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Preface
Quantitative Finance is a highly complex interdisciplinary field, which covers 
mathematics, finance, and information technology. Navigating it successfully 
requires specialist knowledge from many sources, such as financial derivatives, 
stochastic calculus, and Monte Carlo simulation. Crucially, it also requires a  
hands-on ability to transform theory into practice effectively.

In Advanced Quantitative Finance with C++, we provide a guided tour through this 
exciting field. The key mathematical models used to price financial derivatives are 
explained as well as the main numerical models used to solve them. In particular, 
equity, currency, interest rates, and credit derivatives are discussed. The book also 
presents how to implement these models in C++ step by step. Several fully working, 
complete examples are given that can be immediately tested by the reader to support 
and complement their learning.

What this book covers
Chapter 1, What is Quantitative Finance?, gives a brief introduction to Quantitative 
Finance, delimits the subject to option pricing with C++, and describes the structure 
of the book.

Chapter 2, Mathematical Models, offers a summary of the fundamental models used to 
price derivatives in modern financial markets.

Chapter 3, Numerical Methods, reviews the three main families of numerical methods 
used to solve the mathematical models described in the Chapter 2, Mathematical Models.

Chapter 4, Equity Derivatives in C++, demonstrates the concrete pricing of equity 
derivatives using C++ in a basic contract (European Call/Put), and an advanced 
contract (multi-asset options).
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Chapter 5, Foreign Exchange Derivatives with C++, illustrates the pricing of foreign 
exchange derivatives using C++ in a basic contract (continuous barrier) and an 
advanced contract (terminal barrier).

Chapter 6, Interest Rate Derivatives with C++, shows the pricing of interest rate 
derivatives using C++ in a basic contract and an advanced Interest Rate Swap (IRS).

Chapter 7, Credit Derivatives with C++, demonstrates the concrete pricing of credit 
derivatives using C++ in a basic contract (Merton model) and an advanced contract 
(Credit Default Swap (CDS)).

Appendix A, C++ Numerical Libraries for Option Pricing, gives a short guide to the 
various numerical libraries that can be used for option pricing.

Appendix B,  References, lists all the bibliographic references used throughout the 
chapters of this book.

What you need for this book
In order to implement the pricing algorithms described in this book, you will need 
some basic knowledge of C++ and Integrated Development Environment (IDE)  
of your choice. I have used Code:Blocks, which is a free C, C++, and Fortran IDE,  
and is highly extensible and fully configurable. You can download it from http://
www.codeblocks.org/. You will also need a C++ compiler. I have used MinGW, 
which is a part of the GNU Compiler Collection (GCC), including C, C++, ADA, and 
Fortran compilers. This compiler can be downloaded from http://www.mingw.org/.

Who this book is for
This book is ideal for quantitative analysts, risk managers, actuaries, and other 
professionals working in the field of Quantitative Finance who want a quick reference 
or a hands-on introduction to pricing of financial derivatives. Postgraduate, MSc, 
and MBA students following university courses on derivatives in corporate finance 
and/or risk management will also benefit from this book. It could be used effectively 
by advanced undergraduate students who are interested in understanding these 
fascinating financial instruments. A basic familiarity with programming concepts,  
C++ programming language, and undergraduate-level calculus is required.

Conventions
In this book, you will find a number of styles of text that distinguish among different 
kinds of information. Here are some examples of these styles, and an explanation of 
their meaning.
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Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "An 
important feature of this algorithm is the function in code snippet 2 (random.cpp)."

A block of code is set as follows:

    for (int i=0; i < N; i++)
    {
      double epsilon = SampleBoxMuller();  // get Gaussian draw
      S[i+1] = S[i]*(1+r*dt+sigma*sqrt(dt)*epsilon);
    }

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "In this book, all 
the programs are implemented with the newest standard C++11 using Code::Blocks 
(http://www.codeblocks.org) and MinGW (http://www.mingw.org)".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.
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Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.
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What is Quantitative Finance?
Quantitative Finance studies the application of quantitative techniques to the 
solution of problems in finance. It spans diverse areas such as the management 
of investment funds and insurance companies, the control of financial risks for 
manufacturing companies and banking industry, and the behavior of the financial 
markets. Quantitative Finance is eminently interdisciplinary building upon key 
expertise from the disciplines of finance, mathematics, and informatics.

In this book, we will focus on one aspect of Quantitative Finance—the pricing 
of financial derivatives using the programming language C++. In the following 
sections, we will describe the main features of the three key disciplines that 
constitute Quantitative Finance:

•	 Finance
•	 Mathematics
•	 Informatics

Discipline 1 – finance  
(financial derivatives)
In general, a financial derivative is a contract between two parties who agree to 
exchange one or more cash flows in the future. The value of these cash flows depends 
on some future event, for example, that the value of some stock index or interest rate 
being above or below some predefined level. The activation or triggering of this future 
event thus depends on the behavior of a variable quantity known as the underlying. 
Financial derivatives receive their name because they derive their value from the 
behavior of another financial instrument. 

As such, financial derivatives do not have an intrinsic value in themselves (in contrast 
to bonds or stocks); their price depends entirely on the underlying.
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A critical feature of derivative contracts is thus that their future cash flows are 
probabilistic and not deterministic. The future cash flows in a derivative contract 
are contingent on some future event. That is why derivatives are also known as 
contingent claims. This feature makes these types of contracts difficult to price.

The following are the most common types of financial derivatives:

•	 Futures
•	 Forwards
•	 Options
•	 Swaps

Futures and forwards are financial contracts between two parties. One party agrees 
to buy the underlying from the other party at some predetermined date (the maturity 
date) for some predetermined price (the delivery price). An example could be a 
one-month forward contract on one ounce of silver. The underlying is the price 
of one ounce of silver. No exchange of cash flows occur at inception (today, t=0), 
but it occurs only at maturity (t=T). Here t represents the variable time. Forwards 
are contracts negotiated privately between two parties (in other words, Over The 
Counter (OTC)), while futures are negotiated at an exchange.

Options are financial contracts between two parties. One party (called the holder 
of the option) pays a premium to the other party (called the writer of the option) 
in order to have the right, but not the obligation, to buy some particular asset (the 
underlying) for some particular price (the strike price) at some particular date in the 
future (the maturity date). This type of contract is called a European Call contract.

Example 1

Consider a one-month call contract on the S&P 500 index. The underlying in this case 
will be the value of the S&P 500 index. There are cash flows both at inception (today, 
t=0) and at maturity (t=T). At inception, (t=0) the premium is paid, while at maturity 
(t=T), the holder of the option will choose between the following two possible 
scenarios, depending on the value of the underlying at maturity S(T):

•	 Scenario A: To exercise his/her right and buy the underlying asset for K
•	 Scenario B: To do nothing if the value of the underlying at maturity is below 

the value of the strike, that is, S(T)<K

The option holder will choose Scenario A if the value of the underlying at maturity 
is above the value of the strike, that is, S(T)>K. This will guarantee him/her a profit 
of S(T)-K. The option holder will choose Scenario B if the value of the underlying at 
maturity is below the value of the strike, that is, S(T)<K. This will guarantee him/her 
to limit his/her losses to zero.
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Example 2

An Interest Rate Swap (IRS) is a financial contract between two parties A and B  
who agree to exchange cash flows at regular intervals during a given period of time 
(the life of a contract). Typically, the cash flows from A to B are indexed to a fixed 
rate of interest, while the cash flows from B to A are indexed to a floating interest 
rate. The set of fixed cash flows is known as the fixed leg, while the set of floating 
cash flows is known as the floating leg. The cash flows occur at regular intervals 
during the life of the contract between inception (t=0) and maturity (t=T). An 
example could be a fixed-for-floating IRS, who pays a rate of 5 percent on the agreed 
notional N every three months and receives EURIBOR3M on the agreed notional N 
every three months.

Example 3

A futures contract on a stock index also involves a single future cash flow (the 
delivery price) to be paid at the maturity of the contract. However, the payoff in this 
case is uncertain because how much profit I will get from this operation will depend 
on the value of the underlying at maturity.

If the price of the underlying is above the delivery price, then the payoff I get 
(denoted by function H) is positive (indicating a profit) and corresponds to the 
difference between the value of the underlying at maturity S(T) and the delivery 
price K. If the price of the underlying is below the delivery price, then the payoff  
I get is negative (indicating a loss) and corresponds to the difference between the 
delivery price K and the value of the underlying at maturity S(T). This characteristic 
can be summarized in the following payoff formula:

( ( )) ( )H S T S T K= −
Equation 1

Here, H(S(T)) is the payoff at maturity, which is a function of S(T). Financial 
derivatives are very important to the modern financial markets. According to 
the Bank of International Settlements (BIS) as of December 2012, the amounts 
outstanding for OTC derivative contracts worldwide were Foreign exchange 
derivatives with 67,358 billion USD, Interest Rate Derivatives with 489,703 billion 
USD, Equity-linked derivatives with 6,251 billion USD, Commodity derivatives  
with 2,587 billion USD, and Credit default swaps with 25,069 billion USD.  
For more information, see http://www.bis.org/statistics/dt1920a.pdf.
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Discipline 2 – mathematics
We need mathematical models to capture both the future evolution of the  
underlying and the probabilistic nature of the contingent cash flows we encounter  
in financial derivatives.

Regarding the contingent cash flows, these can be represented in terms of the payoff 
function H(S(T)) for the specific derivative we are considering. Because S(T) is a 
stochastic variable, the value of H(S(T)) ought to be computed as an expectation 
E[H(S(T))]. And in order to compute this expectation, we need techniques that allow 
us to predict or simulate the behavior of the underlying S(T) into the future, so as to 
be able to compute the value of ST and finally be able to compute the mean value of 
the payoff E[H(S(T))].

Regarding the behavior of the underlying, typically, this is formalized using 
Stochastic Differential Equations (SDEs), such as Geometric Brownian Motion 
(GBM), as follows:

ds Sdt SdWµ σ= +
Equation 2

The previous equation fundamentally says that the change in a stock price (dS), can 
be understood as the sum of two effects—a deterministic effect (first term on the 
right-hand side) and a stochastic term (second term on the right-hand side). The 
parameter µ  is called the drift, and the parameter σ  is called the volatility. S is the 
stock price, dt is a small time interval, and dW is an increment in the Wiener process.

This model is the most common model to describe the behavior of stocks, 
commodities, and foreign exchange. Other models exist, such as jump, local  
volatility, and stochastic volatility models that enhance the description of the 
dynamics of the underlying.

Regarding the numerical methods, these correspond to ways in which the formal 
expression described in the mathematical model (usually in continuous time) is 
transformed into an approximate representation that can be used for calculation 
(usually in discrete time). This means that the SDE that describes the evolution of 
the price of some stock index into the future, such as the FTSE 100, is changed to 
describe the evolution at discrete intervals. An approximate representation of an  
SDE can be calculated using the Euler approximation as follows:

1t t t tS S S t S d Wµ σ+ − = ∆ + ∆
Equation 3
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The preceding equation needs to be solved in an iterative way for each time interval 
between now and the maturity of the contract. If these time intervals are days and 
the contract has a maturity of 30 days from now, then we compute tomorrow's 
price in terms of todays. Then we compute the day after tomorrow as a function of 
tomorrow's price and so on. In order to price the derivative, we require to compute 
the expected payoff E[H(ST)] at maturity and then discount it to the present. In this 
way, we would be able to compute what should be the fair premium π  associated 
with a European option contract with the help of the following equation:

exp( ) [ (S )] exp( ) [max(S ,0)]T TrT E H rT E Kπ = − × = − × −

Equation 4

Discipline 3 – informatics  
(C++ programming)
What is the role of C++ in pricing derivatives? Its role is fundamental. It allows us 
to implement the actual calculations that are required in order to solve the pricing 
problem. Using the preceding techniques to describe the dynamics of the underlying, 
we require to simulate many potential future scenarios describing its evolution. Say 
we ought to price a futures contract on the EUR/USD exchange rate with one year 
maturity. We have to simulate the future evolution of EUR/USD for each day for 
the next year (using equation 3). We can then compute the payoff at maturity (using 
equation 1). However, in order to compute the expected payoff (using equation 4), 
we need to simulate thousands of such possible evolutions via a technique known 
as Monte Carlo simulation. The set of steps required to complete this process is 
known as an algorithm. To price a derivative, we ought to construct such algorithm 
and then implement it in an advanced programming language such as C++. Of 
course C++ is not the only possible choice, other languages include Java, VBA, 
C#, Mathworks Matlab, and Wolfram Mathematica. However, C++ is an industry 
standard because it's flexible, fast, and portable. Also, through the years, several 
numerical libraries have been created to conduct complex numerical calculations in 
C++. Finally, C++ is a powerful modern object-oriented language.

It is always difficult to strike a balance between clarity and efficiency. We have aimed 
at making computer programs that are self-contained (not too object oriented) and 
self-explanatory. More advanced implementations are certainly possible, particularly 
in the context of larger financial pricing libraries in a corporate context. In this book, all 
the programs are implemented with the newest standard C++11 using Code::Blocks 
(http://www.codeblocks.org) and MinGW (http://www.mingw.org).
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The Bento Box template
A Bento Box is a single portion take-away meal common in Japanese cuisine. 
Usually, it has a rectangular form that is internally divided in compartments to 
accommodate the various types of portions that constitute a meal. In this book, 
we use the metaphor of the Bento Box to describe a visual template to facilitate, 
organize, and structure the solution of derivative problems. The Bento Box template 
is simply a form that we will fill sequentially with the different elements that we 
require to price derivatives in a logical structured manner. The Bento Box template 
when used to price a particular derivative is divided into four areas or boxes, each 
containing information critical for the solution of the problem. The following figure 
illustrates a generic template applicable to all derivatives:

In this box the description
of the contract goes.
Identify the underlying.
Specify the counterparties
involved, the cashflows,
the payment dates, any
other conditions and
the payoff function in
terms of the underlying.

In this box we define the
mathematical model that
describes the dynamics of
the underlying specified
in box 1.

In this box we specify the
numerical method that will
be use to solve the model
specified in box 2.

In this final box we put together the specifications (box 1),
the mathematical description of the underlying (box 2)
and the numerical method used to solve the model
(box 3) via a computer algorithm. The algorithm is
essentially a series of steps that takes us from the input
data (market variables) via a computation process to the
output (typically the price, premium or mark to market of
the derivative.) This algorithm will be blueprint to construct
computer code in C++.

THE BENTO BOX TEMPLATE
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The Bento Box template – general case
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The following figure shows an example of the Bento Box template as applied to a 
simple European Call option:

The , being aunderlying
stock index, can be
described using Geometric
Brownian Motion (GBM):

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

THE BENTO BOX TEMPLATE
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European Call option on
stock index FTSE100.
Counterparties are A and B.
Underlying is FTSE100 index.
At t=0, A pays B a .premium
At maturity (T=3 months), A
will have the right (but not
the obligation) to buy the
underlying from B for the
strike price K. The payoff at
maturity H is:

INPUT: spot-price, strike, maturity, risk-free rate, volatility
number simulations (M), time discretization number periods (N)

: estimate for the premiumOUTPUT
PROCESS:
for i=1:M

for i=1:N
*Compute GBM formula and advance one timestep

end
*Compute underlying at maturity
*Compute payoff at maturity

end
*Compute premium as discounted average value of payoffs

The Bento Box template – European Call option

In the preceding figure, we have filled the various compartments, starting in the 
top-left box and proceeding clockwise. Each compartment contains the details about 
our specific problem, taking us in sequence from the conceptual (box 1: derivative 
contract) to the practical (box 4: algorithm), passing through the quantitative aspects 
required for the solution (box 2: mathematical model and box 3: numerical method).
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Summary
This chapter gave an overview of the main elements of Quantitative Finance as 
applied to pricing financial derivatives. The Bento Box template technique will 
be used in the following chapters to organize our approach to solve problems in 
pricing financial derivatives. We will assume that we are in possession with enough 
information to fill box 1 (derivative contract). Further details about the mathematical 
models (box 2) will be described in Chapter 2, Mathematical Models.
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Mathematical Models
In the previous chapter, we described the Bento Box template as a methodology 
for structuring our approach to price financial derivatives. In the context of the 
Bento Box template, this chapter corresponds to box 2—mathematical models. Here 
we review some of the key mathematical models used in the financial derivatives 
markets today to describe the behavior of the underlying. In particular, the future 
evolution of the underlying. The following are the examples of these underlyings:

•	 An equity or stock
•	 An exchange rate
•	 An interest rate
•	 A credit rating

Equity
In the equity asset class, the underlying is the price of a company stock. For instance, 
the current price of one share of Vodafone PLC (VOD.L) as quoted in the London 
Stock Exchange (www.londonstockexchange.com) at some particular time. The price 
could be £2.32 and the time could be 11:33:24 on May 13, 2013.

