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Листинг 6.1. Создание процесса
TCHAR CommandLine[256] = _T("notepad ReadMe.txt");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


static STARTUPINFO tin;


static PROCESS_INFORMATION pInfo;


static DWORD exitCode;


switch (message)


{


case WM_CREATE:



tin.cb = sizeof(STARTUPINFO);



tin.dwFlags = STARTF_USESHOWWINDOW;



tin.wShowWindow = SW_SHOWNORMAL;



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_FILE_OPEN:




GetExitCodeProcess(pInfo.hProcess, &exitCode);




if (exitCode != STILL_ACTIVE) CreateProcess(NULL, CommandLine,





NULL, NULL, FALSE, 0, NULL, NULL, &tin, &pInfo);




break;



case ID_FILE_DELETE:




GetExitCodeProcess(pInfo.hProcess, &exitCode);




if (exitCode==STILL_ACTIVE) TerminateProcess(pInfo.hProcess, 0);




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY:



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.2. Создание потока

TCHAR *pStr;

DWORD WINAPI MyThread(LPVOID param)

{


pStr = (TCHAR*)param; 


return 0;

}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


TCHAR *str = _T("Работал поток!!!");


switch (message)


{



case WM_CREATE:




CreateThread(NULL, 0, MyThread, str, 0, NULL);




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



TextOut(hdc, 0, 0, pStr, _tcslen(pStr));



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.3. Измерение времени выполнения потока
#include <process.h>

unsigned __stdcall MyThread(void* param)

{


for (int i = 0; i < 10000000; i++);


return 0;

}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


HANDLE hThread;


LARGE_INTEGER Create, Exit, kernel, user;


static __int64 kernelTime, userTime, totalTime;


TCHAR str[256];


RECT rt;


switch (message)


{


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_THREAD:




hThread = (HANDLE)_beginthreadex(NULL,0,MyThread,NULL,0,NULL);




WaitForSingleObject(hThread, INFINITE);




GetThreadTimes(hThread, (FILETIME *)&Create.u, 



(FILETIME *)&Exit.u,
 (FILETIME *)&kernel.u, (FILETIME *)&user.u);




CloseHandle(hThread);




kernelTime = kernel.QuadPart;




userTime = user.QuadPart;




totalTime = Exit.QuadPart - Create.QuadPart;




InvalidateRect(hWnd, NULL, TRUE);




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



GetClientRect(hWnd, &rt);



hdc = BeginPaint(hWnd, &ps);



_stprintf(str, _T("kernelTime = %I64d\nuserTime  = %I64d\ntotalTime = %I64d"),





kernelTime, userTime, totalTime);



DrawText(hdc, str, _tcslen(str), &rt, DT_LEFT);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.4. Тест для высокоточного измерения временного интервала

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


TCHAR str[60], tmp[20];


int i, sum;


LARGE_INTEGER frequency, Start, End;


static __int64 totalTime;


switch (message)


{


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_CYCLE:




QueryPerformanceFrequency(&frequency);




Sleep(0);




QueryPerformanceCounter(&Start);




// Измеряемый код



for (i = sum = 0; i < 1000; i++) sum += i;




//////////////////////////////////////////




QueryPerformanceCounter(&End);




totalTime = (End.QuadPart - Start.QuadPart)*1000000/frequency.QuadPart;




InvalidateRect(hWnd, NULL, TRUE);




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}


break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



_tcscpy(str, _T("Время работы цикла в мкс: "));



_i64tot(totalTime, tmp, 10);



_tcscat(str, tmp);



TextOut(hdc, 0, 0, str, _tcslen(str));



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.5. Критическая секция для двух потоков
#include <process.h>

#include <fstream>

#include <vector>

#include <string>

std::vector<std::string> v;

CRITICAL_SECTION fs;

unsigned __stdcall Thread(void* param)

{


std::ifstream in;


std::string st;


EnterCriticalSection(&fs);


in.open(_T("readme.txt"));


while (getline(in, st)) v.push_back(st);


in.close();


LeaveCriticalSection(&fs);


InvalidateRect((HWND)param, NULL, TRUE);


return 0;

