1Листинг 4.1. Вывод в окне растрового изображения из ресурса приложения

2Листинг 4.2. Загрузка изображения из файла

3Листинг 4.3. Тест растровых операций для функции BitBlt()

4Листинг 4.4. Оконная функция задачи «Ping–pong»

5Листинг 4.5. Демонстрационная задача для функции PlgBlt()

7Листинг 4.6. Тест для функции MaskBlt()

8Листинг 4.7. Демонстрация вращения графического образа

9Листинг 4.8. Демонстрация работы виртуального окна

10Листинг 4.9. Создание метафайла в памяти

11Листинг 4.10. Создание метафайла в памяти для растрового изображения

11Листинг 4.11. Расширенный метафайл в памяти

Листинг 4.1. Вывод в окне растрового изображения из ресурса приложения
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

HBITMAP hBitmap;

static HDC memBit;

static BITMAP bm;

switch (message)

{

case WM_CREATE:

hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAP1));

GetObject(hBitmap, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memBit = CreateCompatibleDC(hdc);

SelectObject(memBit, hBitmap);

ReleaseDC(hWnd, hdc);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.2. Загрузка изображения из файла

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int caption, menu, border;

static HDC memBit;

static HBITMAP hBitmap;

static BITMAP bm;

switch (message)

{

case WM_CREATE:

caption = GetSystemMetrics(SM_CYCAPTION);

menu = GetSystemMetrics(SM_CYMENU);

border = GetSystemMetrics(SM_CXFIXEDFRAME);

hBitmap = (HBITMAP)LoadImage(NULL, _T("test.bmp"), IMAGE_BITMAP,

0, 0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);

if (hBitmap == NULL)

{

MessageBox(hWnd,_T("Файл не найден"),_T("Загрузка изображения"), MB_OK | MB_ICONHAND);

DestroyWindow(hWnd);

return 1;

}

GetObject(hBitmap, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memBit = CreateCompatibleDC(hdc);

SelectObject(memBit, hBitmap);

ReleaseDC(hWnd, hdc);

break;

case WM_SIZE:

MoveWindow(hWnd,100, 50, bm.bmWidth + 2*border, bm.bmHeight + caption + menu + border, TRUE);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT:
DestroyWindow(hWnd);
break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.3. Тест растровых операций для функции BitBlt()
DWORD Op[15] = {SRCCOPY, SRCPAINT, SRCAND, SRCINVERT, SRCERASE,

NOTSRCCOPY, NOTSRCERASE, MERGECOPY, MERGEPAINT, PATCOPY,

PATPAINT, PATINVERT, DSTINVERT, BLACKNESS, WHITENESS};

TCHAR *Name_Op[15]={_T("SRCCOPY"), _T("SRCPAINT"), _T("SRCAND"),

_T("SRCINVERT"),_T("SRCERASE"), _T("NOTSRCCOPY"), _T("NOTSRCERASE"),

_T("MERGECOPY"), _T("MERGEPAINT"), _T("PATCOPY"), _T("PATPAINT"),

_T("PATINVERT"), _T("DSTINVERT"), _T("BLACKNESS"), _T("WHITENESS")};
///

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

int i, j, x;

static HFONT hFont;

static HDC memDC;

static HBITMAP hPicture;

static BITMAP bm;

switch (message)

{

case WM_CREATE:

hPicture = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_BITMAP1));

GetObject(hPicture, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memDC = CreateCompatibleDC(hdc);

SelectObject(memDC, hPicture);

ReleaseDC(hWnd, hdc);

hFont = CreateFont(12,0,0,0,FW_NORMAL,0,0,0,DEFAULT_CHARSET,

OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,

DEFAULT_PITCH | FF_DONTCARE,
_T("Times New Roman"));

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SelectObject(hdc,hFont);

for (i = x = 0; i < 15; i++, x += bm.bmWidth + 10)

{

TextOut(hdc, x, 10, Name_Op[i], _tcslen(Name_Op[i]));

BitBlt(hdc, x, 30, bm.bmWidth, bm.bmHeight, memDC, 0, 0, Op[i]);

for (j = 0; j < 15; j++) BitBlt(hdc, x, 30 + (j + 1)* (bm.bmHeight+2),

bm.bmWidth, bm.bmHeight, hdc, x, 30, Op[j]);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteDC(memDC);

