

String operator +(const String &lhs, const String &rhs) {
String temp(lhs);
temp += rhs;

return temp;
}

Если компилятор применит к этому коду оптимизацию NRV, то локальная
переменная temp будет заменена ссылкой на ту переменную в вызывающей про-
грамме, куда в конечном итоге должно быть помещено возвращенное значение.
Как если бы функция была написана так:

void
operator +(String &dest, const String &lhs, const String &rhs) {

dest.String::String(lhs); // êîíñòðóêòîð êîïèðîâàíèÿ
dest += rhs;

}

Оптимизация NRV обычно применяется только, если компилятор может
с уверенностью сказать, что все выражения, возвращаемые функцией, идентичны
и ссылаются на одну и ту же локальную переменную. Чтобы повысить вероят-
ность такой оптимизации, старайтесь, чтобы функция имела только одну точку
возврата или, если это невозможно, то чтобы всегда возвращалась одна и та же
локальная переменная. Чем проще, тем лучше. Отметим, что NRV – это преобра-
зование программы, а не оптимизация, поскольку побочные эффекты, которые
могли бы возникнуть при инициализации и уничтожении временного объекта,
устраняются.

141141141141141

Выигрыш в производительности от таких преобразований может быть велик,
поэтому часто имеет смысл облегчить компилятору их применение за счет приме-
нения вычислительных конструкторов или заведения простых локальных пере-
менных для хранения возвращенных значений.

Совет 59. Инициализация статических членов
в конструкторе
Статические данные-члены существуют независимо от объектов класса и

обычно начинают свое существование до создания первого объекта. (Помните
о типичных ограничениях.) Как и функции-члены (равно статические и не-стати-
ческие), статические данные-члены имеют внешнюю компоновку и принадлежат
области видимости класса:

class Account {

// ...

private:

static const int idLen = 20;

static const int prefixLen;

static long numAccounts;

};

// ...

const int Account::idLen;

const int Account::prefixLen = 4;

long Account::numAccounts = 0;

Инициализация статических членов интегральных типов и перечислений мо-
жет происходить вне класса, но только один раз. Если речь идет о целочисленных
значениях, то часто разумно вместо инициализированных целых констант ис-
пользовать перечисления:

class Account {
// ...

private:

enum {
idLen = 20,
prefixLen = 4

};
static long numAccounts;

};

// ...
long Account::numAccounts = 0;

В общем случае перечисления могут служить заменой целым константам. Од-
нако под них не отводится память, поэтому невозможно взять их адрес. Тип пере-
числения отличается от int, что может иметь значение при выборе перегружен-
ной функции, если перечисление выступает в роли фактического аргумента.
Заметим также, что определять член numAccounts вне класса необходимо, а вот
явно инициализировать необязательно. В таком случае он будет инициализи-
рован «всеми нулями» или просто нулем. Тем не менее, явная инициализация
нулем предпочтительнее, поскольку предотвращает желание сопровождающего

СоветСоветСоветСоветСовет 5959595959

142142142142142 ИнициализацияИнициализацияИнициализацияИнициализацияИнициализация

инициализировать член каким-то другим значением (почему-то часто употребля-
ют для этой цели 1 или –1). См. также «Совет 25».

Инициализация статических данных-членов класса во время исполнения –
это порочная идея. Результат инициализации статического члена может быть от-
менен в момент, когда во время выполнения инициализируется сам статический
объект класса:

class Account {
public:
Account() {

... calculateCount() ...
}

// ...
static long numAccounts;
static const int fudgeFactor;
int calculateCount()

{ return numAccounts+fudgeFactor; }
};

// ...
static Account myAcct; // áåäà!
// ...
long Account::numAccounts = 0;
const int Account::fudgeFactor = atoi(getenv("FUDGE"));

Объект myAcct класса Account определен раньше статического члена
fudgeFactor, поэтому конструктор myAcct будет пользоваться неинициали-
зированным значением fudgeFactor при обращении к calculateCount (см.
«Совет 55»). Член fudgeFactor будет равен нулю, поскольку статические дан-
ные инициализируются «всеми нулями». Если нуль – допустимое значение
fudgeFactor, то найти эту ошибку будет трудно.

Некоторые программисты пытаются обойти эту проблему, «инициализируя»
статические данные-члены в каждом конструкторе класса. Это невозможно, так
как статические члены не могут находиться в списке инициализации членов, и,
если программа вошла в тело конструктора, то речь уже идет не об инициализа-
ции, а о присваивании:

Account::Account() {
// ...
fudgeFactor = atoi(getenv("FUDGE")); // îøèáêà!

}

Единственная альтернатива: сделать член fudgeFactor неконстантным, на-
писать код для «отложенной инициализации» (см. «Совет 3») в каждом конструк-
торе и надеяться, что в ходе сопровождения этот код будет синхронно модифици-
роваться во всех конструкторах.

Лучше относиться к статическим данным-членам как к любым другим стати-
ческим переменным. Избегайте их по мере возможности. Если без них не обой-
тись, то инициализируйте, но старайтесь не прибегать к инициализации во время
выполнения.

Глава 6. Управление памятью

и ресурсами

C++ предоставляет поразительную гибкость в управлении памятью, но лишь не-
многие программисты в полной мере знакомы с имеющимися возможностями.
Самые разнообразные языковые средства (перегрузка, сокрытие имен, конструк-
торы и деструкторы, исключения, статические и виртуальные функции, опера-
торные и не-операторные функции) используются согласованно для того, чтобы
обеспечить максимальную гибкость и возможности настройки управления памятью.
К сожалению, все это довольно сложно, но, наверное, тут ничего не поделаешь.

В этой главе мы познакомимся с тем, как разные средства C++ совместно при-
меняются для управления памятью, как иногда их совместная работа приводит
к неожиданным эффектам и как взаимодействие можно упростить.

Поскольку память всего лишь один из многих ресурсов, которыми управляет
программа, мы посмотрим, как можно связать с памятью и другие ресурсы, чтобы
изощренные механизмы управления памятью в C++ можно было применить и
к управлению ими тоже.

Совет 60. Различайте выделение
и освобождение памяти для скаляров
и для массивов
Можно ли сказать, что Widget и массив Widget – это одно и то же? Конечно,

нет. Тогда почему многие программисты на C++ так удивляются, видя, что для
выделения и освобождения памяти под скаляры и массивы применяются разные
операторы?

Мы знаем, как выделить и освободить память для одного Widget. С помощью
операторов ntw и delete:

Widget *w = new Widget(arg);
// ...

delete w;

В отличие от большинства прочих операторов в C++, поведение new нельзя
изменить путем перегрузки. Оператор new всегда вызывает функцию с именем
operator new, которая должна (предположительно) получить какой-то объем
памяти. Затем эта память может быть инициализирована. В показанном выше
случае применение оператора new к Widget приведет к вызову функции
operator new, которая принимает единственный аргумент типа size_t. Затем

144144144144144 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

к полученной неинициализированной памяти будет применен конструктор клас-
са Widget, чтобы создать в ней объект этого класса.

Оператор delete вызывает деструктор для объекта Widget, а затем функ-
цию operator delete, которая должна (предположительно) освободить па-
мять, уже отведенную несуществующему объекту Widget.

Изменить поведение механизмов выделения и освобождения памяти можно
путем перегрузки, подмены или сокрытия функций operator new и operator
delete, а не модификации самих операторов new и delete.

Мы знаем также, как выделять и освобождать память для массивов Widget.
Но для этого служат не операторы new и delete.

w = new Widget[n];
// ...
delete [] w;

Вместо них применяются операторы new[] и delete[] (читается «new для
массивов» и «delete для массивов»). Подобно new и delete, поведение операто-
ров new и delete для массивов модифицировать невозможно. Оператор new для
массивов сначала вызывает функцию с именем operator new[], чтобы полу-
чить память, а затем (если необходимо) выполняет инициализацию по умолча-
нию для каждого элемента массива, начиная с первого. Оператор delete для масси-
вов уничтожает все элементы массива в порядке, обратном их инициализации,
а затем вызывает функцию с именем operator delete[], чтобы освободить
память.

Попутно отметим, что зачастую лучше пользоваться стандартным библиотеч-
ным классом vector вместо массивов. По эффективности vector почти не усту-
пает массивам, но безопасен относительно типов и обеспечивает большую гиб-
кость. Можно считать, что класс vector – это «интеллектуальный» массив
с похожей семантикой. Однако при уничтожении вектора его элементы уничто-
жаются, начиная с первого, то есть в порядке, обратном тому, что применяется для
массивов.

Функции управления памятью должны применяться парами. Если для выде-
ления памяти был использован оператор new, то освобождать ее надо оператором
delete. Если память была получена от функции malloc, будьте добры освобо-
дить ее, вызвав free. Иногда использование комбинаций free / new и malloc /
delete будет «работать» для ограниченного множества типов на конкретной
платформе, но никаких гарантий не дается:

int *ip = new int(12);

// ...

free(ip); // íåïðàâèëüíî!

ip = static_cast<int *>(malloc(sizeof(int)));

*ip = 12;

// ...

delete ip; // íåïðàâèëüíî!

То же требование справедливо для выделения и освобождения памяти под
массивы. Типичная ошибка – выделить память под массив с помощью new для
массивов, а освободить с помощью скалярного delete. Как и в случае сочетания

145145145145145

new с free, такой код случайно может отработать без ошибок в конкретной ситу-
ации, тем не менее, он неправилен и в будущем, скорее всего, откажет:

double *dp = new double[1];
// ...
delete dp; // íåïðàâèëüíî!

Отметим, что компилятор не может предупредить о том, что вы пытаетесь уда-
лить массив как скаляр, поскольку он не отличает указатель на массив от указате-
ля на отдельный элемент. Обычно оператор new для массивов помещает
в начало участка памяти, выделенной для массива, не только размер этого участ-
ка, но и число элементов в массиве. Эту информацию затем использует оператор
delete для массивов.

Формат блоков, выделенных для массива и для скаляра, скорее всего, будет
различаться. Если скалярный delete вызвать для блока, выделенного с помощью
new для массивов, то информация о размере блока и числе элементов (а она пред-
назначена оператору delete для массивов), вероятно, будет интерпретирована не-
верно, и результат такой операции не определен. Не исключено также, что память
для скаляров и массивов выделяется из разных пулов. Тогда попытка вернуть
выделенную для массива память в пул, предназначенный для скаляров, приведет
к катастрофе:

delete [] dp; // ïðàâèëüíî

Проблема, свойственная выделению памяти для скаляров и массивов, прояв-
ляется также в дизайне функций-членов для управления памятью:

class Widget {
public:
void *operator new(size_t);
void operator delete(void *, size_t);
// ...

};

Автор класса Widget решил настроить управление памятью, но забыл, что
операторы new и delete для массивов называются иначе, чем для скаляров, поэто-
му они не скрыты именами функций-членов:

Widget *w = new Widget(arg); // ïðàâèëüíî
// ...
delete w; // OK
w = new Widget[n]; // áåäà!
// ...
delete [] w; // áåäà!

Поскольку в классе Widget не объявлены функции operator new[] и
operator, то при управлении памятью для массивов Widget будут применяться
глобальные версии этих функций. Скорее всего, такое поведение неправильно, ав-
тору класса Widget надо было бы предоставить также свои версии функций new
и delete для массивов.

Если же такое поведение правильно, то автор должен был бы подчеркнуть
этот факт для тех, кому предстоит сопровождать класс Widget, поскольку иначе
они вполне могут «исправить» ошибку, включив «недостающие» функции. Луч-
ше всего документировать такое решение не в комментариях, а в самом коде:

СоветСоветСоветСоветСовет 6060606060

146146146146146 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

class Widget {
public:
void *operator new(size_t);
void operator delete(void *, size_t);
void *operator new[](size_t n)

{ return ::operator new[](n); }
void operator delete[](void *p, size_t)

{ ::operator delete[](p); }
// ...

};

Поскольку версии этих функций-членов встраиваемые, то их вызов во время
выполнения ничего не стоит, и даже самого невнимательного сопровождающего
этот код должен убедить в том, что в намерения автора входило именно обраще-
ние к глобальным версиям функций new и delete для массивов Widget.

Совет 61. Контроль ошибок
при выделении памяти
Есть вопросы, которые даже задавать не стоит, и один из них: удачно ли завер-

шилось выделение памяти.
Взгляните, как раньше на C++ писали программы, выделяющие память. Вот

код, в котором тщательно проверяется результат каждой такой операции:

bool error = false;

String **array = new String *[n];
if(array) {

for(String **p = array; p < array+n; ++p) {
String *tmp = new String;
if(tmp)

*p = tmp;

else {
error = true;
break;

}
}

}

else
error = true;

if(error)
handleError();

Кодировать в таком стиле утомительно, но, быть может, усилия и были бы
оправданы, если бы это позволило обнаружить все возможные ошибки выделения
памяти. Увы, это не так. В самом конструкторе класса String может возникнуть
нехватка памяти и сообщить о ней внешней программе не так-то просто. Можно
было бы поступить следующим образом: конструктор переводит объект
в некоторое ошибочное состояние и поднимает в нем флажок, который проверяют
пользователи класса. Перспектива не из приятных. Но даже если предположить,
что мы имеем доступ к классу String и можем реализовать такое поведение, ав-
тору исходного кода и тем, кто будет его сопровождать, предстоит проверять лиш-
нее условие.

147147147147147

Или пренебречь проверкой. Код для проверки ошибок, который при этом по-
лучается, редко бывает корректным изначально, а после некоторого периода со-
провождения – почти никогда. Лучше вообще ничего не проверять:

String **array = new String *[n];
for(String **p = array; p < array+n; ++p)

*p = new String;

Этот код короче, яснее, быстрее и к тому же правилен. Стандартное поведение
new –возбудить исключение bad_alloc в случае невозможности выделить па-
мять. Это позволяет инкапсулировать контроль таких ошибок и отделить его от
остальной программы, в результате чего проект становится чище, яснее и, как пра-
вило, эффективнее.

Как бы то ни было, проверять значение, возвращаемое совместимым со стан-
дартом оператором new, всегда бессмысленно, так как new либо завершается
успешно, либо возбуждает исключение:

int *ip = new int;
if(ip) { // ýòî óñëîâèå âñåãäà èñòèííî

// ...
}
else {

// íèêîãäà íå âûïîëíÿåòñÿ

}

Можно воспользоваться стандартной nothrow-версией функции operator
new, которая вернет нулевой указатель в случае ошибки:

int *ip = new (nothrow) int;
if(ip) { // ýòî óñëîâèå ïî÷òè âñåãäà èñòèííî

// ...
}

else {
// ïî÷òè íèêîãäà íå âûïîëíÿåòñÿ

}

Однако при этом возвращаются все проблемы, связанные со старой семантикой
new, плюс мы получаем уродливый синтаксис. Лучше не прибегать к такому неуклю-
жему трюку ради обратной совместимости, а с самого начала проектировать и коди-
ровать программу в расчете на то, что оператор new возбуждает исключение.

Исполняющая система также автоматически решает одну весьма неприятную
проблему, возникающую в случае нехватки памяти. Напомним, что оператор new
фактически обращается к двум функциям: operator new для выделения памя-
ти и конструктору для ее инициализации:

Thing *tp = new Thing(arg);

Если мы перехватываем исключение bad_alloc, то знаем, что при выделе-
нии памяти возникла ошибка. Но где именно? Она могла произойти как во время
выделения памяти для самого объекта Thing, так и в конструкторе Thing. В пер-
вом случае нам ничего не надо освобождать, поскольку указатель tp так и не был
установлен. А во втором – следовало бы вернуть в кучу (неинициализированную)
память, на которую указывает tp. Однако различить эти два случая очень трудно
или даже вовсе невозможно.

СоветСоветСоветСоветСовет 6161616161

148148148148148 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

К счастью, за нас все сделает исполняющая система. Если память для объекта
Thing выделена успешно, но конструктор возбуждает исключение, то будет авто-
матически вызвана подходящая функция operator delete (см. «Совет 62») для
освобождения памяти.

Совет 62. Подмена глобальных new и delete
Подменять стандартные глобальные версии функций operator new, operator

delete, а также new и delete для массивов – почти всегда неудачная мысль, хотя
стандарт этого и не запрещает. Стандартные версии обычно хорошо оптимизиро-
ваны для универсального управления памятью, и определенные пользователем
варианты вряд ли окажутся лучше. (Однако часто бывает разумно переопреде-
лить функции-члены для оптимизации механизма управления памятью в конк-
ретном классе или иерархии наследования.)

Вместе со специализированными версиями operator new и operator
delete, реализующими отличное от стандартного поведение, в программу, ско-
рее всего, будут внесены ошибки, поскольку корректность многих функций как из
стандартной, так и из других библиотек зависит от определенной в стандарте се-
мантики.

Безопаснее перегрузить глобальный operator new, а не подменять его. Пред-
положим, вам нужно заполнить только что выделенную память какой-то комби-
нацией символов:

void *operator new(size_t n, const string &pat) {
char *p = static_cast<char *>(::operator new(n));
const char *pattern = pat.c_str();
if(!pattern || !pattern[0])

pattern = "\0"; // ïðèìå÷àíèå: äâà íóëåâûõ ñèìâîëâ

const char *f = pattern;
for(int i = 0; i < n; ++i) {

if(!*f)
f = pattern;

p[i] = *f++;
}

return p;
}

Эта версия operator new принимает в качестве аргумента строку символов
string, которой заполняется выделенная память. Компилятор различает стан-
дартный operator new и нашу версию с двумя аргументами, применяя правила
разрешения перегрузки.

string fill("<garbage>");
string *string1 = new string("Hello"); // ñòàíäàðòíàÿ âåðñèÿ
string *string2 =

new (fill) string("World!"); // ïåðåãðóæåííàÿ âåðñèÿ

Стандарт также определяет перегруженный operator new, который, поми-
мо обязательного первого аргумента типа size_t, принимает еще один – типа void
*. Его реализация просто возвращает второй аргумент. (Синтаксическая конст-
рукция throw() – это спецификация исключения, которая говорит, что данная

149149149149149

функция не возбуждает никаких исключений. В последующем обсуждении, да и
вообще, на нее можно не обращать внимания.)

void *operator new(size_t, void *p) throw()
{ return p; }

Это стандартный «размещающий оператор new», применяемый для констру-
ирования объекта по заданному адресу. (В отличие от стандартной функции
operator new с одним аргументом, попытка подменить размещающий new не-
корректна.) По существу, единственная причина его применения – заставить ком-
пилятор вызвать конструктор. Например, во встроенном приложении может воз-
никнуть необходимость сконструировать объект «регистр состояния» по
конкретному аппаратному адресу:

class StatusRegister {
// ...

};
void *regAddr = reinterpret_cast<void *>(0XFE0000);
// ...

// ðàçìåñòèòü îáúåêò, ïðåäñòàâëÿþùèé ðåãèñòð, ïî àäðåñó regAddr
StatusRegister *sr = new (regAddr) StatusRegister;

Естественно, объекты, созданные размещающим new, должны быть когда-то
уничтожены. Однако, поскольку для них не выделялось памяти, то не следует ее и
освобождать. Напомним, что оператор delete сначала вызывает деструктор уда-
ляемого объекта, а потом функцию operator delete для освобождения памяти.
Если же объект создавался размещающим new, то придется прибегнуть
к явному вызову деструктора, дабы избежать любых попыток освободить память:

sr->~StatusRegister(); // ÿâíûé âûçîâ äåñòðóêòîðà, à íå îïåðàòîðà delete

Размещающий оператор new и явный вызов деструктора – вещи, конечно, по-
лезные, но могут оказаться весьма опасными, если относиться к ним без должной
осторожности. (См. пример из стандартной библиотеки в «Совете 47».)

Отметим, что хотя мы и можем перегрузить operator delete, но пере-
груженная версия никогда не будет вызываться из стандартного выражения delete:

void *operator new(size_t n, Buffer &buffer); // ïåðåãðóæåííûé new
void operator delete(void *p,

Buffer &buffer); // ñîîòâåòñòâóþùèé delete
// ...
Thing *thing1 = new Thing; // èñïîëüçóåòñÿ ñòàíäàðòíûé operator new
Buffer buf;
Thing *thing2 = new (buf) Thing; // èñïîëüçóåòñÿ ïåðåãðóæåííûé

// operator new
delete thing2; // íåïðàâèëüíî, ñëåäîâàëî èñïîëüçîâàòü ïåðåãðóæåííóþ

// âåðñèþ delete
delete thing1; // ïðàâèëüíî, èñïîëüçóåòñÿ ñòàíäàðòíûé operator delete

Как и в случае объекта, созданного размещающим new, мы должны вызвать
деструктор явно, а затем явно же освободить занятую уничтоженным объектом
память, вызвав подходящую версию функции operator delete:

thing2->~Thing(); // ïðàâèëüíî, óíè÷òîæèòü Thing
operator delete(thing2, buf); // ïðàâèëüíî, èñïîëüçóåòñÿ ïåðåãðóæåííàÿ

// âåðñèþ delete

СоветСоветСоветСоветСовет 62. Подмена глобальных new и delete62. Подмена глобальных new и delete62. Подмена глобальных new и delete62. Подмена глобальных new и delete62. Подмена глобальных new и delete

150150150150150 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

На практике память, выделенную перегруженной глобальной функцией
operator new, часто ошибочно освобождают с помощью стандартной глобальной
функции operator delete. Один из способов избежать такой ошибки – гаранти-
ровать, что любая память, выделенная перегруженной глобальной operator new,
получена в результате обращения к стандартной глобальной operator new. Имен-
но так мы и поступили в реализации первой перегруженной версии выше, и она бу-
дет корректно работать со стандартной глобальной operator delete:

string fill("<garbage>");
string *string2 = new (fill) string("World!");

// ...
delete string2; // ðàáîòàåò

Перегруженная версия глобальной operator new должна в общем случае
либо не выделять никакой памяти, либо служить простой оберткой для стандарт-
ной глобальной функции operator new.

Часто самое лучшее решение – ничего не делать с глобальными операторны-
ми функциями управления памятью, а вместо этого настроить механизм на уров-
не отдельного класса или иерархии за счет реализации функций-членов new,
delete, new[] и delete[].

В конце «Совета 61» мы упомянули, что исполняющая система вызовет «под-
ходящую» функцию operator delete, если исключение распространится за
пределы выражения new:

Thing *tp = new Thing(arg);

Если выделение памяти для Thing завершилось успешно, но конструктор
Thing возбуждает исключение, то исполняющая система вызовет подходящую фун-
кцию operator delete для освобождения неинициализированной памяти, на ко-
торую указывает tp. В примере выше подходящей будет либо глобальная функция
operator delete(void *), либо функция-член operator delete с такой же
сигнатурой. Однако для разных operator new нужны разные operator delete:

Thing *tp = new (buf) Thing(arg);

В данном случае подходящая функция operator delete – это версия с двумя
аргументами, соответствующая перегруженной функции operator new, которую
мы использовали для выделения памяти под Thing: operator delete

(void *, Buffer &), и именно эту версию вызовет исполняющая система.
C++ допускает большую гибкость в определении того, как должна вести себя

система управления памятью, но платой за гибкость является сложность. Для
большинства целей достаточно стандартных глобальных версий operator new
и operator delete. Более сложные подходы применяйте лишь, когда возни-
кает настоятельная необходимость.

Совет 63. Об области видимости
и активации функций-членов new и delete
Функции operator new и operator delete, являющиеся членами класса,

вызываются, когда соответственно создаются и уничтожаются объекты класса,

151151151151151

где они объявлены. Область видимости, в которой находится выражение new или
delete, не имеет значения:
class String {
public:
void *operator new(size_t); // ôóíêöèÿ-÷ëåí operator new
void operator delete(void *); // ôóíêöèÿ-÷ëåí operator delete
void *operator new[](size_t); // ôóíêöèÿ-÷ëåí operator new[]
void operator delete [] (void *); // ôóíêöèÿ-÷ëåí operator delete[]
String(const char * = "");
// ...

};
void f() {

String *sp = new String("Heap"); // èñïîëüçóåòñÿ
// String::operator new

int *ip = new int(12); // èñïîëüçóåòñÿ ::operator new
delete ip; // èñïîëüçóåòñÿ :: operator delete
delete sp; // èñïîëüçóåòñÿ String::delete

}

Повторим еще раз: область видимости, в которой встречаются выражения new
или delete, не имеет значения; то, какая функция вызывается, зависит лишь от
типа создаваемого или уничтожаемого объекта:

String::String(const char *s)
: s_(strcpy(new char[strlen(s)+1], s))
{}

Память для массива символов выделяется в области видимости класса String,
но при этом используется глобальный оператор new для массивов; char – это не
String. Может помочь явная квалификация:

String::String(const char *s)
: s_(strcpy(reinterpret_cast<char *>

(String::operator new[](strlen(s)+1)),s))
{}

Было бы хорошо, если бы могли сказать нечто вроде String::new char
[strlen(s)+1] для доступа к operator new[] из класса String через опера-
тор new (ну-ка, разберитесь в этой фразе!), но такой синтаксис недопустим. (Хотя
мы можем написать ::new для доступа к глобальным функциям operator new и
operator new[] или ::delete – для доступа к глобальным operator delete и
operator delete[].)

Совет 64. Строковые литералы
в выражении throw
Авторы многих учебников по программированию на C++ демонстрируют ме-

ханизм исключений, используя в выражении throw строковые литералы:

throw «Stack underflow!»;

Они знают, что это порочная практика, но все равно приводят ее в «педагоги-
ческих целях». К сожалению, авторы часто забывают сказать читателю, что если
тот воспримет этот пример, как рекомендацию поступать так и в собственных
программах, то призовет на свою голову все кары небесные.

СоветСоветСоветСоветСовет 6363636363

152152152152152 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

Никогда не передавайте в качестве объекта исключения строковые литералы.
Принципиальная причина в том, что исключение должно быть рано или поздно
перехвачено, а перехват осуществляется на основе типа, а не значения:
try {

// ...

}
catch(const char *msg) {

string m(msg);
if(m == "stack underflow") // ...
else if(m == "connection timeout") // ...
else if(m == "security violation") // ...

else throw;
}

На практике возбуждение и перехват исключения, представленного строко-
вым литералом, не предоставляет почти никакой информации о природе исклю-
чения в самом его типе. В результате предложение catch должно перехватить каж-
дое исключение и проверить значение литерала, только тогда станет ясно, следует
его обрабатывать или нет. Хуже того, сравнение значений также не дает исчерпы-
вающей информации, а в ходе сопровождения весь механизм может «поломать-
ся», если кто-нибудь заменить строчные буквы заглавными или изменит формат
«сообщения об ошибке». В примере выше мы никогда не узнаем, что произошла
попытка извлечения из пустого стека.

Это замечание относится к исключениям других встроенных и стандартных
типов. Передача в качестве объекта исключения целых чисел, чисел с плавающей
точкой, объектов типа string или (придет же в голову такая мысль!) множеств
(set) векторов (vector) из чисел с плавающей точкой (float) влечет за собой
те же самые неприятности. Проще говоря, проблема в том, что, возбуждая исклю-
чение встроенного типа, мы не сможем в перехватчике узнать, какой ошибке оно
соответствует и как на нее реагировать. Код, возбудивший такое исключение, как
бы дразнит нас: «Произошла такая пакость, такая пакость. Догадайся сам, какая!»
И у нас нет никакого выбора, кроме как сыграть в игру, в которой мы почти навер-
няка програем.

Тип исключения – это абстрактный тип данных, представляющий исключе-
ние. Рекомендации по его проектированию такие же, как для любого другого абст-
рактного типа данных: определите и поименуйте назначение типа, решите, какие
абстрактные операции он должен поддерживать, и реализуйте его. В ходе реали-
зации обращайте внимание на операции инициализации, копирования и преобра-
зования. Все просто. Применение строкового литерала для представления исклю-
чения столь же бессмысленно, как представление комплексного числа строкой.
Теоретически может сработать, но утомительно и чревато ошибками.

Какую абстрактную концепцию мы пытаемся описать, когда возбуждаем ис-
ключение, представляющее попытку извлечения из пустого стека? Да буквально
ее саму. Вот так:

class StackUnderflow {};

Часто тип объекта исключения несет всю необходимую информацию. Неред-
ко можно встретить типы исключений, которые вообще не содержат членов-дан-

153153153153153

ных. Впрочем, наличие еще и текстового описания тоже не повредит. Другая ин-
формация об исключении присутствует в объекте гораздо реже:

class StackUnderflow {
public:
StackUnderflow(const char *msg = "stack underflow");

virtual ~StackUnderflow();
virtual const char *what() const;
// ...

};

Если текстовое описание присутствует, то возвращающая его функция долж-
на быть виртуальным членом с именем what и показанной выше сигнатурой. Это
согласуется со стандартными типами исключений, в каждом из которых такая
функция есть. Вообще, имеет смысл делать ваши классы исключений производ-
ными от классов стандартных исключений:

class StackUnderflow : public std::runtime_error {
public:
explicit StackUnderflow(const char *msg = "stack underflow")

: std::runtime_error(msg) {}

};

Это позволит перехватить исключение либо как StackUnderflow, либо как
более общий тип runtime_error, либо как совсем уж общий тип exception
(открытый базовый класс runtime_error). Также нередко создают некий об-
щий, хотя и нестандартный тип исключения. Обычно он служит базовым классом
для всех типов исключений, которые может возбуждать отдельный модуль или
библиотека.

class ContainerFault {
public:
virtual ~ContainerFault();
virtual const char *what() const = 0;
// . . .

};
class StackUnderflow

: public std::runtime_error, public ContainerFault {
public:
explicit StackUnderflow(const char *msg = Ýstack underflowÝ)

: std::runtime_error(msg) {}
const char *what() const

{ return std::runtime_error::what(); }
};

И, наконец, не забывайте о корректной семантике копирования и уничтоже-
ния для типов исключений. В частности, объекты исключений должно быть раз-
решено копировать, поскольку именно это делает исполняющая система при воз-
буждении исключения (см. «Совет 65»), а скопированный объект должен быть
уничтожен после обработки. Часто мы можем позволить компилятору написать
эти операции за нас (см. «Совет 49»):

class StackUnderflow
: public std::runtime_error, public ContainerFault {

public:

explicit StackUnderflow(const char *msg = "stack underflow")

СоветСоветСоветСоветСовет 6464646464

154154154154154 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

: std::runtime_error(msg) {}

// StackUnderflow(const StackUnderflow &);

// StackUnderflow &operator =(const StackUnderflow &);

const char *what() const

{ return std::runtime_error::what(); }

};

Теперь пользователи сами могут решать, как обнаруживать извлечение из пус-
того стека: как исключение StackUnderflow (они знают, что пользуются нашим
стеком и держат ухо востро), как более общее исключение ContainerFault (они
знают, что пользуются нашей библиотекой контейнеров и готовы к любым ошиб-
кам при работе с контейнерами), как runtime_error (они ничего не знают
о нашей библиотеке, но хотели бы обрабатывать любые стандартные ошибки во
время выполнения) или как exception (готовы к обработке любых стандартных
исключений).

Совет 65. Обрабатывайте исключения
правильно
Вопросы общей стратегии и архитектуры обработки исключений все еще

оживленно дебатируются. Но на низком уровне принципы возбуждения и пере-
хвата исключений понятны и редко нарушаются.

При выполнении выражения throw исполняющая система копирует объект
исключения во временный объект, хранящийся в «надежном» месте. Где именно,
зависит от платформы, но в любом случае гарантируется, что этот объект су-
ществует, пока исключение не будет обработано. Иными словами, временный
объект доступен вплоть до момента завершения последнего предложения catch,
даже если он обрабатывается несколькими перехватчиками. Это важное свойство,
поскольку, если говорить прямо, при возбуждении исключения все черти срыва-
ются с привязи. Этот временный объект –око тайфуна, бушующего в океане ис-
ключения.

