THE EXPERT’S VOICE® IN C++

(++ 14

Quick Syntax
Reference

Second Edition
Mikael Olsson

Apress-

http://www.it-ebooks.info/

C++ 14 Quick Syntax
Reference

Mikael Olsson

Apress®

www.it-ebooks.info

http://www.it-ebooks.info/

C++ 14 Quick Syntax Reference
Copyright © 2015 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1726-9
ISBN-13 (electronic): 978-1-4842-1727-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Developmental Editor: Matthew Moodie

Editorial Board: Steve Anglin, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,
Michelle Lowman, James Markham, Susan McDermott, Matthew Moodie, Jeffrey Pepper,
Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Copy Editor: Karen Jameson

Coordinating Editor: Mark Powers

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at waw.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781484217269. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217269
www.apress.com/source-code/
http://www.it-ebooks.info/

Contents at a Glance

About the AUthor ... —————— Xv
INtroductioncccusesmsssmnmsssnnmsssnsmsssssnssssnsssssnnssssnnsssnnnnssnnnnsssnnnnssnnns xvii
Chapter 1: Hello World..........cccuunnmmmmmmmmmmnmnsssssssssssssssmssssssssssssssssnns 1
Chapter 2: Compile and RuN..........cccivnisnemnmmmssssssnmmsssssssmssssssssmssssans 5
Chapter 3: Variablesccuemmmmissemnmmmsssssnmmsssssssmmssssssssnssssssssesssnnnns 7
Chapter 4: Operatorsccsseermmsssssssmmssssssnmsssssnnnssssssnnnssssssnnnssssnns 15
Chapter 5: POINters.....ceeemmimmmmmmmssssssssnmmmsmsssssssssssssssssssssssnsssssnns 19
Chapter 6: Referencesc.uuceerrumssseesmmssssnssmmsssssssssssssssssssssssnnsnssnns 23
Chapter 7: Arraysccccccvssesmmssssmmsssssmsssssesssssesssssessssnsssssnssssnnssssans 25
Chapter 8: Stringcccenninemmmmnnsseenmmmssessmmmsessnessssssesssasssesnn 29
Chapter 9: Conditionalsccceunsssemnmmmssseenmmmsssessnnssssssnnsssssnsnnnnn 33
Chapter 10: LOOPS.....ccuserrssemmmsssnmssssnssssssssssssssssssnsssssnssssansessansessnns 35
Chapter 11: FUNCHIONScceutiiiimmmmnsemsssnninmmsssssssssssssnnsssssssssssssnn 37
Chapter 12: Classcuueesmmmsssemsmmmssssssmmsssssnsnsssssssssssssssnsssssssnnsnssssss 47
Chapter 13: Constructorccccvviemmmisenmmssenmmssesmmssessmsssssssssssssssnns 51
Chapter 14: Inheritance.........ccuneeemmmnmnmmmmmmsesssssnn————————— 59
Chapter 15: Overridingcccouussemnmmmssssnnmmssssssnssssssssnssssssnsnsssssnnns 63
Chapter 16: Access LeVels.......ccunummmmmmnsmmnmmmsssssssmssssssssssssssssssssssnns 67
Chapter 17: Static.......cccimnnemmmmmnnemnmmmnessnmsssssssssssssn——. 71
iii

www.it-ebooks.info

http://www.it-ebooks.info/

iv

CONTENTS AT A GLANCE

Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:
Chapter 27:
Chapter 28:

ENUM ..o s ssss s s s s s s s s nnnnnnnns 73
Struct and Unionccoccennsmmnsnsmsssmssssssmssssssassnsns 77
Operator Overloading.........cccussssmenssssssnnnsessssnnnsnsssnnns 81
Custom CONVErsionscusmsesmsssssssssssnsssssssnssassnnns 85
NameSPACES....ccuememmmmmsssssssssnsnnnnnnnssssssssssnnnnnnnnsssssssnns 89
Constants.........commm s ———— 93
PreproCeSSOr...ccccmmemmmrrssssssssssnnnnnnssssssssssssnsnnnnnsssssssnns 99
Exception Handlingcccusseemmsssnnmsssnsssssnsssssnsssssnns 107
Type CONVersionSuceurrsssssnnsssssssnnnsssssssnnsssssnnnnssss 111
Templates.........cccnn—————————————— 117
Headers.........cccmmmmmmmmmmmsmmsnmmsssnnssmssssnsssnssssnassnssnnnns 125
... 129

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

About the AUthOrccccmmmnmmmmnesssnes s Xv
Introductionccccciseemnmnisennnmnnssssn s ——————— Xvii
Chapter 1: Hello World..........cccunnnmmmmmmmmmmmmmssssssssssssnnsmssssssssssssssssnns 1
ChooSiNG N IDEccvierieresrserre s s sns s sss e sssssssens 1
Creating @ ProjECt........coevevereere e sessesssessesessessesssssssssssnsssssnssnnns 1
Adding @ SOUICE Filecceeueeeeeeeeeeceececrecre e s 1
Ly e (00 o Lo 2
USING NAMESPACEc.ceveererrerirreree s rsee s e sne s sae s s sne s s sne s s sne s 3
INTEIlISENSE......cceeerecrr s 3
Chapter 2: Compile and RuN..........cccivnsnnemmmnmsssssnsmmssssssssssssssssmssssnns 5
Visual Studio Compilation............ccccvervriniensnss s 5
Console ComPilatioN..........cceveerreerrerieerserree s e sse s esneenes 5
COMMENTS ... 6
Chapter 3: Variablescccovurummmmmssssssnmmmmmmmsssssssssssssssssssssssssssssnns 7
D7 L B] LTRSS 7
Declaring Variables.........c.coocvercrcncncn e 8
AssSigning Variablesccvvrvrnnnnsir s 8
Variable SCOPEccvceeerererrerire st s sn s s sa s 9
INTEGET TYPES ...eeeeeeeeeererre e rre e e s s s snesaesn e snesnesresresnennenens 9
Signed and Unsigned INTEGErScccvvrrrerrrrenrerses s s sessessessasenns 10
v

www.it-ebooks.info

http://www.it-ebooks.info/

vi

CONTENTS

NUMEKIC LItEralScoreecrerecrereeresee s s 11
Floating-Point TYPES......cceceveeerr s 11
Literal SUFfIXESccerierereriirssere s 12
L8 1 T 1 o - 13
BOOI TYPE ... 13
Chapter 4: 0peratorsccocumnmmssssssnnnmmmmmssss s ——————— 15
Arithmetic Operators..........ccoeererrrrereserr s 15
AsSIgNMeENt OPErators.........coceeeriererseresessesssse s sese s sss s ssssessesssssnens 15
Combined Assignment Operators.........c.ccuevverrerrerrersessensessessessessessessenns 16
Increment and Decrement Operators...........cccceevercercercssssesses s sessennes 16
Comparison OPErators...........ccceververrersersessessessesses s s ses e s sessessessesenns 16
Logical OPeratorsccocvvereererrerree s ses e ses e se e se e se e s 17
Bitwise OPerators.........cccceeeeeereesresssssssss s s s sesses s s ses s 17
Operator PreCedeNCe.........ccuververrerrerrerrer st n e 18
Chapter 5: POINters.....cccoiuuummmmmssssnsmmsssssnsnssssssnnssssssnssnsssssnnnnnsssnnns 19
Creating POINTErS.........coeeeiern e 19
Dereferencing POINters..........ccccevirverirrnnsinsr e 19
Pointing t0 @ POINTE ..o 20
Dynamic AllOCALION..........ccvcerereriererserresese e snas 20
NUI POINEET ...t 21
Chapter 6: Referencesc..ccccuuusssmnnmsssssnsnmssssssnsssssssssssssssssssssssnnns 23
Creating REfErenCes........ccuveverererencre s e 23
References and POINErScccvrvrennisnnsnnssese e 23
Reference and Pointer GUideline............ccccorvvenernscnersscnesnssesesesesesnenes 23
Rvalue RefErence ... 24

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 7: Arrays ...ceescmmsssnmmmsssssmmssssssnssssssssssssssssssssssssnnsssssnnns 25
Array Declaration and Allocation.............ccceeeeeeeresesesesesse e see e 25
Array ASSIGNMENTcoevicerere e ns 25
Multi-dimensional Arraysccccveerersessessessessessssssssesssssssssssssssssssssssssnes 26
DYNAMIC AFTAYSceereririrer st sn s sn s nnnn s 26
L (TS 2 SRS 26
Chapter 8: Stringccccvinemmmmmssssnnmmnsssssnmmnssssnmsssssnsesassn s 29
String COMDBINING......cvvirrrrrr e saenenens 29
Escape Charactersoccevvevesincsnscse e sns e 30
StriNG COMPANEeeceeeerecercre e sn e sn s sn e snesn e sasnenans 31
L[0T (0] S 31
String ENCOAINGSccvvueeerircrircrie et 31
Chapter 9: Conditionalscccuummmsmmnnnnmmmmmsssssss———— 33
If StatemMEeN.......ooeee e ———— 33
Switch Statement..........cccocvcrnircr e —————— 34
Ternary OPEratorcccvvvverrnsenser s a e aenes 34
Chapter 10: LOOPS....cuuseummmmsssmnnmmsssssnnmssssssnsssssssnnnssssssnnsssssssnnnsssssns 35
L1 L= 0o 35
DO-WHIlE LOOPeeerererircire s s s s sn e snssn s sn s n s snssn e snennesne s 35
FOr LOOP .ottt n e s n e 35
Break and CONtiNUE..........ccovecrerercrerescre e 36
Goto Statement ... —————— 36
Chapter 11: FUNClionsccccinnnsemnmmnssesnmmssssssssnssssssssssssssnssnssnns 37
Defining FUNCHIONScccevcercrce e 37
Calling FUNCHONS.......cccierrieresrrersse e 37
Function Parameters.........cccovvrnicnnnnsssssess s 38

vii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Default Parameter Values............cccoreerrcnernsncrsssersee s 38
Function Overloadingc.ccoovvreeerennsnierssess s enas 38
Return Statement ... 39
Forward Declaration............cccvveererenerenencresesesese e 39
PaSS DY VAIUE ...t 40
Pass by REfEreNCe........ccccvvernnerenenirn e 40
Pass hY AdAreSScccceeerverrerer s s ne s 41
Return by Value, Reference or Addressc.cccocevververvennensesiensessensaens 41
ININE FUNCHIONScoviirrecercree e 42
Auto and DECIYPEcocererrerr e 42
Lambda FUNCHIONS........ccccoiirirr s 44
Chapter 12: Class ...cuueeerrissssssmmmssssnssmsssssssnmsssssssssssssssssssssssssssssssnns 47
Class Methods...........cocrrernnerinne e 47
INiNE MELNOMS........ccoeiirreererre e 48
0bject Creation.........cccveerrerversensesseres s eeens 48
Accessing Object Members..........ccceeeeecrcrcecsce e 48
Forward Declaration...........ccoeeeverenserenessesnsesesesse s ssesessesensesnas 49
Chapter 13: Constructorccccusemmmmmssssnmnmmssssssnmssssssssssssssssnsssssnns 51
Constructor OVerloading..........c.cceeeereresserresessesessesesessesse e ssesessens 51
LT E T3 A0 (o 52
Field Initialization ... 52
Default CoNSIIUCTON ... 53
DESIIUCTON ... 53
Special Member FUNCLIONS..........c.ccocevrcercercr e 53
Object Initialization..........ccoeeverererrerrr s 54
Direct Initialization ... 54
viii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Value INitialization ... 54
Copy INitializationccevveeenriernscserre e 55
New Initidlization...........c.cvveeiiernnnnienne e 55
Aggregate Initializationcoceveeverererrrrr e ——— 55
Uniform Initialization ... 96
Chapter 14: Inheritance.........cccumeemmmmnnmmmmmmssss e ————— 59
UPCASEING ...cveeereeereerre e e sesrssne s nesnesn e sn e sn e nnenn e sn e nn e nnenne s 59
DOWNCASTING......ccerrrrreriseresrsse s 60
Constructor INhEritance..........coccocerrvererrscsersses s 60
Multiple INREIItANCEcceoeeirerr s 61
Chapter 15: 0verridingcccsuvnssseenmmsssssnsssssssssnsssssssnssessssnnssssssnns 63
Hiding Derived MemDErS........cccvcvercercrrir s 63
Overriding Derived MEMDENSccccceveerierenmresnsesesessesss e ssssessssesnes 64
Base Class SCOPING.......ccucerverrerrerserserserserses s sessesssssessssssssessssssssssssssssnes 65
Chapter 16: Access LevVels........ccuuummmmmmsssmmmmmnssssnnmmsssssssmssssssssssssnns 67
Private ACCESS......cocuiirerrircrire s 67
Protected ACCESS.......oocrerircririre s 68
PUDIIC ACCESSooueeerreernssissessssesss s e ssssessessssesse s e ssssssssssssssssssssessnsssnes 68
Access Level GUIAENINE........c.occocerererererereneeresse s esessssenens 69
Friend Classes and FUNCLIONS ... 69
Public, Protected and Private Inheritanceccoccvevevimrinncsenssenninnnns 70
Chapter 17: Static.......ccccnmmmnmmmmmnmsmmnmmmssssnmmsssssnmmssssssmsssssnnnes 71
STaAtiC FIeldS......coveeereerrerree e I4
Static MEthods ..o 72
Static Local Variablesccovverennnennnnncsinsessss s sesens 72
Static Global Variables............ccccerierernneserneserrese s 72

ix

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 18: ENUM........cccocmmmsemmmsssnmmsssssmsssssssssssesssssssssnsssssnssssnnnes 73
ENUM EXAMPIE ...ttt 73
Enum Constant ValUES..........cccoreeirercnerneirsee e 74
ENUM CONVEISIONS.....ccoeereriecreseeresee e ses e e e ssesnnnes 74
ENUM SCOPE ...t sn s 74
Strongly Typed ENUMS.......ccocvvrierierrerrer e 75
Chapter 19: Struct and Unioncccciseemmmnnsssmmmmmssssssmmssssssnmnsssans 77
R3] (1 77
Declarator List ... 77
UNION e 78
ANONYMOUS UNION ... 79
Chapter 20: Operator Overloading..........cccussseennmssssannnsssssannsssssnnns 81
Operator Overloading EXample..........ccccvrvrvrrnnennensessenses s sessessennes 81
Binary Operator Overloading..........cccceeeeereesessesssssesssssesssssssssssessessessennes 81
Unary Operator Overloading.........cccucveeesnernnmsssessssssssssessessssesssessesnns 82
Overloadable Operators..........cuoerrereressenesssese s seenes 83
Chapter 21: Custom CONVErsionscccrmmmsssmsnmsssssssnssssssssssssssnns 85
Implicit Conversion CONSTIUCTONcccvvevierreerierre s see e e esaessnesaess 85
Explicit Conversion CONStruCtorcccceeeeeereceereesee s 86
Conversion OPErators.........ccccceeerereeresreesseses s ses e ses s sessesssssessesssssesnes 86
Explicit Conversion OPeratorsccoccverereeresressessessessesses s sessessessesnes 87
Chapter 22: NameSPACES...usuuerrrssssnnssrssssnnsssssssnnnssssssnnnssssssnnsssssnnns 89
Accessing Namespace Members........ccccocrrerrerrrssensessessessesssessesssenns 89
Nesting NameSPACESccceeererrerrerrerrerrerse e sse e sse e ssssnssns s snssnssnssnenes 90
IMporting NameSPACEScccevereerrererieree e sse e ses e sn e s s 90

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Namespace Member IMPOrt.........ccccvvrrcrnvnrrrrre e sne s 90
NamMESPACE Ali@S.......ccceererrerrerrerrerrerse e e sse e e ssessessesrssassnssassassnsssssnanes 91
TYPE AlIASeverererirerer st n s 91
Including Namespace Members.........ccocevvverrrrrenrsnes s sesseens 92
Chapter 23: Constants.........cccennnsmmmmmsssssnnmmssssssnmsssssssnssssssssnsssssnns 93
Constant Variables...........covccerrrenmrricrersese e 93
Constant POINTErS.........ccovienrncrr et 93
Constant REfEreNCeScuccverrernnmrenssse s 94
Constant ObJECEScccvuerererere s 94
Constant Methods ..o 94
Constant Return Type and Parameters..........cccecevevvrrrrrscssessessencennn 95
Constant Fields.........covocerrenrnererrere e s 95
Constant EXPreSSioNS........cceceerreerersessessessessesssssssssssssssssssssssssssssssssssenes 96
Constant GUIAEIINEccoveerenmrierensesesesse s se e ssssesnes 97
Chapter 24: PreproCeSSOr....ccccuuussssssmsssssnnsssssssnnnssssssnnnssssssnnnssssnnns 99
INClUdiNg SOUICE FilES.....cceceeeeirerrrerresr e ses s e 100
DEfING ...t ————————— 100
010 L] 1 T R 101
Predefined MACKO0Sccocceerriereneresrsse e sneennens 101
MaCI0 FUNCLIONS........cccciiirrrrerne s 101
Conditional Compilationccceeeeerererenesese e 102
Compile if DEfiNed........cccvverierrerrer e nene s 103
EITOF 104
LN, e nn e nn e nan 104
Pragma.......cocooiecre e 104
ALFDULES......cce e ———— 104

xi

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Chapter 25: Exception Handlingc..cccusemmmmssnmmsssnsmsssssssssnssssnns 107
Throwing EXCeplions........cccocvcrirrrceniessesseres s ses s 107
Try-catch statement ... 107
Re-throwing EXCEpLioNS.........cccceeeeeercessessee s 108
Exception Specification...........ccceereeercecrcscee e 108
(=] [0 04 T 109
Chapter 26: Type CONVErSioNScccurssssssnssssssnsnssssssssnssssssnnnssssss 111
IMPIICit CONVEISIONS.....ccierieererrerrerreeseessesessseseessesssessessasssessssssesssesns 111
EXPIiCit CONVEISIONScovcceiuerercrreereres s se e snens 112

Gt CASTES vruecunrrrresesssns e s e s e s e b
STAtiC CaSL ... 112
Reinterpret Castooeveevieererrerrerre s ses e see e sesssessse e ssssssesssesns 113
0] L] 0 L R 113
C-style and New-Style Casts..........cccvvrrrrrrrssses s 114
D310 Ty 1o 0 T 114
Dynamic Cast EXamples.........cccoverernirenniesnsseseseses s sssensens 114
Dynamic or Static Cast..........cccoevvrvrrrrrrr s 115
Chapter 27: Templates........cccurmrmisnmmssansmsssnsmsssssssssssssssssssssnssssnns 117
Function Templatescccoceveverecrcscrcr e 117
Calling Function Templatesccccvvrvrvrrrrrrnrrserrer e 118
Multiple Template Parameters..........ccccovvrrressessessessesss s 119
Class TEMPIALESccocereerrerrerrirer s 119
Non-Type Parameters.........ccccvvervrrerinnenes e sse s snene 120
Default Types and Values...........cceceeeercercrcrsssses e 121
Class Template Specialization...........c.ccoccvvrvrrrrersrrs s 121

xii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

Function Template Specialization............cccverreerirrerinrersenseersesseennes 122
Variable TeMPIAtesScccceeeeerere e sne e 123
Variadic Templatescccoceeevererercrc e 123
Chapter 28: Headerscuerrsssmsmsssnsmsssnsssssssssssssssssssssssnnssssnnsssas 125
Why t0 Use Headers.ccccvvervrvernensersessis s snssnssnsnns 125
U T0 g [5T2 To [=] J 126
What to Include in Headers...........ccovvrenrnennnncnncseseseseseseseses 126
INCIUAE GUAKTS ... 128
1T - 129
xiii

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mikael Olsson is a professional web entrepreneur, programmer, and author. He works for
an R&D company in Finland where he specializes in software development. In his spare
time he writes books and creates websites that summarize various fields of interest.

