_ st IS IS IS
Advanced
Metaprogramming
In Classic C++

Davide Di Gennaro

L7777/ttt
Apresse


http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress®

www.it-ebooks.info


http://www.it-ebooks.info/

Contents at a Glance

About the AUthOr ........ccvvimimmns e —————=——— Xix
About the Technical REVIEWET ........ccussmmssmsssmssmsssmssmmssssssssssssssssssssssssssssssssssnssssssnns XXi
AcknowledgmEeNts.......ccceerrssssssmsnsnnsmsssssssssssssnssssssssssssssnsnnssssssssssssnnnnnnsnssssssssnnnnns XXiii
o = £ T XXV
#include <prerequisiteS> ...uuuuurmmmmmmmsmssnnnsssssssssssnnnsnsnnsssnnsnnnnsnnnnnnnnnnnn 1
Chapter 1: Templates.....ccccoiirmmmmmmnsmsnnmmmm s ————————————————— 3
Chapter 2: Small Object ToolKit .........ccussmenmmmsssnnnmmsssssnnnmssssnsssmsssssnnsessssnnnnsssssnnnnns 93
#include <teChNIQUES>...ccccuriimmmmisinnssssssssssnnnnnmnmmsnsmnnnnnnnnnn e 119
Chapter 3: Static Programming.......ccccusemnmmnssesnmmmssssnmmssssssnmsssssssessssssssssssnnns 121
Chapter 4: Overload ResolUtion........ccuemmmnisssnsmmmssssssnssssssssnmsssssssssssssssnnsssssnnnnns 173
Chapter 5: Interfaces ......c.crmusmmmmsmmmmsssnmssssnsssssnssssansssssnsessansesssnsesssnsesssnnssssnnsss 229
Chapter 6: Algorithms ..........ccccnneemmmnnnssmnmmmssssnmmssss s ———— 275
Chapter 7: Code Generators..........cccrummssmmmmmmssssnsmmsssssssnsssssssssmssssssnssssssnsnnsssssnnnnns 327
Chapter 8: FUNCTOrS .......cuuuiemmmmmmssnsnmmssssssnmssssssssssssssnssssssssnssssssssnnssssssnnnssssssnnnnns 373
Chapter 9: The Opaque Type Principle.......ccucccmmnmssemnmmnssssssmmssssssssssssssssnssssssnsnns 415
#include <applications>......cccnmninnninsssssssssesensesmssssmmmmnnnnn i ———— 475
Chapter 10: Refactoring .......cccvssssesnmmssssssnmsssssnsnsssssssssssssssssnssssssssssssssnnnnsssssnnnnns 477
Chapter 11: Debugging Templates.........cccinnnummmmmssssnnmmmmsssnmmmssssmmmssssnmsssnn 501
Chapter 12: C+40X wuuueeemmmmsssssnmmssssnsnmmssssnsnssssssnsnssssssnnnssssssnnnnsssssnnnsssssnnnssssssnnnnns 515
vii

www.it-ebooks.info


http://www.it-ebooks.info/

CONTENTS AT A GLANCE

ApPPendiX A: EXEICISES iuuuuusssssnssssssmssssssssssnssssssssssssssssnnsssssssssssssssnsnnnssssssssssssnnnnnns

Appendix B: Bibliography .......cccccueismsssssssssssmmmsssssssssssssnssssssssssssssssssssssssssssssnnnns

viii

www.it-ebooks.info


http://www.it-ebooks.info/

PART 1

#include <prerequisites>

www.it-ebooks.info



http://www.it-ebooks.info/

CHAPTER 1

Templates

“C++ supports a variety of styles.”

Bjarne Stroustrup, A Perspective on ISO C++

Programming is the process of teaching something to a computer by talking to the machine in one of its
common languages. The closer to the machine idiom you go, the less natural the words become.

Each language carries its own expressive power. For any given concept, there is a language where its
description is simpler, more concise, and more detailed. In assembler, we have to give an extremely rich
and precise description for any (possibly simple) algorithm, and this makes it very hard to read back. On
the other hand, the beauty of C++ is that, while being close enough to the machine language, the language
carries enough instruments to enrich itself.

C++ allows programmers to express the same concept with different styles and good C++ looks more natural.

First you are going to see the connection between the templates and the style, and then you will dig into
the details of the C++ template system.

Given this C++ fragment:

double x = sq(3.14);

Can you guess what sq is? It could be a macro:
#tdefine sq(x) ((x)*(x))

A function:
double sq(double x)

return x*x;

}

A function template:

template <typename scalar t>
inline scalar_t sq(const scalar t& x)

{

return x*x;

}
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A type (an unnamed instance of a class that decays to a double):

class sq

{

double s_;
public:
sq(double x)

: s (x*x)

{}

operator double() const
{ return s_; }

};
A global object:
class sq_t
{
public:
typedef double value type;
value type operator()(double x) const

return x*x;

}
};

const sq_t sq = sq_t();

Regardless of how sq(3.14) is implemented, most humans can guess what sq(3.14) does just looking
at it. However, visual equivalence does not imply interchangeableness. If sq is a class, for example, passing a
square to a function template will trigger an unexpected argument deduction:

template <typename T> void (T x);

f(cos(3.14)); // instantiates f<double>
f(sq(3.14)); // instantiates f<sg>. counterintuitive?

Furthermore, you would expect every possible numeric type to be squared as efficiently as possible, but
different implementations may perform differently in different situations:

std: :vector<double> v;
std: :transform(v.begin(), v.end(), v.begin(), sq);

If you need to transform a sequence, most compilers will get a performance boost from the last
implementation of sq (and an error if sq is a macro).
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The purpose of TMP is to write code that is:
e  Visually clear to human users so that nobody needs to look underneath.
e Efficient in most/all situations from the point of view of the compiler.
e  Self-adapting to the rest of the program.’

Self-adapting means “portable” (independent of any particular compiler) and “not imposing
constraints” An implementation of sq that requires its argument to derive from some abstract base class
would not qualify as self-adapting.

The true power of C++ templates is style. Compare the following equivalent lines:

double x1 = (-b + sqrt(b*b-4*a*c))/(2*a);

double x2 = (-b + sqrt(sq(b)-4*a*c))/(2*a);

All template argument computations and deductions are performed at compile time, so they impose
no runtime overhead. If the function sq is properly written, line 2 is at least as efficient as line 1 and easier to
read at the same time.

Using sq is elegant:

e Itmakes code readable or self-evident
e Itcarries no speed penalty
e Itleaves the program open to future optimizations

In fact, after the concept of squaring has been isolated from plain multiplication, you can easily plug in
specializations:

template <typename scalar_t>
inline scalar t sq(const scalar t& x)

{
}

return x*x;

template <>
inline double sq(const double& x)

{
}

// here, use any special algorithm you have!

"Loosely speaking, that’s the reason for the “meta” prefix in “metaprogramming”.
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1.1. C++ Templates

The classic C++ language admits two basic types of templates—function templates and class templates*
Here is a function template:

template <typename scalar_ t>
scalar t sq(const scalar t& x)

{
return x*x;
}
Here is a class template:
template
<
typename scalar_t, // type parameter

bool EXTRA_PRECISION
typename promotion_t
>
class sum

{
};

false, // bool parameter with default value
scalar_t // type parameter with default value

/7 ...

When you supply suitable values to all its parameters, a template generates entities during compilation.
A function template will produce functions and a class template will produce classes. The most important
ideas from the TMP viewpoint can be summarized as follows:

e  You can exploit class templates to perform computations at compile time.

e  Function templates can auto-deduce their parameters from arguments. If you
call sq(3.14), the compiler will automatically figure out that scalar_t is double,
generate the function sq<double>, and insert it at the call site.

Both kinds of template entities start declaring a parameter list in angle brackets. Parameters can include
types (declared with the keyword typename or class) and non-types: integers and pointers.®

Note that, when the parameter list is long or when you simply want to comment each parameter
separately, you may want to indent it as if it were a block of code within curly brackets.

Parameters can in fact have a default value:

sum<double> S1; // template argument is 'double', EXTRA_PRECISION is false
sum<double, true> S2;

’In modern C++ there are more, but you can consider them extensions; the ones described here are metaprogramming
first-class citizens. Chapter 12 has more details.

3Usually any integer type is accepted, including named/anonymous enum, bool, typedefs (like ptrdiff t and size t),
and even compiler-specific types (for example, __int64 in MSVC). Pointers to member/global functions are allowed
with no restriction; a pointer to a variable (having external linkage) is legal, but it cannot be dereferenced at compile
time, so this has very limited use in practice. See Chapter 11.

6
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A template can be seen as a metafunction that maps a tuple of parameters to a function or a class.
For example, the sq template

template <typename scalar_t>
scalar_t sq(const scalar t& x);

maps a type T to a function:
T > T (*)(const T&)

In other words, sq<double> is a function with signature double (*)(const double8). Note that double
is the value of the parameter scalar_t.
Conversely, the class template

template <typename char_t = char>
class basic_string;

maps a type T to a class:
T - basic_string<T>

With classes, explicit specialization can limit the domain of the metafunction. You have a general
template and then some specializations; each of these may or may not have a body.

// the following template can be instantiated
// only on char and wchar_t

template <typename char_t = char>
class basic_string;
// note: no body

template < >
class basic_string<char>

{..o )

template < >
class basic_string<wchar_t>

{..- B

char_t and scalar_t are called template parameters. When basic_string<char> and sq<double> are
used, char and double are called template arguments, even if there may be some confusion between double
(the template argument of sq) and x (the argument of the function sq<double>).

When you supply template arguments (both types and non-types) to the template, seen as a
metafunction, the template is instantiated, so if necessary the compiler produces machine code for the
entity that the template produces.

Note that different arguments yield different instances, even when instances themselves are identical:
sq<double> and sq<const double> are two unrelated functions.*

“The linker may eventually collapse them, as they will likely produce identical machine code, but from a language
perspective they are different.

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 1 © TEMPLATES

When using function templates, the compiler will usually figure out the parameters. We say that an
argument binds to a template parameter.

template <typename scalar_t>
scalar_t sq(const scalar t& x) { return x*x; }

double pi = 3.14;

sq(pi); // the compiler "binds" double to scalar t
double x = sq(3.14); // ok: the compiler deduces that scalar t is double
double x = sg<double>(3.14); // this is legal, but less than ideal

All template arguments must be compile-time constants.
e  Type parameters will accept everything known to be a type.

¢ Non-type parameters work according to the most automatic
casting/promotion rule.’

Here are some typical errors:

template <int N>
class SomeClass

{

};

int main()
int A = rand();
SomeClass<A> s; // error: A is not a compile time constant
const int B = rand();
SomeClass<B> s; // error: B is not a compile time constant
static const int C = 2;
SomeClass<C> s; // 0K

}

The best syntax for a compile-time constant in classic C++ is static const [[integer type]]
name = value;.

The static prefix could be omitted if the constant is local, in the body of a function, as shown previously.
However, it’s both harmless and clear (you can find all the compile-time constants in a project by searching
for "static const" rather than "const" alone).®

>An exception being that literal 0 may not be a valid pointer.
See Sections 1.3.6 and 11.2.2 for more complete discussions.

8
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The arguments passed to the template can be the result of a (compile-time) computation. Every valid
integer operation can be evaluated on compile-time constants:

e Division by zero causes a compiler error.
e  Function calls are forbidden.”

e  Code that produces an intermediate object of non-integer/non-pointer type is
non-portable, except when inside sizeof: (int) (N*1.2), which is illegal. Instead use
(N+N/5). static_cast<void*>(0) is fine too.*

SomeClass<(27+56*5) % 4> si;
SomeClass<sizeof(void*)*CHAR BIT> si;

Division by zero will cause a compiler error only if the computation is entirely static. To see the
difference, note that this program compiles (but it won’t run).

template <int N>
struct tricky

{
int f(int i = 0)
{

return i/N; // i/N is not a constant
}
b

int main()
tricky<o> t;
return t.f();
}
test.cpp(5) : warning C4723: potential divide by 0

On the other hand, compare the preceding listing with the following two, where the division by zero
happens during compilation (in two different contexts):

int £()
{

return N/N; // N/N is a constant
}

test.cpp(5) : error C2124: divide or mod by zero
A\test.cpp(5) : while compiling class template member function
"int tricky<N>::f(void)'
with
[

]

N=0

’See the note in Section 1.3.2.
§You can cast a floating-point literal to integer, so strictly speaking, (int)(1.2) is allowed. Not all compilers are
rigorous in regard to this rule.
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And with:
tricky<0/0> t;

test.cpp(12) : error C2975: 'N' : invalid template argument for 'tricky',
expected compile-time constant expression

More precisely, compile-time constants can be:
e Integer literals, for example, 27, CHAR_BIT, and 0x05

e sizeof and similar non-standard language operators with an integer result
(for example, __alignof _ where present)

e Non-type template parameters (in the context of an “outer” template)

template <int N>
class AnotherClass

{
};

SomeClass<N> myMember_;

e  Static constants of integer type

template <int N, int K>
struct MyTemplate

static const int PRODUCT = N*K;
};

SomeClass< MyTemplate<10,12>::PRODUCT > si;

e  Some standard macros, such as__LINE__ (There is actually some degree of freedom;
as arule they are constants with type long, except in implementation-dependent
“edit and continue” debug builds, where the compiler must use references. In this
case, using the macro will cause a compilation error.)°

SomeClass<_ LINE_ > s1; // usually works...
A parameter can depend on a previous parameter:

template
<
typename T,
int (*FUNC)(T) // pointer to function taking T and returning int
>
class X
{
};

°The use of __LINE__ as a parameter in practice occurs rarely; it’s popular in automatic type enumerations (see Section 7.6)
and in some implementation of custom assertions.

10
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template
<
typename T, // here the compiler learns that 'T' is a type
T VALUE // may be ok or not... the compiler assumes the best
>
class Y
{
};

Y<int, 7> yi1; // fine
Y<double, 3> y2; // error: the constant '3' cannot have type 'double’

Classes (and class templates) may also have template member functions:
// normal class with template member function

struct mathematics

{
template <typename scalar t>
scalar t sq(scalar_t x) const
{
return x*x;
}
};

// class template with template member function

template <typename scalar_t>
struct more mathematics

{
template <typename other t»>*
static scalar t product(scalar t x, other t y)
{
return x*y;
}
};

double A = mathematics().sq(3.14);
double B = more mathematics<double>().product(3.14, 5);

1.1.1. Typename
The keyword typename is used:
e Asasynonym of class, when declaring a type template parameter

e Whenever it’s not evident to the compiler that an identifier is a type name

1We have to choose a different name, to avoid shadowing the outer template parameter scalar_t.

www.it-ebooks.info
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For an example of “not evident” think about MyClass<T>: :Y in the following fragment:

template <typename T>
struct MyClass

typedef double Y; // Y may or may not be a type
typedef T Type; // Type is always a type
5
template < >
struct MyClass<int>

{
static const int Y = 314; // Y may or may not be a type
typedef int Type; // Type is always a type
5
int Q = §;

template <typename T>
void SomeFunc()
{
MyClass<T>::Y * Q; // what is this line? it may be:
// the declaration of local pointer-to-double named Q;
// or the product of the constant 314, times the global variable Q
};

Y is a dependent name, since its meaning depends on T, which is an unknown parameter.
Everything that depends directly or indirectly on unknown template parameters is a dependent name.
If a dependent name refers to a type, then it must be introduced with the typename keyword.

template <typename X>
class AnotherClass

{
MyClass<X>::Type t1_; // error: 'Type' is a dependent name
typename MyClass<X>::Type t2_; // ok
MyClass<double>::Type t3_; // ok: 'Type' is independent of X

};

Note that typename is required in the first case and forbidden in the last:

template <typename X>
class AnotherClass

{
typename MyClass<X>::Y memberi_; // ok, but it won't compile if X is 'int'.
typename MyClass<double>::Y member2_; // error

b

12
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typename may introduce a dependent type when declaring a non-type template parameter:

template <typename T, typename T::type N>
struct SomeClass

{
};

struct S1

{
typedef int type;

)
SomeClass<S1, 3> x;  // ok: N=3 has type 'int'

As a curiosity, the classic C++ standard specifies that if the syntax typename T1::T2yields a non-type
during instantiation, then the program is ill-formed. However, it doesn’t specify the converse: if T1: : T2 has a
valid meaning as a non-type, then it could be re-interpreted later as a type, if necessary. For example:

template <typename T>
struct B

{
static const int N = sizeof(A<T>::X);
// should be: sizeof(typename A...)

};

Until instantiation, B “thinks” it’s going to call sizeof on a non-type; in particular, sizeof is a valid
operator on non-types, so the code is legal. However, X could later resolve to a type, and the code would be
legal anyway:

template <typename T>
struct A

{

static const int X = 7;

};

template <>
struct A<char>

typedef double X;

)

Although the intent of typenanme is to forbid all such ambiguities, it may not cover all corner cases.!!

""See also http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#666.

13
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1.1.2. Angle Brackets

Even if all parameters have a default value, you cannot entirely omit the angle brackets:

template <typename T = double>
class sum {};

sum<> S1; // ok, using double
sum S2; // error

Template parameters may carry different meanings:

e  Sometimes they are really meant to be generic, for example, std: :vector<T>
or std: :set<T>. There may be some conceptual assumptions about T—say
constructible, comparable...—that do not compromise the generality.

e Sometimes parameters are assumed to belong to a fixed set. In this case, the class
template is simply the common implementation for two or more similar classes."

In the latter case, you may want to provide a set of regular classes that are used without angle brackets,
so you can either derive them from a template base or just use typedef'®:

template <typename char_t = char>

class basic_string

{
// this code compiles only when char t is either 'char' or 'wchar t'
/...

};

class my_string : public basic_string<>
{

// empty or minimal body

// note: no virtual destructor!

1
typedef basic_string<wchar_t> your_string;

A popular compiler extension (officially part of C++0x) is that two or more adjacent “close angle
brackets” will be parsed as “end of template,” not as an “extraction operator” Anyway, with older compilers,
it’s good practice to add extra spaces:

std::vector<std::list<double>> vi;
// AN
// may be parsed as "operator>>"

std::vector<std::list<double> > v2;
// ANN
// always ok

2Even if it’s not a correct example, an open-minded reader may want to consider the relationship between std: : string,
std::wstring, and std::basic_string<T>.
BSee 1.4.9.

14
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1.1.3. Universal Constructors

A template copy constructor and an assignment are not called when dealing with two objects of the very
same kind:

template <typename T>

class something

{

public:
// not called when S ==T
template <typename S>
something(const something<S>& that)
{
}

// not called when S == T
template <typename S>
something® operator=(const something<S>& that)

return *this;

}
};

something<int> so;
something<double> s1, s2;

SO = s1; // calls user defined operator=
s1 = s2; // calls the compiler generated assignment

The user-defined template members are sometimes called universal copy constructors and universal
assignments. Note that universal operators take something<X>, not X.
The C++ Standard 12.8 says:

e  “Because a template constructor is never a copy constructor, the presence of such a
template does not suppress the implicit declaration of a copy constructor.”

e “Template constructors participate in overload resolution with other constructors,
including copy constructors, and a template constructor may be used to copy an
object if it provides a better match than other constructors.”

In fact, having very generic template operators in base classes can introduce bugs, as this
example shows:

struct base

base() {}

template <typename T>
base(T x) {}
};

www.it-ebooks.info
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struct derived : base
derived() {}

derived(const derived& that)
: base(that) {}
};

derived di;
derived d2 = di;

The assignment d2 = di causes a stack overflow.

An implicit copy constructor must invoke the copy constructor of the base class, so by 12.8 above it can
never call the universal constructor. Had the compiler generated a copy constructor for derived, it would
have called the base copy constructor (which is implicit). Unfortunately, a copy constructor for derived
is given, and it contains an explicit function call, namely base(that). Hence, following the usual overload
resolution rules, it matches the universal constructor with T=derived. Since this function takes x by value,
it needs to perform a copy of that, and hence the call is recursive.'

1.1.4. Function Types and Function Pointers

Mind the difference between a function type and a pointer-to-function type:

template <double F(int)>
struct A

{
};

template <double (*F)(int)>
struct B

{
};

They are mostly equivalent:

double f(int)
{

}

return 3.14;

A<t> t1;  // ok
B<f> t2; // ok

1As a side note, this shows once more that in TMP, the less code you write, the better.

16
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Usually a function decays to a function pointer exactly as an array decays to a pointer. But a function
type cannot be constructed, so it will cause failures in code that look harmless:

template <typename T>
struct X
{

T member_;

X(T value)

: member (value)

{

}
};
X<double (int)> ti(f); // error: cannot construct 'member '
X<double (*)(int)> t2(f); // ok: 'member_' is a pointer

This problem is mostly evident in functions that return a functor (the reader can think about std: :not1
or see Section 4.3.4). In C++, function templates that get parameters by reference prevent the decay:

template <typename T>
X<T> identify by val(T x)

{
return X<T>(x);

}

template <typename T>
X<T> identify by ref(const T& x)

{
return X<T>(x);
}
double f(int)
{
return 3.14;
}

identify by val(f); // function decays to pointer-to-function:
// template instantiated with T = double (*)(int)

identify by ref(f); // no decay:
// template instantiated with T = double (int)

For what concerns pointers, function templates with explicit parameters behave like ordinary functions:

double f(double x)
{

}

return x+1;

17
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template <typename T>
T g(T x)
{

}

typedef double (*FUNC T)(double);

return x+1;

FUNC_T f1 = f;
FUNC_T f2 = g<double>;

However, if they are members of class templates and their context depends on a yet unspecified
parameter, they require an extra template keyword before their name'®:

template <typename X>
struct outer

{
template <typename T>
static T g(T x)
return x+1;
}
b

template <typename X>
void do_it()
{

FUNC_T 1
FUNC_ T 2

outer<X>::g<double>; // error!
outer<X>::template g<double>; // correct

}
Both typename and template are required for inner template classes:

template <typename X>
struct outer

{
template <typename T>

struct inner {};

};

template <typename X>
void do it()
{

typename outer<X>::template inner<double> I;

Some compilers are not rigorous at this.

SCompare with the use of typename described in Sectionl.1.1.

18
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1.1.5. Non-Template Base Classes

If a class template has members that do not depend on its parameters, it may be convenient to move them
into a plain class:

template <typename T>

class MyClass

{
double value_;
std::string name_;
std::vector<T> data_;

public:
std::string getName() const;
b

should become:

class MyBaseClass

{
protected:

~MyBaseClass() {}

double value ;
std::string name_;

public:
std::string getName() const;
b

template <typename T>
class MyClass : MyBaseClass

{

std::vector<T> data_;

public:
using MyBaseClass::getName;

)

The derivation may be public, private, or even protected.'® This will reduce the compilation complexity
and potentially the size of the binary code. Of course, this optimization is most effective if the template is
instantiated many times.

16See the “brittle base class problem” mentioned by Bjarne Stroustrup in his “C++ Style and Technique FAQ” at
http://www.research.att.com/~bs/.

19
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1.1.6. Template Position

The body of a class/function template must be available to the compiler at every point of instantiation,
so the usual header/cpp file separation does not hold, and everything is packaged in a single file, with the
hpp extension.

If only a declaration is available, the compiler will use it, but the linker will return errors:

// sq.h

template <typename T>
T sq(const T& x);

// sq.cpp

template <typename T>
T sq(const T& x)

return x*x;

}
// main.cpp

#include "sq.h" // note: function body not visible

int main()

{
double x = sq(3.14); // compiles but does not link

A separate header file is useful if you want to publish only some instantiations of the template. For example,
the author of sq might want to distribute binary files with the code for sq<int> and sq<double>, so that they
are the only valid types.

In C++, it’s possible to explicitly force the instantiation of a template entity in a translation unit without
ever using it. This is accomplished with the special syntax:

template class X<double>;
template double sq<double>(const doubled);

Adding this line to sq.cpp will “export” sq<double> as if it were an ordinary function, and the plain
inclusion of sq.h will suffice to build the program.

This feature is often used with algorithm tags. Suppose you have a function template, say encrypt or
compress, whose algorithmic details must be kept confidential. Template parameter T represents an option
from a small set (say T=fast, normal, best); obviously, users of the algorithm are not supposed to add
their own options, so you can force the instantiation of a small number of instances—encrypt<fast>,
encrypt<normal>, and encrypt<best>—and distribute just a header and a binary file.

Note C+-+0x adds to the language the external instantiation of templates. If the keyword extern is used
before template, the compiler will skip instantiation and the linker will borrow the template body from another
translation unit.

See also Section 1.6.1 below.
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1.2. Specialization and Argument Deduction

By definition, we say that a name is at namespace level, at class level, or at body level when the name appears
between the curly brackets of a namespace, class, or function body, as the following example shows:

class X // here, X is at namespace level
{
public:
typedef double value_type; // value_type is at class level
X(const X& y) // both X and y are at class level
{
}
void () // f is at class level
{
int z = 0; //  body level
struct LOCAL {}; // LOCAL is a local class
}
};

Function templates—member or non-member—can automatically deduce the template argument
looking at their argument list. Roughly speaking,'” the compiler will pick the most specialized function that
matches the arguments. An exact match, if feasible, is always preferred, but a conversion can occur.

A function F is more specialized than G if you can replace any call to F with a call to G (on the same
arguments), but not vice versa. In addition, a non-template function is considered more specialized than a
template with the same name.

Sometimes overload and specialization look very similar:

template <typename scalar t>
inline scalar_t sq(const scalar t& x); // (1) function template

inline double sq(const double& x); // (2) overload

template <>
inline int sq(const int& x); // (3) specialization of 1

But they are not identical; consider the following counter-example:

inline double sq(float x); // ok, overloaded sq may

// have different signature
template <> // error: invalid specialization
inline int sq(const int x); // it must have the same signature

"The exact rules are documented and explained in [2]. You’re invited to refer to this book for a detailed explanation of
what’s summarized here in a few paragraphs.
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The basic difference between overload and specialization is that a function template acts as a single
entity, regardless of how many specializations it has. For example, the call sq(y) just after (3) would force
the compiler to select between entities (1) and (2). If y is double, then (2) is preferred, because it’s a normal
function; otherwise, (1) is instantiated based on the type of y: only at this point, if y happens to be int, the
compiler notices that sq has a specialization and picks (3).

Note that two different templates may overload:

template <typename T>
void f(const T& x)
{

}

std::cout << "I am f(reference)";

or:

template <typename T>
void f(const T* x)

{
}

std::cout << "I am f(pointer)";

On the other hand, writing a specialization when overloaded templates are present may require you to
specify explicitly the parameters:

template <typename T> void f(T) {}
template <typename T> void f(T*) {}

template <>
void f(int*) // ambiguous: may be the first f with T=int*
{} // or the second with T=int

template <>
void f<int>(int*) // ok
(}

Remember that template specialization is legal only at the namespace level (even if most compilers will
tolerate it anyway):

class mathematics

{
template <typename scalar_t>
inline scalar t sq(const scalar t& x) { ... }; // template member function
template <>
inline int sq(const int& x) { ... }; // illegal specialization!
};

The standard way is to call a global function template from inside the class:
// global function template: outside

template <typename scalar_t>
inline scalar t gsq(const scalar t& x) { ... };
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// specialization: outside
template <>
inline int gsq(const int& x) { ... };

class mathematics

{

// template member function
template <typename scalar_t>
inline scalar t sq(const scalar t8& x)

{

return gsq(x);
b

Sometimes you may need to specify explicitly the template parameters because they are unrelated to
function arguments (in fact, they are called non-deducible):

class cre32 { ... };
class adler { ... };

template <typename algorithm_t>
size t hash_using(const char* x)

{
/...

}
size_t j = hash_using<crc32>("this is the string to be hashed");

In this case, you must put non-deducible types and arguments first, so the compiler can work out all the
remaining:

template <typename algorithm_t, typename string t>
int hash_using(const string t& x);

std::string arg("hash me, please");
int j = hash_using<crc32>(arg); // ok: algorithm t is crc32
// and string t is std::string

Argument deduction obviously holds only for function templates, not for class templates.
It's generally a bad idea to supply an argument explicitly, instead of relying on deduction, except in
some special cases, described next.

e When necessary for disambiguation:

template <typename T>
T max(const T& a, const T& b)

{...1}

int a = 7;
long b = 6;
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long m1 = max(a, b); // error: ambiguous, T can be int or long
long m2 = max<long>(a, b); // ok: T is long

When a type is non-deducible':

template <typename T>
T get_random()
{...}

double r = get_random<double>();
When you want a function template to look similar to a built-in C++ cast operator:

template <typename X, typename T>
X sabotage cast(T* p)

{
}

return reinterpret cast<X>(p+1);
std::string s = "don't try this at home";
double* p = sabotage_cast<double*>(8s);
To perform simultaneously a cast and a function template invocation:
double y = sq<int>(6.28) // casts 6.28 to int, then squares the value

When an algorithm has an argument whose default value is template-dependent
(usually a functor)':

template <typename LESS_T>
void nonstd sort (..., LESS T cmp = LESS T())
{

}

/...
// call function with functor passed as template argument
nonstd sort< std::less<...> > (...);

// call function with functor passed as value argument
nonstd_sort (..., std::less<...>());

A template name (such as std: : vector) is different from the name of the class it generates (such as
std: :vector<int>). At the class level, they are equivalent:

template <typename T>
class something

{

13See the next section.
This example is taken from [2].
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public:
something() // ok: don't write something<T>

// at local level, 'something' alone is illegal

}

something(const something®& that); // ok: 'something&' stands for
// "something<T>&'

template <typename other_t>
something(const something<other t>& that)
{
}

};

As arule, the word something alone, without angle brackets, represents a template, which is a
well-defined entity of its own. In C++, there are template-template parameters. You can declare a template
whose parameters are not just types, but are class templates that match a given pattern:

template <template <typename T> class X>
class example

{

X<int> x1_;
X<double> x2_;

};

typedef example<something> some_example; // ok: 'something' matches
Note that class and typename are not equivalent here:

template <template <typename T> typename X> // error

Class templates can be fully or partially specialized. After the general template, we list specialized
versions:

// in general T is not a pointer
template <typename T>
struct is_a_pointer_ type
{
static const int value = 1;

};

// 2: full specialization for void*
template <>
struct is_a pointer_ type<void*»>

{
};

static const int value = 2;
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// 3: partial specialization for all pointers
template <typename X>
struct is_a_pointer_type<X*»>

{
};

static const int value = 3;

int b1 = is_a_pointer_type<int*>::value; // uses 3 with X=int
int b2 = is_a_pointer_type<void*>::value; // uses 2
int b3 = is_a pointer type<float>::value; // uses the general template

Partial specialization can be recursive:

template <typename X>
struct is_a pointer type<const X>

{
};

static const int value = is_a pointer type<X>::value;

The following example is known as the pointer paradox:
#include <iostream>

template <typename T>
void f(const T& x)

{
}

std::cout << "My arg is a reference";

template <typename T>
void f(const T* x)

{
}

std::cout << " My arg is a pointer";

In fact, the following code prints as expected:

const char* s = "text";
f(s);
f(3.14);

My arg is a pointer
My arg is a reference

Now write instead:

double p = 0;
£(8p);

You would expect to read pointer; instead you get a call to the first overload. The compiler is correct,
since type double* matches const T* with one trivial implicit conversion (namely, adding const-ness), but it
matches const T8& perfectly, setting T=double*.
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1.2.1. Deduction

Function templates can deduce their parameters, matching argument types with their signature:

template <typename T>
struct arg;

template <typename T>
void f(arg<T>);

template <typename X>
void g(arg<const X>);

arg<int*> a;

f(a); // will deduce T = int*
arg<const int> b;

f(b); // will deduce T = const int
g(b); // will deduce X = int

Deduction also covers non-type arguments:

template < int I>
struct arg;

template <int I>
arg<I+1> f(arg<I>);

arg<3> a;
f(a); // will deduce I=3 and thus return arg<4>

However, remember that deduction is done via “pattern matching” and the compiler is not required to
perform any kind of algebra®:

// this template is formally valid, but deduction will never succeed...
template <int I>
arg<I> f(arg<I+1y)

/] ...
}
arg<3> a;
f(a); // ...the compiler will not solve the equation I+1==3
arg<2+1> b;
f(b); // ...error again

No matching function for call to 'f'
Candidate template ignored: couldn't infer template argument 'I'

2In particular, the compiler is not required to notice that void f(arg<2*N>) and void f(arg<N+N>) are the same
template function, and such a double definition would make a program ill-formed. In practice, however, most compilers
will recognize an ambiguity and emit an appropriate error.
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On the other hand, if a type is contained in a class template, then its context (the parameters of the
outer class) cannot be deduced:

template <typename T>
void f(typename std::vector<T>::iterator);

std: :vector<double> v;
f(v.begin()); // error: cannot deduce T

Note that this error does not depend on the particular invocation. This kind of deduction is logically not
possible; T may not be unique.

template <typename T>
struct A
{ typedef double type; };

// if A<X>::type is double, X could be anything
A dummy argument can be added to enforce consistency:

template <typename T>
void f(std::vector<T>&, typename std::vector<T>::iterator);

The compiler will deduce T from the first argument and then verify that the second argument has the
correct type.
You could also supply explicitly a value for T when calling the function:

template <typename T>
void f(typename std::vector<T>::iterator);

std::vector<double> w;
f<double>(w.begin());

Experience shows that it’s better to minimize the use of function templates with non-deduced
parameters. Automatic deduction usually gives better error messages and easier function lookup; the
following section lists some common cases.

First, when a function is invoked with template syntax, the compiler does not necessarily look for a
template. This can produce obscure error messages.

struct base

{

template <int I, typename X> // template, where I is non-deduced
void foo(X, X)
{
}
1
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struct derived : public base

void foo(int i) // not a template
{

foo<314>(i, i); // line #13
}

};

1>error: 'derived::foo': function call missing argument list; use '&derived::foo' to create
a pointer to member

1>error: '<' : no conversion from 'int' to 'void (_ cdecl derived::* )(int)'

1>  There are no conversions from integral values to pointer-to-member values

1>error: '<' : illegal, left operand has type 'void (__cdecl derived::* )(int)'

1>warning: '>' : unsafe use of type 'bool' in operation

1>warning: '>' : operator has no effect; expected operator with side-effect

When the compiler meets T00<314>, it looks for any foo. The first match, within derived, is void
foo(int) and lookup stops. Hence, f00<314> is misinterpreted as (ordinary function name) (less) (314)
(greater). The code should explicitly specify base: : foo.

Second, if name lookup succeeds with multiple results, the explicit parameters constrain the overload
resolution:

template <typename T>
void f();

template <int N>
void f();

f<double>(); // invokes the first f, as "double" does not match "int N"
<7>0); // invokes the second f

However, this can cause unexpected trouble, because some overloads?' may be silently ignored:

template <typename T>
void g(T x);

double pi = 3.14;
g<double>(pi); // ok, calls g<double>

template <typename T>
void h(T x);

void h(double x);

double pi = 3.14;
h<double>(pi); // unexpected: still calls the first h

Z'Template functions cannot be partially specialized, but only overloaded.
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Here’s another example:

template <int I>
class X {};

template <int I, typename T>
void g(X<I>, T x);

template <typename T> // a special 'g' for X<0>
void g(X<0>, T x); // however, this is g<T>, not g<o,T>

double pi = 3.14;

X<0> Xx;
g<0>(x, pi); // calls the first g
g(x, pi); // calls the second g

Last but not least, old compilers used to introduce subtle linker errors (such as calling the wrong
function).

1.2.2. Specializations

Template specializations are valid only at the namespace level**:

struct X

{
template <typename T>
class Y

{}

template <> // illegal, but usually tolerated by compilers
class Y<double>
};

};

template <> // legal
class X::Y<double>

{
};

The compiler will start using the specialized version only after it has compiled it:

template <typename scalar_t>
scalar_t sq(const scalar t& x)

{ ...}

Z2Unfortunately, some popular compilers tolerate this.
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struct A

{
A(int i = 3)
{

int j = sq(i); // the compiler will pick the generic template
b

template <>
int sq(const int& x) // this specialization comes too late, compiler gives error

{ ...}

However, the compiler will give an error in such a situation (stating that specialization comes after
instantiation). Incidentally, it can happen that a generic class template explicitly “mentions” a special case, as
a parameter in some member function. The following code in fact causes the aforementioned compiler error.

template <typename T>
struct C
{
C(Ccvoidy)
{
}
};

template <>
struct C<void>

{
};

The correct version uses a forward declaration:

template <typename T>
struct C;

template <>
struct C<void>

{
};

template <typename T>
struct C

C(C<void>)
{

}
};
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Note that you can partially specialize (and you'll do it often) using integer template parameters:

// general template
template <typename T, int N>
class MyClass

{.o )

// partial specialization (1) for any T with N=0
template <typename T>
class MyClass<T, 0>

{.o )

// partial specialization (2) for pointers, any N
template <typename T, int N>

class MyClass<T*, N>

{..- 5

However, this approach can introduce ambiguities:

MyClass<void*, 0> m; // compiler error:
// should it use specialization (1) or (2)?

Usually you must explicitly list all the “combinations” If you specialize X<T1, T2> for all T1 € A and for
all T2 € B, then you must also specialize explicitly X<T1,T2> € AxB.

// partial specialization (3) for pointers with N=0

template <typename T>
class MyClass<T*, 0>

{.o )

It’s illegal to write a partial specialization when there are dependencies between template parameters
in the general template.

// parameters (1) and (2) are dependent in the general template

template <typename int_t, int_t N>
class AnotherClass

{}

template <typename T>
class AnotherClass<T, 0>

{

error: type 'int t' of template argument '0' depends on template parameter(s)
Only a full specialization is allowed:
template <>

class AnotherClass<int, 0>

{}
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A class template specialization may be completely unrelated to the general template. It need not have
the same members, and member functions can have different signatures.

While a gratuitous interface change is a symptom of bad style (as it inhibits any generic manipulation of
the objects), the freedom can be usually exploited:

template <typename T, int N>
struct base_with_array

{
T data_[N];
void fill(const T& x)
{
std::fill n(data_, N, x);
}
};

template <typename T>
struct base with_array<T, 0>

{
void fill(const T& x)
{
}

};

template <typename T, size t N>
class cached_vector : private base with_array<T, N>

{
/...
public:
cached_vector()
this->fill(T());
}
};

1.2.3. Inner Class Templates

A class template can be a member of another template. One of the key points is syntax; the inner class has its
own set of parameters, but it knows all the parameters of the outer class.

template <typename T>
class outer
{
public:
template <typename X>
class inner

{
};

// use freely both X and T
};
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The syntax for accessing inner is outer<T>: :inner<X> if T is a well-defined type; if T is a template
parameter, you have to write outer<T>: :template inner<X>:

outer<int>::inner<double> a; // correct

template <typename Y>

void f()

{
outer<Y>::inner<double> x1; // error
outer<Y>::template inner<double> x1; // correct

}

It's usually difficult or impossible to specialize inner class templates. Specializations should be listed
outside of outer, so as a rule they require two template <...> clauses, the former for T (outer), the latter for
X (inner).

Primary template: it defines an inner<X> which we’ll template <typename T>
call informally inner_1. class outer
{

template <typename X>
class inner

{
};
};
Full specializations of outer may contain an inner<X>, template <>
which to the compiler is completely unrelated to class outer<int>
inner_1; we’ll call this inner_2. {
template <typename X>
class inner
{
// ok
};
};
inner_2 can be specialized: template <>
class outer<int>::inner<float>
{
// ok
};

(continued)
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specialization of inner_1 for fixed T (=double) and template <>
generic X. template <typename X>
class outer<double>::inner
{
// ok
};
specialization of inner_1 for fixed T (=double) and template <>
fixed X (=char). template <>
class outer<double>::inner<char>
{
// ok
};
It’s illegal to specialize inner_1 for fixed X with any T. template <typename T>
template <>
class outer<T>::inner<float>
{
// error!
};
Note that, even if X is the same, inner_1<X> and inner_2<X> are completely different types:
template <typename T>
struct outer
{
template <typename X> struct inner {};
};
template <>
struct outer<int>
{
template <typename X> struct inner {};
};
int main()
{
outer<double>::inner<void> I1;
outer<int>::inner<void> I2;
I1 = I2;
}
error: binary '=' : no operator found which takes a right-hand operand of type
'outer<inty::inner<X>' (or there is no acceptable conversion)
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It's impossible to write a function that, say, tests any two "inner"s for equality, because given an
instance of inner<X>, the compiler will not deduce its outer<T>.

template <typename T, typename X>
bool f(outer<T>::inner<X>); // error: T cannot be deduced?

