1Листинг 3.1. Крестики-нолики

3Листинг 3.2. Оконная функция построения xy-графика

5Листинг 3.3. Тест элементов управления

7Листинг 3.4. Тест общих элементов управления

9Листинг 3.5. Окно редактирования и список

10Листинг 3.6. Текстовый редактор с элементом управления Edit Box

12Листинг 3.7. Оконная функция немодального диалога

14Листинг 3.8. Оконная функция задачи выбора цвета фона стандартным диалогом

Листинг 3.1. Крестики-нолики
LRESULT CALLBACK ChildProc(HWND, UINT, WPARAM, LPARAM);

TCHAR ChildClassName[MAX_LOADSTRING] = _T("WinChild");

ATOM MyRegisterChildClass()

{

WNDCLASSEX wcex
= { 0 };

wcex.cbSize

= sizeof(WNDCLASSEX);

wcex.lpfnWndProc
= ChildProc;

wcex.hInstance

= hInst;

wcex.hCursor

= LoadCursor(NULL, IDC_ARROW);

wcex.hbrBackground
= (HBRUSH)(COLOR_WINDOW+1);

wcex.lpszClassName
= ChildClassName;

return RegisterClassEx(&wcex);

}

static HFONT newFont;

static HWND hChild[9];

unsigned char k[9] = { 0 };

char text[] = { ' ', 'X', '0' };

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

int i;

static int sx, sy;

switch (message)

{

case WM_CREATE:

MyRegisterChildClass();

for (i = 0; i < 9; i++)

hChild[i] = CreateWindow(ChildClassName, NULL, WS_CHILD |

WS_DLGFRAME | WS_VISIBLE, 0, 0, 0, 0, hWnd, NULL, hInst, NULL);

break;

case WM_SIZE:

if (wParam == SIZE_MINIMIZED) break;
//Кнопка свертываня окна

sx = LOWORD(lParam)/3;
//Ширина дочернего окна

sy = HIWORD(lParam)/3;
//Высота дочернего окна

if (newFont) DeleteObject(newFont);

newFont = CreateFont(min(sx,sy), 0, 0, 0, FW_NORMAL, 0, 0, 0,

DEFAULT_CHARSET, OUT_DEFAULT_PRECIS, CLIP_DEFAULT_PRECIS,

DEFAULT_QUALITY, DEFAULT_PITCH | FF_DONTCARE, _T("Arial"));

for (i = 0; i < 9; i++)

{
MoveWindow(hChild[i],(i%3)*sx, (i/3)*sy, sx, sy, TRUE);

UpdateWindow(hChild[i]);

}

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_NEW:

for (i = 0; i < 9; i++)

{

k[i] = 0;

InvalidateRect(hChild[i], NULL, 1);

UpdateWindow(hChild[i]);

}

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

///

LRESULT CALLBACK ChildProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

RECT rt;

int i, s;

char *ch;

switch (message)

{

case WM_LBUTTONDOWN :

for (i = 0; hWnd != hChild[i]; i++);

if (k[i]) break; else k[i] = 1;

InvalidateRect(hWnd, NULL, 1);

UpdateWindow(hWnd);

srand(lParam);

for(i = s = 0; i< 9; i++) if (k[i]) s++;

if(s == 9) MessageBox(hWnd, _T("Для следующего сеанса выбирайте New"),

 _T("Конец игры"), MB_OK | MB_ICONQUESTION);

else

{

while(true)

{
s = rand()*9/(RAND_MAX+1);

if (k[s]) continue;

k[s] = 2;

InvalidateRect(hChild[s], NULL, 1);

UpdateWindow(hChild[s]);

break;

}

}

break;

case WM_PAINT:

for (i = 0; hWnd != hChild[i]; i++);

if(k[i])

{

ch = text+k[i];

hdc = BeginPaint(hWnd, &ps);

GetClientRect(hWnd, &rt);

SelectObject(hdc, newFont);

DrawTextA(hdc,ch,1,&rt,DT_SINGLELINE|DT_CENTER|DT_VCENTER);

EndPaint(hWnd, &ps);

