1Листинг 6.1. Создание процесса

2Листинг 6.2. Создание потока

2Листинг 6.3. Измерение времени выполнения потока

3Листинг 6.4. Тест для высокоточного измерения временного интервала

4Листинг 6.5. Критическая секция для двух потоков

5Листинг 6.6. Демонстрация работы семафора

7Листинг 6.7. Синхронизация потоков объектом Event

8Листинг 6.8. Создание ожидаемого таймера

9Листинг 6.9. Индикация номера экземпляра приложения

9Листинг 6.10. Проекция в память текстового файла

10Листинг 6.11. Запись данных в проецируемую область памяти

10Листинг 6.12. Чтение данных из проецируемой области памяти

11Листинг 6.13. Передача данных в сообщении WM_COPYDATA

12Листинг 6.14. Прием данных через сообщение WM_COPYDATA

Листинг 6.1. Создание процесса
TCHAR CommandLine[256] = _T("notepad ReadMe.txt");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static STARTUPINFO tin;

static PROCESS_INFORMATION pInfo;

static DWORD exitCode;

switch (message)

{

case WM_CREATE:

tin.cb = sizeof(STARTUPINFO);

tin.dwFlags = STARTF_USESHOWWINDOW;

tin.wShowWindow = SW_SHOWNORMAL;

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FILE_OPEN:

GetExitCodeProcess(pInfo.hProcess, &exitCode);

if (exitCode != STILL_ACTIVE) CreateProcess(NULL, CommandLine,

NULL, NULL, FALSE, 0, NULL, NULL, &tin, &pInfo);

break;

case ID_FILE_DELETE:

GetExitCodeProcess(pInfo.hProcess, &exitCode);

if (exitCode==STILL_ACTIVE) TerminateProcess(pInfo.hProcess, 0);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY:

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.2. Создание потока

TCHAR *pStr;

DWORD WINAPI MyThread(LPVOID param)

{

pStr = (TCHAR*)param;

return 0;

}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TCHAR *str = _T("Работал поток!!!");

switch (message)

{

case WM_CREATE:

CreateThread(NULL, 0, MyThread, str, 0, NULL);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

TextOut(hdc, 0, 0, pStr, _tcslen(pStr));

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.3. Измерение времени выполнения потока
#include <process.h>

unsigned __stdcall MyThread(void* param)

{

for (int i = 0; i < 10000000; i++);

return 0;

}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

HANDLE hThread;

LARGE_INTEGER Create, Exit, kernel, user;

static __int64 kernelTime, userTime, totalTime;

TCHAR str[256];

RECT rt;

switch (message)

{

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_THREAD:

hThread = (HANDLE)_beginthreadex(NULL,0,MyThread,NULL,0,NULL);

WaitForSingleObject(hThread, INFINITE);

GetThreadTimes(hThread, (FILETIME *)&Create.u,

(FILETIME *)&Exit.u,
 (FILETIME *)&kernel.u, (FILETIME *)&user.u);

CloseHandle(hThread);

kernelTime = kernel.QuadPart;

userTime = user.QuadPart;

totalTime = Exit.QuadPart - Create.QuadPart;

InvalidateRect(hWnd, NULL, TRUE);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

GetClientRect(hWnd, &rt);

hdc = BeginPaint(hWnd, &ps);

_stprintf(str, _T("kernelTime = %I64d\nuserTime = %I64d\ntotalTime = %I64d"),

kernelTime, userTime, totalTime);

DrawText(hdc, str, _tcslen(str), &rt, DT_LEFT);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.4. Тест для высокоточного измерения временного интервала

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TCHAR str[60], tmp[20];

int i, sum;

LARGE_INTEGER frequency, Start, End;

static __int64 totalTime;

switch (message)

{

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_CYCLE:

QueryPerformanceFrequency(&frequency);

Sleep(0);

QueryPerformanceCounter(&Start);

// Измеряемый код

for (i = sum = 0; i < 1000; i++) sum += i;

//

QueryPerformanceCounter(&End);

totalTime = (End.QuadPart - Start.QuadPart)*1000000/frequency.QuadPart;