The actual type of variable 11 is not simply inner<void>, but outer<double>: :inner<void>. If for any X,
all innexr<X> should have the same type, then inner must be promoted to a global template. If it were a plain
class, it would yield simply:

struct basic_inner

{
};

template <typename T>
struct outer

{

typedef basic_inner inner;
5
template <>
struct outer<int>

typedef basic_inner inner;

};
If inner does not depend on T, you could write*:

template <typename X>
struct basic_inner

{

};

template <typename T>
struct outer

{
template <typename X>
struct inner : public basic_inner<X>
{
inner& operator=(const basic_inner<X>& that)
{
static_cast<basic_inner<X>&>(*this) = that;
return *this;
}
b
b

BConsider the simpler case when outer<T> is a container, inner1 is an “iterator,” inner2 is “const_iterator,” and
they both derive from an external common base, basic_outer iterator.
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template <>
struct outer<int>

{
template <typename X>
struct inner : public basic_inner<X>
{
inner& operator=(const basic_inner<X>& that)
{
static_cast<basic_inner<X>&>(*this) = that;
return *this;
}
b
b

Otherwise, you have to design basic_inner’s template operators that support mixed operations:

template <typename X, typename T>

struct basic_inner

{
template <typename T2>
basic_inner& operator=(const basic_inner<X, T2>&)
{7* ... %}

b

template <typename T>
struct outer
{
template <typename X>
struct inner : public basic_inner<X, T>

{
template <typename ANOTHER T>
innerd operator=(const basic_inner<X, ANOTHER_T>& that)
{
static_cast<basic_inner<X, T>&>(*this) = that;
return *this;
}
};

};

template <>
struct outer<int>
{
template <typename X>
struct inner : public basic_inner<X, int>

{
template <typename ANOTHER T>
innerd operator=(const basic_inner<X, ANOTHER_T>& that)
static_cast<basic_inner<X, int>&>(*this) = that;
return *this;
}
};

};
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int main()

{
outer<double>: :inner<void> I1;
outer<int>::inner<void> I2;

I1 = I2; // ok: it ends up calling basic_inner::operator=

}

This is known in the C++ community as the SCARY initialization.**

SCARY stands for “Seemingly erroneous (constrained by conflicting template parameters), but actually
work with the right implementation”. Put simply, two inner types that should be different (specifically,
outer<T1>::inner and outer<T2>::inner) actually share the implementation, which means it’s possible to
treat them uniformly as “two inners”.

As you've seen for function templates, you should never instantiate the master template before the
compiler has met all the specializations. If you use only full specializations, the compiler will recognize a
problem and stop. Partial specializations that come too late will be just ignored:

struct A

{
template <typename X, typename Y>

struct B
{

};

void ()
{

void do_it() {} // line #1

B<int,int> b; // line #2: the compiler instantiates B«<int,int>
b.do_it();
}
};

template <typename X>
struct A::B<X, X> // this should be a specialization of B<X,X>
// but it comes too late for B<int,int>

{
void do_it() {} // line #3
};
A a;
a.f(); // calls do_it on line #1

*#The extra “Y” is little more than poetic license. Refer to the excellent article from Danny Kalev at
http://www.informit.com/guides/content.aspx?g=cplusplus&seqNum=454.
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Furthermore, adding a full specialization of B will trigger a compiler error:

template <>
struct A::B<int, int>

{ void do_it() {}
};
error: explicit specialization; 'A::B<X,Y>' has already been instantiated
with
[
X=int,
Y=int

]

The obvious solution is to move the function bodies after the specializations of A: :B.

1.3. Style Conventions

Style is the way code is written; this definition is so vague that it includes many different aspects of
programming, from language techniques to the position of curly braces.

All the C++ objects in namespace std exhibit a common style, which makes the library more coherent.

For example, all names are lowercase® and multi-word names use underscores. Containers have a
member function bool T::empty() const that tests if the object is empty and a void T::clear() that
makes the container empty. These are elements of style.

A fictional STL written in pure C would possibly have a global function clear, overloaded for all
possible containers. Writing code such as cont.clear() or clear(&cont) has the same net effect on cont,
and might even generate the same binary file, but granted, it has a very different style.

All these aspects are important during code reviews. If style agrees with the reader forma mentis, the
code will look natural and clear, and maintenance will be easier.

Some aspects of style are indeed less important, because they can be easily adjusted. For example,
using beautifiers—each worker in a team might have a pre-configured beautifier on his machine, integrated
with the code editor, which reformats braces, spaces, and newlines at a glance.

Note JEdit (see http://www.jedit.org) is a free multiplatform code editor that supports plugins.

AStyle (Artistic Style) is a command-line open source code beautifier (see http://astyle.sourceforge.net)
whose preferences include the most common formatting option (see Figure 1-1).

Except std: :numeric_limits<T>::quiet_NaN().
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Optinns: Plugins: AStyle Beautifier

=-Plugins

+-JDiff
QuickMotepad

Sidekick

Bracket format mode:

Ereak 'else if"

Break before closing headers:
Break muttiple statement lines:
Break one-line blocks:
Enforce Tabs:

Fill empty lines:

Format On Save:

Inclent blocks:

Indent brackets:

Indent case statements:
Indent classes:

Incent labels:

Indent namespaces:

Indent preprocessor lines:
Indent switch blocks:

Max. multi-line statement indent:
Min. multi-line statement inclent:
Pad operators:

Pad parenthesis:

Separate 'else'fcatch’ blocks:
Separate unrelated blocks:

Fase =]
Fase <]

ines.

TR
(o |

Cancel I Apply I

|/\h:ther unrelated blocks of code should be separated with empty

Figure 1-1. The AStyle plugin for JEdit

Most reasonable style conventions are equivalent; it’s important to pick one and try to be consistent for

some time.?

Ideally, if code is written according to some common behavior conventions, a reader may deduce how it

works based on the style, without looking into the details.

*Even source code has a lifecycle and eventually it’s going to “die,” i.e., it will be rewritten from scratch. However the
more robust the design, the longer its life will be, and style is part of the design. See also [5].
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For example:

void unknown f(multidimensional vector<double, 3, 4>& M)
{
if (!M.empty())
throw std::runtime_error("failure");

Most readers will describe this fragment as, “If the multidimensional vector is not empty, then throw an
exception” However, nothing in the code states that this is the intended behavior except style.

In fact, multidimensional_vector: :empty could in principle make the container empty and return a
non-zero error code if it does not succeed.?”

The naming convention is a big component of style.

The following example lists some ideas for how to convey extra meaning when building the name of an
object. Itis not intended as a set of axioms, and in particular no item is worse/better than its opposite, but
it's a detailed example of how to assemble a style that can help you diagnose and solve problems.

Remember that the C++ standard prescribes that some identifiers are “reserved to the implementation
for any use” and some are reserved for names in the global or std namespace. That means user names
should never:

e  Begin with an underscore (in particular, followed by a capital letter)
e Contain a double underscore

e  Contain a dollar sign (it’s tolerated by some compilers, but it’s not portable)

1.3.1. Comments

“Many good programming practices boil down to preparing for change or expressing
intent. Novices emphasize the former, experts the latter.”

—John D. Cook

Remember to add lots of comments to your code. If this is valid for any programming language, it is
especially true for TMP techniques, which can easily be misunderstood. The correct behavior of TMP is
based on bizarre entities, like empty classes, void functions, and strange language constructs that look like
errors. It’s really hard for the author of the code to remember why and how these techniques work, and even
harder for other people who have to maintain the code.

1.3.2. Macros

Macros play a special role in TMP. Some programmers consider them a necessary evil and indeed they are
necessary, but it’s not obvious they are also evil.
Macros must:

e  Allow the reader to recognize them

e  Prevent name collisions

YAs discussed in [5], usually member function names should be actions. Thus empty should be a synonym for
make_empty and not for is_empty. However, STL convention is established and universally understood. When in doubt,
do as std: :vector does.
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The easiest way to satisfy both requirements is to choose a unique and sufficiently ugly common prefix
for all macros and play with lower/uppercase to give extra meaning to the name.

As an example, you could agree that all macros begin with MXT . If the macro is persistent, i.e. never
undefined, the prefix will be MXT. If the macro’s scope is limited (it’s defined and undefined later in the
same file), the prefix will be mXT_.

#ifndef MXT_filename_

#define MXT_filename_ // this is "exported" - let's name it MXT_*
#define mXT_MYVALUE 3 // this macro has limited "scope"

const int VALUE = mXT_MYVALUE; // let's name it mXT_*

#undef mXT_MYVALUE //

#endif //MXT_filename_
A lowercase prefix mxt is reserved to remap standard/system function names in different platforms:

#ifdef WIN32

#define mxt_native_dbl_isfinite _finite
#else

#define mxt_native dbl isfinite isfinite
#endif

For better code appearance, you could decide to replace some keywords with a macro:

#tdefine MXT NAMESPACE BEGIN(x) namespace x {
#define MXT_NAMESPACE_END(x) }

#define MXT_NAMESPACE _NULL BEGIN() namespace {
#define MXT_NAMESPACE_NULL_END() }

And/or enclose the namespace directives in an ASCII-art comment box:
1117777177717771777177117711777117711771177711717171771711717111771171771777
MXT_NAMESPACE_BEGIN(XT)
IITTILTT00TT77707707777007177777777777777777777771777777117171111777

It's useful to have some (integer) functions as a set of macros:

#tdefine MXT_M _MAX(a,b) ((a)<(b) ? (b) : (a))
#tdefine MXT_M_MIN(a,b) ((a)<(b) ? (a) : (b))
#define MXT_M_ABS(a) ((@)<o ? -(a) : (d))
#tdefine MXT M SQ(a) ((@)*(a))

The infix M _stands for “macro” and these will be useful when working with templates:

template <int N>
struct SomeClass

{
};

static const int value = MXT_M_SQ(N)/MXT_M_MAX(N, 1);
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Note The C++11 Standard introduced a new keyword: constexpr.?

A function-declared constexpr has no side effects and it always returns the same result, deterministically, from
the same arguments. In particular, when such a function is called with compile-time constant arguments, its
result will also be a compile-time constant:

constexpr int sq(int n) { return n*n; }
constexpr int max(int a, int b)
{ return a<b ? b : a; }

template <int N>
struct SomeClass

{

static const int value = sq(N)/max(N, 1);

Finally, consider a special class of macros. A macro directive is a macro whose usage logically takes an
entire line of code.

In other words, the difference between an ordinary macro and a directive is that the latter cannot
coexist with anything on the same line (except possibly its arguments):

// directive
MXT_NULL_NAMESPACE_BEGIN ( )

#define MXT_PI 3.1415926535897932384626433832795029
// the use of MXT_PI does not take the whole line
// so it is not a directive.

const double x = std::cos(MXT PI);

// directive
MXT_NULL_NAMESPACE_END()

The definition of a macro directive, in general, should not end with a semicolon, so the user is forced to
close the line manually (when appropriate), as if it were a standard function call.

// note: no trailing ';'

#tdefine MXT_INT I(k) int 1 = (k)
int main()
MXT_INT _I(0); // put ';' here
return 0;
}

#Seehttp://en.cppreference.com/w/cpp/language/constexpr for the exact requirements and specifications.
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Here is a more complex example. Note that the trailing semicolon is a very strong style point, so it's used
even in places where, in ordinary code, a semicolon would be unnatural.

#define mXT_C(NAME,VALUE)

static scalar_t NAME()

{
static const scalar_t NAME## = (VALUE);
return NAME## ;

~ s

}

template <typename scalar_t>
struct constant

{

// the final ';' at class level is legal, though uncommon
mXT_C(Pi, acos(scalar t(-1)));
mXT_C(TwoPi, 2*acos(scalar t(-1)));
mXT_C(PiHalf, acos(scalar t(0)));
mXT_C(PiQrtr, atan(scalar t(1)));
mXT_C(Log2, log(scalar t(2)));
};
#undef mXT_C
double x = constant<double>::TwoPi();

However, special care is required when invoking macro directives, which expand to a sequence of
instructions:

#define MXT _SORT2(a,b) if ((b)<(a)) swap((a), (b))

#tdefine MXT _SORT3(a,b,c) \
MXT_SORT2((a),(b)); MXT_SORT2((a),(c)); MXT _SORT2((b),(c))

inta=5,b=2, c=3;
MXT_SORT3(a,b,c); // apparently ok: now a=2, b=3, c=5

Nevertheless, this code is broken:
inta=5,b=2, c=3;

if (a>10)
MXT_SORT3(a,b,c); // problem here!

Since it expands to:

if (a>10)
MXT_SORT2(a,b);

MXT_SORT2(a,c);
MXT_SORT2(b,c);
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More surprising is that the following fragment is clear, but incorrect:

if (a>10)
MXT_SORT2(a,b);

else
MXT_SORT2(c,d);

Because of the way if-then-else associates in C++, the macro expands as

if (a»10)
if (a<b)
swap(a,b);
else
if (c<d)
swap(c,d);

The indentation does not resemble the way code is executed; the block actually groups as

if (a»10)
if (a<b)
swap(a,b);
else if (c<d)
swap(c,d);
}

To solve the problem, you can use the do {...} while (false) idiom:

#define MXT_SORT3(a,b,c) \
do { MXT_SORTZ((a),(b)); MXT_SORTZ((a),(C)); MXT_SORTZ((b),(C)); J 3N
while (false)

This allows both to put “local code” inside a block and to terminate the directive with a semicolon.
Remember that this will not save you from an error like:

MXT_SORT3(a, b++, c); // error: b will be incremented more than once

This is why we insist that macros are immediately recognizable by a “sufficiently ugly” prefix.
To tackle the “if” macro problem, write a do-nothing else branch:

#define MXT _SORT2(a,b) if ((b)<(a)) swap((a),(b)); else

Now MXT_SORT2(a,b); expandsto if (...) swap(...); else; where the last semicolon is the empty
statement. Even better®:

#tdefine MXT _SORT2(a,b) if (!((b)<(a))) {} else swap((a), (b))

PThe difference between the last two implementations is largely how they react to an invalid syntax. As an exercise,
consider some malicious code like MXT_SORT2(x, y) if (true) throw an_exception;.
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As a final remark, never make a direct use of types that come from macros. Always introduce a typedef.
If the macro is not carefully written, the association between * and const may give unexpected results.
Consider:

Tx=0;
const T* p = &x; // looks correct

Unless:

#define T char*

Instead, consider intercepting the macro:

typedef T MyType; // ok, even if T is a macro.
// #undef T if you like
MyType x = 0; //

const MyType* p = 8x; // now it works.

1.3.3. Symbols

Most C++ projects contain several kinds of symbols (classes, functions, constants, and so on). A rough
division line can be drawn between system/framework utilities, which are completely abstract and generic,
and project specific entities, which contain specific logic and are not expected to be reused elsewhere.

This simple classification may turn out important for (human) debuggers. If any piece of code is
considered a “system utility,” then it’s implicitly trusted and it may usually be “stepped over” during debug.
On the other hand, project-specific code is possibly less tested and should be “stepped in”.

We can agree that stable symbols should follow the STL naming conventions (lowercase, underscores,
such as stable_sort, hash_map, and so on). This often will be the case for class templates.

The rest should be camel case (the Java convention is fine).

(framework header) sq.hpp

template <typename scalar t>
scalar_t sq(const scalar t& x) { return x*x; }; // 'system-level' function - lowercase

(project file) custom_scalar.h
struct MySpecialScalarType // 'project-level' class - mixed case

/...
};

(project file) main.cpp

int main()

{
MySpecialScalarType x = 3.14;
MySpecialScalarType y = sq(x);

return 0;

}
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A functor is an instance of an object that implements at least one operator (), so the name of the
instance behaves like a function.*

A functor is said to be modifying if it takes arguments by non-const references.

A predicate is a non-modifying functor that takes all arguments of the same type and returns a boolean.
For example, less is a binary predicate:

template <typename T>
struct less

{
bool operator()(const T8, const T&) const;
};

Most functors contain a typedef for the return type of operator (), usually named result_type or
value_type™

Functors are usually stateless or they carry few data members, so they are built on the fly. Occasionally,
you may need a meaningful name for an instance, and this may not be so easy, because if the functor has a
limited “scope,” the only meaningful name has already been given to the class.

calendar myCal;
std::find_if(year.begin(), year.end(), is_holiday(myCal));

// is_holiday is a class
// how do we name an instance?

You can use one of the following:
e  Use alowercase functor name and convert it to uppercase for the instance:
calendar myCal;

is_holiday IS HOLIDAY(myCal);
std::find_if(year.begin(), year.end(), IS HOLIDAY);

e  Use alowercase functor name with a prefix/postfix and remove it in the instance:
calendar myCal;

is _holiday t is holiday(myCal);
std::find_if(year.begin(), year.end(), is_holiday);

3The reader might want to review the simple example early in this chapter.
See Section 6.2.1.
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1.3.4. Generality

The best way to improve generality is to reuse standard classes, such as std: :pair.

This brings in well-tested code and increases interoperability; however, it may often hide some specific
logic, for example the meaning of pair: :first and pair: : second may not be obvious at first sight. See the
following paradigmatic example:

struct id_value
{
int id;
double value;
};
id value FindIDAndValue(...);
This may be replaced by:
std::pair<int, double> FindIDAndValue(...)

However, the caller of the first function can write p. id and p.value, which is easier to read than
p.first and p.second. You may want to provide a less generic way to access pair members:

° Macros
#define id first // bad idea?
#define value second // bad idea?
#define id(P) P.first // slightly better
#tdefine value(P) P.second // slightly better

e  Global functions (these are called accessors; see Section 6.2.1)

inline int& id(std::pair<int, double>& P)
{ return P.first; }

inline int id(const std::pair<int, double>& P)
{ return P.first; }

e  Global pointer-to-members
typedef std::pair<int, double> id value;

int id_value::*ID = &id_value::first;
double id_value::*VALUE = &id_value::second;

// later
std::pair<int, double> p;

p.*ID = -5;
p.*VALUE = 3.14;
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To make ID and VALUE constants, the syntax is:

int id value::* const ID = &id value::first;

1.3.5. Template Parameters

A fairly universally accepted convention is to reserve UPPERCASE names for non-type template parameters.
This could cause some name conflict with macros. It’s not always necessary to give a name to template
parameters (as with function arguments), so when it’s feasible, you'd better remove the name entirely:

// the following line is likely to give strange errors
// since some compilers define BIGENDIAN as a macro!

template <typename T, bool BIGENDIAN = false>
class SomeClass

{
};

template <typename T>
class SomeClass<T, true>

{
};

A safer declaration would be®:

template <typename T, bool = false>
class SomeClass

Type parameters are usually denoted by a single uppercase letter—usually T (or T1, T2...) if type can be
indeed anything.*®* A and R are also traditionally used for parameters that match arguments and results:

int foo(double x) { return 5+x; }
template <typename R, typename A>
inline R apply(R (*F)(A), A arg)
{

return F(arg);

}

template <typename R, typename A1, typename A2>
inline R apply(R (*F)(A1, A2), A1 argl, A2 arg2)

return F(argl, arg2);

}

double x = apply(&foo 3.14);

32Some compilers, such as MSVC71, used to have problems with unnamed parameters; refer to paragraph 11.3.3 for a
detailed example.

3Some authors reserve the keyword typename for this purpose. In other words, they declare template <typename T>
to mean that T is “any type” and template <class T> to suggest that T is indeed a class as opposed to a native type.
However, this distinction is rather artificial.
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Otherwise, you might want to use a (meaningful) lowercase name ending with _t (for example, int_t,
scalar_t, object_t, any_t, or that_t).

template <typename T, int N>
class do_nothing

{
};

template <typename int_t> // int_t should behave as an integer type**
struct is_unsigned

{
};

static const bool value = ...;

The suffix _t, which in C originally means typedef, is also widely used for (private) typedefs standing
for template instances:

template <typename scalar_t>
class SomeContainer
{
// informally means:
// within this class, a pair always denotes a pair of scalars

private:
typedef std::pair<scalar_t, scalar_t> pair_t;

)

On the other hand, a public typedef name usually is composed of lowercase regular English words
(such as iterator_category). In that case, _type is preferred:

template <typename scalar_ t>
class SomeContainer
{
public:
typedef scalar_t result_type;
b

1.3.6. Metafunctions

We often meet stateless class templates whose members are only enumerations (as a rule, anonymous),
static constants, types (typedefs or nested classes), and static member functions.

Generalizing Section 1.1, we consider this template a metafunction that maps its tuple of parameters to
a class, which is seen as a set of results (namely, its members).

3#Note that this is not a formal requirement; it’s just a name! The name reflects how we think the type should be; later we
will enforce this, if necessary.
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template <typename T, int N>
struct F

{
typedef T* pointer_type;
typedef T& reference type;

static const size t value = sizeof(T)*N;

};

The metafunction F maps a pair of arguments to a triple of results:

(T,N) >  (pointer_type, reference_type, value)
{type}x{int} >  {type}x{type}x{size t}

TEMPLATES

Most metafunctions return either a single type, conventionally named type, or a single numeric

constant (an integer or an enumeration), conventionally named value.*

template <typename T>
struct largest precision_type;

template <>
struct largest precision_type<float>

typedef double type;
template <>
struct largest precision_type<double>

typedef double type;
};

template <>
struct largest precision_type<int>

{
typedef long type;
};

Similarly:

template <unsigned int N>
struct two_to

{

static const unsigned int value = (1<«<N);

};

3The mathematically inclined reader should consider the latter as a special case of the former. The constant 5’ can be
replaced by a type named five or static_value<int, 5>. This leads to greater generality. See [3] for more information.
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template <unsigned int N>
struct another two to

{
enum { value = (1<<N) };
b
unsigned int i = two_to<55::value; // invocation

largest_precision<inty::type j = i + 100; // invocation
Historically, the first metafunctions were written using enums:

template <size t A>
struct is_prime

{
};

template <>
struct is_prime<2>

{
};

template <>
struct is_prime<3>

{
};
/...

enum { value = 0 };

enum { value = 1 };

enum { value = 1 };

The main reason was that compilers were unable to deal with static const integers (including bool).
The advantage of using an enum over a static constant is that the compiler will never reserve storage space for
the constant, as the computation is either static or it fails.

Conversely, a static constant integer could be “misused” as a normal integer, for example, taking its
address (an operation that the compiler will disallow on enums).

Note According to the classic C++ standard, the use of a static constant as a normal integer is illegal
(unless the constant is re-declared in the . cpp file, as any other static data member of a class).
However, most compilers allow it, as long as the code does not try to take the address of the constant or bind it
to a const reference. The requirement was removed in modern C++.

Furthermore, the language allows declaring a static integer constant (at function scope, not at class scope)
that is dynamically initialized, and so not a compile-time constant:

static const int x = INT_MAX; // static
static const int y = std::numeric_limits<int>::max(); // dynamic
static const int z = rand(); // dynamic
double dataly]; // error
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In practice, an enumis usually equivalent to a small integer. enums are in general implemented as signed
int, unless their value is too large. The most important difference is that you cannot bind an unnamed enum
to a template parameter without an explicit cast:

double data[10];
std::fill n(data, is_prime<3>::value, 3.14); // may give error!

The previous code is non-portable, because std: : fill_n may be defined.

template <..., typename integer t, ...>
void fill n(..., integer t I, ...)
{

++I; // whatever...

--I; // whatever...

}

error C2675: unary '--' : "does not define this operator or a conversion to a type
acceptable to the predefined operator
see reference to function template instantiation
'void std:: Fill n<double*, Diff, Ty>( OutIt, Diff,const Ty &,std:: Range checked iterator tag)'
being compiled
with
[
_Diff=,
_Ty=double *,
_OutIt=double **
]

In practice, an enum is fine to store a small integer (for example, the logarithm of an integer in base 2).
Because its type is not explicit, it should be avoided when dealing with potentially large or unsigned
constants. As a workaround for the std: : fill n call, just cast the enumeration to an appropriate integer:
std::fill n(..., int(is_prime<3>::value), ...); // now ok!

Frequently, metafunctions invoke helper classes (you'll see less trivial examples later):

template <int N>
struct ttnpi_helper

{
static const int value = (1<«<N);
};
template <int N>
struct two_to_plus_one
{
static const int value = ttnpil_helper<N>::value + 1;
};
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The moral equivalent of auxiliary variables are private members. From a TMP perspective, numeric
constants and type(def)s are equivalent compile-time entities.

template <int N>
struct two_to_plus_one

{
private:

static const int aux = (1<<N);
public:

static const int value = aux + 1;
};

The helper class is not private and not hidden,* but it should not be used, so its name is “uglified” with
_helper or _t (or both).

1.3.7. Namespaces and Using Declarations

Usually all “public” framework objects are grouped in a common namespace and “private” objects reside in
special nested namespaces.

namespace framework

{
namespace undocumented private
void handle with care()
{
/...
};
}
inline void public_documented function()
{
undocumented private::handle with care();
}
}

It's not a good idea to multiply the number of namespaces unnecessarily, since argument-dependent
name lookup may introduce subtle problems, and friend declarations between objects in different
namespaces are problematic or even impossible.

Usually, the core of a general-purpose metaprogramming framework is a set of headers (the extension
* . hpp is in fact used for pure C++ headers). Using-namespace declarations in header files are generally
considered bad practice:

my framework.hpp

using namespace std;

3Tt should reside in an anonymous namespace, but this does not make it inaccessible.
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main.cpp
#include "my_framework.hpp"

// main.cpp doesn't know, but it's now using namespace std

However, using-function declarations in header files are usually okay and even desirable (see the
do_something example later in the paragraph).

A special use for using-namespace declarations is header versioning.*”

This is a very short example:

namespace X

{
namespace version 1 0
{
void funci();
void func2();
}
namespace version 2 0
{
void funci();
void func2();
}

#ifdef USE_1 0

using namespace version_1 0;
#else

using namespace version_2 0;
#endif
}

Thus the clients using the header always refer to X: : func1.

Now we are going to describe in detail another case where using declarations can make a difference.

Function templates are often used to provide an “external interface,” which is a set of global functions
that allow algorithms to perform generic manipulations of objects*:

The author of a fictitious framework1 provides a function is_empty that works on a broad class of
containers and on C strings:

// frameworki.hpp
MXT_NAMESPACE_BEGIN(framework1)

template <typename T>
inline bool is_empty(T const& x)

{
}

return x.empty(); // line #1

3"The advantages are described extensively in Apple Technical Note TN2185; refer to the following page:
http://developer.apple.com/technotes/tn2007/tn2185.html.
3Such functions are denoted shims in [5].
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template <>
inline bool is_empty(const char* const& x)

{
}

MXT _NAMESPACE_END(framework1)

return x==0 || *x==0;

One of the good properties of this approach is the ease of extensibility. For any new type X, you can
provide a specialized is_empty that will have priority over the default implementation. However, consider
what happens if the function is explicitly qualified:

// framework2.hpp
#include "frameworkl.hpp"

MXT_NAMESPACE_BEGIN(framework2)

template <typename string t>
void do_something(string t constd x)

if (!frameworki::is_empty(x)) // line #2
{

/] ...
}

}
MXT_NAMESPACE_END(framework2)
#include "framework2.hpp"

namespace framework3

{
class EmptyString
};
bool is_empty(const EmptyStringd x)
return true;
}
}
int main()
{
framework3: :EmptyString s;
framework2: :do_something(s); // compiler error in line #1
}
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The user-supplied is_empty is ignored in line #2, since do_something explicitly takes is_empty from
namespace framework1. To fix this, you can either reopen namespace framework1 and specialize is_empty
there or modify do_something like this:

framework2.hpp
MXT_NAMESPACE_BEGIN(framework2)

using frameworki::is_empty;

template <typename string t>
void do_something(string t const& x)

{
if (lis_empty(x))
{

//...

}
};

Thus, you let argument-dependent lookup pick an available is_empty but ensure that framework1 can
always supply a default candidate (see also the discussion in Section 1.4.2).

1.4. Classic Patterns

When coding a framework/library, it’s typical to use and reuse a small set of names. For example, containers
can be expected to have a member function [ [integer type]] size() const thatreturns the number of
elements.

Adopting a uniform style increases interoperability of objects; for more details, see Chapter 6.All the
following paragraphs will try to describe the traditional meaning connected to a few common C++ names.

1.4.1. size_t and ptrdiff_t

In C++ there’s no unique standard and portable way to name large integers. Modern compilers will in
general pick the largest integers available for long and unsigned long. When you need a large and fast
integer quickly, the preferred choices are size_t (unsigned) and ptrdiff t (signed).

size_t, being the result of sizeof and the argument of operator new, is large enough to store any
amount of memory; ptrdiff_t represents the difference of two pointers. Since the length of an array of
chars is end-begin, as a rule of thumb they will have the same size.

Furthermore, in the flat C++ memory model, sizeof(size t) also will be the size of pointers, and these
integers will likely have the natural size in an architecture—say, 32 bits on a 32-bit processor and 64 bits on
a 64-bit processor. They will also be fast (the processor bus will perform atomic transport from registers to
memory).
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Given this class:

template <int N>
struct A
{

char data[N];
};

sizeof(A<N>) is atleast N, so it also follows that size t is not smaller than int.*

1.4.2. void T::swap(T&)

This function is expected to swap *this and the argument in constant time, without throwing an exception.
A practical definition of constant is “an amount of time depending only on T”.%

If T has a swap member function, the user expects it to be not worse than the traditional three-copy
swap (that is, X=A; A=B; B=X). Indeed, this is always possible, because a member function can invoke each
member’s own swap:

class TheClass

{
std: :vector<double> theVector_;
std::string theString_;
double theDouble ;

public:
void swap(TheClass& that);
{
theString .swap(that.theString );
theVector .swap(that.theVector );
std: :swap(theDouble , that.theDouble );
}
};

The only step that could take non-fixed time is swapping dynamic arrays element by element, but this
can be avoided by swapping the arrays as a whole.

The class std: :tr1::array<T,N> has a swap that calls std: : swap_range on an array of length N,
thus taking time proportional to N and depending on T. However, N is part of the type, so according to this
definition, it is constant time. Furthermore, if T is a swappable type (e.g., std: :string), swap_range will
perform much better than the three copy procedure, so the member swap is definitely an advantage.

¥If a is an array of T of length 2, then (char*)(&a[1])-(char*)(&a[0]) is a ptrdiff_t, which is at least as large as
sizeof(T). That means ptrdiff t is at least as large as int as well. This argument actually shows that every result of
sizeof can be stored in a ptrdiff_t. A generic size_t may not be stored in a ptrdiff_t, because sizeof is not
necessarily surjective—there may be a size_t value that is larger than every possible sizeof.

“For example, to create a copy of std: :string takes time proportional to the length of the string itself, so this depends
not only on the type, but also on the instance; alternatively, copying a double is a constant-time operation. Mathematically
speaking, the notion of “constant time” is not well defined in C++; the issue is too complex for a footnote, but we’ll sketch
the idea. An algorithm is 0(1) if its execution time is bounded by a constant K, for any possible input. If the number

of possible inputs is finite, even if it’s huge, the algorithm is automatically 0(1). For example, in C++ the sum of two

int is 0(1). In general, the C++ memory model has a finite addressable space (because all objects have a fixed size,

and an “address” is an object) and this implies that the number of possible inputs to some algorithms is finite. Quicksort
complexity is 0(N*1og(N)), but std: : sort may be formally considered 0(1), where—loosely speaking—the constant

K is the time required to sort the largest possible array.
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The first problem to address is how to swap objects of unspecified type T:

template <typename T>
class TheClass

{
T theObj_; // how do you swap two objects of type T?
void swap(TheClass<T>& that)
std: :swap(theObj_, that.theObj );
}
};

The explicit qualification std: : is an unnecessary constraint. You'd better introduce a using declaration,
as seen in Section 1.3.7:

using std::swap;

template <typename T>
class TheClass

{
T theObj_;
public:
void swap(TheClass<T>& that) // line #1
swap(theObj _, that.theObj ); // line #2
}
};

However, this results in a compiler error, because by the usual C++ name resolution rules, swap in line 2
is the swap defined in line 1, which does not take two arguments.
The solution, an idiom known as swap with ADL, is to introduce a global function with a different name:

using std::swap;

template <typename T>
inline void swap with ADL(T& a, T& b)

swap(a, b);

template <typename T>
class TheClass

{
T theObj_;
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public:
void swap(TheClass<T>& that)

{
swap_with_ ADL(theObj , that.theObj );

Due to lookup rules, swap_with_ADL forwards the call to either a swap function defined in the same
namespace as T (which hopefully is T’s own version), or to std: : swap if nothing else exists. Since there’s no
local member function with a similar name, lookup escapes class level.

The traditional argument for swap is T& however, it may make sense to provide more overloads. If an
object internally holds its data in a standard container of type X, it might be useful to provide void swap(X&),
with relaxed time-complexity expectations:

template <typename T>
class sorted_vector

{

std::vector<T> data_;

public:
void swap(sorted vector<T>& that)

{
}

void swap(std::vector<T>& that)

data_.swap(that.data );

data_.swap(that);
std::sort(data_.begin(), data_.end());
}
};

And even more*':

struct unchecked_type t {};
inline unchecked type t unchecked() { return unchecked type t(); }

template <typename T>
class sorted_vector

{
/...
void swap(std::vector<T>& that, unchecked type t (*)())
{
assert(is_sorted(that.begin(), that.end()));
data_.swap(that);
}
b

4“'Compare with Section 2.3.1.
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sorted_vector<double> x;
std: :vector<double> t;

load_numbers_into(x);
x.swap(t);

// now x is empty and t is sorted
// later...

x.swap(t, unchecked); // very fast

To sum up:

e  Explicitly qualify std: : swap with parameters of fixed native type (integers, pointers,
and so on) and standard containers (including string).

e  Write a using declaration for std: : swap and call an unqualified swap when
parameters have undefined type T in global functions.

e Callswap_with_ADL inside classes having a swap member function.

std: : swap grants the best implementation for swapping both native and std types.
swap is used in algorithms with move semantics:

void doSomething(X& result)

{
X temp;
// perform some operation on temp, then...
swap(temp, result);
}

and in implementing an exception-safe assignment operator in terms of the copy constructor:

class X

{

public:
X(const X&);
void swap(X8&);

“X0);

X8 operator=(const X& that)

{
X temp(that); // if an exception occurs here, *this is unchanged
temp.swap(*this); // no exception can occur here
return *this; // now temp is destroyed and releases resources

}

};
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If you perform an unconditional swap, the most efficient solution is to take the argument by value:

X& operator=(X that)
{
that.swap(*this);
return *this;

}

On the other hand, you might want to perform additional checks before invoking the copy constructor
by hand, even if it’s less efficient**:

X8 operator=(const X& that)

if (this != &that)
{
X temp(that);
temp.swap(*this);

return *this;

}

The drawback is that at some point, both that and temp are alive, so you may need more free resources
(e.g., more memory).

1.4.3. bool T::empty() const; void T::clear()

The former function tests whether an object is empty; the latter makes it empty. If an object has a member
function size(), then a call to empty() is expected to be no slower than size()==0.

Note that an object may be empty but still control resources. For example, an empty vector might hold
araw block of memory, where in fact no element has yet been constructed.

In particular, it's unspecified if a clear function will or won'’t release object resources; clear is a
synonym of reset.

To enforce resource cleanup of an auto variable, the usual technique is to swap the instance with a
temporary:

T x;
// now x holds some resources...
T().swap(x);

1.4.4. X T::get() const; X T::base() const

The name get is used when type T wraps a simpler type X. A smart pointer’s get would thus return the
internal plain pointer.

The function base instead is used to return a copy of the wrapped object, when the wrapper is just a
different interface. Since a smart pointer typically adds some complexity (for example, a reference count),
the name base would not be as appropriate as get. On the other hand, std: :reverse_iteratorisan
interface that swaps ++ and - - of an underlying iterator, so it has a base().

“Some objects may want to check in advance if overwrite is feasible. For example, if T is std: : string whose
size()==that.size() then it might be able to perform a safe memcpy.
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1.4.5. X T::property() const; void T::property(X)

In this section, “property” is a symbolic name. A class can expose two overloaded member functions called
“property” with two different intents.

The first form returns the current value of the property for the current instance; the second sets the
property to some new value. The property-set function can also have the form:

X T::property(X newval)

const X oldval = property();
set_new_val(newval);
return oldval;

}

This convention is elegant but not universally used; it is present in std: : iostream.

1.4.6. Action(Value); Action(Range)

In this section, “action” is again a symbolic name for an overloaded function or member function.

If an object’s own action—for example container.insert(value)—is likely to be invoked sequentially,
an object may provide one or more range equivalents. In other words, it can provide member functions with
two or more parameters that identify a series of elements at a time. Some familiar examples are:

e Anelement and a repeat counter
e  Two iterators pointing to (begin...end)
e Anarray and two indexes

It's up to the implementation to take advantage of the range being known in advance. As usual, the
range-equivalent function should never be worse than the trivial implementation action(range)
:= for (x in range) { action(x); }.

1.4.7. Manipulators

Manipulators are one of the least known and more expressive pieces of the C++ standard. They are simply
functions that take a stream as an argument. Since their signature is fixed, streams have a special insertion
operator that runs them:

class ostream

{
public:
ostream& operator<<(ostreamd (*F)(ostreamd))
{ return F(*this);
}
inline ostreamd endl(ostream& os)
{
0s << '\n';
return os.flush();
}
};
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int main()

{
// actually execute endl(cout << "Hello world")
std::cout << "Hello world" << std::endl;

}

Some manipulators have an argument. The implementation may use a template proxy object to
transport this argument to the stream:

struct precision_proxy t

{
int prec;
};
inline ostream& operator<<(ostream& o, precision proxy t p)
{
o.precision(p.prec);
return o;
}
precision_proxy t setprecision(int p)
{
precision proxy t result = { p };
return result;
}

cout << setprecision(12) << 3.14;

Note that a more realistic implementation may want to embed a function pointer in the proxy, so as to
have only one insertion operator:

class ostream;

template <typename T, ostreamd (*FUNC)(ostream&, T)>
struct proxy

{
T arg;

proxy(const T& a)
: arg(a)
{
}
};

class ostream

{

public:
template <typename T, ostreamd (*FUNC)(ostreamd, T)>
ostream& operator<<(proxy<T, FUNC> p)
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{
}

return FUNC(*this, p.arg);
};

ostream& global setpr(ostreamd o, int prec)

{
o.precision(prec);
return o;

}

proxy<int, global setpr> setprecision(int p)

{
}

return p;

cout << setprecision(12) << 3.14;

CHAPTER 1
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Note Observe that in classic C++ FUNC would just be a member:

template <typename T>
struct proxy

T arg;
ostream& (*FUNC)(ostream&, T);
};

class ostream

{
public:
template <typename T>
ostream& operator<<(proxy<T> p)

{

}
};

return p.FUNC(*this, p.arg);

In principle, a function template could be used as a manipulator, such as:

stream << manipi;

stream << manip2(argument);
stream << manip3<N>;

stream << manip4<N>(argument);

But in practice this is discouraged, as many compilers won’t accept manip3.
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1.4.8. Position of Operators

It’'s important to understand the difference between member and non-member operators.

When member operators are invoked, the left side has already been statically determined, so if any
adjustment is necessary, it’s performed only on the right side. Alternatively, non-member operators will only
match exactly or give errors.

Suppose you are rewriting std: :pair:

template <typename T1, typename T2>
struct pair

{
T1 first;
T2 second;
template <typename S1, typename S2>
pair(const pair<S1, S2>& that)
: first(that.first), second(that.second)
{
}
b

Now add operator==. First as a member:

template <typename T1, typename T2>
struct pair

{
/...
inline bool operator== (const pair<T1,T2>& that) const
{
return (first == that.first) 88 (second == that.second);
}
b

Then you compile the following code:

pair<int, std::string> P(1,"abcdefghijklmnop");
pair<const int, std::string> Q(1,"qrstuvwxyz");
if (P ==0)

{...}

This will work and will call pair<int, string>::operator==. This function requires a constant
reference to pair<int, string> andinstead it was given pair<const int, string>.It will silently invoke
the template copy constructor and make a copy of the object on the right, which is undesirable, as it will
make a temporary copy of the string.

It is slightly better to put the operator outside the class:

template <typename T1, typename T2>
bool operator== (const pair<T1,T2>& x, const pair<T1,T2>8 y)

{

}
66
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At least, this code will now fail to compile, since equality now requires identical pairs. Explicit failure is
always more desirable than a subtle problem.

Analogous to the classic C++ rule, “if you write a custom copy constructor, then you'll need a custom
assignment operator,” we could say that if you write a universal copy constructor, you'll likely need universal
operators, to avoid the cost of temporary conversions. In this case, use either a template member function
with two parameters or a global operator with four. Some programmers prefer global operators when it’s
possible to implement them using only the public interface of the class (as previously shown).

template <typename T1, typename T2 >
struct pair

{
/...
template <typename S1, typename S2>
inline bool operator== (const pair<S1, S2>& that) const
{
return (first == that.first) 88 (second == that.second);
}
b

This will work if this->first and that.first are comparable (for example, int and const int).
Note that you may still have temporary conversions, because you are delegating to an unspecified
T1::operator==."

1.4.9. Secret Inheritance

Public derivation from a concrete class can be used as a sort of “strong typedef”:

class A

{

// concrete class
/...

};

class B : public A
{

};

// now B works "almost" as A, but it's a different type

You may need to implement one or more “forwarding constructors” in B.

