
А.Я. Архангельский

O+Builder 6
СПРАВОЧНОЕ ПОСОБИЕ

Книга 1
Язык C++

Москва
ЗАО «Издательство БИНОМ»

2002

УДК 004.43
ББК 32.973.26-018.1

А87

Архангельский А.Я.
C++Builder 6. Справочное пособие. Книга 1. Язык C++. -- М.: Бином-

Пресс, 2002 г. — 544 с.: ил.

В книге даются исчерпывающие справочные сведения по языку C++ в
C++Builder 6: синтаксис языка, все операции и операторы, все типы данных. Подроб-
но рассматривается работа с исключениями, с текстовыми и двоичными файлами, со
строками разных типов, массивами, множествами, структурами, классами. Обсуждает-
ся обработка и генерация сообщений Windows. Рассматривается около 650 функций С,
C++, API Windows, из них более 300 с подробными описаниями и примерами.

Рассматривается стандартная библиотека шаблонов STL: все типы контейнеров,
итераторов, все алгоритмы и функции-объекты.

Представленный в книге справочный материал снабжен подробными коммента-
риями и примерами, что позволяет читателю изучать его практически с нуля.

Как справочник книга полезна пользователям любой квалификации: от начинаю-
щих до опытных разработчиков.

© Архангельский А.Я., 2002
ISBN 5-9518-0007-2 © Издательство БИНОМ, 2002

Содержание

От автора 15

Глава 1. Справочные данные по языку C++ 17
1.1 Язык C++ и его синтаксис 17
1.2 Программы на C++ 18

1.2.1 Общие сведения 18
1.2.2 Структура головного файла проекта 19
1.2.3 Структура файлов модулей форм 22
1.2.4 Доступ к объектам, переменным и функциям модуля 25

1.2.4.1 Пример модуля, содержащего объекты и процедуры 25
1.2.4.2 Доступ к свойствам и методам объектов 27
1.2.4.3 Различие переменных и функций, включенных

и не включенных в описание класса 28
1.3 Компиляция и компоновка проекта 29
1.4 Директивы препроцессора 31

1.4.1 Директива #include 31
1.4.2 Директивы препроцессора #define и #undef 32

1.4.2.1 Символические константы 32
1.4.2.2 Макросы с параметрами 33
1.4.2.3 Директива #undef 36

1.4.3 Условная компиляция:
директивы #if, #endif, #ifdef, #ifndef, #else, #elif 36

1.4.4 Директивы #error, #line, #pragma 38
1.4.5 Операции препроцессора # и ## 41

1.5 Константы 41
1.5.1 Неименованные константы 41
1.5.2 Именованные константы 42
1.5.3 Объявленные (manifest) константы 43

1.6 Переменные 45
1.6.1 Объявление переменных 45
1.6.2 Классы памяти 45

1.7 Функции 48
1.7.1 Объявление и описание функций 48
1.7.2 Передача параметров в функции по значению и по ссылке 51
1.7.3 Применение при передаче параметров спецификации const 53
1.7.4 Параметры со значениями по умолчанию 54
1.7.5 Передача в функции переменного числа параметров 55
1.7.6 Встраиваемые функции inline 57
1.7.7 Перегрузка функций 57
1.7.8 Шаблоны функций 59

1.8 Области видимости переменных и функций 60
1.8.1 Правила, определяющие область видимости 60
1.8.2 Явное определение доступа с помощью объявлений namespace и using . . . 64

1.9 Операции. 65
1.9.1 Общее описание 65
1.9.2 Арифметические операции 66
1.9.3 Особенности выполнения арифметических операций

с целыми и действительными числами 67
1.9.4 Операции присваивания, отличие присваивания от метода Assign. . . . 71
1.9.5 Операции отношения и эквивалентности 72
1.9.6 Логические операции 73
1.9.7 Поразрядные логические операции 74

Справочное пособие по C++Builder 6

1.9.8 Операция запятая (последование) 75
1.9.9 Условная операция (?:) 75
1.9.10 Операция sizeof 76
1.9.11 Операция typeid 77
1.9.12 Операции адресации (&) и косвенной адресации (*) 77
1.9.13 Операции разрешения области действия (::) 77
1.9.14 Операции доступа к элементам: точка (.) и стрелка (—>) 77
1.9.15 Операции поместить в поток («) и взять из потока (») 78
1.9.16 Приоритет и ассоциативность операций 81
1.9.17 Перегрузка операций 82

1.10 Операторы 85
1.10.1 Операторы передачи управления 85

1.10.1.1 Условные операторы выбора if 85
1.10.1.2 Условный оператор множественного выбора switch 86
1.10.1.3 Оператор передачи управления goto 87

1.10.2 Операторы циклов 88
1.10.2.1 Оператор for 88
1.10.2.2 Оператор do...while 90
1.10.2.3 Оператор while 91
1.10.2.4 Прерывание цикла: операторы break, Continue, return, функция Abort . . 92

1.11 Динамическое распределение памяти 93
1.12 Исключения 97

1.12.1 Исключения и их стандартная обработка 97
1.12.2 Способы защиты кодов зачистки — блоки try ... finally

и функции exit 98
1.12.3 Иерархия классов исключений VCL 101
1.12.4 Базовый класс исключений VCL Exception 106

1.12.4.1 Свойства исключений '. 107
1.12.4.2 Конструкторы исключений 107

1.12.5 Обработка исключений в блоках try ... catch 109
1.12.5.1 Синтаксис блоков try ... catch 109
1.12.5.2 Последовательность обработки исключений,

обработка на уровне приложения 111
1.12.6 Преднамеренная генерация исключений 113

1.12.6.1 Оператор throw. . 113
1.12.6.2 Исключение EAbort и функция Abort 115

1.12.7 Стандартные исключения C++ 116
1.13 Сигналы 119
1.14 Сообщения Windows и их обработка 121

1.14.1 Обработка сообщений в приложениях C++Builder 121
1.14.2 Посылка сообщений 122

1.14.2.1 Функции SendMessage, PostMessage и Perform 122
1.14.2.2 Пример посылки сообщений 123

1.14.3 Обработка сообщений 124
1.14.4 Определение собственных сообщений 126

Глава 2. Типы данных в языке C++ j 129
2.1 Классификация типов данных, объявление типов 129
2.2 Приведение типов 132
2.3 Арифметические типы данных 134
2.4 Типы символов 136
2.5 Типы строк 137

2.5.1 Массивы символов 137
2.5.2 Тип строк AnsiString 140

2.6 Перечислимые типы 143
2.7 Множества 144
2.8 Указатели 147

2.8.1 Общие сведения . 147

Содержание

2.8.2 Указатели на объекты классов 149
2.8.3 Идентификация объекта неизвестного класса 151

2.9 Ссылки ^ 154
2.10 Файлы и потоки 154

2.10.1 Файловый ввод/вывод с помощью компонентов 154
2.10.2 Файловый ввод/вывод с помощью потоков в стиле С 156

2.10.2.1 Общие сведения 156
2.10.2.2 Текстовые файлы 156
2.10.2.3 Двоичные файлы 160
2.10.2.4 Ввод/вывод, использующий дескрипторы потоков 163

2.10.3 Файловый ввод/вывод с помощью потоков в стиле C++ 165
2.10.3.1 Ввод и вывод потоков 165
2.10.3.2 Манипуляторы потоков 169
2.10.3.3 Флаги состояния формата 172

2.11 Массивы 174
2.11.1 Одномерные массивы 174
2.11.2 Многомерные массивы 176
2.11.3 Операции с массивами, передача массивов как параметров 177

2.12 Структуры 179
2.12.1 Структуры в стиле С 179
2.12.2 Самоадресуемые структуры 180
2.12.3 Структуры в стиле C++ 182
2.12.4 Битовые поля 183

2.13 Объединения 184
2.14 Классы 185

2.14.1 Объявление класса 185
2.14.2 Функции-элементы, дружественные функции,

константные функции . 188
2.14.3 Данные-элементы, статические данные, константные данные 190
2.14.4 Конструкторы и деструкторы 191
2.14.5 Копирование объектов классов 194
2.14.6 Наследование и полиморфизм, виртуальные функции,

абстрактные классы 196
2.14.7 Особенности классов, наследующих классам

библиотеки компонентов C++Builder 200
2.14.7.1 Свойства 200
2.14.7.2 События 203

2.14.8 Шаблоны классов 204

Глава 3. Функции С, C++, библиотек C++Builder, API Windows . . 207
3.1 Справочные сведения общего характера 207

3.1.1 Коды клавиш 207
3.1.2 Коды основных символов 211
3.1.3 Форматы и типы, используемые при форматировании данных 212

3.1.3.1 Строка форматирования функций вывода 212
3.1.3.2 Строка форматирования функций ввода 216
3.1.3.3 Строка форматирования функций типа Format 217
3.1.3.4 TFloatFormat и TFloatValue — типы форматирования

действительных чисел 220
3.1.3.5 Строка форматирования функций типа FormatFloat 221

3.1.4 Обработка ошибок времени выполнения, диагностика 223
3.1.4.1 _doserrno, errho и _sys_nerr — переменные,

содержащие коды ошибок 223
3.1.4.2 Коды ошибок 223
3.1.4.3 EDOM, ERANGE — константы сообщений об ошибках 225
3.1.4.4 _matherr и _matherrl — обработчики ошибок *

3.1.5 Некоторые сообщения Windows 227
WM_ACTIVATE 227
WM ACTIVATEAPP 227

Справочное пособие по O+Builder 6

WM_CANCELMODE . 2 2 8
WM_CLOSE 228
WM_GETMINMAXINFO 228
WM_GETTEXT 229
WM_SETFONT 230
WM_SETTEXT 230

3.1.6 AnsiString — тип строк 231
3.1.7 Тип данных TDateTime 235
3.1.8 TStringFloatFormat - тип 236

3.2 Математические функции 237
3.2.1 Константы, используемые в математических выражениях 237
3.2.2 Арифметические и алгебраические функции 238
3.2.3 Тригонометрические функции 241
3.2.4 Генерация псевдослучайных чисел 243
3.2.5 Функции обработки статистических данных 244
3.2.6 Функции управления FPU 246

3.3 Преобразование типов данных 247
3.3.1 Функции взаимного преобразования чисел и строк 247

3.3.1.1 Функции взаимного преобразования чисел и строк типа char * 247
3.3.1.2 Функции взаимного преобразования чисел и строк,

описанные в файле SysUtils.hpp 249
3.3.2 Функции преобразования дат и времени . : 252
3.3.3 Функции преобразования типов 261

3.4 Строки и символы 262
3.4.1 Функции обработки символов 262
3.4.2 Функции обработки строк 264

3.4.2.1 Функции работы с областями памяти и строками 264
3.4.2.2 Функции обработки строк с нулевым символом в конце 265
3.4.2.3 Функции обработки строк типа AnsiString 272

3.5 Потоки и файлы 275
3.5.1 Атрибуты и флаги файлов, стандартные файлы 275
3.5.2 Управление потоками и файлами, описываемыми структурами FILE . . . 277
3.5.3 Управление потоками и файлами, связанными с дескрипторами 281
3.5.4 Функции ввода/вывода 284
3.5.5 Функции обработки имен файлов 290
3.5.6 Управление каталогами и файлами на дисках 293

3.6 Управление процессами 302
3.6.1 Функции управления текущим процессом 302
3.6.2 Функции выполнения порождаемых процессов 304
3.6.3 Сообщения об ошибках при запуске внешних програм 306

3.7 Функции различного назначения 307
3.7.1 Функции динамического распределения памяти 307
3.7.2 Функции вызова диалоговых окон с сообщениями 311
3.7.3 Функции воспроизведения звуков 314
3.7.4 Некоторые вспомогательные функции C++и C++Builder 317
3.7.5 Некоторые вспомогательные функции API Windows 322

3.8 Работа с сообщениями Windows 323

Глава 4. Описания функций 325
abort — функция завершения выполнения 325
Abort — функция генерации исключения 325
abs и другие функции вычисления модуля 326
AnsiCompareStr и другие функции сравнения строк 326
AnsiCompareText —сравнение строк без учета регистра 327
AnsiLowerCase и другие функции преобразования строки к нижнему регистру 327
AnsiPos и другие функции поиска подстроки 328
AnsiStrComp — сравнение строк 329
AnsiStrlComp — сравнение строк 330
AnsiStrLower — преобразование строки к нижнему регистру 331
AnsiStrPos — поиск подстроки 331
AnsiStrUpper — преобразование строки к верхнему регистру 331

Содержание 9

AnsiToOem — макрос перевода строки в текст DOS 331
AnsiUpperCase и другие функции преобразования строки к верхнему регистру 331
assert — макрос диагностики 332
Bounds и другие функции формирования прямоугольной области 332
calloc — функция выделения памяти 334
ceil — округление действительного числа 334
Ceil и другие функции округления действительных чисел 334
ceill — округление действительного числа 334
cgets — ввод строки из потока 334
CharToOem, CharToOemBuff — функции перевода строки в текст DOS 335
_clear87 и другие функции очистки слова состояния FPU 336
_clearfp — очистка слова состояния FPU 337
CompareDate и другие функции сравнения дат и времени 337
CompareDateTime — сравнение дат и времени 338
CompareText — сравнение строк 338
CompareTime — сравнение значений времени 338
Compare Value и другие функции сравнения числовых значений 338
_contro!87 и другие функции доступа к управляющему слову FPU 339
_controlfp — доступ к управляющему слову FPU 341
cprintf — форматированный вывод на экран 341
cputs — вывод строки в поток 341
CreateMessageDialog — создание диалогового окна 341
CreateProcess — порождение дочернего процесса 341
_crotl — циклический сдвиг кода символа влево 348
_crotr — циклический сдвиг кода символа вправо 348
cscanf — форматированный ввод с клавиатуры 349
cwait и другие функции ожидания завершения порожденного процесса 349
Date и другие функции определения даты и времени 350
DateTimeToStr —• преобразование даты в строку 351
DateTimeToString и другие функции форматированного преобразования
даты и времени в строку 351
DateToStr и другие функции преобразования даты и времени в строку 353
DayOf и другие функции дешифрации дат и времени 354
DayOfTheMonth — дешифрация дня 355
DayOfTheWeek и другие функции определения дня недели 355
DayOfWeek — день недели 355
DaysBetween и другие функции определения разности дней двух дат 355
DaySpan — разность дней двух дат 356
DecodeDate и другие функции декодирования дат и времени типа TDateTime 356
DecodeDateTime — декодирование дат и времени типа TDateTime 357
DecodeTirae — декодирование значения времени типа TDateTime 357
div и другие функции целочисленного деления 357
DivMod — целочисленное деление 358
EncodeDate и другие функции формирования типа TDateTime 358
EncodeDateTlme — формирование даты и времени типа TDateTime 360
EncodeTime — формирование времени типа TDateTime 360
EnsureRange — число, ближайшее к указанному 360
exec... — функции выполнения порождаемых процессов 360
fabs, fabsl — вычисление модуля 363
f getc и другие функции ввода/вывода символа 363
_fgetchar — ввод символа из потока 367
fgets — ввод строки из потока '. 367
fgetwc — ввод символа из потока 367
_fgetwchar — ввод символа из потока 367
fgetws — ввод строки из потока 367
FindClose — завершение поиска файлов 367
FindExecutable — функция API Windows 367
findfirst и другие стандартные функции поиска файлов 368
FindFirst и другие функции поиска файлов из библиотеки C++Builder 370
FindNext — продолжение поиска файлов 373
FloatToStr — преобразование действительного числа в строку 374
FloatToStrF — преобразование действительного числа в строку 374
floor, Floor, floorl — округление действительного числа 375
fmod, fmodl — функции вычисления остатка 375
Format — форматирование строки аргументов 376
FormatDateTime — преобразование даты и времени в строку 377
fprintf и другие функции форматированного вывода 377
f putc — вывод символа в поток 380
_fputchar — вывод символа в поток 380
fputs и другие функции ввода/вывода строк 380
f putwc — вывод символа в поток , 382
_fputwchar — вывод символа в поток 382
fputws — вывод строки в поток 382
free — освобождение памяти 382
frexp, frexpl, Frexp — выделение мантиссы , . . . 382
fscanf — форматированный ввод из файла 383

