

C++ Best Practices
45ish Simple Rules with Specific Action Items for
Better C++

Jason Turner

This book is for sale at http://leanpub.com/cppbestpractices

This version was published on 2020-09-24

This is a Leanpub book. Leanpub empowers authors and publishers with the
Lean Publishing process. Lean Publishing is the act of publishing an in-progress
ebook using lightweight tools andmany iterations to get reader feedback, pivot
until you have the right book and build traction once you do.

© 2020 Jason Turner

http://leanpub.com/cppbestpractices
http://leanpub.com/
http://leanpub.com/manifesto

For my wife Jen, and her love of silly alpaca.

The cover picture was taken bymy wife while visiting Red Fox Alpaca Ranch in
Evergreen, Colorado.

Contents

1. Introduction . 1

2. About Best Practices . 2

3. Use the Tools: Automated Tests . 5

4. Use the Tools: Continuous Builds . 7

5. Use the Tools: Compiler Warnings . 9

6. Exercise: Use the Tools: Static Analysis 11

7. Use the Tools: Sanitizers . 12

8. Slow Down . 14

9. C++ Is Not Magic . 15

10. C++ Is Not Object-Oriented . 17

11. Learn Another Language . 19

12. const Everything That’s Not constexpr 21

13. constexpr Everything Known at Compile Time 23

14. Prefer auto In Many Cases. 26

15. Prefer ranged-for Loop Syntax Over Old Loops 31

16. Use auto in ranged for loops . 33

CONTENTS

17. Prefer Algorithms Over Loops . 35

18. Don’t Be Afraid of Templates . 37

19. Don’t Copy and Paste Code . 39

20. Follow the Rule of 0 . 41

21. If You Must Do Manual Resource Management, Follow the Rule of 5 44

22. Don’t Invoke Undefined Behavior . 47

23. Never Test for this To Be nullptr, It’s UB 49

24. Never Test for A Reference To Be nullptr, It’s UB 52

25. Avoid default In switch Statements . 54

26. Prefer Scoped enums . 58

27. Prefer if constexpr over SFINAE . 61

28. Constrain Your Template Parameters With Concepts (C++20) 64

29. De-template-ize Your Generic Code . 68

30. Use Lippincott Functions . 71

31. Be Afraid of Global State . 74

32. Make your interfaces hard to use wrong. 75

33. Consider If Using the API Wrong Invokes Undefined Behavior 76

34. Use [[nodiscard]] Liberally . 78

35. Use Stronger Types . 81

36. Don’t return raw pointers . 85

37. Prefer Stack Over Heap . 86

CONTENTS

38. No More new! . 89

39. Know Your Containers . 91

40. Avoid std::bind and std::function . 93

41. Skip C++11 . 96

42. Don’t Use initializer_list For Non-Trivial Types 99

43. Use the Tools: Build Generators . 101

44. Use the Tools: Package Managers . 103

45. Improving Build Time . 104

46. Use the Tools: Multiple Compilers . 106

47. Fuzzing and Mutating . 108

48. Continue Your C++ Education . 113

49. Thank You . 116

50. Bonus: Understand The Lambda . 118

1. Introduction
My goal as a trainer and a contractor (seems to be) toworkme out of a job. I want
everyone to:

1. Learn how to experiment for themselves
2. Not just believe me, but test it
3. Learn how the language works
4. Stopmaking the samemistakes of the last generation

I’m thinking about changing my title from “C++ Trainer” to “C++ Guide.” I always
adaptmy courses andmaterial to the class I currently have.Wemight agree on X,
but I change it to Y halfway through the first day tomeet the organization’s needs.

Along the way, we experiment and learn as a group. I often also learn while
teaching. Every group is unique; every class has new questions.

But a lot of thequestions are still the sameones over andover (to thepointwhere
I get to look like a mind reader, that bit’s fun

Hence, this book (and the twitter thread that it came from) to spread theword on
the long-standing best practices.

I wrote thebook Iwanted to read. It’s intentionally straightforward, short, to the
point, and has specific action items.

1

2. About Best Practices
Best Practices, quite simply, are about

1. Reducing commonmistakes
2. Finding errors quickly
3. Without sacrificing (and often improving) performance

Why Best Practices?

First and foremost, let’s get this out of the way:

Your Project Is Not Special

If you are programming in C++, you, or someone at your company, cares about
performance. Otherwise, they’d probably be using some other programming
language. I’ve been to many companies who all tell me they are special because
they need to do things fast!

Spoiler alert: they are all making the same decisions for the same reasons.

There are very few exceptions. The outliers who make different decisions: they
are the organizations that are already following the advice in this book.

What’s The Worst Than Can Happen?

I don’t want to be depressing, but let’s take a moment to ponder the worst-case
scenario if your project has a critical flaw.

2

About Best Practices 3

Game
Serious flaws lead to remote vulnerability or attack vector.

Financial
Serious flaws lead to large amounts of lost money, accelerating trades,
market crash¹.

Aerospace
Serious flaws lead to lost spacecraft or human life².

Your Industry
Serious flaws lead to… Lost money? Lost jobs? Remote hacks? Worse?

Examples

Examples throughout this book use struct instead of class. The only difference
between struct and class is that struct has all members by default public.
Using structmakes examples shorter and easier to read.

Exercises

Each sectionhasoneormoreexercises.Mostdonothavea rightorwronganswer.

Exercise: Look for exercises

Throughout the following chapters, you’ll see exercises like this one. Look for
them!

Exercises are:

• Practical, and apply to your current code base to see immediate value.
¹https://en.wikipedia.org/wiki/2010_flash_crash
²https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-

developer

https://en.wikipedia.org/wiki/2010_flash_crash
https://en.wikipedia.org/wiki/2010_flash_crash
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://en.wikipedia.org/wiki/2010_flash_crash
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer
https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-disaster-looks-to-a-software-developer

About Best Practices 4

• Make you think and understand the language a little bit deeper by doing
your own research.

Links and References

I’ve made an effort to reference those who I learned from and link to their talks
where possible. If I’ve missed something, please let me know.

3. Use the Tools: Automated
Tests

You need a single command to run tests.
If you don’t have that, no one will run the tests.

• Catch2¹ - popular and well supported testing framework from Phil Nash²
and Martin Hořeňovský³

• doctest⁴ - similar to catch2, but trimmed for compile-time performance
• Google Test⁵
• Boost.Test⁶ - testing framework, boost style.

ctest⁷ is a test runner for CMake that can be used with any of the above frame-
works. It is utilized via the add_test⁸ feature of CMake.

You need to be familiar with these tools, what they do, and pick from them.

Without automated tests, the rest of this book is pointless. You cannot apply the
practical exercises if you cannot verify that you did not break the existing code.

Oleg Rabaev on CppCast stated:

• If a component is hard to test, it is not properly designed.
• If a component is easy to test, it is a good indication that it is properly
designed.

¹https://github.com/catchorg/Catch2
²https://twitter.com/phil_nash
³https://twitter.com/horenmar_ctu
⁴https://github.com/onqtam/doctest
⁵https://github.com/google/googletest
⁶https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
⁷https://cmake.org/cmake/help/latest/manual/ctest.1.html
⁸https://cmake.org/cmake/help/latest/command/add_test.html

5

https://github.com/catchorg/Catch2
https://twitter.com/phil_nash
https://twitter.com/horenmar_ctu
https://github.com/onqtam/doctest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://cmake.org/cmake/help/latest/command/add_test.html
https://github.com/catchorg/Catch2
https://twitter.com/phil_nash
https://twitter.com/horenmar_ctu
https://github.com/onqtam/doctest
https://github.com/google/googletest
https://www.boost.org/doc/libs/1_74_0/libs/test/doc/html/index.html
https://cmake.org/cmake/help/latest/manual/ctest.1.html
https://cmake.org/cmake/help/latest/command/add_test.html

Use the Tools: Automated Tests 6

• If a component is properly designed, it is easy to test.

Exercise: Can you run a single com-
mand to run a suite of tests?

• Yes: Excellent! Run the tests andmake sure they all pass!
• No: Does your program produce output?

– Yes: Startwith “Approval Tests⁹,”whichwill give you the foundation you
need to start started with testing.

– No: Develop a strategy for how to implement some minimal form of
testing.

Resources

• CppCon 2018: Phil Nash “Modern C++ Testing with Catch2”¹⁰
• CppCon2019: ClareMacrae “Quickly Testing LegacyC++Codewith Approval
Tests”¹¹

• C++ on Sea 2020: Clare Macrae “Quickly and Effectively Testing Legacy C++
Code with Approval Tests”¹²

⁹https://cppcast.com/clare-macrae/
¹⁰https://youtu.be/Ob5_XZrFQH0
¹¹https://youtu.be/3GZHvcdq32s
¹²https://youtu.be/tXEuf_3VzRE

https://cppcast.com/clare-macrae/
https://youtu.be/Ob5_XZrFQH0
https://youtu.be/3GZHvcdq32s
https://youtu.be/3GZHvcdq32s
https://youtu.be/tXEuf_3VzRE
https://youtu.be/tXEuf_3VzRE
https://cppcast.com/clare-macrae/
https://youtu.be/Ob5_XZrFQH0
https://youtu.be/3GZHvcdq32s
https://youtu.be/tXEuf_3VzRE

4. Use the Tools: Continuous
Builds

Without automated tests, it is impossible to maintain project quality.

In the C++ projects I have worked on throughout my career, I’ve had to support
some combination of:

• x86
• x64
• SPARC
• ARM
• MIPSEL

On

• Windows
• Solaris
• MacOS
• Linux

When you start to combine multiple compilers across multiple platforms and
architectures, it becomes increasingly likely that a significant change on one
platformwill break one or more other platforms.

To solve this problem, enable continuous builds with continuous tests for your
projects.

• Test all possible combinations of platforms that you support

7

Use the Tools: Continuous Builds 8

• Test Debug and Release separately
• Test all configuration options
• Test against newer compilers than you support or require

If you don’t require 100% tests passing, you will never know the code’s
state.

Exercise: Enable continuous builds

Understand your organization’s current continuous build environment. If one
does not exist, what are the barriers to getting it set up? How hard would it be
to get something like GitLab, GitHub actions, Appveyor, or Travis set up for your
projects?

5. Use the Tools: Compiler
Warnings

There aremanywarnings you are not using,most of thembeneficial. -Wall is not
all warnings on GCC and Clang. -Wextra is still barely scratching the surface!

/WallonMSVC isallof thewarnings.Our compilerwritersdonot recom-
mend using /Wall on MSVC or -Weverything on Clang, because many
of these are diagnostic warnings. GCC does not provide an equivalent.

Strongly consider -Wpedantic (GCC/Clang) and /permissive- (MSVC). These
command line options disable language extensions and get you closer to the C++
standard. Themorewarnings youenable today, the easier timeyouwill havewith
porting to another platform in the future.

Exercise: Enable More Warnings

1. Explore the set of warnings available with your compiler. Enable asmany as
you can.

2. Fix the new warnings generated.
3. Goto 1.

MSVC has an excellent set of warnings that can be enabled by warning
level. You can startwith /W1 andwork yourway up to /W4 as you fix each
set of warnings.

This processwill feel tedious andmeaningless, but thesewarningswill catch real
bugs.

9

Use the Tools: Compiler Warnings 10

Resources

• C++ Best Practices website curated list of warnings¹
• GCC’s full warning list²
• Clang’s full warning list³
• MSVC’s Compiler warnings that are off by default⁴
• C++ Weekly Ep 168 - Discovering Warnings You Should Be Using⁵

¹https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
²https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
³https://clang.llvm.org/docs/DiagnosticsReference.html
⁴https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-

2019
⁵https://youtu.be/IOo8gTDMFkM

https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://youtu.be/IOo8gTDMFkM
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#compilers
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://clang.llvm.org/docs/DiagnosticsReference.html
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://docs.microsoft.com/en-us/cpp/preprocessor/compiler-warnings-that-are-off-by-default?view=vs-2019
https://youtu.be/IOo8gTDMFkM

6. Exercise: Use the Tools: Static
Analysis

Static analysis tools are tools that analyze your code without compiling or exe-
cuting it. Your compiler is one such tool and your first line of defense.

Many such tools are free and some are free for open source projects.

cppcheck and clang-tidy are twopopular and free toolswithmajor IDE andeditor
integration.

Enable More Static Analysis

Visual Studio: look into Microsoft’s static analyzer that ships with it. Consider
using Clang Power Tools. Download cppcheck’s addon for visual studio

CMake: Enable cppcheck and clang-tidy integration

Resources

• cppbestpractices.com list of static analyzers¹

¹https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-
analyzers

11

https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md#static-analyzers

7. Use the Tools: Sanitizers
The sanitizers are runtime analysis tools for C++ and are built into GCC, Clang,
and MSVC.

If you are familiar with Valgrind, the sanitizers provide similar functionality but
many orders of magnitude faster than Valgrind.