The books he writes are focused on teaching their subject in the most efficient way
possible, by explaining only what is relevant and practical without any unnecessary
repetition or theory.

XV

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

The C++ programming language is a general purpose multi-paradigm language created
by Bjarne Stroustrup. Development of the language started in 1979 under the name
“Cwith classes.” As the name implies, it was an extension of the C language with the
additional concept of classes. Stroustrup wanted to create a better C that combined

the power and efficiency of C with high-level abstractions to better manage large
development projects. The resulting language was renamed to C++ (C-Plus-Plus) in 1983.
As a deliberate design feature C++ maintains compatibility with C, and so most C code
can easily be made to compile in C++.

The introduction of C++ became a major milestone in the software industry as a widely
successful language for both system and application development. System programming
involves software that controls the computer hardware directly, such as drivers, operating
systems, and software for embedded microprocessors. These areas remain the core
domain of the language, where resources are scarce and come at a premium. C++ is also
widely used for writing applications, which run on top of system software, especially
high-performance software such as games, databases, and resource-demanding desktop
applications. Despite the introduction of many modern, high-level languages in this
domain - such as Java, C#, and Python - C++ still holds its own and overall remains one
of the most popular and influential programming languages in use today.

There are several reasons for the widespread adoption of C++. The foremost
reason was the rare combination of both high-level and low-level abstractions from the
hardware. The low-level efficiency was inherited from C, and the high-level constructs
came in part from a simulation language called Simula. This combination makes it
possible to write C++ software with the strength of both approaches. Another strong
point of the language is that it does not impose a specific programming paradigm on its
users. It is designed to give the programmer a lot of freedom by supporting many different
programming styles or paradigms, such as procedural, object-oriented, and generic
programming.

C++ is updated and maintained by the C++ standards committee. In 1998, the first
international standard was published, known informally as C++98. The language has
since undergone three more revisions with further extensions, including C++03; C++11;
and most recently, C++14, which is the latest ISO standard for the C++ programming
language released in 2014.

xvii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Hello World

Choosing an IDE

To begin developing in C++ you need a text editor and a C++ compiler. You can get both at
the same time by installing an Integrated Development Environment (IDE) that includes
support for C++. A good choice is Microsoft's Visual Studio Community Edition, which

is a free version of Visual Studio that is available from Microsoft’s website.! This IDE has
built-in support for the C++11 standard and also includes many features of C++14 as of
the 2015 version.

Two other popular cross-platform IDEs include NetBeans and Eclipse CDT.
Alternatively, you can develop using a simple text editor - such as Notepad - although
this is less convenient than using an IDE. If you choose to do so, just create an empty
document with a .cpp file extension and open it in the editor of your choice.

Creating a Project

After installing Visual Studio, go ahead and launch the program. You then need to create a
project, which will manage the C++ source files and other resources. Go to File » New »
Project in Visual Studio to display the New Project window. From there select the Visual
C++ template type in the left frame. Then select the Win32 Console Application template
in the right frame. At the bottom of the window you can configure the name and location
of the project. When you are finished, click the OK button and another dialog box will
appear titled Win32 Application Wizard. Click next and a couple of application settings
will be displayed. Leave the application type as Console application and check the Empty
project checkbox. Then click Finish to let the wizard create your empty project.

Adding a Source File

You have now created a C++ project. In the Solution Explorer pane (View » Solution
Explorer) you can see that the project consists of three empty folders: Header Files,
Resource Files and Source Files. Right click on the Source Files folder and select Add »
New Item. From the Add New Item dialog box choose the C++ File (.cpp) template.

'http://www.microsoft.com/visualstudio

www.it-ebooks.info

http://www.microsoft.com/visualstudio
http://www.it-ebooks.info/

CHAPTER 1 " HELLO WORLD

Give this source file the name “MyApp” and click the Add button. An empty cpp file
will now be added to your project and also opened for you.

Hello World

The first thing to add to the source file is the main function. This is the entry point of the
program, and the code inside of the curly brackets is what will be executed when the
program runs. The brackets, along with their content, is referred to as a code block, or
just a block.

int main() {}

The first application will simply output the text “Hello World” to the screen. Before
this can be done the iostream header needs to be included. This header provides input
and output functionality for the program, and is one of the standard library files that come
with all C++ compilers. What the #include directive does is effectively to replace the line
with everything in the specified header before the file is compiled into an executable.

#include <iostream>
int main() {}

With iostream included you gain access to several new functions. These are all
located in the standard namespace called std, which you can examine by using a double
colon, also called the scope resolution operator (: :). After typing this in Visual Studio, the
IntelliSense window will automatically open, displaying what the namespace contains.
Among the members you find the cout stream, which is the standard output stream in
C++ that will be used to print text to a console window. It uses two less-than signs known
as the insertion operator (<<) to indicate what to output. The string can then be specified,
delimited by double quotes, and followed by a semicolon. The semicolon is used in C++
to mark the end of all statements.

#include <iostream>

int main()
{
std::cout << "Hello World";
}
2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © HELLO WORLD

Using Namespace

To make things a bit easier you can add a line specifying that the code file uses the
standard namespace. You then no longer have to prefix cout with the namespace (std: :)
since it is now used by default.

#include <iostream>
using namespace std;

int main()

{

cout << "Hello World";
}

IntelliSense

When writing code in Visual Studio, a window called IntelliSense will pop up wherever
there are multiple predetermined alternatives from which to choose. This window can be
also brought up manually at any time by pressing Ctrl+Space to provide quick access to
any code entities you are able to use within your program. This is a very powerful feature
that you should learn to make good use of.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Compile and Run

Visual Studio Compilation

Continuing from the last chapter, the Hello World program is now complete and ready to
be compiled and run. You can do this by going to the Debug menu and clicking on Start
Without Debugging (Ctrl + F5). Visual Studio then compiles and runs the application
which displays the text in a console window.

If you select Start Debugging (F5) from the Debug menu instead, the console
window displaying Hello World will close as soon as the main function is finished. To
prevent this you can add a call to the cin: :get function at the end of main. This function,
belonging to the console input stream, will read input from the keyboard until the return
key is pressed.

#include <iostream>
using namespace std;
int main()
{
cout << "Hello World";
cin.get();

Console Compilation

As an alternative to using an IDE you can also compile source files from a terminal
window as long as you have a C++ compiler.! For example, on a Linux machine you can
use the GNU C++ compiler, which is available on virtually all Unix systems, including
Linux and the BSD family, as part of the GNU Compiler Collection (GCC). This compiler
can also be installed on Windows by downloading MinGW or on Mac as part of the Xcode
development environment.

'http://www.stroustrup.com/compilers.html

www.it-ebooks.info

http://www.stroustrup.com/compilers.html
http://www.it-ebooks.info/

CHAPTER 2 © COMPILE AND RUN

To use the GNU compiler you type its name "g++" in a terminal window and give it
the input and output filenames as arguments. It then produces an executable file, which
when run gives the same result as one compiled under Windows in Visual Studio.

g++ MyApp.cpp -0 MyApp.exe
./MyApp.exe
Hello World

Comments

Comments are used to insert notes into the source code. They have no effect on the end
program and are meant only to enhance the readability of the code, both for you and for
other developers. C++ has two kinds of comment notations - single-line and multi-line.
The single-line comment starts with // and extends to the end of the line.
// single-line comment

The multi-line comment may span more than one line and is delimited by /* and */.

/* multi-line comment */

Keep in mind that whitespace characters - such as comments, spaces, and tabs - are
generally ignored by the compiler. This allows you a lot of freedom in how to format your code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Variables

Variables are used for storing data during program execution.

Data Types

Depending on what data you need to store there are several kinds of built-in data types.
These are often called fundamental data types or primitives. The integer (whole number)
types are short, int, long, and long long. The float, double and long double types are
floating-point (real number) types. The char type holds a single character and the bool
type contains either a true or false value.

Data Type Size (byte) Description

char 1 Integer or character
short 2

int 4 Integer

long 4or8

long long 8

float 4

double 8 Floating-point number

long double 8or16

bool 1 Boolean value

In C++, the exact size and range of data types are not fixed. Instead they are
dependent on the system for which the program is compiled. The sizes shown in the table
above are those found on most 32-bit systems and are given in C++ bytes. A byte in C++ is
the minimum addressable unit of memory, which is guaranteed to be at least 8 bits, but
might also be 16 or 32 bits depending on the system. By definition, a char in C++ is 1 byte
in size. Furthermore, the int type will have the same size as the processor’s word size, so
for a 32-bit system the integers will be 32 bits in size. Each integer type in the table must
also be at least as large as the one preceding it. The same applies to floating-point types
where each one must provide at least as much precision as the preceding one.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Declaring Variables

To declare (create) a variable you start with the data type you want the variable to hold
followed by an identifier, which is the name of the variable. The name can consist of
letters, numbers and underscores, but it cannot start with a number. It also cannot
contain spaces or special characters and must not be a reserved keyword.

int myInt; // correct int _myInt32; // correct

int 32Int; // incorrect (starts with number)

int Int 32; // incorrect (contains space)

int Int@32; // incorrect (contains special character)
int new; // incorrect (reserved keyword)

Assigning Variables

To assign a value to a declared variable the equal sign is used, which is called the
assignment operator (=).

myInt = 50;

The declaration and assignment can be combined into a single statement. When a
variable is assigned a value it then becomes defined.

int myInt = 50;

At the same time that the variable is declared there is an alternative way of assigning,
or initializing, it by enclosing the value in parentheses. This is known as constructor
initialization and is equivalent to the statement above.

int myAlt (50);

If you need to create more than one variable of the same type there is a shorthand
way of doing it using the comma operator (,).

intx=1,y=2, z

Once a variable has been defined (declared and assigned), you can use it by simply
referencing the variable’s name: for example, to print it.

std::cout << x << y; // "12"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Variable Scope

The scope of a variable refers to the region of code within which it is possible to use that
variable. Variables in C++ may be declared both globally and locally. A global variable

is declared outside of any code blocks and is accessible from anywhere after it has been
declared. A local variable, on the other hand, is declared inside of a function and will

only be accessible within that function after it has been declared. The lifetime of a local
variable is also limited. A global variable will remain allocated for the duration of the
program, while a local variable will be destroyed when its function has finished executing.

int globalvar; // global variable
int main() { int localvar; } // local variable

The default values for these variables are also different. Global variables are
automatically initialized to zero by the compiler, whereas local variables are not
initialized at all. Uninitialized local variables will therefore contain whatever garbage is
already present in that memory location.

int globalVar; // initialized to 0

int main()

{

int localVar; // uninitialized

}

Using uninitialized variables is a common programming mistake that can produce
unexpected results. It is therefore a good idea to always give your local variables an initial
value when they are declared.

int main()

{

int localvar = 0; // initialized to O

}

Integer Types

There are four integer types you can use depending on how large a number you need the
variable to hold.

char myChar
short myShort
int myInt

long mylLong

;5 // -128 to +127

;5 // -32768 to +32767
; // -2"31 to +2731-1
; // -2"31 to +2731-1

nonu
o O O O

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

C++11 standardized a fifth integer type, long long, which is guaranteed to be at least
64-bits large. Many compilers started to support this data type well before the C++11
standard was complete, including the Microsoft C++ compiler.

long long mylL2 = 0; // -2763 to +2763-1

To determine the exact size of a data type you can use the sizeof operator. This
operator returns the number of bytes that a data type occupies in the system you are
compiling for.

std::cout << sizeof(myChar) // 1 byte (per definition)
<< sizeof(myShort) // 2
<< sizeof(myInt) // 4
<< sizeof(myLong) // 4
<< sizeof(myL2); // 8

Fixed-sized integer types were added in C++11. These types belong to the std
namespace and can be included through the cstdint standard library header.

#include <cstdint>
using namespace std;
int8_t myInt8 = 0; // 8 bits

int16_t myInt16 = 0; // 16 bits
int32_t myInt32 = 0; // 32 bits
int64_t myInt64 = 0; // 64 bits

Signed and Unsigned Integers

By default, all the number types in Microsoft C++ are signed and may therefore contain
both positive and negative values. To explicitly declare a variable as signed the signed
keyword can be used.

0; // -128 to +127

0; // -32768 to +32767
0; // -2"31 to +2"31-1
0;
0;

signed char myChar
signed short myShort
signed int myInt

signed long mylong
signed long long myl2=

// -2"31 to +2"31-1
// -2"63 to +2"63-1

10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

If you only need to store positive values you can declare integer types as unsigned to
double their upper range.

// 0 to 255
// 0 to 65535

unsigned char myChar = 0;
0;
0; // 0 to 2732-1
0;
0;

unsigned short myShort
unsigned int myInt
unsigned long mylong
unsigned long long mylL2

// 0 to 2"32-1
// 0 to 2764-1

The signed and unsigned keywords may be used as standalone types, which are
short for signed int and unsigned int.

unsigned ulnt; // unsigned int
signed sInt; // signed int

Similarly, the short and long data types are abbreviations of short int and long int.

short myShort; // short int
long mylong; // long int

Numeric Literals

In addition to standard decimal notation, integers can also be assigned by using octal or
hexadecimal notation. Octal literals use the prefix “0” and hexadecimal literals start with
“0x” Both numbers below represent the same number, which in decimal notation is 50.

int myOct = 062; // octal notation (0)
int myHex = 0x32; // hexadecimal notation (0x)

As of C++14 there is a binary notation, which uses “Ob” as its prefix. This version
of the standard also added a digit separator (') which can make it easier to read long

numbers. The binary number below represents 50 in decimal notation.

int myBin = 0b0011'0010; // binary notation (0b)

Floating-Point Types

The floating-point types can store real numbers with different levels of precision.

float myFloat; // ~7 digits
double myDouble; // ~15 digits
long double myLongDouble; // typically same as double

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

The precision shown above refers to the total number of digits in the number. A float
can accurately represent about 7 digits, whereas a double can handle around 15 of them.
Trying to assign more than 7 digits to a float means that the least significant digits will
getrounded off.

myFloat = 12345.678; // rounded to 12345.68

Floats and doubles can be assigned by using either decimal or exponential notation.
Exponential (scientific) notation is used by adding E or e followed by the decimal
exponent.

myFloat = 3e2; // 3*10"2 = 300

Literal Suffixes

An integer literal (constant) is normally treated as an int by the compiler, or a larger type if
needed to fit the value. Suffixes can be added to the literal to change this evaluation. With
integers the suffix can be a combination of U and L, for unsigned and long respectively.
C++11 also added the LL sulffix for the long long type. The order and casing of these letters
do not matter.

int i = 10;
long 1 = 10L;
unsigned long ul = 10UL;

A floating-point literal is treated as a double unless otherwise specified. The F or f
suffix can be used to specify that a literal is of the float type instead. Likewise, the L orl
suffix specifies the long double type.

float f = 1.23F;
double d = 1.23;
long double 1d = 1.23L;

The compiler implicitly converts literals to whichever type is necessary, so this type
distinction for literals is usually not necessary. If the F suffix is left out when assigning to a

float variable, the compiler may give a warning since the conversion from double to float
involves a loss of precision.

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ' VARIABLES

Char Type

The char type is commonly used to represent ASCII characters. Such character constants
are enclosed in single quotes and can be stored in a variable of char type.

char ¢ = 'x'; // assigns 120 (ASCII for 'x')

The conversion between the number stored in the char and the character shown
when the char is printed occurs automatically.

std::cout << ¢; // prints 'x'

For another integer type to be displayed as a character it has to be explicitly cast to
char. An explicit cast is performed by placing the desired data type in parentheses before
the variable or constant that is to be converted.
int 1 = ¢; // assigns 120

std::cout << i; // prints 120
std::cout << (char)i; // prints 'x'

Bool Type

The bool type can store a Boolean value, which is a value that can only be either true or
false. These values are specified with the true and false keywords.

bool b = false; // true or false value

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Operators

A numerical operator is a symbol that makes the program perform a specific
mathematical or logical manipulation. The numerical operators in C++ can be grouped
into five types: arithmetic, assignment, comparison, logical and bitwise operators.

Arithmetic Operators

There are the four basic arithmetic operators, as well as the modulus operator (%) which is
used to obtain the division remainder.

int x =3 + 2; // 5 // addition
x =3 -2; // 1 // subtraction
x =3 *2;// 6 // multiplication
x=3/2;//1// division
X =3%2; //1// modulus (division remainder)

Notice that the division sign gives an incorrect result. This is because it operates on
two integer values and will therefore truncate the result and return an integer. To get the
correct value, one of the numbers must be explicitly converted to a floating-point number.

float f = 3 / (float)2; // 1.5

Assignment Operators

The second group is the assignment operators. Most importantly, the assignment
operator (=) itself, which assigns a value to a variable.

15

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * OPERATORS

Combined Assignment Operators

A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

X += 5; // X = x+5;
X -=5; // x = x-5;
X *= 5; // X = x*5;
X /=5; // x = x/5;
X %=5; // x = x%5;

Increment and Decrement Operators

Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (--) operators.

