1Листинг П.1. Поиск всех окон системы

1Листинг П.2. Поиск главного окна дочернего процесса

Листинг П.1. Поиск всех окон системы

#include <string>

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static std::string st("hProcess hParent idProcess hWindows\ Title\r\n");

HWND hFind;

static HWND hEdit;

TCHAR str[80], title[256];

LONG hProcess, hParentEdit;

DWORD id;

switch (message)

{

case WM_CREATE:

hEdit = CreateWindow("Edit", NULL, WS_CHILD|WS_VISIBLE|WS_HSCROLL|

WS_VSCROLL|ES_LEFT|ES_MULTILINE|ES_AUTOHSCROLL|ES_AUTOVSCROLL,

0, 0, 0, 0, hWnd, (HMENU) 1, hInst, NULL);

break;

case WM_SIZE:

MoveWindow(hEdit, 0, 0, LOWORD(lParam), HIWORD(lParam), TRUE);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FIND:

hFind = GetTopWindow(NULL);

do

{

hProcess = GetWindowLong(hFind,GWL_HINSTANCE);

hParentEdit = GetWindowLong(hFind,GWL_HWNDPARENT);

SendMessage(hFind, WM_GETTEXT, (WPARAM)256, (LPARAM)title);

GetWindowThreadProcessId(hFind, &id);

sprintf(str, "%.8x %.8x %.8d %.8x %s\r\n", hProcess,

hParentEdit, id, hFind, title);

st.append(str);

hFind = GetWindow(hFind, GW_HWNDNEXT);

}

while (hFind);

SetWindowText(hEdit, st.c_str());

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

Листинг П.2. Поиск главного окна дочернего процесса

TCHAR title[256] = _T("Новое окно блокнота");

TCHAR CommandLine[256] = _T("notepad ReadMe.txt");

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)

{

static STARTUPINFO tin;

static PROCESS_INFORMATION pInfo;

HWND hFind;

DWORD id, hParentEdit;

switch (message)

{

case WM_CREATE:

tin.cb = sizeof(STARTUPINFO);

tin.dwFlags = STARTF_USESHOWWINDOW;

tin.wShowWindow = SW_SHOWNORMAL;

CreateProcess(NULL, CommandLine, NULL, NULL, FALSE, 0, NULL, NULL, &tin, &pInfo);

CloseHandle(pInfo.hThread);

CloseHandle(pInfo.hProcess);

break;

case WM_COMMAND:

switch (LOWORD(wParam))

{

case ID_FINDWINDOWS:

hFind = GetTopWindow(NULL);

do

{

if (hFind == 0)

{

MessageBox(hWnd, _T("Окно не найдено"),

_T("Ошибка поиска"), MB_OK | MB_ICONQUESTION);

DestroyWindow(hWnd);

return 1;

}

GetWindowThreadProcessId(hFind, &id);

hParentEdit = GetWindowLong(hFind, GWL_HWNDPARENT);

if (hParentEdit == 0 && id == pInfo.dwProcessId)

{

SendMessage(hFind, WM_SETTEXT, 0, (LPARAM)title);

return 0;

}

hFind = GetWindow(hFind, GW_HWNDNEXT);

}

while (true);

break;

case IDM_EXIT: DestroyWindow(hWnd); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

break;

case WM_DESTROY: PostQuitMessage(0); break;

default: return DefWindowProc(hWnd, message, wParam, lParam);

}

return 0;

}