“Note that the best option is to demand that the paired objects provide suitable operators, so we delegate the comparison.
For example, pair<const char*, int> and pair<std::string, int> are unlikely to trigger the construction of
temporary strings, because we expect the STL to supply an operator==(const char*, const std::stringd).
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This is one of the strategies to simulate template typedefs (which do not exist yet in C++; see
Section 12.6):

template <typename T1, typename T2>
class A

{
};

/1 ...

template <typename T>
class B : public AT, T>

{
};

However, this is acceptable only if A is a private class whose existence is unknown or undocumented:

template <typename T>
class B : public std::map<T, T> // bad idea

namespace std

{
template <...>
class map : public _Tree<...> // ok: class _Tree is invisible to the user

A secret base class is often a good container of operators that does not depend on some template
parameters. For example, it may be reasonable to test equality between two objects, ignoring all the
parameters that are purely cosmetic:

template <typename T, int INITIAL_CAPACITY = 16>
class C;

template <typename T>
class H

{
public:
H& operator==(const H&) const;

};

template <typename T, int INITIAL_CAPACITY>
class C : public H<T>

{

};

Comparisons between two containers C with a different INITIAL_CAPACITY will succeed and call their
common base H: :operator==.
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1.4.10. Literal Zero

Sometimes you need to write a function or an operator that behaves differently when a literal zero is passed.
This is often the case with smart pointers:

template <typename T>
class shared ptr

{
/...
};

shared_ptr<T> P;
T Q;

7; // should not compile
0; // should compile
Q; // should compile

P
P
P

You can distinguish 0 from a generic int by writing an overload that accepts a pointer to member of a
class that has no members:

class dummy {};
typedef int dummy::*literal zero_t;

template <typename T>
class shared ptr

{
/...

bool operator==(literal zero t) const

{

The user has no way of creating a literal zero_t, because dummy has no members of type int, so the
only valid argument is an implicit cast of a literal zero (unless a more specialized overload exists).

1.4.11. Boolean Type

Some types, such as std: : stream, have a cast-to-boolean operator. If implemented naively, this can lead to
inconsistencies:

class stream
{
// ..
operator bool() const

/] ...

}
};

stream s;
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if (s) // ok, that's what we want
{

int i =5+ 2; // unfortunately, this compiles
}

A classic workaround was to implement cast to void*:

class stream

{
/...
operator void*() const
// return 'this' when true or '0' when false
}
};
stream s;
if (s) // ok, that's what we want
{
int i =5+ 2; // good, this does not compile...
free(s); // ...but this goes on
}

A better solution is again a pointer to member:

struct boolean_type t
{

};

int true_;

typedef int boolean_type t::*boolean_type;

#define mxt_boolean true &boolean type t::true_
#define mxt_boolean false 0

class stream

{
/..
operator boolean type() const
{
// return mxt_boolean_true or mxt_boolean_false
}
70
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1.4.12. Default and Value Initialization

If T is a type, then the construction of a default instance does not imply anything about the initialization of
the object itself. The exact effect of

T x;

depends heavily on T. If T is a fundamental type or a POD, then its initial value is undefined. If T is a class,
it’s possible that some of its members are still undefined:

class A

{
std::string s_;
int i_;

public:

A() {} // this will default-construct s_ but leave i_ uninitialized

5
On the other hand, the line
Tx=T(0;

will initialize T to 0, say for all fundamental types, but it may crash if T is A, because it’s illegal to copy the
uninitialized member i_ from the temporary on the right into x.
So to sum up:

T a(); // error:
// a is a function taking no argument and returning T
// equivalent to T (*a)()

T b; // ok only if T is a class with default constructor
// otherwise T is uninitialized

T c(T(O)); // error: c is a function taking a function and returning T
// equivalent to T (*c)(T (*)())

Td={} // ok only if T is a simple aggregate* (e.g. a struct
// without user-defined constructors)
Te=T(); // requires a non-explicit copy constructor

// and may yield undefined behaviour at runtime

“The definition of “aggregate” changed in C++11, where uniform initialization was introduced. As the issue is quite
complex and detailed, readers may want to see the bibliography.
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Value initialization (see paragraphs 8.5.1-7 of the standard) is a way to work around this problem. Since
it works only for class members, you have to write:

template <typename T>
struct initialized value

{

T result;

initialized value()
: result()
{
}
};

If T is a class with a default constructor, that will be used; otherwise, the storage for T will be setto 0. If T
is an array, each element will be recursively initialized:

initialized_value<double> x; // x.result is 0.0

initialized value<double [5]> y; // y.result is {0.0, ..., 0.0}
initialized value<std::string> z; // z.result is std::string()

1.5. Code Safety

The spirit of TMP is “elegance first” In theory, some techniques can open vulnerabilities in source code,
which a malicious programmer could exploit to crash a program.*®
Consider the following situations:

#include <functionaly

class unary F : public std::unary_function<int,float>

{

public:
/...

};

int main()

{
unary F u;
std::unary_function<int,float>* ptr = &u; // ok, legal!
delete ptr; // undefined behaviour!
return 0;

}

“There may be a huge cost in increased complexity that comes from writing code “totally bulletproof”. Sometimes this
complexity will also inhibit some compiler optimizations. As a rule, programmers should always reason pragmatically
and accept the fact that code will not handle every possible corner case.
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The system header <functional> could make the counter-example fail by defining a protected
destructor in the unary_function:

template<class _Arg, class _Result>
struct unary_function
{
typedef _Arg argument_type;
typedef Result result_type;

protected:
~unary function()
{
}

};

But this in general does not happen.*
The following idea is due to Sutter ([4]):

myclass.h
class MyClass
{
private:
double x_;
int z_;

public:
template <typename stream_t>
void write x_to(stream t& y)

{
}

y << X_;
};

Is it possible to legally read/modify the private member MyClass: :z_? Just add a specialization
somewhere after including myclass.h:

struct MyClassHACK

{
};

template <>

void MyClass::write x to(MyClassHACK&)

{
// as a member of MyClass, you can do anything...
z = 3;

}

46See Section 1.6.
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Finally, there are problems when declaring template friendship. First, there’s no standard and portable
way to declare friendship with a template parameter (refer to [5] for more details).

template <typename T, int N>
class test

friend class T; //uhm...

};

Second, there is no way to make test<T,N> a friend of test<T, J> (there is nothing like partial template
friendship). A common workaround is to declare test<T,N> a friend of test<X, J> for any other type X.

template <typename T, int N>
class test

{
template <typename X, int J>
friend class test; //0k, but every test<X,J> has access

};
The same malicious user, who wrote MyClassHACK, can add:

template <>
class test<MyClassHACK, 0>

{
public:
template <typename T, int N>
void manipulate(test<T,N>& x)
{
// a friend can do anything!

}

b

You'll see that TMP sometimes makes use of techniques that are correctly labeled bad practice in
conventional C++, including (but not limiting to):

e  Lack of non-virtual protected destructor in (empty) base class
¢ Implementing cast operators operator T() const

¢ Declaring a non-explicit constructor with a single argument

1.6. Compiler Assumptions

Heavy usage of templates implies massive work for the compiler. Not all standard-conforming techniques
behave identically on every platform.*”

You denote by language-neutral idioms all the language features that don’t have a standard-prescribed
behavior but only a reasonable expected behavior. In other words, when you use language-neutral
idiom, you can expect that most compilers will converge on some (optimal) behavior, even if they are not
demanded by the standard to do so.

“'By platform, usually we mean the set { processor, operating system, compiler, linker }.
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Note For example, the C++ standard prescribes that sizeof(T)>0 for any type T, but does not require the
size of a compound type to be minimal. An empty struct could have size 64, but we expect it to have size 1
(or at worst, a size not larger than a pointer).

A standard-conforming compiler can legally violate the optimality condition, but in practice, such a
situation is rare. In other words, a language-neutral idiom is a language construction that does not make a
program worse, but gives a nice opportunity of optimization to a good compiler.

Several possible problems can arise from a perfect standard-conforming code fragment:

e  Unexpected compiler errors

e  Failures at runtime (access violations, core dumps, blue screens, and panic
reactions)

e  Huge compilation/link time
e  Suboptimal runtime speed

The first two issues are due to compiler bugs and involve finding a language workaround (but the
second one is usually met when it’s too late).

The third problem mostly depends on poorly written template code.

The fourth problem involves finding language-neutral idioms that are not recognized by the optimizer
and therefore unnecessarily slow down the program execution.

An example of expected behavior we do care about is the addition of an empty destructor to a base
class.

class base
{
public:
void do_something() {}

protected:
~base() {}

)

class derived : public base

{
};

Since the empty destructor adds no code, we expect the executable to be identical both with and
without it.*®

The compiler will be assumed able to understand and deal optimally with the situations listed in the
next paragraphs.

“From empirical analysis, it looks like sometimes a protected empty destructor inhibits optimizations. Some
measurements have been published in [3].
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1.6.1. Inline

The compiler must be able to manage function inlining by itself, ignoring the inline directives and the code
positioning (where the body of the member functions is written).

The all-inline style places definitions and declarations inside the body of the class; every member
function is implicitly inline:

template <typename T>
class vector

{
public:
bool empty() const
{
// definition and declaration
}
b

The merged header style splits definitions and declarations of non-inline member functions, but keeps
them in the same file:

template <typename T>
class vector

{
public:
bool empty() const; // declaration, non inline

)

template <typename T>
bool vector <T>::empty() const

{
}

// definition

In any case, whether you explicitly write it or not, the inline directive is just more than a hint. Some
popular compilers indeed have an option to inline any function at the compiler’s discretion.
Specifically, we assume that

e  Asequence of inline functions is always “optimal” if the functions are simple enough,
no matter how long the sequence is:

template <typename T, int N>
class recursive

{

recursive<T,N-1> 1_;
public:
int size() const

{
}

return 1 + r_.size();

};
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template <typename T>
class recursive<T, 0>

{
public:
int size() const
{
return 0;
}
};

In the previous construction, recursive<T,N>::size() will be inlined and the optimizer will simplify
the call down to return N.*

e The compiler can optimize a call to a (const) member function of a stateless object,
the typical case being binary relation’s operator().

It’'s a common STL idiom to let a class hold a copy of a functor as a private member:

template <typename T>
struct less

{

bool operator()(const T& x, const T& y) const

return x<y;

}
};
template < typename T, typename less t = std::less<T> >
class set
{

less t less_; // the less functor is a member
public:

set(const less t& less = less t())
: less (less)

{

}

void insert(const T& x)

{
/...
if (less_(x,y)) // invoking less t::operator()
/] ...

}

};

“Notethat recursive<T, -1> will not compile.
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If the functor is indeed stateless and operator () is const, the previous code should be equivalent to:

template <typename T>
struct less

{
static bool apply(const T& x, const T& y)
{
return x<y;
}
};
template < typename T, typename less t = std::less<T> >
class set
{
public:
void insert(const T& x)
{
/7 ...
if (less_t::apply(x,y))
{}
}
};

However, you pay for the greater generality since the less_ member will consume at least one byte of
space. You can solve both issues if the compiler implements the EBO (empty base optimization).

class stateless base

{
};

class derived : public stateless base

{
};

/...

In other words, any derivation from a stateless base will not make the derived class larger.”* If less is
actually a stateless structure, the EBO will not add extra bytes to the layout of set.

template <typename T>
struct less

{
bool operator()(const T& x, const T& y) const

return x<y;
}
1

Most compilers implement this optimization, at least in the case of single inheritance.
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template < typename T, typename less t = std::less<T> >
class set : private less t

{

inline bool less(const T& x, const T& y) const

{

}

public:
set(const less t& 1 = less t())
: less t(1)
{
}

void insert(const T& x)

{

return static_cast<const less t& (*this)(x,y);

/...
if (less(x,y)) // invoking less t::operator() through *this
{}
}
};

Note the auxiliary member function less, which is intended to prevent conflicts with any other
set::operator().

1.6.2. Error Messages

You would like a compiler to give precise and useful error diagnostics, especially when dealing with templates.
Unfortunately, the meaning of “precise” and “useful” may not be the same for a human and a compiler.

Sometimes TMP techniques specifically induce the compiler to output a hint in the error message. The
user, on the other hand, should be ready to figure out the exact error from some keywords contained in the
compiler log, ignoring all the noise. Here’s an example of noise:

\include\algorithm(21) : error 'void DivideBy10<T»::operator ()(T &) const' : cannot convert
parameter 1 from 'const int' to 'int &'

with

[

]

Conversion loses qualifiers

iterator.cpp(41) : see reference to function template instantiation ' Fni
std: :for_each<XT::pair_iterator<iterator t,N>,DivideBy10<T>>(_InIt, InIt, Fni1)'
being compiled

with

[

T=int

_Fn1= DivideBy10<int>,

iterator t=std:: Tree<std:: Tmap_traits<int,double,std::less<int>,std::allocator
<std::pair<const int,double>>,false>>::iterator,

N=1,

T=int,
_InIt=XT::pair_iterator<std:: Tree<std:: Tmap_traits<int,double,std::less<int>,
std::allocator<std: :pair<const int,double>>,false>>::iterator,1>
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Here’s what the user should see:

iterator.cpp(41) : error in 'std::for_each (iterator, iterator, DivideByio<int>)'
with
iterator = XT::pair_iterator<std::map<int, double>::const_iterator, 1>

'void DivideBy10<T»::operator ()(T &) const' : cannot convert parameter 1 from 'const int'
to 'int &'

This means that the caller of for_each wants to alter (maybe divide by 10?) the (constant) keys of a
std: :map, which is illegal. While the original error points to <header>, the true problem is in iterator.cpp.
Unfriendly entries in error messages happen because the “bare bones error” that the compiler sees may
be “distant” from the semantic error.

Long Template Stack

As shown previously, a function template can report an error, due to a parameter passed from its callers.
Modern compilers will list the whole chain of template instantiations. Since function templates usually rely
on template frameworks, these errors are often several levels deep in the stack of function calls.

Implementation Details

In the previous example, the compiler shows std: :_Tree instead of std: :map because map: : iterator
happens to be defined in a separate base class (named _Tree). std: :map has a public typedef that borrows
an iterator from its base class:

typedef typename Tree<...>::iterator iterator;

These implementation details, which are usually hidden from the user of std: :map, may leak in the
error log.

Expanded Typedefs

An error with std: : string may show up as std: :basic_string<char, ...>because some compilers will
replace typedefs with their definition. The substitution may introduce a type that’s unknown to the user.
However, it is truly impossible for the compiler to decide whether it’s convenient or not to perform
these substitutions.
Suppose there are two metafunctions called F<T1>: :type and G<T2>: : type:

typedef typename G<T>::type GT;
typedef typename F<GT>::type FGT;

An error may occur

e  When Tis not a valid argument for G, and in this case you'd like to read:

error "F<GT> [where GT=G<int>::type]...".
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e  Because G<T>: :type (which is defined but unknown to the user) is rejected by F, so it
may be more useful:

error "F<GT> [where GT=double]...".

However, if you don’t know the result of G, a log entry such as F<X> [where X=double]... canbe
misleading (you may not even be aware that you are invoking F<double>).

Incomplete Types

If wisely used, an incomplete type can cause a specific error (see Section 2.2). However, there are situations

where a type is not yet complete and this may cause bizarre errors. A long, instructive example is in Appendix A.
As arule, when a compiler says that “a constant is not a constant” or that “a type is not a type,” this usually

means that you are either defining a constant recursively or are using a not-yet-complete class template.

1.6.3. Miscellaneous Tips

Regardless of assumptions, real compilers can do any sort of things, so this section outlines a few generic tips.

Don’t Blame the Compiler

Bugs can lie:
e Inthe code, with probability (100-¢)%
e Inthe optimizer, with probability slightly greater than (¢/2)%
¢ Inthe compiler, with probability less than (¢/2)%

Even problems that show up only in release builds are rarely due to optimizer bugs. There are some
natural differences between debug and release builds, and this may hide some errors in the program.
Common factors are #ifdef sections, uninitialized variables, zero-filled heap memory returned by debug
allocators, and so on.

Compilers do have bugs, but a common misconception is that they show up only in release builds.
The following code, compiled by MSVC7.1, produces the right values in release and not in debug:

#include <iostream>

int main()

{
unsigned _ int64 x = 47;
inty = -1;
bool testl = (x+y)<0;
X += Y;
bool test2 = (x<0);
bool test3 = (x<0);

std::cout << testl <« test2 << test3; // it should print 000

return 0;
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GCC4 in Mac OSX in debug builds does not warn the user that there are multiple main functions in a
console program and it silently produces a do-nothing executable.*

Keep Warnings at the Default Level

A warning is just a guess. All compilers can recognize “idioms” that can be, with some probability, a
symptom of human errors. The higher the probability is, the lower the warning level. Displaying top-level
warnings is very unlikely to reveal an error, but it will flood the compiler log with innocuous messages.*

Do Not Silence Warnings with “Dirty” Code Modifications

If some particular warning is annoying, legitimate, and probably not an error, don’t modify the code. Place
a compiler-specific #pragma disable-warning directive around the line. This will be useful to future code
reviewers.

However, this solution should be used with care (a warning in a deeply-nested function template might
generate many long, spurious entries in the compiler log).

One of the most dangerous warnings that should rnot be fixed is the “signed/unsigned comparison”

Many binary operations between mixed operands involve the promotion of both to unsigned, and
negative numbers become positive and very large.** Compilers will warn in some—not all—of these
situations.

bool f(int a)
{
unsigned int c = 10;
return ((a+5)<c);
}
testol.cpp(4) : warning C4018: '<' : signed/unsigned mismatch

The function returns true for a € {-5,-4,...,4}. If you change c to int, the warning disappears, but the
function will behave differently.
The same code in a metafunction produces no warning at all:

template <int A>
class BizarreMF

{
static const int B = 5;
static const unsigned int C = 10;
public:
static const bool value = ((A+B)<C);
};
bool t = BizarreMF<-10>::value; // returns false

S'Mac OS X 10.4.8, XCode 2.4.1, GCC 4.01.
2Set warnings at maximum level only once, in the very last development phase or when hunting for mysterious bugs.
33See 3.7.2 in the standard.
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In real code, two situations are likely vulnerable to “signedness bugs”:

e  Updating a metafunction return type from enum to a static unsigned constant:

static const bool value = (A+5) < OthexrMF<B»::value;
// unpredictable result: the type of OtherMF is unknown / may vary

e Changing a container:

The C++ standard does not define univocally an integer type for array indices. If p
has type T*, then p[i] == *(p+1), so i should have type ptrdiff_t, which is signed.
vector<T>: :operator[ ] however takes an unsigned index.

To sum up, warnings are:
e  Compiler specific

e Notrelated to code correctness (there exist both correct code that produces warnings
and incorrect code that compiles cleanly)

Write code that produces the least warnings possible, but not less.

Maintain a Catalog of Compiler Bugs

This will be most useful when upgrading the compiler.

Avoid Non-Standard Behavior

This advice is in every book about C++, but we repeat it here. Programmers®* tend to use their favorite
compiler as the main tool to decide if a program is correct, instead of the C++ standard. A reasonable
empirical criterion is to use two or more compilers, and if they disagree, check the standard.

Don’t Be Afraid of Language Features

Whenever there’s a native C++ keyword, function, or std: : object, you can assume that it’s impossible to do
better, unless by trading some features.>

It's usually true that serious bottlenecks in C++ programs are related to a misuse of language features
(and some features are more easily misused than others; candidates are virtual functions and dynamic
memory allocation), but this does not imply that these features should be avoided.

Any operating system can allocate heap memory fast enough that a reasonable number of calls to
operator new will go unnoticed.*

Some compilers allow you to take a little memory from the stack via a function named alloca; in
principle, alloca followed by a placement new (and an explicit destructor call) is roughly equivalent to new,
but it incurs alignment problems. While the standard grants that heap memory is suitably aligned for any
type, this does not hold for a stack. Even worse, building objects on unaligned memory may work by chance
on some platforms and, totally unobserved, may slow down all data operations.*”

*Including the author of this book.

50f course, there are known exceptions to this rule: some C runtime functions (sprintf, floor) and even a few STL
functions (string: :operator+).

SReleasing memory may be a totally different matter, anyway.

370On AMD processors, double should be aligned to an 8-byte boundary; otherwise, the CPU will perform multiple
unnecessary load operations. On different processors, accessing an unaligned double may instantly crash the program.
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The opposite case is trading features. It is sometimes possible to do better than new under strong extra
hypotheses; for example, in a single threaded program where the allocation/deallocation pattern is known:

// assume T1 and T2 are unspecified concrete types, not template parameters
std: :multimap<T1, T2> m;
while (m.size()>1)

std::multimap<T1, T2>::iterator one
std: :multimap<T1, T2>::iterator two

«e.; // pick an element.
...; // pick another one.

std::pair<T1, T2> new_element = merge elements(*one, *two);

m.erase(one); // line #1
m.erase(two); // line #2
m.insert(new_element); // line #3

}

Here you may hope to outperform the default new-based allocator, since two deletions are always
followed by a single allocation. Roughly speaking, when this is handled by system new/delete, the operating
system has to be notified that more memory is available in line #2, but line #3 immediately reclaims the
same amount of memory back.*®

Think About What Users of Your Code Would Do

Human memory is not as durable as computer memory. Some things that may look obvious or easily
deducible in classic C++ may be more difficult in TMP.
Consider a simple function such as:

size t find_number in_string(std::string s, int t);

You can easily guess that the function looks for an occurrence of the second argument within the first.
Now consider:

template <typename T, typename S>
size t find number in string(S s, T t);

8In an empirical test on a similar algorithm, a map with a custom allocator improved the whole program by 25%. A general
strategy is to reserve memory in chunks and free them with some degree of laziness.
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While this may look natural to the author (S stands for string, after all), we should consider some
memory-helping tricks.

e Any IDE with code completion will show the argument names:

template <typename T, typename S>
size t find number in string(S str, T number);

template <typename NUMBER_T, typename STRING T>
size t find_number_in_string(STRING T str, NUMBER_T number);

e Insert one line of comment in the code before the function; an IDE could pick it up
and show a tooltip.

e Adopt some convention for the order of arguments, or the result type
(like C’s memcpy).

1.7. Preprocessor
1.7.1. Include Guards

As already mentioned, a project is usually spread across many source files. Each file must be organized such
that all dependencies and prerequisites are checked by the included file, not by the caller. In particular,
header inclusion should never depend on the order of #include statements.

file "container.hpp"

#include <vector> // dependency is resolved here, not outside
#ifdef _WIN32 // preconditions are checked here

#error This file requires a 128-bit operating system. Please, upgrade.
#endif

template <typename T>
class very large container

{

// internally uses std::vector...
};
Most frameworks end up having a sort of root file that takes care of preparing the environment:
e Detection of the current platform
e Translation of compiler-specific macros to framework macros
e  Definition of general macros (such as MXT_NAMESPACE_BEGIN)
¢ Inclusion of STL headers
e  Definition of lightweight structures, typedefs, and constants

All other headers begin by including the root file, which is rarely modified. This will often decrease
compilation time, since compilers can be instructed to distill a pre-compiled header from the root file.
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An example follows:

LILLIITTII2000071 0070707 777770707771777777771177777771111177771111171717
// platform detection

#if defined(_MSC_VER)

#define MXT_INT64 _ int64
#elif defined(__GNUC_ )
#define MXT_INT64 long long
f#else

/...

#endif

LILITTITI000000 1170077777 777007777777077771177177771117177771111117111
// macro translation
// the framework will rely on MXT_DEBUG and MXT_RELEASE

#if defined(DEBUG) || defined( DEBUG) || !defined(NDEBUG)
#define MXT_DEBUG

#else

#define MXT_RELEASE

#endif

IILTILITII007100071770770071170771771717717177177771177171771717717111777
// general framework macros

#tdefine MXT_NAMESPACE BEGIN(x) namespace x {
#tdefine MXT_NAMESPACE END(x) }

[I1177777777777777777777777777777777777777777777717771717171717711177171177171177
// STL

#include <complex>

#include <vector>

#include <map>

#include <utility>
HITTILLIIILT100071007770777177171771707711717771777117711171111771111171

using std::swap;
using std::size_t;

typedef std::complex<double> dcmplx;
typedef unsigned int uint;

[1117777777177777777777777777777777777777777177777717717117171171717771117171117

struct empty

};
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According to the basic include guard idiom, you should enclose each header in preprocessor directives,
which will prevent multiple inclusions in the same translation unit:

#ifndef MXT_filename_
#define MXT_filename_

// put code here
#tendif //MXT_filename_

As a small variation of this technique, you can assign a value to MXT_filename_. After all, the whole
point of this book is storing information in unusual places:

#ifndef MXT_filename_
#define MXT_filename_ 0x1020 // version number

// put code here
#endif //MXT_filename_
#include "filename.hpp"
#if MXT_filename_ < 0x1010
#error You are including an old version!
#endif
Anyway, such a protection is ineffective against inclusion loops. Loops happen more frequently in TMP,
where there are only headers and no *. cpp file, so declarations and definitions either coincide or lie in the
same file.
Suppose A. hpp is self-contained, B. hpp includes A. hpp, and C. hpp includes B. hpp.
// file "A.hpp"

#ifndef MXT_A_
#define MXT_A_ 0x1010

template <typename T> class A {};
#endif
// file "B.hpp"

#ifndef MXT B_
#define MXT_B _ 0x2020

#include "A.hpp"
template <typename T> class B {}; // B uses A

#endif
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Later, a developer modifies A. hpp so that it includes C. hpp.
// file "A.hpp"
#ifndef MXT_A_
#define MXT_A_ 0x1020
#include "C.hpp"
Now unfortunately, the preprocessor will produce a file that contains a copy of B before A:

// MXT_A_ is not defined, enter the #ifdef
#define MXT_A_ 0x1020

// A.hpp requires including "C.hpp"

// MXT_C_ is not defined, enter the #ifdef
#define MXT_C_ 0x3030

// C.hpp requires including "B.hpp"
// MXT_B_ is not defined, enter the #ifdef
#define MXT_B _ 0x2020
// B.hpp requires including A.hpp
// however MXT_A is already defined, so do nothing!
template <typename T> class B {};
// end of include "B.hpp"
template <typename T> class C {};
// end of include "C.hpp"
template <typename T> class A {};
This usually gives bizarre error messages.
To sum up, you should detect circular inclusion problems where a file includes (indirectly) a copy of
itself before it has been fully compiled.

The following skeleton header helps (indentation is for illustration purposes only).

#ifndef MXT_filename_
#define MXT_filename_ 0x0000 // first, set version to "null"

#include "other_header.hpp"
LILITIITI000070071700717077100717777117711717711717711717111777
MXT_NAMESPACE BEGIN(framework)
HILITIITTI00017007170007100771177117177171711117111711111111171

// write code here
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LIPTII0T10700700717007100771077177711177171771117711171111777
MXT_NAMESPACE_END(framework)
LIPTTLLTIIL01700717000000777107171771117111171117711111111171

// finished! remove the null guard
#undef MXT_filename_

// define actual version number and quit
#define MXT_filename_ 0x1000

#else // if guard is defined...
#if MXT_filename_ == 0x0000 // ...but version is null
#error Circular Inclusion // ...then something is wrong!
#endif

#endif //MXT_filename_

Such a header won't solve circular inclusion (which is a design problem), but the compiler will diagnose

it as soon as possible. Anyway, sometimes it might suffice to replace the #error statement with some
forward declarations:

#ifndef MXT_my vector_
#define MXT_my vector  0x0000

template <typename T>
class my_vector

{
public:
/...
};

#undef MXT_my vector_
#define MXT_my vector 0x1000

#else
#if MXT_my_vector_ == 0x0000

template <typename T>
class my_vector;

#endif

#endif //MXT_my vector_
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1.7.2. Macro Expansion Rules

A smart use of macros can simplify metaprogramming tasks, such as automation of member function
generation. We briefly mention the non-obvious preprocessor rules here*:

The token-concatenation operator ## produces one single token from the
concatenation of two strings. It’s not just a “whitespace elimination” operator. If the
result is not a single C++ token, it’s illegal:

#tdefine M(a,b,c) a #i#tb ## c

.

S

~+

—
I

= M(3,+,2); // error, illegal: 3+2 is not a single token
M(0,x,2); // ok, gives 0Ox2

.
S
~+
(-]
n

The stringizer prefix # converts text® into a valid corresponding C++ string, thus it
will insert the right backslashes, and so on.

Generally macro expansion is recursive. First, arguments are completely expanded,
then they are substituted in the macro definition, then the final result is again
checked and possibly expanded again:

#define A1 100
#define A2 200
#tdefine Z(a,b) a #tt b

Z(A, 1); // expands to A1, which expands to 100
Z(A, 3); // expands to A3

The two operators # and ##, however, inhibit macro expansion on their arguments, so:
Z(B, A1); // expands to BA1, not to B100

To make sure everything is expanded, you can add an additional level of indirection
that apparently does nothing:

#tdefine Y(a,b) a ## b
#define Z(a,b) Y(a,b)

Z(B,A1);

// expands first to Y(B,A1). Since neither B nor Al is an operand
// of #or ##, they are expanded, so we get Y(B,100),

// which in turn becomes B100

*For a complete reference, consider the GNU manual http://gcc.gnu.org/onlinedocs/cpp.pdf.
Tt can be applied only to a macro argument, not to arbitrary text.
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¢  Macros cannot be recursive, so while expanding Z, any direct or indirect reference to
Z is not considered:

#define X Z
#define Z X+Z

Z;

// expands first as X+Z. The second Z is ignored; then the first X
// is replaced by Z, and the process stops,
// so the final result is "Z+Z"

e Apopular trick is to define a macro as itself. This is practically equivalent to an
#undef, except that the macro is still defined (so #ifdef and similar directives don’t
change behavior).

#define A A
As afinal recap:

#define A 1

#define X2(a, b) const char* c##fa = b

#tdefine X(x) X2(x, #x)

#define Y(x) X(x)

X2(A, "A"); // > const char* c##A = "A" > const char* cA = "A";
X(A); /> X2(A, #A) > X2(1, "A") > const char* c1 = "A";
Y(A); /1 > X(A) 2> X(1) > X2(1, "1") > const char* c1 = "1";

Observe that, in this code, X may look just as a convenience shortcut for X2, but it’s not. Normally you
cannot observe the difference, but before X expands to X2, argument expansion occurs, something that direct
invocation of X2 could have prevented.

How safe is it to replace a macro that defines an integer with a constant (either enum or static const
int)? The answer is in the previous code snippet. After the change, preprocessor tricks will break:

//#define A 1
static const int A = 1;

/7 ...

X(A); // const char* cA = "A";
Y(A); // const char* cA =

I
=

But if A is not guaranteed to be a macro, the replacement should be transparent.®!

®!Some C libraries, for example, list all the possible error codes without specifying the exact nature of these constants.
In this case, they should be used as enums. In particular, it should be safe to undefine them, if they happen to be macros,
and to replace them with real enumerations.
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One more rule that is worth mentioning is that the preprocessor respects the distinction between
macros with and without arguments. In particular it will not try to expand A followed by an open bracket,
and similarly for X not followed by a bracket. This rule is exploited in a popular idiom that prevents
construction of unnamed instances of a type C*:

template <typename T>
class C

{
public:
explicit C([[one argument here]]);

};
#define C(a) sizeof(sorry anonymous instance not_allowed from ## a)

C x("argument"); // ok: C not followed by bracket is not expanded
return C("temporary"); // error: the sizeof statement does not compile

Finally, since many template types contain a comma, it’s not generally possible to pass them safely
through macros:

#define DECLARE_x OF TYPE(T) T x

DECLARE_x OF TYPE(std::map<int, double>); /* error:
ANANANANANNNNNNAN ANANANANNAN -two arguments */

There are several workarounds for this:

e  Extra brackets (as a rule, this is unlikely to work, as in C++ there’s not much use for a
type in brackets):

DECLARE_x_OF TYPE((std::map<int, double>));
// > (std::map<int, double>) x; > error

e Atypedef will work, unless the type depends on other macro arguments:

typedef std::map<int, double> map_int_double;
DECLARE_x_OF TYPE(map_int_double);

e  Another macro:
#tdefine mxt APPLY2(T, T1, T2) T< T1, T2 >

DECLARE x OF TYPE(mxt APPLY2(std::map,int,double));

©This example will actually be clear only after reading Section 2,2.
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The previous chapter focused on the connection between template programming and style. In short,
templates are elegant, as they allow you to write efficient code that looks simple because they hide the
underlying complexity.
If you recall the introductory example of sq from Chapter 1, it’s clear that the first problem of TMP is
choosing the best C++ entity that models a concept and makes the code look clear at the point of instantiation.
Most classic functions use internally temporary variables and return a result. Temporary variables are
cheap, so you must give the intermediate results a name to increase the readability of the algorithm:

int n_dogs = GetNumberOfDogs();
int n_cats = GetNumberOfCats();

int n_food_portions = n_dogs + n_cats;
BuyFood(n_food_portions);

In TMP, the equivalent of a temporary variable is an auxiliary type.

To model a concept, we will freely use lots of different types. Most of them do nothing except “carry a
meaning in their name,” as in n_food_portions in the previous example.

This is the main topic of Section 2.3.

The following paragraphs list some extremely simple objects that naturally come up as building blocks of
complex patterns. These are called “hollow,” because they carry no data (they may have no members at all).
The code presented in this chapter is freely reused in the rest of the book.

2.1. Hollow Types
2.1.1. instance_of
One of the most versatile tools in metaprogramming is instance_of:

template <typename T>
struct instance of

{
typedef T type;

instance_of(int = 0)
{
}

};

93

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © SMALL OBJECT TOOLKIT

The constructor allows you to declare global constants and quickly initialize them.

const instance_of<int> I_INT = instance_of<int>(); // ok but cumbersome
const instance_of<double> I_DOUBLE = 0; // also fine.

Note Remember that a const object must either be explicitly initialized or have a user-defined default
constructor. If you simply write

struct empty
empty() {}
const empty EMPTY;

the compiler may warn that EMPTY is unused. A nice workaround to suppress the warning is in fact:

struct empty

{
empty(int = 0) {}

)

const empty EMPTY = 0;

2.1.2. Selector

A traditional code in classic C++ stores information in variables. For example, a bool can store two different
values. In metaprogramming, all the information is contained in the type itself, so the equivalent of a bool is
a (template) type that can be instantiated in two different ways. This is called a selector:

template <bool PARAMETER>
struct selector

{

b

typedef selector<true> true_ type?;
typedef selector<false> false type;

Note that all instances of selector<true> convey the same information. Since their construction is
inexpensive, instance_of and selector are both useful to replace explicit template parameter invocation:

template <bool B, typename T>
void f(const T& x)

{

}

'Readers who are familiar with modern C++ will recognize that such a typedef already exists in namespace std. I will say
more on this argument in Section 12.1.
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int main()

double d = 3.14;
f<true>(d); // force B=true and deduce T=double

)

Or equivalently:

template <typename T, bool B>
void f(const T& x, selector<B>)

{
}
int main()
{
double d = 3.14;
f(d, selector<true>()); // deduce B=true and T=double
};

One of the advantages of the latter implementation is that you can give a meaningful name to the
second parameter, using a (cheap) constant:

const selector<true> TURN_ON DEBUG_LOGGING;

/...

double d = 3.14;

f(d, TURN_ON_DEBUG_LOGGING); // deduce B=true and T=double

2.1.3. Static Value

The generalization of a selector is a static value:

template <typename T, T VALUE>
struct static_parameter

{

};

template <typename T, T VALUE>
struct static_value : static_parameter<T, VALUE>
{

static const T value = VALUE;

};

Note that you could replace selector<B> with static_value<bool, B>.In factfrom now on, you can
assume that the implementation of the latter is the same.?

In a static_value, T must be an integer type; otherwise, the static const initialization becomes illegal.
Instead, in static_parameter, T can be a pointer (and VALUE can be a literal zero).

2You could let selector derive from the other, but you can’t assume explicitly that they are convertible. Under C++0x, you
could also write a template typedef with the new using notation (see Section 12.6).
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A member cast operator may be added to allow switching from a static constant to a runtime integer*:

template <typename T, T VALUE>
struct static_value : static_parameter<T, VALUE>

{
static const T value = VALUE;

operator T () const

return VALUE;
}

static_value(int = 0)
{
}

};

So you can pass an instance of static_value<int, 3> to afunction that requires int. However, it’s
usually safer to write an external function:

template <typename T, T VALUE>
inline T static_value_cast(static_value<T, VALUE>)

{
};

return VALUE;

2.1.4. Size of Constraints

The C++ standard does not impose strict requirements on the size of elementary types* and compound types
can have internal padding anywhere between members.

Given a type T, say you want to obtain another type, T2, whose sizeof is different.

A very simple solution is:

template <typename T>
class larger than

T body [2]; // private, not meant to be used

)

It must hold that sizeof(T)<2*sizeof(T)£sizeof(larger_ than<T>). However, the second inequality
can be indeed strict, if the compiler adds padding (suppose T is char and any struct has a minimum size of
four bytes).

The most important use of this class is to define two types (see Section 4.2.1):

typedef char no_type;
typedef larger than<no_type> yes type;

3See also Section 4.12.
4Only weak ordering is granted: 1=sizeof(char)<sizeof(short)<sizeof(int)<sizeof(long).
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Warning These definitions are not compatible with C++0x std: : false_type and std: : true_type, which
instead are equivalent to static_value<bool, false> and static_value<bool, true>.

In practice, you can safely use char, whose size is 1 by definition, and ptrdiff t (in most platforms a
pointer is larger than one byte).
It is possible to declare a type having exactly size N (with N>0):

template <size t N>
struct fixed_size
{

typedef char type[N];

};

So that sizeof(fixed size<N>::type) == N.

Note that fixed_size<N> itself can have any size (at least N, but possibly larger).

Remember that it’s illegal to declare a function that returns an array, but a reference to an array is fine
and has the same size®:

fixed size<3>::type f(); // error: illegal
int three = sizeof(f());
fixed size<3>::typed f(); // ok

int three = sizeof(f()); // ok, three ==

2.2. Static Assertions

Static assertions are simple statements whose purpose is to induce a (compiler) error when a template
parameter does not meet some specification.

Iillustrate here only the most elementary variations on the theme.

The simplest form of assertion just tries fo use what you require. If you need to ensure that a type T
indeed contains a constant named value or a type named type, you can simply write:

template <typename T>
void myfunc()

{
typedef typename T::type ERROR_T_DOES_NOT_CONTAIN_type;

const int ASSERT T MUST HAVE STATIC CONSTANT value(T::value);
};

If T is not conformant, you will get an error pointing to a sort of “descriptive” line.
For more complex assertions, you can exploit the fact that an incomplete type cannot be constructed, or
that sizeof(T) causes a compiler error if T is incomplete.

This remark will be clear in view of the material presented in Section 4.2.1.
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2.2.1. Boolean Assertions

The easiest way to verify a statement is to use a selector-like class whose body is not present if the condition
is false:

template <bool STATEMENT>
struct static_assertion

{
};

template <>
struct static_assertion<false>;

int main()

{
static_assertion<sizeof(int)==314> ASSERT LARGE_INT;
return 0;

}

error C2079: 'ASSERT_LARGE_INT' uses undefined struct 'static_assertion<false>'

All variations on the idiom try to trick the compiler into emitting more user-friendly error messages.
Andrei Alexandrescu has proposed some enhancements. Here’s an example.

template <bool STATEMENT>
struct static_assertion;

template <>
struct static_assertion<true>

{ static_assertion()
{}
template <typename T>
static_assertion(T)
{1

b

template <> struct static_assertion<false>;
struct error CHAR IS UNSIGNED {};
int main()

{

const static_assertion<sizeof(double)!=8> ASSERT1("invalid double");
const static_assertion<(char(255)>0)> ASSERT2(error CHAR IS UNSIGNED());
}

If the condition is false, the compiler will report something like, “cannot build static_assertion<false>
from error CHAR_IS UNSIGNED”
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Each assertion wastes some bytes on the stack, but it can be wrapped in a macro directive using sizeof:
#tdefine MXT_ASSERT(statement) sizeof(static_assertion<(statement)>)
The invocation
MXT_ASSERT(sizeof(double)!=8);

will translate to [ [some integer]] if successful and to an error otherwise. Since a statement like 1 is a no-op,
the optimizer will ignore it.
The very problem with macro assertions is the comma:

MXT_ASSERT(is well defined< std::map<int, double> >::value);
/7 "

// comma here

//

// warning or error! MXT_ASSERT does not take 2 parameters

The argument of the macro in this case is probably the string up to the first comma (is_well_defined<
std: :map<int), so even if the code compiles, it won’t behave as intended.

Two workarounds are possible—you can either typedef away the comma or put extra brackets around
the argument:

typedef std::map<int, double> map_type;
MXT_ASSERT( is_well defined<map type>::value );

or:
MXT_ASSERT(( is_well defined< std::map<int, double> >::value ));

The C++ preprocessor will be confused only by commas that are at the same level® as the argument of
the macro:

assert( f(x,y)==4 ); // comma at level 2: ok
assert( f(x),y==4 ); // comma at level 1: error

static_assertion can be used to make assertions in classes using private inheritance:

template <typename T>

class small object allocator : static_assertion<(sizeof(T)<64)>
{

};

°The level of a character is the number of open brackets minus the number of closed brackets in the string from the
beginning of the line up to the character itself.
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Note static_assert is a keyword in the modern C++ Standard. Here, | use a similar name for a class for
illustration purposes. C++0x static_assert behaves like a function that takes a constant Boolean expression
and a string literal (an error message that the compiler will print):

static_assert(sizeof(T)<64, "T is too large");

Similarly to the private inheritance described previously, C++0x static_assert can also be a class member.