In mathematical terms, thus, the price of a stock can be represented as a scalar 
function of the current time t. We will denote this function as S(t). Note that in 
technical terms, S(t) is a time series, which even though apparently continuous  
(with C[0] continuity), is in reality discontinuous (subject to jumps). In addition,  
it is not a well-behaved function, that is, its first derivative does not exist.
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We are going to model S(t) as an stochastic variable. And all the constructions 
that we build around this value, such as the value of the payoff H(S_t) will be in 
consequence stochastic functions. In this situation, we are required not to use the 
standard tools of calculus (such as Taylor series, derivatives, Riemann integral), but 
are instead required to use the tools from stochastic calculus (such as Ito lemma, 
Radon-Nykodym derivative, Riemann-Stieltjes integral) to advance our modeling.

In this context, the behavior of the variable S(t) can be described by an SDE. In the 
case of equities, the standard SDE used to describe the behavior of equities is called 
GBM. Under the so-called real-world probability measure P, GBM is formally 
represented in continuous time as follows:

PdS Sdt SdWµ σ= +
Equation 1

However, in literature, this representation is not used for the pricing of financial 
derivatives. It is substituted by the following representation under the risk-neutral 
measure Q:

QdS rSdt SdWσ= +
Equation 2

In the preceding equation, we have substituted the drift µ  by the risk-free rate r  of 
interest, σ  is the volatility, and dW is the increment of a Wiener process. Equation 2 
can be further represented as follows:

QdS rdt dW
S

σ= +

In the preceding equation, we can identify the term dS/S on the left hand side (LHS) 
of the equation as the return of the equity. Thus, the two terms on the right hand side 
(RHS) of the equation are a "drift term" and a "volatility term". Each of these terms 
are "scaled" by parameters µ  and σ , which are calibrated to current market prices of 
traded instruments, such as call and put options.

Note that equation 2 is the fundamental equation used to describe the underlyings in 
the word of financial derivatives.
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For the purpose of pricing derivatives, we require to transform equation 2 from 
continuous time into discrete time to model the behavior of stocks, say every  
day ( 1t∆ =  days, but in finance we always work in annualized terms, so 

1/ 365 0.00274t∆ = =  years). We can easily approximate equation 2 by using the  
Euler-Murayama discretization as follows:

S = rS t + S W

1t t t t tS S rS t S tσ ε+ − = ∆ + ∆

( )1 1t t t t t t tS S rS t S t S r t tσ ε σε+ = + ∆ + ∆ = + ∆ + ∆

Equation 3

In the preceding equation, we approximate the differential of the Wiener process  
as the square root of delta t multiplied by a draw from a Gaussian distribution with 
zero mean and standard deviation 1 (N(0,1)). Equation 3 is a linear iterative equation, 
which we can compute by having a starting value of S0 for a number of time steps 
S1, S2, …, SN. We only need the values of the parameters r and σ, and a Gaussian 
random number generator for the value of ε.

In order to compute the draw from the cumulative standard normal distribution,  
we will use a method called the Box-Muller method. The Box Muller method allows 
us to convert uniform random numbers into Gaussian random numbers. This is very 
useful because in many computer libraries we can find standard functions to generate 
random numbers from a uniform distribution (for example, function rand() in C)  
and through the Box Muller method, we can generate the Gaussian draws we need. 
We will discuss more about this in Chapter 4, Equity Derivatives in C++.

For example, imagine that we would like to simulate the behavior of the stock of 
company ABC for the next four days. The current value of the stock is 100 EUR.  
The risk-free interest rate stands at 5 percent per annum (p.a.), and the volatility  
is at 30 percent pa. How shall we proceed?

First we construct a time grid for the business days in which we need the values 
(note that there are 255 business days in a year). These are t0, t1, t2, t3, and t4. These 
correspond respectively to Monday, Tuesday, Wednesday, Thursday, and Friday. In 
finance, we always work in annualized terms and, therefore, these dates correspond 
to 1/ 255t∆ = , so t0=0, t1=1/255, t2=2/255, t3=3/255, and t4=4/255.
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We then need the grid of stock prices S(t). These are S(t0), S(t1), S(t2), S(t3), and S(t4), 
which we will assign respectively to Monday, Tuesday, Wednesday, Thursday, and 
Friday that are represented as S0, S1, S2, S3, and S4. We already know the value of 
S0, which is the initial price (as observed today), that is, S0=100 on Monday.

Before doing that, we will need a vector of draws from the cumulative standard 
normal distribution as follows:

1 = +0.4423, 2 = 0.1170, 3 = +0.0291, 4 = +0.6872

We can then apply equation 3 iteratively to go from the value of Monday S0 to the 
value of Tuesday S1 as follows:

( )1 0 1 tS S r t tσε= + ∆ + ∆

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1 
with the numerical values as follows:

( )1 (100) 1 (0.05)(1/ 255) (0.30)( 0.4423) (1/ 255) 102.12S = + + + =

We can then calculate the values for the rest of the days as follows:

( )2 (102.12) 1 (0.05)(1/ 255) (0.30)( 0.1170) (1/ 255) 99.47S = + + − =

( )3 (99.47) 1 (0.05)(1/ 255) (0.30)( 0.1121) (1/ 255) 101.82S = + + + =

( )4 (101.82) 1 (0.05)(1/ 255) (0.30)( 0.7373) (1/ 255) 104.21S = + + + =

If we put together these set of calculated stock prices and plot them against time,  
we obtain the following graph:
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Simulated stock prices

Foreign exchange
In the forex asset class, the underlying is the value of an exchange rate. For example, 
the current exchange rate between the euro (EUR) and the British pound sterling (GBP) 
at some particular time. The exchange rate could be EUR/GBP = 1.31, meaning that £1 
will be exchanged by € 1.31, and the current time could be 11:33:24 on May 13, 2013. 

Thus, in mathematical terms, the exchange rate can be represented as a function X(t), 
which is a scalar function of time, just like in the case of equities. The exchange rate 
X(t) is thus modeled as an stochastic variable. In mathematical terms, the behavior 
of X(t) is described using an SDE just like in the case of equities. However, while 
for equities we used GBM, in the case of forex, we will use a variation that comes 
from the work of (Garman-Kohlhagen 1983). According to this model, the stochastic 
differential equation for exchange rates can be expressed as follows:

( ) Q
d fdX r r Xdt XdWσ= − +

Equation 4

In the preceding equation, rd and rf represent the domestic and the foreign risk-free 
interest rates. The volatility σ  is a parameter calibrated to market-quoted instruments.

As we did earlier, before proceeding for the purposes of pricing derivatives,  
we require to transform equation 1 from continuous time into discrete time to  
model the behavior of exchange rates say every day ( 1t∆ =  day).
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We again apply the Euler-Murayama discretization to equation 1 by transforming 
the differential dX into a difference X∆ , keeping the constants constants rd, rf, and σ  
unchanged, and approximating the differential of the Wiener process as the square 
root of delta t multiplied by a draw from a cumulative standard normal distribution, 
as follows:

( )d fX r r X t X Wσ∆ = − ∆ + ∆

1 ( )t t d f t t tX X r r X t X tσ ε+ − = − ∆ + ∆

( )1 ( ) 1 ( )t t d f t t t t d f tX X r r X t X t X r r t tσ ε σε+ = + − ∆ + ∆ = + − ∆ + ∆

Equation 5

As in the case of equation 2, equation 5 is also a linear iterative equation, which we 
can compute iteratively by having a starting value of X0 for a number of time steps 
X1, X2, …, XN. We only need the values of the parameters rd, rf, and sigma and a 
Gaussian random number generator for the value of epsilon.

For example, imagine that we would like to simulate the behavior of the EUR/USD 
exchange rate for the next four days at the last quoted value of the business day 
(known as end of day (EOD)). The current value of the exchange rate EUR/USD  
is 1.33. The domestic risk-free interest rate is 5 percent p.a. and the foreign risk-free 
interest rate is 3 percent pa, while the volatility is at 30 percent pa. How shall  
we proceed?

First we construct a time grid for the business days in which we need the  
values (note that there are 255 business days in a year). These are t0, t1, t2, t3,  
and t4. These correspond to Monday, Tuesday, Wednesday, Thursday, and  
Friday respectively, in turn corresponding to t0=0, t1=1/255, t2=2/255, t3=3/255,  
and t4=4/255 in annualized terms.

We then need the grid of EOD exchange rates X (t). These are X0, X1, X2, X3, and X4. 
We already know the value of X0, which is the initial FX rate (as observed today), that 
is, X0=1.33 on Monday. As we did earlier, before proceeding, we compute a vector of 
draws from the cumulative standard normal distribution to obtain the following:

1 2 3 40.4423, 0.1170, 0.0291, 0.6872ε ε ε ε= + = − = + = +
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We can then apply equation 3 iteratively to go from the value of Monday X0 to the 
value of Tuesday X1 as follows:

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1 
with the numerical values as follows:

( )1 (1.33) 1 (0.05 0.03)(1/ 255) (0.30)( 0.4423) (1/ 255) 1.52X = + − + + =

We can then calculate the values for the rest of the days as follows:

( )2 (1.52) 1 (0.05 0.03)(1/ 255) (0.30)( 0.4423) (1/ 255) 1.47X = + − + + =

( )3 (1.47) 1 (0.05 0.03)(1/ 255) (0.30)( 0.4423) (1/ 255) 1.32X = + − + + =

( )4 (1.32) 1 (0.05 0.03)(1/ 255) (0.30)( 0.4423) (1/ 255) 1.44X = + − + + =

If we put together these sets of computed rates and plot them as a function of time, 
we obtain the following graph:

Simulated exchange rates
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Interest rates
In the interest rate asset class, the underlying is an interest rate. Interest rates are quite 
complex. We can see this if we consider the question "what is the interest rate today?" 
The answer is certainly not simply "5 percent pa" because we also need to specify the 
maturity of the rates (T) we want to know. So interest has one more dimension than 
objects like equities or forex. While the currently observed equity value is a scalar 
quantity, that is, a single number, the current interest rate curve is a vector.

For example, let's consider the spot EURIBOR interest rates observed on May 13, 
2013 for the maturities of 1 month, 3 months, 6 months, and 12 months (as published 
by http://www.euribor-ebf.eu/). We denote these spot rates quoted by R(t,T) 
as R(0,3M)=EURIBOR 3M = 1 percent pa, R(0,6M)= EURIBOR 6M = 2 percent pa, 
R(0,9M)=EURIBOR 9M = 3 percent pa, and R(0,12M)=EURIBOR 12M = 4 percent pa. 
Note that t=0 because we consider May 13, 2013 as the current date.

How would each of these rates evolve into the future? In other words, how can 
we model R(t,T)? We have the following two choices reflecting the two modelling 
schools present in literature:

•	 Short rate models
•	 Market models

The first is the oldest, while the second is more recent.

In the first model, the key modelling variable is an idealization of the interest rate, 
the so-called short rate. It is an infinitesimal interest rate dr that applies to a very 
short time interval. To obtain the interest rate that applies to a full period, we ought 
to add or integrate the effect of all these small interest rates in the period. In the 
second model, the key modeling variable is an actual quoted or market interest rate, 
such as LIBOR. That's why these models are called market models in general, and its 
most famous version is called Libor Market Model.

Short rate models
In continuous time, the short rate can be represented by the following SDE 
developed by Vasicek as follows:

Equation 6
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The preceding equation is a mean reverting process. The parameter  is the mean 
reversion level,  is the speed of the mean reversion, and  is the volatility. The 
parameters , , and  control how the stochastic process behaves. The value 
assigned to  will be long-term interest rate level to which interest rates will tend, 
while  will control how fast interest rates return to the long-term mean level. The 
volatility  controls the magnitude of the "jumps" of the process. These parameters 
can be calibrated to market-quoted instruments, such as options on interest rate 
swaps (known as swaptions).

We can approximate the Vasicek process via the Euler-Murayama methodology 
described previously to obtain a discretized version of the stochastic process,  
as follows:

r = rt( ) t + W

rt+1 rt = rt( ) t + W

rt+1 = rt + rt( ) t + t t

Equation 7

The preceding equation is a linear iterative equation, which we can compute 
iteratively by having a starting value of r0 for a number of time steps r1, r2, …, rN. 
We only need the values of the parameters theta, lambda, and sigma, and a Gaussian 
random number generator for the value of epsilon.

For example, imagine that we would like to simulate the behavior of the short rate  
of interest for the next four days. The current value of the interest rate is 5 percent. 
The parameters = 1.0 and = 2.0, while the volatility is at 30 percent pa. How shall 
we proceed?

First we construct a time grid for the days in which we need the values. These are 
t0, t1, t2, t3, and t4 in order to correspond to Monday (t0), Tuesday (t1), Wednesday 
(t2), Thursday (t3), and Friday (t4), in turn corresponding to t0=0, t1=1/365, t2=2/365, 
t3=3/365, and t4=4/365 in annualized terms.

We then need the grid for the short rates r(t). These are r0, r1, r2, r3, and r4. We will 
assign them to Monday, Tuesday, Wednesday, Thursday and Friday, respectively. 
As we already know the value of r0, which is the initial interest rate (as observed 
today), we have that r0=5 percent on Monday.
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As we did earlier, before proceeding, we compute a vector of draws from the 
cumulative standard normal distribution to obtain the following:

1 2 3 40.4423, 0.1170, 0.0291, 0.6872ε ε ε ε= + = − = + = +

We can then apply equation 3 iteratively to go from the value of Monday r0 to the 
value of Tuesday r1 as follows:

rt+1 = rt + rt( ) t + t t

Alternatively, we can go from the value of Monday S0 to the value of Tuesday S1 
with the numerical values as follows:

We can then calculate the values for the rest of the days as follows:

Market models
Libor Market Model (LMM) is an advanced mathematical model used to price 
interest rate derivatives. Also known as the BGM model after its authors (Brace, 
Gatarek, Musiela, 1997), the LMM has become hegemonic in the financial markets 
worldwide. Literature offers a wide range of publications about the LMM, mostly  
its many variants and its complex advanced issues.
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The LMM in reality can be understood not as a single model, but rather as a large 
family of models (Rebonato 1998) and (Brigo and Mercurio 2006). Its many variants 
include the number of factors considered, the type of volatility modeling used, the 
type of correlation modeling used, whether stochastic volatility or SABR are used, 
whether forward LIBOR rates or swap rates are used, and whether semi-analytical  
or numerical solution methods are used, among others.

Our methodology and notation closely follows that of (Pelsser 2000), which,  
even though succinct, provides a clear introduction to the LMM. From all 
the possible variations of the LMM, in this work, we chose the simplest 
implementation—embodied in the use of lognormal SDEs (GBM) for the forward 
rates and a single Wiener process driving the volatility in all rates (that is, a one 
factor case). Under these conditions, we further explore the use of flat volatility.

