1Листинг 2.1. Просмотрщик файлов с диалогом выбора имени

2Листинг 2.2. Оконная функция с полосами прокрутки

4Листинг 2.3. Окончательный вариант оконной функции программы просмотра файлов

7Листинг 2.4. Организация чтения/записи файла в библиотеке API-функций

Листинг 2.1. Просмотрщик файлов с диалогом выбора имени

#include <commdlg.h>

#include <fstream>

#include <vector>

#include <string>
const int LineHeight = 16;//Высота строки текста + межстрочное расстояние
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

int wmId;

PAINTSTRUCT ps;

HDC hdc;

static TCHAR name[256] = _T("");;

static OPENFILENAME file;

std::ifstream in;

std::ofstream out;

static std::vector<std::string> v;

std::vector<std::string>::iterator it;

std::string st;

int y;

switch (message)

{

case WM_CREATE:

file.lStructSize = sizeof(OPENFILENAME);

file.hInstance = hInst;

file.lpstrFilter = _T("Text\0*.txt");

file.lpstrFile = name;

file.nMaxFile = 256;

file.lpstrInitialDir = _T(".\\");

file.lpstrDefExt = _T("txt");

break;

case WM_COMMAND:

wmId = LOWORD(wParam);

switch (wmId)

{

case ID_FILE_NEW :

if (!v.empty()) std::vector<std::string>().swap(v);

InvalidateRect(hWnd, NULL, TRUE);

break;

case ID_FILE_OPEN :

file.lpstrTitle = _T("Открыть файл для чтения");

file.Flags = OFN_HIDEREADONLY;

if (!GetOpenFileName(&file)) return 1;

in.open(name);

while (getline(in,st)) v.push_back(st);

in.close();

InvalidateRect(hWnd,NULL,1);

break;

case ID_FILE_SAVE :

file.lpstrTitle = _T("Открыть файл для записи");

file.Flags = OFN_NOTESTFILECREATE;

if (!GetSaveFileName(&file)) return 1;

out.open(name);

for (it = v.begin(); it != v.end(); ++it) out << *it << '\n';

out.close();

break;

case IDM_EXIT:
DestroyWindow(hWnd);
break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for (y = 0, it = v.begin(); it < v.end(); ++it, y += LineHeight)

TextOutA(hdc, 0, y, it->data(), it->length());

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 2.2. Оконная функция с полосами прокрутки

#include <commdlg.h>

#include <fstream>

#include <vector>

#include <string>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static TCHAR name[256] = _T("");;

static OPENFILENAME file;

std::ifstream in;

std::ofstream out;

static std::vector<std::string> v;

std::vector<std::string>::iterator it;

std::string st;

int y, k;

static int n,length,sx,sy,cx,iVscrollPos,iHscrollPos,COUNT,MAX_WIDTH;

static SIZE size = {8, 16}; //Ширина и высота символа

switch (message)

{

case WM_CREATE:

file.lStructSize = sizeof(OPENFILENAME);

file.hInstance = hInst;

file.lpstrFilter = _T("Text\0*.txt");

file.lpstrFile = name;

file.nMaxFile = 256;

file.lpstrInitialDir = _T(".\\");

file.lpstrDefExt = _T("txt");

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

k = n - sy/size.cy;

if (k > 0) COUNT = k; else COUNT = iVscrollPos = 0;

SetScrollRange(hWnd, SB_VERT, 0, COUNT, FALSE);

SetScrollPos (hWnd, SB_VERT, iVscrollPos, TRUE);

k = length - sx/size.cx;

if (k > 0) MAX_WIDTH = k; else MAX_WIDTH = iHscrollPos = 0;

SetScrollRange(hWnd, SB_HORZ, 0, MAX_WIDTH, FALSE);

SetScrollPos(hWnd, SB_HORZ, iHscrollPos, TRUE);

break;

case WM_VSCROLL :

switch(LOWORD(wParam))

{

case SB_LINEUP : iVscrollPos--; break;

case SB_LINEDOWN : iVscrollPos++; break;

case SB_PAGEUP : iVscrollPos -= sy / size.cy; break;

case SB_PAGEDOWN : iVscrollPos += sy / size.cy; break;

case SB_THUMBPOSITION : iVscrollPos = HIWORD(wParam); break;

}

iVscrollPos = max(0, min(iVscrollPos, COUNT));

if (iVscrollPos != GetScrollPos(hWnd, SB_VERT))

{

SetScrollPos(hWnd, SB_VERT, iVscrollPos, TRUE);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_HSCROLL :

switch(LOWORD(wParam))

{

case SB_LINEUP : iHscrollPos--; break;

case SB_LINEDOWN : iHscrollPos++; break;

case SB_PAGEUP : iHscrollPos -= 8; break;

case SB_PAGEDOWN : iHscrollPos += 8; break;

case SB_THUMBPOSITION : iHscrollPos = HIWORD(wParam); break;

}

iHscrollPos = max(0, min(iHscrollPos, MAX_WIDTH));

if (iHscrollPos != GetScrollPos(hWnd, SB_HORZ))