10 Справочное пособие по C++Builder б

fwprintf — форматированный вывод в файл 383
fwscanf — форматированный ввод из файла 383
get — функция-элемент ifstream 383
Get8087CW — доступ к управляющему слову FPU 385
getc — ввод символа из потока 385
getch — ввод символа из потока 385
getchar — ввод символа из потока 385
getche — ввод символа из потока 385
GetExceptionMask и другие функции доступа к маскам исключений 385
getline — функция-элемент ifstream 387
GetLastError — функция API Windows 388
GetNextWindow — функция API Windows 388
GetPrecisionMode и другие функции управления точностью 389
GetRoundMode и другие функции управления округлением 389
gets — ввод строки из потока 390
getwc — ввод символа из потока 390
getwchar — ввод символа из потока 390
GetWindow — функция API Windows 390
GetWindowText — функция API Windows 391
_getws — ввод строки из потока 392
HourOf — дешифрация часа 392
HourOfTheDay — дешифрация часа дня 392
HoursBetween и другие функции определения разности часов двух дат 392
HourSpan — разность часов двух дат 393
InputBox — диалог запроса пользователю 393
InputQuery — диалог запроса пользователю 394
InRange — функция 394
IntPower — возведение в целую степень 395
IntToStr — преобразование целого числа в строку 395
Islnfinite — проверка на бесконечность 395
IsNan — функция 396
IsToday — определяет, является ли дата сегодняшней 396
labs — функция вычисления модуля 396
Idexp, Idexpl, Ldexp — умножение на 2 в степени 396
Idiv — целочисленное деление 397
LnXPl — вычисление натурального логарифма 397
log и другие логарифмические функции ' 397
loglO, loglOl, logl — вычисление логарифмов 397
LoglO, Log2, LogN — вычисление логарифмов 397
LowerCase — преобразование строки к нижнему регистру 398
_lrand — генерация псевдослучайных чисел 398
_lrotl — циклический сдвиг целого числа влево 398
_lrotr — циклический сдвиг целого числа вправо 398
main — функция 398
malloc и другие функции динамического распределения памяти . . . 400
MaxlntValue, MaxValue — вычисление максимального значения 401
_mbscpy — копирование строк 402
_mbslwr — преобразование строки к нижнему регистру 402
_mbsncpy — копирование строк 402
_mbsupr — преобразование строки к верхнему регистру 402
Mean — вычисление среднего значения 402
MeanAndStdDev — вычисление среднего значения
и среднего квадратического отклонения 402
memccpy — копирование блоков памяти 403
memcpy и другие функции копирования и заполнения блоков памяти .' 403
memmove — копирование блоков памяти 404
memset — заполнение блока памяти 405
MessageBox — метод TApplication 405
MessageDlg и другие функции отображения диалоговых окон 407
MessageDlgPos — отображение диалогового окна в указанной позиции 411
MilliSecondOf — дешифрация миллисекунды 411
MilliSecondOfTheSecond — дешифрация миллисекунды 411
MilliSecondsBetween и другие функции определения разности миллисекунд 412
MilliSecondSpan — разность миллисекунд двух дат 412
MinlntValue, MinValue — вычисление минимального значения 412
MinuteOf — дешифрация минуты 412
MinuteOfTheHour — дешифрация минуты 413
MinutesBetween и другие функции определения разности минут 413
MinuteSpan — разность минут 413
MomentSkewKurtosis — вычисление моментов 413
MonthOf — дешифрация месяца 414
MonthOfTheYear — дешифрация месяца 414
MonthsBetween и другие функции определения разности месяцев 414
MonthSpan — разность месяцев 415
_new_handler — указатель на обработчик ошибок выделения памяти 415
Norm — вычисление корня из суммы квадратов 415

Содержание 11

Now — текущая дата и время 415
OemToChar, OemToCharBuff — перевод текста DOS в строку 415
Point и другие функции формирования точки 416
poly, polyl, Poly — вычисление полиномов 417
PopnStdDev — вычисление среднего квадратического отклонения 418
PopnVariance — вычисление дисперсии 418
PostMessage — функция API Windows 419
pow, powl и другие функции возведения в степень 420
powlO, powlOl — возведение в целую степень 420
Power — возведение в заданную степень 420
printf — форматированный вывод на экран 420
putc — вывод символа в поток 420
putchar — вывод символа в поток 420
puts — вывод строки в поток 421
putwc — вывод символа в поток 421
putwchar — вывод символа в поток 421
_putws — вывод строки в поток 421
raise — генерация сигнала 421
rand, randomize, Randomize, RandG — генерации случайных чисел 421
random и другие функции генерации псевдослучайных чисел 421
realloc — функция выделения памяти 423
Rect — формирование прямоугольной области 423
RegisterWindowMessage — функция API Windows 423
_rotl и другие функции циклического сдвига 423
_rotr — циклический сдвиг целого числа вправо 424
RoundTo и другие функции округления 424
Same Value — сравнение действительных значений 425
scanf и другие функции форматированного ввода 425
SecondOf — дешифрация секунды 428
SecondOfTheMinute — дешифрация секунды 428
SecondsBetween и другие функции определения разности секунд 429
SecondSpan — разность секунд 429
SelectDirectory — диалоги выбора каталога 429
SendMessage — функция API Windows 432
set_new_handler и другие функции обработки ошибок выделения памяти 433
Set8087CW — установка управляющего слова FPU 434
SetExceptionMask — установку .масок исключений 434
SetPrecisionMode — управление точностью 434
SetRoundMode — управление округлением 434
ShellExecute — функция API Windows 435
SHGetFilelnfo — получение информации об объекте файловой системы 437
ShowMessage и другие функции вывода простых диалоговых окон сообщений 440
ShowMessageFmt — простое диалоговое окон с форматированным сообщением 441
ShowMessagePos — простое диалоговое окон с сообщением в заданной позиции 441
Sign — функция 441
signal и другие функции работы с сигналами 442
SimpleRoundTo — округление 444
Sleep — функция задержки выполнения 444
SmallPoint — формирование точки из координат 445
spawn... — функции выполнения порождаемых процессов 445
sprintf — форматированный вывод в массив символов . 450
srand — генерация псевдослучайных чисел 450
sscanf — форматированный ввод из буфера в памяти 450
_status87 и другие функции получения слова состояния FPU 450
_statusfp — текущее значение слова состояния FPU 451
StdDev — вычисление среднего квадратического отклонения 451
StrCopy и другие функции копирования строк 451
strcpy — копирование строк 453
StrECopy — копирование строк 453
StrLCopy — копирование строк 453
StrLower — преобразование строки к нижнему регистру 453
strlwr — преобразование строки к нижнему регистру 45,3
StrMove — копирование строк ' 453
strncpy — копирование строк 453
StrPos — поиск подстроки 453
StrToCurr, StrToInt, StrToFloat и другие функции преобразования строки в число. . . . 453
StrToDate и другие функции преобразования строки в дату и время 454
StrToDateDef — преобразование строки в дату 456
StrToDateTime — преобразование строки в дату и время 456
StrToDateTimeDef — преобразование строки в дату и время 456
StrToTime — преобразование строки во время 456
StrToTimeDef — преобразование строки во время 456
Strtlpper — преобразование строки к верхнему регистру 456
strupr — преобразование строки к верхнему регистру 456
Sumlnt и Sum — вычисление сумм 456
SumOfSquares — вычисление суммы квадратов 457

12 Справочное пособие по C++Builder 6

SumsAndSquares — вычисление суммы и суммы квадратов 457
swprintf — форматированный вывод в массив символов 458
swscanf — форматированный ввод из буфера в памяти 458
system и другие функции выполнения команд операционной системы 458
Time — текущее время 458
TimeToStr — преобразование времени в строку 458
_tmain — макрос функции main 458
Today — текущая дата 459
Tomorrow — завтрашняя дата 459
TotalVariance — вычисление суммы квадратов отклонений 459
TryEncodeDate — формирование даты типа TDateTime 459
TryEncodeDateTime — формирование даты времени типа TDateTime 459
TryEncodeTime — формирование времени типа TDateTime 459
_tWinMain — функция 459
ungetc — возврат символа во входной поток 460
ungetch — возврат символа во входной поток 460
ungetwc — возврат символа во входной поток 460
Uppercase — преобразование строки к верхнему регистру 460
va_start, va_arg, va_end — макросы 460
Variance — вычисление дисперсии 461
vfprintf — форматированный вывод в файл 462
vfscanf — форматированный ввод из файла 462
vfwprintf — форматированный вывод в файл 462
vprintf — форматированный вывод на экран 462
vscanf — форматированный ввод с клавиатуры 462
vsprintf — форматированный вывод в массив символов 462
vsscanf — форматированный ввод из буфера в памяти 462
vswprintf — форматированный вывод в массив символов 462
vwprintf — форматированный вывод на экран 462
wait — ожидание завершения порожденного процесса 462
wcscpy — копирование строк 462
wcsncpy — копирование строк 463
_wcslwr — преобразование строки к нижнему регистру 463
_wcsupr — преобразование строки к верхнему регистру 463
_wexec... — функции выполнения порождаемых процессов 463
_wfindfirst — стандартная функция начала поиска файлов 463
_wfindnext — стандартная функция продолжения поиска файлов 463
WinExec — функция API Windows 463
WinMain — главная функция 466
wmain — функция 466
_wmemcpy — копирование блоков памяти 466
_wmemset — заполнение блока памяти 467
wprintf — форматированный вывод на экран 467
wscanf — форматированный ввод с клавиатуры 467
_wspavn... — функции выполнения порождаемых процессов 467
_wsystem — выполнение команды ОС 467
wWinMain — главная функция 467
YearOf — дешифрация года 467
YearsBetween и другие функции определения разности лет 467
YearSpan — разность лет 468
Yesterday — вчерашняя дата 468

Глава 5. Обзор стандартной библиотеки шаблонов STL 469
5.1 Стоит ли знакомиться с STL? 469
5.2 Использование STL в C++Builder 469
5.3 Основные концепции STL 470
5.4 Контейнеры 472

5.4.1 Общие сведения 472
5.4.2 Контейнеры последовательностей 474
5.4.3 Векторы 477
5.4.4 Связные списки 482
5.4.5 Очереди 486
5.4.6 Ассоциативные контейнеры 490

5.4.6.1 Общие сведения 490
5.4.6.2 Контейнеры multiset и set 491
5.4.6.3 Контейнеры multimap и тар 494

5.5 Итераторы 495
5.5.1 Общая характеристика итераторов 495
5.5.2 Итераторы чтения 499
5.5.3 Итераторы записи . 501

Содержание 13

5.5.4 Итераторы, допускающие чтение и запись 504
5.6 Класс строк string 505
5.7 Алгоритмы 509

5.7.1 Общие сведения 509
5.7.2 Алгоритмы заполнения контейнеров 510
5.7.3 Алгоритмы поиска в несортированных последовательностях 510
5.7.4 Алгоритмы бинарного поиска в сортированных последовательностях . . . 513
5.7.5 Алгоритмы сравнения 514
5.7.6 Алгоритмы копирования 516
5.7.7 Алгоритмы преобразования последовательностей 516
5.7.8 Алгоритмы сканирования 519
5.7.9 Алгоритмы удаления элементов 520
5.7.10 Алгоритмы сортировки 521
5.7.11 Операции с множествами 524
5.7.12 Операции с кучей'(heap) 526
5.7.13 Алгоритмы определения минимума и максимума 527
5.7.14 Генераторы перестановок 528

5.8 Функции-объекты 529

Предметный указатель 533
Дополнительные источники информации о C++ и C++Builder 6 541

От автора

Прежде всего, почему эта книга названа справочным пособием? Книга не яв-
ляется учебником. В ней нет последовательного, методически выверенного изло-
жения материала по языку C++. Однако это и не справочник в чистом виде. Сухое
изложение справочных сведений полезно, но требует от читателя большого труда
по их осмыслению, тестированию, определению области использования того или
иного понятия, той или иной функции. Поэтому я остановился на форме справоч-
ного пособия. Книга содержит большой объем справочного материала, но он снаб-
жен подробными комментариями, примерами, методическими советами. И стиль
изложения большинства разделов достаточно повествовательный. Все это позволя-
ет, по-моему, читателю, знакомому с программированием, но не знакомому,
с C++, самостоятельно освоить этот язык.

Книга получилась достаточно объемной, несмотря на усилия автора и изда-
тельство сделать все возможное, чтобы в нее вместилось побольше материала:
шрифт книги минимально возможный, верстка предельно компактная, изложение
тоже, насколько возможно, компактное. Тем не менее, много уже почти готового
материала в книгу не вместилось, поскольку я не рискнул увеличивать ее объем
и стоимость. В книге подробно рассмотрены далекд не все функции C++ и С++Ви-
ilder, хотя перечень и краткие характеристики функций охватывают почти весь
их перечень. Фрагментарно рассмотрена стандартная библиотека STL — мощный
инструмент программирования. Полное изложение всего этого материала увеличи-
ло бы книгу примерно вдвое.

Я пока нашел два выход из конфликта между полнотой материала и объемом
книги. Во-первых, в недалеком будущем я надеюсь выпустить отдельные книги,
вдвое меньшего объема, чем данная, посвященные стандартным библиотекам С
и C++. Это позволит полностью описать все функции, контейнеры, алгоритмы
этих библиотек. Информацию об этих намеченных книгах вы найдете по ссылкам
[3] и [4] в конце книги в разделе «Дополнительные источники информации о C++
и C++Builder 6». Во-вторых, справочные сведения из данной книги плюс немало
дополнительного материала включены в справочные файлы [2], сведения о кото-
рых вы найдете в разделе «Дополнительные источники информации о C++
и C++Builder 6». Там, по крайней мере, нет ограничений на объем материала. Так
что можно постоянно пополнять эти справки, что регулярно и делается. В частно-
сти, в обозримом будущем описания стандартных библиотек в них станут полны-
ми. Да и стоимость справок заметно отличается от стоимости этой книги. Конечно,
справки не могут заменить книгу. Но в них есть и свои преимущества (см. в [2]).
Так что я думаю, что справки могут служить хорошим и постоянно развивающим-
ся дополнением к данной книге. По книге, конечно, удобнее изучать ту или иную
тему. А справки обеспечивают оперативную помощь в работе, простой способ вос-
произведения содержащихся в них примеров и значительно больший объем спра-
вочных сведений.

Для читателей, знакомых с моей книгой «Программирование в C++Builder 6»
[1], вероятно, полезно представлять, чем различаются материалы данной книги.
По сравнению с той книгой [1] справочный материал по C++ в данной книге в не-
сколько раз расширен и переработан. Дано то новое, что введено в последний стан-
дарт C++, существенно расширено описание исключений, классов, шаблонов, дано
описание работы с сигналами и сообщениями Windows, рассмотрены битовые
поля, объединения и многое другое. В целом, описание языка C++ в данной книге
полное, а в [1] — сокращенное.

16 Справочное пособие по C++Builder б

Существенно расширен в данной книге материал по функциям C++ и API
Windows. Помимо краткого изложения функций (их число также значительно
увеличено), введена глава, содержащая подробное описание и примеры использо-
вания основных функций (около 300).

Введена глава 5, содержащая описание стандартной библиотеки шаблонов
C++. Этот мощный инструмент в [1] даже не упоминался.

Так что, если сравнивать данную книгу с материалом по C++ в книге [1], то
эта книга более чем на 2/3 состоит из совершенно нового материала, а включенный
в нее прежний материал существенно переработан. Так что думаю, что данная
книга может служить хорошим дополнением к прежней.

Глава 1

Справочные данные
по языку C++

В настоящей главе приводятся основные справочные сведения по той версии
языка C++, которая используется в C++Builder. Впрочем, некоторые конструк-
ции, применяемые в C++Builder, характерны скорее для языка С, а не C++. А не-
которые особенности языка, связанные с библиотечными компонентами, относят-
ся к языку Object Pascal. Так что сведения, приводимые в этой и последующих
главах, относятся ко всем языкам, используемым в C++Builder. Однако в случаях,
когда возможно применить несколько альтернативных подходов, предпочтение
все-таки отдается C++.

В этой и следующей главах практически не затрагиваются вопросы, связан-
ные с STL — стандартной библиотекой шаблонов C++. Этой библиотеке и, соответ-
ственно, таким базовым для C++ понятиям, как контейнер, итератор, алгоритм
и т.д., посвящена гл. 5.

1.1 Язык C++ и его синтаксис
Язык программирования C++ был создан на основе языка С и сохраняет до

сих пор язык С как свое подмножество. Синтаксис языка, основные операторы
и операции, многие встроенные типы данных заимствованы в C++ из С. Поэтому
большинство программ, написанных на С, будут аналогично функционировать
и в среде C++. А основные достижения C++ по сравнению с С — объектная ориен-
тация, поддержка абстракции данных, наследования, полиморфизма, возмож-
ность перегрузки операций, поддержка обработки ошибок с помощью исключе-
ний.

Многие из этих возможностей — абстракция данных, наследование, полимор-
физм связаны с базовым понятием языка C++ — классами. Классы рассматрива-
ются в гл. 2 в разд. 2.14. Шаблоны классов и функций, существенно обогатившие
язык, рассмотрены, соответственно, в разд. 2.14.8 и 1.7.8. Перегрузке операций
посвящен разд. 1.9.17. Исключения рассмотрены в разд. 1.12. А в данном разделе
коротко излагается синтаксис языка C++, во многом тождественный языку С.

Основные синтаксические правила записи программ на языке C++ сводятся
к следующему:

Прописные и строчные буквы считаются разными символами. Поэтому, на-
пример, идентификаторы DATABASE, DataBase, Database и database относятся
к совершенно разным переменным, константам или объектам. При записи иденти-
фикаторов могут использоваться латинские буквы, цифры, символ подчеркивания

_". Идентификатор не может начинаться с цифры и не может содержать пробель-
ных символов. Длина идентификатора не ограничена, но ради удобства чтения
программы надо стремиться использовать короткие и осмысленные идентификато-
ры.

Пробельные символы (пробелы, знаки табуляции, символ новой строки, ком-
ментарий) могут размещаться в любом месте текста, но не внутри идентификатора.