}

///////////////////////////////////////////////////////////////////////
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


HDC hdc;


PAINTSTRUCT ps;


std::vector<std::string>::iterator it;


int y;


static HANDLE hThread;


switch (message)


{


case WM_CREATE:



InitializeCriticalSection(&fs);



hThread = (HANDLE)_beginthreadex(NULL, 0, Thread, hWnd, 0, NULL);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



EnterCriticalSection(&fs);



for (y = 0, it = v.begin(); it < v.end(); ++it, y += 16)




TabbedTextOutA(hdc, 0, y, it->data(), it->length(), 0, NULL, 0);



LeaveCriticalSection(&fs);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.6. Демонстрация работы семафора

#include <process.h>

#include <commctrl.h>

HANDLE hSemaphore;

INT_PTR CALLBACK Dialog1(HWND, UINT, WPARAM,LPARAM);

//////////////////////////////////////////////

HWND SetElement(HWND hDlg, HDC& mem, WORD IdBitmap, WORD IdProgress)

{


HBITMAP hBitmap  = LoadBitmap(hInst, MAKEINTRESOURCE(IdBitmap));


HDC hdc = GetDC(hDlg);


mem = CreateCompatibleDC(hdc);


ReleaseDC(hDlg, hdc);


SelectObject(mem, hBitmap);


HWND handle = GetDlgItem(hDlg, IdProgress);


SendMessage(handle, PBM_SETRANGE, 0, 30<<16);


SendMessage(handle, PBM_SETSTEP, 1, 0);


SendMessage(handle, PBM_SETPOS, 0, 0);


return handle;

}

//////////////////////////////////////////////

unsigned __stdcall MyThread1(void* param)

{



HWND hWnd = (HWND)param;


HDC hdc, mem;


int t = 0;


HWND hProgress = SetElement(hWnd, mem, IDB_BITMAP1, IDC_PROGRESS1);


while(1)


{




WaitForSingleObject(hSemaphore, INFINITE);



Sleep(500);



hdc = GetDC(hWnd);



BitBlt(hdc, 320, 25, 25, 50, mem, 0, 0, SRCCOPY);



ReleaseDC(hWnd, hdc);



if (++t > 30) t = 0;



SendMessage(hProgress, PBM_SETPOS, t, 0);



ReleaseSemaphore(hSemaphore, 1, NULL);


}


return 0;

}

///////////////////////////////////////////////

unsigned __stdcall MyThread2(void* param)

{



HWND hWnd = (HWND)param;


HDC hdc, mem;


int t = 0;


HWND hProgress = SetElement(hWnd, mem, IDB_BITMAP2, IDC_PROGRESS2);


while(1)


{ 



WaitForSingleObject(hSemaphore, INFINITE);



Sleep(500);



hdc = GetDC(hWnd);



BitBlt(hdc, 320, 25, 25, 50, mem, 0, 0, SRCCOPY);



ReleaseDC(hWnd, hdc);



if (++t > 30) t = 0;



SendMessage(hProgress, PBM_SETPOS, t, 0);



ReleaseSemaphore(hSemaphore, 1, NULL);


}


return 0;

}

///////////////////////////////////////////////

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


switch (message)


{


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_SEMAPHORE:




DialogBox(hInst, MAKEINTRESOURCE(IDD_DIALOG1), hWnd, Dialog1);




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

///////////////////////////////////////////////

INT_PTR CALLBACK Dialog1(HWND hDlg, UINT message, WPARAM wParam, LPARAM lParam)

{



static HANDLE hThread1, hThread2;


switch (message)


{



case WM_INITDIALOG:




InitCommonControls();




hSemaphore = CreateSemaphore(NULL, 1, 1, NULL);




hThread1=(HANDLE)_beginthreadex(NULL, 0, MyThread1, hDlg, 0, NULL);




hThread2=(HANDLE)_beginthreadex(NULL, 0, MyThread2, hDlg, 0, NULL);




return TRUE;



case WM_COMMAND:




if (LOWORD(wParam) == IDCANCEL) 




{






TerminateThread(hThread1, 0);





TerminateThread(hThread2, 0);





