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Листинг 4.1. Вывод в окне растрового изображения из ресурса приложения
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


HBITMAP hBitmap;


static HDC memBit;


static BITMAP bm;


switch (message)


{


case WM_CREATE:



hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAP1));



GetObject(hBitmap, sizeof(bm), &bm);



hdc = GetDC(hWnd);



memBit = CreateCompatibleDC(hdc);



SelectObject(memBit, hBitmap);



ReleaseDC(hWnd, hdc);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.2. Загрузка изображения из файла

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static int caption, menu, border;


static HDC memBit;


static HBITMAP hBitmap;


static BITMAP bm;


switch (message)


{


case WM_CREATE:



caption = GetSystemMetrics(SM_CYCAPTION);



menu = GetSystemMetrics(SM_CYMENU);



border = GetSystemMetrics(SM_CXFIXEDFRAME);



hBitmap = (HBITMAP)LoadImage(NULL, _T("test.bmp"), IMAGE_BITMAP,




0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);



if (hBitmap == NULL) 



{ 




MessageBox(hWnd,_T("Файл не найден"),_T("Загрузка изображения"), MB_OK | MB_ICONHAND);




DestroyWindow(hWnd); 




return 1; 



}



GetObject(hBitmap, sizeof(bm), &bm);



hdc = GetDC(hWnd);



memBit = CreateCompatibleDC(hdc);



SelectObject(memBit, hBitmap);



ReleaseDC(hWnd, hdc);



break;


case WM_SIZE:



MoveWindow(hWnd,100, 50, bm.bmWidth + 2*border, bm.bmHeight + caption + menu + border, TRUE);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: 
DestroyWindow(hWnd); 
break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.3. Тест растровых операций для функции BitBlt()
DWORD Op[15] = {SRCCOPY, SRCPAINT, SRCAND, SRCINVERT, SRCERASE,



NOTSRCCOPY, NOTSRCERASE, MERGECOPY, MERGEPAINT, PATCOPY,



PATPAINT, PATINVERT, DSTINVERT, BLACKNESS, WHITENESS};

TCHAR *Name_Op[15]={_T("SRCCOPY"), _T("SRCPAINT"), _T("SRCAND"),


_T("SRCINVERT"),_T("SRCERASE"), _T("NOTSRCCOPY"), _T("NOTSRCERASE"),



_T("MERGECOPY"), _T("MERGEPAINT"), _T("PATCOPY"), _T("PATPAINT"),



_T("PATINVERT"), _T("DSTINVERT"), _T("BLACKNESS"), _T("WHITENESS")};
///////////////////////////////////////////////////////////////////////

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


int i, j, x;


static HFONT hFont;


static HDC memDC;


static HBITMAP hPicture;


static BITMAP bm;


switch (message)


{



case WM_CREATE:




hPicture = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAP1));




GetObject(hPicture, sizeof(bm), &bm);




hdc = GetDC(hWnd);




memDC = CreateCompatibleDC(hdc);




SelectObject(memDC, hPicture);




ReleaseDC(hWnd, hdc);




hFont = CreateFont(12,0,0,0,FW_NORMAL,0,0,0,DEFAULT_CHARSET,





OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,






DEFAULT_PITCH | FF_DONTCARE,
_T("Times New Roman"));




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



SelectObject(hdc,hFont);



for (i = x = 0; i < 15; i++, x += bm.bmWidth + 10)



{




TextOut(hdc, x, 10, Name_Op[i], _tcslen(Name_Op[i]));




BitBlt(hdc, x, 30, bm.bmWidth, bm.bmHeight, memDC, 0, 0, Op[i]);




for (j = 0; j < 15; j++) BitBlt(hdc, x, 30 + (j + 1)* (bm.bmHeight+2),




bm.bmWidth, bm.bmHeight, hdc, x, 30, Op[j]); 



}



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



DeleteDC(memDC);



DeleteObject(hFont);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.4. Оконная функция задачи «Ping–pong»
const int SPAN = 10;

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


int mx, my;


static double mod, vx, vy, xt, yt;


static HDC memDC;


static HPEN hpen;


static int x, y, cx, cy, scrx, scry;


static HBITMAP hCircle;


static bool play;


switch (message)