18 Глава 1

Комментарии в тексте заключаются в скобки вида /* текст комментария */.
Такие комментарии могут вводиться в любом месте текста, в частности, внутри
операторов, и занимать любое количество строк. Вложенные комментарии обычно
не допускаются. Считается, что комментарий закончился, как только в тексте
встретились первые символы "*/". Впрочем, в C++Builder 6 можно обеспечить ис-
пользование вложенных комментариев. Для этого надо включить опцию Nested
Comments на странице Advanced Compiler окна опций проекта. Однако в стандарте С
вложенные комментарии не допускаются, так что их использование делает код не-
переносимым на другие платформы. Именно поэтому данная опция по умолчанию
выключена. Еще один способ введение комментария — размещение его после двух
символов слэш "//"• Этот комментарий должен занимать конец строки, в которой
он введен, и не может переходить на следующую строку. Любой текст в строке, по-
мещенный после символов "//"» воспринимается как комментарий.

Каждое предложение языка кончается символом точка с запятой ";". Немно-
гие исключения из этого правила будут оговорены особо.

В строке может размещаться несколько операторов. Однако с точки зрения
простоты чтения текста этим не надо злоупотреблять. Вообще, надо писать про-
грамму так, чтобы ее было легко читать и вам, и постороннему человеку, которо-
му, может быть, придется ее сопровождать. Надо выделять объединенные смыслом
операторы в группы, широко используя для этого отступы и комментарии.

Фигурные скобки { } выделяют составной оператор. Все операторы, помещен-
ные между ними, воспринимаются синтаксически как один оператор.

Все используемые типы, константы, переменные, функции должны быть объ-
явлены или описаны до их первого использования. Объявления могут встречаться
в любом месте текста.

1.2 Программы на C++

1.2.1 Общие сведения
Программа на C++ состоит из объявлений (переменных, констант, типов,

классов, функций) и описаний функций. Среди функций всегда имеется главная -
main для консольных приложений (работающих с WIN32) или WinMain для при-
ложений Windows. Именно эта главная функция выполняется после начала рабо-
ты программы. Обычно в C++Builder эта функция очень короткая и выполняет
только некоторые подготовительные операции, необходимые для начала работы.
А далее при объектно-ориентированном подходе работа приложения определяется
происходящими событиями и реакцией на них объектов.

Как правило, программы строятся по модульному принципу и состоят из мно-
жества модулей. Принцип модульности очень важен для создания надежных и от-
носительно легко модифицируемых и сопровождаемых приложений. Четкое со-
блюдение принципов модульности в сочетании с принципом скрытия информации
позволяет внутри любого модуля проводить какие-то модификации, не затрагивая
при этом остальных модулей и головную программу.

В C++Builder все объекты компонентов размещаются в объектах — формах.
Для каждой формы, которую вы проектируете в своем приложении, C++Builder
создает отдельный модуль. Именно в модулях и осуществляется программирова-
ние задачи. В обработчиках событий объектов — форм и компонентов, вы поме-
щаете все свои алгоритмы. В основном они сводятся к обработке информации, со-
держащейся в свойствах одних объектов, и задании по результатам обработки
свойств других объектов. При этом вы постоянно обращаетесь к методам различ-
ных объектов. Вопросами доступа к свойствам и методам объектов мы и займемся
в дальнейших разделах данной главы.

Справочные данные по языку C++ 19

Согласно принципам скрытия информации обычно текст модуля разделяют на
заголовочный файл интерфейса, который содержит объявления классов, функций,
переменных и т.п., и файл реализации, в котором содержится описание функций.
Стандартное расширение файлов реализации — .срр. Стандартное расширение за-
головочных файлов — .h.

После того как программа написана, на ее основе должен быть создан выпол-
няемый файл (модуль). Этот процесс осуществляется в несколько этапов.

Сначала работает препроцессор, который преобразует исходный текст. Препро-
цессор осуществляет преобразования в соответствии со специальными директива-
ми препроцессора, которые размещаются в исходном тексте. Препроцессор может
в соответствии с этими директивами включать тексты одних файлов в тексты дру-
гих, развертывать макросы — сокращенные обозначения различных выражений
и выполнять множество других преобразований.

После окончания работы препроцессора начинает работать компилятор. Его
задача — перевести тексты модулей в машинный (объектный) код. В результате
для каждого исходного файла .срр создается объектный файл, имеющий расшире-
ние .obj.

После окончания работы компилятора работает компоновщик, который объе-
диняет объектные файлы в единый загрузочный выполняемый модуль, имеющий
расширение .ехе. Этот модуль можно запускать на выполнение.

1.2.2 Структура головного файла проекта

В процессе проектирования вами приложения C++Builder автоматически соз-
дает коды головного файла проекта, коды отдельных модулей и коды их заголо-
вочных файлов. Головной файл проекта, предназначенного для работы в среде
Windows, содержит головную функцию WinMain. Если делается консольное при-
ложение, то головной является функция main. В прочие модули вы вводите свой
код, создавая обработчики различных событий. В заголовочные файлы этих моду-
лей вы вводите свои объявления. Но головной модуль, как правило, вы не трогаете
и даже не видите его текст. Только в исключительных случаях вам надо что-то из-
менять в тексте головного модуля, сгенерированном С+- l-Builder. Тем не менее,
хотя бы ради этих исключительных случаев, надо все-таки представлять вид го-
ловного файла проекта и понимать, что означают его операторы.

Чтобы увидеть код головного файла проекта, надо выполнить в среде разработ-
ки C++Builder команду Project | View Source. Типичный головной файл проекта для
Windows имеет следующий вид (в приведенный текст добавлены русские коммен-
тарии):

/ / _ ^ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
// директивы препроцессора
#include <vcl.h>
#pragma hdrstop

// макросы, подключающие файлы ресурсов и форм ^
USERES ("Project l . res") ;
U S E F O R M (" U n i t l . c p p " , F o r m l) ;
USEFORM("Onit2.cpp", F o r m 2) ;
/ / __

// функция main
WINAPI WinMain (HINSTANCE, HINSTANCE, LPSTR, int)

try

Application->Initialize () ;
Application->CreateForm(_ classid (TForml) , SForml)

20 Глава 1

Application->CreateForm(classid(TForm2) , &Form2);
Application->Run();

}
catch (Exception Sexception)
{

Application->ShowException(«.exception);
. }

return 0;
}

Начинается файл головного модуля строками, первый символ которых — "#".
С этого символа начинаются директивы препроцессора (см. подробности
в разд. 1.4). Среди них наиболее важны для вас директивы #include. Эти директи-
вы подключают в данный файл тексты указанных в них файлов. В частности, по-
добными директивами включаются в текст заголовочные файлы. Например, ди-
ректива #include <vcl.h> подключает заголовочный файл vcl.h, содержащий объ-
явления, используемые в библиотеке визуальных компонентов C++Builder.

После директив препроцессора в файле размещены предложения USERES
и USEFORM. Это макросы, используемые для подключения к проекту файлов
форм, ресурсов и др. Препроцессор развернет эти макросы в соответствующий код.
В данном случае вы можете видеть два макроса USEFORM, подключающих фор-
мы. C+4-Builder автоматически формирует соответствующее предложение с макро-
сом USEFORM для каждой формы, вносимой вами в проект. Первый параметр
макроса содержит имя файла модуля, соответствующего форме (например,
"Unitl.cpp"), а второй параметр — имя формы.

После всех этих вспомогательных предложений в файле расположена главная
функция программы - - WinMain. Ее первым параметром является дескриптор
данного экземпляра приложения. Дескриптор — это некий уникальный указа-
тель, позволяющий Windows разбираться в множестве одновременно открытых
окон различных приложений. Иногда вы будете использовать дескрипторы при об-
ращении к различным функциям API Windows (API Windows — это пользователь-
ский интерфейс Windows, содержащий множество полезных функций). Второй па-
раметр WinMain - - дескриптор предыдущего экземпляра вашего приложения
(если пользователь выполняет одновременно несколько таких приложений). Тре-
тий параметр является указателем на строку с нулевым символом в конце, содер-
жащую параметры, передаваемые в программу через командную строку. Иногда
такие параметры используются для переключения режимов работы программы
или для задания различных опций при запуске приложения из диспетчера про-
грамм или функцией WinExec. Последний параметр определяет окно приложе-
ния. Этот параметр может в дальнейшем передаваться в функцию ShowWindow.

Более подробное описание функции WinMain вы найдете в гл. 4. В той же гла-
ве вы найдете описание головной функции main, используемой в консольных при-
ложениях. В ней тоже имеются параметры, дающие доступ к элементам команд-
ной строки. Впрочем, эти параметры и в WinMain, и в main используются доста-
точно редко.

После заголовка функции WinMain следует ее тело, заключенное в фигурные
скобки. Первый выполняемый оператор тела функции — Application—>Initialize
инициализирует объекты компонентов данного приложения. Последующие опера-
торы Application—>CreateForm создают объекты соответствующих форм. Формы
создаются в той последовательности, в которой следуют эти операторы. Первая из
создаваемых форм является главной.

Последний оператор — Application—>Run начинает собственно выполнение
программы. После этого оператора программа ждет соответствующих событий, ко-
торые и управляют ее ходом.

Перечисленные операторы тела функции WinMain заключены в блок try, по-
сле которого следует блок catch. Это структура, связанная с обработкой так назы-

Справочные данные по языку C++ 21

ваемых исключений — аварийных ситуаций, возникающих при работе програм-
мы. Если такая аварийная ситуация возникнет, то будут выполнены операторы,
расположенные в блоке catch. По умолчанию в этом блоке расположен стандарт-
ный обработчик исключений с помощью функции Application—>ShowException.
Подробнее об обработке исключений вы можете посмотреть в разд. 1.12.

Последним оператором тела функции WinMain является оператор return(O),
завершающий приложение с кодом завершения 0.

Все описанные выше операторы головного файла приложения заносятся в него
автоматически в процессе проектирования вами приложения. Например, при до-
бавлении в проект новой формы в файл автоматически вставляются соответствую-
щее предложение USEFORM и оператор Application—>CreateForm, создающий
форму. Так что обычно ничего в головном файле изменять не надо и даже нет необ-
ходимости его смотреть.

Если вам надо ввести какой-то свой текст в головной модуль, вы можете сде-
лать это, введя объявления необходимых констант, переменных, функций, доба-
вить или изменить операторы в теле функции. Например, вам может потребовать-
ся при запуске приложения на выполнение провести какие-то настройки (напри-
мер, настроить формы на тот или иной язык — русский или английский). Или сде-
лать какой-то запрос пользователю и в зависимости от ответа создавать или не соз-
давать те или иные формы. Или проанализировать параметры, переданные в про-
грамму через командную строку.

Только учтите, что все определенные вами в головном файле проекта глобаль-
ные константы и переменные будут доступны в другом блоке только в случае, если
они объявлены там со спецификацией extern (см. разд. 1.6.2). Функции, опреде-
ленные вами в головном файле проекта, будут доступны в другом блоке только
в случае, если там повторен их прототип (см. разд. 1.8).

Посмотрим, как можно вводить собственный код в головной файл. Пусть, на-
пример, вы хотите, чтобы вторая форма вашего приложения Form2 создавалась
только в случае, если при запуске приложения через командную строку в него пе-
редана опция Y. В этом случае вы можете изменить заголовок функции WinMain
следующим образом:

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR S, int)

Этот заголовок объявляет строку S, в которой будет содержаться текст ко-
мандной строки. Тогда приведенный выше оператор

Application->CreateForm(classid(TForm2), &Form2);

можно заменить оператором
i f (S [O J — ' Y ')

Application->CreateForm(c l a s s i d (T F o r m 2) , & F o r m 2) ;

В этом случае, если ваше приложение Projectl будет запускаться командой
Projectl Y, то форма Form2 будет создаваться. В остальных случаях этой формы
не будет.

Аналогичный выбор можно сделать, не анализируя командную строку, а пред-
ложив пользователю соответствующий вопрос. В этом случае приведенный выше
оператор можно заменить следующим (о методе MessageBox см. в гл. 9):

if (Application->MessageBox(.
"Хотите создать вторую форму?",

"Подтвердите создание второй формы",
MB_YESNOCANCEL + MB_ICONQUESTION) == I D Y E S)

Application->CreateForm(c l a s s i d (T F o r m 2) , SForm2);

Тогда в момент запуска приложения пользователю будет сделан запрос, пока-
занный на рис. 1.1. При положительном ответе пользователя форма будет создана,
в противном случае — нет.

22 Глава 1

Рис. 1.1
Окно запроса пользователю

ШЯЯ

,.4а.

Вы можете, конечно, ввести в головной файл программы и другие операторы,
функции и т.п. Все это можно сделать, но это будет плохой стиль программирова-
ния, поскольку он противоречит принципу модульности. Все необходимые вам
в начале выполнения процедуры и функции настройки помещайте в один из моду-
лей форм, а еще лучше — в отдельный модуль без формы. Такой модуль, не свя-
занный с какой-то формой, можно включить в приложение, выполнив в среде раз-
работки C++Builder команду File | New и щелкнув на пиктограмме Unit. В этом или
ином модуле вы можете предусмотреть функцию, которая осуществляет все необ-
ходимые настройки. Тогда в головной программе достаточно будет вызвать в соот-
ветствующий момент эту функцию, передав в нее, если необходимо, какие-то пара-
метры, например, текст командной строки.

Пусть, например, вы написали некоторую функцию, назвав ее begin, в кото-
рой проводится настройка программы в зависимости от опций, переданных через
командную строку. И пусть вы поместили эту функцию в модуль Unitl.cpp, а ее
объявление — в заголовочный файл этого модуля Unitl.h (вне описания класса —
см. разд. 1.2.3). Тогда вы можете в головной файл приложения включить директи-
ву препроцессора

#include "Uni t l .h"

подключающую файл Unitl.h, изменить заголовок функции WinMain на
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR S, int)

т.е. ввести параметр S, воспринимающий командную строку, и поставить первым
выполняемым оператором функции WinMain оператор:

b e g i n (S) ;

вызывающий функцию begin и передающий в нее текст командной строки.
Сама функция begin может иметь вид:
void begin(String s)
{
// операторы анализа командной строки и настройки

}

Таким образом вы, не нарушив принципа модульности, можете осуществить
все действия, необходимые вам в начале работы программы.

Имя головного файла проекта по умолчанию дается стандартное: Projectl,
Project2 и т.п. Это же имя будет и у выполняемого модуля вашей программы. Так
что желательно изменить имя по умолчанию. Для этого достаточно сохранить го-
ловной файл проекта под соответствующим именем.

Выше подробно рассмотрен вариант функции WinMain, используемой в при-
ложениях Windows. Описание функции main, используемой в консольных прило-
жениях, см. в гл. 4.

1.2.3 Структура файлов модулей форм

Рассмотрим теперь, как выглядят тексты модулей форм. Каждый такой мо-
дуль состоит из двух файлов: заголовочного, содержащего описание класса формы,
и файла реализации. Ниже приведены тексты этих файлов модуля формы, на ко-^
торой размещена одна метка (компонент типа TLabel) и одна кнопка (компонент

Справочные данные по языку C++ 23

типа TButton). Подробные комментарии в этом тексте поясняют, куда и что в этот
код вы можете добавлять.

Заголовочный файл:
//
tfifndef UnitlH
#define UnitlH
//

#include «Classes.hpp>
#include <Controls.hpp>
tinclude <StdCtrls.hpp>
#include <Forms.hpp>
// сюда могут помещаться дополнительные директивы
// препроцессора (в частности, include),
// не включаемые в файл автоматически

/ /

// объявление класса формы TForml
class TForml : public TForm

{
published: // IDE-managed Components

// размещенные на форме компоненты
TButton *Buttonl;
TLabel *Labell;
void fastcall ButtonlClick(TObject *Sender);

private: // User declarations
// закрытый раздел класса
// сюда могут помещаться объявления типов, переменных, функций,
// включаемых в класс формы, но не доступных для других модулей

public: // User declarations
// открытый раздел класса
// сюда могут помещаться объявления типов, переменных, функций,
// включаемых в класс формы и доступных для других модулей

fastcall TForml(TComponent* Owner);

};
//

extern PACKAGE TForml *Forml;
// ,

// сюда могут помещаться объявления типов, переменных, функций,
// которые не включаются в класс формы;
// доступ к ним из других блоков возможен только при соблюдении
// некоторых дополнительных условий
#endif

Файл реализации:
/ /
finclude <vcl.h>
#pragma hdrstop
#include "Unitl.h"
//

tpragma package(smart_init)
tpragma resource "*.d£m"

// сюда могут помещаться дополнительные директивы
// препроцессора (в частности, include),
// не включаемые в файл автоматически

// объявление объекта формы Forml
TForml *Forml;
//

24 Глава 1

// вызов конструктора формы Forml
fastcall TForml::TForml(TComponent* Owner)
: TForm(Owner)

^ , {
// сюда вы можете поместить операторы,

// которые должны выполняться при создании формы

}
//

// сюда могут помещаться объявления типов и переменных,
// доступ к которым из других модулей возможен только при
// соблюдении некоторых дополнительных условий;

// тут же должны быть реализации всех функций, объявленных в
// заголовочном файле, а также могут быть реализации любых
// дополнительных функций, не объявленных ранее

void fastcall TForml::ButtonlClick(TObject *Sender)

(
Close () ;

}

Рассмотрим подробнее эти файлы. Заголовочный файл начинается с автомати-
чески включенных в него директив препроцессора. В частности, C++Builder сам
помещает тут директивы include (см. разд. 1.4), подключающие копии файлов,
в которых описаны те компоненты, переменные, константы, функции, которые вы
используете в данном модуле. Однако для некоторых функций такое автоматиче-
ское подключение не производится. В этих случаях разработчик должен добавить
соответствующие директивы include вручную.