We first divide the term structure of interest rates N in a set of forward rates L and a 
set of reset times T as follows:

1 2 3 0 1 2( ), ( ), ( ),..., ( ) and , , ,...,N NL t L t L t L t T T T T

Each of the preceding forward rates will have its own stochastic process driving 
them, which will result in N stochastic processes. Following BGM, we use Geometric 
Brownian Motion (BGM) following (Brace, Gatarek, and Musiela 1997) to describe 
each of these stochastic processes as follows:

Equation 8

We now further simplify the model and use a single factor driving all the forward 
rates. This simplification can be later relaxed into a multifactor LMM. It can be 
shown that by choosing the last rate as a terminal measure, the drift has the form  
as follows:

1

α ( ) ( )dL ( ) ( )dT ( )dW
1 α ( )

N
k k n k n

i i n i n
k k nk i

T L T t L T Ti L T
= +

=− +∑ +

Note that the drift in the preceding GBM equation is a function of the forward rate, 
thus not constant but state-dependent.
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Given the complexity of the processes in the LMM, it is not possible to obtain a 
closed-form solution for all the forward rates. This is not a problem, however, as 
robust numerical methods can be used to solve the discretized version of the forward 
rate. One important method that is widely used for market models is Monte Carlo 
simulation. The forward rates Li(Tn) are the realizations of the spot LIBOR rates. In 
each column, the forward rate Li(Tn+1) is updated using the following discretization:

 
1 1

1
1 1

1

α ( ) ( )( ) ( ) ( ) ( )( )
1 α ( )

( )( ( ) ( ))

N
k k n k n

i n i n i i n n n
k k nk i

N N
i n n n

T L TL T L T t L T T T
L T

T W T W T

−+ +

= +
+ +

+

= − ∑ +
+ −

Equation 9

The preceding equation, like the ones we have shown for equities and forex, ought 
to be solved iteratively using simulation. The forward rates can be arranged in an 
arithmetic table as follows:

In the preceding table, the left column represents the term structure of interest rates 
at time t=0. Given a set of LIBOR rates realized on this for T1, T2, …TN, we can 
extract the future rates that we need for simulation as the ones present in the main 
diagonal of the preceding table.

For example, consider the following paying fixed-for-floating Interest Rate Swap 
(IRS) with a notional of 1 million EUR. This IRS pays 5 percent every 3 months and 
receives EURIBOR 3 months' rate every 3 months. The total maturity of the swap is 
one year, given the following current term structure of interest rates:
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Compute the present value of this swap using the LMM. How shall we proceed?

Term structure of spot rates of interest at t=0 are EURIBOR 3M = 1 percent pa, 
EURIBOR 6M = 2 percent pa, EURIBOR 9M = 3 percent pa, and EURIBOR 12M = 4 
percent pa.

First, we need to compute the initial forward rates by bootstrapping as observed 
from time t=0. We obtain this using the following equation:

Then using the iterative equation 9, we compute the forward the rates into the future 
as follows:

 corresponds to 

We populate the initial forward rates in the left-most column and advance  
column-by-column to the right until we have all the values we need, as shown on  
the right. For more details on the calculation, see the book by (Pelsser 2000). Note  
that even though an IRS can be priced "statically" (that is, without simulation),  
we use this example to give an idea of what are the steps that the LMM method 
requires for calculation.

Credit
In credit derivatives modeling, the underlying is credit risk. Modern methodologies 
of credit risk measurement can be grouped into two alternative approaches—the 
structural approach pioneered by (Merton 1974) and a reduced form approach 
utilizing intensity based models to estimate stochastic hazard rates, pioneered by 
various authors, including (Jarrow and Turnbull 1995), (Jarrow, Lando, and Turnbull 
1997), and (Duffie and Singleton 1999).
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Structural models
The structural approach to credit risk assumes that a firm defaults when the market 
value of its assets is less than the obligations or debt it has to pay. Structural models 
are, therefore, sometimes also referred to as asset value models. These models look 
at a company's balance sheet and its capital structure to assess its creditworthiness. 
However, one of the key problems with this approach is that the value of a company's 
assets is hard to observe directly. The annual report only provides an accounting 
version of the company's real assets and not their market value. For public companies, 
the equity is normally observable, as is its debt. (Merton 1974) starts with the 
assumption of an extremely simplified capital structure of the following form:

Equation 10

In the preceding equation, V represents the value of the firm (the total of the assets of 
the firm), while E is its equity and D its debt. The equity E is understood as the total 
value of the equity of the firm, which is equal to the market value of a share (stock) 
multiplied by the number of shares in the market. For this simplified company, the 
debt is represented by a single zero coupon bond with maturity T.

At this point Merton asks the question "for a company with the preceding capital 
structure, when will it go in default?" Well, depends on our definition of default. 
If we take as default the fact that the company cannot pay its obligations at some 
specific future time T, then this condition will be satisfied if the value of the company 
at time T, that is, V(T) is larger than the face value of debt D(T). At this moment in 
time, the bond holders will request payment and the company will be in position to 
cover it. On the contrary, if at maturity, the value of the firm is less than the value of 
the debt it has to pay, it, therefore, will not be able to honor its obligations and will 
be in default. These two scenarios can be defined mathematically as follows:
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What about equity holders? They are in possession of the company's stock in the  
end. Considering the preceding two scenarios, we then know that if the company 
goes in default, they receive nothing, while if the company continues to operate, 
they receive the difference between V(T) and D(T) at maturity, thus giving us the 
following equation:

Note that the expression on the left can be written succinctly as the single expression 
on the right. The expression on the right-hand side represents the payoff to equity 
holders at maturity. Moreover, this expression has exactly the same form as the 
payoff of a European Call option with the underlying V(t) and strike D. Following 
Merton, we further assume that the dynamics of the firm follow a GBM as follows:

Equation 11

And by doing this, we establish a bridge between credit risk and the pricing of equity 
derivatives. In fact, we can now use all the results from pricing equity derivatives 
to price structural models of credit risk. Note that the volatility σ  is the firm's assets 
volatility and not the equity volatility. The value of the assets of the firm at time t=0 
can therefore be calculated using the Black-Scholes formula as follows:

Equation 12

2
0

1 2 1
In( / ) ( 0.5 )V D r Twith d and d d T

T
σ σ

σ
+ +

= = −

In equation 12, N() is the cumulative standard normal distribution. This is a useful 
expression when we need to calculate problems like Initial Public Offer (IPO) of a 
firm and determine, based on the characteristics of a firm, what should be the fair 
price of its equity.
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For example, imagine that we have a firm that has a total value of its assets of 100 
million USD. The risk-free interest rate is 5 percent. The volatility of the firm's assets 
is assumed to be 20 percent. And the face value of its debt stands at 70 million USD 
payable as a zero coupon bond in four years. What should be the fair value of its 
equity at time t=0?

We use the framework of structural models of credit risk and proceed as follows.  
The parameters are , , , , and . 
Using the preceding formula we obtain the following equation:

Intensity models
The default is a random variable tau (τ) that denotes the time in which the company 
will go in default. Default can be described as bankruptcy, lack of payment, and 
so on. To model the arrival risk of a credit event, we need to model an unknown 
random point in time τ.

Intensity-based models focus directly on describing the conditional probability of 
default without the definition of the exact default event. Intensity models are based 
on the concept of survival probability. It is an idea borrowed from actuarial and 
biological sciences. Survival probability is a decaying exponential function, which 
describes the probability of how long a firm or a country (sovereign) will survive. 
This can be expressed mathematically in the simplest terms as follows:

Equation 13
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But we want to model default, not survival. In fact, we can compute the probability 
of default in some future period [S,T] as shown from the current time t, simply as the 
difference between two consecutive survival probabilities. The probability of default 

 in that future period then can be calculated using the following formula:

Equation 14

The preceding formulas are fundamental for the modeling of credit risk. With 
them, we can describe the likelihood of default, which is a probabilistic event that 
will happen in the future. The cashflows associated with this future event are thus 
contingent on the occurrence of this event. Following the classical framework of 
financial derivatives, thus credit derivatives can be understood as contingent claims, 
in which the event that triggers the future cash flow is default.

To be concrete, consider the simplified situation—we are expecting to receive a 
single cash flow from a company at some future time T. What is the present value of 
this cash flow? 

If we don't consider credit risk, the Present Value (PV) of the cash flow is simply 
the discounted Future Value (FV) of the cash flow. If the discount factor in the 
intervening time is DF, then we can write the simplest formula in finance, which 
states the following:

We can go one step further and assuming continuous compounding with a constant 
risk-free rate r, we can obtain the following equation:

Equation 15

What happens now if we consider the credit risk of the company? The first thing to 
notice is that the cash flow is not any more certain, but it is uncertain. In mathematical 
terms, it is not any more deterministic, but it is probabilistic. Therefore, we ought to 
rewrite the previous equation. But because the future cash flow is unknown, it is in fact 
a random variable. We ought to write it as an expected value of this random variable 
as follows:
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This expectation thus introduces a probability of FV happening or not. But what 
is this probability? The probability that the company will be there in the future to 
make the payment. In other words, the probability that the company has survived 
until then, in other words its survival probability. So we can substitute  with 

 in order to obtain the following formula:

Furthermore, we can explicitly represent the survival probability described 
previously as follows:

We will receive the future cash flow only if the company is present then in the future 
(or has survived) to do it. The final expression for the present value of the cashflow, 
taking into account credit risk, is as follows:

Equation 16

This last expression is interesting as it shows that credit risk is a form of "spread" that 
is added to the risk free rate that we normally use to discount future cashflows.

For example, imagine that we expect to receive 1 million USD from a counterparty 
that has a credit risk, quantified by its hazard rate, of . Assuming that 
the risk-free interest rate , compute the present value of the cash flow 
firstly, without credit risk and secondly, with credit risk. Assume continuous time 
discounting. Assume that the recovery rate is . How shall we proceed?

By applying the preceding formulas, we obtain that without credit risk, the PV is  
as follows:
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Now, if we consider the credit risk, we have the PV as follows:

Note that the second cash flow is smaller than the first. The effect of the credit risk is to 
view the value of the cash flow today (its PV) as reduced because not being certain, it 
has to be multiplied by the chance that it happens (that is, its survival probability).

In the previous analysis, we have assumed that when default occurs, all of the future 
cash flow FV will be lost. However, in most real situations, some fraction of money 
is recovered. If we define this fraction as the recovery rate R, the present value PV of 
the risky future cash flow is still the same, as follows:

But the expectation is now resolved in terms of two possible states, default or no 
default, and each of them is multiplied by its respective probabilities, as follows:

In the preceding equation, we have taken into account the recovery rate R in the case 
of default. The present value of the risky cash flow PV is now as follows:

Summary
This chapter gave an overview of the fundamental models used to price derivatives 
in the modern financial markets. We will now take these models as basis to model 
the underlying of the various asset classes we reviewed and apply a number of 
numerical methods to implement their calculations efficiently in a computer.

In the next chapter, we will concentrate on numerical methods.
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Numerical Methods
In the previous chapter, we reviewed some of the key mathematical models used to 
describe the behavior of the underlying assets of financial derivatives. We saw, in 
particular, how these models are used to describe the future behavior of these assets 
based on the information we have today. These models are generally expressed in 
terms of SDEs and Partial Differential Equations (PDEs).

In this chapter, we are going to describe the three main numerical methods used in 
the financial markets today in the context of financial derivatives. They are a way 
to use actual numerical values to the abstract mathematical formulas we saw in the 
previous chapter. These numerical methods are as follows:

•	 Monte Carlo (MC) simulation
•	 Binomial Trees (BT)
•	 Finite Difference Methods (FDM)

In the context of the Bento Box template, this chapter corresponds to box 3—numerical 
methods. There is a fourth family of methods, less frequently used, called quadrature 
methods, which are used for numerical integration. These will not be discussed here.
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The Monte Carlo simulation method
Monte Carlo simulation is named after the famous casino in the principality of 
Monaco. It is the most widely used numerical method to price financial derivatives 
in the industry because of its simplicity, flexibility, and extensibility.

The basic idea of the method is to construct a simulation engine that will allow us 
to predict a number of possible ways (or trajectories) in which the underlying assets 
can evolve in the future. These trajectories can be thought of as potential economic 
or financial scenarios. With MC simulation, we attempt to answer questions such as 
"given the observed price of Vodafone stock today, what could be the likely prices  
of the stock each day for the next month?"

As we cannot be certain of the future evolution of prices, our result needs to be based 
on probability, and, thus, we need large number of samples. Using the stochastic 
models that we saw in the previous chapter to simulate one possible trajectory, with 
MC simulation, we are going to simulate many possible trajectories and, for each, 
compute the payoff that the contract would have had if the prices had followed that 
specific path in future. Afterwards, we are going to take all these possible payoffs 
and compute their expected value, that is, the mean or average value. This will give 
us an estimate of how much this contract will be worth in the future.

MC simulation then allows us to compute the fair price of a financial derivative as 
its expected discounted payoff. This concept stems from the financial principle of 
fair pricing, which states that the price that a contract should have if the sum of the 
cash flows that we expect to receive are the same as the sum of the cash flows that we 
expect to pay. For more details on MC simulation, you are invited to refer to Monte 
Carlo Methods in Financial Engineering.

In order to have an intuition of why this is the case, consider the following  
simple example:

Imagine that you have bought a plain vanilla European Call option contract at 
time t=0. This contract will give you a payoff of  at maturity 
t=T. Because the value of the underlying at maturity is uncertain, that is, S_T is a 
random variable, the payoff function H(S_T) is also uncertain. We can write that 
the expected value of the payoff function  is the expectation . In 
addition, in a European Call contract, we pay a premium today in order to have the 
right to exercise the option or not at maturity t=T. How much should we pay for the 
premium for this contract today?
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As we said before, in a fair value setting, what we expect to receive should be equal 
to what we expect to pay. By putting all these cashflows together (positive indicating 
to be received, negative to be paid) we can write the following:

•	 Amount paid at t=0 is written as 
•	 Amount to be received at t=T is written as 

If we now compute the present value of these cash flows, we get the  
following equation:

In other words, it can be summarized as follows:

The object of the MC simulation method is precisely to help us compute the 
expectation of the payoff ; once you compute this, discount this value  
to obtain the premium of the derivative.

This same idea can be generalized to more complex settings with many complex 
payoffs and underlyings.

Algorithm of the MC method
For European-type derivatives, MC simulation is composed of the following  
three steps:

1.	 The first step is to generate trajectories.
Simulate M trajectories for the evolution of the underlying from t=0 to 
maturity t=T. In this step, we use the discretized version of SDE that 
describes the evolution of the underlying. In our case, we use GBM as SDE, 
which will allow us to take the value of the stock from its current value 
S_0 to the value at maturity t=T. A discretized version is essentially an 
approximate version applicable to finite time steps rather than continuous 
time steps. For more details, please refer to Monte Carlo Methods in Financial 
Engineering. We discretize the life of the option contract in N steps, each of 
size dt, which can be succinctly written as follows:
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At the end of this step, we should have a vector of M values for S_T, as follows:

These represent a set of possible scenarios for the value of the underlying S at 
time t=T. We use GBM to generate multiple paths that will serve a prediction 
of where the value of S_T will be at maturity.