{


case WM_CREATE:



hpen = CreatePen(PS_SOLID, 4, RGB(255, 0, 0));



hCircle = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_CIRCLE));



hdc = GetDC(hWnd);



memDC = CreateCompatibleDC(hdc);



SelectObject(memDC, hCircle);



ReleaseDC(hWnd, hdc);



break;


case WM_SIZE:



scrx = LOWORD(lParam);



scry = HIWORD(lParam);



x = (cx = scrx/2) - 16;



y = (cy = scry/2) - 16;



break;


case WM_LBUTTONDOWN:



if (!play)



{
mx = LOWORD(lParam);




my = HIWORD(lParam);




vx = mx - cx;




vy = my - cy;




mod = sqrt(vx*vx+vy*vy);




vx = vx/mod;




vy = vy/mod;




hdc = GetDC(hWnd);




SelectObject(hdc, hpen);




MoveToEx(hdc, cx, cy, 0);




LineTo(hdc, mx, my);




LineTo(hdc, mx - (vx - vy)*SPAN, my - (vy + vx)*SPAN);




MoveToEx(hdc, mx - (vx + vy)*SPAN, my - (vy - vx)*SPAN, 0);




LineTo(hdc, mx, my);




ReleaseDC(hWnd, hdc);




play = true;



 }



 break;


case WM_TIMER:




hdc = GetDC(hWnd);




BitBlt(hdc, x, y, 32, 32, NULL, 0, 0, PATCOPY);




if (x + 31 > scrx || x < 1) vx = -vx;




if (y + 31 > scry || y < 1) vy = -vy;




xt += vx*10;




yt += vy*10;




x = int(xt + 0.5);




y = int(yt + 0.5);




BitBlt(hdc, x, y, 32, 32, memDC, 0, 0, SRCCOPY);




ReleaseDC(hWnd, hdc);




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_PLAY_BEGIN:




SetTimer(hWnd, 1,(int)(sqrt(double(cx*cx+cy*cy))/mod)*10 , NULL);




xt = x;




yt = y;




InvalidateRect(hWnd, NULL, TRUE);




break;



case ID_PLAY_END:




KillTimer(hWnd, 1);




x = cx - 16;




y = cy - 16;




InvalidateRect(hWnd, NULL, TRUE);




play = false;




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);




BitBlt(hdc, x, y, 32, 32, memDC, 0, 0, SRCCOPY);




EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



DeleteDC(memDC);



DeleteObject(hpen);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.5. Демонстрационная задача для функции PlgBlt()
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


RECT rt;


int i, x, y, p, q;


static int k;


static bool Capture;


static POINT pts[3];


static HDC memDC;


static HBITMAP hPicture;


static BITMAP bm;


static HPEN hPen;


switch (message)


{



case WM_CREATE:




hPicture = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_SPOOK));




GetObject(hPicture, sizeof(bm), &bm);




hPen = CreatePen(PS_SOLID, 4, RGB(0, 0, 255));




GetClientRect(hWnd, &rt);




x = (rt.right - bm.bmWidth)/2;




y = (rt.bottom - bm.bmHeight)/2;




pts[0].x = pts[2].x = x;




pts[0].y = pts[1].y = y;




pts[1].x = x + bm.bmWidth;




pts[2].y = y + bm.bmHeight;




hdc = GetDC(hWnd);




memDC = CreateCompatibleDC(hdc);




SelectObject(memDC, hPicture);




ReleaseDC(hWnd, hdc);




break;



case WM_COMMAND:




switch (LOWORD(wParam))




{




case IDM_EXIT: DestroyWindow(hWnd); break;




default: return DefWindowProc(hWnd, message, wParam, lParam);




}




break;



case WM_LBUTTONDOWN:




x = LOWORD(lParam);




y = HIWORD(lParam);




for (k = 0; k < 3; k++)




{





p = x - pts[k].x;





q = y - pts[k].y;





if (p*p + q*q < 16)





{







SetCapture(hWnd);






Capture = true;






return 0;





}




}




break;



case WM_MOUSEMOVE:




if (Capture)




{






pts[k].x = LOWORD(lParam);





pts[k].y = HIWORD(lParam);





InvalidateRect(hWnd, NULL, TRUE);




}




break;



case WM_LBUTTONUP:




if (Capture)




{





ReleaseCapture();





Capture = false;




}




break;



case WM_PAINT:




hdc = BeginPaint(hWnd, &ps);