DeleteObject(hFont);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.4. Оконная функция задачи «Ping–pong»
const int SPAN = 10;

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

int mx, my;

static double mod, vx, vy, xt, yt;

static HDC memDC;

static HPEN hpen;

static int x, y, cx, cy, scrx, scry;

static HBITMAP hCircle;

static bool play;

switch (message)

{

case WM_CREATE:

hpen = CreatePen(PS_SOLID, 4, RGB(255, 0, 0));

hCircle = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_CIRCLE));

hdc = GetDC(hWnd);

memDC = CreateCompatibleDC(hdc);

SelectObject(memDC, hCircle);

ReleaseDC(hWnd, hdc);

break;

case WM_SIZE:

scrx = LOWORD(lParam);

scry = HIWORD(lParam);

x = (cx = scrx/2) - 16;

y = (cy = scry/2) - 16;

break;

case WM_LBUTTONDOWN:

if (!play)

{
mx = LOWORD(lParam);

my = HIWORD(lParam);

vx = mx - cx;

vy = my - cy;

mod = sqrt(vx*vx+vy*vy);

vx = vx/mod;

vy = vy/mod;

hdc = GetDC(hWnd);

SelectObject(hdc, hpen);

MoveToEx(hdc, cx, cy, 0);

LineTo(hdc, mx, my);

LineTo(hdc, mx - (vx - vy)*SPAN, my - (vy + vx)*SPAN);

MoveToEx(hdc, mx - (vx + vy)*SPAN, my - (vy - vx)*SPAN, 0);

LineTo(hdc, mx, my);

ReleaseDC(hWnd, hdc);

play = true;

 }

 break;

case WM_TIMER:

hdc = GetDC(hWnd);

BitBlt(hdc, x, y, 32, 32, NULL, 0, 0, PATCOPY);

if (x + 31 > scrx || x < 1) vx = -vx;

if (y + 31 > scry || y < 1) vy = -vy;

xt += vx*10;

yt += vy*10;

x = int(xt + 0.5);

y = int(yt + 0.5);

BitBlt(hdc, x, y, 32, 32, memDC, 0, 0, SRCCOPY);

ReleaseDC(hWnd, hdc);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_PLAY_BEGIN:

SetTimer(hWnd, 1,(int)(sqrt(double(cx*cx+cy*cy))/mod)*10 , NULL);

xt = x;

yt = y;

InvalidateRect(hWnd, NULL, TRUE);

break;

case ID_PLAY_END:

KillTimer(hWnd, 1);

x = cx - 16;

y = cy - 16;

InvalidateRect(hWnd, NULL, TRUE);

play = false;

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

BitBlt(hdc, x, y, 32, 32, memDC, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteDC(memDC);

DeleteObject(hpen);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.5. Демонстрационная задача для функции PlgBlt()
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

RECT rt;

int i, x, y, p, q;

static int k;

static bool Capture;

static POINT pts[3];

static HDC memDC;

static HBITMAP hPicture;

static BITMAP bm;

static HPEN hPen;

switch (message)

{

case WM_CREATE:

hPicture = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_SPOOK));

GetObject(hPicture, sizeof(bm), &bm);

hPen = CreatePen(PS_SOLID, 4, RGB(0, 0, 255));

GetClientRect(hWnd, &rt);

x = (rt.right - bm.bmWidth)/2;

y = (rt.bottom - bm.bmHeight)/2;

pts[0].x = pts[2].x = x;

pts[0].y = pts[1].y = y;

pts[1].x = x + bm.bmWidth;

pts[2].y = y + bm.bmHeight;

hdc = GetDC(hWnd);

memDC = CreateCompatibleDC(hdc);

SelectObject(memDC, hPicture);

ReleaseDC(hWnd, hdc);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_LBUTTONDOWN:

x = LOWORD(lParam);

y = HIWORD(lParam);

for (k = 0; k < 3; k++)

{

p = x - pts[k].x;

q = y - pts[k].y;

if (p*p + q*q < 16)

