
www.it-ebooks.info

http://www.it-ebooks.info/

Advanced Quantitative
Finance with C++

Create and implement mathematical models in
C++ using Quantitative Finance

Alonso Peña, Ph.D.

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

[FM-2]

Advanced Quantitative Finance with C++

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1180614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-722-8

www.packtpub.com

Cover image by VTR Ravi Kumar (vtrravikumar@gmail.com)

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

[FM-3]

Credits

Author
Alonso Peña, Ph.D.

Reviewers
Marco Airoldi

Joseph Smidt

Commissioning Editor
Grant Mizen

Acquisition Editor
Harsha Bharwani

Content Development Editor
Amit Ghodake

Technical Editor
Humera Shaikh

Copy Editor
Laxmi Subramanian

Project Coordinator
Harshal Ved

Proofreader
Clyde Jenkins

Graphics
Sheetal Aute

Ronak Dhruv

Valentina Dsilva

Disha Haria

Abhinash Sahu

Indexer
Hemangini Bari

Production Coordinator
Kyle Albuquerque

Cover Work
Nilesh Bambardekar

www.it-ebooks.info

http://www.it-ebooks.info/

[FM-4]

About the Author

Alonso Peña, Ph.D. is an SDA Professor at the SDA Bocconi School of
Management in Milan. He has worked as a quantitative analyst in the structured
products group for Thomson Reuters Risk and for Unicredit Group in London and
Milan. He holds a Ph.D. degree from the University of Cambridge on Finite Element
Analysis and the Certificate in Quantitative Finance (CQF) from 7city Learning, the
U.K. He has lectured and supervised graduate and post-graduate students from the
universities of Oxford, Cambridge, Bocconi, Bergamo, Pavia, Castellanza, and the
Politecnico di Milano. His area of expertise is the pricing of financial derivatives, in
particular, structured products.

He has publications in the fields of Quantitative Finance, applied mathematics,
neuroscience, and the history of science. He has been awarded the Robert J. Melosh
Medal—first prize for the best student paper on Finite Element Analysis, Duke
University, USA; and the Rouse Ball Travelling Studentship in Mathematics, Trinity
College, Cambridge. He has been to the Santa Fe Institute, USA, to study complex
systems in social sciences.

His publications include the following:

•	 The One Factor Libor Market Model Using Monte Carlo Simulation:
An Empirical Investigation

•	 On the Role of Behavioral Finance in the Pricing of Financial Derivatives:
The Case of the S&P 500

•	 Option Pricing with Radial Basis Functions: A Tutorial
•	 Application of extrapolation processes to the finite element method
•	 On the Role of Mathematical Biology in Contemporary Historiography

He is currently working as a tutor for CQF (Fitch Learning) and a visiting faculty for
the Indian Institute for Quantitative Finance, Mumbai.

He lives in Italy with his wife Marcella, his daughters Francesca and Isabel, and his
son Marco.

www.it-ebooks.info

http://www.it-ebooks.info/

[FM-5]

Acknowledgments

I would like to thank many people who have made this book a reality. First the
magnificent support, enthusiasm, and patience of the entire team at Packt Publishing,
particularly Harsha, Amit, Humera, and Harshal. To Dr. Pattabi Raman (Numerical
Solution (U.K.) Ltd.), for his expert advice on C++. To Dr. Marco Airoldi for his
knowledgeable and detailed review of the book. To the SDA Bocconi School of
Management including my colleagues and students from the MBA, graduate, and
undergraduate courses. To the many persons I have been privileged to work with
and to teach from the Universities of Cambridge, Oxford, Bocconi, LIUC Castellanza,
Bergamo, Pavia, and Politecnico di Milano. The many extraordinary quants from the
Certificate in Quantitative Finance, Fitch Learning, London, as well as from Unicredit
Group and Thomson Reuters. Finally, to my wife, Marcella, and my children,
Francesca, Isabel, and Marco—you all always remind me that "The true voyage of
discovery consists not in seeking new landscapes but in having new eyes to see"
(Marcel Proust).

www.it-ebooks.info

http://www.it-ebooks.info/

[FM-6]

About the Reviewer

Marco Airoldi received his Ph.D. in Theoretical Condensed Matter Physics in 1995
from the International School for Advanced Studies (SISSA). He moved definitively
to finance in 1999. Marco has been chosen as the head of financial engineering in one
of the top financial institutions in Italy.

His expertise includes the Monte Carlo simulation for option pricing and pricing
system architectures.

www.it-ebooks.info

http://www.it-ebooks.info/

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: What is Quantitative Finance?	 5

Discipline 1 – finance (financial derivatives)	 5
Discipline 2 – mathematics	 8
Discipline 3 – informatics (C++ programming)	 9
The Bento Box template	 10
Summary	 12

Chapter 2: Mathematical Models	 13
Equity	 13
Foreign exchange	 17
Interest rates	 20

Short rate models	 20
Market models	 22

Credit	 25
Structural models	 26
Intensity models	 28

Summary	 31
Chapter 3: Numerical Methods	 33

The Monte Carlo simulation method	 34
Algorithm of the MC method	 35
Example of the MC method	 37

The Binomial Trees method	 39
Algorithm of the BT method	 39
Example of the BT method	 42

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

The Finite Difference method	 44
Algorithm of FDM	 46
Example of the FD method	 48

Summary	 50
Chapter 4: Equity Derivatives in C++	 51

Basic example – European Call	 51
Advanced example – equity basket	 56
Summary	 60

Chapter 5: Foreign Exchange Derivatives with C++	 61
Basic example – European FX Call (FX1)	 61
Advanced example – FX barrier option (FX2)	 68
Summary	 73

Chapter 6: Interest Rate Derivatives with C++	 75
Basic example – plain vanilla IRS (IR1)	 76
Advanced example – IRS with Cap (IR2)	 82
Summary	 88

Chapter 7: Credit Derivatives with C++	 89
Basic example – bankruptcy (CR1)	 89
Advanced example – CDS (CR2)	 94
Summary	 100

Appendix A: C++ Numerical Libraries for Option Pricing	 101
Numerical recipes	 101
Financial numerical recipes	 102
The QuantLib project	 102
The Boost library	 102
The GSL library	 103

Appendix B: References	 105
Index	 107

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Quantitative Finance is a highly complex interdisciplinary field, which covers
mathematics, finance, and information technology. Navigating it successfully
requires specialist knowledge from many sources, such as financial derivatives,
stochastic calculus, and Monte Carlo simulation. Crucially, it also requires a
hands-on ability to transform theory into practice effectively.

In Advanced Quantitative Finance with C++, we provide a guided tour through this
exciting field. The key mathematical models used to price financial derivatives are
explained as well as the main numerical models used to solve them. In particular,
equity, currency, interest rates, and credit derivatives are discussed. The book also
presents how to implement these models in C++ step by step. Several fully working,
complete examples are given that can be immediately tested by the reader to support
and complement their learning.

What this book covers
Chapter 1, What is Quantitative Finance?, gives a brief introduction to Quantitative
Finance, delimits the subject to option pricing with C++, and describes the structure
of the book.

Chapter 2, Mathematical Models, offers a summary of the fundamental models used to
price derivatives in modern financial markets.

Chapter 3, Numerical Methods, reviews the three main families of numerical methods
used to solve the mathematical models described in the Chapter 2, Mathematical Models.

Chapter 4, Equity Derivatives in C++, demonstrates the concrete pricing of equity
derivatives using C++ in a basic contract (European Call/Put), and an advanced
contract (multi-asset options).

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 5, Foreign Exchange Derivatives with C++, illustrates the pricing of foreign
exchange derivatives using C++ in a basic contract (continuous barrier) and an
advanced contract (terminal barrier).

Chapter 6, Interest Rate Derivatives with C++, shows the pricing of interest rate
derivatives using C++ in a basic contract and an advanced Interest Rate Swap (IRS).

Chapter 7, Credit Derivatives with C++, demonstrates the concrete pricing of credit
derivatives using C++ in a basic contract (Merton model) and an advanced contract
(Credit Default Swap (CDS)).

Appendix A, C++ Numerical Libraries for Option Pricing, gives a short guide to the
various numerical libraries that can be used for option pricing.

Appendix B, References, lists all the bibliographic references used throughout the
chapters of this book.

What you need for this book
In order to implement the pricing algorithms described in this book, you will need
some basic knowledge of C++ and Integrated Development Environment (IDE)
of your choice. I have used Code:Blocks, which is a free C, C++, and Fortran IDE,
and is highly extensible and fully configurable. You can download it from http://
www.codeblocks.org/. You will also need a C++ compiler. I have used MinGW,
which is a part of the GNU Compiler Collection (GCC), including C, C++, ADA, and
Fortran compilers. This compiler can be downloaded from http://www.mingw.org/.

Who this book is for
This book is ideal for quantitative analysts, risk managers, actuaries, and other
professionals working in the field of Quantitative Finance who want a quick reference
or a hands-on introduction to pricing of financial derivatives. Postgraduate, MSc,
and MBA students following university courses on derivatives in corporate finance
and/or risk management will also benefit from this book. It could be used effectively
by advanced undergraduate students who are interested in understanding these
fascinating financial instruments. A basic familiarity with programming concepts,
C++ programming language, and undergraduate-level calculus is required.

Conventions
In this book, you will find a number of styles of text that distinguish among different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

www.it-ebooks.info

http://www.codeblocks.org/
http://www.codeblocks.org/
http://www.mingw.org/
http://www.it-ebooks.info/

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "An
important feature of this algorithm is the function in code snippet 2 (random.cpp)."

A block of code is set as follows:

 for (int i=0; i < N; i++)
 {
 double epsilon = SampleBoxMuller(); // get Gaussian draw
 S[i+1] = S[i]*(1+r*dt+sigma*sqrt(dt)*epsilon);
 }

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "In this book, all
the programs are implemented with the newest standard C++11 using Code::Blocks
(http://www.codeblocks.org) and MinGW (http://www.mingw.org)".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

http://www.codeblocks.org
http://www.mingw.org
www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.it-ebooks.info/

What is Quantitative Finance?
Quantitative Finance studies the application of quantitative techniques to the
solution of problems in finance. It spans diverse areas such as the management
of investment funds and insurance companies, the control of financial risks for
manufacturing companies and banking industry, and the behavior of the financial
markets. Quantitative Finance is eminently interdisciplinary building upon key
expertise from the disciplines of finance, mathematics, and informatics.

In this book, we will focus on one aspect of Quantitative Finance—the pricing
of financial derivatives using the programming language C++. In the following
sections, we will describe the main features of the three key disciplines that
constitute Quantitative Finance:

•	 Finance
•	 Mathematics
•	 Informatics

Discipline 1 – finance
(financial derivatives)
In general, a financial derivative is a contract between two parties who agree to
exchange one or more cash flows in the future. The value of these cash flows depends
on some future event, for example, that the value of some stock index or interest rate
being above or below some predefined level. The activation or triggering of this future
event thus depends on the behavior of a variable quantity known as the underlying.
Financial derivatives receive their name because they derive their value from the
behavior of another financial instrument.

As such, financial derivatives do not have an intrinsic value in themselves (in contrast
to bonds or stocks); their price depends entirely on the underlying.

www.it-ebooks.info

http://www.it-ebooks.info/

What is Quantitative Finance?

[6]

A critical feature of derivative contracts is thus that their future cash flows are
probabilistic and not deterministic. The future cash flows in a derivative contract
are contingent on some future event. That is why derivatives are also known as
contingent claims. This feature makes these types of contracts difficult to price.

The following are the most common types of financial derivatives:

•	 Futures
•	 Forwards
•	 Options
•	 Swaps

Futures and forwards are financial contracts between two parties. One party agrees
to buy the underlying from the other party at some predetermined date (the maturity
date) for some predetermined price (the delivery price). An example could be a
one-month forward contract on one ounce of silver. The underlying is the price
of one ounce of silver. No exchange of cash flows occur at inception (today, t=0),
but it occurs only at maturity (t=T). Here t represents the variable time. Forwards
are contracts negotiated privately between two parties (in other words, Over The
Counter (OTC)), while futures are negotiated at an exchange.

Options are financial contracts between two parties. One party (called the holder
of the option) pays a premium to the other party (called the writer of the option)
in order to have the right, but not the obligation, to buy some particular asset (the
underlying) for some particular price (the strike price) at some particular date in the
future (the maturity date). This type of contract is called a European Call contract.

Example 1

Consider a one-month call contract on the S&P 500 index. The underlying in this case
will be the value of the S&P 500 index. There are cash flows both at inception (today,
t=0) and at maturity (t=T). At inception, (t=0) the premium is paid, while at maturity
(t=T), the holder of the option will choose between the following two possible
scenarios, depending on the value of the underlying at maturity S(T):

•	 Scenario A: To exercise his/her right and buy the underlying asset for K
•	 Scenario B: To do nothing if the value of the underlying at maturity is below

the value of the strike, that is, S(T)<K

The option holder will choose Scenario A if the value of the underlying at maturity
is above the value of the strike, that is, S(T)>K. This will guarantee him/her a profit
of S(T)-K. The option holder will choose Scenario B if the value of the underlying at
maturity is below the value of the strike, that is, S(T)<K. This will guarantee him/her
to limit his/her losses to zero.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

Example 2

An Interest Rate Swap (IRS) is a financial contract between two parties A and B
who agree to exchange cash flows at regular intervals during a given period of time
(the life of a contract). Typically, the cash flows from A to B are indexed to a fixed
rate of interest, while the cash flows from B to A are indexed to a floating interest
rate. The set of fixed cash flows is known as the fixed leg, while the set of floating
cash flows is known as the floating leg. The cash flows occur at regular intervals
during the life of the contract between inception (t=0) and maturity (t=T). An
example could be a fixed-for-floating IRS, who pays a rate of 5 percent on the agreed
notional N every three months and receives EURIBOR3M on the agreed notional N
every three months.

Example 3

A futures contract on a stock index also involves a single future cash flow (the
delivery price) to be paid at the maturity of the contract. However, the payoff in this
case is uncertain because how much profit I will get from this operation will depend
on the value of the underlying at maturity.

If the price of the underlying is above the delivery price, then the payoff I get
(denoted by function H) is positive (indicating a profit) and corresponds to the
difference between the value of the underlying at maturity S(T) and the delivery
price K. If the price of the underlying is below the delivery price, then the payoff
I get is negative (indicating a loss) and corresponds to the difference between the
delivery price K and the value of the underlying at maturity S(T). This characteristic
can be summarized in the following payoff formula:

(()) ()H S T S T K= −
Equation 1

Here, H(S(T)) is the payoff at maturity, which is a function of S(T). Financial
derivatives are very important to the modern financial markets. According to
the Bank of International Settlements (BIS) as of December 2012, the amounts
outstanding for OTC derivative contracts worldwide were Foreign exchange
derivatives with 67,358 billion USD, Interest Rate Derivatives with 489,703 billion
USD, Equity-linked derivatives with 6,251 billion USD, Commodity derivatives
with 2,587 billion USD, and Credit default swaps with 25,069 billion USD.
For more information, see http://www.bis.org/statistics/dt1920a.pdf.

www.it-ebooks.info

http://www.bis.org/statistics/dt1920a.pdf
http://www.it-ebooks.info/

What is Quantitative Finance?

[8]

Discipline 2 – mathematics
We need mathematical models to capture both the future evolution of the
underlying and the probabilistic nature of the contingent cash flows we encounter
in financial derivatives.

Regarding the contingent cash flows, these can be represented in terms of the payoff
function H(S(T)) for the specific derivative we are considering. Because S(T) is a
stochastic variable, the value of H(S(T)) ought to be computed as an expectation
E[H(S(T))]. And in order to compute this expectation, we need techniques that allow
us to predict or simulate the behavior of the underlying S(T) into the future, so as to
be able to compute the value of ST and finally be able to compute the mean value of
the payoff E[H(S(T))].

Regarding the behavior of the underlying, typically, this is formalized using
Stochastic Differential Equations (SDEs), such as Geometric Brownian Motion
(GBM), as follows:

ds Sdt SdWµ σ= +
Equation 2

The previous equation fundamentally says that the change in a stock price (dS), can
be understood as the sum of two effects—a deterministic effect (first term on the
right-hand side) and a stochastic term (second term on the right-hand side). The
parameter µ is called the drift, and the parameter σ is called the volatility. S is the
stock price, dt is a small time interval, and dW is an increment in the Wiener process.

This model is the most common model to describe the behavior of stocks,
commodities, and foreign exchange. Other models exist, such as jump, local
volatility, and stochastic volatility models that enhance the description of the
dynamics of the underlying.

Regarding the numerical methods, these correspond to ways in which the formal
expression described in the mathematical model (usually in continuous time) is
transformed into an approximate representation that can be used for calculation
(usually in discrete time). This means that the SDE that describes the evolution of
the price of some stock index into the future, such as the FTSE 100, is changed to
describe the evolution at discrete intervals. An approximate representation of an
SDE can be calculated using the Euler approximation as follows:

1t t t tS S S t S d Wµ σ+ − = ∆ + ∆
Equation 3

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

The preceding equation needs to be solved in an iterative way for each time interval
between now and the maturity of the contract. If these time intervals are days and
the contract has a maturity of 30 days from now, then we compute tomorrow's
price in terms of todays. Then we compute the day after tomorrow as a function of
tomorrow's price and so on. In order to price the derivative, we require to compute
the expected payoff E[H(ST)] at maturity and then discount it to the present. In this
way, we would be able to compute what should be the fair premium π associated
with a European option contract with the help of the following equation:

exp() [(S)] exp() [max(S ,0)]T TrT E H rT E Kπ = − × = − × −

Equation 4

Discipline 3 – informatics
(C++ programming)
What is the role of C++ in pricing derivatives? Its role is fundamental. It allows us
to implement the actual calculations that are required in order to solve the pricing
problem. Using the preceding techniques to describe the dynamics of the underlying,
we require to simulate many potential future scenarios describing its evolution. Say
we ought to price a futures contract on the EUR/USD exchange rate with one year
maturity. We have to simulate the future evolution of EUR/USD for each day for
the next year (using equation 3). We can then compute the payoff at maturity (using
equation 1). However, in order to compute the expected payoff (using equation 4),
we need to simulate thousands of such possible evolutions via a technique known
as Monte Carlo simulation. The set of steps required to complete this process is
known as an algorithm. To price a derivative, we ought to construct such algorithm
and then implement it in an advanced programming language such as C++. Of
course C++ is not the only possible choice, other languages include Java, VBA,
C#, Mathworks Matlab, and Wolfram Mathematica. However, C++ is an industry
standard because it's flexible, fast, and portable. Also, through the years, several
numerical libraries have been created to conduct complex numerical calculations in
C++. Finally, C++ is a powerful modern object-oriented language.