Вот почему не стоит возбуждать исключение в виде указателя:

throw new StackUnderflow("operator stack");

Адрес объекта StackUnderflow в куче копируется в надежное место, но сама
память, на которую он ссылается, не защищена. При таком подходе остается так-
же возможность, что указатель относится к адресу в стеке:

StackUnderflow e("arg stack");
throw &e;

Здесь память, на которую ссылается указатель на объект исключения (напом-
ним, что предложению throw передается указатель, а не то, на что он указывает),
может уже быть затерта к моменту перехвата исключения. (Кстати говоря, когда
объектом исключения является строковый литерал, во временный объект копиру-
ется весь массив символов, а не просто адрес первого символа. Практическая цен-
ность этой информации невелика, потому что строковые литералы никогда не
следует использовать в качестве объектов исключений. См. «Совет 64».) Кроме

155155155155155

того, указатель может быть нулевым. Кому нужна вся эта дополнительная слож-
ность? Возбуждайте исключения не в виде указателей, а в виде объектов:

StackUnderflow e("arg stack");
throw e;

Объект исключения немедленно копируется во временный объект, так что
объявление e на самом деле не нужно. Традиционно объектами исключений слу-
жат анонимные временные объекты.

throw StackUnderflow(«arg stack»);

Использование анонимного временного объекта ясно дает понять, что единст-
венное назначение объекта типа StackUnderflow – сыграть роль объекта ис-
ключения, поскольку время его жизни ограничено выражением throw. Если же
переменная e объявлена явно, то она все равно будет уничтожена во время испол-
нения выражения throw, но остается в области видимости и доступна до конца
блока, содержащего объявление. Применение анонимных временных объектов
также искореняет некоторые «творческие» подходы к обработке исключений:

static StackUnderflow e(Ýarg stackÝ);
extern StackUnderflow *argstackerr;
argstackerr = &e;
throw e;

Здесь «изобретательный» кодировщик решил приберечь адрес объекта ис-
ключения для использования в дальнейшем, возможно, в каком-то catch-обра-
ботчике. Увы, argstackerr указывает не на объект исключения (который
представлен временным объектом, хранящимся в недоступном месте), а на уже
разрушенный объект, которым тот был инициализирован. Код обработки исклю-
чений – не лучшее место для трудно обнаруживаемых ошибок. Старайтесь делать
его как можно проще.

Как лучше всего перехватывать объект исключения? Не по значению:

try {
// ...

}
catch(ContainerFault fault) {

// ...
}

Подумайте, что произойдет, если этот обработчик перехватит объект Stack-
Underflow. Срезка. Так как StackUnderflow «является разновидностью»
ContainerFault, то мы можем инициализировать fault сгенерированным
объектом исключения, но все данные и поведение, принадлежащие производному
классу, будут срезаны. (См. «Совет 30»).

В данном случае, впрочем, проблема не в срезке, поскольку Container-
Fault, как и подобает уважающему себя базовому классу, является абстрактным
(см. «Совет 93»). Поэтому предложение catch вообще некорректно. Нельзя пере-
хватить по значению такой объект исключения, как ContainerFault.

Перехват по значению ставит перед нами еще более хитрые задачки:

catch(StackUnderflow fault) {

 // ïðîèçâåñòè ÷àñòè÷íîå âîññòàíîâëåíèå ...

СоветСоветСоветСоветСовет 6565656565

156156156156156 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

 fault.modifyState(); // ìîÿ îøèáêà
 throw; // ïîâòîðíî âîçáóäèòü òåêóùåå èñêëþ÷åíèå
}

Нередко бывает, что в предложении catch производится частичное восстанов-
ление после ошибки, информация об этом сохраняется в объекте исключения,
после чего исключение возбуждается повторно для дополнительной обработки.
Увы, ничего подобного здесь не произойдет. Мы модифицировали состояние ло-
кальной копии объекта исключения, а передали следующему обработчику сам
объект исключения (неизмененный).

Для простоты и с целью обойти все эти сложности всегда возбуждайте исклю-
чения в виде анонимных временных объектов и перехватывайте их по ссылке.

Следите за тем, чтобы в обработчике не возникало ошибок из-за копирования.
Чаще всего это случается, когда обработчик возбуждает новое исключение,
а не повторно возбуждает уже существующее:

catch(ContainerFault &fault) {
// ïðîèçâåñòè ÷àñòè÷íîå âîññòàíîâëåíèå ...
if(condition)

throw; // ïîâòîðíî âîçáóäèòü èñêëþ÷åíèå
else {

ContainerFault myFault(fault);
myFault.modifyState(); // âñå åùå ìîÿ îøèáêà
throw myFault; // íîâûé îáúåêò èñêëþ÷åíèÿ

}

}

В данном случае записанные изменения не будут потеряны, зато теряется ис-
ходный тип исключения. Предположим, что первоначальное исключение имело
тип StackUnderflow. Когда оно перехватывается по ссылке на Container-
Fault, динамический тип объекта исключения все еще StackUnderflow, поэто-
му повторно возбужденное исключение имеет все шансы быть перехваченным как
обработчиком StackUnderflow, так и обработчиком ContainerFault. Но но-
вый объект исключения myFault имеет тип ContainerFault и, значит, не мо-
жет быть перехвачен обработчиком StackUnderflow. Лучше повторно возбуж-
дать уже имеющееся исключение, чем обрабатывать его и возбуждать новое:

catch(ContainerFault &fault) {
// ïðîèçâåñòè ÷àñòè÷íîå âîññòàíîâëåíèå ...
if(!condition)

fault.modifyState();
throw;

}

На наше счастье, базовый класс ContainerFault абстрактный, поэтому
в данном случае эта ошибка не проявит себя; вообще говоря, базовые классы все-
гда стоит делать абстрактными. Очевидно, этот совет неприменим, если вы обяза-
ны возбудить исключение совершенно другого типа:

catch(ContainerFault &fault) {
// ïðîèçâåñòè ÷àñòè÷íîå âîññòàíîâëåíèå ...
if(out_of_memory)

throw bad_alloc(); // âîçáóäèòü íîâîå èñêëþ÷åíèå
fault.modifyState();

157157157157157

throw; // ïîâòîðíî âîçáóäèòü

}

Еще одна распространенная ошибка связана с порядком catch-обработчиков.
Поскольку эти обработчики перебираются в том порядке, в котором записаны
(как условия в предложении if-elseif, а не как ветви switch), то указанные в них
типы должны быть упорядочены от более к менее специфичным. Если какие-то
типы не связаны отношением базовый-производный, то располагайте их в логи-
ческом порядке:

catch(ContainerFault &fault) {
// ïðîèçâåñòè ÷àñòè÷íîå âîññòàíîâëåíèå ...
fault.modifyState(); // íå ìîÿ îøèáêà
throw;

}
catch(StackUnderflow &fault) {

// ...

}

catch(exception &) {

// ...

}

Показанная выше цепочка обработчиков никогда не перехватит исключение
StackUnderflow, так как более общий тип ContainerFault встречается в ней
раньше.

Механизм обработки исключения предлагает массу возможностей усложнить
себе задачу, но вовсе не обязательно соглашаться на это предложение. Возбуждая
и перехватывая исключения, стремитесь к простоте.

Совет 66. Внимательно относитесь
к адресам локальных объектов
Не возвращайте указатель или ссылку на локальную переменную. Большин-

ство компиляторов предупреждает о таких попытках; отнеситесь к этому преду-
преждению серьезно.

Исчезающие фреймы стека

Если переменная автоматическая, то состояние памяти, которую она занима-
ла, после возврата из функции не определено:

char *newLabel1() {

static int labNo = 0;

char buffer[16]; // ñì. Ñîâåò 2

sprintf(buffer, "label%d", labNo++);

return buffer;

}

Эта функция работает от случая к случаю. После возврата фрейм, принадле-
жащий функции newLabel1, выталкивается из стека, и память (включая и ту, где
находился массив buffer) освобождается для следующего вызова функции. Од-

СоветСоветСоветСоветСовет 6666666666

158158158158158 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

нако, пока очередная функция не вызвана, возвращенный указатель, хотя и не-
действительный, все еще пригоден для использования:

char *uniqueLab = newLabel1();

char mybuf[16], *pmybuf = mybuf;

while(*pmybuf++ = *uniqueLab++);

Вряд ли сопровождающий будет мириться с таким кодом долго. Возможно, он
решит выделить буфер из кучи:

char *pmybuf = new char[16];

Возможно, он решит отказаться от копирования буфера «вручную»:

strcpy(pmybuf, uniqueLab);

А, может быть, он захочет воспользоваться более абстрактным типом, чем про-
стой массив символов:

std::string mybuf(uniqueLab);

Любая из этих модификаций может привести к затиранию локальной памяти,
на которую указывает uniqueLab:

Затирание статических переменных

Если переменная статическая, то последующий вызов той же функции отра-
зится на результатах предыдущих вызовов:

char *newLabel2() {

static int labNo = 0;

static char buffer[16];

sprintf(buffer, "label%d", labNo++);

return buffer;

}

Память, отведенная под буфер, доступна и после возврата из функции, но пос-
ледующий вызов той же функции может изменить ее состояние:

// ñëó÷àé 1

cout << "first: " << newLabel2() << ' ';

cout << "second: " << newLabel2() << endl;

// ñëó÷àé 2

cout << "first: " << newLabel2() << ' '

<< "second: " << newLabel2() << endl;

В первом случае будут напечатаны разные значения label. Во втором случае
мы, скорее всего (хотя и не наверняка), напечатаем одно и то же значение дважды.
Вероятно, тот, кто хорошо знаком с необычной реализацией функции newLabel2
написал первый вариант код, чтобы разбить вывод на два предложения и тем са-
мым компенсировать дефект реализации. Сопровождающий же не был знаком со
странностями newLabel2 и объединил два предложения в одно. В результате по-
явилась ошибка. Хуже того, не исключено, что после объединения предложений
программа продолжает вести себя так же, как и раньше, но в будущем ее поведе-
ние может непредсказуемо измениться. (См. «Совет 14».)

159159159159159

Идиоматические трудности
Нас подстерегает и еще одна опасность. Не забывайте, что у пользователей

функции обычно нет доступа к ее реализации, а есть лишь объявление, из которо-
го они должны иметь возможность понять, как трактовать возвращаемое функци-
ей значение. Да, необходимую информацию можно поместить в комментарий (см.
«Совет 1»), но лучше проектировать функцию так, чтобы правильное использова-
ние напрашивалось само собой.

Не возвращайте ссылку на память, выделенную внутри функции. Пользовате-
ли обязательно забудут освободить эту память, что приведет к утечкам:

int &f()
{ return *new int(5); }

// ...

int i = f(); // óòå÷êà ïàìÿòè!

Корректная программа преобразовала бы ссылку в адрес или скопировала ре-
зультат и освободила память. Спасибо, мне это не подходит:

int *ip = &f(); // îäèí êîøìàðíûé ñïîñîá
int &tmp = f(); // äðóãîé, íè÷åì íå ëó÷øå
int i = tmp;
delete &tmp;

Особенно плоха эта идея для перегруженных операторов:

Complex &operator +(const Complex &a, const Complex &b)

{ return *new Complex(a.re+b.re, a.im+b.im); }

// ...

Complex a, b, c;

a = b + c + a + b; // ìîðå óòå÷åê!

Возвращайте вместо ссылки указатель или не выделяйте память, а возвращай-
те результат по значению:

int *f() { return new int(5); }
Complex operator +(Complex a, Complex b)

{ return Complex(a.re+b.re, a.im+b.im); }

Идиоматически, пользователи функции, возвращающей указатель, готовы к
тому, что от них может потребоваться освободить память, на которую он ссылает-
ся, и предпримут некоторые усилия, чтобы выяснить, так ли это на самом деле
(скажем, прочтут комментарий). Если же функция возвращает ссылку, то мало
кто станет уточнять детали.

Проблемы локальной области видимости
Проблемы с временем жизни локальных переменных встречаются не только

на границах между функциями, но и при наличии вложенных областей видимости
внутри одной функции:

void localScope(int x) {
char *cp = 0;

if(x) {
char buf1[] = "asdf";

СоветСоветСоветСоветСовет 6666666666

160160160160160 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

cp = buf1; // ïîðî÷íàÿ èäåÿ!
char buf2[] = "qwerty";
char *cp1 = buf2;
// ...

}
if(x-1) {

char *cp2 = 0; // íàêëàäûâàåòñÿ íà buf1?
// ...

}
if(cp)

printf(cp); // âîçìîæíî, îøèáêà ...
}

Компиляторам предоставлена большая гибкость в определении того, как раз-
мещать в памяти локальные переменные. В зависимости от платформы и задан-
ных при вызове флагов компилятор может разместить buf1 и cp2 в одной и той
же памяти. Это допустимо, так как области видимости и время жизни buf1 и cp2
не пересекаются. Если перекрытие действительно произойдет, то buf1 будет за-
терта, что отразится на поведении printf (возможно, она ничего не напечатает).
Переносимости ради не стоит полагаться на конкретную структуру фрейма стека.

Исправление ошибки путем добавления static
Столкнувшись с особо вредной ошибкой, иногда удается «устранить» ее, до-

бавив спецификатор хранения static:

// ...
char buf[MAX];
long count = 0;
// ...
int i = 0;
while(i++ <= MAX)

if(buf[i] == '\0') {
buf[i] = '*';
++count;

}
assert(count <= i);
// ...

Цикл в этой программе написан неправильно, иногда он пишет в память за
концом буфера buf, изменяя содержимое переменной count. В результате
утверждение assert не выполняется. В суете, которая иногда сопровождает по-
пытки исправить ошибку, программист может объявить переменную count ло-
кальной статической, и программа станет работать:

char buf[MAX];
static long count;
// ...
count = 0;
int i = 0;
while(i++ <= MAX)

if(buf[i] == '\0') {
buf[i] = '*';
++count;

 }
assert(count <= i);

161161161161161

Многие программисты, не желающие задаваться вопросом, почему ошибку
удалось так легко исправить, на этом и остановятся. Увы, ошибка не исчезла, про-
сто переместилась в другое место. Она затаилась и терпеливо дожидается подхо-
дящего момента, чтобы нанести удар.

Сделав локальную переменную count статической, мы переместили ее из сте-
ка совсем в другую область памяти, где хранятся все статические объекты. Конеч-
но, она больше не затирается. Но теперь на count распространяется проблема,
описанная в разделе «Затирание статических переменных». А, кроме того, зати-
раться будет какая-то другая локальная переменная, возможно, пока еще несуще-
ствующая. Правильное решение, как обычно, состоит в том, чтобы исправить
ошибку, а не спрятать ее.

char buf[MAX];
long count = 0;
// ...
for(int i = 1; i < MAX; ++i)

if(buf[i] == '\0') {
buf[i] = '*';

++count;
}

// ...

Совет 67. Помните, что захват ресурса
есть инициализация
Стыдно, что многие начинающие программисты на C++ не видят замечатель-

ной симметрии между конструкторами и деструкторами. По большей части, они
пришли в C++ из других языков, которые пытаются защитить их от сложностей
работы с указателями и управления памятью. В безопасности и под контролем.
Счастливы в своем неведении. Привыкли программировать именно так, как пред-
писал автор языка. Единственно правильным способом. Тем, который автор счи-
тает правильным.

К счастью, C++ питает больше уважения к своим поклонникам и предостав-
ляет куда большую гибкость в способах применения языка. Я вовсе не хочу ска-
зать, что у нас нет общих принципов и полезных идиом (см. «Совет 10»). И одна
из самых важных – это идиома «захват ресурса есть инициализация». Может
быть, ее название и труднопроизносимо, зато это простая и допускающая обобще-
ние техника, смысл которой заключается в привязке ресурса к памяти, после чего
управлять тем и другим можно эффективно и предсказуемо.

Порядок выполнения конструкторов и деструкторов противоположен. Объект
класса всегда конструируется в одном и том порядке:

— сначала подобъекты виртуальных базовых классов («в порядке их появле-
ния в объявлении и рекурсивного обхода ациклического ориентированного
графа базовых классов в глубину слева направо», как гласит стандарт);

— затем непосредственные базовые классы в порядке их появления в списке
базовых классов в объявлении класса;

СоветСоветСоветСоветСовет 6767676767

162162162162162 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

— затем нестатические данные-члены класса в порядке их объявления;
— затем выполняется тело конструктора.

В деструкторе порядок выполнения обратный: тело деструктора, данные-чле-
ны в порядке, обратном их следованию в объявлении класса, непосредственные
базовые класса в порядке, обратном объявлению, и виртуальные базовые классы.
Удобно представлять себе конструирование, как заталкивание некоторой после-
довательности в стек, а уничтожение как извлечение из стека в обратном порядке.
Симметрия конструирования и уничтожения считается настолько важной, что
все конструкторы классов выполняют инициализацию объектов в одной и той же
последовательности даже, если списки инициализации членов записаны
в разном порядке (см. «Совет 52»).

В качестве побочного эффекта или, если хотите, результата инициализации
конструктор захватывает ресурсы, необходимые для работы объекта. Часто поря-
док захвата ресурсов имеет значение (например, нужно заблокировать базу дан-
ных перед тем, как писать в нее; нужно сначала получить описатель файла, а затем
уже записывать в него данные). Задача деструктора – освободить ресурсы
в порядке, обратном тому, в котором они захватывались. Тот факт, что конструк-
торов может быть много, а деструктор только один, означает, что все конструкто-
ры должны инициализировать компоненты в одном и том же порядке.

(Кстати говоря, так было не всегда. На ранних этапах развития языка порядок
инициализации в конструкторах не фиксировался, что вызывало немало проблем
в проектах любой сложности. Как и большинство правил C++, это стало результа-
том вдумчивого проектирования и опыта практического применения.)

Симметрия между конструированием и уничтожением остается в силе даже,
если мы переходим от структуры самого объекта к использованию нескольких
объектов. Рассмотрим простой класс для трассировки:

�� gotcha67/trace.h

class Trace {

public:

Trace(const char *msg)

: m_(msg) { cout << "Entering " << m_ << endl; }

~Trace()

{ cout << "Exiting " << m_ << endl; }

private:

const char *m_;

};

Возможно, этот класс чересчур прост, поскольку в нем предполагается, что
инициализатор корректен и время его жизни не меньше времени жизни объекта
Trace, но для наших целей он годится. Объект Trace выводит одно сообщение,
когда создается, и другое сообщение, когда разрушается. Поэтому его можно при-
менить для трассировки потока исполнения:

�� gotcha67/trace.cpp

Trace a("global");

163163163163163

void loopy(int cond1, int cond2) {
Trace b("function body");

it: Trace c("later in body");
if(cond1 == cond2)

return;
if(cond1-1) {

Trace d("if");
static Trace stat("local static");
while(—cond1) {

Trace e("loop");
if(cond1 == cond2)

goto it;
}
Trace f("after loop");

}
Trace g("after if");

}

При вызове функции loopy с аргументами 4 и 2 получаем следующий ре-
зультат:
Entering global
Entering function body
Entering later in body
Entering if
Entering local static
Entering loop
Exiting loop
Entering loop
Exiting loop
Exiting if
Exiting later in body
Entering later in body
Exiting later in body
Exiting function body
Exiting local static
Exiting global

 Из этих сообщений ясно видно, что время жизни объекта Trace определяет-
ся текущей областью видимости. В частности, обратите внимание, какое влияние
оказывают предложения goto и return на время жизни активных объектов
Trace. Ни одну из этих ветвей не надо рассматривать как пример образцового
кодирования, но во время сопровождения такие конструкции иногда появляются:

void doDB() {
lockDB();
// ðàáîòà ñ áàçîé äàííûõ ...
unlockDB();

}

В примере выше мы позаботились о том, чтобы заблокировать базу данных
перед доступом и разблокировать по окончании работы. Увы, этот тщательно на-
писанный код может развалиться в ходе сопровождения, особенно если между
блокировкой и разблокировкой находится много текста:

void doDB() {
lockDB();

СоветСоветСоветСоветСовет 6767676767

164164164164164 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

// ...
if(i_feel_like_it) // if (ó_ìåíÿ_òàêîå_íàñòðîåíèå)

return;
// ...
unlockDB();

}

Теперь ошибка возникает всякий раз, как у функции doDB возникает «подхо-
дящее настроение»: база данных остается заблокированной, и это без сомнения
вызовет проблемы в каком-то другом месте. На самом деле, даже первоначальная
версия кода написана неправильно, поскольку между моментами блокировки и
разблокировки базы может возникнуть исключение. Эффект тот же, что и при
любом другом пути исполнения, обходящем unlockDB: база данных остается заб-
локированной.

Можно попытаться исправить эту ошибку, явно обрабатывая исключения и
дав суровые наставления сопровождающим:
void doDB() {

lockDB();
try {

// ðàáîòà ñ áàçîé äàííûõ ...
}
catch(...) {

unlockDB();
throw;

}
unlockDB();

}

Но это решение многословно, нетехнологично, неудобно для сопровождения.
Вы рискуете быть принятым за сотрудника «подотдела отдела департамента по
борьбе с избыточностью». Правильно написанный код для обработки исключе-
ний обычно состоит из нескольких try-блоков. Не проще ли рассматривать захват
ресурса как инициализацию:

class DBLock {
public:
DBLock() { lockDB(); }
~DBLock() { unlockDB(); }

};

void doDB() {
DBLock lock;
// ðàáîòà ñ áàçîé äàííûõ ...

}

Создание объекта DBLock приводит к захвату ресурса, то есть к блокировке
базы данных. Когда объект DBLock покидает область видимости по любой причи-
не, деструктор освобождает ресурс и, значит, разблокирует базу данных. Эта иди-
ома встречается в C++ так часто, что ее даже не замечают. Но всякий раз, создавая
объект любого из стандартных классов string, vector, list да и многих дру-
гих, вы применяете идиому захвата ресурса как инициализации.

Кстати, хочу привлечь ваше внимание к двум распространенным ошибкам,
связанным с применением дескрипторных классов ресурсов, подобных DBLock:

165165165165165

void doDB() {
DBLock lock1; // ïðàâèëüíî
DBLock lock2(); // îé ëè?
DBLock(); // òàê ëè?
// ðàáîòà ñ áàçîé äàííûõ ...

}

Объявление lock1 корректно; это объект DBLock, который попадает в об-
ласть видимости непосредственно перед завершающей объявление точкой с запя-
той и покидает ее в конце блока, содержащего объявление (в данном случае,
в конце функции). Объявление lock1 говорит, что это функция, которая не при-
нимает аргументов и возвращает DBLock (см. «Совет 19»). Это не ошибка, но,
скорее всего, не то, что вы хотите, поскольку ни блокировки, ни разблокировки не
происходит.

Следующая строка содержит выражение, которое создает анонимный времен-
ный объект DBLock. Блокировка базы данных при этом произойдет, но, посколь-
ку анонимный временный объект выходит из области видимости в конце выраже-
ния (непосредственно перед точкой с запятой), то база данных сразу же
разблокируется. Маловероятно, что вам нужно именно это.

Для объектов, размещенных в куче, универсальным дескриптором ресурса
может служить стандартный шаблонный класс auto_ptr (см. «Совет 10» и «Со-
вет 68»).

Совет 68. Правильно используйте auto_ptr
Стандартный шаблон auto_ptr – это простой и полезный дескрипторный

класс с необычной семантикой копирования (см. «Совет 10»). Как правило, его
применение не вызывает сомнений:
template <typename T>
void print(Container<T> &c) {

auto_ptr< Iter<T> > i(c.genIter());
for(i->reset(); !i->done(); i->next()) {

cout << i->get() << endl;
examine(c);

}
// íåÿâíàÿ î÷èñòêà ...

}

Это типичный пример использования auto_ptr. Смысл его в том, чтобы га-
рантировать освобождение памяти и ресурсов, связанных с находящимся в куче
объектом в момент, когда направленный на него указатель покидает область ви-
димости. (Более подробное обсуждение иерархии Container см. в «Совете 90».)
Предположение заключается в том, что память для Iter<T>, которую возвра-
щает функция genIter, была выделена из кучи. Поэтому auto_ptr< Iter<T> >
может вызвать оператор delete для освобождения этой памяти при выходе
auto_ptr из области видимости.

Однако с таким использованием auto_ptr связано две типичных ошибки.
Во-первых, auto_ptr не должен ссылаться на массив. Рассмотрим пример:

void calc(double src[], int len) {

СоветСоветСоветСоветСовет 68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr

166166166166166 Управление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсамиУправление памятью и ресурсами

double *tmp = new double[len];
// ...
delete [] tmp;

}

В функции calc может возникнуть утечка памяти, выделенной для массива
tmp, если во время ее выполнения возникнет исключение или в ходе неаккуратно-
го сопровождения будет добавлен преждевременный возврат. Необходим объект
для управления ресурсом, а стандарт предлагает для этой цели auto_ptr:

void calc(double src[], int len) {
auto_ptr<double> tmp(new double[len]);

// ...
}

Однако auto_ptr рассчитан только на управление одиночными объектами, а
не массивами. Когда tmp покидает область видимости и вызывается деструктор,
то к массиву double, память для которого была выделена с помощью new для
массивов, применяется оператор delete для скаляров (см. «Совет 60»). Ведь ком-
пилятор не способен различить указатели на массив и на одиночный объект. И,
что еще хуже, этот код на некоторых платформах может случайно отработать пра-
вильно, а ошибка проявится лишь при переносе на другую платформу или уста-
новке новой версии компилятора на текущей.

Гораздо надежнее вместо массива double воспользоваться стандартным
классом vector. Он как раз и является дескриптором ресурса для массива, в ка-
ком-то роде «auto_array», к тому же обладает рядом дополнительных возможнос-
тей. Одновременно мы избавимся от примитивного и опасного использования
формального аргумента-указателя, маскирующегося под массив:

void calc(vector<double> &src) {
vector<double> tmp(src.size());
// ...

}

Еще одна распространенная ошибка – поместить auto_ptr в STL-контейнер.
Контейнеры из библиотеки STL предъявляют не слишком много требований к
своим элементам, но одно из них – следование традиционной семантике копиро-
вания.

Шаблон auto_ptr определен в стандарте так, что добавление его конкрети-
заций в STL-контейнер незаконно; при этом должны возникать ошибки во время
компиляции (причем довольно загадочные). К несчастью, многие современные
реализации отстают от стандарта.

В одной весьма распространенной реализации auto_ptr семантика копиро-
вания допускает помещение конкретизированных из него элементов в контейнер,
ими даже можно пользоваться. Но лишь до тех пор, пока вы не установите обнов-
ленную или вообще другую версию стандартной библиотеки. В этом случае ваша
программа перестанет компилироваться. Исправлять эту ошибку противно, хотя
обычно и не сложно.

Хуже, когда реализация auto_ptr не полностью отвечает стандарту, поэтому
поместить конкретизированные из него элементы в STL-контейнер можно, но се-

167167167167167

мантика копирования не согласуется с требованиями STL. Как описано в «Совете
10», при копировании auto_ptr владение передается целевому объекту,
а в исходном указатель сбрасывается в нуль:

auto_ptr<Employee> e1(new Hourly);
auto_ptr<Employee> e2(e1); // e1 íóëåâîé
e1 = e2; // e2 íóëåâîé

Это свойство полезно во многих контекстах, но для элемента STL-контейнера
неприемлемо:

vector< auto_ptr<Employee> > payroll;
// ...
list< auto_ptr<Employee> > temp;
copy(payroll.begin(), payroll.end(), back_inserter(temp));

На некоторых платформах этот код будет компилироваться и работать, но де-
лать не то, что вам надо. Вектор (vector) указателей на Employee будет скопи-
рован в список (list), но после копирования все указатели в векторе окажутся
нулевыми!

Не помещайте auto_ptr-элементы в STL-контейнер, даже если текущая
платформа это позволяет.

СоветСоветСоветСоветСовет 68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr68. Правильно используйте auto_ptr

Глава 7. Полиморфизм

Наряду с абстрагированием данных, наследование и полиморфизм относятся
к числу фундаментальных средств объектно-ориентированного программиро-
вания. Полиморфизм реализован в C++ эффективно и гибко, но механизм отли-
чается сложностью.

В этой главе мы увидим, что гибкостью полиморфизма в C++ нередко зло-
употребляют, и предложим рекомендации, которые позволят «обуздать» слож-
ность реализации. Попутно мы узнаем, как реализованы в C++ наследование и
виртуальные функции, и как эта реализация отражается на самом языке.

Совет 69. Кодирование типов
Один из верных признаков «моей первой программы на C++» – наличие кода

типа в качестве одного из данных-членов. (В моей первой программе на C++ они
присутствовали и принесли мне немало горестей.) В объектно-ориентированном
программировании тип объекта определяется его поведением, а не состоянием.
Лишь в редких случаях в хорошо спроектированной программе на C++ возникает
необходимость в конкретных кодах типа, но хранить его в качестве члена данных
не нужно никогда.

class Base {
public:
enum Tcode { DER1, DER2, DER3 };
Base(Tcode c) : code_(c) {}
virtual ~Base();

int tcode() const
{ return code_; }

virtual void f() = 0;
private:
Tcode code_;

};

class Der1 : public Base {
public:
Der1() : Base(DER1) {}
void f();

};

В приведенном выше коде мы видим типичное проявление проблемы. Дело
в том, что проектировщик еще не достаточно уверен в себе, чтобы полностью пе-
рейти на объектно-ориентированный дизайн, при котором во всей иерархии по-
следовательно используется динамическое связывание. Код типа оставлен (по
мысли проектировщика) на случай, если когда-нибудь потребуется предложение
switch (конструкция, унаследованная от C и выглядящая в C++ чужеродной)
или возникнет необходимость точно определить, с объектом какого из подклассов

169169169169169

Base мы имеем дело. Но применять код типа в объектно-ориентированном проек-
те все равно, что пытаться нырнуть, держась одной ногой за вышку: ничего не
выйдет, но будет больно.

В C++ никогда не встречается ветвление по коду типа в объектно-ориенти-
рованных частях программы. Никогда. Суть проблемы в перечислении Tcode
в классе Base. При добавлении любого производного класса приходится изме-
нять исходный текст, поскольку базовый класс знает о своих потомках и тесно
связан с ними. Нет никакой гарантии, что все части кода, в которых проверяются
элементы перечисления Tcode, будут обновлены. При сопровождении программ
на C неизменно модифицируется лишь 98% предложений switch, в которых про-
веряются коды типов. При использовании же виртуальных функций такой про-
блемы просто не возникает, так зачем же тратить силы на то, чтобы искусственно
внести ее.

Хранение кодов типов в виде данных-членов приводит и к более тонким про-
блемам. Не исключено, что код типа копируется из одного подкласса Base в дру-
гой. В большой и сложной программе может появиться такой код:

Base *bp1 = new Der1;
Base *bp2 = new Der2;
*bp2 = *bp1; // êàòàñòðîôà!

Обратите внимание, что объект Der2 не изменился. Тип определяется своим
поведением, а поведение Der2 в значительной мере определяется тем, как его на-
строил конструктор во время инициализации. Возьмем, например, указатель на
таблицу виртуальных функций, который был неявно вставлен компилятором и
определяет, какие именно функции объекта вызывать при динамическом связы-
вании. Приведенный выше код его не изменил, но явно объявленные в Base дан-
ные-члены изменились (см. «Совет 50» и «Совет 78»). На рис. 7.1 закрашены те
части объекта, на который указывает bp2, что будут изменены в результате при-
сваивания.