CloseHandle(hThread1);





CloseHandle(hThread2);





EndDialog(hDlg, 0);





return TRUE;




}




break;


}


return FALSE;

}

Листинг 6.7. Синхронизация потоков объектом Event
#include <process.h>

struct STR { int k; char *p;};

HANDLE hEvent;

/////////////////////////////////////////

unsigned __stdcall MyThread1(void* param)

{

((STR*)param)->p = new char[((STR*)param)->k];

SetEvent(hEvent);

return 0;

}

unsigned __stdcall MyThread2(void* param)

{

WaitForSingleObject(hEvent, INFINITE); 

for (int i = 0; i < ((STR*)param)->k; i++) ((STR*)param)->p[i] = '\0';

SetEvent(hEvent);

return 0;

}

////////////////////////////////////////////////

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


TCHAR str[100];


static HANDLE hThread1, hThread2;


static STR mem = {2500000, NULL};


switch (message)


{


case WM_CREATE:



hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);



hThread1 = (HANDLE)_beginthreadex(NULL,0,MyThread1,&mem,0,NULL);



hThread2 = (HANDLE)_beginthreadex(NULL,0,MyThread2,&mem,0,NULL);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



_stprintf(str, _T("Память выделена по адресу: %p"), mem.p);



TextOut(hdc, 0, 0, str, _tcslen(str));



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.8. Создание ожидаемого таймера
#include <process.h>

HANDLE hTimer;

unsigned __stdcall MyThread(void* param)

{



TCHAR str[30];


SYSTEMTIME tm;


FILETIME localTime;


WaitForSingleObject(hTimer, INFINITE);


GetSystemTime(&tm);


SystemTimeToFileTime(&tm, &localTime);


FileTimeToLocalFileTime(&localTime, &localTime);


FileTimeToSystemTime(&localTime, &tm);


_stprintf(str, _T("Date %2u.%2u.%4u Time %2u:%2u:%2u"), tm.wDay,




tm.wMonth, tm.wYear, tm.wHour, tm.wMinute, tm.wSecond);


MessageBox((HWND)param, str, _T("Включился ожидаемый таймер"), MB_OK | MB_ICONHAND);


return 0;

}

////////////////////////////////////////////////////////////////

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


static HANDLE hThread;


SYSTEMTIME sysTime = {2010, 5, 2, 5, 9, 04, 0, 0};

FILETIME localTime, utcTime;


LARGE_INTEGER lTime;


switch (message)


{


case WM_CREATE:



hTimer = CreateWaitableTimer(NULL, FALSE, NULL);



SystemTimeToFileTime(&sysTime, &localTime);



LocalFileTimeToFileTime(&localTime, &utcTime);



lTime.LowPart = utcTime.dwLowDateTime;



lTime.HighPart = utcTime.dwHighDateTime;



SetWaitableTimer(hTimer, &lTime, 0, NULL, NULL, FALSE);



hThread = (HANDLE)_beginthreadex(NULL, 0, MyThread, hWnd, 0, NULL);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{




case IDM_EXIT: DestroyWindow(hWnd); break;




default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY:



CloseHandle(hThread);



CancelWaitableTimer(hTimer);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.9. Индикация номера экземпляра приложения
#pragma data_seg("Shared")

volatile int shared_var = 0;

#pragma data_seg()

#pragma comment(linker, "/Section:Shared,RWS")

///////////////////////////////////////////////

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


TCHAR str[256], name[256];


switch (message)


{



case WM_CREATE:




shared_var++;




SendMessage(hWnd, WM_GETTEXT, 256, (LPARAM)name);




_stprintf(str, _T("%s - Экземпляр: %d"), name, shared_var);




SendMessage(hWnd, WM_SETTEXT, 0, (LPARAM)str);




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.10. Проекция в память текстового файла

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static HANDLE hFile, hFileMap;


static DWORD fSize;


static char *p;


RECT rt;


switch (message)


{


case WM_CREATE: 



hFile = CreateFile(_T("readme.txt"), GENERIC_READ, 0, NULL,




OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);



if (hFile != INVALID_HANDLE_VALUE) 