После директив препроцессора следует описание класса формы. Имя класса
вашей формы — TForml. Класс содержит три раздела: published — открытый
раздел, содержащий объявления размещенных на форме компонентов и обработ-
чиков событий в них, private — закрытый раздел класса, и public — открытый
раздел класса. В данном случае в разделе published вы можете видеть объявле-
ния указателей на два компонента: компонент Buttonl типа TButton и компонент
Labell типа TLabel. Там же вы видите объявление функции ButtonlClick — вве-
денного пользователем обработчика события щелчка на кнопке Buttonl. Все, что
имеется в разделе published, C++Builder включает в него автоматически в про-
цессе проектирования вами формы. Так что вам не приходится, как правило, рабо-
тать с этим разделом. А в разделы private и public вы можете добавлять свои объ-
явления типов, переменных, функций. То, что вы или C++Builder объявите в раз-
деле public, будет доступно для других классов и модулей. То, что объявлено в раз-
деле private, доступно только в пределах данного модуля. Как вы можете видеть,
единственное, что C++Builder самостоятельно включил в раздел public, это объяв-
ление (прототип) конструктора вашей формы TForml.

После объявления класса следует предложение PACKAGE, которое включает-
ся в файл автоматически и которое мы сейчас рассматривать не будем. После этого
вы можете разместить объявления типов, переменных, функций, к которым при
соблюдении некоторых дополнительных условий (см. разд. 1.8) будет доступ из
других модулей, но которые не включаются в класс формы.

Теперь рассмотрим текст файла реализации модуля. После автоматически
включенных в этот файл директив препроцессора следует тоже автоматически
включенное объявление указателя на объект формы Forml, а затем — вызов кон-
структора формы. Тело соответствующей функции пустое, но вы можете включить
в него какие-то операторы. Эти операторы будут выполняться при создании фор-
мы. В них можно включить какие-то начальные настройки свойств этой формы.

После конструктора размещаются описания всех функций, объявленных в за-
головочном файле. Вы можете также размещать здесь объявления любых типов,

Справочные данные по языку C++ 25

констант, переменных, не объявленных в заголовочном файле, и размещать описа-
ния любых функций, не упомянутых в заголовочном файле.

Имена файлам модулей C++Builder дает по умолчанию: для первого модуля
имя равно "Unitl", для второго — "Unit2" и т.д.

1.2.4 Доступ к объектам, переменным и функциям модуля

1.2.4.1 Пример модуля, содержащего объекты и процедуры

Рассмотрим, как можно вводить в модуль переменные, функции и осуществ-
лять к ним доступ. Ниже приведен текст кода модуля, в котором на форме разме-
щены два компонента: кнопка Buttonl типа TButton и метка Labell типа TLabel.
Кроме того, в модуле введен обработчик события, связанного со щелчком пользо-
вателя на кнопке, и в разных местах модуля введены переменные и функции, что-
бы можно было видеть, как получить к ним доступ.

Заголовочный файл:
/ /
#ifndef UnitlH
tfdefine UnitlH
// , .

#include <Classes.hpp>
tinclude <Controls.hpp>
tinclude <StdCtrls.hpp>
tinclude <Forms.hpp>
//

class TForml : public TForm

{
published: // IDE-managed Components
TLabel *Labell;
TButton *Buttonl;
void fastcall ButtonlClick(TObject *Sender);

private: // User declarations
//Функция Fl и переменна Ch6 доступны только в данном модуле
void fastcall Fl(char Ch);
char Ch6;

public: // User declarations
fastcall TForml(TComponent* Owner);

// Переменная Chi и функция F2 доступны для объектов
// любых классов и для других модулей, но со ссылкой
// на объект
char Chi;
void fastcall F2(char Ch);
};
//
extern PACKAGE TForml *Forml;
// Глобальная переменная Ch2 и функция F3 доступны в пределах
// данного модуля; переменная Ch2 доступна в других модулях,
// если определена там со спецификацией extern;
// функция F3 доступна в других модулях, если там содержится
// ее прототип
char Ch2;
void F3(char Ch);
tendif

Файл реализации:
/ /
tinclude <vcl.h>

26 Глава 1

tpragma hdrstop

#include "Unitl.h"
//

tpragma package(smart_init)
#pragma resource "*.dfm"
TForml *Forml;
//

fastcall TForml::TForml(TComponent* Owner)
: TForm(Owner)

{
}
//

// Глобальная переменная Ch3 и функция F4 доступны в пределах
// данного модуля; переменная СЬЗ доступна в других модулях,
// если определена там со спецификацией extern;
// функция F4 доступна в других модулях, если там содержится
// ее прототип
char Ch3;

void F4(char Ch)
f
Forml->Labell->Caption = Forml->Labell->Caption + Ch +

Forml->Chl;
)
// . ,

void fastcall TForml::Fl(char Ch)
{
Labell->Caption = Labell->Caption + Ch + Chi;

}
/ /

void fastcal l T F o r m l : : F 2 (c h a r Ch)
{
Labell->Caption = Labell->Caption + Ch + Chi;
)
//

void F3(char Ch)
(
Forml->Labell->Caption = Forml->Labell->Caption + Ch +

Forml->Chl;
}
//

void fastcall TForml::ButtonlClick(TObject *Sender)
{
// Переменная Ch4 доступна только внутри данной функции

char Ch4;
Chi = '-';
Ch2 = ' A ' ;
Ch3 = ' В ' ;
Ch4 = ' С ' ;
Labell->Caption = "";
F l (C h i) ;
F 2 (C h 2) ;
F 3 (C h 3) ; *
F 4 (C h 4) ;
Labell->Font->Color = clRed;

' .)

Помимо функции ButtonlClick обработки щелчка на кнопке Buttonl в код за-
несено в разные места модуля еще несколько одинаковых функций: Fl — F4, и не-
сколько переменных символьного типа: Chi — Ch4. Сейчас мы не будем разби-
раться подробно в самих функциях. Нам важно понять, как из функций обращать-

Справочные данные по языку C++ 27

ся к различным объектам и переменным. Но краткое описание того, что делают
эти функции, надо дать.

У метки типа TLabel имеется свойство Caption — надпись на метке. Каждая
из функций Fl—F4 берет значение этой надписи, прибавляет к ней символ, пере-
данный в нее как параметр Ch, прибавляет далее символ, хранящийся в перемен-
ной Chi, и возвращает надпись с этими добавлениями обратно в метку.

Обработчик щелчка на кнопке — функция TForml::ButtonlClick, задает сим-
вольным переменным Chi—Ch4 значения символов "-", "А", "В" и "С", затем очи-
щает свойство Caption метки Labell, занося в него пустую строку, а затем пооче-
редно обращается к функциям Fl—F4, передавая в них в качестве параметров раз-
личные символы. В заключение надпись метки окрашивается в красный цвет. Для
этого используется свойство Font — шрифт объекта Labell. Это свойство само яв-
ляется объектом, имеющим свойство Color — цвет. Значение этого свойства изме-
няет последний оператор процедуры TForml::ButtonlClick.

1.2.4.2 Доступ к свойствам и методам объектов

Рассмотрим теперь, как получить из программы доступ к свойствам и методам
объектов. Доступ к интересующим нас объектам — компонентам можно получить
через объявленные в заголовочном файле модуля указатели на эти объекты. На-
пример, в объявлении класса формы TForml в заголовочном файле имеется строка

TLabel *Labell;

Эта строка объявляет Labell как указатель на метку — объект типа TLabel.
Если вы плохо представляете, что такое указатели, посмотрите в гл. 2 разд. 2.8,
или просто отнеситесь пока к тому, о чем будет рассказано ниже, как к некоторому
обязательному формализму. Честно говоря, программы в C-t-+Builder часто можно
писать, не задумываясь о сути этого формализма.

Доступ к элементам класса (данным — свойствам и функциям — методам)
обеспечивается одним из следующих двух способов. Можно использовать опера-
цию стрелка (символ " " и символ ">", записанные без пробела, т.е. "->") или
операцию точка (.). Первая из них применяется при обращении к объекту через
указатель на него, вторая — при обращении по имени переменной объекта или по
ссылке на него.

Посмотрите, например, в приведенном выше файле реализации модуля тек-
сты функций F1 и F2. Вы увидите в них выражения вида Labell—>Caption. Они
означают: свойство Caption объекта Labell. To же самое свойство Caption можно
было бы получить и с помощью выражения (*Labell).Caption. Здесь операция ра-
зыменование указателя (*Labell) дает сам объект, к которому можно применять
операцию точка.

Хотя эти два способа доступа к свойствам и методам объекта эквивалентны,
обычно в C++Builder используется операция стрелка. Поэтому в дальнейшем изложе-
нии в данной книге мы практически всегда будем пользоваться этой формой записи.

Иногда свойство объекта является в свою очередь объектом. Тогда в обраще-
нии к этому свойству указывается вся цепочка предшествующих объектов. Напри-
мер, метки имеют свойство Font — шрифт, которое в свою очередь является объек-
том. У этого объекта имеется множество свойств, в частности, свойство Color -
цвет шрифта. Чтобы сослаться на цвет шрифта метки Labell, надо написать
Labell— >Font—>Color (см. в тексте примера функцию TForml::ButtonlClick). Это
означает: свойство Color объекта Font, принадлежащего объекту Labell.

Аналогичная нотация используется и для доступа к методам объекта. Напри-
мер, для метки, как и для большинства других объектов, определен метод Hide,
который делает метку невидимой. Если вы в какой-то момент решили сделать мет-
ку Labell невидимой, можете написать оператор

Labell->Hide();

28 Глава 1

1.2.4.3 Различие переменных и функций, включенных
и не включенных в описание класса

Теперь посмотрим, чем различаются переменные и функции, включенные и не
включенные в описание класса. Переменные и функции, включенные в описание
класса, обычно называются соответственно данными-элементами и функция-
ми-элементами. Применительно к объектно-ориентированному проектированию
в C++Builder чаще их называют свойствами и методами. В приведенном
в разд. 1.2.4.1 примере переменная СЫ и функции F1 и F2 включены в описание
класса, а переменные Ch2, Ch3 и функции F3 и F4 объявлены вне класса. В чем бу-
дет проявляться различие в их использовании?

Если в приложении создается только один объект данного класса (в нашем
примере — только один объект формы класса TForml), то различие в основном
чисто внешнее. Для функций, объявленных в классе, в их описании к имени функ-
ции должна добавляться ссылка на класс с помощью так называемой бинарной
операции разрешения области действия "::" — см. разд. 1.9.13. В нашем примере
имена функций Fl, F2 и ButtonlClick в описании этих функций заменяются на
TForml::Fl, TForml::F2 и TForml::ButtonlClick. Тем самым указывается, что
речь идет о функциях класса TForml. Для функций F3 и F4, объявленных вне
класса, такого дополнения к имени не требуется.

Необходимость добавления в имена функций, описанных в классе, ссылок на
класс объясняется просто. Вы можете вне класса описать другую свою функцию
с тем же именем (например, F1), что и у функции класса. И тогда из функций, не
описанных в классе, вы сможете ссылаться на обе эти функции F1, только на одну
из них непосредственно --по имени F1, а на другую через объект класса -
Forml::Fl. Благодаря этому, при описании своих функций вне класса вы можете
даже не знать имен всех функций, описанных в классе (может быть этот класс опи-
сан в другом модуле, текст которого вы не видели). Никакой путаницы при этом не
возникнет.

Таким образом, применение операции разрешения области действия позволя-
ет объявить в разных классах и вне классов переменные и функции с одинаковыми
именами. В этом случае операция разрешения области действия указывает, о ка-
кой именно переменной или функции идет речь. В некоторых случаях при работе
с C++Builder разрешение области действия приходится делать вручную. Это про-
исходит в тех случаях, когда компилятор выдает сообщение, что не может выбрать
одну из нескольких альтернатив, например, не знает, к какому классу относится
указанный вами метод.

Обращение к переменным и функциям, описанным внутри и вне класса, из
функций, описанных вне класса, различается. К переменным и функциям, опи-
санным вне класса, обращение происходит просто по их именам, а к переменным
и функциям, описанным в классе, через имя объекта класса. Поэтому в нашем
примере в функциях F3 и F4 обращение к переменной СЫ имеет вид Forml—>
СЫ. По той же причине и обращение к свойству Caption объекта Label 1 в этих
функциях имеет вид Forml->Labell->Caption. Только через ссылку на объект
Forml внешние по отношению к классу функции могут получить доступ ко всему,
объявленному в классе.

Все эти ссылки на объект не требуются в функциях, объявленных в классе.
Поэтому в функциях TForml::Fl, TForml::F2 и TForml::ButtonlClick ссылки на
переменную СЫ и на объект Labell не содержат дополнительных ссылок на объ-
ект формы.

Если в приложении создается несколько объектов одного класса, например,
несколько форм класса TForml (это часто делается в приложениях с интерфейсом
множества документов MDI), то проявляются более принципиальные различия ме-
жду переменными, описанными внутри и вне класса. Переменные вне класса (в на-

Справочные данные по языку C++ 29

шем примере Ch2 и Ch3) так и остаются в одном экземпляре. А переменные, опи-
санные в классе (в нашем примере СЫ), тиражируются столько раз, сколько объ-
ектов данного класса создано. Т.е. в каждом объекте класса TForml будет своя пе-
ременная Chi, и все они друг с другом никак не будут связаны. Таким образом,
в переменную, описанную внутри класса, можно заносить какую-то информацию,
индивидуальную для каждого объекта данного класса. А переменная, описанная
в модуле вне описания класса, может хранить только одно значение.

Отметим без детальных пояснений еще одну особенность, которую вы уже, ве-
роятно, заметили в приведенных текстах файлов. Перед именами функций-эле-
ментов класса ставится опция компилятора fastcall. He вдаваясь в детали, ска-
жем, что эта опция влияет на процесс компиляции и обеспечивает передачу пара-
метров функции в быстрые регистры, что ускоряет вызов функции. Для функ-
ций-элементов классов эту опцию следует указывать всегда. Для других функций
ее можно указывать, а можно и не указывать. Впрочем, эту опцию целесообразно
указывать и для функций, не являющихся элементами класса (в приведенном
примере это не сделано, просто чтобы подчеркнуть различие между функция-
ми-элементами и прочими функциями).

В заключение просуммируем изложенные правила.
• В реализацию функций-элементов должна добавляться ссылка на класс с по-

мощью операции разрешения области действия (::).
• Функции-элементы объявляются и описываются с применением опции компи-

лятора fastcall.
• В функциях-элементах обращение к другим функциям-элементам и дан-

ным-элементам того же класса может осуществляться без указания на объект.
• В функциях, не являющихся элементами класса данного объекта, доступ

к функциям-элементам (методам) и данным-элементам (свойствам) осуществ-
ляется через указатель на объект с помощью операции стрелка (—>) или (зна-
чительно реже) с помощью разыменования указателя на объект и операции
точка (.).

1.3 Компиляция и компоновка проекта
Превращение проекта в выполняемый модуль включает в себя два последова-

тельно протекающих процесса: компиляцию и компоновку проекта. Компиляция,
в свою очередь, включает в себя работу препроцессора, упрощающего и проверяю-
щего исходный текст, и собственно компиляцию.

Компиляция приложения в C++Builder может выполняться несколькими спо-
собами. Компиляция с последующим выполнением приложения осуществляется
командой Run | R u n , или соответствующей быстрой кнопкой, или «горячей» клави-
шей F9. В этом случае производится компиляция программы, ее компоновка, соз-
дается выполняемый модуль .ехе и он запускается на выполнение. Впрочем, созда-
ние модуля .ехе и выполнение будет проводиться только в случае, если при компи-
ляции и компоновке не обнаружены неисправимые ошибки.

В процессе компиляции и компоновки на экране появляется окно, приведен-
ное на рис. 1.2. В его верхней строке вы видите имя компилируемого проекта.
В следующей строке отображается текущая операция: компиляция определенного
модуля (на рис. 1.2 показан момент компиляции модуля Unit2.cpp) или компонов-
ка (Linking). В третьей строке окна отображается текущая строка модуля (Current
line), обрабатываемая компилятором, и общее число строк в модуле (Total lines).
В нижней строке отображается обнаруженное на данный момент число замечаний
(Hints), предупреждений (Warnings) и ошибок (Errors). Клавиша Cancel внизу окна по-
зволяет прервать процесс компиляции и компоновки.

30 Глава 1

Если в компилируемом файле встретились неисправимые ошибки, выполняе-
мый файл не будет создан. Если ошибок нет, файл создастся, но и в этом случае
у компилятора могут быть предупреждения и замечания, которые вам надо внима-
тельно изучить.

Рис. 1.2
Окно компиляции и компоновки

| Project DA..Л

[Compiling: Untt2.<

j CurrentIne;:.

i Hints: С

ЗЭ j Total lines:

ngs: 0 j Errors:

Cancel

При компиляции проекта, состоящего из нескольких модулей, компилируют-
ся только те модули, тексты которых были изменены с момента предыдущей ком-
поновки проекта. Это существенно экономит время компиляции.

При выполнении команды Run вы можете задать командную строку, если ваше
приложение предусматривает передачу в него каких-то параметров. Для этого
надо сначала выполнить команду Run Parameters и в открывшемся окне написать
требуемую командную строку.