После того как тип объекта был задан во время конструирования, он уже не
изменяется. Однако объект Der2, на который указывает bp2, заявляет, что он яв-
ляется объектом Der1. Любой код, основанный на предложении switch, поверит

Рис. 7.1. Что происходит с подобъектом базового класса в результате

присваивания объекта одного производного класса объекту другого класса?

Копируются лишь данные-члены, объявленные в базовом классе.

Неявно добавленный компилятором механизм виртуализации не копируется

СоветСоветСоветСоветСовет 69. Кодирование типов69. Кодирование типов69. Кодирование типов69. Кодирование типов69. Кодирование типов

170170170170170 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

этому заявлению, тогда как код, в котором используется динамическое связыва-
ние, его проигнорирует. Не объект, а шизофреник какой-то.

Если вы все же столкнулись с очень редкой ситуацией, когда код типа необхо-
дим, придерживайтесь следующих рекомендаций. Во-первых, не храните код
в члене данных. Заведите вместо этого виртуальную функцию, поскольку она бо-
лее тесно ассоциирует код типа с настоящим типом (поведением) объекта. Тем
самым вы сумеете избежать шизофренического поведения, свойственного слабой
ассоциации:

class Base {
public:
enum Tcode { DER1, DER2, DER3 };

Base();
virtual ~Base();
virtual int tcode() const = 0;
virtual void f() = 0;
// ...

};

class Der1 : public Base {
public:
Der1() : Base() {}
void f();
int tcode() const

{ return DER1; }

};

Во-вторых, будет лучше оставить базовый класс в неведении относительно
своих потомков, так как это уменьшает число зависимостей внутри иерархии и
позволяет легко добавлять и убирать производные классы в ходе сопровождения
программы. Отсюда следует, что набор кодов типов следует вынести из самой
программы, быть может, включив в официальный документ, где перечислены все
коды типов или описан алгоритм порождения новых кодов. Каждый производ-
ный класс может знать о своем коде, но от остальной программы эта информация
должна быть скрыта.

Ситуация, когда проектировщик вынужден прибегнуть к кодам типов, возни-
кает, например, при взаимодействии с каким-то модулем, который не следует
объектно-ориентированным принципам. Например, из внешнего источника
читается какое-то «сообщение», а его тип определяется целочисленным кодом.
Длина и структура остальной части сообщения зависят от типа. Что делать проек-
тировщику?

Лучше всего воздвигнуть брандмауэр. Это означает, что та часть программы,
которая имеет дело с внешним представлением сообщения, ветвится по его коду и
генерирует объект, в котором кода типа уже нет. Для прочих частей программы
код типа уже не важен, они работают на уровне динамического связывания. Отме-
тим, что при необходимости совсем несложно восстановить исходное сообщение
из объекта, поскольку объект может знать о соответствующем ему коде, не храня
его в члене данных.

Один из недостатков такой схемы заключается в том, что необходимо изме-
нять и перекомпилировать предложение switch (пусть даже единственное) при

171171171171171

изменении набора возможных сообщений. Но такая модификация ограничена
лишь кодом самого брандмауэра:

Msg *firewall(RawMsgSource &src) {
switch(src.msgcode) {
case MSG1:

return new Msg1(src);
case MSG2:

return new Msg2(src);
// è ò.ä.

}

В некоторых случаях неприемлема даже такая ограниченная перекомпиля-
ция. Например, если новые типы сообщений необходимо добавить, не останавли-
вая работу приложения. Тогда можно воспользоваться «взаимозаменяемостью»
управляющих структур и подставить вместо компилируемого условного кода
структуру данных, интерпретируемую во время выполнения. В нашем примере
с сообщениями мы могли обойтись простой последовательностью объектов, каж-
дый из которых представляет сообщение одного типа:

�� gotcha69/firewall.h

class MsgType {
public:
virtual ~MsgType() {}
virtual int code() const = 0;
virtual Msg *generate(RawMsgSource &) const = 0;

};
class Firewall { // ïàòòåðí Monostate
public:
void addMsgType(const MsgType *);
Msg *genMsg(RawMsgSource &);

private:
typedef std::vector<MsgType *> C;
typedef C::iterator I;
static C types_;

};

В данном случае интерпретатор тривиален: мы просто просматриваем всю
последовательность, пока не найдем интересующий нас код. Если код найден, по-
рождается объект, представляющий нужное сообщение:

�� gotcha69/firewall.cpp

Msg *Firewall::genMsg(RawMsgSource &src) {
int code = src.msgcode;
for(I i(types_.begin()); i != types_.end(); ++i)

if(code == i->code())
return i->generate(src);

return 0;

}

Структуру данных легко пополнять новыми типами сообщений:

void Firewall::addMsgType(const MsgType *mt)
{ types_.push_back(mt); }

Реализация типов индивидуальных сообщений тривиальна:

class Msg1Type : public MsgType {

СоветСоветСоветСоветСовет 69. Кодирование типов69. Кодирование типов69. Кодирование типов69. Кодирование типов69. Кодирование типов

172172172172172 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

public:
Msg1Type()

{ Firewall::addMsgType(this); }
int code() const

{ return MSG1; }
Msg *generate(RawMsgSource &src) const

{ return new Msg1(src); }
};

Заполнить список объектами MsgType можно по-разному. Самый простой
путь: объявить статическую переменную этого типа. Его конструктор в качестве
побочного эффекта добавит объект MsgType в статический список list, являю-
щийся частью брандмауэра Firewall:

static Msg1Type msg1type;

Отметим, что порядок инициализации этих статических объектов несущест-
вен. Если бы это было не так, вступил бы в действие «Совет 55». Новые объекты
MsgType можно добавлять в список во время выполнения путем динамической
загрузки.

Раз уж речь зашла о статических объектах, обращаю ваше внимание на то, что
класс Firewall выше имеет только статические данные-члены, но манипули-
руют ими нестатические функции-члены. Это пример паттерна Monostate. Он мо-
жет служить альтернативой паттерну Singleton в качестве способа избежать ис-
пользования глобальных переменных. Паттерн Singleton вынуждает
пользователей обращаться к единственному объекту через статическую функ-
цию-член instance. Если бы класс Firewall был реализован как Singleton, то
пришлось бы писать примерно такой код:

Firewall::instance().addMessageType(mt);

Паттерн же Monostate допускает наличие неограниченного числа объектов,
но все они должны ссылаться на один и тот же статический член данных. Никако-
го специального протокола доступа не требуется:

Firewall fw;
fw.genMsg(rawsource);
FireWall().genMsg(rawsource); // äðóãîé îáúåêò, òî æå ñîñòîÿíèå

Совет 70. Невиртуальный деструктор
базового класса
Эта тема рассматривалась почти в каждом учебнике по программированию на

C++ на протяжении прошедших пятнадцати лет. Во-первых, самый надежный
способ узнать, предназначен класс для использования в качестве базового или
нет, – посмотреть, есть ли в нем виртуальный деструктор. И это лучшая докумен-
тация. Если деструктор не виртуален, то классу, скорее всего, нельзя наследовать.

Неопределенное поведение
После опубликования стандарта этот аргумент стал еще более веским. Во-

первых, при уничтожении объекта производного класса через интерфейс его базо-

173173173173173

вого класса возникает неопределенное поведение, если деструктор базового клас-
са не виртуален:

class Base {
Resource *br;
// ...
~Base() // note: nonvirtual

{ delete br; }
};
class Derived : public Base {

OtherResource *dr;
// . . .
~Derived()

{ delete dr; }
};
Base *bp = new Base;
// . . .
delete bp; // fine . . .
bp = new Derived;
// . . .
delete bp; // ñêðûòàÿ îøèáêà!

Скорее всего, будет просто вызван деструктор базового класса для объекта
производного класса, а это ошибка. Но компилятор может в этом случае сделать
все, что ему угодно (сбросить дамп памяти? отправить электронное сообщение
вашему начальнику? оформить вам пожизненную подписку на «Еженедельник
объектно-ориентированного COBOL’а»?).

Виртуальные статические функции-члены
С другой стороны, наличие виртуального деструктора в базовом классе позво-

ляет добиться эффекта вызова виртуальной статической функции-члена. Специ-
фикаторы virtual и static взаимно исключающие, а операторные функции
для управления памятью (операторы new, delete, new[] и delete[]) – это ста-
тические функции-члены. Но, как и в случае виртуального деструктора, во время
удаления объекта, необходимо вызывать наиболее специализированную функ-
цию operator delete, особенно когда существует соответствующая функция-
член operator new (см. «Совет 63»):

class B {
public:
virtual ~B();
void *operator new(size_t);
void operator delete(void *, size_t);

};
class D : public B {
public:
~D();
void *operator new(size_t);
void operator delete(void *, size_t);

};
// ...
B *bp = getABofSomeSort();
// ...
delete bp; // âûçûâàåòñÿ delete èç ïðîèçâîäíîãî êëàññà!

СоветСоветСоветСоветСовет 7070707070

174174174174174 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Благодаря наличию виртуального деструктора в базовом классе, стандарт
гарантирует, что функция-член operator delete будет вызвана в «области
видимости динамического типа класса». Это означает, что из деструктора про-
изводного класса будет вызвана функция-член operator delete. Поскольку
деструктор производного класса находится в области видимости производного
класса (естественно!), то берется именно та функция operator delete, которая
определена в производном классе.

Резюмируя, можно сказать, что, хотя operator delete – это статическая
функция-член, но наличие виртуального деструктора в базовом классе гаранти-
рует, что при удалении объекта через указатель на базовый класс будет вызвана
версия operator delete из производного класса. Например, в примере выше
при удалении указателя bp вызывается деструктор D, и в результате происходит
обращение к функции operator delete из класса D, и вторым аргументом ей
передается sizeof(D), а не sizeof(D). Элегантно. Виртуальные статические
функции.

Всех обманем
Раньше программы на C++ часто писались в предположении, что при одиноч-

ном наследовании адрес подобъекта базового класса совпадает с адресом всего
объекта (см. «Совет 29»).

class B {

int b1, b2;

};

class D : public B {

int d1, d2;

};

D *dp = new D;

B *bp = dp;

Хотя стандарт таких гарантий не дает, но в данном случае при размещении
объекта D в памяти подобъект B почти наверняка окажется в начале, как на рис. 7.2.

Однако, если в производном классе объявлена виртуальная функция, то ком-
пилятор, скорее всего, вставит скрытый указатель на таблицу виртуальных функ-
ций (см. «Совет 78»). На рис. 7.3 показаны две наиболее распространенных схемы
размещения объекта в памяти для этого случая.

Рис. 7.2. Вероятное размещение в памяти объекта, не содержащего виртуальных

функций, при одиночном наследовании. При данной реализации адреса начала

полного объекта D и подобъекта B совпадают

175175175175175

В первом случае молчаливое предположение о том, что объект производного
класса и его подобъект базового класса имеют один и тот же адрес, все еще верно,
а во втором – уже нет. Конечно, правильный способ решения этой проблемы со-
стоит в том, чтобы переписать код, основанный на неподтверждаемом стандартом
допущении. На практике это обычно означает, что надо перестать использовать
void * для хранения указателей на объекты классов (см. «Совет 29»). Если это
сложно, то можно поместить виртуальную функцию в базовый класс. Тогда есть
больше шансов, что объект будет размещен в памяти в соответствии с нестандарт-
ным предположением об эквивалентности адресов (см. рис. 7.4).

Рис. 7.3. Две возможных схемы размещения в памяти объекта при одиночном

наследовании, когда в производном классе объявлена виртуальная функция,

отсутствующая в базовом классе. На схеме слева указатель на таблицу

виртуальных функций находится в конце полного объекта, а на схеме справа —

в начале. В результате во втором случае подобъект базового класса смещен

относительно начала полного объекта

Рис. 7.4. Вероятное размещение в памяти объекта при одиночном наследовании,

когда виртуальная функция объявлена в производном классе

Обычно самым лучшим кандидатом на роль такой виртуальной функции
в базовом классе является деструктор.

Исключения из правил
Даже у самых фундаментальных идиом бывают исключения. Например, иног-

да удобно поместить набор имен типов, статических функций-членов и статичес-
ких данных-членов в один «пакет»:

namespace std {
template <class Arg, class Res>
struct unary_function {

typedef Arg argument_type;

СоветСоветСоветСоветСовет 7070707070

176176176176176 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

typedef Res result_type;
};

}

В таком случае виртуальный деструктор не обязателен, так как классы, конк-
ретизируемые из этого шаблона, не управляют ресурсами, которые надо освобо-
дить. Класс был тщательно спроектирован таким образом, чтобы использование
его в качестве базового не отражалось ни на потреблении памяти, ни на времени
работы:

struct Expired : public unary_function<Deal *, bool> {
bool operator ()(const Deal *d) const

{ return d->expired(); }
};

Наконец, шаблон unary_function входит в состав стандартной библиоте-
ки. Опытные программисты на C++ знают, что его не надо применять в качестве
полнофункционального базового класса и потому не будут пытаться манипули-
ровать объектами производных классов через интерфейс unary_function. Это
особый случай.

Вот еще один пример из хорошо известной, но не стандартной библиотеки.
Проектные ограничения те же, что для рассмотренного выше стандартного базо-
вого класса, но, поскольку этот класс стандартным все же не является, автор не
мог полагаться на то, что программисты будут с ним знакомы:

namespace Loki {
struct OpNewCreator {

template <class T>
static T *Create() { return new T; }

protected:
~OpNewCreator() {}

 };
}

В данном случае автор решил объявить защищенный, встраиваемый, невирту-
альный деструктор. Эффективность по времени и памяти при этом сохраняется,
использовать деструктор не по назначению становится трудно, и имеется явное
указание на то, что класс предназначен только для употребления в качестве базо-
вого.

Это исключительные случаи, а, вообще говоря, при проектировании лучше
всего включать в любой базовый класс виртуальный деструктор.

Совет 71. Сокрытие невиртуальных функций
Невиртуальная функция определяет инвариант относительно иерархии (или

ее части) с корнем в базовом классе. Проектировщики производных классов не
могут переопределять невиртуальные функции и не должны скрывать их (см. «Со-
вет 77»). Обоснование этого правила фундаментально и вместе с тем очевидно:
любой другой подход ведет к нарушению полиморфизма.

У полиморфного объекта есть одна реализация (класс), но много типов. Буду-
чи знакомы с абстрактными типами данных, мы знаем, что тип – это набор опера-
ций, и эти операции представлены в открытом интерфейсе. Например, класс

177177177177177

Circle (круг) «является разновидностью» Shape (геометрическая фигура) и
должен работать предсказуемо и согласованно при обращении через любой из
своих интерфейсов:

class Shape {

public:

virtual ~Shape();

virtual void draw() const = 0;

void move(Point);

// . . .

};

class Circle : public Shape {

public:

 Circle();

~Circle();

void draw() const;

void move(Point);

// . . .

};

Проектировщик класса Circle решил скрыть функцию move (быть может,
в базовом классе предполагается, что Point описывает верхний угол, а в Circle
это центр). Теперь объект Circle может вести себя по-разному в зависимости от
того, через какой интерфейс к нему обращаются:

void doShape(Shape *s, void (Shape::*op)(Point), Point p)
{ (s->*op)(p); }

Circle *c = new Circle;
Point pt(x, y);
c->move(pt);
doShape(c, &Shape::move, pt); //áåäà!

Сокрытие невиртуальной функции из базового класса лишь усложняет
пользование иерархией, не давая ничего взамен:

class B {

public:
void f();
void f(int);

};
class D : public B{
public:

void f(); // íåóäà÷íàÿ ìûñëü!
};

B *bp = new D;
bp->f(); // íåîæèäàííîñòü! âûçûâàåòñÿ B::f() äëÿ îáúåêòà D
D *dp = new D;

dp->f(123); // îøèáêà! B::f(int) ñêðûòà

Виртуальные и чисто виртуальные функции – это механизмы определения
зависящей от типа реализации. Когда мы переопределяем виртуальную функцию
в производном классе, то гарантируем, что во время выполнения данный объект
будет обладать только одной реализацией и, следовательно, единственным пове-
дением. Стало быть, поведение объекта не зависит от того, через какой интерфейс
к нему обратились.

СоветСоветСоветСоветСовет 71. Сокрытие невиртуальных функций71. Сокрытие невиртуальных функций71. Сокрытие невиртуальных функций71. Сокрытие невиртуальных функций71. Сокрытие невиртуальных функций

178178178178178 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Попутно заметим, что виртуальные функции можно вызывать и, прибегая
к помощи механизма виртуализации, если воспользоваться оператором разреше-
ния области видимости, но это особенность использования интерфейса, а не его
дизайна. Однако, в этом смысле переопределенная виртуальная функция из базо-
вого класса все-таки доступна в производных от него классах:

class Msg {
public:
virtual void send();
// . . .

};
class XMsg : public Msg {
public:
void send();
// . . .

};
// . . .
XMsg *xmsg = new XMsg;
xmsg->send(); // âûçûâàåòñÿ XMsg::send

xmsg->Msg::send(); // âûçûâàåòñÿ ñêðûòàÿ/ïåðåîïðåäåëåííàÿ Msg::send

Это необходимый иногда трюк, но не часть проекта. Впрочем, возможность
невиртуально обратиться к переопределенной виртуальной функции из базового
класса может использоваться проектировщиком и осознанно. Такое обращение
обычно используется, чтобы предоставить общую реализацию из базового класса
в распоряжение переопределенных функций в производных классах.

Иллюстрацией этого подхода может служить стандартная реализация паттер-
на Decorator, который применяется, чтобы дополнить, а не подменить сущест-
вующие в иерархии функции:

gotcha71/msgdecorator.h
class MsgDecorator : public Msg {
public:
void send() = 0;
// ...

private:
Msg *decorated_;

};
inline void MsgDecorator::send() {

decorated_->send(); // ïåðåíàïðàâèòü âûçîâ
}

Класс MsgDecorator является абстрактным, поскольку в нем объявлена
чисто виртуальная функция send. Конкретные классы, производные от Msg-
Decorator, должны переопределить MsgDecorator::send. Но, хотя вызывать
MsgDecorator::send как виртуальную функцию невозможно (разве что не-
обычным, нестандартным и чреватым ошибками способом; см. «Совет 75»), раз-
решено обращаться к ней невиртуально, с помощью оператора разрешения об-
ласти видимости. Реализация MsgDecorator::send представляет ту общую
часть, которую должны включать все переопределенные функции send в произ-
водных классах. Воспользоваться ей можно с помощью невиртуального вызова:

�� gotcha71/msgdecorator.cpp

void BeepDecorator::send() {

179179179179179

 MsgDecorator::send(); // âûçâàòü ôóíêöèþ èç áàçîâîãî êëàññà
 cout << '\a' << flush; // äîïîëíèòåëüíî ïîâåäåíèå ...
}

Есть и альтернатива: в классе MsgDecorator можно было бы объявить защи-
щенную невиртуальную функцию, реализующую общее поведение, но примене-
ние имеющей определение чисто виртуальной функции более четко указывает на
ее предназначение: быть вызванной из функций производных классов.

Совет 72. Не делайте шаблонные методы
слишком гибкими
Паттерн Template Method (Шаблонный Метод) разбивает алгоритм на посто-

янную и переменную части. Постоянная часть алгоритма определяется как невир-
туальный член базового класса. Но эта невиртуальная функция позволяет настро-
ить некоторые шаги алгоритма в производных классах. Обычно алгоритм
вызывает защищенные виртуальные функции, которые можно переопределить
в производных классах. (Обращаю ваше внимание, что паттерн Template Method
не имеет ничего общего с шаблонами в смысле языка C++.)

Это позволяет проектировщику базового класса сохранить общую структуру
алгоритма для всех производных классов, обеспечив в то же время необходимую
настройку:

class Base {

public:

// . . .

void algorithm();

protected:

virtual bool hook1() const;

virtual void hook2() = 0;

};

void Base::algorithm() {

// . . .

if(hook1()) {
// . . .
hook2();

}
// . . .

}

Паттерн Template Method дает возможность управлять разделением обязан-
ностей между виртуальными и невиртуальными функциями. Интересно посмот-
реть, сколько проектных ограничений мы можем навязать проектировщикам про-
изводных классов, пользуясь лишь этой идиомой:

class Base {

 public:
 virtual ~Base(); // ÿ áàçîâûé êëàññ
 virtual bool verify() const = 0; // ïðîâåðÿòü âû äîëæíû ñàìè
 virtual void doit(); // ìîæåòå ñäåëàòü ýòî, êàê ÿ, èëè èíà÷å
 long id() const; // ïîëüçóéòåñü ýòîé ôóíêöèåé èëè èäèòå â äðóãîå ìåñòî

void jump(); // åñëè ÿ ãîâîðþ "ïðûãàé", âû ìîæåòå ñïðîñèòü ëèøü ...

СоветСоветСоветСоветСовет 7272727272

180180180180180 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

protected:

virtual double howHigh() const; // ... íàñêîëüêî âûñîêî, è ...

virtual int howManyTimes() const = 0; // ... ñêîëüêî ðàç.

};

Многие начинающие проектировщики ошибочно полагают, что проект дол-
жен быть максимально гибким. Поэтому они объявляют виртуальным и сам ал-
горитм шаблонного метода, считая, что лишняя гибкость никому не помешает.
Неверно. Проектировщики производных классов больше всего выиграют от не-
двусмысленного контракта, «подписанного» базовым классом. Если вызывающая
программа ожидает от шаблонного метода конкретного общего поведения, то про-
изводные классы должны учитывать это пожелание и реализовывать его.

Совет 73. Перегрузка виртуальных функций
Что не так в следующем фрагменте базового класса?

class Thing {
public:

// ...
virtual void update(int);
virtual void update(double);

};

Рассмотрим производный класс, разработанный проектировщиком, который
решил, что только версия функции с параметром типа int должна вести себя по-
другому:

class MyThing : public Thing {
public:

// ...
void update(int);

};

Здесь мы имеем несчастливое сочетание перегрузки и переопределения –
понятий, которые не имеют между собой ничего общего. Результат аналогичен
тому, что случается при сокрытии невиртуальной функции из базового класса:
поведение объекта MyThing будет меняться в зависимости от того, через какой
интерфейс к нему обращаются:

MyThing *mt = new MyThing;

Thing *t = mt;

t->update(12.3); // ïðàâèëüíî, èç áàçîâîãî êëàññà

mt->update(12.3); // îé, èç ïðîèçâîäíîãî êëàññà!

При вызове mt->update(12.3) будет найдено имя update в производ-
ном классе, которое соответствует параметрам после преобразования аргумента
типа double в int. Вероятно, программист имел в виду не это. Но даже если про-
граммист с необычным взглядом на мир хотел получить именно такое поведение,
то вряд ли этот код придется по вкусу будущим сопровождающим с более тради-
ционным умонастроением.

Чем возражать против перегрузки виртуальных функций, мы могли бы, как
часто предлагалось в книгах по C++, вышедших до принятия стандарта, настоять

181181181181181

на том, чтобы проектировщики производных классов переопределяли все функ-
ции из набора перегруженных с одним и тем же именем. Но это не практичный
подход, так как требует, чтобы проектировщики всех производных классов следо-
вали некоему единому правилу. Однако многие производные классы, в частности,
создаваемые для расширения каркаса, разрабатываются в контексте, очень дале-
ком от базового класса и тех соглашений о проектировании и кодировании,
в рамках которого он создавался.

Так или иначе, но отказ от перегрузки виртуальных функций не налагает серь-
езных ограничений на интерфейс базового класса. Если перегрузка так важна для
конкретного базового класса, никто не мешает перегрузить невиртуальные функ-
ции, которые обращаются к виртуальным функциям с разными именами:

class Thing {

public:

// ...

void update(int);

void update(double);

protected:

virtual void updateInt(int);

virtual void updateDouble(double);

};

inline void Thing::update(int a)

{ updateInt(a); }

inline void Thing::update(double d)

{ updateDouble(d); }

Теперь производный класс может независимо переопределять любую вирту-
альную функции, не опасаясь нарушить полиморфизм. Конечно, в производном
классе не следует объявлять функцию-член с именем update; запрет на сокрытие
невиртуальных членов базового класса по-прежнему действует!

У этого правила есть исключения, но встречаются они сравнительно редко.
Одно из них связано с традиционной реализацией паттерна Visitor (Посетитель)
(см. «Совет 77»).

Совет 74. Виртуальные функции
с аргументами по умолчанию
Это по существу та же проблема, что и перегрузка виртуальных функций. Как

и перегрузка, аргументы по умолчанию – не более чем синтаксическое удобство,
позволяющее изменить интерфейс функции, не добавляя новое поведение:

class Thing {

// ...

virtual void doitNtimes(int numTimes = 12);

};

class MyThing : public Thing {

// ...

void doitNtimes(int numTimes = 10);

};

СоветСоветСоветСоветСовет 73. Перегрузка виртуальных функций73. Перегрузка виртуальных функций73. Перегрузка виртуальных функций73. Перегрузка виртуальных функций73. Перегрузка виртуальных функций

182182182182182 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Возникающая проблема проистекает из несоответствия между статическим и
динамическим поведением объекта. Найти источник ошибки часто бывает до-
вольно трудно:

Thing *t = new MyThing;
t->doitNtimes();

Предположение состоит в том, что для объекта MyThing функция doitNtimes
должна по умолчанию сделать то, что ей положено 10 раз, тогда как для других
типов, производных от Thing, 12 раз. К сожалению, значение аргумента по умол-
чанию применяется статически, а в статически определенном базовом классе оно
равно 12 и таковым и останется во всех динамически связанных с ним производ-
ных классах.

Можно было бы попытаться обойти эту проблему, потребовав, чтобы проекти-
ровщики всех производных классов в точности повторяли значения аргументов
по умолчанию, заданные для переопределяемой функции в базовом классе. Но по
ряду причин это порочная идея.

Во-первых, многие разработчики не прислушаются к этому совету, такова уж их
природа. (Возможно, они утратили доверие к базовому классу, увидев, как в нем
инициализируются аргументы по умолчанию, и решили поступить по-своему.)

Во-вторых, такого рода рекомендации делают производные классы излишне
уязвимыми по отношению к изменениям в базовом классе. Если в базовом классе
меняется значение аргумента по умолчанию, то придется провести аналогичные
изменения во всех производных классах. Как правило, это невозможно.

В-третьих, семантика аргумента по умолчанию может меняться в зависимос-
ти от того, в каком месте исходного текста он появляется. Синтаксически иден-
тичные инициализаторы могут иметь разный смысл в контексте базового и произ-
водного класса:

// Â ôàéëå thing.h ...
const int minim = 12;
namespace SCI {
class Thing {

// ...
virtual void doitNtimes(int numTimes = minim);

// èñïîëüçóåòñÿ ::minim
};
}

// Â ôàéëå mything.h ...
namespace SCI {
const int minim = 10;
class MyThing : public Thing {

// ...
void doitNtimes(int numTimes = minim);

// èñïîëüçóåòñÿ ::minim
};
}

Трудно винить проектировщика производного класса за то, что он выбрал не
тот minim, особенно если объявление SCI::minim было добавлено после того,
как был написан класс MyThing.

183183183183183

Простейшее и самое безопасное решение: вообще не употреблять аргументы
по умолчанию в виртуальных функциях. Как и в случае перегрузки виртуальных
функций, реализовать нужный нам интерфейс можно с помощью нехитрого трю-
ка со встраиванием:

class Thing {
// ...
void doitNtimes(int numTimes = minim)

{ doitNtimesImpl(numTimes); }
protected:
virtual void doitNtimesImpl(int numTimes);

};

Пользователи иерархии Thing будут работать со значением аргумента по
умолчанию, статически определенным в базовом классе, а производные классы
могут модифицировать поведение функции, не заботясь о том, каково значение
инициализатора.

Совет 75. Вызовы виртуальных функций
из конструкторов и деструкторов
Конструкторы служат для того, чтобы захватить ресурсы, необходимые

объекту для выполнения работы, а назначение деструктора – освободить эти ре-
сурсы. Так почему же не выразить это архитектурное решение явно в проекте ба-
зового класса?

class B {
public:
B() { seize(); }
virtual ~B() { release(); }

protected:
virtual void seize() {}
virtual void release() {}

};

Затем производные классы могли бы переопределить функции seize и
release и тем самым настроить способ захвата ресурсов:

class D : public B {
public:
D() {}
~D() {}
void seize() {

B::seize(); // ïîëó÷èòü ðåñóðñû äëÿ áàçîâîãî êëàññà
// ïîëó÷èòü ðåñóðñû äëÿ ïðîèçâîäíîãî êëàññà ...

}
void release() {

// îñâîáîäèòü ðåñóðñû ïðîèçâîäíîãî êëàññà ...
B::release(); // îñâîáîäèòü ðåñóðñû áàçîâîãî êëàññà

}
};
// . . .
D x; // íèêàêèå ðåñóðñû íå çàõâà÷åíû è íå îñâîáîæäåíû!

На первом шаге инициализации x конструктор производного класса вызывает
конструктор базового класса, который, в свою очередь, вызывает виртуальную

СоветСоветСоветСоветСовет 7575757575

184184184184184 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

функцию seize. На последнем шаге уничтожения x деструктор производного
класса вызывает деструктор базового класса, который обращается к виртуальной
функции release. Однако ни захвата, ни освобождения ресурсов не происходит.

Проблема в том, что в точке, где из конструктора производного класса вызы-
вается конструктор базового, объект x еще не имеет тип D. Конструктор базового
класса инициализирует подобъект B объекте x, в результате чего он будет вести
себя как B. Поэтому при вызове виртуальной функции sieze происходит дина-
мическая привязка к B::sieze. То же самое, только в обратном порядке проис-
ходит при уничтожении объекта. Когда деструктор производного класса вызыва-
ет деструктор базового, объект x уже не принадлежит типу D, а подобъект B ведет
себя, как положено объекту класса B. Поэтому вызов виртуальной функции
release связывается с B::release.

В данном случае простейшее решение: воспользоваться встроенным механиз-
мом реализации конструирования и уничтожения сложных объектов. Код, осуще-
ствляющий захват и освобождение ресурсов для подобъектов базового класса,
должен присутствовать соответственно в конструкторах и деструкторе:

class B {
public:
B() {

// ïîëó÷èòü ðåñóðñû äëÿ áàçîâîãî êëàññà...
}
virtual ~B() {

// îñâîáîäèòü ðåñóðñû äëÿ áàçîâîãî êëàññà ...
}

};
class D : public B {
public:
D() {

// ïîëó÷èòü ðåñóðñû äëÿ ïðîèçâîäíîãî êëàññà ...
}
~D() {

// îñâîáîäèòü ðåñóðñû äëÿ ïðîèçâîäíîãî êëàññà ...
}

};
// ...
D x; // ðàáîòàåò!

Кстати говоря, таким способом иногда можно вызвать чисто виртуальную
функцию с помощью виртуальной, а не статической последовательности вызова:

class Abstract {
public:
Abstract();
Abstract(const Abstract &);
virtual bool validate() const = 0;
// ...

};
bool Abstract::validate() const

{ return true; }
Abstract::Abstract() {

if(validate()) // ïîïûòêà âûçâàòü ÷èñòî âèðòóàëüíóþ ôóíêöèþ
// ...

};

185185185185185

Однако согласно стандарту поведение такого вызова не определено. На неко-
торых платформах подобный виртуальный вызов функции просто аварийно за-
вершает программу, поскольку предпринимается попытка обратиться к функции
по нулевому указателю. А иногда (и это самое опасное) действительно вызывает-
ся Abstract::validate. Но даже если вы этого и хотели, такой код нестабилен
и не переносим.