Available sanitizers are:

• Address (ASan)
• Undefined Behavior (UBSan) (More on Undefined Behavior later)
• Thread
• DataFlow (use for code analysis, not finding bugs)
• Lib Fuzzer (addressed in a later chapter)

Address sanitizer, UB Sanitizer, Thread sanitizer can findmany issues almost like
magic. Support is currently increasing in MSVC at the time of this book’s writing,
while GCC and Clang have more established support for the sanitizers.

John Regehr¹ recommends always enabling ASan and UBSan during develop-
ment.

When an error such as an out of boundsmemory access occurs, the sanitizer will
give you a report of what conditions led to the failure, often with suggestions for
fixing the problem.

You can enable Address and Undefined Behavior sanitizers with a command
similar to:

¹https://twitter.com/johnregehr

12

https://twitter.com/johnregehr
https://twitter.com/johnregehr

Use the Tools: Sanitizers 13

gcc -fsanitize=address,undefined <filetocompile>

Sanitizers must also be enabled during the linking phase of the project build.

Examples for how to use sanitizers with CMake exist in the C++ Starter
Project²

Exercise: Enable Sanitizers

• Investigate how to add sanitizer support for your existing project
• Enable ASan first
• Run the full test suite and investigate any problems found
• Enable UBSan second
• Run full test suite again

End goal: get all tests runningwith ASan, andUBSan enabled on your continuous
build environment.

Resources

• AddressSanitizer (ASan) for Windows with MSVC³
• Sanitizers source and documentation on GitHub⁴
• Clang AddressSanitizer documentation⁵
• Clang UndefinedBehaviorSanitizer documentation⁶

²https://github.com/lefticus/cpp_starter_project
³https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
⁴https://github.com/google/sanitizers
⁵https://clang.llvm.org/docs/AddressSanitizer.html
⁶https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://github.com/lefticus/cpp_starter_project
https://github.com/lefticus/cpp_starter_project
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://github.com/google/sanitizers
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/lefticus/cpp_starter_project
https://devblogs.microsoft.com/cppblog/addresssanitizer-asan-for-windows-with-msvc/
https://github.com/google/sanitizers
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

8. Slow Down
Dozens of solutions exist in C++ for any given problem. Dozens of more opinions
exist for which of these solutions are the best. Copying and pasting from one ap-
plication toanother is easy. Forgingaheadwith the solutions youare comfortable
with is easy.

How many times have you said, “wow, this is going to take a complicated class
hierarchy to implement this solution?” Or what about “I guess I need to add
macros here to implement these common functions.”

• If the solution seems large or complex, stop.
• Now is a good time to go for a walk and ponder the solution.
• When you’re done with your walk, discuss the design with a coworker, pet,
or rubber duck¹.

Still haven’t found a more straightforward solution you are happy with? Ask on
Twitter or Slack if you can.

The key point is to not forge ahead blindly with the solutions with which you are
comfortable. Be willing to stop for aminute. The older I get, the less time I spend
programming, and the more time I spend thinking. In the end, I implement the
solution as fast or faster than I used to and with less complexity.

¹https://rubberduckdebugging.com/

14

https://rubberduckdebugging.com/
https://rubberduckdebugging.com/

9. C++ Is Not Magic
This section is just a reminder thatwe can reason about all aspects of C++. It’s not
a black box, and it’s not magic.

If you have a question, it’s usually easy to construct an experiment that helps you
answer the question for yourself.

A favorite tool of mine is this simple class that prints a debugmessage whenever
a special member function is called.

Understanding object lifetime tool

#include <cstdio>

struct S {
S(){ puts("S()"); }
S(const S &){ puts("S(const S &)"); }
S(S &&){ puts("S(S &&)"); }
S &operator=(const S &){
puts("operator=(const S &)");
return *this;

}
S &operator=(S &&){
puts("operator=(S &&)");
return *this;

}
~S() { puts("~S()"); }

};

Exercise: Build your first C++ experi-
ment.

15

C++ Is Not Magic 16

Do you have a question about C++ that’s been nagging you? Can you design
an experiment to test it? Remember that Compiler Explorer now allows you to
execute code.

Exercise: Start collecting your exper-
iments.

Once you have created an experiment and test, be sure to save it. Consider using
GitHub gists as a simple way to save and share your tests with others.

Resources

• A quick start example with Compiler Explorer.¹

¹https://godbolt.org/z/3eGP56

https://godbolt.org/z/3eGP56
https://godbolt.org/z/3eGP56

10. C++ Is Not Object-Oriented
Bjarne Stroustrup in The C++ Programming Language 3rd Edition states:

C++ is a general-purpose programming language with a bias towards
systems programming that

• is a better C,
• supports data abstraction,
• supports object-oriented programming, and
• supports generic programming.

You must understand that C++ is a multi-discipline programming language to
make the most of the language. C++ supports effectively all of the programming
paradigms that exist today.

• Procedural
• Functional
• Object-Oriented
• Generic
• Compile-Time (constexpr and template metaprogramming)

Knowing when it is appropriate to use each of these tools is the key to writing
goodC++. Projects that rigidly stick tooneparadigmmiss out on thebest features
of the language.

Don’t try to use every technique possible all of the time. Youwill end up
with a mess of difficult to maintain and read code. Appropriately using
the appropriate techniques at the appropriate times takes discipline
and practice.

17

C++ Is Not Object-Oriented 18

Exercise: Question your current de-
sign.

If you could break out of the current design your project is using, whatwould you
do differently?

Resources

• Functional Programming in C++¹
• C++ Weekly Ep 137: C++ Is Not an Object Oriented Language²

¹https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
²https://youtu.be/AUT201AXeJg

https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
https://youtu.be/AUT201AXeJg
https://www.manning.com/books/functional-programming-in-c-plus-plus?a_aid=FPinCXX&a_bid=441f12cc
https://youtu.be/AUT201AXeJg

11. Learn Another Language
Considering that C++ is not an object-oriented language, you have to knowmany
different techniques to make the most of C++.

The following exercises will help expose you to other languages. But the fact is
that currently, few languages are pure single paradigm languages.

Every language has its preferred way of doing things that work within the lan-
guage’s preferred paradigm.

BenDeane recommends this setof languages thatall programmers should learn¹:

• ALGOL family (C and descendants)
• Forth
• Lisp and dialects
• Haskell
• Smalltalk
• Erlang

Exercise: Pick a functional language
to learn

Can you find a pure function language?

Exercise: Pick an object-oriented lan-
guage to learn

¹http://www.elbeno.com/blog/?p=420

19

http://www.elbeno.com/blog/?p=420
http://www.elbeno.com/blog/?p=420

Learn Another Language 20

Finding a pure object-oriented language is even harder! Even Java has lambda
functions these days.

Exercise: Pick a language with a dif-
ferent syntax

Languages that look like C-family languages will likely be more comfortable for
you. Try to find a language that looks different and stretches your mind.

Resources

• Execution in the Kindom of Nouns² - gets you thinking about different
programming paradigms

²https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

12. const Everything That’s Not
constexpr

Many people (like Kate Gregory and James McNellis) have said this many times.
Making objects const does two things:

1. It forces us to think about the initialization and lifetime of objects, which
affects performance.

2. Communicates meaning to the readers of our code.

And as an aside, if it’s a static object, the compiler is now free to move it into the
constants portion of the binary, which can affect the optimizer.

Exercise: Look for const opportuni-
ties.

As you read through your code, you should look for variables that are not const
andmake them const.

• If a variable is not const, ask why not?
• Would using a lambda or adding a named function allow you to make the
value const?

21

const Everything That’s Not constexpr 22

Using a lambda to initialize a const object.

const auto data = [](){ // no parameters
std::vector<int> result;
// fill result with things.
return result;

}(); // immediately invoked

Because of RVO, using a lambda will likely not add any overhead and
may increase performance.

Did youmake any static variables const in the process?
Then go to the constexpr exercise.

You probably don’t want to make class members const; it can break
essential things, and sometimes silently.

Resources

• CppCon 2014: James McNellis & Kate Gregory “Modernizing Legacy C++
Code”¹

• CppCon 2019: Jason Turner “C++ Code Smells”²
• The implication of const or reference member variables in C++³
• C++Now 2018: Ben Deane “Easy to Use, Hard to Misuse: Declarative Style in
C++”⁴ (Builds on techniques that make applying const easier.)

¹https://youtu.be/LDxAgMe6D18
²https://youtu.be/f_tLQl0wLUM
³https://lesleylai.info/en/const-and-reference-member-variables/
⁴https://youtu.be/2ouxETt75R4

https://youtu.be/LDxAgMe6D18
https://youtu.be/LDxAgMe6D18
https://youtu.be/f_tLQl0wLUM
https://lesleylai.info/en/const-and-reference-member-variables/
https://youtu.be/2ouxETt75R4
https://youtu.be/2ouxETt75R4
https://youtu.be/LDxAgMe6D18
https://youtu.be/f_tLQl0wLUM
https://lesleylai.info/en/const-and-reference-member-variables/
https://youtu.be/2ouxETt75R4

13. constexpr Everything Known
at Compile Time

Gone are the days of #define. constexpr should be your new default! Unfor-
tunately, people over-complicate constexpr, so let’s break down the simplest
thing.

If you see something like (I’ve seen in real code):

static const data known at compile time.

static const std::vector<int> angles{-90,-45,0,45,90};

This really needs to be:

Moving static const to static constexpr.

static constexpr std::array<int, 5> angles{-90,-45,0,45,90};

static constexpr here is necessary to make sure the object is not
reinitialized each time the function / declaration is encountered. With
static the variable lasts for the lifetime of the program, and we know
it will be initialized exactly once.

The difference is threefold.

• The size of the array is now known at compile time
• We’ve removed dynamic allocations
• We no longer pay the cost of accessing a static

23

constexpr Everything Known at Compile Time 24

Themain gains come from the first two, but we need a constexprmindset to be
looking for this kind of opportunity. We also need constexpr knowledge to see
how to apply it in the more complex cases.

The difference can be significant.

Exercise: constexpr Your const Values

While reading code, look at all const values. Ask, “is this value known at compile
time?” If it is, what would it take to make the value constexpr?

Exercise: static constexpr Your static
const Values

Go through your current code base and look for code that is currently static
const. You probably have something, somewhere.

• If it’s currently static const, it’s likely the size and data are known at
compile time.

• Can this code become constexpr?
• What is preventing it from being constexpr?
• Howmuchworkwould it take tomodify the functionspopulating thestatic
const data so that they are also constexpr?

Resources

• C++Now 2017: Ben Deane & Jason Turner “constexpr ALL the things¹ (a bit
out of date with modern constexpr techniques)

• C++ Weekly Ep 233: constexprmap vs std::map²
¹https://youtu.be/HMB9oXFobJc
²https://youtu.be/INn3xa4pMfg

https://youtu.be/HMB9oXFobJc
https://youtu.be/INn3xa4pMfg
https://youtu.be/HMB9oXFobJc
https://youtu.be/INn3xa4pMfg

constexpr Everything Known at Compile Time 25

• Meeting C++ 2017: Jason Turner “Practical constexpr”³
• C++ Russia 2019: Hana Dusíková “A state of сompile time regular expres-
sions”⁴

³https://youtu.be/xtf9qkDTrZE
⁴https://youtu.be/r_ZASJFQGQI

https://youtu.be/xtf9qkDTrZE
https://youtu.be/r_ZASJFQGQI
https://youtu.be/r_ZASJFQGQI
https://youtu.be/xtf9qkDTrZE
https://youtu.be/r_ZASJFQGQI

14. Prefer auto In Many Cases.
I’m not an Almost Always Auto (AAA) person, but let me ask you this: What is the
result type of std::count?

My answer is, “I don’t care.”

const auto

const auto result = std::count(/* stuff */);

or, if you prefer:

auto const

auto const result = std::count(/* stuff */);

Using auto avoids unnecessary conversions and data loss. Same as ranged-for
loops.auto requires initialization, the sameasconst, the same reasoning forwhy
that’s good.

Example:

Possible expensive conversion.

const std::string value = get_string_value();

What is the return type of get_string_value()? If it is std::string_view or
const char *, we will get a potentially costly conversion on all compilers with
no diagnostic.

26

Prefer auto In Many Cases. 27

No possible expensive conversion.

// avoids conversion
const auto value = get_string_value();

Furthermore, auto return types actually can significantly simplify generic code.

C++ 98 template usage.

// our example from "Don't Be Afraid of Templates"
template<typename Arithmetic>
Arithmetic divide(Arithmetic numerator, Arithmetic denominator) {

return numerator / denominator;
}

This code forcesus touse the same type for both thenumerator anddenominator
(play with this and see the weird compile errors you get).