{

SetCapture(hWnd);

Capture = true;

return 0;

}

}

break;

case WM_MOUSEMOVE:

if (Capture)

{

pts[k].x = LOWORD(lParam);

pts[k].y = HIWORD(lParam);

InvalidateRect(hWnd, NULL, TRUE);

}

break;

case WM_LBUTTONUP:

if (Capture)

{

ReleaseCapture();

Capture = false;

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

PlgBlt(hdc, pts, memDC, 0, 0, bm.bmWidth, bm.bmHeight, 0, 0, 0);

SelectObject(hdc, (HPEN)hPen);

for (i = 0; i < 3; i++)

Ellipse(hdc, pts[i].x-4, pts[i].y-4, pts[i].x+4, pts[i].y+4);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteDC(memDC);

DeleteObject(hPen);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.6. Тест для функции MaskBlt()

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int x, y;

static HDC memDC;

static HBITMAP hSmokes, hNo;

static BITMAP bm;

switch (message)

{

case WM_CREATE:

hNo = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_NO));

hSmokes = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_SMOKES));

GetObject(hSmokes, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memDC = CreateCompatibleDC(hdc);

SelectObject(memDC, hSmokes);

ReleaseDC(hWnd, hdc);

break;

case WM_SIZE:

x = (LOWORD(lParam) - bm.bmWidth)/2;

y = (HIWORD(lParam) - bm.bmHeight)/2;

break;

case WM_LBUTTONDOWN:

hdc = GetDC(hWnd);

MaskBlt(hdc,x,y,bm.bmWidth,bm.bmHeight,memDC,0,0,hNo,0,0,SRCCOPY);

ReleaseDC(hWnd, hdc);

break;

case WM_LBUTTONUP:

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

BitBlt(hdc, x, y, bm.bmWidth, bm.bmHeight, memDC, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.7. Демонстрация вращения графического образа

#define _USE_MATH_DEFINES

#include <math.h>

TCHAR *text = _T("Масяня");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int x, y, cx, cy;

static double angle;

static HDC memBit;

static HBITMAP hBitmap;

static BITMAP bm;

static XFORM xf;

switch (message)

{

case WM_CREATE:

hBitmap = (HBITMAP)LoadImage(NULL, _T("mas1.bmp"), IMAGE_BITMAP, 0,

0, LR_LOADFROMFILE | LR_CREATEDIBSECTION);

GetObject(hBitmap, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memBit = CreateCompatibleDC(hdc);

SelectObject(memBit, hBitmap);

ReleaseDC(hWnd, hdc);

break;

case WM_SIZE:

cx = LOWORD(lParam)/2;//Координаты центра окна

cy = HIWORD(lParam)/2;

xf.eDx = cx;
//Точка будет являться и новым началом

xf.eDy = cy;
// координат для графических функций

x = - bm.bmWidth/2;

y = - bm.bmHeight/2;

break;

case WM_LBUTTONDOWN:

angle += M_PI*45.0/180.0;

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_PAINT:

xf.eM22 = xf.eM11 = cos(angle);

xf.eM12 = -(xf.eM21 = sin(angle));

hdc = BeginPaint(hWnd, &ps);

SetGraphicsMode(hdc, GM_ADVANCED);

SetWorldTransform(hdc, &xf);

TextOut(hdc,x+35, y-20, text, _tcsclen(text));

BitBlt(hdc, x, y, bm.bmWidth, bm.bmHeight, memBit, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.8. Демонстрация работы виртуального окна

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

int r, g, b, maxX, maxY;

static int sx, sy;

static HDC memBit;

HBRUSH hBrush;

RECT rt;

HBITMAP hBitmap;

SYSTEMTIME tm;

switch (message)

{

case WM_CREATE:

SetTimer(hWnd, 1, 100, NULL);

maxX = GetSystemMetrics(SM_CXSCREEN);

maxY = GetSystemMetrics(SM_CYSCREEN);

hdc = GetDC(hWnd);

memBit = CreateCompatibleDC(hdc);

hBitmap = CreateCompatibleBitmap(hdc, maxX, maxY);

SelectObject(memBit, hBitmap);