It is always difficult to strike a balance between clarity and efficiency. We have aimed
at making computer programs that are self-contained (not too object oriented) and
self-explanatory. More advanced implementations are certainly possible, particularly
in the context of larger financial pricing libraries in a corporate context. In this book, all
the programs are implemented with the newest standard C++11 using Code::Blocks
(http://www.codeblocks.org) and MinGW (http://www.mingw.org).

www.it-ebooks.info

http://www.codeblocks.org
http://www.mingw.org
http://www.it-ebooks.info/

What is Quantitative Finance?

[10]

The Bento Box template
A Bento Box is a single portion take-away meal common in Japanese cuisine.
Usually, it has a rectangular form that is internally divided in compartments to
accommodate the various types of portions that constitute a meal. In this book,
we use the metaphor of the Bento Box to describe a visual template to facilitate,
organize, and structure the solution of derivative problems. The Bento Box template
is simply a form that we will fill sequentially with the different elements that we
require to price derivatives in a logical structured manner. The Bento Box template
when used to price a particular derivative is divided into four areas or boxes, each
containing information critical for the solution of the problem. The following figure
illustrates a generic template applicable to all derivatives:

In this box the description
of the contract goes.
Identify the underlying.
Specify the counterparties
involved, the cashflows,
the payment dates, any
other conditions and
the payoff function in
terms of the underlying.

In this box we define the
mathematical model that
describes the dynamics of
the underlying specified
in box 1.

In this box we specify the
numerical method that will
be use to solve the model
specified in box 2.

In this final box we put together the specifications (box 1),
the mathematical description of the underlying (box 2)
and the numerical method used to solve the model
(box 3) via a computer algorithm. The algorithm is
essentially a series of steps that takes us from the input
data (market variables) via a computation process to the
output (typically the price, premium or mark to market of
the derivative.) This algorithm will be blueprint to construct
computer code in C++.

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

AL
G

O
R

IT
H

M
N

U
M

 M
ETH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

The Bento Box template – general case

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

The following figure shows an example of the Bento Box template as applied to a
simple European Call option:

The , being aunderlying
stock index, can be
described using Geometric
Brownian Motion (GBM):

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

AL
G

O
R

IT
H

M
N

U
M

 M
ETH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

European Call option on
stock index FTSE100.
Counterparties are A and B.
Underlying is FTSE100 index.
At t=0, A pays B a .premium
At maturity (T=3 months), A
will have the right (but not
the obligation) to buy the
underlying from B for the
strike price K. The payoff at
maturity H is:

INPUT: spot-price, strike, maturity, risk-free rate, volatility
number simulations (M), time discretization number periods (N)

: estimate for the premiumOUTPUT
PROCESS:
for i=1:M

for i=1:N
*Compute GBM formula and advance one timestep

end
*Compute underlying at maturity
*Compute payoff at maturity

end
*Compute premium as discounted average value of payoffs

The Bento Box template – European Call option

In the preceding figure, we have filled the various compartments, starting in the
top-left box and proceeding clockwise. Each compartment contains the details about
our specific problem, taking us in sequence from the conceptual (box 1: derivative
contract) to the practical (box 4: algorithm), passing through the quantitative aspects
required for the solution (box 2: mathematical model and box 3: numerical method).

www.it-ebooks.info

http://www.it-ebooks.info/

What is Quantitative Finance?

[12]

Summary
This chapter gave an overview of the main elements of Quantitative Finance as
applied to pricing financial derivatives. The Bento Box template technique will
be used in the following chapters to organize our approach to solve problems in
pricing financial derivatives. We will assume that we are in possession with enough
information to fill box 1 (derivative contract). Further details about the mathematical
models (box 2) will be described in Chapter 2, Mathematical Models.

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models
In the previous chapter, we described the Bento Box template as a methodology
for structuring our approach to price financial derivatives. In the context of the
Bento Box template, this chapter corresponds to box 2—mathematical models. Here
we review some of the key mathematical models used in the financial derivatives
markets today to describe the behavior of the underlying. In particular, the future
evolution of the underlying. The following are the examples of these underlyings:

•	 An equity or stock
•	 An exchange rate
•	 An interest rate
•	 A credit rating

Equity
In the equity asset class, the underlying is the price of a company stock. For instance,
the current price of one share of Vodafone PLC (VOD.L) as quoted in the London
Stock Exchange (www.londonstockexchange.com) at some particular time. The price
could be £2.32 and the time could be 11:33:24 on May 13, 2013.

In mathematical terms, thus, the price of a stock can be represented as a scalar
function of the current time t. We will denote this function as S(t). Note that in
technical terms, S(t) is a time series, which even though apparently continuous
(with C[0] continuity), is in reality discontinuous (subject to jumps). In addition,
it is not a well-behaved function, that is, its first derivative does not exist.

www.it-ebooks.info

www.londonstockexchange.com
http://www.it-ebooks.info/

Mathematical Models

[14]

We are going to model S(t) as an stochastic variable. And all the constructions
that we build around this value, such as the value of the payoff H(S_t) will be in
consequence stochastic functions. In this situation, we are required not to use the
standard tools of calculus (such as Taylor series, derivatives, Riemann integral), but
are instead required to use the tools from stochastic calculus (such as Ito lemma,
Radon-Nykodym derivative, Riemann-Stieltjes integral) to advance our modeling.

In this context, the behavior of the variable S(t) can be described by an SDE. In the
case of equities, the standard SDE used to describe the behavior of equities is called
GBM. Under the so-called real-world probability measure P, GBM is formally
represented in continuous time as follows:

PdS Sdt SdWµ σ= +
Equation 1

However, in literature, this representation is not used for the pricing of financial
derivatives. It is substituted by the following representation under the risk-neutral
measure Q:

QdS rSdt SdWσ= +
Equation 2

In the preceding equation, we have substituted the drift µ by the risk-free rate r of
interest, σ is the volatility, and dW is the increment of a Wiener process. Equation 2
can be further represented as follows:

QdS rdt dW
S

σ= +

In the preceding equation, we can identify the term dS/S on the left hand side (LHS)
of the equation as the return of the equity. Thus, the two terms on the right hand side
(RHS) of the equation are a "drift term" and a "volatility term". Each of these terms
are "scaled" by parameters µ and σ , which are calibrated to current market prices of
traded instruments, such as call and put options.

Note that equation 2 is the fundamental equation used to describe the underlyings in
the word of financial derivatives.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[15]

For the purpose of pricing derivatives, we require to transform equation 2 from
continuous time into discrete time to model the behavior of stocks, say every
day (1t∆ = days, but in finance we always work in annualized terms, so

1/ 365 0.00274t∆ = = years). We can easily approximate equation 2 by using the
Euler-Murayama discretization as follows:

S = rS t + S W

1t t t t tS S rS t S tσ ε+ − = ∆ + ∆

()1 1t t t t t t tS S rS t S t S r t tσ ε σε+ = + ∆ + ∆ = + ∆ + ∆

Equation 3

In the preceding equation, we approximate the differential of the Wiener process
as the square root of delta t multiplied by a draw from a Gaussian distribution with
zero mean and standard deviation 1 (N(0,1)). Equation 3 is a linear iterative equation,
which we can compute by having a starting value of S0 for a number of time steps
S1, S2, …, SN. We only need the values of the parameters r and σ, and a Gaussian
random number generator for the value of ε.

In order to compute the draw from the cumulative standard normal distribution,
we will use a method called the Box-Muller method. The Box Muller method allows
us to convert uniform random numbers into Gaussian random numbers. This is very
useful because in many computer libraries we can find standard functions to generate
random numbers from a uniform distribution (for example, function rand() in C)
and through the Box Muller method, we can generate the Gaussian draws we need.
We will discuss more about this in Chapter 4, Equity Derivatives in C++.

For example, imagine that we would like to simulate the behavior of the stock of
company ABC for the next four days. The current value of the stock is 100 EUR.
The risk-free interest rate stands at 5 percent per annum (p.a.), and the volatility
is at 30 percent pa. How shall we proceed?

First we construct a time grid for the business days in which we need the values
(note that there are 255 business days in a year). These are t0, t1, t2, t3, and t4. These
correspond respectively to Monday, Tuesday, Wednesday, Thursday, and Friday. In
finance, we always work in annualized terms and, therefore, these dates correspond
to 1/ 255t∆ = , so t0=0, t1=1/255, t2=2/255, t3=3/255, and t4=4/255.

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[16]

We then need the grid of stock prices S(t). These are S(t0), S(t1), S(t2), S(t3), and S(t4),
which we will assign respectively to Monday, Tuesday, Wednesday, Thursday, and
Friday that are represented as S0, S1, S2, S3, and S4. We already know the value of
S0, which is the initial price (as observed today), that is, S0=100 on Monday.

Before doing that, we will need a vector of draws from the cumulative standard
normal distribution as follows:

1 = +0.4423, 2 = 0.1170, 3 = +0.0291, 4 = +0.6872

We can then apply equation 3 iteratively to go from the value of Monday S0 to the
value of Tuesday S1 as follows:

()1 0 1 tS S r t tσε= + ∆ + ∆

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1
with the numerical values as follows:

()1 (100) 1 (0.05)(1/ 255) (0.30)(0.4423) (1/ 255) 102.12S = + + + =

We can then calculate the values for the rest of the days as follows:

()2 (102.12) 1 (0.05)(1/ 255) (0.30)(0.1170) (1/ 255) 99.47S = + + − =

()3 (99.47) 1 (0.05)(1/ 255) (0.30)(0.1121) (1/ 255) 101.82S = + + + =

()4 (101.82) 1 (0.05)(1/ 255) (0.30)(0.7373) (1/ 255) 104.21S = + + + =

If we put together these set of calculated stock prices and plot them against time,
we obtain the following graph:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

Simulated stock prices

Foreign exchange
In the forex asset class, the underlying is the value of an exchange rate. For example,
the current exchange rate between the euro (EUR) and the British pound sterling (GBP)
at some particular time. The exchange rate could be EUR/GBP = 1.31, meaning that £1
will be exchanged by € 1.31, and the current time could be 11:33:24 on May 13, 2013.

Thus, in mathematical terms, the exchange rate can be represented as a function X(t),
which is a scalar function of time, just like in the case of equities. The exchange rate
X(t) is thus modeled as an stochastic variable. In mathematical terms, the behavior
of X(t) is described using an SDE just like in the case of equities. However, while
for equities we used GBM, in the case of forex, we will use a variation that comes
from the work of (Garman-Kohlhagen 1983). According to this model, the stochastic
differential equation for exchange rates can be expressed as follows:

() Q
d fdX r r Xdt XdWσ= − +

Equation 4

In the preceding equation, rd and rf represent the domestic and the foreign risk-free
interest rates. The volatility σ is a parameter calibrated to market-quoted instruments.

As we did earlier, before proceeding for the purposes of pricing derivatives,
we require to transform equation 1 from continuous time into discrete time to
model the behavior of exchange rates say every day (1t∆ = day).

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[18]

We again apply the Euler-Murayama discretization to equation 1 by transforming
the differential dX into a difference X∆ , keeping the constants constants rd, rf, and σ
unchanged, and approximating the differential of the Wiener process as the square
root of delta t multiplied by a draw from a cumulative standard normal distribution,
as follows:

()d fX r r X t X Wσ∆ = − ∆ + ∆

1 ()t t d f t t tX X r r X t X tσ ε+ − = − ∆ + ∆

()1 () 1 ()t t d f t t t t d f tX X r r X t X t X r r t tσ ε σε+ = + − ∆ + ∆ = + − ∆ + ∆

Equation 5

As in the case of equation 2, equation 5 is also a linear iterative equation, which we
can compute iteratively by having a starting value of X0 for a number of time steps
X1, X2, …, XN. We only need the values of the parameters rd, rf, and sigma and a
Gaussian random number generator for the value of epsilon.

For example, imagine that we would like to simulate the behavior of the EUR/USD
exchange rate for the next four days at the last quoted value of the business day
(known as end of day (EOD)). The current value of the exchange rate EUR/USD
is 1.33. The domestic risk-free interest rate is 5 percent p.a. and the foreign risk-free
interest rate is 3 percent pa, while the volatility is at 30 percent pa. How shall
we proceed?

First we construct a time grid for the business days in which we need the
values (note that there are 255 business days in a year). These are t0, t1, t2, t3,
and t4. These correspond to Monday, Tuesday, Wednesday, Thursday, and
Friday respectively, in turn corresponding to t0=0, t1=1/255, t2=2/255, t3=3/255,
and t4=4/255 in annualized terms.

We then need the grid of EOD exchange rates X (t). These are X0, X1, X2, X3, and X4.
We already know the value of X0, which is the initial FX rate (as observed today), that
is, X0=1.33 on Monday. As we did earlier, before proceeding, we compute a vector of
draws from the cumulative standard normal distribution to obtain the following:

1 2 3 40.4423, 0.1170, 0.0291, 0.6872ε ε ε ε= + = − = + = +

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

We can then apply equation 3 iteratively to go from the value of Monday X0 to the
value of Tuesday X1 as follows:

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1
with the numerical values as follows:

()1 (1.33) 1 (0.05 0.03)(1/ 255) (0.30)(0.4423) (1/ 255) 1.52X = + − + + =

We can then calculate the values for the rest of the days as follows:

()2 (1.52) 1 (0.05 0.03)(1/ 255) (0.30)(0.4423) (1/ 255) 1.47X = + − + + =

()3 (1.47) 1 (0.05 0.03)(1/ 255) (0.30)(0.4423) (1/ 255) 1.32X = + − + + =

()4 (1.32) 1 (0.05 0.03)(1/ 255) (0.30)(0.4423) (1/ 255) 1.44X = + − + + =

If we put together these sets of computed rates and plot them as a function of time,
we obtain the following graph:

Simulated exchange rates

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[20]

Interest rates
In the interest rate asset class, the underlying is an interest rate. Interest rates are quite
complex. We can see this if we consider the question "what is the interest rate today?"
The answer is certainly not simply "5 percent pa" because we also need to specify the
maturity of the rates (T) we want to know. So interest has one more dimension than
objects like equities or forex. While the currently observed equity value is a scalar
quantity, that is, a single number, the current interest rate curve is a vector.

For example, let's consider the spot EURIBOR interest rates observed on May 13,
2013 for the maturities of 1 month, 3 months, 6 months, and 12 months (as published
by http://www.euribor-ebf.eu/). We denote these spot rates quoted by R(t,T)
as R(0,3M)=EURIBOR 3M = 1 percent pa, R(0,6M)= EURIBOR 6M = 2 percent pa,
R(0,9M)=EURIBOR 9M = 3 percent pa, and R(0,12M)=EURIBOR 12M = 4 percent pa.
Note that t=0 because we consider May 13, 2013 as the current date.

How would each of these rates evolve into the future? In other words, how can
we model R(t,T)? We have the following two choices reflecting the two modelling
schools present in literature:

•	 Short rate models
•	 Market models

The first is the oldest, while the second is more recent.

In the first model, the key modelling variable is an idealization of the interest rate,
the so-called short rate. It is an infinitesimal interest rate dr that applies to a very
short time interval. To obtain the interest rate that applies to a full period, we ought
to add or integrate the effect of all these small interest rates in the period. In the
second model, the key modeling variable is an actual quoted or market interest rate,
such as LIBOR. That's why these models are called market models in general, and its
most famous version is called Libor Market Model.

Short rate models
In continuous time, the short rate can be represented by the following SDE
developed by Vasicek as follows:

Equation 6

www.it-ebooks.info

http://www.euribor-ebf.eu/
http://www.euribor-ebf.eu/
http://www.it-ebooks.info/

Chapter 2

[21]

The preceding equation is a mean reverting process. The parameter is the mean
reversion level, is the speed of the mean reversion, and is the volatility. The
parameters , , and control how the stochastic process behaves. The value
assigned to will be long-term interest rate level to which interest rates will tend,
while will control how fast interest rates return to the long-term mean level. The
volatility controls the magnitude of the "jumps" of the process. These parameters
can be calibrated to market-quoted instruments, such as options on interest rate
swaps (known as swaptions).

We can approximate the Vasicek process via the Euler-Murayama methodology
described previously to obtain a discretized version of the stochastic process,
as follows:

r = rt() t + W

rt+1 rt = rt() t + W

rt+1 = rt + rt() t + t t

Equation 7

The preceding equation is a linear iterative equation, which we can compute
iteratively by having a starting value of r0 for a number of time steps r1, r2, …, rN.
We only need the values of the parameters theta, lambda, and sigma, and a Gaussian
random number generator for the value of epsilon.