C++ 98 template mademore generic?

template<typename Numerator, typename Denominator>
/*what's the return type*/
divide(Numerator numerator, Denominator denominator) {

return numerator / denominator;
}

C++98 provides no solution to this problem, but C++11 does.

Prefer auto In Many Cases. 28

C++11 trailing return types.

// use trailing return type
template<typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator)

-> decltype(numerator / denominator)
{

return numerator / denominator;
}

But in C++14, we can leave off the return type altogether (remember to Skip
C++11).

C++14 auto return types.

template<typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator)
{

return numerator / denominator;
}

Exercise: Become familiar with auto
deduction.

Ex1: what is the type of val?

const int *get();

int main() {
const auto val = get();

}

Prefer auto In Many Cases. 29

Ex2: what is the type of val?

const int &get();

int main() {
const auto val = get();

}

Ex3: what is the type of val?

const int *get();

int main() {
const auto *val = get();

}

Ex4: what is the type of val?

const int &get();

int main() {
const auto &val = get();

}

Ex5: what is the type of val?

const int *get();

int main() {
const auto &val = get();

}

Prefer auto In Many Cases. 30

Ex6: what is the type of val?

const int &get();

int main() {
const auto &&val = get();

}

Exercise: Build your experiment li-
brary

The above exercise is perfect for building into a set of experiments that are saved
in your GitHub gists mentioned in C++ Is Not Magic

Exercise: Understand how auto and
template deduction relate

Understand the rules for type deduction of templates and how they relate to
auto.

Read the section in the C++ Programming Language Standard [dcl.spec.auto].

Resources

• clang-tidy modernize-use-auto¹
• Almost Always Auto²

¹https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
²https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-auto.html
https://herbsutter.com/2013/08/12/gotw-94-solution-aaa-style-almost-always-auto/

15. Prefer ranged-for Loop
Syntax Over Old Loops

We’ll illustrate this point with a series of examples.

int vs std::size_twhen looping.

for (int i = 0; i < container.size(); ++i) {
// oops mismatched types

}

Mismatched containers while looping.

for (auto itr = container.begin();
itr != container2.end();
++itr) {

// oops, most of us have done this at some point
}

Example of ranged-for loop.

for(const auto &element : container) {
// eliminates both other problems

}

Never mutate the container itself while iterating inside of a ranged-for
loop.

Exercise: Modernize Your Loops

31

Prefer ranged-for Loop Syntax Over Old Loops 32

You probably have old-style loops in your code.

1. Apply clang-tidy’s modernize-loop-convert check.
2. Look for loops that could not be converted.

• Loops that could not be converted might represent bugs in the code
• Loops that could not be converted, but do not have bugs, are good
candidates for simplification

Resources

• clang-tidy modernize-loop-convert¹

¹https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-loop-convert.html

16. Use auto in ranged for loops
Not using auto canmake it easier to have silent mistakes in your code.

Accidental conversions

for (const int value : container_of_double) {
// accidental conversion, possible warning

}

Accidental slicing

for (const base value : container_of_derived) {
// accidental silent slicing

}

No problem

for (const auto &value : container) {
// no possible accidental conversion

}

Prefer:

• const auto & for non-mutating loops
• auto & for mutating loops
• auto && only when you have to with weird types like std::vector<bool>,
or if moving elements out of the container

Exercise: Understand std::map and
ranged for loops

Understand what this code is doing. Is it making a copy? Why and how?

33

Use auto in ranged for loops 34

Accidental copy?

std::map<std::string, int> get_map();

using element_type = std::pair<std::string, int>;

for (const element_type & : get_map())
{
}

Exercise: Enable ranged-loop related
warnings

Make sure -Wrange-loop-construct is enabled in your code, which is automat-
ically included with -Wall.

17. Prefer Algorithms Over
Loops

Algorithms communicate meaning and help us apply the “const All The Things”
rule. In C++20, we get ranges, which make algorithmsmore comfortable to use.

It’spossible, takinga functional approachandusingalgorithms, thatwecanwrite
C++ that reads like a sentence.

Algorithms end game

const auto has_value
= std::any_of(begin(container), end(container),

greater_than(12));

Algorithms end game (C++20)

const auto has_value
= std::any_of(container, greater_than(12));

Note that in some rare cases¹, your static analysis tools might be able to suggest
an algorithm to use.

Exercise: Study existing loops

Next timeyouare reading througha loop inyourcodebase, cross-reference itwith
the C++ <algorithm> header² and try to find an algorithm that applies instead.

¹https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
²https://en.cppreference.com/w/cpp/algorithm

35

https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
https://en.cppreference.com/w/cpp/algorithm
https://sourceforge.net/p/cppcheck/wiki/ListOfChecks/
https://en.cppreference.com/w/cpp/algorithm

Prefer Algorithms Over Loops 36

This book only barely mentions C++20’s ranges. Compilers are just now
getting support for ranges as of the publication of this book. Ranges can
be composed and have full support for constexpr.

Resources

• GoingNative 2013: Sean Parent “C++ Seasoning”³
• CppCon 2018: Jonathan Boccara “105 Algorithms in Less Than an Hour”⁴
• C++ Now 2019: Connor Hoekstra “Algorithm Intuition”⁵
• Code::Dive 2019: Connor Hoekstra “Better Algorithm Intuition”⁶
• C++ Weekly Ep 187 “C++20’s constexpr Algorithms”⁷
• C++ Weekly Ep 105 “Learning “Modern” C++ 5: Looping And Algorithms⁸

³https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
⁴https://youtu.be/2olsGf6JIkU
⁵https://youtu.be/48gV1SNm3WA
⁶https://youtu.be/0z-cv3gartw
⁷https://youtu.be/9YWzXSr2onY
⁸https://youtu.be/A0-x-Djey-Q

https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
https://youtu.be/2olsGf6JIkU
https://youtu.be/48gV1SNm3WA
https://youtu.be/0z-cv3gartw
https://youtu.be/9YWzXSr2onY
https://youtu.be/A0-x-Djey-Q
https://channel9.msdn.com/Events/GoingNative/2013/Cpp-Seasoning
https://youtu.be/2olsGf6JIkU
https://youtu.be/48gV1SNm3WA
https://youtu.be/0z-cv3gartw
https://youtu.be/9YWzXSr2onY
https://youtu.be/A0-x-Djey-Q

18. Don’t Be Afraid of Templates
Templates are the ultimate DRY principle in C++. Templates can be complicated,
daunting, and Turing complete, but they don’t have to be. Fifteen years ago, it
seemed the prevailing attitude is “templates aren’t for normal people.”

Fortunately, this is less true today. And we have more tools today, concepts,
generic lambdas, etc.

We’re going tobuild upanexampleover a fewchapters. Let’s saywewant towrite
a function that can divide any two values.

Divide doubles.

double divide(double numerator, double denominator) {
return numerator / denominator;

}

But you don’t want all of your divisions to be promoted to double.

Divide floats.

float divide(float numerator, float denominator) {
return numerator / denominator;

}

And of course, you want to handle some kind of integer values.

37

Don’t Be Afraid of Templates 38

Divide ints.

int divide(int numerator, int denominator) {
return numerator / denominator;

}

Templates were designed for just this scenario.

Basic template usage.

template<typename T>
T divide(T numerator, T denominator) {

return numerator / denominator;
}

Most examples on the internet use T, like I just did. Don’t do that. Give your type
a meaningful name.

template prameters with actual names.

template<typename Arithmetic>
Arithmetic divide(Arithmetic numerator, Arithmetic denominator) {

return numerator / denominator;
}

Exercise: Keep this chapter in mind
while moving on to the next chapter
and looking at its exercises.

19. Don’t Copy and Paste Code
If you find yourself going to select a block of code and copy it: stop!

Take a step back and look at the code again.

• Why are you copying it?
• How similar will the source be to the destination?
• Does it make sense to make a function?
• Remember, Don’t Be Afraid of Templates

I have found that this simple rule has had the most direct influence on my code
quality.

If the result of the paste operation was going in the current function, consider
using a lambda.

C++14 style lambdas, with generic (aka auto) parameters, give you a simple and
easy to use method of creating reusable code that can be shared with different
data types while not having to deal with template syntax.

Exercise: Try CPD.

There are a few different copy-paste-detectors that look for duplicated code in
your codebase.

For this exercise, download the PMD CPD tool¹
and run it on your codebase.

¹https://pmd.github.io/latest/pmd_userdocs_cpd.html

39

https://pmd.github.io/latest/pmd_userdocs_cpd.html
https://pmd.github.io/latest/pmd_userdocs_cpd.html

Don’t Copy and Paste Code 40

If you use Arch Linux, this tool can be installedwith AUR. The package is pmd; the
tool is pmd-cpd.

Can you identify critical parts of your code that have been copied and pasted?
What happens if you find a bug in one version? Will you
be sure to see all of the locations that also need to be updated?

Resources

• Copy-Paste Programming²
• The Last Line Effect³
• i will not copy-paste code⁴

²https://www.viva64.com/en/t/0068/
³https://www.viva64.com/en/b/0260/
⁴https://twitter.com/bjorn_fahller/status/1072432257799987200

https://www.viva64.com/en/t/0068/
https://www.viva64.com/en/b/0260/
https://twitter.com/bjorn_fahller/status/1072432257799987200
https://www.viva64.com/en/t/0068/
https://www.viva64.com/en/b/0260/
https://twitter.com/bjorn_fahller/status/1072432257799987200

20. Follow the Rule of 0
Nodestructor is alwaysbetterwhen it’s the correct thing todo. Emptydestructors
can destroy performance:

• They make the type no longer trivial
• Have no functional use
• Can affect inlining of destruction
• Implicitly disable move operations

If you need a destructor because you are doing resource management
or defining a base class with virtual functions, you need to follow the
Rule of 5.

std::unique_ptr can help you apply the Rule of 0 if you provide a custom
deleter.

Exercise: Find Rule of 0 Violations in
Your Code

Look for code like this (I guarantee you will find it).

41

Follow the Rule of 0 42

Empty meaningless destructor.

struct S {
// a bunch of other things
~S() {}

};

or worse:

Forward declared empty meaningless destructor.

// file.hpp
struct S {

~S();
}

// file.cpp
S::~S() {}

Are these destructors necessary? Remove them if they are not.

If these destructors exist in types used in many places, you will likely be able
to measure smaller binary sizes and better performance by taking this simple
action.

Someuses of the pImpl idiom require you to define a destructor. In this case, be
sure to follow the Rule of 5.

Resources

• C++ Reference: The rule of three/five/zero¹
¹https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three

Follow the Rule of 0 43

• C++ Weekly Ep 154: “One Simple Trick for Reducing Code Bloat”²
• CppCon 2019: Jason Turner “Great C++ is_trivial”³

²https://youtu.be/D8eCPl2zit4
³https://youtu.be/ZxWjii99yao

https://youtu.be/D8eCPl2zit4
https://youtu.be/ZxWjii99yao
https://youtu.be/D8eCPl2zit4
https://youtu.be/ZxWjii99yao

21. If You Must Do Manual
Resource Management,
Follow the Rule of 5

If you provide a destructor because std::unique_ptr doesn’t make sense for
your use case, you must =delete, =default, or implement the other special
member functions.

This rule was initially known as the Rule of 3 and is known as the Rule of 5 after
C++11.

The special member functions.

struct S {
S(); // default constructor

// does not affect other special member functions

// If you define any of the following, you must deal with
// all the others.
S(const S &); // copy constructor
S(S&&); // move constructor
S &operator=(const S &); // copy assignment operator
S &operator=(S &&); // move assignment operator

};

=delete is a safe way of dealing with the special member functions if
you don’t knowwhat to do with them!

You should also follow the Rule of 5 when declaring base classes with virtual
functions.

44

If You Must Do Manual Resource Management, Follow the Rule of 5 45

Rule of 5 with polymorphic types.

struct Base {
virtual void do_stuff();

// because of the virtual function we know this class
// is intended for polymorphic use, therefor our
// tools will tell us to define a virtual destructor
virtual ~Base() = default;

// and now we need to declare the other special members
// a good safe bet is to delete them, because properly and safely
// copying or assigning an object via a reference or pointer
// to a base class is hard / impossible

S(S&&) = delete;
S(const &S) = delete;
S &operator=(const S &) = delete;
S &operator=(S &&) = delete;

};

struct Derived : Base {
// We don't need to define any of the special members
// here, they are all inherited from `Base`.

}

Instead of = delete you can consider making these special members
protected.

Exercise: Implement your own
unique_ptr<> template

It’s hard to get it 100% right. Write tests. Understand why the defaulted special
member functions don’t work.