}
//Фоновая закраска окна

else DefWindowProc(hWnd, message, wParam, lParam);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

 }

 return 0;
}

Листинг 3.2. Оконная функция построения xy-графика

const int scaleX = 8;

//Метки по оси x

const int scaleY = 4;
//Метки по оси y

const int indent = 25;
//Отступ для вывода меток оси х

struct DOUDLE_POINT { double x, y; };
const int GRAPHSIZE = 1200;

const int GRAPHWIDTH = 1000;

LRESULT CALLBACK WndGraph(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static HPEN hline;

static HBRUSH hrect;

RECT rt;

static int n, sx, sy, kx, ky;

static double max_x, max_y, min_x, min_y;

int i, x, y;

static POINT *pt;

TCHAR s[20];

DOUDLE_POINT t;

double z, hx, hy;

static DOUDLE_POINT *xy;

switch (message)

{
case WM_CREATE:

if((n = v.size()) == 0)

{

MessageBox(hWnd, _T("Загрузите файл"), _T("Нет данных"),
MB_OK | MB_ICONHAND);

DestroyWindow(hWnd);

return 1;

}

pt = new POINT[n];

xy = new DOUDLE_POINT[n];

for (it = v.begin(), i = 0; i < n; i++, it++)

{

if(sscanf(it->c_str(),"%lf %lf",&t.x, &t.y) != 2)

{

MessageBoxA(hWnd, it->c_str(), "Ошибка данных", MB_OK| MB_ICONHAND);

DestroyWindow(hWnd);

return 1;

}

xy[i] = t;

}

max_x = min_x = xy[0].x;

max_y = min_y = xy[0].y;

for (i = 1; i < n; i++)

{

if (max_x < xy[i].x) max_x = xy[i].x;

else if (min_x > xy[i].x) min_x = xy[i].x;

if (max_y < xy[i].y) max_y = xy[i].y;

else if (min_y > xy[i].y) min_y = xy[i].y;

}

hline = CreatePen(PS_SOLID, 6, RGB(0, 0, 255));

hrect = CreateSolidBrush(RGB(255,0,0));

hx = max_x - min_x;

hy = max_y - min_y;

for (i = 0; i < n; i++)

{

pt[i].x = int((xy[i].x - min_x)*GRAPHWIDTH/hx + 0.5);

pt[i].y = int((xy[i].y - min_y)*GRAPHWIDTH/hy + 0.5);

}

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

hx = (max_x - min_x)/scaleX;

hy = (max_y - min_y)/scaleY;

SetMapMode(hdc, MM_ANISOTROPIC);

SetWindowExtEx(hdc, GRAPHSIZE, -GRAPHSIZE, NULL);

SetViewportExtEx(hdc, sx, sy, NULL);

SetViewportOrgEx(hdc, 2*indent, sy-indent, NULL);

SetTextAlign(hdc, TA_RIGHT | TA_TOP);

for (z = min_x, i = 0; i <= scaleX; z += hx, i++)

{

x = int((z - min_x)*GRAPHWIDTH/(max_x - min_x) + 0.5);

_stprintf(s, _T("%.1lf"), z);

TextOut(hdc, x, 0, s, _tcslen(s));

MoveToEx(hdc, x, -10, NULL);

LineTo(hdc, x, 10);

}

MoveToEx(hdc, 0, 0, NULL);

LineTo(hdc, GRAPHWIDTH, 0);

SetTextAlign(hdc, TA_RIGHT | TA_BOTTOM);

for (z = min_y, i = 0; i <= scaleY; z += hy, i++)

{

y = int((z - min_y)*GRAPHWIDTH/(max_y - min_y) + 0.5);

_stprintf(s, _T("%.1lf"), z);

TextOut(hdc, 0, y, s, _tcslen(s));

MoveToEx(hdc, -10, y, NULL);

LineTo(hdc, 10, y);

}

MoveToEx(hdc, 0, 0, NULL);

LineTo(hdc, 0, GRAPHWIDTH);

SelectObject(hdc, hline);

Polyline(hdc, pt, n);

for (i = 0; i < n; i++)