Отметим, что мы здесь говорим только о вызове виртуальной функции для
объекта, который находится в процессе конструирования или уничтожения. Ник-
то не запрещает вызывать из конструктора или деструктора виртуальные функ-
ции другого, полностью сконструированного объекта:

Abstract::Abstract(const Abstract &that) {
if(that.validate()) // ïðàâèëüíî

// ...
}

Совет 76. Виртуальное присваивание
Присваивание может быть виртуальным, но использование такой возможнос-

ти редко бывает оправдано. Например, можно построить иерархию контейнеров,
поддерживающих виртуальное присваивание через интерфейс базового класса:

template <typename T>

class Container {

public:

virtual Container &operator =(const T &) = 0;

// . . .

};

template <typename T>

class List : public Container<T> {

List &operator =(const T &);

// . . .

};

template <typename T>

class Array : public Container<T> {

Array &operator =(const T &);

// . . .

};

// . . .

Container<int> &c(getCurrentContainer());

c = 12; // ïîíÿòíî ëè, ÷òî èìååòñÿ â âèäó?

Обратите внимание, что это копирующее присваивание, так как тип аргумен-
та отличается от типа контейнера. (О том, почему тип значения, возвращаемого
переопределенными в производных классах операторами присваивания, может
отличаться от того типа, который возвращают операторы присваивания в базовом
классе, см. «Совет 77».) Назначение этого оператора присваивания: присвоить
всем элементам контейнера Container одно и то же значение. Увы, опыт пока-
зывает, что такое применение присваивания часто интерпретируют неверно; не-
которые пользователи полагают, что должен измениться размер контейнера,
а другие, что задается значение только первого элемента (см. «Совет 84»). Безо-

СоветСоветСоветСоветСовет 76. Виртуальное присваивание76. Виртуальное присваивание76. Виртуальное присваивание76. Виртуальное присваивание76. Виртуальное присваивание

186186186186186 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

паснее отказаться от перегрузки оператора в пользу недвусмысленной не-опера-
торной функции:

template <typename T>

class Container {

public:

virtual void setAll(const T &newElementValue) = 0;

// . . .

};

// . . .

Container<int> &c(getCurrentContainer());

c.setAll(12); // ñåìàíòèêà ÿñíà

Копирующий оператор присваивания тоже может быть виртуальным, но эта
идея редко осмыслена, так как определенный в производном классе копирую-
щий оператор присваивания не переопределяет такой же оператор из базового
класса:

template <typename T>

class Container {

public:

virtual Container &operator =(const Container &) = 0;

// ...

};

template <typename T>

class List : public Container<T> {

List &operator =(const List &); // íå ïåðåîïðåäåëÿåò!

List &operator =(const Container<T> &); // ïåðåîïðåäåëÿåò...

// ...

};

// ...

Container<int> &c1 = getMeAList();

Container<int> &c2 = getMeAnArray();

c1 = c2; // ïðèñâîèòü ìàññèâ ñïèñêó?!?

Виртуальный копирующий оператор присваивания позволил бы присвоить
объект одного производного класса объекту производного класса совсем другого
типа! Мало найдется случаев, когда это имеет смысл. Избегайте виртуальных ко-
пирующих операторов присваивания.

Можно попытаться отыскать место для виртуального копирующего операто-
ра присваивания в иерархии Container выше, так как, возможно, имеет смысл
присвоить содержимое одного контейнера (массива) другому контейнеру (спис-
ку). При этом предполагается, что каждый тип контейнера знает все об остальных
типах (что обычно считается неправильным подходом к проектированию) или
что в проекте участвует довольно сложный каркас. Проще, а значит, и лучше,
было бы иметь невиртуальную функцию copyContent, являющуюся или не яв-
ляющуюся членом класса Container, и написанную в терминах виртуальных
функций или итераторов, которые извлекают элементы из исходного контейнера
и вставляют их в целевой:

Container<int> &c1 = getMeAList();
Container<int> &c2 = getMeAnArray();

c1.copyContent(c2); // ñêîïèðîâàòü ñîäåðæèìîå ìàññèâà â ñïèñîê

187187187187187

Пример такого подхода можно найти в контейнерах из стандартной библиоте-
ки, которые допускают инициализацию контейнера последовательностью, взятой
из существующего контейнера другого типа:

vector<int> v;
// ...
list<int> el(v.begin(), v.end());

Часто вместо виртуального присваивания лучше применить виртуальный кон-
структор копирования. Разумеется, в C++ нет никаких виртуальных конструкто-
ров, зато есть идиома «виртуального конструктора», которая теперь больше изве-
стна как паттерн Prototype (Прототип). Вместо того чтобы присваивать объект
неизвестного типа, мы его клонируем. Базовый класс предоставляет чисто вирту-
альную операцию clone, которая переопределяется в производных классах так,
чтобы объект возвращал точную копию самого себя. Обычно копия создается кон-
структором копирования производного класса, так что операцию clone можно
считать в некотором смысле виртуальным конструктором.

�� gotcha90/container.h

template <typename T>

class Container {

public:

virtual Container *clone() const = 0;

// . . .

};
template <typename T>

class List : public Container<T> {

List(const List &);

List *clone() const

{ return new List(*this); }

// . . .

};

template <typename T>

class Array : public Container<T> {

Array(const Array &);

Array *clone() const

{ return new Array(*this); }

// . . .

};

// . . .

Container<int> *cp = getCurrentContainer();

Container<int> *cp2 = cp->clone();

Применяя паттерн Prototype, мы по сути дела говорим: «Я точно не знаю, на
что указываю, но хочу получить точно такое же!»

Совет 77. Различайте перегрузку,
переопределение и сокрытие
Всегда шокирует, когда после долгой технической дискуссии вы вдруг обна-

руживаете, что ваш собеседник не видит разницы между перегрузкой и переопре-
делением. Добавьте еще нечеткое представление о том, что такое сокрытие имен, и

СоветСоветСоветСоветСовет 7777777777

188188188188188 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

вы поймете, что я называю бессмысленной беседой. Так быть не должно, разли-
чать эти понятия необходимо.

В C++ перегрузка – это просто использование одного и того же идентифика-
тора для разных функций, объявленных в одной и той же области видимости.
Последнее важно:

bool process(Credit &);

bool process(Acceptance &);

bool process(OrderForm &);

Ясно, что эти три глобальные функции перегружены. У них общий идентифи-
катор process, и они объявлены в одной и той же области видимости. Компиля-
тор отличает одну от другой по фактическому аргументу, переданному при вызо-
ве process. Это разумно. Если я прошу обработать объект типа Acceptance, то
ожидаю, что будет вызвана вторая из перечисленных выше функций, а не первая и
не третья. В C++ имя функции состоит из комбинации ее идентификатора (в дан-
ном случае process) и типов формальных аргументов в ее объявлении.
А теперь погрузим эти три функции в класс:

class Processor {

public:

virtual ~Processor();

bool process(Credit &);

bool process(Acceptance &);

bool process(OrderForm &);

// ...

};

Они по-прежнему перегружены, и компилятор еще может отличить одну от
другой по типу фактического аргумента. Наличие виртуального деструктора
в классе Processor говорит о том, что проектировщик намеревался использо-
вать его в качестве базового класса, так что мы вправе расширить функциональ-
ность путем наследования:

class MyProcessor : public Processor {

public:

bool process(Rejection &);

// ...

};

Только не так. Функция process из производного класса не перегружает
функции process из базового. Она скрывает их:

Acceptance a;

MyProcessor p;

p.process(a); // îøèáêà!

Когда компилятор ищет имя process в области видимости производного
класса, он находит единственную функцию-кандидат. В соответствии с объяв-
лением она принимает аргумент типа Rejection, так что типы аргументов не
совпадают (если только нет какого-нибудь преобразования из Acceptance
в Rejection). Конец дискуссии. Компилятор не станет продолжать поиск функ-
ций process в объемлющих областях видимости. Функция process из произ-

189189189189189

водного класса объявлена в области видимости производного, а не базового клас-
са и, следовательно, не может перегружать функции из базового класса.

Можно импортировать объявления из базового класса в область видимости
производного с помощью using-объявления:

class MyProcessor : public Processor {
public:
using Processor::process;
bool process(Rejection &);
// ...

};

Теперь все четыре функции находятся в одной и той же области видимости,
поэтому функция process из производного класса перегружает три функции,
явно импортированные в его область видимости. Отметим, что такой метод про-
ектирования не является образцовым, поскольку он слишком сложен, а сложный
дизайн всегда хуже простого, если только не компенсирует сложность чем-то еще.

В данном случае, объект Rejection можно обработать только через интер-
фейс класса MyProcessor, а при попытке обработать его через интерфейс
Processor возникнет ошибка компиляции. Однако, если Rejection можно
преобразовать в Acceptance, OrderForm или Credit, то вызов завершится
успешно через любой интерфейс, только поведение будет различным.

Переопределение возможно лишь при наличии в базовом классе виртуальной
функции. Точка. Переопределение не имеет ничего общего с перегрузкой. Невир-
туальная функция из базового класса не может быть переопределена, а только
скрыта:

class Doer {

 public:

virtual ~Doer();

bool doit(Credit &);

 virtual bool doit(Acceptance &);

 virtual bool doit(OrderForm &);

 virtual bool doit(Rejection &);

 // ...

};

class MyDoer : public Doer {

 private:

 bool doit(Credit &); // #1, ñêðûâàåò

 bool doit(Acceptance &); // #2, ïåðåîïðåäåëÿåò
 virtual bool doit(Rejection &) const; // #3, íå ïåðåîïðåäåëÿåò
 double doit(OrderForm &); // #4, îøèáêà
 // ...
};

(Обратите внимание, что классы Doer выше приведены для иллюстрации,
а не как примеры правильного проектирования. На самом деле, перегружать вир-
туальные функции, как правило, вредно. См. «Совет 73».)

Функция doit с меткой #1 не переопределяет одноименную функцию из ба-
зового класса, поскольку последняя не виртуальна. Однако она скрывает все че-
тыре функции doit из базового класса.

СоветСоветСоветСоветСовет 7777777777

190190190190190 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Функция с меткой #2 переопределяет одноименную функцию из базового
класса. Отметим, что уровень доступа на переопределении никак не отражается.
Неважно, что в базовом классе функция открыта, а в производном закрыта или
наоборот. По принятому соглашению, переопределенная функция в производном
классе имеет тот же уровень доступа, что и соответствующая ей функция
в базовом классе. Впрочем, в некоторых случаях бывает полезно отклониться от
стандартной практики:

class Visitor {
public:
virtual void visit(Acceptance &);
virtual void visit(Credit &);

virtual void visit(OrderForm &);
virtual int numHits();

};
class ValidVisitor : public Visitor {

void visit(Acceptance &); // ïåðåîïðåäåëÿåò
void visit(Credit &); // ïåðåîïðåäåëÿåò

int numHits(int); // #5, íåâèðòóàëüíàÿ
};

В данном случае проектировщик иерархии решил позволить настройку пове-
дения базового класса, но хотел бы, чтобы пользователи иерархии все же ограни-
чились интерфейсом базового класса. Чтобы добиться своей цели, проектиров-
щик объявил функции-члены базового класса открытыми, но в производных
классах переопределил их, сделав закрытыми.

Обратите также внимание на то, что употреблять ключевое слово virtual
при переопределении функций в производных классах совершенно необязатель-
но. Семантика объявления функции в производном классе будет одной и той же
вне зависимости от наличия этого слова:

class MyValidVisitor : public ValidVisitor {

void visit(Credit &); // ïåðåîïðåäåëÿåò
void visit(OrderForm &); // ïåðåîïðåäåëÿåò
int numHits(); // #6, âèðòóàëüíàÿ, ïåðåîïðåäåëÿåò Visitor::numHits

};

Часто думают, что если при переопределении функции в производном классе
опустить слово virtual, то будет запрещено переопределять эту функцию в клас-
сах ниже по иерархии. Это не так, MyValid Visitor::visit(Credit &)
переопределяет соответствующие функции в классах ValidVisitor и Visitor.

Кроме того, никто не запрещает переопределять в производном классе функции,
расположенные в далеко отстоящем базовом классе. MyValidVisitor::visit
(OrderForm &) переопределяет соответствующую функцию в классе Visitor.

В производном классе разрешено даже переопределять функцию из далеко
отстоящего базового класса, которая не видна в области видимости производно-
го класса. Например, функция с меткой #5 ValidVisitor::numHits не
переопределяет функцию Visitor::numHits из базового класса, но скрывает
ее от классов, расположенных ниже по иерархии. Тем не менее, функция
MyValidVisitor::numHits переопределяет Visitor::numHits.

191191191191191

Функция-член класса MyDoer с меткой #3 заслуживает более пристального
внимания. Она не переопределяет виртуальную функцию из базового класса, по-
скольку является константной, а в базовом классе соответствующей константной
функции нет. Константность – это часть сигнатуры функции (см. «Совет 82»).

Функция-член класса MyDoer с меткой #4 ошибочна. Она переопределяет со-
ответствующую виртуальную функцию из базового класса, но типы возвращаемых
ими значений несовместимы; функция из базового класса возвращает bool, а
функция из производного класса – double. Результат: ошибка компиляции.

В общем случае, если функция в производном классе переопределяет функ-
цию из базового, то она должна возвращать значение того же типа. Это гарантирует
статическую безопасность типов при связывании во время исполнения. Виртуаль-
ная функция из производного класса обычно вызывается через интерфейс базового
класса (ведь для этого мы и пишем виртуальные функции). Компилятор должен
сгенерировать код в предположении, что тип возвращенного функцией значения
(все равно, будет она связана во время исполнения с функцией из базового или
производного класса,) совпадает с тем, что объявлен в базовом классе.

В случае некорректного объявления #4 функция из производного класса по-
пытается скопировать объект размером sizeof(double) байтов в область памя-
ти, зарезервированную для значения размером всего sizeof(bool) байтов.
Даже если эти размеры совместимы (то есть длина bool не меньше длины
double), маловероятно, что интерпретация double как bool даст разумный
результат.

У этого правила есть исключение, известное под название «ковариантные
возвращаемые типы». (Не путайте ковариантность с контравариантностью!
См. «Совет 46».) Типы значений, возвращаемых функцией-членом базового клас-
са и перегружающей ее функцией из производного класса, ковариантны, если оба
являются указателями или ссылками на объекты классов, и тип, возвращаемый
функцией из производного класса, связан отношением «является» с типом, воз-
вращаемым функцией из базового класса. Сразу и не выговоришь, поэтому рас-
смотрим два канонических примера ковариантных возвращаемых типов.

class B {

 virtual B *clone() const = 0;

 virtual Visitor *genVisitor() const;

 // ...

};

class D : public B {

 D *clone() const;

 ValidVisitor *genVisitor() const;

};

Функция clone возвращает указатель на копию объекта, попросившего
о клонировании (это пример паттерна Prototype, см. «Совет 76»). Обычно такой
запрос делается через интерфейс базового класса, и точный тип клонируемого
объекта не известен:

B *aB = getAnObjectDerivedFromB();
B *anotherLikeThat = aB->clone();

СоветСоветСоветСоветСовет 7777777777

192192192192192 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Но иногда у нас имеется более определенная информация о типе, и мы не хо-
тели бы ее терять или прибегать к понижающему приведению:

D *aD = getAnObjectThatIsAtLeastD();
D *anotherLikeThatD = aD->clone();

Если бы не ковариантный возвращаемый тип, нам пришлось бы приводить
B * к D *:

D *anotherLikeThatD = static_cast<D *>(aD->clone());

Отметим, что в данном случае мы можем воспользоваться эффективным опе-
ратором static_cast вместо dynamic_cast, так как знаем, что операция
clone в классе D возвращает объект D. При других обстоятельствах безопаснее и
предпочтительнее было бы применить dynamic_cast (или обойтись без приве-
дения вовсе).

Функция genVisitor (пример паттерна Factory Method, см. «Совет 90») ил-
люстрирует тот факт, что ковариантные возвращаемые классы не обязательно дол-
жны быть как-то связаны с той иерархией, в которой имел место вызов функции.

Механизм переопределения в C++ – гибкий и полезный инструмент. Но пла-
той за пользование им является сложность. Этот и другие советы из настоящей
главы показывают, как можно справиться со сложностью, не отказываясь от при-
менения этого механизма, когда в нем возникает нужда.

Совет 78. О реализации виртуальных функций
и механизма переопределения
Многие начинающие программисты на C++ имеют лишь поверхностное пред-

ставление о том, как в языке реализован механизм переопределения. А ведь иног-
да это знание помогает яснее понять, что происходит в программе. Есть несколько
разных эффективных способов реализации виртуальных функций и переопреде-
ления. Ниже описывается один из наиболее распространенных.

Сначала рассмотрим простую реализацию для одиночного наследования.

class B {

public:
virtual int f1();
virtual void f2(int);
virtual int f3(int);

};

Каждой виртуальной функции, объявленной в классе, компилятор назначает
некоторый индекс. Например, функция B::f1 получит индекс 0, B::f2 – индекс 1
и так далее. Эти индексы служат для доступа к таблице указателей на функции.
Элемент таблицы с индексом 0 содержит адрес B::f1, элемент с индексом 1 –
адрес B::f2 и так далее. В каждом объекте класса хранится вставленный компи-
лятором указатель на эту таблицу. Объект типа B может размещаться в памяти,
как показано на рис. 7.5.

В разговорной речи таблица указателей на функции называется «vtbl», а ука-
затель на нее – «vptr». Конструкторы класса B инииализируют vptr так, что он

193193193193193

Адрес функции, которую нужно вызвать, мы получаем из той записи vtbl, ко-
торая соответствует индексу функции. После этого выполняется косвенный вы-
зов, и функции передается адрес самого объекта в виде неявного аргумента this.
Механизм виртуальных функций в C++ эффективен. Косвенные вызовы обычно
оптимизированы для конкретной аппаратной архитектуры, а все объекты одного
типа, как правило, пользуются одной и той же таблицей vtbl. При одиночном на-
следовании у каждого объекта есть только один vptr, вне зависимости от того,
сколько в классе объявлено виртуальных функций.

Посмотрим на реализацию производного класса, в котором некоторые вир-
туальные функции из базового класса переопределены:
class B {
public:
virtual int f1();
virtual void f2(int);
virtual int f3(int);

};
class D : public B {

int f1();
virtual void f4();
int f3(int);

};

Объект типа D содержит подобъект типа B. Обычно, хотя и не всегда (см. «Совет
70»), подобъект базового класса находится в начале объекта производного класса
(со смещением 0), а все дополнительные члены, специфичные только для произ-
водного класса, располагаются после базовой части, как на рис. 7.6.

Рассмотрим вызов той же виртуальной функции-члена, что и раньше, но на
этот раз вместо объекта B воспользуемся объектом D:

B *bp = new D;

bp->f3(12);

Компилятор сгенерирует ту же самую последовательность вызова, но теперь
во время выполнения она будет связана с функцией D::f3, а не B::f3:

(*(bp->vptr)[2])(bp, 12)

Рис. 7.5. Простая реализация виртуальных функций при одиночном наследовании

указывает на vtbl (см. «Совет 75»). Обращение к виртуальной функции произво-
дится косвенно через таблицу vtbl. Так, вызов

B *bp = new B;
bp->f3(12);

транслируется в нечто такое:

(*(bp->vptr)[2])(bp, 12)

СоветСоветСоветСоветСовет 7878787878

194194194194194 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Ценность механизма виртуальных функций становится более наглядной в по-
лиморфном коде, когда точный тип объекта, с которым мы работаем, неизвестен:

B *bp = getSomeSortOfB();
bp->f3(12);

Код виртуального вызова, генерируемый компилятором, позволяет вызывать
без всякой перекомпиляции функцию f3 из любого класса, производного от B,
даже если такой класс еще не существует.

С точки зрения механизма, переопределение – это процедура замены адреса
функции-члена базового класса адресом функции-члена производного класса во
время конструирования таблицы виртуальных функций для производного клас-
са. В примере выше в классе D переопределены виртуальные функции f1 и f3,
унаследована реализация f2 и добавлена новая виртуальная функция f4. Это
точно отражено в структуре виртуальной таблицы для класса D

Детали механизма виртуальных функций при множественном наследовании
сложнее, но принцип остается тем же самым. Дополнительная сложность – ре-
зультат того, что у одного объекта может быть несколько подобъектов базовых
классов, а значит, и несколько действительных адресов. Рассмотрим следующую
иерархию:

class B1 { /* . . . */ };
class B2 { /* . . . */ };

class D : public B1, public B2 { /* . . . */ };

Объектом производного класса можно манипулировать через интерфейс лю-
бого из его открытых базовых классов; именно в этом смысл отношения «являет-
ся». Следовательно, на объект типа D можно сослаться с помощью указателей на
D, B1 или B2:

D *dp = new D;
B1 *b1p = dp;

B2 *b2p = dp;

Со смещением 0 от начала производного класса может быть расположен по-
добъект только одного базового класса, поэтому подобъекты базовых классов
обычно следуют один за другим в том порядке, в котором объявлены в списке ба-
зовых классов. В случае объекта D сначала идет подобъект B1, потом B2, как пока-
зано на рис. 7.7 (см. «Совет 38»).

Рис. 7.6. Простая реализация виртуальных функций

в объекте производного класса при одиночном наследовании.

Подобъект базового класса по-прежнему содержит vptr,

но теперь он указывает на таблицу, настроенную на производный класс

195195195195195

Наполним эту простую иерархию с множественным наследованием виртуаль-
ными функциями:

class B1 {

public:

virtual void f1();

virtual void f2();

};

class B2 {

public:

virtual void f2();

virtual void f3(int);

virtual void f4();

};

В каждом из классов B1 и B2 есть виртуальные функции, поэтому в объектах
этих классов есть указатели vptr на соответствующие таблицы vtbl (рис. 7.8).

Объект D является разновидностью как B1, так и B2, поэтому у нас есть два
указателя vptr и две таблицы vtbl (рис. 7.9):

class D : public B1, public B2 {

public:

void f2();

void f3(int);

virtual void f5();

};

Рис. 7.7. Типичное размещение объекта в памяти при множественном

наследовании

Рис. 7.8. Два потенциальных базовых класса

СоветСоветСоветСоветСовет 7878787878

196196196196196 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Отметим, что D::f2 переопределяет f2 в обоих базовых классах. Переопре-
деленная в производном классе функция замещает виртуальные функции с тем
же именем и сигнатурой (числом и типами аргументов) во всех базовых классах –
как непосредственных, так и отдаленных (базовый класс базового класса ...). Даже
если в класс D добавлена новая виртуальная функция (D::f5), компилятор не
вставляет vptr в специфичную для D часть объекта. Обычно новые виртуальные
функции, объявленные в производном классе, добавляются в таблицу вир-
туальных функций какого-то из базовых классов.

Но тут возникает проблема. Рассмотрим следующий код:

B2 *b2p = new D;
b2p->f3(12);

Мы собираемся манипулировать объектом производного класса через интер-
фейс одного из его базовых классов, как это всегда и делается. Однако, если ком-
пилятор сгенерирует ту же последовательность вызова, что и для одиночного на-
следования, то указатель this будет иметь некорректное значение:

(*(b2p->vptr)[1])(b2p,12)

Причина в том, что этот вызов динамически связывается с функцией D::f3,
которая ожидает, что неявный аргумент this будет указывать на начало объекта D.
К сожалению, b2p указывает на начало (под)объекта B2, который смещен от нача-
ла объекта D (рис. 7.7). Необходимо «подправить» значение this, передаваемое
при этом вызове, так чтобы b2p указывал на начало объекта D.

На наше счастье, при конструировании vtbl для производного класса компи-
лятор точно знает величины поправочных слагаемых, так как ему известно, для
какого класса строится vtbl и каковы смещения подобъектов базовых классов от-
носительно начала объекта производного класса. Для включения поправочной
информации есть несколько способов: от небольших фрагментов кода (они непра-

Рис. 7.9. Возможная реализация виртуальных функций при множественном

наследовании. Полный объект переопределяет виртуальные функции

для каждого из двух своих подобъектов базовых классов

197197197197197

вильно называются «thunk» – переходник), выполняемого перед собственно об-
ращением к функции, до реализации функций-членов с несколькими точками
входа. Концептуально, самый чистый способ выполнить эту операцию заключается
в том, чтобы просто записать необходимое смещение в таблицу vtbl и модифици-
ровать последовательность вызова, так чтобы оно учитывалось (см. рис. 7.10).

Теперь запись в таблице vtbl представляет собой небольшую структуру, со-
держащую адрес функции-члена (fptr) и смещение (delta), которое нужно до-
бавить к значению this. Последовательность вызова приобретает такой вид:

(*(b2p->vptr)[1].fptr)(b2p+(b2p->vptr)[1].delta,12)

Этот код отлично оптимизируется, так что обходится он не так дорого, как
кажется на первый взгляд.

Совет 79. Вопросы доминирования
Возможно, вы недоумеваете, как вас угораздило заняться программирова-

нием на языке, в котором есть такие понятия, как «друзья», «закрытые части»,
«связанные друзья» и «доминирование». В этом разделе мы рассмотрим понятие
доминирования в проектировании иерархий наследования: почему оно столь та-
инственно и когда в нем возникает необходимость. Ну, конечно, легко сказать, что
при вашем образе жизни такая проблема вообще не возникает, но рано или поздно
большинство опытных программистов на C++ сталкиваются с доминированием
(со своей стороны или со стороны коллег). Так что лучше заранее подготовиться.
Предупрежден – значит вооружен.

Доминирование возникает только в контексте виртуального наследования.
Проиллюстрировать его лучше графически. На рис. 7.11 идентификатор B::name
доминирует над A::name, если A – базовый класс B. Отметим, что доминирование

Рис. 7.10. Одна из многих возможных реализаций виртуальных функций

при множественном наследовании. Здесь поправочные значения

для указателя this хранятся в самой таблице виртуальных функций

СоветСоветСоветСоветСовет 79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования

198198198198198 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

обобщается и на другие пути поиска. Например, если компилятор ищет иденти-
фикатор name в области видимости класса D, то найдет и B::name, и – по другому
пути – A::name. Однако из-за доминирования неоднозначности не возникает.
Доминирует идентификатор B::name.

Это правило языка может показаться странным, но без доминирования во
многих случаях было бы невозможно построить таблицы виртуальных функций
для классов с виртуальным наследованием. Короче говоря, сочетание динамиче-
ского связывания и виртуального наследования неумолимо влечет за собой кон-
цепцию доминирования.

Рассмотрим простую иерархию с виртуальным наследованием, представлен-
ную на рис. 7.13. Объект D состоит из трех подобъектов базовых классов, причем
доступ а разделяемому подобъекту V осуществляется по указателям, как показано
на рис. 7.14. (Возможны разные реализации. Эта несколько устарела, но ее легко
нарисовать, а логически она эквивалентна прочим подходам.)

В аналогичной ситуации, но без виртуального наследования неоднозначность
имеет место. На рис. 7.12 поиск name в области видимости класса D приводит
к неоднозначности, так как B::name не доминирует над A::name в базовом клас-
се C.

Рис. 7.11. Идентификатор B::name доминирует над A::name

Рис. 7.12. Здесь доминирования нет. Идентификатор B::name скрывает A::name

на одном пути, но не на другом

199199199199199

Рис. 7.13. Функция D::f переопределяет и B1::f, и V::f.

Виртуальные таблицы для подобъектов B1 и V содержат информацию,

необходимую для вызова D::f

Можно ожидать, что объявление функции-члена D::f (рис. 7.13) переопреде-
ляет и B1::f, и V::f:

B2 *b2p = new D;

b2p->f(); // âûçûâàåòñÿ D::f

Рассмотрим другой случай, показанный на рис. 7.15. Он просто некорректен,
так как для переопределения V::f в D можно использовать и B1::f, и B2::f.
Возникает неоднозначность и, как следствие, ошибка компиляции.

Рис. 7.14. Возможно размещение полного объекта D.

Показана таблица виртуальных функций для подобъекта V

Рис. 7.15. Неоднозначность. И B1::f, и B2::f могут переопределить V::f

в таблице виртуальных функций подобъекта V

СоветСоветСоветСоветСовет 79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования79. Вопросы доминирования

200200200200200 ПолиморфизмПолиморфизмПолиморфизмПолиморфизмПолиморфизм

Рис. 7.16. Доминирование устраняет неоднозначность

при построении таблицы виртуальных функций. B1::f доминирует

над V::f, поэтому в виртуальной таблице подобъекта V содержится информация,

необходимая для вызова B1::f

И, наконец, рассмотрим случай, когда в игру вступает доминирование:

B2 *b2p = new D;
b2p->f(); // âûçûâàåòñÿ B1::f()!

На рис. 7.16 идентификатор B::f доминирует над идентификатором V::f на
всех путях, и в таблице виртуальных функций для подобъекта V объекта D будет
установлен указатель на B1::f. Если бы не правило доминирования, то и этот
случай был бы неоднозначен, так как для реализации V::f в объекте D годились
бы как V::f, так и B1::f. Доминирование разрешает неоднозначность в пользу
B1::f.

Глава 8. Проектирование классов

Проектирование эффективных абстрактных типов данных – это одновременно
наука и искусство. Для создания хороших интерфейсов нужно обладать техничес-
кими знаниями, разбираться в социальной психологии и иметь опыт. Но только
ясный, интуитивно понятный интерфейс может гарантировать, что программу
будет легко понять и сопровождать.

В этой главе мы рассмотрим ряд типичных ошибок при проектировании ин-
терфейсов классов и покажем, как их избежать. Мы также остановимся на некото-
рых вопросах реализации, влияющих на интерфейс класса.

Совет 80. Интерфейсы get/set
В абстрактном типе данных все данные-члены должны быть закрыты. Однако

класс, состоящий только из закрытых данных-членов и открытых функцией get/
set, трудно назвать абстрактным типом данных.

Напомним, что цель абстрагирования данных – отвлечься от обсуждения кон-
кретной реализации и дать авторам и читателям кода возможность говорить на
языке предметной области. Для этого абстрактный тип данных определяется про-
сто как набор операций, соответствующих абстрактному представлению о том, для
чего этот тип нужен. Рассмотрим стек:

template <class T>
class UnusableStack { // íåïðèãîäíûé äëÿ èñïîëüçîâàíèÿ ñòåê
public:
UnusableStack();

~UnusableStack();
T *getStack();
void setStack(T *);
int getTop();
void setTop(int);

private:

T *s_;
int top_;

};

Хорошего в этом шаблоне разве что имя. Здесь нет никакой абстракции, про-
сто слегка замаскированный набор данных. Открытый интерфейс не обеспечи-
вает абстракции стека для пользователей и даже не защищает от изменений во
внутренней реализации. Хорошая реализация стека должна дать ясную абстрак-
цию и независимость от внутренних деталей:

template <class T>
class Stack {
public:

202202202202202 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

 Stack();
 ~Stack();
 void push(const T &);
 T &top();
 void pop();

 bool empty() const;
 private:
 T *s_;
 int top_;
};

Вообще-то никакой проектировщик никогда не создал бы такой изобилую-
щий ошибками интерфейс, как UnusableStack. Каждый компетентный про-
граммист знает, какие операции требуются от стека, и пишет эффективный интер-
фейс почти автоматически. Но так обстоит дело далеко не для всех абстрактных
типов данных, особенно если вы занимаетесь проектированием в предметной об-
ласти, где не являетесь специалистом. В таком случае важно тесно сотрудничать
с экспертами, которые помогут определить, какие абстрактные типы данных тре-
буются, и какие в них должны быть операции. Характерным признаком проекта,
который создавался без адекватной подготовки в предметной области, является
большая доля классов с интерфейсами get/set.