For example, imagine that we would like to simulate the behavior of the short rate
of interest for the next four days. The current value of the interest rate is 5 percent.
The parameters = 1.0 and = 2.0, while the volatility is at 30 percent pa. How shall
we proceed?

First we construct a time grid for the days in which we need the values. These are
t0, t1, t2, t3, and t4 in order to correspond to Monday (t0), Tuesday (t1), Wednesday
(t2), Thursday (t3), and Friday (t4), in turn corresponding to t0=0, t1=1/365, t2=2/365,
t3=3/365, and t4=4/365 in annualized terms.

We then need the grid for the short rates r(t). These are r0, r1, r2, r3, and r4. We will
assign them to Monday, Tuesday, Wednesday, Thursday and Friday, respectively.
As we already know the value of r0, which is the initial interest rate (as observed
today), we have that r0=5 percent on Monday.

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[22]

As we did earlier, before proceeding, we compute a vector of draws from the
cumulative standard normal distribution to obtain the following:

1 2 3 40.4423, 0.1170, 0.0291, 0.6872ε ε ε ε= + = − = + = +

We can then apply equation 3 iteratively to go from the value of Monday r0 to the
value of Tuesday r1 as follows:

rt+1 = rt + rt() t + t t

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1
with the numerical values as follows:

We can then calculate the values for the rest of the days as follows:

Market models
Libor Market Model (LMM) is an advanced mathematical model used to price
interest rate derivatives. Also known as the BGM model after its authors (Brace,
Gatarek, Musiela, 1997), the LMM has become hegemonic in the financial markets
worldwide. Literature offers a wide range of publications about the LMM, mostly
its many variants and its complex advanced issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

The LMM in reality can be understood not as a single model, but rather as a large
family of models (Rebonato 1998) and (Brigo and Mercurio 2006). Its many variants
include the number of factors considered, the type of volatility modeling used, the
type of correlation modeling used, whether stochastic volatility or SABR are used,
whether forward LIBOR rates or swap rates are used, and whether semi-analytical
or numerical solution methods are used, among others.

Our methodology and notation closely follows that of (Pelsser 2000), which,
even though succinct, provides a clear introduction to the LMM. From all
the possible variations of the LMM, in this work, we chose the simplest
implementation—embodied in the use of lognormal SDEs (GBM) for the forward
rates and a single Wiener process driving the volatility in all rates (that is, a one
factor case). Under these conditions, we further explore the use of flat volatility.

We first divide the term structure of interest rates N in a set of forward rates L and a
set of reset times T as follows:

1 2 3 0 1 2(), (), (),..., () and , , ,...,N NL t L t L t L t T T T T

Each of the preceding forward rates will have its own stochastic process driving
them, which will result in N stochastic processes. Following BGM, we use Geometric
Brownian Motion (BGM) following (Brace, Gatarek, and Musiela 1997) to describe
each of these stochastic processes as follows:

Equation 8

We now further simplify the model and use a single factor driving all the forward
rates. This simplification can be later relaxed into a multifactor LMM. It can be
shown that by choosing the last rate as a terminal measure, the drift has the form
as follows:

1

α () ()dL () ()dT ()dW
1 α ()

N
k k n k n

i i n i n
k k nk i

T L T t L T Ti L T
= +

=− +∑ +

Note that the drift in the preceding GBM equation is a function of the forward rate,
thus not constant but state-dependent.

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[24]

Given the complexity of the processes in the LMM, it is not possible to obtain a
closed-form solution for all the forward rates. This is not a problem, however, as
robust numerical methods can be used to solve the discretized version of the forward
rate. One important method that is widely used for market models is Monte Carlo
simulation. The forward rates Li(Tn) are the realizations of the spot LIBOR rates. In
each column, the forward rate Li(Tn+1) is updated using the following discretization:

1 1

1
1 1

1

α () ()() () () ()()
1 α ()

()(() ())

N
k k n k n

i n i n i i n n n
k k nk i

N N
i n n n

T L TL T L T t L T T T
L T

T W T W T

−+ +

= +
+ +

+

= − ∑ +
+ −

Equation 9

The preceding equation, like the ones we have shown for equities and forex, ought
to be solved iteratively using simulation. The forward rates can be arranged in an
arithmetic table as follows:

In the preceding table, the left column represents the term structure of interest rates
at time t=0. Given a set of LIBOR rates realized on this for T1, T2, …TN, we can
extract the future rates that we need for simulation as the ones present in the main
diagonal of the preceding table.

For example, consider the following paying fixed-for-floating Interest Rate Swap
(IRS) with a notional of 1 million EUR. This IRS pays 5 percent every 3 months and
receives EURIBOR 3 months' rate every 3 months. The total maturity of the swap is
one year, given the following current term structure of interest rates:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

Compute the present value of this swap using the LMM. How shall we proceed?

Term structure of spot rates of interest at t=0 are EURIBOR 3M = 1 percent pa,
EURIBOR 6M = 2 percent pa, EURIBOR 9M = 3 percent pa, and EURIBOR 12M = 4
percent pa.

First, we need to compute the initial forward rates by bootstrapping as observed
from time t=0. We obtain this using the following equation:

Then using the iterative equation 9, we compute the forward the rates into the future
as follows:

 corresponds to

We populate the initial forward rates in the left-most column and advance
column-by-column to the right until we have all the values we need, as shown on
the right. For more details on the calculation, see the book by (Pelsser 2000). Note
that even though an IRS can be priced "statically" (that is, without simulation),
we use this example to give an idea of what are the steps that the LMM method
requires for calculation.

Credit
In credit derivatives modeling, the underlying is credit risk. Modern methodologies
of credit risk measurement can be grouped into two alternative approaches—the
structural approach pioneered by (Merton 1974) and a reduced form approach
utilizing intensity based models to estimate stochastic hazard rates, pioneered by
various authors, including (Jarrow and Turnbull 1995), (Jarrow, Lando, and Turnbull
1997), and (Duffie and Singleton 1999).

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[26]

Structural models
The structural approach to credit risk assumes that a firm defaults when the market
value of its assets is less than the obligations or debt it has to pay. Structural models
are, therefore, sometimes also referred to as asset value models. These models look
at a company's balance sheet and its capital structure to assess its creditworthiness.
However, one of the key problems with this approach is that the value of a company's
assets is hard to observe directly. The annual report only provides an accounting
version of the company's real assets and not their market value. For public companies,
the equity is normally observable, as is its debt. (Merton 1974) starts with the
assumption of an extremely simplified capital structure of the following form:

Equation 10

In the preceding equation, V represents the value of the firm (the total of the assets of
the firm), while E is its equity and D its debt. The equity E is understood as the total
value of the equity of the firm, which is equal to the market value of a share (stock)
multiplied by the number of shares in the market. For this simplified company, the
debt is represented by a single zero coupon bond with maturity T.

At this point Merton asks the question "for a company with the preceding capital
structure, when will it go in default?" Well, depends on our definition of default.
If we take as default the fact that the company cannot pay its obligations at some
specific future time T, then this condition will be satisfied if the value of the company
at time T, that is, V(T) is larger than the face value of debt D(T). At this moment in
time, the bond holders will request payment and the company will be in position to
cover it. On the contrary, if at maturity, the value of the firm is less than the value of
the debt it has to pay, it, therefore, will not be able to honor its obligations and will
be in default. These two scenarios can be defined mathematically as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

What about equity holders? They are in possession of the company's stock in the
end. Considering the preceding two scenarios, we then know that if the company
goes in default, they receive nothing, while if the company continues to operate,
they receive the difference between V(T) and D(T) at maturity, thus giving us the
following equation:

Note that the expression on the left can be written succinctly as the single expression
on the right. The expression on the right-hand side represents the payoff to equity
holders at maturity. Moreover, this expression has exactly the same form as the
payoff of a European Call option with the underlying V(t) and strike D. Following
Merton, we further assume that the dynamics of the firm follow a GBM as follows:

Equation 11

And by doing this, we establish a bridge between credit risk and the pricing of equity
derivatives. In fact, we can now use all the results from pricing equity derivatives
to price structural models of credit risk. Note that the volatility σ is the firm's assets
volatility and not the equity volatility. The value of the assets of the firm at time t=0
can therefore be calculated using the Black-Scholes formula as follows:

Equation 12

2
0

1 2 1
In(/) (0.5)V D r Twith d and d d T

T
σ σ

σ
+ +

= = −

In equation 12, N() is the cumulative standard normal distribution. This is a useful
expression when we need to calculate problems like Initial Public Offer (IPO) of a
firm and determine, based on the characteristics of a firm, what should be the fair
price of its equity.

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[28]

For example, imagine that we have a firm that has a total value of its assets of 100
million USD. The risk-free interest rate is 5 percent. The volatility of the firm's assets
is assumed to be 20 percent. And the face value of its debt stands at 70 million USD
payable as a zero coupon bond in four years. What should be the fair value of its
equity at time t=0?

We use the framework of structural models of credit risk and proceed as follows.
The parameters are , , , , and .
Using the preceding formula we obtain the following equation:

Intensity models
The default is a random variable tau (τ) that denotes the time in which the company
will go in default. Default can be described as bankruptcy, lack of payment, and
so on. To model the arrival risk of a credit event, we need to model an unknown
random point in time τ.

Intensity-based models focus directly on describing the conditional probability of
default without the definition of the exact default event. Intensity models are based
on the concept of survival probability. It is an idea borrowed from actuarial and
biological sciences. Survival probability is a decaying exponential function, which
describes the probability of how long a firm or a country (sovereign) will survive.
This can be expressed mathematically in the simplest terms as follows:

Equation 13

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

But we want to model default, not survival. In fact, we can compute the probability
of default in some future period [S,T] as shown from the current time t, simply as the
difference between two consecutive survival probabilities. The probability of default

 in that future period then can be calculated using the following formula:

Equation 14

The preceding formulas are fundamental for the modeling of credit risk. With
them, we can describe the likelihood of default, which is a probabilistic event that
will happen in the future. The cashflows associated with this future event are thus
contingent on the occurrence of this event. Following the classical framework of
financial derivatives, thus credit derivatives can be understood as contingent claims,
in which the event that triggers the future cash flow is default.

To be concrete, consider the simplified situation—we are expecting to receive a
single cash flow from a company at some future time T. What is the present value of
this cash flow?

If we don't consider credit risk, the Present Value (PV) of the cash flow is simply
the discounted Future Value (FV) of the cash flow. If the discount factor in the
intervening time is DF, then we can write the simplest formula in finance, which
states the following:

We can go one step further and assuming continuous compounding with a constant
risk-free rate r, we can obtain the following equation:

Equation 15

What happens now if we consider the credit risk of the company? The first thing to
notice is that the cash flow is not any more certain, but it is uncertain. In mathematical
terms, it is not any more deterministic, but it is probabilistic. Therefore, we ought to
rewrite the previous equation. But because the future cash flow is unknown, it is in fact
a random variable. We ought to write it as an expected value of this random variable
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Mathematical Models

[30]

This expectation thus introduces a probability of FV happening or not. But what
is this probability? The probability that the company will be there in the future to
make the payment. In other words, the probability that the company has survived
until then, in other words its survival probability. So we can substitute with

 in order to obtain the following formula:

Furthermore, we can explicitly represent the survival probability described
previously as follows:

We will receive the future cash flow only if the company is present then in the future
(or has survived) to do it. The final expression for the present value of the cashflow,
taking into account credit risk, is as follows:

Equation 16

This last expression is interesting as it shows that credit risk is a form of "spread" that
is added to the risk free rate that we normally use to discount future cashflows.

For example, imagine that we expect to receive 1 million USD from a counterparty
that has a credit risk, quantified by its hazard rate, of . Assuming that
the risk-free interest rate , compute the present value of the cash flow
firstly, without credit risk and secondly, with credit risk. Assume continuous time
discounting. Assume that the recovery rate is . How shall we proceed?

By applying the preceding formulas, we obtain that without credit risk, the PV is
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[31]

Now, if we consider the credit risk, we have the PV as follows:

Note that the second cash flow is smaller than the first. The effect of the credit risk is to
view the value of the cash flow today (its PV) as reduced because not being certain, it
has to be multiplied by the chance that it happens (that is, its survival probability).

In the previous analysis, we have assumed that when default occurs, all of the future
cash flow FV will be lost. However, in most real situations, some fraction of money
is recovered. If we define this fraction as the recovery rate R, the present value PV of
the risky future cash flow is still the same, as follows:

But the expectation is now resolved in terms of two possible states, default or no
default, and each of them is multiplied by its respective probabilities, as follows:

In the preceding equation, we have taken into account the recovery rate R in the case
of default. The present value of the risky cash flow PV is now as follows:

Summary
This chapter gave an overview of the fundamental models used to price derivatives
in the modern financial markets. We will now take these models as basis to model
the underlying of the various asset classes we reviewed and apply a number of
numerical methods to implement their calculations efficiently in a computer.

In the next chapter, we will concentrate on numerical methods.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods
In the previous chapter, we reviewed some of the key mathematical models used to
describe the behavior of the underlying assets of financial derivatives. We saw, in
particular, how these models are used to describe the future behavior of these assets
based on the information we have today. These models are generally expressed in
terms of SDEs and Partial Differential Equations (PDEs).

In this chapter, we are going to describe the three main numerical methods used in
the financial markets today in the context of financial derivatives. They are a way
to use actual numerical values to the abstract mathematical formulas we saw in the
previous chapter. These numerical methods are as follows:

•	 Monte Carlo (MC) simulation
•	 Binomial Trees (BT)
•	 Finite Difference Methods (FDM)

In the context of the Bento Box template, this chapter corresponds to box 3—numerical
methods. There is a fourth family of methods, less frequently used, called quadrature
methods, which are used for numerical integration. These will not be discussed here.

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[34]

The Monte Carlo simulation method
Monte Carlo simulation is named after the famous casino in the principality of
Monaco. It is the most widely used numerical method to price financial derivatives
in the industry because of its simplicity, flexibility, and extensibility.

The basic idea of the method is to construct a simulation engine that will allow us
to predict a number of possible ways (or trajectories) in which the underlying assets
can evolve in the future. These trajectories can be thought of as potential economic
or financial scenarios. With MC simulation, we attempt to answer questions such as
"given the observed price of Vodafone stock today, what could be the likely prices
of the stock each day for the next month?"

As we cannot be certain of the future evolution of prices, our result needs to be based
on probability, and, thus, we need large number of samples. Using the stochastic
models that we saw in the previous chapter to simulate one possible trajectory, with
MC simulation, we are going to simulate many possible trajectories and, for each,
compute the payoff that the contract would have had if the prices had followed that
specific path in future. Afterwards, we are going to take all these possible payoffs
and compute their expected value, that is, the mean or average value. This will give
us an estimate of how much this contract will be worth in the future.

MC simulation then allows us to compute the fair price of a financial derivative as
its expected discounted payoff. This concept stems from the financial principle of
fair pricing, which states that the price that a contract should have if the sum of the
cash flows that we expect to receive are the same as the sum of the cash flows that we
expect to pay. For more details on MC simulation, you are invited to refer to Monte
Carlo Methods in Financial Engineering.

In order to have an intuition of why this is the case, consider the following
simple example:

Imagine that you have bought a plain vanilla European Call option contract at
time t=0. This contract will give you a payoff of at maturity
t=T. Because the value of the underlying at maturity is uncertain, that is, S_T is a
random variable, the payoff function H(S_T) is also uncertain. We can write that
the expected value of the payoff function is the expectation . In
addition, in a European Call contract, we pay a premium today in order to have the
right to exercise the option or not at maturity t=T. How much should we pay for the
premium for this contract today?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

As we said before, in a fair value setting, what we expect to receive should be equal
to what we expect to pay. By putting all these cashflows together (positive indicating
to be received, negative to be paid) we can write the following:

•	 Amount paid at t=0 is written as
•	 Amount to be received at t=T is written as

If we now compute the present value of these cash flows, we get the
following equation:

In other words, it can be summarized as follows:

The object of the MC simulation method is precisely to help us compute the
expectation of the payoff ; once you compute this, discount this value
to obtain the premium of the derivative.

This same idea can be generalized to more complex settings with many complex
payoffs and underlyings.

Algorithm of the MC method
For European-type derivatives, MC simulation is composed of the following
three steps:

1.	 The first step is to generate trajectories.
Simulate M trajectories for the evolution of the underlying from t=0 to
maturity t=T. In this step, we use the discretized version of SDE that
describes the evolution of the underlying. In our case, we use GBM as SDE,
which will allow us to take the value of the stock from its current value
S_0 to the value at maturity t=T. A discretized version is essentially an
approximate version applicable to finite time steps rather than continuous
time steps. For more details, please refer to Monte Carlo Methods in Financial
Engineering. We discretize the life of the option contract in N steps, each of
size dt, which can be succinctly written as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[36]

At the end of this step, we should have a vector of M values for S_T, as follows:

These represent a set of possible scenarios for the value of the underlying S at
time t=T. We use GBM to generate multiple paths that will serve a prediction
of where the value of S_T will be at maturity.