PlgBlt(hdc, pts, memDC, 0, 0, bm.bmWidth, bm.bmHeight, 0, 0, 0);




SelectObject(hdc, (HPEN)hPen);




for (i = 0; i < 3; i++)






Ellipse(hdc, pts[i].x-4, pts[i].y-4, pts[i].x+4, pts[i].y+4);




EndPaint(hWnd, &ps);




break;



case WM_DESTROY:




DeleteDC(memDC);




DeleteObject(hPen);




PostQuitMessage(0);




break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}


return 0;

}

Листинг 4.6. Тест для функции MaskBlt()

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static int x, y;


static HDC memDC;


static HBITMAP hSmokes, hNo;


static BITMAP bm;


switch (message)


{


case WM_CREATE:



hNo = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_NO));



hSmokes = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_SMOKES));



GetObject(hSmokes, sizeof(bm), &bm);



hdc = GetDC(hWnd);



memDC = CreateCompatibleDC(hdc);



SelectObject(memDC, hSmokes);



ReleaseDC(hWnd, hdc);



break;


case WM_SIZE:



x = (LOWORD(lParam) - bm.bmWidth)/2;



y = (HIWORD(lParam) - bm.bmHeight)/2;



break;


case WM_LBUTTONDOWN:



hdc = GetDC(hWnd);



MaskBlt(hdc,x,y,bm.bmWidth,bm.bmHeight,memDC,0,0,hNo,0,0,SRCCOPY);



ReleaseDC(hWnd, hdc);



break;


case WM_LBUTTONUP:



InvalidateRect(hWnd, NULL, TRUE);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



BitBlt(hdc, x, y, bm.bmWidth, bm.bmHeight, memDC, 0, 0, SRCCOPY);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.7. Демонстрация вращения графического образа

#define _USE_MATH_DEFINES

#include <math.h>

TCHAR *text = _T("Масяня");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static int x, y, cx, cy;


static double angle;


static HDC memBit;


static HBITMAP hBitmap;


static BITMAP bm;


static XFORM xf;


switch (message)


{


case WM_CREATE:



hBitmap = (HBITMAP)LoadImage(NULL, _T("mas1.bmp"), IMAGE_BITMAP, 0,






0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);



GetObject(hBitmap, sizeof(bm), &bm);



hdc = GetDC(hWnd);



memBit = CreateCompatibleDC(hdc);



SelectObject(memBit, hBitmap);



ReleaseDC(hWnd, hdc);



break;


case WM_SIZE:



cx = LOWORD(lParam)/2;//Координаты центра окна



cy = HIWORD(lParam)/2;



xf.eDx = cx;
//Точка будет являться и новым началом 



xf.eDy = cy;
// координат для графических функций



x = - bm.bmWidth/2;



y = - bm.bmHeight/2;



break;


case WM_LBUTTONDOWN:



angle += M_PI*45.0/180.0;



InvalidateRect(hWnd, NULL, TRUE);



break;


case WM_PAINT:



xf.eM22 = xf.eM11 = cos(angle);



xf.eM12 = -(xf.eM21 = sin(angle));



hdc = BeginPaint(hWnd, &ps);



SetGraphicsMode(hdc, GM_ADVANCED);



SetWorldTransform(hdc, &xf);




TextOut(hdc,x+35, y-20, text, _tcsclen(text));



BitBlt(hdc, x, y, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);



EndPaint(hWnd, &ps);




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY: PostQuitMessage(0); break;


default:
return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.8.  Демонстрация работы виртуального окна 

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


int r, g, b, maxX, maxY;


static int sx, sy;


static HDC memBit;


HBRUSH hBrush;


RECT rt;


HBITMAP hBitmap;


SYSTEMTIME tm;


switch (message) 


{


case WM_CREATE:



SetTimer(hWnd, 1, 100, NULL);



maxX = GetSystemMetrics(SM_CXSCREEN);



maxY = GetSystemMetrics(SM_CYSCREEN);



hdc = GetDC(hWnd);



memBit = CreateCompatibleDC(hdc);



hBitmap = CreateCompatibleBitmap(hdc, maxX, maxY);



SelectObject(memBit, hBitmap);



PatBlt(memBit, 0, 0, maxX, maxY, WHITENESS);


ReleaseDC(hWnd, hdc);