Тем не менее, часто в интерфейс класса нужно включать какое-то количество
функций-акцессоров get/set. Как лучше их представить? Есть несколько распрос-
траненных вариантов:

class C {
public:
int getValue1() const // get/set, âàðèàíò 1

{ return value_; }
void setValue1(int value)

{ value_ = value; }
int &value2() // get/set, âàðèàíò 2

{ return value_; }
int setValue3(int value) // get/set, âàðèàíò 3

{ return value_ = value; }
int value4(int value) { // get/set, âàðèàíò 4

int old = value_;
value_ = value;
return old;

}
private:
int value_;

};

Второй вариант самый краткий, самый гибкий, но и самый опасный. Возвра-
щая дескриптор закрытого члена реализации класса, функция value2 оказывает-
ся немногим лучше открытых данных. Пользователи класса могут написать код,
зависящий от текущей реализации, и напрямую обращаться к внутренним дан-
ным класса. Эта форма плоха даже, если предоставляется доступ только для чте-
ния. Рассмотрим класс, реализованный с помощью стандартного библиотечного
контейнера:

class Users {
public:

203203203203203

const std::map<std::string,User> &getUserContainer() const
{ return users_; }

// ...
private:
std::map<std::string,User> users_;

};

Функция get выставляет на всеобщее обозрение закрытую информацию о том,
что пользовательский контейнер реализован посредством стандартного контей-
нера map. Любой код, который вызывает эту функцию, может (и, скорее всего, так
и будет) оказаться зависимым от конкретной реализации Users. В случае (впол-
не вероятном), если профилирование покажет, что контейнер vector эффектив-
нее, придется переписывать весь код, в котором используется класс Users. Таких
функций-акцессоров просто не должно быть.

Третий вариант несколько необычен, поскольку он, строго говоря, не дает до-
ступа к текущему значению члена-данных, а устанавливает и возвращает новое
значение. (Предполагается, что вы где-то запомните старое значение. В конце
концов, ведь это вы же его и установили, правда?) Пользователи класса получают
возможность писать выражения типа a += setValue3(12) вместо двух корот-
ких предложений setValue1(12); a +=getValue1();. Проблема в том, что
многие пользователи такого интерфейса будут считать, что возвращается преды-
дущее значение, а это может повлечь за собой трудно обнаруживаемые ошибки.

Четвертый вариант привлекателен тем, что позволяет с помощью одной функ-
ции получить текущее значение и установить новое. Однако, если нужно только
получить текущее значение, приходится прибегать к ухищрениям:

int current = c.value4(0); // ïîëó÷èòü è óñòàíîâèòü
c.value4(current); // âîññòàíîâèòü

Чтобы получить текущее значение, мы должны записать в value4 какое-то
фиктивное значение, а затем заменить его предыдущим. Это выглядит не вполне
естественно, но такая техника характерна для C++ и применяется в функциях
set_new_handler, set_unexpected и set_terminate из стандартной биб-
лиотеки, которые служат для задания функций обратного вызова для управления
памятью и обработки исключений. Как правило, такой механизм используется для
работы с функциями обратного вызова по принципу стека, но без самого стека:

typedef void (*new_handler)(); // òèï ôóíêöèè îáðàòíîãî âûçîâà
// ...
new_handler old_handler = set_new_handler(handler); // çàòîëêíóòü
// ÷òî-òî ñäåëàòü ...

set_new_handler(old_handler); // âûòîëêíóòü

Получить с помощью этого подхода текущий обработчик не так-то просто.
В C++ применяется такая идиома:

new_handler handler = set_new_handler(0); // ïîëó÷èòü òåêóùèé
set_new_handler(handler); // âîññòàíîâèòü

Но не стоит применять это решение в качестве общего механизма get/set. Оно
увеличивает стоимость и сложность простого доступа для чтения члена данных,
затрудняет обеспечение безопасности относительно исключений и написание мно-
гопоточного кода. Кроме того, его легко спутать с описанным выше вариантом 3.

СоветСоветСоветСоветСовет 80. Интерфейсы get/set80. Интерфейсы get/set80. Интерфейсы get/set80. Интерфейсы get/set80. Интерфейсы get/set

204204204204204 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

Лучше всего для написания акцессоров подходит вариант 1. Он самый про-
стой, эффективный и, что самое важное, не допускает неоднозначного толко-
вания:

int a = c.getValue1(); // ðàçóìååòñÿ, ïîëó÷èòü
c.setValue1(12); // óñòàíîâèòü, ÷òî æå åùå

Если проект вашего класса предусматривает использование функций get/set,
остановитесь на варианте 1.

Совет 81. Константные и ссылочные
данные-члены
Одна из самых лучших рекомендаций общего характера: «если что-то может

быть константным, пусть оно будет константным». И наоборот, «если что-то не
всегда является константным, не объявляйте это константным». В сочетании эти
два совета означают, что нужно принимать во внимание как текущее, так и ожида-
емое использование конструкции и делать ее «настолько константной, насколько
возможно, но не более того».

В этом разделе я попытаюсь убедить вас в том, что редко имеет смысл объяв-
лять данные-члены класса константными или ссылками. Наличие константных и
ссылочных данных-членов затрудняет работу с классом, требует неестественной
семантики копирования и оставляет сопровождающим возможность внести опас-
ные ошибки.

Рассмотрим пример простого класса с константными и ссылочными данны-
ми-членами:

class C {
public:
C();
// ...

private:
int a_;
const int b_;
int &ra_;

};

Конструктор должен инициализировать константные и ссылочные данные-
члены:

C::C()
: a_(12), b_(12), ra_(a_)
{}

Пока все хорошо. Мы можем объявлять объекты класса C и инициализиро-
вать их:

C x; // êîíñòðóêòîð ïî óìîë÷àíèþ
C y(x); // êîíñòðóêòîð êîïèðîâàíèÿ

Оп! А откуда взялся этот конструктор копирования? Его написал за нас ком-
пилятор, и по умолчанию он выполняет почленную инициализацию членов y со-
ответствующими членами x (см. «Совет 49)». К несчастью, эта реализация по
умолчанию установит ссылку ra_ в y равной члену a_ в x. Раз уж мы заговорили

205205205205205

об полезных рекомендациях, то вот вам еще одна: «Подумайте, не стоит ли само-
стоятельно написать операции копирования для любого класса, содержащего
описатель (обычно указатель или ссылку) каких-то других данных»:

C::C(const C &that)
: a_(that.a_), b_(that.b_), ra_(a_)
{}

Продолжим пользоваться нашими объектами класса C:

x = y; // îøèáêà!

Здесь проблема в том, что компилятор не может сгенерировать оператор при-
сваивания. По умолчанию он пытается написать оператор, который просто при-
сваивает значение члена данных y соответствующему члену данных x. Но для
объектов класса C это невозможно, так как членам b_ и ra_ нельзя ничего присва-
ивать. И это хорошо, поскольку такой оператор присваивания вел бы себя так же
некорректно, как и конструктор копирования по умолчанию.

А написать правильный оператор присваивания не так просто. Вот первая по-
пытка:

C &C::operator =(const C &that) {
a_ = that.a_; // ïðàâèëüíî
b_ = that.b_; // îøèáêà!
return *this;

}

Присваивать константе запрещено. Опасность в том, что «творчески настроен-
ный» сопровождающий может попытаться выполнить присваивание во что бы то
ни стало. Для начала обычно пробуют приведение:

int *pb = const_cast<int *>(&b_);
*pb = that.b_;

Такой код вряд ли вызовет проблемы во время исполнения, так как малове-
роятно, что член b_ находится в сегменте памяти, предназначенном только для
чтения, коль скоро он является частью неконстантного объекта C. Однако такую
реализацию трудно назвать естественной, а для члена-ссылки этот трюк просто не
сработает. (Отметим, что в данном конкретном операторе присваивания не обяза-
тельно было привязывать другое значение к ссылочному члену данных C, так как
он уже ссылается на член a_ своего собственного объекта.)

Некоторые особо ревностные сопровождающие могут подойти к проблеме
с другой стороны. Вместо того чтобы присвоить объект y объекту x, они просто
уничтожают x и заново инициализируют его с помощью y:

C &C::operator =(const C &that) {
if(this != &that) {

this->~C(); // âûçûâàòü äåñòðóêòîð
new (this) C(that); // êîíñòðóêòîð êîïèðîâàíèÿ

}
return *this;

}

Немало перьев было затуплено за прошедшие годы в спорах об этом подходе,
но, в конце концов, он был отвергнут. Хотя в данном частном случае он, возможно,
и будет работать (некоторое время), но такой подход слишком сложен, не масшта-

СоветСоветСоветСоветСовет 8181818181

206206206206206 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

бируется и, скорее всего, приведет к проблемам в будущем. Посмотрим, что про-
изойдет, если C когда-нибудь будет использоваться в качестве базового класса.
Вероятно, оператор присваивания в производном классе будет вызывать опе-
ратор присваивания из класса C. Деструктор, если он виртуальный, уничтожит
весь объект, а не только часть C. Если же деструктор не виртуальный, то мы полу-
чим неопределенное поведение. Так что лучше от такого решения держаться по-
дальше.

Самый простой и прямолинейный способ – не употреблять константные и
ссылочные члены вовсе. Поскольку все наши данные-члены закрыты (ведь так, не
правда ли?), то мы уже и так защитили их от случайной модификации. Если же
цель использования константных или ссылочных членов том, чтобы не дать ком-
пилятору сгенерировать оператор присваивания, то есть и более идиоматичный
способ решить эту задачу (см. «»Совет 49»).

class C {
// . . .

private:
int a_;
int b_;
int *pa_;
C(const C &); // çàïðåòèòü êîíñòðóèðîâàíèå êîïèðîâàíèåì
C &operator =(const C &); // çàïðåòèòü ïðèñâàèâàíèå

};

Константные и ссылочные данные-члены редко бывают необходимы. Избе-
гайте их.

Совет 82. В чем смысл константных
функций-членов?

Синтаксис
Первое, на что обращаешь внимание при работе с константными функциями-

членами, – непривычный синтаксис. Необходимость размещать слово const
в конце объявления выглядит странно. На самом деле ничего странного нет. Как и
другие части синтаксиса объявлений, унаследованные от C, синтаксис объявле-
ния константной функции по-своему логичен, хотя и может привести в замеша-
тельство:

class BoundedString {
public:
explicit BoundedString(int len);
// ...
size_t length() const;
void set(char c);
void wipe() const;

private:
char * const buf_;
int len_;
size_t maxLen_;

};

207207207207207

Сначала взгляните на объявление закрытого члена данных buf_. Это кон-
стантный указатель на символ (пример приведен только для иллюстрации, см.
«Совет 81»). Константным является указатель, а не символы, на которые он указы-
вает, поэтому квалификатор типа const поставлен после звездочки. Если мы бы
поместили его перед звездочкой, то он относился бы к встроенному типу char, то
есть речь шла бы о неконстантном указателе на константные символы.

То же относится и к константной функции-члену length. Если бы мы помес-
тили слово const перед именем функции, то объявили бы функцию, которая не
принимает аргументов и возвращает константное значение типа size_t. Разме-
щение же const после имени говорит о том, что константна сама функция, а не
возвращаемое ей значение.

Простая семантика и механизм работы

В чем смысл константности функции-члена? Обычно дают такой ответ: «конс-
тантная функция-член не изменяет своего объекта». Это простое утверждение, и
компилятору несложно его реализовать.

Каждой не-статической функции-члену передается скрытый аргумент – ука-
затель на объект, с помощью которого она была вызвана. Внутри функции к этому
указателю можно обратиться с помощью ключевого слова this:
BoundedString bs(12);

cout << bs.length(); // "this" – ýòî &bs

BoundedString *bsp = &bs;

cout << bsp->length(); // "this" – ýòî bsp

Для неконстантной функции-члена класса X указатель this имеет тип X *
const; иными словами, это константный указатель на неконстантный объект X.
Сам указатель модифицировать нельзя (следовательно, this всегда будет ссы-
латься на один и тот же объект X), но члены X модифицировать можно. Внутри
неконстантной функции-члена любой доступ к не-статическому члену класса
осуществляется через указатель на не-const:

void BoundedString::set(char c) {

for(int i = 0; i < maxLen_; ++i)

buf_[i] = c;

buf_[maxLen_] = '\0';

}

Для константной функции-члена класса X указатель this имеет тип const X *
const; это константный указатель на константный объект X. Теперь нельзя моди-
фицировать ни указатель, ни объект, на который он указывает:

size_t BoundedString::length() const
{ return strlen(buf_); }

По существу, константная функция-член позволяет задать константность свое-
го скрытого аргумента this. Рассмотрим, например, объявление не являющегося
членом класса оператора сравнения на равенство объектов BoundedString:

bool operator ==(const BoundedString &lhs,
const BoundedString &rhs);

СоветСоветСоветСоветСовет 8282828282

208208208208208 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

Эта функция не изменяет своих аргументов, а только анализирует их, следо-
вательно, и правый, и левый аргумент можно объявить как ссылки на const. То
же должно быть верно и для случая, когда такая функция делается членом класса:

class BoundedString {

// . . .

bool operator <(const BoundedString &rhs);

bool operator >=(const BoundedString &rhs) const;
};

Напомним, что левый операнд перегруженной функции, представляющей би-
нарный оператор, передается неявно в виде аргумента this. Правый же аргумент
инициализируется явно объявленным формальным аргументом (в обеих опера-
торных функциях выше он назван rhs). Оператор >= объявлен правильно, и фун-
кция обещает не изменять ни левый, ни правый аргумент. Оператор же < некор-
ректен, поскольку гарантирует лишь неизменность правого, но не левого
аргумента. Эта небрежность даст о себе знать, если мы попытаемся реализовать
>= самым прямолинейным способом:

bool BoundedString::operator >=(const BoundedString &rhs) const
{ return !(*this < rhs); }

Мы получаем ошибку при компиляции operator <. Передавая выражение
* this в качестве первого аргумента operator <, мы пытаемся инициализиро-
вать указатель this для неконстантной функции-члена адресом константного
объекта.

Семантика константной функции-члена
Мы только что описали механизм работы константных функций-членов, но

семантика таких функций определяется в значительной степени сообществом
компетентных программистов на C++. Рассмотрим реализацию члена wipe клас-
са BoundedString:

void BoundedString::wipe() const
{ buf_[0] = '\0'; }

Это допустимый код, но из законности действия еще не следует, что оно ожида-
емо или морально оправдано. Функция wipe не изменяет объект, то есть не моди-
фицирует никакие данные-члены объекта BoundedString. Тем не менее, она из-
меняет некоторые данные, формально расположенные вне объекта, но влияющие
на его поведение. После вызова wipe логическое состояние BoundedString ста-
нет другим. Константность указателя this что-то гарантирует лишь для данных-
членов объекта BoundedString. Данные же вне объекта оказываются беззащит-
ны, хотя логически они составляют его часть.

Большинство пользователей класса BoundedString неприятно удивятся,
увидев, что поведение объекта изменилось после обращения к константной функ-
ции. Поскольку wipe изменяет логическое состояние, ее не следовало бы объяв-
лять константной. Вот почему в объявлении выше функция set не была сделана
константной, хотя компилятор ничего против константности не возразил бы.

209209209209209

А теперь взгляните на реализацию функции-члена length. Очевидно, она
должна быть константной, поскольку вычисление длины строки BoundedString
не изменяет ее логического состояния. Проще всего было бы воспользоваться
библиотечной функцией strlen, как мы выше и поступили. Вероятно, это наи-
лучшая реализация, так как она проста, достаточно эффективна и дает правиль-
ный результат. Предположим, однако, что, по нашим наблюдениям, многие стро-
ки никогда не меняют длину, тогда как длина других – и при том весьма длинных –
вычисляется часто. В таком случае предпочтительной может оказаться другая ре-
ализация:

size_t BoundedString::length() const {
if(len_ < 0)

len_ = strlen(buf_);
return len_;

}

Мы решили хранить текущую длину строки в самом объекте BoundedString
и вычислять ее только при поступлении запроса. Накладные расходы в случае,
когда длина строки никогда не запрашивается, невелики, зато выигрыш при час-
тых обращениях к length весьма ощутим. К сожалению, при попытке присвоить
значение члену len_ компилятор выдаст сообщение об ошибке. Это константная
функция, ей запрещено изменять состояние объекта.

С этой проблемой можно было бы справиться, сделав функцию length не-
константной, но это вступает в противоречие с ее логическим смыслом. К тому же
мы уже не сумеем объявить максимальную длину BoundedString константной
(не важно, является она такой в действительности или нет; см. «Ссовет 6» и «Со-
вет 31»). Следовательно, мы делаем length неконстантной в угоду удобству реа-
лизации, тогда как вопросы реализации не должны влиять на интерфейс абстрак-
тного типа данных.

Распространенный и достойный порицания образ действий в такой ситуации –
 «отбросить const» в константной функции-члене:

size_t BoundedString::length() const {
if(len_ < 0)

const_cast<int &>(len_) = strlen(buf_);
return len_;

}
// ...
BoundedString a(12);
int alen = a.length(); // áóäåò ðàáîòàòü ...
const BoundedString b(12);
int blen = b.length(); // íåîïðåäåëåííîñòü!

Любая попытка модифицировать константный объект вне конструктора или
деструктора приводит к неопределенному поведению. Поэтому вызов функции-
члена length для b может сработать, а может таинственным образом закончить-
ся ошибкой спустя длительное время после завершения тестирования программы и
поставки ее заказчику. И то, что мы воспользовались новомодным оператором
const_cast, не спасает.

Правильный выход – объявить член данных len_ как mutable. Специфика-
тор класса хранения mutable можно применять к не-статическим, неконстант-

СоветСоветСоветСоветСовет 8282828282

210210210210210 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

ным, нессылочным данным-членам; он показывает, что член может быть модифи-
цирован константным (равно как и неконстантными) функциями-членами.

class BoundedString {
// ...

private:

char * const buf_;
mutable int len_;
size_t maxLen_;

};

Для программистов на C++ константная функция-член реализует «логиче-
скую» константность. То есть наблюдаемое состояние объекта не должно изме-
ниться в результате вызова такой функции, хотя физическое состояние может
быть модифицировано.

Совет 83. Различайте агрегирование
и использование
Различить отношения владения (агрегирования) и использования («знаком-

ства») в самом языке C++ невозможно. Это может приводить к самым разнооб-
разным ошибкам, в том числе утечкам памяти и появлению псевдонимов:

class Employee {

public:

virtual ~Employee();

void setRole(Role *newRole);

const Role *getRole() const;

// ...

private:

Role *role_;

// ...

};

Из этого интерфейса не ясно, то ли объект Employee владеет своей ролью
Role, то ли просто ссылается на объект Role, который может использоваться и
другими объектами Employee. Проблемы возникают, когда пользователь класса
Employee делает предположение о владении, отличающееся от того, что имел
в виду проектировщик класса:

Employee *e1 = getMeAnEmployee();

Employee *e2 = getMeAnEmployee();

Role *r = getMeSomethingToDo();

e1->setRole(r);

e2->setRole(r); // îøèáêà #1!
delete r; // îøèáêà #2!

Если проектировщик решил, что Employee – владелец Role, то строка с мет-
кой îøèáêà #1 приведет к тому, что два объекта Employee будут ссылаться на
один и тот же объект Role. Тогда при удалении e2 и e1 произойдет двойное уда-
ление объекта Role.

Строка с меткой îøèáêà #2 тоньше. Здесь пользователь класса Employee
решил, что функция setRole делает копию своего аргумента Role, и ранее выде-

211211211211211

ленный из кучи объект Role надо освободить. Если истинная семантика не тако-
ва, то и e1, и e2 будут содержать «висячие» указатели.

Опытный разработчик мог бы поискать ответ в тексте функции setRole и
наткнуться на одну из следующих реализаций:
void Employee::setRole(Role *newRole) // âåðñèÿ 1

{ role_ = newRole; }

void Employee::setRole(Role *newRole) { // âåðñèÿ 2
delete role_;
role_ = newRole;

}

void Employee::setRole(Role *newRole) { // âåðñèÿ 3
delete role_;
role_ = newRole->clone();

}

Версия 1 говорит о том, что объект Employee не владеет объектом Role, по-
скольку не предпринимает никаких попыток удалить существующий экземпляр
перед тем, как установить указатель на новый. (Мы предполагаем, что это осоз-
нанное намерение проектировщика, а не просто ошибка.)

Из текста версии 2 следует, что объект Employee владеет своим объектом
Role и становится владельцем того объекта, на который указывает аргумент
setRole. Версия 3 также свидетельствует о том, что Employee – владелец Role.
Однако в данном случае он не просто берет на себя контроль, но и делает копию
переданного аргумента. Отметим, что в третьей версии было бы лучше объявить
аргумент как const Role *, а не Role *. Клонирование – всегда константная
операция, поскольку она не модифицирует объект, а лишь создает его копию.
Кроме того, для версии 1, в которой Role – разделяемый объект, странно было бы
передавать его как указатель на не-const.

Однако у пользователей абстрактного типа данных обычно нет доступа к его
реализации, поскольку это противоречило бы идее сокрытия данных и могло бы
привести к зависимости от особенностей конкретной реализации. Например, тот
факт, что версия 1 функции setRole не удаляет существующий объект Role,
необязательно означает, что проектировщик класса Employee действительно хо-
тел разделять Role; это могла быть просто ошибка. Однако после того как во мно-
гих пользовательских программах принято допущение о разделении объектов
Role, ошибка перестает быть таковой и становится особенностью реализации.

Поскольку язык C++ не позволяет явно описать отношение владения, то при-
ходится прибегать к соглашениям об именах, типах формальных аргументов и
комментариям (да, в этом случае они оправданы):

class Employee {
public:
virtual ~Employee();
void adoptRole(Role *newRole); // âñòóïèòü âî âëàäåíèå
void shareRole(const Role *sharedRole); // íå âëàäååò
void copyRole(const Role *roleToCopy); // Role êëîíèðóåòñÿ
const Role *getRole() const;

 // ...
};

СоветСоветСоветСоветСовет 8383838383

212212212212212 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

Имена adoptRole, shareRole и copyRole достаточно необычны, чтобы по-
будить пользователей класса Employee прочитать комментарии. Если коммента-
рий короткий и ясный, то, возможно, он даже будет сопровождаться (см. «Совет
1»).

Распространенный пример неправильного понимания владения – это контей-
неры, содержащие указатели. Рассмотрим список указателей:

�� gotcha83/ptrlist.h

template <class T> class PtrList;
template <> class PtrList<void> {

// ...

};
template <class T>
class PtrList : private PtrList<void> {
public:
PtrList();
~PtrList();

void append(T *newElem);
// ...

};

И здесь проблема в том, что проектировщик и пользователь контейнера могут
интерпретировать его по-разному:

PtrList<Employee> staff;
staff.append(new Techie);

В этом фрагменте пользователь списка PtrList, вероятно, предполагает, что
контейнер вступает во владение объектом, на который указывает аргумент функ-
ции append. Это означает, что деструктор PtrList удалит все объекты, на кото-
рые указывают элементы списка. Если контейнер ничего подобного не делает,
произойдет утечка памяти. Автор же кода, показанного ниже, думал иначе:

PtrList<Employee> management;
Manager theBoss;

management.append(&theBoss);

Здесь предполагается, что контейнер не будет удалять объекты, на которые
указывают хранящиеся в нем элементы. Если это допущение неверно, то PtrList
попытается освободить память, не выделенную из кучи.

Самый лучший способ избежать неправильной интерпретации идеи владения
при работе с контейнерами: пользоваться стандартными контейнерами. Посколь-
ку они описаны в стандарте C++, то все опытные программисты знают об особен-
ностях их поведения. Если элементами являются указатели, то стандартный кон-
тейнер не станет удалять объекты, на которые они указывают:

std::list<Employee *> management;
Manager theBoss;
management.push_back(&theBoss); // ïðàâèëüíî

Если же мы хотим, чтобы контейнер все же удалил объекты, на которые ссы-
лаются его элементы, то есть два пути. Самый прямолинейный — почистить за
собой самостоятельно:

template <class Container>

213213213213213

void releaseElems(Container &c) {

typedef typename Container::iterator I;

for(I i = c.begin(); i != c.end(); ++i)

delete *i;

}

// ...

std::list<Employee *> staff;

staff.push_back(new Techie);

// ...

releaseElems(staff); // î÷èñòêà

К сожалению, про написанный вручную код очистки часто забывают, а во вре-
мя сопровождения могут переместить в неподходящее место или вовсе удалить.
Кроме того, он неустойчив по отношению к исключениям. Лучше вместо обычно-
го указателя воспользоваться для этой цели интеллектуальным. (Подчеркнем,
что стандартный шаблон auto_ptr нельзя использовать в качестве элемента
контейнера, поскольку его семантика копирования для этого не подходит. См.
«Совет 68».) Вот простой пример:

�� gotcha83/cptr.h

template <class T>

class Cptr {

public:

Cptr(T *p) : p_(p), c_(new long(1)) {}

~Cptr() { if(!—*c_) { delete c_; delete p_; } }

Cptr(const Cptr &init)

: p_(init.p_), c_(init.c_) { ++*c_; }

Cptr &operator =(const Cptr &rhs) {

if(this != &rhs) {

if(!—*c_) { delete c_; delete p_; }

p_ = rhs.p_;

++*(c_ = rhs.c_);

}

return *this;

}

T &operator *() const

{ return *p_; }

T *operator ->() const

{ return p_; }

private:

T *p_;

long *c_;

};

При конкретизации контейнера указывается тип не обычного, а интеллек-
туального указателя (см. «Совет 24»). Когда контейнер удаляет свои элементы,
деструктор интеллектуального указателя «подчищает» объект, на который тот
указывает:

std::vector< Cptr<Employee> > staff;

staff.push_back(new Techie);

staff.push_back(new Temp);

staff.push_back(new Consultant);

// ÿâíàÿ î÷èñòêà íå íóæíà ...

СоветСоветСоветСоветСовет 8383838383

214214214214214 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

Такое употребление интеллектуальных указателей обобщается и на более
сложные случаи:

std::list< Cptr<Employee> > expendable;
expendable.push_back(staff[2]);
expendable.push_back(new Temp);

expendable.push_back(staff[1]);

Когда контейнер expendable покинет область действия, он корректно уда-
лит свой второй элемент Temp и уменьшит счетчики ссылок в первом и третьем
элементах, которые разделяет с контейнером staff. Когда из области действия
выходит staff, он удаляет все три своих элемента.

Совет 84. Не злоупотребляйте перегрузкой
операторов
Можно обойтись и вовсе без перегрузки операторов:

class Complex {

public:
Complex(double real = 0.0, double imag = 0.0);
friend Complex add(const Complex &, const Complex &);
friend Complex div(const Complex &, const Complex &);
friend Complex mul(const Complex &, const Complex &);
// ...

};
// ...
Z = add(add(R, mul(mul(j, omega), L)),

div(1, mul(j, omega), C)));

Перегрузка операторов – это не более чем синтаксическое удобство, но она
облегчает написание и чтение кода и проясняет намерения проектировщика:

class Complex {
public:

 Complex(double real = 0.0, double imag = 0.0);
 friend Complex operator +(const Complex &, const Complex &);
 friend Complex operator *(const Complex &, const Complex &);
 friend Complex operator /(const Complex &, const Complex &);
 // ...
};
// ...
Z = R + j*omega*L + 1/(j*omega*C);

Вариант формулы для вычисления сопротивления переменному току, напи-
санный с использованием инфиксных операторов, правилен, в отличие от преды-
дущего варианта, где применялся синтаксис вызова функции. Однако найти и ис-
править ошибку без перегрузки операторов будет сложнее.

Перегрузка операторов оправдана также для расширения существующего
синтаксиса, как, например, в библиотеках iostream и STL:

ostream &operator <<(ostream &os, const Complex &c)
 { return os << '(' << c.r_ << ", " << c.i_ << ')'; }

Видя такой успешный пример применения, начинающие разработчики часто
начинают пользоваться перегрузкой операторов к месту и не к месту:

215215215215215

template <typename T>
class Stack {
public:

 Stack();
 ~Stack();

void operator +(const T &); // çàòîëêíóòü
 T &operator *(); // âåðøèíà
 void operator -(); // âûòîëêíóòü
 operator bool() const; // íå ïóñò?

// ...
};

// ...
Stack<int> s;
s + 12;
s + 13;
if(s) {
 int a = *s;

 -s;
 // ...

Умно? Нет, легкомысленная чушь. Перегрузка операторов служит для того,
чтобы сделать код более понятным читателю, а не чтобы проектировщик мог по-
рисоваться. Наличие перегруженного оператора должно взывать к укоренившим-
ся привычкам читателя; любое разумное предположение, которое опытный чита-
тель может сделать относительно смысла оператора, должно быть верным.
В хорошей реализации стека следует употреблять общепринятые, не-оператор-
ные имена операций со стеком:

template <typename T>
class Stack {
public:

 Stack();
 ~Stack();
 void push(const T &);
 T &top();
 void pop();
 bool isEmpty() const;
 // ...
};
// ...
Stack<int> s;
s.push(12);
s.push(13);
if(!s.isEmpty()) {
 int a = s.top();
 s.pop();
 // ...

Отметим, что перегрузка оператора допустима только, если ее смысл не остав-
ляет места для двояких толкований. Пусть семантика перегруженного оператора
понятна вам и еще 75% ваших коллег, но в 25% случаев возможны неверная интер-
претация и применение. При таком раскладе от перегрузки следует отказаться,
поскольку она создаст больше проблем, чем решит.

На ум приходит пример из моего личного опыта. Я проектировал простой
шаблон для массивов:

СоветСоветСоветСоветСовет 8484848484

216216216216216 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

�� gotcha05/array.h

template <class T, int n>

class Array {
public:
Array();

 explicit Array(const T &val);
 Array &operator =(const T &val); // âñåì î÷åâèäíî?
 // . . .

private:
 T a_[n];
};
// . . .
Array<float,100> ary(0);
ary = 123; // î÷åâèäíî?

Я был абсолютно убежден, что смысл этого присваивания очевиден. Ясно же,
что я хочу присвоить значение 123 каждому элементу массива. Правильно? Ока-
зывается, немалая доля пользователей класса Array так не считала. Некоторые
опытные программисты решили, что речь идет о задании нового размера массива –
для 123 элементов. Другие полагали, что я хочу присвоить значение 123 только
первому элементу. Я-то знал, что прав я, а все, кто думает иначе, ошибаются, но из
практических соображений был вынужден отказаться от своего решения и ввести
недвусмысленную не-операторную функцию:

ary.setAll(123); // ñêó÷íî, çàòî ÿñíî

Если перегрузка оператора не дает ощутимых преимуществ по сравнению
с не-операторной функцией, не перегружайте.

Совет 85. Приоритеты и перегрузка
Приоритет оператора – это часть того, что пользователь ожидает от его пове-

дения. Если ожидания не оправдываются, оператор будут использовать непра-
вильно. Рассмотрим нестандартную реализацию комплексных чисел:

class Complex {
public:
Complex(double = 0, double = 0);

 friend Complex operator +(const Complex &, const Complex &);
 friend Complex operator *(const Complex &, const Complex &);
 friend Complex operator ^(const Complex &, const Complex &);
 // ...
};

Мы хотели бы определить для комплексных чисел оператор возведения в сте-
пень, но в C++ такого оператора нет. Поскольку вводить новые операторы мы не
можем, то решаем задействовать один из существующих, который для комплекс-
ных чисел никакой предопределенной семантики не имеет, а именно: «исклю-
чающее или».