2.	 The next step is to compute the expectation.
Once we have the set of values of the underlying at maturity, we now need
to compute the expectation of the payoff at maturity. So we take each of these
values and compute the payoff for each value as follows:

The preceding equation will give us a vector of payoffs. In order to compute
the expectation, we need to simply take the average of the payoffs as follows:

3.	 Now discount the expectation to the present.

The final step is to discount the value of the payoff from maturity to the
present time. In order to do this, we will use the following formula:

Alternatively, we can also use continuous compounding, as follows:

The preceding equation will give us the value of the derivative . Note
that in this case, we have assumed that there is no correlation between the
interest rates and the price of stock. That is why we can neatly separate the
two effects in the preceding equation. If the interest rates and the price of
stock were correlated, then we will not be able to separate the discount factor
and the expectation. This no-correlation assumption is standard for simple
pricing models.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Example of the MC method
Consider the example where we would like to price a six-month European Call
option on Vodafone equity (VOD.L). The current equity price of Vodafone is £100.00,
with a volatility of 20 percent and a strike of £100. We assume that the stock pays no
dividends. The current risk-free rate is 5 percent pa. How do we proceed to solve this
problem using MC simulation? We proceed using the following three phases:

1.	 The first step is to generate trajectories.
We apply GBM to simulate the value of VOD.L stock from the spot price
today S_0 = £100.00. For simplicity, we choose to discretize the life of the
option from t=[0,T] into N=5 time steps and to do M=5 simulations using
GBM in discrete terms, as follows:

The five trajectories will thus be as follows:

The prices of the stock at maturity will be as follows:

2.	 The next step is to compute the expectation.
For each of the values of the underlyings, we now compute the payoffs
as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[38]

We now use the specific form of the payoff to describe a European Call
option as follows:

We apply the following numbers to the preceding equation to get the
following result:

The expected value of the preceding calculation is as follows:

3.	 Now discount the expectation to the present.

We now use the following continuous compounding to discount the
expected payoff we just calculated in step 2 in order to determine the
value of the premium:

In this example, we have used only five scenarios for our MC price. In
practice, hundreds or even thousands of scenarios are required in order to
obtain an acceptable error. Clearly, the more scenarios you use, the more
accurate the approximation. It is possible to derive some error-bound
formulas for the MC method and show the speed of convergence. For more
details, the reader is invited to refer to Monte Carlo Methods in Financial
Engineering. Putting together all the trajectories for the five MC scenarios,
we obtain the table shown in the following screenshot. Here, we see that
all the trajectories start at S0=100 and lead to some final value S5. For each
trajectory, we compute the payoff H, which is then averaged to compute its
expected value. The result is then discounted to obtain the present value of
the derivative.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

Example of the Monte Carlo simulation

The Binomial Trees method
Binomial Trees (BT) can be traced to the work of (Cox, Ross, and Rubinstein 1979).
Like MC methods, they are based on the idea of how the discretization of stock prices
can jump up or down. Unlike the MC methods, BT are not based on simulation of
many possible paths, but on the construction of a single path of possible future prices
that bifurcates at every node. These prices, as well as their associated probabilities,
constitute the tree. Once this tree is built, the prices of the underlying at maturity can
be determined, and the the payoff at maturity can be then computed and discounted
to the present time in order to determine the premium of the derivative.

Algorithm of the BT method
The BT method when applied to price derivatives is composed of three phases:
the construction of the tree of prices (forward phase), the computation of the payoffs
(maturity phase), and the discounting of the payoffs to the present time (backward
phase). We will now explain the BT method in the simplified context of a two-step
BT. This can be easily generalized to an N step tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[40]

To start with, we assume that the underlying can only go up or down in the next
time step. So we specify the up factor u to describe how much the value today
changes to a higher value and the down factor d to describe how much the value
today changes to a lower value, such that the up value is S(T)= u S(0), and the down
value is S(T)= d S(0). Furthermore, refer to "Option pricing: A simplified approach".
The formula for the up and down values can be shown as follows:

The following is the formula for the probabilities of going up:

The probability of going down is . We can now proceed to construct our
binomial tree in the following three phases:

1.	 The first phase is the forward phase.
Here we construct the tree. Like in MC simulation, time is discretized in steps
dt from t=0 to t=T. From one step tp, the next price of the underlying can
either go up or down by a factor u or d as shown in the following formulas:

0At 0 :t S=

1 0 0At :t t uS or dS=

2 2
2 0 0 0At : , ,t t u S udS d S=

Thus, the values of the tree at maturity are as follows:

1 2 2 3 2
0 0 0, ,T T TS u S S udS S d S= = =

In general case, we proceed in a similar manner until we arrive at the
maturity T, and we have N+1 values for the variable S. We will calculate
these values with the help of the following equation:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

The preceding equation in our case can be summarized as follows:

This entire process is illustrated in the following diagram:

2.	 The second phase is the payoff phase.
In this phase, we use the values of the underlying at maturity and for each of
them, we compute the value of the payoff, as follows:

In our case, the equation can be summarized as follows:

The following in turn are the values of the option at maturity T:

In our case, the preceding equation can be summarized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[42]

3.	 The third phase is the backward phase.
In this final phase, we take the values of the payoff at maturity and proceed
in a backward manner. We move from the last node to the previous nodes,
by computing the option value as the discounted expected payoff in the
previous nodes using the weighted probabilities, as follows:

VT 1

k = exp(r t) pVT
k + (1 p)VT

k

In our case, in the second step, the equations are as follows:

V2

1 = exp(r t) pV3
1 + (1 p)V3

2

V2
2 = exp(r t) pV3

2 + (1 p)V3
3

And, in the first step, the equation is as follows:

V1

1 = exp(r t) pV2
1 + (1 p)V2

2

The premium of the derivative, the option price, is the value .

Example of the BT method
Consider the example where we would like to price a six-month European Call
option on Rolls Royce equity (RR.L). The current equity price of the stock is £100.00,
with a volatility of 30 percent p.a. and a strike of £90. We assume the stock pays no
dividends. The current risk-free rate is 5 percent pa. How do we proceed to solve
this problem using BT?

To start with, we divide the life of the option in two steps, thus dt=0.25. The tables
in the following screenshot illustrate the numerical values for each of the three steps
applied to this problem:

Example of Binomial Trees pricing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[43]

We first compute the up and down factors as well as the up probability p. In
numerical terms, these are calculated using the following equations:

The following are the probabilities of going up and down respectively:

With all these parameters, we can now proceed to construct our tree in three phases,
as follows:

1.	 The first phase is the forward phase.
We can now construct the two levels of the tree as follows.

0A 0 : 100t S= =

1 0 0At : 116,18 or 86.07t t uS dS= = =

2 2
2 0 0 0At : 134.99, 100, 74.08t t u S udS d S= = = =

Thus, the values of the tree at maturity are as follows:

2.	 The second phase is the payoff phase.
In this phase, we use the values of the underlying at maturity, and for
each of them, we compute the value of the payoff, as follows:

In our case, the equation can be summarized as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[44]

The following in turn are the values of the option at maturity T:

In our case, the preceding equation can be summarized as follows:

3.	 The third phase is the backward phase.

In this final phase, we take the values of the payoff at maturity and proceed
in a backward manner. We move from the last node to the previous nodes,
by computing the option value as discounted expected payoff in the previous
nodes using the weighted probabilities, as follows:

VT 1

k = exp(r t) pVT
k + (1 p)VT

k

In our case, in the second step, the equations are as follows:

And in the first step, the equation is as follows:

The Finite Difference method
The Finite Difference (FD) method is a numerical technique that focuses directly on
the approximate solution of a differential equation. As shown by (Black and Scholes
1973) for equity financial derivatives (contingent claims), the problem is expressed in
terms of a Partial Differential Equation (PDE).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[45]

The basic idea of FDM is to discretize a differential equation. The method transforms
the derivatives in the differential equation into quantities or ratios that approximate
the derivatives. These quantities are not any more infinitesimal but finite, that is, they
have a finite length. This is the origin of the name of finite differences. For more details,
the reader can refer to The Mathematics of Financial Derivatives: A Student Introduction.

Consider the following illustration where a continuous function f(X) and the first
derivative of the function is defined as follows:

The preceding function is also known as the slope, which is the ratio between the
growth (or decrease) in the function with respect to the step size dx. Using the
preceding finite difference allows us to calculate the slope of the f(x) function in
terms of algebraic quantities.

In quantitative finance, we encounter various types of PDEs. The most important is
the Black-Scholes PDE, which is expressed as follows:

We now consider solving this equation in a rectangular domain in the S and t axes.
In the S axis, the domain is [a,b]. In the t axis the domain is [0,T]. This can be written
mathematically as the domain . In the case of a European Call,
it has a final condition as follows:

And the following are the boundary conditions:

 and .

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[46]

Rather than solving the Black-Scholes PDE directly (that is, using variables S and
t) we will be following (Wilmott et al. 1995), and we are going to propose a change
of variables. This will transform the original PDE into an equivalent PDE, which is
easier to solve and in fact is the classical equation of heat diffusion. The change of
variables is as follows:

The preceding equations transform the Black-Scholes PDE into the classical equation
of heat diffusion, as follows:

And the European Call payoff is transformed into the following equation:

where the parameter k is: .

Algorithm of FDM
The application of FDM to the preceding PDE requires the first derivative with
respect to time and the second derivative with respect to x, which leads to the
following equations:

The preceding approximations can be derived from a Taylor series expansion.
See (Wilmott et al. 1995) as we did in the preceding section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[47]

In order to do this, we need to discretize the domain of the function to a discrete set
of nodes. In the case of the BS equation, there will be N division's (or N+1) nodes in
the spatial dimension and M division's (or M+1) nodes in the temporal dimension.

If we now put together our previous approximations, we will obtain the
following formula:

Solving for the term on the LHS of the preceding equation, we finally obtain the
following discretized version of the PDE:

Where in the preceding equation .

The discretized version of the PDE can be solved iteratively in time, using the
explicit or forward finite difference method (FDM) as it's the simplest possible
implementation of finite difference techniques for pricing options. We are now ready
to follow the next phases to apply the FDM, which are as follows:

1.	 First, discretize the domain.
Perform this step both in space and time dimensions with time steps .

2.	 Now approximate each of the derivatives with finite differences.
Just as we have shown in the preceding section, we will apply the principle
of transforming the continuous derivatives of the PDE into a finite
approximation. This finite approximation will lead to algebraic equations.
In literature, this set of equations is called a stencil.

3.	 Next collocate the stencil to all the nodes of the domain.
We now apply the stencil to all the nodes in the domain with the exception of
the nodes that represent the initial and boundary conditions. For these nodes,
we know the value is a priori, and, hence, it does not need to be computed.

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[48]

4.	 Iterate the solution in time with the stencil until we cover the full domain.
In explicit FDM, you simply advance and compute the values for the
unknown function u. Note that in other forms of FDM (such as implicit
FDM), we need to solve a system of equations via a matrix problem. Please
refer to (Wilmott et al. 1995) for further details on implicit methods.

Example of the FD method
Consider the example where we would like to price a six-month European Call
option on Barclays equity (BARC.L). The current equity price of BARC is £75,
with a volatility of 30 percent p.a. and a strike of £75. We assume the stock pays
no dividends. The current risk-free rate is 5 percent pa. How do we proceed to
solve this problem using the FDM?

We know that equity financial derivatives satisfy the Black-Scholes PDE when the
stock is modelled using GBM. So we solve the heat diffusion equation we described
in the previous section. As we did earlier, we apply the following four phases to
solve our FDM problem:

1.	 First discretize the domain.
We divide the domain into N space divisions dS and M time divisions dt,
thus N=5 and M=4. We first apply these values both in space and time
dimensions with time steps .
Thus, we obtain six points in time as follows:

Five points in space is shown as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[49]

2.	 Now approximate each of the derivatives with finite differences as follows.

In the preceding equation, .

3.	 Collocate the stencil to all the nodes of the domain.
The following is the initial condition:

Alternatively, the following is the condition with numerical values:

In the preceding equation, .
The following is the final boundary condition:

 and .

4.	 Iterate the solution in time with the stencil until we cover the full domain.

The following are the internal nodes:

www.it-ebooks.info

http://www.it-ebooks.info/

Numerical Methods

[50]

We can arrange the numerical results from our algorithm as shown in the table
in the following screenshot, using the transformed variables (upper table) or the
original variables (lower table), where we can find that for S=75 and t=0, the option
price is £4,20:

Example of Finite Difference pricing.

Summary
In this chapter, we reviewed the basics of the three key numerical methods used to
price financial derivatives today. For each of them, we have provided an algorithm
and a numerical example. Further, more advanced features of these methods can
be found in excellent textbooks by (Glasserman 2003), (Kloeden and Platen 1992),
and (Wilmott et al. 1995) as mentioned in all the previously discussed sections.

Not all methods are applicable in all situations, just like the tools in a toolbox.
Some methods are more effective to solve some specific problems. For example,
with a binomial tree, it is simple to evaluate American options also, while for
Monte Carlo, it is not so straightforward. Monte Carlo is more powerful in
high-dimensional problems, while finite differences can be used effectively
for low-dimensional problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++
In the previous two chapters, we described the key mathematical models used to
simulate the behavior of the underlying assets of financial derivatives (Chapter 2,
Mathematical Models) and the main numerical methods used to price them (Chapter 3,
Numerical Methods).

In this chapter, we apply these ingredients to the pricing of equity derivatives.
We consider two examples: the pricing of a plain vanilla European Call option
(basic example) and the pricing of an equity basket on the maximum of two assets
(advanced example). We provide the full working C++ implementation for both.
Note that if you are new to OOP, it is suggested that you first study the
implementation in C followed by the implementation in C++, available in the
code bundle of the chapter.

Basic example – European Call
In this first example, we consider the pricing of a plain vanilla European Call
option. This example is exceedingly simple but crucial; it will serve as the
building block for the rest of the option pricing problems to be solved with the
Monte Carlo simulation.

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++

[52]

The full characteristics of the contract, the choice of the mathematical model, and its
numerical method are shown below in the Bento Box template:

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

N
U

M
 M

ETH
O

D
2

3

The , being aunderlying
stock, can be described
using Geometric Brownian
Motion (GBM):

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

STEP 1: INPUT PARAMETERS
STEP 2: SIMULATIONS LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for 1=1:N

*Compute GBM formula at each timestep
end
STEP 4: COMPUTE PAYOFF

end
STEP 5: COMPUTE DISCOUNTED EXPECTED PAYOFF
STEP 6: OUTPUT PREMIUM VALUE

AL
G

O
R

IT
H

M
D

ER
IV

AT
IV

E
C

O
N

TR
AC

T
1

4

European Call option
Barclays Bank PLC stock
Counterparties are A and B.
Underlying is Barclays stock.
At t=0, A pays B a .premium
At maturity (T=1 year), A will
have the right (but not the
obligation) to buy the
underlying from B for the
strike price K. The payoff at
maturity H is:

Bento Box template for basic example: European Call

Our objective is to calculate the premium of this financial derivative. We proceed
by completing the contents of the Bento Box in clockwise sense, starting from the
top-left corner. We first fill all the data of the contract, in particular the payoff
function, which for a simple European Call is as follows:

() max(,0)T TH S S K= −

Secondly, we ought to select the mathematical model for the underlying, which in
the case of equities is GBM. Third, we select the numerical method to be used as
Monte Carlo simulation. Fourth, we construct the algorithm that will integrate
these calculations as a series of calculation steps, which will serve us as blueprint
for implementing it in C++.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

The algorithm is shown in box 4 of the Bento Box template. The implementation
of the algorithm in C++ is shown in code snippets 1, 2, and 3. Code snippet 1
(maineq1.cpp) is the pricing algorithm proper, while code snippets 2 and 3 are
auxiliary functions. The algorithm is composed of six steps, which take us from
the input parameters (STEP 1) to the output of the premium value (STEP 6).

An important feature of this algorithm is the function in code snippet 2 (random.
cpp). This implements the Box-Muller method to obtain random samples from
the standard normal (Gaussian) distribution that are required for the GBM. Code
snippet 3 (random.h) is simply the header file of code snippet 2 (random.cpp). The
Box-Muller method takes two independent samples from a uniform distribution
and transforms them into a single sample from a Gaussian distribution; this value
needs to be assigned to the variable epsilon in the code. Certainly, a more efficient
implementation is possible. The Box-Muller method in fact transforms a couple of
uniform variables into a couple of normal variables. It would be better to also use
the second normal sample, generated in the process, in order to be computationally
more effective. Please refer to the book website for details of this more efficient
implementation and to the original paper for further details (A Note on the Generation
of Random Normal Deviates).

As part of the input parameters, we ought to define N and M. Here N represents
the number of time steps to be used in the GBM calculation, while M represents
the number of Monte Carlo simulations to be used. In our example, we consider
the pricing of a European Call option on Barclays stock (BARC.L), whose spot is
£100, strike £100, risk-free interest rate 5 percent p.a., an annualized volatility of 10
percent, and a maturity of one year. We use N=500 and M=10,000. In my computer,
the option premium is £6.81 with an execution time of 1.34 seconds. The value of
the premium and the execution time will vary from computer to computer.

Note that this code can be easily modified to price other payoffs by simply changing
STEP 4 in the algorithm. In terms of a C++ implementation, this concept can be
incorporated using a class to define the payoff. Also, STEP 4 can be slightly modified
to include an estimate of the accuracy in the Monte Carlo approximation. Please
refer to the website for downloadable implementations containing these features.
An excellent textbook describing this example is An Introduction to Financial Option
Valuation: Mathematics, Stochastics and Computation.