X++; // X = X+1;
X--; // x = x-1;

Both of these can be used either before or after a variable.

X++; // post-increment
x--; // post-decrement
++X; // pre-increment
--x; // pre-decrement

The result on the variable is the same whichever is used. The difference is that the
post-operator returns the original value before it changes the variable, while the
pre-operator changes the variable first and then returns the value.

int x, y;
X =5;y =x++; // y=5, x=6
X =5;y =++x; // y=6, x=6

Comparison Operators

The comparison operators compare two values and return either true or false. They are
mainly used to specify conditions, which are expressions that evaluate to either true or false.

bool b = (2 == 3); // false // equal to
b=(21!=3); // true // not equal to
b=(2>3); // false // greater than
b=(2<3); // true // less than
b = (2 >=3); // false // greater than or equal to
b =(2<=3); // true // less than or equal to

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © OPERATORS

Logical Operators

The logical operators are often used together with the comparison operators. Logical and
(&&) evaluates to true if both the left and right sides are true, and logical or (| |) is true if
either the left or right side is true. For inverting a Boolean result there is the logical not (!)
operator. Note that for both “logical and” and “logical or” the right-hand side will not be
evaluated if the result is already determined by the left-hand side.

bool b = (true &% false); // false // logical and
b = (true || false); // true // logical or
b = !(true); // false // logical not

Bitwise Operators

The bitwise operators can manipulate individual bits inside an integer. For example, the
“bitwise or” operator (|) makes the resulting bit 1 if the bits are set on either side of the
operator.

int x =5 & 4; // 101 & 100 = 100 (4) // and
X =51 4; // 101 | 100 = 101 (5) // or
X =5"4; // 101 ~ 100 = 001 (1) // xor
X = 4 << 1; // 100 << 1 =1000 (8) // left shift
X =4 > 1; // 100 >> 1 = 10 (2) // right shift
X = ~4; // ~00000100 = 11111011 (-5) // invert

The bitwise operators also have combined assignment operators.

int x=5; x &= 4; // 101 & 100
x=5; x |=4; // 101 | 100 = 101 (5) // or

X 100 (4) // and
X

Xx=5; X "= 4; // 101 » 100 = 001 (1) // xor
X
X

X=5; X <<= 1;// 101 << 1 =1010 (10)// left shift
X=5; X »>=1;// 101 >> 1 = 10 (2) // right shift

17

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 * OPERATORS

Operator Precedence

In C++, expressions are normally evaluated from left to right. However, when an
expression contains multiple operators, the precedence of those operators decides the
order in which they are evaluated. The order of precedence can be seen in the following
table, where the operator with the lowest precedence will be evaluated first. This same
basic order also applies to many other languages, such as C, Java, and C#.

Pre Operator Pre Operator
1 9 ===

2 00.->x++x- 10 &

3 !~ +4+x -x X* X& (type) 11 A

4 Fos* 12 |

5 *I % 13 &&

6 +- 14 I

7 << >> 15 2% =op=
8 <<=>>= 16 ,

To give an example, logical and (&&) binds weaker than relational operators, which in
turn bind weaker than arithmetic operators.

bool b = 2+3 > 1*4 & 5/5 == 1; // true
To make things clearer, parentheses can be used to specify which part of the
expression will be evaluated first. As seen in the table, parentheses are among the

operators with lowest precedence.

bool b = ((2+3) > (1*4)) & ((5/5) == 1); // true

18

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Pointers

A pointer is a variable that contains the memory address of another variable, called
the pointee.

Creating Pointers

Pointers are declared as any other variable, except that an asterisk (*) is placed between
the data type and the pointer’s name. The data type used determines what type of
memory it will point to.

int* p; // pointer to an integer
int *q; // alternative syntax

A pointer can point to a variable of the same type by prefixing that variable with an
ampersand, in order to retrieve its address and assign it to the pointer. The ampersand is
known as the address-of operator (8).

int i = 10;
p = &i; // address of i assigned to p

Dereferencing Pointers

The pointer above now contains the memory address to the integer variable. Referencing
the pointer will retrieve this address. To obtain the actual value stored in that address the
pointer must be prefixed with an asterisk, known as the dereference operator (*).
std::cout << "Address of i: " << p; // ex. 0017FF1C

std::cout << "Value of i: " << *p; // 10

When writing to the pointer, the same method is used. Without the asterisk the
pointer is assigned a new memory address, and with the asterisk the actual value of the
variable pointed to will be updated.

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 " POINTERS

p = &i; // address of i assigned to p
*p = 20; // value of i changed through p

If a second pointer is created and assigned the value of the first pointer it will then
get a copy of the first pointer’s memory address.

int* p2 = p; // copy of p (copies address stored in p)

Pointing to a Pointer

Sometimes it can be useful to have a pointer that can point to another pointer. This

is done by declaring a pointer with two asterisks and then assigning it the address of
the pointer that it will reference. This way when the address stored in the first pointer
changes, the second pointer can follow that change.

int** r = &p; // pointer to p (assigns address of p)

Referencing the second pointer now gives the address of the first pointer.
Dereferencing the second pointer gives the address of the variable and dereferencing it
again gives the value of the variable.

std::cout << "Address of p: " << r; // ex. 0017FF28 std::cout << "Address
of i: " << *r; // ex. 0017FF1C std::cout << "Value of i: " << **r; // 20

Dynamic Allocation

One of the main usages of pointers is to allocate memory during run-time - so called
dynamic allocation. In the examples so far, the programs have only had as much memory
available as has been declared for the variables at compile-time. This is referred to as
static allocation. If any additional memory is needed at run-time, the new operator has

to be used. This operator allows for dynamic allocation of memory, which can only be
accessed through pointers. The new operator takes either a primitive data type or an
object as its argument, and it will return a pointer to the allocated memory.

int* d = new int; // dynamic allocation

An important thing to know about dynamic allocation is that the allocated memory
will not be released like the rest of the program memory when it is no longer required.
Instead, it has to be manually released with the delete keyword. This allows you to
control the lifetime of a dynamically allocated object, but it also means that you are
responsible for deleting it once it is no longer needed. Forgetting to delete memory that
has been allocated with the new keyword will give the program memory leaks, because
that memory will stay allocated until the program shuts down.

delete d; // release allocated memory
20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ' POINTERS

Null Pointer

A pointer should be set to zero when it is not assigned to a valid address. Such a pointer is
called a null pointer. Doing this will allow you to check whether the pointer can be safely
dereferenced, because a valid pointer will never be zero.

For example, although the previous pointer has had its memory released, its stored
address still points to a now inaccessible memory location. Trying to dereference such
a pointer will cause a run-time error. To help prevent this, the deleted pointer should
be set to zero. Note that trying to delete an already deleted null pointer is safe. However,
if the pointer has not been set to zero, attempting to delete it again will cause memory
corruption and possibly crash the program.

delete d;
d = 0; // mark as null pointer
delete d; // safe

Since you may not always know whether a pointer is valid, a check should be made
whenever a pointer is dereferenced to make sure that it is not zero.

if (d !'=0) { *d = 10; } // check for null pointer

The constant NULL can also be used to signify a null pointer. NULL is typically defined
as zero in C++, making the choice of which to use a matter of preference. The constant is
defined in the stdio.h standard library file, which is included through iostream.

#include <iostream>
/...
if (d != NULL) { *d = 10; } // check for null pointer

C++11 introduced the keyword nullptr to distinguish between 0 and a null pointer.
The advantage of using nullptr is that unlike NULL, it will not implicitly convert to an
integer type. The literal has its own type, nullptr_t, which can only be implicitly converted
to pointer and bool types.

int* p = nullptr; // ok
int i = nullptr; // error
bool b = nullptr; // ok (false)

nullptr t mynull = nullptr; // ok

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

References

References allow a programmer to create a new name for a variable. They provide a
simpler, safer and less powerful alternative to pointers.

Creating References

A reference is declared in the same way as a regular variable, except that an ampersand is
appended between the data type and the variable name. Furthermore, at the same time
as the reference is declared it must be initialized with a variable of the specified type.

int x = 5;
int& r = x; // r is an alias to x
int &s = x; // alternative syntax
Once the reference has been assigned, or seated, it can never be reseated to another
variable. The reference has in effect become an alias for the variable and can be used

exactly as though it was the original variable.

r = 10; // assigns value to r/x

References and Pointers

A reference is similar to a pointer that always points to the same thing. However, while a
pointer is a variable that points to another variable, a reference is only an alias and does
not have an address of its own.

int* ptr = &x; // ptr assigned address to x

Reference and Pointer Guideline

Generally, whenever a pointer does not need to be reassigned a reference should be used
instead, because a reference is safer than a pointer since it must always refer to a variable.
This means that there is no need to check if a reference refers to null, as should be done

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ' REFERENCES

with pointers. It is possible for a reference to be invalid - for example when a reference
refers to a null pointer - but it is much easier to avoid this kind of mistake with references
than it is with pointers.

int* ptr = 0; // null pointer
int& ref = *ptr;
ref = 10; // segmentation fault (invalid memory access)

Rvalue Reference

With C++11 came a new kind of reference called an rvalue reference. This reference can
bind and modify temporary objects (rvalues), such as literal values and function return
values. An rvalue reference is formed by placing two ampersands after the type.

int8& ref = 1 + 2; // rvalue reference

The rvalue reference extends the lifetime of the temporary object and allows it to be
used like an ordinary variable.

ref += 3;
cout << ref; // "6"

The benefit of rvalue references is that they allow unnecessary copying to be avoided
when dealing with temporary objects. This offers greater performance, particularly when
handling larger types, such as strings and objects.

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Arrays

An array is a data structure used for storing a collection of values that all have the same
data type.

Array Declaration and Allocation

To declare an array you start as you would a normal variable declaration, but in addition
append a set of square brackets following the array’s name. The brackets contain the
number of elements in the array. The default values for these elements are the same as for
variables - elements in global arrays are initialized to their default values and elements in
local arrays remain uninitialized.

int myArray[3]; // integer array with 3 elements

Array Assignment

To assign values to the elements you can reference them one at a time by placing the
element’s index inside the square brackets, starting with zero.

myArray[0] = 1;
myArray[1] = 2;
myArray[2] = 3;

Alternatively, you can assign values at the same time as the array is declared by
enclosing them in curly brackets. The specified array length may optionally be left out to
let the array size be decided by the number of values assigned.

int myArray[3] = { 1, 2, 3 };
int myArray[] = { 1, 2, 3 };

Once the array elements are initialized they can be accessed by referencing the index
of the element you want.

std::cout << myArray[o0]; // 1

25

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ' ARRAYS

Multi-dimensional Arrays

Arrays can be made multi-dimensional by adding more sets of square brackets. As with
single-dimensional arrays, they can either be filled in one at a time or all at once during
the declaration.
int myArray[2][2] = { {0, 1}, { 2,3} };
myArray[0][0] = O;
myArray[0][1] = 1;
The extra curly brackets are optional, but including them is good practice since it
makes the code easier to understand.

int mArray[2]{2] = { 0, 1, 2, 3 }; // alternative

Dynamic Arrays

Because the arrays above are made up of static (non-dynamic) memory, their size must
be determined before execution. Therefore, the size needs to be a constant value. In order
to create an array with a size that is not known until run-time you need to use dynamic
memory, which is allocated with the new keyword and must be assigned to a pointer or
reference.

int* p = new int[3]; // dynamically allocated array

An array in C++ behaves as a constant pointer to the first element in the array.
The referencing of array elements can therefore be made just as well with pointer
arithmetic. By incrementing the pointer by one you move to the next element in the
array, because changes to a pointer’s address are implicitly multiplied by the size of

the pointer’s data type.

*(p+1) = 10; // p[1] = 10;

Array Size

Just as with any other pointer, it is possible to exceed the valid range of an array and
thereby rewrite some adjacent memory. This should always be avoided since it can lead
to unexpected results or crash the program.

int myArray[2] = { 1, 2 };
myArray[2] = 3; // out of bounds error

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 " ARRAYS

To determine the length of a regular (statically allocated) array, the sizeof operator
can be used.

int length = sizeof(myArray) / sizeof(int); // 2

This method cannot be used for dynamically allocated arrays. The only way to
determine the size of such an array is through the variable used in its allocation.

int size = 3;
int* p = new int[size]; // dynamically allocated array

When you are done using a dynamic array you must remember to delete it. This is
done using the delete keyword with an appended set of square brackets.

delete[] p; // release allocated array

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

String

The stringclass in C++ is used to store string values. Before a string can be declared the
string header must first be included. The standard namespace can also be included since
the string class is part of that namespace.

#include <string>
using namespace std;

Strings can then be declared like any other data type. To assign a string value to a
string variable, delimit the literals by double quotes and assign them to the variable. The
initial value can also be assigned through constructor initialization at the same time as

the string is declared.

string h = "Hello";
string w (" World");

String Combining

The plus sign, known as the concatenation operator (+) in this context, is used to combine
two strings. It has an accompanying assignment operator (+=) to append a string.

string a = h + w; // Hello World
h += w; // Hello World

The concatenation operator will work as long as one of the strings it operates on is a
C++ string.

string b = "Hello" + w; // ok

Itis not able to concatenate two C strings or two string literals. To do this, one of the
values has to be explicitly cast to a string.

char *c = "World"; // C-style string
b = (string)c + c; // ok
b = "Hello" + (string)" World"; // ok

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " STRING

String literals will also be implicitly combined if the plus sign is left out.

b = "Hel" "lo"; // ok

Escape Characters

A string literal can be extended to more than one line by putting a backslash sign (\) at
the end of each line.

string s = "Hello \ World";
To add a new line to the string itself, the escape character “\n” is used.
s = "Hello \n World";

This backslash notation is used to write special characters, such as tab or form feed
characters.

Character Meaning Character Meaning

\n newline \f form feed

\t horizontal tab \a alert sound
\v vertical tab \ single quote
\b Backspace \” double quote
\r carriage return \\ backslash

\0 null character

Additionally, any one of the 128 ASCII characters can be expressed by writing a
backslash followed by the ASCII code for that character, represented as either an octal or
hexadecimal number.

"\o7F" // octal character (0-07F)
"\0ox177" // hexadecimal character (0-0x177)

As of C++11, escape characters can be ignored by adding a “R” before the string
along with a set of parentheses within the double quotes. This is called a raw string and

can be used, for instance, to make file paths more readable.

string escaped = "c:\\Windows\\System32\\cmd.exe";
string raw = R"(c:\Windows\System32\cmd.exe)";

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " STRING

String Compare

The way to compare two strings is simply by using the equal to operator (==). This will not
compare the memory addresses of the strings, as is the case of C strings.

"Hello";

string s =
= (s == "Hello"); // true

bool b

String Functions

The string class has a lot of functions. Among the most useful ones are the length and
size functions, which both return the number of characters in the string. Their return
type is size_t, which is an unsigned data type used to hold the size of an object. This

is simply an alias for one of the built-in data types, but which one it is defined as varies
between compilers. The alias is defined in the crtdefs.h standard library file, which is
included through iostream.

size t i = s.length(); // 5, length of string
i = s.size(); // 5, same as length()

Another useful function is substr (substring), which requires two parameters.
The second parameter is the number of characters to return starting from the position
specified in the first parameter.
s.substr(0,2); // "He"

A single character can also be extracted or changed by using the array notation.

char ¢ = s[o0]; // 'H'

String Encodings

A string enclosed within double quotes produces an array of the char type, which can
only hold 256 unique symbols. To support larger character sets the wide character type
wechar_t is provided. String literals of this type are created by prepending the string with a
capital “L” The resulting array can be stored using the wstring class. This class works like
the basic string class but uses the wchar_t character type instead.

wstring si = L"Hello";
wchar_t *s2 = L"Hello";

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 " STRING

Fixed-size character types were introduced in C++11, namely charl6_t and char32_t.
These types provide definite representations of the UTF-16 and UTF-32 encodings
respectively. UTFE-16 string literals are prefixed with “u” and can be stored using the
ul6string class. Likewise, UTF-32 string literals are prefixed with “U” and are stored in the
u32string class. The prefix “u8” was also added to represent a UTF-8 encoded string literal.

string s3 = u8"UTF-8 string";
ulbstring s4 = u"UTF-16 string";
u32string s5 = U"UTF-32 string";

Specific Unicode characters can be inserted into a string literal using the escape
character “\u” followed by a hexadecimal number representing the character.

string s6 = u8"An asterisk: \u002A";

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9

Conditionals

Conditional statements are used to execute different code blocks based on different
conditions.

If Statement

The if statement will only execute if the expression inside the parentheses is evaluated to
true. In C++, this does not have to be a Boolean expression. It can be any expression that
evaluates to a number, in which case zero is false and all other numbers are true.

if (x < 1) {
cout << x <«
}

< 1||;

To test for other conditions, the if statement can be extended by any number of else
if clauses.

else if (x » 1) {
cout << x << " > 1";
}

The if statement can have one else clause at the end, which will execute if all
previous conditions are false.

else {
cout << x <«
}

== 1";

As for the curly brackets, they can be left out if only a single statement needs to be
executed conditionally. However, it is considered good practice to always include them
since they improve readability.

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 * CONDITIONALS

if (x < 1)

cout << x << " < 1";
else if (x > 1)

cout << x <«
else

cout << x << " == 1";

> 1";

Switch Statement

The switch statement checks for equality between an integer and a series of case labels,
and then passes execution to the matching case. It may contain any number of case
clauses and it can end with a default label for handling all other cases.

switch (x)
{

case 0: cout << x <«
case 1: cout << x <«
default: cout << x <<

is 0"; break;
is 1"; break;
is not 1 or 2"; break;

Note that the statements after each case label end with the break keyword to skip the
rest of the switch. If the break is left out, execution will fall through to the next case, which
can be useful if several cases need to be evaluated in the same way.

Ternary Operator

In addition to the if and switch statements there is the ternary operator (?:) that can
replace a single if/else clause. This operator takes three expressions. If the first one is true
then the second expression is evaluated and returned, and if it is false, the third one is
evaluated and returned.

x = (x < 0.5) 20 :1; // ternary operator (?:)

C++ allows expressions to be used as stand-alone code statements. Because of this
the ternary operator cannot just be used as an expression, but also as a statement.

(x <0.5) 2 x=0:x=1; // alternative syntax

The programming term expression refers to code that evaluates to a value, whereas a
statement is a code segment that ends with a semicolon or a closing curly bracket.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Loops

There are three looping structures available in C++, all of which are used to execute a
specific code block multiple times. Just as with the conditional if statement, the curly
brackets for the loops can be left out if there is only one statement in the code block.