{

SetRect(&rt, pt[i].x-8, pt[i].y-8, pt[i].x+8, pt[i].y+8);

FillRect(hdc, &rt, hrect);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteObject(hline);

DeleteObject(hrect);

delete[] pt;

delete[] xy;

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

 }

 return 0;

}

Листинг 3.3. Тест элементов управления
INT_PTR CALLBACK Dialog1(HWND, UINT, WPARAM, LPARAM);

static int radio, check1, check2, scrlh, scrlv, lIndex, cIndex;

int *val[] = {&radio,&check1,&check2,&scrlh,&scrlv,&lIndex,&cIndex};

TCHAR *combo[100] = { _T("a"), _T("b"), _T("c") };

TCHAR *list[100] = { _T("string 1"), _T("string 2"), _T("string 3") };

TCHAR *ctrl = _T("Элементы управления:");

TCHAR *str_control[] = {_T("Radio Button"),_T("Check Button 1"),
_T("Check Button 2"),_T("HScroll Pos"),_T("VScroll Pos"),
_T("List Box Index"),_T("Combo Box Index")};

const int HNUM = 10, VNUM = 100;

const int List_size = 3, Combo_size = 3;
const int INTERVAL = 20;
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TCHAR str[256];

int i;

switch (message)

{

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_STDDIALOG :

DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG1), hWnd, Dialog1);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

TextOut(hdc, 0, 0, ctrl, _tcslen(ctrl));

for (i = 0; i < 7;)

{

_stprintf(str, _T("%s = %d"), str_control[i], *val[i]);

TextOut(hdc, 0, ++i*INTERVAL, str, _tcslen(str));

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

//
INT_PTR CALLBACK Dialog1(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

static int radio, check1, check2, scrlh, scrlv;

static HWND hScroll, vScroll, hWndList, hWndComboBox;

int i;

switch (message)

{

case WM_INITDIALOG:

radio = ::radio;

CheckRadioButton(hDlg,IDC_RADIO1,IDC_RADIO3,IDC_RADIO1+radio);

check1 = ::check1;

SendDlgItemMessage(hDlg, IDC_CHECK1, BM_SETCHECK, check1, 0);

check2 = ::check2;

SendDlgItemMessage(hDlg, IDC_CHECK2, BM_SETCHECK, check2, 0);

scrlh = ::scrlh;

SetDlgItemInt(hDlg, IDC_HSCR, scrlh, 0);

hScroll = GetDlgItem(hDlg, IDC_SCROLLBAR1);

SetScrollRange(hScroll, SB_CTL, 0, HNUM, FALSE);

SetScrollPos(hScroll, SB_CTL, scrlh, TRUE);

scrlv = ::scrlv;

SetDlgItemInt(hDlg, IDC_VSCR, scrlv, 0);

vScroll = GetDlgItem(hDlg, IDC_SCROLLBAR2);

SetScrollRange(vScroll, SB_CTL, 0, VNUM, FALSE);

SetScrollPos(vScroll, SB_CTL, scrlv, TRUE);

hWndList = GetDlgItem(hDlg, IDC_LIST1);

for (i = 0; i < List_size; i++)

SendMessage(hWndList, LB_ADDSTRING, 0, (LPARAM)list[i]);

SendMessage(hWndList, LB_SETCURSEL, lIndex, 0);

hWndComboBox = GetDlgItem(hDlg, IDC_COMBO1);

for (i = 0; i < Combo_size; i++)

SendMessage(hWndComboBox, CB_ADDSTRING, 0, (LPARAM)combo[i]);

SendMessage(hWndComboBox, CB_SETCURSEL, cIndex, 0);

return TRUE;

case WM_COMMAND:

switch(LOWORD(wParam))

{

case IDOK : lIndex = SendMessage(hWndList, LB_GETCURSEL, 0, 0);

cIndex = SendMessage(hWndComboBox, CB_GETCURSEL,0,0);

::radio = radio;

::check1 = check1;

::check2 = check2;

::scrlh = scrlh;

::scrlv = scrlv;