Но тут же сталкиваемся с проблемой, потому что опытный программист на C
или C++ будет считать (совершенно разумно), что a^b – это результат примене-
ния «исключающего или» к a и b, а вовсе нет a, возведенное в степень b. Однако
есть и более неприятная проблема:

217217217217217

a = -1 + e ^ (i*pi);

В математике и в большинстве языков программирования, имеющих явную
поддержку для возведения в степень, соответствующий оператор имеет очень вы-
сокий приоритет. Вероятно, автор этого кода ожидал, что при разборе выражения
возведение в степень будет выполняться первым:

a = -1 + (e ^ (i*pi));

На самом деле компилятор ничего не знает о том, что пользователь думает
о приоритете операции возведения в степень. Он видит «исключающее или» и
производит разбор так, как считает правильным:

a = (-1 + e) ^ (i*pi);

В данном случае лучше отказаться от перегрузки оператора и воспользовать-
ся более понятной не-операторной функцией:

a = -1 + pow(e, (i*pi));

Приоритет оператора – это часть его интерфейса. Следите за тем, чтобы при-
оритет перегруженного оператора не обманывал ожиданий пользователей.

Совет 86. Операторы, являющиеся членами
и друзьями класса
Перегруженный оператор должен допускать применение любых преобразова-

ний, поддерживаемых типами его аргументов:

class Complex {

public:

Complex(double re = 0.0, double im = 0.0);

// ...

};

Например, конструктор класса Complex допускает преобразование из встроен-
ных числовых типов в Complex. Не являющаяся членом функция add позволяет
неявно применить это преобразование к любому из своих аргументов:

Complex add(const Complex &, const Complex &);

Complex c1, c2;

double d;

add(c1,c2);

add(c1,d); // add(c1, Complex(d,0.0))

add(d,c1); // add(Complex(d,0.0), c1)

Не являющаяся членом функция operator + (см. ниже) допускает те же
самые неявные преобразования:

Complex operator +(const Complex &, const Complex &);

c1 + c2;

operator +(c1,c2); // òî æå, ÷òî è âûøå

c1 + d;

operator +(c1,d); // òî æå, ÷òî è âûøå

d + c1;

operator +(d,c1); // òî æå, ÷òî è âûøå

СоветСоветСоветСоветСовет 85. Приоритеты и перегрузка85. Приоритеты и перегрузка85. Приоритеты и перегрузка85. Приоритеты и перегрузка85. Приоритеты и перегрузка

218218218218218 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

Однако, если реализовать бинарное сложение двух объектов Complex с помо-
щью функции-члена, то появляется асимметрия по отношению к неявному преоб-
разованию:

class Complex {
public:

 // îïåðàòîðû-÷ëåíû êëàññà
 Complex operator +(const Complex &) const; // áèíàðíûé

 Complex operator -(const Complex &) const; // áèíàðíûé
 Complex operator -() const; // óíàðíûé
 // ...
};
// ...
c1 + c2; // ïðàâèëüíî.

c1.operator +(c2); // ïðàâèëüíî.
c1 + d; // ïðàâèëüíî.
c1.operator +(d); // ïðàâèëüíî.
d + c1; // îøèáêà!
d.operator +(c1); // îøèáêà!

Компилятор не может применить неявное определенное пользователем пре-
образование к первому аргументу функции-члена. Если такое преобразование
должно быть частью интерфейса, то реализация бинарного оператора в виде функ-
ции-члена не годится. Друзья класса, не являющиеся его членами, допускают при-
менение преобразования к первому аргументу. Функции-члены способны только
на преобразования типа «является разновидностью» (см. также «Совет 42»).

Совет 87. Проблемы инкремента
и декремента
Даже самые лучшие программисты на C обычно применяют префиксную и

постфиксную формы инкремента и декремента на равных в ситуациях, где подхо-
дит любая форма:

int j;
for(j = 0; j < max; j++) /* íîðìàëüíî, â ÿçûêå C. */

Однако в C++ такая практика считается старомодной. Если годится любая
форма, то предпочтение следует отдать префиксной. Причина связана с перегруз-
кой операторов.

Операторы инкремента и декремента часто перегружают для поддержки опе-
раций с итераторами или интеллектуальными указателями. Они могут как яв-
ляться, так и не являться членами класса, но обычно все же реализуются в виде
функций-членов:

class Iter {
public:

 Iter &operator ++(); // ïðåôèêñíûé
 Iter operator ++(int); // ïîñòôèêñíûé

 Iter &operator —(); // ïðåôèêñíûé
 Iter operator —(int); // ïîñòôèêñíûé
 // ...
};

219219219219219

Префиксная форма должна возвращать модифицируемое lvalue, это согла-
суется с поведением встроенных операторов. На практике это означает, что опера-
тор должен возвращать ссылку на свой аргумент:

Iter &Iter::operator ++() {

// èíêðåìåíòèðîâàòü *this ...

return *this;

}

// ...

int j = 0;

++++j; // ïðàâèëüíî, íî j+=2 ëó÷øå

Iter i;

++++++++i; // ïðàâèëüíî, õîòÿ âûãëÿäèò ñòðàííî

Постфиксные формы отличаются от префиксных наличием неиспользуемого
целочисленного аргумента. Компилятор просто передает нулевой фактический
аргумент, чтобы отличить одну форму от другой:

Iter i;
++i; // òî æå, ÷òî i.operator ++();
i++; // òî æå, ÷òî i.operator ++(0);
i.operator ++(1024); // äîïóñòèìî, íî ñòðàííî

Как правило, реализации постфиксных операторов игнорируют этот цело-
численный аргумент. Чтобы имитировать поведение встроенных операторов инк-
ремента и декремента, перегруженная версия должна возвращать копию объекта,
содержащего то значение, которое было до применения операции. Обычно пост-
фиксный оператор реализуется посредством соответствующего префиксного:

Iter Iter::operator ++(int) {
 Iter temp(*this);
 ++*this;
 return temp;
}

По существу, требуется, чтобы постфиксный оператор возвращал результат
по значению. Даже если будет применено какое-то преобразование программы,
например, оптимизация именованного возвращаемого значения (см. «Совет
58»), все равно постфиксный оператор инкремента или декремента, скорее все-
го, будет работать медленнее соответствующего префиксного, если аргумент
принадлежит типу класса. Рассмотрим типичное применение стандартной биб-
лиотеки:

vector<T> v;
// ...
vector<T>::iterator end(v.end());
for(vector<T>::iterator vi(v.begin()); vi != end;
 vi++) { // ïëîõî!

 // ...

Итератор для класса vector может быть простым указателем, и в этом случае
применение постфиксного инкремента не снижает производительности, но может
быть и объектом типа класса, а тогда эффект будет ощутимым. Поэтому
в C++ всегда при прочих равных следует пользоваться префиксной, а не постфик-
сной формой. В реализации многих обобщенных алгоритмов эту рекомендацию

СоветСоветСоветСоветСовет 8787878787

220220220220220 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

принимают слишком буквально и стараются избежать постфиксных операторов
инкремента и декремента любым путем:

template <typename In, typename Out>

Out myCopy(In b, In e, Out r) {

while(b != e) {

// à íå *r++ = *b++

*r = *b;

++r;

++b;

}

return r;

}

Отметим, что встроенные постфиксные операторы инкремента и декремента
возвращают rvalue. Это означает, что результат операции не имеет адреса и не
может передаваться операторам, которым нужно lvalue (см. «Совет 6»):

int a = 12;

++a = 10; // ïðàâèëüíî

++++a; // ïðàâèëüíî

a++ = 10; // îøèáêà!

a++++; // îøèáêà!

К сожалению, показанная выше реализация постфиксного ++ возвращает ано-
нимный временный объект, сгенерированный компилятором. Согласно стандар-
ту, это не lvalue, но мы можем вызывать функции-члены такого объекта,
а, следовательно, его можно инкрементировать и присваивать. Однако инкремен-
тированный временный объект, которому даже присвоено значение, уничтожает-
ся в конце выражения!

Iter i;
Iter j;

++i = j; // ïðàâèëüíî
i++ = j; // äîïóñòèìî, íî äîëæíî áûòü îøèáî÷íûì!

На значение i не влияет присваивание j, так как новое значение было при-
своено анонимному временному объекту, который (предположительно) содер-
жал значение i до инкремента. Более безопасная реализация определенного
пользователем постфиксного оператора инкремента или декремента должна была
бы возвращать константный объект:

class Iter {

public:

 Iter &operator ++(); // ïðåôèêñíûé

 const Iter operator ++(int); // ïîñòôèêñíûé

 Iter &operator —(); // ïðåôèêñíûé

 const Iter operator —(int); // postfix

 // ...

};

// ...

i++ = j; // îøèáêà!

i++++; // îøèáêà!

Это предотвратит большинство случаев некорректного использования зна-
чения, возвращаемого операторами инкремента и декремента, но не защитит от

221221221221221

преднамеренного злоупотребления. Возвращаемое значение не модифицируемо,
но адрес у него все же есть:

const Iter *ip = &i++;

Этот «умный» программист умудрился взять адрес не i, а сгенерированного
компилятором временного объекта, который будет уничтожен сразу после иници-
ализации указателя. Это мошенничество со злым умыслом, и оно будет непремен-
но наказано (см. «Совет 11»).

Выше мы упомянули, что определенные пользователем операторы инкремен-
та и декремента обычно реализуются в виде функций-членов. Но когда речь идет
об инкременте и декременте перечислений, это уже не так, поскольку перечисле-
ния не могут иметь функций-членов:

enum Sin { pride, covetousness, lust, anger,
 gluttony, envy, sloth, future_use, num_sins };
// ãîðäûíÿ, ñêóïîñòü, ñëàäîñòðàñòèå, ãíåâ, ÷ðåâîóãîäèå, çàâèñòü,
// ïðàçäíîñòü, çàðåçåðâèðîâàíî_íà_áóäóùåå, ÷èñëî_ãðåõîâ

inline Sin &operator ++(Sin &s)
 { return s = static_cast<Sin>(s+1); }

inline const Sin operator ++(Sin &s, int) {
 Sin ret(s);
 s = ++s;
 return ret;
}

Обратите внимание на отсутствие контроля выхода за границы в этих функ-
циях. Программист, который решил для представления некоторой концепции
воспользоваться перечислением, а не более изощренным классом, наверное, по-
ступил так по причинам эффективности. Любая попытка контролировать диапа-
зоны для такого типа, вероятно, противоречит исходному замыслу. Кроме того, мы
получим в результате множество лишних двойных проверок граничных условий:

for(Sin s = pride; s != num_sins; ++s) // ...

Совет 88. Неправильная интерпретация
шаблонных операций копирования
Шаблонные функции-члены часто применяются для реализации конструкто-

ров. Например, во многих стандартных контейнерах есть шаблонный конструк-
тор, который позволяет инициализировать контейнер последовательностью:

template <typename T>
class Cont {
 public:
 template <typename In>
 Cont(In b, In e);

 // ...
};

Применение такого шаблонного конструктора дает возможность инициа-
лизировать контейнер последовательностью, взятой из любого источника, в ре-

СоветСоветСоветСоветСовет 8888888888

222222222222222 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

зультате чего контейнер становится намного полезнее. В стандартном шаблоне
auto_ptr также применяются шаблонные функции-члены:

template <class X>
class auto_ptr {
public:

 auto_ptr(auto_ptr &); // copy ctor
 template <class Y>

auto_ptr(auto_ptr<Y> &);
 auto_ptr &operator =(auto_ptr &); // copy assignment
 template <class Y>

auto_ptr &operator =(auto_ptr<Y> &);

// ...
};

Отметим, однако, что auto_ptr, помимо шаблонного конструктора и опера-
тора присваивания, еще и явно объявляет собственные операции копирования.
Это необходимо для обеспечения корректного поведения, поскольку шаблонные
функции-члены никогда не применяются для копирования. Как всегда в отсут-
ствие явно объявленного конструктора копирования или копирующего оператора
присваивания, компилятор сгенерирует их автоматически. Об этом исключении
из правил конкретизации шаблонов часто забывают, что иногда приводит
к ошибкам:

�� gotcha88/money.h

enum Currency { CAD, DM, USD, Yen };

template <Currency currency>
class Money {
public:

Money(double amt);
template <Currency otherCurrency>

Money(const Money<otherCurrency> &);
template <Currency otherCurrency>

Money &operator =(const Money<otherCurrency> &);
~Money();

double get_amount() const
{ return amt_; }

// ...
private:
Curve *myCurve_;
double amt_;

};
// ...
Money<Yen> acct1(1000000.00);
Money<DM> acct2(123.45);
Money<Yen> acct3(acct2); // øàáëîííûé êîíñòðóêòîð
Money<Yen> acct4(acct1); // ñãåíåðèðîâàííûé êîìïèëÿòîðîì

// êîíñòðóêòîð êîïèðîâàíèÿ!
acct3 = acct2; // øàáëîííûé îïåðàòîð ïðèñâàèâàíèÿ
acct4 = acct1; // ñãåíåðèðîâàííûé êîìïèëÿòîðîì îïåðàòîð

// ïðèñâàèâàíèÿ!

Это просто еще одно проявление очень старой проблемы, характерной для
проектирования классов в C++. Если класс содержит указатель или какой-либо

223223223223223

иной дескриптор ресурса, которым сам не управляет, то нужно очень вниматель-
но относиться к операции копирования в этом классе, чтобы избежать утечки ре-
сурсов или совмещения имен. Рассмотрим фрагмент реализации вышеупомяну-
того шаблонного оператора присваивания:

�� gotcha88/money.h

template <Currency currency>

template <Currency otherCurrency>
Money<currency> &
Money<currency>::operator =(const Money<otherCurrency> &rhs) {

amt_ = myCurve_->
convert(currency, otherCurrency, rhs.get_amount());

}

Ясно, что при реализации класса Money важно следить за тем, чтобы объект
класса Curve, на который ссылается myCurve, не модифицировался и не посту-
пал в общее владение в ходе присваивания. Однако именно это совершит компи-
лятор, если позволить ему генерировать операции копирования:

template <Currency currency>

Money<currency> &
Money<currency>::operator =(const Money<currency> &that) {

myCurve_ = that.myCurve_; // óòå÷êà, ñîâìåùåíèÿ è èçìåíåíèå curve!
amt_ = myCurve_->

convert(currency, otherCurrency, rhs.get_amount());
}

В шаблоне Money операции копирования должны быть реализованы явно.
Операции копирования никогда не реализуются с помощью шаблонных функ-

ций-членов. При проектировании любого класса обязательно уделяйте присталь-
ное внимание операциям копирования (см. «Совет 49»).

СоветСоветСоветСоветСовет 8888888888

Глава 9. Проектирование иерархий

Проектировать иерархии трудно. Иерархия классов должна быть достаточно гиб-
кой, чтобы допускать разумное расширение, но в то же время настолько фиксиро-
ванной, чтобы не пропала выражаемая ей проектная идея. Она должна быть по
возможности простой, но при этом эффективно абстрагировать предметную об-
ласть. В отличие от проектирования большинства других программных компо-
нентов, иерархия классов будет расширяться и модифицироваться еще долгое
время после того, как разработчик спроектировал, откомпилировал и распро-
странил ее. Поэтому проектировщик должен решить, в какой мере пользователям
разрешено расширять иерархию и подстраивать ее под свои нужды.

При проектировании иерархий приходится искать оптимальное решение
с учетом различных, порой противоречивых требований. Однако, как и в линей-
ном программировании, оптимальных решений может быть несколько. Поэтому
эффективный дизайн – это скорее результат опыта и способности к предвидению,
нежели рутинного применения заранее сформулированных правил. Поэтому и
рекомендации в этой главе не такие жесткие, как в предыдущих, и выражают лич-
ное мнение автора.

Тем не менее, при проектировании иерархий встречаются подводные камни,
на которые натыкаются особенно часто. Некоторые из них являются результатом
переноса опыта проектирования для других языков. Другие – результат отсут-
ствия всякого опыта. А третьи – некоторые новые, порочные, где-то подхвачен-
ные разработчиком идеи. Все это мы рассмотрим.

Совет 89. Массивы объектов класса
Остерегайтесь массивов, состоящих из элементов типа класса, особенно если

это базовый класс. Рассмотрим следующую функцию-«применитель», которая
вызывает некоторую другую функцию для каждого элемента массива:

�� gotcha89/apply.cpp

void apply(B array[], int length, void (*f)(B &)) {
for(int i = 0; i < length; ++i)

f(array[i]);
}
// ...

D *dp = new D[3];
apply(dp, 3, somefunc); // êàòàñòðîôà!

Проблема в том, что тип первого формального аргумента apply – это «указа-
тель на B», а не «массив B». С точки зрения компилятора, мы инициализируем B *
с помощью D *. Это допустимо, если B – открытый базовый класс D, поскольку

225225225225225

в этом случае D «является разновидностью» B. Однако массив D – не то же самое,
что массив B, и программа поведет себя совершенно неправильно, если мы попы-
таемся применить арифметику указателей, пользуясь размерами B вместо D.

Эта ситуация показана на рис. 9.1. Функция apply ожидает, что указатель
array ссылается на массив объектов B (слева на диаграмме), хотя на самом деле он
ссылается на массив объектов D (справа на диаграмме). Напомним, что индексиро-
вание – это просто сокращенная запись арифметических операций над указателями
(см. «Совет 7»), так что выражение array[i] эквивалентно *(array+i).
К несчастью, компилятор выполнил сложение с указателем в предположении, что
array указывает на объект базового класса. Если объект производного класса
больше или по-другому размещен в памяти, то в результате индексирования мы
получим некорректный адрес.

Попытки заставить массив вести себя разумно к успеху не приводят. Если бы
базовый класс B был объявлен абстрактным (вообще говоря, неплохая мысль), то
мы вообще не смогли бы создать массив из объектов B, но функция apply все
равно была бы допустима (хотя и некорректна), поскольку она имеет дело с указа-
телями на B, а не с самими объектами класс B. Объявление формального аргумен-
та ссылкой на массив (например, B (&array)[3]) эффективно, но непрактично,
так как мы должны были бы зафиксировать длину массива (в данном случае 3) и
не смогли бы передать указатель (скажем, на выделенный из кучи массив) в каче-
стве фактического аргумента.

Пользоваться массивами объектов базового класса не рекомендуется ни при
каких обстоятельствах, да и вообще к массивам, состоящим из объектов, следует
относиться настороженно.

Рис. 9.1. Арифметические операции над указателями,

применяемые для доступа к элементам массива объектов базового класса,

обычно не работают для массива объектов производного класса

Применение обобщенного алгоритма вместо функции, настроенной на конк-
ретный тип, может улучшить ситуацию:

for_each(dp, dp+3, somefunc);

Употребление стандартного алгоритма for_each позволяет компилятору
вывести типы аргументов шаблонной функции. Неявное преобразование из про-
изводного класса в открытый базовый не составляет проблемы, поскольку такое
преобразование просто не выполняется. Компилятор конкретизирует for_each

СоветСоветСоветСоветСовет 89. Массивы объектов класса89. Массивы объектов класса89. Массивы объектов класса89. Массивы объектов класса89. Массивы объектов класса

226226226226226 Проектирование классовПроектирование классовПроектирование классовПроектирование классовПроектирование классов

сразу для производного класса D. К сожалению, это решение отличается от перво-
начального, так как мы подменили полиморфизм времени исполнения полимор-
физмом на этапе компиляции.

Лучше было бы воспользоваться массивом указателей на объекты классов,
а не массивом самих объектов. С таким массивом можно работать полиморфно, не
опасаясь возникновения проблем из-за арифметики указателей:

void apply_prime(B *array[], int length, void (*f)(B *)) {

for(int i = 0; i < length; ++i)
f(array[i]);

}

Часто еще лучше вообще отказаться от массивов и пользоваться стандартны-
ми контейнерами, обычно в этом качестве выступает vector. Применение строго
типизированных контейнеров позволит полностью уйти от проблем, связанных
с арифметикой указателей на объекты классов. Кроме того, контейнер, содержа-
щий указатели, допускает полиморфное использование:

vector vb; // îáúåêòû D çàïðåùåíû!
vector<B *> vbp; // ïîëèìîðôíî

Совет 90. Не всегда один контейнер
можно подставить вместо другого
STL-контейнеры – это естественный выбор для программистов на C++. Одна-

ко они не могут удовлетворить все нужды, так как их сильные стороны неотъемле-
мы от определенных ограничений. Один из плюсов STL-контейнеров в том, что,
будучи реализованы с помощью шаблонов, они позволяют принять большую
часть решений о структуре и поведении на этапе компиляции. В результате полу-
чается компактная и эффективная реализация, точно настроенная с учетом стати-
ческого контекста использования.

Однако не всю важную информацию можно предоставить во время компиля-
ции. Рассмотрим, например, упрощенную структуру, ориентированную на при-
менение в каркасах, которая поддерживает «открыто-закрытый принцип», то есть
может модифицироваться и расширяться без перекомпиляции каркаса как таково-
го. Каркас состоит из иерархии контейнеров и параллельной иерархии итераторов:

�� gotcha90/container.h

template <typename T>
class Container {
public:

virtual ~Container();
virtual Iter<T> *genIter() const = 0; // Ôàáðè÷íûé Ìåòîä
virtual void insert(const T &) = 0;
// ...

};
template <typename T>

class Iter {
public:

 virtual ~Iter();

227227227227227

 virtual void reset() = 0;
 virtual void next() = 0;
 virtual bool done() const = 0;
 virtual T &get() const = 0;
};

Мы можем написать код в терминах этих абстрактных базовых классов, от-
компилировать его, а затем расширить возможности путем добавления новых
производных классов контейнеров и итераторов:

�� gotcha90/container.cpp

template <typename T>

void print(Container<T> &c) {

auto_ptr< Iter<T> > i(c.genIter());

for(i->reset(); !i->done(); i->next())

cout << i->get() << endl;

}

Вообще говоря, применение параллельных иерархий при проектировании - –
вещь не бесспорная, так как изменения в одной иерархии требует согласованных
изменений и в другой. Лучше бы иметь только одну точку изменения. Однако ис-
пользование паттерна Factory Method (Фабричный Метод) в реализации класса
Container сглаживает эту проблему в частном случае иерархий Container/
Iter.

Factory Method – это механизм, с помощью которого пользователь интерфей-
са абстрактного базового класса может создать объект, соответствующий фак-
тическому типу объекта производного класса, оставаясь в неведении относитель-
ного типа объекта. Если в качестве абстрактного базового класса выступает
Container, то обращение к его фабричному методу genIter означает: «Создай
объект класса, производного от Iter, который тебя устраивает, но избавь меня от
деталей». Часто Factory Method дает альтернативу не рекомендуемой практике
применения условного кода на базе проверки типов (см. «Совет 96»). Другими
словами, мы ни в коем случае не хотим писать код такого рода: «Слушай,
Container, если ты на самом деле Array, дай мне итератор ArrayIter. А если
ты Set, дай мне SetIter. А если...»

Довольно легко спроектировать взаимозаменяемые типы Container. Тогда вме-
сто Container<T> можно было бы подставить Set<T>, и при этом было бы допусти-
мо стандартное преобразование из Set<T> * в Container<T> *. Наличие чисто
виртуального фабричного метода genIter в базовом классе Container<T> –
это явное напоминание проектировщику типа конкретного контейнера вспом-
нить и об иерархии Iter:

template <typename T>
SetIter<T> *Set<T>::genIter() const
 { return new SetIter<T>(*this); } // íå çàáóäü íàïèñàòü SetIter!

Однако, к сожалению, многие предполагают, что взаимозаменяемость элемен-
тов влечет за собой и взаимозаменяемость контейнеров, содержащих эти элемен-
ты. Мы знаем, что это не так для массивов (контейнеров, встроенных в язык C++).
Массив объектов базового класса не всегда можно подставить вместо массива

СоветСоветСоветСоветСовет 9090909090

228228228228228 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

объектов производного класса (см. «Совет 89»). То же относится и к определен-
ным пользователями контейнерам, содержащим взаимозаменяемые элементы.
Рассмотрим следующую простую иерархию контейнеров для оценки стоимости
финансовых инструментов:

�� gotcha90/bondlist.h

class Object

 { public: virtual ~Object(); };
class Instrument : public Object
 { public: virtual double pv() const = 0; };
class Bond : public Instrument
 { public: double pv() const; };
class ObjectList {

public:
 void insert(Object *);
 Object *get();
 // ...
};
class BondList : public ObjectList { // bad idea!!!

public:
 void insert(Bond *b)
 { ObjectList::insert(b); }
 Bond *get()
 { return static_cast<Bond *>(ObjectList::get()); }
 // ...

};

�� gotcha90/bondlist.cpp

double bondPortfolioPV(BondList &bonds) {

 double sumpv = 0.0;
 for(each bond in list) {
 Bond *b = current bond;
 sumpv += b->pv();
 }
 return sumpv;

}

Нет ничего плохого в том, чтобы реализовать список указателей на Bond
в виде списка указателей на Object (хотя лучше было бы воспользоваться спис-
ком void *, а весь класс Object отправить на свалку, см. «Совет 97»). Ошибка
в том, что мы использовали открытое наследование, а не закрытое наследование
или агрегирование, и тем самым постулировали наличие отношения «является»
между типами, которые не взаимозаменяемы. Однако, в отличие от случая, когда
у нас имеется указатель на указатель (или массив указателей), компилятор не мо-
жет попенять нам за проявленное легкомыслие (см. «Совет 33»).

�� gotcha90/bondlist.cpp

class UnderpaidMinion : public Object {
public:
virtual double pay()

{ /* ïîëîæèòü ìèëëèîí äîëëàðîâ íà ñ÷åò minion */ }
};
void sneaky(ObjectList &list)

229229229229229

{ list.insert(new UnderpaidMinion); }
void victimize() {

BondList &blist = getBondList();
sneaky(blist);
bondPortfolioPV(blist); //ãîòîâî!

}

Здесь мы ухитрились подставить один класс-потомок вместо другого, то есть
мы подсунули каркасу UnderpaidMinion вместо ожидаемого им Bond. На боль-
шинстве платформ в результате будет вызвана UnderpaidMinion::pay вместо
Bond::pay (необнаруживаемая ошибка, которая проявится во время выполне-
ния). Как нельзя подставлять массив объектов производного класса вместо мас-
сива объектов базового класса, так пользовательские контейнеры, содержащие
объекты производного класса или указатели на них, нельзя подставлять вместо
контейнеров, содержащих объекты или указатели на объекты базового класса.

Взаимозаменяемость контейнеров, если она вообще имеет место, должна
ограничиваться структурой самого контейнера, а не содержащимися в нем эле-
ментами.

Совет 91. Что такое защищенный доступ?
Вопрос о доступности членов класса иногда зависит от того, с какой точки зре-

ния их рассматривать. Например, открытые члены базового класса выглядят за-
крытыми с точки зрения закрыто наследующего ему производного класса:

class Inst {

public:

int units() const

{ return units_; }

// ...

private:

int units_;

// ...

};

class Sbond : private Inst {
// ...

};

// ...

void doUnits() {

Sbond *bp = getNextBond();

Inst *ip = (Inst *)bp; // ïðèâåäåíèå â ñòàðîì ñòèëå íåîáõîäèìî ...
bp->units(); // îøèáêà!

ip->units(); // äîïóñòèìî

}

Эта конкретная ситуация забавна, но на практике встречается нечасто. Как
правило, мы пользуемся открытым наследованием, если хотим раскрыть интер-
фейс базового класса через интерфейс производного. Закрытое наследование
применяется главным образом для наследования реализации. Если для преобра-
зования указателя на производный класс в указатель на базовый класс возникает
необходимость в приведении, мы можем точно сказать, что проект неудачен.

СоветСоветСоветСоветСовет 91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?

230230230230230 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Кстати, обратите внимание, что для преобразования указателя на производ-
ный класс в указатель на закрытый базовый класс требуется приведение в старом
стиле. Лучше бы воспользоваться более безопасным оператором static_cast,
но, увы... Не может static_cast привести указатель к недоступному базовому
классу. А приведение в старом стиле способно замаскировать ошибку, которая
возникнет, если позже отношение между классами Sbond и Inst изменится (см.
«Совет 40» и «Совет 41»). Лично я считаю, что от этого приведения следует изба-
виться, а всю иерархию перепроектировать.

Давайте снабдим базовый класс виртуальным деструктором, сделаем функ-
цию-акцессор защищенной и создадим подходящие производные классы:

class Inst {
public:
virtual ~Inst();
// . . .

protected:

int units() const
{ return units_; }

private:
int units_;

};
class Bond : public Inst {

public:
double notional() const

{ return units() * faceval_; }
// . . .

private:
double faceval_;

};

class Equity : public Inst {
public:
double notional() const

{ return units() * shareval_; }

bool compare(Bond *) const;
// . . .

private:
double shareval_;

};

Функция-член базового класса, возвращающая число единиц финансового
инструмента, теперь защищена. Отсюда с очевидностью следует, что она предназ-
начена для использования в производных классах. Эта информация используется
при вычислении условной суммы и для облигаций, и для непривилегированных
акций.

Однако в наши дни считается разумным сравнивать непривилегированные
акции (equity) с облигациями (bond), поэтому в классе Equity объявлена функ-
ция compare как раз для этой цели:

bool Equity::compare(Bond *bp) const {
int bunits = bp->units(); // îøèáêà!
return units() < bunits;

}

231231231231231

Многие программисты удивляются, что эта первая попытка воспользоваться
защищенной функцией units приводит к нарушению защиты. Причина в том,
что произведена попытка доступа из члена производного класса Equity к объек-
ту класса Bond. Если речь идет о не-статических членах, то для защищенного до-
ступа требуется не только, чтобы функция, выполняющая доступ, была членом
или другом производного класса, но и чтобы объект, к которому осуществляется
доступ, имел тот же тип, что и класс, членом которого является функция (или, что
эквивалентно, был объектом открытого производного класса) или который объ-
явил ее своим другом.

В данном случае ни членам класса Equity, ни его друзьям нельзя доверять.
Они могут неправильно интерпретировать смысл функции units в объекте
Bond. Класс Inst предоставляет своим подклассам функцию units, но каждый
подкласс должен интерпретировать ее правильно. Маловероятно, что простое
сравнение числа единиц каждого инструмента с помощью функции compare бу-
дет иметь какой-то смысл без дополнительной (и закрытой) информации о номи-
нальной стоимости облигации или цене акции. А такая информация для каждого
класса специфична. Это дополнение к правилам контроля доступа к защищенным
членам благотворно влияет на общий дизайн, так как поощряет разрыв зависи-
мостей между производными классами.

Попытка обойти защиту, передав Bond как Inst, не поможет:

bool Equity::compare(Inst *ip) const {
int bunits = ip->units(); // îøèáêà!
return units() < bunits;

}

Доступ к унаследованным защищенным членам разрешен только объектам
производного класса (и открыто наследующим им). Если функция compare
действительно необходима, то ее надо переместить вверх по иерархии туда, где ее
наличие не станет причиной появления лишних связей между производными
классами:

bool Inst::unitCompare(const Inst *ip) const

{ return units() < ip->units(); }

Если такой вариант вам не подходит, и вы не возражаете против введения не-
которой зависимости между классами Equity и Bond (а должны бы возражать),
то на помощь придет «обоюдный друг»:

class Bond : public Inst {

public:

friend bool compare(const Equity *, const Bond *);

// . . .

};

class Equity : public Inst {

public:

friend bool compare(const Equity *, const Bond *);

// . . .

};

bool compare(const Equity *eq, const Bond *bond)

{ return eq->units() < bond->units(); }

СоветСоветСоветСоветСовет 91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?91. Что такое защищенный доступ?

232232232232232 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Совет 92. Применение открытого
наследования для повторного
использования кода
Иерархии классов способствуют повторному использованию кода двояко. Во-

первых, код, используемый в разных производных классах, можно поместить в их
общий базовый класс. Во-вторых, все открыто наследующие производные классы
могут разделять интерфейс своего базового класса. И разделение кода, и разделе-
ние интерфейса – это похвальные цели, но разделение интерфейса важнее.