While Loop

The while loop runs through the code block only if its condition is true, and will continue
looping for as long as the condition remains true. Bear in mind that the condition is only
checked at the start of each iteration (loop).

int i = 0;
while (i < 10) { cout << i++; } // 0-9

Do-while Loop

The do-while loop works in the same way as the while loop, except that it checks the
condition after the code block. It will therefore always run through the code block at least
once. Notice that this loop ends with a semicolon.

int j = 0;
do { cout << j++; } while (j < 10); // 0-9

For Loop

The for loop is used to run through a code block a specific number of times. It uses three
parameters. The first one initializes a counter and is always executed once before the
loop. The second parameter holds the condition for the loop and is checked before each
iteration. The third parameter contains the increment of the counter and is executed at
the end of each loop.

for (int k = 0; k < 10; k++) { cout << k; } // 0-9

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 LOOPS

The for loop has several variations. For starters, the first and third parameters can be
split into several statements by using the comma operator.

for (int k = 0, m = 0; k < 10; k++, m--) {
cout << k+m; // 0x10

}
There is also the option of leaving out any one of the parameters.
for (55) {
cout << "infinite loop";
}

C++11 introduced a range-based for loop syntax for iterating through arrays and
other container types. At each iteration the next element in the array is bound to the
reference variable, and the loop continues until it has gone through the entire array.

int 3[3] = {1: 2, 3};
for (int &i : a) {

cout <<i; // "123"
}

Break and Continue

There are two jump statements that can be used inside loops: break and continue.
The break keyword ends the loop structure, and continue skips the rest of the current
iteration and continues at the beginning of the next iteration.

for (int i = 0; i < 10; i++)
{
break; // end loop

continue; // start next iteration

Goto Statement

A third jump statement that may be useful to know of is goto, which performs an
unconditional jump to a specified label. This instruction is generally never used since it
tends to make the flow of execution difficult to follow.

goto myLabel; // jump to label
myLabel: // label declaration

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Functions

Functions are reusable code blocks that will only execute when called.

Defining Functions

A function can be created by typing void followed by the function’s name, a set of
parentheses and a code block. The void keyword means that the function will not return
avalue. The naming convention for functions is the same as for variables - a descriptive
name with each word initially capitalized, except for the first one.

void myFunction()

cout << "Hello World";

}

Calling Functions

The function above will simply print out a text message when it is called. To invoke it from
the main function the function's name is specified followed by a set of parentheses.

int main()

{
myFunction(); // "Hello World"

}

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Function Parameters

The parentheses that follow the function name are used to pass arguments to the
function. To do this the corresponding parameters must first be added to the function
declaration in the form of a comma separated list.

void myFunction(string a, string b)

cout << a+ " " + b;

}

A function can be defined to take any number of parameters, and they can have
any data types. Just ensure the function is called with the same types and number of
arguments.

myFunction("Hello", "World"); // "Hello World"

To be precise, parameters appear in function definitions, while arguments appear in
function calls. However, the two terms are sometimes used interchangeably.

Default Parameter Values

It is possible to specify default values for parameters by assigning them a value inside the
parameter list.

void myFunction(string a, string b = "Earth")
{

cout << a + " " + b;
}

Then, if that argument is unspecified when the function is called the default value
will be used instead. For this to work it is important that the parameters with default
values are to the right of those without default values.

myFunction("Hello"); // "Hello Earth"

Function Overloading

A function in C++ can be defined multiple times with different arguments. This is a
powerful feature called function overloading that allows a function to handle a variety of
parameters without the programmer using the function needing to be aware of it.

void myFunction(string a, string b) { cout << a+" "+b; }

void myFunction(string a) { cout << a; }
void myFunction(int a) { cout << a; }
38

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Return Statement

A function can return a value. The void keyword is then replaced with the data type the
function will return, and the return keyword is added to the function’s body followed by
an argument of the specified return type.
int getSum(int a, int b)

return a + b;

Return is a jump statement that causes the function to exit and return the specified
value to the place where the function was called. For example, the function above can be
passed as an argument to the output stream since the function evaluates to an integer.

cout << getSum(5, 10); // 15

The return statement can also be used in void functions to exit before the end block
is reached.

void dummy() { return; }
Note that although the main function is set to return an integer type, it does not have
to explicitly return a value. This is because the compiler will automatically add a return

zero statement to the end of the main function.

int main() { return o; }

Forward Declaration

An important thing to keep in mind in C++ is that functions must be declared before they
can be called. This does not mean that the function has to be implemented before it is
called. It only means that the function’s header needs to be specified at the beginning of
the source file, so that the compiler knows that the function exists. This kind of forward
declaration is known as a prototype.

void myFunction(int a); // prototype
int main()
{

myFunction(0);

void myFunction(int a) {}

The parameter names in the prototype do not need to be included. Only the data
types must be specified.

void myFunction(int);

39

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Pass by Value

In C++, variables of both primitive and object data types are by default passed by value.
This means that only a copy of the value or object is passed to the function. Therefore,
changing the parameter in any way will not affect the original, and passing a large object
will be very slow.

#include <iostream>
#include <string>
using namespace std;

void change(int i) { i = 10; }
void change(string s) { s = "Hello World"; }

int main()

{
int x = 0; // value type change(x); // value is passed
cout << x; // 0
string y = ""; // reference type

change(y); // object copy is passed
cout << y; /7"

}

Pass by Reference

Alternatively, to instead pass a variable by reference you just need to add an ampersand
before the parameter’s name in the function’s definition. When arguments are passed
by reference, both primitive and object data types can be changed or replaced and the
changes will affect the original.

void change(int& i) { i = 10; }

int main()

{
int x = 0; // value type
change(x); // reference is passed
cout << x; // 10

}

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Pass by Address

As an alternative to passing by reference, arguments may also be passed by address using
pointers. This passing technique serves the same purpose as passing by reference, but
uses pointer syntax instead.

void change(int* i) { *1 = 10; }

int main()

{
int x = 0; // value type
change(&x); // address is passed
cout << x; // 10

}

Return by Value, Reference or Address

In addition to passing variables by value, reference or address, a variable may also be
returned in one of these ways. Most commonly, a function returns by value, in which case
a copy of the value is returned to the caller.

int byVal(int i) { return i + 1; }

int main()
{

int a = 10;

cout << byval(a); // 11
}

To return by reference instead, an ampersand is placed after the function’s return
type. The function must then return a variable and may not return an expression or literal,
as can be done when using return by value. The variable returned should never be a local
variable, since the memory to these variables is released when the function ends. Instead,
return by reference is commonly used to return an argument that has also been passed to
the function by reference.

int& byRef(int& i) { return i; }
int main()
{

int a = 10;

cout << byRef(a); // 10
}

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

To return by address the dereference operator is appended to the function’s return
type. This return technique has the same two restrictions as when returning by
reference - the address of a variable must be returned and that returned variable must
not be local to the function.

int* byAdr(int* i) { return i; }

int main()
{

int a = 10;

cout << *byAdr(&a); // 10
}

Inline Functions

A thing to keep in mind when using functions is that every time a function is called, a
performance overhead occurs. To potentially remove this overhead you can recommend
that the compiler inlines the calls to a specific function by using the inline function
modifier. This keyword is best suited for small functions that are called inside loops. It
should not be used on larger functions since inlining these can severely increase the size
of the code, which will instead decrease performance.

inline int myInc(int i) { return i++; }

Note that the inline keyword is only a recommendation. The compiler may in its
attempts to optimize the code choose to ignore this recommendation and it may also
inline functions that do not have the inline modifier.

Auto and Decltype

Two new keywords were introduced in C++11: auto and decltype. Both of these
keywords are used for type deduction during compilation. The auto keyword works as a
placeholder for a type and instructs the compiler to automatically deduce the type of the
variable based on its initializer.

auto i = 5; // int
auto d = 3.14; // double
auto b = false; // bool

Auto translates to the core type of the initializer, which means that any reference and
constant specifiers are dropped.

int& iRef = i;
auto myAuto = iRef; // int

42

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Dropped specifiers can be manually reapplied as needed. The ampersand here
creates a regular (lvalue) reference.

autod myRef = iRef; // int&

Alternatively, two ampersands can be used. This normally designates an rvalue
reference, but in the case of auto it makes the compiler automatically deduce either an
rvalue or an lvalue reference, based on the given initializer.

int 1 = 15
auto8®& a = i; // int& (lvalue reference)
autod® b = 2; // int8& (rvalue reference)

The auto specifier may be used anywhere a variable is declared and initialized. For
instance, the type of the for loop iterator below is set to auto, since the compiler can easily
deduce the type.

#include <vector>

using namespace std;

/...

vector<int> myVector { 1, 2, 3 };

for (autod x : myVector) { cout << x; } // "123"

Prior to C++11 there was no range-based for loop or auto specifier. Iterating over a
vector then required a more verbose syntax.

for(vector<int>::size type i = 0; i != myVector.size(); i++) {

cout << myVector[i]; // "123"
}

The decltype specifier works similar to auto, except it deduces the exact declared
type of a given expression, including references. This expression is specified in
parentheses.
decltype(3) b = 3; // int8&

In C++14, auto may be used as the expression for decltype. The keyword auto is then
replaced with the initializing expression, allowing the exact type of the initializer to be
deduced.
decltype(auto) = 3; // int8&

Using auto is often the simpler choice when an initializer is available. Decltype is
mainly used to forward function return types, without having to consider whether itis a

reference or value type.

decltype(5) getFive() { return 5; } // int

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

C++11 added a trailing return type syntax, which allows a function’s return value to
be specified after the parameter list, following the arrow operator (->). This enables the
parameter to be used when deducing the return type with decltype. The use of auto in
this context in C++11 just means that trailing return type syntax is being used.

auto getValue(int x) -> decltype(x) { return x; } // int

The ability to use auto for return type deduction was added in C++14. This enabled
the core return type to be deduced directly from the return statement,

auto getValue(int x) { return x; } // int

Moreover, auto can be used together with decltype to deduce the exact type
following the rules of decltype.

decltype(auto) getRef(int& x) { return x; } // intd

The main use for type deduction is to reduce the verbosity of the code and improve
readability, particularly when declaring complicated types where the type is either
difficult to know or difficult to write. Keep in mind that in modern IDEs you can hover
over a variable to check its type, even if the type has been automatically deduced.

Lambda Functions

C++11 adds the ability to create lambda functions, which are unnamed function objects.
This provides a compact way to define functions at their point of use, without having to
create a named function somewhere else. The following example creates a lambda that
accepts two int arguments and returns their sum.

auto sum = [](int x, int y) -> int
{
return x + y;
};
cout << sum(2, 3); // "5"

Including the return type is optional if the compiler can deduce the return value
from the lambda. In C++11 this required the lambda to contain just a single return
statement, whereas C++14 extended return type deduction to any lambda function. Note
that the arrow operator (->) is also omitted when leaving out the return type.

auto sum = [](int x, int y) { return x + vy; };

C++11 requires lambda parameters to be declared with concrete types. This
requirement was relaxed in C++14, allowing lambdas to use auto type deduction.

auto sum = [](auto x, auto y) { return x + y; };

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

Lambdas are typically used for specifying simple functions that are only referenced
once, often by passing the function object as an argument to another function. This can
be done using a function wrapper with a matching parameter list and return type, as in
the following example.

#include <iostream>
#include <functional>
using namespace std;

void call(int arg, function<void(int)> func) {
func(arg);
}

int main() {

auto printSquare = [](int x) { cout << x*x; };
call(2, printSquare); // "4"

}

All lambdas start with a set of square brackets, called the capture clause. This clause
specifies variables from the surrounding scope that can be used within the lambda body.
This effectively passes additional arguments to the lambda, without the need to specify
these in the parameter list of the function wrapper. The previous example can therefore
be rewritten in the following way.

void call(function<void()> func) { func(); }

int main() {

int i = 2;

auto printSquare = [i]() { cout << i*i; };
call(printSquare); // "4"

}

The variable is here captured by value and so a copy is used within the lambda.
Variables can also be captured by reference using the familiar ampersand prefix. Note
that the lambda is here defined and called in the same statement.

int a = 1;
[8&a](int x) { a += x; }(2);
cout << a; // "3"

It is possible to specify a default capture mode, to indicate how any unspecified
variable used inside the lambda is to be captured. A [=] means the variables are captured
by value and [&] captures them by reference. Variables captured by value are normally
constant, but the mutable specifier can be used to allow such variables to be modified.

inta=1,b=1;
[&, b]() mutable { b++; a += b; }();
cout << a << b; // "31"

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 I FUNCTIONS

As of C++14, variables may also be initialized inside the capture clause. If there is no

variable with the same name in the outer scope, the variable’s type will be deduced as if
by auto.

int a = 1;

[& b =2]() { a +=b; }();

cout << a; // "3"

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Class

A class is a template used to create objects. To define one the class keyword is used
followed by a name, a code block and a semicolon. The naming convention for classes is
mixed case, meaning that each word should be initially capitalized.

class MyRectangle {};
Class members can be declared inside the class; the two main kinds are fields and
methods. Fields are variables and they hold the state of the object. Methods are functions

and they define what the object can do.

class MyRectangle

{
};

int x, y;

Class Methods

A method belonging to a class is normally declared as a prototype inside of the class,
and the actual implementation is placed after the class’s definition. The method’s name
outside the class then needs to be prefixed with the class name and the scope resolution
operator in order to designate to which class the method definition belongs.

class MyRectangle
{

int x, y;

int getArea();
};

int MyRectangle::getArea() { return x * y; }

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I CLASS

Inline Methods

If the method is short and you want to recommend to the compiler that the function’s
code should be inserted (inlined) into the caller’s code, one way to do this would be to
use the inline keyword in the method’s definition.

inline int MyRectangle::getArea() { return x * y; }

A more convenient way is to simply define the method inside of the class. This will
implicitly recommend to the compiler that the method should be inlined.

class MyRectangle

{

int x, y;

int getArea() { return x * y; }
b

Object Creation

The class definition is now complete. In order to use it you first have to create an object
of the class, also called an instance. This can be done in the same way as variables are
declared.

int main()

{
}

MyRectangle r; // object creation

Accessing Object Members

Before the members that this object contains can be accessed, they first need to be
declared as public in the class definition, by using the public keyword followed by a colon.

class MyRectangle

{
public:

int x, y;

int getArea() { return x * y; }
b

The members of this object can now be reached using the dot operator (.) after the
instance name.

r.x = 10;

r.y =5;
int z = r.getArea(); // 50 (5*10)

48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 I CLASS

Any number of objects can be created based on a class, and each one of them will
have its own set of fields and methods.

MyRectangle r2; // another instance of MyRectangle
r2.X = 25; // not same as r.x

When using an object pointer, the arrow operator (->) allows access to the object’s
members. This operator behaves like the dot operator, except that it dereferences the

pointer first. It is used exclusively with pointers to objects.

MyRectangle r;
MyRectangle *p = &r; // object pointer

p->getArea();
(*p) .getArea(); // alternative syntax

Forward Declaration

Classes, just like functions, must be declared before they can be referenced. If a class
definition does not appear before the first reference to that class, a class prototype can be
specified above the reference instead.

class MyClass; // class prototype

This forward declaration allows the class to be referenced in any context that does
not require the class to be fully defined.

class MyClass; // class prototype
MyClass* p; // allowed
MyClass f(MyClass8); // allowed

MyClass o; // error, definition required
sizeof(MyClass); // error, definition required

Note that even with a prototype, you still cannot create an object of a class before it
has been defined.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Constructor

In addition to fields and methods, a class can contain a constructor. This is a special kind
of method used to construct, or instantiate, the object. It always has the same name as the
class and does not have a return type. To be accessible from another class the constructor
needs to be declared in a section marked with the public access modifier.

class MyRectangle

{
public:
int x, y; MyRectangle();
};

MyRectangle: :MyRectangle() { x = 10; y = 5; }

When a new instance of this class is created the constructor method will be called,
which in this case assigns default values to the fields.

int main()

{
MyRectangle s;

Constructor Overloading

As with any other method the constructor can be overloaded. This will allow an object to
be created with different argument lists.

class MyRectangle

{
public:
int x, y; MyRectangle(); MyRectangle(int, int);
};
MyRectangle: :MyRectangle() { x = 10; y = 5; }
MyRectangle: :MyRectangle(int a, int b) { x = a; y = b; }

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 ' CONSTRUCTOR

For example, with the two constructors defined above the object can be initialized
either with no arguments or with two arguments, which will be used to assign the fields.

// Calls parameterless constructor
MyRectangle r;

// Calls constructor accepting two integers
MyRectangle t(2,3);

C++11 added the ability for constructors to call other constructors. Using this
feature the parameterless constructor created earlier is here redefined to call the second
constructor.

MyRectangle: :MyRectangle(): MyRectangle(10, 5);

This keyword

Inside the constructor, as well as in other methods belonging to the object - so called
instance methods- a special keyword called this can be used. This is a pointer to the
current instance of the class. It can be useful if, for example, the constructor’s parameter
names are the same as the field names. The fields can then still be accessed by using the
this pointer, even though they are overshadowed by the parameters.

MyRectangle: :MyRectangle(int x, int y)

this->x = x; this->y = y;

Field Initialization

As an alternative to assigning fields inside the constructor, they may also be assigned by
using the constructor initialization list. This list starts with a colon after the constructor
parameters, followed by calls to the field’s own constructors. This is actually the
recommended way of assigning fields through a constructor, because it gives better
performance than assigning the fields inside the constructor.

MyRectangle: :MyRectangle(int a, int b) : x(a), y(b) {}
Fields can also be assigned an initial value in their class definition, a convenient
feature that was added in C++11. This value is automatically assigned when a new

instance is created, before the constructor is run. As such, this assignment can be used to
specify a default value for a field that may be overridden in the constructor.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © CONSTRUCTOR

class MyRectangle

{
public:
// Class member initialization
int x = 10;
int y = 5;
b

Default Constructor

If no constructors are defined for a class the compiler will automatically create a default
parameter less constructor when the program compiles. Because of this, a class can be
instantiated even if no constructor has been implemented. The default constructor will
only allocate memory for the object. It will not initialize the fields. In contrast to global
variables, fields in C++ are not automatically initialized to their default values. The fields
will contain whatever garbage is left in their memory locations until they are explicitly
assigned values.

Destructor

In addition to constructors, a class can also have an explicitly defined destructor.