Не всегда вам надо компилировать проект и тут же выполнять его. Часто вам
важнее просто проверить, не содержат ли ваши последние изменения кода ка-
ких-то ошибок. В этом случае вам не имеет смысла терять время на выполнение
проекта и лучше воспользоваться другими командами меню: Project Compile Unit,
Project | Make Project или Project Bui ld Project.

Команда Compile выполняет компиляцию только того модуля, который выде-
лен вами в окне Редактора Кода или в Менеджере Проектов. Эта команда позволя-
ет наиболее быстро проверить наличие ошибок или замечаний при компиляции
модуля, так как не осуществляется компоновка программы и не компилируются
никакие другие модули. Если компиляция прошла успешно, создается объектный
файл .obj откомпилированного модуля.

Команда Make выполняет компиляцию всех тех модулей, тексты которых
были изменены с момента предыдущей компоновки проекта. Если компиляция
прошла успешно, то создаются объектные файлы модулей .obj и осуществляется
компоновка программы. Если и она прошла успешно, то создается выполняемый
модуль .ехе. Таким образом, отличие Make от Run только в том, что после компо-
новки не производится выполнение приложения.

Команда Build подобна команде Make за одним исключением — компилируют-
ся все модули, независимо от того, когда они в последний раз изменялись. Конеч-
но, выполнение этой команды требует наибольшего времени. Но иногда только ее
и можно использовать. Например, если с момента последней компиляции вы ниче-
го не изменяли в модулях, но хотите откомпилировать проект с новыми опциями
компилятора, например, изменить уровень оптимизации. Тогда все иные коман-
ды, кроме Bui ld, не произведут повторной компиляции. Так что эта команда во мно-
гих случаях необходима.

Помимо описанных команд компиляции имеется еще две: Project | Make All
Projects и Project | Build All Projects. Они подобны рассмотренным командам Make
и Bui ld , но при работе с группой проектов относятся не к одному, а ко всем проек-
там группы.

По умолчанию все команды компиляции в C+-t-Builder 6 выполняются в фоно-
вом режиме. Эта новая возможность, введенная начиная с C++Builder 5, позволяет
осуществлять во время компиляции и компоновки любые другие работы в ИСР.

Справочные данные по языку C++ 31

Это, конечно, удобно, но не всегда. Дело в том, что фоновая компиляция осуществ-
ляется медленнее. Кроме того, по завершении компиляции в фоновом режиме
окно компилятора исчезает, и при этом не показываются результаты компиляции:
прошла ли она успешно, или имеются замечания. Поэтому, если у вас нет каких-то
работ в ИСР, которые можно выполнять во время компиляции, лучше отключить
фоновый режим компиляции. Это можно сделать, выполнив команду Tools | Environ-
ment Options и выключив на странице Preferences опцию Background Compilation.

Если фоновый режим компиляции отключен, то после окончания компиля-
ции рассмотренными командами (кроме Run) в окне рис. 1.2.во второй строке появ-
ляется одно из трех итоговых сообщений: "Done: Make" "Результат: выполне-
но", "Done: There are errors" "Результат: имеются ошибки", "Done: There are
warnings" "Результат: имеются предупреждения".

Более подробные сведения о компиляции и компоновке проектов в C++Builder
и рекомендации по настройке и ускорению этих процессов вы найдете в книге [1].

1.4 Директивы препроцессора
Обработка программы препроцессором происходит перед ее компиляцией. На

этом этапе предварительной обработки вы можете выполнить следующие дейст-
вия: включить в компилируемый файл другие файлы, определить символические
константы и макросы, задать режим условной компиляции программного кода
и условного выполнения директив препроцессора. Все директивы препроцессора
начинаются с символа "#" и до начала директивы в строке могут находиться толь-
ко символы пробела. Любая строка, начинающаяся с символа "#", воспринимает-
ся как директива препроцессора.

Точка с запятой в конце директивы препроцессора не ставится.

1.4.1 Директива #include

Директива #mclude применяется для включения копии указанного в директи-
ве файла в то месте, где находится эта директива. Существуют три формы директи-
вы #include:

tinclude <имя_файла>
tinclude "имя_файла"
^include идентификатор макроса

Последняя форма предполагает, что первый значащий символ после слова
include не равен ни '<', ни ' ' '. Предполагается, что макрос, идентификатор кото-
рого используется в этой форме директивы, предварительно определен и использу-
ет одну из первых двух форм директивы #include.

Различие между первыми двумя формами директивы заключается в методе
поиска препроцессором включаемого файла. Если имя файла заключено в угловые
скобки "<" и ">", как это делается для включения заголовочных файлов стандарт-
ной библиотеки, то последовательность поиска'препроцессором заданного файла
в каталогах определяется заданными каталогами включения (include directories).
Если же имя файла заключено в кавычки, препроцессор ищет файл, просматривая
каталоги в следующей последовательности:

• каталог того файла, который содержит директиву #include
• каталоги файлов, которые включили в данный файл директивой #include
• текущий каталог

34 Глава 1

•
Вызов макроса осуществляется выражением:
идентификатор_макроса(аргументы)

Макрос, определяемый директивой препроцессора #define, это символическое
имя некоторых операций. Как и в случае символических констант, идентификатор
макроса заменяется на замещающий текст до начала компиляции программы. Но
сначала в замещающий текст подставляются значения параметров, а затем уже
этот расширенный макрос подставляется в текст вместо идентификатора макроса
и списка его параметров.

Например, следующий макрос с одним параметром определяет площадь кру-
га, воспринимая передаваемый в него параметр как радиус:

Idefine CIRC (х) (3.14159 * (х) * (х))

Везде в тексте файла, где появится идентификатор CIRC (А), значение аргу-
мента А будет использовано для замены х в замещающем тексте и этот расширен-
ный текст макроса будет использован для замещения. Например, оператор с мак-
росом в тексте программы

S = CIRC (4) ; '

примет вид:

S = (3.14159 * (4) * (4)) ;

Поскольку это выражение состоит только из констант, его значение будет вы-
числено во время компиляции и полученный результат будет присвоен перемен-
ной S во время выполнения программы.

Если вызов имеет вид

S = CIRC(а + Ь) ;

то после расширения макроса текст будет иметь вид:

S = (3.14159 * (a -t- b) * (а + Ь)) ;

В данном случае аргумент макроса является выражением, содержащим пере-
менные а и Ь. Поэтому вычисления будет осуществляться не во время компиля-
ции, а во время выполнения программы.

Обратите внимание на круглые скобки вокруг каждого включения параметра
х в тексте рассмотренного макроса и вокруг всего выражения. При вызове типа
СШС(4) они кажутся изл.ишними. Но во втором примере вызова при отсутствии
скобок расширение привело бы к оператору:

S = 3.14159 * а + Ь * а + Ь;

Тогда в соответствии со старшинством операций (см. разд. 1.9.16) сначала вы-
полнилось бы умножение 3.14159 * а, затем Ь * а, а затем результаты этих умно-
жений сложились бы друг с другом и с Ь. Конечно, результат вычислений был бы
неверным.

.Исходя из сказанного, можно посоветовать при объявлении макроса всегда за-
ключать в скобки параметры в замещающем тексте и сам замещающий текст. Это
избавит от возможных неприятностей, связанных с неверной последовательностью
вычислений при расширении макроса.

Приведем еще один пример: макрос, определяющий площадь эллипса через
значения его полуосей, может быть объявлен директивой

#define Е11(х,у) (3.14159 * (х) * (у))

Вызов этого макроса может иметь вид:

S = El l (Rl , R2) ;

С точки зрения получаемых результатов вычислений макросы эквивалентны
функциям. Например, вычисление площади круга можно было бы оформить
функцией:

-

Справочные данные по языку C++ 35

double circ(double x)
{
return 3.14159 * x * x;

)

и вызывать ее оператором:

S = circ(a + Ь) ;

Таким образом, возникает вопрос, что выгоднее использовать: макросы или
функции.

Вызов функции сопряжен с накладными расходами и затягивает выполнение
программы. Это соображение работает в пользу использования макросов. С другой
стороны, макрос расширяется во всех местах текста, где используется его вызов.
Если таких мест в программе много, то это увеличивает размер текста и, соответст-
венно, размер выполняемого модуля. Так что функции позволяют сокращать объ-
ем выполняемого файла, а макросы — сокращать скорость выполнения. Правда,
макросы тоже могут быть связаны с дополнительными накладными расходами.
В приведенном примере значение параметра а + Ъ вычисляется дважды, в то вре-
мя, как в функции это вычисление осуществляется только один раз. Конечно, для
таких простых вычислений это не существенно. Но если в качестве параметра пе-
редается сложное выражение, обращающееся в свою очередь к каким-нибудь
сложным функциям, то эти дополнительные накладные расходы могут стать за-
метными и затянуть вычисления.

Недостатком макросов является отсутствие встроенного контроля согласова-
ния типов аргументов и формальных параметров. Отсутствие соответствующих
предупреждений компилятора может приводить к ошибкам программы, которые
трудно отлавливать. Но наиболее существенный недостаток макросов — возмож-
ность появления побочных эффектов, если в качестве аргумента в макрос переда-
ется некоторое выражение. Например, если описанный выше макрос CIRC, вычис-
ляющий площадь круга, вызвать следующим образом:

S = C I R C (a + +)

предполагая рассчитать площадь и затем операцией постфиксного инкремента (см.
разд. 1.9.2) увеличить радиус на 1, то макрос будет расширен так:

S = (3.14159 * (а++) * (а + +)) ;

При этом площадь будет вычислена верно, но постфиксный инкремент вычис-
лится два раза. В результате значение радиуса а будет увеличено не на 1, а на 2.

Если же это макрос вызвать следующим образом:
S = C I R C (+ + a)

предполагая увеличить радиус на 1 и вычислить площадь круга с таким увеличен-
ным радиусом, то макрос будет расширен так:

S = (3.14159 * (++а) * (+ + а)) ;

При этом площадь будет определена неверно, так как в процессе вычислений
радиус будет увеличен дважды и выражение окажется эквивалентным следующему:

S = (3.14159 * (а + 1) * (а + 2)) ;

Всех этих побочных эффектов не будет, если вместо макроса использовать опи-
санную выше функцию circ.

При выборе реализации вычислений функцией или макросом надо обеспечи-
вать компромисс между скоростью вычислений и затратами памяти. Для неболь-
ших функций, возможно, наилучшим решением является применение встраивае-
мых функций (inline — см. разд. 1.7.6). Для них проблемы оптимальной реализа-
ции решает компилятор, и делает это он, вероятно, не хуже нас с вами.

36 Глава 1

1.4.2.3 Директива #undef

Определения символических констант и макросов могут быть аннулированы
при помощи директивы препроцессора #undef, имеющей вид:

tundef идентификатор

Директива отменяет определение символической константы или макроса
с указанным идентификатором. Таким образом, область действия символической
константы или макроса начинается с места их определения и заканчивается яв-
ным их аннулированием директивой #undef или концом файла. После аннулиро-
вания соответствующий идентификатор может быть снова использован в директи-
ве #define.

Например, возможен следующий код:

tdefine MyConst 128
// Здесь константа MyConst равна 128

tundef MyConst
// Здесь константу MyConst использовать нельзя

#define MyConst 64
// Здесь константа MyConst равна 64

1.4.3 Условная компиляция: директивы #if, #endif, #ifdef,
tfifndef. #else, #elif

Условная компиляция дает возможность программисту управлять выполнени-
ем директив препроцессора и компиляцией программного кода. Каждая условная
директива препроцессора вычисляет значение целочисленного константного выра-
жения. Операции преобразования типов, операция sizeof и константы перечисли-
мого типа не могут участвовать в выражениях, вычисляемых в директивах пре-
процессора.

Условная директива препроцессора #if во многом похожа на оператор if. Ее
синтаксис имеет вид:

#if условие
фрагмент кода

#endif

В этой записи условие является целочисленным выражением. Если это выра-
жение возвращает не нуль (истинно), то фрагмент кода, заключенный между ди-
рективой #if и директивой #endif, компилируется. Если же выражение возвраща-
ет нуль (ложно), то этот фрагмент игнорируется и препроцессором, и компилято-
ром.

В условиях, помимо обычных выражений, можно использовать конструкцию

defined идентификатор

defined возвращает 1, если указанный идентификатор ранее был определен дирек-
тивой #define, и возвращает 0 в противном случае. Например, возможен следую-
щий код:

#if defined Debug && !defined MyConst
фрагмент кода
#endif

Фрагмент кода будет выполняться, если ранее была записана директива

tdefine Debug

и не было директивы

tdefine MyConst

Справочные данные по языку C++ 37

или эта директива была отменена директивой
#undef MyConst

Конструкция #if defined может быть заменена эквивалентной ей директивой
#ifdef, а конструкция #if ! defined — директивой #ifndef. Например, тексты

#ifdef Size

#endif

и

#if defined Size
. . . I
#endif

эквивалентны.
Можно использовать более сложные конструкции условных директив препро-

цессора при помощи директив #elif (эквивалент else if в обычной структуре if)
и #else (эквивалент else в структуре if). Например, в коде

#if условие 1
фрагмент кода 1

#elif условие 2
фрагмент кода 2

#else
фрагмент кода 3

#endif

фрагмент кода 1 будет компилироваться, если выполняется условие 1, фрагмент
кода 2 будет компилироваться, если выполняется условие 2, а фрагмент кода 3 бу-
дет компилироваться, если не выполняется ни одно из предыдущих условий.

Условная компиляция может быть полезна во многих случаях. Например, не-
редко в процессе отладки приложения в него полезно ввести различные отладоч-
ные печати, позволяющие следить за ходом выполнения программы. Если вы не
хотите, чтобы эти печати оставались в окончательном варианте программы, вы мо-
жете в разных местах приложения ввести конструкции вида

#ifdef Debug
операторы отладки
#endif

Тогда, если в начале программы вы введете директиву
#define Debug

операторы отладки будут компилироваться и выполняться. Но когда вы уберете
или закомментируете эту директиву #define, определяющую введенный вами
идентификатор Debug, все операторы отладки исчезнут из текста. Можно посту-
пить даже проще, ничего не изменяя в тексте, а оперируя опцией Conditionals на
странице Directories/Conditionals диалогового окна, вызываемого командой Project
Options.

Конечно, вы могли бы поступить иначе: ввести переменную булева типа
Debug, задать ей в начале выполнения приложения значение true и оформлять от-
ладки следующим образом:

#if (Debug)
(
операторы отладки
}

Если в дальнейшем заменить задаваемое значение Debug на false, то операто-
ры отладки перестанут выполняться. Отличие этого подхода от использования ди-
ректив препроцессора заключается в том, что коды операторов отладки в этом слу-

38 Глава 1

чае останутся в тексте программы, увеличивая размер выполняемого модуля.
А директивы условной компиляции просто уберут отладочный код из программы.

Приведем еще один пример использования условной компиляции. Если вы
взглянете на заголовочный файл любого модуля формы вашего приложения, то
увидите, что C++Builder первыми операторами вставляет в него директивы вида:

ifndef UnitlH
define UnitlH

А завершается заголовочный файл директивой
#endif

Что это дает? Это позволяет исключить зацикливание при циклических ди-
рективах #include, включающих в различных модулях заголовочные файлы друг
друга. Когда в приложение первый раз включается модуль Unitl.h, то выполняют-
ся указанные выше первые две директивы и идентификатор UnitlH оказывается
определен. После этого компилируется текст файла. Но если в результате дирек-
тив #include этот же файл будет включаться еще один раз, то обнаружится, что
идентификатор UnitlH уже определен, и повторной компиляции файла не про-
изойдет.

1.4.4 Директивы #error, #line, #pragma

Директива препроцессора #еггог имеет следующий синтаксис:

terror errmsg

Директива печатает в процессе компиляции сообщение об ошибке вида:
Error: f i lename line# : Error directive: errmsg

где errmsg — сообщение, заданное директивой #еггог. После печати этого сообще-
ния компиляция прекращается.

Директива используется в сочетании с директивами условной компиляции
и срабатывает при возникновении условий, не позволяющих продолжить работу.
Например:

t i fndef Unit lH
terror He найден файл Uni t l .h

Директива препроцессора #line задает целочисленное константное начальное
значение номера строки для нумерации следующих за директивой строк исходного
текста программы. Возможны две формы директивы:

#line номер_строки
#line номер строки "имя_файла"

Элемент директивы номер_строки задает начальное значение номера строки.
Все последующие строки исходного текста программы будут нумероваться, начи-
ная с этого номера. Если в директиву включено имя файла, то не только изменяет-
ся нумерация последующих строк программы, но и компилятор во всех своих сооб-
щениях будет ссылаться на файл с указанным именем. Директива #line обычно ис-
пользуется для того, чтобы сделать сообщения о синтаксических ошибках и преду-
преждения компилятора более удобными для понимания. Номера строк не добав-
ляются в исходный файл. Пример директивы:

#line 100 "Unit l .cpp"

Применение директивы #line делает работу с отладчиком C++Builder не очень
удобной. При возникновении ошибки курсор в окне Редактора Кода останавлива-
ется не на строке с ошибкой, а на начале текущего файла или, если в директиве
указано имя другого существующего файла, то на начале этого файла. Так что
можно рекомендовать не использовать без особой надобности директиву #line.