If You Must Do Manual Resource Management, Follow the Rule of 5 46

Bonus points: implement it with C++20’s constexpr dynamic allocation support.

Exercise: Look for Rule of 5 violations
in your code

You are likely not providing consistent lifetime semantics in your existing code
when you are defining the special member functions. To assess the impact, you
can quickly = delete; any missing special member functions and see what
breaks.

Resources

• C++ Reference: The rule of three/five/zero¹

¹https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three
https://en.cppreference.com/w/cpp/language/rule_of_three

22. Don’t Invoke Undefined
Behavior

Ok, there’s a lot that’s Undefined Behavior (UB), and it’s hard to keep track of, so
we’ll give some examples in the following sections.
The critical thing that you need to understand is that UB’s existence breaks your
entire program.

[intro.abstract¹]

A conforming implementation executing a well-formed program shall
produce the same observable behavior as one of
the possible executions of the corresponding instance of the abstract
machine with the same program and the same
input.
However, if any such execution contains an undefined operation, this
document places no requirement on the implementation executing
that program with that input (not even with regard to operations pre-
ceding the first undefined operation).

Note the sentence “this document places no requirement on the implementation
executing that program with that input (not even with regard to operations
preceding the first undefined operation)”

If you have UB, the entire program is suspect.

The next several items discuss ways to reduce the risk of undefined
behavior in your project.

¹http://eel.is/c++draft/intro.compliance#intro.abstract-5

47

http://eel.is/c++draft/intro.compliance#intro.abstract-5
http://eel.is/c++draft/intro.compliance#intro.abstract-5

Don’t Invoke Undefined Behavior 48

Exercise: Using UBSan, ASan and
Warnings

Understanding all of Undefined Behavior is likely impossible. Fortunately, we do
have tools that help. Hopefully, you already have your code enabled for UBSan,
ASan, and have your warnings enabled. Now is a great time to go back and
evaluatewhat options youhave and see if there is anythingnewyou candiscover.

Resources

• C++Now2018: JohnRegehr “ClosingKeynote:UndefinedBehaviorandCom-
piler Optimizations”²

• CppCon 2018: Barbara Geller & Ansel Sermersheim “Undefined Behavior is
Not an Error”³

²https://youtu.be/AeEwxtEOgH0
³https://youtu.be/XEXpwis_deQ

https://youtu.be/AeEwxtEOgH0
https://youtu.be/AeEwxtEOgH0
https://youtu.be/XEXpwis_deQ
https://youtu.be/XEXpwis_deQ
https://youtu.be/AeEwxtEOgH0
https://youtu.be/XEXpwis_deQ

23. Never Test for this To Be
nullptr, It’s UB

Invalid check for this to be nullptr.

int Class::member() {
if (this == nullptr) {

// removed by the compiler, it would be UB
// if this were ever null
return 42;

} else {
return 0;

}
}

Technically it isn’t the check that is Undefined Behavior (UB). But it’s impossible
for the check ever to fail. If the this were to be equal to nullptr, you would be
in a state of Undefined Behavior.
People used to do this all the time, but it’s always been UB. You cannot access an
object outside its lifetime. Compilers today will always remove this check.

The only way it’s theoretically possible for this to be null is when you call a
member directly on a null object.

Bad examples lie ahead, do not repeat them.

49

Never Test for this To Be nullptr, It’s UB 50

Bad call of member on nullptr.

Type *obj = nullptr;
obj->do_thing(); // never do this

Even in the (technically OK, but never do this) scenario of calling delete this.

Bad example of delete this.

struct S {
std::string data;

void delete_yourself() {
// do things
delete this; // technically OK

if (this) {
// this block will always be executed, nothing changed
// our view of `this`

}

// never do this
data.size(); // UB, data's lifetime has ended

}
};

There is no scenario in which a check for if (this)will return false on amodern
compiler.

Exercise: Do you check for this to be
nullptr?

A check for nullptr can hide as a check for NULL or a check against 0. A check for
this to be NULL is likely to only exist in very old code bases. Make sure you have
your warnings enabled, then look for these cases.

Never Test for this To Be nullptr, It’s UB 51

It’s probably interesting in general to search for this == in your codebase and
see what weird things are there.

Resources

• Porting to GCC-6 Optimizations remove null pointer checks for this¹

¹https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null

https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null
https://www.gnu.org/software/gcc/gcc-6/porting_to.html#this-cannot-be-null

24. Never Test for A Reference
To Be nullptr, It’s UB

Tests for null references are removed

int get_value(int &thing) {
if (&thing == nullptr) {

// removed by compiler
return 42;

} else {
return thing;

}
}

It’s UB to make a null reference, don’t try it. Always assume a reference refers to
a valid object. Use this fact to your advantage when designing API’s.

Exercise: Check for checking the ad-
dress of an object

There are many valid use cases for &thing == to check for a specific address of
an object, but there are also many ways this check can be wrong.

Search through your code for statements that check an object’smemory address
and understand what they are doing and how (or if) they work.

What otherwaysmight the address of an object be checked besides ==?

This exercise gives you some great experience working with various searching /
grepping tools and playing with regex.

52

Never Test for A Reference To Be nullptr, It’s UB 53

Resources

• -Wtautological-undefined-compare¹

¹https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare

https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare
https://clang.llvm.org/docs/DiagnosticsReference.html#wtautological-undefined-compare

25. Avoid default In switch
Statements

This is an issue that is best describedwith a series of examples. Starting from this
one:

switchwith warnings

enum class Values {
val1,
val2

};

std::string_view get_name(Values value) {
switch (value) {
case val1: return "val1";
case val2: return "val2";
}

}

If you have enabled all of your warnings, then you will likely get a “not all code
paths return a value” warning here.Which is technically correct. We could call
get_name(static_cast<Values>(15))andnotviolateanypartofC++ [dcl.enum/5]
except for the Undefined Behavior of not returning a value from a function.

You’ll be tempted to fix this code like this:

54

Avoid default In switch Statements 55

switchwith default to avoid warnings

enum class Values {
val1,
val2

};

std::string_view get_name(Values value) {
switch (value) {
case val1: return "val1";
case val2: return "val2";
default: return "unknown";
}

}

But this introduces a new problem

Unhandled case

enum class Values {
val1,
val2,
val3 // added a new value

};

std::string_view get_name(Values value) {
switch (value) {
case val1: return "val1";
case val2: return "val2";
default: return "unknown";
}
// no compiler diagnostic that `val3` is unhandled

}

Instead, prefer code like this:

Avoid default In switch Statements 56

Prefered version

enum class Values {
val1,
val2,
val3 // added a new value

};

std::string_view get_name(Values value) {
switch (value) {
case val1: return "val1";
case val2: return "val2";
} // unhandled enum value warning now

return "unknown";
}

You shouldn’t ever get an “unreachable code” warning in the above
example because the range of valid values is nearly always larger than
the values you have defined.

Somemodern tools can detect these uses of default for you.

Exercise: Look for default:.

What do you find in your code base? Did enabling warnings in previous exercises
find uses of default: for you already?

Avoid default In switch Statements 57

Resources

• CppCon 2018: Jason Turner “Applied Best Practices”¹
• -Wswitch-enum²
• -Wswitch³

¹https://youtu.be/DHOlsEd0eDE
²https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
³https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch

https://youtu.be/DHOlsEd0eDE
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch
https://youtu.be/DHOlsEd0eDE
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch-enum
https://clang.llvm.org/docs/DiagnosticsReference.html#wswitch

26. Prefer Scoped enums
C++11 introduced scoped enumerations, intended to solvemany of the common
problems with enum inherited from C.

C++98 enums

enum Choices {
option1 // value in the global scope

};

enum OtherChoices {
option2

};

int main() {
int val = option1;
val = option2; // no warning

}

• enum Choices;

• enum OtherChoices;

These two can easily get mixed up, and they each introduce identifiers in the
global namespace.

• enum class Choices;

• enum class OtherChoices;

The values in these enumerations are scoped andmore strongly typed.

58

Prefer Scoped enums 59

C++11 scoped enumeration.

enum class Choices {
option1

};

enum class OtherChoices {
option2

};

int main() {
int val = option1; // cannot compile, need scope
int val2 = Choices::option1; // cannot compile, wrong type
Choices val = Choices::option1; // compiles
val = OtherChoices::option2; // cannot compile, wrong type

}

These enum class versions cannot get mixed up without much effort, and their
identifiers are now scoped, not global.

enum struct and enum class are equivalent. Logically enum struct makes
more sense since they are public names. Which do you prefer?

Exercise: enum struct or enum class

Decide if you prefer enum struct or enum class and develop a well-reasoned
answer as to why.

Exercise: clang-tidy modernize

Prefer Scoped enums 60

Clang-tidy’s modernizer can add class to your enum declarations. Try putting it
to use.

clang-tidy’s scoped enumeration modernizer will probably find many
bugs in your code!

Resources

• CppCon 2018: Victor Ciura “Better Tools in Your Clang Toolbox”¹ (Discusses
bugs found bymoving to enum class)

• cppreference.com Enumeration Declaration²

¹https://youtu.be/4X_fZkl7kkU
²https://en.cppreference.com/w/cpp/language/enum

https://youtu.be/4X_fZkl7kkU
https://en.cppreference.com/w/cpp/language/enum
https://youtu.be/4X_fZkl7kkU
https://en.cppreference.com/w/cpp/language/enum

27. Prefer if constexpr over
SFINAE

SFINAE is kind-of write-only code. if constexpr doesn’t have the same flexibil-
ity, but use it when you can.

Let’s take our previous example:

C++14 divides template.

template<typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator)
{

return numerator / denominator;
}

We now want to add different behavior if we are doing integral division. Before
C++17, we would have used SFINAE (“Substitution Failure Is Not An Error”).
Essentially this means that if a function fails to compile, then it is removed from
overload resolution.

SFINAE divide function.

#include <stdexcept>
#include <type_traits>
#include <utility>

template <typename Numerator, typename Denominator,
std::enable_if_t<std::is_integral_v<Numerator> &&

std::is_integral_v<Denominator>,
int> = 0>

auto divide(Numerator numerator, Denominator denominator) {
// is integer division

61

Prefer if constexpr over SFINAE 62

if (denominator == 0) {
throw std::runtime_error("divide by 0!");

}
return numerator / denominator;

}

template <typename Numerator, typename Denominator,
std::enable_if_t<std::is_floating_point_v<Numerator> ||

std::is_floating_point_v<Denominator>,
int> = 0>

auto divide(Numerator numerator, Denominator denominator) {
// is floating point division
return numerator / denominator;

}

The if constexpr construct in C++17 can simplify this code:

if constexpr option for compile time behavior change.

#include <stdexcept>
#include <type_traits>
#include <utility>

template <typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator) {

if constexpr (std::is_integral_v<Numerator> &&
std::is_integral_v<Denominator>) {

// is integral division
if (denominator == 0) {

throw std::runtime_error("divide by 0!");
}

}

return numerator / denominator;
}

Prefer if constexpr over SFINAE 63

Note that the code inside the if constexpr block must still be syntactically
correct. if constexpr is not the same as a #define.

Resources

• C++ Weekly Special Edition: Using C++17’s constexpr if¹
• C++ Weekly Ep 122: constexprwith optional and variant²
• CppCon 2017: Jason Turner “Practical C++17”³
• C++17 In Tony Tables: constexpr if⁴

¹https://youtu.be/_Ny6Qbm_uMI
²https://youtu.be/2eCV_udkP_o
³https://youtu.be/nnY4e4faNp0
⁴https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md

https://youtu.be/_Ny6Qbm_uMI
https://youtu.be/2eCV_udkP_o
https://youtu.be/nnY4e4faNp0
https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md
https://youtu.be/_Ny6Qbm_uMI
https://youtu.be/2eCV_udkP_o
https://youtu.be/nnY4e4faNp0
https://github.com/tvaneerd/cpp17_in_TTs/blob/master/if_constexpr.md

28. Constrain Your Template
Parameters With Concepts
(C++20)

Concepts will result in better error messages (eventually) and better compile
times than SFINAE. Besides muchmore readable code than SFINAE.

If we continue to build on our divide example, we can take this if constexpr
version.

if constexpr version of divide function from Prefer if constexpr over SFINAE section

#include <stdexcept>
#include <type_traits>
#include <utility>

template <typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator) {

if constexpr (std::is_integral_v<Numerator> &&
std::is_integral_v<Denominator>) {

// is integral division
if (denominator == 0) {

throw std::runtime_error("divide by 0!");
}

}

return numerator / denominator;
}

And we can split it back out as two different functions using concepts.

Concepts can be used in several different contexts. This version uses a simple
requires clause after the function declaration.