2.2.2. Assert Legal

A different way of making assertions is to require that some C++ expression represents valid code for type T,
returning non-void (most often, to state that a constructor or an assignment is possible).

#define MXT ASSERT LEGAL(statement) sizeof(statement)
If void is allowed instead, just put a comma operator inside sizeof:
#tdefine MXT_ASSERT LEGAL(statement) sizeof((statement), 0)
For example:

template <typename T>
void do_something(T& x)

{
MXT_ASSERT LEGAL(static_cast<bool>(x.empty()));

If (x.empty())
{

/] ...

This example will compile, and thus it will not reject T if x. empty (), whatever it means, returns
(anything convertible to) bool. T could have a member function named empty that returns int or a member
named empty whose operator () takes no argument and returns bool.

Here’s another application:

#define MXT_CONST REF_TO(T) (*static_cast<const T*>(0))
#tdefine MXT_REF_TO(T) (*static_cast<T*>(0))

template <typename obj_t, typename iter_t>
class assert_iterator

{
enum
{
verify construction =
MXT_ASSERT LEGAL(obj_t(*MXT_CONST REF TO(iter t))),
verify assignment =
MXT ASSERT LEGAL(MXT REF_TO(obj_t) = *MXT CONST REF_TO(iter t)),
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verify preincr =
MXT_ASSERT LEGAL(++MXT REF_TO(iter t)),

verify postincr =
MXT_ASSERT LEGAL(MXT REF TO(iter t)++)
};
};

A human programmer should read, “I assert it’s legal to construct an instance of obj_t from the result of
dereferencing a (const) instance of iter_t” and similarly for the remaining constants.

Note Observe that some standard iterators may fail the first test. For example, a back_insert_iterator may
return itself when dereferenced (a special assignment operator will take care of making *i = x equivalentto i = x).

The assert_iterator<T,I> will compile only if I acts like an iterator having a value type (convertible to) T.
For example, if I does not support post-increment, the compiler will stop and report an error in
assert_iterator<T,I>::verify postincr

Remember that, with the usual restrictions on comma characters in macros, MXT_ASSERT_LEGAL never
instantiates objects. This is because sizeof performs only a dimensional check on its arguments’.

Also, note the special use of a macro directive. MXT_ASSERT_LEGAL should take the whole line, but since
it resolves to a compile-time integer constant, you can use enums to “label” all the different assertions about
aclass (asin assert_iterator) and make the code more friendly.

The compiler might also emit useful warnings pointing to these assertions. If obj_tisint and iter_tis
double*, the compiler will refer to the verify assignment enumerator and emit a message similar to:

warning: '=' : conversion from 'double' to 'int', possible loss of data
: see reference to class template instantiation 'XT::assert_iterator<obj_t,iter_ t>'
being compiled
with
[
obj_t=int,
iter_t=double *

]

Using the very same technique, you can mix static assertions of different kinds:
#define MXT_ASSERT(statement) sizeof(static_assertion<(statement)>)

template <typename obj_t, typename iter_ t>
class assert_iterator
{ enum

{

"However, a few compilers will generate a warning on MXT_INSTANCE_OF anyway, reporting that a null reference is
not allowed.
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//...
construction =
MXT_ASSERT LEGAL(obj t(*MXT_CONST REF TO(iter t))),
size =
MXT_ASSERT(sizeof(int)==4)
b
b

As an exercise, I list some more heuristic assertions on iterators.
As s, class assert_iterator validates forward const_iterators. We can remove the const-ness:

template <typename obj_t, typename iter t>
class assert_nonconst_iterator : public assert_iterator<obj t, iter t>

{

enum
{
write =
MXT_ASSERT LEGAL(*MXT_REF_TO(iter t) = MXT_CONST REF TO(obj t))
b
b

Sometimes, an algorithm that works on iterators does not need to know the actual type of the
underlying objects, which makes the code even more general. For example, std: : count could look like this:

template <typename iter t, typename object t>
int count(iter t begin, const iter t end, const object t& x)

{
int result = 0;
while (begin != end)
if (*begin == x)
++result;
}
return result;
}

You don’t need to know if *begin has the same type as x. Regardless of what exactly *begin is, you can
assume that it defines an operator== suitable for comparing against an object_t.

Suppose instead you have to store the result of *begin before comparison.

You may require the iterator type to follow the STL conventions, which means that object_t and
iterator::value_type must somehow be compatible®:

template <typename obj_t, typename iter_t>
class assert_stl iterator

{

typedef typename std::iterator traits<iter t>::value_type value_type;

enum

{

8Actually, dereferencing the iterator returns std: :iterator traits<iterator t>::reference, but value type
can be constructed from a reference.
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assignl =
MXT_ASSERT_LEGAL (MXT_REF_TO(obj_t) = MXT_CONST_REF_TO(value_type)),

assign2 =
MXT_ASSERT LEGAL (MXT_REF_TO(value_type) = MXT_CONST REF_TO(obj_t))
};

};

Finally, you can perform a rough check on the iterator type, using indicator_traits to getits tag or
writing operations with MXT_ASSERT_LECGAL:

enum

{

random_access =
MXT_ASSERT LEGAL(
MXT_CONST REF TO(iter t) + int() == MXT_CONST REF_TO(iter t))
};

2.2.3. Assertions with Overloaded Operators

sizeof can evaluate the size of an arbitrary expression. You can thus create assertions of the form
sizeof(f(x)), where f is an overloaded function, which may return an incomplete type.

Here, I just present an example, but the technique is explained in Section 4.2.1.

Suppose you want to put some checks on the length of an array:

Tarr[] ={ ... };
// later, assert that length_of(arr) is some constant
Since static assertions need a compile-time constant, you cannot define length_of as a function.

template <typename T, size t N>
size t length _of(T (&)[N])

return N;

}

MXT_ASSERT(length_of(arr) == 7); // error: not a compile-time constant

A macro would work:
#define length of(a) sizeof(a)/sizeof(a[0])

But it’s risky, because it can be invoked on an unrelated type that supports operator| ]
(such as std: :vector or a pointer), with nasty implications.

However, you can write:

class incomplete type;
class complete type {};

template <size t N>
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struct compile time const

{
complete_type8 operator==(compile_time_const<N>) const;
template <size t K>
incomplete typed& operator==(compile time_ const<K>) const;
};

template <typename T>
compile time const<0> length of(T)

{
}

return compile time const<0>();

template <typename T, size t N>
compile_time_const<N> length_of(T (&)[N])
{

}

return compile time const<N>();

This works, but unfortunately the syntax of the assertion is not completely natural:
MXT_ASSERT LEGAL(length of(arr) == compile time const<7>());

You can combine these techniques and the use of fixed size<N>::type from Section 2.1.4, wrapping
in an additional macro:

template <typename T, size t N>
typename fixed size<N>::typed not_an array(T (&)[N]); // note: no body

#tdefine length of(X) sizeof(not_an_array(X))

Now length_of is again a compile-time constant, with some additional type-safety checks. The name
not_an_array was chosen on purpose; it is usually hidden from the user, but it will usually be printed when
the argument is incorrect:

class AA {};

int a[5];
int b = length of(a);

AA aa;
int ¢ = length of(aa);

error: no matching function for call to 'not_an_array(AA8)'

2.2.4. Modeling Concepts with Function Pointers

The following idea has been documented by Bjarne Stroustrup.
A concept is a set of logical requirements on a type that can be translated to syntactic requirements.
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For example, a “less-than comparable” type must implement operator < in some form. The exact
signature of a<b doesn’t matter as long as it can be used as a Boolean.

Complex concepts may require several syntactic constraints at once. To impose a complex constraint
on a tuple of template parameters, you simply write a static member function, where all code lines together
model the concept (in other words, if all the lines compile successfully, the constraint is satisfied). Then, you
induce the compiler to emit the corresponding code simply by initializing a dummy function pointer in the
constructor of a dedicated assertion class (the concept function never runs):

template <typename T1, typename T2>
struct static_assert can_copy T1 to T2

{
static void concept check(T1 x, T2 y)
{
T2 z(x); // T2 must be constructable from T1
y = X; // T2 must be assignable from T1
}
static_assert can _copy T1 to T2()
void (*f)(T1, T2) = concept check;
}
b

The concept check can be triggered when you're either building an instance on the stack or deriving
from it:

template <typename T>
T sqrt(T x)

static_assert_can_copy T1 to T2<T, double> CHECK1;

}

template <typename T>
class math_operations : static_assert can_copy T1 to T2<T, double>

{}

2.2.5. Not Implemented

While C++0x allows you to “delete” member functions from a class, in classic C++, you'll sometimes want to
express the fact that an operator should not be provided:

template <typename T>
class X
{

/...

X<T>& operator= (X<T>& that) { NOT_IMPLEMENTED; }
};

105

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 2 © SMALL OBJECT TOOLKIT

where the last statement is a macro for a static assertion that fails. For example:

#define NOT_IMPLEMENTED MXT_ASSERT(false)

The rationale for this idiom is that the member operator will be compiler-only on first use, which is
exactly what you want to prevent.

However, this technique is risky and non-portable. The amount of diagnostics that a compiler can
emit on unused template member function varies. In particular, if an expression does not depend on T, the
compiler may legitimately try to instantiate it, so MXT_ASSERT(false) may trigger anytime.

At least, the return type should be correct:

X<T>& operator= (X<T>& that) { NOT_IMPLEMENTED; return *this; }
A second choice is to make the assertion dependent on T:
#define NOT_IMPLEMENTED MXT_ASSERT(sizeof(T)==0)

Finally, a portable technique is to cause a linker error with a fake annotation. This is less desirable than
a compiler error, because linker errors usually do not point back to a line in source code. This means they
are not easy to trace back.

#define NOT_IMPLEMENTED

X<T>& operator= (X<T>& that) NOT_IMPLEMENTED;

2.3. Tagging Techniques

Assume you have a class with a member function called swap and you need to add a similar one called
unsafe swap. In other words, you are adding a function that’s a variation of an existing one. You can:

e  Write a different function with a similar name and (hopefully) a similar signature:
public:
void swap(T8& that);
void unsafe_swap(T& that);

e Add (one or more) overloads of the original function with an extra runtime
argument:

private:
void unsafe_swap(T& that);

public:
void swap(T& that);

enum swap_style { SWAP_SAFE, SWAP_UNSAFE };

void swap(T& that, swap_style s)

{
if (s == SWAP_SAFE)
this->swap(that);
else
this->unsafe_swap(that);
}
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e Add an overload of the original function with an extra static useless argument:

public:
void swap(T& that);
void swap(T& that, int); // unsafe swap: call as x.swap(y, 0)

None of these options is completely satisfactory. The first is clear but does not scale well, as the
interface could grow too much. The second may pay a penalty at runtime. The last is not intuitive and should
be documented.

Instead, TMP makes heavy use of language-neutral idioms, which are language constructs that have no
impact on code generation.

A basic technique for this issue is overload resolution via tag objects. Each member of the overload set
has a formal unnamed parameter of a different static type.

struct unsafe {};

class X

{
public:
void swap(T8& that);
void swap(T& that, unsafe);

};
Here’s a different example:

struct naive_algorithm tag {};
struct precise algorithm tag {};

template <typename T>
inline T logip(T x, naive_algorithm tag)
{

return log(x+1);

template <typename T>
inline T logip(T x, precise algorithm tag)

const T xpl = x+1;
return xpl==1 ? x : x*log(xp1)/(xp1-1);

}

// later...

double t1 = loglp(3.14, naive algorithm tag());

double t2 = loglp(0.00000000314, precise algorithm tag());

Building a temporary tag is inexpensive (most optimizing compilers will do nothing and behave as if
you had two functions named loglp _naive and loglp precise, with one parameter each).

So, let’s dig a bit further into the mechanisms of overload selection.

Recall that you are facing the problem of picking the right function at compile time, supplying an extra
parameter that’s human-readable.
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The extra parameter is usually an unnamed instance of an empty class:

template <typename T>
inline T logip(T x, selector<true»);

template <typename T>
inline T logip(T x, selector<false>);

// code #1
return logip(x, selector<PRECISE_ALGORITHM>());

You might wonder why a type is necessary, when the same effect can be achieved with simpler syntax:

// code #2
if (USE_PRECISE ALGORITHM)
return loglp precise(x);
else
return loglp standard(x);

The key principle in tag dispatching is that the program compiles only the functions that are strictly
necessary. In code #1, the compiler sees one function call, but in the second fragment, there are two. The if
decision is fixed, but is irrelevant (as is the fact that the optimizer may simplify the redundant code later).

In fact, tag dispatching allows the code to select between a function that works and one that would not
even compile (see the following paragraph about iterators).

This does not imply that every if with a static decision variable must be turned into a function call.
Typically, in the middle of a complex algorithm, an explicit statement is cleaner:

do_it();
do_it again();

if (my_options<T>::need to clean up)

std: :fill(begin, end, T());
}

2.3.1. Type Tags

The simplest tags are just empty structures:

struct naive_algorithm tag {};
struct precise algorithm tag {};

template <typename T>
inline T logip(T x, naive_algorithm tag);

template <typename T>
inline T logip(T x, precise algorithm_tag);

You can use template tags to transport extra parameters to the function:

template <int N>
struct algorithm_precision_level {};
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template <typename T, int N>
inline T logip(T x, algorithm_precision_level<N>);

/..

double x = logip(3.14, algorithm precision_level<4>());

You can use derivation to build a tag hierarchy.
This example sketches what actual STL implementations do (observe that inheritance is public by default):

struct input _iterator tag {};

struct output_iterator tag {};

struct forward iterator tag : input_iterator tag {};

struct bidirectional iterator tag : forward iterator tag {};
struct random access iterator tag : bidirectional iterator_ tag {};

template <typename iter t>
void somefunc(iter_ t begin, iter t end)
{
return somefunc(begin, end,
typename std::iterator_traits<iter t>::iterator_category());

template <typename iter_ t>
void somefunc(iter t begin, iter t end, bidirectional iterator tag)
{

// do the work here

}

In this case, the bidirectional and random_access iterators will use the last overload of somefunc.
Alternatively, if somefunc is invoked on any other iterator, the compiler will produce an error.
A generic implementation will process all the tags that do not have an exact match®:

template <typename iter_ t, typename tag_t>
void somefunc(iter_t begin, iter t end, tag t)
{
// generic implementation:
// any tag for which there's no *exact* match, will fall here

This generic implementation can be made compatible with the tag hierarchy using pointers:

template <typename iter t>
void somefunc(iter_ t begin, iter t end)
{
typedef
typename std::iterator_traits<iter_ t>::iterator_category cat_t;
return somefunc(begin, end, static_cast<cat t*>(0));

}

°In particular, this will process random_access iterators as well. That is, it blindly ignores the base/derived tag hierarchy.
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template <typename iter_t>

void somefunc(iter t begin, iter t end,
std::bidirectional iterator tag*)

{

}

// do the work here

template <typename iter t>

void somefunc(iter t begin, iter t end,
void*)

{

}

// generic

The overload resolution rules will try to select the match that loses less information. Thus, the cast
derived*-to-base* is a better match than a cast to void*. So, whenever possible (whenever the iterator
category is at least bidirectional), the second function will be taken.

Another valuable option is:

template <typename iter t>
void somefunc(iter t begin, iter t end, ...)

{
}

// generic

The ellipsis operator is the worst match of all, but it cannot be used when the tag is a class (and this is
exactly why you had to switch to pointers and tags).

2.3.2. Tagging with Functions

A slightly more sophisticated option is to use function pointers as tags:

enum algorithm tag t

{

NAIVE,

PRECISE
b
inline static_value<algorithm_tag t, NAIVE> naive_algorithm tag()
{

return 0; // dummy function body: calls static_value<...>(int)
}

inline static_value<algorithm tag t, PRECISE> precise_algorithm_ tag()
{

}

return 0; // dummy function body: calls static_value<...>(int)
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The tag is not the return type, but the function itself. The idea comes somehow from STL stream
manipulators (that have a common signature).

typedef
static_value<algorithm tag t, NAIVE> (*naive_algorithm tag t)();

typedef
static_value<algorithm tag t, PRECISE> (*precise_algorithm_tag t)();

template <typename T>
inline T logip(T x, naive_algorithm tag t);

// later
// line 4: pass a function as a tag

double y = logip(3.14, naive algorithm tag);

Since each function has a different unique signature, you can use the function name (equivalent to a
function pointer) as a global constant. Inline functions are the only “constants” that can be written in header
files without causing linker errors.

You can then omit brackets from the tags (compare line 4 above with its equivalent in the previous
example). Function tags can be grouped in a namespace or be static members of a struct:

namespace algorithm tag

inline static_value<algorithm tag t, NAIVE> naive()
{ return o; }

inline static_value<algorithm_tag t, PRECISE> precise()
{ return o; }

}

or:

struct algorithm tag

{
static static_value<algorithm tag t, NAIVE> naive()

{ return o; }

static static_value<algorithm tag t, PRECISE> precise()
{ return o; }

1
double y = logip(3.14, algorithm_tag::naive);

Another dramatic advantage of function pointers is that you can adopt a uniform syntax for the same
runtime and compile-time algorithms:

enum binary operation

{

sum, difference, product, division
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};

#define mxt_SUM X+y

#define mxt DIFF  x-y

#define mxt_PROD  x*y

#define mxt_DIV x/y

// define both the tag and the worker function with a single macro

#define mxt DEFINE(OPCODE, FORMULA)

inline static_value<binary operation, OPCODE> static_tag ##OPCODE()
{

}

return 0;

template <typename T>
T binary(T x, Ty, static_value<binary operation, OPCODE>)

P i g g g P

return (FORMULA);
}

mxt_DEFINE(sum, mxt SUM);

mxt DEFINE(difference, mxt DIFF);
mxt DEFINE(product, mxt PROD);
mxt DEFINE(division, mxt DIV);

template <typename T, binary operation OP>
inline T binary(T x, Ty, static_value<binary operation, OP> (*)())

{
}

return binary(x, y, static_value<binary operation, OP>());

This is the usual machinery needed for the static selection of the function. Due to the way you defined
overloads, the following calls produce identical results (otherwise, it would be quite surprising for the user),
even if they are not identical. The first is preferred:

double a1 = binary(8.0, 9.0, static_tag product);
double a2 = binary(8.0, 9.0, static_tag product());

However, with the same tools, you can further refine the function and add a similar runtime algorithm':

template <typename T>
T binary(T x, Ty, const binary operation op)

{
switch (op)
{

case sum: return mxt_SUM;
case difference: return mxt DIFF;

19This example anticipates ideas from Section 7.3.
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case product: return mxt_PROD;
case division: return mxt_DIV;
default:

throw std::runtime_error("invalid operation");

}
}

The latter would be invoked as:

double a3 = binary(8.0, 9.0, product);

SMALL OBJECT TOOLKIT

This may look similar, but it’s a completely different function. It shares some implementation (in this

case, the four kernel macros), but it selects the right one at runtime.

e  Manipulators (see Section 1.4.7 are similar to functions used as compile-time

constants. However, they differ in a few ways too:

e  Manipulators are more generic. All operations have a similar signature (which must
be supported by the stream object) and any user can supply more of them, but they

involve some runtime dispatch.

e Function constants are a fixed set, but since there’s a one-to-one match between

signatures and overloaded operators, there is no runtime work.

2.3.3. Tag Iteration

A useful feature of functions tagged with static values is that, by playing with bits and compile-time
computations, it’s possible to write functions that automatically unroll some “iterative calls”

For example, the following function fills a C array with zeroes:

template <typename T, int N>

void zeroize helper(T* const data, static_value<int, N>)

{

zeroize helper(data, static value<int, N-1>());
data[N-1] = T();
}

template <typename T>

void zeroize_helper(T* const data, static_value<int, 1>)

{
data[o] = T();
}

template <typename T, int N>
void zeroize(T (&data)[N])
{

zeroize helper(data, static_value<int, N>());

}
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You can swap two lines and iterate backward:

template <typename T, int N>
void zeroize helper(T* const data, static_value<int, N>)
{

data[N-1] = T();

zeroize helper(data, static value<int, N-1>());

}

This unrolling is called linear and with two indices, you can have exponential unrolling. Assume for
simplicity that N is a power of two:

template <int N, int M>
struct index

{

b

template <typename T, int N, int M>
void zeroize helper(T* const data, index<N, M>)
{
zeroize helper(data, index<N/2, M>());
zeroize helper(data, index<N/2, M+N/2>());

}

template <typename T, int M>
void zeroize helper(T* const data, index<1, M»)

{
}

data[M] = T();

template <typename T, int N>
void zeroize(T (&data)[N])
{

}

double test[8];
zeroize(test);

1
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Figure 2-1. Exponential unrolling for N=8

zeroize helper(data, index<N, 0>());

1<8,0:
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As a more complex case, you can iterate over a set of bits.
Assume an enumeration describes some heuristic algorithms in increasing order of complexity:

enum

{
ALGORITHM 1,
ALGORITHM 2,
ALGORITHM 3,
ALGORITHM 4,
/...

};

For each value in the enumeration, you are given a function that performs a check. The function returns
true when everything is okay or false if it detects a problem:

bool heuristic([[args]], static_value<size t, ALGORITHM 1>);
bool heuristic([[args]], static_value<size t, ALGORITHM 25>);

/7 ...

What if you wanted to run some or all of the checks, in increasing order, with a single function call?
First, you modify the enumeration using powers of two:

enum

{
ALGORITHM 1 = 1,
ALGORITHM 2 = 2,

ALGORITHM_ 3 = 4,
ALGORITHM_4 = 8,
/...

1
The user will use a static value as a tag, and algorithms will be combined with “bitwise or” (or +).

typedef static_value<size t, ALGORITHM 1 | ALGORITHM 4> mytag t;

// this is the public function
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template <size t K>
bool run heuristics([[args]], static_value<size t, K>)
{
return heuristic([[args]],
static_value<size t, K>(),
static value<size t, 0>());

Here are the “private” implementation details:

#define VALUE(K) static_value<size t, K>

template <size t K, size t J>
bool heuristic([[args]], VALUE(K), VALUE(J))
{

static const size t JTH BIT = K & (size t(1) << J);

// JTH_BIT is either 0 or a power of 2.

// try running the corresponding algorithm, first.

// if it succeeds, the &% will continue with new tags,

// with the J-th bit turned off in K and J incremented by 1

return
heuristic([[args]], VALUE(JTH BIT)()) 8&
heuristic([[args]], VALUE(K-JTH BIT)(), VALUE(J+1)());

}

template <size t J>

bool heuristic([[args]], VALUE(0), VALUE(J))

{
// finished: all bits have been removed from K
return true;

}

template <size t K>
bool heuristic([[args]], VALUE(K))

{
// this is invoked for all bits in K that do not have
// a corresponding algorithm, and when K=0
// i.e. when a bit in K is off
return true;
}

2.3.4. Tags and Inheritance

Some classes inherit additional overloads from their bases. So an object that dispatches a tagged call might
not know which of the bases will answer.
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Suppose you are given a simple allocator class, which, given a fixed size, will allocate one block of
memory of that length.

template <size t SIZE>
struct fixed _size allocator
{

void* get block();
b

You now wrap it up in a larger allocator. Assuming for simplicity that most memory requests have a size
equal to a power of two, you can assemble a compound_pool<N> that will contain a fixed_size_allocator<J»
forJ=1,2,4,8. It will also resort to : :operator newwhen no suitable J exists (all at compile-time).

The syntax for this allocation is'":

compound_pool<64> A;
double* p = A.allocate<double>();

The sketch of the idea is this. compound_pool<N> contains a fixed_size_allocator<N> and derives
from compound_pool<N/2>. So, it can directly honor the allocation requests of N bytes and dispatch all other
tags to base classes. If the last base, compound_pool<0>, takes the call, no better match exists, so it will call
operator new.

More precisely, every class has a pick function that returns either an allocator reference or a pointer.

The call tagis static_value<size_t, N>, where Nis the size of the requested memory block.

template <size t SIZE>
class compound_pool;

template < >
class compound_pool<o>

{

protected:

template <size t N>
void* pick(static_value<size_t, N»>)

{

}
};

return ::operator new(N);

template <size t SIZE>
class compound_pool : compound_pool<SIZE/2>

{

fixed size allocator<SIZE> p_;

"Deallocation has been omitted on purpose.
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protected:
using compound_pool<SIZE/2>::pick;

fixed_size_allocator<SIZE>& pick(static_value<SIZE»)

{
}

return p_;

public:
template <typename object_t>
object_t* allocate()

{
typedef static_value<size t, sizeof(object_t)> selector t;
return static_cast<object_t*>(get_pointer(this-spick(selector t())));
}
private:

template <size_t N>
void* get_pointer(fixed_size_allocator<N»3 p)

{
return p.get block();

void* get_pointer(void* p)

{
}

return p;
};

Note the using declaration, which makes all the overloaded pick functions in every class visible. Here,
compound_pool<0>: :pick has a lower priority because it’s a function template, but it always succeeds.
Furthermore, since it returns a different object, it ends up selecting a different get_pointer.
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Static Programming

Templates are exceptionally good at forcing the compiler and optimizer to perform some work only when
the executable program is generated. By definition, this is called static work. This is as opposed to dynamic
work, which refers to what is done when the program runs.

Some activities must be completed before runtime (computing integer constants) and some activities
have an impact on runtime (generating machine code for a function template, which is later executed).

TMP can produce two types of code—metafunctions, which are entirely static (for example, a
metafunction unsigned_integer<N>::type that returns an integer holding at least N bits) and mixed
algorithms, which are part static and part runtime. (STL algorithms rely on iterator_category or on the
zeroize function explained in Section 4.1.2.

This section deals with techniques for writing efficient metafunctions.

3.1. Static Programming with the Preprocessor

The classic way to write a program that takes decisions about itself is through preprocessor directives.
The C++ preprocessor can perform some integer computation tests and cut off portions of code that are not
appropriate.

Consider the following example. You want to define fixed-length unsigned integer types, such as
uint32_t, to be exactly 32-bits wide, and do the same for any bit length that’s a power of two.

Define

template <size t S>
struct uint_n;

#define mXT_UINT_N(T,N) \
template <> struct uint_n<N> { typedef T type; }

and specialize uint_n for all sizes that are indeed supported on the current platform.
If the user tries uint_n<16>: :type and there’s no suitable type, she will get a proper and intelligible
compiler error (about a missing template specialization).
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So you have to ask the preprocessor to work out the sizes by trial and error’:

#include <climits>

#define MXT_I32BIT oxffffffffu
#define MXT_I16BIT oxffffu
#define MXT_I8BIT oxffu

#if (UCHAR MAX == MXT I8BIT)
mXT_UINT N(unsigned char,8);
#endif

#if (USHRT MAX == MXT I16BIT)
mXT_UINT N(unsigned short,16);
#elif UINT MAX == MXT_I16BIT
mXT_UINT N(unsigned int,16);
#endif

#if (UINT_MAX == MXT I32BIT)
mXT_UINT N(unsigned int,32);
#elif (ULONG MAX == MXT_I32BIT)
mXT_UINT N(unsigned long,32);
#endif

This code works, but it’s rather fragile because interaction between the preprocessor and the compiler
is limited.?

Note that this is not merely a generic style debate (macro versus templates), but a matter of correctness.
If the preprocessor removes portions of the source file, the compiler does not have a chance to diagnose
all errors until macro definitions change. On the other hand, if the TMP decisions rely on the fact that the
compiler sees a whole set of templates, then it instantiates only some of them.

Note The preprocessor is not “evil”.

Preprocessor-based “metaprogramming,” like the previous example, usually compiles much faster and—if it’s
simple—it’s highly portable. Many high-end servers still ship with old or custom compilers that do not support
language-based (template) metaprogramming. On the other hand, | should mention that, while compilers tend
to conform 100% to the standard, this is not true for preprocessors. Therefore, obscure preprocessor tricks may
fail to produce the desired results, and bugs caused by misusing the preprocessor are quite hard to detect.?

An implementation of uint_n that does not rely on the preprocessor is shown and explained in
Section 3.6.10.

'"Remember that the preprocessor runs before the compiler so it cannot rely on sizeof.
’Read the previous note again ©.
3See also http://www.boost.org/doc/libs/1_46_0/1libs/wave/doc/preface.html.
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3.2. Compilation Complexity

When a class template is instantiated, the compiler generates:
e  Every member signature at class level
e  Allstatic constants and typedefs
e  Only strictly necessary function bodies

If the same instance is needed again in the same compilation unit, it’s found via lookup (which need not
be particularly efficient, but it’s still faster than instantiation).
For example, given the following code:

template <size t N>
struct sum_of_integers up_to

{
};

static const size t value = N + sum_of integers up to<N-1>::value;

template <>
struct sum_of integers up_to<o0>

{
static const size t value = 0;

};
int n9 = sum_of_integers_up_to<9»>::value; // mov dword ptr [n9],2Dh
int n8 = sum_of_integers_up_to<8>::value; // mov dword ptr [n8],24h

The initialization of n9 has a cost of 10 template instantiations, but the subsequent initialization of n8
has a cost of one lookup (not 9). Both instructions have zero runtime impact, as the assembly code shows.

As arule, most metafunctions are implemented using recursion. The compilation complexity is the
number of template instances recursively required by the metafunction itself.

This example has linear complexity, because the instantiation of X<N> needs X<N-1>... X<0>. While
you'll usually want to look for the implementation with the lowest complexity (to reduce compilation times,
not execution times), you can skip this optimization if there’s a large amount of code reuse. Because of
lookups, the first instantiation of X<N> will be costly, but it allows instantiation of X<M> for free in the same
translation unit if M<N.

Consider this example of an optimized low-complexity implementation:

template <size t N, size t K>
struct static_raise

{
};

static const size t value = /* N raised to K */;

The trivial implementation has linear complexity:

template <size t N, size t K>
struct static_raise

{
};

static const size t value = N * static_raise<N, K-1>::value;
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template <size t N>
struct static_raise<N, 0>

{
};

static const size t value = 1;

To obtain static_raise<N,K>::value, the compiler needs to produce K instances: static_raise<N,K-1>,
static_raise<N,K-2>,...

Eventually static_raise<N,1> needs static_raise<N,0>, which is already known (because there’s an
explicit specialization). This stops the recursion.

However, there’s a formula that needs only about 1og(K) intermediate types:

Note If the exponent is a power of two, you can save a lot of multiplications via repeated squaring. To
compute X8, only three multiplications are needed if you can store only the intermediate results. Since
X8 = ((X??)?, you need to execute

t = x*¥x; t = t*t; t = t*t; return t;
In general, you can use recursively the identity:

2
N [[[()(l 2 N/2

#tdefine MXT_M SQ(a) ((a)*(a))

template <size t N, size t K>
struct static_raise;

template <size t N>
struct static_raise<N, 0>

{
};

static const size t value = 1;

template <size t N, size t K>
struct static_raise

{
private:

static const size t vo = static_raise<N, K/2>::value;
public:

static const size t value = MXT_M _SQ(vO)*(K % 2 ? N : 1);
};

Note the use of MXT_M_SQ (see Section 1.3.2).
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A final remark: Just because the natural implementation of metafunctions involves recursion, does not
mean that any recursive implementation is equally optimal.*

Suppose N is an integer in base 10 and you want to extract the i-th digit (let’s agree that digit 0 is the
right-most) as digit<I,N>::value:

template <int I, int N>
struct digit;

Clearly, you have two choices. One is a “full” recursion on the main class itself

template <int I, int N>
struct digit

{

};

template <int N>
struct digit<o, N>

{
};

static const int value = digit<i-1, N/10>::value;

static const int value = (N % 10);

Or you can introduce an auxiliary class main class:

template <int I>
struct power_of 10

{
};

template <>
struct power_of 10<0>

{

};

template <int I, int N>
struct digit

{

};

static const int value

10 * power of_10<I-1>::value;

static const int value

n
[N
-

static const int value = (N / power_of 10<I>::value) % 10;

While the first implementation is clearly simpler, the second scales better. If you need to extract the 8™ digit
from 100 different random numbers, the former is going to produce 800 different specializations because
chances of reuse are very low. Starting with digit<8,12345678>, the compiler has to produce the sequence
digit<7,1234567>, digit<6,123456>..., and each of these classes is likely to appear only once in the
entire program.

On the other hand, the latter version produces eight different specialized powers of 10 that are reused
every time, so the compiler workload is just 100+10 types.

“This example was taken from a private conversation with Marco Marcello.
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3.3. Classic Metaprogramming Idioms

Metafunctions can be seen as functions that take one or more types and return types or constants. You'll see
in this section how to implement some basic operations.

Binary operators are replaced by metafunctions of two variables. The concept T1==T2 becomes
typeequal<T1, T2>::value:

template <typename T1, typename T2>
struct typeequal

static const bool value = false;

};

template <typename T>
struct typeequal<T, T>

static const bool value = true;

};

Whenever possible, you should derive from an elementary class that holds the result, rather than
introduce a new type/constant. Remember that public inheritance is implied by struct

template <typename T1, typename T2>
struct typeequal : public selector<false> // redundant

{
};

template <typename T>
struct typeequal<T, T> : selector<true> // public

{
};

The ternary operator TEST ? T1 : T2 becomes typeif<TEST, T1, T2>::type:

template <bool STATEMENT, typename T1, typename T2>
struct typeif

typedef T1 type;
};

template <typename T1, typename T2>
struct typeif<false, T1, T2>

{
typedef T2 type;

)

Or, according to the previous guideline:

template <bool STATEMENT, typename T1, typename T2>
struct typeif : instance_of<T1>

};
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template <typename T1, typename T2>
struct typeif<false, T1, T2> : instance_of<T2>

{
};

The strong motivation for derivation is an easier use of tagging techniques. Since you will often “embed”
the metafunction result in a selector, it will be easier to use the metafunction itself as a selector. Suppose you
have two functions that fill a range with random elements:

template <typename iterator_ t>
void random fill(iterator t begin, iterator t end, selector<falses)

{
for (; begin != end; ++begin)
*begin = rand();

}

template <typename iterator_ t>
void random fill(iterator t begin, iterator t end, selector<trues)

{
for (; begin != end; ++begin)
*begin = 'A" + (rand() % 26);
Compare the invocation:
random fill(begin, end, selector<typeequal<T, char*>::value>());
with the simpler®:

random_fill(begin, end, typeequal<T, char*>());

Note Note as a curiosity, that header files that store a version number in their guard macro can be used in
a typeif. Compare the following snippets

#include "myheader.hpp"

typedef
typename typeif<MXT_MYHEADER_==0x1000, double, float>::type float_t;

#if MXT_MYHEADER == 0x1000
typedef double float_t;
#else

typedef float float t;
#endif

The first snippet will not compile if MXT_MYHEADER _ is undefined. The preprocessor instead would behave
as if the variable were o.

’I do not always use the derivation notation in the book, mainly for sake of clarity. However, I strongly encourage adopting
it in production code, as it boosts code reuse.
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3.3.1. Static Short Circuit

As a case study of template recursion, let’s compare the pseudo-code of a static and dynamic operator:

template <typename T>
struct F : typeif<[[CONDITION]], T, typename G<T>::type>

{
};
int F(int x)
{
return [[CONDITION]] ? x : G(x);
}

These statements are not analogous:

¢  The runtime statement is short-circuited. It will not execute code unless necessary,
s0 G(x) might never run.

e  The static operator will always compile all the mentioned entities, as soon as one of
their members is mentioned. So the first F will trigger the compilation of G<T>: : type,
regardless of the fact that the result is used (that is, even when the condition is true).

There is no automatic static short-circuit. If underestimated, this may increase the build times without
extra benefits, and it may not be noticed, because results would be correct anyway.
The expression may be rewritten using an extra “indirection”:

template <typename T>

struct F
{
typedef
typename typeif<[[CONDITION]], instance of<T>, G<T> >::type
aux_t;

typedef typename aux_t::type type;
b

Here, only G<T> is mentioned, not G<T>: : type. When the compiler is processing typeif, it needs only
to know that the second and third parameters are valid types; that is, that they have been declared. If the
condition is false, aux_t is set to G<T>. Otherwise, it is set to instance_of<T>. Since no member has been
requested yet, nothing else has been compiled. Finally, the last line triggers compilation of either
instance_of<T> or G<T>.

So, if CONDITION is true, G<T>: : type is never used. G<T> may even lack a definition or it may not contain
a member named type.

To summarize:

e Delay accessing members as long as possible

e  Wrap items to leverage the interface
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An identical optimization applies to constants:
static const size t value = [[CONDITION]] ? 4 : alignment of<T>::value;

typedef typename
typeif<[[CONDITION]], static_value<size t, 4>, alignment_of<T>>::type
aux_t;

static const size t value = aux_t::value;

At first, it may look like there’s no need for some special logic operator, since all default operators on
integers are allowed inside of templates®:

template <typename T1, typename T2>
struct naive OR
{
static const bool value = (T1::value || T2::value); // ok, valid

};

The classic logical operators in C++ are short-circuited; that is, they don’t evaluate the second operator
if the first one is enough to return a result. Similarly, you can write a static OR that does not compile its second
argument unnecessarily. If T1: :value is true, T2: :value is never accessed and it might not even exist (AND is
obtained similarly).

// if (T1::value is true)
//  return true;

// else

//  return T2::value;

template <bool B, typename T2>
struct static_OR_helper;

template <typename T2>

struct static_OR_helper<false, T2> : selector<T2::value>
{

};

template <typename T2>

struct static_OR_helper<true, T2> : selector<true>
{

};

template <typename T1, typename T2>

struct static_OR : static_OR_helper<Ti::value, T2>
{

};

’Except casts to non-integer types. For example, N*1.2 is illegal, but N+N/5 is fine.
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3.4. Hidden Template Parameters

Some class templates may have undocumented template parameters, generally auto-deduced, that silently
select the right specialization. This is a companion technique to tag dispatching, and an example follows:

template <typename T, bool IS SMALL OB] = (sizeof(T)<sizeof(void*))>
class A;

template <typename T>
class A<T, true>

{
};

// implementation follows

template <typename T>
class A<T, false>

{
};

// implementation follows

The user of A will accept the default, as a rule:

A<char> c1;
A<char, true> c2; // exceptional case. do at own risk

The following is a variation of an example that appeared in[3].

template <size t N>
struct fibonacci

{

static const size t value =
fibonacci<N-1>::value + fibonacci<N-2>::value;

};

template <>
struct fibonacci<o>

{
};

static const size t value

1}
o
-

template <>
struct fibonacci<1>

{
};

static const size t value = 1;
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It can be rewritten using a hidden template parameter:

template <size t N, bool TINY NUMBER = (N<2)>
struct fibonacci
{
static const size_t value =
fibonacci<N-1>::value + fibonacci<N-2>::value;
};

template <size t N>
struct fibonacci<N, true>
{

static const size t value = N;

};

To prevent the default from being changed, you can rename the original class by appending the
suffix _helper and thus introducing a layer in the middle:

template <size t N, bool TINY NUMBER>
struct fibonacci_helper

{

// all as above

};

template <size t N>

class fibonacci : fibonacci_helper<N, (N<2)>
{

};

3.4.1. Static Recursion on Hidden Parameters

Let’s compute the highest bit of an unsigned integer x. Assume that x has type size_t and, if x==0, it will
conventionally return -1.

A non-recursive algorithm would be: set N = the number of bits of size_t; test bit N-1, then N-2..., and
so on, until a non-zero bit is found.

First, as usual, a naive implementation:

template <size t X, size t K>
struct highest bit helper
{

static const int value =
((X >> K) % 2) ? K : highest bit helper<X, K-1>::value;
};

template <size t X>
struct highest bit helper<X, 0>
{

static const int value = (X % 2) 2 0 : -1;

};
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template <size t X>

struct static_highest bit

: highest_bit_helper<X, CHAR BIT*sizeof(size t)-1>
{

};

As written, it works, but the compiler might need to generate a large number of different classes per
static computation (that is, for any X, you pass to static_highest bit).

First, you can rework the algorithm using bisection. Assume X has N bits, divide it in an upper and a
lower half (U and L) having (N-N/2) and (N/2) bits, respectively. If U is 0, replace X with L; otherwise, replace X
with U and remember to increment the result by (N/2)":

In pseudo-code:

size t hibit(size t x, size t N = CHAR BIT*sizeof(size t))

{
size t u = (x>>(N/2));
if (u»0)
return hibit(u, N-N/2) + (N/2);
else
return hibit(x, N/2);
}

This means:

template <size t X, int N>
struct helper

{
static const size t U = (X >> (N/2));
static const int value =
U ? (N/2)+helper<U, N-N/2>::value : helper<X, N/2>::value;
};

As written, each helper<X, N>induces the compiler to instantiate the template again twice—namely
helper<U, N-N/2>and helper<X, N/2>—even if only one will be used.