Справочные данные по языку C++ 39

Директива #pragma имеет следующий синтаксис:
Ipragma имя опции

и вызывает действия, зависящие от указанной опции. Список возможных опций
вы можете найти во встроенной справке C+4-Builder. Он довольно обширен и свя-
зан с различными режимами работы препроцессора.

Пример директивы #pragma вы можете видеть в любом модуле своего проек-
та. Первые две строки файла любого модуля имеют вид:

(finclude <vcl.h>
tpragma hdrstop

Здесь использована опция hdrstop. Она связана с особенностью работы пре-
процессора, производительность которого существенно повышается, если учиты-
вается, что некоторое количество заголовочных файлов общее для всех модулей.
Директива #pragma hdrstop указывает компилятору конец списка таких общих
файлов. Так что надо следить за тем, чтобы не добавлять перед этой директивой
включение каких-то заголовочных файлов, не являющихся общими для других
модулей.

В файлах модулей вы можете увидеть еще две директивы #pragma:
#pragma package(smart_init)
#pragma resource "* .dfm"

Первая из них определяет последовательность инициализации пакетов такой,
какая устанавливается взаимными ссылками использующих их модулей. Вторая
говорит препроцессору, что для формы надо использовать файл .dfm с тем же име-
нем, что и имя данного файла. Во избежание всяких неприятностей лучше не тро^
гать и не изменять эти директивы.

Вы может включать в модуль директивы вида:
#pragma message(текст);

или

tpragma message(идентификатор);

где текст — произвольная строка, а идентификатор — некий идентификатор, объяв-
ленный предварительно директивой #define. Введенные с помощью #pragma mes-
sage тексты появятся как сообщения компилятора во время компиляции вашего
приложения и позволят проследить ход компиляции. Но для того, чтобы сообще-
ния появились, надо выполнить команду Projects | Options, перейти в открывшемся
диалоговом окне на страницу Compiler и включить индикатор Show general messages.
Если вы это проделали и включили, например, в начале обработчика щелчка на
кнопке Buttonl вашего приложение оператор

#pragma message("компилируется T F o r m l : r B u t t o n l C l i c k ")

а в конце того же обработчика операторы

Idefine text "компиляция TForml : :But tonlCl ick завершена"
tpragma message (text)

то при компиляции приложения в окне сообщений вы увидите строки:
[C++] Unitl.cpp(l):
[C++] Loaded cached pre-compiled headers
[C++] компилируется TForml:rButtonlClick
[C++] компиляция TForml::ButtonlClick завершена
[Linker]

А если при компиляции обнаружились какие-то ошибки, они будут размеще-
ны между указанными вами сообщениями, так что вам проще будет понять, где
эти ошибки.

В модуль можно также включать директивы

40 Глава 1

#pragma startup имя_функции приоритет
#pragma exit имя__функции приоритет

Первая из них указывает имя функции, которая должна вызываться в самом
начале выполнения приложения, до того, как будет вызвана функция WinMain
или main. Вторая указывает имя функции, которая должны вызываться перед за-
вершением программы функцией _exit. Функции должны быть определены да по-
явления в тексте этих директив. Точнее, реализованы они могут быть после, но то-
гда до директив должны быть расположены их прототипы.

Функции не должны принимать никаких параметров и не должны возвращать
результат. Иначе говоря, они должны быть объявлены как

void f u n c (v o i d) ;

Параметр приоритет может не указываться. Тогда, если вы включите в модуль
несколько директив, вызывающих различные функции, то функции, вызываемые
перед началом выполнения, будут вызываться в той последовательности, в кото-
рой расположены директивы #pragma startup. Но эту последовательность можно
изменить, задавая в директивах соответствующие приоритеты. Приоритеты зада-
ются целыми числами от 64 до 255. Приоритеты от 0 да 63 используются библио-
течными функциями C++ и в приложениях задаваться не должны.

Высший приоритет — 0. Приоритет по умолчанию — 100. Если заданы при-
оритеты, то функции с более высоким приоритетом перед началом выполнения вы-
зываются первыми, а перед завершением выполнения — последними.

Рассматриваемые директивы можно использовать для начальной установки ка-
ких-то глобальных переменных, определения типов, каких-то запросов пользовате-
лю, а также для зачистки «мусора» при аварийном завершении приложения. Приве-
дем чисто демонстрационный пример. Введите в приложение следующие операторы:

void f I (vo id) ;
void f 2 (v o i d) ;
tpragma startup f l
#pragma startup f2

AnsiString Ыате="Неизвестный";
void f1(void)
(
if (! InputQuery("Пожалуйста, представьтесь",

"Укажите, как в дальнейшем обращаться к Вам", Name))
ShowMessage("Вы не представились, господин неизвестный");

else ShowMessage("Здравтвуйте, господин " + Name + " !");

}
void f2(void)

(
ShowMessage("Начало работы");

}

Выполните это приложение. Вы увидите, что прежде, чем откроется его глав-
ная форма, будет вызвана функция fl и пользователю будет показано диалоговое
окно с просьбой представиться. Вид этого окна вы можете посмотреть в гл. 4 в опи-
сании функции InputQuery. Введенное пользователем имя записывается в гло-
бальную переменную Name и может использоваться при выполнении программы
для формирования обращений к пользователю.

После вызова fl последует вызов функции f2, сообщающей о начале работы,
и только после этого пользователь увидит главную форму приложения.

Если вы замените директиву вызова f 1 на
#pragma startup fl 101

то сначала будет вызвана функция f2, имеющая по умолчанию приоритет 100,
и только после этого вызовется функция fl.

Справочные данные по языку C++ 41

1.4.5 Операции препроцессора # и ##

Операция препроцессора # применяется к параметрам макросов, представ-
ляющим собой лексемы (текст). Операция преобразует лексему в строку символов,
взятую в кавычки. Например, если определен следующий макрос:

#define Pers(x) Labell->Caption = "Сотрудник " #х

и в тексте программы он вызван оператором

Pers(Иванов);

то он будет расширяться до

Labell->Caption = "Сотрудник " "Иванов"

Строка "Иванов" заменила параметр #х в замещающем тексте. Строки, разде-
ленные символами пробела, сцепляются (склеиваются) во время предварительной
обработки, так что вышеприведенный оператор эквивалентен оператору

Labell->Caption = "Сотрудник Иванов"

Операция ## выполняет конкатенацию (сцепление, склеивание) двух лексем.
Например, если определен макрос

#define C o n c a t (x , y) x ## у

то встреченное в тексте программы выражение Concat(Edit,l) будет преобразовано
в Editl.

1.5 Константы

1.5.1 Неименованные константы

Константы могут использоваться непосредственно в тексте программы в лю-
бых операторах и выражениях. Имеется 4 типа констант: целые, с плавающей за-
пятой, символьные (включая строки) и перечислимые. Например: 25 и -5 — целые
константы, 4.8, 5е15, 5Е15, -5.1е8 — константы с плавающей запятой, 'А', '\0',
'\п', '007' — символьные константы, "Это строка" - строковая константа.

Целые константы могут быть десятичные, восьмеричные и шестнадцатерич-
ные. Восьмеричные начинаются с символа нуля, после которого следуют восьме-
ричные цифры (от 0 до 7). Например: 032. Запись константы вида 08 будет воспри-
нята как ошибка, поскольку 8 не является восьмеричной цифрой. Восьмеричные
константы не могут превышать значения 037777777777. Значения, большие этой
величины, усекаются.

Шестнадцатеричные константы начинаются с символов нуля и X или х, после
которых следуют Шестнадцатеричные цифры (от 0 до F, можно записывать в верх-
нем или нижнем регистрах). Например: OXF01. Шестнадцатеричные константы не
могут превышать значения OxFFFFFFFF. Значения, большие этой величины, усека-
ются.

Символьные константы должны заключаться в одинарные кавычки. Эти кон-
станты хранятся как char, signed char или unsigned char.

Строковые константы заключаются в двойные кавычки. Они хранятся как по-
следовательность символов, завершающаяся нулевым символом '\0'. Пустая стро-
ка содержит только нулевой символ.

Если две строковые константы разделены в тексте только пробельным симво-
лом, они склеиваются в одну строку. Например:

"Это начало строки, " "а это ее продолжение"

ИЛИ

42 _ Глава 1

"Это начало строки, "
"а это ее продолжение"

воспримутся как константа
"Это начало строки, а это ее продолжение"

Перенос длинной строки с одной строчки кода в другую можно делать не толь-
ко так, как показано выше, но и помещая в конец первой строчки одиночный сим-
вол обратного слэша '\'. Например, запись

"Это начало строки, \
а это ее продолжение"

воспримется как одна строка.
В строковой константе можно использовать управляющие символы, предва-

ряемые обратным слэшем. Например, константа
"\"4MH\"\t XtAflpec\nMBaHOB\t \tMocKBa"

будет при отображении на экране выглядеть так
"Имя" Адрес
Иванов Москва

Кавычки после символа "\" воспринимаются как символ кавычек, а не как
окончание строки. Символы "\t" и "\п" означают соответственно табуляцию и пе-
ревод строки.

Если в константу должен быть включен обратный слэш "\", то надо поместить
подряд два слэша. Например, строка

"с: \\test\\test. срр"

будет откомпилирована (если компиляция осуществляется с опцией —А) как
"c:\test\test.cpp"

Константы перечислимого типа объявляются следующим образом:
enum имя (значения);

Например, оператор

enum color { red, yellow, green } ;

объявляет переменную с именем color, которая может принимать константные
значения red, yellow или green. Эти значения в дальнейшем можно использовать
как константы для присваивания переменной color или для проверки ее значения.
Этим константам соответствуют целые значения, определяемые их местом в спис-
ке объявления: red — 0, yellow — 1, green — 2. Эти значения можно изменить,
если инициализировать константы явным образом. Например, объявление

enum color { red, yellow = 3, green = red + 1} ;

приведет к тому, что значения констант будут равны: red — 0, yellow — 3, gre-
en — 1. При этом не обязательно должна соблюдаться уникальность значений. Не-
сколько констант в списке могут иметь одинаковые значения.

В C++Builder имеется ряд предопределенных констант, основные из которых
true — истина, false — ложь, NULL — нулевой указатель.

1.5.2 Именованные константы
Именованная константа — это константа, которой присвоен некоторый иден-

тификатор. Объявление именованной константы является указателем для компи-
лятора заменить во всем тексте этот идентификатор значением константы. Такая
замена производится только в процессе компиляции и не отражается на исходном
тексте.

Справочные данные по языку C++ 43

Цель объявления именованной константы — сделать текст более осмыслен-
ным и облегчить при необходимости изменение значения константы во всем тек-
сте. Например, если в тексте многократно используется число 55, означающее
максимально допустимое значение каких-то переменных, то проверки

if (N > NMax) ...

более понятны, чем
if (N > 55) . . .

При необходимости сменить это число, проще изменить его в одном месте про-
граммы — в объявлении константы NMax, чем искать по всему тексту числа 55,
которые, к тому же, в разных частях программы могут иметь разный смысл.

Именованные константы объявляются так же, как переменные (см. разд.
1.6.1), но с добавлением модификатора const:

const тип имя_константы = значение;

Например:
const f loat Pi = 3.14159;

В качестве значения константы можно указывать и константное выражение,
содержащее ранее объявленные константы. Например, если вы объявили констан-
ту Pi, то далее можете объявить константы

const f loat Pi2 = 2 * Pi; //удвоенное число Пи
const f loat Kd = Pi/180; // коэффициент пересчета градусов в радианы

Для целых констант тип можно не указывать:
const maxint = 12345;

Но будьте осторожны, не забывайте указывать тип для констант, тип которых
отличен от int. Например, объявление "const Pi = 3.14159;" присвоит константе Pi
значение 3, поскольку константа без указания типа считается целой.

Попытка где-то в тексте изменить значение именованной константы приведет
к ошибке компиляции с выдачей соответствующего сообщения.

Приведем еще примеры объявления именованных констант:
char *const strl = "Привет!";
char const *str2 = "Всем привет!";

Первое объявление вводит константу strl, являющуюся постоянным указате-
лем на строку. Второе объявляет указатель str2 на строковую константу. Этот ука-
затель не является константой. Его в процессе выполнения программы можно из-
менить так, чтобы он указывал на другую строковую константу. Иначе говоря,
оператор

str2 = strl;

допустим, а оператор [
strl = str2;

вызовет ошибку компиляции.

1.5.3 Объявленные (manifest) константы

В C++Builder предопределен ряд глобальных идентификаторов — макросов,
называемых иногда объявленными (manifest) константами. Большинство из них
начинаются с двух символов подчеркивания. В приведенной ниже таблице для
большей наглядности и во избежание путаницы между этими символами подчер-
кивания введены пробелы, т.е. вместо () записано (). В реальных идентифика-
торах этот пробел не должен фигурировать. Ниже приводится только часть объяв-

44 Глава 1

ленных констант. Остальные вы можете посмотреть во встроенной справке Borland
C++Builder.

Макрос

_ _ВСОРТ_ _

_ _BCPLUSPLUS_

_ _BORLANDC_ _

_ _CDECL_ _

_CHAR_UNSIGNED

_ _CONSOLE_ _

_CPPUNWIND

_cplusplus

_ _DATE_ _

_ _DLL_ _

_ _FILE_ _

_ _FLAT_ _

LINE

PASCAL

STDC

TEMPLATES

TIME _

WIN32 _

Значение

1

0x0530

0x0530

1

1

1

1

строка

1

строка

1

целое

1

1

1

строка

1

Описание

Определен в любом компиляторе, произво-
дящем оптимизацию

Определен, если вы выбрали компиляцию
C++; в последующих версиях значение бу-
дет увеличено

Номер версии

Определен, если установлено соглашение
вызова cdecl

Определен, если выбрана опция, что по
умолчанию тип char эквивалентен unsig-
ned char; при опции —К макрос не опреде-
лен

Определен для консольных приложений

По умолчанию определен и показывает,
что доступно разматывание стека; при
— xd— не определен

Определен в режиме C++

Дата компиляции исходного файла (строка
в формате "Mmm dd yyyy", например,
"Jan 19 1994")

Определен при использовании опции — WD

Предполагаемое имя исходного файла.

Определен при компиляции в модели па-
мяти flat с разрядностью 32 бита

Номер текущей строки исходного текста
программы

Определен, если установлено соглашение
вызова Pascal

Используется для указания, что данная
реализация удовлетворяет стандартам
ANSI. Определена, если вы компилирова-
ли с опцией —А

Определен для файлов C++, означает, что
поддерживаются шаблоны

Время компиляции исходного файла (сим-
вольная строка формата "hh:mm:ss")

Определен для приложений консольных
и GUI

Макросы _ _DATE_ _, _ _FILE_ _, _ _LINE_ _, _ _STDC_ _ и _ _TIME_ _ не
должны появляться в файле непосредственно за директивами #define и #undef.

Справочные данные по языку C++ 45

1.6 Переменные
1.6.1 Объявление переменных

Переменная является идентификатором, обозначающим некоторую область
в памяти, в которой хранится значение переменной. Это значение может изме-
няться во время выполнения приложения.

Объявление переменной имеет вид:
тип список идентификаторов_переменных;

Список идентификаторов может состоять из идентификаторов переменных,
разделенных запятыми. Например:

int xl, х2;

Одновременно с объявлением некоторые или все переменные могут быть ини-
циализированы. Например:

int xl = 1, х2 = 2;

Для инициализации можно использовать не только константы, но и произ-
вольные выражения, содержащие объявленные ранее константы и переменные.
Например:

int xl = 1, х2 = 2 * xl;

Объявление переменных может быть отдельным оператором или делаться
внутри таких операторов, как, например, оператор цикла:

for (int i = 0; i < 10; i++)

1.6.2 Классы памяти

Каждая переменная характеризуется некоторым классом памяти, который
определяет ее время жизни — период, в течение которого эта переменная сущест-
вует в памяти. Одни переменные существуют недолго, другие — неоднократно соз-
даются и уничтожаются, третьи — существуют на протяжении всего времени вы-
полнения программы.

В C+-l-Builder имеется четыре спецификации класса памяти: auto, register,
extern и static. Спецификация класса памяти идентификатора определяет его
класс памяти, область действия и пространство имен.

Областью действия (областью видимости) идентификатора называется об-
ласть программы, в которой на данную переменную (как, впрочем, и на любой
идентификатор — константу, функцию и т.п.) можно сослаться. На некоторые пе-
ременные можно сослаться в любом месте программы, тогда как на другие — толь-
ко в определенных ее частях.

Класс памяти определяется, в частности, местом объявления переменной. Ло-
кальные переменные объявляются внутри некоторого блока или функции. Эти пе-
ременные видны только в пределах того блока, в котором они объявлены. Блоком
называется фрагмент кода, ограниченный фигурными скобками "{}". Глобальные
переменные объявляются вне какого-либо блока или функции.

Спецификации класса памяти могут быть разбиты на два класса: автомати-
ческий класс памяти с локальным временем жизни и статический класс памяти
с глобальным временем жизни. Ключевые слова auto и register используются для
объявления переменных с локальным временем жизни. Эти спецификации приме-
нимы только к локальным переменным. Локальные переменные создаются при
входе в блок, в котором они объявлены, существуют лишь во время активности
блока и исчезают при выходе из блока.