InvalidateRect(GetParent(hDlg), NULL, 1);

case IDCANCEL : return EndDialog(hDlg, 0);

case IDC_CHECK1 : check1 = ~check1;

SendDlgItemMessage(hDlg, IDC_CHECK1, BM_SETCHECK, check1, 0);

return TRUE;

case IDC_CHECK2 : check2 = ~check2;

SendDlgItemMessage(hDlg, IDC_CHECK2, BM_SETCHECK, check2, 0);

return TRUE;

case IDC_RADIO1 : radio = 0; break;

case IDC_RADIO2 : radio = 1; break;

case IDC_RADIO3 : radio = 2; break;

}

CheckRadioButton(hDlg,IDC_RADIO1,IDC_RADIO3,IDC_RADIO1+radio);

return TRUE;

case WM_HSCROLL:

switch(LOWORD(wParam))

{

case SB_LINELEFT

: scrlh--; break;

case SB_LINERIGHT
: scrlh++; break;

case SB_PAGELEFT

: scrlh -= HNUM/2; break;

case SB_PAGERIGHT
: scrlh += HNUM/2; break;

case SB_THUMBPOSITION
: scrlh = HIWORD(wParam); break;

}

scrlh = max(0, min(scrlh, HNUM));

if (scrlh != GetScrollPos(hScroll, SB_CTL))

{

SetScrollPos(hScroll, SB_CTL, scrlh, TRUE);

SetDlgItemInt(hDlg, IDC_HSCR, scrlh, 0);

}

return TRUE;

case WM_VSCROLL:

switch(LOWORD(wParam))

{

case SB_LINEUP
: scrlv--; break;

case SB_LINEDOWN
: scrlv++; break;

case SB_PAGEUP : scrlv -= VNUM/10; break;

case SB_PAGEDOWN : scrlv += VNUM/10; break;

case SB_THUMBPOSITION : scrlv = HIWORD(wParam);break;

}

scrlv = max(0, min(scrlv, VNUM));

if (scrlv != GetScrollPos(vScroll, SB_CTL))

{

SetScrollPos(vScroll, SB_CTL, scrlv, TRUE);

SetDlgItemInt(hDlg, IDC_VSCR, scrlv, 0);

}

return TRUE;

default: return FALSE;

}

 return FALSE;

}

Листинг 3.4. Тест общих элементов управления
#include <commctrl.h>

INT_PTR CALLBACK Dialog1(HWND, UINT, WPARAM, LPARAM);

static int spin, track, progress;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TCHAR str[256];

RECT rt;

switch (message)

{

case WM_CREATE:

InitCommonControls();

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_COMMCTRL:

DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG1), hWnd, Dialog1);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

SetRect(&rt, 0, 0, 100, 100);

hdc = BeginPaint(hWnd, &ps);

_stprintf(str,_T("spin\t= %d\ntrack\t= %d\nprogress= %d"),
spin, track, progress);

DrawText(hdc, str,_tcslen(str), &rt, DT_LEFT |DT_EXPANDTABS);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

///

INT_PTR CALLBACK Dialog1(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

static int t, track;

static HWND hSpin, hBuddy, hTrack, hProgress;

switch (message)

{

case WM_INITDIALOG:

track = ::track;

SetDlgItemInt(hDlg, IDC_TR1, track, 0);

hTrack = GetDlgItem(hDlg, IDC_SLIDER1);

SendMessage(hTrack, TBM_SETRANGE, 0, 100<<16);

SendMessage(hTrack, TBM_SETPOS, TRUE, track);

hSpin = GetDlgItem(hDlg, IDC_SPIN1);

hBuddy = GetDlgItem(hDlg, IDC_SP1);

SendMessage(hSpin, UDM_SETBUDDY, (WPARAM)hBuddy, 0);

SendMessage(hSpin, UDM_SETRANGE, 0, 100);

SendMessage(hSpin, UDM_SETPOS, 0, spin);

hProgress = GetDlgItem(hDlg, IDC_PROGRESS1);

SendMessage(hProgress, PBM_SETRANGE, 0, 100<<16);

SendMessage(hProgress, PBM_SETSTEP, 1, 0);