InvalidateRect(hWnd, NULL, TRUE);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

_tcscpy(str, _T("Время работы цикла в мкс: "));

_i64tot(totalTime, tmp, 10);

_tcscat(str, tmp);

TextOut(hdc, 0, 0, str, _tcslen(str));

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.5. Критическая секция для двух потоков
#include <process.h>

#include <fstream>

#include <vector>

#include <string>

std::vector<std::string> v;

CRITICAL_SECTION fs;

unsigned __stdcall Thread(void* param)

{

std::ifstream in;

std::string st;

EnterCriticalSection(&fs);

in.open(_T("readme.txt"));

while (getline(in, st)) v.push_back(st);

in.close();

LeaveCriticalSection(&fs);

InvalidateRect((HWND)param, NULL, TRUE);

return 0;

}

///
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

HDC hdc;

PAINTSTRUCT ps;

std::vector<std::string>::iterator it;

int y;

static HANDLE hThread;

switch (message)

{

case WM_CREATE:

InitializeCriticalSection(&fs);

hThread = (HANDLE)_beginthreadex(NULL, 0, Thread, hWnd, 0, NULL);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

EnterCriticalSection(&fs);

for (y = 0, it = v.begin(); it < v.end(); ++it, y += 16)

TabbedTextOutA(hdc, 0, y, it->data(), it->length(), 0, NULL, 0);

LeaveCriticalSection(&fs);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.6. Демонстрация работы семафора

#include <process.h>

#include <commctrl.h>

HANDLE hSemaphore;

INT_PTR CALLBACK Dialog1(HWND, UINT, WPARAM,LPARAM);

//

HWND SetElement(HWND hDlg, HDC& mem, WORD IdBitmap, WORD IdProgress)

{

HBITMAP hBitmap = LoadBitmap(hInst, MAKEINTRESOURCE(IdBitmap));

HDC hdc = GetDC(hDlg);

mem = CreateCompatibleDC(hdc);

ReleaseDC(hDlg, hdc);

SelectObject(mem, hBitmap);

HWND handle = GetDlgItem(hDlg, IdProgress);

SendMessage(handle, PBM_SETRANGE, 0, 30<<16);

SendMessage(handle, PBM_SETSTEP, 1, 0);

SendMessage(handle, PBM_SETPOS, 0, 0);

return handle;

}

//

unsigned __stdcall MyThread1(void* param)

{

HWND hWnd = (HWND)param;

HDC hdc, mem;

int t = 0;

HWND hProgress = SetElement(hWnd, mem, IDB_BITMAP1, IDC_PROGRESS1);

while(1)

{

WaitForSingleObject(hSemaphore, INFINITE);

Sleep(500);

hdc = GetDC(hWnd);

BitBlt(hdc, 320, 25, 25, 50, mem, 0, 0, SRCCOPY);

ReleaseDC(hWnd, hdc);

if (++t > 30) t = 0;

SendMessage(hProgress, PBM_SETPOS, t, 0);

ReleaseSemaphore(hSemaphore, 1, NULL);

}

return 0;

}

///

unsigned __stdcall MyThread2(void* param)

{

HWND hWnd = (HWND)param;

HDC hdc, mem;

int t = 0;

HWND hProgress = SetElement(hWnd, mem, IDB_BITMAP2, IDC_PROGRESS2);

while(1)

{

WaitForSingleObject(hSemaphore, INFINITE);

Sleep(500);

hdc = GetDC(hWnd);

BitBlt(hdc, 320, 25, 25, 50, mem, 0, 0, SRCCOPY);

ReleaseDC(hWnd, hdc);

if (++t > 30) t = 0;

SendMessage(hProgress, PBM_SETPOS, t, 0);

ReleaseSemaphore(hSemaphore, 1, NULL);

}

return 0;

}

///

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

switch (message)

{

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_SEMAPHORE:

DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG1), hWnd, Dialog1);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

///

INT_PTR CALLBACK Dialog1(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{

static HANDLE hThread1, hThread2;

switch (message)