64

Constrain Your Template Parameters With Concepts (C++20) 65

Concepts in requires clause.

#include <stdexcept>
#include <type_traits>
#include <utility>

// overload resolution will pick the most specific version
template <typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator) requires

(std::is_integral_v<Numerator>
&& std::is_integral_v<Denominator>) {

// is integral division
if (denominator == 0) {

throw std::runtime_error("divide by 0!");
}
return numerator / denominator;

}

template <typename Numerator, typename Denominator>
auto divide(Numerator numerator, Denominator denominator) {

return numerator / denominator;
}

This version uses concepts as function parameters. C++20 even has an “auto
concept,” which is an implicit template function.

Terse concepts requirement syntax.

#include <stdexcept>
#include <concepts>

auto divide(std::integral auto numerator,
std::integral auto denominator) {

// is integer division
if (denominator == 0) {

throw std::runtime_error("divide by 0!");
}

Constrain Your Template Parameters With Concepts (C++20) 66

return numerator / denominator;
}

auto divide(auto numerator, auto denominator) {
// is floating point division
return numerator / denominator;

}

Concepts can define complex requirements, including expected mem-
bers. This section only barely touches on the possibilities.

Exercise: Understand what concepts
are provided with C++20.

As usual, cppreference helps by providing a list of concepts¹.

Exercise: Create your own concept.

Does this example give you some idea for an example of a concept that youwould
want, but isn’t provided by <concepts>?

Look at the implementation of the very simple std::integral concept on cp-
preference² and see if it inspires you.

Resources

• C++ Weekly Ep 194: From SFINAE To Concepts With C++20³
¹https://en.cppreference.com/w/cpp/concepts
²https://en.cppreference.com/w/cpp/concepts/integral
³https://youtu.be/dR64GQb4AGo

https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/concepts/integral
https://en.cppreference.com/w/cpp/concepts/integral
https://youtu.be/dR64GQb4AGo
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/concepts/integral
https://youtu.be/dR64GQb4AGo

Constrain Your Template Parameters With Concepts (C++20) 67

• C++ Weekly Ep 196: What is requires requires⁴

⁴https://youtu.be/tc0hVIOJk_U

https://youtu.be/tc0hVIOJk_U
https://youtu.be/tc0hVIOJk_U

29. De-template-ize Your
Generic Code

Move things outside of your templates when you can. Use other functions. Use
base classes. The compiler is still free to inline them or leave them out of line.

De-template-izationwill improve compile timesand reducebinary sizes. Bothare
helpful. It also eliminates the thing that people think of as “template code bloat”
(which IMO doesn’t exist¹) (article formatting got broken at some point, sorry).

A new lambda for each function template instantiation.

template<typename T>
void do_things()
{

// this lambda must be generated for each
// template instantiation
auto lambda = [](){ /* some lambda */ };
auto value = lambda();

}

Compared to:

¹https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html

68

https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html
https://articles.emptycrate.com/2008/05/06/nobody_understands_c_part_5_template_code_bloat.html

De-template-ize Your Generic Code 69

Shared logic between template instantiations.

auto some_function() { /* do things*/ }

template<typename T>
void do_things()
{

auto value = some_function();
}

Nowonly one version of the inner logic is compiled, and it’s up to the compiler to
decide if they should be inlined.

Similar techniques apply to base classes and templated derived classes.

Exercise: Bloaty McBloatface and
-ftime-trace.

We’re getting more andmore tools available to look for bloat in our binaries and
analyze compile times. Look into these tools and other tools available on your
platform.

Run them against your binary and see what you find.

When using clang’s -ftime-trace, also look into ClangBuildAnalayzer.

Resources

• Templight²
• C++ Weekly Ep 89: “Overusing Lambdas”³

²https://github.com/mikael-s-persson/templight
³https://youtu.be/OmKMNQFx_8Y

https://github.com/mikael-s-persson/templight
https://youtu.be/OmKMNQFx_8Y
https://github.com/mikael-s-persson/templight
https://youtu.be/OmKMNQFx_8Y

De-template-ize Your Generic Code 70

• C++ Weekly Christmas Class 2019 - Chapter 3⁴ (This is the first episode of
chapter 3, and it introduces the question of how and why two different
options differ⁵. The next several episodes in that playlist give some back-
ground, and the start of chapter 4 gives the answers. It is very much related
to template bloat questions.)

⁴https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
⁵https://godbolt.org/z/b4znvK

https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
https://godbolt.org/z/b4znvK
https://www.youtube.com/watch?v=VEqOOKU8RjQ&list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-&index=16
https://godbolt.org/z/b4znvK

30. Use Lippincott Functions
Samearguments as de-template-izing your code: This is a do-not-repeat-yourself
principle for exception handling routines.

If you have many different exception types to handle, you might have code that
looks like this:

Duplicated exception handling.

void use_thing() {
try {
do_thing();

} catch (const std::runtime_error &) {
// handle it

} catch (const std::exception &) {
// handle it

}
}

void use_other_thing() {
try {
do_other_thing();

} catch (const std::runtime_error &) {
// handle it

} catch (const std::exception &) {
// handle it

}
}

A Lippincott function (named after Lisa Lippincott) provides a centralized excep-
tion handling routine.

71

Use Lippincott Functions 72

Lippincott de-duplicated exception handling.

void handle_exception() {
try {

throw; // re-throw exception already in flight
} catch (const std::runtime_error &) {
} catch (const std::exception &) { }

}

void use_thing() {
try {
do_thing();

} catch (...) {
handle_exception();

}
}

void use_other_thing() {
try {
do_other_thing();

} catch (...) {
handle_exception();

}
}

This technique is not new - it has been available since the pre-C++98 days.

Exercise: Do You Use Exceptions?

If your project uses exceptions, there’s probably some ground for simplifying and
centralizing your error handling routines. If it does not use exceptions, then you
likely have other types of error handling routines that are duplicated. Can these
be simplified?

Use Lippincott Functions 73

Resources

• C++Secrets:UsingaLippincott Function forCentralizedExceptionHandling¹
• C++ Weekly Ep 91: Using Lippincott Functions²

¹https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
²https://youtu.be/-amJL3AyADI

https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://youtu.be/-amJL3AyADI
https://cppsecrets.blogspot.com/2013/12/using-lippincott-function-for.html
https://youtu.be/-amJL3AyADI

31. Be Afraid of Global State
Reasoning about global state is hard.

Any non-const static value, or std::shared_ptr<> could potentially be global
state. It is never knownwhomight update the value or if it is thread-safe to do so.

Global state can result in subtle and difficult to trace bugs where one function
changes global state, and another function either relies on that change or is
adversely affected by it.

Exercise: Global State, What’s Left?

If you’ve done the other exercises, you’ve already made all of your static vari-
ables const. This is great! You’ve possibly even made some of them constexpr,
which is even better!

But you probably have global state still lurking. Do you have a global singleton
logger? Could the logger be accidentally sharing state between the modules of
your system?

What about other singletons? Can they be eliminated? Do they have threading
initialization issues (what happens if two threads try to access one of the objects
for the first time at the same time)?

Resources

• Retiring the Singleton Pattern - Peter Muldoon - Meeting C++ 2019¹

¹https://youtu.be/f46jmm7r8Yg

74

https://youtu.be/f46jmm7r8Yg
https://youtu.be/f46jmm7r8Yg

32. Make your interfaces hard
to use wrong.

Your interface is your first line of defense. If you provide an interface that is easy
to use wrong, your userswill use it wrong.

If you provide an interface that’s hard to use wrong, your users have to work
harder to use it wrong. But this is still C++; they will always find a way.

Interfaces hard to use wrong will sometimes result in more verbose code where
we would maybe like more terse code. You have to choose what is most impor-
tant. Correct code or short code?

This is a high-level concept; specific ideas will follow.

Resources

* The Little Manual of API Design¹

¹https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf

75

https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf
https://people.mpi-inf.mpg.de/~jblanche/api-design.pdf

33. Consider If Using the API
Wrong Invokes Undefined
Behavior

Do you accept a raw pointer? Is it an optional parameter? What happens if
nullptr is passed to your function?

What happens if a value out of the expected range is passed to your function?

Some developers make the distinction between “internal” and “external” APIs.
They allow unsafe APIs for internal use only.

Is there any guarantee that an external user will never invoke the “inter-
nal” API?

Is thereanyguarantee that your internaluserswill nevermisuse theAPI?

Exercise: Investigate Checked Types

The C++ Guideline Support Library (GSL) has a not_null pointer type that guar-
antees,becauseof zerocostabstractions, that thepointerpassed isnevernullptr.
Would that work for your APIs that currently pass raw pointers (assuming that
rearchitecting the API is not an option)?

std::string_view (C++17)andstd::span (C++20)aregreatalternatives topointer
/ length pairs passed to functions.

76

Consider If Using the API Wrong Invokes Undefined Behavior 77

Resources

• boost::safe_numerics¹

¹https://github.com/boostorg/safe_numerics

https://github.com/boostorg/safe_numerics
https://github.com/boostorg/safe_numerics

34. Use [[nodiscard]] Liberally
[[nodiscard]] (C++17) is aC++attribute that tells thecompiler towarn if a return
value is ignored. It can be used on functions:

[[nodiscard]] example usage.

[[nodiscard]] int get_value();

int main()
{

// warning, [[nodiscard]] value ignored
get_value();

}

And on types:

[[nodiscard]] on types.

struct [[nodiscard]] ErrorCode{};

ErrorCode get_value();

int main()
{

// warning, [[nodiscard]] value ignored
get_value();

}

C++20 adds the ability to provide a description.

78

Use [[nodiscard]] Liberally 79

C++20’s [[nodiscard]]with description.

[[nodiscard("Ignoring this result leaks resources")]]

Our divide example is a straightforward application of [[nodiscard]].

[[nodiscard]] applied to divide function.

#include <stdexcept>
#include <concepts>

[[nodiscard]] auto divide(std::integral auto numerator,
std::integral auto denominator) {

// is integer division
if (denominator == 0) {

throw std::runtime_error("divide by 0!");
}
return numerator / denominator;

}

[[nodiscard]] auto divide(auto numerator, auto denominator) {
// is floating point division
return numerator / denominator;

}

Exercise: Determine a set of rules for
using [[nodiscard]]

Read the Reddit discussion “An Argument Pro Liberal Use Of nodiscard”¹. Con-
sider your types and functions. Which values should be [[nodiscard]]?

Should it be a compiler error or warning to call these functions and ignore the
result?

¹https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/

https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/

Use [[nodiscard]] Liberally 80

• vector.size()
• vector.empty()
• vector.insert()

Resources

• “An Argument Pro Liberal Use Of nodiscard”²
• C++ Weekly Ep 30: C++17’s [[nodiscard]] Attribute³
• C++ Weekly Ep 199: C++20’s [[nodiscard]] Constructors And Their Uses⁴

²https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
³https://youtu.be/l_5PF3GQLKc
⁴https://youtu.be/E_ROB_xUQQQ

https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://youtu.be/l_5PF3GQLKc
https://youtu.be/E_ROB_xUQQQ
https://www.reddit.com/r/cpp/comments/9us7f3/an_argument_pro_liberal_use_of_nodiscard/
https://youtu.be/l_5PF3GQLKc
https://youtu.be/E_ROB_xUQQQ

35. Use Stronger Types
Consider the API for POSIX socket:

POSIX socket API.

socket(int, int, int);

The parameters (in some order) represent:

• type
• protocol
• domain

This design is problematic, but there are less obvious ones lurking in our code.

Poorly defined constructor.

Rectangle(int, int, int, int);

This function could be (x, y, width, height), or (x1, y1, x2, y2). Less
likely, but still possible, is (width, height, x, y).

What do you think about an API that looks like this?

Strongly typed constructor.

Rectangle(Position, Size);

In many cases, it only takes a little effort to makemore strongly typed APIs.

81

Use Stronger Types 82

Stronger typed definitions.

struct Position {
int x;
int y;

};

struct Size {
int width;
int height;

};

struct Rectangle {
Position position;
Size size;

};

Which can then lead to other, logically composable statements with operator
overloads such as:

Coupled type operator overload.

// Return a new rectangle that has been
// moved by the offset amount passed in
Rectangle operator+(Rectangle, Position);

It’s possible that making structs can increase perfor-
mance in some cases (C++ Weekly Ep 119, Negative Cost
Structs)[https://youtu.be/FwsO12x8nyM].

Avoid Boolean Arguments

This chapter’s pre-release reader pointed out that Steve Maguire says, “Make
code intelligible at the point of call. Avoid Boolean arguments,” in Chapter 5 of
his book Writing Solid Code.

Use Stronger Types 83

InC++11,enum classgivesyouaneasyway toaddstronger typing, avoidboolean
parameters, andmake your API harder to use wrong.