46 Глава 1

Спецификация auto, как и другие спецификации, может указываться перед
типом в объявлении переменных. Например:

auto float x, у;

Локальные переменные являются переменными с локальным временем жизни
по умолчанию, так что ключевое слово auto используется редко. Далее мы будем
ссылаться на переменные автоматического класса памяти просто как на автомати-
ческие переменные.

Пусть, например, имеется следующий фрагмент кода:
{
int 1 = 1;

к которому в ходе работы программы происходит неоднократное обращение. При
каждом таком обращении переменная i будет создаваться заново (под нее будет вы-
деляться память) и будет инициализироваться единицей. Затем в ходе работы про-
граммы ее значение будет увеличиваться на 1 операцией инкремента. В конце вы-
полнения этого блока переменная исчезнет и выделенная под нее память освобо-
дится. Следовательно, в такой локальной переменной невозможно хранить ка-
кую-то информацию между двумя обращениями к блоку.

Спецификация класса памяти register может быть помещена перед объявле-
нием автоматической переменной, чтобы компилятор сохранял переменную не
в памяти, а в одном из высокоскоростных аппаратных регистров компьютера. На-
пример:

register int i = 1 ;

Если интенсивно используемые переменные, такие как счетчики или суммы,
могут сохраняться в аппаратных регистрах, накладные расходы на повторную за-
грузку переменных из памяти в регистр и обратную загрузку результата в память
могут быть исключены. Это сокращает время вычислений.

Компилятор может проигнорировать объявления register. Например, может
оказаться недостаточным количество регистров, доступных компилятору для ис-
пользования. К тому же оптимизирующий компилятор способен распознавать час-
то используемые переменные и решать, помещать их в регистры или нет. Так что
явное объявление спецификации register используется редко.

Обсуждая способность компилятора по своему разумению помещать перемен-
ные в регистры, надо сказать, что могут быть ситуации, когда это недопустимо.
Например, если переменная может асинхронно изменяться в процессе выполнения
каким-то фоновым процессом. Такие переменные надо помечать модификатором
volatile. Например:

volatile int tik;

Модификатор volatile указывает компилятору, что переменная может изме-
няться каким-то другим процессом. Например, это может быть связано с отлавли-
ванием каких-то прерываний, с сообщениями, поступающими от портов ввода,
с параллельно выполняемой нитью многопоточного процесса. Компилятор не дол-
жен помещать такую процедуру в регистры и не должен осуществлять проверку ее
значений, так как они могут изменяться.

C++ расширил действие модификатора volatile на классы (см. разд. 2.14) и на
их функции-элементы. Чтобы не возвращаться к этому модификатору, отмечу, что
если объект объявлен volatile, то он может использовать только функции-элемен-
ты, также объявленные volatile.

Справочные данные по языку C++ 47

Ключевые слова extern и static используются, чтобы объявить идентификато-
ры переменных как идентификаторы статического класса памяти с глобальным
временем жизни. Такие переменные существуют с момента начала выполнения
программы. Для таких переменных память выделяется и инициализируется сразу
после начала выполнения программы.

Существует два типа переменных статического класса памяти: глобальные пе-
ременные и локальные переменные, объявленные спецификацией класса памяти
static. Глобальные переменные по умолчанию относятся к классу памяти extern.
Глобальные переменные создаются путем размещения их объявлений вне описа-
ния какой-либо функции и сохраняют свои значения в течение всего времени вы-
полнения программы. На глобальные переменные может ссылаться любая функ-
ция, которая расположена после их объявления или описания в файле.

Переменные, используемые только в отдельной функции, предпочтительнее
объявлять как локальные переменные этой функции, а не как глобальные пере-
менные. Это облегчает чтение программы и позволяет избежать случайного досту-
па к таким переменным других функций.

Локальные переменные, объявленные с ключевым словом static, известны
только в том блоке, в котором они определены. Но в отличие от автоматических
переменных, локальные переменные static сохраняют свои значения в течение
всего времени выполнения программы. При каждом следующем обращении к это-
му блоку локальные переменные содержат те значения, которые они имели при
предыдущем обращении.

Вернемся к уже рассмотренному выше примеру, но укажем для переменной i
статический класс:

{
static int i = 1;

Инициализация переменной i произойдет только один раз за время выполне-
ния программы. При первом обращении к этому блоку значение переменной i бу-
дет равно 1. К концу выполнения блока ее значение станет равно 2. При следую-
щем обращении к блоку это значение сохранится и при окончании повторного вы-
полнения блока i будет равно 3. Таким образом, статическая переменная способна
хранить информацию между обращениями к блоку и, следовательно, может ис-
пользоваться, например, как счетчик числа обращений.

Все числовые переменные статического класса памяти принимают нулевые
начальные значения, если программист явно не указал другие начальные значе-
ния. Статические переменные — указатели, тоже имеют нулевые начальные зна-
чения.

Спецификации класса памяти extern используются в программах с несколь-
кими файлами. Пусть, например, в модуле Unitl в файле Unitl.cpp или Unitl.h
(это безразлично) объявлена глобальная переменная

int a = 5;

Тогда, если в другом модуле Unit2 в файле Unit2.cpp или Unit2.h объявлена
глобальная переменная

extern int а;

то компилятор понимает, что речь идет об одной и той же переменной. И оба моду-
ля могут с ней работать. Для этого даже нет необходимости связывать эти модули
директивой #include (см. разд. 1.4.1), включающей в модуль Unitl заголовочный
файл второго модуля.

Подробнее области видимости переменных рассмотрены в разд. 1.8.

48 Глава 1

1.7 Функции
1.7.1 Объявление и описание функций

Функции представляют собой программные блоки, которые могут вызываться
из разных частей программы. При вызове в них передаются некоторые перемен-
ные, константы, выражения, являющиеся аргументами, которые в самих процеду-
рах и функциях воспринимаются как формальные параметры. При этом функции
возвращают значение определенного типа, которое замещает в вызвавшем выра-
жении имя вызванной функции.

Например, оператор

I = 5 * F (X) ;

вызывает функцию F с аргументом X, умножает возвращенное ею значение на 5
и присваивает результат переменной I.

Допускается также вызов функции, не использующий возвращаемого ею зна-
чения. Например:

F (X) ;

В этом случае возвращаемое функцией значение игнорируется.
Функция описывается следующим образом:
тип_возвращаемого_эначения имя_функции(список_параметров)
(

операторы тела функции
}

Первая строка этого описания, содержащая тип возвращаемого значения, имя
функции и список параметров, называется заголовком функции. Тип возвращае-
мого значения может быть любым, кроме массива и функции. Могут быть также
функции, не возвращающие никакого значения. В заголовке таких функций тип
возвращаемого значения объявляется void.

Если тип возвращаемого значения не указан, он по умолчанию считается рав-
ным int. Впрочем, можно посоветовать не злоупотреблять этой возможностью.
Лучше всегда указывать тип возвращаемого функцией значения, кроме главной
функции main. Указание типа делает программу более наглядной и предотвращает
возможные ошибки, связанные с неправильным преобразованием типов.

Список параметров, заключаемый в скобки, в простейшем случае (более слож-
ные формы задания списка параметров будут рассмотрены позднее) представляет
собой разделяемый запятыми список вида

тип параметра иденификатор_параметра

Например, заголовок:
double FSum(double XI,double X 2 , int A)

объявляет функцию с именем FSum, с тремя параметрами XI, Х2 и А, из которых
первые два имеют тип double, а последний — int. Тип возвращаемого результа-
та — double. Имена параметров XI, Х2 и А — локальные, т.е. они имеют значение
только внутри данной функции и никак не связаны с 'именами аргументов, пере-
данных при вызове функции. Значения этих параметров в начале выполнения
функции равны значениям аргументов на момент вызова функции. Подробнее эти
вопросы будут рассмотрены в разд. 1.7.2.

Ниже приведен заголовок функции, не возвращающей никакого значения:

void SPrint(AnsiStr ing S)

Она принимает один параметр типа строки и, например, отображает его в ка-
ком-нибудь окне приложения.

Справочные данные по языку C++ 49

Если функция не принимает никаких параметров, то скобки или оставляются
пустыми, или в них записывается ключевое слово void. Например:

void Fl(void)

ИЛИ

void Fl ()
Первая из приведенных записей предпочтительнее, так как делает программу

более переносимой.

Обратите внимание на то, что роль пустого списка параметров функции в C++
существенно отличается от аналогичного списка в языке С. В С это означает, что
все проверки аргументов отсутствуют (т.е. вызов функции может передать любой
аргумент, который требуется). А в C++ пустой список означает отсутствие аргу-
ментов. Таким образом, программа на С, использующая эту особенность, может со-
общить о синтаксической ошибке при компиляции в C++.

Как правило (хотя формально не обязательно), помимо описания функции
в текст программы включается также прототип функции — ее предварительное
объявление. Прототип представляет собой тот же заголовок функции, но с точкой
с запятой ";" в конце. Кроме того, в прототипе можно не указывать имена парамет-
ров. Если вы все-таки указываете имена, то их областью действия является только
этот прототип функции. Вы можете использовать те же идентификаторы в любом
месте программы в любом качестве. Таким образом, указание имен параметров
в прототипе обычно преследует только одну цель — документирование программы,
напоминание вам или сопровождающему программу человеку, какой параметр что
именно обозначает.

Примеры прототипов приведенных выше заголовков функций:
double FSum(double XI,double Х2, int А) ;
void SPrint(AnsiStr ing S);
void F l (v o i d) ;

ИЛИ

double FSum(double, double, i n t) ;
void SPrint(AnsiStr ing);
void Fl () ;

Введение в программу прототипов функций преследует несколько целей.
Во-первых, это позволяет использовать в данном модуле функцию, описанную
в каком-нибудь другом модуле. Тогда из прототипа компилятор получает сведе-
ния, сколько параметров, какого типа и в какой последовательности получает дан-
ная функция. Во-вторых, если в начале модуля вы определили прототипы функ-
ций, то последовательность размещения в модуле описания функций безразлична.
При отсутствии прототипов любая используемая функция должна быть описана до
ее первого вызова в тексте. Это прибавляет вам хлопот, а иногда при взаимных вы-
зовах функций друг из друга вообще невозможно. И, наконец, прототипы, разме-
щенные в одном месте (обычно в начале модуля), делают программу более нагляд-
ной и самодокументированной. Особенно в случае, если вы снабжаете прототипы
хотя бы краткими комментариями.

Если предполагается, что какие-то из описанных в модуле функций могут ис-
пользоваться в других модулях, прототипы этих функций следует включать в за-
головочный файл. Тогда в модулях, использующих данные функции, достаточно
будет написать директиву #include (см. разд. 1.4.1), включающую данный заголо-
вочный файл, и не надо будет повторять прототипы функций.

Обычно функции принимают указанное в прототипе число параметров указан-
ных типов. Однако могут быть функции, принимающие различное число парамет-
ров (например, библиотечная функция printf) или параметры неопределенных за-

50 Глава 1

ранее типов. В этом случае в прототипе вместо неизвестного числа параметров или
вместо параметров неизвестного типа ставится многоточие "...". Многоточие мо-
жет помещаться только в конце списка параметров после известного числа пара-
метров известного типа или полностью заменять список параметров. Например:

int prf (char * format, . . .) ;

Функция с подобным прототипом принимает один параметр format типа char
* (например, строку форматирования) и произвольное число параметров произ-
вольного типа. Функция с прототипом

void Fp (. ' . .) ;

может принимать произвольное число параметров произвольного типа.
Если в прототипе встречается многоточие, то типы соответствующих парамет-

ров и их количество компилятором не проверяются.
Объявлению функции могут предшествовать спецификаторы класса памяти

extern или static. Спецификатор extern предполагается по умолчанию, так что за-
писывать его не имеет смысла. К функциям, объявленным как extern, можно по-
лучить доступ из других модулей программы (см. заключительную часть
разд. 1.8.1). Если же объявить функцию со спецификатором static, например

static void F (v o i d) ;

то доступ к ней из других модулей невозможен. Это надо использовать в крупных
проектах во избежание недоразумений при случайных совпадениях имен функций
в различных модулях.

Теперь рассмотрим описание тела функции. Тело функции пишется по тем же
правилам, что и любой код программы, и может содержать объявления типов, кон-
стант, переменных и любые выполняемые операторы. Не допускается объявление
и описание в теле других функций. Таким образом, функции не могут быть вложе-
ны друг в друга.

Надо иметь в виду, что все объявления в теле функции носят локальный ха-
рактер. Объявленные переменные доступны только внутри данной функции. Если
их идентификаторы совпадают с идентификаторами каких-то глобальных пере-
менных модуля, то эти внешние переменные становятся невидимыми и недоступ-
ными. В этих случаях получить доступ к глобальной переменной можно, поставив
перед ее именем два двоеточия "::", т.е. применив унарную операцию разрешения
области действия.

Локальные переменные не просто видны только в теле функции, но по умолча-
нию они и существуют только внутри функции, создаваясь в момент вызова функ-
ции и уничтожаясь в момент выхода из функции. Если требуется этого избежать,
соответствующие переменные должны объявляться со спецификацией static (под-
робнее см. в разд. 1.6.2).

Выход из функции может осуществляться следующими способами. Если
функция не должна возвращать никакого значения, то выход из нее происходит
или по достижении закрывающей ее тело фигурной скобки, или при выполнении
оператора return. Если же функция должна возвращать некоторое значение, то
нормальный выход из нее осуществляется оператором

return выражение

где выражение должно формировать возвращаемое значение и соответствовать
типу, объявленному в заголовке функции.

Например:
double FSum(double XI,double X 2 , int A)
{

return A * (XI + Х 2) ;

Справочные данные по языку C++ 51

Ниже приведен пример функции, не возвращающей никакого значения:
void SPrint(AnsiStr ing S)
j
if (S != "")

ShowMessage(S);
}

Здесь возврат из функции происходит по достижении закрывающейся фигур-
ной скобки тела функции. Приведем вариант той же функции, использующий опе-
ратор return:

void SPrint(AnsiString S)
{
if (S == "") return;
ShowMessage (S);

}

Прервать выполнение функции можно также генерацией какого-то исключе-
ния (см. разд. 1.12.6). Наиболее часто в этих целях используется процедура Abort,
генерирующая "молчаливое" исключение EAbort, не связанное с каким-то сооб-
щением об ошибке. Если в программе не предусмотрен перехват этого исключе-
ния, то применение функции Abort выводит управление сразу наверх из всех вло-
женных друг в друга вызовов функций.

Возвращаемое функцией значение может включать в себя вызов каких-то
функций. В том числе функция может вызывать и саму себя, т.е. допускается ре-
курсия. В качестве примера приведем функцию, рекурсивно вычисляющую факто-
риал. Как известно, значение факториала равно n! = n x (n-1) x (n-2) x ... х 1, при-
чем считается, что 1! = 1 и 0! = 1. Факториал можно вычислить с помощью просто-
го цикла for (и это, конечно, проще). Но можно факториал вычислять и с помощью
рекуррентного соотношения n! = n x (п-1)!. Для иллюстрации рекурсии воспользу-
емся именно этим соотношением. Тогда функция factorial вычисления факториа-
ла может быть описана следующим образом:

unsigned long factorial (unsigned long n)
{

if (n <= 1)
return 1;

else
return n * factorial(n — 1);

}

Если значение параметра n равно 0 или 1, то функция возвращает значение 1.
В противном случае функция умножает текущее значение n на результат, возвра-
щаемый вызовом той же функции factorial, но со значением параметра п, умень-
шенным на единицу. Поскольку при каждом вызове значение параметра уменьша-
ется, рано или поздно оно станет равно 1. После этого цепочка рекурсивных вызо-
вов начнет свертываться и в конце концов вернет значение факториала.

1.7.2 Передача параметров в функции по значению
и по ссылке

Список параметров, передаваемый в функции, как было показано в предыду-
щем разделе, состоит из имен параметров и указаний на их тип. Например, в заго-
ловке

double FSum(double XI,double X2, int A)

указано три параметра XI, X2, А и определены их типы. Вызов такой функции
может иметь вид:

P r (Y , X2, 5); '

52 Глава 1

Это только один из способов передачи параметров в процедуру, называемый пе-
редачей по значению. Работает он так. В момент вызова функции в памяти создают-
ся временные переменные с именами XI, Х2, А, и в них копируются значения аргу-
ментов Y, X2 и константы 5. На этом связь между аргументами и переменными XI,
Х2, А разрывается. Вы можете изменять внутри процедуры значения XI, Х2 и А,
но это никак не отразится на значениях аргументов. Аргументы при этом надежно
защищены от непреднамеренного изменения своих значений вызванной функцией.
Это предотвращает случайные побочные эффекты, которые так сильно мешают ино-
гда созданию корректного и надежного программного обеспечения.

К недостаткам такой передачи параметров по значению относятся затраты
времени на копирование значений и затраты памяти для хранения копии. Если
речь идет о какой-то переменной простого типа, это, конечно, не существенно. Но
если, например, аргумент — массив из тысяч элементов, то соображения затрат
времени и памяти могут стать существенными.

Еще одним недостатком передачи параметров по значению является невоз-
можность из функций изменять значения некоторых аргументов, что во многих
случаях очень желательно.

