1Листинг 1.1. Минимальный код каркаса Windows-приложения

2Листинг 1.2. Стандартная заготовка Win32-приложения

2Листинг 1.3. Программа эхо-печати

3Листинг 1.4. Обработка сообщений нажатия на клавишу мыши

3Листинг 1.5. Оконная функция для таймера

4Листинг 1.6. Рисование сетки

4Листинг 1.7. Построение кардиоиды

5Листинг 1.8. Синусоида

6Листинг 1.9. Вывод графиков в локальной системе координат

7Листинг 1.10. Тест для демонстрации кистей

8Листинг 1.11. Использование регионов для графических построений

9Листинг 1.12. Графические построения с использованием путей

10Листинг 1.13. Вывод числовых характеристик шрифта, заданного по умолчанию

10Листинг 1.14. Вывод текста по радиальным линиям

11Листинг 1.15. Построение кривой Безье

Листинг 1.1. Минимальный код каркаса Windows-приложения

#include <windows.h>

#include <tchar.h>

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

TCHAR WinName[] = _T("MainFrame");

int APIENTRY _tWinMain(HINSTANCE This,// Дескриптор текущего приложения

HINSTANCE Prev,

// В современных системах всегда 0

LPTSTR cmd,

// Командная строка

int mode)

// Режим отображения окна

{

HWND hWnd;
// Дескриптор главного окна программы

MSG msg;
// Структура для хранения сообщения

WNDCLASS wc;
// Класс окна

// Определение класса окна

wc.hInstance = This;

wc.lpszClassName = WinName;

// Имя класса окна

wc.lpfnWndProc = WndProc;

// Функция окна

wc.style = CS_HREDRAW | CS_VREDRAW;

// Стиль окна

wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
// Стандартная иконка

wc.hCursor = LoadCursor(NULL,IDC_ARROW);
// Стандартный курсор

wc.lpszMenuName = NULL;
// Нет меню

wc.cbClsExtra = 0;

// Нет дополнительных данных класса

wc.cbWndExtra = 0;

// Нет дополнительных данных окна

// Заполнение окна белым цветом

wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);

if(!RegisterClass(&wc)) return 0;
// Регистрация класса окна

//Создание окна

hWnd = CreateWindow(WinName,
// Имя класса окна

_T("Каркас Windows-приложения"),
// Заголовок окна

WS_OVERLAPPEDWINDOW,

// Стиль окна

CW_USEDEFAULT,
// x

CW_USEDEFAULT,
// y
Размеры окна

CW_USEDEFAULT,
// Width

CW_USEDEFAULT,
// Height

HWND_DESKTOP,
// Дескриптор родительского окна

NULL,

// Нет меню

This,

// Дескриптор приложения

NULL);

// Дополнительной информации нет

ShowWindow(hWnd, mode); //Показать окно

// Цикл обработки сообщений

while(GetMessage(&msg, NULL, 0, 0))

{

TranslateMessage(&msg);// Функция трансляции кодов нажатой клавиши

DispatchMessage(&msg); // Посылает сообщение функции WndProc()

}

return 0;

}

// Оконная функция вызывается операционной системой

// и получает сообщения из очереди для данного приложения

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,

 WPARAM wParam, LPARAM lParam)

{
// Обработчик сообщений

switch(message)

{

case WM_DESTROY : PostQuitMessage(0);

break; // Завершение программы

// Обработка сообщения по умолчанию

default : return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.2. Стандартная заготовка Win32-приложения

//Код создается автоматически мастером-построителем
Листинг 1.3. Программа эхо-печати

#include <xstring>

typedef std::basic_string<TCHAR, std::char_traits<TCHAR>, std::allocator<TCHAR> > String;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static String str;

switch (message)

{

case WM_CHAR:

str += (TCHAR)wParam;

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

TextOut(hdc, 0, 0, str.data(), str.size());

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.4. Обработка сообщений нажатия на клавишу мыши

TCHAR *r_str = _T("Нажата правая кнопка мыши");

TCHAR *l_str = _T("Нажата левая кнопка мыши");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