2.	 The next step is to compute the expectation.
Once we have the set of values of the underlying at maturity, we now need 
to compute the expectation of the payoff at maturity. So we take each of these 
values and compute the payoff for each value as follows:

The preceding equation will give us a vector of payoffs. In order to compute 
the expectation, we need to simply take the average of the payoffs as follows:

3.	 Now discount the expectation to the present.

The final step is to discount the value of the payoff from maturity to the 
present time. In order to do this, we will use the following formula:

Alternatively, we can also use continuous compounding, as follows:

The preceding equation will give us the value of the derivative . Note 
that in this case, we have assumed that there is no correlation between the 
interest rates and the price of stock. That is why we can neatly separate the 
two effects in the preceding equation. If the interest rates and the price of 
stock were correlated, then we will not be able to separate the discount factor 
and the expectation. This no-correlation assumption is standard for simple 
pricing models.
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Example of the MC method
Consider the example where we would like to price a six-month European Call 
option on Vodafone equity (VOD.L). The current equity price of Vodafone is £100.00, 
with a volatility of 20 percent and a strike of £100. We assume that the stock pays no 
dividends. The current risk-free rate is 5 percent pa. How do we proceed to solve this 
problem using MC simulation? We proceed using the following three phases:

1.	 The first step is to generate trajectories.
We apply GBM to simulate the value of VOD.L stock from the spot price 
today S_0 = £100.00. For simplicity, we choose to discretize the life of the 
option from t=[0,T] into N=5 time steps and to do M=5 simulations using 
GBM in discrete terms, as follows:

The five trajectories will thus be as follows:

The prices of the stock at maturity will be as follows:

2.	 The next step is to compute the expectation.
For each of the values of the underlyings, we now compute the payoffs  
as follows:
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We now use the specific form of the payoff to describe a European Call 
option as follows:

We apply the following numbers to the preceding equation to get the 
following result:

The expected value of the preceding calculation is as follows:

3.	 Now discount the expectation to the present.

We now use the following continuous compounding to discount the  
expected payoff we just calculated in step 2 in order to determine the  
value of the premium:

In this example, we have used only five scenarios for our MC price. In 
practice, hundreds or even thousands of scenarios are required in order to 
obtain an acceptable error. Clearly, the more scenarios you use, the more 
accurate the approximation. It is possible to derive some error-bound 
formulas for the MC method and show the speed of convergence. For more 
details, the reader is invited to refer to Monte Carlo Methods in Financial 
Engineering. Putting together all the trajectories for the five MC scenarios, 
we obtain the table shown in the following screenshot. Here, we see that 
all the trajectories start at S0=100 and lead to some final value S5. For each 
trajectory, we compute the payoff H, which is then averaged to compute its 
expected value. The result is then discounted to obtain the present value of 
the derivative.
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Example of the Monte Carlo simulation

The Binomial Trees method
Binomial Trees (BT) can be traced to the work of (Cox, Ross, and Rubinstein 1979). 
Like MC methods, they are based on the idea of how the discretization of stock prices 
can jump up or down. Unlike the MC methods, BT are not based on simulation of 
many possible paths, but on the construction of a single path of possible future prices 
that bifurcates at every node. These prices, as well as their associated probabilities, 
constitute the tree. Once this tree is built, the prices of the underlying at maturity can 
be determined, and the the payoff at maturity can be then computed and discounted 
to the present time in order to determine the premium of the derivative.

Algorithm of the BT method
The BT method when applied to price derivatives is composed of three phases:  
the construction of the tree of prices (forward phase), the computation of the payoffs 
(maturity phase), and the discounting of the payoffs to the present time (backward 
phase). We will now explain the BT method in the simplified context of a two-step 
BT. This can be easily generalized to an N step tree.
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To start with, we assume that the underlying can only go up or down in the next 
time step. So we specify the up factor u to describe how much the value today 
changes to a higher value and the down factor d to describe how much the value 
today changes to a lower value, such that the up value is S(T)= u S(0), and the down 
value is S(T)= d S(0). Furthermore, refer to "Option pricing: A simplified approach". 
The formula for the up and down values can be shown as follows:

The following is the formula for the probabilities of going up:

The probability of going down is . We can now proceed to construct our 
binomial tree in the following three phases:

1.	 The first phase is the forward phase.
Here we construct the tree. Like in MC simulation, time is discretized in steps 
dt from t=0 to t=T. From one step tp, the next price of the underlying can 
either go up or down by a factor u or d as shown in the following formulas:

0At 0 :t S=

1 0 0At :t t uS or dS=

2 2
2 0 0 0At : , ,t t u S udS d S=

Thus, the values of the tree at maturity are as follows:

1 2 2 3 2
0 0 0, ,T T TS u S S udS S d S= = =

In general case, we proceed in a similar manner until we arrive at the 
maturity T, and we have N+1 values for the variable S. We will calculate  
these values with the help of the following equation:
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The preceding equation in our case can be summarized as follows:

This entire process is illustrated in the following diagram:

2.	 The second phase is the payoff phase.
In this phase, we use the values of the underlying at maturity and for each of 
them, we compute the value of the payoff, as follows:

In our case, the equation can be summarized as follows:

The following in turn are the values of the option at maturity T:

In our case, the preceding equation can be summarized as follows:
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3.	 The third phase is the backward phase.
In this final phase, we take the values of the payoff at maturity and proceed 
in a backward manner. We move from the last node to the previous nodes, 
by computing the option value as the discounted expected payoff in the 
previous nodes using the weighted probabilities, as follows:

  
VT 1

k = exp( r t) pVT
k + (1 p)VT

k

In our case, in the second step, the equations are as follows:

  
V2

1 = exp( r t) pV3
1 + (1 p)V3

2

V2
2 = exp( r t) pV3

2 + (1 p)V3
3

And, in the first step, the equation is as follows:

  
V1

1 = exp( r t) pV2
1 + (1 p)V2

2

The premium of the derivative, the option price, is the value .

Example of the BT method
Consider the example where we would like to price a six-month European Call 
option on Rolls Royce equity (RR.L). The current equity price of the stock is £100.00, 
with a volatility of 30 percent p.a. and a strike of £90. We assume the stock pays no 
dividends. The current risk-free rate is 5 percent pa. How do we proceed to solve  
this problem using BT?

To start with, we divide the life of the option in two steps, thus dt=0.25. The tables 
in the following screenshot illustrate the numerical values for each of the three steps 
applied to this problem:

Example of Binomial Trees pricing.
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We first compute the up and down factors as well as the up probability p. In 
numerical terms, these are calculated using the following equations:

The following are the probabilities of going up and down respectively:

With all these parameters, we can now proceed to construct our tree in three phases, 
as follows:

1.	 The first phase is the forward phase.
We can now construct the two levels of the tree as follows.

0A 0 : 100t S= =

1 0 0At : 116,18 or 86.07t t uS dS= = =

2 2
2 0 0 0At : 134.99, 100, 74.08t t u S udS d S= = = =

Thus, the values of the tree at maturity are as follows:

2.	 The second phase is the payoff phase.
In this phase, we use the values of the underlying at maturity, and for  
each of them, we compute the value of the payoff, as follows:

In our case, the equation can be summarized as follows:
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The following in turn are the values of the option at maturity T:

In our case, the preceding equation can be summarized as follows:

3.	 The third phase is the backward phase.

In this final phase, we take the values of the payoff at maturity and proceed 
in a backward manner. We move from the last node to the previous nodes, 
by computing the option value as discounted expected payoff in the previous 
nodes using the weighted probabilities, as follows:

  
VT 1

k = exp( r t) pVT
k + (1 p)VT

k

In our case, in the second step, the equations are as follows:

And in the first step, the equation is as follows:

The Finite Difference method
The Finite Difference (FD) method is a numerical technique that focuses directly on 
the approximate solution of a differential equation. As shown by (Black and Scholes 
1973) for equity financial derivatives (contingent claims), the problem is expressed in 
terms of a Partial Differential Equation (PDE).
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The basic idea of FDM is to discretize a differential equation. The method transforms 
the derivatives in the differential equation into quantities or ratios that approximate 
the derivatives. These quantities are not any more infinitesimal but finite, that is, they 
have a finite length. This is the origin of the name of finite differences. For more details, 
the reader can refer to The Mathematics of Financial Derivatives: A Student Introduction.

Consider the following illustration where a continuous function f(X) and the first 
derivative of the function is defined as follows:

The preceding function is also known as the slope, which is the ratio between the 
growth (or decrease) in the function with respect to the step size dx. Using the 
preceding finite difference allows us to calculate the slope of the f(x) function in 
terms of algebraic quantities.

In quantitative finance, we encounter various types of PDEs. The most important is 
the Black-Scholes PDE, which is expressed as follows:

We now consider solving this equation in a rectangular domain in the S and t axes. 
In the S axis, the domain is [a,b]. In the t axis the domain is [0,T]. This can be written 
mathematically as the domain . In the case of a European Call,  
it has a final condition as follows:

And the following are the boundary conditions:

 and .
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Rather than solving the Black-Scholes PDE directly (that is, using variables S and 
t) we will be following (Wilmott et al. 1995), and we are going to propose a change 
of variables. This will transform the original PDE into an equivalent PDE, which is 
easier to solve and in fact is the classical equation of heat diffusion. The change of 
variables is as follows:

The preceding equations transform the Black-Scholes PDE into the classical equation 
of heat diffusion, as follows:

And the European Call payoff is transformed into the following equation:

where the parameter k is: .

Algorithm of FDM
The application of FDM to the preceding PDE requires the first derivative with 
respect to time and the second derivative with respect to x, which leads to the 
following equations:

The preceding approximations can be derived from a Taylor series expansion.  
See (Wilmott et al. 1995) as we did in the preceding section.
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In order to do this, we need to discretize the domain of the function to a discrete set 
of nodes. In the case of the BS equation, there will be N division's (or N+1) nodes in 
the spatial dimension and M division's (or M+1) nodes in the temporal dimension.

If we now put together our previous approximations, we will obtain the  
following formula:

Solving for the term on the LHS of the preceding equation, we finally obtain the 
following discretized version of the PDE:

Where in the preceding equation .

The discretized version of the PDE can be solved iteratively in time, using the 
explicit or forward finite difference method (FDM) as it's the simplest possible 
implementation of finite difference techniques for pricing options. We are now ready 
to follow the next phases to apply the FDM, which are as follows:

1.	 First, discretize the domain.
Perform this step both in space and time dimensions with time steps .

2.	 Now approximate each of the derivatives with finite differences.
Just as we have shown in the preceding section, we will apply the principle 
of transforming the continuous derivatives of the PDE into a finite 
approximation. This finite approximation will lead to algebraic equations.  
In literature, this set of equations is called a stencil.

3.	 Next collocate the stencil to all the nodes of the domain.
We now apply the stencil to all the nodes in the domain with the exception of 
the nodes that represent the initial and boundary conditions. For these nodes, 
we know the value is a priori, and, hence, it does not need to be computed.
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4.	 Iterate the solution in time with the stencil until we cover the full domain.
In explicit FDM, you simply advance and compute the values for the 
unknown function u. Note that in other forms of FDM (such as implicit 
FDM), we need to solve a system of equations via a matrix problem. Please 
refer to (Wilmott et al. 1995) for further details on implicit methods.

Example of the FD method
Consider the example where we would like to price a six-month European Call 
option on Barclays equity (BARC.L). The current equity price of BARC is £75,  
with a volatility of 30 percent p.a. and a strike of £75. We assume the stock pays  
no dividends. The current risk-free rate is 5 percent pa. How do we proceed to  
solve this problem using the FDM?

We know that equity financial derivatives satisfy the Black-Scholes PDE when the 
stock is modelled using GBM. So we solve the heat diffusion equation we described 
in the previous section. As we did earlier, we apply the following four phases to 
solve our FDM problem:

1.	 First discretize the domain.
We divide the domain into N space divisions dS and M time divisions dt, 
thus N=5 and M=4. We first apply these values both in space and time 
dimensions with time steps .
Thus, we obtain six points in time as follows:

Five points in space is shown as follows:
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2.	 Now approximate each of the derivatives with finite differences as follows.

In the preceding equation, .

3.	 Collocate the stencil to all the nodes of the domain.
The following is the initial condition:

Alternatively, the following is the condition with numerical values:

In the preceding equation, .
The following is the final boundary condition:

 and .

4.	 Iterate the solution in time with the stencil until we cover the full domain.

The following are the internal nodes:
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We can arrange the numerical results from our algorithm as shown in the table  
in the following screenshot, using the transformed variables (upper table) or the 
original variables (lower table), where we can find that for S=75 and t=0, the option 
price is £4,20:

Example of Finite Difference pricing.

Summary
In this chapter, we reviewed the basics of the three key numerical methods used to 
price financial derivatives today. For each of them, we have provided an algorithm 
and a numerical example. Further, more advanced features of these methods can  
be found in excellent textbooks by (Glasserman 2003), (Kloeden and Platen 1992), 
and (Wilmott et al. 1995) as mentioned in all the previously discussed sections.

Not all methods are applicable in all situations, just like the tools in a toolbox.  
Some methods are more effective to solve some specific problems. For example,  
with a binomial tree, it is simple to evaluate American options also, while for  
Monte Carlo, it is not so straightforward. Monte Carlo is more powerful in  
high-dimensional problems, while finite differences can be used effectively  
for low-dimensional problems.
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Equity Derivatives in C++
In the previous two chapters, we described the key mathematical models used to 
simulate the behavior of the underlying assets of financial derivatives (Chapter 2, 
Mathematical Models) and the main numerical methods used to price them (Chapter 3, 
Numerical Methods).

In this chapter, we apply these ingredients to the pricing of equity derivatives.  
We consider two examples: the pricing of a plain vanilla European Call option  
(basic example) and the pricing of an equity basket on the maximum of two assets 
(advanced example). We provide the full working C++ implementation for both.  
Note that if you are new to OOP, it is suggested that you first study the 
implementation in C followed by the implementation in C++, available in the  
code bundle of the chapter.

Basic example – European Call
In this first example, we consider the pricing of a plain vanilla European Call  
option. This example is exceedingly simple but crucial; it will serve as the  
building block for the rest of the option pricing problems to be solved with the 
Monte Carlo simulation. 
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The full characteristics of the contract, the choice of the mathematical model, and its 
numerical method are shown below in the Bento Box template:

THE BENTO BOX TEMPLATE
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The , being aunderlying
stock, can be described
using Geometric Brownian
Motion (GBM):

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

STEP 1: INPUT PARAMETERS
STEP 2: SIMULATIONS LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for 1=1:N

*Compute GBM formula at each timestep
end
STEP 4: COMPUTE PAYOFF

end
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European Call option
Barclays Bank PLC stock
Counterparties are A and B.
Underlying is Barclays stock.
At t=0, A pays B a .premium
At maturity (T=1 year), A will
have the right (but not the
obligation) to buy the
underlying from B for the
strike price K. The payoff at
maturity H is:

Bento Box template for basic example: European Call

Our objective is to calculate the premium of this financial derivative. We proceed  
by completing the contents of the Bento Box in clockwise sense, starting from the 
top-left corner. We first fill all the data of the contract, in particular the payoff 
function, which for a simple European Call is as follows:

( ) max( ,0)T TH S S K= −

Secondly, we ought to select the mathematical model for the underlying, which in 
the case of equities is GBM. Third, we select the numerical method to be used as 
Monte Carlo simulation. Fourth, we construct the algorithm that will integrate  
these calculations as a series of calculation steps, which will serve us as blueprint  
for implementing it in C++.
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The algorithm is shown in box 4 of the Bento Box template. The implementation  
of the algorithm in C++ is shown in code snippets 1, 2, and 3. Code snippet 1 
(maineq1.cpp) is the pricing algorithm proper, while code snippets 2 and 3 are 
auxiliary functions. The algorithm is composed of six steps, which take us from  
the input parameters (STEP 1) to the output of the premium value (STEP 6).