GetSystemTime(&tm);



srand(tm.wMilliseconds);



break;


case WM_SIZE:



sx = LOWORD(lParam);



sy = HIWORD(lParam);



break;


case WM_TIMER:



rt.right = (rt.left = rand()*sx/RAND_MAX) + rand()*sx/RAND_MAX/2;



rt.top = (rt.bottom = rand()*sy/RAND_MAX) - rand()*sy/RAND_MAX/2;



r = rand()*255/RAND_MAX;



g = rand()*255/RAND_MAX;



b = rand()*255/RAND_MAX;



hBrush = CreateSolidBrush(RGB(r,g,b));



FillRect(memBit, &rt, hBrush);



DeleteObject(hBrush);



InvalidateRect(hWnd, NULL, 0);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



BitBlt(hdc, 0, 0, sx, sy, memBit, 0, 0, SRCCOPY);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:


DeleteObject(memBit);


PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.9. Создание метафайла в памяти
#define _USE_MATH_DEFINES

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc, hdcMetafile;


static HMETAFILE hmf;


static int sx, sy;


int x, y; 


double angle;


switch (message)


{


case WM_CREATE:



hdcMetafile = CreateMetaFile(NULL);



for (x = y = 50, angle = 0.0; angle < 2*M_PI; angle += 0.1) 



{





MoveToEx(hdcMetafile, x, y, NULL);




x = int(50.0*cos(angle)*sin(angle*4.0)+50.5);




y = int(50.0*sin(angle)*sin(angle*4.0)+50.5);




LineTo(hdcMetafile, x, y);



}



hmf = CloseMetaFile(hdcMetafile);



break;


case WM_SIZE:



sx = LOWORD(lParam);



sy = HIWORD(lParam);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



SetMapMode(hdc, MM_ANISOTROPIC);



SetWindowExtEx(hdc, 1000, 1000, NULL);



SetViewportExtEx(hdc, sx, sy, NULL);



for(x = 0; x < 5; x++)




for(y = 0; y < 5; y++)





{







SetWindowOrgEx(hdc, -200 * x, -200 * y, NULL);






PlayMetaFile(hdc, hmf);





}



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



DeleteMetaFile(hmf);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.10. Создание метафайла в памяти для растрового изображения

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc, hdcMeta, memBit;


static HMETAFILE hmf;


HBITMAP hBitmap;


BITMAP bm;


switch (message)


{


case WM_CREATE:



hdcMeta = CreateMetaFile(NULL);



hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_MOUSE));



GetObject(hBitmap, sizeof(bm), &bm);



hdc = GetDC(hWnd);



memBit = CreateCompatibleDC(hdc);



ReleaseDC(hWnd, hdc);



SelectObject(memBit, hBitmap);



BitBlt(hdcMeta, 0, 0, bm.bmWidth, bm.bmHeight, memBit,0,0,SRCCOPY);



hmf = CloseMetaFile(hdcMeta);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



PlayMetaFile(hdc, hmf);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



DeleteMetaFile(hmf);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 4.11. Расширенный метафайл в памяти

#define _USE_MATH_DEFINES

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc, hdcEMF;


RECT rt;


static HENHMETAFILE hmf;


static int sx, sy;


int x, y; 


double angle;


switch (message)


{


case WM_CREATE:



hdcEMF = CreateEnhMetaFile(NULL, NULL, NULL, NULL);



for (x = y = 50, angle = 0.0; angle < 2*M_PI; angle += 0.1) 



{





MoveToEx(hdcEMF, x, y, NULL);




x = int(50.0*cos(angle)*sin(angle*4.0)+50.5);




y = int(50.0*sin(angle)*sin(angle*4.0)+50.5);




LineTo(hdcEMF, x, y);



}



hmf = CloseEnhMetaFile(hdcEMF);



break;


case WM_SIZE:



sx = LOWORD(lParam);



sy = HIWORD(lParam);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);




for(rt.left = 0; rt.left < sx; rt.left += sx/5)





for(rt.top = 0; rt.top < sy; rt.top += sy/5)






{







rt.right = rt.left + sx/5;







rt.bottom = rt.top + sy/5;







PlayEnhMetaFile(hdc, hmf, &rt);






}



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:


DeleteEnhMetaFile(hmf);


PostQuitMessage(0);



break;


default:
return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