The destructor is used to release any resources allocated by the object. It is called
automatically before an object is destroyed, either when the object passes out of scope
or when it is explicitly deleted for objects created with the new operator. The name of the
destructor is the same as the class name, but preceded by a tilde (*). A class may only
have one destructor and it never takes any arguments or returns anything.

class Semaphore

{
public:
bool *sem;
Semaphore() { sem = new bool; }
~Semaphore() { delete sem; }
};

Special Member Functions

The default constructor and the destructor are both special member functions that the
compiler will automatically provide for any class that do not explicitly define them. Two
more such methods are the copy constructor and the copy assignment operator (operator =).
With the C++11 standard came ways of controlling whether to allow these special
member functions or not through the delete and default specifiers. The delete specifier
forbids the calling of a function, while the default specifier explicitly states that the
compiler-generated default will be used.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 ' CONSTRUCTOR

class A
{
public:
// Explicitly include default constructor
A() = default;
A(int i);

// Disable copy constructor
A(const A&) = delete;

// Disable copy assignment operator
A3 operator=(const A8) = delete;

};

Object Initialization

C++ provides a number of different ways to create objects and initialize their fields. The
following class will be used to illustrate these methods.

class MyClass

{

public:

int i;

MyClass() = default;
MyClass(int x) : i(x) {}
};

Direct Initialization

The object creation syntax that has been used so far is called direct initialization. This
syntax can include a set of parentheses which are used to pass arguments to a constructor
in the class. If the parameterless constructor is used, the parentheses are left out.

// Direct initialization
MyClass a(5); MyClass b;

Value Initialization

An object can also be value initialized. The object is then created by using the class name
followed by a set of parentheses. The parentheses can supply constructor arguments,

or remain empty to construct the object using the parameterless constructor. A value
initialization creates only a temporary object, which is destroyed at the end of the
statement. To preserve the object it must either be copied to another object or assigned to
areference. Assigning the temporary object to a reference will maintain the object until
that reference goes out of scope.

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © CONSTRUCTOR

// Value initialization
const MyClass& a = MyClass();
MyClass&& b = MyClass();

A value initialized object is almost identical to one created by using default
initialization. A minor difference is that non-static fields will in some cases be initialized
to their default values when using value initialization.

Copy Initialization

If an existing object is assigned to an object of the same type when it is declared, the new
object will be copy initialized. This means that each member of the existing object will be
copied to the new object.

// Copy initialization
MyClass a = MyClass();
MyClass b(a);
MyClass c = b;

This works because of the implicit copy constructor that the compiler provides, which
is called for these kinds of assignments. The copy constructor takes a single argument of
its own type, and then constructs a copy of the specified object. Note that this behavior is
different from many other languages, such as Java and C#. In those languages initializing
an object with another object will only copy the object’s reference, and not create a new
object copy.

New Initialization

An object can be initialized through dynamic memory allocation by using the new
keyword. Dynamically allocated memory must be used through a pointer or reference.
The new operator returns a pointer, so to assign it to a reference it needs to be
dereferenced first. Keep in mind that dynamically allocated memory must be explicitly
freed once it is no longer needed.

// New initialization

MyClass* a = new MyClass(); MyClass& b = *new MyClass();
/...

delete a, b;

Aggregate Initialization

There is a syntactical shortcut available when initializing an object called aggregate
initialization. This syntax allows fields to be set by using a brace-enclosed list of
initializers, in the same way as can be done with arrays. Aggregate initialization can only
be used when the class type does not include any constructors, virtual functions or base

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 ' CONSTRUCTOR

classes. The fields must also be public, unless they are declared as static. Each field will be
set in the order they appear in the class.

// Aggregate initialization
MyClassa = { 2 }; // iis 2

Uniform Initialization

The uniform initialization was introduced in C++11 to provide a consistent way to
initialize types that works the same for any type. This syntax looks the same as aggregate
initialization, without the use of the equal sign.

// Uniform initialization
MyClass a { 3 }; // i1is 3

This initialization syntax works not just for classes but for any type, including
primitives, strings, arrays, and standard library containers such as vector.

#include <string>
#include <vector>
using namespace std;

inti{1};

string s {"Hello"};

inta[] {1, 2}

int *p= new int [2] { 1, 2 };
vector<string> box { "one", "two" };

Uniform initialization can be used to call a constructor. This is done automatically by
passing along the proper arguments for that constructor.

// Call parameterless constructor
MyClass b {};

// Call copy constructor
MyClass c { b };

A class can define an initializer-list-constructor. This constructor is called during
uniform initialization and takes priority over other forms of construction, provided that
the type specified for the initializer_list template matches the type of the brace-enclosed
list of arguments. The argument list can be any length but all elements must be of the
same type. In the following example the type of the list is int and so the integer list used to
construct this object is passed to the constructor. These integers are then displayed using
arange-based for loop.

56

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 © CONSTRUCTOR

#include <iostream>
using namespace std;

class NewClass

{
public:
NewClass(initializer list<int> args)

{

for (auto x : args)

}

cout << x <« 5
};
int main()

{
NewClass a { 1, 2, 3 }; // "1 2 3"

}

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Inheritance

Inheritance allows a class to acquire the members of another class. In the example below,
Square inherits from Rectangle. This is specified after the class name by using a colon
followed by the public keyword, and the name of the class to inherit from. Rectangle then
becomes a base class of Square, which in turn becomes a derived class of Rectangle. In
addition to its own members, Square gains all accessible members in Rectangle, except
for its constructors and destructor.

class Rectangle

{
public:
int x, y;
int getArea() { return x * y; }
};

class Square : public Rectangle {};

Upcasting

An object can be upcast to its base class, because it contains everything that the base class
contains. An upcast is performed by assigning the object to either a reference or a pointer
of its base class type. In the example below, a Square object is upcast to Rectangle. When
using Rectangle’s interface the Square object will be viewed as a Rectangle, so only
Rectangle’s members can be accessed.

Square s;
Rectangle& r = s; // reference upcast
Rectangle* p = &s; // pointer upcast
A derived class can be used anywhere a base class is expected. For example, a Square

object can be passed as an argument to a function that expects a Rectangle object. The
derived object will then implicitly be upcast to its base type.

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 © INHERITANCE
void setXY(Rectangled r) { r.x = 2; r.y = 3; }

int main()
{
Square s;
setXY(s);
}

Downcasting

A Rectangle reference that points to a Square object can be downcast back to a Square
object. This downcast has to be made explicit since downcasting an actual Rectangle to a
Square is not allowed.

Squared a
Squared b

(Squared) r; // reference downcast
(Squared) *p; // pointer downcast

Constructor Inheritance

To make sure the fields in the base class are properly initialized, the parameterless
constructor of the base class is automatically called when an object of the derived class is
created.

class B1

{
public:
int x;
B1() : x(5) {}

)

class D1 : public B1 {};

int main()

{

// Calls parameterless constructors of D1 and Bl
D1 d;

cout << d.x; // "5"

}

This call to the base constructor can be made explicitly from the derived constructor,
by placing it in the constructor’s initialization list. This allows arguments to be passed
along to the base constructor.

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14 ' INHERITANCE

class B2

{
public:
int x;
B2(int a) : x(a) {}
b

class D2 : public B2

{
public:

D2(int i) : B2(i) {} // call base constructor
};

An alternative solution in this case is to inherit the constructor. As of C++11, this can
be done through a using statement.

class D2 : public B2

{
public:

using B2::B2; // inherit all constructors
int y{o};

1

Note that the base class constructor cannot initialize fields defined in the derived
class. Therefore, any fields declared in the derived class should initialize themselves. This
is done here using the uniform notation.

Multiple Inheritance

C++ allows a derived class to inherit from more than one base class. This is called multiple
inheritance. The base classes are specified in a comma-separated list.

class Person {}
class Employee {}

class Teacher: public Person, public Employee {}
Multiple inheritance is not commonly used since most real-world relationships

can be better described by single inheritance. It also tends to significantly increase the
complexity of the code.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Overriding

A new method in a derived class can redefine a method in a base class in order to give it a
new implementation.

Hiding Derived Members

In the example below, Rectangle’s getArea method is redeclared in Triangle with the
same signature. The signature includes the name, parameter list and return type of the
method.

class Rectangle

{
public:
int x, y;
int getArea() { return x * y; }

)

class Triangle : public Rectangle

{

public:
Triangle(int a, int b) { x = a; y = b; }
int getArea() { return x *vy / 2; }

)

If a Triangle object is created and the getArea method is invoked, then Triangle’s
version of the method will get called.

Triangle t = Triangle(2,3);
t.getArea(); // 3 (2*3/2) calls Triangle's version

However, if the Triangle is upcast to a Rectangle then Rectangle’s version will get
called instead.

Rectangled r = t;
r.getArea(); // 6 (2*3) calls Rectangle's version

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 I OVERRIDING

That is because the redefined method has only hidden the inherited method. This
means that Triangle’s implementation is redefined downwards in the class hierarchy to
any child classes of Triangle, but not upwards to the base class.

Overriding Derived Members

In order to redefine a method upwards in the class hierarchy - what is called
overriding - the method needs to be declared with the virtual modifier in the base class.
This modifier allows the method to be overridden in derived classes.

class Rectangle

{

public:

int x, y;

virtual int getArea() { return x * y; }
b

Calling the getArea method from Rectangle’s interface will now invoke Triangle’s
implementation.

Rectangled r = t;
r.getArea(); // 3 (2*3/2) calls Triangle's version

C++11 added the override specifier, which indicates that a method is intended to
replace an inherited method. Using this specifier allows the compiler to check that there
is a virtual method with that same signature. This prevents the possibility of accidentally
creating a new virtual method.

virtual float getArea() override {} // error - no base class method to
override

Another specifier introduced in C++11 is final. This specifier prevents a virtual
method from being overridden in derived classes. It also prevents derived classes from
using that same method signature.

class Base

{
virtual void foo() final {}

}

class Derived

{

void foo() {} // error: Base::foo marked as final

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15 " OVERRIDING

The final specifier can also be applied to a class to prevent any class from inheriting it.

class B final {}
class D : B {} // error: B marked as final

Base Class Scoping

It is still possible to access a redefined method from a derived class by typing the class
name followed by the scope resolution operator. This is called base class scoping and can
be used to allow access to redefined methods that are any number of levels deep in the
class hierarchy.

class Triangle : public Rectangle

{
public:

Triangle(int a, int b) { x = a; y = b; }

int getArea() { return Rectangle::getArea() / 2; }
};

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Access Levels

Every class member has an accessibility level that determines where the member will be
visible. There are three of them available in C++: public, protected and private. The
default access level for class members is private. To change the access level for a section
of code, an access modifier is used followed by a colon. Every field or method that comes
after this label will have the specified access level, until another access level is set or the
class declaration ends.

class MyClass
{

int myPrivate;

public:

int myPublic;

void publicMethod();
};

Private Access

All members regardless of their access level are accessible in the class in which they
are declared, the enclosing class. This is the only place where private members can be
accessed.

class MyClass

{
// Unrestricted access
public: int myPublic;

// Defining or derived class only
protected: int myProtected;

// Defining class only
private: int myPrivate;

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © ACCESS LEVELS

void test()

{
myPublic = 0; // allowed
myProtected = 0; // allowed
myPrivate 0; // allowed

}

};

Protected Access

A protected member can also be accessed from inside a derived class, but it cannot be
reached from an unrelated class.

class MyChild : public MyClass

{
void test()
{
myPublic = 0; // allowed
myProtected = 0; // allowed
myPrivate = 0; // inaccessible
}
};

Public Access

Public access gives unrestricted access from anywhere in the code.

class OtherClass

{
void test(MyClass& c)
c.myPublic = 0; // allowed
c.myProtected = 0; // inaccessible
c.myPrivate = 0; // inaccessible
}
};
68

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 ACCESS LEVELS

Access Level Guideline

As a guideline, when choosing an access level it is generally best to use the most
restrictive level possible. This is because the more places a member can be accessed, the
more places it can be accessed incorrectly, which makes the code harder to debug. Using
restrictive access levels will also make it easier to modify the class without breaking the
code for any other programmers using that class.

Friend Classes and Functions

A class can be allowed to access the private and protected members of another class

by declaring the class a friend. This is done by using the friend modifier. The friend is
allowed to access all members in the class where the friend is defined, but not the other
way around.

class MyClass
{

int myPrivate;

// Give OtherClass access
friend class Other(Class;

b
class OtherClass

{
void test(MyClass c) { c.myPrivate = 0; } // allowed
};

A global function can also be declared as a friend to a class in order to gain the same
level of access.

class MyClass
{

int myPrivate;

// Give myFriend access
friend void myFriend(MyClass c);

};

void myFriend(MyClass c) { c.myPrivate = 0; } // allowed

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16 © ACCESS LEVELS

Public, Protected and Private Inheritance

When a class is inherited in C++ it is possible to change the access level of the inherited
members. Public inheritance allows all members to keep their original access level.
Protected inheritance reduces the access of public members to protected. Private
inheritance restricts all inherited members to private access.

class MyChild : private MyClass

{
// myPublic is private
// myProtected is private
// myPrivate is private

};

Private is the default inheritance level, although public inheritance is the one that is
nearly always used.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

Static

The static keyword is used to create class members that exist in only one copy, which
belongs to the class itself. These members are shared among all instances of the class.
This is different from instance (non-static) members, which are created as new copies for
each new object.

Static Fields

A static field (class field) cannot be initialized inside the class like an instance field.
Instead it must be defined outside of the class declaration. This initialization will only
take place once, and the static field will then remain initialized throughout the life of the
application.

class MyCircle

{

public:
double r1; // instance field (one per object)
static double pi; // static field (only one copy)

};

double MyCircle::pi = 3.14;

To access a static member from outside the class, the name of the class is used
followed by the scope resolution operator and the static member. This means that there is
no need to create an instance of a class in order to access its static members.

int main()

double p = MyCircle::pi;
}

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17 I STATIC

Static Methods

In addition to fields, methods can also be declared as static, in which case they can
also be called without having to define an instance of the class. However, because a static
method is not part of any instance it cannot use instance members. Methods should
therefore only be declared static if they perform a generic function that is independent
of any instance variables. Instance methods on the other hand, in contrast to static
methods, can use both static and instance members.

class MyCircle

{

public:
double r; // instance variable (one per object)
static double pi; // static variable (only one copy)

double getArea() { return pi * r * r; }
static double newArea(double a) { return pi * a * a; }

};
int main()

double a = MyCircle::newArea(1);

}

Static Local Variables

Local variables inside a function can be declared as static to make the function
remember the variable. A static local variable is only initialized once when execution first
reaches the declaration, and that declaration is then ignored every subsequent time the
execution passes through.

int myFunc()

static int count = 0; // holds # of calls to function
count++;

}

Static Global Variables

One last place where the static keyword can be applied is to global variables. This will
limit the accessibility of the variable to only the current source file, and can therefore be
used to help avoid naming conflicts.

// Only visible within this source file
static int myGlobal;

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

Enum

Enum is a user-defined type consisting of a fixed list of named constants. In the example
below, the enumeration type is called Color and contains three constants: Red, Green
and Blue.

enum Color { Red, Green, Blue };

The Color type can be used to create variables that may hold one of these constant
values.

int main()

{
}

Color c = Red;

Enum constants may be prefixed with the enum name for added clarity. However,
these constants are always unscoped, and so care must be taken to avoid naming
conflicts.

Color c = Color::Red;

Enum Example

The switch statement provides a good example of when enumerations can be useful.
Compared to using ordinary constants, the enumeration has the advantage that it allows
the programmer to clearly specify what values a variable should contain.

switch(c)
{

case Red: break;
case Green: break;
case Blue: break;

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 I ENUM

Enum Constant Values

Usually there is no need to know the underlying values that the constants represent, but
in some cases it can be useful. By default, the first constant in the enum list has the value
zero and each successive constant is one value higher.

enum Color

{
Red // 0
Green // 1
Blue // 2

};

These default values can be overridden by assigning values to the constants.
The values can be computed and do not have to be unique.

enum Color

{
Red =5, /15
Green = Red, /15

Blue = Green + 2 // 7

};

Enum Conversions

The compiler can implicitly convert an enumeration constant to an integer. However,
converting an integer back into an enum variable requires an explicit cast, since this
conversion makes it possible to assign a value that is not included in the enum’s list of
constants.

int i = Red;
Color ¢ = (Color)i;

Enum Scope

An enum does not have to be declared globally. It can also be placed within a class as a
class member, or locally within a function.

class MyClass
{

};

enum Color { Red, Green, Blue };

void myFunction()

enum Color { Red, Green, Blue };

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18 I ENUM

Strongly Typed Enums

The enum class was introduced in C++11 to provide a safer alternative to the regular
enum. These new enums are defined in the same way as regular enums, with the addition
of the class keyword.

enum class Speed

{
Fast,
Normal,
Slow

};

With the new enum the specified constants belong within the scope of the enum
class name, as opposed to the outer scope as for regular enums. To access an enum class
constant, it must therefore be qualified with the enum name.