Применение открытого наследования только ради повторного использования
реализации базового класса часто приводит к неестественному, неудобному для
сопровождения и, в конечном итоге, неэффективному проекту. Причина в том,
что априорная установка на наследование с целью повторного использования
кода может наложить на интерфейс базового класса такие ограничения, что под-
ставить вместо него производные окажется затруднительно. А в результате про-
изводным классам будет сложно воспользоваться общим кодом, написанным во
исполнение «контракта», заключенного базовым классом. Обычно, гораздо боль-
шей степени повторного использования удается добиться за счет написания боль-
шого объема кода общего назначения, а не разделения мелких фрагментов, нахо-
дящихся в базовом классе.

Преимущества использования кода общего назначения, написанного в соот-
ветствии с контрактом базового класса, настолько велики, что зачастую имеет
смысл облегчить этот процесс, спроектировав иерархию с интерфейсным классом
в корне. «Интерфейсным классом» называется базовый класс, который не содер-
жит никаких данных и имеет виртуальный деструктор. Обычно все функции-чле-
ны в нем виртуальны, а конструктора нет вовсе. Иногда интерфейсные классы
называют «классами-протоколами», поскольку они определяют лишь протокол
работы с иерархией, не предлагая никакой реализации. («Присоединяемый»
(mix-in) класс похож на интерфейсный, но все-таки содержит какие-то данные и
реализацию.)

Размещение интерфейсного класса в корне иерархии облегчает ее последую-
щее сопровождение, позволяя применять такие паттерны, как Decorator (Декора-
тор), Composite (Компоновщик), Proxy (Заместитель) и другие. (Кроме того, ин-
терфейсные классы упрощают решение ряда технических проблем, связанных
с использованием виртуальных базовых классов; см. «Совет 53».)

Канонический пример интерфейсного класса – это применение паттерна
Command (Команда) для реализации иерархии абстрактных функций обратного
вызова. Например, в графическом интерфейсе может быть класс Button, пред-
ставляющий кнопку, которая при нажатии исполняет функцию Action.

�� gotcha92/button.h

class Action {
public:
virtual ~Action();

233233233233233

virtual void operator ()() = 0;
virtual Action *clone() const = 0;

};
class Button {
public:

Button(const char *label);
~Button();
void press() const;
void setAction(const Action *);

private:
string label_;

Action *action_;
};

Паттерн Command инкапсулирует операцию в виде объекта. Мы увидим
ниже, что этот паттерн позволяет задействовать в проекте и некоторые другие.

Обратите внимание на использование перегруженной функции operator ()
в реализации Action. Мы могли бы воспользоваться не-операторной функцией-
членом execute, но перегрузка оператора вызова функции является в C++ идио-
мой, которая говорит, что Action – это абстракция функции, точно так же, как
перегрузка operator -> означает, что объект представляет собой «интеллек-
туальный указатель» (см. «Совет 24» и «Совет 83»). В классе Action находит
применение также паттерн Prototype (Прототип), о чем свидетельствует нали-
чии функции-члена clone, которая создает дубликат объекта, не зная его типа
(см. «Совет 76»).

В нашем первом конкретном воплощении типа Action используется паттерн
Null Object (Пустой Объект) для создания объекта Action, который не делает ни-
чего, но при этом соблюдает требования интерфейса Action. Класс NullAction
«является разновидностью» Action:

�� gotcha92/button.h

class NullAction : public Action {

 public:

 void operator ()()

 {}

 NullAction *clone() const

 { return new NullAction; }

};

Имея каркас Action, уже совсем просто создать безопасную и гибкую реали-
зацию Button. Применение паттерна Null Object гарантирует, что Button всегда
будет делать что-то при нажатии, даже если это «что-то» на деле означает «не де-
лать ничего» (см. «Совет 96»).

�� gotcha92/button.cpp

Button::Button(const char *label)
 : label_(label), action_(new NullAction) {}
void Button::press() const
 { (*action_)(); }

Паттерн Prototype позволяет классу Button иметь собственную копию
Action, ничего не зная о точном типе копируемого объекта Action:

СоветСоветСоветСоветСовет 9292929292

234234234234234 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

�� gotcha92/button.cpp

void Button::setAction(const Action *action)

{ delete action_; action_ = action->clone(); }

Тем самым заложена основа каркаса Button/Action и, как видно из рис. 9.2.,
мы можем наполнить его конкретными операциями (которые, в отличие от
NullAction, все же что-то делают), не перекомпилируя при этом весь каркас.

Наличие интерфейсного класса в корне иерархии Action позволяет расши-
рять возможности этой иерархии. Например, можно было бы воспользоваться
паттерном Composite, чтобы наделить Button способностью исполнять целую
группу действий Action:

gotcha92/moreactions.h

class Macro : public Action {
public:
void add(const Action *a)

{ a_.push_back(a->clone()); }
void operator ()() {

for(I i(a_.begin()); i != a_.end(); ++i)
(**i)();

}
Macro *clone() const {

Macro *m = new Macro;
for(CI i(a_.begin()); i != a_.end(); ++i)

m->add((*i).operator ->());
return m;

}
private:
typedef list< Cptr<Action> > C;
typedef C::iterator I;
typedef C::const_iterator CI;

C a_;
};

Присутствие «легкого» интерфейсного класса в корне иерархии Action дало
нам возможность применить паттерны Null Object и Composite, как показано на
рис. 9.3. А будь в базовом классе Action какая-то содержательная реализация, все
производные классы должны были бы наследовать ее вместе со всеми побочными
эффектами, связанными с инициализацией и уничтожением объектов. Это не по-
зволило бы нам эффективно воспользоваться паттернами Null Object, Composite
и другими.

Рис. 9.2. Применение паттернов Command и Null Object

для реализации операций обратного вызова при нажатии кнопки

235235235235235

Однако надо признать, что, отдавая предпочтение гибкости интерфейсного
класса, мы все же жертвуем степенью разделения кода и некоторым повышением
производительности, которого можно было бы достичь, если бы базовый класс
был более содержательным. Например, часто бывает, что реализации многих кон-
кретных классов, производных от Action, в чем-то дублируются, и этот общий код
можно было бы поместить в базовый класс. Но тогда мы утратили бы возмож-
ность вводить в иерархию дополнительную функциональность, как в случае при-
менения паттерна Composite выше. В таких ситуациях можно попытаться взять
лучшее от каждого варианта за счет заведения искусственного базового класса
с одной-единственной целью предоставить общую реализацию (рис. 9.4).

Однако злоупотребление таким подходом может породить иерархии, в кото-
рых слишком много искусственных классов, не имеющих отношения к предмет-
ной области. Подобные иерархии сложны для понимания и сопровождения.

В общем случае лучше уделить основное внимание наследованию интерфей-
са. Правильное и эффективное повторное использование кода станут автомати-
ческим следствием.

Рис. 9.3. Расширение иерархии Action за счет применения паттерна Composite

Рис. 9.4. Искусственный базовый класс, позволяющий наследовать

как интерфейс, так и общую реализацию

Совет 93. Конкретные открытые
базовые классы
С точки зрения проектирования открытые базовые классы, вообще говоря,

должны быть абстрактными, поскольку служат для представления абстрактных
понятий из предметной области. Мы не ожидаем и не желаем видеть абстракции

СоветСоветСоветСоветСовет 9393939393

236236236236236 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

в нашем родном материальном пространстве (представьте, как мог бы выглядеть
абстрактный служащий, фрукт или устройство ввода/вывода). Точно также, нам
ни к чему объекты абстрактных интерфейсов в пространстве программы.

В C++ есть также и практические соображения, относящиеся к реализации.
Нужно принимать во внимание срезку и связанные с ней проблемы, в частности,
реализацию операций копирования (см. «Совет 30», «Совет 49» и «Совет 65»).
В общем, делайте открытые базовые классы абстрактными.

Совет 94. Не пренебрегайте вырожденными
иерархиями
Эвристика базовых и автономных классов в проектировании весьма различна.

Клиентский код работает с базовыми классами совсем не так, как с автономными.
Поэтому желательно заранее решить, в какой роли будет выступать проектируе-
мый вами класс.

Осознание на ранних этапах проектирования того, что некоторый класс позже
может стать базовым, и преобразование его в простую двухуровневую иерархию.
Это пример «проектирования с расчетом на будущее». Тем самым вы заставляете
пользователей иерархии писать код в соответствии с требованиями абстрактного
интерфейса и облегчаете последующее расширение возможностей иерархии. Аль-
тернативное решение – начать с конкретного класса, а производные ввести позже –
вынудит пользователей переписывать уже готовый код. Такие простые иерархии
можно назвать «вырожденными» (это термин не следует трактовать ни в матема-
тическом, ни в этическом смысле).

Автономные классы, которые позже становятся базовыми, могут внести хаос
в программу. Автономные классы часто реализуются с семантикой значения, то
есть могут эффективно копироваться по значению; пользователи принимают как
данность, что их можно передавать по значению в качестве аргументов, возвра-
щать по значению и присваивать один другому.

Когда такой класс превращается в базовый, каждое копирование грозит срез-
кой (см. «Совет 30»). Объекты автономных классов могут быть элементами мас-
сива; позже это может привести к ошибкам при арифметических операциях над
указателями (см. «Совет 89»). Если код пишется в предположении, что некото-
рый тип имеет фиксированный размер или жестко заданное поведение, то при на-
рушении этого допущения могут возникать и более тонкие ошибки. Делайте по-
тенциальные базовые классы абстрактными.

И наоборот. Многие, быть может, даже большинство классов никогда не будут
базовыми, и не надо их проектировать как таковые. Разумеется, это относится
к мелким типам, которые должны быть максимально эффективны. Типичные
примеры типов, которые очень редко являются частью иерархии: числовые типы,
даты, строки и так далее. Мы проектировщики и должны пытаться следовать этой
рекомендации, применяя свой опыт, проницательность и способность к предви-
дению.

237237237237237

Совет 95. Не злоупотребляйте наследованием
Слишком широкие или глубокие иерархии, возможно, свидетельствуют о не-

удачном дизайне. Часто такие иерархии возникают из-за неправильного распре-
деления обязанностей между иерархиями. Рассмотрим следующую простую
иерархию геометрических фигур (рис. 9.5).

По умолчанию все фигуры рисуются синим цветом. Предположим, какому-то
новообращенному в веру C++ программисту, который еще находится под впе-
чатлением от открывшихся ему возможностей наследования, дали задание расши-
рить иерархию, так чтобы фигуры можно было рисовать и красным цветом. Легко!

На рис. 9.6 показано, что теперь у нас имеется классический пример «экспо-
ненциально» растущей иерархии. Чтобы добавить еще один цвет, придется ввести
в иерархию новый класс для каждой фигуры. А если мы захотим добавить новую
фигуру, понадобится заводить класс для каждого цвета. Это глупо, а правильное
решение напрашивается. Нужно вместо наследования воспользоваться компози-
цией (рис. 9.7).

Square (квадрат) является Shape (фигура) и содержит Color (цвет). Но не
все примеры злоупотребления наследованием настолько очевидны. Рассмотрим
иерархию, представляющую опционы для разных типов финансовых инструмен-
тов (рис. 9.8).

В ней есть единственный базовый класс опциона, а каждый его конкретный
подкласс – это комбинация типа опциона и типа финансового инструмента, к кото-
рому он применяется. И снова мы получаем расширяющуюся иерархию, в которой
добавление одного нового типа опциона или финансового инструмента приводит
к порождению многих классов. Обычно правильное решение – разработать не одну
монолитную иерархию, а композицию простых иерархий, как показано на рис. 9.9.

Рис. 9.5. Иерархия геометрических фигур

Рис. 9.6. Неправильная экспоненциально растущая иерархия

СоветСоветСоветСоветСовет 9494949494

238238238238238 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Рис. 9.7. Правильное решение, в котором применяется сочетание

наследования и композиции

Рис. 9.8. Плохо спроектированная монолитная иерархия

Рис. 9.9. Правильный дизайн – композиция простых иерархий

Option содержит Instrument. В данном случае трудности при проектиро-
вании иерархий возникли из-за некачественного анализа предметной области, но
не так уж редко громоздкие иерархии появляются, несмотря на безупречно прове-
денный анализ. Продолжая пример с финансовыми инструментами, рассмотрим
упрощенную реализацию класса облигаций:

class Bond {
public:

 // ...
 Money pv() const; // âû÷èñëèòü òåêóùóþ ñòîèìîñòü
};

Функция-член pv вычисляет текущую стоимость облигации (Bond). Но мо-
жет существовать несколько алгоритмов расчета. Один из вариантов – поместить
все алгоритмы в одну функцию и выбирать нужный, указывая его код:

class Bond {
public:
// ...
Money pv() const;
enum Model { Official, My, Their };
void setModel(Model);

private:
// ...
Model model_;

239239239239239

};

Money Bond::pv() const {

 Money result;

 switch(model_) {

 case Official:

 // ...

 return result;

 case My:

 // ...

 return result;

 case Their:

 // ...

 return result;

 }

}

Однако при таком подходе трудно добавить новую модель расчета цены, по-
скольку придется изменять исходные тексты и перекомпилировать всю программу.
Стандартная практика объектно-ориентированного проектирования подсказы-
вает, что для реализации нового поведения нужно воспользоваться наследова-
нием и динамическим связыванием (рис. 9.10).

Рис. 9.10. Неправильное применение наследования; оно используется

для изменения поведения единственной функции-члена

К сожалению, при таком подходе поведение функции pv фиксируется во вре-
мя создания объекта Bond и в дальнейшем не может быть изменено. Кроме того,
другие аспекты реализации Bond могут изменяться независимо от функции pv.
В результате мы получим комбинаторный рост числа производных классов.

Например, в классе Bond может быть функция-член для вычисления вола-
тильности цены облигации. Если алгоритм ее вычисления не зависит от способа
вычисления текущей цены, то при добавлении нового способа вычисления той
или другой величины придется добавить в иерархию новые производные классы
для каждого сочетания алгоритмов расчета цены и волатильности. В общем слу-
чае наследование используется для реализации разновидности поведения объек-
та в целом, а не отдельных его операций.

Как и в предыдущем примере с цветными фигурами, правильное решение –
применить композицию. В частности, мы можем воспользоваться паттерном
Strategy (Стратегия) для преобразования монолитной иерархии Bond в компо-
зицию простых иерархий (рис. 9.11).

СоветСоветСоветСоветСовет 9595959595

240240240240240 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Паттерн Strategy позволяет вынести реализацию алгоритма из тела функции-
члена в отдельную иерархию:

class PVModel { // Strategy

public:

virtual ~PVModel();

virtual Money pv(const Bond *) = 0;

};

class VModel { // Strategy

public:

virtual ~VModel();

virtual double volatility(const Bond *) = 0;

};

class Bond {

 // . . .

Money pv() const

{ return pvmodel_->pv(this); }

double volatility() const

{ return vmodel_->volatility(this); }

void adoptPVModel(PVModel *m)

{ delete pvmodel_; pvmodel_ = m; }

void adoptVModel(VModel *m)

{ delete vmodel_; vmodel_ = m; }

private:

// . . .

PVModel *pvmodel_;

VModel *vmodel_;
};

Использование паттерна Strategy помогло нам одновременно упростить
структуру иерархии Bond и изменить поведение функций pv и volatility во
время выполнения.

Совет 96. Управление на основе типов
В объектно-ориентированных программах никогда не следует принимать ре-

шения на основе анализа кодов типов:

void process(Employee *e) {
switch(e->type()) { // ïëîõîé êîä!
case SALARY: fireSalary(e); break;
case HOURLY: fireHourly(e); break;
case TEMP: fireTemp(e); break;
default: throw UnknownEmployeeType();

Рис. 9.11. Правильное использование паттерна Strategy для выражения идеи

независимого поведения двух функций-членов

241241241241241

 }
}

Гораздо лучше полиморфный подход:

void process(Employee *e)

 { e->fire(); }

Преимущества полиморфного подхода неоспоримы. Он проще. Не придется
перекомпилировать программу при добавлении новых типов служащих. Невоз-
можны ошибки из-за неправильного определения типа во время выполнения.
Кроме того, код, скорее всего, будет быстрее и компактнее. Принимайте решения
путем динамического связывания, а не с помощью условных управляющих конст-
рукций. (См. также «Совет 69», «Совет 90» и «Совет 98».)

Замена условного кода динамическим связыванием настолько эффективна,
что часто имеет смысл переделать условную конструкцию, чтобы воспользовать-
ся этими преимуществами. Рассмотрим код, который просто хочет обработать не-
который объект Widget. В открытом интерфейсе класса Widget есть функция
process, но в зависимости от того, где находится объект Widget, может потребо-
ваться предварительная обработка:

if(Widget â ëîêàëüíîé ïàìÿòè)
w->process();

else if(Widget â ðàçäåëÿåìîé ïàìÿòè)
ñäåëàòü äëÿ îáðàáîòêè ÷òî-òî õèòðîå

else if(Widget íà äðóãîé ìàøèíå)
ñäåëàòü ÷òî-òî åùå áîëåå õèòðîå

else
error();

Эта условная конструкция может не только оказаться непригодной («Я хочу
обработать Widget, но не знаю, где он находится), она еще и повторяться в про-
грамме может многократно. И все эти независимые фрагменты придется синхронно
обновить, если набор возможных местоположений Widget сужается или расширя-
ется. Лучше закодировать местоположение Widget в его типе, как на рис. 9.12.

Рис. 9.12. Отказ от условной конструкции; для кодирования протокола доступа

к объекту в его типе применяется паттерн Proxy (Заместитель)

Эта ситуация возникает настолько часто, что даже получила название. Речь
идет о паттерне Proxy (Заместитель). Разные механизмы доступа к объекту
Widget в зависимости от того, где он находится, теперь закодированы прямо
в типе Widget, так что различить разные объекты позволит простая виртуальная
функция. Ко всему прочему, код больше не дублируется, а виртуальная функция
не может ошибиться при выборе способа доступа:

СоветСоветСоветСоветСовет 96. Управление на основе типов96. Управление на основе типов96. Управление на основе типов96. Управление на основе типов96. Управление на основе типов

242242242242242 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Widget *w = getNextWidget();
w->process();

Еще одно существенное достоинство отказа от условного кода настолько оче-
видно, что его можно даже не заметить: чтобы избежать принятия неправильного
решения, лучше не принимать решения вовсе. Проще говоря, чем меньше в про-
грамме условного кода, тем меньше вероятность допустить в нем ошибку.

Одно из воплощений этой рекомендации – паттерн Null Object (Пустой
Объект). Рассмотрим функцию, которая возвращает указатель на «устройство»
(device), которым нужно «управлять» (handle):

class Device {
public:
virtual ~Device();
virtual void handle() = 0;

};
// ...

Device *getDevice();

Абстрактный базовый класс Device представляет разные виды устройств.
Вполне возможно, что функция getDevice не сможет вернуть объект Device,
поэтому код для получения и управления устройством будет выглядеть так:

if(Device *curDevice = getDevice())
 curDevice->handle();

Он несложен, но приходится принимать решение. А не забудет ли сопровож-
дающий проверить значение, возвращенное getDevice, прежде чем пытаться
вызвать для него функцию handle?

Согласно паттерну Null Object, мы должны создать искусственный подкласс
Device, который удовлетворяет всем требованиям интерфейса Device (то есть
в нем есть функция handle), но управление таким устройством – это пустая опе-
рация. В самом буквальном смысле:

class NullDevice : public Device {
public:
void handle() {}

};
// ...
Device &getDevice();

Вот теперь getDevice всегда что-то возвращает, мы можем удалить проверку
условия и избежать потенциальной ошибки в будущем:

getDevice().handle();

Совет 97. Космические иерархии
Более десяти лет назад сообщество программистов на C++ пришло к выводу,

что использование «космических» иерархий (в которых все классы являются про-
изводными от некоторого корневого, обычно имеющего имя Object) – это неэф-
фективная в контексте C++ методика проектирования. Причин отвергнуть такой
подход накопилось немало (как с точки зрения проектирования, так и реализации).

Если говорить о проектировании, то космические иерархии нередко порож-
дают обобщенные контейнеры объектов. Содержимое этих контейнеров часто не-

243243243243243

предсказуемо и ведет к неожиданному поведению во время выполнения. В клас-
сическом контрпримере Бьярна Страуструпа рассматривалась возможность по-
местить боевой корабль в стаканчик для карандашей – космическая иерархия это
позволяет, но стаканчик был бы немало удивлен.

Среди неопытных проектировщиков распространено опасное заблуждение,
будто архитектура должна быть максимально гибкой. Это неверно. Архитектура
должна быть максимально приближена к предметной области и при этом сохра-
нять достаточную гибкость для будущего расширения. Если наступает момент,
когда новые требования с трудом вписываются в существующую архитектуру, то
проект и код нужно перерабатывать. Стремление создать архитектуру, годящую-
ся на все случаи жизни, подобны попыткам получить максимально эффективный
код без профилирования: и полезной архитектуры не создадите, и в эффективно-
сти проиграете (см. также «Совет 72).

Неправильное понимание смысла архитектурного проектирования в сочета-
нии с нежеланием заниматься трудным делом абстрагирования предметной облас-
ти, часто приводит к появлению особо пагубных форм космических иерархий:

class Object {
public:
Object(void *, const type_info &);
virtual ~Object();
const type_info &type();
void *object();
// ...

};

Здесь проектировщик вообще не попытался понять и надлежащим образом абст-
рагировать предметную область, а просто создал оболочку, которая позволит вклю-
чить совершенно несвязанные типы в космическую иерархию. В Object можно
обернуть объект любого типа. Никто не помешает создавать контейнеры объектов
класса Object, в которые можно поместить все что угодно (и часто так и поступают).

Проектировщик может также предоставить средства для безопасного преоб-
разования из типа обертки Object в тип обернутого объекта:

template <class T>
T *dynamicCast(Object *o) {

if(o && o->type() == typeid(T))
return reinterpret_cast<T *>(o->object());

return 0;
}

На первый взгляд, это приемлемый (хотя и несколько неуклюжий) подход, но
давайте внимательно рассмотрим задачу извлечения и использования содержи-
мого контейнера, в котором может находиться все что угодно:

void process(list<Object *> &cup) {
typedef list<Object *>::iterator I;
for(I i(cup.begin()); i != cup.end(); ++i) {

if(Pencil *p =
dynamicCast<Pencil>(*i))
p->write();

else if(Battleship *b =
dynamicCast<Battleship>(*i))
b->anchorsAweigh();

СоветСоветСоветСоветСовет 97. Космические иерархии97. Космические иерархии97. Космические иерархии97. Космические иерархии97. Космические иерархии

244244244244244 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

else
throw InTheTowel();

}
}

Любой пользователь космической иерархии будет вынужден играть в глупую
«угадайку», цель которой восстановить информацию о типе, которую изначально
не следовало терять. Иными словами, тот факт, что стаканчик для карандашей не
может вместить боевой корабль, это не ошибка при проектировании стаканчика.
Изъян следует искать в той части программы, которая полагает, что втискивать
туда корабль разумно. Маловероятно, что такая возможность соответствует чему-
то в предметной области, поэтому мы не должны поощрять подобный способ ко-
дирования. Если возникает локальная необходимость в космической иерархии,
значит, где-то в проекте есть упущение.

Поскольку абстракции стаканчика и корабля – упрощенные модели реально-
го мира (что бы слово «реальный» ни означало в этом контексте), имеет смысл
прикинуть, как эта ситуация развивалась бы на практике. Предположим, что вы,
проектировщик (физического) стаканчика для карандашей, получили от клиен-
тов претензию: мол, не помещается туда корабль. Что бы вы предложили: испра-
вить проект стаканчика или обратиться за помощью совсем в другое место?

Последствия нежелания брать на себя ответственность за проект многообраз-
ны и серьезны. Любое использование контейнера, включающего объекты Object,
грозит бесчисленными ошибками, связанными с типами. Всякое изменение мно-
жества типов объектов, которые можно обернуть в Object, потребует модифи-
цировать сколь угодно много кода, а этот код может оказаться и недоступен.
И, наконец, поскольку никакой эффективной архитектуры не предложено, любой
пользователь контейнера оказывается перед проблемой: как получить точную ин-
формацию об анонимных объектах?

Любой из указанных аспектов проекта приводит к различным несовместимым
между собой способам обнаружения и диагностики ошибок. Например, пользова-
тель контейнера может счесть вопросы типа: «Ты кто? Карандаш? Нет? Корабль?
Тоже нет?..» глупыми и предпочтет опрашивать возможности объекта. Результат
будет немногим лучше (см. «Совет 99»).

Бывает, что присутствие космической иерархии не так бросается в глаза, как
в рассмотренном выше случае. На рис. 9.13 изображена иерархия активов:

Рис. 9.13. Неопределенная иерархия.
Непонятно, является иерархия Asset излишне общей или нет

245245245245245

Сразу не ясно, является ли иерархия Asset излишне общей или нет, особенно
когда перед нами такая высокоуровневая диаграмма проекта. Часто качество про-
екта трудно оценить, пока дело не дойдет до гораздо более низкого уровня или
даже до кодирования. Если чрезмерно общий характер иерархии приводит к по-
рочным методам кодирования (см. «Совет 98» и «Совет 99»), то, вероятно, это
некая разновидность космической иерархии, и от нее надо избавляться.

Иногда достаточно некоторого переосмысления иерархии, даже без передел-
ки исходного кода. Многие проблемы космических иерархий вызваны выбором
слишком общего базового класса. Если начать рассматривать базовый класс как
интерфейсный (рис. 9.14) и довести такое изменение концепции до пользовате-
лей, то можно будет избежать многих разрушительных приемов кодирования.

Из проекта исчезла единая космическая иерархия, зато появились три отдель-
ных иерархии, которые соответствуют независимым подсистемам со своими ин-
терфейсами. Это лишь концептуальное изменение, но оно очень важно. Теперь
подсистема учета активов может манипулировать служащими, транспортными
средствами и контрактами как активами, но, не зная, какие классы наследует
Asset, она не будет пытаться получить точную информацию об объектах, кото-
рыми манипулирует. То же рассуждение применимо и к другим интерфейсным
классам, так что вероятность натолкнуться во время исполнения на ошибку, свя-
занную с типами, невелика.

Рис. 9.14. Эффективный пересмотр концепции.

Отношение «является» будет ослаблено, если мы станем рассматривать Asset

не как базовый класс, а в качестве класса-протокола

Совет 98. Задание «интимных»
вопросов объекту
В этом разделе рассматривается возможность объектно-ориентированного

проектирования, которой часто злоупотребляют: получение информации о типе
во время выполнения. В языке C++ запросы о типе стандартизованы, и это как бы
придать легитимность их использованию. Конечно, задавать вопросы о типе
объекта во время выполнения разрешено, но пользоваться этим средством сле-
дует редко и уж ни в коем случае не закладывать его в основу проекта. Как это ни

СоветСоветСоветСоветСовет 9898989898

246246246246246 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

печально, но опыт, накопленный сообществом C++ в плане правильной и эффек-
тивной работы с иерархиями типов, часто игнорируют, отдавая предпочтение
подходам на основе получения информации о типе во время выполнения. А это
свидетельство непроработанного, излишне общего, сложного, не поддающегося
сопровождению проекта, который к тому же чреват ошибками.

Ниже показан базовый класс для представления служащих. Иногда прихо-
дится добавлять какие-то функции уже после того, как значительная часть систе-
мы разработана и протестирована. Так, в интерфейсе класса Employee явно кое-
чего не хватает:

class Employee {

public:

Employee(const Name &name, const Address &address);

virtual ~Employee();

void adoptRole(Role *newRole);

const Role *getRole(int) const;

 // . . .

};

Правильно. Нам нужно еще определить оптимальное количество этих акти-
вов. (Кстати, им еще придется платить, но это подождет до следующей версии.)
Руководство требует, чтобы служащего можно было уволить, имея лишь указа-
тель на его базовый класс, причем без перекомпиляции и каких-либо переделок
иерархии Employee. Ясно, что увольнять служащих-почасовиков и получающих
оклад надо по-разному:

void terminate(Employee *);

void terminate(SalaryEmployee *);

void terminate(HourlyEmployee *);

Самый прямолинейный способ решить эту задачу – прибегнуть к трюку. Мы
просто зададим серию вопросов о точном типе служащего:

void terminate(Employee *e) {
if(HourlyEmployee *h = dynamic_cast<HourlyEmployee *>(e))

terminate(h);
else if(SalaryEmployee *s = dynamic_cast<SalaryEmployee *>(e))

terminate(s);

else
throw UnknownEmployeeType(e);

}

Но у этого подхода есть очевидные недостатки с точки зрения эффективности
и возможности ошибок в случае неизвестного типа. Вообще говоря, поскольку
C++ – язык со статической системой типов, а механизм динамического связыва-
ния (виртуальные функции) контролируется статически, должна быть возмож-
ность полностью уйти от такого рода ошибок во время выполнения. Это достаточ-
ное основание для того, чтобы счесть приведенную выше реализацию функции
terminate временной заплатой, а не основой для расширяемого дизайна.

Слабость этого подхода проявится еще более наглядно, если мы попробуем
интерпретировать этот код в контексте предметной области, которую он призван
моделировать:

247247247247247

Вице-президент врывается в свой кабинет в страшном гневе. Его место на пар-
ковке уже в третий раз за месяц занял какой-то задрипанный драндулет, при-
надлежащий разрабочику-летуну, нанятому на работу месяц назад. «Подать
сюда этого Дьюхерста!» – рычит он в интерком.
Не прошло и нескольких секунд, как вице-президент сверлит злополучного
разработчика пронзительным взглядом и нараспев произносит: «Если вы по-
часовик, то будете уволены как почасовик. Иначе, если вы на окладе, то будете
уволены как служащий, получающий оклад. Иначе… убирайтесь из моего ка-
бинета и создавайте проблемы кому-нибудь другому.»

Я консультант и никогда не лишался контракта из-за менеджера, который ис-
пользует информацию о типах, получаемую во время выполнения, для решения
своих проблем. Конечно же, правильное решение – включить необходимые опера-
ции в базовый класс Employee и пользоваться стандартным, безопасным дина-
мическим связыванием для разрешения всех вопросов о типах, возникающих во
время выполнения:

class Employee {

public:

Employee(const Name &name, const Address &address);

virtual ~Employee();

void adoptRole(Role *newRole);

const Role *getRole(int) const;

virtual bool isPayday() const = 0;

virtual void pay() = 0;

virtual void terminate() = 0;

// ...

};

... он сверлит злополучного разработчика пронзительным взглядом и нараспев
произносит: «Вы уволены!»

Иногда запрашивать тип во время выполнения необходимо, бывает даже, что
это лучший из всех вариантов. Мы видели, что эта техника может быть удобной
в качестве временной заплаты при столкновении с плохо спроектированной про-
граммой из стороннего источника. К ней приходится прибегать и в случае, когда
предъявляется требование модифицировать существующий код без перекомпи-
ляции, но код этот спроектирован без учета новых требований, и никак иначе
встроиться в него невозможно. Полезны запросы о типе во время выполнения и
при отладке программ. Хотя и нечасто, но это средство применяется в таких спе-
цифических инструментах, как отладчики, обозреватели классов и так далее.
И, наконец, когда моделируемая предметная область внутренне не согласована, то
эта ее особенность может проявиться и в виде опросов типа во время выполнения.

Но поскольку механизм опроса типа во время выполнения утвержден стан-
дартом C++, то многие проектировщики стали использовать его вместо более про-
стых, более эффективных и более пригодных для сопровождения решений. Как
правило, опрос типа призван компенсировать недостатки архитектуры, являю-
щиеся следствием плохо выполненного анализа предметной области и ошибочно-
го мнения, будто архитектура должна быть максимально гибкой.