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++

[54]

Code 1 – EQ1 – Monte Carlo European Call

The following is the code snippet for EQ1_main.cpp file:

// maineq1.cpp
// requires random.cpp
#include "random.h"
#include <iostream>
#include <cmath>
#include <algorithm>

using namespace std;
int main()
{
 cout << "\n *** START EQ1: Monte Carlo European Call *** \n";
 // STEP 1: INPUT PARAMETERS
 double T=1; // maturity
 double K=100; // strike
 double S0=100; // spot
 double sigma=0.10; // volatility
 double r=0.05; // interest rate
 int N=500; // number of steps
 int M=10000; // number of simulations
 double S[N+1];
 double sumpayoff=0;
 double premium=0;
 double dt = T / N;

 // STEP 2: MAIN SIMULATION LOOP
 for (int j=0; j < M; j++)
 {
 S[0]=S0; // initialize each path for simulation

 // STEP 3: TIME INTEGRATION LOOP
 for (int i=0; i < N; i++)
 {
 double epsilon = SampleBoxMuller(); // get Gaussian draw
 S[i+1] = S[i]*(1+r*dt+sigma*sqrt(dt)*epsilon);
 }

 // STEP 4: COMPUTE PAYOFF
 sumpayoff += max(S[N]-K,0.0); // compute and ad payoff
 }

 // STEP 5: COMPUTE DISCOUNTED EXPECTED PAYOFF

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

 premium = exp(-r*T)*(sumpayoff / M);

 // STEP 6: OUTPUT RESULTS
 cout <<"premium = " << premium << "\n";
 cout << "\n *** END EQ1: Monte Carlo single asset *** \n";

 return 0;
}

Code 2 – random.cpp file

The following is the code snippet for random.cpp file:

// random.cpp
// Computing Gaussian deviates using Box-Muller method

#include "Random.h"
#include <cstdlib>
#include <cmath>
using namespace std;

double SampleBoxMuller()
{
 double result;
 double x;
 double y;

 double xysquare;
 do
 {
 x = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
 y = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
 xysquare = x*x + y*y;
 }
 while
 (xysquare >= 1.0);
 result = x*sqrt(-2*log(xysquare)/xysquare);
 return result;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++

[56]

Code 3 – random.h header file

The following is the code for random.h file:

// random.h
double SampleBoxMuller();

After compiling and running the code, you should obtain the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Advanced example – equity basket
In this second, more advanced example, we will illustrate the implementation of
the pricing of an equity basket option, with the payoff being the largest between
two asset values at maturity. The details of the approach are shown in the following
Bento Box template:

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.it-ebooks.info/

Chapter 4

[57]

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

N
U

M
 M

ETH
O

D

2

3

STEP 1: INPUT PARAMETERS
STEP 2: SIMULATIONS LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for 1=1:N

*Compute GBM for asset 1 at each timestep
*Compute GBM for asset 2 at each timestep

end
STEP 4: COMPUTE BASKET PAYOFF

end
STEP 5: COMPUTE DISCOUNTED EXPECTED BASKET PAYOFF
STEP 6: OUTPUT BASKET PREMIUM VALUE

AL
G

O
R

IT
H

M
D

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1

4

Equity Basket option on the
maximum of two assets.
Counterparties are A and B.
Underlying is Barclays
stock and Rolls Royce stock.
At t=0, A pays B a .premium
At maturity (T=1 year), A will
receive from B the payoff H: i

The , beingunderlyings
a stocks, can be described
using GBM process each:

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

Bento Box template for advanced example: equity basket

Our aim is to compute the option premium as before.

The details of the contract are in Box 1, particularly the payoff function is as follows:

(1 , 2) max(1 , 2)T T T TH S S S S=

Note that this being a basket option with two assets, we will now need two GBM
processes to describe the evolution of the underlying. This is reflected in STEP 3 that
has been updated in the algorithm in box 4. We can then use the same MC numerical
method to compute the expectation of the payoffs.

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++

[58]

The C++ implementation of this algorithm can be found in code snippet 4. There are
only two slight differences with Code 1: first, regarding the input parameters (STEP 1)
and second regarding the calculation of the GBM (STEP 4). We now need to specify
the parameters for both processes, including their spot prices and volatilities. As we
need to compute two correlated stochastic processes, the two Gaussian samples that
are required are now computed as follows:

1 1

2
1 1 21

ε ε

ε ρε ρ ε

=

= + −

In the preceding equation, 1 2,ε ε are two independent samples from the Gaussian
distribution, while 1 2,ε ε are the two correlated samples that incorporate the effect
of the correlation ρ . Epsilon_1 and epsilon_2 remain normal variables, as they have
unitary variance and the expected value of their product 1 2,ε ε is equal to ρ .

As we did earlier, we can easily modify the payoff in STEP 5 and incorporate other
more complicated payoffs.

For example, consider the price of the following basket option:

We have two assets Barclays PLC (BARC.L) and Rolls Royce (RR.L). We want to price
an option that pays the maximum of the value of these two assets at maturity, which
is one year. The current spot price of Barclays is £120 and that of Rolls Royce is £100.
Their annualized volatilities are 10 percent and 15 percent respectively. We choose
to discretize time in 300 time steps and use 10,000 simulations. The premium for this
option under these conditions is £120.48 with an execution time of 2.22 seconds.

For further details about basket equity derivatives, you are invited to consult Paul
Wilmott on Quantitative Finance, 2nd Edition.

Code 4 – EQ2 – Monte Carlo equity basket

The following is the code snippet for EQ2_main.cpp file:

// maineq2.cpp
// requires random.cpp
#include "random.h"
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

{
 cout << "\n *** START EQ2: Monte Carlo equity basket *** \n";
 // STEP 1: INPUT PARAMETERS
 double T=1; // maturity
 double r=0.05; // interest rate
 double S10=120; // spot equity 1
 double S20=100; // spot equity 2
 double sigma1=0.10; // volatility
 double sigma2=0.15; // volatility
 double rho=0.5; // correlation
 int N=300; // number of steps
 int M=10000; // number of simulations
 double S1[N+1];
 double S2[N+1];
 double sumpayoff=0;
 double premium=0;
 double dt = T / N;

 // STEP 2: MAIN SIMULATION LOOP
 for (int j=0; j < M; j++)
 {
 S1[0]=S10;
 S2[0]=S20;
 // STEP 3: TIME INTEGRATION LOOP
 for (int i=0; i < N; i++)
 {
 double epsilon1 = SampleBoxMuller();
 double epsilon2 = SampleBoxMuller();
 S1[i+1] = S1[i]*(1+r*dt+sigma1*sqrt(dt)*epsilon1);
 epsilon2 = epsilon1*rho+sqrt(1-rho*rho)*epsilon2;
 S2[i+1]=S2[i]*(1+r*dt+sigma2*sqrt(dt)*epsilon2);
 }
 // STEP 4: TIME INTEGRATION LOOP
 sumpayoff += max(S1[N],S2[N]);
 }
 // STEP 5: COMPUTE DISCOUNTED EXPECTED PAYOFF
 premium = exp(-r*T)*(sumpayoff / M);

 // STEP 6: OUTPUT RESULTS
 cout <<"premium = " << premium << "\n";
 cout << "\n *** END EQ2: Monte Carlo equity basket *** \n";
 return 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Equity Derivatives in C++

[60]

After compiling and running the code, you should obtain the following screenshot:

Summary
We have solved two pricing problems in equity derivatives. We have seen
a very simple example (what we called the basic) and a more complex one,
which included an equity basket option. For each, we have provided the
complete C++ implementation.

We will now proceed to the next asset class, foreign exchange derivatives,
where we will also solve two problems, a simple and an advanced one,
following the the Bento Box template approach in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange
Derivatives with C++

We now move to the world of currency or foreign exchange derivatives and how
to price them using C++. We consider two examples: the pricing of a European
Call option (basic example) and the pricing of an up-and-out barrier call option
(advanced example). We provide the full-working C++ implementation for both.
We follow the model for the evolution of foreign exchange currencies as found in
"Foreign Currency Option Values". A simpler C implementation (without the OO
features) can be found in the code bundle of this chapter. If you are new to OOP,
it is recommended that you first study the implementation in C followed by the
implementation in C++.

Basic example – European FX Call (FX1)
In this example, we demonstrate the pricing of a plain vanilla European Call
option on foreign exchange. Our aim here is to calculate the premium of this
financial derivative.

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[62]

The full details of the contract, including the choice of mathematical model and its
numerical method, are shown in the following Bento Box template for European Call
FX option (FX1).

FOREX European Call option on
the exchange rate EUR/USD.
Counterparties are A (EUR
party) and B (USD party).
Underlying is EUR/USD rate. At
t=0, A pays B a . Atpremium
maturity (T=1 year), A will have
the option to buy an amount N
of currency USD from B for the
strike rate K. The payoff at
maturity H is:

The , being a forexunderlying
rate, can be described using
the Garman-Kohlhagen model:

STEP 1: INPUT PARAMETERS
STEP 2: SETUP MESH
STEP 3: SETUP INITIAL CONDITION
STEP 4: SETUP BOUNDARY CONDITIONS
STEP 5: COMPUTE FORWARD DIFFERENCES

for j=0 to M-2
for i=1 to N-2

*compute FDM stencil for each internal node
end I

end j
STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
E
L

AL
G

O
R

IT
H

M
N

U
M

 M
E
TH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

Use explicit Finite Difference
method to compute the value
of the option surface and thus
the premium at t=O.

Bento Box template for European Call FX option (FX1)

We proceed by completing the contents of the Bento Box in clockwise sense, starting
from the top-left corner. The following are the steps to do so:

1.	 Derivative contract: We first fill all the data of the contract, in particular the
payoff function, which in our case is as follows:

Equation 1

2.	 Math model: We ought to select the mathematical model for the underlying,
which in the case of currencies is the Garman-Kohlhagen model.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

3.	 Numerical method: We select the numerical method to be used and in this
case, we choose the finite difference method.

4.	 Algorithm: We construct the algorithm that will put together these
calculations as a series of calculation steps, which will serve us as blueprint
for implementing it in C++.

Note that a finite difference algorithm, in contrast to a Monte Carlo simulation, does
not require a random number generator to operate. All computations are deterministic.

An important feature of finite difference methods is that they require the definition
of a mesh. This mesh is essentially the collection of coordinates in which the Partial
Differential Equation (PDE) will be approximated. In the case of equities, the
Black-Scholes PDE, for example, is defined in terms of two independent variables:
the stock price S and time t. In the case of currencies, the Garman-Kohlhagen PDE
is defined in terms of two variables: the exchange rate X and time t. The solution
domain is therefore the area defined by all the possible values that the pairs X and
t can take in the X and t plane. For example, if we are considering a European Call
currency option with strike 1.0 EUR/GBP, spot price 1.0 EUR/GBP and a maturity of
one year, our solution domain gamma could be defined as the range of values for X
between 0.5 and 1.5, and the range of values for t between 0 and 1. In mathematical
terms, this can be represented as follows:

Equation 2

This rectangular domain then needs to be divided or discretized. This means that
we have to transform it from a continuous into a discrete domain. Usually in finite
differences, what we do is divide it into a number N of equidistant steps in the X
axis and into a number M of equidistant steps in the t axis. The result is a grid that
resembles a mesh and thus the origin of the name.

Note that we present the implementation of the explicit finite difference method, as
described in Chapter 3, Numerical Methods, using a transformation of variables. This is
done to transform the original PDE into an equivalent but simplified dimensionless
PDE, which describes the diffusion of heat. This dimensionless version of the PDE is
easier to solve using FDM.

Because of this transformation, the solution domain is not changed into two
new variables x and . And so the PDE is solved in the domain defined by the
following equation:

Equation 3

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[64]

We consider an example of a European Call option on currency with strike 0.75
EUR/USD with a spot price of 0.75 EUR/USD. The option has six months to
maturity. We divide the x axis in N=5 steps and the tau axis in M=6 steps. The
premium under these conditions is 4.36 EUR/USD.

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 9 – FX1_main.cpp (finite difference FX European Call)

The following is the code snippet for FX1_main.cpp file:

// FX1_main.cpp
// requires FX_source.cpp, FX_print.cpp

#include "FX.h"

using namespace std;

int main()
{
 cout << "\n *** START FX1: Finite Difference European Call ***
 \n\n";

 // STEP 1: INPUT PARAMETERS
 auto T = 0.5; // maturity
 auto K = 75.0; // strike
 auto S0 = 75.0; // spot
 auto sigma = 0.30; // volatility
 auto r = 0.05; // interest rate
 auto dx = 0.5; // space step
 auto dt = 0.1; // time step
 auto N = 5; // number of space steps
 auto M = 6; // number of time steps

 // Construct a FX_EQ1 object from the input parameters:

 FX fx_eq1(T, K, S0, sigma, r, dt, dx, N, M);

 // Ask the object to evaluate the FX data for European Call:

 auto result = fx_eq1.get_data_and_premium();

 // STEP 7: OUTPUT RESULTS

 cout << result;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[65]

 cout << "\n *** END FX1: Finite Difference European Call ***
 \n";

 return 0;
}

Code 10 – FX1_source.cpp (finite difference FX European Call)

The following is the code snippet for FX1_source.cpp file:

// FX1_source.cpp
#include "FX.h"
#include "matrix.h"
#include <algorithm>
using namespace std;

result_data FX::evaluate_data_and_premium() const
{
 double dtau, alpha, k;

 vector<double> t, tau, S, x;

 matrix<double> u, v;

 matrix_resize(u, N, M);

 matrix_resize(v, N, M);

 // Therefore, both the matrices u, v are resized to N by M
 // Now, let us resize the vectors t, tau, S and x:
 t.resize(M);
 tau.resize(M);
 S.resize(N);
 x.resize(N);

 dtau = dt * (0.5*sigma*sigma);
 alpha = dtau / (dx*dx);
 k = r / (0.5*sigma*sigma);
 double xmin = -1;
 double xmax = +1;

 // STEP 2: SETUP MESH (x and tau grids)

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[66]

 for (int i = 0; i < N; i++)
 {
 x[i] = xmin + i*dx;
 S[i] = K*exp(x[i]);
 }

 for (int j = 0; j < M; j++)
 {
 t[j] = j*dt;
 tau[j] = (T - t[j]) / (0.5*sigma*sigma);
 }

 // STEP 3: SETUP INITIAL CONDITION
 for (int i = 0; i < N; i++)
 {
 u[i][0] = max(exp(0.5*(k + 1)*x[i]) - exp(0.5*(k - 1)*x[i]),
 0.0);
 }

 // STEP 4: SETUP BOUNDARY CONDITIONS
 for (int j = 1; j < M; j++)
 {
 u[0][j] = 0.0;
 u[N - 1][j] = u[N - 1][0];
 }

 // STEP 5: COMPUTE FORWARD DIFFERENCES
 for (int j = 0; j < M - 1; j++)
 {
 for (int i = 1; i < N - 1; i++)
 {
 u[i][j + 1] = alpha*u[i + 1][j] + (1 - 2 * alpha)*u[i][j] +
 alpha*u[i - 1][j];
 }
 }

 // STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES (u and v)
 for (int j = 0; j < M; j++)
 {
 for (int i = 0; i < N; i++)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

 v[i][j] = pow(K, (0.5*(1 + k)))*pow(S[i], (0.5*(1 -
 k)))*exp(1.0 / 8.0*(k + 1)*(k + 1)*sigma*sigma*(T -
 t[i]))*u[i][j];
 }
 }

 result_data result(alpha, dtau, k, x, S, t, tau, u, v);

 return result;

}

For code snippet 11 FX.h, code snippet 12 FX_print.cpp,
and code snippet 13 matrix.h, please refer to the code bundle
of the book.

To compute the basic example (FX1), you need to compile and run code
snippets 9,10,11,12, and 13 (which include a matrix and printing utility);
afterwards, you should obtain the following screenshot:

Basic example (FX1): FX European Call screenshot with results

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[68]

Advanced example – FX barrier option
(FX2)
In this second example, we consider the pricing of an exotic option: an up-and-out
barrier with a call payoff. The details of the approach are shown in the following
Bento Box template for FX Barrier Up and Out option (FX2):

FOREX Up-and-Out Barrier Call
option on the exchange rate
EUR/USD. Counterparties are A
(EUR party) and B (USD party).
Underlying is EUR/USD rate. At
t=0, A pays B a . Atpremium
maturity (T=1 year), A will have
the option to buy an amount N
of currency USD from B for the
strike rate K. The payoff at
maturity H is:

The , being a forexunderlying
rate, can be described using
the Garman-Kohlhagen model:

STEP 1: INPUT PARAMETERS
STEP 2: SETUP MESH
STEP 3: SETUP INITIAL CONDITION
STEP 4: SETUP BOUNDARY CONDITIONS
STEP 5: COMPUTE FORWARD DIFFERENCES

for j=0 to M-2
for i=1 to N-2

*compute FDM stencil for each internal node
end I

end j
STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
E
L

AL
G

O
R

IT
H

M
N

U
M

 M
E
TH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

Use explicit Finite Difference
method to compute the value
of the option surface and thus
the premium at t=O.

Bento Box template for FX Barrier Up and Out option (FX2)

Note that there is a great advantage of using Finite Difference Methodology (FDM)
with respect to Monte Carlo (MC) in pricing a continuously monitored barrier option.
This is because MC is rather complex to incorporate the continuously monitored
features, leaving us with little choice but to increase the number of fixing/observation
points in the MC program. However, this will significantly increase the computation
time in MC. We do not need to do this in FDM, making it more efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[69]

Our target is to compute the option premium as we did earlier.

An up-and-out barrier is just like a standard European Call option but with one
crucial difference—if the underlying crosses the limiting upper barrier, the option
has a value of zero. The pricing algorithm and its implementation are thus almost
identical, but with the difference that the upper boundary condition will now set
the value to zero.

Barrier options are useful in finance because their premium is smaller than those
of standard European options. They are cheaper to the investor, because he/she
is taking the risk of not exercising it if the level of the underlying is too high
(up-and-out barriers) or too low (down-and-out barriers).

We consider the same example as we did earlier, but with a barrier B = 1.5
EUR/USD. The premium for this option under these conditions is 4.11 EUR/USD
with an execution time of 2.22 seconds.