{

SetScrollPos(hWnd, SB_HORZ, iHscrollPos, TRUE);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FILE_NEW :

if (!v.empty()) std::vector<std::string>().swap(v);

n = length = 0;

SendMessage(hWnd, WM_SIZE, 0, sy << 16 | sx);

InvalidateRect(hWnd, NULL, TRUE);

break;

case ID_FILE_OPEN :

file.lpstrTitle = _T("Открыть файл для чтения");

file.Flags = OFN_HIDEREADONLY;

if (!GetOpenFileName(&file)) return 1;

in.open(name);

while (getline(in,st))

{

if (length < st.length()) length = st.length();

v.push_back(st);

}

in.close();

n = v.size();

SendMessage(hWnd, WM_SIZE, 0, sy << 16 | sx);

InvalidateRect(hWnd, NULL, TRUE);

break;

case ID_FILE_SAVE :

file.lpstrTitle = _T("Открыть файл для записи");

file.Flags = OFN_NOTESTFILECREATE;

if (!GetSaveFileName(&file)) return 1;

out.open(name);

for (it = v.begin(); it != v.end(); ++it) out << *it << '\n';

out.close();

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for(y=0,it=v.begin()+iVscrollPos;it!=v.end()&&y<sy;++it,y+=size.cy)

if (iHscrollPos < it->length())

TabbedTextOutA(hdc,0,y,it->data()+iHscrollPos,it->length()-
iHscrollPos,0,NULL,0);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 2.3. Окончательный вариант оконной функции программы просмотра файлов

#include <commdlg.h>

#include <fstream>

#include <vector>

#include <string>

#include <commctrl.h>

TBBUTTON tbb[] =
{

{STD_FILENEW, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON,0,0,0,0},

{STD_FILEOPEN, ID_FILE_OPEN,TBSTATE_ENABLED, TBSTYLE_BUTTON,0,0,0,0},

{STD_FILESAVE, ID_FILE_SAVE,TBSTATE_ENABLED, TBSTYLE_BUTTON,0,0,0,0}

};

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static TCHAR name[256] = _T("");;

static OPENFILENAME file;

std::ifstream in;

std::ofstream out;

static std::vector<std::string> v;

std::vector<std::string>::iterator it;

std::string st;

int y, k;

static int n,length,sx,sy,cx,iVscrollPos,iHscrollPos,COUNT,MAX_WIDTH;

static SIZE size = {8, 16 };

static HWND hWndToolBar;

static int size_Toolbar;

RECT rt;

static LOGFONT lf;

static CHOOSEFONT cf;

static HFONT hfont;

TEXTMETRIC tm;

switch (message)

{

case WM_CREATE:

file.lStructSize = sizeof(OPENFILENAME);

file.hInstance = hInst;

file.lpstrFilter = _T("Text .txt\0 *.txt\0Все файлы\0 *.*");

file.lpstrFile = name;

file.nMaxFile = 256;

file.lpstrInitialDir = _T(".\\");

file.lpstrDefExt = _T("txt");

hWndToolBar = CreateToolbarEx(hWnd,WS_CHILD|WS_VISIBLE|CCS_TOP,1,0,

HINST_COMMCTRL,IDB_STD_SMALL_COLOR,tbb,3,0,0,0,0,sizeof(TBBUTTON));

cf.lStructSize = sizeof(CHOOSEFONT);

cf.Flags = CF_EFFECTS | CF_INITTOLOGFONTSTRUCT | CF_SCREENFONTS;

cf.hwndOwner = hWnd;

cf.lpLogFont = &lf;

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

k = n - (sy - size_Toolbar)/size.cy;

if (k > 0) COUNT = k; else COUNT = iVscrollPos = 0;

SetScrollRange(hWnd, SB_VERT, 0, COUNT, FALSE);

SetScrollPos (hWnd, SB_VERT, iVscrollPos, TRUE);

k = length - sx/size.cx;

if (k > 0) MAX_WIDTH = k; else MAX_WIDTH = iHscrollPos = 0;

SetScrollRange(hWnd, SB_HORZ, 0, MAX_WIDTH, FALSE);

SetScrollPos(hWnd, SB_HORZ, iHscrollPos, TRUE);

SendMessage(hWndToolBar, TB_AUTOSIZE, 0, 0);

GetWindowRect(hWndToolBar, &rt);

size_Toolbar = rt.bottom - rt.top;

break;

case WM_MOUSEWHEEL:

iVscrollPos -= (short)HIWORD(wParam)/WHEEL_DELTA;

iVscrollPos = max(0, min(iVscrollPos, COUNT));

SetScrollPos(hWnd, SB_VERT, iVscrollPos, TRUE);

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_VSCROLL :

switch(LOWORD(wParam))

{

case SB_LINEUP : iVscrollPos--; break;

case SB_LINEDOWN : iVscrollPos++; break;

case SB_PAGEUP : iVscrollPos -= sy/size.cy; break;

case SB_PAGEDOWN : iVscrollPos += sy/size.cy; break;

case SB_THUMBPOSITION : iVscrollPos = HIWORD(wParam); break;