HDC hdc;

int x, y;

switch (message)

{

case WM_RBUTTONDOWN:

x = LOWORD(lParam);

y = HIWORD(lParam);

hdc = GetDC(hWnd);

TextOut(hdc, x, y, r_str, _tcsclen(r_str));

ReleaseDC(hWnd, hdc);

break;

case WM_LBUTTONDOWN:

x = LOWORD(lParam);

y = HIWORD(lParam);

hdc = GetDC(hWnd);

TextOut(hdc, x, y, l_str, _tcsclen(l_str));

ReleaseDC(hWnd, hdc);

break;

case WM_RBUTTONUP:

case WM_LBUTTONUP:

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.5. Оконная функция для таймера

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int t;

TCHAR s[10], str[20] = _T("Секунды: ");

switch (message)

{

case WM_CREATE :

SetTimer(hWnd, 1, 1000, NULL);

break;

case WM_TIMER :

t++;

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

_tcscat(str+9, _itot(t, s, 10));

TextOut(hdc, 0, 0, str, _tcsclen(str));

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

KillTimer(hWnd, 1);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.6. Рисование сетки
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

int x, y;

static int sx, sy;

switch (message)

{

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for (x = 0; x < sx; x += sx/10)

{

MoveToEx(hdc, x, 0, NULL);

LineTo(hdc, x, sy);

}

for (y = 0; y < sy; y += sy/10)

{

MoveToEx(hdc, 0, y, NULL);

LineTo(hdc, sx, y);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.7. Построение кардиоиды
#define _USE_MATH_DEFINES

#include <cmath>
const int R = 100;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int sx, sy;

int a, b, x, y;

//Экранные координаты

double angle;

//Физические координаты

switch (message)

{

case WM_SIZE:

sx = LOWORD(lParam);
//Ширина окна

sy = HIWORD(lParam);
//Высота окна

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

a = sx/2;

b = sy/2;

MoveToEx(hdc, 0, b, NULL);

LineTo(hdc, sx, b);

MoveToEx(hdc, a, 0, NULL);

LineTo(hdc, a, sy);

MoveToEx(hdc, a, b, NULL);

for (angle = 0.0; angle < 2*M_PI; angle += 0.1)

{

x = a + R*(1 - cos(angle))*cos(angle);

y = b - R*(1 - cos(angle))*sin(angle);

LineTo(hdc, x, y);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.8. Синусоида
#define _USE_MATH_DEFINES
#include <cmath>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int sx, sy;

static HPEN hpen1, hpen2;

int a, b, x_scr, y_scr;
// Экранные координаты

double x, h;

// Физические координаты

switch (message)

{

case WM_CREATE :

hpen1 = CreatePen(PS_SOLID, 2, RGB(0, 0, 255));

hpen2 = CreatePen(PS_SOLID, 2, RGB(255, 0, 0));

break;

case WM_SIZE:

sx = LOWORD(lParam);
//Ширина окна

sy = HIWORD(lParam);
//Высота окна

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

a = sx/2;

//Координаты

b = sy/2;

//центра окна

SelectObject(hdc,hpen1);
//Синее перо

MoveToEx(hdc, 0, b, NULL);

LineTo(hdc, sx, b);

MoveToEx(hdc, a, 0, NULL);

LineTo(hdc, a, sy);

MoveToEx(hdc, 0, b, NULL);

SelectObject(hdc,hpen2);
//Красное перо

h = 3*M_PI/a;

//Шаг по оси х

for (x = -M_PI, x_scr = 0; x < M_PI; x += h)

{

x_scr = (x + M_PI)*a/M_PI;

y_scr = b - b*sin(x);

LineTo(hdc, x_scr, y_scr);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteObject(hpen1);

DeleteObject(hpen2);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.9. Вывод графиков в локальной системе координат
#define _USE_MATH_DEFINES

#include <cmath>

const int WIDTH = 314;

const int HEIGHT = 200;

const double R = 4.0;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int sx, sy;

static HPEN hpen1, hpen2;

int x_scr, y_scr;
//Экранные координаты

double x;