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 14 – FX2_main.cpp (FDM FX barrier option)

The following is the code snippet for FX2_main.cpp file:

// FX2_main.cpp
// requires FX2_source.cpp, FX_print.cpp

#include "FX.h"
#include <iostream>

using namespace std;

int main()
{
 cout << "\n *** START FX2: Finite Difference"
 << " European Up-and-Out Barrier Call *** \n\n";

 // STEP 1: INPUT PARAMETERS
 auto T = 0.5; // maturity
 auto K = 75.0; // strike
 auto S0 = 75.0; // spot
 auto sigma = 0.30; // volatility
 auto r = 0.05; // interest rate
 auto dx = 0.5; // space step
 auto dt = 0.1; // time step
 auto N = 5; // number of space steps

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[70]

 auto M = 6; // number of time steps

 // Construct a FX object from the input parameters:

 FX fx_eq2(T, K, S0, sigma, r, dt, dx, N, M);

 // Ask the object to evaluate the FX data
 // for European Up-and_Out Barrier Call:

 auto result = fx_eq2.get_data_and_premium();

 // STEP 7: OUTPUT RESULTS
 cout << result;

 cout << "\n *** END FX2: Finite Difference"
 << " European Up-and-Out Barrier Call *** \n";

 return 0;
}

Code 15 – FX2_source.cpp (FDM FX barrier option)

The following is the code snippet for FX2_source.cpp file:

// FX2_source.cpp

#include "FX.h"
#include "matrix.h"
#include <algorithm>

using namespace std;

result_data FX::evaluate_data_and_premium() const
{
 double dtau, alpha, k
 vector<double> t, tau, S, x
 matrix<double> u, v
 auto resz = [this](matrix<double>& u, int N, int M) {

 // to make number of rows =
 u.resize(N);

 // to make number of columns =
 for (auto& row : u)
 row.resize(M);
 };

 resz(u, N, M)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[71]

 resz(v, N, M);

 // Therefore, both the matrices u, v are resized to N by M
 // Now, let us resize the vectors t, tau, S and x:
 t.resize(M);
 tau.resize(M);
 S.resize(N);
 x.resize(N);

 dtau = dt * (0.5*sigma*sigma);
 alpha = dtau / (dx*dx);
 k = r / (0.5*sigma*sigma);

 double xmin = -1;
 double xmax = +1;

 // STEP 2: SETUP MESH (x and tau grids)
 for (int i = 0; i < N; i++)
 {
 x[i] = xmin + i*dx;
 S[i] = K*exp(x[i]);
 }

 for (int j = 0; j < M; j++)
 {
 t[j] = j*dt;
 tau[j] = (T - t[j]) / (0.5*sigma*sigma);
 }

 // STEP 3: SETUP INITIAL CONDITION
 for (int i = 0; i < N; i++)
 {
 u[i][0] = max(exp(0.5*(k + 1)*x[i]) - exp(0.5*(k - 1)*x[i]),
 0.0);
 }

 // STEP 4: SETUP BOUNDARY CONDITIONS
 for (int j = 1; j < M; j++)
 {
 u[0][j] = 0.0;
 u[N - 1][j] = 0.0;
 }

 // STEP 5: COMPUTE FORWARD DIFFERENCES
 for (int j = 0; j < M - 1; j++)
 {
 for (int i = 1; i < N - 1; i++)
 {

www.it-ebooks.info

http://www.it-ebooks.info/

Foreign Exchange Derivatives with C++

[72]

 u[i][j + 1] = alpha*u[i + 1][j] + (1 - 2 * alpha)*u[i][j] +
 alpha*u[i - 1][j];
 }
 }

 // STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES (u and v)
 for (int j = 0; j < M; j++)
 {
 for (int i = 0; i < N; i++)
 {
 v[i][j] = pow(K, (0.5*(1 + k)))*pow(S[i], (0.5*(1 - k)))
 exp(1.0 / 8.0(k + 1)*(k + 1)*sigma*sigma*(T -
 t[i]))*u[i][j];
 }
 }

 result_data result(alpha, dtau, k, x, S, t, tau, u, v);

 return result;

}

To compute the advanced example (FX2), you need to compile and run code
snippets 14 and 15 plus the previous 11, 12, and 13; afterwards, you should obtain
the following screenshot:

Advanced example (FX2): FX up-and-out barrier call screenshot with results

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[73]

Summary
In this chapter, we have solved two pricing problems in forex derivatives. We have
seen a basic example and a more complex one (plain vanilla) and an advanced
example (exotic) including a barrier option. For each, we have provided the complete
C++ implementation.

We will now proceed to the next asset class and interest rate derivatives.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives
with C++

This chapter illustrates the application of C++ to the pricing of interest rate
derivatives. We will consider two examples: the pricing of a plain vanilla Interest
Rate Swap (IRS) (basic example) and the pricing of a Cap (advanced example).
We provide the full working C++ implementation for both. Both the examples are
solved using one factor Libor Market Model (LMM) and Monte Carlo simulation.
A simpler C implementation (without the OO features) can be found in the
accompanying book website. The LMM is described in "The Market Model of Interest
Rate Dynamics". An excellent description of the Monte Carlo simulation can be
found in "Efficient Methods for Valuing Interest Rate Derivatives".

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[76]

Basic example – plain vanilla IRS (IR1)
In this example, we will demonstrate the pricing of a plain vanilla IRS. The full
details of the contract, including the choice of the mathematical model and its
numerical method, are shown in the following Bento Box template:

THE BENTO BOX TEMPLATE

M
A
T
H

M
O

D
E
L

A
L
G

O
R

IT
H

M
N

U
M

M
E
T
H

O
DD

E
R

IV
A
T
IV

E
C

O
N

T
R

A
C

T

1 2

3

4

Interest Rate Swap (plain

vanilla)

Contract duration 1 year.

Payments every 3M.

Notional 1 million EUR. Fixed

rate 4%. Floating rate

EURIBOR3M. Flat term

structure at 5%. Volatility

15%

According to the

can be modelled using

Geometric Brownian Motion

(GBM):

Libor

Market Model the floating

rates

Use as a

method for the computation of

the value of the forward rates

using the Pelsser Tableau.

Monte Carlo Simulation

STEP 1: INPUT PARAMETERS

STEP 2: INITIALIZE SPOT RATES

STEP 3: BROWNIAN MOTION INCREMENTS

STEP 4: COMPUTE FORWARD RATES

STEP 5: COMPUTE DISCOUNT FACTORS

STEP 6: COMPUTE EFFECTIVE FV RATES

STEP 7: COMPUTE NUMERAIRE REBASED PAYMENT

STEP 8: COMPUTE IRS NPV

STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF

STEAP 10: OUTPUT RESULTS

for i=1:M (SIMULATIONS)

end

Bento Box template for basic example (IR1)

Our aim here is to calculate the net present value of this IRS, in particular a paying
fixed-for-floating IRS. In this contract, the holder pays the fixed rate and receives the
floating rate at regular intervals.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[77]

We proceed by completing the contents of the Bento Box in clockwise sense, starting
from the top-left corner. First, we will fill all the data of the contract, in particular the
payoff function, which in our case is as follows:

Equation 1

The present value of the IRS is the sum of the discounted future payments of the IRS.
Being a paying IRS, we pay the fixed rate K and we receive the future floating rate L.
This rate is fixed (that is, determined) at the beginning of the period and it runs up to
the maturity date (when the payment is made). stands for the respective discount
factors. Each payment is multiplied by the notional and day count fraction .

Second, we ought to select the mathematical model for the underlying. In the case
of interest rates, we can choose between short rate models (such as the Vasicek and
the Hull and White) or the market models (such as LMM). In this chapter, we select
the LMM to solve these problems. Third, we select the numerical method to be
used and in this case, we choose the Monte Carlo method. This method will allow
us to simulate the random behavior of the forward rates. Fourth, we construct the
algorithm that will put together these calculations as a series of calculation steps,
which will serve as a blueprint for implementing it in C++.

There are many variations of the LMM, in terms, the number of rates used
(multifactor), or the underlying used. (The swap LMM uses the swap rate instead of
the forward rate as fundamental unknown.) In this chapter, we will consider only
one factor, (lognormal forward) LMM.

The algorithm is shown in box 4 of the Bento Box template. The implementation of the
algorithm in C++ is shown in code snippets 16, 17, and 18. Code snippet 16 is the main
code block, code snippet 17 is its associated source, while code snippet 18 contains
the header file. The algorithm is composed of 10 steps, which take us from the input
parameters (STEP 1) to the output of the present value of the IRS (STEP 10).

Note that Monte Carlo simulation requires a random number generator to operate.
We will take advantage of the random number generator, which we developed in
Chapter 3, Numerical Methods, to price equity derivatives (the Box-Muller algorithm).

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[78]

We consider an example of a plain vanilla IRS on a notional of one million EUR.
The length of the contract is one year and the frequency of payments is every three
months. The floating rates are therefore indexed to EURIBOR3M. The fixed rate is 4
percent p.a.

We use LMM with Monte Carlo simulation with 10,000 simulations. We assume an
initial flat term structure of interest rates at 5 percent p.a. We also assume a volatility
of 15 percent for the forward rates (this value is usually calibrated from observed
swaptions in the market).

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 16 – IR1_main.cpp (IRS with Monte Carlo LMM)

The following is the code snippet for IR1_main.cpp file:

// IR1_main.cpp
// requires random.cpp IR1_source.cpp

#include "IR.h"
#include <iostream>
using namespace std;

int main()
{

 cout << "\n *** START IR1: IRS Monte Carlo Libor Market Model 1F
 * ** \n\n";

 // Plain Vanilla IRS, pays fixed, receives floating
 // freq payments every 3M, maturity 1 year

 // STEP 1: INPUT PARAMETERS
 double notional = 1000000; // notional
 double K = 0.04; // fixed rate IRS
 double alpha = 0.25; // daycount factor
 double sigma = 0.15; // fwd rates volatility
 double dT = 0.25;
 int N = 3; // number forward rates
 int M = 1000; // number of simulations

 // Construct a IR object from the input parameters:

 IR ir1(notional, K, alpha, sigma, dT, N, M);

 // Obtain the value of premium from member function
 "get_premium()":

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[79]

 auto results = ir1.get_simulation_data();

 // STEP 10: OUTPUT RESULTS
 auto sz = results.datapoints.size();
 for (decltype(sz) nsim = 0; nsim < sz; ++nsim)
 {
 cout << "simIRS[" << nsim << "] = " <<
 results.datapoints[nsim] << endl;
 }

 cout << "\n *** IRS PV = " << results.Value << endl;
 cout << "\n *** END IR1: IRS Monte Carlo Libor Market Model 1F
 *** \n";

 return 0;
}

Code 17 – IR1_source.cpp (IRS with Monte Carlo LMM)

The following is the code snippet for IR1_source.cpp file:

// IR1_source.cpp

#include "IR.h"
#include "random.h"
#include "matrix.h"
#include <algorithm>
#include <iostream>

using namespace std;

IR_results IR::run_LIBOR_simulations() const
{
 matrix<double> L; // forward rates
 matrix_resize(L, N + 1, N + 1);
 matrix<double> D; // discount factors
 matrix_resize(D, N + 2, N + 2);
 vector<double> dW(N + 1); // discount factors
 vector<double> FV(N + 2); // future value payment
 vector<double> FVprime(N + 2); // numeraire-rebased FV payment
 vector<double> V(M); // simulation payoff

 // Composing the SampleBoxMuller class:

 SampleBoxMuller normal;

 double df_prod = 1.0;
 double drift_sum = 0.0;

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[80]

 double sumPV = 0.0;
 double PV = 0.0;

 // STEP 2: INITIALISE SPOT RATES
 L[0][0] = 0.05;
 L[1][0] = 0.05;
 L[2][0] = 0.05;
 L[3][0] = 0.05;

 // start main MC loop

 for (int nsim = 0; nsim < M; ++nsim)
 {

 // STEP 3: BROWNIAN MOTION INCREMENTS
 dW[1] = sqrt(dT)*normal();
 dW[2] = sqrt(dT)*normal();
 dW[3] = sqrt(dT)*normal();

 // STEP 4: COMPUTE FORWARD RATES TABLEAU
 for (int n = 0; n < N; ++n)
 {
 for (int i = n + 1; i < N + 1; ++i)
 {
 drift_sum = 0.0;
 for (int k = i + 1; k < N + 1; ++k)
 {
 drift_sum += (alpha*sigma*L[k][n]) / (1 +
 alpha*L[k][n]);
 }
 L[i][n + 1] = L[i][n] * exp((-drift_sum*sigma -
 0.5*sigma*sigma)*dT + sigma*dW[n + 1]); // cout <<"L: i=
 " << i <<", n+1 = " << n+1 " << L[i][n+1] << "\n";
 }
 }
 // STEP 5: COMPUTE DISCOUNT RATES TABLEAU
 for (int n = 0; n < N + 1; ++n)
 {
 for (int i = n + 1; i < N + 2; ++i)
 {
 df_prod = 1.0;
 for (int k = n; k < i; k++)
 {
 df_prod *= 1 / (1 + alpha*L[k][n]);
 }
 D[i][n] = df_prod;
 // cout <<"D: i = " << i <<", n = " << n <<", D[i][n] = "
 << D[i][n] << "\n";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[81]

 }
 }

 // STEP 6: COMPUTE EFFECTIVE FV PAYMENTS
 FV[1] = notional*alpha*(L[0][0] - K);
 FV[2] = notional*alpha*(L[1][1] - K);
 FV[3] = notional*alpha*(L[2][2] - K);
 FV[4] = notional*alpha*(L[3][3] - K);

 // STEP 7: COMPUTE NUMERAIRE-REBASED PAYMENT
 FVprime[1] = FV[1] * D[1][0] / D[4][0];
 FVprime[2] = FV[2] * D[2][1] / D[4][1];
 FVprime[3] = FV[3] * D[3][2] / D[4][2];
 FVprime[4] = FV[4] * D[4][3] / D[4][3];

 // STEP 8: COMPUTE IRS NPV

 V[nsim] = FVprime[1] * D[1][0] + FVprime[2] * D[2][0] +
 FVprime[3] * D[3][0] + FVprime[4] * D[4][0];
 }
 // end main MC loop

 // STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF
 sumPV = 0.0;
 for (int nsim = 0; nsim < M; nsim++)
 {
 sumPV += V[nsim];
 }

 PV = sumPV / M;

 IR_results results(V, PV);

 return results;
}

For code snippet 18 IR.h, please refer to the code in
the code bundle.

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[82]

To compute the basic example (IR1), you will have to compile and run code snippets
16, 17, 18, 4, 5, and 13 (which include the header, matrix, and random functions).
Afterwards, you should obtain the following screen:

Basic example (IR1) screenshot with results

Advanced example – IRS with Cap (IR2)
In this second example, we consider the pricing of an IRS with a cap The details of
the approach are shown in the following Bento Box template advanced example:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[83]

THE BENTO BOX TEMPLATE

M
A
T
H

M
O

D
E
L

A
L
G

O
R

IT
H

M
N

U
M

M
E
T
H

O
DD

E
R

IV
A
T
IV

E
C

O
N

T
R

A
C

T

1 2

3

4

According to the

can be modelled using

Geometric Brownian Motion

(GBM):

Libor

Market Model the floating

rates

Use as a

method for the computation of

the value of the forward rates

using the Pelsser Tableau.

Monte Carlo Simulation

STEP 1: INPUT PARAMETERS

STEP 2: INITIALIZE SPOT RATES

STEP 3: BROWNIAN MOTION INCREMENTS

STEP 4: COMPUTE FORWARD RATES

STEP 5: COMPUTE DISCOUNT FACTORS

STEP 6: COMPUTE EFFECTIVE FV RATES

STEP 7: COMPUTE NUMERAIRE REBASED PAYMENT

STEP 8: COMPUTE CAP PAYOFF

STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF

STEAP 10: OUTPUT RESULTS

for i=1:M (SIMULATIONS)

end

IRS with CAP

Contract duration 2.5 years.

Payments every 6M.

Notional 1 EUR. Strike 5%

Floating rate EURIBOR6M.

Flat term structure at 5%.

Volatility

Bento Box template for advanced example (IR2)

Our target is to compute the net present value of the swap as we did earlier.

An IRS cap is just like a standard IRS but with one key difference—at each payment
date, we compute the maximum between (a) the difference between the floating rate
and the strike and (b) zero. With this difference, we compute the value of a caplet;
the cap is simply the sum of the caplets contained in the IRS.

The algorithm is shown in box 4 of the Bento Box template. The implementation of
the algorithm in C++ is shown in code snippets 19 and 20. Code snippet 19 is the
main code block, while code snippet 20 is its associated source.