PatBlt(memBit, 0, 0, maxX, maxY, WHITENESS);

ReleaseDC(hWnd, hdc);

GetSystemTime(&tm);

srand(tm.wMilliseconds);

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_TIMER:

rt.right = (rt.left = rand()*sx/RAND_MAX) + rand()*sx/RAND_MAX/2;

rt.top = (rt.bottom = rand()*sy/RAND_MAX) - rand()*sy/RAND_MAX/2;

r = rand()*255/RAND_MAX;

g = rand()*255/RAND_MAX;

b = rand()*255/RAND_MAX;

hBrush = CreateSolidBrush(RGB(r,g,b));

FillRect(memBit, &rt, hBrush);

DeleteObject(hBrush);

InvalidateRect(hWnd, NULL, 0);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

BitBlt(hdc, 0, 0, sx, sy, memBit, 0, 0, SRCCOPY);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteObject(memBit);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.9. Создание метафайла в памяти
#define _USE_MATH_DEFINES

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc, hdcMetafile;

static HMETAFILE hmf;

static int sx, sy;

int x, y;

double angle;

switch (message)

{

case WM_CREATE:

hdcMetafile = CreateMetaFile(NULL);

for (x = y = 50, angle = 0.0; angle < 2*M_PI; angle += 0.1)

{

MoveToEx(hdcMetafile, x, y, NULL);

x = int(50.0*cos(angle)*sin(angle*4.0)+50.5);

y = int(50.0*sin(angle)*sin(angle*4.0)+50.5);

LineTo(hdcMetafile, x, y);

}

hmf = CloseMetaFile(hdcMetafile);

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

SetMapMode(hdc, MM_ANISOTROPIC);

SetWindowExtEx(hdc, 1000, 1000, NULL);

SetViewportExtEx(hdc, sx, sy, NULL);

for(x = 0; x < 5; x++)

for(y = 0; y < 5; y++)

{

SetWindowOrgEx(hdc, -200 * x, -200 * y, NULL);

PlayMetaFile(hdc, hmf);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteMetaFile(hmf);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.10. Создание метафайла в памяти для растрового изображения

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc, hdcMeta, memBit;

static HMETAFILE hmf;

HBITMAP hBitmap;

BITMAP bm;

switch (message)

{

case WM_CREATE:

hdcMeta = CreateMetaFile(NULL);

hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IDB_MOUSE));

GetObject(hBitmap, sizeof(bm), &bm);

hdc = GetDC(hWnd);

memBit = CreateCompatibleDC(hdc);

ReleaseDC(hWnd, hdc);

SelectObject(memBit, hBitmap);

BitBlt(hdcMeta, 0, 0, bm.bmWidth, bm.bmHeight, memBit,0,0,SRCCOPY);

hmf = CloseMetaFile(hdcMeta);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

PlayMetaFile(hdc, hmf);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteMetaFile(hmf);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 4.11. Расширенный метафайл в памяти

#define _USE_MATH_DEFINES

#include <math.h>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc, hdcEMF;

RECT rt;

static HENHMETAFILE hmf;

static int sx, sy;

int x, y;

double angle;

switch (message)

{

case WM_CREATE:

hdcEMF = CreateEnhMetaFile(NULL, NULL, NULL, NULL);

for (x = y = 50, angle = 0.0; angle < 2*M_PI; angle += 0.1)

{

MoveToEx(hdcEMF, x, y, NULL);

x = int(50.0*cos(angle)*sin(angle*4.0)+50.5);

y = int(50.0*sin(angle)*sin(angle*4.0)+50.5);

LineTo(hdcEMF, x, y);

}

hmf = CloseEnhMetaFile(hdcEMF);

break;

case WM_SIZE:

sx = LOWORD(lParam);

sy = HIWORD(lParam);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for(rt.left = 0; rt.left < sx; rt.left += sx/5)

for(rt.top = 0; rt.top < sy; rt.top += sy/5)

{

rt.right = rt.left + sx/5;

rt.bottom = rt.top + sy/5;

PlayEnhMetaFile(hdc, hmf, &rt);

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

DeleteEnhMetaFile(hmf);

PostQuitMessage(0);

break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