//Физические координаты

switch (message)

{

case WM_CREATE:
//Создаем перья

hpen1 = CreatePen(PS_SOLID,4,RGB(0, 0, 255));

hpen2 = CreatePen(PS_SOLID,4,RGB(255, 0, 0));

break;

case WM_SIZE:
//Определяем физические размеры окна

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

//Установка режима

SetMapMode(hdc, MM_ANISOTROPIC);

//Установка логических размеров вывода, ось y направлена вверх

SetWindowExtEx(hdc, 2*WIDTH, -2*HEIGHT, NULL);

//Установка физических размеров на четверть окна

SetViewportExtEx(hdc, sx/2, sy/2, NULL);

// Установка начала координат

SetViewportOrgEx(hdc, sx/4, sy/4, NULL);

SelectObject(hdc, hpen1);

//Синее перо

MoveToEx(hdc, -WIDTH, 0, NULL);
//Рисуем координатные оси

LineTo(hdc, WIDTH, 0);

MoveToEx(hdc, 0, HEIGHT, NULL);

LineTo(hdc, 0, -HEIGHT);

SelectObject(hdc, hpen2);

//Красное перо

MoveToEx(hdc, -WIDTH, 0, NULL);

for (x = -M_PI, x_scr = -WIDTH; x < M_PI; x += 0.03, x_scr += 3)

{

y_scr = HEIGHT*sin(x);

LineTo(hdc, x_scr, y_scr);

}

// Перенос начала координат

SetViewportOrgEx(hdc, sx*3/4, sy/4, NULL);

SelectObject(hdc, GetStockObject(BLACK_PEN)); //Черное перо

MoveToEx(hdc, -WIDTH, 0, NULL);
//Рисуем координатные оси

LineTo(hdc, WIDTH, 0);

MoveToEx(hdc, 0, HEIGHT, NULL);

LineTo(hdc, 0, -HEIGHT);

//Выберем черное системное перо

SelectObject(hdc, hpen1);
//Синее перо

MoveToEx(hdc, 0, 0, NULL);
//Текущая точка в начале координат

for (double angle = 0.0; angle < 2*M_PI; angle += 0.02)

{

x_scr = HEIGHT*sin(R*angle)*cos(angle);

y_scr = HEIGHT*sin(R*angle)*sin(angle);

LineTo(hdc, x_scr, y_scr);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteObject(hpen1);

DeleteObject(hpen2);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.10. Тест для демонстрации кистей
HBRUSH hbrush, h_brush[6];

TCHAR *str = _T("сплошное заполнение");

TCHAR *hstr[] = {_T("HS_BDIAGONAL – слева направо и снизу вверх"),

_T("HS_CROSS - горизонтальная и вертикальная штриховка"),

_T("HS_DIAGCROSS - под углом в 45 градусов"),

_T("HS_FDIAGONAL - слева-направо и сверху вниз"),

_T("HS_HORIZONTAL - горизонтальная штриховка"),

_T("HS_VERTICAL - вертикальная штриховка")};

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

int i;

int nIndex[] = {HS_BDIAGONAL, HS_CROSS, HS_DIAGCROSS, HS_FDIAGONAL,

HS_HORIZONTAL, HS_VERTICAL};

switch (message)

{

case WM_CREATE :

hbrush = CreateSolidBrush(RGB(255, 255, 0));

for (i = 0; i < 6; i++)

h_brush[i] = CreateHatchBrush(nIndex[i], RGB(0, 128, 0));

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SelectObject(hdc, hbrush);

Ellipse(hdc, 1, 1, 40, 40);

TextOut(hdc, 50, 11, str, _tcsclen(str));

for (i = 0; i < 6; i++)

{

SelectObject(hdc, h_brush[i]);

Rectangle(hdc, 1, 41+i*40, 40, 80+i*40);

TextOut(hdc, 50, 51+i*40, hstr[i], _tcsclen(hstr[i]));

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY :