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[84]

Code 19 – IR2_main.cpp (cap with Monte Carlo LMM)

The following is the code snippet for IR2_main.cpp file:

// IR2_main.cpp
// requires random.cpp IR2_source.cpp

#include "IR.h"
#include <iostream>
using namespace std;

int main()
{
 std::cout << "\n *** START IR2: CAP Monte Carlo Libor Market
 Model 1F * ** \n\n";

 // STEP 1: INPUT PARAMETERS
 double K = 0.05; // strike caplet
 double alpha = 0.5; // daycount factor
 double sigma = 0.15; // fwd rates volatility
 double dT = 0.5;
 int N = 4; // number forward rates
 int M = 1000; // number of simulations

 // Construct a IR object from the input parameters:
 IR ir2(K, alpha, sigma, dT, N, M);

 // Obtain the value of premium from member function
 "get_premium()":

 auto results = ir2.get_simulation_data();

 // STEP 10: OUTPUT RESULTS
 auto sz = results.datapoints.size();

 for (decltype(sz) nsim = 0; nsim < sz; ++nsim)
 {
 cout << "Vcap[" << nsim << "] = " << results.datapoints[nsim]
 << endl;
 }

 cout << "\n *** IRS cap = " << results.Value << "\n";

 cout << "\n *** END IR2: CAP Monte Carlo Libor Market Model 1F *
 ** \n";

 return 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[85]

Code 20 – IR2_source.cpp (cap with Monte Carlo LMM)

The following is the code snippet for IR2_source.cpp file:

// IR2_source.cpp

#include "IR.h"
#include "random.h"
#include "matrix.h"
#include <algorithm>
#include <iostream>

using namespace std;

IR_results IR::run_LIBOR_simulations() const
{
 matrix<double> L; // forward rates
 matrix_resize(L, N + 1, N + 1);
 matrix<double> D; // discount factors
 matrix_resize(D, N + 2, N + 2);
 vector<double> dW(N + 1); // discount factors
 vector<double> V(N + 2); // caplet payoff
 vector<double> Vprime(N + 2); // numeraire-rebased caplet payoff
 vector<double> Vcap(M); // simulation payoff

 // Composing the SampleBoxMuller class:
 SampleBoxMuller normal;

 double df_prod = 1.0;
 double drift_sum = 0.0;
 double sumcap = 0.0;
 double payoff = 0.0;

 // STEP 2: INITIALISE SPOT RATES
 L[0][0] = 0.05;
 L[1][0] = 0.05;
 L[2][0] = 0.05;
 L[3][0] = 0.05;
 L[4][0] = 0.05;

 // start main MC loop

 for (int nsim = 0; nsim < M; ++nsim)
 {
 // STEP 3: BROWNIAN MOTION INCREMENTS
 dW[1] = sqrt(dT)*(normal());
 dW[2] = sqrt(dT)*(normal());

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[86]

 dW[3] = sqrt(dT)*(normal());
 dW[4] = sqrt(dT)*(normal());

 // STEP 4: COMPUTE FORWARD RATES TABLEAU
 for (int n = 0; n < N; ++n)
 {
 for (int i = n + 1; i < N + 1; ++i)
 {
 drift_sum = 0.0;
 for (int k = i + 1; k < N + 1; ++k)
 {
 drift_sum += (alpha*sigma*L[k][n]) / (1 +
 alpha*L[k][n]);
 }
 L[i][n + 1] = L[i][n] * exp((-drift_sum*sigma -
 0.5*sigma*sigma)*dT
 + sigma*dW[n + 1]);
 // cout <<"L: i = " << i <<", n+1 = " << n+1 <<", = " <<
 L[i][n+1] << "\n";
 }
 }

 // STEP 5: COMPUTE DISCOUNT RATES TABLEAU
 for (int n = 0; n < N + 1; ++n)
 {
 for (int i = n + 1; i < N + 2; ++i)
 {
 df_prod = 1.0;
 for (int k = n; k < i; k++)
 {
 df_prod *= 1 / (1 + alpha*L[k][n]);
 }
 D[i][n] = df_prod;
 // cout <<"D: i = " << i <<", n = " << n <<", D[i][n] = "
 //		 << D[i][n] << "\n";
 }
 }

 // STEP 6: COMPUTE CAPLETS
 double diff;
 diff = L[0][0] - K;
 V[1] = max(diff, 0.0);
 diff = L[1][1] - K;
 V[2] = max(diff, 0.0);
 diff = L[2][2] - K;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[87]

 V[3] = max(diff, 0.0);
 diff = L[3][3] - K;
 V[4] = max(diff, 0.0);
 diff = L[4][4] - K;
 V[5] = max(diff, 0.0);

 // STEP 7: COMPUTE NUMERAIRE-REBASED CAPLETS
 Vprime[1] = V[1] * D[1][0] / D[5][0];
 Vprime[2] = V[2] * D[2][1] / D[5][1];
 Vprime[3] = V[3] * D[3][2] / D[5][2];
 Vprime[4] = V[4] * D[4][3] / D[5][3];
 Vprime[5] = V[5] * D[5][4] / D[5][4];

 // STEP 8: COMPUTE CAP PAYOFF
 Vcap[nsim] = Vprime[1] + Vprime[2] + Vprime[3] + Vprime[4] +
 Vprime[5];
 }
 // end main MC loop

 // STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF
 sumcap = 0.0;

 for (int nsim = 0; nsim < M; ++nsim)
 {
 sumcap += Vcap[nsim];
 }

 payoff = D[N + 1][0] * sumcap / M;

 IR_results results(Vcap, payoff);

 return results;
}

We consider the example of an IRS having a cap with a strike 5 percent and a
maturity of 2.5 years. We assume a flat term structure of 5 percent with a forward
volatility of 15 percent. Payments are every six months and a notional of 1 EUR.
The floating rate is EURIBOR6M.

www.it-ebooks.info

http://www.it-ebooks.info/

Interest Rate Derivatives with C++

[88]

To compute the advanced example (IR2), you need to compile and run code snippets
19, 20, 18, 4, 5, and 13 (which include the a header, matrix, and random functions).
Afterwards, you should obtain the following screenshot:

Advanced example (IR2) screenshot with results

Summary
In this chapter, we have solved two pricing problems in interest rate derivatives.
We have seen a basic example (plain vanilla IRS) and an advanced example. For
each, we have provided the complete C++ implementation.

We will now proceed to the last asset class, credit derivatives, in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++
In this last chapter, we focus on the application of C++ to the pricing of credit
derivatives. We consider two examples: the use of the Merton model to price a
defaultable firm's equity plus the firm's default probability (basic example) and
the pricing of Credit Default Swap (CDS) (advanced example). The first example
is based on the structural approach to credit risk, while the second is based on the
intensity approach. We provide the full working C++ implementation for both the
examples. A simpler C implementation (without the OO features) can be found in
the accompanying book website.

Basic example – bankruptcy (CR1)
In this example, we will study the default (bankruptcy) of a firm using the (Merton
1974) model. For more information, see "On the Pricing of Corporate Debt: The Risk
Structure of Interest Rates". In this model, the dynamics of the firm are described
using Geometric Brownian Motion (GBM). The capital structure of the firm is
assumed to be very simple: the firm's assets (V) composed entirely of equity (E) and
debt (D). For a given maturity T, default happens if the firm's assets at maturity V(T)
are less than the value of the debt (D) that the firm has to pay at that time.

In this context, we can study the probability of default of a firm using the Monte
Carlo simulation. By generating a number of possible trajectories in which the firm
can evolve and counting the times that the firm satisfies the default condition,
we can estimate the likelihood of bankruptcy of a firm.

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[90]

Our aim is then to calculate the number of times that V(T) are less than the value
of the debt (D) and use this as an estimate of the Probability of Default (PD). In
addition to using the same Monte Carlo computations, we can also estimate the
value of the equity of the firm at time=0.

We now proceed by completing the contents of the Bento Box in clockwise sense,
starting from the top-left corner. First, we fill all the data of the bankruptcy analysis,
in particular default condition, which in our case is as follows:

Second, we ought to select the mathematical model for the underlying, which in the
case of the Merton model is GBM. Third, we select the numerical method to be used
and in this case, we choose the Monte Carlo simulation. Fourth, we construct the
algorithm that will put together these calculations as a series of calculation steps,
which will serve us as blueprint for implementing it in C++.

The algorithm is shown in Box 4 of the Bento Box template for bankruptcy. The
implementation of the algorithm in C++ is shown in code snippet 1. The algorithm is
composed of seven steps, which will take us from the input parameters (STEP 1) to
the output of the premium value (STEP 6).

The Monte Carlo simulation requires a random number generator to operate and
therefore, the random.cpp file (studied in Chapter 4, Equity Derivatives in C++)
is re-used.

We consider an example of a firm whose capital structure is composed of the total
firm's assets at t=0, V(0)=100 million EUR, and a debt composed of a single zero
coupon bond with a face value of D=70 million EUR. The volatility of the firm's
assets is assumed to be 20 percent. The maturity is four years. The risk-free interest
rate is 5 percent pa.

Running the C++ code snippets as shown in the following figure, with 500 steps and
10,000 simulations, we estimate the probability of default in the four year period to
be 88.63 percent and the equity value to be E(0)=43.95 million EUR:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[91]

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

AL
G

O
R

IT
H

M
N

U
M

 M
ETH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

According to Merton’s
model the can befirm
described using Geometric
Brownian Motion (GBM):

Use as aMonte Carlo Simulation
method for the computation of
the value of the firm’s equity as
the discounted expected payoff.

Bankruptcy
The firm’s assets (V) are the
sum of the firm’s equity (E)
and the firm’s debt (D). The
firm defaults if the value of
the assets V(T) is less than
the debt D it has to pay at
maturity. Merton showed
that the firm’s equity is a
European call option with
payoff:

STEP 1: INPUT PARAMETERS
STEP 2: MAIN SIMULATION LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for i=1:N
*Compute GBM formula at each timestep for firm value V
end
STEP 4: COMPUTE PAYOFF
STEP 5: COMPUTE NUMBER DEFAULTS

end
STEP 6: COMPUTE DISCOUNTED EXPECTED PAYOFF
STEP 7: OUTPUT EQUITY VALUE AND DEFAULT PROBABILITY

Bento Box template for firm's bankruptcy (CR1)

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 21 – CR1_main.cpp (Bankruptcy using Merton model)

The following is the code snippet for CR1_main.cpp file:

// CR2_main.cpp

// It requires CR2_source.cpp
#include "CR2.h"

#include <iostream>

using namespace std;

int main()

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[92]

{
 cout << "\n *** START CR2: Credit Default Swap *** \n";

 // STEP 1: INPUT PARAMETERS

 auto T = 1.0; // maturity
 auto N = 4; // number of payments per year
 auto notional = 100.0; // notional
 auto r = 0.05; // risk free interest rate
 auto h = 0.01; // hazard rate
 auto rr = 0.50; // recovery rate

 // Construct a CR2 object from the input parameters:

 CR2 cr2(T, N, notional, r, h, rr);

 // Obtain the value of premium from member function
 "get_premium()":

 auto cr2_results =
 cr2.get_pv_premium_and_default_legs_and_cds_spread();

 // STEP 6: OUTPUT RESULTS

 cout << "\n PV premium leg = "
 << cr2_results.pv_premium_leg << "\n";

 cout << "\n PV default leg = "
 << cr2_results.pv_default_leg << " \n";

 cout << "\n cds_spread = "
 << cr2_results.cds_spread_in_bps << " bps \n";

 cout << "\n *** END CR2: Credit Default Swap *** \n";

 return 0;
}

Code 22 – CR1_source.cpp (Bankruptcy using Merton model)

The following is the code snippet for CR1_source.cpp file:

// CR2_source.cpp

#include "CR2.H"
#include <vector>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[93]

#include <cmath>

using namespace std;

CR2_results CR2::find_pv_premium_and_default_legs_and_cds_spread()
 const
{
 auto pv_premium_leg = 0.0; // sum premium leg
 auto pv_default_leg = 0.0; // sum default leg
 auto t = 0.0; // current time
 auto cds_spread = 0.0;
 auto array_size = static_cast<int>(N*T + 1);
 vector <double> DF(array_size);
 vector <double> P(array_size);
 P[0] = 1.0;
 auto dt = T / N;

 // STEP 2: LOOP FOR ALL PAYMENTS
 for (int j = 1; j < array_size; j++)
 {
 t = j*dt;
 DF[j] = exp(-r*t);
 P[j] = exp(-h*t);

 // STEP 3: COMPUTE PREMIUM PAYMENTS
 pv_premium_leg = pv_premium_leg + DF[j] * notional*dt*P[j];

 // STEP 4: COMPUTE DEFAULT PAYMENTS
 pv_default_leg = pv_default_leg + DF[j] * (1.0 -
 rr)*notional*(P[j - 1] - P[j]);
 }

 // STEP 5: COMPUTE CDS SPREAD
 cds_spread = pv_default_leg / pv_premium_leg;

 // Composing the CR2_results class:
 CR2_results results;
 results.pv_premium_leg = pv_premium_leg;
 results.pv_default_leg = pv_default_leg;
 results.cds_spread_in_bps = cds_spread * 10000;
 return results;
}

For code snippet 23 CR1.h, please refer to the code in
the code bundle.

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[94]

To compute the basic example (CR1), you need to compile and run code snippets
21, 22, 23, 4, and 5 (which include a header and random functions); afterwards,
you should obtain the following screenshot:

Firm's bankruptcy (CR1) screenshot with results

Advanced example – CDS (CR2)
In this second example, we consider the pricing of CDS. The details of the approach
are shown in the following Bento Box template for the CDS:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[95]

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

AL
G

O
R

IT
H

M
N

U
M

 M
ETH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

Pricing a CDS involves a
calculation. Thedeterministic

premium can be calculated by
equating the present value of
the premium and default legs.

Within the Intensity
framework, the underlying C,
has a survival probability P(t)
given by:

Credit Default Swap (CDS).
Counterparties are A and B. A
pays B regular premium
payments in exchange for
credit protection (default of
underlying C with notional N).
B pays A, if C defaults, a one-
off compensation payment of
value N(1-R). The price of the
CDS is the CDS spread or
premium.

STEP 1: INPUT PARAMETERS
STEP 2: LOOP FOR ALL PAYMENTS
for i=1:M

Compute Premium Leg (PL) paymentsSTEP 3:
Compute Default Leg (DL) paymentsSTEP 4:

end
STEP 5: COMPUTE CDS SPREAD
STEP 6: OUTPUT RESULTS

Bento Box template for CDS (CR2)

A CDS is a financial contract between two counterparties A and B, in which one
party pays to the other party to buy credit protection against the possible default
of an underlying C.

In structure, the CDS is similar to the plain vanilla IRS, as it is composed of an
exchange of cash flows between the parties. In a typical CDS with duration of five
years, counterparty A pays B a series of premium payments at regular intervals
upon an agreed notional. These payments will be made as long as underlying C
"survives" (that is, doesn't go in default).

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[96]

Counterparty B pays A a single contingent payment at the time of default of
underlying C. The amount paid is equal to the notional minus the recovery rate.
In mathematical terms, it can be expressed as follows:

Like in an IRS, the "price" of the contract is obtained by computing the present
value of each leg (the sum of the expected premium payments called Premium
Leg (PL) and the sum of the expected default payment called Default Leg (DL)).
In mathematical terms, PL and DL are expressed as follows:

In the preceding equations, P(T) is the survival probability at time t, N is the notional,
R is the recovery rate, and DF(t) is the discount factor at time t. For fair pricing, these
legs must be equal and with this, we can determine what should be the fair value of
the premium paid (also called CDS spread). The value of this spread, denoted by the
Greek letter , is regarded as the price of the CDS contract, In mathematical terms,
it can be expressed as follows:

The pricing algorithm we present in the Bento Box template for the CDS attempts to
compute the premium from the preceding equation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[97]

As we can see, this calculation is deterministic and therefore no Monte Carlo
simulation is required. The credit model we illustrate here is an example of "intensity
models" based on the work of "Pricing Derivatives on Financial Securities Subject to
Credit Risk".

Code snippet 2 illustrates the implementation of this pricing in C++.

We will consider the example where the contract duration is one year, quarterly
payments (that is, four payments per year), notional = 100 million USD, risk-free
rate = 5 percent pa, hazard rate of underlying = 1 percent pa, recovery rate = 50
percent. For these inputs, the CDS spread is 50.0626 basis points.

In the following figure, we find the Bento Box framework applied to our CDS problem:

THE BENTO BOX TEMPLATE

M
ATH

 M
O

D
EL

AL
G

O
R

IT
H

M
N

U
M

 M
ETH

O
DD

ER
IV

AT
IV

E
C

O
N

TR
AC

T

1 2

3

4

Pricing a CDS involves a
calculation. Thedeterministic

premium can be calculated by
equating the present value of
the premium and default legs.

Within the Intensity
framework, the underlying C,
has a survival probability P(t)
given by:

Credit Default Swap (CDS).
Counterparties are A and B. A
pays B regular premium
payments in exchange for
credit protection (default of
underlying C with notional N).
B pays A, if C defaults, a one-
off compensation payment of
value N(1-R). The price of the
CDS is the CDS spread or
premium.