{

case WM_INITDIALOG:

InitCommonControls();

hSemaphore = CreateSemaphore(NULL, 1, 1, NULL);

hThread1=(HANDLE)_beginthreadex(NULL, 0, MyThread1, hDlg, 0, NULL);

hThread2=(HANDLE)_beginthreadex(NULL, 0, MyThread2, hDlg, 0, NULL);

return TRUE;

case WM_COMMAND:

if (LOWORD(wParam) == IDCANCEL)

{

TerminateThread(hThread1, 0);

TerminateThread(hThread2, 0);

CloseHandle(hThread1);

CloseHandle(hThread2);

EndDialog(hDlg, 0);

return TRUE;

}

break;

}

return FALSE;

}

Листинг 6.7. Синхронизация потоков объектом Event
#include <process.h>

struct STR { int k; char *p;};

HANDLE hEvent;

///

unsigned __stdcall MyThread1(void* param)

{

((STR*)param)->p = new char[((STR*)param)->k];

SetEvent(hEvent);

return 0;

}

unsigned __stdcall MyThread2(void* param)

{

WaitForSingleObject(hEvent, INFINITE);

for (int i = 0; i < ((STR*)param)->k; i++) ((STR*)param)->p[i] = '\0';

SetEvent(hEvent);

return 0;

}

//

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

TCHAR str[100];

static HANDLE hThread1, hThread2;

static STR mem = {2500000, NULL};

switch (message)

{

case WM_CREATE:

hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

hThread1 = (HANDLE)_beginthreadex(NULL,0,MyThread1,&mem,0,NULL);

hThread2 = (HANDLE)_beginthreadex(NULL,0,MyThread2,&mem,0,NULL);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

_stprintf(str, _T("Память выделена по адресу: %p"), mem.p);

TextOut(hdc, 0, 0, str, _tcslen(str));

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.8. Создание ожидаемого таймера
#include <process.h>

HANDLE hTimer;

unsigned __stdcall MyThread(void* param)

{

TCHAR str[30];

SYSTEMTIME tm;

FILETIME localTime;

WaitForSingleObject(hTimer, INFINITE);

GetSystemTime(&tm);

SystemTimeToFileTime(&tm, &localTime);

FileTimeToLocalFileTime(&localTime, &localTime);

FileTimeToSystemTime(&localTime, &tm);

_stprintf(str, _T("Date %2u.%2u.%4u Time %2u:%2u:%2u"), tm.wDay,

tm.wMonth, tm.wYear, tm.wHour, tm.wMinute, tm.wSecond);

MessageBox((HWND)param, str, _T("Включился ожидаемый таймер"), MB_OK | MB_ICONHAND);

return 0;

}

//

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static HANDLE hThread;

SYSTEMTIME sysTime = {2010, 5, 2, 5, 9, 04, 0, 0};

FILETIME localTime, utcTime;

LARGE_INTEGER lTime;

switch (message)

{

case WM_CREATE:

hTimer = CreateWaitableTimer(NULL, FALSE, NULL);

SystemTimeToFileTime(&sysTime, &localTime);

LocalFileTimeToFileTime(&localTime, &utcTime);

lTime.LowPart = utcTime.dwLowDateTime;

lTime.HighPart = utcTime.dwHighDateTime;

SetWaitableTimer(hTimer, &lTime, 0, NULL, NULL, FALSE);

hThread = (HANDLE)_beginthreadex(NULL, 0, MyThread, hWnd, 0, NULL);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY:

CloseHandle(hThread);

CancelWaitableTimer(hTimer);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.9. Индикация номера экземпляра приложения
#pragma data_seg("Shared")

volatile int shared_var = 0;

#pragma data_seg()

#pragma comment(linker, "/Section:Shared,RWS")

///

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

TCHAR str[256], name[256];

switch (message)

{

case WM_CREATE:

shared_var++;

SendMessage(hWnd, WM_GETTEXT, 256, (LPARAM)name);

_stprintf(str, _T("%s - Экземпляр: %d"), name, shared_var);