DeleteObject(hbrush);

for (i = 0; i < 6; i++) DeleteObject(h_brush[i]);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.11. Использование регионов для графических построений

RECT pRect = {-100, -100, 100, 100};

RECT pEllips = {-120, -80, 120, 80};

RECT pSm = {-60, -40, 60, 40};
const int WIDTH = 400;
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int sx, sy;

HRGN hRgnEllipse;

HRGN hRgn;

static HBRUSH hBrush;

switch (message)

{

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_CREATE:

hBrush = CreateSolidBrush(RGB(0, 0, 255));

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SetMapMode(hdc, MM_ANISOTROPIC);

SetWindowExtEx(hdc, WIDTH, - WIDTH, NULL);

SetViewportExtEx(hdc, sx, sy, NULL);

SetViewportOrgEx(hdc, sx/2, sy/2, NULL);

hRgn = CreateRectRgnIndirect(&pRect);

hRgnEllipse = CreateEllipticRgnIndirect(&pEllips);

CombineRgn(hRgn, hRgn, hRgnEllipse, RGN_DIFF);

DeleteObject(hRgnEllipse);

hRgnEllipse = CreateEllipticRgnIndirect(&pSm);

CombineRgn(hRgn, hRgn, hRgnEllipse, RGN_OR);

DeleteObject(hRgnEllipse);

FillRgn(hdc, hRgn, hBrush);

DeleteObject(hRgn);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}
Листинг 1.12. Графические построения с использованием путей

POINT pt[5] = { {0,100}, {-59,-81}, {95,31}, {-95,31}, {59,-81} };

const int WIDTH = 400;

const int HEIGHT = 300;

 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int sx, sy;

static HBRUSH hBrush;

HRGN hRgn;

switch (message)

{

case WM_CREATE:

hBrush = CreateSolidBrush(RGB(255, 0, 0));

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SetMapMode(hdc, MM_ANISOTROPIC);

SetWindowExtEx(hdc, WIDTH, -HEIGHT , NULL);

SetViewportExtEx(hdc, sx, sy, NULL);

SetViewportOrgEx(hdc, sx/2, sy/2, NULL);

BeginPath(hdc);

Polyline(hdc, pt, 5);

CloseFigure(hdc);

EndPath(hdc);

SelectObject(hdc, hBrush);

SetPolyFillMode(hdc, WINDING);

FillPath(hdc);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.13. Вывод числовых характеристик шрифта, заданного по умолчанию

TCHAR *text = _T("Текст для вывода в окне");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TEXTMETRIC tm;

TCHAR str[256];

RECT rt;

SIZE size;

switch (message)

{

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SetBkColor(hdc,RGB(255,255,0));

// Желтый фон

SetTextColor(hdc,RGB(0,0,128));

// Синий шрифт

TextOut(hdc, 0, 0, text, _tcsclen(text));

SetBkMode(hdc,TRANSPARENT);

// Прозрачный фон

SelectObject(hdc,GetStockObject(ANSI_VAR_FONT));

GetTextMetrics(hdc,&tm);

_stprintf(str, _T("tmHeight = %d\ntmInternalLeading =\

%d\ntmExternalLeading = %d\ntmAscent = %d\ntmDescent = %d\n"),

tm.tmHeight, tm.tmInternalLeading, tm.tmExternalLeading,

tm.tmAscent, tm.tmDescent);

SetRect(&rt, 0, 20, 150, 100);

DrawText(hdc, str, _tcslen(str), &rt, DT_LEFT);

GetTextExtentPoint32(hdc, text, _tcsclen(text), &size);

_stprintf(str,_T("Ширина строки = %d\nВысота строки = %d"),

size.cx, size.cy);

SetRect(&rt, 0, 100, 150, 150);

DrawText(hdc, str, _tcslen(str), &rt, DT_LEFT);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}
Листинг 1.14. Вывод текста по радиальным линиям

TCHAR str[] = _T("Наклонный текст");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

HFONT oldFont, newFont;

int Escapement;

static int sx, sy;

switch (message)

{

case WM_SIZE:

sx = LOWORD(lParam)/2;

sy = HIWORD(lParam)/2;