An important feature of this algorithm is the function in code snippet 2 (random.
cpp). This implements the Box-Muller method to obtain random samples from 
the standard normal (Gaussian) distribution that are required for the GBM. Code 
snippet 3 (random.h) is simply the header file of code snippet 2 (random.cpp). The 
Box-Muller method takes two independent samples from a uniform distribution 
and transforms them into a single sample from a Gaussian distribution; this value 
needs to be assigned to the variable epsilon in the code. Certainly, a more efficient 
implementation is possible. The Box-Muller method in fact transforms a couple of 
uniform variables into a couple of normal variables. It would be better to also use 
the second normal sample, generated in the process, in order to be computationally 
more effective. Please refer to the book website for details of this more efficient 
implementation and to the original paper for further details (A Note on the Generation 
of Random Normal Deviates).

As part of the input parameters, we ought to define N and M. Here N represents 
the number of time steps to be used in the GBM calculation, while M represents 
the number of Monte Carlo simulations to be used. In our example, we consider 
the pricing of a European Call option on Barclays stock (BARC.L), whose spot is 
£100, strike £100, risk-free interest rate 5 percent p.a., an annualized volatility of 10 
percent, and a maturity of one year. We use N=500 and M=10,000. In my computer, 
the option premium is £6.81 with an execution time of 1.34 seconds. The value of  
the premium and the execution time will vary from computer to computer.

Note that this code can be easily modified to price other payoffs by simply changing 
STEP 4 in the algorithm. In terms of a C++ implementation, this concept can be 
incorporated using a class to define the payoff. Also, STEP 4 can be slightly modified 
to include an estimate of the accuracy in the Monte Carlo approximation. Please 
refer to the website for downloadable implementations containing these features. 
An excellent textbook describing this example is An Introduction to Financial Option 
Valuation: Mathematics, Stochastics and Computation.
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Code 1 – EQ1 – Monte Carlo European Call

The following is the code snippet for EQ1_main.cpp file:

// maineq1.cpp
// requires random.cpp
#include "random.h"
#include <iostream>
#include <cmath>
#include <algorithm>

using namespace std;
int main()
{
  cout << "\n *** START EQ1: Monte Carlo European Call *** \n";
  // STEP 1: INPUT PARAMETERS
  double T=1; // maturity
  double K=100; // strike
  double S0=100; // spot
  double sigma=0.10; // volatility
  double r=0.05; // interest rate
  int N=500; // number of steps
  int M=10000; // number of simulations
  double S[N+1];
  double sumpayoff=0;
  double premium=0;
  double dt = T / N;

  // STEP 2: MAIN SIMULATION LOOP
  for (int j=0; j < M; j++)
  {
    S[0]=S0; // initialize each path for simulation

    // STEP 3: TIME INTEGRATION LOOP
    for (int i=0; i < N; i++)
    {
      double epsilon = SampleBoxMuller();  // get Gaussian draw
      S[i+1] = S[i]*(1+r*dt+sigma*sqrt(dt)*epsilon);
    }

    // STEP 4: COMPUTE PAYOFF
    sumpayoff += max(S[N]-K,0.0); // compute and ad payoff 
  }

  // STEP 5: COMPUTE DISCOUNTED EXPECTED PAYOFF
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  premium =  exp(-r*T)*(sumpayoff / M);

  // STEP 6: OUTPUT RESULTS
  cout <<"premium =  " << premium << "\n";
  cout << "\n *** END EQ1: Monte Carlo single asset *** \n";

  return 0;
}

Code 2 – random.cpp file

The following is the code snippet for random.cpp file:

// random.cpp
// Computing Gaussian deviates using Box-Muller method

#include "Random.h"
#include <cstdlib>
#include <cmath>
using namespace std;

double SampleBoxMuller()
{
  double result;
  double x;
  double y;

  double xysquare;
  do
  {
    x = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
    y = 2.0*rand()/static_cast<double>(RAND_MAX)-1;
    xysquare = x*x + y*y;
  }
  while
  ( xysquare >= 1.0);
  result = x*sqrt(-2*log(xysquare)/xysquare);
  return result;
}

www.it-ebooks.info

http://www.it-ebooks.info/


Equity Derivatives in C++

[ 56 ]

Code 3 – random.h header file

The following is the code for random.h file:

// random.h
double SampleBoxMuller();

After compiling and running the code, you should obtain the following screenshot:

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Advanced example – equity basket
In this second, more advanced example, we will illustrate the implementation of 
the pricing of an equity basket option, with the payoff being the largest between 
two asset values at maturity. The details of the approach are shown in the following 
Bento Box template:
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THE BENTO BOX TEMPLATE
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STEP 1: INPUT PARAMETERS
STEP 2: SIMULATIONS LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for 1=1:N

*Compute GBM for asset 1 at each timestep
*Compute GBM for asset 2 at each timestep

end
STEP 4: COMPUTE BASKET PAYOFF

end
STEP 5: COMPUTE DISCOUNTED EXPECTED BASKET PAYOFF
STEP 6: OUTPUT BASKET PREMIUM VALUE
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Equity Basket option on the
maximum of two assets.
Counterparties are A and B.
Underlying is Barclays
stock and Rolls Royce stock.
At t=0, A pays B a .premium
At maturity (T=1 year), A will
receive from B the payoff H: i

The , beingunderlyings
a stocks, can be described
using GBM process each:

Use Monte Carlo Simulation
as a method for the
computation of the value of
the discounted expected
payoff.

Bento Box template for advanced example: equity basket

Our aim is to compute the option premium as before.

The details of the contract are in Box 1, particularly the payoff function is as follows:

( 1 , 2 ) max( 1 , 2 )T T T TH S S S S=

Note that this being a basket option with two assets, we will now need two GBM 
processes to describe the evolution of the underlying. This is reflected in STEP 3 that 
has been updated in the algorithm in box 4. We can then use the same MC numerical 
method to compute the expectation of the payoffs.
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The C++ implementation of this algorithm can be found in code snippet 4. There are 
only two slight differences with Code 1: first, regarding the input parameters (STEP 1)  
and second regarding the calculation of the GBM (STEP 4). We now need to specify 
the parameters for both processes, including their spot prices and volatilities. As we 
need to compute two correlated stochastic processes, the two Gaussian samples that 
are required are now computed as follows:

1 1

2
1 1 21

ε ε

ε ρε ρ ε

=

= + −

In the preceding equation, 1 2,ε ε  are two independent samples from the Gaussian 
distribution, while 1 2,ε ε  are the two correlated samples that incorporate the effect 
of the correlation ρ . Epsilon_1 and epsilon_2 remain normal variables, as they have 
unitary variance and the expected value of their product 1 2,ε ε  is equal to ρ .

As we did earlier, we can easily modify the payoff in STEP 5 and incorporate other 
more complicated payoffs.

For example, consider the price of the following basket option:

We have two assets Barclays PLC (BARC.L) and Rolls Royce (RR.L). We want to price 
an option that pays the maximum of the value of these two assets at maturity, which 
is one year. The current spot price of Barclays is £120 and that of Rolls Royce is £100. 
Their annualized volatilities are 10 percent and 15 percent respectively. We choose 
to discretize time in 300 time steps and use 10,000 simulations. The premium for this 
option under these conditions is £120.48 with an execution time of 2.22 seconds.

For further details about basket equity derivatives, you are invited to consult Paul 
Wilmott on Quantitative Finance, 2nd Edition.

Code 4 – EQ2 – Monte Carlo equity basket

The following is the code snippet for EQ2_main.cpp file:

// maineq2.cpp
// requires random.cpp
#include "random.h"
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;

int main()
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{
  cout << "\n *** START EQ2: Monte Carlo equity basket *** \n";
  // STEP 1: INPUT PARAMETERS
  double T=1; // maturity
  double r=0.05; // interest rate
  double S10=120; // spot equity 1
  double S20=100; // spot equity 2
  double sigma1=0.10; // volatility
  double sigma2=0.15; // volatility
  double rho=0.5; // correlation
  int N=300; // number of steps
  int M=10000; // number of simulations
  double S1[N+1];
  double S2[N+1];
  double sumpayoff=0;
  double premium=0;
  double dt = T / N;

  // STEP 2: MAIN SIMULATION LOOP
  for (int j=0; j < M; j++)
  {
    S1[0]=S10;
    S2[0]=S20;
    // STEP 3: TIME INTEGRATION LOOP
    for (int i=0; i < N; i++)
    {
      double epsilon1 = SampleBoxMuller();
      double epsilon2 = SampleBoxMuller();
      S1[i+1] = S1[i]*(1+r*dt+sigma1*sqrt(dt)*epsilon1);
      epsilon2 = epsilon1*rho+sqrt(1-rho*rho)*epsilon2;
      S2[i+1]=S2[i]*(1+r*dt+sigma2*sqrt(dt)*epsilon2);
    }
    // STEP 4: TIME INTEGRATION LOOP
    sumpayoff += max(S1[N],S2[N]);
  }
  // STEP 5: COMPUTE DISCOUNTED EXPECTED PAYOFF
 premium =  exp(-r*T)*(sumpayoff / M);

  // STEP 6: OUTPUT RESULTS
  cout <<"premium =  " << premium << "\n";
  cout << "\n *** END EQ2: Monte Carlo equity basket *** \n";
  return 0;
}
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After compiling and running the code, you should obtain the following screenshot:

Summary
We have solved two pricing problems in equity derivatives. We have seen  
a very simple example (what we called the basic) and a more complex one,  
which included an equity basket option. For each, we have provided the  
complete C++ implementation.

We will now proceed to the next asset class, foreign exchange derivatives,  
where we will also solve two problems, a simple and an advanced one,  
following the the Bento Box template approach in the next chapter.
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We now move to the world of currency or foreign exchange derivatives and how 
to price them using C++. We consider two examples: the pricing of a European 
Call option (basic example) and the pricing of an up-and-out barrier call option 
(advanced example). We provide the full-working C++ implementation for both.  
We follow the model for the evolution of foreign exchange currencies as found in 
"Foreign Currency Option Values". A simpler C implementation (without the OO 
features) can be found in the code bundle of this chapter. If you are new to OOP, 
it is recommended that you first study the implementation in C followed by the 
implementation in C++.

Basic example – European FX Call (FX1)
In this example, we demonstrate the pricing of a plain vanilla European Call  
option on foreign exchange. Our aim here is to calculate the premium of this 
financial derivative.
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The full details of the contract, including the choice of mathematical model and its 
numerical method, are shown in the following Bento Box template for European Call 
FX option (FX1). 

FOREX European Call option on
the exchange rate EUR/USD.
Counterparties are A (EUR
party) and B (USD party).
Underlying is EUR/USD rate. At
t=0, A pays B a . Atpremium
maturity (T=1 year), A will have
the option to buy an amount N
of currency USD from B for the
strike rate K. The payoff at
maturity H is:

The , being a forexunderlying
rate, can be described using
the Garman-Kohlhagen model:

STEP 1: INPUT PARAMETERS
STEP 2: SETUP MESH
STEP 3: SETUP INITIAL CONDITION
STEP 4: SETUP BOUNDARY CONDITIONS
STEP 5: COMPUTE FORWARD DIFFERENCES

for j=0 to M-2
for i=1 to N-2

*compute FDM stencil for each internal node
end I

end j
STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES

THE BENTO BOX TEMPLATE
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Use explicit Finite Difference
method to compute the value
of the option surface and thus
the premium at t=O.

Bento Box template for European Call FX option (FX1)

We proceed by completing the contents of the Bento Box in clockwise sense, starting 
from the top-left corner. The following are the steps to do so:

1.	 Derivative contract: We first fill all the data of the contract, in particular the 
payoff function, which in our case is as follows:

Equation 1

2.	 Math model: We ought to select the mathematical model for the underlying, 
which in the case of currencies is the Garman-Kohlhagen model.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5

[ 63 ]

3.	 Numerical method: We select the numerical method to be used and in this 
case, we choose the finite difference method.

4.	 Algorithm: We construct the algorithm that will put together these 
calculations as a series of calculation steps, which will serve us as blueprint 
for implementing it in C++.

Note that a finite difference algorithm, in contrast to a Monte Carlo simulation, does 
not require a random number generator to operate. All computations are deterministic.

An important feature of finite difference methods is that they require the definition 
of a mesh. This mesh is essentially the collection of coordinates in which the Partial 
Differential Equation (PDE) will be approximated. In the case of equities, the 
Black-Scholes PDE, for example, is defined in terms of two independent variables: 
the stock price S and time t. In the case of currencies, the Garman-Kohlhagen PDE 
is defined in terms of two variables: the exchange rate X and time t. The solution 
domain is therefore the area defined by all the possible values that the pairs X and 
t can take in the X and t plane. For example, if we are considering a European Call 
currency option with strike 1.0 EUR/GBP, spot price 1.0 EUR/GBP and a maturity of 
one year, our solution domain gamma could be defined as the range of values for X 
between 0.5 and 1.5, and the range of values for t between 0 and 1. In mathematical 
terms, this can be represented as follows:

Equation 2

This rectangular domain then needs to be divided or discretized. This means that 
we have to transform it from a continuous into a discrete domain. Usually in finite 
differences, what we do is divide it into a number N of equidistant steps in the X 
axis and into a number M of equidistant steps in the t axis. The result is a grid that 
resembles a mesh and thus the origin of the name.

Note that we present the implementation of the explicit finite difference method, as 
described in Chapter 3, Numerical Methods, using a transformation of variables. This is 
done to transform the original PDE into an equivalent but simplified dimensionless 
PDE, which describes the diffusion of heat. This dimensionless version of the PDE is 
easier to solve using FDM.

Because of this transformation, the solution domain is not changed into two  
new variables x and . And so the PDE is solved in the domain defined by the 
following equation:

Equation 3
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We consider an example of a European Call option on currency with strike 0.75 
EUR/USD with a spot price of 0.75 EUR/USD. The option has six months to 
maturity. We divide the x axis in N=5 steps and the tau axis in M=6 steps. The 
premium under these conditions is 4.36 EUR/USD.

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 9 – FX1_main.cpp (finite difference FX European Call)

The following is the code snippet for FX1_main.cpp file:

// FX1_main.cpp
// requires FX_source.cpp, FX_print.cpp

#include "FX.h"

using namespace std;

int main()
{
  cout << "\n *** START FX1: Finite Difference European Call ***  
    \n\n";

  // STEP 1: INPUT PARAMETERS
  auto T = 0.5; // maturity
  auto K = 75.0; // strike
  auto S0 = 75.0; // spot
  auto sigma = 0.30; // volatility
  auto r = 0.05; // interest rate
  auto dx = 0.5; // space step
  auto dt = 0.1; // time step
  auto N = 5; // number of space steps
  auto M = 6; // number of time steps

  // Construct a FX_EQ1 object from the input parameters:

  FX fx_eq1(T, K, S0, sigma, r, dt, dx, N, M);

  // Ask the object to evaluate the FX data for European Call:

  auto result = fx_eq1.get_data_and_premium();

  // STEP 7: OUTPUT RESULTS

  cout << result;
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  cout << "\n *** END FX1: Finite Difference European Call ***  
    \n";

  return 0;
}

Code 10 – FX1_source.cpp (finite difference FX European Call)

The following is the code snippet for FX1_source.cpp file:

// FX1_source.cpp
#include "FX.h"
#include "matrix.h"
#include <algorithm>
using namespace std;

result_data FX::evaluate_data_and_premium() const
{
  double dtau, alpha, k;

  vector<double> t, tau, S, x;

  matrix<double> u, v;

  matrix_resize(u, N, M);

  matrix_resize(v, N, M);

  // Therefore, both the matrices u, v are resized to N by M
  // Now, let us resize the vectors t, tau, S and x:
  t.resize(M);
  tau.resize(M);
  S.resize(N);
  x.resize(N);

  dtau = dt * (0.5*sigma*sigma);
  alpha = dtau / (dx*dx);
  k = r / (0.5*sigma*sigma);
  double xmin = -1;
  double xmax = +1;

  // STEP 2: SETUP MESH (x and tau grids)
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  for (int i = 0; i < N; i++)
  {
    x[i] = xmin + i*dx;
    S[i] = K*exp(x[i]);
  }

  for (int j = 0; j < M; j++)
  {
    t[j] = j*dt;
    tau[j] = (T - t[j]) / (0.5*sigma*sigma);
  }

  // STEP 3: SETUP INITIAL CONDITION
  for (int i = 0; i < N; i++)
  {
    u[i][0] = max(exp(0.5*(k + 1)*x[i]) - exp(0.5*(k - 1)*x[i]),  
      0.0);
  }

  // STEP 4: SETUP BOUNDARY CONDITIONS
  for (int j = 1; j < M; j++)
  {
    u[0][j] = 0.0;
    u[N - 1][j] = u[N - 1][0];
  }

  // STEP 5: COMPUTE FORWARD DIFFERENCES
  for (int j = 0; j < M - 1; j++)
  {
    for (int i = 1; i < N - 1; i++)
    {
      u[i][j + 1] = alpha*u[i + 1][j] + (1 - 2 * alpha)*u[i][j] +  
        alpha*u[i - 1][j];
    }
  }

  // STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES (u and v)
  for (int j = 0; j < M; j++)
  {
    for (int i = 0; i < N; i++)
    {
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      v[i][j] = pow(K, (0.5*(1 + k)))*pow(S[i], (0.5*(1 -  
        k)))*exp(1.0 / 8.0*(k + 1)*(k + 1)*sigma*sigma*(T -  
        t[i]))*u[i][j];
    }
  }

  result_data result(alpha, dtau, k, x, S, t, tau, u, v);

  return result;

}

For code snippet 11 FX.h, code snippet 12 FX_print.cpp, 
and code snippet 13 matrix.h, please refer to the code bundle 
of the book.