SendMessage(hWnd, WM_SETTEXT, 0, (LPARAM)str);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.10. Проекция в память текстового файла

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static HANDLE hFile, hFileMap;

static DWORD fSize;

static char *p;

RECT rt;

switch (message)

{

case WM_CREATE:

hFile = CreateFile(_T("readme.txt"), GENERIC_READ, 0, NULL,

OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (hFile != INVALID_HANDLE_VALUE)

{

fSize = GetFileSize(hFile, NULL);

hFileMap=CreateFileMapping(hFile,NULL,PAGE_READONLY,0,fSize,NULL);

if (hFileMap != NULL)

if(p = (char*)MapViewOfFile(hFileMap,FILE_MAP_READ,0,0,0)) break;

}

DestroyWindow(hWnd);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

GetClientRect(hWnd, &rt);

hdc = BeginPaint(hWnd, &ps);

DrawTextA(hdc, p, fSize, &rt, DT_LEFT);

EndPaint(hWnd, &ps);

break;

case WM_DESTROY:

UnmapViewOfFile(p);

CloseHandle(hFileMap);

CloseHandle(hFile);

PostQuitMessage(0);

break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.11. Запись данных в проецируемую область памяти

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static HANDLE hFileMemory;

static int *p;

int i, j, *q;

switch (message)

{

case WM_CREATE:

hFileMemory = CreateFileMapping(INVALID_HANDLE_VALUE, NULL,

PAGE_READWRITE, 0, 4096, _T("Shared"));

if (hFileMemory == NULL)

{

DestroyWindow(hWnd);

break;

}

p=(int*)MapViewOfFile(hFileMemory, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, 0);

for (i = 1, q = p; i <= 10; i++)

for (j = 1; j <= 10; j++, q++) *q = i*j;

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.12. Чтение данных из проецируемой области памяти

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static HANDLE hFileMemory;

static int *p;

int x, y, *q;

TCHAR str[10];

switch (message)

{

case WM_CREATE:

hFileMemory = OpenFileMapping(FILE_MAP_READ | FILE_MAP_WRITE, FALSE, _T("Shared"));

if (hFileMemory == NULL) DestroyWindow(hWnd);

else p = (int*)MapViewOfFile(hFileMemory, FILE_MAP_READ| FILE_MAP_WRITE, 0, 0, 0);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

for (y = 0, q = p; y < 300; y += 30)

for (x = 0; x < 300; x += 30, q++)

{

_itot(*q, str, 10);

TextOut(hdc, x, y, str, _tcslen(str));

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.13. Передача данных в сообщении WM_COPYDATA
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static int *p;

int i, j, *q;

COPYDATASTRUCT cds;

switch (message)

{

case WM_CREATE:

p = new int[100];

for (i = 1, q = p; i <= 10; i++)

for (j = 1; j <= 10; j++, q++) *q = i*j;

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_SEND:

cds.cbData = 100*sizeof(int);

cds.lpData = p;

SendMessage(FindWindow(NULL, _T("Acceptor")), WM_COPYDATA, 0, (LPARAM)&cds);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг 6.14. Прием данных через сообщение WM_COPYDATA
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

PAINTSTRUCT ps;

HDC hdc;

static int *p;

int x, y, *q;

TCHAR str[10];

switch (message)

{

case WM_COPYDATA:

p = new int[((COPYDATASTRUCT *)lParam)->cbData/sizeof(int)];

q = (int*)(((COPYDATASTRUCT *)lParam)->lpData);

for(int i = 0; i < 100; i++) p[i] = *q++;

InvalidateRect(hWnd, NULL, TRUE);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case IDM_EXIT: DestroyWindow(hWnd); break;

default:
return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_PAINT:

hdc = BeginPaint(hWnd, &ps);

if (p)

{

for (y = 0, q = p; y < 300; y += 30)

for (x = 0; x < 300; x += 30, q++)

{

_itot(*q, str, 10);

TextOut(hdc, x, y, str, _tcslen(str));

}

}

EndPaint(hWnd, &ps);

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