SendMessage(hProgress, PBM_SETPOS, t, 0);

SetTimer(hDlg, 1, 100, NULL);

return TRUE;

case WM_TIMER :

if (++t > 99) t = 0;

SendMessage(hProgress, PBM_SETPOS, t, 0);

return TRUE;

case WM_HSCROLL:

track = LOWORD(SendMessage(hTrack, TBM_GETPOS, 0, 0));

SetDlgItemInt(hDlg, IDC_TR1, track, 0);

return TRUE;

case WM_COMMAND:

switch(LOWORD(wParam))

{

case IDOK :

progress = t;

::track = track;

spin = SendMessage(hSpin, UDM_GETPOS, 0, 0);

InvalidateRect(GetParent(hDlg),NULL,1);

case IDCANCEL:

KillTimer(hDlg,1);

EndDialog(hDlg, 0);

return TRUE;

default: return FALSE;

}

default: return FALSE;

}

 return FALSE;

}

Листинг 3.5. Окно редактирования и список
#include <vector>

#include <string>

#include <commctrl.h>

INT_PTR CALLBACK Dialog1(HWND, UINT, WPARAM, LPARAM);

typedef std::basic_string<TCHAR, std::char_traits<TCHAR>, std::allocator<TCHAR> > String;

std::vector<String> v;

HWND hWndStatusBar;
//Дескриптор строки состояния
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TEXTMETRIC tm;

static int cy, sx, sy;

int y;

RECT rt;

std::vector<String>::iterator it;

switch (message)

{

case WM_CREATE:

hdc = GetDC(hWnd);

GetTextMetrics(hdc,&tm);

cy = tm.tmHeight + tm.tmExternalLeading;

ReleaseDC(hWnd, hdc);

hWndStatusBar = CreateStatusWindow(WS_CHILD | WS_VISIBLE |

WS_CLIPSIBLINGS | CCS_BOTTOM | SBARS_SIZEGRIP,_T("Ready"), hWnd, 1);

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

GetWindowRect(hWndStatusBar, &rt);

y = rt.bottom-rt.top;

MoveWindow(hWndStatusBar, 0, sy - y, sx, sy, TRUE);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_DIALOG_READLISTBOX:

DialogBox(hInst, MAKEINTRESOURCE(IDD_READ), hWnd, Dialog1);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for (y = 0, it = v.begin(); it != v.end(); ++it, y += cy)

TextOut(hdc, 0, y, it->data(), it->size());

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

//

INT_PTR CALLBACK Dialog1(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

static HWND hList, hEdit;

TCHAR text[256];

int i, k;

switch (message)

{

case WM_INITDIALOG:

hList = GetDlgItem(hDlg, IDC_LIST1);

hEdit = GetDlgItem(hDlg, IDC_EDIT1);

return TRUE;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDC_ADD:

GetDlgItemText(hDlg, IDC_EDIT1, text, 256);

SetDlgItemText(hDlg, IDC_EDIT1, _T(""));

SendMessage(hList, LB_ADDSTRING, 0, (LPARAM)text);

SetFocus(hEdit);

return TRUE;

case IDC_DEL:

k = SendMessage(hList, LB_GETCURSEL, 0, 0);

SendMessage(hList, LB_DELETESTRING , (WPARAM)k, 0);

return TRUE;

case ID_OK:

v.clear();

k = SendMessage(hList, LB_GETCOUNT, 0, 0);

for (i = 0; i < k; i++)

{

SendMessage(hList, LB_GETTEXT, (WPARAM)i, (LPARAM)text);

v.push_back(text);

}

InvalidateRect(GetParent(hDlg), NULL, 1);

_stprintf(text,_T("Список: %d строк"), k);

SendMessage(hWndStatusBar, WM_SETTEXT, 0, (LPARAM)text);

case WM_DESTROY: EndDialog(hDlg, LOWORD(wParam)); return TRUE;

}

default: return FALSE;

}

 return FALSE;

}

Листинг 3.6. Текстовый редактор с элементом управления Edit Box
#include <commdlg.h>