To compute the basic example (FX1), you need to compile and run code  
snippets 9,10,11,12, and 13 (which include a matrix and printing utility);  
afterwards, you should obtain the following screenshot:

Basic example (FX1): FX European Call screenshot with results
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Advanced example – FX barrier option 
(FX2)
In this second example, we consider the pricing of an exotic option: an up-and-out 
barrier with a call payoff. The details of the approach are shown in the following 
Bento Box template for FX Barrier Up and Out option (FX2):

FOREX Up-and-Out Barrier Call
option on the exchange rate
EUR/USD. Counterparties are A
(EUR party) and B (USD party).
Underlying is EUR/USD rate. At
t=0, A pays B a . Atpremium
maturity (T=1 year), A will have
the option to buy an amount N
of currency USD from B for the
strike rate K. The payoff at
maturity H is:

The , being a forexunderlying
rate, can be described using
the Garman-Kohlhagen model:

STEP 1: INPUT PARAMETERS
STEP 2: SETUP MESH
STEP 3: SETUP INITIAL CONDITION
STEP 4: SETUP BOUNDARY CONDITIONS
STEP 5: COMPUTE FORWARD DIFFERENCES

for j=0 to M-2
for i=1 to N-2

*compute FDM stencil for each internal node
end I

end j
STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES

THE BENTO BOX TEMPLATE
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Use explicit Finite Difference
method to compute the value
of the option surface and thus
the premium at t=O.

Bento Box template for FX Barrier Up and Out option (FX2)

Note that there is a great advantage of using Finite Difference Methodology (FDM) 
with respect to Monte Carlo (MC) in pricing a continuously monitored barrier option. 
This is because MC is rather complex to incorporate the continuously monitored 
features, leaving us with little choice but to increase the number of fixing/observation 
points in the MC program. However, this will significantly increase the computation 
time in MC. We do not need to do this in FDM, making it more efficient.
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Our target is to compute the option premium as we did earlier.

An up-and-out barrier is just like a standard European Call option but with one 
crucial difference—if the underlying crosses the limiting upper barrier, the option 
has a value of zero. The pricing algorithm and its implementation are thus almost 
identical, but with the difference that the upper boundary condition will now set  
the value to zero.

Barrier options are useful in finance because their premium is smaller than those  
of standard European options. They are cheaper to the investor, because he/she  
is taking the risk of not exercising it if the level of the underlying is too high  
(up-and-out barriers) or too low (down-and-out barriers).

We consider the same example as we did earlier, but with a barrier B = 1.5  
EUR/USD. The premium for this option under these conditions is 4.11 EUR/USD  
with an execution time of 2.22 seconds.

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 14 – FX2_main.cpp (FDM FX barrier option)

The following is the code snippet for FX2_main.cpp file:

// FX2_main.cpp
// requires FX2_source.cpp, FX_print.cpp

#include "FX.h"
#include <iostream>

using namespace std;

int main()
{
  cout << "\n *** START FX2: Finite Difference"
    << " European Up-and-Out Barrier Call *** \n\n";

  // STEP 1: INPUT PARAMETERS
  auto T = 0.5; // maturity
  auto K = 75.0; // strike
  auto S0 = 75.0; // spot
  auto sigma = 0.30; // volatility
  auto r = 0.05; // interest rate
  auto dx = 0.5; // space step
  auto dt = 0.1; // time step
  auto N = 5; // number of space steps
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  auto M = 6; // number of time steps

  // Construct a FX object from the input parameters:

  FX fx_eq2(T, K, S0, sigma, r, dt, dx, N, M);

  // Ask the object to evaluate the FX data
  // for European Up-and_Out Barrier Call:

  auto result = fx_eq2.get_data_and_premium();

  // STEP 7: OUTPUT RESULTS
  cout << result;

  cout << "\n *** END FX2: Finite Difference"
    << " European Up-and-Out Barrier Call *** \n";

  return 0;
}

Code 15 – FX2_source.cpp (FDM FX barrier option)

The following is the code snippet for FX2_source.cpp file:

// FX2_source.cpp

#include "FX.h"
#include "matrix.h"
#include <algorithm>

using namespace std;

result_data FX::evaluate_data_and_premium() const
{
  double dtau, alpha, k
  vector<double> t, tau, S, x
  matrix<double> u, v
  auto resz = [this](matrix<double>& u, int N, int M) {

    // to make number of rows = 
    u.resize(N);

    // to make number of columns = 
    for (auto& row : u)
    row.resize(M);
  };

  resz(u, N, M)
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  resz(v, N, M);

  // Therefore, both the matrices u, v are resized to N by M
  // Now, let us resize the vectors t, tau, S and x:
  t.resize(M);
  tau.resize(M);
  S.resize(N);
  x.resize(N);

  dtau = dt * (0.5*sigma*sigma);
  alpha = dtau / (dx*dx);
  k = r / (0.5*sigma*sigma);

  double xmin = -1;
  double xmax = +1;

  // STEP 2: SETUP MESH (x and tau grids)
  for (int i = 0; i < N; i++)
  {
    x[i] = xmin + i*dx;
    S[i] = K*exp(x[i]);
  }

  for (int j = 0; j < M; j++)
  {
    t[j] = j*dt;
    tau[j] = (T - t[j]) / (0.5*sigma*sigma);
  }

  // STEP 3: SETUP INITIAL CONDITION
  for (int i = 0; i < N; i++)
  {
    u[i][0] = max(exp(0.5*(k + 1)*x[i]) - exp(0.5*(k - 1)*x[i]),  
      0.0);
  }

  // STEP 4: SETUP BOUNDARY CONDITIONS
  for (int j = 1; j < M; j++)
  {
    u[0][j] = 0.0;
    u[N - 1][j] = 0.0;
  }

  // STEP 5: COMPUTE FORWARD DIFFERENCES
  for (int j = 0; j < M - 1; j++)
  {
    for (int i = 1; i < N - 1; i++)
    {
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      u[i][j + 1] = alpha*u[i + 1][j] + (1 - 2 * alpha)*u[i][j] +  
        alpha*u[i - 1][j];
    }
  }

  // STEP 6: TRANSFORM SOLUTION FROM X TO S COORDINATES (u and v)
  for (int j = 0; j < M; j++)
  {
    for (int i = 0; i < N; i++)
    {
      v[i][j] = pow(K, (0.5*(1 + k)))*pow(S[i], (0.5*(1 - k)))
      *exp(1.0 / 8.0*(k + 1)*(k + 1)*sigma*sigma*(T -  
        t[i]))*u[i][j];
    }
  }

  result_data result(alpha, dtau, k, x, S, t, tau, u, v);

  return result;

}

To compute the advanced example (FX2), you need to compile and run code  
snippets 14 and 15 plus the previous 11, 12, and 13; afterwards, you should obtain 
the following screenshot:

Advanced example (FX2): FX up-and-out barrier call screenshot with results
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Summary
In this chapter, we have solved two pricing problems in forex derivatives. We have 
seen a basic example and a more complex one (plain vanilla) and an advanced 
example (exotic) including a barrier option. For each, we have provided the complete 
C++ implementation.

We will now proceed to the next asset class and interest rate derivatives.
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Interest Rate Derivatives  
with C++

This chapter illustrates the application of C++ to the pricing of interest rate 
derivatives. We will consider two examples: the pricing of a plain vanilla Interest 
Rate Swap (IRS) (basic example) and the pricing of a Cap (advanced example). 
We provide the full working C++ implementation for both. Both the examples are 
solved using one factor Libor Market Model (LMM) and Monte Carlo simulation. 
A simpler C implementation (without the OO features) can be found in the 
accompanying book website. The LMM is described in "The Market Model of Interest 
Rate Dynamics". An excellent description of the Monte Carlo simulation can be 
found in "Efficient Methods for Valuing Interest Rate Derivatives".
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Basic example – plain vanilla IRS (IR1)
In this example, we will demonstrate the pricing of a plain vanilla IRS. The full 
details of the contract, including the choice of the mathematical model and its 
numerical method, are shown in the following Bento Box template:

THE BENTO BOX TEMPLATE
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4

Interest Rate Swap (plain

vanilla)

Contract duration 1 year.

Payments every 3M.

Notional 1 million EUR. Fixed

rate 4%. Floating rate

EURIBOR3M. Flat term

structure at 5%. Volatility

15%

According to the

can be modelled using

Geometric Brownian Motion

(GBM):

Libor

Market Model the floating

rates

Use as a

method for the computation of

the value of the forward rates

using the Pelsser Tableau.

Monte Carlo Simulation

STEP 1: INPUT PARAMETERS

STEP 2: INITIALIZE SPOT RATES

STEP 3: BROWNIAN MOTION INCREMENTS

STEP 4: COMPUTE FORWARD RATES

STEP 5: COMPUTE DISCOUNT FACTORS

STEP 6: COMPUTE EFFECTIVE FV RATES

STEP 7: COMPUTE NUMERAIRE REBASED PAYMENT

STEP 8: COMPUTE IRS NPV

STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF

STEAP 10: OUTPUT RESULTS

for i=1:M (SIMULATIONS)

end

Bento Box template for basic example (IR1)

Our aim here is to calculate the net present value of this IRS, in particular a paying 
fixed-for-floating IRS. In this contract, the holder pays the fixed rate and receives the 
floating rate at regular intervals.
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We proceed by completing the contents of the Bento Box in clockwise sense, starting 
from the top-left corner. First, we will fill all the data of the contract, in particular the 
payoff function, which in our case is as follows:

Equation 1

The present value of the IRS is the sum of the discounted future payments of the IRS. 
Being a paying IRS, we pay the fixed rate K and we receive the future floating rate L. 
This rate is fixed (that is, determined) at the beginning of the period and it runs up to 
the maturity date (when the payment is made).  stands for the respective discount 
factors. Each payment is multiplied by the notional and day count fraction .

Second, we ought to select the mathematical model for the underlying. In the case 
of interest rates, we can choose between short rate models (such as the Vasicek and 
the Hull and White) or the market models (such as LMM). In this chapter, we select 
the LMM to solve these problems. Third, we select the numerical method to be 
used and in this case, we choose the Monte Carlo method. This method will allow 
us to simulate the random behavior of the forward rates. Fourth, we construct the 
algorithm that will put together these calculations as a series of calculation steps, 
which will serve as a blueprint for implementing it in C++.

There are many variations of the LMM, in terms, the number of rates used 
(multifactor), or the underlying used. (The swap LMM uses the swap rate instead of 
the forward rate as fundamental unknown.) In this chapter, we will consider only 
one factor, (lognormal forward) LMM.

The algorithm is shown in box 4 of the Bento Box template. The implementation of the 
algorithm in C++ is shown in code snippets 16, 17, and 18. Code snippet 16 is the main 
code block, code snippet 17 is its associated source, while code snippet 18 contains 
the header file. The algorithm is composed of 10 steps, which take us from the input 
parameters (STEP 1) to the output of the present value of the IRS (STEP 10).

Note that Monte Carlo simulation requires a random number generator to operate. 
We will take advantage of the random number generator, which we developed in 
Chapter 3, Numerical Methods, to price equity derivatives (the Box-Muller algorithm).
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We consider an example of a plain vanilla IRS on a notional of one million EUR. 
The length of the contract is one year and the frequency of payments is every three 
months. The floating rates are therefore indexed to EURIBOR3M. The fixed rate is 4 
percent p.a.

We use LMM with Monte Carlo simulation with 10,000 simulations. We assume an 
initial flat term structure of interest rates at 5 percent p.a. We also assume a volatility 
of 15 percent for the forward rates (this value is usually calibrated from observed 
swaptions in the market).

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 16 – IR1_main.cpp (IRS with Monte Carlo LMM)

The following is the code snippet for IR1_main.cpp file:

// IR1_main.cpp
// requires random.cpp IR1_source.cpp

#include "IR.h"
#include <iostream>
using namespace std;

int main()
{

  cout << "\n *** START IR1: IRS Monte Carlo Libor Market Model 1F  
    * ** \n\n";

  // Plain Vanilla IRS, pays fixed, receives floating
  // freq payments every 3M, maturity 1 year

  // STEP 1: INPUT PARAMETERS
  double notional = 1000000; // notional
  double K = 0.04; // fixed rate IRS
  double alpha = 0.25; // daycount factor
  double sigma = 0.15; // fwd rates volatility
  double dT = 0.25;
  int N = 3; // number forward rates
  int M = 1000; // number of simulations

  // Construct a IR object from the input parameters:

  IR ir1(notional, K, alpha, sigma, dT, N, M);

  // Obtain the value of premium from member function  
    "get_premium()":
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  auto results = ir1.get_simulation_data();

  // STEP 10: OUTPUT RESULTS
  auto sz = results.datapoints.size();
  for (decltype(sz) nsim = 0; nsim < sz; ++nsim)
  {
    cout << "simIRS[" << nsim << "] = " <<  
      results.datapoints[nsim] << endl;
  }

  cout << "\n *** IRS PV = " << results.Value << endl;
  cout << "\n *** END IR1: IRS Monte Carlo Libor Market Model 1F  
    *** \n";

  return 0;
}

Code 17 – IR1_source.cpp (IRS with Monte Carlo LMM)

The following is the code snippet for IR1_source.cpp file:

// IR1_source.cpp

#include "IR.h"
#include "random.h"
#include "matrix.h"
#include <algorithm>
#include <iostream>

using namespace std;

IR_results IR::run_LIBOR_simulations() const
{
  matrix<double> L; // forward rates
  matrix_resize(L, N + 1, N + 1);
  matrix<double> D; // discount factors
  matrix_resize(D, N + 2, N + 2);
  vector<double> dW(N + 1); // discount factors
  vector<double> FV(N + 2); // future value payment
  vector<double> FVprime(N + 2); // numeraire-rebased FV payment
  vector<double> V(M); // simulation payoff

  // Composing the SampleBoxMuller class:

  SampleBoxMuller normal;

  double df_prod = 1.0;
  double drift_sum = 0.0;
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  double sumPV = 0.0;
  double PV = 0.0;