Consider:

Non-obvious order of parameters.

struct Widget {
// this constructor is easy to use wrong, we
// can easily transpose the parameters
Widget(bool visible, bool resizable);

}

Compared to:

Stronger typing with scoped enumerations.

struct Widget {
enum struct Visible { True, False };
enum struct Resizable { True, False };

// still possible to use this wrong, but MUCH harder
Widget(Visible visible, Resizable resizable);

}

Identify the problematic APIs in your
existing code.

What function call do you regularly get out of order? How can it be fixed?

Exercise: Research strong typedef li-
braries for C++.

There are existing libraries that simplify some of the boilerplate code for you
when making a strongly typed int. Jonathan Muller, Bjorn Fahller, and Peter
Sommerlad have each written one, and others are available.

Use Stronger Types 84

Exercise: Consider =deleteing prob-
lematic conversions.

Simple function declaration.

double high_precision_thing(double);

What if calling the above with a float is likely to be a bug?

Deleting a problematic accidental promotion from float to double.

double high_precision_thing(double);
double high_precision_thing(float) = delete;

Any function or overload can be =deleted in C++11.

Resources

• C++ Weekly Ep 107: “The Power of =delete”¹
• Adi Shavit and Björn Fahller “The Curiously Recurring Pattern of Coupled
Types”²

• Research “Affine space types.”
• C++Now 2017: Jonathan Müller “Type-safe Programming”³

¹https://youtu.be/aAvjUU0m6AU
²https://youtu.be/msi4WNQZyWs
³https://youtu.be/iihlo9A2Ezw

https://youtu.be/aAvjUU0m6AU
https://youtu.be/msi4WNQZyWs
https://youtu.be/msi4WNQZyWs
https://youtu.be/iihlo9A2Ezw
https://youtu.be/aAvjUU0m6AU
https://youtu.be/msi4WNQZyWs
https://youtu.be/iihlo9A2Ezw

36. Don’t return raw pointers
Returning a raw pointer makes the reader of the code and user of the library
think toohard about ownership semantics. Prefer a reference, smart pointer, non
owning pointer wrapper, or consider an optional reference.

Function returning a raw pointer.

int *get_value();

Who owns this return value? Do I? Is it my job to delete it when I’m done with it?

Or even worse, what if the memory was allocated by malloc and I need to call
free instead?

Is it a single int or an array of int?

This code has far toomany questions, and not even [[nodiscard]] can help us.

Exercise: You know the drill

By now, you’ve done enough of these API related exercises to know what to do.
Go and look for these in your code! See if there’s a better way! Can you return a
value, reference, or std::unique_ptr instead?

85

37. Prefer Stack Over Heap
Stack objects (locally scoped objects that are not dynamically allocated) are
much more optimizer friendly, cache-friendly, and may be entirely eliminated
by the optimizer. As Björn Fahller has said, “assume any pointer indirection is
a cachemiss.”

In the most simple terms:

OK idea, uses stack and can be optimized.

std::string make_string() { return "Hello World"; }

Bad idea, uses the heap.

std::unique_ptr<std::string> make_string() {
return std::make_unique<std::string>("Hello World");

}

OK idea.

void use_string() {
// This string lives on the stack
std::string value("Hello World");

}

86

Prefer Stack Over Heap 87

Really bad idea, uses the heap and leaks memory.

void use_string() {
// The string lives on the heap
std::string *value = new std::string("Hello World");

}

Remember, std::string itself might allocate internally, and use the
heap. If no heap usage at all is your goal, you will need to take other
measures. The goal is no unnecessary heap allocations.

Generally speaking, objects created with new expressions (or via make_unique
or make_shared) are heap objects, and have Dynamic Storage Duration. Objects
created in a local scope are stack objects and have Automatic Storage Duration.

Exercise: Look for heap usage

Sometimes developers with C and Java backgrounds have a hard time with this.
For Java, it’s because new is required to create objects. For C, it is because the C
compiler cannot perform the same kinds of optimizations that the C++ compiler
can because of differences in the language.

So someof this unnecessaryheapusagemayhaveendedup in your current code.

Exercise: Run a heap profiler

There are several heap profiling tools, and there may even be one built into your
IDE. Examine your heap usage and look for potential abuses of the heap in your
project.

Prefer Stack Over Heap 88

Resources

• Code::Dive 2018: Björn Fahller “What Do You Mean By Cache Friendly?”¹

¹https://youtu.be/Fzbotzi1gYs

https://youtu.be/Fzbotzi1gYs
https://youtu.be/Fzbotzi1gYs

38. No More new!
You’re already avoiding the heap and using smart pointers for resourcemanage-
ment, right?!

Take this to the next level and be sure to use std::make_unique<>()¹ (C++14) in
the rare cases that you need the heap.

In the very rare cases you need shared ownership, use std::make_shared<>()²
(C++11).

Exercise: Do youuseQt or someother
widget library?

Have you ever thought about writing your own make_qobject helper? Give it the
semantics you need and be sure to use [[nodiscard]].

In any case, you can limit your use of new to a few core library helper functions.

Exercise: Use clang-tidy modernize
fixes.

Withclang-tidy, youcanautomatically convertnew statements intomake_unique<>
and make_shared<> calls. Be sure to use -fix to apply the change after it’s been
discovered.

¹https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
²https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

89

https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared
https://en.cppreference.com/w/cpp/memory/unique_ptr/make_unique
https://en.cppreference.com/w/cpp/memory/shared_ptr/make_shared

No More new! 90

Resources

• clang-tidy modernize-make-shared³
• clang-tidy modernize-make-unique⁴

³https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
⁴https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html

https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-shared.html
https://clang.llvm.org/extra/clang-tidy/checks/modernize-make-unique.html

39. Know Your Containers
Prefer your containers in this order:

• std::array<>
• std::vector<>

std::array<>
A fixed-size stack-based contiguous container. The data sizemust be known
at compile-time, and you must have enough stack space to hold the data.
This container helps us prefer stack over heap. Known location and contigu-
ousness results in std::array<> becoming a “negative cost abstraction.”
The compiler can perform an extra set of optimizations because it knows
the data’s size and location.

std::vector<>
A dynamically-sized heap-based contiguous container. While the compiler
does not know where the data will ultimately reside, it does know that the
elements are laid out adjacent to each other in RAM. Contiguousness gives
the compiler more optimization opportunities and is more cache-friendly.

Almost anything else needs a comment and justification for why. A flat map with
linear search is likely better than an std::map for small containers.

But don’t be too enthusiastic about this. If you need key lookup, use std::map
and evaluate if it has the performance and characteristics you want.

Exercise: Replace vectorWith array

Look for fixed-size vectors and replace them with array where possible. With
C++17’s Class Template Argument Deduction, this can be easier.

91

Know Your Containers 92

const std::vectorwith fixed-size data.

const std::vector<int> data{n+1, n+2, n+3, n+4};

can become

const std::array for fixed-size data.

const std::array<int, 4> data{n+1, n+2, n+3, n+4}; // C++11
const std::array data{n+1, n+2, n+3, n+4}; // C++17

You already made these const, now go back to constexpr them if you can.

Resources

• Bjarne Stroustrup “Are lists evil?”¹

¹https://www.stroustrup.com/bs_faq.html#list

https://www.stroustrup.com/bs_faq.html#list
https://www.stroustrup.com/bs_faq.html#list

40. Avoid std::bind and
std::function

While compilers continue to improve and the optimizers work around these
types’ complexity, it’s still very possible for either to add considerable compile-
time and runtime overhead.

C++14 lambdas, with generalized capture expressions, are capable of the same
things that std::bind is capable of.

std::bind to change parameter order

#include <functional>

double divide(double numerator, double denominator) {
return numerator / denominator;

}

auto inverted_divide = std::bind(divide,
std::placeholders::_2,
std::placeholders::_1);

Lambda to change parameter order

#include <functional>

double divide(double numerator, double denominator) {
return numerator / denominator;

}

auto inverted_divide = [](const auto numerator,
const auto denominator) {

93

Avoid std::bind and std::function 94

return divide(denominator/numerator)
}

Exercise: Compare the possibilities.

Take these options in Compiler Explorer. Howdo the compile times and resulting
assembly look?

std::function and std::bind

#include <functional>

template<typename Func>
std::function<int (int)> bind_3(Func func)
{

return std::bind(func, std::placeholders::_1, 3);
}

int main(int argc, const char *[])
{

return bind_3(std::plus<>{})(argc);
}

std::bind only, for bonus points, what type is returned from the function bind_3?

#include <functional>

template<typename Func>
auto bind_3(Func func)
{

return std::bind(func, std::placeholders::_1, 3);
}

int main(int argc, const char *[])

Avoid std::bind and std::function 95

{
return bind_3(std::plus<>{})(argc);

}

Only lambdas, no std library wrappers.

#include <functional>

template<typename Func>
auto bind_3(Func func)
{

return [func](const int value){ return func(value, 3); };
}

int main(int argc, const char *[])
{

return bind_3(std::plus<>{})(argc);
}

Resources

• CppCon 2015: Stephan T. Lavavej “<functional>: What’s New, And Proper
Usage”¹

• C++ Weekly Ep 16: “Avoiding std::bind”²

¹https://youtu.be/zt7ThwVfap0
²https://youtu.be/ZlHi8txU4aQ

https://youtu.be/zt7ThwVfap0
https://youtu.be/zt7ThwVfap0
https://youtu.be/ZlHi8txU4aQ
https://youtu.be/zt7ThwVfap0
https://youtu.be/ZlHi8txU4aQ

41. Skip C++11
If you’re currently looking to move to “modern” C++, finally, please skip C++11.
C++14 fixes several holes in C++11.

Language Features

• C++11’s version of constexpr implies const for member functions, this is
changed in C++14

• C++11 is missing auto return type deduction for regular functions (lambdas
have it)

• C++11 does not have auto or variadic lambda parameters
• C++14 adds [[deprecated]] attribute
• C++14 adds ' digit separator, example: 1'000'000
• constexpr functions can be more than just a single return statement in
C++14

Library Features

• std::make_unique was added in C++14, which enables the “no raw new”
standard

• C++11 doesn’t have std::exchange
• C++14 adds some constexpr support for std::array
• cbegin, cend, crbegin and crend free functions added for consistency with
begin and end free functions and member functions added to standard
containers in C++11.

Exercise: Can you use C++14 today?

96

Skip C++11 97

Even if yourproject is currently stuckonanolder compiler releasedbeforeC++14,
it is highly likely that you can use C++14 features if you enable -std=c++1y or
-std=c++14mode.

Compare the C++14 language feature chart¹ from cppreference.com to the com-
piler you currently require for your project. How many features could you be
taking advantage of today?

As of GCC 5, all of C++14 is supported, but as early as 4.9 provided many C++14
features.

Exercise: Can you go beyond C++14?

Ask if it’s possible to upgrade your current compiler requirements. With very rare
exceptions, each new compiler version brings:

• Better performance
• Fewer bugs
• Better warnings
• Better standards conformance

A few features were removed from C++17 such as std::auto_ptr,
std::unary_function and std::binary_function. You may run into
these issues when moving your project to C++17 mode. Most uses of
std::unary_function and std::binary_function can be removed
with no change to the rest of the code.

Resources

• C++ Weekly Ep 173: The Important Parts of C++98 in 13 Minutes²
¹https://en.cppreference.com/w/cpp/compiler_support/14
²https://youtu.be/78Y_LRZPVRg

https://en.cppreference.com/w/cpp/compiler_support/14
https://youtu.be/78Y_LRZPVRg
https://en.cppreference.com/w/cpp/compiler_support/14
https://youtu.be/78Y_LRZPVRg

Skip C++11 98

• C++ Weekly Ep 176: The Important Parts of C++11 in 12 Minutes³
• C++ Weekly Ep 178: The Important Parts of C++14 in 9 Minutes⁴
• C++ Weekly Ep 190: The Important Parts of C++17 in 10 Minutes⁵

³https://youtu.be/D5n6xMUKU3A
⁴https://youtu.be/mXxNvaEdNHI
⁵https://youtu.be/QpFjOlzg1r4

https://youtu.be/D5n6xMUKU3A
https://youtu.be/mXxNvaEdNHI
https://youtu.be/QpFjOlzg1r4
https://youtu.be/D5n6xMUKU3A
https://youtu.be/mXxNvaEdNHI
https://youtu.be/QpFjOlzg1r4

42. Don’t Use initializer_list
For Non-Trivial Types

“Initializer List” is anoverloaded term inC++. “Initializer Lists” areused todirectly
initialize values. initializer_list is used to pass a list of values to a function
or constructor.