Compilation time may be reduced either with the static short circuit, or even better, by moving all the
arithmetic inside the type.®

template <size t X, int N>
struct helper

{
static const size t U = (X >> (N/2));
static const int value = (U ? N/2 : 0) +
helper<(U ? U : X), (U ? N-N/2 : N/2)>::value;
b

’In practice, N is always even, so N-N/2 ==N/2.
8See also the double-check stop in Section 7.2.
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This is definitely less clear, but more convenient for the compiler.
Since N is the number of bits of X, N>0 initially.
You can terminate the static recursion when N==1:

template <size t X>
struct helper<X, 1>
{

static const int value = X ? 0 : -1;

};
Finally, you can use derivation from static_value to store the result:

template <size t X>

struct static_highest bit

: static_value<int, helper<X, CHAR BIT*sizeof(size t)»>::value>
{

};

The recursion depth is fixed and logarithmic. static_highest bit<X> instantiates at most five or six
classes for every value of X.

3.4.2. Accessing the Primary Template

A dummy parameter can allow specializations to call back the primary template.
Suppose you have two algorithms, one for computing cos(x) and another for sin(x), where X is any
floating-point type. Initially, the code is organized as follows:

template <typename float_t>
struct trigonometry

{ static float t cos(const float t x)
{
/] ...
}
static float t sin(const float t x)
{
/...
}
};

template <typename float_ t>
inline float t fast cos(const float t x)

{
}

template <typename float_t>
inline float t fast sin(const float t x)

{
}

return trigonometry<float t>::cos(x);

return trigonometry<float t>::sin(x);
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Later, someone writes another algorithm for cos<float>, but not for sin<float>.
You can either specialize/overload fast_cos for float or use a hidden template parameter, as shown:

template <typename float t, bool = false>
struct trigonometry

{ static float_t cos(const float_t x)
{
/...
}
static float t sin(const float t x)
{
/] ...
}
};

template <>
struct trigonometry<float, false>

{
static float_t cos(const float t x)
{
// specialized algorithm here
}
static float t sin(const float t x)
{
// calls the general template
return trigonometry<float, trues::sin(x);
}
1

Note that in specializing the class, it's not required that you write <float, false>.You can simply enter:

template <>
struct trigonometry<floats

{

because the default value for the second parameter is known from the declaration.

Any specialization can access the corresponding general function by setting the Boolean to true
explicitly.

This technique will appear again in Section 7.1.

A similar trick comes in handy to make partial specializations unambiguous.

C++ does not allow specializing a template twice, even if the specializations are identical. In particular,
if you mix cases for standard typedefs and integers, the code becomes subtly non-portable:

template <typename T>
struct is_integer

{
};

static const bool value = false;
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template < > struct is_integer<short>
{ static const bool value = true; };

template < > struct is_integer<int>
{ static const bool value = true; };

template < > struct is_integer<long>
{ static const bool value = true; };

template < > struct is_integer<ptrdiff_t> // problem:
{ static const bool value = true; }; // may or may not compile

If ptrdiff_tis afourth type, say long long, then all the specializations are different. Alternatively,
ifptrdiff_tissimply a typedef for long, the code is incorrect. Instead, this works:

template <typename T, int = 0>
struct is_integer
{

static const bool value = false;

};

template <int N> struct is_integer<short, N>
{ static const bool value = true; };
template <int N> struct is_integer<int , N>
{ static const bool value = true; };
template <int N> struct is_integer<long , N>
{ static const bool value = true; };

template <>
struct is_integer<ptrdiff t»
{

static const bool value = true;

};

Since is_integer<ptrdiff t, 0>ismore specialized than is_integer<long, N>, it will be used
unambiguously.’

This technique does not scale well,'° but it might be extended to a small number of typedefs, by adding
more unnamed parameters. This example uses int, but anything would do, such as bool = false or
typename = void

template <typename T, int = 0, int = 0>
struct is_integer

{

static const bool value = false;

};

°I insist that the problem is solvable because the implementations of is_integer<long> and is_integer<ptrdiff t>are
identical; otherwise, it is ill-formed. For a counterexample, consider the problem of converting a time_t and long to a
string; even if time_t is long, the strings need to be different. Therefore, this issue cannot be solved by TMP techniques.
"°This is a good thing, because a well-built template class shouldn’t need it.
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template <int N1, int N2>
struct is_integer<long, N1, N2>
{ static const bool value = true; };

template <int N1>

struct is_integer<ptrdiff t, Ni>

{ static const bool value = true; };
template < >

struct is_integer<time t>
{ static const bool value = true; };

3.4.3. Disambiguation

In TMP it’s common to generate classes that derive several times from the same base (indirectly). It’s not yet
time to list a full example, so here’s a simple one:

template <int N>
struct A {};

template <int N>
struct B : AKN % 2>, B<N / 2> {};

template <>
struct B<o> {};

For example, the inheritance chain for B<9> is illustrated in Figure 3-1.

— AALL>

B<9> <7 A<O>
B<4> <ﬁ < A<0> vn)

— <2> <1>

B> (B

Figure 3-1. The inheritance chain for B<9>

Note that A<0> and A<1> occur several times. This is allowed, except that you cannot cast, explicitly or
implicitly, B<9> to A<0> or A<1>:

template <int N>
struct A

int getN() { return N; }

b
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template <int N>
struct B : A<N % 2>, B<N / 2>

int doIt() { return A<N % 2>::getN(); } // error: ambiguous
5

What you can do is add a hidden template parameter so that different levels of inheritance correspond
to physically different types.
The most popular disambiguation parameters are counters:

template <int N, int FAKE = 0>
struct A {};

template <int N, int FAKE = 0>
struct B : A<N % 2, FAKE"'>, B<N / 2, FAKE+1> {};

template <int FAKE>
struct B<o, FAKE> {};

f

s
—P
—— ,A<0,2>
B<2,2>

:B<9,0>'

/8

A<1,3>

'B< 1,3>‘ e
B<0,4>

Figure 3-2. The modified inheritance chain for B<9> using a counter

Another commonly used disambiguator tag is the type this:

template <int N, typename T>
struct A {};

template <int N>
struct B : A<N % 2, B<N» >, B<N/2> {};

template <>
struct B<o> {};

"Here, FAKE and FAKE+1 both work.
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A<1, B<S>> |

' _|A<0, B<a>>
| | |

B<9> —_.%
A<0, B<2>>

A<l, B<1>>|

Figure 3-3. The modified inheritance chain for B<9> using a tag-type

This idea is used extensively in Section 5.2

3.5. Traits

Traits classes (or simply, traits) are a collection of static functions, types, and constants that abstract the
public interface of a type T. More precisely, for all T representing the same concept, traits<T> is a class
template that allows you to operate on T uniformly. In particular, all traits<T> have the same public
interface.'?

Using traits, it’s possible to deal with type T by ignoring partially or completely its public interface.
This makes traits an optimal building layer for algorithms.

Why ignore the public interface of T? The main reasons are because it could have none or it could be
inappropriate.

Suppose T represents a “string” and you want to get the length of an instance of T. T may be const
char* or std: :string, but you want the same call to be valid for both. Otherwise, it will be impossible to
write template string functions. Furthermore, 0 may have a special meaning as a “character” for some T, but
not for all.

The first rigorous definition of traits is an article by Nathan Myers,"* dated 1995.

The motivation for the technique is that, when writing a class template or a function, you'll realize that
some types, constants, or atomic actions are parameters of the “main” template argument.

So you could put in additional template parameters, but that’s usually impractical. You could also
group the parameters in a traits class. Both the next example and the following sentences are quotes from
Myers’ article'*:

12Same does not imply that all functions must be identical, as some differences may have a limited impact on “uniform use”.
As a trivial example, arguments may be passed by value or by const reference.

3Available at: cantrip.org/trails.html. The article cites as previous bibliography [10], [11] and [12].

The sentences have been slightly rearranged.
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Because the user never mentions it, the [traits class] name can be long and descriptive.

template <typename char_t>
struct ios_char_traits

{

};

template <>
struct ios_char_traits<char>

{

typedef char char_type;

typedef int int type;

static inline int type eof() { return EOF; }
};

template <>
struct ios_char_traits<wchar_ t>

{

typedef wchar_t char_type;

typedef wint_t int_type;

static inline int type eof() { return WEOF; }
};

The default traits class template is empty. What can anyone say about an unknown
character type? However, for real character types, you can specialize the template and
provide useful semantics.

To put a new character type on a stream, you need only specialize ios_char_traits for the
new type.

Notice that ios_char traits has no data members; it only provides public definitions.
Now you can define the streambuf template:

template <typename char_t>
class basic_streambuf

Notice that it has only one template parameter, the one that interests users.
In fact, Myers concludes his article with a formal definition and an interesting observation:

Traits class:

A class used in place of template parameters. As a class, it aggregates useful types and
constants. As a template, it provides an avenue for that “extra level of indirection” that
solves all software problems.

This technique turns out to be useful anywhere that a template must be applied to native
types, or to any type for which you cannot add members as required for the template’s
operations.
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Traits classes may be “global” or “local” Global traits are simply available in the system and they can
be freely used anywhere. In particular, all specializations of a global traits class have system-wide scope (so
specializations are automatically used everywhere). This approach is in fact preferred when traits express
properties of the platform.

template <typename char_t>
class basic_streambuf

{

typedef typename ios_char_ traits<char_ t>::int_type int_type;

y

Note For example, you could access the largest unsigned integer, of float, available. Consider the
following pseudo-code:

template <typename T>
struct largest;

template <>
struct largest<int>

{
typedef long long type;

)

template <>
struct largest<float>

typedef long double type;
};

template <>
struct largest<unsigned>

{
};

typedef unsigned long long type;

Evidently, a call such as largest<unsigneds: : type is expected to return a result that’s constant in the
platform, so all customizations—if any—should be global to keep the client code coherent.

A more flexible approach is to use local traits, passing the appropriate type to each template instance
as an additional parameter (which defaults to the global value).

template <typename char_t, typename traits t = ios_char_traits<char t> >
class basic_streambuf

{
typedef typename traits_t::int_type int_type;

};.
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The following sections focus on a special kind of traits—pure static traits, which do not contain
functions but only types and constants. You will come back to this argument in Section 4.2.

3.5.1. Type Traits

Some traits classes provide typedefs only, so they are indeed multi-value metafunctions. As an example,
consider again std: :iterator_traits.

Type traits® are a collection of metafunctions that provide information about qualifiers of a given type
and/or alter such qualifiers. Information can be deduced by a static mechanism inside traits, can be explicitly
supplied with a full/partial specialization of the traits class, or can be supplied by the compiler itself.'®

template <typename T>

struct is_const : selector<false>
{

b

template <typename T>

struct is_const<const T> : selector<true>
{

b5

Note Today, type traits are split to reduce compile times, but historically they were large monolithic classes
with many static constants.

template <typename T>
struct all_info_together

{
static const bool is_class = true;
static const bool is pointer = false;
static const bool is_integer = false;
static const bool is floating = false;
static const bool is_unsigned = false;
static const bool is const = false;
static const bool is reference = false;
static const bool is volatile = false;

};

BThe term type traits, introduced by John Maddock and Steve Cleary, is used here as a common name, but it is also popular
as a proper name, denoting a particular library implementation. See http://cppreference.com/header/type traits
or http://www.boost.org/doc/1ibs/1_57_0/libs/type_traits/doc/html/index.html.

'In modern C++, there’s a dedicated <type_traits> header that contains most of the metafunctions described here, and
many more that cannot be replicated in classic C++. For example, has_trivial destructor<T> is indeducible without
the cooperation of the compiler, and current implementations always return false, except for built-in types.
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As arule, traits have a general implementation with conservative defaults, including partial specializations
with meaningful values for classes of types and full specializations customized on individual types.

template <typename T>
struct add_reference

{
typedef T& type;
};

template <typename T>
struct add_reference<T&>

typedef T& type;
};

template < >
struct add_reference<void>

{
};

// reference to void is illegal. don't put anything here

Traits are often recursive:

template <typename T>

struct is_unsigned integer : selector<false>
{

b

template <typename T>

struct is_unsigned integer<const T> : is_unsigned integer<T>
{

b

template <typename T>

struct is_unsigned_integer<volatile T> : is_unsigned_integer<T>
{

};

template < >
struct is_unsigned_integer<unsigned int> : selector<true>

{
};

template < >
struct is_unsigned_integer<unsigned long> : selector<true>

{
};

// add more specializations...

It’s possible to define add_reference<voidy: :type to be void.
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Traits can use inheritance and then selectively hide some members:

template <typename T>
struct integer traits;

template <>
struct integer traits<int>
{
typedef long long largest type;
typedef unsigned int unsigned_type;
b

template <>
struct integer_ traits<long> : integer traits<int»
{
// keeps integer traits<int>::largest type
typedef unsigned long unsigned_type;
b

STATIC PROGRAMMING

Note In C++, a template base class is not in scope of name resolution:

template <typename T>
struct BASE

{
typedef T type;

)

template <typename T>
struct DER : public BASE<T>

{
type t; // error: 'type' is not in scope

};
However, from a static point of view, DER does contain a type member:

template <typename T>
struct typeof

{
typedef typename T::type type;

)

typeof< DER<int> >::type i = 0; // ok: int i =0

www.it-ebooks.info
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Type traits, if not carefully designed, are vulnerable to hard conceptual problems, as the C++ type

system is a lot more complex than it seems:

template <typename T>

struct is_const : selector<false>
{

};

template <typename T>
struct is_const<const T> :
{

b

template <typename T>

struct add_const : instance_of<const T>
{

b

template <typename T>
struct add_const<const T> :
{

};

selector<true>

Here are some oddities:

instance_of<const T>

e IfNisacompile-time constant and T is a type, you can form two distinct array types:

T [N]andT [].'®

e Qualifiers such as const applied to array types behave a bit oddly. If T is an array, for
example, double [4], const Tis an “array of four const double,” not “const array of
four double” In particular, const T is not const:

typedef double T1;

typedef add_const<T1>::type T2;
T2 x = 3.14;

bool b1 = is_const<T2>::value;

typedef double T3[4];

typedef add_const<T3>::type T4;
T4 a = { 1,2,3,4 })

bool b2 = is_const<T4>::value;

So, you should add more specializations:

template <typename T, size t N>
struct is _const<const T [N]>

{
};

static const bool value = true;

"This is actually used. Some smart pointers, including std::unique_ptr, use operator delete [] when the type

matches T[] and single deletion in any other case.
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template <typename T >
struct is _const<const T []>

{
};

static const bool value = true;

There are two possible criteria you can verify on types:
e Amatch is satisfied; for example, const int matches const T with T==int.

e Alogical test is satisfied; for example, you could say that T is const if const Tand T
are the same type.

The C++ type system is complex enough that criteria may look equivalent in the majority of cases, but
still not be identical. As a rule, whenever such a logical problem arises, the solution will come from more
precise reasoning about your requirements. For any T, is_const<T8&>: :value is false because T& does not
satisfy a match with a const type. However, add_const<T&>: : type is again T& (any qualifiers applied to a
reference are ignored). Does this mean that references are const?

Should you add a specialization of is_const<T&> that returns true? Or do you really want
add_const<T&>: :type to be const T&?

In C++, objects can have different degrees of const-ness. More specifically, they can be

e  Assignable
e Immutable
e const

Being assignable is a syntactic property. An assignable object can live on the left side of operator-=.

A const reference is not assignable. In fact, however, T8 is assignable whenever T is. (Incidentally, an
assignment would change the referenced object, not the reference, but this is irrelevant.)

Being immutable is a logical property. An immutable object cannot be changed after construction,
either because it is not assignable or because its assignment does not alter the state of the instance. Since
you cannot make a reference “point” to another object, a reference is immutable.

Being const is a pure language property. An object is const if its type matches const T for some T.

A const object may have a reduced interface and operator= is likely one of the restricted member functions.

References are not the only entities that are both immutable and assignable. Such a situation can be
reproduced with a custom operator=.

template <typename T>
class fake ref

{
T* const ptr_;
public:
/1 ...
const fake ref& operator=(const T& x) const
{
*ptr_ = x; // ok, does not alter the state of this instance
return *this;
}
};
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This also shows that const objects may be assignable,' but it does not imply that references are const,
only that they can be simulated with const objects.

So the standard approach is to provide type traits that operate atomically, with minimal logic and just a
match. is_const<T&>: :value should be false.

However, type traits are also easy to extend in user code. If an application requires it, you can introduce
more concepts, such as “intrusive const-ness”

template <typename T>

struct is_const_intrusive : selector<false>
{

};

template <typename T>

struct is_const_intrusive<const T> : selector<true>
{

};

template <typename T>
struct is_const_intrusive<const volatile T> : selector<true>

{
};

template <typename T>
struct is_const_intrusive<T&» : is_const_intrusive<T»
{
};
Type traits have infinite applications; this example uses the simplest. Assume that C<T> is a class
template that holds a member of type T, initialized by the constructor. However, T has no restriction, and in

particular it may be a reference.

template <typename T>

class C
{
T member_;
public:
explicit C(argument_type x)
: member (x)
{
}

};

You need to define argument_type. If T is a value type, it’s best to pass it by reference-to-const. Butif T is
areference, writing const T8 is illegal. So you'd write:

typedef typename add_reference<const T>::type argument_type;

YAlternatively, std: :pair<const int, double> is neither const nor assignable.
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Here, add_reference<T> returns const T&, as desired.
If T is a reference or reference-to-const, const Tis T and add_reference returns T. That means the
argument type is again T.

3.5.2. Type Dismantling

A type in C++ can generate infinitely many “variations” by adding qualifiers, considering references,
pointers, and arrays, and so on. But it can happen that you have to recursively remove all the additional
attributes, one at a time. This recursive process is usually called dismantling.*®

This section shows a metafunction, named copy_g, that shifts all the “qualifiers” from type T1 to type T2
so copy_g<const doubled, int>::typewill be const int&

Type deduction is entirely recursive. You dismantle one attribute at a time and move the same attribute
to the result. To continue with the previous example, const double& matches T& where T is const double,
so the result is “reference to the result of copy_g<const double, int>” which in turn is “const result of
copy_g<double, int>” Since this does not match any specialization, it gives int.

template <typename T1, typename T2>
struct copy q

typedef T2 type;

)

template <typename T1, typename T2>
struct copy q<T1&, T2>

typedef typename copy q<T1, T2>::type& type;

)

template <typename T1, typename T2>
struct copy_g<const T1, T2>

typedef const typename copy q<T1, T2>::type type;
};

template <typename T1, typename T2>
struct copy_g<volatile T1, T2>

typedef volatile typename copy q<T1, T2>::type type;
;
template <typename T1, typename T2>
struct copy_q<T1*, T2>

typedef typename copy q<T1, T2>::type* type;

)

The expression “type dismantling” was introduced by Stephen C. Dewhurst.
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template <typename T1, typename T2, int N>
struct copy_g<T1 [N], T2>

typedef typename copy q<T1, T2>::type type[N];

)

A more complete implementation could address the problems caused by T2 being a reference:

copy_qg<double&, int&>::type erri; // error: reference to reference
copy_g<double [3], int&>::type err2; // error: array of 'intd'

However, it’s questionable if such classes should silently resolve the error or stop compilation. Let’s just
note that declaring a std: :vector<int&> is illegal, but the compiler error is not “trapped”:

/usr/include/gcc/darwin/4.0/c++/ext/new_allocator.h: In instantiation of
'__gnu_cxx::new_allocator<int8&>":
/usr/include/gcc/darwin/4.0/c++/bits/allocator.h:83:  instantiated from
'std::allocator<int&>’
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:80:  instantiated from
'std:: Vector base<int8, std::allocator<int&> >:: Vector impl’
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:113:  instantiated from
'std:: Vector_base<int&, std::allocator<int&> >'
/usr/include/gcc/darwin/4.0/c++/bits/stl_vector.h:149:  instantiated from
'std::vector<int®, std::allocator<int8> >'

main.cpp:94:  instantiated from here
/usr/include/gcc/darwin/4.0/c++/ext/new_allocator.h:55: error: forming pointer to
reference type 'intd'

3.6. Type Containers

So what is a typelist? It’s got to be one of those weird template beasts, right?

—Andrei Alexandrescu

The maximum number of template parameters is implementation-defined, but it’s usually large enough to
use a class template as a container of types.*

This section shows how some elementary static algorithms work, because you'll reuse the same
techniques many times in the future. Actually, it’s possible to implement most STL concepts in TMP,
including containers, algorithms, iterators, and functors, where complexity requirements are translated at
compilation time.*

This section shows the ideas of the elementary techniques; you'll see some applications later.

The simplest type containers are pairs (the static equivalent of linked lists) and arrays (resemble C-style
arrays of a fixed length).

2'The C++ Standard contains an informative section, called “Implementation Quantities,” where a recommended minimum
is suggested for the number of template arguments (1024) and for nested template instantiations (1024), but compilers do
not need to respect these numbers.

2The reference on the argument is [3].
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template <typename T1, typename T2>
struct typepair

typedef T1 head_t;
typedef T2 tail t;
b

struct empty

{
};

In fact, you can easily store a list of arbitrary (subject to reasonable limitations) length using pairs of
pairs. In principle, you could form a complete binary tree, but for simplicity’s sake, a list of types
(T1, T2... Tn)isrepresented as typepair<T1, typepair<T2, ...> >.Inotherwords, you'll allow the
second component to be a pair. Actually, it forces the second component to be a typepair or an empty,
which is the list terminator. In pseudo-code:

PO = empty

P1 = typepair<Ti, empty >

P2 = typepair<T2, typepair<Ti, empty> >
/7 ...

Pn = typepair<Tn, P >

This incidentally shows that the easiest operation with typepair-sequences is push_front.

Following Alexandrescu’s notation (see [1]), I call such an encoding a fypelist. You say that the first
accessible type Tn is the head of the list and Pn-1 is the tail.

Alternatively, if you fix the maximum length to a reasonable number, you can store all the types in a row.
Due to the default value (which can be empty or void), you can declare any number of parameters on the
same line:

#define MXT GENERIC TL MAX 32
// the code "publishes" this value for the benefit of clients

template

<
typename T1 empty,
typename T2 = empty,
/7 ...
typename T32

>

struct typearray

{

b

empty

typedef typearray<int, double, std::string> array 1; // 3 items
typedef typearray<int, int, char, array 1> array 2; // 4 items

The properties of these containers are different. A typelist with J elements requires the compiler to
produce ] different types. On the other hand, arrays are direct-access, so writing algorithms for type arrays

involves writing many (say 32) specializations. Typelists are shorter and recursive but take more time to
compile.
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Note Before the theoretical establishment made by Abrahams in [3], there was some naming confusion.
The original idea of type pairs was fully developed by Alexandrescu (in [1] and subsequently in CUJ), and he
introduced the name typelist.

Apparently, Alexandrescu was also the first to use type arrays as wrappers for declaring long typelists in an
easy way:

template <typename T1, typename T2, ..., typename Tn>
struct cons

{
typedef typepair<Ti, typepair<T2, ...> > type;

)

However, the name typelist is still widely used as a synonym of a more generic type container.

3.6.1. typeat

typeat is a metafunction that extracts the Nth type from a container.
struct Error UNDEFINED_TYPE; // no definition!

template <size t N, typename CONTAINER, typename ERR = Error UNDEFINED_ TYPE>
struct typeat;

If the Nth type does not exist, the result is ERR.

The same metafunction can process type arrays and typelists. As anticipated, arrays require all the
possible specializations. The generic template simply returns an error, then the metafunction is specialized
first on type arrays, and then on typelists.

template <size t N, typename CONTAINER, typename ERR = Error UNDEFINED TYPE>
struct typeat

typedef ERR type;
};

template <typename T1, ... typename T32, typename ERR>
struct typeat<o, typearray<Ti, ..., T32>, ERR>

typedef T1 type;
};

template <typename T1, ... typename T32, typename ERR>
struct typeat<1, typearray<Ti, ..., T32>, ERR>

{
typedef T2 type;

)

// write all 32 specializations
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The same code for typelists is more concise. The Nth type of the list is declared equal to the (N-1)th type
in the tail of the list. If N is 0, the result is the head type. However, if you meet an empty list, the result is ERR.

template <size t N, typename T1, typename T2, typename ERR>
struct typeat<N, typepair<Ti, T2>, ERR>

{
typedef typename typeat<N-1, T2, ERR>::type type;

5
template <typename T1, typename T2, typename ERR>
struct typeat<o, typepair<Ti, T2>, ERR>

typedef T1 type;
};

template <size t N, typename ERR>
struct typeat<N, empty, ERR>

typedef ERR type;
};

Observe that, whatever index you use, typeat<N, typearray<...>>requires just one template
instantiation. typeat<N, typepair<...>> mayrequire N different instantiations.
Note also the shorter implementation:

template <size t N, typename T1, typename T2, typename ERR>
struct typeat<N, typepair<Ti, T2>, ERR> : typeat<N-1, T2, ERR>

{
};

3.6.2. Returning an Error

When a metafunction F<T> is undefined, such as with typeat<N, empty, ERR>, common options for
returning an error include:

e  Removing the body of F<T> entirely.
e  Giving F<T> an empty body, with no result (type or value).

e Defining F<T>: : type so that it will cause compilation errors, if used
(void or a class that has no definition).

e  Defining F<T>: :type using an user-supplied error type (as shown previously).

Remember that forcing a compiler error is quite drastic; it’s analogous to throwing exceptions. It’s hard
to ignore, but a bogus type is more like a return false. A false can be easily converted to a throw and a
bogus type can be converted to a compiler error (a static assertion would suffice).
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3.6.3. Depth

Dealing with type arrays can be easier with the help of some simple macros®:

#define MXT_LIST o(T)

#define MXT_LIST 1(T) T##1

#define MXT_LIST 2(T)  MXT_LIST 1(T), T##2
#define MXT_LIST 3(T)  MXT_LIST 2(T), T##3
/...

#define MXT_LIST 32(T) MXT_LIST 31(T), T##32

Surprisingly, you can write class declarations that look extremely simple and concise. Here is an
example (before and after preprocessing).

template <MXT_LIST_32(typename T)>
struct depth< typelist<MXT _LIST 32(T)> >

template <typename T1, ... , typename T32>
struct depth< typelist<T1i, ... T32> >

The metafunction called depth returns the length of the typelists:

template <typename CONTAINER>
struct depth;

template <>

struct depth< empty > : static_value<size t, 0>
{

};

template <typename T1, typename T2>
struct depth< typepair<Ti, T2> > : static_value<size_t, depth<T2>::value+1>

{
};

e  The primary template is undefined, so depth<int> is unusable.

e Ifthe depth of a typelist is K, the compiler must generate K different intermediate
types (namely depth<P1>. .. depth<Pn> where Pj is the jth tail of the list).

For type arrays, you use macros again. The depth of typearray<> is 0; the depth of typearray<T1> is 1;
and in fact the depth of typearray<MXT_LIST N(T)>isN.

template <MXT_LIST_o(typename T)>
struct depth< typearray<MXT LIST o(T)> >
: static value<size t, 0> {};

BThe boost preprocessor library would be more suitable, anyway, but its description would require another chapter.
Here, the focus is on the word simple: a strategic hand-written macro can improve the esthetics of code noticeably.
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template <MXT_LIST 1(typename T)>
struct depth< typearray<MXT_LIST 1(T)> >
1 static_value<size t, 1> {};

/7 ...

template <MXT_LIST 32(typename T)>
struct depth< typearray<MXT_LIST 32(T)> >
1 static_value<size t, 32> {};

Note that even if a malicious user inserts a fake empty delimiter in the middle, depth returns the
position of the last non-empty type:

typedef typearray<int, double, empty, char> t4;
depth<t4>::value; // returns 4

In fact, this call will match depth<T1, T2, T3, T4>, where it happens that T3 = empty.
In any case, empty should be confined to an inaccessible namespace.

3.6.4. Front and Back

This section shows you how to extract the first and the last type from both type containers.

template <typename CONTAINER>
struct front;

template <typename CONTAINER>
struct back;

First, when the container is empty, you cause an error:

template <>
struct back<empty>;

template <>
struct front<empty>

{
};

While front is trivial, back iterates all over the list:

template <typename T1, typename T2>
struct front< typepair<Ti, T2> >

{
};

typedef T1 type;

template <typename T1>
struct back< typepair<Ti, empty> >

{
typedef T1 type;
};
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template <typename T1, typename T2>
struct back< typepair<T1i, T2> >

{
typedef typename back<T2>::type type;

)
or simply:

template <typename T1, typename T2>
struct back< typepair<T1, T2> > : back<T2>

{
};

For type arrays, you exploit the fact that depth and typeat are very fast and you simply do what is
natural with, say, a vector. The back element is the one at size-1. In principle, this would work for typelists
too, but it would “iterate” several times over the whole list (where each “iteration” causes the instantiation of

anew type).

template <MXT_LIST 32(typename T)>
struct back< typearray<MXT_LIST 32(T)> >

{
typedef typelist<MXT LIST 32(T)> aux_t;
typedef typename typeat<depth<aux_t>::value - 1, aux_t>::type type;

};

template <>
struct back< typearray<> >

{
};

template <MXT_LIST 32(typename T)>
struct front< typearray<MXT_LIST 32(T)> >

{
typedef T1 type;
};

template <>
struct front< typearray<> >

{
};

3.6.5. Find

You can perform a sequential search and return the index of the (first) type that matches a given T. If T does
not appear in CONTAINER, you return a conventional number (say -1), as opposed to causing a compiler error.
The code for the recursive version basically reads:

e  Nothing belongs to an empty container.
e  Thefirst element of a pair has index 0.

e Theindexis one plus the index of T in the tail, unless this latter index is undefined.
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template <typename T, typename CONTAINER>
struct typeindex;

template <typename T>
struct typeindex<T, empty>

{

static const int value = (-1);

};

template <typename T1, typename T2>
struct typeindex< T1, typepair<Ti, T2> >

static const int value = 0;

};

template <typename T, typename T1, typename T2>
struct typeindex< T, typepair<Ti, T2> >

static const int aux_v = typeindex<T, T2>::value;
static const int value = (aux_v==-1 ? -1 : aux_v+1);

b
The first implementation for type arrays is:
/* tentative version */

template <MXT_LIST_32(typename T)>
struct typeindex< T1, typearray<MXT_LIST_32(T)> >

static const int value = 0;

};

template <MXT_LIST 32(typename T)>
struct typeindex< T2, typearray<MXT_LIST_32(T)> >
{

static const int value = 1;

};

/7 ...

STATIC PROGRAMMING

If the type you are looking for is identical to the first type in the array, the value is 0; if it is equal to the

second type in the array, the value is 1, and so on. Unfortunately the following is incorrect:

typedef typearray<int, int, double> t3;

int i = typeindex<int, t3>::value;

There’s more than one match (namely, the first two), and this gives a compilation error. I defer the

solution of this problem until after the next section.
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3.6.6. Push and Pop

It was already mentioned that the easiest operation with type pairs is push_front. It is simply a matter of
wrapping the new head type in a pair with the old container:

template <typename CONTAINER, typename T>
struct push_front;

template <typename T>
struct push_front<empty, T>

{
typedef typepair<T, empty> type;
};

template <typename T1, typename T2, typename T>
struct push_front<typepair<T1, T2>, T>

{
typedef typepair< T, typepair<Ti, T2> > type;

)

Quite naturally, pop_front is also straightforward:

template <typename CONTAINER>
struct pop front;

template <>
struct pop_front<empty>;

template <typename T1, typename T2>
struct pop_front< typepair<Ti, T2> >

{
typedef T2 type;

)

To implement the same algorithm for type arrays, you must adopt a very important technique named
template rotation. This rotation shifts all template parameters by one position to the left (or to the right).

template <P1, P2 = some_default, ..., P, = some_default>
struct container

{
};

typedef container<P2, P3, ..., P,, some_default> tail t;*

The type resulting from a pop_front is called the tail of the container (that’s why the source code
repeatedly refers to tail_t).
Parameters need not be types. The following class computes the maximum in a list of positive integers.

*In principle, some_default should not be explicitly specified. All forms of code duplication can lead to maintenance
errors. Here, I show it to emphasize the rotation.
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#tdefine MXT M _MAX(a,b) ((a)<(b) ? (b) : (a))

template <size t S1, size t S2=0, ... , size t S32=0>
struct typemax : typemax<MXT M MAX(S1, S2), S3, ..., S32>
{

};

template <size t S1>
struct typemax<S1,0,0,...,0> : static_value<size t, S1>

};

As a side note, whenever it’s feasible, it's convenient to accelerate the rotation. In the previous example,
you would write

template <size t S1, size t S2=0, ... , size t S32=0>

struct typemax

: typemax<MXT_M_MAX(S1, S2), MXT_M_MAX(S3, S4), ..., MXT_M_MAX(S31, S32)>
{

};

To compute the maximum of N constants, you need only 1og2 (N) instances of typemax, instead of N.
It’s easy to combine rotations and macros with elegance®:

template <typename TO, MXT_LIST 31(typename T)>
struct pop_front< typearray<To, MXT_LIST 31(T)> >

{
typedef typearray<MXT LIST 31(T)> type;

b

template <MXT_LIST 32(typename T), typename T>
struct push_front<typearray<MXT _LIST 32(T)>, T>
{

typedef typearray<T, MXT_LIST 31(T)> type;

)

Using pop_front, you can implement a generic sequential find. Note that for clarity, you want to add
some intermediate typedefs. As in metaprogramming, types are the equivalent of variables in classic C++.
You can consider typedefs as equivalent to (named) temporary variables. Additionally, private and public
sections help separate “temporary” variables from the results:

The procedure you'll follow here is:

e Theindex of T in an empty container is -1.

e Theindex of T1in array<T1, ...>is 0 (this unambiguously holds, even if T1 appears
more than once).

2See Section 3.6.3.
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¢ To obtain the index of Tin array<T1, T2, T3, ...> youcomputeitsindexina
rotated array and add 1 to the result.

template <typename T>
struct typeindex<T, typearray<> >

{

static const int value = (-1);

};

template <MXT_LIST 32(typename T)>
struct typeindex< T1, typearray<MXT_LIST_32(T)> >

static const int value = 0;

};

template <typename T, MXT _LIST 32(typename T)>
struct typeindex< T, typearray<MXT_LIST 32(T)> >

private:
typedef typearray<MXT_LIST 32(T)> argument_t;
typedef typename pop_front<argument_t>::type tail t;

static const int aux_v = typeindex<T, tail_t>::value;

public:
static const int value = (aux_v<0) ? aux_v : aux_v+1;

};

3.6.7. More on Template Rotation

Template arguments can be easily rotated; however, it’s usually simpler to consume them left to right.
Suppose you want to compose an integer by entering all its digits in base 10. Here’s some pseudo-code.

template <int D1, int D2 = 0, ... , int D, = 0>
struct join_digits

{
};

static const int value = join_digits<D2, ..., Dp>::value * 10 + D1;

template <int D1>
struct join_digits<D1>

{
};

static const int value

D1;

join_digits<3,2,1>::value; // compiles, but yields 123, not 321
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Observe instead that it’s not so easy to consume DN in the rotation. This will not compile, because
whenever DN is equal to its default (zero), value is defined in terms of itself:

template <int D1, int D2
struct join_digits
{

static const int value = join_digits<D1,D2, ...,D >::value * 10 + D ;

};

0, ..., int D, = 0, int D, = 0>

Rotation to the right won’t produce the correct result:

template <int D1, int D2 = 0, ..., int D, = 0, int D, = 0>
struct join_digits
{

static const int value = join_digits<0,D1,D2, ...,D _>::value * 10 + D;
};

The solution is simply to store auxiliary constants and borrow them from the tail:

template <int D1 = 0, int D2 = 0, ..., int D, = 0>
struct join_digits

{
typedef join_digits<D2, ..., D> next_t;
static const int pow10 = 10 * next t::pow10;
static const int value = next t::value + D1*pow10;
};

template <int D1>
struct join_digits<D1>

{
static const int value = Di;
static const int pow10 = 1;
};
join_digits<3,2,1>::value; // now really gives 321

Template rotation can be used in two ways:
e Direct rotation of the main template (as shown previously):
template <int D1 = 0, int D2 = 0, ..., int D, = 0>

struct join_digits

{.o b

template <int D1>
struct join_digits<D1>
{...}
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e Rotation on a parameter. This adds an extra “indirection”:

template <int D1 = 0, int D2 = 0, ..., int D, = 0>
struct digit_group
{
// empty
};

template <typename T>
struct join_digits; // primary template not defined

template <int D1, int D2, ..., int Dp
struct join_digits< digit_group<D1, ..., D> >
{

// as above

};

template <>
struct join_digits< digit_group<> >
{

// as above

};

The first solution is usually simpler to code. However, the second has two serious advantages:

e  TypeT, which “carries” the tuple of template parameters, can be reused. T is usually a
type container of some kind.

e  Suppose for the moment that join_digits<...>is atrue class (not a metafunction),
and it is actually instantiated. It will be easy to write generic templates accepting any
instance of join_digits. They just need to take join_digits<X>.But, if join_digits
has a long and unspecified number of parameters, clients will have to manipulate
itas X.*

3.6.8. Agglomerates

The rotation technique encapsulated in pop_front can be used to create tuples as agglomerate objects.

In synthesis, an agglomerate A is a class that has a type container C in its template parameters. The class
uses front<C> and recursively inherits from A< pop_front<C> >. The simplest way to “use” the front type is
to declare a member of that type. In pseudo-code:

template <typename C>
class A : public A<typename pop_front<C>::type>

{

typename front<C>::type member_;

public:
/...
};

*This need not be a problem’ if join_digits were a functor, clients would likely take it as X anyway.
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template < >
class A<empty>

{
};

template < >
class A< typearray<> >

};

e Inheritance can be public, private, or even protected.

e  There are two possible recursion stoppers: A<empty typelist> and
A<empty_typearray>.

So, an agglomerate is a package of objects whose type is listed in the container. If C is typearray<int,
double, std::string>, the layout of Awould be as shown in Figure 3-4.

A<int, double, std::string, ...>

“["A<double, std::string, ...>

T stdistring member
"""""""""""" Udouble member T

int member

“greek pi”
3.14
3

[}

Figure 3-4. Layout of the agglomerate A

Note that in the implementation under review, the memory layout of the objects is reversed with
respect to the type container.

To access the elements of the package, you use rotation again. Assume for the moment that all members
are public. You'll get a reference to the Nth member of the agglomerate via a global function and the
collaboration of a suitable traits class.

There are two equally good development strategies: intrusive traits and non-intrusive traits.

Intrusive traits require the agglomerate to expose some auxiliary information:

template <typename C>
struct A : public A<typename pop front<C>::type>

{
typedef typename front<C>::type value_type;
value_type member;

typedef typename pop_front<C>::type tail_t;

)
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template <typename agglom_t, size t N>
struct reference traits

{
typedef reference_traits<typename agglom_t::tail_t, N-1> next_t;
typedef typename next_t::value_type value_type;
static value typed ref(agglom t& a)
{
return next_t::ref(a);
}
b

template <typename agglom t>
struct reference traits<agglom t, 0>

{
typedef typename agglom_t::value_type value_ type;
static value typed ref(agglom t& a)
{
return a.member;
}
b

template <size t N, typename agglom_t>
inline typename reference traits<agglom t,N>::value typed ref(agglom t& a)

return reference_traits<agglom t, N>::ref(a);

}

A quick example:

typedef typearray<int, double, std::string> C;

A<C> a;

ref<0>(a) = 3;
ref<1>(a) = 3.14;
ref<2>(a) = "3.14";

Non-intrusive traits instead determine the information with partial specializations:

template <typename agglom_t, size t N>
struct reference traits;

template <typename C, size t N>
struct reference traits< A<C», N >

{
typedef reference_traits<typename pop_front<Cs»::type, N-1> next_t;
typedef typename front<Cs::type value_type;

};
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When feasible, non-intrusive traits are preferred. It's not obvious that the author of reference_traits
can modify the definition of A. However it's common for traits to require reasonable “cooperation” from
objects. Furthermore, auto-deduction code is a duplication of class A internals and auto-deduced values
tend to be “rigid,” so intrusiveness is not a clear loser.

A special case is an agglomerate modeled on a typelist containing no duplicates. The implementation is
much simpler, because instead of rotation, a pseudo-cast suffices:

template <typename T, typename tail t> // cast-like syntax
T& ref(A< typepair<T, tail t> >& a) // T is non-deduced

return a.member;

}

typedef typepair<int, typepair<double, typepair<std::string, empty> > > C;
A<C> a;

ref<double>(a) = 3.14;
ref¢std::string>(a) = "greek pi";
ref<int>(a) = 3;

The cast works because the syntax ref<T>(a) fixes the first type of the pair and lets the compiler match
the tail that follows. This is indeed possible, due to the uniqueness hypothesis.

In fact, the C++ Standard allows one derived-to-base cast before argument deduction, if it’s a necessary
and sufficient condition for an exact match.

Here, the only way to bind an argument of type A<C> to a reference to A< typepair<std::string,
tail t> >istocastittotypepair<std::string, empty> and then deduce tail t = empty.

To store a value extracted from an agglomerate, declare an object of type reference_traits
<agglom t,N>::value_type.

Finally, with a little more intrusiveness, you just add a member function to A:

template <typename C>
struct A : public A< typename pop_front<C>::type >

{
typedef typename front<C>::type value_type;
value_type member;

typedef typename pop_front<C>::type tail t;

tail_t& tail() { return *this; }
b

template <typename agglom t, size t N>
struct reference_traits

{
/...
static value_typed get ref(agglom t& a)
{
return next_t::get ref(a.tail());
}
b
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Invoking a member function instead of an implicit cast allows you to switch to private inheritance or
even to a has-a relationship:

template <typename C>

class A

{

public:
typedef typename pop_front<C>::type tail t;
typedef typename front<C>::type value_type;

private:
A<tail _t> tail_;
value_type member;

public:
tail t& tail() { return tail ; }

/...
};

The memory layout of the object is now in the same order as the type container.