Speed s = Speed::Fast;

The underlying integral type of the regular enum is not defined by the standard and
may vary between implementations. In contrast, a class enum always uses the int type by
default. This type can be overridden to another integer type, as seen below.
enum class MyEnum : unsigned short {};

One last important advantage of enum classes is their type safety. Unlike regular
enums, enum classes are strongly typed and will therefore not convert implicitly to

integer types.

if (s == Speed::Fast) {} // ok
if (s == 0) {} // error

75

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

Struct and Union

Struct

A struct in C++ is equivalent to a class, except that members of a struct default to public
access, instead of private access as in classes. By convention, structs are used instead of
classes to represent simple data structures that mainly contain public fields.

struct Point

{

int x, y; // public
};
class Point
{

int x, y; // private
};

Declarator List

To declare objects of a struct the normal declaration syntax can be used.
Point p, q; // object declarations

Another alternative syntax often used with structs is to declare the objects when the
struct is defined by placing the object names before the final semicolon. This position is
known as the declarator list and can contain a comma-separated sequence of declarators.
struct Point
{

int x, y;

} 1, s; // object declarations

Aggregate initialization is also commonly used with structs, since this syntactical
shortcut only works for simple aggregate types with public fields. For compilers

77

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 ' STRUCT AND UNION

supporting C++11, the uniform initialization syntax is preferred, as it removes the
distinction between initialization of aggregate and non-aggregate types.

int main()

{
// Aggregate initialization
Point p = { 2, 3 };

// Uniform initialization
Point q { 2, 3 };

Union

Although similar to struct, the union type is different in that all fields share the same
memory position. Therefore, the size of a union is the size of the largest field it contains.
For example, in the case below this is the integer field which is 4 bytes large.

union Mix

{
char ¢; // 1 byte

short s; // 2 bytes
int i; // 4 bytes
}om;

This means that the union type can only be used to store one value at a time, because
changing one field will overwrite the value of the others.

int main()

m.c = OxFF; // set first 8 bits
0; // reset first 16 bits

=
w
n

The benefit of a union, in addition to efficient memory usage, is that it provides
multiple ways of viewing the same memory location. For example, the union below has
three data members that allow access to the same group of 4 bytes in multiple ways.

union Mix

{
char c[4]; // 4 bytes
struct { short hi, lo; } s; // 4 bytes
int i; // 4 bytes

} om;

78

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19 STRUCT AND UNION

The integer field will access all 4 bytes at once. With the struct 2 bytes can be viewed
at a time, and by using the char array each byte can be referenced individually.

int main()

{

m.i=0xFFOOFOOF; // 11111111 00000000 11110000 00001111
m.s.lo; // 11111111 00000000

m.s.hi; // 11110000 00001111
m.c[3]; // 11111111

m.c[2]; // 00000000

m.c[1]; // 11110000

m.c[0]; // 00001111}

Anonymous Union

A union type can be declared without a name. This is called an anonymous union and
defines an unnamed object whose members can be accessed directly from the scope
where it is declared. An anonymous union cannot contain methods or non-public
members.

int main()

{
}

union { short s; }; // defines an unnamed union object s = 15;

An anonymous union that is declared globally must be made static.

static union {};

79

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Operator Overloading

Operator overloading allows operators to be redefined and used where one or both of the
operands are of a user-defined class. When done correctly, this can simplify the code and
make user-defined types as easy to use as the primitive types.

Operator Overloading Example

In the example below there is a class called MyNum with an integer field and a constructor
for setting that field. The class also has an addition method that adds two MyNum objects
together and returns the result as a new object.

class MyNum
{
public:
int val;
MyNum(int i) : val(i) {}

MyNum add(MyNum &a)
{ return MyNum(val + a.val); }

}

Two MyNum instances can be added together using this method.
MyNum a = MyNum(10), b = MyNum(5);
MyNum c = a.add(b);

Binary Operator Overloading

What operator overloading does is simplify this syntax and thereby provide a more
intuitive interface for the class. To convert the add method to an overload for the addition
sign, replace the name of the method with the operator keyword followed by the
operator that is to be overloaded. The whitespace between the keyword and the operator
can optionally be left out.

81

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 I OPERATOR OVERLOADING

MyNum operator + (MyNum &a)
{ return MyNum(val + a.val); }

Since the class now overloads the addition sign, this operator can be used to perform
the calculation needed.

MyNum c = a + b;

Keep in mind that the operator is only an alternative syntax for calling the actual
method.

MyNum d = a.operator + (b);

Unary Operator Overloading

Addition is a binary operator, because it takes two operands. The first operand is the
object from which the method is called, and the second operand is that which is passed
to the method. When overloading a unary operator, such as prefix increment (++), there is
no need for a method parameter since these operators only affect the object from which
they are called.

With unary operators, a reference of the same type as the object should always be
returned. This is because when using a unary operator on an object, programmers expect
the result to return the same object and not just a copy. On the other hand, when using
a binary operator, programmers expect a copy of the result to be returned and therefore
return by value should be used.

MyNumd operator++() // ++ prefix
{ ++val; return *this; }

Not all unary operators should return by reference. The two postfix
operators - post-increment and post-decrement - should instead return by value, because
the postfix operations are expected to return the state of the object before the increment
or decrement occurs. Note that the postfix operators have an unused int parameter
specified. This parameter is used to distinguish them from the prefix operators.

MyNum operator++(int) // postfix ++

{
MyNum t = MyNum(val);
++val;
return t;

}

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20 I OPERATOR OVERLOADING

Overloadable Operators

C++ allows overloading of almost all operators in the language. As can be seen in the table
below, most operators are of the binary type. Only a few of them are unary, and some
special operators cannot be categorized as either. There are also some operators that
cannot be overloaded at all.

Binary operators Unary operators

+-*/% +-1~ &F 4t -
=+=-=%=/=%= Special operators
&=A=|=<<=>>= ()[]delete new
=l=><>=<= Not overloadable
&N <<>> && || X 20 # ## sizeof
->->*,

83

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Custom Conversions

Custom type conversions can be defined to allow an object to be constructed from or
converted to another type. In the following example, there is a class called MyNum with a
single integer field. With conversion constructors it is possible to allow integer types to be
implicitly converted to this object’s type.

class MyNum

{
public:
int value;

};

Implicit Conversion Constructor

For this type conversion to work, a constructor needs to be added that takes a single
parameter of the desired type, in this case an int.

class MyNum

{
public:
int value;
MyNum(int i) { value = i; }

)

When an integer is assigned to an object of MyNum this constructor will implicitly be
called to perform the type conversion.

MyNum A = 5; // implicit conversion

This means that any constructor that takes exactly one argument can be used both
for constructing objects and for performing implicit type conversions to that object type.

MyNum B = MyNum(5); // object construction
MyNum C(5); // object construction

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 ' CUSTOM CONVERSIONS

These conversions will work not only for the specific parameter type, but also for any
type that can be implicitly converted to it. For example, a char can be implicitly converted
to an int and can therefore be implicitly changed into a MyNum object as well.

MyNum D = 'H'; // implicit conversion (char->int->MyNum)

Explicit Conversion Constructor

To help prevent potentially unintended object type conversions it is possible to disable
the second use of the single parameter constructor. The explicit constructor modifier
is then applied, which specifies that the constructor may only be used for object
construction, and not for type conversion.

class MyNum

{
public:

int value;

explicit MyNum(int i) { value = i; }
};

The explicit constructor syntax must therefore be used to create a new object.
MyNum A = 5; // error
MyNum B(5); // allowed

MyNum C = MyNum(5); // allowed

Conversion Operators

Custom conversion operators allow conversions to be specified in the other direction:
from the object’s type to another type. The operator keyword is then used, followed by
the target type, a set of parentheses, and a method body. The body returns a value of the
target type, in this case int.

class MyNum

{
public:
int value;
operator int() { return value; }
b

When objects of this class are evaluated in an int context, this conversion operator
will be called to perform the type conversion.

MyNum A { 5 };
inti=A; //5

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21 © CUSTOM CONVERSIONS

Explicit Conversion Operators

The C++11 standard added explicit conversion operators to the language. Similar to
explicit constructors, the inclusion of the explicit keyword prevents the conversion
operator from being implicitly called.

class True
{
explicit operator bool() const {
return true;
}
b

The class above provides a safe bool that prevents its objects from mistakenly being
used in a mathematical context through the bool conversion operator. In the example
below, the first comparison results in a compile error since the bool conversion operator
cannot be implicitly called. The second comparison is allowed because the conversion
operator is explicitly called through the type cast.

True a, b;
if (a == b) {} // error
if ((bool)a == (bool)b) {} // allowed

Bear in mind that contexts requiring a bool value, such as the condition for an if
statement, counts as explicit conversions.

if (a) {} // allowed

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

Namespaces

Namespaces are used to avoid naming conflicts by allowing entities, such as classes and
functions, to be grouped under a separate scope. In the example below there are two
classes that belong to the global scope. Since both classes share the same name and
scope the code will not compile.

class Table {};
class Table {}; // error: class type redefinition

One way to solve this problem would be to rename one of the conflicting classes.
Another solution is to group one or both of them under a different namespace by
enclosing each in a namespace block. The classes then belong to different scopes and so
will no longer cause a naming conflict.

namespace furniture

{

class Table {};
}
namespace html
{

class Table {};
}

Accessing Namespace Members

To access a member of a namespace from outside that namespace the member’s fully
qualified name needs to be specified. This means that the member name has to be
prefixed with the namespace it belongs to, followed by the scope resolution operator.

int main()

{
furniture::Table fTable;

html::Table hTable;

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 I NAMESPACES

Nesting Namespaces

It is possible to nest namespaces any number of levels deep to further structure the
program entities.

namespace furniture

{
}

namespace wood { class Table {}; }

Ensure that the nested namespace members are qualified with the full namespace
hierarchy when using them from another namespace.

furniture: :wood: :Table fTable;

Importing Namespaces

To avoid having to specify the namespace every time one of its members is used, the
namespace can be imported into the global or local scope with the help of a using
declaration. This declaration includes the using namespace keywords followed by

the namespace to be imported. It can be placed either locally or globally. Locally, the
declaration will only be in scope until the end of the code block, while at the global scope
it will apply to the whole source file following its declaration.

using namespace html; // global namespace import
int main()

{
}

using namespace html; // local namespace import

Keep in mind that importing a namespace into the global scope defeats the main
purpose of using namespaces, which is to avoid naming conflicts. Such conflicts however
are mainly an issue in projects that use several independently developed code libraries.

Namespace Member Import

If you want to avoid both typing the fully qualified name and importing the whole
namespace there is a third alternative available. That is to only import the specific
members that are needed from the namespace. This is done by declaring one member at
a time with the using keyword followed by the fully qualified namespace member to be
imported.

using html::Table; // import a single namespace member

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 | NAMESPACES

Namespace Alias

Another way to shorten the fully qualified name is to create a namespace alias. The
namespace keyword is then used followed by an alias name, to which the fully qualified
namespace is assigned.
namespace myAlias = furniture::wood; // namespace alias

This alias can then be used instead of the namespace qualifier that it represents.

myAlias::Table fTable;

Note that both the namespace member imports and the namespace aliases may be
declared both globally and locally.

Type Alias

Aliases can also be created for types. A type alias is defined using the typedef keyword
followed by the type and the alias.

typedef my::name::MyClass MyType;
The alias can then be used as a synonym for the specified type.
MyType t;

Typedef does not only work for existing types, but can also include a definition of a
user-defined type - such as a class, struct, union or enum.

typedef struct { int len; } Length;
Length a, b, c;

C++11 added a using statement that provides a more intuitive syntax for aliasing
types. With this syntax the keyword using is followed by the alias name and then assigned
the type. Unlike typedef the using statement also allows templates to be aliased.
using MyType = my::name::MyClass;

Aliases are not commonly used since they tend to obfuscate the code. However, if

used properly a type alias can simplify a long or confusing type name. Another function
they provide is the ability to change the definition of a type from a single location.

91

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22 I NAMESPACES

Including Namespace Members

Keep in mind that in C++ merely importing a namespace does not provide access to the
members included in that namespace. In order to access the namespace members the
prototypes also have to be made available, for example by using the appropriate #include
directives.

// Include input/output prototypes
#include <iostream>

// Import standard library namespace to global scope using namespace std;

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23

Constants

A constant is a variable that has a value which cannot be changed once the constant has
been assigned. This allows the compiler to enforce that the variable’s value is not changed
anywhere in the code by mistake.

Constant Variables

A variable can be made into a constant by adding the const keyword either before or
after the data type. This modifier means that the variable becomes read-only, and it must
therefore be assigned a value at the same time as it is declared. Attempting to change the
value anywhere else results in a compile-time error.

const int var = 5;
int const var2 = 10; // alternative order

Constant Pointers

When it comes to pointers, const can be used in two ways. First, the pointer can be made
constant, which means that it cannot be changed to point to another location.

int myPointee;
int* const p = 8myPointee; // pointer constant

Second, the pointee can be declared constant. This means that the variable pointed
to cannot be modified through this pointer.

const int* q = &var; // pointee constant

It is possible to declare both the pointer and the pointee as constant to make them
both read-only.

const int* const r = &var; // pointer & pointee constant

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 I CONSTANTS

Note that constant variables may not be pointed to by a non-constant pointer. This
prevents programmers from accidentally rewriting a constant variable using a pointer.

int* s = &var; // error: const to non-const assignment

Constant References

References can be declared constant in the same way as pointers. However, since
reseating a reference is never allowed, declaring the reference as const would be
redundant. It only makes sense to protect the referee from change.

const int& y = var; // referee constant

Constant Objects

Just as with variables, pointers and references, objects can also be declared constant. Take
the following class as an example.

class MyClass

{
public: int x;

void setX(int a) { x = a; }
s

A constant object of this class cannot be reassigned to another instance.

The constness of an object also affects its fields and prevent them from being
changed.
const MyClass a, b;

a=b; // error: object is const
a.x = 10; // error: object field is const

Constant Methods

Because of this last restriction, a constant object may not call a non-constant method
since such methods are allowed to change the object’s fields.

a.setX(2); // error: cannot call non-const method

They may only call constant methods, which are methods that are marked with the
const modifier before the method body.

int getX() const { return x; } // constant method

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 I CONSTANTS

This const modifier means that the method is not allowed to modify the state of
the object and can therefore safely be called by a constant object of the class. More
specifically, the const modifier applies to the this pointer that is implicitly passed to the
method. This effectively restricts the method from modifying the object’s fields or calling
any non-constant methods in the class.

Constant Return Type and Parameters

In addition to making a method constant, the return type and method parameters may
also be made read-only. For example, if a field is returned by reference instead of by
value from a constant method it is important that it is returned as a constant in order
to maintain the constness of the object. Not all C++ compilers will be able to catch this
subtle mistake.

const int& getX() const { return x; }

Constant Fields

Both static and instance fields in a class can be declared constant. A constant instance
field must be assigned its value using the constructor initialization list. This is the same as
the preferred way of initializing regular (non-constant, non-static) fields.

class MyClass
{
public:
int i;
const int c;
MyClass() : c(5), i(5) {}

A constant static field has to be defined outside of the class declaration, in the same
way as non-constant static fields. The exception to this is when the constant static field
is of an integer data type. Such a field may also be initialized within the class at the same
time as the field is declared.

class MyClass
{
public:
static int si;
const static double csd;
const static int csi = 5;
};
int MyClass::si = 1.23;
const double MyClass::csd = 1.23;

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 I CONSTANTS

Constant Expressions

The keyword constexpr was introduced in C++11 to indicate a constant expression. Like
const it can be applied to variables to make them constant, causing a compilation error if
any code attempts to modify the value.

constexpr int myConst = 5;
myConst = 3; // error: variable is const

Unlike const variables, which may be assigned at runtime, a constant expression
variable will be computed at compile time. Such a variable can therefore always be used
where a compile-time constant is needed, such as in an array and enum declarations.
Prior to C++11, this was only allowed for constant integer and enumeration types.

int myArray[myConst + 1];

Functions and class constructors may also be defined as constant expressions,
which is not allowed with const. Using constexpr on a function limits what the function is
allowed to do. In short, the function must consist of a single return statement, and it can
only reference other constexpr functions and global constexpr variables. C++14 relaxes
these constraints, allowing constexpr functions to contain other executable statements.

constexpr int getDefaultSize(int multiplier)

{
}

return 3 * multiplier;

The return value for a constexpr function is guaranteed to be evaluated at compile
time only when its arguments are constant expressions and the return value is used
where a compile-time constant is necessary.

// Compile-time evaluation
int myArray[getDefaultSize(10)];

If the function is called without constant arguments, it returns a value at runtime just
like a regular function.

// Run-time call
int mul = 10;
int size = getDefaultSize(mul);

96

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 23 I CONSTANTS

Constructors can be declared with constexpr, to construct a constant expression
object. Such a constructor must be trivial.

class Circle

{
public:

int 1;

constexpr Circle(int x) : r(x) {}
b

When called with a constant expression argument, the result will be a compile-time
generated object with read-only fields. With other arguments it will behave as an ordinary
constructor.

// Compile-time object
constexpr Circle c1(5);

// Run-time object
int x = 5;
Circle c2(x);

Constant Guideline

In general, it is a good idea to always declare variables as constants if they do not need to
be modified. This ensures that the variables are not changed anywhere in the program
by mistake, which in turn will help to prevent bugs. There is also a performance gain

by allowing the compiler the opportunity to hard-code constant expressions into the
compiled program. This allows the expression to be evaluated only once - during
compilation - rather than every time the program runs.

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24

Preprocessor

The preprocessor is a text substitution tool that modifies the source code before the
compilation takes place. This modification is done according to the preprocessor
directives that are included in the source files. The directives are easily distinguished
from normal programming code in that they all start with a hash sign (#). They must

always appear as the first non-whitespace character on a line, and they do not end with a
semicolon. The following table shows the preprocessor directives available in C++ along

with their functions.

Directive Description
#include File include
#define Macro definition
#undef Macro undefine
#ifdef If macro defined
#ifndef If macro not defined
#if If

#elif Else if

#else Else

#endif End if

#line Set line number
#error Abort compilation
#pragma Set compiler option

www.it-ebooks.info

99

http://www.it-ebooks.info/

CHAPTER 24 I PREPROCESSOR

Including Source Files

The #include directive inserts the contents of a file into the current source file. Its most
common use is to include header files, both user-defined and library ones. Library header
files are enclosed between angle brackets (<>). This tells the preprocessor to search for
the header in the default directory where it is configured to look for standard header files.

#include <iostream> // search library directory

Header files that you create for your own program are enclosed within double
quotes (""). The preprocessor will then search for the file in the same directory as the
current file. In case the header is not found there, the preprocessor will then search
among the standard header files.

#include "MyFile.h" // search current, then default

The double quoted form can also be used to specify an absolute or relative path to
the file.

#include "C:\MyFile.h" // absolute path
#include "..\MyFile.h" // relative path

Define

Another important directive is #define, which is used to create compile-time constants,
also called macros. After this directive, the name of the constant is specified followed by
what it will be replaced by.

#define PI 3.14 // macro definition

The preprocessor will go through and change any occurrences of this constant with
whatever comes after it in its definition until the end of the line.

float f = PI; // f = 3.14

By convention, constants should be named in uppercase letters with each word
separated by an underscore. That way they are easy to spot when reading the source code.

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © PREPROCESSOR

Undefine

A #define directive should not be used to directly override a previously defined macro.
Doing so will give a compiler warning. In order to change a macro, it first needs to

be undefined using the #undef directive. Attempting to undefine a macro that is not
currently defined will not generate a warning.

#undef PI // undefine
#undef PI // allowed

Predefined Macros

There are a number of macros that are predefined by the compiler. To distinguish them
from other macros, their names begin and end with two underscores. These standard
macros are listed in the following table.