Exercise: Understand the overhead
initializer_list can bring

Use Andreas Fertig’s awesome cppinsights.io¹ to understand what these two
examples do

initializer_list constructor with shared_ptr.

#include <vector>
#include <memory>

std::vector<std::shared_ptr<int>> vec{
std::make_shared<int>(40), std::make_shared<int>(2)

};

¹http://cppinsights.io

99

http://cppinsights.io/
http://cppinsights.io/

Don’t Use initializer_list For Non-Trivial Types 100

std::array construction with shared_ptr.

#include <array>
#include <memory>

std::array<std::shared_ptr<int>, 2> data{
std::make_shared<int>(40), std::make_shared<int>(2)

};

And explain the difference. If you can do this, you understand more than most
C++ developers.

Exercise: Understand why this
doesn’t compile

initializer_list construction with unique_ptr.

#include <vector>
#include <memory>

std::vector<std::unique_ptr<int>> data{
std::make_unique<int>(40), std::make_unique<int>(2)

};

Resources

• C++Now 2018: Jason Turner “Initializer Lists Are Broken, Let’s Fix Them”²
(deep dive into the issues around these topics)

• C++ Insights³

²https://youtu.be/sSlmmZMFsXQ
³https://cppinsights.io/

https://youtu.be/sSlmmZMFsXQ
https://cppinsights.io/
https://youtu.be/sSlmmZMFsXQ
https://cppinsights.io/

43. Use the Tools: Build
Generators

• CMake¹
• Meson²
• Bazel³
• Others⁴

Rawmake files or Visual Studio project files make each of the things listed above
too tricky to implement. Use a build tool to help youwithmaintaining portability
across platforms and compilers.

Treat your build scripts like any other code. They have their own set of best
practices, and it’s just as easy towrite unmaintainable build scripts as it is towrite
unmaintainable C++.

Build generators also help abstract and simplify your continuous build environ-
ment with tools like cmake --build, which does the correct thing regardless of
the platform in use.

Exercise: Investigate your build sys-
tem.

• Does your project currently use a build generator?
• How old are your build scripts?

¹https://cmake.org
²https://mesonbuild.com/
³https://bazel.build/
⁴https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md

101

https://cmake.org/
https://mesonbuild.com/
https://bazel.build/
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md
https://cmake.org/
https://mesonbuild.com/
https://bazel.build/
https://github.com/lefticus/cppbestpractices/blob/master/02-Use_the_Tools_Available.md

Use the Tools: Build Generators 102

See if there are current best practices you need to apply. Are there tidy-like or
formatting tools you can run on your build scripts?

Readbackover thepreviousbestpractices fromthisbookandseehowtheyapply
to your build scripts.

• Are you repeating yourself?
• Are there higher-level abstractions available?

Recent versions of CMake have added tools like --profiling-output
to help you see where the generator is spending its time.

Resources

• Professional CMake: A Practical Guide⁵
• C++Now 2017: Daniel Pfeiffer “Effective CMake”⁶
• C++ Weekly Ep 218 - The Ultimate CMake / C++ Quick Start⁷
• BazelCon 2019⁸
• CppCon2018: Jussi Pakkanen “CompilingMulti-Million LineC++CodeBases
Effortlessly with the Meson Build System”⁹

• cmake-tidy¹⁰

⁵https://crascit.com/professional-cmake/
⁶https://youtu.be/bsXLMQ6WgIk
⁷https://youtu.be/YbgH7yat-Jo
⁸https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
⁹https://youtu.be/SCZLnopmYBM
¹⁰https://github.com/MaciejPatro/cmake-tidy

https://crascit.com/professional-cmake/
https://youtu.be/bsXLMQ6WgIk
https://youtu.be/YbgH7yat-Jo
https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
https://youtu.be/SCZLnopmYBM
https://youtu.be/SCZLnopmYBM
https://github.com/MaciejPatro/cmake-tidy
https://crascit.com/professional-cmake/
https://youtu.be/bsXLMQ6WgIk
https://youtu.be/YbgH7yat-Jo
https://www.youtube.com/playlist?list=PLxNYxgaZ8Rsf-7g43Z8LyXct9ax6egdSj
https://youtu.be/SCZLnopmYBM
https://github.com/MaciejPatro/cmake-tidy

44. Use the Tools: Package
Managers

Recent years have seen an explosion of interest in package managers for C++.
These two have become the most popular:

• Vcpkg¹
• Conan²

There is a definite advantage to using a package manager. Package managers
help with portability and reducing maintenance load on developers.

Exercise: What are your dependen-
cies?

Take time to inventory yourproject’sdependencies. Compareyourdependencies
with what is available with the package managers above. Does any one package
manager have all of your dependencies? How out of date are your current pack-
ages? What security fixes are you currently missing?

¹https://github.com/Microsoft/vcpkg
²https://conan.io/

103

https://github.com/Microsoft/vcpkg
https://conan.io/
https://github.com/Microsoft/vcpkg
https://conan.io/

45. Improving Build Time
A few practical considerations for making build time less painful

• De-template-ize your code where possible
• Use forward declarations where it makes sense to
• Enable PCH (precompiled headers) in your build system
• Use ccache or similar (many other options that change regularly, Google for
them)

• Be aware of unity builds
• Know the possibilities and limitations of extern template

• Use a build analysis tool to see where build time is spent

Use an IDE

This is themost surprising side effect of using amodern IDE that I have observed:
IDE’s do realtime analysis of the code. Realtime analysis means that you know
as you are typing if the code is going to compile. Therefore, you spend less time
waiting for builds.

Exercise: What are build times cost-
ing you?

Try to figure out howmuchbuild times are costing in developer time and see how
much could be saved if build times were lessened.

104

Improving Build Time 105

Resources

• A guide to unity builds¹
• Unity builds with Meson²
• Unity builds with CMake³
• PCH with Meson⁴
• PCH with CMake⁵
• ccache⁶
• CMake Compiler Launcher⁷
• Clang Build Analyzer⁸
• Getting started with C++ Build Insights⁹
• Introducing vcperf /timetrace for C++ build time analysis¹⁰

¹https://onqtam.com/programming/2018-07-07-unity-builds/
²https://mesonbuild.com/Unity-builds.html
³https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
⁴https://mesonbuild.com/Precompiled-headers.html
⁵https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
⁶https://ccache.dev/
⁷https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
⁸https://github.com/aras-p/ClangBuildAnalyzer
⁹https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019
¹⁰https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/

https://onqtam.com/programming/2018-07-07-unity-builds/
https://mesonbuild.com/Unity-builds.html
https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://mesonbuild.com/Precompiled-headers.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://ccache.dev/
https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
https://github.com/aras-p/ClangBuildAnalyzer
https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019
https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/
https://onqtam.com/programming/2018-07-07-unity-builds/
https://mesonbuild.com/Unity-builds.html
https://cmake.org/cmake/help/latest/prop_tgt/UNITY_BUILD.html
https://mesonbuild.com/Precompiled-headers.html
https://cmake.org/cmake/help/latest/command/target_precompile_headers.html
https://ccache.dev/
https://cmake.org/cmake/help/latest/prop_tgt/LANG_COMPILER_LAUNCHER.html?highlight=ccache
https://github.com/aras-p/ClangBuildAnalyzer
https://docs.microsoft.com/en-us/cpp/build-insights/get-started-with-cpp-build-insights?view=vs-2019
https://devblogs.microsoft.com/cppblog/introducing-vcperf-timetrace-for-cpp-build-time-analysis/

46. Use the Tools: Multiple
Compilers

Support at least 2 compilers on your platform. Each compiler does different
analyses and implements the standard in a slightly different way.

If you use Visual Studio, you should be able to switch between clang and cl.exe
relatively easily. You can also use WSL and enable remote Linux Builds.

If you use Linux, you should be able to switch between GCC and Clang easily.

OnMacOS, be sure the compiler you are using iswhat you think it is. gcc
command is likely a symlink to clang installed by Apple.

For installing newer or different compilers on your platform, the following is
available:

Ubuntu / Debian

• GCC - Toolchain PPA¹
• Clang - apt packages²

Windows

• GCC MinGW³
• Clang official downloads⁴

¹https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
²https://apt.llvm.org/
³http://mingw.org/
⁴https://releases.llvm.org/download.html

106

https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
https://apt.llvm.org/
http://mingw.org/
https://releases.llvm.org/download.html
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/ppa
https://apt.llvm.org/
http://mingw.org/
https://releases.llvm.org/download.html

Use the Tools: Multiple Compilers 107

MacOS

• Homebrew / MacPorts

Exercise: Add Another Compiler

Since youhave already enabled continuousbuilds of your system, it’s time to add
another compiler.

A new version of the compiler you currently require is always a good idea. But if
you only support GCC, consider adding Clang. Or if you only support Clang, add
GCC. If you’re on Windows, add MinGW or Clang in addition to MSVC.

Exercise: Add Another Operating Sys-
tem

Hopefully, at least some portion of your project can be ported to another oper-
ating system. The exercise of getting parts of the project compiling on another
operating system and toolchain will teach you a lot about your code’s nature.

Resources

• C++Now2015: Jason Turner “Thinking Portable: HowandWhy tomake your
C++ Cross Platform”⁵

⁵https://youtu.be/cb3WIL96N-o

https://youtu.be/cb3WIL96N-o
https://youtu.be/cb3WIL96N-o
https://youtu.be/cb3WIL96N-o

47. Fuzzing and Mutating
Your imagination limits the tests that you can create. Do you try to be malicious
whencalling yourAPIs?Doyou intentionally passmalformeddata to your inputs?
Do you process inputs from unknown or untrusted sources?

Generating all possible inputs to all possible function calls in all possible combi-
nations is impossible. Fortunately, tools exist to solve this problem.

Fuzzing

Fuzz testers generate strings of random data of various lengths. The test harness
you write consumes these strings of data and processes them in some way that
is appropriate for your application. The fuzz tester analyzes coverage data gener-
ated from your test’s execution and uses that information to remove redundant
tests and generate new novel and unique tests.

In theory, a fuzz test will eventually reach 100% code coverage of your tested
code, if left to run long enough. Combined with AddressSanitizer, this makes a
powerful tool for finding bugs in your code. One interesting article from 2015¹
describes how the combination of a fuzz tester and AddressSanitizer could have
found the security flaw “heartbleed” in OpenSSL in less than 6 hrs.

Fuzz testing primarily finds memory and security flaws.

Many different fuzzing tools exist. For the sake of this section, I am going to cover
only LLVM’s libFuzzer². All fuzz testers operate under the same premise.

You must provide some sort of entry point. The entry point generally takes the
form of a function like:

¹https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
²https://www.llvm.org/docs/LibFuzzer.html

108

https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://www.llvm.org/docs/LibFuzzer.html
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-found.html
https://www.llvm.org/docs/LibFuzzer.html

Fuzzing and Mutating 109

libFuzzer entry point.

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
size_t Size);

The Data pointer is always valid, and the Size parameter is >= 0.

If your libraryprimarilyparses input files (think libpng) thenyour job isquiteeasy:

libFuzzer data being used.

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
size_t Size)

{
parseInput(Data, Size);

}

If your functions take data structures instead of input strings, your job is slightly
more complicated but doable.

Advanced libFuzzer data usage.

template<typename Type>
std::pair<const uint8_t *, size_t, Type>

createStruct(const uint8_t *Data, size_t Size)
{

// we're only allowed to do this with trivial types
static_assert(std::is_trivial_v<Type>);
Type result{}; // default initialize
const auto bytesToRead = std::min(sizeof(Type), Size);
std::memcpy(&result, Data, bytesToRead);
return {std::next(Data, bytesToRead), Size - bytesToRead, result};

}

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,
size_t Size)

{
// This example is meant as inspiration, it has not been

Fuzzing and Mutating 110

// tested in a real test
auto [newDataPtr, remainingSize, Obj1]

= createStruct<Type1>(Data,Size);
auto [lastDataPtr, lastSize, Obj2]

= createStruct<Type2>(newDataPtr, remainingSize);

functionToTest(Obj1, Obj2);
}

The fuzzerwill quickly learn thatanynewdata inputwhereSize > sizeof(Type1)
+ sizeof(Type1) does not generate new code paths and will focus on the
appropriate amount of data.

Mutating

Mutation testing works by modifying conditionals and constants in the code
being tested.

Pseudo code example.

bool greaterThanFive(const int value) {
return value > 5; // comparison

}

void tests() {
assert(greaterThanFive(6));
assert(!greaterThanFive(4));

}

Amutation tester couldmodify the constant 5or the > so the resulting codemight
become

Fuzzing and Mutating 111

Mutated code.

bool greaterThanFive(const int value) {
return value < 5; // mutated

}

Any test that continues to pass is a “mutant that has survived” and indicates
either a flawed test or a bug in the code.