3.6.9. Conversions

Many algorithms in fact require a linear number of recursion steps, both for typelists and for type arrays. In
practice, the typepair representation suffices for most practical purposes except one—: the declaration of a
typelist is indeed unfeasible.

As anticipated, it’s very easy to convert from a type array to typelist and vice versa.

It is an interesting exercise to provide a unified implementation®”:

template <typename T>
struct convert

{
typedef typename pop_front<T>::type tail t;
typedef typename front<T>::type head_t;
typedef
typename push_front<typename convert<tail t>::type, head t>::type
type;
};

template <>
struct convert< typearray<> >

{
typedef empty type;

)

YIt’s another exercise of type dismantling; note also that using push_back instead of push_front would reverse
the container.
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template <>
struct convert< empty >

{
typedef typearray<> type;

)

Note that T in this code is a generic type container, not a generic type.

Before, you used partial template specialization as a protection against bad static argument types.

For example, if you try front<int>: : type, the compiler will output that front cannot be instantiated on int
(if you did not define the main template) or that it does not contain a member type (if it's empty).

However, such a protection is not necessary here. convert is built on top of front and pop_front, and
they will perform the required argument validation. In this case, the compiler will diagnose that front<int>,
instantiated inside convert<inty, is illegal.

The problem is just a less clear debug message. Among the options you have to correct the problem, you
can write type traits to identify type containers and then place assertions:

template <typename T>
struct type container

static const bool value = false;

};

template <typename T1, typename T2>
struct type container< typepair<Ti, T2> >

{

static const bool value = true;

};

template <>
struct type_container<empty>

{

static const bool value = true;

};

template <MXT_LIST 32(typename T)>
struct type container< typearray<MXT_LIST 32(T)> >

static const bool value = true;
b
template <typename T>

struct convert
: static_assert< type_container<T>::value >
{

//...

Very likely, the compiler will emit the first error pointing to the assertion line.
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Note Section 5.2 is fully devoted to bad static argument types. You will meet function templates that
statically restrict their template parameters to those having a particular interface.

It can be useful to extend type container traits by inserting a type representing the empty container of
that kind (the primary template is unchanged).

template <typename T1, typename T2>
struct type container< typepair<Ti, T2> >

static const bool value = true;
typedef empty type;
};

template <>
struct type_container<empty>

static const bool value = true;
typedef empty type;
};

template <MXT_LIST 32(typename T)>
struct type container< typearray<MXT LIST 32(T)> >

static const bool value = true;
typedef typearray<s> type;
b

When enough “low-level” metafunctions—such as front, back, push_front, and so on—are available,
most meta-algorithms will work on arrays and lists. You just need two different recursion terminations, as
well as a specialization for typearray<> and one for empty.

Another option is the empty-empty idiom: Let a helper class take the original type container as T and a
second type, which is the empty container of the same kind (obtained from traits). When these are equal,
you stop.

template <typename T>

struct some_metafunction

: static_assert<type container<T>::value>

, helper<T, typename type container<T>::type>
{

};

template <typename T, typename E>
struct helper

{
// general case:
// T is a non-empty type container of any kind
// E is the empty container of the same kind

};
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template <typename E>
struct helper<k, E>

{
};

// recursion terminator

3.6.10. Metafunctors

User functors, predicates, and binary operations can be replaced by template-template parameters. Here is a
simple metafunctor:

template <typename T>
struct size of

{

static const size t value

};

CHAR BIT*sizeof(T);

template <>
struct size_of<void>

{

static const size t value = 0;

};
Here is a simple binary metarelation:

template <typename X1, typename X2>

struct less by size : selector<(sizeof(X1) < sizeof(X2))>
{

b

template <typename X>

struct less by size<void, X> : selector<true>
{

};

template <typename X>

struct less by size<X, void> : selector<false>

{

};

template <>

struct less by size<void, void> : selector<false>

{
};
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And here’s the skeleton of a metafunction that might use it:

template <typename T, template <typename X1, typename X2> class LESS>
struct static_stable sort
: static_assert< type_container<T>::value >

{

// write LESS<T1, T2>::value instead of "T1<T2"

typedef [[RESULT]] type;
};

Instead of describing an implementation, this section sketches a possible application of static_stable
sort. Suppose our source code includes a collection of random generators that return unsigned integers:

class linear generator

{ typedef unsigned short random_type;
.

class mersenne_twister

{ typedef unsigned int random_type;
.

class mersenne_twister 64bit

{ typedef /* ... */ random_type;

.

The user will list all the generators in a type container, in order from the best (the preferred algorithm)
to the worst. This container can be sorted by sizeof(typename T::random_type). Finally, when the user
asks for a random number of type X, you scan the sorted container and stop on the first element whose
random_type has at least the same size as X. You then use that generator to return a value. Since sorting is
stable, the first suitable type is also the best in the user preferences.

As promised earlier, I turn now to the problem of selecting unsigned integers by size (in bit).

First, you put all candidates in a type container:

typedef typearray<unsigned char, unsigned short, unsigned int,
unsigned long, unsigned long long> all unsigned;

You have to scan the list from left to right and use the first type that has a specified size (it’s also possible
to append to the list a compiler-specific type).
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Note A little algebra is necessary here. By definition of the sign function, for any integer, you have the
identity &-sign(8)=I061. On the other hand, if S is a prescribed constant in {-1, 0, 1}, the equality 5-S=I8l
implies respectively 6<0, 6=0, 6=0. This elementary relationship allows you to represent three predicates
(less-or-equal-to-zero, equal-to-zero, and greater-or-equal-to-zero) with an integer parameter.

In the following code, T is any type container:
#tdefine MXT M ABS(a) ((a)<o 2 -(a) : (a))

enum
{
LESS_OR_EQUAL = -1,
EQUAL = o,
GREATER OR_EQUAL = +1
};

template
<
typename T,
template <typename X> class SIZE_OF,
int SIGN,
size_t SIZE BIT N
>
struct static_find_if
: static_assertion< type_container<T>::value >

{
typedef typename front<T>::type head_t;

static const int delta = (int)SIZE_OF<head_t»::value - (int)SIZE BIT N;

typedef typename typeif
<
SIGN*delta == MXT_M_ABS(delta),
front<T>,
static_find_if<typename pop front<T>::type,
SIZE OF, SIGN, SIZE BIT N>
>iitype aux_t;

typedef typename aux_t::type type;
};
// define an unsigned integer type which has exactly 'size' bits
template <size t N>
struct uint_n
: static_find_if<all_unsigned, size_of, EQUAL, N>

{
};
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// defines an unsigned integer type which has at least 'size' bits

template <size t N>

struct uint_nx

: static_find_if<all_unsigned, size_of, GREATER_OR_EQUAL, N>
{

};

typedef uint_n<8>::type uint8;

typedef uint_n<16>::type uint16;
typedef uint_n<32>::type uint32;
typedef uint_n<64>::type uint64;

typedef uint_nx<32>::type uint32x;

Note that the order of template parameters was chosen to make clear the line that uses static_find_if,
not static_find_if itself.®

What happens if a suitable type is not found? Any invalid use will unwind a long error cascade (the code
has been edited to suppress most of the noise):

uint_n<25>::type io

= 8;
uint_nx<128>::type i1 =

8;

error C2039: 'type' : is not a member of 'front<typearray<>>'
: see declaration of 'front<typearray<>>'
: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE_BIT_N,SIGN>' being compiled
with
[
T=pop_front<pop_front<pop_front<pop_front<pop_front<all unsigned>::type>::type>::type>::
type>: :type,
]

: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE_BIT_N,SIGN>' being compiled
with
[

T=pop_front<pop_front<pop_front<pop_front<all unsigned>::type>::type>::type>::type,

: see reference to class template instantiation
'static_find_if<T,SIZE_OF,SIZE BIT N,SIGN>' being compiled
with
[
T=pop_front<pop_front<pop_front<all unsigned>::type>::type>::type,

[...]

: see reference to class template instantiation

#[ adopted the name find_if with some abuse of notation; a genuine static_find_if would be static_find_
if<typename T, template <typename X> class F>, which returns the first type in T where F<X>: :value is true
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'static_find_if<T,SIZE OF,SIZE BIT N,SIGN>' being compiled
with
[

]
: see reference to class template instantiation
'uint_n<SIZE BIT N>' being compiled
with
[

]

T=all _unsigned,

SIZE_BIT N=25

Basically, the compiler is saying that, during deduction of uint_n<25>: :type, after applying pop_front
to the type array five times, it ended up with an empty container, which has no front type.

However it’s easy to get a more manageable report. You just add an undefined type as a result of the
recursion terminator:

template
<
template <typename X> class SIZE OF,
int SIGN,
size t SIZE BIT N
>
struct static_find_if<typearray<», SIZE_OF, SIGN, SIZE BIT_N>
{

typedef error_UNDEFINED_TYPE type;
};

Now the error message is more concise:

error C2079: 'io' uses undefined class 'error UNDEFINED TYPE'
error C2079: 'i1' uses undefined class 'error UNDEFINED TYPE'

3.7. A Summary of Styles

When programming metafunctions, identify:
e  Asuggestive name and syntax.
e  Which template parameters are needed to express the concept.
e  Which atomic actions the algorithm depends on.
e Arecursive efficient implementation.
e  Special cases that must be isolated.

If the metafunction name is similar to a classic algorithm (say, find_if), then you can adopt a similar name
(static_find_if)or even an identical one if it resides in a specific namespace (say, typelist::find_if).

Some authors append an underscore to pure static algorithms, because this allows mimicking real
keywords (typeif would be called if ).
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If several template parameters are necessary, write code so that the users will be able to remember their
meaning and order. It’s a good idea to give a syntax hint through the name:

: static_find_if<all unsigned, size_of, GREATER_OR_EQUAL, N>
Many unrelated parameters should be grouped in a traits class, which should have a default

implementation that is easy to copy.
Finally, the following table may help you translate a classic algorithm to a static one.

Classic C++ Function Static Metaprogramming
What they manipulate Instances of objects Types
Argument handling Via argument public interface Via metafunctions
Dealing with different Function overload Partial template specializations
arguments
Return result Zero or one return statement Zero or more static data (type or
constant), usually inherited
Error trapping try...catchblock Extra template parameter ERR
User-supplied callbacks Functors Template-template parameters
Temporary objects Local variables Private typedef/static const
Function calls Yes, as subroutines Yes, also via derivation
Algorithm structure Iteration or recursion Static recursion, stopped with suitable
full/partial template specializations
Conditional decisions Language constructs (if, switch) Partial specializations
Error handling e Throw an exception o Abort compilation
¢ Return false e Returnno result
o Setresult to an incomplete type
172

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4

Overload Resolution

This chapter presents TMP techniques based on overload resolution.
The common underlying schema is as follows:

e  You want to test if type T satisfies a condition.

e  You write several static functions with the same name, say test, and pass them a
dummy argument that “carries” type T (in other words, an argument that allows
deduction of T, such as T*).

e  The compiler selects the best candidate, according to C++ language rules.

¢  You deduce which function was used, either using the return type or indirectly from
a property of this type, and eventually make a decision.

The first section introduces some definitions.

4.1. Groups

A group is a class that provides optimized variants of a single routine. From the outside, a group acts as a
monolithic function that automatically picks the best implementation for every call.
A group is composed of two entities:

e Atemplate struct containing variants of a (single) static member function.

e A companion global function template that just forwards the execution to the correct
member of the group, performing a static decision based on the auto-deduced
template parameter and on some framework-supplied information.

The group itself is usually a template, even if formally unnecessary (it may be possible to write the group
as a normal class with template member functions).

Finally, observe that groups and traits are somehow orthogonal. Traits contain all the actions of a
specific type, while groups contain a single action for many types.

Traits<T1> Traits<T2> Group_F1 Group_F2
{ { { {
Func1(T1); Func1(T2); «> Func1(T1); Func2(T1);
Func2(T1); Func2(T2); Func1(T2); Func2(T2);
} } } }
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4.1.1. From Overload to Groups

A group is the evolution of a set of overloaded functions.
Step 1: You realize that a default template implementation can handle most cases, so you just add
overloaded variants:

template <typename T>
bool is product negative(T x, T y)

{
return x<0 " y<0;
}
bool is product negative(short x, short y)
{
return int(x)*int(y) < 0;
}
bool is product negative(unsigned int x, unsigned int y)
{
return false;
}
bool is product_negative(unsigned long x, unsigned long y)
{
return false;
}

Step 2: Implementation is clustered in several templates that are picked using tags.

template <typename T>
bool is product negative(T x, Ty, selector<false>)

{
}

return x<0 " y<0;

template <typename T>
bool is product negative(T x, Ty, selector<true>)

{
}

return int(x)*int(y) < 0;

template <typename T>
bool is product negative(T x, T y)

{
typedef selector<(sizeof(T)<sizeof(int))> small int t;
return is_product_negative(x, y, small_int t());

}
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Step 3: Group all the auxiliary functions in a class and leave a single function outside that dispatches
the work:

// companion function

template <typename T>
bool is product negative(T x, T y)

{

return is_product_negative t<T>::doIt(x, y);

}

template <typename T>
struct is_product_negative_ t

{

static bool doIt(T x, T y)
{... }

static bool doIt(unsigned, unsigned)
{ return false; }

};
Here is another very simple group:

struct maths

{

template <typename T>
inline static T abs(const T x)

{ return x<0 ? -x : Xx;
}
inline static unsigned int abs(unsigned int x)
{
return x;
}

};

template <typename T>
inline T absolute value(const T x)

{
return maths::abs(x);

}

Note Remember that the group class, being a non-template, is always fully instantiated. Furthermore,
a non-template function in a header file must be declared inline.
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Suppose further that you have a metafunction named has_abs_method, such that
has_abs_method<T>: :value is true if the absolute value of an object x of type T is given by x.abs().!

This allows your group to grow a bit more complex. In the next example, you'll specialize the whole
group for double, and the specialization will ignore the actual result of has_abs_method<double>.?

template <typename scalar t>
struct maths

{
static scalar_t abs(const scalar t& x, selector<false>)
{
return x<0 ? -x : Xx;
}
static scalar t abs(const scalar t& x, selector<true»)
{
return x.abs();
}
};

template <>
struct maths<double>

{
template <bool UNUSED>
static double abs(const double x, selector< UNUSED »>)
{
return std::fabs(x);
}
};

template <typename scalar t>

inline scalar t absolute value(const scalar t& x)

{
typedef selector< has_abs_method<scalar_t>::value > select_t;
return maths<scalar t>::abs(x, select t());

}

Too many overloads will likely conflict. Remember that a non-template function is preferred to a matching
template, but this does not hold for a member function that uses the template parameter of the class:

template <typename scalar_ t>
struct maths

{
static scalar_t abs(const scalar t& x, selector<false>)
{
return x<0 ? -x : X;
}

'Sections 5.3 and 5.3.1 show how to detect if T has a member function T T::abs() const.
20f course, you could have written a method that takes selector<false>, but using a template as a replacement for
C ellipsis can be of some interest.
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static int abs(const int x, selector<false>)

{

}
}

return std::abs(x);

error: ambiguous call to overloaded function, during instantiation of absolute_value<int>

This is precisely the advantage of a “double-layer” template selection. “Layer one” is the automatic
deduction of scalar_t in the companion function and “layer two” is the overload selection, performed
inside a class template (the group) whose parameter has already been fixed:

template <typename scalar_t>
inline scalar t absolute value(const scalar t& x)

{
// collect auxiliary information, if needed
return math<scalar_t>::abs(x, ...);

}

Combining them, you have fewer global function templates (too many overloads are likely to cause
“ambiguous calls”). In addition, the group can have subroutines (private static member functions).
The user has several expansion choices:

e  Specialize the whole group (if it’s a template)
e  Specialize the global companion function

e  Model types to take advantage of the existing framework (for example, specialize
has_abs_method)

The selection part can be even subtler, with additional layers in the middle. As the following example
shows, the right member of the group is chosen via an implicit argument promotion:

#include <cmath>

struct tag_floating

{
tag_floating() {}
tag_floating(instance of<float>) {}
tag_floating(instance of<double>) {}
tag_floating(instance of<long double>) {}

};

struct tag_signed int

{
tag signed int() {}
tag_signed_int(instance_of<short>) {}
tag_signed_int(instance_of<int>) {}
tag_signed_int(instance of<long>) {}

};
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struct tag_unsigned int

{
tag_unsigned int() {}
tag_unsigned_int(instance_of<unsigned short>) {}
tag_unsigned int(instance of<unsigned int>) {}
tag_unsigned_int(instance_of<unsigned long>) {}
};

template <typename scalar_t>
struct maths

{
inline static scalar_t abs(const scalar t x, tag signed int)
{
return x<0 ? -x : Xx;
}
inline static scalar t abs(const scalar t x, tag_unsigned int)
{
return x;
}
inline static scalar_t abs(const scalar t x, tag floating)
{
return fabs(x);
}
};

template <typename scalar_t>
inline scalar t absv(const scalar t& x)

{
}

return maths<scalar t>::abs(x, instance of<scalar t>());

The same effect could be obtained with a reversed selector hierarchy (for example, letting
instance_of<double> derive from scalar floating), but instance_of is a general-purpose template and
I treat it as non-modifiable.

You could also introduce intermediate selectors (unfortunately, you have to write the constructors
by hand):

struct tag_int

{
tag_int() {}
tag_int(instance_of<short>) {}
tag_int(instance_of<int>) {}
tag_int(instance_of<long>) {}
tag_int(instance_of<unsigned short>) {}
tag_int(instance_of<unsigned int>) {}
tag_int(instance_of<unsigned long>) {}

};
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template <typename scalar t>
struct maths

{
static scalar t mod(const scalar t x, const scalar t y, tag int)
{
return x % y;
}

static scalar t mod(const scalar t& x, const scalar t& y, tag floating)

{

}
};

return fmod(x, y);

template <typename scalar_t>
inline scalar_t mod(const scalar t& x, const scalar t& y)

{

return maths<scalar t>::mod(x, y, instance of<scalar t>());

}

Note in this code that maths<double> contains a method that must not be called (there’s no operator%
for double). Had operation been a non-template class, it would have been instantiated anyway, thus
yielding a compiler error.

However, when parsing an expression depending on a template parameter, the compiler, not knowing
the actual type involved, will accept any formally legal C++ statement.® So if at least one of the two arguments
x and y has generic type T, x % y is considered valid until instantiation time.

The former example works unambiguously because the companion function restricts the call to
members of maths<double> named mod, and for any type T, instance_of<T> can be promoted to at most one
of either tag_int or tag_floating

Sometimes groups are associated with a special header file that detects platform information using
macro blocks and translates it in C++ using typedefs:

// file "root.hpp"
// note: this code is fictitious

struct msvc {};
struct gcc {};

#if defined(__MSVC) // preprocessor compiler detection...
typedef msvc compiler_type; // ...translated in c++

#elif defined(_GCC_ )

typedef gcc compiler type;

#endif

// from here on, there's a global type tag named "compiler type"

3An illegal statement would be, for example, a call to an undeclared function. Recall that compilers are not required to
diagnose errors in templates that are not instantiated. MSVC skips even some basic syntax checks, while GCC does
forbid usage of undeclared functions and types. See also Section 5.2.3 about platform specific traits.

179

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © OVERLOAD RESOLUTION

In different platforms, the same function could have a different “best” implementation, so you can
select the most suitable one using compiler_type as a tag (but all functions must be legal C++ code):

template <typename scalar_t, typename compiler t>
struct maths
{
static scalar_t multiply by two(const scalar t x)
{ return 2*x; }

};

template < >
struct maths<unsigned int, msvc>

{
static unsigned int multiply by two(const unsigned int x)
{ return x << 1; }

};

template <typename scalar_t>
inline scalar t multiply by two(const scalar t& x)

{
}

return maths<scalar t, compiler type>::multiply by two(x);

Note that you can branch the selection of member functions as you wish—either simultaneously on
multiple tags or hierarchically.

As a rule, you might want to use the “compiler tag” whenever you need to manipulate the result of a
standard function that is defined as compiler-specific to some extent, for example, to pretty-print a string
given by typeid(...).name().

Consider a real-world example. According to the standard, if A and B are both signed integers, not both
positive, the sign of A % B is undefined (if instead A>0 and B>0, the standard guarantees thatA % B > 0).

For example, -10 % 3 canyield either -1 or +2, because -10 can be written as 3*(-3)+(-1) or 3*(-4)+(+2)
and both |-1|<3 and | 2]<3. In any case, both solutions will differ by 3.

However, operator’% is often implemented so that Aand (A % B) both have the same sign (which, in fact,
is the same rule used for fmod). It therefore makes sense to write a reminder function that grants this condition.

Since (-A) % B == -(A % B)andA % (-B) == A % B, you can deduce that you can return
sign(A)*(|A| % |B|) when the native implementation of A % B yields a different result.

A simple implementation can rely on (-3) % 2 being equal to +1 or -1. (Note that the following code is
not 100% bulletproof, but it’s a good compromise.)

template <typename T, int X = (-3)%2, int Y = (-3)%(-2), int Z = 3%(-2)>
struct modgroup;

// if X=+1, Y=-1, Z=+1 then operator% already does what we want
// (strictly speaking, we tested only int)

template <typename T>
struct modgroup<T, 1, -1, 1>

{
static scalar t mod(const T x, const T y)
{
return x % y;
}
};
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// in any other case, fall back to the safe formula

template <typename T, int X, int Y, int 2>
struct modgroup

{
static scalar t mod(const T x, const T y)
{
const T result = abs(x) % abs(y);
return x<0 ? -result : result;
}
};

template <typename scalar_t>
struct maths

{

static scalar t mod(const scalar t x, const scalar t vy,

tag_int)
{
return modgroup<scalar_t»::mod(x, y);

}

static scalar t mod(const scalar t& x, const scalar t& vy,
tag_floating)
{

}
};

return fmod(x, y);

template <typename scalar_ t>
inline scalar_t mod(const scalar t& x, const scalar t& y)

{

return maths<scalar t>::mod(x, y, instance of<scalar t>());

}

4.1.2. Runtime Decay

OVERLOAD RESOLUTION

A type tag may implement a special cast operator so that if no overload in the group matches the tag exactly,
the execution continues in a default function, which usually performs some work at runtime. The prototype

is a static integer that decays into a normal integer if there’s no better match.
Suppose you want to fill a C array with zeroes:

template <typename T, T VALUE>
struct static_value

{
/...

operator T() const

return VALUE;
}
};
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template <typename T>
struct zeroize helper

{

static void apply(T* const data, static_value<int, 1>)

*data = T();
}

static void apply(T (&data)[2], static_value<int, 2>)
{

}

data[0] = data[1] = T();

static void apply(T* const data, const int N)
{

}

std::fill n(data, N, T());
};

template <typename T, int N>
void zeroize(T (&data)[N])

{
}

zeroize helper<T>::apply(data, static_value<int, N>());

e Instead of 0, you write T(), which works for a broader range of types.
e IfNislarger than 2, the best match is the third member.

e  Each function in the group can decide freely to cast, or even to ignore,
the static_value.

e  The default case may accept every static_value not necessarily performing
all the work at runtime, but with another template function:

template <>
struct zeroize_helper<char>

{

template <int N>
struct chunk

char data[N];
};

template <int N>
static void apply(char* const data, static_value<int, N>, selector<true>)

{
}

*reinterpret_cast<chunk<N>*>(data) = chunk<N>();
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template <int N>
static void apply(char* const data, static_value<int, N>, selector<false>)

{

memset(data, N, 0);

}

template <int N>
static void apply(char* const data, static_value<int, N> S)

apply(data, S, selector<sizeof(chunk<N>) == N>());

};

4.2. More Traits

This section completes the review of traits.
This time you are going to use traits restricted for static programming, but also as function groups.
Let’s start with a concrete case.

4.2.1. A Function Set for Strings

Suppose you are going to write some generic algorithms for strings. Surely you can use iterators, in particular
random-access iterators, right? Most STL implementations have char-optimized algorithms, such as
std::find, std: : copy, and so on.

The only burden on the user is a large number of calls to strlen to find the end of range. strlenisa
very fast function, but this is a violation of STL assumptions, as “end” is assumed to be obtained in constant
time, not linear time.

const char* c_string = "this is an example";

// can we avoid this?
std::copy(c_string, c_string+strlen(c_string), destination);

You can squeeze in even more optimization using traits:

template <typename string t>
struct string_traits

{
typedef /* dependent on string t */ const_iterator;
typedef const string t& argument_type;

const_iterator begin(argument_type s);
const_iterator end (argument type s);

static bool is_end of string(const iterator i, argument type s);

};
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Assuming that for every meaningful string, string traits has the same interface, you can write an
algorithm as follows:

template <typename string t>
void loop_on_all chars(const string t& s)

{
typedef string traits<string t> traits_t;
typename traits t::const iterator i = traits t::begin(s);
while (!traits t::is end of string(i, s))
{
std::cout << *(i++);
}
}

The code is verbose but clear. Yet at this point it may not be evident what you accomplished.
The semi-opaque interface of string_traits gives more freedom in doing comparisons:

template <typename char_t>
struct string traits< std::basic_string<char t> >

{
typedef char_t char_type;
typedef
typename std::basic_string<char type>::const_iterator
const_iterator;

typedef const std::basic_string<char_type>& argument_type;

static const_iterator begin(argument_type text)

{
}

return text.begin();

static const_iterator end(argument_type text)

{
}

return text.end();

static bool is_end of string(const iterator i, argument type s);

{
}

return i == s.end();
};

template <>
struct string_traits<const char*>

{
typedef char char_type;
typedef const char* const_iterator;
typedef const char* argument_type;
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static const_iterator begin(argument type text)

{
return text;
}
static const_iterator end(argument_type text)
{
return 0; // constant-time
}

static bool is_end_of string(const_iterator i, argument_type s);
{
// a constant-time "C" test for end of string
return (i==0) || (*i==0);
}
b5

Since end is now constant-time, you save a linear-time pass (you'll meet this very same problem again

and solve it with a different technique in Section 6.2.2.
You can easily extend string_traits to a full interface (some words have been renamed for ease
of reading):

template <typename string t>
struct string traits

{
typedef /* ... */ char_type;

typedef /* ... */ const_iterator;
typedef /* ... */ argument_type; // either string t or const string t&

static size t npos();

static size t findist(arg t txt, const char t c, size t offset=0);
static size t findist(arg t txt, const arg t s, size t offset=0);

static size t findlast(arg t txt, const char_t s, size t offset);
static size t findlast(arg t txt, const arg t s, size t offset);

static size t findist in(arg t txt, const char t* charset, size t offs=0);
static size t findist out(arg t txt, const char_t* charset, size t offs=0);

static size t size(arg t txt);

static const_iterator begin(arg t txt);
static const_iterator end(arg t txt);

static const char t* c_str(arg t txt);
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static bool empty(const_iterator begin, const iterator end);
static bool less(const iterator begin, const iterator end);
static size t distance(const iterator begin, const iterator end);

};

To leverage the interface and take advantage of std: : string member functions, consider the following
convention:

e  Alliterators are random-access.

e  The find functions return either the index of the character (which is portable in all
kind of strings) or npos (), which means “not found”

static size t findist(arg t text, const char_type c, size t offset=0)

{

const char_t* pos = strchr(text+offset, c);
return pos ? (pos-text) : npos();

}

In the specialization for const char*, you carry on the ambiguity on the end iterator, which can be a
null pointer to mean “until char 0is found” Thus, you could implement distance as follows:

static size t distance(const iterator begin, const_iterator end)

{
}

return end ? end-begin : (begin ? strlen(begin) : 0);

Finally, you can inherit function sets via public derivation, as usual with traits, because they are
stateless (so the protected empty destructor can be omitted):

template <>

struct string traits<char*> : string_traits<const char*»
{

1

4.2.2. Concept Traits

As you repeatedly saw in the first chapters, traits classes prescribe syntax, not precise entities. Code may
borrow from traits in such a way that several different implementations are possible.

Suppose you have some kind of smart pointer class whose traits class is also responsible for
freeing memory:

template <typename T, typename traits_t = smart_ptr_ traits<T> >
class smart_ptr

{
typedef typename traits t::pointer pointer;
pointer p_;
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public:
~smart_ptr()
traits_t::release(p_);

/...
};
traits::release canbe

e A public static function (or functor); the relevant code is in the function body.

template <typename T>
struct smart_ptr_traits

{
typedef T* pointer;

static void release(pointer p)

{
}

delete p;
e Apublic static function that triggers a conversion operator, which in fact
runs the code.

template <typename T>
struct smart_ptr traits

{ static void release(bool)
{
};
class pointer
{
/...
public:
operator bool()
{...}
};
VYA

Using a slightly different syntax, you can rewrite this as follows:

template <typename T, typename traits_t = smart_ptr traits<T> >
class smart_ptr

{
typedef typename traits t::pointer pointer;
pointer p_;

187

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © OVERLOAD RESOLUTION

static void traits_release(typename traits_t::release)

{
};

public:
~smart_ptr()

// note: empty body

traits_release(p_);

}

Release can now be a type, and the relevant code is in the (non-explicit) constructor body.

template <typename T>
struct smart_ptr_traits

{
typedef T* pointer;

struct release

{

release(pointer p)

delete p;

}
};

The code can, again, trigger a conversion operator:

template <typename T>
struct smart_ptr_traits

{
struct release
{
b
class pointer
{
// ...
public:
operator release()
{
delete p_;
return release();
}
b
b

All these implementations are valid and you can choose the best positioning of the code that is
actually executed.*

“Mostly, the choice will depend on release and pointer being independent or provided by the same traits.
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If traits::release is provided as a type, it may have static data that is easily shared with the rest of the
program (you could, for example, log all the released pointers).

4.2.3. Platform-Specific Traits

Recall that traits classes can be “global” or “local” Global traits classes are visible everywhere and local traits
should be passed as parameters.
Global traits are preferred to make some platform properties easily accessible to clients:

template <typename char_t>
struct textfile traits

{

static char_t get eol() { return '\n'; }
/] ...
};

The following full example represents a timer object with a class template and borrows additional
information from a “timer traits” class:

e  How to get current time (in an unspecified unit)

e How to convert time into seconds (using a frequency)

template <typename traits_t>

class basic_timer

{
typedef typename traits t::time type tm t;
typedef typename traits t::difference type diff t;

tm_t start_;

tm_t stop_;

inline static tm t now()

{
return traits t::get time();

}

double elapsed(const tm t end) const

{
static const tm t frequency = traits t::get freq();
return double(diff t(end-start ))/frequency;

}

public:

typedef tm_t time_type;
typedef diff_t difference_type;

basic_timer()
: start ()
{}
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difference type lap() const
{ return now()-start_; }

time_type start()
{ return start_ = now(); }

difference type stop()
{ return (stop_ = now())-start_; }

difference_type interval() const
{ return stop -start ; }

double as_seconds() const
{ return elapsed(stop_ ); }

double elapsed() const
{ return elapsed(now()); }
};

Here is a sample traits class that measures clock time (in seconds):

#include <ctime>
struct clock_time traits

{
typedef size t time_type;
typedef ptrdiff_t difference type;

static time_type get time()
{

time t t;

return std::time(&t);
}

static time_type get freq()
{

}

return 1;
};
Here’s a different traits class that accounts for CPU time:
struct cpu_time_traits
{ typedef size t time_type;
typedef ptrdiff_t difference type;

static time_type get time()
{

}

return std::clock();
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static time_type get freq()
{

}

return CLOCKS_PER_SEC;

b
And a short use case:

basic_timer<clock time_traits> t;
t.start();

/...

t.stop();

std::cout << "I ran for

<< t.as_seconds() << " seconds.";

CHAPTER 4 © OVERLOAD RESOLUTION

The fundamental restriction of traits is that all member functions must contain valid C++ code, even if

unused. You cannot use compiler-specific code in one of the functions.

Since different operating systems can expose more precise APIs for time measurement, you might be

tempted to write specialized traits:
#include <windows.h>
struct windows_clock_time traits

{
typedef ULONGLONG time type;

typedef LONGLONG difference_type;

static time_type get time()

{
LARGE_INTEGER i;
QueryPerformanceCounter(8i);
return i.QuadPart;

}

static time_type get freq()

{
LARGE_INTEGER value;
QueryPerformanceFrequency(&value);
return value.QuadPart;

}

b

#include <sys/time.h>

struct macosx_clock_time_traits
{

typedef uint64_t time_type;
typedef int64 t difference_type;
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static time_type get time()
{

timeval now;
gettimeofday(&now, 0);
return time type(now.tv_sec) * get freq() + now.tv_usec;

}

static time_type get freq()
{

}

return 1000000;
};

Apart from the typedefs for large integers, this traits interface is standard C++, so you might are
tempted to isolate the preprocessor in a “factory header” and rely entirely on template properties later:

// platform_detect.hpp

struct windows {};
struct macosx {};
struct other os {};

#if defined(WIN32)

typedef windows platform type;
#elif defined(_APPLE_ )
typedef macosx platform type;
#else

typedef other_os platform_type;
#tendif

// timer traits.hpp

template <typename platform_t>
struct clock_time traits;

template < >
struct clock_time traits<windows>

{
};

// implementation with QPC/QPF

template < >
struct clock_time traits<macosx>

{
};

// implementation with gettimeofday
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template < >
struct clock_time traits<other_ os>

{
// implementation with std::time

};
typedef basic_timer< clock_time traits<platform type> > native_timer type;

Unfortunately, the code is non-portable (if it compiles, however, it runs correctly).

According to the standard, a compiler is not required to diagnose errors in unused template
member functions, but if it does, it requires that all mentioned entities be well-defined. In particular,
GCCwill report an error in clock_time_traits<windows>::get time, because no function named
QueryPerformanceCounter has been declared.

As the approach is attractive, some workarounds are possible:

e  Define a macro with the same name and as many arguments as the function:

// define as nothing because the return type is void
// otherwise define as an appropriate constant, e.g. 0

#define QueryPerformanceCounter(X)

#if defined(WIN32)

#undef QueryPerformanceCounter // remove the fake...
#include <windows.h> // ...and include the true function
#endif

e  Declare—but do not define—the function. This is the preferred solution, because
Windows traits should not link in other operating systems.

#if !defined(WIN32)
void QueryPerformanceCounter(void*);
#endif

Note A common trick, if the function returns void, is to define the name of the function itself to <nothing>.
The comma-separated argument list will be parsed as a comma operator.

This also allows ellipsis functions to be used:
#define printf

printf("Hello world, %f", cos(3.14));

However, there are a couple of potential issues. First, the macro changes the return type of the expression to
double (the last argument). Furthermore, the program is still evaluating cos(3.14). An alternative that also
minimizes the runtime effort—although it’s not totally bulletproof—is:

inline bool discard everything(...) { return false };

#define printf false && discard_everything
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4.2.4. Merging Traits

Especially when you're dealing with large traits, it’s good practice to enable the users to customize
smaller parts of the traits class. Typically, the problem is solved by splitting the traits class into parts and
recombining them using public inheritance to form a traits default value.

Suppose you are grouping some comparison operators in traits:

template <typename T>
struct binary relation_traits

{

static bool gt(const T& x, const T& y) { return x>y; }
static bool 1t(const T& x, const T& y) { return x<y; }

static bool gteq(const T& x, const T& y) { return x>=y; }
static bool lteq(const T& x, const T& y) { return x<=y; }

static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return x!=y; }

};
The general implementation of binary relation_traits assumes that T defines all six comparison
operators, but this example supports two important special cases, namely:
e  Tdefines operator< only
e  Tdefines operator< and operator== only
Without your support, the users will have to implement all the traits structure from scratch. So you must

rearrange the code as follows:

template <typename T>
struct b_r ordering traits

{
static bool gt(const T& x, const T& y) { return x>y; }
static bool 1t(const T& x, const T& y) { return x<y; }
static bool gteq(const T& x, const T& y) { return x>=y; }
static bool lteq(const T& x, const T& y) { return x<=y; }
};

template <typename T>

struct b_r equivalence traits

{
static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return x!=y; }

};

template <typename T>

struct binary relation traits

: public b_r ordering traits<T»

, public b_r_equivalence_traits<T>
{

};
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Then you have to write the alternative blocks, which can be combined:

template <typename T>

struct b_r ordering less traits

{
static bool gt(const T& x, const T& y) { return y<x; }
static bool 1t(const T& x, const T& y) { return x<y; }

static bool gteq(const T& x, const T& y) { return !(x<y); }
static bool lteq(const T& x, const T& y) { return !(y<x); }

};

template <typename T>

struct b_r equivalence equal traits

{
static bool eq(const T& x, const T& y) { return x==y; }
static bool ineq(const T& x, const T& y) { return !(x==y); }

};

template <typename T>
struct b_r equivalence less traits

{
static bool eq(const T& x, const T& y) { return !(x<y) 8& !(y<x); }
static bool ineq(const T& x, const T& y) { return x<y || y<x; }
};
Finally, you combine the pieces via derivation and a hidden template parameter.
enum
{
HAS JUST OPERATOR_LESS,
HAS_OPERATOR_LESS_AND_EO,
HAS_ALL_6_OPERATORS
};

template <typename T, int = HAS_ALL_6_OPERATORS>
struct binary relation_traits

: b_r ordering traits<T>

, b_r equivalence_traits<T»

{

};

template <typename T>

struct binary relation traits<T, HAS_JUST_OPERATOR_LESS>
: b_r ordering less traits<T>

, b_r_equivalence_less traits<T>

{

b
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template <typename T>

struct binary relation traits<T, OPERATOR_LESS AND_EQ>
: b_r ordering less traits<T>

, b_r_equivalence_equal_traits<T>

{

1

Further, traits can be chained using appropriate enumerations and “bitwise-or” syntax.’®

What if you wanted to provide an enumeration set, containing powers of two that will be combined
using the standard flags idiom, but at compile time:
fstream fs("main.txt", ios::in | ios:out);
typedef binary relation_traits<MyType, native::less | native::eq> MyTraits;

First, you let the flags start at 1, since you need powers of two.

namespace native

{
enum
{
1t =1,
1t _eq =2,
gt =4,
gt_eq = 8,
eq = 16,
ineq = 32
b
}

Second, you split the traits class into atoms, using partial specialization:

template <typename T, int FLAG>
struct binary relation_traits; // no body!

template <typename T>
struct binary relation traits<T, native::1t>

{
};

static bool 1t(const T& x, const T& y) { return x<y; }

template <typename T>
struct binary_relation traits<T, native::1t_eq>

{
};

static bool lteq(const T& x, const T& y) { return x<=y; }

// and so on...

See Section 2.3.3.
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If the user-supplied bitmask FLAG is set to (native: :ineq | ...), traits<T,FLAGS> should derive from
both traits<T, native::ineq> and traits <T, FLAGS - native::ineg>.

You need an auxiliary metafunction called static_highest_bit<N>::value, which returns the index of
the highest bit set in a (positive) integer N, such as the exponent of the largest power of two less or equal to N.°

Having this tool at your disposal, you come up with an implementation:

template <typename T, unsigned FLAG>
struct binary relation traits;

template <typename T>
struct binary relation_traits<T, 0>

{
// empty!

};

template <typename T>
struct binary relation_traits<T, native::1t>

{
static bool 1t(const T& x, const T& y) { return x<y; }

};

template <typename T>
struct binary relation_traits<T, native::gt>

{
static bool gt(const T& x, const T& y) { return x>y; }

};

// write all remaining specializations
// then finally...

template <typename T, unsigned FLAG>

struct binary relation_traits

: binary_relation_traits<T, FLAG & (1 << static_highest bit<FLAG>::value)>
, binary relation traits<T, FLAG - (1 << static_highest bit<FLAG>::value)>

{
// empty!

5
Now the user can select binary_relation_traits members at compile time:
typedef binary relation_traits<MyType, native::less | native::eq> MyTraits;
MyType a, b;

MyTraits::1t(a,b); // ok.
MyTraits::1teq(a,b); // error: undefined

SThe details of static_highest_bit are in Section 3.4.1.
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This technique is interesting in itself, but it does not meet the original requirements, since you can only
pick “native” operators. But you can add more flags:

namespace native

{
enum
{
1t =1,
1t eq =2,
gt =4,
gt_eq = 8,
eq = 16,
ineq = 32
};
}
namespace deduce
{
enum
{
ordering = 64,
equivalence = 128,
ineq = 256
};
}

template <typename T>
struct binary_relation_traits<T, deduce::ordering>

{
static bool gt(const T& x, const T& y) { return y<x; }
static bool gteq(const T& x, const T& y) { return !(x<y); }
static bool lteq(const T& x, const T& y) { return !(y<x); }
};

template <typename T>
struct binary relation_traits<T, deduce ::ineq>

{
};

static bool ineq(const T& x, const T& y) { return !(x==y); }

template <typename T>
struct binary relation_traits<T, deduce::equivalence>

{
static bool eq(const T& x, const T& y) { return !(x<y) 8& !(y<x); }
static bool ineq(const T& x, const T& y) { return x<y || y<x; }

};
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typedef
binary relation_traits
<
MyType,
native::less | deduce::ordering | deduce::equivalence
>
MyTraits;

Note that any unnecessary duplication (such that native::ineq | deduce::ineq) will trigger a
compiler error at the first use. If traits<T,N> and traits<T,M> both have a member x, traits<T,N+M>::x is
an ambiguous call.