{ 



fSize = GetFileSize(hFile, NULL);



hFileMap=CreateFileMapping(hFile,NULL,PAGE_READONLY,0,fSize,NULL);



if (hFileMap != NULL) 




if(p = (char*)MapViewOfFile(hFileMap,FILE_MAP_READ,0,0,0)) break;



}



DestroyWindow(hWnd);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



GetClientRect(hWnd, &rt);



hdc = BeginPaint(hWnd, &ps);



DrawTextA(hdc, p, fSize, &rt, DT_LEFT);



EndPaint(hWnd, &ps);



break;


case WM_DESTROY:



UnmapViewOfFile(p);



CloseHandle(hFileMap);



CloseHandle(hFile);



PostQuitMessage(0);



break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.11. Запись данных в проецируемую область памяти

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


static HANDLE hFileMemory;


static int *p;


int i, j, *q;


switch (message)


{


case WM_CREATE:



hFileMemory = CreateFileMapping(INVALID_HANDLE_VALUE, NULL,






PAGE_READWRITE, 0, 4096, _T("Shared"));



if (hFileMemory == NULL) 




{ 





DestroyWindow(hWnd); 





break; 




}



p=(int*)MapViewOfFile(hFileMemory, FILE_MAP_READ|FILE_MAP_WRITE, 0, 0, 0);



for (i = 1, q = p; i <= 10; i++)




for (j = 1; j <= 10; j++, q++) *q = i*j;



break;   


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.12. Чтение данных из проецируемой области памяти

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static HANDLE hFileMemory;


static int *p;


int x, y, *q;


TCHAR str[10];


switch (message)


{


case WM_CREATE:



hFileMemory = OpenFileMapping(FILE_MAP_READ | FILE_MAP_WRITE, FALSE, _T("Shared"));



if (hFileMemory == NULL) DestroyWindow(hWnd); 



else p = (int*)MapViewOfFile(hFileMemory, FILE_MAP_READ| FILE_MAP_WRITE, 0, 0, 0);



break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



for (y = 0, q = p; y < 300; y += 30)




for (x = 0; x < 300; x += 30, q++) 




{ 





_itot(*q, str, 10);





TextOut(hdc, x, y, str, _tcslen(str));




}



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.13. Передача данных в сообщении WM_COPYDATA
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


static int *p;


int i, j, *q;


COPYDATASTRUCT cds;


switch (message)


{


case WM_CREATE:




p = new int[100];




for (i = 1, q = p; i <= 10; i++)





for (j = 1; j <= 10; j++, q++) *q = i*j;




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case ID_SEND:




cds.cbData = 100*sizeof(int);




cds.lpData = p;




SendMessage(FindWindow(NULL, _T("Acceptor")), WM_COPYDATA, 0, (LPARAM)&cds);




break;



case IDM_EXIT: DestroyWindow(hWnd); break;



default: return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

Листинг 6.14. Прием данных через сообщение WM_COPYDATA
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{


PAINTSTRUCT ps;


HDC hdc;


static int *p;


int x, y, *q;


TCHAR str[10];


switch (message)


{


case WM_COPYDATA:




p = new int[((COPYDATASTRUCT *)lParam)->cbData/sizeof(int)];




q = (int*)(((COPYDATASTRUCT *)lParam)->lpData);




for(int i = 0; i < 100; i++) p[i] = *q++;




InvalidateRect(hWnd, NULL, TRUE);




break;


case WM_COMMAND:



switch (LOWORD(wParam))



{



case IDM_EXIT: DestroyWindow(hWnd); break;



default:
return DefWindowProc(hWnd, message, wParam, lParam);



}



break;


case WM_PAINT:



hdc = BeginPaint(hWnd, &ps);



if (p)



{




for (y = 0, q = p; y < 300; y += 30)





for (x = 0; x < 300; x += 30, q++) 





{ 






_itot(*q, str, 10);






TextOut(hdc, x, y, str, _tcslen(str));





}



}



EndPaint(hWnd, &ps);



break;


case WM_DESTROY: PostQuitMessage(0); break;


default: return DefWindowProc(hWnd, message, wParam, lParam);


}


return 0;

}