#include <commctrl.h>

#include <fstream>

TBBUTTON tbb[] =

{{STD_FILENEW, ID_FILE_NEW, TBSTATE_ENABLED, TBSTYLE_BUTTON, 0, 0, 0, 0},

 {STD_FILEOPEN, ID_FILE_OPEN,TBSTATE_ENABLED,TBSTYLE_BUTTON, 0, 0, 0, 0},

 {STD_FILESAVE, ID_FILE_SAVE,TBSTATE_ENABLED,TBSTYLE_BUTTON, 0, 0, 0, 0}

};
//

VOID StatusOut(HWND hStatus, int count, TCHAR *str)

{

TCHAR text[256];

_stprintf(text,_T("Строк: %d"), count);

SendMessage(hStatus, SB_SETTEXT, (WPARAM)0, (LPARAM)text);

SendMessage(hStatus, SB_SETTEXT, (WPARAM)1, (LPARAM)str);

}
//

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static OPENFILENAME file;

static int n, sx, sy;

static HWND hEdit, hWndToolBar, hWndStatusBar;

RECT rt;

int m, k, aWidths[2];

static TCHAR name[256];

char szText[0x7fff];

std::ifstream in;

std::ofstream out;

switch (message)

{

case WM_CREATE:

hWndToolBar = CreateToolbarEx(hWnd, WS_CHILD|WS_VISIBLE|CCS_TOP,

2, 0, HINST_COMMCTRL, IDB_STD_SMALL_COLOR, tbb, 3, 0, 0, 0, 0, sizeof(TBBUTTON));

hEdit = CreateWindow(WC_EDIT,NULL,WS_CHILD|WS_VISIBLE|WS_HSCROLL|

WS_VSCROLL|ES_LEFT|ES_MULTILINE|ES_AUTOHSCROLL|ES_AUTOVSCROLL,

0, 0, 0, 0, hWnd, (HMENU) 1, hInst, NULL);

file.lStructSize
= sizeof(OPENFILENAME);

file.hInstance
= hInst;

file.lpstrFilter
= _T("Text\0 *.txt\0Все файлы\0 *.*");

file.lpstrFile
= name;

file.nMaxFile
= 256;

file.lpstrInitialDir
= _T(".\\");

file.lpstrDefExt
= _T("txt");

hWndStatusBar = CreateWindow(STATUSCLASSNAME, NULL, WS_CHILD |

WS_VISIBLE, 0, 0, 0, 0, hWnd, NULL, hInst, NULL);

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

aWidths[0] = 100;

aWidths[1] = sx;

GetWindowRect(hWndToolBar, &rt);

m = rt.bottom - rt.top;

SendMessage(hWndToolBar, TB_AUTOSIZE, 0, 0);

GetWindowRect(hWndStatusBar, &rt);

k = rt.bottom - rt.top;

MoveWindow(hWndStatusBar, 0, sy - k, sx, sy, TRUE);

SendMessage(hWndStatusBar, SB_SETPARTS, (WPARAM)2, (LPARAM)aWidths);

StatusOut(hWndStatusBar, n, name);

MoveWindow(hEdit, 0, m, sx, sy - m - k, TRUE);

UpdateWindow(hEdit);

SetFocus(hEdit);

return 0;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FILE_NEW:

szText[0] = '\0';

SetWindowTextA(hEdit, szText);

StatusOut(hWndStatusBar, 0, _T(""));

break;

case ID_FILE_OPEN:

file.lpstrTitle = _T("Открыть файл для чтения");

file.Flags = OFN_HIDEREADONLY;

if (!GetOpenFileName(&file)) return 1;

in.open(name, std::ios::binary);

in.read(szText, 0x7fff);

if ((m = in.gcount()) == 0x7fff)

{

MessageBox(hWnd, _T("Слишком большой файл"),_T("Edit"),MB_OK | MB_ICONSTOP);

in.close();

return 0;

}

szText[m] = '\0';

in.close();

SetWindowTextA(hEdit, szText);

n = SendMessage(hEdit, EM_GETLINECOUNT, 0, 0);