}

iVscrollPos = max(0, min(iVscrollPos, COUNT));

if (iVscrollPos != GetScrollPos(hWnd, SB_VERT))

{

SetScrollPos(hWnd, SB_VERT, iVscrollPos, TRUE);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_HSCROLL :

switch(LOWORD(wParam))

{

 case SB_LINEUP : iHscrollPos--; break;

 case SB_LINEDOWN : iHscrollPos++; break;

 case SB_PAGEUP : iHscrollPos -= 8; break;

 case SB_PAGEDOWN : iHscrollPos += 8; break;

 case SB_THUMBPOSITION : iHscrollPos = HIWORD(wParam); break;

}

iHscrollPos = max(0, min(iHscrollPos, MAX_WIDTH));

if (iHscrollPos != GetScrollPos(hWnd, SB_HORZ))

{

SetScrollPos(hWnd, SB_HORZ, iHscrollPos, TRUE);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FILE_NEW :

if (!v.empty()) std::vector<std::string>().swap(v);

n = length = 0;

SendMessage(hWnd, WM_SIZE, 0, sy << 16 | sx);

InvalidateRect(hWnd,NULL,TRUE);

break;

case ID_FILE_OPEN :

file.lpstrTitle = _T("Открыть файл для чтения");

file.Flags = OFN_HIDEREADONLY;

if (!GetOpenFileName(&file)) return 1;

in.open(name);

while (getline(in,st))

{

if (length < st.length()) length = st.length();

v.push_back(st);

}

in.close();

n = v.size();

SendMessage(hWnd, WM_SIZE, 0, sy << 16 | sx);

InvalidateRect(hWnd,NULL,1);

break;

case ID_FILE_SAVE :

file.lpstrTitle = _T("Открыть файл для записи");

file.Flags = OFN_NOTESTFILECREATE;

if (!GetSaveFileName(&file)) return 1;

out.open(name);

for (it = v.begin(); it != v.end(); ++it) out << *it << '\n';

out.close();

break;

case ID_FONT :

if(ChooseFont(&cf))

{

if (hfont) DeleteObject(hfont);

hfont = CreateFontIndirect(&lf);

hdc = GetDC(hWnd);

SelectObject(hdc, hfont);

GetTextMetrics(hdc, &tm);

size.cx = tm.tmAveCharWidth;

size.cy = tm.tmHeight + tm.tmExternalLeading;

ReleaseDC(hWnd, hdc);

SendMessage(hWnd, WM_SIZE, 0, sy << 16 | sx);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

if (hfont)

{
SelectObject(hdc, hfont);

SetTextColor(hdc, cf.rgbColors);

}

for (y = size_Toolbar, it = v.begin() + iVscrollPos;

it != v.end() && y < sy; ++it, y += size.cy)

if (iHscrollPos < it->length())

TabbedTextOutA(hdc, 0, y, it->data()+iHscrollPos,

it->length()-iHscrollPos, 0, NULL, 0);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

if (hfont) DeleteObject(hfont);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 2.4. Организация чтения/записи файла в библиотеке API-функций
#include <commdlg.h>

const DWORD MaxLength = 0x7fff;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static TCHAR name[256] = _T("");;

static OPENFILENAME file;

DWORD result;

static HANDLE hFile;

static char text[MaxLength];

static int sx, sy;

static DWORD nCharRead;

RECT rt;

switch (message)

{

case WM_CREATE:

file.lStructSize = sizeof(OPENFILENAME);

file.hInstance = hInst;

file.lpstrFilter = _T("Text\0*.txt\0Все файлы\0*.*");

file.lpstrFile = name;

file.nMaxFile = 256;

file.lpstrInitialDir = _T(".\\");

file.lpstrDefExt = _T("txt");

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FILE_NEW :

nCharRead = 0;

InvalidateRect(hWnd, NULL, TRUE);

break;

case ID_FILE_OPEN :

file.lpstrTitle = _T("Открыть файл для чтения");

file.Flags = OFN_HIDEREADONLY;

if (!GetOpenFileName(&file)) return 1;

hFile = CreateFile(name, GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

ReadFile(hFile, text, MaxLength, &nCharRead, NULL);

CloseHandle(hFile);

if (nCharRead == MaxLength)

{

MessageBox(hWnd, _T("Слишком большой файл"),

_T("Неудачное открытие файла"), MB_YESNO | MB_ICONHAND);

return 0;

}

InvalidateRect(hWnd, NULL,TRUE);

break;

case ID_FILE_SAVE :

file.lpstrTitle = _T("Открыть файл для записи");

file.Flags = OFN_NOTESTFILECREATE;

if (!GetSaveFileName(&file)) return 1;

hFile = CreateFile(name, GENERIC_WRITE, 0, NULL,

CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

WriteFile(hFile, text, nCharRead, &result, NULL);

CloseHandle(hFile);

break;

case IDM_EXIT:
DestroyWindow(hWnd);
break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SetRect(&rt, 0, 0, sx, sy);

DrawTextA(hdc, text, nCharRead, &rt, DT_LEFT);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