Directive Description

__FILE__ Name and path for the current file.

_ LINE__ Current line number.

__DATE__ Compilation date in MM DD YYYY format.

_ TIME__ Compilation time in HH:MM:SS format.
__func__ Name of the current function. Added in C++11.

A common use for predefined macros is to provide debugging information. To give
an example, the following error message includes the file name and line number
where the message occurs.

cout << "Error in " << _ FILE__ << " at line " << _ LINE_;

Macro Functions

Macros can be made to take arguments. This allows them to define compile-time
functions. For example, the following macro function gives the square of its argument.

#tdefine SQUARE(x) ((x)*(x))

The macro function is called just as if it was a regular C++ function. Keep in mind
that for this kind of function to work, the arguments must be known at compile time.

int x = SQUARE(2); // 4

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 I PREPROCESSOR

Note the extra parentheses in the macro definition that are used to avoid problems
with operator precedence. Without the parentheses the following example would give an
incorrect result, as the multiplication would then be carried out before the addition.

#define SQUARE(x) x*x

int main(void) {
int x = SQUARE(1+1); // 1+1*1+1 = 3

}

To break a macro function across several lines the backslash character can be used.
This will escape the newline character that marks the end of a preprocessor directive.
For this to work there must not be any whitespace after the backslash.

#define MAX(a,b) \
a>b ?\
a:b

Although macros can be powerful, they tend to make the code more difficult to read
and debug. Macros should therefore only be used when they are absolutely necessary
and should always be kept short. C++ code such as constant variables, enum classes, and
constexpr functions can often accomplish the same goal more efficiently and safely than
#define directives can.

#define DEBUG 0
const bool DEBUG = 0;

t#tdefine FORWARD 1

#tdefine STOP 0

ttdefine BACKWARD -1

enum class DIR { FORWARD = 1, STOP = 0, BACKWARD = -1 };

#define MAX(a,b) a>b ? a:b
constexpr int MAX(int a, int b) { return a>b ? a:b; }

Conditional Compilation

The directives used for conditional compilation can include or exclude part of the source
code if a certain condition is met. First, there is the #if and #endif directives, which
specifies a section of code that will only be included if the condition after the #if directive
is true. Note that this condition must evaluate to a constant expression.

#define DEBUG_LEVEL 3

#if DEBUG_LEVEL > 2

/] ...
ftendif
102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © PREPROCESSOR

Just as with the C++ if statement, any number of #elif (else if) directives and one
final #else directive can be included.

#if DEBUG_LEVEL > 2
/! ...

#elif DEBUG_LEVEL == 2
/...

#else
/...

#endif

Conditional compilation also provides a useful means of temporarily commenting
out large blocks of code for testing purposes. This often cannot be done with the regular
multiline comment since they cannot be nested.

#if o
/* Removed from compilation */
#endif

Compile if Defined

Sometimes, a section of code should only be compiled if a certain macro has been
defined, irrespective of its value. For this purpose two special operators can be used:
defined and !defined (not defined).

#define DEBUG

#if defined DEBUG
/!l ...

#elif !defined DEBUG
/...

#endif

The same effect can also be achieved using the directives #ifdef and #ifndef
respectively. For instance, the #ifdef section is only compiled if the specified macro has
been previously defined. Note that a macro is considered defined even if it has not been
given a value.

#ifdef DEBUG
/! ...

#endif

#ifndef DEBUG

/...
#endif

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 I PREPROCESSOR

Error

When the #error directive is encountered the compilation is aborted. This directive can
be useful to determine whether or not a certain line of code is being compiled. It can
optionally take a parameter that specifies the description of the generated compilation
€rTor.

#error Compilation aborted

Aless commonly used directive is #1ine, which can change the line number that is
displayed when an error occurs during compilation. Following this directive the line
number will as usual be increased by one for each successive line. The directive can take

an optional string parameter that sets the filename that will be shown when an error
occurs.

#line 5 "myapp.cpp"

Pragma

The last standard directive is #pragma, or pragmatic information. This directive is used to
specify options to the compiler; and as such, they are vendor specific. To give an example,
#pragma message can be used with many compilers to output a string to the build
window. Another common argument for this directive is warning, which changes how the
compiler handles warnings.

// Show compiler message
#pragma message("Hello Compiler")

// Disable warning 4507
#pragma warning(disable : 4507)

Attributes

A new standardized syntax was introduced in C++11 for providing compiler specific
information in the source code, so-called attributes. Attributes are placed within double
square brackets and may, depending on the attribute, be applied to any code entities. To
give an example, a standard attribute added in C++14 is [[deprecated]], which indicates
that use of a code entity has become discouraged.

// Mark as deprecated
[[deprecated]] void foo() {}

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24 © PREPROCESSOR

This attribute allows the compiler to emit a warning whenever such an entity is

used. A message can be included in this warning, to describe why the entity has been
deprecated.

[[deprecated("foo() is unsafe, use bar() instead")]]
void foo() {}

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25

Exception Handling

Exception handling allows programmers to deal with unexpected situations that may
occur in a program.

Throwing Exceptions

When a function encounters a situation that it cannot recover from it can generate an
exception to signal the caller that the function has failed. This is done using the throw
keyword followed by whatever it is the function wants to signal. When this statement is
reached, the function will stop executing and the exception will propagate up to the caller
where it can be caught, using a try-catch statement.

nt divide(int x, int y)
{
if (y == 0) throw 0;
return x / y;

}

Try-catch statement

The try-catch statement consists of a try block containing code that may cause exceptions
and one or more catch clauses to handle them. In the above case an integer is thrown

and so a catch block needs to be included that handles this type of exception. The thrown
expression will get passed as an argument to this exception handler, where it can be used
to determine what has gone wrong with the function. Note that when the exception has
been handled, the execution will then continue running after the try-catch blocks and not
after the throw statement.

try {
divide(10,0);

}
catch(int8 e) {
std::cout << "Error code:

}

< e;

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 I EXCEPTION HANDLING

An exception handler can catch a thrown expression by either value, reference or
pointer. However, catching by value should be avoided since this causes an extra copy to
be made. Catching by reference is generally preferable. If the code in the try block can
throw more types of exceptions then more catch clauses need to be added to handle them
as well. Keep in mind that only the handler that matches the thrown expression will be
executed.

catch(chard e) {
std::cout << "Error char: " << e;

}

To catch all types of exceptions an ellipsis (. . .) can be used as the parameter of
catch. This default handler must be placed as the last catch statement since no handler
placed after it will ever be executed.

catch(...) { std::cout << "Error"; }

Re-throwing Exceptions

If an exception handler is not able to recover from an exception it can be re-thrown by
using the throw keyword with no argument specified. This will pass the exception up the
caller stack until another try-catch block is encountered. Be careful however, because if
an exception is never caught the program will terminate with a run-time error.

int main()

{
try {
try { throw 0; }
catch(...) { throw; } // re-throw exception

catch(...) { throw; } // run-time error

}

Exception Specification

Functions are by default allowed to throw exceptions of any type. To specify the exception
types that a function may throw the throw keyword can be appended to the function
declaration. The throw keyword is followed by a comma separated list of the allowed
types, if any, enclosed in parentheses.

void error1() {} // may throw any exceptions
void error2() throw(...) {} // may throw any exceptions

void error3() throw(int) {} // may only throw int
void error4() throw() {} // may not throw exceptions

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25 © EXCEPTION HANDLING

This kind of exception specification is very different from the one used in for example
Java, and overall there is very little reason to specify exceptions in C++. The compiler
will not enforce the specified exceptions in any way and it will not be able to make any
optimizations because of them.

Use of throw for exception specification was deprecated in C++11 and replaced by a
noexcept specifier. Similar to throw(), this specifier indicates that a function is intended
not to throw any exceptions. The main difference is that noexcept enables certain
compiler optimizations, because the specifier allows the program to terminate without
unwinding the call stack if for any reason an exception still occurs.

void foo() noexcept {} // may not throw exceptions

Exception Class

As previously mentioned, any data type can be thrown in C++. However, the standard
library does provide a base class called exception which is specifically designed to
declare objects to be thrown. It is defined in the exception header file and is located
under the std namespace. As seen below, the class can be constructed with a string that
becomes the exception’s description.

#include <exception>
void make error()

{
}

throw std::exception("My Error Description");

When catching this exception the object’s function what can be used to retrieve the
description.
try { make error(); }

catch (std::exception e) {
std::cout << e.what();
}

109

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

Type Conversions

Converting an expression from one type to another is known as type-conversion. This can
be done either implicitly or explicitly.

Implicit Conversions

An implicit conversion is performed automatically by the compiler when an expression
needs to be converted into one of its compatible types. For example, any conversions
between the primitive data types can be done implicitly.

long a = 5; // int implicitly converted to long
double b = a; // long implicitly converted to double

These implicit primitive conversions can be further grouped into two kinds:
promotion and demotion. Promotion occurs when an expression gets implicitly converted
into a larger type and demotion occurs when converting an expression to a smaller type.
Because a demotion can result in the loss of information, these conversions will generate
a warning on most compilers. If the potential information loss is intentional, the warning
can be suppressed by using an explicit cast.

// Promotion

long a =5; // int promoted to long
double b = a; // long promoted to double
// Demotion

int ¢ = 10.5; // warning: possible loss of data
bool d = c; // warning: possible loss of data

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 | TYPE CONVERSIONS

Explicit Conversions

The first explicit cast is the one inherited from C, commonly called the C-style cast. The
desired data type is simply placed in parentheses to the left of the expression that needs
to be converted.

int ¢ = (int)10.5; // double demoted to int
char d = (char)c; // int demoted to char
C++ casts

The C-style cast is suitable for most conversions between the primitive data types.
However, when it comes to conversions between classes and pointers it can be too
powerful. In order to get greater control over the different types of conversions possible
C++ introduced four new casts, called named casts or new-style casts. These casts are:
static, reinterpret, const and dynamic cast.

static_cast<new_type> (expression)
reinterpret_cast<new_type> (expression)
const_cast<new_type> (expression)
dynamic_cast<new_type> (expression)

As seen above, their format is to follow the cast’s name with the new type enclosed in
angle brackets and thereafter the expression to be converted in parentheses. These casts
allow more precise control over how a conversion should be performed, which in turn
makes it easier for the compiler to catch conversion errors. In contrast, the C-style cast
includes the static, reinterpret and const cast in one operation. That cast is therefore more
likely to execute subtle conversion errors if used incorrectly.

Static Cast

The static cast performs conversions between compatible types. It is similar to the C-style
cast, but is more restrictive. For example, the C-style cast would allow an integer pointer
to point to a char.

char ¢ = 10; // 1 byte
int *p = (int*)8c; // 4 bytes

Since this results in a 4-byte pointer pointing to 1 byte of allocated memory, writing
to this pointer will either cause a run-time error or will overwrite some adjacent memory.

*p = 5; // run-time error: stack corruption

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 | TYPE CONVERSIONS

In contrast to the C-style cast, the static cast will allow the compiler to check that the
pointer and pointee data types are compatible, which allows the programmer to catch
this incorrect pointer assignment during compilation.

int *q = static_cast<int*>(8c); // compile-time error

Reinterpret Cast

To force the pointer conversion, in the same way as the C-style cast does in the
background, the reinterpret cast would be used instead.

int *r = reinterpret_cast<int*>(&c); // forced conversion

This cast handles conversions between certain unrelated types, such as from one
pointer type to another incompatible pointer type. It will simply perform a binary copy
of the data without altering the underlying bit pattern. Note that the result of such a

low-level operation is system-specific and therefore not portable. It should be used with
caution if it cannot be avoided altogether.

Const Cast

The third C++ cast is the const cast. This one is primarily used to add or remove the const
modifier of a variable.

const int myConst = 5;
int *nonConst = const_cast<int*>(8a); // removes const

Although const cast allows the value of a constant to be changed, doing so is still
invalid code that may cause a run-time error. This could occur for example if the constant
was located in a section of read-only memory.

*nonConst = 10; // potential run-time error

Const cast is instead used mainly when there is a function that takes a non-constant
pointer argument, even though it does not modify the pointee.

void print(int *p) { std::cout << *p; }
The function can then be passed a constant variable by using a const cast.

print(&myConst); // error: cannot convert
// const int* to int*

print(nonConst); // allowed

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 | TYPE CONVERSIONS

C-style and New-Style Casts

Keep in mind that the C-style cast can also remove the const modifier, but again since it
does this conversion behind the scenes the C++ casts are preferable. Another reason to
use the C++ casts is that they are easier to find in the source code then the C-style cast.
This is important because casting errors can be difficult to discover. A third reason for
using the C++ casts is that they are unpleasant to write. Since explicit conversion in many
cases can be avoided, this was done intentionally so that programmers would look for a
different solution.

Dynamic Cast

The fourth and final C++ cast is the dynamic cast. This one is only used to convert object
pointers and object references into other pointer or reference types in the inheritance
hierarchy. It is the only cast that makes sure that the object pointed to can be converted,
by performing a run-time check that the pointer refers to a complete object of the
destination type. For this run-time check to be possible the object must be polymorphic.
That is, the class must define or inherit at least one virtual function. This is because the
compiler will only generate the needed run-time type information for such objects.

Dynamic Cast Examples

In the example below, a MyChild pointer is converted into a MyBase pointer using
a dynamic cast. This derived-to-base conversion succeeds, because the Child object
includes a complete Base object.

class MyBase { public: virtual void test() {} };
class MyChild : public MyBase {};

int main()

{

MyChild *child = new MyChild();

MyBase *base = dynamic_cast<MyBase*>(child); // ok
}

The next example attempts to convert a MyBase pointer to a MyChild pointer. Since
the Base object does not contain a complete Child object this pointer conversion will fail.
To indicate this, the dynamic cast returns a null pointer. This gives a convenient way to
check whether or not a conversion has succeeded during run-time.

MyBase *base = new MyBase();
MyChild *child = dynamic_cast<MyChild*>(base);

if (child == 0) std::cout << "Null pointer returned";

114

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26 | TYPE CONVERSIONS

If a reference is converted instead of a pointer, the dynamic cast will then fail by
throwing a bad_cast exception. This needs to be handled using a try-catch statement.

#include <exception>
/] ...
try { MyChild &child = dynamic_cast<MyChild&>(*base); }
catch(std::bad_cast 8e)
{
std::cout << e.what(); // bad dynamic_cast
}

Dynamic or Static Cast

The advantage of using a dynamic cast is that it allows the programmer to check whether
or not a conversion has succeeded during run-time. The disadvantage is that there is a
performance overhead associated with doing this check. For this reason using a static cast
would have been preferable in the first example, because a derived-to-base conversion
will never fail.

MyBase *base = static_cast<MyBase*>(child); // ok

However, in the second example the conversion may either succeed or fail. It will fail
if the MyBase object contains a MyBase instance and it will succeed if it contains a MyChild
instance. In some situations this may not be known until run-time. When this is the case
dynamic cast is a better choice than static cast.

// Succeeds for a MyChild object
MyChild *child = dynamic_cast<MyChild*>(base);

If the base-to-derived conversion had been performed using a static cast instead of
a dynamic cast the conversion would not have failed. It would have returned a pointer
that referred to an incomplete object. Dereferencing such a pointer can lead to run-time

errors.

// Allowed, but invalid
MyChild *child = static_cast<MyChild*>(base);

// Incomplete MyChild object dereferenced
(*child);

115

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27

Templates

Templates provide a way to make a class, function, or variable operate with different data
types without having to rewrite the code for each type.

Function Templates

The example below shows a function that swaps two integer arguments.

void swap(int& a, int& b)

{
int tmp = a;
a = b;
b = tmp;

}

To convert this method into a function template that can work with any type the
first step is to add a template parameter declaration before the function. This declaration
includes the template keyword followed by the keyword class and the name of the
template parameter, both enclosed between angle brackets. The name of the template
parameter may be anything, but it is common to name it with a capital T.
template<class T>

Alternatively, the keyword typename can be used instead of class. They are both
equivalent in this context.

template<typename T>

117

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 I TEMPLATES

The second step in creating a function template is to replace the data type that will
be made generic with the template parameter.

template<class T>
void swap(T& a, T& b)

{
T tmp = a;
a=b;
b = tmp;
}

Calling Function Templates

The function template is now complete. To use it swap can be called as if it was a regular
function, but with the desired template argument specified in angle brackets before the
function arguments. Behind the scenes, the compiler will instantiate a new function with
this template parameter filled in, and it is this generated function that will be called from
this line.

inta=1, b=2;
swap<int>(a,b); // calls int version of swap

Every time the function template is called with a new type, the compiler will
instantiate another function using the template.

bool ¢ = true, d = false;
swap<bool>(c,d); // calls bool version of swap

In this example, the swap function template may also be called without specifying
the template parameter. This is because the compiler can automatically determine the
type, because the function template’s arguments use the template type. However, if this is
not the case, or if there is a need to force the compiler to select a specific instantiation of
the function template, the template parameter would then need to be explicitly specified
within angle brackets.

inte=1, f=2;
swap(e,f); // calls int version of swap

118

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 © TEMPLATES

Multiple Template Parameters

Templates can be defined to accept more than one template parameter by adding them
between the angle brackets.

template<class T, class U>
void swap(T& a, U& b)

T tmp = a;
a = b;
b = tmp;

The second template parameter in the example above allows swap to be called with
two arguments of different types.

int main()

{
int a = 1;
long b = 2;
swap<int, long>(a,b);

}

Class Templates

Class templates allow class members to use template parameters as types. They are
created in the same way as function templates.

template<class T>
class myBox

{
public:
T a, b;

b

Unlike function templates, a class template must always be instantiated with
explicitly specified template parameters.

myBox<int> box;

119

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 I TEMPLATES

Another thing to remember when using class templates is that if a method is defined
outside of the class template that definition must also be preceded by the template
declaration.

template<class T>
class myBox

{
public:
Ta, b;
void swap();

)

template<class T>
void myBox<T>::swap()

{
T tmp = a;
a = b;
b = tmp;
}

Notice that the template parameter is included in the swap template function
definition after the class name qualifier. This specifies that the function’s template
parameter is the same as the template parameter of the class.

Non-Type Parameters

In addition to type parameters, templates can also have regular function-like parameters.
As an example, the int template parameter below is used to specify the size of an array.

template<class T, int N>
class myBox

{
public:

T store[N];
};

When this class template is instantiated, both a type and an integer have to be
included.

myBox<int, 5> box;

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 © TEMPLATES

Default Types and Values

Class template parameters can be given default values and types.
template<class T = int, int N = 5>

To use these defaults the angle brackets just need to be left empty when instantiating
the class template.

myBox<> box;

Note that default template parameters may not be used in function templates.