СоветСоветСоветСоветСовет 9898989898

248248248248248 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

На практике редко бывает необходимо задавать объекту «интимные» вопросы
о его типе.

Совет 99. Опрос возможностей
На практике столь очевидное злоупотребление запросами информации о типе

во время выполнения, как в функции terminate из предыдущего совета, обычно
являются результатом попытки исправить структурные огрехи и плохого управ-
ления проектом, нежели неудачного дизайна. Однако некоторые «прогрессив-
ные» способы применения динамического приведения типов в иерархиях с мно-
жественным наследованием часто подаются как основа архитектуры:

Служащий приходит в отдел кадров, чтобы сообщить о первом выходе на рабо-
ту, а ему говорят: «В очередь, вместе с остальными активами». И отправляют
в конец длинной очереди прочих служащих, в которой, как ни странно, стоят
разные виды офисного оборудования, транспортные средства, мебель и кон-
тракты.

Когда, наконец, до него доходит черед, его атакуют серией странных вопросов:
«Вы потребляете бензин? Вы умеете программировать? Можно снять с вас ко-
пию?» Получив отрицательные ответы на все эти вопросы, его отпускают до-
мой, а он недоумевает, почему никто не спросил, умеет ли он мыть полы, раз
именно для этого его и взяли.

Странновато звучит, не правда ли? (Если вы работали в крупной корпорации,
то, может быть, все это вам знакомо.) Но иначе и быть не может, ведь мы непра-
вильно воспользовались механизмом опроса возможностей.

Оставим пока отдел кадров и обратимся к иерархии финансовых инструментов.
Предположим, что мы торгуем ценными бумагами. В нашем распоряжении подсис-
тема определения цены и подсистема персистентности, мы можем воспользоваться
ими для реализации иерархии. Требования каждой подсистемы четко выражены
в интерфейсном классе, которому должен наследовать ее пользователь:

class Saveable { // èíòåðôåéñ ïîäñèñòåìû ïåðñèñòåíòíîñòè
 public:

 virtual ~Saveable();
 virtual void save() = 0;
 // ...
};
class Priceable { // èíòåðôåéñ ïîäñèñòåìû îïðåäåëåíèÿ öåíû
 public:

 virtual ~Priceable();
 virtual void price() = 0;
 // ...
};

Некоторые конкретные классы иерархии Deal (сделка) согласуются с кон-
трактами этих подсистем и могут пользоваться их кодом. Это стандартное, эф-
фективное и правильное использование множественного наследования:

class Deal {
public:

virtual void validate() = 0;

249249249249249

// . . .

};

class Bond

: public Deal, public Priceable

 {/* . . . */};

class Swap

: public Deal, public Priceable, public Saveable

{/* . . . */};

Теперь нам нужно добавить возможность «обработать» сделку, имея только
указатель на базовый класс Deal. Наивный подход заключается в том, чтобы на-
чать задавать прямые вопросы о типе объектов, но это ничем не лучше первой по-
пытки реализации функции увольнения сотрудников terminate (см. «Совет 98»):

void processDeal(Deal *d) {
d->validate();
if(Bond *b = dynamic_cast<Bond *>(d))

b->price();
else if(Swap *s = dynamic_cast<Swap *>(d)) {

s->price();

s->save();
}
else

throw UnknownDealType(d);
}

Другой, к сожалению, не менее популярный подход – спрашивать у объекта,
не кто он, а что он умеет делать. Это называется «опросом возможностей»:

void processDeal(Deal *d) {

d->validate();
if(Priceable *p = dynamic_cast<Priceable *>(d))

p->price();
if(Saveable *s = dynamic_cast<Saveable *>(d))
s->save();

}

Каждый базовый класс определяет некоторый набор возможностей. Приведе-
ние с помощью dynamic_cast поперек иерархии или «поперечное приведение»
эквивалентно заданию вопроса о том, может ли объект выполнить конкретную
функцию или некоторый набор функций (рис. 9.15). Вторую версию processDeal
можно выразить словами так: «Deal, проверь свою корректность. Если для тебя
можно вычислить цену, оцени себя. Если тебя можно сберечь, сбереги себя.».

Этот подход немного изощреннее предыдущего. Пожалуй, он даже более ста-
билен, так как может адаптироваться к новым типам сделок, не возбуждая исключе-
ний. Но вместе с тем он недостаточно эффективен и сложен для сопровождения.
Взгляните, что произойдет, если в иерархии Deal появится новый интерфейсный
класс (рис. 9.16).

Появление в иерархии новой возможности не обнаруживается. Программа
даже не догадывается спросить, законна ли сделка (впрочем, это довольно реали-
стичный анализ предметной области). Как и решение задачи об увольнении слу-
жащего, подход на основе опроса возможностей – это лишь временный выход, а не
основа для построения архитектуры.

СоветСоветСоветСоветСовет 99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей

250250250250250 Проектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархийПроектирование иерархий

Корень зла и в случае запросов о типе, и в случае опроса возможностей в том,
что некоторый важный аспект поведения объекта определяется внешним по от-
ношению к самому объекту образом. Этот подход противоречит принципу абстра-
гирования данных, возможно, самому фундаментальному из всех принципов
объектно-ориентированного программирования. Семантика абстрактного типа
данных теперь уже не инкапсулирована в классе, где он реализован, а расползлась
по всей программе.

Как и в случае иерархии Employee, самый безопасный и эффективный спо-
соб добавить некоторую возможность в иерархию Deal одновременно является и
самым простым:

class Deal {
public:
virtual void validate() = 0;

virtual void process() = 0;
// . . .

};
class Bond : public Deal, public Priceable {
public:
void validate();

void price();
void process() {

validate();
price();

}
};

class Swap : public Deal, public Priceable, public Saveable {

Рис. 9.15. Использование поперечного приведения

для реализации опроса возможностей

Рис. 9.16. Хрупкость методики опроса возможностей.

Что если мы забудем задать нужный вопрос?

251251251251251

public:
void validate();
void price();
void save();
void process() {

validate();
price();
save();

}
};
// è òàê äàëåå ...

Есть и другие способы отказаться от опроса возможностей без модификации
иерархии, если только их поддержка заложена в исходном проекте. Паттерн
Visitor (Посетитель) позволяет добавлять в иерархию новые возможности, но он
хрупок по отношению к изменениям иерархии. Паттерн Acyclic Visitor (Ацикли-
ческий Посетитель) более устойчив, но требует (одного) запроса о возможностях,
который может завершиться неудачно. Как бы то ни было, любое из этих решений
лучше систематического применения опроса возможностей.

Вообще говоря, если возникает необходимость в опросе возможностей, зна-
чит, проект неудачен. Предпочесть следует простую, эффективную, безопасную
виртуальную функцию, которая всегда завершается успешно.

Служащий приходит в отдел кадров, чтобы сообщить о первом выходе на ра-
боту. Его отправляют в конец длинной очереди прочих служащих. Когда, нако-
нец, до него доходит черед, ему говорят: «За работу!» Поскольку его приняли
уборщиком, то он берет тряпку и остаток дня моет полы.

СоветСоветСоветСоветСовет 99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей99. Опрос возможностей

Список литературы

Andrei Alexandrescu. Modern C++ Design, Addison-Wesley, 2001.
Association for Computing Machinery. ACM Code of Ethics and Professional

Conduct, www.acm.org/constitution/code.html.
———. Software Engineering Code of Ethics and Professional Practice,

www.acm.org/serving/se/code.htm.
Marshall P. Cline, Greg A. Lomow, and Mike Girou. C++ FAQs, Second Edition,

Addison-Wesley, 1999.
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns,

Addison-Wesley, 1995.
Nicolai Josuttis. The C++ Standard Library, Addison-Wesley, 1999.
Robert Martin. Agile Software Development, 2nd ed., Prentice Hall, 2003.
Scott Meyers. Effective C++, 2nd ed. Addison-Wesley, 1998.
Scott Meyers. Effective STL, Addison-Wesley, 2001.
Scott Meyers. More Effective C++, Addison-Wesley, 1996.
Stephen C. Dewhurst and Kathy T. Stark. Programming in C++, 2nd ed., Prentice-

Hall, 1995.
William Strunk and E. B. White. The Elements of Style, 3d ed., Macmillan, 1979.
Herb Sutter. More Exceptional C++, Addison-Wesley, 2002.
E. B. White. Writings from The New Yorker, HarperCollins, 1990.

#
#define, и пространства имен, 63
#define, определение литералов, 63
#define, определение

псевдофункций, 65
#if, директива

выбор реализации класса, 70
на практике, 71
независимость от платформы, 69
переносимость, 69
применение для отладки, 67

&
&& (логический оператор), 47

,
, (оператор запятая), 47

?
?

(условный оператор), 47

[
[] (выделение и освобождение

памяти для массивов), 43, 145

|
|| (логический оператор), 47

<
<<< (сержантский оператор), 54

>
-> (оператор стрелка), 61

A
Acyclic Visitor, паттерн, 252
assert, макрос, 72
auto_ptr, шаблон, 38, 166

Предметный указатель

B
Bridge, паттерн, 32

C
Catch-обработчики, порядок, 158
Command, паттерн, 233
Composite, паттерн, 233, 235
const, квалификатор типа

для ссылок, 24
перестановка, 56

const_cast, оператор, 95, 103, 206, 210
cv-квалификаторы. См. const,

квалификатор типа; volatile,
квалификатор типа

D
Decorator, паттерн, 179, 233
delete [], оператор, 145

область видимости и активация, 151
подмена, 149

dynamic_cast, оператор
для указателя на подобъект

виртуального базового класса, 125
задание интимных вопросов

о типе, 247
и преобразования, 105
инициализация виртуального

базового класса по умолчанию, 129
как предпочтительная альтернатива

static_cast, 85
неоднозначность, 105
опрос возможностей, 250

F
Factory Method, паттерн, 192, 228
for, предложение

ограничение области видимости
переменной, 51

сравнение с while, 53
free и delete, 145

254254254254254 Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

L
lvalue

возврат из функции, 24
как результат вычисления

условного оператора, 27
неизменяемое, 26, 64
определение, 26
связывание ссылки с, 24, 102

M
malloc и new, 145
Monostate, паттерн, 173

N
NDEBUG, таинственные ошибки, 67
Null Object, паттерн, 234, 235, 243

O
operator delete, 175
operator new

выделение памяти для скаляров, 144
область видимости и активация, 151
ошибки при выделении памяти, 148
подмена, 149

P
POD-классы (добрые старые

данные), 121
Prototype, паттерн, 188, 192, 234
Proxy, паттерн, 242

R
reinterpret_cast, 75, 93, 129

S
set/get, интерфейсы, 202
Singleton, паттерн, 21, 133, 173
static_cast, 95, 231
Strategy, паттерн, 241
switch, предложение, 29

T
Template Method, паттерн, 180

V
vector, сравнение с массивом, 44,

145, 167
Visitor, паттерн, 182, 191, 252
void *, 74
volatile, квалификатор типа

перестановка, 56
ссылки, 24

vptr (указатель на vtbl), 193
vtbl (таблица виртуальных функций), 194

W
while, предложение, сравнение с for, 53

А
Абстрагирование данных

для типов исключений, 153
цель, 202

Автоинициализация, 57
Агрегирование и использование, 211
Адреса

арифметические ошибки, 75, 85,
94, 237

возвращенного не-lvalue, 222
подобъектов базовых классов, 175
функций-членов. См. Указатели,
на члены класса

Акронимы, 36
Акцессоры. См. Интерфейсы get/set
Алгоритмы

переменная и постоянная частью, 180
Анонимные временные объекты

время жизни, 101
инициализация ссылки на const, 102
инициализация формального

параметра-ссылки, 98
как объекты исключений, 156
как результат инициализации

копированием, 134
как результат постфиксных ++

и —, 221
передача функциональных

объектов по значению, 113
Ассоциативность

и приоритеты, 48

255255255255255Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

проблемы, 50

Б
Базовый язык C++

логические операторы, 27
оператор взятия индекса, 28
предложение switch, 29
проваливание в switch, 29
условный оператор, 28

Безымянное пространство имен, 59
Брандмауэр, 171

В
Взятия индекса оператор,

встроенный, 28
Видимость, сравнение

с доступностью, 30
Виртуальное присваивание, 186
Виртуальные статические

функции-члены, 174
Виртуальные функции

вызов из конструкторов
и деструкторов, 184

невиртуальный вызов, 178
перегрузка, 181
с аргументами по умолчанию, 182
чистые, вызов, 179

Виртуальный конструктор, идиома.
См. также Prototype, паттерн

Внешние типы, 59
Временные объекты, 101

преобразования, 102
Выражение throw, 155
Вырожденные иерархии, 237
Вычислительные конструкторы, 140

Г
Глобальные переменные, 20

Д
Декремент, оператор, 219
Дельта-арифметика

адреса объектов классов, 92
корректировка значения this

при вызове виртуальной

функции, 197
понижающее приведение, 85
приведение неполных типов, 94

Деструкторы
вызов виртуальных функций из, 184

Динамическое связывание, 169
Доминирование, 198

З
Заголовочные файлы

счетчик Шварца, 133
Захват ресурса как инициализация,

38, 162

И
Идиомы

auto_ptr, 38
pimpl. См. Паттерны, Bridge
виртуальный конструктор, 188
захват ресурса

как инициализация, 162
интеллектуальный указатель, 62, 234
операции копирования, 37
функциональный объект, 234

Иерархии классов.
См. Проектирование иерархий

Имена массивов и константные
указатели, 83

Индексирование
имени массива, 28
указателей, 28
целых указателями, 28

Инициализаторы
путаница с объявлением массивов, 43

Инициализация
автоинициализация, 57
аргументов по умолчанию
применение, 21
сравнение с перегрузкой, 22
аргументов, прямая, 136
базового класса в конструкторе

копирования, 129
виртуальных базовых классов, 125
и присваивание, 112, 122
область видимости переменных, 115
операции копирования, 117

256256256256256 Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

оптимизация возвращаемого
значения, 138

паттерн Singleton, 21
передача аргументов, 113
побитовое копирование объектов

классов, 120
порядок членов в списке

инициализации, 124
прямая, сравнение

с копированием, 134
ссылок, 102
статических данных во время

выполнения, порядок, 132
статических членов в конструкторе,

142
формальных аргументов

временными объектами, 98
Инкремент, оператор, 219
Интеллектуальный указатель, идиома,

62, 234
Интерфейсные классы, 127, 233, 235
Интерфейсы get/set, 202
Инфиксная нотация, 60, 215
История изменений, 17

К
Квалификаторы типов

const
перестановка, 56

ссылки, 24
volatile

перестановка, 56
ссылки, 24

Квалификаторы, преобразование, 80
Классы

POD (добрые старые данные), 121
интерфейсные, 127
ограничение доступа, 30
чисто виртуальный базовый класс, 34

Ковариантные возвращаемые типы, 192
Кодирование, краткость, 16
Коды типов, 169, 241
Комментарии. См. также

Сопровождение; Удобочитаемость
и сопровождение, 16

излишние, 16
о проваливании, 29
самодокументированный код, 16

Конкретные открытые базовые
классы, 236

Константное выражение, 68
Константные данные-члены, 205
Константные объекты и литералы, 26
Константные указатели

и имена объектов, 84
и указатели на const, 79
определение, 55
преобразования, повышающие

степень константности, 79
Константные функции-члена

механизм работы, 208
отбрасывание const, 210
семантика, 209
синтаксис, 207

Константы
и литералы, 20
присваивание, 206

Конструкторы
вызов виртуальных функций из, 184
вычислительные, 140
и преобразования, 89
идиома виртуального

конструктора, 188
инициализаци статических

членов, 142
инициализация и присваивание, 122
реализация с помощью шаблонных

функций-членов, 222
Контейнеры, содержащие указатели, 213
Контравариантность, 109
Космические иерархии, 243

Л
Лексический анализ, 54
Литералы

и константные объекты, 26
и константы, 19
определение с помощью #define, 63

Логические операторы, 27, 47

257257257257257Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

Локальные объекты
время жизни, 160
затирание статических

переменных, 159
идиоматические трудности, 160
исчезающие фреймы стека, 158

М
Магические числа, 18
Макросы

побочные эффекты, 28, 65
Максимальный кусок

определение, 54
примеры, 39, 54

Массивы
и векторы, 145
и синтаксис инициализатора, 43
массивов, 56, 84
объектов класса, 225
освобождение памяти, 145
перестановка квалификаторов

типа, 56
преобразование указателя

на многомерный массив, 83
ссылки на, 25

Мудрствование, излишнее, 39

Н
Наследование

и проектирование иерархий, 233, 238
ограничение доступа, 34

Невиртуальный деструктор базового
класса адреса подобъектов базовых

классов, 175
и виртуальнын статические

функции-члены, 174
исключения из правил, 176
неопределенное поведение, 173

Неполные типы
для уменьшения числа

зависимостей, 31
приведение, 93

Неявные преобразования
и ссылки, 102
из производного класса в открытый

базовый, 110

контравариантность, 109
неоднозначность результата, 85
при инициализации формальных

аргументов, 98
с помощью конструктора, 89

Нуль
нулевые ссылки, 24
нулевые указатели, 35
результат dynamic_cast, 107

О
Область видимость

литералов, определенных
с помощью #define, 63

локальная, проблемы, 160
переменных, ограничение, 51

Обработка исключений, 148, 152, 165
Объекты классов, побитовое

копирование, 120
Ограничение доступа

и абстрагирование данных, 202
и видимость, 30
наследование, 34, 230
описание, 30
паттерн Bridge, 32

Операторы
&& (логический), 47
, (запятая), 47
?

(условный), 47
|| (логический), 47
<<< (сержантский), 54
-> (стрелка), 61
в базовом языке C++, 27
взятия индекса, встроенный, 28
логические, 27
поиск операторной функции, 59
порядок вычисления, 45
преобразования типов, 35
приведения типов, 35
размещающий new, 46

Операторы преобразования
альтернативы, 89
назначение, 87
неоднозначные, 86

258258258258258 Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

Операторы преобразования
и приведения, 34

Операции копирования
запрет, 119
идиома, 37
инициализация, 117
шаблонные, 222

Опережающее объявление класса.
См. Неполное объявление

Опрос возможностей, 249
Оптимизация возвращаемого

значения, 138
Оптимизация именованного

возвращаемого значения, 141
Освобождение

выделенных из кучи объектов, 166
скаляров и массивов, 144

Отбрасывание const, 210
Открытое наследование, 233
Отладка

директива #if, 67
недостижимый код, 68

П
Параллельные иерархии, 227
Паттерны

Acyclic Visitor, 252
Bridge, 32
Command, 233
Composite, 233, 235
Decorator, 179, 233
Factory Method, 192, 228
Monostate, 173
Null Object, 234, 235, 243
Prototype, 188, 192, 234
Proxy, 242
Singleton, 21, 133, 173
Strategy, 241
Template Method, 180
Visitor, 182, 191, 252

Перегрузка
виртуальных функций, 181
и инициализация аргументов

по умолчанию, 22
инфиксная нотация, 60

оператора ->, 61
оператора взятия индекса, 28
операторов, 215
операторов инкремента

и декремента, 219
поиск операторной функции, 59
порядок вычисления, 48
сравнение с переопределением

и сокрытием, 188
Передача аргументов, 113
Перекомпиляция, как избежать, 32, 235
Переменные

кодирование типа в имени, 34
ограничение области видимости, 51

Переносимость
директива #if, 69
нулевые указатели, 35

Переопределение
механизм, 193
невидимых функций, 191
определение, 195
сравнение с перегрузкой

и сокрытием, 188
Перехват

исключений, 156
строковых литералов, 153

Переходник (thunk), 197
Перечисляемые константы

и литералы, определенные
с помощью #define, 64

инициализация статических
членов, 142

магические числа, 19
точка объявления, 58

Платформенная независимость
литералы и константы, 19
преобразования, 74

Повторное использование
глобальных переменных, 20
кода, 258
прозрачный ящик.

См. Наследование
Повторное использование кода, 233
Подвыражения, порядок вычисления, 45
Подобъект базового класса

адрес, 175

259259259259259Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

инициализация, 125, 129, 185
Подстановка контейнеров, 227
Подсчет ссылок, 215
Полиморфизм

алгоритм с переменной
и постоянной частью, 180

брандмауэр, 171
ветвление по коду типа, 170
виртуальные функции
вызов из конструкторов

и деструкторов, 184
невиртуальный вызов, 178
перегрузка, 181
с аргументами по умолчанию, 182
виртуальный конструктор

копирования, 188
гибкость шаблонных методов, 180
динамическое связывание, 169
доминирование, 198
кодирование типов, 169
связи между компонентами, 171
сокрытие

виртуальнон присваивание, 186
невиртуальный деструктор

базового класса адреса
подобъектов базовых

классов, 175
виртуальные статические

функции-члены, 174
исключения из правил, 176
неопределенное поведение, 173
перегрузка, 188
виртуальных функций, 181

сокрытие невиртуальных
функций, 177

Понижающее приведение, 85
Поперечное приведение, 250
Порядок вычислений. См. Приоритеты
Преобразование

reinterpret_cast, 75, 94
временные объекты, 101
время жизни временных

объектов, 101
дельта-арифметика
для адресов объектов классов, 92

корректировка значения this
при вызове виртуальной
функции, 197

понижающие приведения, 85
приведение неполных типов, 94
зависимость от платформы, 74
имени массива в указатель, 83
инициализация

ссылок, 102
формальных аргументов, 98

использование функций вместо, 86
квалификаторов, 80
константные указатели и имена

массивов, 84
контравариантность, 109
неявное

для инициализации формальных
аргументов, 98

из производного класса
в открытый базовый, 110

контравариантность, 109
неоднозначность, 85
с помощью конструкторов, 89

оператор const_cast, 95, 103, 206, 210
оператор dynamic_cast

для задания интимных вопросов
о типе, 247

для опроса возможностей, 250
для приведения к указателю

на виртуальный базовый
класс, 129

как предпочтительная
альтернатива static_cast, 85, 125

неоднозначность, 107
повышающие степень

константности, 79
понижающие приведения, 85
посредством void *, 74
срезка объектов производного

класса, 77
статические приведения, 95
указателей, 80
на неполные типы, 93
на указатели на производный

класс, 83

260260260260260 Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

на члены класса, 110
указателя на многомерный

массив, 83
формальные аргументы
инициализация временными

объектами, 98
передача по значению, 100
передача по ссылке, 100

Препроцессор
NDEBUG, таинственные

ошибки, 67
выбор реализации класса

с помощью #if, 70
константные выражения, 68
макрос assert, 71
область видимости литералов, 63
определение литералов с помощью

#define, 63
отладка, 67
отладочные версии, 67
псевдофункции, 65
утверждения, побочные

эффекты, 71
Приведение. См. также void *

reinterpret_cast, 75, 93
в случае множественного

наследования, 92
в старом стиле, 94, 231
нединамическое. См. Статические

приведения
неполных типов, 93
проблемы в ходе сопровождения,

81, 95, 96
статическое, 95
указателя на базовый класс

к указателю на производный
класс. См. Понижающее
приведение

Приоритеты операторов, 217
&& (логический оператор), 47
, (оператор запятая), 47
?

(условный оператор), 47
|| (логический оператор), 47
и ассоциативность, 48, 50

обзор, 44
оператор взятия индекса, 28
оператор указания, 50
перегрузка операторов, 48
размещающий оператор new, 46
уровни приоритетов, 49
фиксированный порядок

вычислений, 47
Присваивание и инициализация, 112,

122
Присоединяемые классы, 233
Проваливание, 29
Проектирование иерархий

арифметические ошибки
при вычислении адреса, 237

ветвление по кодам типов, 241
вырожденные иерархии, 237
запросы о типе во время

выполнения, 246
защищенный доступ, 230
интерфейсные классы, 233
классы-протоколы, 233
конкретные открытые базовые

классы, 236
космические иерархии, 243
массивы объектов класса, 225
наследование, 238
опрос возможностей, 249
открытое наследование, 233
повторное использование кода, 233
подстановка контейнеров, 227
семантика значения, 237
срезка, 237
управление на основе типов, 241

Проектирование классов
агрегирование и использование, 211
интерфейсы get/set, 202
константные данные-члены, 205
константные функции-члены
механизм работы, 208
отбрасывание const, 210
семантика, 209
синтаксис, 207
оператор декремента, 219
оператор инкремента, 219

261261261261261Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

операторы-члены и друзья
класса, 218

перегрузка операторов, 215
приоритеты операторов, 217
ссылочные данные-члены, 205
шаблонные операции

копирования, 222
Пространство имен

безыимянное, 59
и #define, 63

Прямая инициализация аргументов, 136
Псевдонимы

и отношение агрегирования /
использования, 211

ссылки как, 24, 102
Псевдофункции, определение, 65

Р
Размещающий оператор new

вызов конструктора, 113, 122, 136
подмена глобальных new и delete, 149
порядок вычисления аргументов, 46

Реализация класса, выбор с помощью
#if, 70

С
Связи между компонентами

глобальные переменные, 20
обход защиты доступа, 232
полиморфизм, 171

Связывание
динамическое, 169
ссылки с lvalue, 24, 102
ссылки с функцией, 25

Семантика значения, 237
Сержантский оператор, 54
Синтаксис

const, квалификатор типа,
перестановка, 56

volatile, квалификатор типа,
перестановка, 56

ассоциативность
и предшествование, 48
проблемы, 50
внешние типы, 59

выделение лексем, 54
инициализаторы
не путать с массивами, 43
инфиксная нотация, 60
конкретизация шаблонов, 54
константные указатели, 55
константные функции-члены, 207
лексический анализ, 54
максимальный кусок, 54
массивы

не путать с инициализаторами, 43
перестановка квалификаторов

типа, 56
ограничение области видимости

переменных, 51
перегрузка

инфиксная нотация, 60
оператора ->, 61

операторов, 59
предшествование
автоинициализация, 57
и ассоциативность, 48, 50
оператор указания, 50
уровни приоритетов, 49
перестановка квалификаторов

типов, 56
поиск операторной функции, 59
порядок вычислений
&& (логический оператор), 47
, (оператор запятая), 47
?

(условный оператор), 47
|| (логический оператор), 47
обзор, 44
перегрузка операторов, 48
подвыражений, 45
размещающий оператор new, 46
порядок

вычисленийфиксированный, 47
предложение for
ограничение области видимости

переменной, 51
сравнение с while, 53
спецификатор компоновки, 59
спецификаторы в объявлениях,

порядок следования, 55

262262262262262 Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

статические типы, 59
функция или объект, 56

Соглашения об именовании
кодирование типа переменной

в ее имени, 34
мнемонические имена, 18
ограничение доступа, 34
описание отношений владения, 212
простота, 34
самодокументированный код, 18

Сокрытие
невиртуальных функций, 177
сравнение с перегрузкой

и переопределением, 188
Сокрытие данных.

См. Ограничение доступа
Сопровождение. См. также

Комментарии; Удобочитаемость
и приведения типов, 75, 81, 95, 96

способы облегчить
взаимозаменяемые

контейнеры, 228
владение в контейнерах, 213
выделение памяти для скаляров

и массивов, 146
идиомы, 37
инициализация статических

членов, 143
коды типов, 171
мнемонические имена, 18
неполные объявления, 31
порядок квалификаторов

в объявлениях, 56
предложение for, 51, 53
приоритеты операторов, 49
проваливание, 29
соглашения об именовании, 17
стандарты кодирования, 41, 47
управление на основе типов, 242
утверждения, 72

Спецификаторы объявлений
порядок следования, 55

Список инициализации членов,
порядок следования, 124

Срезка
и проектирование иерархий, 237
объектов производных классов, 77

Ссылки
возврат из функции, 24
и указатели, 23
инициализация, 102
как псевдонимы, 24, 102
квалификаторы const и volatile, 24
на локальные переменные, 158
на массивы, 25
на неполные типы, 93
нулевые, 24
приведение типа, 25
привязка к функции, 25

Статические переменные,
инициализация во время

выполнения, 132
Статические типы, 59
Строковые литералы, как объекты

исключений, 152
Счетчик Шварца, 133

Т
Темные закоулки языка C++

адрес возвращенного не-lvalue, 222
вызов чисто виртуальной

функции, 179
гарантии относительно

reinterpret_cast, 93
генерируемый компилятором

оператор присваивания
подобъектам виртуального

базового класса, 127
индексирование целого, 28

копирование строкового литерала
во временный объект

при употреблении
в выражении throw, 155

неприменимость квалификаторов
к ссылкам, 24

область видимости при вызове
функции-члена operator delete, 175

переопределение невидимых
функций, 191

263263263263263Предметный указательПредметный указательПредметный указательПредметный указательПредметный указатель

применение квалификатора
к typedef’у функции, 57

результат условного оператора —
lvalue, 27

структура предложения switch, 29
точка объявления перечисляемой

константы, 58
Типы исключений, 153

У
Удобочитаемость. См. Комментарии;

Сопровождение форматирование
кода, 39

Указатели
владение, 213
возбуждение исключений, 155
и ссылки, 23
контейнеры, содержащие указатели,

213
на локальные переменные, 158
на неполные типы, 93
на указатель на производный

класс, 83
на функции, 25
на члены класса, 23, 109
преобразование, 80
приоритеты операторов, 50

Улыбка Чеширского кота. См. Bridge,
паттерн

Управление памятью и ресурсами
auto_ptr, 166
возбуждение исключений

в виде указателей, 156
временные объекты в качестве

объектов исключений, 156
захват ресурса есть

инициализация, 162
исправление ошибки путем

добавления static, 161
область видимости и активация new

и delete, 151
обработка исключений, 152
освобождение памяти

для выделенных из кучи
объектов, 166

для скаляров и массивов, 144
ошибки при выделении памяти, 147
перехват исключений, 156
перехват строковых литералов, 153
подмена глобальных new и delete, 149
порядок catch-обработчиков, 158
типы исключений, 153
утечки памяти, 160

Утверждения, побочные эффекты, 71
Утечки памяти, 160, 211

Ф
Формальные аргументы

инициализация временными
объектами, 98

описание прав владения, 212
передача по значению, 100
передача по ссылке, 100

Функции
возврат ссылки на значение, 24
для преобразований, 86
невидимые, переопределение, 191
связывание ссылки с, 25
ссылки на, 25
указатели на, 25

Функции преобразования, явные, 86
Функции-члены

виртуальные статические, 174
шаблонные, 39

Функциональный объект, идиома, 234

Ч
Чисто виртуальные функции,

вызов, 179
Члены класса

нуждающиеся в инициализации, 122
указатели на, 23, 109

Ш
Шаблонные методы, гибкость, 180
Шаблонные операции копирования, 222

Э
Этика программиста, 41

Стефан К. Дьюхэрст

Скользкие места C++

Как избежать проблем
при проектировании и кодировании

Главный редактор Мовчан Д. А.

Литературный редактор Готлиб О. В.
Верстка Страмоусова О. И.

Дизайн обложки Мовчан А. Г.

Web-сайт издательства: www.dmkpress.c o m

× 1
16

Гарнитура «Петербург». Печать офсетная.
Усл. печ. л. 18,62. Тираж 100 экз.

90 / .

dmkpress@gmail.com

 Формат 60

Книги издательства «ДМК Пресс» можно заказать в торгово-издательском
холдинге «Планета Альянс» наложенным платежом, выслав открытку или
письмо по почтовому адресу: 115487, г. Москва, 2-й Нагатинский пр-д, д. 6А.

При оформлении заказа следует указать адрес (полностью), по которому
должны быть высланы книги; фамилию, имя и отчество получателя. Жела-
тельно также указать свой телефон и электронный адрес.

Эти книги вы можете заказать и в интернет-магазине: www.alians-kniga.ru.
Оптовые закупки: тел. +7 (499) 782-38-89.
Электронный адрес: books@alians-kniga.ru.