Exercise: Create a fuzz test harness.

Apply the examples demonstrated here to create fuzz testers for your code. What
challenges do you hit?

Look at FuzzedDataProvider.h³ for more helper functions

Exercise: Investigate mutation test-
ing.

The author of this book has no direct experience with mutation testing. Is it
something you can use in your project? What interesting resources do you find?

Resources

• C++Now2018:Marshall Clow“MakingYourLibraryMoreReliablewithFuzzing”⁴

³https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h
⁴https://youtu.be/LlLJRHToyUk

https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h
https://youtu.be/LlLJRHToyUk
https://github.com/llvm-mirror/compiler-rt/blob/master/include/fuzzer/FuzzedDataProvider.h
https://youtu.be/LlLJRHToyUk

Fuzzing and Mutating 112

• C++ Weekly Ep 85: Fuzz Testing⁵
• CppCast: Alex Denisov “Mutation Testing With Mull”⁶
• NDC TechTown 2019: Seph De Busser “Testing The Tests: Mutation Testing
for C++”⁷

• CppCon 2017: Kostya Serebryany “Fuzz or lose…”⁸
• CppCon 2020: Barnabás Bágyi “Fuzzing Class Interfaces for Generating and
Running Tests with libFuzzer”⁹ - Inspirational talk about using fuzzing in
novel ways. Video is not yet on YouTube, but look for it after this book is
published.

• Autotest¹⁰ - Library associatedwith “Fuzzing Class Interfaces for Generating
and Running Tests with libFuzzer” talk.

⁵https://youtu.be/gO0KBoqkOoU
⁶https://cppcast.com/alex-denisov/
⁷https://youtu.be/M-5_M8qZXaE
⁸https://youtu.be/k-Cv8Q3zWNQ
⁹https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-

with-libfuzzer?iframe=no
¹⁰https://gitlab.com/wilzegers/autotest/

https://youtu.be/gO0KBoqkOoU
https://cppcast.com/alex-denisov/
https://youtu.be/M-5_M8qZXaE
https://youtu.be/M-5_M8qZXaE
https://youtu.be/k-Cv8Q3zWNQ
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://gitlab.com/wilzegers/autotest/
https://youtu.be/gO0KBoqkOoU
https://cppcast.com/alex-denisov/
https://youtu.be/M-5_M8qZXaE
https://youtu.be/k-Cv8Q3zWNQ
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://cppcon2020.sched.com/event/e7An/fuzzing-class-interfaces-for-generating-and-running-tests-with-libfuzzer?iframe=no
https://gitlab.com/wilzegers/autotest/

48. Continue Your C++
Education

You must continually learn if you want to become better at what you do, and
many resources are available to you to continue your C++ education.

Know How To Ask Questions

Kate Gregory has published an excellent article on how to ask questions¹.

Some key points are:

• Don’t use screenshots
• Use good variable names
• Add some tests
• Listen to what people are telling you

Conferences And Local User Groups

There is almost certainly one near you. It’s a great way to network and learn new
things. Check out the ISO C++ Conferences Worldwide List² and Meeting C++’s
User Groups List³.

I am finishing this book during the global COVID-19 pandemic. So conferences
and user groups aremostly on hold right now. But this presents an attractive new
opportunity for many.

¹http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
²https://isocpp.org/wiki/faq/conferences-worldwide
³https://meetingcpp.com/usergroups/

113

http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
https://isocpp.org/wiki/faq/conferences-worldwide
https://meetingcpp.com/usergroups/
https://meetingcpp.com/usergroups/
http://www.gregcons.com/KateBlog/HowToAskForCCodingHelp.aspx
https://isocpp.org/wiki/faq/conferences-worldwide
https://meetingcpp.com/usergroups/

Continue Your C++ Education 114

Many of those conferences and user groups are now meeting online. It’s now
possible for us all to attendeachother’s user groups. TheNorthDenverMetroC++
Meetup⁴, for example, regularly has one attendee from Thailand eachmonth.

C++ Weekly

This book references C++Weekly throughout as a resource to go back to formore
information and examples to share with your coworkers. At this moment, the
show has been going for 235 weeks straight with many special editions, extras,
and live streams.

cppreference.com

The website is fantastic, but you might not know that you can create an account
and customize the content to the version of C++ you are using. Also, you can
execute examples and download an offline version⁵!

Hire a Trainer to Come Onsite for Your
Company

Team training gets your team thinking in a new direction, improves morale, and
boosts employee retention. Since you made it this far, I’m going to offer you a
coupon.

If youmention this book, you’ll get 10%off onsite training costs at your company
fromme. (travel costs not discounted). Hopefully, travel restrictions will not last
much longer.

⁴https://www.meetup.com/North-Denver-Metro-C-Meetup/
⁵https://en.cppreference.com/w/Cppreference

https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://en.cppreference.com/w/Cppreference
https://www.meetup.com/North-Denver-Metro-C-Meetup/
https://en.cppreference.com/w/Cppreference

Continue Your C++ Education 115

YouTube

• Andreas Fertig’s Channel⁶
• C++ Weekly (Author’s Channel)⁷
• CopperSpice⁸

⁶https://www.youtube.com/channel/UCxJfIsPGHFS3_nRDv1u-Q8g
⁷https://www.youtube.com/c/JasonTurner-lefticus
⁸https://www.youtube.com/copperspice

https://www.youtube.com/channel/UCxJfIsPGHFS3_nRDv1u-Q8g
https://www.youtube.com/c/JasonTurner-lefticus
https://www.youtube.com/copperspice
https://www.youtube.com/channel/UCxJfIsPGHFS3_nRDv1u-Q8g
https://www.youtube.com/c/JasonTurner-lefticus
https://www.youtube.com/copperspice

49. Thank You
Sponsors

Thank you to all of my Book Supporter patrons!

Current

Adam Albright
Adam P Shield
Alexander Roper
Andrei Sebastian Cîmpean
Anton Smyk
Arman Imani
Björn Fahller
Clint Rajaniemi
Corentin Gay
David C Black
Dennis Börm
Fedor Alekseev
Florian Sommer
Gwendolyn Hunt
Jack Glass
Jaewon Jung
Jeff Bakst
Kacper Kołodziej
Lars Ove Larsen
Magnus Westin
Martin Hammerchmidt
Matt Godbolt
Matthew Guidry

116

Thank You 117

Michael Pearce
Olafur Waage
Panos Gourgaris
Ralph Jeffrey Steinhagen
Sebastian Raaphorst
Sergii Zaiets
Tim Butler
Tobias Dieterich
Tomasz Cwik
Yacob Cohen-Arazi

Former

Alejandro Lucena
Emyr Williams
Natalya Kochanova
Reiner Eiteljoerge

Reviewers

Craig Scott and Alexander Roper, thank you for extensive notes and feedback
during prerelease.

50. Bonus: Understand The
Lambda

A surprising complexity hides behind the simple lambda of C++. Initially added in
C++11, itwas initially constrained.With each versionof C++, the lambdabecomes
more flexible and powerful.

Lambdas reverse some of the defaults from the rest of C++. Default const and
automatically constexpr when possible; they give us some of what we wish the
rest of the language could have.

Lambda grammar.

lambda-expression:
lambda-introducer lambda-declarator(opt) compound-statement
lambda-introducer < template-parameter-list > requires-clause(opt)

lambda-declarator(opt) compound-statement
lambda-introducer:

[lambda-capture(opt)]
lambda-declarator:

(parameter-declaration-clause) decl-specifier-seq(opt)
noexcept-specifier(opt) attribute-specifier-seq(opt)
trailing-return-type(opt) requires-clause(opt)

If you can read standard-eze¹, you can dig into all of the features of C++20’s
lambdas yourself.

¹http://eel.is/c++draft/expr.prim.lambda

118

http://eel.is/c++draft/expr.prim.lambda
http://eel.is/c++draft/expr.prim.lambda

Bonus: Understand The Lambda 119

Allowed lambdas as of C++20.

// valid empty lambda, does nothing
[]{};
// optional to have parameter list
[](){};
// C++17 explicit constexpr and void return
[]() constexpr -> void {};
// immediately invoked lambda
auto i = [](){ return 42; }();
// Not allowed before C++17, because constexpr
constexpr auto j = []{ return 42; }();
// generic lambda, C++14
[](auto x){ return x + 42; };
// variadic lambda, C++14
[](auto ... x){ return std::vector<int>(x...); };
// capture by copy, C++11
[i](){ return i + 42; };
// generalized capture, C++14 (what's the type of i?)
[i = 42]{ return i + 42; };
// stateful lambda, C++11
[i]() mutable { return ++i; };
// explicit template, C++20
[]<typename T>(T x){ return x + 42; };

// C++14 generic lambda returning a C++20 lambda with variadic
// capture expression which returns a fold expression summation
// of the captured values.
[](auto ... val){ return [...val = val]{ return (val + ...); }; };

If you understand every aspect of C++’s lambdas and how the compiler imple-
ments them, you know everything important about C++.

This is why I put together my C++ class on YouTube about lambdas².

²https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-

https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-
https://www.youtube.com/playlist?list=PLs3KjaCtOwSY_Awyliwm-fRjEOa-SRbs-

Bonus: Understand The Lambda 120

In 2018 when compilers first started supporting C++20’s new lambdas, I imple-
mented this mostly standards-compliant version of std::bind using lambdas.

std::bind implemented with C++20 lambdas.

template <std::size_t Idx>
struct Placeholder {};

template <typename T>
struct Bound {

constexpr decltype(auto) operator()(auto &&...param) const {
return t(std::forward<decltype(param)>(param)...);

}

T t;
};

template <typename T>
Bound(T) -> Bound<T>;

template <std::size_t Idx, typename T>
constexpr decltype(auto) get_param(const Placeholder<Idx> &,

T &&t) {
return std::get<Idx>(t);

}

template <typename Param, typename T>
constexpr decltype(auto) get_param(Param &¶m, T &&) {

return std::forward<Param>(param);
}

template <typename Param, typename T>
constexpr decltype(auto) get_param(const Bound<Param> &b,

T &&t) {
return std::apply(b, std::forward<T>(t));

}

Bonus: Understand The Lambda 121

constexpr decltype(auto) bind(auto &&callable, auto &&...param) {
return Bound{

[callable = std::forward<decltype(callable)>(callable),
... xs = std::forward<decltype(param)>(param)]
(auto &&...values) {

auto passed_params =
std::forward_as_tuple(

std::forward<decltype(values)>(values)...);
return std::invoke(callable,

get_param(xs, passed_params)...);
}

};
}

I haven’t looked at this code in 2 years, but here is a Compiler Explorer link for
you to play with.

https://godbolt.org/z/hhde3P³

Exercise: Understand the given ex-
ample and critique it.

What should I have done differently with the above example? Can it be con-
strained with concepts? Does it need better names? What would you do differ-
ently?

³https://godbolt.org/z/hhde3P

https://godbolt.org/z/hhde3P
https://godbolt.org/z/hhde3P

	Table of Contents
	Introduction
	About Best Practices
	Use the Tools: Automated Tests
	Use the Tools: Continuous Builds
	Use the Tools: Compiler Warnings
	Exercise: Use the Tools: Static Analysis
	Use the Tools: Sanitizers
	Slow Down
	C++ Is Not Magic
	C++ Is Not Object-Oriented
	Learn Another Language
	const Everything That's Not constexpr
	constexpr Everything Known at Compile Time
	Prefer auto In Many Cases.
	Prefer ranged-for Loop Syntax Over Old Loops
	Use auto in ranged for loops
	Prefer Algorithms Over Loops
	Don't Be Afraid of Templates
	Don't Copy and Paste Code
	Follow the Rule of 0
	If You Must Do Manual Resource Management, Follow the Rule of 5
	Don't Invoke Undefined Behavior
	Never Test for this To Be nullptr, It's UB
	Never Test for A Reference To Be nullptr, It's UB
	Avoid default In switch Statements
	Prefer Scoped enums
	Prefer if constexpr over SFINAE
	Constrain Your Template Parameters With Concepts (C++20)
	De-template-ize Your Generic Code
	Use Lippincott Functions
	Be Afraid of Global State
	Make your interfaces hard to use wrong.
	Consider If Using the API Wrong Invokes Undefined Behavior
	Use [[nodiscard]] Liberally
	Use Stronger Types
	Don't return raw pointers
	Prefer Stack Over Heap
	No More new!
	Know Your Containers
	Avoid std::bind and std::function
	Skip C++11
	Don't Use initializer_list For Non-Trivial Types
	Use the Tools: Build Generators
	Use the Tools: Package Managers
	Improving Build Time
	Use the Tools: Multiple Compilers
	Fuzzing and Mutating
	Continue Your C++ Education
	Thank You
	Bonus: Understand The Lambda