4.3. SFINAE

The “substitution failure is not an error” (or SFINAE) principle is a guarantee that the C++ standard offers.
You will see precisely what it means and how to remove function templates from an overload set when they
do not satisfy a compile-time condition.

Remember that when a class template is instantiated, the compiler generates:

e  Every member signature at class level
e  Only strictly necessary function bodies

As a consequence, this code does not compile:

template <typename T>
struct A

{
typename T::pointer f() const

{

return 0;

}
};

A<int> x;

As soon as A<int> is met, the compiler will try to generate a signature for every member function, and it
will give an error because int: :pointer is not a valid type. Instead, this would work:

template <typename T>
struct A

{

int f() const

{
typename T::type a = 0;
return a;

}
};

A<int> x;
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Aslong as A<int>::f() is unused, the compiler will ignore its body (and that is good news, because it
contains an error).

Furthermore, when the compiler meets f(x) and x has type X, it should decide which particular f is
being invoked, so it sorts all possible candidates from the best to the worst and tries to substitute X in any
template parameter. If this replacement produces a function with an invalid signature (signature, not body!),
the candidate is silently discarded. This is the SFINAE principle.

template <typename T>
typename T::pointer f(T*);

int f(void*);

int* x = 0;

f(x);

The first f would be preferred because T* is a better match than void*; however, int has no member
type called pointer, so the second f is used. SFINAE applies only when the substitution produces an
expression that is formally invalid (like int: :pointer). Instead, it does not apply when the result is a type
that does not compile:

template <typename T, int N>
struct B

{
};

template <typename T>
B<T, 0> f(T*);

static const int value = 100/N;

int f(void*);

B<T, 0> isavalid type, but its compilation gives an error. The first f will be picked anyway, and the
compiler will stop.

To take advantage of SFINAE, when you want to “enable” or “disable” a particular overload of a function
template, you artificially insert in its signature a dependent name that may resolve to an invalid expression
(anon-existent type like int: :pointer).

If all candidates have been discarded, you get a compiler error (trivial uses of SFINAE look in fact like
static assertions).

There are two main applications of SFINAE: when f runs after being selected and when f is not
executed at all.

4.3.1. SFINAE Metafunctions

Using SFINAE and sizeof, you can write metafunctions that take a decision based on the interface of a
type T. This is very close to what is called reflection in different programming languages.
The basic ingredients are:

e  Two (or more) types with different sizes; let’s call them YES and NO.

e Asetofoverloaded functions f, where at least one must be a template, returning
either YES or NO.

e  Astatic constant defined in terms of sizeof (f(something)).
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The following paradigm helps clarify this:

template <typename T>

class YES { char dummy[2]; }; // has size > 1
typedef char NO; // has size ==
template <typename T>

class MF

{

template <typename X>
static YES<[[condition on X]]> test(X);

static NO test(...);
static T this_type();

public:
static const bool value = sizeof(test(this type())) != sizeof(NO);
};

The compiler has to decide which test is being called when the argument has type T. It will try to
evaluate YES<[[condition on T]]» first (because void* and the ellipsis . . . have very low priority). If this
generates an invalid type, the first overload of test is discarded and it will select the other.

Note some important facts:

e  The static functions need not have a body; only their signature is used in sizeof.

e  YES<T> need not have size 2. It would be an error to write sizeof(test(this_
type())) == 2. However, char must have size 1, so you could verify if
sizeof(test(this_type()))>1.

e  Atleast one of the test functions should be a template that depends on a new
parameter X. It would be wrong to define test in terms of T (the parameter of MF),
since SFINAE would not apply.

e  You use a dummy function that returns T instead of, say, invoking test (T()) because
T might not have a default constructor.

Some compilers will emit a warning because it’s illegal to pass an object to an ellipsis function. Actually,
the code does not run, since sizeof wraps the whole expression, but warnings may be long and annoying.
A good workaround is to pass pointers to functions:

template <typename X>
static YES<[[condition on X]]> test(X*);

static NO test(...);
static T* this_type();

If you switch to pointers:
e void becomes an admissible type (since T* exists).

e  References become illegal (a pointer to a reference is an error).
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So either way, you'll have to write some explicit specialization of MF to deal with corner cases.
SFINAE applies if any substitution of the template parameter produces an invalid type, not necessarily
in the return type. Sometimes, in fact, it's more convenient to use arguments:

template <typename T>
class MF
{
template <typename X>
static YES<void> test([[type that depends on X]]*);

template <typename X>
static NO test(...);

public:
static const bool value = sizeof(test<T»(0)) != sizeof(NO);
};

If the substitution of X in the first expression produces a valid type, thus a valid pointer, test<T>(0)
takes it as the preferred call. (It casts O to a typed pointer and returns YES<void> or whatever yes-type.)
Otherwise, 0 is passed without any cast (as integer) to test(. . .), which returns NO.

The explicit call test<T> works because the ellipsis test function has a dummy template parameter;
otherwise, it would never match.”

As a simple example, you can test if type T has a member type named pointer:

template <typename T>
class has_pointer_type

{

template <typename X>

static YES<typename X::pointer> test(X*);

static NO test(...);

static T* this_type();
public:

static const bool value = sizeof(test(this_type())) != sizeof(NO);
b

or (almost) equivalently:*®

template <typename T>
class has_pointer_type
{
template <typename X>
static YES<void> test(typename X::pointer*);

’See Section 1.2.1.
8This would fail if X: :pointer were a reference; at the moment, you don’t need to worry about this.
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template <typename X>
static NO test(...);

public:
static const bool value = sizeof(test<T»(0)) == sizeof(YES);

};

By modifying the template parameter of YES, you can check if T has a static constant named value.
Once again, it’s convenient to derive from a common yes-type:

// copied from Section 2.1.4
typedef char no_type;
typedef larger than<no_type> yes type;

template <int VALUE>
struct YES2 : yes_type

{
};

template <typename T>
class has_value

{

template <typename X>
static YES2<X::value> test(X*);

/...
};

Or you can check for the presence of a member function with a fixed name and signature?’:

template <typename T, void (T::*F)(T&)>
struct YES3 : yes_type

{

};

template <typename T>
class has_swap_member

{
template <typename X>

static YES3<X, &X::swap> test(X*);

/...
};

The swap-detection problem is actually much more difficult; it’s discussed later in this section.
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Finally, a popular idiom checks if T is a class or a fundamental type using a fake pointer-to-member.
(Literal zero can be cast to int T::*ifTis a class, even if it has no member of type int.)

template <typename T>
class is_class

{

template <typename X>

static yes_type test(int X::*);

template <typename X>

static no_type test(...);
public:

static const bool value = (sizeof(test<T>(0))!=sizeof(no_type));
};

4.3.2. Multiple Decisions

The examples shown so far take a single yes/no decision path, but some criteria can be more complex. Let’s
write a metafunction that identifies all signed integers'®:

if (T is a class)
return false

if (T is a pointer)
return false

if (T is a reference)
return false

if (we can have a non-type template parameter of type T)

{
if (the expression "T(0) > T(-1)" is well-formed and true)
return true
else
return false
}
else
{
return false
}

9The “main algorithm” alone would not suffice. It will work when T is a fundamental type. Some compilers evaluate the
expression T(0) < T(-1) as true when T is a pointer; other compilers will give errors if T is a type with no constructor.
That’s why you add explicit specializations for pointers, references, and class types. Note, however, that this approach

is superior to an explicit list of specializations, because it’s completely compiler/preprocessor independent.
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template <typename X, bool IS CLASS = is_class<X>::value>
class is_signed_integer;

template <typename X>

class is_signed_integer<X*, false> : public selector<false>
{

b

template <typename X>

class is_signed_integer<X&, false> : public selector<false>
{

};

template <typename X>

class is_signed_integer<X, true> : public selector<false>
{

b

template <typename X>
class is_signed_integer<X, false>

{

template <typename T>

static static_parameter<T, 0>* decide int(T*);

static void* decide int(...);

template <typename T>

static selector<(T(0) > T(-1))> decide signed(static_parameter<T, 0>*);

static selector<false> decide signed(...);

static yes type cast(selector<truey);

static no_type cast(selector<false»);

static X* getX();
public:

static const bool value =

sizeof(cast(decide_signed(decide int(getX()))))==sizeof(yes type);

b

OVERLOAD RESOLUTION

cast maps all possible intermediate return types to yes_type or no_type, for the final sizeof test.
In general, it’s possible to stretch this idea and return an enumeration (more precisely, a size_t),

instead of bool. Suppose you had more intermediate decision cases:

static T1 decide(int*);
static T2 decide(double*);

static Tn decide(void*);
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Then you can map T1, T2,... Tnto an enumeration using fixed_size:

static fixed size<1>::typed cast(T1);
static fixed size<2>::typed cast(T2);
/...

public:
static const size t value = sizeof(cast(decide(...)));

};

4.3.3. Only_If

Another interesting use of SFINAE is in excluding elements from a set of overloaded (member) functions
that are not compliant with some condition:

template <bool CONDITION>
struct static_assert SFINAE
{

typedef void type;

b

template <>

struct static_assert SFINAE<false>
{

};

If a function has an argument of type pointer-to-X, where X is defined as static_assert_
SFINAE<...>::type, substitution of any CONDITION that evaluates to false generates an invalid expression.
So that particular function is removed from the set of overloads.

The fake pointer argument has a default value of 0, which means the user can safely ignore its existence.'

#define ONLY_IF(COND)  typename static_assert SFINAE<COND>::type* = 0

template <typename T>

void f(T x, ONLY_IF(is_integer<T>::value))
{

}

void f(float x)
{
}

// later...

double x = 3.14;
f(x); // calls f(float)

Sometimes it’s desirable to document C++ code, not literally, but just as the user is supposed to use it. This kind of
functional documentation is also a part of C++ style. The example illustrated here documents that £(T) is a single
argument function, even if it’s not. All the implementation details should be hidden.
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This technique is often useful in universal-copy constructors of class templates:

template <typename T1>
class MyVector

{

public:
// not used if T2 is T1
template <typename T2>
MyVector(const MyVector<T2>& that)
{
}

};

Restrictions on T2 may be easily introduced using ONLY_IF (has_conversion is fully documented
in Section 4.4.

template <typename T2>

MyVector(const MyVector<T2>& that,
ONLY_IF((has_conversion<T2,T1>::L2R)))

{

}

Another application is the “static cast” of static_value. You might need to convert, say,
static_value<int, 3>tostatic_value<long, 3>:

template <typename T, T VALUE>
struct static_value

{

static const T value = VALUE,;

static_value(const int = 0)

{
}

template <typename S, S OTHER>
static_value(const static_value<S, OTHER>,
typename only if<VALUE==0THER, int>::type = 0)

};
Sometimes it can be useful to apply the idiom, not to arguments, but to the return value:

template <bool CONDITION, typename T = void>
struct only if

{
typedef T type;

5
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template <typename T>
struct only if<false, T>

{
};

template <typename T>
typename only if<is_integer<T>::value,T>::type multiply by 2(const T x)

return x << 1;

}

This function is either ill-formed or takes a const T and returns T.

4.3.4. SFINAE and Returned Functors

The various test functions you've seen so far have no use for their return type, whose size is all that matters.
Sometimes they will instead return a functor that is immediately invoked. Consider a simple example,
where the function number_of elemreturns x.size() if x has a type member called size_type and
otherwise returns 1.

template <typename T, typename S>
struct get_size

S operator()(const T& x) const { return x.size(); }

get size(int) {}

)

struct get_one

{

template <typename T>
size t operator()(const T&) const { return 1; }

get one(int) {}

)

template <typename T>
get_size<T, typename T::size_type> test(const T* x) // SFINAE

{
return 0;
}
get_one test(const void*)
{
return 0;
}
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template <typename T>
size t number of elem(const T& x)

{
return test(&x)(x);

}

std::vector<int> v;
std: :map<int, double> m;

double x;

number of elem(v); // returns v.size()
number_of elem(m); // returns m.size()
number_of elem(x); // returns 1

You can use some techniques from the previous paragraph to describe an implementation of a logging
callback, with a variable log level, based on metaprogramming.

In scientific computing, you can meet functions that run for a long time. So it’s necessary to maintain
some interaction with the function even while it’s running, for example, to get feedback on the progress or to
send an abort signal. Since there is no hypothesis on the environment (computational routines are usually
portable), you cannot pass a pointer to a progress bar, and you have to design an equally portable interface.

A possible solution follows. The function internally updates a structure (whose type is known to its caller)
with all the meaningful information about the state of the program, and it invokes a user functor regularly on
the structure:

struct algorithm_info

{

int iteration_current;
int iteration_max;

double best tentative solution;
size t time_elapsed;
size t memory used;

};

template <..., typename logger t>
void algorithm(..., logger t LOG)

{
algorithm_info I;
for (...)
{
// do the work...
I.iteration_current = ...;
I.best_tentative solution = ...;
LOG(I);
}
}
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You can try to design some static interaction between the logger and the algorithm so that only some
relevant portion of the information is updated. If LOG does nothing, no time is wasted updating I.

First, all recordable information is partitioned in levels. logger t will declare a static constant named
log_level and the algorithm loop will not update the objects corresponding to information in ignored levels.

By convention, having no member log_level or having log_level=0 corresponds to skipping the log.

template <int LEVEL = 3>
struct algorithm_info;

template <>
struct algorithm_info<0>

{
};

template <>
struct algorithm info<1> : algorithm_info<o>

{

int iteration_current;
int iteration_max;

};

template <>
struct algorithm_info<2> : algorithm_info<1>

double best_value;

};

template <>
struct algorithm_info<3> : algorithm_info<2>

{
size t time_elapsed;
size t memory used;

b
Second, you use SFINAE to query logger t for a constant named log_level:

template <int N>
struct log level t

{

operator int () const

return N;

}
};

template <typename T>
log level t<T::log_level> log level(const T*)
{

}

return log level t<T::log level>();
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inline int log level(...)

{

return 0;

}

Finally, a simple switch will do the work. If logger t does contain log level, SFINAE will pick the
first overload of log_level, returning an object that’s immediately cast to integer. Otherwise, the weaker
overload will immediately return 0.

switch (log_level(8LOG))

case 3:
I.time_elapsed = ...;
I.memory used = ...;

case 2: // fall through
I.best _value = ...;

case 1: // fall through
I.iteration_current = ...;

I.iteration_max = ...;

case 0: // fall through

default:
break;
}
LOG(I);

This implementation is the simplest to code, but LOG still has access to the whole object I, even the part
that is not initialized.

The static information about the level is already contained in log_level _t, so it’s appropriate to
transform this object into a functor that performs a cast.

template <int N>
struct log level t
{

operator int () const

return N;

}

typedef const algorithm_info<N>& ref_n;
typedef const algorithm_info< >& ref;

ref n operator()(ref i) const
return i;

}
};
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template <typename T>
log level t<T::log level> log level(const T*)

{

return log level t<T::log level>();
}
inline log level t<0> log level(...)
{

return log level t<0>();
}

switch (log_level(&LOG))

{

// as above...
}

LOG(log level(&LOG)(I));

This enforces LOG to implement an operator () that accepts exactly the right “slice” of information.

4.3.5. SFINAE and Software Updates

One of the many uses of SFINAE-based metafunctions is conditional requirement detection.

TMP libraries often interact with user types and user functors, which must usually satisfy some
(minimal) interface constraint. New releases of these libraries could in principle impose additional
requirements for extra optimizations, but this often conflicts with backward compatibility.

Suppose you sort a range by passing a custom binary relation to an external library function, called
nonstd: :sort:

struct Myless

{

bool operator()(const Person& x, const Person & y) const

/1 ...

}
};

std: :vector<Person> v;
nonstd: :sort(v.begin(), v.end(), MyLess());

Version 2.0 of the sorting library requires MyLess to contain an additional function called static void
CompareAndSwap(Person& a, Persond b), so this code will not compile.

Instead, the library could easily detect if such a function is provided, and, if so, automatically invoke a
faster parallel CAS-based algorithm.

This “self-detection” of features allows independent upgrades of the underlying libraries.
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This applies also to traits:

struct MyTraits

{
static const bool ENABLE_FAST ALLOCATOR = true;

static const bool ENABLE_UTF8 = true;
static const bool ENABLE_SERIALIZATION = false;

b
typedef nonstd::basic_string<char, MyTraits> MyString;
Version 2.0 of the string library has a use for an extra member:

struct MyTraits

{
static const bool ENABLE_FAST ALLOCATOR = true;

static const bool ENABLE_UTF8 = true;
static const bool ENABLE_SERIALIZATION = false;

static const size t NUMBER_OF THREADS = 4;
};

But the author of the library should not assume that this new constant is present in the traits class he
receives. However, he can use SFINAE to indirectly extract this value, if it exists, or use a default:

template <typename T, size t DEFAULT>
class read NUMBER_OF THREADS

{
template <typename X>

static static_value<size t, X::NUMBER_OF THREADS> test(X*);
static static_value<size t, DEFAULT> test(void*);

template <size t N>
static typename fixed size<N+1>::type8 cast(static_value<size t,N>);

static T* getT();
public:
static const size t value = sizeof(cast(test(getT()))) - 1;

};

The +1/-1 trick is necessary to avoid arrays of length zero.
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The author of nonstd: :basic_string will write:

template <typename char_t, typename traits t>
class basic_string

{
/...

int n = read NUMBER_OF THREADS<traits t, 4>::value;

So this class compiles even with older traits.

As arule, you don’t need to check that NUMBER_OF _THREADS has indeed type (static const) size_t.
Any integer will do. It's possible to be more rigorous, but it is generally not worth the machinery. I am going
to show all the details, but you should consider the rest of this section an exercise. You need three additional
metafunctions:

e  Detectif T has any constant named NUMBER_OF THREADS, with the usual techniques.
o Ifthisis false, the result is immediately false (line #2).

e  Otherwise, use a different specialization, where it’s legal to write
T::NUMBER_OF_THREADS. You pass this “item” to a test function (line #1). The best
choice is a non-template function with an argument of type REQUIRED_T; the other
option is a template that will match everything else, so no cast can occur.

template <typename T>
struct has_any NUMBER_OF THREADS

{
template <typename X>
static static_value<size t, X::NUMBER_OF THREADS> test(X*);
static no_type test(void*);

template <size t N>
static yes type cast(static_value<size t, N>);

static no_type cast(no_type);
static T* getT();

static const bool value = (sizeof(cast(test(getT()))) > 1);
};

template <typename REQUIRED T, typename T, bool>
struct check NUMBER_OF_THREADS type;

template <typename REQUIRED T, typename T>
struct check NUMBER_OF THREADS type<REQUIRED T, T, true>
{

static yes_type test(REQUIRED_T);

template <typename X>

static no_type test(X);
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static const bool value
= sizeof(test(T::NUMBER OF THREADS))>1; // line #1

};

template <typename REQUIRED T, typename T>
struct check NUMBER_OF THREADS type<REQUIRED T, T, false>

{
static const bool value = false; // line #2
};
template <typename T>
struct has_valid NUMBER OF THREADS

: check NUMBER_OF_THREADS type<size_t, T,
has_any NUMBER_OF_THREADS<T>::value>
{

};

4.3.6. Limitations and Workarounds

OVERLOAD RESOLUTION

SFINAE techniques ultimately rely on the compiler handling an error gracefully, so they are especially

vulnerable to compiler bugs.
If the correct code does not compile, here’s a checklist of workarounds:

e  Give all functions a body.
e  Move static functions outside of the class, in a private namespace.
e Remove private and use struct.

e  Think of a simpler algorithm.
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Table 4-1. side-by-side comparison of the code, before and after the workarounds

template <typename X>

class is_signed_integer namespace priv {
{
template <typename T> template <typename T>
static static_value<T, 0>* decide_int(T*); static_value<T, 0>* decide_int(T*);
static void* decide_int(...); void* decide_int(...);
template <typename T> template <typename T>
static selector<(T(0)>T(-1))> selector<(T(0)>T(-1))>
decide_signed(static_value<T,0>*); decide_signed(static_value<T, 0>*);
static selector<false> decide_signed(...); selector<false> decide_signed(...);
static yes_type cast(selector<true>); yes_type cast(selector<true>);
static no_type cast(selector<false>); no_type cast(selector<false>);
static X* getX(); template <typename X>
struct is_signed_integer_helper
public: {
static const bool value = X* getX();
sizeof(cast(decide_signed(decide_int(getX()))))
== sizeof(yes_type); static const bool value =
h sizeof(cast(decide_signed(decide_int(getX()))))

==sizeof(yes_type);
b

}// end of namespace

template <typename T>

struct is_signed_integer

: public selector<priv::is_signed_integer_
helper<T>::value>

{

i3

A corner case in the standard is a substitution failure inside a sizeof that should bind to a template
parameter. The following example usually does not compile:

template <typename T>
class is_dereferenceable

{
template <size_t N>
class YES { char dummy[2]; };
template <typename X>
static YES<sizeof(*X())> test(X*);
216
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static NO test(...);
static T* this_type();

public:
static const bool value = sizeof(test(this type()))>1;
};

Detection of member functions is extremely problematic. Let’s rewrite the metafunction here.

template <typename S>

class has_swap_member

{
template <typename T, void (T::*)(T8&) >
class YES { char dummy[2]; };

typedef char NO;

template <typename T>
static YES<T, &T::swap> test( T* );

static NO test(...);
static S* ptr();

public:
static const bool value = sizeof(test(ptr()))>1;

};

Suppose that classes D1 and D2 have a public template base called B<T1> and B<T2>, and they have
no data members of their own. swap will likely be implemented only once in B, with signature void
B<T>::swap(B<T>&), but the users will see it as D1: : swap and D2: : swap (an argument of type D1 will be cast
to B<T1>8).12

However, has_swap_member<D1>: :value is false because YES<D1, &D1::swap> does not match
YES<T, void (T::*F)(T&)>.

Hypothetically, it would match either YES<T1,void(T2::*F)(T2&)> or even YES<T1,void(T1::*F)
(T28)>, but this pointer cast is out of scope, because T2 is unknown.

Furthermore, the standard explicitly says that you cannot take a pointer to a member function of a
library object, because the implementation is allowed to modify the prototype, as long as the syntax works as
expected. For example, you could have a perfectly valid void T::swap(T&, int = 0).

So the fact that has_swap_member<T>: :value is false does not mean that the syntax a.swap(b) is illegal.

The best you can do is integrate the detection phase with the swap itself and create a function that
swaps two references with the best-known method. When swap detection fails, ADL will usually find an
equivalent routine in the right namespace (at least for all STL containers; see Section 1.4.2.

"2This may look like a corner case, but it’s quite common. In popular STL implementation, let D1=std: :map, D2=std: : set
and B<T> be an undocumented class that represents a balanced tree.

217

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 4 © OVERLOAD RESOLUTION
using std::swap;

struct swap_traits
{
template <typename T>
inline static void apply(T& a, T& b)
{
applyi(a, b, test(&a));

private:

template <typename T, void (T::*F)(T&)>
struct yes : public yes_type
{
yes(int = 0)
{}
};

template <typename T>
static yes<T, &T::swap> test(T*)
{ return o; }

static no_type test(void*)
{ return o; }

template <typename T>
inline static void apply1(T& a, T& b, no_type)
{
swap(a, b);
}

template <typename T>
inline static void apply1(T& a, T& b, yes type)
{
a.swap(b);
}
};

template <typename T>
inline void smart swap(T& x, T& y)

{
swap_traits::apply(x, y);
}
Note that all functions have a body, as they are truly invoked.
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The workflow is as follows. smart_swap(x,y) invokes apply, which in turn is apply1(x,y, [[condition
on T]]). apply1lis an ADL swap when the condition is no and a member swap invocation otherwise.

#include <map>

struct swappable

{
void swap(swappable&)
{
}
};
int main()
{
std::map<int, int> a, b;
smart_swap(a, b); // if it fails detection of map::swap
// then it uses ADL swap, which is the same
swappable c, d;
smart_swap(c, d); // correctly detects and uses swappable::swap
int i =3, j=4;
smart_swap(i, j); // correctly uses std::swap
}

Note The true solution requires the C++0x keyword decltype. See Section 12.2.

One final caveat is to avoid mixing SFINAE with private members.

The C++ 2003 Standard says that access control occurs after template deduction. So, if T: : type exists
but it’s private, SFINAE will select an action based on the information that T: : type actually exists, but a
compiler error will generally occur immediately after (since T: : type is inaccessible)."

template <typename T>
typename T::type F(int);

template <typename T>

char F(...);
class X
{

typedef double type; // note: private, by default
};

3This was changed in the C++11 Standard. See
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1170.
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// A condensed version of the usual SFINAE machinery...
// We would expect the code to compile and N==1.

// This occurs only in C++0x

int N = sizeof(F<X>(0));

error: type "X::type" is inaccessible
typename T::type F(int);

detected during instantiation of "F" based on template argument <X>

4.3.7. SFINAE with Partial Specializations

SFINAE applies also to partial specialization of class templates. When a condition that should be used
to select the partial specialization is ill-formed, that specialization is silently removed from the set of
candidates. This section shows a practical application with an example."

Suppose you have a template class called A<T>, which you want to specialize when type T contains a
typedef called iterator.

You start by adding a second template parameter to A and a partial specialization on the second
(you will define DEFAULT_TYPE and METAFUNC later):

template <typename T, typename X = DEFAULT_TYPE>
struct A

{.o b

template <typename T>
struct A<T, typename METAFUNC<typename T::iterator>::type >

{.o b

According to SFINAE, when T: :iterator does not exist, the specialization is ignored and the general
template is used. However, when T: :iterator indeed exists (and METAFUNC is well defined), both definitions
are valid. But according to the C++ language rules, if DEFAULT_TYPE happens to be the same as METAFUNCTION
<T::iterator>::type, the specialization of A is used. Let’s rewrite the example more expliticly:

template <typename T>
struct METAFUNC

{
typedef int type;

)

template <typename T, typename X = int>
struct A

{.o b

template <typename T>
struct A<T, typename METAFUNC<typename T::iterator>::type >

{.o b

A<int> a1; // uses the general template
A¢std::vector<int>> a2; // uses the specialization

“Walter Brown recently made this technique popular. See http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2014/n3911.
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4.4. Other Classic Metafunctions with Sizeof

An overload may be selected because the argument can be cast successfully.

This section shows a metafunction that returns three Boolean constants—has_conversion<L,R>::L2R
is true when L (left) is convertible to R (right) and has_conversion<L,R>::identity is true when L and R are
the same type.”®

template <typename L, typename R>
class has_conversion

{
static yes type test(R);
static no_type test(...);
static L left();
public:
static const bool L2R = (sizeof(test(left())) == sizeof(yes_type));
static const bool identity = false;
};

template <typename T>
class has_conversion<T, T>

{
public:
static const bool L2R = true;
static const bool identity = true;
};

This code passes a fake instance of L to test. If L is convertible to R, the first overload is preferred, and
the resultis yes_type.
Following Alexandrescu,'® you can deduce whether a type publicly derives from another:

template <typename B, typename D>
struct is_base of

{
static const bool value =
(
has_conversion<const D*, const B*>::L2R &&
has_conversion<const B*, const void*>::identity
);
};

Implicit promotion techniques have been extensively used by David Abrahams.'” The key point is to
overload an operator at namespace level, not as a member.

The left-right notation may not be the most elegant, but it’s indeed excellent for remembering how the class works.
1°See the bibliography.

boost: :is_incrementable correctly strips qualifiers from T, but it allows operator++ to return void, which in general
is not desirable. In this case, the simpler version presented here gives a compile-time error.
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struct fake incrementable

{

template <typename T>

fake_incrementable(T); // non-explicit universal constructor
};
fake _incrementable operator++(fake incrementable); // line #1

yes_type test(fake_incrementable);

template <typename T>
no_type test(T);

template <class T>
struct has_preincrement

{
static T& getT();

static const bool value = sizeof(test(++getT())) == sizeof(no_type);
s
The ++getT() statement can either resolve to x’s own operator++ or (with lower priority) resolve to
a conversion to fake_incrementable, followed by fake_incrementable increment. This latter function is
visible, because, as anticipated, it is declared as a global entity in the namespace, not as a member function.
To test post-increment, replace line #1 with:

fake_incrementable operator++(fake incrementable, int);

Note that the computation of sizeof(test(++x)) must be done in the namespace where
fake_incrementable lives. Otherwise, it will fail:

namespace aux {
struct fake_incrementable

{
template <typename T>

fake_incrementable(T);
};
fake _incrementable operator++(fake incrementable);

yes_type test(fake_incrementable);

template <typename T>
no_type test(T);

}
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template <typename T>
struct has_preincrement

{
static T& getT();
static const bool value
= sizeof(aux::test(++getT())) == sizeof(no_type);
};

You can also move the computation inside the namespace and recall the result outside:
namespace aux {
// ... (all as above)

template <typename T>
struct has_preincrement_helper
{
static T& getT();
static const bool value = sizeof(test(++getT())) == sizeof(no_type);

};
}

template <typename T>

struct has_preincrement : selector<aux::has_preincrement_helper<T>::value>
{

};

4.5. Overload on Function Pointers

One of the most convenient tag objects used to select an overloaded function is a function pointer, which is
then discarded.

A pointer is cheap to build yet can convey a lot of static information, which makes it suitable for
template argument deduction.

4.5.1. Erase

The following is the primary example. It iterates over an STL container, so you need to erase the element
pointed to by iterator i. Erasure should advance (not invalidate) the iterator itself. Unfortunately, the
syntax differs. For some containers, the right syntaxis i = c.erase(i), butfor associative containers it is
c.erase(i++).

Taking advantage of the fact that C: : erase must exist (otherwise you wouldn’t know what to do and the
call to erase_gap would be ill formed), you just pick the right one with a dummy pointer:

template <typename C, typename iterator_ t, typename base t>
void erase gap2(C& c, iterator t& i, iterator t (base t::*)(iterator t))

i = c.erase(i);
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template <typename C, typename iterator_ t, typename base t>
void erase gap2(C& c, iterator t& i, void (base t::*)(iterator t))

{
}

c.erase(i++);

template <typename C>
void erase gap(C& c, typename C::iterator& i)

{
erase_gap2(c, i, &C::erase);
int main()
{
for (i = c.begin(); i != c.end(); )
if (need_to_erase(i))
erase _gap(c, i);
else
++1;
}
}

Observe that erasure is not invoked via the pointer. It’s just the type of the pointer that matters.
Also, the type of erase may notbe ... (C::*)(...), because a container could have a “hidden base”.
The exact type is therefore left open to compiler deduction.

4.5.2. Swap

The previous technique can be extended via SFINAE to cases where it's unknown if the member function
exists. To demonstrate, you need to extend swap_traits (introduced in Section 4.3.6) to perform the
following'®:

e IfThasvoid T::swap(T8&), usea.swap(b).

e IfThasstatic void swap(T&,T&), useT::swap(a,b).
e If T has both swaps, the call is ambiguous.

° In any other case, use ADL swap.

The first part simply reuses the techniques from the previous sections. In particular, observe that all
yes-types derive from a common “yes-base,” because the first test is meant only to ensure that the possible
swap member functions exist.

18This extension is to be considered an exercise, but not necessarily a good idea.
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struct swap_traits

{
template <typename T, void (T::*F)(T&)>
class yes1 : public yes type {};

template <typename T, void (*F)(T&, T&)>
class yes2 : public yes type {};

template <typename T>
inline static void apply(T& a, T& b)

{
applyi(a, b, test(8a));

private:
// first test: return a yes_type* if any allowed T::swap exists

template <typename T>
static yesi<T, &T::swap>* test(T*)
{ return o; }

template <typename T>
static yes2<T, &T::swap>* test(T*)
{ return o; }

static no_type* test(void*)
{ return o; }

When the test is false, call ADL swap. Otherwise, perform a function-pointer based test. Call apply2 by
taking the address of swap, which is known to be possible because at least one swap exists.

private:
template <typename T>
inline static void apply1(T& a, T& b, no_type*)
{

}

swap(a, b);

template <typename T>
inline static void apply1(T& a, T& b, yes type*)
{

apply2(a, b, &T::swap);

template <typename T>
inline static void apply2(T& a, T& b, void (*)(T&, T&))

{
T::swap(a, b);
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template <typename T, typename BASE>
inline static void apply2(T& a, T& b, void (BASE::*)(BASE&))

{
a.swap(b);

template <typename T>
inline static void apply2(T& a, T& b, ...)
swap(a, b);
};

4.5.2. Argument Dominance

When a function template has several arguments whose type must be deduced, you may incur ambiguities:

template <typename T>
T max(T a1, T a2) { ... }

max(3, 4.0); // error: ambiguous, T may be int or double

It’s often the case that one argument is more important, so you can explicitly instruct the compiler to
ignore everything else during type deduction:

// here T must be the type of argi

template <typename T>
void add to(T& a1, Ta2) { ... }

double x = 0;
add_to(x, 3); // we would like this code to compile

The solution to this is to replace T with an indirect metafunction that yields the same result. Type
deduction is performed only on non-dependent names, and the compiler then ensures that the result is
compatible with any other dependent name:

template <typename T>
void add_to(T& a1, typename instance_of<T»>::type a2)

{...}
In this example, T8 is viable for type-detection. T=double is the only match. instance_of<double> does

indeed contain a type called type (which is double), so the match is feasible. So the function automatically
casts a2 to double.
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This idiom is very popular when a1 is a function pointer and a2 is the argument of a1:
template <typename A, typename R>

R function _call(R (*f)(A), R x)
{ return f(x); }

The function pointer is a dominating argument, because you can call f on everything that is convertible.
You should therefore consider disabling the detection on x:

template <typename A, typename R>
R function_call(R (*f)(A), typename instance_of<R>::type x)
{ return f(x); }
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Templates are used as interfaces in two different ways: to provide sets of atomic functions and to obtain

compile-time polymorphism.

If several functions use the same portion of the interface of an object, you can factor them out in a single

template:

void do_something(std::vector<double>& v)

if (v.empty())
// ...

. v.size();
for_each(v.begin(), v.end(), my functor());

}
void do_something(std::list<double>& L)

if (L.empty())
!/l .

... L.size();

for_each(L.begin(), L.end(), my functor());
}
becomes:

template <typename T>
void do_something(T& L)

if (L.empty())
// ...
. L.size();

for_each(L.begin(), L.end(), my_functor());
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This code unification is simpler when you follow common guidelines for containers (as listed in Section 1.4).
If necessary, as described in Section 3.4.3, you can replace calls to member functions with calls to small
global functions. Assume you have a third do_something that executes a slightly different test:

void do_something(MyContainer<double>& M)

if (M.size() == 0)

It’s better to isolate the test for “emptiness” in a different function:

template <typename T>
bool is empty(const T& c)

return c.empty();

}

template <typename T>
bool is empty(const MyContainer<T>& c)

return c.size() == 0;

}

template <typename T>
void do_something(T& L)

{
if (is_empty(L))

5.1. Wrapping References

A class template and its specializations can be used to make interfaces uniform:

class Dog

{
public:
void bark();
void go to_sleep();
};

class Professor

{
public:
void begin lesson();
void end lesson();

};
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template <typename T>
class Reference

{
T8 obj_;

public:
Reference(T& obj) : obj _(obj) {}
void start talking() { obj .talk(); }
void end talking() { obj_.shut(); }

};

template <>
class Reference<Dog>

{
Dog& obj_;

public:
Reference(Dog8 obj) : obj_(obj) {}

void start talking() { for (int i=0; i<3; ++i) obj_.bark(); }
void end talking() { obj_.go to sleep(); }
b

template <>
class Reference<Professor>

{
Professor& obj_;
public:
Reference(Professor& obj) : obj_(obj) {}
void start talking() { obj_.begin lesson(); }
void end talking() { obj_.end lesson(); }
b

Note that the wrapper may indeed contain some logic. Finally:

template <typename T>

void DoIt(T& any)

{
Reference<T> r(any);
r.start talking();
/...
r.end_talking();
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5.2. Static Interfaces

When a function template manipulates an object of unspecified type T, it actually forces the object to
implement an interface. For example, this very simple function contains a lot of hidden assumptions about
the (unknown) types involved:

template <typename iter1 t, typename iter2 t>
iter2 t copy(iteri t begin, const iterl t end, iter2 t output)

{
while (begin != end)
*(output++) = *(begin++),
return output;
}

Here, iterl tand iter2_ t musthave a copy constructor, called operator++(int). iter1 t also needs
operator!=. Furthermore, every operator++ returns a dereferenceable entity, and in the case of iter2_t, the
final result is an 1-value whose assignment blindly accepts whatever *(begin++) returns.

In short, template code pretends that all instructions compile, until the compiler can prove they don’t.

In general, it’s too verbose and/or generally not useful to list the assumptions on a type interface. In the
previous example, iterl t::operator++ will likely return iter1 t, which also implements operator*, but it
need not be exactly the case (for instance, copy would work if, say, iter1l t::operator++returned int*).

So you must try to list explicitly a minimal set of concepts that the template parameter must satisfy.
Informally, a concept is a requirement on the type that implies that a C++ statement is legal, whatever its
implementation.!

For example, this object will happily play the role of iter2_t:

struct black_hole iterator

{
const black hole iterator& operator++ () const
{
return *this;
}
const black hole iterator& operator++ (int) const
{
return *this;
}
const black hole iterator& operator* () const
{
return *this;
}

!The notion of concept was introduced in Section 2.2.4.
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template <typename T>
const black hole iterator& operator= (const T&) const
{
return *this;
}
1

Here, the concept of “the object returned by operator* must be an l-value” is satisfied, even if in an
unusual way (the assignment does not modify the black hole).

Generally, you won't list the exact concepts for any generic function. However, some sets of concepts
have a standard name, so whenever possible, you'll adopt it, even if it’s a superset of what is actually needed.

In the previous copy template, it’s best to use an input iterator and an output iterator, because these are
the smallest universally known labels that identify a (super-)set of the concepts. As you will read in Chapter 6,
a true output iterator satisfies a few more properties (for example, it must provide some typedefs, which are
irrelevant here); however, this is a fair price for reusability.

Authors of template code often need to make concepts explicit. If they have a simple name, they can be
used as template parameters:

template <typename FwdIter, typename RandIter>
FwdIter special copy(RandIter beg, RandIter end, FwdIter output);

Note that in this function, nothing constrains beg to be an iterator except names (which are hints for
humans, not for the compiler). The template argument FwdIter will match anything, say double or void*,
and if you are lucky, the body of the function will report errors. It may happen that you pass a type that
works, but it does not behave as expected.?

On the other hand, classic C++ does offer a tool to constrain types: inheritance. You write pieces of
code that accept a BASE* and at runtime they invoke the right virtual functions.

Static interfaces are their equivalent in TMP. They offer less generality than a “flat” type T, but have the
same level of static optimizations.

A static interface is a skeleton class that limits the scope of validity of a template to types derived from
the interface, and at the same time it provides a default (static) implementation of the “virtual” callback
mechanism.

The details follow.

5.2.1. Static Interfaces

The original language idiom was called the “curiously recurring template” pattern (CRTP) and it is based
on the following observation: a static_cast can traverse a class hierarchy using only compile-time
information. Put simply, static_cast can convert BASE* to DERIVED*. If the inheritance relationship
between DERIVED and BASE is incorrect or ambiguous, the cast will not compile. However, the result will be
valid only if at runtime BASE* is pointing to a true DERIVED object.

The black hole iterator is a hack, not a perfect output iterator.
3This is why, for example, the standard describes carefully what happens to functors passed to STL algorithms, such as
how many times they are copied, and so on.
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As a special case, there’s an easy way to be sure that the cast will succeed; that is, when each derived
class inherits from a “personal base”:

template <typename DERIVED T>
class BASE

{
protected:

~BASE() {}

)

class DERIVED1 : public BASE<DERIVED1>

{
};

class DERIVED2 : public BASE<DERIVED2>

{
};

An object of type BASE<T> is guaranteed to be the base of a T, because thanks to the protected
destructor, nobody except a derived class can build a BASE<T>, and only T itself derives from BASE<T>.
So BASE<T> can cast itself to T and invoke functions:

template <typename DERIVED T>
struct BASE

{
DERIVED T& true this()
{

}

const DERIVED T8& true this () const
{

}

return static_cast<DERIVED T&>(*this);

return static_cast<const DERIVED T&>(*this);

double getSomeNumber() const

{
}

return true_this().getSomeNumbex();
1
struct DERIVED rand : public BASE<DERIVED_rand>

double getSomeNumber() const
{

}

return std::rand();

};

234

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5 ' INTERFACES

struct DERIVED circle : public BASE<DERIVED circle>
double radius_;

double getSomeNumber() const

{

}
};

return 3.14159265359 * sq(radius );

Exactly as for virtual functions, normal calls via the derived class interface are inexpensive:

DERIVED rand d;
d.getSomeNumber(); // normal call; BASE is completely ignored

However, you can write a function template that takes a reference-to-base and makes an inexpensive
call to the derived member function. true_this will produce no overhead.

template <typename T>
void PrintSomeNumber(BASE<T>& b) // crucial: pass argument by reference
{

// here BASE methods will dispatch to the correct T equivalent

std::cout << b.getSomeNumber();

}

DERIVED circle C;
DERIVED_rand R;

PrintSomeNumber(C); // prints the area of the circle
PrintSomeNumber(R); // prints a random number

Conceptually, the previous function is identical to the simpler (but vaguer) function here:

template <typename T>
void PrintSomeNumber(T& b)
{
std::cout << b.getSomeNumber();

}

However, the replacement looks acceptable because PrintSomeNumber is a named function, not an
operator (think about writing a global operator+ with two arguments of type T). The following example
demonstrates the use of static interfaces with operators.* It will implement only operator+= and have
operator+ for free, simply deriving from the summable<...> interface.