  // STEP 2: INITIALISE SPOT RATES
  L[0][0] = 0.05;
  L[1][0] = 0.05;
  L[2][0] = 0.05;
  L[3][0] = 0.05;

  // start main MC loop

  for (int nsim = 0; nsim < M; ++nsim)
  {

    // STEP 3: BROWNIAN MOTION INCREMENTS
    dW[1] = sqrt(dT)*normal();
    dW[2] = sqrt(dT)*normal();
    dW[3] = sqrt(dT)*normal();

    // STEP 4: COMPUTE FORWARD RATES TABLEAU
    for (int n = 0; n < N; ++n)
    {
      for (int i = n + 1; i < N + 1; ++i)
      {
        drift_sum = 0.0;
        for (int k = i + 1; k < N + 1; ++k)
        {
          drift_sum += (alpha*sigma*L[k][n]) / (1 +  
            alpha*L[k][n]);
        }
        L[i][n + 1] = L[i][n] * exp((-drift_sum*sigma -  
          0.5*sigma*sigma)*dT + sigma*dW[n + 1]); // cout <<"L: i=  
          " << i <<", n+1 = " << n+1 " << L[i][n+1] << "\n";
      }
    }
    // STEP 5: COMPUTE DISCOUNT RATES TABLEAU
    for (int n = 0; n < N + 1; ++n)
    {
      for (int i = n + 1; i < N + 2; ++i)
      {
        df_prod = 1.0;
        for (int k = n; k < i; k++)
        {
          df_prod *= 1 / (1 + alpha*L[k][n]);
        }
        D[i][n] = df_prod;
        // cout <<"D: i = " << i <<", n = " << n <<", D[i][n] = "  
          << D[i][n] << "\n";
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      }
    }

    // STEP 6: COMPUTE EFFECTIVE FV PAYMENTS
    FV[1] = notional*alpha*(L[0][0] - K);
    FV[2] = notional*alpha*(L[1][1] - K);
    FV[3] = notional*alpha*(L[2][2] - K);
    FV[4] = notional*alpha*(L[3][3] - K);

    // STEP 7: COMPUTE NUMERAIRE-REBASED PAYMENT
    FVprime[1] = FV[1] * D[1][0] / D[4][0];
    FVprime[2] = FV[2] * D[2][1] / D[4][1];
    FVprime[3] = FV[3] * D[3][2] / D[4][2];
    FVprime[4] = FV[4] * D[4][3] / D[4][3];

    // STEP 8: COMPUTE IRS NPV

    V[nsim] = FVprime[1] * D[1][0] + FVprime[2] * D[2][0] +  
      FVprime[3] * D[3][0] + FVprime[4] * D[4][0];
  }
  // end main MC loop

  // STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF
  sumPV = 0.0;
  for (int nsim = 0; nsim < M; nsim++)
  {
    sumPV += V[nsim];
  }

  PV = sumPV / M;

  IR_results results(V, PV);

  return results;
}

For code snippet 18 IR.h, please refer to the code in 
the code bundle.
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To compute the basic example (IR1), you will have to compile and run code snippets 
16, 17, 18, 4, 5, and 13 (which include the header, matrix, and random functions). 
Afterwards, you should obtain the following screen:

Basic example (IR1) screenshot with results

Advanced example – IRS with Cap (IR2)
In this second example, we consider the pricing of an IRS with a cap The details of 
the approach are shown in the following Bento Box template advanced example:
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THE BENTO BOX TEMPLATE
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According to the

can be modelled using

Geometric Brownian Motion

(GBM):

Libor

Market Model the floating

rates

Use as a

method for the computation of

the value of the forward rates

using the Pelsser Tableau.

Monte Carlo Simulation

STEP 1: INPUT PARAMETERS

STEP 2: INITIALIZE SPOT RATES

STEP 3: BROWNIAN MOTION INCREMENTS

STEP 4: COMPUTE FORWARD RATES

STEP 5: COMPUTE DISCOUNT FACTORS

STEP 6: COMPUTE EFFECTIVE FV RATES

STEP 7: COMPUTE NUMERAIRE REBASED PAYMENT

STEP 8: COMPUTE CAP PAYOFF

STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF

STEAP 10: OUTPUT RESULTS

for i=1:M (SIMULATIONS)

end

IRS with CAP

Contract duration 2.5 years.

Payments every 6M.

Notional 1 EUR. Strike 5%

Floating rate EURIBOR6M.

Flat term structure at 5%.

Volatility

Bento Box template for advanced example (IR2)

Our target is to compute the net present value of the swap as we did earlier.

An IRS cap is just like a standard IRS but with one key difference—at each payment 
date, we compute the maximum between (a) the difference between the floating rate 
and the strike and (b) zero. With this difference, we compute the value of a caplet; 
the cap is simply the sum of the caplets contained in the IRS.

The algorithm is shown in box 4 of the Bento Box template. The implementation of 
the algorithm in C++ is shown in code snippets 19 and 20. Code snippet 19 is the 
main code block, while code snippet 20 is its associated source.
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Code 19 – IR2_main.cpp (cap with Monte Carlo LMM)

The following is the code snippet for IR2_main.cpp file:

// IR2_main.cpp
// requires random.cpp IR2_source.cpp

#include "IR.h"
#include <iostream>
using namespace std;

int main()
{
  std::cout << "\n *** START IR2: CAP Monte Carlo Libor Market  
    Model 1F * ** \n\n";

  // STEP 1: INPUT PARAMETERS
  double K = 0.05; // strike caplet
  double alpha = 0.5; // daycount factor
  double sigma = 0.15; // fwd rates volatility
  double dT = 0.5;
  int N = 4; // number forward rates
  int M = 1000; // number of simulations

  // Construct a IR object from the input parameters:
  IR ir2(K, alpha, sigma, dT,  N, M);

  // Obtain the value of premium from member function  
    "get_premium()":

  auto results = ir2.get_simulation_data();

  // STEP 10: OUTPUT RESULTS
  auto sz = results.datapoints.size();

  for (decltype(sz) nsim = 0; nsim < sz; ++nsim)
  {
    cout << "Vcap[" << nsim << "] = " << results.datapoints[nsim]  
      << endl;
  }

  cout << "\n *** IRS cap = " << results.Value << "\n";

  cout << "\n *** END IR2: CAP Monte Carlo Libor Market Model 1F *  
    ** \n";

  return 0;
}
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Code 20 – IR2_source.cpp (cap with Monte Carlo LMM)

The following is the code snippet for IR2_source.cpp file:

// IR2_source.cpp

#include "IR.h"
#include "random.h"
#include "matrix.h"
#include <algorithm>
#include <iostream>

using namespace std;

IR_results IR::run_LIBOR_simulations() const
{
  matrix<double> L; // forward rates
  matrix_resize(L, N + 1, N + 1);
  matrix<double> D; // discount factors
  matrix_resize(D, N + 2, N + 2);
  vector<double> dW(N + 1); // discount factors
  vector<double> V(N + 2); // caplet payoff
  vector<double> Vprime(N + 2); // numeraire-rebased caplet payoff
  vector<double> Vcap(M); // simulation payoff

  // Composing the SampleBoxMuller class:
  SampleBoxMuller normal;

  double df_prod = 1.0;
  double drift_sum = 0.0;
  double sumcap = 0.0;
  double payoff = 0.0;

  // STEP 2: INITIALISE SPOT RATES
  L[0][0] = 0.05;
  L[1][0] = 0.05;
  L[2][0] = 0.05;
  L[3][0] = 0.05;
  L[4][0] = 0.05;

  // start main MC loop

  for (int nsim = 0; nsim < M; ++nsim)
  {
    // STEP 3: BROWNIAN MOTION INCREMENTS
    dW[1] = sqrt(dT)*(normal());
    dW[2] = sqrt(dT)*(normal());
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    dW[3] = sqrt(dT)*(normal());
    dW[4] = sqrt(dT)*(normal());

    // STEP 4: COMPUTE FORWARD RATES TABLEAU
    for (int n = 0; n < N; ++n)
    {
      for (int i = n + 1; i < N + 1; ++i)
      {
        drift_sum = 0.0;
        for (int k = i + 1; k < N + 1; ++k)
        {
          drift_sum += (alpha*sigma*L[k][n]) / (1 +  
            alpha*L[k][n]);
        }
        L[i][n + 1] = L[i][n] * exp((-drift_sum*sigma -  
          0.5*sigma*sigma)*dT 
        + sigma*dW[n + 1]);
        // cout <<"L: i = " << i <<", n+1 = " << n+1 <<", = " <<  
          L[i][n+1] << "\n";
      }
    }

    // STEP 5: COMPUTE DISCOUNT RATES TABLEAU
    for (int n = 0; n < N + 1; ++n)
    {
      for (int i = n + 1; i < N + 2; ++i)
      {
        df_prod = 1.0;
        for (int k = n; k < i; k++)
        {
          df_prod *= 1 / (1 + alpha*L[k][n]);
        }
        D[i][n] = df_prod;
        // cout <<"D: i = " << i <<", n = " << n <<", D[i][n] = " 
        //		  << D[i][n] << "\n";
      }
    }

    // STEP 6: COMPUTE CAPLETS
    double diff;
    diff = L[0][0] - K;
    V[1] = max(diff, 0.0);
    diff = L[1][1] - K;
    V[2] = max(diff, 0.0);
    diff = L[2][2] - K;
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    V[3] = max(diff, 0.0);
    diff = L[3][3] - K;
    V[4] = max(diff, 0.0);
    diff = L[4][4] - K;
    V[5] = max(diff, 0.0);

    // STEP 7: COMPUTE NUMERAIRE-REBASED CAPLETS
    Vprime[1] = V[1] * D[1][0] / D[5][0];
    Vprime[2] = V[2] * D[2][1] / D[5][1];
    Vprime[3] = V[3] * D[3][2] / D[5][2];
    Vprime[4] = V[4] * D[4][3] / D[5][3];
    Vprime[5] = V[5] * D[5][4] / D[5][4];

    // STEP 8: COMPUTE CAP PAYOFF
    Vcap[nsim] = Vprime[1] + Vprime[2] + Vprime[3] + Vprime[4] +  
      Vprime[5];
  }
  // end main MC loop

  // STEP 9: COMPUTE DISCOUNTED EXPECTED PAYOFF
  sumcap = 0.0;

  for (int nsim = 0; nsim < M; ++nsim)
  {
    sumcap += Vcap[nsim];
  }

  payoff = D[N + 1][0] * sumcap / M;

  IR_results results(Vcap, payoff);

  return results;
}

We consider the example of an IRS having a cap with a strike 5 percent and a 
maturity of 2.5 years. We assume a flat term structure of 5 percent with a forward 
volatility of 15 percent. Payments are every six months and a notional of 1 EUR.  
The floating rate is EURIBOR6M.
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To compute the advanced example (IR2), you need to compile and run code snippets 
19, 20, 18, 4, 5, and 13 (which include the a header, matrix, and random functions). 
Afterwards, you should obtain the following screenshot:

Advanced example (IR2) screenshot with results

Summary
In this chapter, we have solved two pricing problems in interest rate derivatives.  
We have seen a basic example (plain vanilla IRS) and an advanced example. For 
each, we have provided the complete C++ implementation.

We will now proceed to the last asset class, credit derivatives, in the next chapter.
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Credit Derivatives with C++
In this last chapter, we focus on the application of C++ to the pricing of credit 
derivatives. We consider two examples: the use of the Merton model to price a 
defaultable firm's equity plus the firm's default probability (basic example) and 
the pricing of Credit Default Swap (CDS) (advanced example). The first example 
is based on the structural approach to credit risk, while the second is based on the 
intensity approach. We provide the full working C++ implementation for both the 
examples. A simpler C implementation (without the OO features) can be found in 
the accompanying book website.

Basic example – bankruptcy (CR1)
In this example, we will study the default (bankruptcy) of a firm using the (Merton 
1974) model. For more information, see "On the Pricing of Corporate Debt: The Risk 
Structure of Interest Rates". In this model, the dynamics of the firm are described 
using Geometric Brownian Motion (GBM). The capital structure of the firm is 
assumed to be very simple: the firm's assets (V) composed entirely of equity (E) and 
debt (D). For a given maturity T, default happens if the firm's assets at maturity V(T) 
are less than the value of the debt (D) that the firm has to pay at that time.

In this context, we can study the probability of default of a firm using the Monte 
Carlo simulation. By generating a number of possible trajectories in which the firm 
can evolve and counting the times that the firm satisfies the default condition,  
we can estimate the likelihood of bankruptcy of a firm.
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Our aim is then to calculate the number of times that V(T) are less than the value 
of the debt (D) and use this as an estimate of the Probability of Default (PD). In 
addition to using the same Monte Carlo computations, we can also estimate the 
value of the equity of the firm at time=0.

We now proceed by completing the contents of the Bento Box in clockwise sense, 
starting from the top-left corner. First, we fill all the data of the bankruptcy analysis, 
in particular default condition, which in our case is as follows:

Second, we ought to select the mathematical model for the underlying, which in the 
case of the Merton model is GBM. Third, we select the numerical method to be used 
and in this case, we choose the Monte Carlo simulation. Fourth, we construct the 
algorithm that will put together these calculations as a series of calculation steps, 
which will serve us as blueprint for implementing it in C++.

The algorithm is shown in Box 4 of the Bento Box template for bankruptcy. The 
implementation of the algorithm in C++ is shown in code snippet 1. The algorithm is 
composed of seven steps, which will take us from the input parameters (STEP 1) to 
the output of the premium value (STEP 6).

The Monte Carlo simulation requires a random number generator to operate and 
therefore, the random.cpp file (studied in Chapter 4, Equity Derivatives in C++)  
is re-used.

We consider an example of a firm whose capital structure is composed of the total 
firm's assets at t=0, V(0)=100 million EUR, and a debt composed of a single zero 
coupon bond with a face value of D=70 million EUR. The volatility of the firm's 
assets is assumed to be 20 percent. The maturity is four years. The risk-free interest 
rate is 5 percent pa.

Running the C++ code snippets as shown in the following figure, with 500 steps and 
10,000 simulations, we estimate the probability of default in the four year period to 
be 88.63 percent and the equity value to be E(0)=43.95 million EUR:
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THE BENTO BOX TEMPLATE
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According to Merton’s
model the can befirm
described using Geometric
Brownian Motion (GBM):

Use as aMonte Carlo Simulation
method for the computation of
the value of the firm’s equity as
the discounted expected payoff.

Bankruptcy
The firm’s assets (V) are the
sum of the firm’s equity (E)
and the firm’s debt (D). The
firm defaults if the value of
the assets V(T) is less than
the debt D it has to pay at
maturity. Merton showed
that the firm’s equity is a
European call option with
payoff:

STEP 1: INPUT PARAMETERS
STEP 2: MAIN SIMULATION LOOP
for i=1:M

STEP 3: TIME INTEGRATION LOOP
for i=1:N
*Compute GBM formula at each timestep for firm value V
end
STEP 4: COMPUTE PAYOFF
STEP 5: COMPUTE NUMBER DEFAULTS

end
STEP 6: COMPUTE DISCOUNTED EXPECTED PAYOFF
STEP 7: OUTPUT EQUITY VALUE AND DEFAULT PROBABILITY

Bento Box template for firm's bankruptcy (CR1)

The upcoming code snippets implement the algorithm from the Bento Box template.