STEP 1: INPUT PARAMETERS
STEP 2: LOOP FOR ALL PAYMENTS
for i=1:M

Compute Premium Leg (PL) paymentsSTEP 3:
Compute Default Leg (DL) paymentsSTEP 4:

end
STEP 5: COMPUTE CDS SPREAD
STEP 6: OUTPUT RESULTS

Bento Box template for CDS (CR2)

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[98]

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 24 – CR2_main.cpp (CDS)

The following is the code snippet for CR2_main.cpp file:

// CR2_main.cpp

// It requires CR2_source.cpp
#include "CR2.h"
#include <iostream>

using namespace std;

int main()
{
 cout << "\n *** START CR2: Credit Default Swap *** \n";

 // STEP 1: INPUT PARAMETERS
 auto T = 1.0; // maturity
 auto N = 4; // number of payments per year
 auto notional = 100.0; // notional
 auto r = 0.05; // risk free interest rate
 auto h = 0.01; // hazard rate
 auto rr = 0.50; // recovery rate

 // Construct a CR2 object from the input parameters:
 CR2 cr2(T, N, notional, r, h, rr);

 // Obtain the value of premium from member function
 "get_premium()":

 auto cr2_results =
 cr2.get_pv_premium_and_default_legs_and_cds_spread();

 // STEP 6: OUTPUT RESULTS
 cout << "\n PV premium leg = "
 << cr2_results.pv_premium_leg << "\n";

 cout << "\n PV default leg = "
 << cr2_results.pv_default_leg << " \n";

 cout << "\n cds_spread = "
 << cr2_results.cds_spread_in_bps << " bps \n";

 cout << "\n *** END CR2: Credit Default Swap *** \n";

 return 0;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[99]

Code 25 – CR2_source.cpp (CDS)

The following is the code snippet for CR2_source.cpp file:

// CR2_source.cpp

#include "CR2.H"
#include <vector>
#include <cmath>

using namespace std;

CR2_results CR2::find_pv_premium_and_default_legs_and_cds_spread()
 const
{
 auto pv_premium_leg = 0.0; // sum premium leg
 auto pv_default_leg = 0.0; // sum default leg
 auto t = 0.0; // current time
 auto cds_spread = 0.0;
 auto array_size = static_cast<int>(N*T + 1);
 vector <double> DF(array_size);
 vector <double> P(array_size);

 P[0] = 1.0;

 auto dt = T / N;

 // STEP 2: LOOP FOR ALL PAYMENTS
 for (int j = 1; j < array_size; j++)
 {
 t = j*dt;
 DF[j] = exp(-r*t);
 P[j] = exp(-h*t);

 // STEP 3: COMPUTE PREMIUM PAYMENTS
 pv_premium_leg = pv_premium_leg + DF[j] * notional*dt*P[j];

 // STEP 4: COMPUTE DEFAULT PAYMENTS
 pv_default_leg = pv_default_leg + DF[j] * (1.0 -
 rr)*notional*(P[j - 1] - P[j]);
 }

 // STEP 5: COMPUTE CDS SPREAD
 cds_spread = pv_default_leg / pv_premium_leg;

 // Composing the CR2_results class:
 CR2_results results;
 results.pv_premium_leg = pv_premium_leg;

www.it-ebooks.info

http://www.it-ebooks.info/

Credit Derivatives with C++

[100]

 results.pv_default_leg = pv_default_leg;
 results.cds_spread_in_bps = cds_spread * 10000;
 return results;
}

For code snippet 26 CR2.h, please refer to the code
in the code bundle.

To compute the advanced example (CR2), you will have to compile and run code
snippets 24, 25, and 26; afterwards, you should obtain the following screenshot:

CDS (CR2) screenshot with results

Summary
In this chapter, we have solved two pricing problems in credit derivatives. We have
seen a basic example (using structural models) and a more advanced one (using
intensity models). There are many possible variations and more complex contracts,
but these two are the main families that will give you an idea of how to go forward
in this fascinating asset class. This concludes our survey of examples implementing
different types of financial derivatives in C++.

www.it-ebooks.info

http://www.it-ebooks.info/

C++ Numerical Libraries
for Option Pricing

Implementing financial derivatives in C++ could be a complex task. As we have
shown in this book, it requires knowledge not only of the mathematical models
and numerical methods required for their implementation in the forms of C++
code, but it also requires the use of reliable support mathematical and financial
libraries. For example, when you need to obtain random samples from a standard
normal distribution or when you need to invert a matrix. In these cases, instead of
implementing these algorithms ex novo, what we can do is make use of numerical
libraries that exists for this purpose. These contain algorithms that have been used
for many years and therefore have been validated by many users before. Using
these libraries will significantly accelerate our implementation of advanced pricing
models. Some examples of these libraries are mentioned in the upcoming sections.

Numerical recipes
License: Commercial.

Website: http://www.nr.com.

A collection of widely used and reliable set of C++ numerical routines can be
found in the book "Numerical Recipes: The Art of Scientific Computing, 3rd Edition".
These set of routines are regarded as the "gold standard" by the top universities
and research institutions around the world. There is an excellent associated website
that can be found at http://www.nr.com/. The book contains the description of the
theoretical background of the routines and it gives access to the C++ code. There are
more than 400 C++ numerical routines covering topics, such as Solution of Linear
Algebraic Equations, Matrix Algebra, Interpolation and Extrapolation, Integration,
and Random Numbers.

www.it-ebooks.info

http://www.nr.com
http://www.nr.com/
http://www.it-ebooks.info/

C++ Numerical Libraries for Option Pricing

[102]

Financial numerical recipes
License: Free/GNU.

Website: http://finance.bi.no/~bernt/gcc_prog/.

This website contains a large number of very useful C++ numerical and financial
programs that have been developed by Bernt Arne Odegaard. They follow the ANSI
C++ standard and have a large accompanying manual named Circa (250 pages)
with the formulas used and the references involved. This library can be found at
http://finance.bi.no/~bernt/gcc_prog/.

The QuantLib project
License: Free/GNU.

Website: http://quantlib.org/.

The QuantLib project is a large project offering software for Quantitative Finance.
It has been used for modeling, trading, and risk management in the financial sector.
The software is written in C++ and has been subsequently exported to various
languages such as C#, Objective Caml, Java, Perl, Python, GNU R, Ruby, and Scheme.
QuantLib has many useful tools including yield curve models, solvers, PDEs, Monte
Carlo (low-discrepancy), exotic options, VAR, and so on.

The Boost library
License: Free/GNU.

Website: www.boost.org.

The Boost project offers peer-reviewed portable C++ source libraries that are freely
available under GNU GPL. These libraries have been created with the intention of
making them useful and usable across a broad spectrum of applications. Ten Boost
libraries are included in the C++ Standards Committee's Library Technical Report
(TR1) and in the new C++11 Standard. Examples include Accumulators, Array,
Chrono, Filesystem, Geometry, Math, Math/Statistical Distributions, and MPI.

www.it-ebooks.info

http://finance.bi.no/~bernt/gcc_prog/
http://finance.bi.no/~bernt/gcc_prog/
http://quantlib.org/
www.boost.org
http://www.it-ebooks.info/

Appendix A

[103]

The GSL library
License: Free/GNU.

Website: www.gnu.org/s/gsl/.

The GNU Scientific Library (GSL) is a numerical library for C and C++. The library
provides a large variety of mathematical numerical routines, including random
number generators, special functions, and least-squares fitting. There are over 1000
functions in total. Examples of the subject areas covered by the library include
Complex Numbers, Roots of Polynomials, Special Functions, Vectors and Matrices,
Permutations, Linear Algebra, Eigensystems, Fast Fourier Transforms, Quadrature,
Random Numbers, Quasi-Random Sequences, Statistics, Histograms, and Monte
Carlo Integration.

www.it-ebooks.info

www.gnu.org/s/gsl/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

References

Chapter 2
•	 Garman, M.B., and S.W Kohlhagen. "Foreign Currency Option Values".

Journal of International Money and Finance 2, 231-237. 1983.
•	 Rebonato R. Interest-Rate Option Models: Understanding, Analysing and Using

Models for Exotic Interest-Rate Options. 1998. Wiley.
•	 D., Brigo, and Mercurio F. "Interest Rate Models: Theory and Practice, 2nd

Edition". Springer Finance. 2006.
•	 Pelsser, Antoon. Efficient Methods for Valuing Interest Rate Derivatives.

Springer. 2000.
•	 Brace, A., D. Gatarek, and et M Musiela."The Market Model of Interest Rate

Dynamics". Mathematical Finance. Vol. 7, No. 2, 127-154. 1997.
•	 Jarrow, Robert A., and Stuart Turnbull. "Pricing Derivatives on Financial

Securities Subject to Credit Risk". The Journal of Finance. Vol. 50. March 1995.
•	 Jarrow, R., D. Lando, and S. Turnbull. "A Markov Model of the Term Structure

of Credit Risk Spreads". Review of Financial Studies. Vol. 10. 481–523. 1997.
•	 Duffie, D., and K. Singleton. "Modeling Term Structures of Defaultable

Bonds". Review of Financial Studies. Vol. 12. 687-720. 1999.
•	 Merton, Robert C. "On the Pricing of Corporate Debt: The Risk Structure of

Interest Rates". The Journal of Finance. Vol. 29, No. 2, pp. 449-470. May 1974.

Chapter 3
•	 Glasserman, Paul. Monte Carlo Methods in Financial Engineering. Springer. 2003.
•	 Wilmott, Paul, Sam Howison, and Jeff Dewynne. The Mathematics of Financial

Derivatives: A Student Introduction. Cambridge University Press. 1995.
•	 Cox, J. C., Ross S. A., and Rubinstein M. "Option pricing: A simplified

approach". Journal of Financial Economics 7 (3), 229. 1979.

www.it-ebooks.info

http://www.it-ebooks.info/

References

[106]

•	 Black, F., and M. Scholes. "The Pricing of Options and Corporate Liabilities".
Journal of Political Economy 81 (3), 637-654. 1973.

•	 Kloeden P.E., and Platen E. Eckhard. Numerical Solution of Stochastic
Differential Equations (Stochastic Modelling and Applied Probability).
Springer. 1992.

Chapter 4
•	 Black, Fischer, and Myron Scholes. "The Pricing of Options and Corporate

Liabilities". Journal of Political Economy 81 (3), 637-654. 1973.
•	 Box, G. E. P., and Mervin E. Muller. A Note on the Generation of Random

Normal Deviates. The Annals of Mathematical Statistics. Vol. 29, No. 2,
pp. 610–611. 1958.

•	 Higham, Desmond. An Introduction to Financial Option Valuation: Mathematics,
Stochastics and Computation. Cambridge University Press. 2004.

•	 Wilmott, Paul. Paul Wilmott on Quantitative Finance, 2nd Edition. Wiley. 2006.

Chapter 5
•	 Garman, M.B., and S.W Kohlhagen. "Foreign Currency Option Values".

Journal of International Money and Finance 2, 231-237. 1983.

Chapter 6
•	 Brace, A., D. Gatarek, and et M Musiela."The Market Model of Interest Rate

Dynamics". Mathematical Finance. Vol. 7, No. 2, 127-154. 1997.
•	 Pelsser, Antoon. Efficient Methods for Valuing Interest Rate Derivatives.

Springer, 2000.

Chapter 7
•	 Merton, Robert C. "On the Pricing of Corporate Debt: The Risk Structure of

Interest Rates". The Journal of Finance. Vol. 29, No. 2, pp. 449-470. May 1974.
•	 Jarrow, Robert A., and Stuart Turnbull. "Pricing Derivatives on Financial

Securities Subject to Credit Risk". The Journal of Finance. Vol. 50. March 1995.

Appendix A
•	 Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P.

Flannery. "Numerical Recipes: The Art of Scientific Computing, 3rd Edition".
Cambridge University Press. 2007.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A
algorithm 9
asset value models 26

B
Bank of International Settlements (BIS) 7
bankruptcy (CR1) example

about 89, 90
computing 94

Bento Box template 10, 11
Binomial Trees method. See BT method
Boost library 102
Box Muller method 15
BT method

about 39
algorithm 39-42
example 42-44

C
C# 9
C++

about 9
Boost library 102
credit derivatives 89
equity derivatives 51
financial numerical recipes 102
foreign exchange derivatives 61
GSL library 103
interest rate derivatives 75
numerical recipes 101
QuantLib project 102

CDS (CR2) example
about 94-97
computing 97, 100

Code::Blocks
URL 9

CR1_main.cpp file
code snippet 91

CR1_source.cpp file
code snippet 92

CR2_main.cpp file
code snippet 98

CR2_source.cpp file
code snippet 99

Credit Default Swap (CDS) 89
credit derivatives 89
credit rating

about 25
intensity models 28-31
structural models 26-28

D
drift 8

E
EQ1_main.cpp file

code snippet 54
EQ2_main.cpp file

code snippet 58
equity asset class 13
equity basket example,

equity derivatives 56-60

www.it-ebooks.info

http://www.it-ebooks.info/

[108]

equity derivatives
equity basket advanced example 56
European Call example 51

equity model
reviewing 13-16

European Call contract 6
European Call example,

equity derivatives 51-56
European FX Call (FX1) example

about 61
computing 67
financial derivative premium,

calculating 62-64
plain vanilla European Call option

pricing, demonstrating 61
exchange rate

reviewing 17, 18
explicit FDM 47

F
FD method

about 44-46
algorithm 46-48
example 48, 49

financial derivative
about 5
examples 6, 7
features 6
forwards 6
futures 6
options 6
swaps 6

financial numerical recipes 102
Finite Difference method. See FD method
Finite Difference Methodology (FDM) 68
fixed leg 7
floating leg 7
foreign exchange derivatives

European FX Call (FX1) example 61
FX barrier option (FX2) example 68

forex asset class 17
forward FDM 47
Future Value (FV) 29
FX1_main.cpp file

code snippet 64

FX1_source.cpp file
code snippet 65

FX2_main.cpp file
code snippet 69

FX2_source.cpp file
code snippet 70

FX barrier option (FX2) example
about 68
computing 72
up-and-out barrier option pricing,

demonstrating 68, 69

G
Geometric Brownian Motion

(GBM) 8, 14, 89
GSL library 103

I
Initial Public Offer (IPO) 27
interest rate derivatives

IRS with Cap (IR2) example 82
plain vanilla IRS (IR1) example 76

interest rates
about 20
market models 22-25
short rate models 20, 21

Interest Rate Swap (IRS) 7, 24, 75
IR1_main.cpp file

code snippet 78
IR1_source.cpp file

code snippet 79
IR2_main.cpp file

code snippet 84
IR2_source.cpp file

code snippet 85
IRS with Cap (IR2) example

about 82
computing 88
IRS with cap pricing,

demonstrating 82-87

J
Java 9

www.it-ebooks.info

http://www.it-ebooks.info/

[109]

L
Libor Market Model (LMM) 20, 22, 75
London Stock Exchange

URL 13

M
mathematical models, financial markets

credit rating 25
equity 13
exchange rate 17
interest rates 20

mathematics
about 8
models 8

Mathworks 9
Matlab 9
MC simulation method

about 34, 35
algorithm 35, 36
example 37, 38

MinGW
URL 9

Monte Carlo (MC) 68
Monte Carlo simulation 9
Monte Carlo simulation method. See MC

simulation method

N
numerical recipes 101

O
Over The Counter (OTC) 6

P
Partial Differential Equation (PDE) 44, 63
plain vanilla IRS (IR1) example

about 76
computing 82
plain vanilla IRS pricing,

demonstrating 76-79
Present Value (PV) 29

Q
quadrature methods 33
Quantitative Finance

about 5
C++ programming 9
financial derivative 5
informatics 9
mathematics 8

QuantLib project 102

R
random.cpp file

code snippet 55
references 105, 106

S
slope 45
stencil 47
Stochastic Differential Equations (SDEs)

Geometric Brownian Motion (GBM) 8
swaptions 21

T
the underlying 5

V
VBA 9
volatility 8

W
Wolfram Mathematica 9

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Advanced Quantitative Finance with C++

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Introduction to R for Quantitative
Finance
ISBN: 978-1-78328-093-3 Paperback: 164 pages

Solve a diverse range of problems with R, one of the
most powerful tools for Quantitative finance

1.	 Use time series analysis to model and forecast
house prices.

2.	 Estimate the term structure of interest rates
using prices of government bonds.

3.	 Detect systemically important financial
institutions by employing financial
network analysis.

F# for Quantitative Finance
ISBN: 978-1-78216-462-3 Paperback: 286 pages

An introductory guide to utilizing F# for quantitative
finance leveraging the .NET platform

1.	 Learn functional programming with
an easy-to-follow combination of theory
and tutorials.

2.	 Build a complete automated trading
system with the help of code snippets.

3.	 Use F# Interactive to perform
exploratory development.

4.	 Leverage the .NET platform and other
existing tools from Microsoft using F#.

Please check www.PacktPub.com for information on our titles

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Python for Finance
ISBN: 978-1-78328-437-5 Paperback: 408 pages

Build real-life Python applications for quantitative
finance and financial engineering

1.	 Estimate market risk, form various portfolios,
and estimate their variance-covariance matrixes
using real-world data.

2.	 Explains many financial concepts and trading
strategies with the help of graphs.

3.	 A step-by-step tutorial with many Python
programs that will help you learn how to
apply Python to finance.

Microsoft Dynamics NAV
Financial Management
ISBN: 978-1-78217-162-1 Paperback: 134 pages

Delve deep into the world of financial management
with Microsoft Dynamics NAV

1.	 Explore the features inside the sales and
purchases areas as well as functionalities
including payments, budgets, cash flow,
fixed assets, and business intelligence.

2.	 Discover how the different aspects of Dynamics
NAV are related to financial management.

3.	 Learn how to use reporting tools that will help
you to make the right decisions at the right time.

Please check www.PacktPub.com for information on our titles

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: What is Quantitative Finance?
	Discipline 1 – finance
(financial derivatives)
	Discipline 2 – mathematics
	Discipline 3 – informatics
(C++ programming)
	The Bento Box template
	Summary

	Chapter 2: Mathematical Models
	Equity
	Foreign exchange
	Interest rates
	Short rate models
	Market models

	Credit
	Structural models
	Intensity models

	Summary

	Chapter 3: Numerical Methods
	The Monte Carlo simulation method
	Algorithm of MC method
	Example of MC method

	Binomial Trees method
	Algorithm of the BT method
	Example of the BT method

	The Finite Difference method
	Algorithm of FDM
	Example of FD method

	Summary

	Chapter 4: Equity Derivatives in C++
	Basic example – European Call
	Advanced example – equity basket
	Summary

	Chapter 5: Foreign Exchange Derivatives with C++
	Basic example – European FX Call (FX1)
	Advanced example – FX barrier option (FX2)
	Summary

	Chapter 6: Interest Rate Derivatives
with C++
	Basic example – plain vanilla IRS (IR1)
	Advanced example – IRS with Cap (IR2)
	Summary

	Chapter 7: Credit Derivatives with C++
	Basic example – bankruptcy (CR1)
	Advanced example – CDS (CR2)
	Summary

	Appendix A: C++ Numerical Libraries
for Option Pricing
	Numerical recipes
	Financial numerical recipes
	The QuantLib project
	The Boost library
	The GSL library

	Appendix B: References
	Index