StatusOut(hWndStatusBar, n, name);

break;

case ID_FILE_SAVE:

file.lpstrTitle = _T("Открыть файл для записи");

file.Flags = OFN_NOTESTFILECREATE | OFN_HIDEREADONLY;

if (!GetSaveFileName(&file)) return 1;

out.open(name, std::ios::binary);

m = GetWindowTextA(hEdit, szText, 0x7fff);

out.write(szText, m);

out.close();

n = SendMessage(hEdit, EM_GETLINECOUNT, 0, 0);

StatusOut(hWndStatusBar, n, name);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 3.7. Оконная функция немодального диалога

INT_PTR CALLBACK Dialog(HWND, UINT, WPARAM, LPARAM);

///

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

switch (message)

{

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_DIALOG_COLOR:

hDlgColor = CreateDialog(hInst, MAKEINTRESOURCE(IDD_COLOR), hWnd, Dialog);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

//

INT_PTR CALLBACK Dialog(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

static int ID_SCROLL[3] = {IDC_RED, IDC_GREEN, IDC_BLUE};

static int ID[3] = {IDC_R, IDC_G, IDC_B};

static HWND hWnd, hScroll[3];

//{hRed, hGreen, hBlue}

static int color[3] = {255, 255, 255};
//{red, green, blue}

HBRUSH hBrush;

int index;

switch (message)

{

case WM_INITDIALOG:

for (index = 0; index < 3; index++)

{

hScroll[index] = GetDlgItem(hDlg, ID_SCROLL[index]);

SetScrollRange(hScroll[index], SB_CTL, 0, 255, FALSE);

SetScrollPos (hScroll[index], SB_CTL, color[index], TRUE);

SetDlgItemInt(hDlg, ID[index], color[index], 0);

}

return TRUE;

case WM_VSCROLL :

for (index = 0; index < 3; index++)

if ((HWND)lParam == hScroll[index]) break;

SetFocus(hScroll[index]);

switch(LOWORD(wParam))

{

case SB_LINEUP : color[index]--; break;

case SB_LINEDOWN : color[index]++; break;

case SB_PAGEUP : color[index] -= 16; break;

case SB_PAGEDOWN : color[index] += 16; break;

case SB_THUMBTRACK:

case SB_THUMBPOSITION : color[index] = HIWORD(wParam); break;

}

color[index] = max(0, min(color[index], 255));

if (color[index] != GetScrollPos(hScroll[index], SB_CTL))

{

SetDlgItemInt(hDlg,ID[index],color[index],0);

SetScrollPos(hScroll[index], SB_CTL, color[index], TRUE);

hBrush = CreateSolidBrush(RGB(color[0],color[1],color[2]));

hWnd = GetParent(hDlg);

DeleteObject((HBRUSH)GetClassLong(hWnd, GCL_HBRBACKGROUND));

SetClassLong(hWnd, GCL_HBRBACKGROUND, (LONG)hBrush);

InvalidateRect(hWnd, NULL, TRUE);

}

return TRUE;

case WM_COMMAND:

if (LOWORD(wParam) == IDCANCEL) {DestroyWindow(hDlg); return TRUE;}

return FALSE;

}

return FALSE;

}

Листинг 3.8. Оконная функция задачи выбора цвета фона стандартным диалогом

#include <commdlg.h>

COLORREF stdColor = RGB(255,255,255);

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static CHOOSECOLOR ccs;

static COLORREF acrCustClr[16];

static HBRUSH hBrush;

switch (message)

{

case WM_CREATE:

ccs.lStructSize = sizeof(CHOOSECOLOR);

ccs.hwndOwner = hWnd;

ccs.rgbResult = stdColor;

ccs.Flags = CC_RGBINIT | CC_FULLOPEN;

ccs.lpCustColors = (LPDWORD)acrCustClr;

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_STDCOLOR:

 if (ChooseColor(&ccs))

 {

 stdColor = ccs.rgbResult;

if (hBrush) DeleteObject(hBrush);

hBrush = CreateSolidBrush(stdColor);

SetClassLong(hWnd, GCL_HBRBACKGROUND, (LONG)hBrush);

InvalidateRect(hWnd, NULL, TRUE);

 }

 break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