Class Template Specialization

If there is a need to define a different implementation for a template when a specific

type is passed as the template parameter, a template specialization can be declared. For
example, in the following class template there is a print method that outputs the value of
a template variable.

#include <iostream>

template<class T>
class myBox
{
public:
T a;
void print() { std::cout << a; }

)

When the template parameter is a bool the method should print out “true” or “false”
instead of “1” or “0” One way to do this would be to create a class template specialization.
A reimplementation of the class template is then created where the template parameter
list is empty. Instead, a bool specialization parameter is placed after the class template’s
name and this data type is used instead of the template parameter throughout the
implementation.

template<>
class myBox<bool>

{
public:
bool a;
void print() { std::cout << (a ? "true" : "false"); }

)

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 I TEMPLATES

When this class template is instantiated with a bool template type, this template
specialization will be used instead of the standard one.

int main()

{

myBox<bool> box = { true };
box.print(); // "true"
}

Note that there is no inheritance of members from the standard template to the
specialized template. The whole class will have to be redefined.

Function Template Specialization

Since there is only one function that is different between the templates in the example
above, a better alternative would be to create a function template specialization. This kind
of specialization looks very similar to the class template specialization, but is only applied
to a single function instead of the whole class.

#include <iostream>

template<class T>
class myBox

{
public:
T a;

template<class T> void print() {
std::cout << a;

}

template<> void print<bool>() {
std::cout << (a ? "true" : "false");
}
};

This way only the print method has to be redefined and not the whole class.

int main()

{

myBox<bool> box = { true };
box.print<bool>(); // "true"
}

Notice that the template parameter has to be specified when the specialized function
is invoked. This is not the case with the class template specialization.

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 © TEMPLATES

Variable Templates

In addition to function and class templates, C++14 allows variables to be templated. This
is achieved using the regular template syntax.

template<class T>
constexpr T pi = T(3.1415926535897932384626433L);

Together with the constexpr specifier, this template allows the value of the variable to
be computed at compile time for a given type, without having to type cast the value.

int i

= pi<int>; /73
float f =

pi<float>; // 3.14...

Variadic Templates

C++11 allows template definitions to take a variable number of type arguments. This
feature can be used as a replacement for variadic functions. To illustrate, consider the
following variadic function, which returns the sum of any number of ints passed to it.

#include <iostream>
#include <initializer list>
using namespace std;

int sum(initializer list<int> numbers)

{
int total = 0;
for(autod i : numbers) { total += i; }
return total;

}

The initializer_list type indicates that the function accepts a brace-enclosed list as its
argument, so the function must be called in this manner.

int main()

{
cout << sum({1, 2, 3}); // "6"

}

The next example changes this function into a variadic template function. Such a
function is traversed recursively rather than iteratively, so once the first argument has
been handled the function calls itself with the remaining arguments.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27 I TEMPLATES

The variadic template parameter is specified using the ellipsis (...) operator, followed
by a name. This defines a so-called parameter pack. The parameter pack is here bound to
a parameter in the function (... rest), and then unpacked into separate arguments (rest ...)
when the function calls itself recursively.

int sum() { return 0; } // end condition

template<class TO, class ... Ts>
decltype(auto) sum(To first, Ts ... rest)
{

return first + sum(rest ...);

}

This variadic template function can be called as a regular function, with any number
of arguments. In contrast to the previously defined variadic function, this template
function accepts arguments of any type.

int main()

{

cout << sum(1, 1.5, true); // "3.5"

}

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 28

Headers

When a project grows it is common to split the code up into different source files. When
this happens the interface and implementation are generally separated. The interface is
placed in a header file, which commonly has the same name as the source file and a .h
file extension. This header file contains forward declarations for the source file entities
that need to be accessible to other compilation units in the project. A compilation unit
consists of a source file (.cpp) plus any included header files (.h or .hpp).

Why to Use Headers

C++ requires everything to be declared before it can be used. It is not enough to simply
compile the source files in the same project. For example, if a function is placed in
MyFunc.cpp, and a second file named MyApp.cpp in the same project tries to call it, the
compiler will report that it cannot find the function.

// MyFunc.cpp
void myFunc() {}

// MyApp.cpp
int main()

{

myFunc(); // error: myFunc identifier not found

To make this work the function’s prototype has to be included in MyApp.cpp.

// MyApp.cpp
void myFunc(); // prototype

int main()

{
myFunc(); /7 ok

}

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 28 | HEADERS

Using Headers

This can be made more convenient if the prototype is placed in a header file named
MyFunc.h and this header is included in MyApp.cpp through the use of the #include
directive. This way if any changes are made to MyFunc there is no need to update the
prototypes in MyApp.cpp. Furthermore, any source file that wants to use the shared code
in MyFunc can just include this one header.

// MyFunc.h
void myFunc(); // prototype

// MyApp.cpp
#include "MyFunc.h"

What to Include in Headers

As far as the compiler is concerned there is no difference between a header file and a
source file. The distinction is only conceptual. The key idea is that the header should
contain the interface of the implementation file - that is, the code that other source files
will need to use. This may include shared constants, macros, and type aliases.

// MyApp.h - Interface
#define DEBUG 0

const double E = 2.72;
typedef unsigned long ulong;

As already mentioned, the header can contain prototypes of the shared functions
defined in the source file.

void myFunc(); // prototype

Additionally, shared classes are typically specified in the header, while their methods
are implemented in the source file.

// MyApp.h class MyClass
{
public:
void myMethod();
};

// MyApp.cpp
void MyClass::myMethod() {}

As with functions, it is necessary to forward declare global variables before they
can be referenced in a compilation unit outside the one containing their definition. This
is done by placing the shared variable in the header and marking it with the keyword

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 28 I HEADERS

extern. This keyword indicates that the variable is initialized in another compilation
unit. Functions are extern by default, so function prototypes do not need to include this
specifier. Keep in mind that global variables and functions may be declared externally
multiple times in a program, but they may be defined only once.

// MyApp.h
extern int myGlobal;

// MyApp.cpp
int myGlobal = 0;

It should be noted that the use of shared global variables is discouraged. This is
because the larger a program becomes, the more difficult it is to keep track of which
functions access and modify these variables. The preferred method is to instead pass
variables to functions only as needed, in order to minimize the scope of those variables.

The header should not include any executable statements, with two exceptions.
First, if a shared class method or global function is declared as inline, that function must
be defined in the header. Otherwise, calling the inline function from another source file
will give an unresolved external error. Note that the inline modifier suppresses the single
definition rule that normally applies to code entities.

// MyApp.h
inline void inlineFunc() {}

class MyClass
{
public:
void inlineMethod() {}
};

The second exception is shared templates. When encountering a template
instantiation, the compiler needs to have access to the implementation of that template,
in order to create an instance of it with the type arguments filled in. The declaration and
implementation of templates are therefore generally put into the header file all together.

// MyApp.h
template<class T>
class MyTemp { /* ... */ }

// MyApp.cpp
MyTemp<int> o;

Instantiating a template with the same type in many compilation units leads to
significant redundant work done by the compiler and linker. To prevent this C++11

introduced extern template declarations. A template instantiation marked as extern
signals to the compiler not to instantiate the template in this compilation unit.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 28 | HEADERS

// MyApp.cpp
MyTemp<int> b; // instantiation is done here

// MyFunc.cpp
extern MyTemp<int> a; // supress redundant instantiation

If a header requires other headers it is common to include those files as well, to make
the header stand alone. This ensures that everything needed is included in the correct
order, solving potential dependency problems for every source file that requires the
header.

// MyApp.h
#include <cstddef.h> // include size t
void mySize(std::size t);

Note that since headers mainly contain declarations, any extra headers included
should not affect the size of the program, although they may slow down compilation.

Include Guards

An important thing to bear in mind when using header files is that a shared code entity
may only be defined once. Consequently, including the same header file more than
once will likely result in compilation errors. The standard way to prevent this is to use a
so-called include guard. An include guard is created by enclosing the start of the header
in a #ifndef section that checks for a macro specific to that header file. Only when the
macro is not defined is the file included and the macro is then defined, which effectively
prevents the file from being included again.

// MyApp.h
#ifndef MYAPP_H
#define MYAPP_H
/1 ...

#endif // MYAPP_H

128

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A B
Access level
friend modifier, 69
global function, 69
inherited members, 70
private access, 67
protected access, 68
public access, 68
Anonymous union, 79
Arrays, 25
assignment, 25
declaration and allocation, 25
dynamic arrays, 26
multi-dimensional, 26
size, 26

C

cin::get function, 5
Class
forward declaration, 49
inline methods, 48
methods, 47
object creation, 48
object members, 48
Comments, 6
Conditional statements
if statement, 33
switch statement, 34
ternary operator, 34
Console compilation, 6
Constants
arguments, 96
constexpr functions, 96
const keyword, 93
expressions, 96
method parameters, 95

methods, 94
non-constant pointer, 94
object, 94
pointers, 93
references, 94
return type, 95
static field, 95

Const cast, 113

Constructors
aggregate intialization, 56
copy intialization, 55
default constructor, 53
destructor, 53
direct intialization, 54
field initialization, 52
instance methods, 52
new initialization, 55
object intialization, 54
overloading, 51
special member functions, 53
uniform initialization, 56
value intialization, 54

C-style cast, 112, 114

Custom type conversions
explicit conversion, 86-87
implicit conversion, 85
operator keywords, 86

D

Dynamic allocation, 20
Dynamic cast, 114

E

Enum
class keyword, 75
constant values, 74
conversions, 74

www.it-ebooks.info

129

http://www.it-ebooks.info/

INDEX

Enum (cont.) multiple, 61
scope, 74 upcast, 59
switch statement, 73 Integrated Development
Exception handling Environment (IDE), 1
exceptions types, 108 IntelliSense, 3
re-throw exceptions, 108 lIostream header, 2
std namespace, 109
throw keyword, 107 L M
try-catch statement, 107 ’
what() function, 109 Loop statements
Explicit conversions, 112 break and continue
statements, 36
F G do-while loop, 35
’ goto statements, 36
Functions for loop, 35
arguments, 38 while loop, 35

auto keyword, 42
calling functions, 37

decltype keyword, 42 N
geglu.lt. value, 38 Namespaces
efinition alias, 91

inline function, 42
jump statement, 39
lambda functions, 44
overloading, 38
parameters, 38

passed by address, 41
passed by reference, 40
passed by value, 40
prototype declaration, 39 arithmetic. 15
return by address, 42 assignmen't, 15
return by reference, 41 bitwise, 17
return by value, 41
return statement, 39

declaration, 90
include directives, 92
member import, 90
members access, 89
nesting, 90
type alias, 91
Null pointer, 21
Numerical operators

combined assignment, 16
comparison, 16
definition, 15

H increment and decrement, 16
Headers logical, 17

#include directive, 126

include guards, 128 O

inline modifier, 127

MyApp.cpp, 125 Operator overloading

MyFunc cpp, 125 binary, 81

shared classes, 126 unary, 82

templates, 127 Operator precedence, 18

Overloadable operators, 83
1 J. K Overriding
y Yy base class scoping, 65

Implicit conversions, 111 final moditier, 65
Inheritance Rectangle getArea method, 63

constructor, 60 Triangle getArea method, 63

downcast, 60 virtual method, 64
130

www.it-ebooks.info

http://www.it-ebooks.info/

PQ

Pointer
creation, 19
definition, 19
dereference operator, 19
dynamic allocation, 20
null pointer, 21
Preprocessor
attributes, 104
#define directive, 100
#elif directives, 103
#else directives, 103
#endif directives, 102
#error directives, 104
#ifdef directives, 103
#if directives, 102
#ifndef directives, 103
#include directive, 100
#line directives, 104
macro functions, 101
#pragma directives, 104
predefined macros, 101
#undef directive, 101

R

References
creation, 23
pointers, 23
rvalue, 24
Reinterpret cast, 113

S

Solution Explorer pane, 1
Static cast, 112
Static fields, 71
Static global variables, 72
Static local variables, 72
Static methods, 72
String, 29
combination, 29
comparsion, 31
encodings, 31
escape characters, 30
functions, 31
Struct, 77
declarator list, 77

T

Templates
calling function, 118
class templates, 119

class template specialization, 121
default values and types, 121

function, 117-118

function specialization, 122

multiple template
parameters, 119
non-type parameters, 120
swap function, 118, 120
template parameter, 118

template specialization, 121

variable function, 123

variadic function, 123
Type-conversion

const cast, 113

C-style cast, 114

dynamic cast, 114

explicit, 112

implicit, 111

reinterpret cast, 113

static cast, 112

U

Union type, 78

VW, X, Y, Z
Variables

assignment operator, 8

Boolean value, 13

char type, 13

constructor initialization, 8

data types/primitives, 7

declaring variables, 8

floating-point types, 11

global variable, 9

hexadecimal literals, 11

integer types, 9

literal suffixes, 12

local variable, 9

Octal literals, 11

signed integers, 10

unsigned integers, 11
Visual studio compilation, 5

www.it-ebooks.info

INDEX

131

http://www.it-ebooks.info/

	C++
14 Quick Syntax Reference
	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Hello World
	 Choosing an IDE
	 Creating a Project
	 Adding a Source File
	 Hello World
	 Using Namespace
	 IntelliSense

	Chapter 2: Compile and Run
	 Visual Studio Compilation
	 Console Compilation
	 Comments

	Chapter 3: Variables
	 Data Types
	 Declaring Variables
	 Assigning Variables
	 Variable Scope
	 Integer Types
	 Signed and Unsigned Integers
	 Numeric Literals
	 Floating-Point Types
	 Literal Suffixes
	 Char Type
	 Bool Type

	Chapter 4: Operators
	 Arithmetic Operators
	 Assignment Operators
	 Combined Assignment Operators
	 Increment and Decrement Operators
	 Comparison Operators
	 Logical Operators
	 Bitwise Operators
	 Operator Precedence

	Chapter 5: Pointers
	 Creating Pointers
	 Dereferencing Pointers
	 Pointing to a Pointer
	 Dynamic Allocation
	 Null Pointer

	Chapter 6: References
	 Creating References
	 References and Pointers
	 Reference and Pointer Guideline
	 Rvalue Reference

	Chapter 7: Arrays
	 Array Declaration and Allocation
	 Array Assignment
	 Multi-dimensional Arrays
	 Dynamic Arrays
	 Array Size

	Chapter 8: String
	 String Combining
	 Escape Characters
	 String Compare
	 String Functions
	 String Encodings

	Chapter 9: Conditionals
	 If Statement
	 Switch Statement
	 Ternary Operator

	Chapter 10: Loops
	 While Loop
	 Do-while Loop
	 For Loop
	 Break and Continue
	 Goto Statement

	Chapter 11: Functions
	 Defining Functions
	 Calling Functions
	 Function Parameters
	 Default Parameter Values
	 Function Overloading
	 Return Statement
	 Forward Declaration
	 Pass by Value
	 Pass by Reference
	 Pass by Address
	 Return by Value, Reference or Address
	 Inline Functions
	 Auto and Decltype
	 Lambda Functions

	Chapter 12: Class
	 Class Methods
	 Inline Methods
	 Object Creation
	 Accessing Object Members
	 Forward Declaration

	Chapter 13: Constructor
	 Constructor Overloading
	 This keyword
	 Field Initialization
	 Default Constructor
	 Destructor
	 Special Member Functions
	 Object Initialization
	 Direct Initialization
	 Value Initialization
	 Copy Initialization
	 New Initialization
	 Aggregate Initialization
	 Uniform Initialization

	Chapter 14: Inheritance
	 Upcasting
	 Downcasting
	 Constructor Inheritance
	 Multiple Inheritance

	Chapter 15: Overriding
	 Hiding Derived Members
	 Overriding Derived Members
	 Base Class Scoping

	Chapter 16: Access Levels
	 Private Access
	 Protected Access
	 Public Access
	 Access Level Guideline
	 Friend Classes and Functions
	 Public, Protected and Private Inheritance

	Chapter 17: Static
	 Static Fields
	 Static Methods
	 Static Local Variables
	 Static Global Variables

	Chapter 18: Enum
	 Enum Example
	 Enum Constant Values
	 Enum Conversions
	 Enum Scope
	 Strongly Typed Enums

	Chapter 19: Struct and Union
	 Struct
	 Declarator List
	 Union
	 Anonymous Union

	Chapter 20: Operator Overloading
	 Operator Overloading Example
	 Binary Operator Overloading
	 Unary Operator Overloading
	 Overloadable Operators

	Chapter 21: Custom Conversions
	 Implicit Conversion Constructor
	 Explicit Conversion Constructor
	 Conversion Operators
	 Explicit Conversion Operators

	Chapter 22: Namespaces
	 Accessing Namespace Members
	 Nesting Namespaces
	 Importing Namespaces
	 Namespace Member Impor t
	 Namespace Alias
	 Type Alias
	 Including Namespace Members

	Chapter 23: Constants
	 Constant Variables
	 Constant Pointers
	 Constant References
	 Constant Objects
	 Constant Methods
	 Constant Return Type and Parameters
	 Constant Fields
	 Constant Expressions
	 Constant Guideline

	Chapter 24: Preprocessor
	 Including Source Files
	 Define
	 Undefine
	 Predefined Macros
	 Macro Functions
	 Conditional Compilation
	 Compile if Defined
	 Error
	 Line
	 Pragma
	 Attributes

	Chapter 25: Exception Handling
	 Throwing Exceptions
	 Try-catch statement
	 Re-throwing Exceptions
	 Exception Specification
	 Exception Class

	Chapter 26: Type Conversions
	 Implicit Conversions
	 Explicit Conversions
	 C++ casts

	 Static Cast
	 Reinterpret Cast
	 Const Cast
	 C-style and New-Style Casts
	 Dynamic Cast
	 Dynamic Cast Examples
	 Dynamic or Static Cast

	Chapter 27: Templates
	 Function Templates
	 Calling Function Templates
	 Multiple Template Parameters
	 Class Templates
	 Non-Type Parameters
	 Default Types and Values
	 Class Template Specialization
	 Function Template Specialization
	 Variable Templates
	 Variadic Templates

	Chapter 28: Headers
	 Why to Use Headers
	 Using Headers
	 What to Include in Headers
	 Include Guards

	Index