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for (Escapement = 0; Escapement < 3600; Escapement += 200)

{

newFont = CreateFont(20, 0, Escapement, 0, 700, 1, 0, 0,

DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,

DEFAULT_QUALITY,
DEFAULT_PITCH | FF_DONTCARE,_T("Arial"));

oldFont = (HFONT)SelectObject(hdc, newFont);

TextOut(hdc, sx, sy, str,_tcsclen(str));

SelectObject(hdc, oldFont);

DeleteObject(newFont);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 1.15. Построение кривой Безье
#include <fstream>

static int sx, sy;

const int SCALE = 1000;

const int MARK = 4;

void DcInLp(POINT &point)

{

point.x = point.x* SCALE/sx;

point.y = SCALE - point.y* SCALE/sy;

}

void transform(HDC& hdc)

{

SetMapMode(hdc, MM_ANISOTROPIC);

SetWindowExtEx(hdc, SCALE, -SCALE, NULL);

SetViewportExtEx(hdc, sx, sy, NULL);

SetViewportOrgEx(hdc, 0, sy, NULL);

}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static HPEN hDash, hBezier;

static HBRUSH hRect, hSel;

static POINT pt[20];

static POINT point;

RECT rt;

static int count, index;

static bool capture;

int i;

std::ifstream in;

std::ofstream out;

switch (message)

{

case WM_CREATE:

in.open("dat.txt");

if (in.fail())

{

MessageBox(hWnd,_T("Файл dat.txt не найден"),

_T("Открытие файла"), MB_OK | MB_ICONEXCLAMATION);

PostQuitMessage(0);

return 1;

}

for (count = 0; in >> pt[count].x; count++) in >> pt[count].y;

in.close();
//В переменной count сохранится размер массива точек

hDash = CreatePen(PS_DASH, 1, 0);

hBezier = CreatePen(PS_SOLID, 4, RGB(0, 0, 255));

hRect = CreateSolidBrush(RGB(128, 0, 128));

hSel = CreateSolidBrush(RGB(255, 0, 0));

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_LBUTTONDOWN:

point.x = LOWORD(lParam);

point.y = HIWORD(lParam);

//Преобразование экранных координат мыши в логические

DcInLp(point);

for (i = 0; i < count; i++)

{

SetRect(&rt,pt[i].x-MARK,pt[i].y-MARK,pt[i].x+MARK,pt[i].y+MARK);

if (PtInRect(&rt, point))

{
//Курсор мыши попал в точку

index = i;

capture = true;

hdc = GetDC(hWnd);

transform(hdc);
//Переход в логические координаты

FillRect(hdc, &rt, hSel);//Отметим прямоугольник цветом

ReleaseDC(hWnd, hdc);

SetCapture(hWnd);

//Захват мыши

return 0;

}

}

break;

case WM_LBUTTONUP:

if (capture)

{

ReleaseCapture();

//Освобождение мыши

capture = false;

}

break;

case WM_MOUSEMOVE:

if (capture)

{
//Мышь захвачена

point.x = LOWORD(lParam);

point.y = HIWORD(lParam);

DcInLp(point);
//Преобразование экранных координат мыши

pt[index] = point;
//в логические координаты

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

transform(hdc);

//Переход в логические координаты

SelectObject(hdc, hDash);

Polyline(hdc, pt, count);
//Строим ломаную линию

SelectObject(hdc, hBezier);

PolyBezier(hdc, pt, count);
//Строим кривую Безье

for (i = 0; i < count; i++)

{
//Закрашиваем точки графика прямоугольниками

SetRect(&rt,pt[i].x-MARK,pt[i].y-MARK,pt[i].x+MARK,pt[i].y+MARK);

FillRect(hdc, &rt, hRect);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteObject(hDash);

DeleteObject(hBezier);

DeleteObject(hRect);

DeleteObject(hSel);

out.open("dat.txt");

for (i = 0;i<count;i++) out << pt[i].x << '\t' << pt[i].y << '\n';

out.close();

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