Code 21 – CR1_main.cpp (Bankruptcy using Merton model)

The following is the code snippet for CR1_main.cpp file:

// CR2_main.cpp

// It requires CR2_source.cpp
#include "CR2.h"

#include <iostream>

using namespace std;

int main()
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{
  cout << "\n *** START CR2: Credit Default Swap *** \n";

  // STEP 1: INPUT PARAMETERS

  auto T = 1.0; // maturity
  auto N = 4; // number of payments per year
  auto notional = 100.0; // notional
  auto r = 0.05; // risk free interest rate
  auto h = 0.01; // hazard rate
  auto rr = 0.50; // recovery rate

  // Construct a CR2 object from the input parameters:

  CR2 cr2(T, N, notional, r, h, rr);

  // Obtain the value of premium from member function  
    "get_premium()":

  auto cr2_results =  
    cr2.get_pv_premium_and_default_legs_and_cds_spread();

  // STEP 6: OUTPUT RESULTS

  cout << "\n PV premium leg =  "
    << cr2_results.pv_premium_leg << "\n";

  cout << "\n PV default leg =  "
    << cr2_results.pv_default_leg << " \n";

  cout << "\n cds_spread =  "
    << cr2_results.cds_spread_in_bps << "  bps \n";

  cout << "\n *** END CR2: Credit Default Swap *** \n";

  return 0;
}

Code 22 – CR1_source.cpp (Bankruptcy using Merton model)

The following is the code snippet for CR1_source.cpp file:

// CR2_source.cpp

#include "CR2.H"
#include <vector>
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#include <cmath>

using namespace std;

CR2_results CR2::find_pv_premium_and_default_legs_and_cds_spread()  
  const
{
  auto pv_premium_leg = 0.0; // sum premium leg
  auto pv_default_leg = 0.0; // sum default leg
  auto t = 0.0; // current time
  auto cds_spread = 0.0;
  auto array_size = static_cast<int>(N*T + 1);
  vector <double> DF(array_size);
  vector <double> P(array_size);
  P[0] = 1.0;
  auto dt = T / N;

  // STEP 2: LOOP FOR ALL PAYMENTS
  for (int j = 1; j < array_size; j++)
  {
    t = j*dt;
    DF[j] = exp(-r*t);
    P[j] = exp(-h*t);

    // STEP 3: COMPUTE PREMIUM PAYMENTS
    pv_premium_leg = pv_premium_leg + DF[j] * notional*dt*P[j];

    // STEP 4: COMPUTE DEFAULT PAYMENTS
    pv_default_leg = pv_default_leg + DF[j] * (1.0 -  
      rr)*notional*(P[j - 1] - P[j]);
  }

  // STEP 5: COMPUTE CDS SPREAD
  cds_spread = pv_default_leg / pv_premium_leg;

  // Composing the CR2_results class:
  CR2_results results;
  results.pv_premium_leg = pv_premium_leg;
  results.pv_default_leg = pv_default_leg;
  results.cds_spread_in_bps = cds_spread * 10000;
  return results;
}

For code snippet 23 CR1.h, please refer to the code in 
the code bundle.
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To compute the basic example (CR1), you need to compile and run code snippets  
21, 22, 23, 4, and 5 (which include a header and random functions); afterwards,  
you should obtain the following screenshot:

Firm's bankruptcy (CR1) screenshot with results

Advanced example – CDS (CR2)
In this second example, we consider the pricing of CDS. The details of the approach 
are shown in the following Bento Box template for the CDS:
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THE BENTO BOX TEMPLATE
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Pricing a CDS involves a
calculation. Thedeterministic

premium can be calculated by
equating the present value of
the premium and default legs.

Within the Intensity
framework, the underlying C,
has a survival probability P(t)
given by:

Credit Default Swap (CDS).
Counterparties are A and B. A
pays B regular premium
payments in exchange for
credit protection (default of
underlying C with notional N).
B pays A, if C defaults, a one-
off compensation payment of
value N(1-R). The price of the
CDS is the CDS spread or
premium.

STEP 1: INPUT PARAMETERS
STEP 2: LOOP FOR ALL PAYMENTS
for i=1:M

Compute Premium Leg (PL) paymentsSTEP 3:
Compute Default Leg (DL) paymentsSTEP 4:

end
STEP 5: COMPUTE CDS SPREAD
STEP 6: OUTPUT RESULTS

Bento Box template for CDS (CR2)

A CDS is a financial contract between two counterparties A and B, in which one 
party pays to the other party to buy credit protection against the possible default  
of an underlying C.

In structure, the CDS is similar to the plain vanilla IRS, as it is composed of an 
exchange of cash flows between the parties. In a typical CDS with duration of five 
years, counterparty A pays B a series of premium payments at regular intervals  
upon an agreed notional. These payments will be made as long as underlying C 
"survives" (that is, doesn't go in default).

www.it-ebooks.info

http://www.it-ebooks.info/


Credit Derivatives with C++

[ 96 ]

Counterparty B pays A a single contingent payment at the time of default of 
underlying C. The amount paid is equal to the notional minus the recovery rate.  
In mathematical terms, it can be expressed as follows:

Like in an IRS, the "price" of the contract is obtained by computing the present  
value of each leg (the sum of the expected premium payments called Premium  
Leg (PL) and the sum of the expected default payment called Default Leg (DL)).  
In mathematical terms, PL and DL are expressed as follows:

In the preceding equations, P(T) is the survival probability at time t, N is the notional, 
R is the recovery rate, and DF(t) is the discount factor at time t. For fair pricing, these 
legs must be equal and with this, we can determine what should be the fair value of 
the premium paid (also called CDS spread). The value of this spread, denoted by the 
Greek letter , is regarded as the price of the CDS contract, In mathematical terms,  
it can be expressed as follows:

The pricing algorithm we present in the Bento Box template for the CDS attempts to 
compute the premium from the preceding equation.
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As we can see, this calculation is deterministic and therefore no Monte Carlo 
simulation is required. The credit model we illustrate here is an example of "intensity 
models" based on the work of "Pricing Derivatives on Financial Securities Subject to 
Credit Risk".

Code snippet 2 illustrates the implementation of this pricing in C++.

We will consider the example where the contract duration is one year, quarterly 
payments (that is, four payments per year), notional = 100 million USD, risk-free  
rate = 5 percent pa, hazard rate of underlying = 1 percent pa, recovery rate = 50 
percent. For these inputs, the CDS spread is 50.0626 basis points.

In the following figure, we find the Bento Box framework applied to our CDS problem:

THE BENTO BOX TEMPLATE
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Pricing a CDS involves a
calculation. Thedeterministic

premium can be calculated by
equating the present value of
the premium and default legs.

Within the Intensity
framework, the underlying C,
has a survival probability P(t)
given by:

Credit Default Swap (CDS).
Counterparties are A and B. A
pays B regular premium
payments in exchange for
credit protection (default of
underlying C with notional N).
B pays A, if C defaults, a one-
off compensation payment of
value N(1-R). The price of the
CDS is the CDS spread or
premium.

STEP 1: INPUT PARAMETERS
STEP 2: LOOP FOR ALL PAYMENTS
for i=1:M

Compute Premium Leg (PL) paymentsSTEP 3:
Compute Default Leg (DL) paymentsSTEP 4:

end
STEP 5: COMPUTE CDS SPREAD
STEP 6: OUTPUT RESULTS

Bento Box template for CDS (CR2)
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The upcoming code snippets implement the algorithm from the Bento Box template.

Code 24 – CR2_main.cpp (CDS)

The following is the code snippet for CR2_main.cpp file:

// CR2_main.cpp

// It requires CR2_source.cpp
#include "CR2.h"
#include <iostream>

using namespace std;

int main()
{
  cout << "\n *** START CR2: Credit Default Swap *** \n";

  // STEP 1: INPUT PARAMETERS
  auto T = 1.0; // maturity
  auto N = 4; // number of payments per year
  auto notional = 100.0; // notional
  auto r = 0.05; // risk free interest rate
  auto h = 0.01; // hazard rate
  auto rr = 0.50; // recovery rate

  // Construct a CR2 object from the input parameters:
  CR2 cr2(T, N, notional, r, h, rr);

  // Obtain the value of premium from member function  
    "get_premium()":

  auto cr2_results =  
    cr2.get_pv_premium_and_default_legs_and_cds_spread();

  // STEP 6: OUTPUT RESULTS
  cout << "\n PV premium leg =  "
    << cr2_results.pv_premium_leg << "\n";

  cout << "\n PV default leg =  "
    << cr2_results.pv_default_leg << " \n";

  cout << "\n cds_spread =  "
    << cr2_results.cds_spread_in_bps << "  bps \n";

  cout << "\n *** END CR2: Credit Default Swap *** \n";

  return 0;
}
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Code 25 – CR2_source.cpp (CDS)

The following is the code snippet for CR2_source.cpp file:

// CR2_source.cpp

#include "CR2.H"
#include <vector>
#include <cmath>

using namespace std;

CR2_results CR2::find_pv_premium_and_default_legs_and_cds_spread()  
  const
{
  auto pv_premium_leg = 0.0; // sum premium leg
  auto pv_default_leg = 0.0; // sum default leg
  auto t = 0.0; // current time
  auto cds_spread = 0.0;
  auto array_size = static_cast<int>(N*T + 1);
  vector <double> DF(array_size);
  vector <double> P(array_size);

  P[0] = 1.0;

  auto dt = T / N;

  // STEP 2: LOOP FOR ALL PAYMENTS
  for (int j = 1; j < array_size; j++)
  {
    t = j*dt;
    DF[j] = exp(-r*t);
    P[j] = exp(-h*t);

    // STEP 3: COMPUTE PREMIUM PAYMENTS
    pv_premium_leg = pv_premium_leg + DF[j] * notional*dt*P[j];

    // STEP 4: COMPUTE DEFAULT PAYMENTS
    pv_default_leg = pv_default_leg + DF[j] * (1.0 -  
      rr)*notional*(P[j - 1] - P[j]);
  }

  // STEP 5: COMPUTE CDS SPREAD
  cds_spread = pv_default_leg / pv_premium_leg;

  // Composing the CR2_results class:
  CR2_results results;
  results.pv_premium_leg = pv_premium_leg;
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  results.pv_default_leg = pv_default_leg;
  results.cds_spread_in_bps = cds_spread * 10000;
  return results;
}

For code snippet 26 CR2.h, please refer to the code 
in the code bundle.

To compute the advanced example (CR2), you will have to compile and run code 
snippets 24, 25, and 26; afterwards, you should obtain the following screenshot:

CDS (CR2) screenshot with results

Summary
In this chapter, we have solved two pricing problems in credit derivatives. We have 
seen a basic example (using structural models) and a more advanced one (using 
intensity models). There are many possible variations and more complex contracts, 
but these two are the main families that will give you an idea of how to go forward 
in this fascinating asset class. This concludes our survey of examples implementing 
different types of financial derivatives in C++.
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C++ Numerical Libraries  
for Option Pricing

Implementing financial derivatives in C++ could be a complex task. As we have 
shown in this book, it requires knowledge not only of the mathematical models 
and numerical methods required for their implementation in the forms of C++ 
code, but it also requires the use of reliable support mathematical and financial 
libraries. For example, when you need to obtain random samples from a standard 
normal distribution or when you need to invert a matrix. In these cases, instead of 
implementing these algorithms ex novo, what we can do is make use of numerical 
libraries that exists for this purpose. These contain algorithms that have been used 
for many years and therefore have been validated by many users before. Using 
these libraries will significantly accelerate our implementation of advanced pricing 
models. Some examples of these libraries are mentioned in the upcoming sections.

Numerical recipes
License: Commercial.

Website: http://www.nr.com.

A collection of widely used and reliable set of C++ numerical routines can be  
found in the book "Numerical Recipes: The Art of Scientific Computing, 3rd Edition". 
These set of routines are regarded as the "gold standard" by the top universities 
and research institutions around the world. There is an excellent associated website 
that can be found at http://www.nr.com/. The book contains the description of the 
theoretical background of the routines and it gives access to the C++ code. There are  
more than 400 C++ numerical routines covering topics, such as Solution of Linear 
Algebraic Equations, Matrix Algebra, Interpolation and Extrapolation, Integration,  
and Random Numbers.
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Financial numerical recipes
License: Free/GNU.

Website: http://finance.bi.no/~bernt/gcc_prog/.

This website contains a large number of very useful C++ numerical and financial 
programs that have been developed by Bernt Arne Odegaard. They follow the ANSI 
C++ standard and have a large accompanying manual named Circa (250 pages)  
with the formulas used and the references involved. This library can be found at 
http://finance.bi.no/~bernt/gcc_prog/.

The QuantLib project
License: Free/GNU.

Website: http://quantlib.org/.

The QuantLib project is a large project offering software for Quantitative Finance.  
It has been used for modeling, trading, and risk management in the financial sector. 
The software is written in C++ and has been subsequently exported to various 
languages such as C#, Objective Caml, Java, Perl, Python, GNU R, Ruby, and Scheme. 
QuantLib has many useful tools including yield curve models, solvers, PDEs, Monte 
Carlo (low-discrepancy), exotic options, VAR, and so on.

The Boost library
License: Free/GNU.

Website: www.boost.org.

The Boost project offers peer-reviewed portable C++ source libraries that are freely 
available under GNU GPL. These libraries have been created with the intention of 
making them useful and usable across a broad spectrum of applications. Ten Boost 
libraries are included in the C++ Standards Committee's Library Technical Report 
(TR1) and in the new C++11 Standard. Examples include Accumulators, Array, 
Chrono, Filesystem, Geometry, Math, Math/Statistical Distributions, and MPI.
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The GSL library
License: Free/GNU.

Website: www.gnu.org/s/gsl/.

The GNU Scientific Library (GSL) is a numerical library for C and C++. The library 
provides a large variety of mathematical numerical routines, including random 
number generators, special functions, and least-squares fitting. There are over 1000 
functions in total. Examples of the subject areas covered by the library include 
Complex Numbers, Roots of Polynomials, Special Functions, Vectors and Matrices, 
Permutations, Linear Algebra, Eigensystems, Fast Fourier Transforms, Quadrature, 
Random Numbers, Quasi-Random Sequences, Statistics, Histograms, and Monte 
Carlo Integration.
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ISBN: 978-1-78328-093-3            Paperback: 164 pages

Solve a diverse range of problems with R, one of the 
most powerful tools for Quantitative finance

1.	 Use time series analysis to model and forecast 
house prices.

2.	 Estimate the term structure of interest rates 
using prices of government bonds.

3.	 Detect systemically important financial 
institutions by employing financial  
network analysis.

F# for Quantitative Finance
ISBN: 978-1-78216-462-3             Paperback: 286  pages

An introductory guide to utilizing F# for quantitative 
finance leveraging the .NET platform

1.	 Learn functional programming with  
an easy-to-follow combination of theory  
and tutorials.

2.	 Build a complete automated trading  
system with the help of code snippets.

3.	 Use F# Interactive to perform  
exploratory development.

4.	 Leverage the .NET platform and other  
existing tools from Microsoft using F#.

Please check www.PacktPub.com for information on our titles
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Python for Finance
ISBN: 978-1-78328-437-5            Paperback: 408 pages

Build real-life Python applications for quantitative 
finance and financial engineering

1.	 Estimate market risk, form various portfolios, 
and estimate their variance-covariance matrixes 
using real-world data.

2.	 Explains many financial concepts and trading 
strategies with the help of graphs.

3.	 A step-by-step tutorial with many Python 
programs that will help you learn how to  
apply Python to finance.

Microsoft Dynamics NAV 
Financial Management
ISBN: 978-1-78217-162-1           Paperback: 134 pages

Delve deep into the world of financial management 
with Microsoft Dynamics NAV

1.	 Explore the features inside the sales and 
purchases areas as well as functionalities 
including payments, budgets, cash flow,  
fixed assets, and business intelligence.

2.	 Discover how the different aspects of Dynamics 
NAV are related to financial management.

3.	 Learn how to use reporting tools that will help 
you to make the right decisions at the right time.

Please check www.PacktPub.com for information on our titles
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