“The boost library contains some more general code. See http://www.boost.org/doc/libs/1_57_0/1libs/utility/
operators.htm.
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template <typename T>
struct summable

T& true_this()

return static_cast<T&>(*this);

const T& true this () const

return static_cast<const T&>(*this);

T operator+ (const T& that) const

T result(true this());
result += that; // call dispatch to native T::operator+=
return result;

struct complex_number : public summable<complex_number>

complex number& operator+= (const complex number& that)

{
}
{
}
}
};
{
{
}
s

complex_number a;
complex_number b;

complex_number s = a+b;

The (apparently simple) last line performs the following compile-time steps:

236

a does not have an operator+ of its own, so cast a to its base that has it, namely const
summable<complex_number>8.

const summable<complex_number>& can be summed to a complex_number, so b is
fine as is.

summable<complex_number>::operator+ builds a complex_number named result,
which is a copy of true_this, because true_this isa complex_number.

Dispatching execution to complex_number : :operator+=, the result is computed and
returned.
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Note that you could rewrite the base class as:

template <typename T>
struct summable

{
/...

T operator+ (const summable<T>& that) const

T result(true_this());
result += that.true this();
return result;

};

Let’s call interface the base class and specializations the derived classes.

5.2.2. Common Errors

You just met a situation where the interface class makes a specialized copy of itself:
T result(true this());

This is not a problem, since the interface, which is static, knows its “true type” by definition.
However, the correct behavior of true_this can be destroyed by slicing:

template <typename DERIVED T>
void PrintSomeNumber (BASE<DERIVED_T» b)// argument by value
{
std::cout << b.getSomeNumber(); // error: slicing
// b is not a DERIVED_T any more

INTERFACES

Usually, it’s necessary to declare BASE destructor non-virtual and protected, and sometimes it’s a good
idea to extend protection to the copy constructor. Algorithms should not need to make a copy of the static
interface. If they need to clone the object, the correct idiom is to call the DERIVED_T constructor and pass

true_this(), as shown previously.

template <typename DERIVED T>
struct BASE

{ DERIVED T& true_this()
{ return static_cast<DERIVED T&>(*this);
}
const DERIVED T& true this() const
i return static_cast<const DERIVED T8&>(*this);
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protected:
~BASE()
{
}

BASE(const BASE&)
{
}

};

The interface of DERIVED is visible only inside the body of BASE member functions:

template <typename DERIVED T>
struct BASE

{
/1 ...
typedef DERIVED T::someType someType; // compiler error
void ()
{
typedef DERIVED T::someType someType; // ok here
};
class DERIVED : public BASE<DERIVED>
{

Typedefs and enums from DERIVED are not available at class level in BASE. This is obvious, because
DERIVED is compiled after its base, which is BASE<DERIVED>. When BASE<DERIVED> is processed, DERIVED is
known, but still incomplete.

It's a good idea (not an error) to make BASE expose a typedef for DERIVED_T. This allows external
functions to make a specialized copy of BASE.

template <typename DERIVED T>
struct BASE

{
typedef DERIVED T static_type;

However, DERIVED cannot access BASE members without full qualification, because a template base
class is out of scope for the derived objects.’®

template <typename DERIVED T>
struct BASE

{
typedef double value type;

See [2] page 135.
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value type f() const

return true_this().f();

}
/...
};
struct DERIVED1 : public BASE<DERIVED1>
{
value_type f() const // error: value_type is undefined
true this(); // error: true_this is undefined
return 0;
}
};
struct DERIVED2 : public BASE<DERIVED2>
{
BASE<DERIVED2>::value type f() const /7 ok
{
this->true_this(); // ok
return O;
}
};

Note once again that scope restriction holds only “inside” the class. External users will correctly see
DERIVED1::value_type

template <typename T>
struct value_type of

{
typedef typename T::value_type type;

)

value type of<DERIVED1>::type Pi = 3.14; // ok, Pi has type double

Finally, the developer must ensure that all derived classes correctly announce their names to the base
in order to avoid a classic copy and paste error:

class DERIVED1 : public BASE<DERIVED1>

{
};

class DERIVED2 : public BASE<DERIVED1>

{
};
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Benefits Problems

Write algorithms that take “not too generic objects” The developer must ensure that all algorithms take

and use them with a statically known interface. arguments by reference and avoid other common
€rTorS.

Implement only some part of the code in the derived Experimental measurements suggest that the

(specialized) class and move all common code in presence of non-virtual protected destructors and
the base. multiple inheritance may inhibit or degrade code
optimizations.

5.2.3. A Static_Interface Implementation

Many of the previous ideas can be grouped in a class:

template <typename T>
struct clone_of

{
typedef const T& type;

)

template <typename static_type, typename aux_t = void>
class static_interface

{
public:
typedef static_type type;

typename clone_of<static_type>::type clone() const

{
}

return true this();

protected:
static_interface() {}
~static_interface() {}
static_type& true this()

return static_cast<static_type&>(*this);

}

const static_type& true this() const
{

}

return static_cast<const static_type&>(*this);
};

You'll come back to the extra template parameter later in this chapter.
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The helper metafunction clone_of can be customized and returning const reference is a reasonable
default choice. For small objects, it may be faster to return a copy:

template <typename T, bool SMALL OBJECT = (sizeof(T)<sizeof(void*))>
struct clone_of;

template <typename T>
struct clone of<T, true>

{
typedef T type;
};

template <typename T>
struct clone_of<T, false>

{
typedef const T& type;

};

First, you make some macros available to ease interface declaration.

An interface is defined by
#define MXT_INTERFACE(NAME) \

\

template <typename static_type> \

class NAME : public static_interface<static_type>
#define MXT_SPECIALIZED this->true_this()
Here’s a practical example. The interface macro is similar to a normal class declaration.®

MXT_INTERFACE(random)

{

protected:

~random()

{
}

public:
typedef double random_type;

random_type max() const

return MXT SPECIALIZED.max();
}

®The downside of this technique is that the macro may confuse some IDEs that parse headers to build a graphical
representation of the project.
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random_type operator()() const

{
}

return MXT_SPECIALIZED(); // note operator call
b
e random can access true_this() only with explicit qualification
(as MXT_SPECIALIZED does).
e random needs to declare a protected destructor.

e static_typeisavalid type name inside random, even if static_interface is out of
scope, because it’s the template parameter name.

Now let’s implement some random algorithms:
#tdefine MXT_SPECIALIZATION(S, I) class S : public Ik S »

MXT_SPECIALIZATION(gaussian, random)

{
public:

double max() const

{

return std::numeric_limits<double>::max();

}
double operator()() const

/...

};

MXT_SPECIALIZATION(uniform, random)

{
public:

double max() const

{

return 1.0;

}

/] ...
};

What if you need a template static interface, such as:

template <typename RANDOM T, typename SCALAR_T>
class random

{
public:
typedef SCALAR_T random_type;
/1 ...
};
242
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template <typename T>
class gaussian : public random<gaussian<T>, T>

{
};

/7 ...

It’s easy to provide more macros for template static interfaces (with a small number of parameters).
A naive idea is:

#tdefine MXT TEMPLATE_INTERFACE(NAME,T) \
\

template <typename static_type, typename T> \
class NAME : public static_interface<static_type>
#tdefine MXT_TEMPLATE_SPECIALIZATION(S,I,T) \
template <typename T> \
class S : public I< S<T> >

Which is used like this:
MXT_TEMPLATE_INTERFACE(pseudo_array, value t)
{
protected:

~pseudo_array()

}
public:

typedef value_t value_type;

value_type operator[](const size t i) const

return MXT _SPECIALIZED.read(i, instance of<value type>());

}

size t size() const

{

return MXT SPECIALIZED.size(instance of<value type>());

}

};

A non-template class can use a template static interface. For example, you could have a bitstring class
that behaves like an array of bits, an array of nibbles, or an array of bytes:

typedef bool bit;
typedef char nibble;
typedef unsigned char byte;
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class bitstring

: public pseudo_array<bitstring, bit>

, public pseudo_array<bitstring, nibble>
, public pseudo_array<bitstring, byte>

An interface need not respect the same member names as the true specialization. In this case,
operator[ ] dispatches execution to a function template read. This makes sense, because the underlying
bitstring can read the element at position i in many ways (there are three distinct i-th elements). But
inside pseudo_array, the type to retrieve is statically known, so using a bitstring as a pseudo_array is
equivalent to “slicing” the bitstring interface. This makes code much simpler.

The first problem you need to solve is that when the macro expands, the compiler reads:

template <typename static_type, typename value t>
class pseudo_array : public static_interface<static_type>

Thus bitstring inherits multiple times from static_interface<bitstring>, which will make the
static_castin true_this ambiguous.

@bitstring, byte>
static_interface<bitstring>

Figure 5-1. Ambiguous inheritance diagram

pseudo_array<bitstring, bit> pseudo_array<bitstring, nibble>

To avoid this issue, use an extra parameter in the static interface for disambiguation. The most
unambiguous type names are either T or the whole interface (pseudo_array<bitstring, T>). The macro
becomes:

#define MXT TEMPLATE_INTERFACE(NAME,T)

~ - -

template <typename static_type, typename T>
class NAME \
: public static_interface<static_type, NAME<static_type, T> >

#define MXT TEMPLATE SPECIALIZATION(S,I,T) \
\
template <typename T> \

class S : public I< S<T>, T >
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pseudo_array<bitstring, byte>

pseudo_array<bitstring, bit> pseudo_array<bitstring, nibble>
static_interface<bitstring, bit> static_interface<bitstring, byte> static_interface<bitstring, nibble>

Figure 5-2. Improved inheritance diagram

5.2.4. The Memberspace Problem

Up to now, static interfaces have been described as techniques that limit the scope of some template
parameters. So instead of F(T), you write F(random<T>) where T is a special implementation of a random
generator. This is especially useful if F is indeed a (global) operator.

A second application of static interfaces is the memberspace problem.” The name memberspace is the
equivalent of a namespace, relative to the member functions of a class. In other words, it’s sort of a subspace
where a class can put member functions with duplicate names.

Assume that C is a container that follows the STL conventions, so the first element of C is *begin() and
the last is *rbegin().

This is the classic solution to partition an interface where function names have a unique prefix/suffix,
such as push+front, push+back, r+begin, and so on.

It's better to have a real partition, where front and back are both containers with their own interfaces:?

C MyList;
/] ...

first = MyList.front.begin();
last MyList.back.begin();

MyList.front.push(3.14);
MyList.back.push(6.28);
MyList.back.pop();

Indeed, you can use static interfaces to write code such as:*

class bitstring
: public pseudo_array<bitstring, bit>
, public pseudo_array<bitstring, nibble>
, public pseudo_array<bitstring, byte>
{
char* data_;
size t nbits_;

"Apparently, the term “memberspace” was introduced by Joaquin M Lopez Muiioz in “An STL-Like Bidirectional Map”
(see www.codeproject.com/vcpp/stl/bimap.asp). Also, the double-end queue example is from the same author.

8In the pseudo-code that follows, you should pretend that C is a class; of course a non-template container would be an
unusual beast.

°This code does not compile, because for conciseness, we removed all const versions of the member functions.
However, the fix should be obvious.
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public:
pseudo_array<bitstring, bit>& as_bit() { return *this; }
pseudo_array<bitstring, nibble>& as_nibble() { return *this; }
pseudo_array<bitstring, byte>& as byte() { return *this; }

size t size(instance_of<byte>) const { return nbits_ / CHAR BIT; }
size t size(instance_of<bit>) const { return nbits_; }
size t size(instance_of<nibble>) const { return nbits_ / (CHAR_BIT / 2); }

bit read(size_t n, instance of<byte>) const { return ...; }
nibble read(size t n, instance of<bit>) const { return ...; }
byte read(size t n, instance of<nibble>) const { return ...; }

};

bitstring b;

int n1 = b.as_bit().size();
int n2 = b.as_byte().size();
Compare that with:

bitstring b;
int n1 = b.size(instance_of<bit tag>());
b.as_bit() is also sort of a container of its own, and it can be passed by reference to algorithms:

template <typename T, typename X>
X parity(pseudo_array<T, X>& data)
{

X result = 0;
for (size t i=0; i<data.size(); ++i)
result *= data[i];

return result;

}

This technique is excellent, but it suffers from a limitation. As mentioned, typedefs provided in
the specialization are not available in the static interface, thus you have no way of declaring a member
function returning an iterator. This is because the static interface has to borrow the iterator type from the
specialization.

MXT_INTERFACE(front)

{
typename static_type::iterator begin() // <-- error here
{
return MXT_SPECIALIZED.begin();
}
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typename static_type::iterator end() // <-- error again

{
}

return MXT_SPECIALIZED.end();

};

MXT_INTERFACE (back)
{

typename static_type::reverse_iterator begin() // <-- another error

{
}

return MXT_SPECIALIZED.rbegin();

typename static_type::reverse_iterator end() // <-- lots of errors

{
}

return MXT_SPECIALIZED.rend();

};

class C : public front<C>, public back<C>

{
/...

public:

front<C>& front()
{ return *this; }

back<C>& back()
{ return *this; }

};

C MyList;

MyList.front().begin(); // error
MyList.back().begin(); // error
/] ...

CHAPTER 5
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Note that it’s not a matter of syntax. Since C is still incomplete, C: : iterator does not yet exist. However,

there are some design fixes:

e Define iterator before C:

class C_iterator

{
/...
};

class C

{

// container implementation

typedef C_iterator iterator;

};
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e Insertan additional layer between C and the interfaces, so that the static interface
compiles after C (and before the wrapper class):

class C

{

// container implementation

class iterator { ... };

};

MXT TEMPLATE_INTERFACE(front, impl t)

{
typename impl_t::iterator begin()

return MXT_SPECIALIZED.begin();
}

typename impl t::iterator end()

return MXT_SPECIALIZED.end();

}
};

/...
class C_WRAPPER : public front<C_WRAPPER, C>, public back<C_WRAPPER, C>
{
Cc;
public:
// reproduce C's interface

// dispatch all execution to c_

typename C::iterator begin()

{

return c_.begin();
}
/] ...,

};

5.2.5. Member Selection

The same technique used in merging traits (see Section 4.2.4 can be successfully applied to value objects.
The next listing, which is intentionally incomplete, suggests a possible motivation:

enum
{
empty =0,
year =1,
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month =2,
day = 4,
/...

1
template <unsigned CODE> struct time_val;

template <> struct time_val<empty> { }; // empty, I really mean it ©
template <> struct time_val<year> { int year; };
template <> struct time_val<month> { short month; };

/...

template <unsigned CODE>

struct time_val

: public time_val<CODE & static_highest bit<CODE>::value>
, public time_val<CODE - static_highest_bit<CODE>::value>

{
};

// an algorithm

template <unsigned CODE>
time val<(year | month | day)> easter(const time val<CODE>& t)

time_val<(year | month | day)> result;
result.year = t.year;

result.month = compute_easter month(t.year);
result.day = compute easter day(t.year);
return result;

time valcyear | month> tvi;

time_val<month | day> tv2;

easter(tvi); // ok.
easter(tv2); // error: tv2.year is undefined.

CHAPTER 5

INTERFACES

Note that the algorithm acts unconditionally as if any time_val<CODE> had a member year. When

necessary, you can isolate this assumption using a wrapper:

template <unsigned CODE>

time_val<year | month | day> easter(const time_val<CODE>& t, selector<true>)

{
}

// implementation

www.it-ebooks.info

249


http://www.it-ebooks.info/

CHAPTER 5 ' INTERFACES

template <int CODE>
time_val<year | month | day> easter(const time val<CODE>& t, selector<false>)

{
}

template <int CODE>
time_val<year | month | day> easter(const time val<CODE>& t)

{
}

// put whatever here: throw exception, static assert...

return easter(t, selector<CODE & year>());

5.3. Type Hiding

Classic C++ programs transform instances of objects into other instances that have possibly different types
(via function calls).

int i = 314;
double x = f(i); // transform an instance of int into an instance of double

Using templates, C++ can manipulate instances, compile-time constants, and types (constants are in
the middle because they share some properties with both). You can transform types and constants into
instances (trivially), types into types (via traits and metafunctions), types into constants (via metafunctions
and other operators, such as sizeof), instances into constants (via sizeof), and types into some special
system objects (using typeid). However, classic C++ has very limited language tools to transform an instance
into a type."®

The most common example comes from iterator handling:

T t = *begin; // store a copy of the first element
// who is T?

At the moment, a suitable type is provided by metafunctions:
typename std::iterator_traits<iterator t>::value_type t = *begin;

There are tricks, which essentially avoid direct knowledge of T. The simplest option is to pass *begin as
a dummy unused parameter to a template function that will deduce its type:

template <typename iterator_t>
void f(iterator t beg, iterator t end)

if (beg == end)
return;

f_helper(beg, end, *beg);
}

"Modern C++ offers two new keywords: decltype and auto. The former returns the exact type of any expression,
similarly to sizeof. The latter allows an instance to “copy” the type of its initializer, so auto i = f() would declare a
variable i having the best possible type to store the result of f() locally. See Chapter 12 for more details.
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template <typename iterator t, typename value t>
void f helper(iterator t beg, iterator t end, const value t& )

{
// for most iterators,
// value_t ~ iterator traits<iterator t>::value type

// however if *beg returns a proxy, value_t is the type of the proxy
// so this may not work with std::vector<bool> and in general,
// where value_t just stores a reference to the value.

}

In classic C++, there are two ways to store an object without knowing its type:

e Passitto a template function, as shown previously. However, the lifetime of the
object is limited.

e  Cancelits interface, possibly via a combination of templates and virtual functions.
In the simplest case, the object can be merely stored and nothing else:"

class wrapper_base

public:
virtual ~wrapper base() {}

virtual wrapper_base* clone() const = 0;

};

template <typename T>
class wrapper : public wrapper base

{
T obj_;

public:
wrapper(const T& x)

s obj_(x) {}

wrapper<T>* clone() const

{
}

return new wrapper<T>(obj_);
};

template <typename T>
wrapper base* make clone(const T& x)

{

return new wrapper<T>(x);

}

""This example is important and it will be analyzed again in Section 5.4.1.
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Sometimes it’s desirable to provide a common interface for several types. The most famous example is
given by variant objects (also known as discriminated unions), which are classes whose static types are fixed,
but whose internal storage can transport different types.

The rest of this section discusses in detail the problem of command-line parsing. Assume you are
coding a tool that gets options from the command line. Each option has a name and an associated value of
some fixed type. Options come first, and everything else is an argument:

tool.exe -i=7 -f=3.14 -d=6.28 -b=true ARGUMENT1 ARGUMENT2 ... ARGUMENTn

where iis an int, fis a float, and so on.

Ideally, you need a sort of map<string, T>, where T can vary for each pair. Also, you should be able to
query such a map for values having the right type, so that you can accept -f=3.14 but reject -f="hello world".

Assume, for extra simplicity, that you start with an array of strings, where each string is either [ prefix]
[name] or [prefix][name]=[value],* and that each parameter value will be obtained via stream extraction
(operator>>).

You can produce two containers. The first, named option_map, stores name-value pairs, like std: :map,
but each value has an arbitrary type. The second container, named option_parser, is another map that
knows the desired pairing name-type (for example, “f” is a float) before parsing the command line. The
target is writing code like:

int main(int argc, char* argv[])

{
option_parser PARSER;
PARSER.declare as<float>("f"); // we tell the parser what it should
PARSER.declare as<int>("i"); // expect, i.e. that "d" is a double,
PARSER.declare as<double>("d");// etc. etc.
option_map<std::string> CL; // only key type is a template parameter
try
{
const char* prefix = "-";
char** opt_begin = argv+1;
char** opt_end = argv+argc;
// finally we ask the parser to fill a map with the actual values
// this may throw an exception...
char** arg begin = PARSER.parse(CL, opt begin, opt_end, prefix);
double d;
if (!CL.get(d, "d"))
// the user did not specify a value for "d"
d = SOME_DEFAULT_VALUE;
}
"2The prefix is a fixed character sequence, usually "-", "--", or "/".
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}
catch (std::invalid_argument8 ex)
{
/...
}

}

5.3.1. Trampolines

The core technique for this kind of “polymorphism” is the use of trampolines.

Formally, a trampoline is a local class inside a function template, but the meaning of “local” should not
be taken literally.

The class has only static member functions. Its public interface accepts parameters of a fixed type
(say, void*), but being nested in a template, the body of the trampoline is aware of the “outer” template
parameter and uses it to perform safe static casts.

Here is a bare bones example—a naked struct that holds untyped pointers and a function template
that knows the static type of the object and apparently loses information.

struct generic_t

{
void* obj;
void (*del)(void*);
};
template <typename T> // outer template parameter
generic_t copy to generic(const T& value)
{
struct local_cast // local class
{
static void destroy(void* p) // void*-based interface
{
delete static_cast<T*>(p); // static type knowledge
}
};

generic_t p;
p.obj = new T(value); // information loss: copy T* to void*
p.del = &local cast::destroy;
return p;
Actually, p.ob7j alone does not know how to destroy its attached object, but p.del points to (in pseudo-
code) copy_to_generic<T>::local cast::destroy and this function will do the right thing, namely cast the

void* back to T* just before deleting it.

p.del(p.obj); // it works!
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del is the functional equivalent of a virtual destructor. The analogy between trampolines and virtual
function tables is correct, but:

e Trampoline techniques allow you to work with objects, not with pointers (a classic
factory would have returned pointer-to-base, while copy_to_generic produces an
object).

e Trampoline pointers can be tested and modified at runtime. For example, del
can be replaced anytime with a do-nothing function if ownership of the pointer is
transferred.

e  Trampolines are much less clear (that is, more difficult to maintain) than abstract
class hierarchies.

The advantage of structures like generic_t is that their type is statically known, so they can be used in
standard containers, and they are classes, so they can manage their own resources and invariants.

Unfortunately, while type T is known internally, it cannot be exposed. Function pointers like del cannot
have T anywhere in their signature. The interface of the trampoline class must be independent of T and it
cannot have template member functions (thus, for example, you cannot have a trampoline member that
takes a functor and applies it to the pointee).

Next, you'll need another tool—a wrapper for std: : type_info.

5.3.2. Typeinfo Wrapper

The typeid operator is a less-known C++ operator that determines the type of an expression at runtime and
returns a constant reference to a system object of type std: : type_info.

type_info: :before is a member function that can be used to simulate a total (but unspecified)
ordering on types.

Several wrappers have been proposed to give std: : type_info value semantics. This code is similar to
the elegant implementation found in [1] but the comparison operator ensures that a default-constructed
(null) typeinfo is less than any other instance.'

class typeinfo
const std::type info* p_;

public:
typeinfo()
: p_(0)
{}

typeinfo(const std::type infod t)
:p_(&t)
{

inline const char* name() const

{ un

return p_ ? p_->name() : "";

}

3The implementation uses short-circuit to prevent null pointer dereferencing, and it’s extremely concise. See also an
exercise in Appendix B.
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inline bool operator<(const typeinfod that) const
{
return (p_ != that.p ) &8
('p_ || (that.p_ 8&& static_cast<bool>(p_->before(*that.p ))));

inline bool operator==(const typeinfo8 that) const
{
return (p_ == that.p ) ||
(p_ &% that.p_ 8& static_cast<bool>(*p_ == *that.p ));
}
};

5.3.3. Option_Map

Recall that option_map was introduced in Section 5.3 as a container to store values parsed from the
command line, together with their type. The interface for option_map is indeed very simple.

template <typename userkey t>

class option_map

{

public:

// typed find:

// MAP.find<T>("name") returns true

// if "name" corresponds to an object of type T

template <typename T>
bool find(const userkey t& name) const;

// typeless find:
// MAP.scan("name") returns true if "name" corresponds to any object

bool scan(const userkey t& name) const;

// checked extraction:

// MAP.get(x, "name") returns true

// if "name" corresponds to an object of type T;

// in this case, x is assigned a copy of such object;
// otherwise, x is not changed

template <typename T>
bool get(T& dest, const userkey t& name) const;

// unchecked extraction:
// MAP.get<T>("name") returns either the object of type T
// corresponding to "name", or T().

template <typename T>
T get(const userkey t& name) const;
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// insertion
// MAP.put("name", x) inserts a copy of x into the map

template <typename T>
bool put(const userkey t& name, const T& value);

size t size() const;

~option_map();

};

Now for the implementation details—the idea of generic_t is developed a bit further, giving it the
ability to copy and destroy:

template <typename userkey t>
class option_map
{
struct generic_t
{
void* obj;
void (*copy)(void* , const void*);
void (*del)(void*);
};

Since you'll want to search the container both by name and by pair (name, type), you should pick the
latter structure as key, using the typeinfo wrapper class.

typedef std::pair<userkey t, typeinfo> key t;
typedef std::map<key t, generic_t> map_t;
typedef typename map_t::iterator iterator_t;

map_t map_;
The insertion routine is almost identical to the prototype example:

template <typename T>
bool put(const userkey t& name, const T& value)

{
struct local cast
{
static void copy(void* dest, const void* src)
{
*static_cast<T*>(dest) = *static_cast<const T*>(src);
}
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
};
generic t& p = map_[key t(name, typeid(T))];
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p.obj = new T(value);
p.copy = &local cast::copy;
p.del = &local cast::destroy;

return true;

Some functions come for free on the top of std: :map:

size t size() const

{
}

return map _.size();

Here is the typed find:

template <typename T>
bool find(const userkey t& name) const

{
}

return map_.find(key t(name, typeid(T))) != map_.end();
To retrieve data from the option_map, you use the copy function. First, you do a typed find. If it
succeeds and the object is non-null, you perform the copy over the user-supplied reference:

template <typename T>
bool get(T& dest, const userkey t& name) const

{
const typename map_t::const_iterator i = map_.find(key t(name, typeid(T)));
const bool test = (i != map_.end());
if (test 8& i->second.obj)
i->second.copy(&dest, i->second.obj);
return test;
}

The unchecked retrieval is a shortcut implemented for convenience:

template <typename T>
T get(const userkey t& name) const

{
initialized value<T> v;
get(v.result, name);
return v.result;

}
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At this moment, you simply let the destructor wipe out all the objects."
~option map()

iterator t i = map_.begin();
while (i != map_.end())

{
generic_t& p = (i++)->second;
if (p.del)
p.del(p.obj);
}

Finally, you can take advantage of the ordering properties of typeinfo for the typeless find. Due to the
way pairs are ordered, the map is sorted by name and entries with the same names are sorted by typeinfo.
First, you search for the upper bound of (name, typeinfo()). Any other pair with the same name will be
larger, because typeinfo() is the least possible value. So, if the upper bound exists and has the same name
you are looking for, it returns true.

bool scan(const userkey t& name) const

{
const typename map_t::const_iterator i
= map_.upper_bound(key t(name, typeinfo()));
return i != map_.end() &8 i->first.first == name;
}

Note that the container may hold more objects of different types having the same name.

5.3.4. Option_Parser

option_parser is not described in full, since it does not add anything to the concepts used in building
option_map. However, note that a trampoline may have parameters whose type is not void*. We leave some
details for exercise.

class option_parser

{
typedef option_map<std::string> option_map_t;
typedef bool (*store t)(option map t&, const char*, const char*);

typedef std::map<std::string, store t> map_t;
map_t map_;

“The implementation is obviously faulty; option map cannot be safely copied/assigned. To keep the code as simple
as possible, and even simpler, the discussion of this topic is deferred to Section 5.35.
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public:

template <typename T>
void declare_as(const char* const name)

{
struct local_store
{
static bool store(option map t& m,
const char* name, const char* value)
{
std::istringstream is(value);
T temp;
return (is >> temp) && m.put(name, temp);
}
};

map_[name] = 8local_store::store;

}

Note that local_store::store does not take void* arguments. The only requirement for a trampoline
is to publish an interface independent of T.

template <typename iterator_ t>
iterator t parse(option _map t& m, iterator t begin, iterator t end)
{
for every iterator i=begin...end
{
get the string S = *i;
if S has no prefix
stop and return i;
else
remove the prefix

if S has the form "N=V"
split S in N and V
else
set N =35
set V = <empty string>

if N is not contained in map_
throw exception "unknown option"
else
set F := local_store::store
execute F(m, N, V)
if it fails, throw exception "illegal value"
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5.3.5. Final Additions

Due to the way declare_as works, every type that can be extracted from a string stream is acceptable in the
command-line parser.
To include parameterless options, simply add an empty class:

struct option

{
};
inline std::istream& operator>>(std::istreamd is, option&)
{
return is;
}

This will enable a command-line switch, such as:
tool.exe -verbose

If the name is unique, the simplest way to retrieve the value of the switch is using a typeless find. This
will yield false if the switch is omitted.

PARSER.declare_as<option>("verbose");

char** arg begin = PARSER.parse(CL, opt begin, opt_end, prefix);
if (CL.scan("verbose"))

/1 ...

Trampoline techniques can be easily optimized for space. Instead of creating one pointer for each
“virtual function,” you can group functions for type T in a static instance of a structure and therefore have a
single pointer, exactly as in the traditional implementation of virtual function tables.

This approach is also scalable. Should you need to add an extra “capability” to the interface, it requires
fewer modifications and almost no extra memory (since you have a single pointer table, as opposed to many
pointers per instance).

struct virtual function table

{
void (*copy)(void* , void*);
void (*del)(void*);
void* (*clone)(const void*);
b
struct generic_t
void* obj;
const virtual_function_table* table; // single pointer-to-const
};
260

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 5

// identical implementation, but not a local class any more...

template <typename T>
struct local_cast

{
static void copy(void* dest, void* src)
{
*static_cast<T*>(dest) = *static_cast<T*>(src);
}
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
static void* clone(const void* p)
{
return new T(*static_cast<const T*>(p));
}
};

template <typename T>
bool put(const userkey t& name, const T& value)

{
static const virtual function table pt =
{
&local cast<T>::copy,
&local cast<T>::destroy,
&local_cast<T>::clone
};
generic_t& p = map_[key t(name, typeid(T))];
p.obj = new T(value);
p.table = 8pt;
return true;
}

Of course, instead of p.del, you should write p.table->del and pay an extra indirection.

Finally, you make generic_t a true value by the rule of three: implementing copy constructor,

assignment, and destructor.

struct generic_t

{

void* obj;
const virtual function_table* table;

generic_t()
: obj(0), table(o)
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generic_t(const generic_t& that)
: table(that.table)

{

if (table)

obj = table.clone(that.obj);

}
generic_t& operator=(const generic t& that)
{

generic_t temp(that);

swap(obj, temp.obj);

swap(table, temp.table);

return *this;
}

~generic_t()

if (table && obj)
(table->del)(obj);
}
};

5.3.6. Boundary Crossing with Trampolines

This section briefly summarizes the last paragraphs. A trampoline function is used as a companion to a void
pointer when it contains enough information to recover the original type:

void* myptr_;
void (*del )(void*);

template <typename T>
struct secret class

{
static void destroy(void* p)
{
delete static_cast<T*>(p);
}
};

myptr_ = [[a pointer to T]];
del_ = &secret_class<T»>::destroy;

The information about T cannot be returned to the caller, because T cannot be present in the trampoline
interface.

So you will generally tackle the issue requiring the caller to specify a type T, and the trampoline
just ensures it’s the same as the original type (calling typeid, for example, see the “typed find”). This is
informally called an exact cast.
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In short, an exact cast will fail if the type is not precisely what the program expects:

template <typename T>
T* exact_cast() const

{

return &secret class<T>::destroy == del ?
static_cast<T*>(myptr_ ) : o;

A second possibility is to throw an exception:

template <typename T>
struct secret_class

{

static void throw T star(void* p)

{

throw static_cast<T*>(p);

}
};

struct myobj
{

void* myptr_;
void (*throw )(void*);

template <typename T>
myoby (T* p)
{

myptr_
throw_

P;
&secret_class<T>::throw T_star;

}

template <typename T>
T* cast_via_exception() const

{
try
(*throw_ ) (myptr );
catch (T* p) // yes, it was indeed a T*
return p;
}
catch (...) // no, it was something else

{
}

return 0;

}
};
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This approach is several orders of magnitude slower (a try...catch block may not be cheap), but it
adds an interesting new feature. You can cast not only to the original type T, but also to any base class of T.
When the trampoline function throws DERIVED*, the exception handler will succeed in catching BASE*.

Remember that it’s not possible to dynamic_cast a void* directly, so this is actually the best you can
do. If efficiency is an issue, in practice you might want to adopt a scheme where you perform an exact cast to
BASE* using trampolines and execute a dynamic cast on the result later (after the trampoline code).

Observe also that, depending on the precise application semantics, you can sometimes limit the
number of “destination” types to a small set and hardcode them in the trampoline:

struct virtual function_table

{
bool (*safe to double)(void*, doubled);

std::string (*to_string)(void*);
};

template <typename T1, typename T2>
struct multi_cast

{
static T2 cast(void* src)
{
return has_conversion<T1,T2>::L2R ?
T2(*static_cast<T1*>(src)) : T2();
}
static bool safe cast(void* src, T2& dest)
{
if (has_conversion<T1,T2>::L2R)
dest = *static_cast<T1*>(src);
return has_conversion<T1,T2>::L2R;
}
};

to_double = 8multi_cast<T, double>::safe cast;
to_string = &multi_cast<T, std::string>::cast;

5.4. Variant

The key point in type-hiding techniques is deciding who remembers the correct type of the objects. In
this example, the client of option_map is responsible for declaring and querying the right types, by calling
option_map::get<T>("name").

In some cases, the client needs or prefers to ignore the type and blindly delegate the “opaque” object.
This way, it performs the right action, whatever the stored object is.
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5.4.1. Parameter Deletion with Virtual Calls

If you simply need to transport a copy of an object of arbitrary type, you can wrap it in a custom class
template, thereby “hiding” the template parameter behind a non-template abstract base class.
The following rough code snippet will help clarify this idea:

struct wrapper_base

virtual ~wrapper base()

{
}

virtual wrapper base* clone() const = 0;
// add more virtual functions if needed

virtual size t size() const = 0;

};

template <typename T>
struct wrapper : wrapper_base

T obj_;
wrapper(const T& that)
: obj (that)
{
}
virtual wrapper base* clone() const
{
return new wrapper<T>(obj );
}

// implement virtual functions delegating to obj_

virtual size t size() const

{
return obj_.size();
}
};
class transporter
{
wrapper_base* myptr_;
public:

~transporter()

delete myptr_;
}
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transporter(const transporterd that)
: myptr_(that.myptr ? that.myptr_->clone() : 0)

{

}
transporter()
: myptr (0)

}

template <typename T>
transporter(const T& that)

: myptr_(new wrapper<T>(that))
{

}

// implement member functions delegating to wrapper_ base

size t size() const

{

return myptr ? myptr ->size() : 0;
};
You can also add a custom (friend) dynamic cast:

template <typename T>
static T* transporter cast(transporter& t)
{
if (wrapper<T>* p = dynamic_cast<wrapper<T>*>(t.myptr_ ))
return &(p->obj_);
else
return 0;

5.4.2. Variant with Visitors

Opaque interfaces often make use of the visitor pattern. The visitor is a functor of unspecified type that is
accepted by the interface and is allowed to communicate with the real objects, whose type is otherwise hidden.
In other words, you need a way to pass a generic functor through the non-template trampoline interface.
As a prototype problem, you will code a concept class that can store any object of size not greater than a
fixed limit.'s

template <size t N>
class variant;

15This is also known as an unbounded discriminated union. The code should be taken as a proof-of-concept, not as
production ready. Two big issues are not considered: const-ness and aligned storage. I suggest as a quick-and-dirty fix
that you put variant: :storage_in a union with a dummy structure having a single member double. See. A.
Alexandrescu’s “An Implementation of Discriminated Unions in C++”.
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First, you define the required trampolines. variant will have some fixed-size storage where you place
the objects:

template <size t N>
class variant

{

char storage [N];
const vtable* vt;

};
Again from the rule of three, the tentative interface has three functions:

struct vtable

{

void (*construct)(void*, const void*);
void (*destroy)(void*);
void (*assign)(void*, const void*);

};

template <typename T>
struct vtable_impl

{

static void construct(void* dest, const void* src)

new(dest) T(*static_cast<const T*>(src));

}
static void destroy(void* dest)
{
static_cast<T*>(dest)->~T();
}
static void assign(void* dest, const void* src)
{
*static_cast<T*>(dest) = *static_cast<const T*>(src);
}
};

template <>
struct vtable impl<void>

{

static void construct(void* dest, const void* src)

{
}

static void destroy(void* dest)

{
}
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static void assign(void* dest, const void* src)

{
}
};

template <typename T>
struct vtable_singleton

{
static const vtable* get()
{
static const vtable v =
&vtable_impl<T>::construct,
&vtable_impl<T>::destroy,
&vtable impl<T>::assign
};
return 8v;
}
};

template <size t N>
class variant

{

char storage [N];
const vtable* vt;

public:
~variant()

{
}

(vt->destroy)(storage );

variant()
: vt(vtable_singleton<void>::get())
{

}

variant(const variant8 that)
¢ vt(that.vt)
{

}

(vt->construct)(storage , that.storage );

template <typename T>
variant(const T& that)

: vt(vtable_singleton<T>::get())
{

MXT_ASSERT(sizeof(T)<=N);
(vt->construct)(storage , &that);

}
};
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The constructors initialize the “virtual function table pointer” and invoke the construction over raw
memory.'

The assignment operator depends on a subtle issue: exceptions. If a constructor throws an exception,
since the object was never fully constructed it won'’t be destroyed either, and that’s exactly what you
need. However, if you need to overwrite an instance of T1 with an instance of T2, you destroy T1 first, but
construction of T2 may fail.

Thus, you need to reset the virtual table pointer to a no-op version, destroy T1, construct T2, and then
eventually store the right pointer.

void rebuild(const void* src, const vtable* newvt)

{
const vtable* oldvt = vt;
vt = vtable singleton<void>::get();
(oldvt->destroy)(storage );

// if construct throws,
// then variant will be in a consistent (null) state

(newvt->construct)(storage , src);
vt = newvt;

Thanks to rebuild, you can copy another variant and any other object of type T:

variant& operator=(const variantd that)

{
if (vt == that.vt)
(vt->assign)(storage , that.storage );
else
rebuild(that.storage , that.vt);

return *this;

}

template <typename T>
variant& operator=(const T& that)

{
MXT_ASSERT(sizeof(T)<=N);

if (vt == vtable_singleton<T>::get())
(vt->assign)(storage , &that);

else
rebuild(&that, vtable singleton<T>::get());

return *this;

}
};

1'We got rid of the " if pointer is null " tests initializing members with a dummy trampoline.
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This variant is only pure storage, but consider this addition:

class variant

{
/...

template <typename visitor_ t>
void accept visitor(visitor t& v)

{

}
};

/1?22

Since trampolines need to have a fixed non-template signature, here the solution is virtual inheritance.
You define an interface for any unspecified visitor and another interface for a visitor who visits type T. Since
the trampoline knows T, it will try one dynamic cast.

Virtual inheritance is necessary because visitors may want to visit more than one type.

class variant_visitor base

{

public:
virtual ~variant visitor base()
{
}

b

template <typename T>
class variant_visitor : public wvirtual variant visitor base

{
public:
virtual void visit(T&) = 0;
virtual ~variant visitor()
{
}
};
struct bad visitor
{
};
struct vtable
{
/...
void (*visit)(void*, variant visitor base*);
b
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template <typename T>
struct vtable impl

{
/...

static void visit(void* dest, variant visitor base* vb)
{
if (variant_visitor<T>* v = dynamic_cast<variant_visitor<T>*>(vb))
v->visit(*static_cast<T*>(dest));
else
throw bad visitor();
}

};

template <>
struct vtable_impl<void>

{
728

static void visit(void* dest, variant visitor base* vb)
{
}

};

template <size t N>
class variant
{
public:
variant& accept visitor(variant_visitor base& v)

(vt->visit)(storage , &v);
return *this;

}

Finally, here’s a concrete visitor (which will visit three types, hence the importance of the virtual
base class):

struct MyVisitor

: public variant_visitor<int>

, public variant_visitor<double>

, public variant_visitor<std::string>

{ virtual void visit(std::string8 s)
{ std::cout << "visit: {s}" << s << std::endl;
}