Возможен и другой способ передачи параметров — вызов по ссылке. В случае
вызова по ссылке оператор вызова дает вызываемой функции возможность прямо-
го доступа к передаваемым данным, а также возможность изменения этих данных.
Вызов по ссылке хорош в смысле производительности, потому что он исключает
накладные расходы на копирование больших объемов данных; в то же время он
может ослабить защищенность, потому что вызываемая функция может испортить
передаваемые в нее данные.

Вызов по ссылке можно осуществить двумя способами: с помощью ссылочных
параметров и с помощью указателей. Ссылочный параметр — это псевдоним соот-
ветствующего аргумента. Чтобы показать, что параметр функции передан по ссыл-
ке, после типа параметра в прототипе функции ставится символ амперсанда "&";
такое же обозначение используется в списке типов параметров в заголовке функ-
ции. Перед амперсандом и после него могут вставляться пробельные символы. На-
пример, идентичные объявления

int &count
int & count
ints count

в списке параметров заголовка функции могут читаться как "count является ссыл-
кой на int". В вызове такой функции достаточно указать имя переменной, и она
будет передана по ссылке. Реально в функцию передается не сама переменная, а ее
адрес, полученный операцией адресации "&". Тогда упоминание в теле вызывае-
мой функции переменной по имени ее параметра в действительности является об-
ращением к исходной переменной в вызывающей функции и эта исходная пере-
менная может быть изменена непосредственно вызываемой функцией.

Например:
void square(int &) ; // Прототип функции вычисления квадрата

void square(int & а) // Заголовок функции
{

а *= а; // Изменение значения параметра
}

Вызываться подобная функция может обычным способом передачей в нее име-
ни аргумента. Например:

int xl = 2;
square (xl) ;

В результате подобного вызова переменная xl получит значение 4.

Справочные данные по языку C++ 53

Поскольку ссылочные параметры упоминаются в теле вызываемой функции
просто по имени, программист может нечаянно принять ссылочный параметр за
параметр, переданный по значению. Это может привести к неприятным ошибкам,
если исходные значения переменных изменяются вызывающей функцией.

Альтернативной формой передачи параметра по ссылке является использова-
ние указателей (см. разд. 2.8 гл. 2). Тогда адрес переменной передается в функцию
не операцией адресации "&", а операцией косвенной адресации "*". В списке пара-
метров подобной функции перед именем переменной указывается символ "*", сви-
детельствуя о том, что передается не сама переменная, а указатель на нее. В теле
функции тоже перед именем параметра ставится символ операции разыменования
"*", чтобы получить доступ через указатель к значению переменной (пояснения
всего этого вы можете найти в разд. 2.8 гл. 2). А при вызове функции в нее в каче-
стве аргумента должна передаваться не сама переменная, а ее адрес, получаемый
с помощью операции адресации "&".

Приведем пример той же рассмотренной ранее функции square, но с переда-
чей параметра по ссылке с помощью указателя:

void square(int *) ; // Прототип функции вычисления квадрата

void square(int *a) // Заголовок функции

(
*а *= *а; // Изменение значения параметра

)

Вызов подобной функции может осуществляться, например, следующим обра-
зом:

int xl = 2;
s q u a r e (S x l) ;

1.7.3 Применение при передаче параметров спецификации const

В предыдущем разделе была рассмотрена передача параметров по ссылке. Она
решает сразу две задачи: исключает накладные расходы, связанные с копировани-
ем передаваемых значений, и дает функции доступ для изменения значений пере-
даваемых аргументов. Однако иногда требуется решать только первую задачу: из-
бавиться от копирования громоздких аргументов типа больших массивов. Но при
этом не требуется позволять функции изменять значения аргументов.

Это может быть осуществлено передачей в функцию аргументов как констант.
Для этого перед соответствующими переменными в списке ставится ключевое сло-
во const.

При использовании ссылочного параметра заголовок функции (именно заголо-
вок описания, поскольку в прототипе спецификатор const указывать не обязатель-
но) может иметь следующий вид:

double F(const & A)

В этом случае аргумент А не будет копироваться при вызове функции, но
внутри функции изменить значение А будет невозможно. При попытке сделать та-
кое изменение компилятор выдаст сообщение: "Cannot modify a const object".

Подобная передача параметра как константы позволяет сделать код более эф-
фективным, так как при этом компилятору заведомо известно, что никакие изме-
нения параметра невозможны.

При использовании указателей для передачи параметров в функцию возмож-
ны четыре варианта: неконстантный указатель на неконстантные данные, некон-
стантный указатель на константные данные, константный указатель на некой-

54 Глава 1

стантные данные и константный указатель на константные данные. Каждая ком-
бинация обеспечивает доступ с разным уровнем привилегий.

Наивысший уровень доступа предоставляется неконстантным указателем на
неконстантные данные — данные можно модифицировать посредством разымено-
вания указателя, а сам указатель может быть модифицирован, чтобы он указывал
на другие данные. Это описанная в предыдущем разделе передача параметров по
ссылке с помощью указателя. В этом варианте передачи параметров спецификатор
const не используется.

Неконстантный указатель на константные данные — это указатель, который
можно модифицировать, чтобы указывать на любые элементы данных подходяще-
го типа, но сами данные, на которые он ссылается, не могут быть модифицирова-
ны. Например, прототип:

void F(const char *sPtr) ;

объявляет функцию, в которую передается указатель sPtr, указывающий на кон-
стантные данные типа const char * — в данном случае строку (массив символов).
В теле функции такой указатель можно менять, перемещая его с одного обрабаты-
ваемого символа на другой. Но сами элементы строки (массива) изменять невоз-
можно, так как они объявлены константными. Таким образом, исходные значения
предохраняются от их несанкционированного изменения.

• Константный указатель на неконстантные данные — это указатель, который
всегда указывает на одну и ту же ячейку памяти, данные в которой можно моди-
фицировать посредством указателя. Этот вариант, например, реализуется по умол-
чанию для имени массива. Имя массива — это константный указатель на начало
массива. Используя имя массива и индексы массива можно обращаться ко всем
данным в массиве и изменять их. Прототип функции с передачей константного
указателя на неконстантные данные может иметь вид:

void F(char *const s P t r) ;

Наименьший уровень привилегий доступа предоставляет константный указа-
тель на константные данные. Такой указатель всегда указывает на одну и ту же
ячейку памяти и данные в этой ячейке нельзя модифицировать. Это выглядит так,
как если бы массив нужно было передать функции, которая только просматривает
массив, использует его индексы, но не модифицирует сам массив. Прототип функ-
ции с подобной передачей параметра может иметь вид:

void F (const char *const sPtr);

1.7.4 Параметры со значениями по умолчанию

Обычно при вызове функции в нее передается конкретное значение каждого
параметра. Но программист может указать, что параметр является параметром по
умолчанию, и приписать этому параметру значение по умолчанию. Делается это
заданием в заголовке функции после имени параметра символа "==", после которо-
го записывается значение по умолчанию. Пусть, например, вы хотите написать
функцию, которая рассчитывает суммарную силу, действующую на тело объемом
V с плотностью Р, погруженное в жидкость (например, воду) с плотностью РН2О.
Как известно, формула, выражающая эту суммарную силу, направленную вверх
(если ответ будет отрицательным, значит сила направлена вниз — тело тонет), сле-
дующая: F = G * V * (P — РН2О), где G — ускорение свободного падения.

Функцию, определяющую эту силу, можно описать следующим образом:
double Arh(double V = 1,double P = 0.5,double PH20 = 1,double G = 9.81)
(return G * V * (PH20 - P) ; }

Здесь всем параметрам даны значения по умолчанию. Объем V по умолчанию
принят равным 1 м3, плотность тела Р по умолчанию равна 0,5 т/м3 (плотность не-

Справочные данные по языку C++ 55

которых пород дерева), плотность воды РН2О принята по умолчанию равной
1 т/м3, а ускорение свободного падения G принято равным 9,81 м/с2.

Если при вызове функции параметр по умолчанию не указан, то в функцию
автоматически передается его значение по умолчанию. Например, если вызвать
приведенную функцию оператором

F = A r h () ;

то значение F будет равно силе при значениях всех параметров по умолчанию.
Аргументы по умолчанию должны быть самыми правыми (последними) аргу-

ментами в списке параметров функции. Если вызывается функция с двумя или бо-
лее параметрами по умолчанию и если пропущенный параметр не является самым
правым в списке, то все параметры справа от пропущенного тоже пропускаются.

Например, вызов той же функции оператором
F = Arh (2) ;

позволяет рассчитать силу, действующую на тело объемом 2 м3 при значениях
всех остальных параметров по умолчанию. Вызов функции оператором

F = A r h (2 , 2 . 6) ;

позволяет рассчитать силу, действующую на алюминиевое (плотность 2,6 т/м3)
тело объемом 2 м3 при значениях остальных параметров по умолчанию. Аналогич-
но, задав при вызове три параметра можно рассчитать силу, действующую на тело,
погруженное в жидкость другой плотности, а задав все четыре параметра можно
определить силу, действующую на тело при эксперименте, проводящемся не на
уровне моря (при этом изменится ускорение свободного падения).

Этот пример показывает, что последними в списке параметров со значениями
по умолчанию надо указывать те параметры, значения которых в реальных зада-
чах чаще всего остаются равными заданным по умолчанию.

Пропускать при вызове можно только некоторое число последних параметров
в списке. Например, нельзя вызвать функцию таким образом:

F = A r h (2 , , 1 . 1) ; // Ошибочный вызов

Параметры по умолчанию должны быть указаны при первом упоминании име-
ни функции — обычно в прототипе. Значения по умолчанию могут быть констан-
тами, глобальными переменными или вызовами функций.

1.7.5 Передача в функции переменного числа параметров

Иногда в функции требуется передавать некоторое число фиксированных па-
раметров плюс неопределенное число дополнительных параметров. В этом случае
заголовок функции имеет вид:

тип имя_функции(список_аргументов, . . .)
•

В данном случае список аргументов включает в себя конечное число обяза-
тельных аргументов (этот список не может быть пустым), после которого ставится
многоточие на месте неопределенного числа параметров. Для работы с этими пара-
метрами в файле stdarg.h определен тип списка va_list и три макроса: va_start,
va_arg и va_end.

Макрос va_start имеет синтаксис:
void va_start(va_l is t ар, las t f ix)

Этот макрос начинает работу со списком, устанавливая его указатель ар на
первый передаваемый в функцию аргумент из списка с неопределенным числом
аргументов. Параметр lastfix — это имя последнего из обязательных аргументов
функции.

Макрос va_arg имеет синтаксис:

56 Глава 1

type va_arg(va_list ap, type)

Макрос возвращает значение очередного аргумента из списка. Параметр type
указывает тип аргумента. Перед вызовом va_arg значение ар должно быть уста-
новлено вызовом va_start или va_arg. Каждый вызов va_arg переводит указатель
ар на следующий аргумент.

Макрос va_end имеет синтаксис:
void va_end(va_list ap)

Макрос завершает работу со списком, освобождая память. Он должен вызы-
ваться после того, как с помощью va_arg прочитан весь список аргументов. В про-
тивном случае могут быть непредсказуемые последствия.

Рассмотрим пример. Пусть требуется создать функцию average, которая рас-
считывает и отображает в метке Labell среднее значение передаваемых в нее це-
лых положительных чисел. Функция принимает в качестве первого аргумента не-
которое сообщение, которое должно отображаться перед результатами расчета.
Список обрабатываемых чисел может быть любой длины и заканчиваться нулем.
Такая функция может быть реализована следующим образом:

tinclude <stdarg.h>

void average(AnsiString m e s s , . . .)
{
double A = 0;
int i = 0,arg;
va_list ap;
va_start(ap, m e s s) ;
while ((arg = va_arg(ap,int)) != 0)
{
i++;
A += arg;

}
Forml->Labell->Caption = mess + "N = " +IntToStr(i) +

", среднее = "+FloatToStr(A/i);
va_end(ap);

}

Вызов функции может быть, например, таким:
average("Результаты экзамена: " , 4 , 2 , 3 , 5 , 4 , 0) ;

В результате функция выдаст в метку Labell сообщение:
Результаты экзамена: N = 5, среднее = 3 , 6

Функцию average можно было бы организовать иначе, не вводя специальную
конечную метку в список (в приведенном примере — 0), а предваряя список аргу-
ментов параметром N, указывающим размер списка:

void average(AnsiString mess,int N , . . .)
{
double A = 0;
va list ap;
va_start(ap, N) ;
for (int i = 0; i < N; i++)
A += va arg (ap, int) ;

Forml->Labell->Caption = mess + "N = " -UntToStr (N) +
", среднее = " + F l o a t T o S t r (A / N) ;

va_end(ap);
}

Вызов функции может быть, например, таким:
, average("Результаты экзамена: " , 5 , 4 , 2 , 3 , 5 , 4) ;

Справочные данные по языку C++ 57

1.7.6 Встраиваемые функции inline

Реализация программы как набора функций хороша с точки зрения разработ-
ки программного обеспечения, но вызовы функций приводят к накладным расхо-
дам во время выполнения. В C++ для снижения этих накладных расходов на вызо-
вы функций — особенно небольших функций — предусмотрены встраиваемые
(inline) функции. Спецификация inline перед указанием типа результата в объяв-
лении функции «советует» компилятору сгенерировать копию кода функции в со-
ответствующем месте, чтобы избежать вызова этой функции. Это эквивалентно
объявлению соответствующего макроса (см. разд. 1.4.2.2). В результате получает-
ся множество копий кода функции, вставленных в программу, вместо единствен-
ной копии, которой передается управление при каждом вызове функции.

Компилятор может игнорировать спецификацию inline, что обычно и делает
для всех функций, кроме самых небольших.

Спецификацию inline целесообразно применять только для небольших и часто
используемых функций. Использование функций inline может уменьшить время
выполнения программы, но при этом может увеличить ее размер. В целом, приме-
нение функций inline предпочтительнее объявления макросов, поскольку в дан-
ном случае вы даете возможность компилятору оптимизировать код.

При использовании функции inline надо учитывать, что внесение в нее ка-
ких-то изменений может потребовать перекомпиляции всех «потребителей» этой
функции — всех модулей, в которых она вызывается. Это может оказаться сущест-
венным моментом для развития и поддержки некоторых больших программ.

Приведем пример использования спецификации inline. Пусть, например, вам
во многих частях программы приходится вычислять длину окружности, заданной
своим радиусом R. Тогда вы можете оформить эти вычисления, определив встраи-
ваемую функцию:

inline double Circ(double R) {return 6.28318 * R;)

Обращение в любом месте программы вида Circ(2) приведет к встраиванию
в соответствующем месте кода "6.28318 * 2" (если компилятор сочтет это целесооб-
разным).

1.7.7 Перегрузка функций

C++ позволяет определить несколько функций с одним и тем же именем, если
эти функции имеют разные наборы параметров (по меньшей мере разные типы па-
раметров). Эта особенность называется перегрузкой функции. При вызове перегру-
женной функции компилятор C++ определяет соответствующую функцию путем
анализа количества, типов и порядка следования аргументов в вызове. Перегрузка
функции обычно используется для создания нескольких функций с одинаковым
именем, предназначенных для выполнения сходных задач, но с разными типами
данных. Применение при этом перегруженных функций делает программы более
понятными и легко читаемыми.

Пусть, например, вы хотите определить функции, добавляющие в заданную
строку типа (char *) символ пробела и значение целого числа, или значение числа
с плавающей запятой, или значение булевой переменной. Причем хотите обра-
щаться в любом случае к функции, которую называете, например, ToS, предоста-
вив компилятору самому разбираться в типе параметра и в том, какую из функций
надо вызывать в действительности. Для решения этой задачи вы можете описать
следующие функции:

char * ToS(char *S,int X)
(return strcat (strcat (S, " ") , IntToStr (X) . c__str ()) ; }

char * ToS(char *S, double X)

или

58 Глава 1

{return strcat (strcat (S," ") , F l o a t T o S t r (X) . c _ s t r ()) ; }

char * ToS(char *S, bool X)
(if (X) return strcat(S," t r u e ") ;
else return strcat (S," f a l s e ") ; }

Тогда в своей программе вы можете написать, например, вызовы:
char S[128] = "Значение =";
char SI = ToS (S,5) ;

или
char S[128] = "Значение =";
char S2 = ToS (S,5.3) ;

char S[128] = "Значение =";
char S3 = T o S (S , t r u e) ;

В первом случае будет вызвана функция с целым аргументом, во втором -
с аргументом типа double, в третьем — с булевым аргументом. Вы видите, что пе-
регрузив соответствующие функции вы существенно облегчили свою жизнь, изба-
вившись от необходимости думать о типе параметра.

Приведем еще один пример, в котором перегруженные функции различаются
количеством параметров. Ниже описана перегрузка функции, названной Area
и вычисляющей площадь круга по его радиусу R, если задан один параметр, и пло-
щадь прямоугольника по его сторонам а и Ь, если задано два параметра:

double Area(double R) { return 6.28318 * R * R; }
double Area(double a, double b) (return a * b; }

Тогда операторы вида
51 = Area(l) ;
52 = A r e a (1 , 2) ;

приведут в первом случае к вызову функции вычисления площади круга, а во вто-
ром — к вызову функции вычисления площади прямоугольника.

Перегруженные функции различаются компилятором с помощью их сигнату-
ры — комбинации имени функции и типов ее параметров. Компилятор кодирует
идентификатор каждой функции по числу и типу ее параметров (иногда это назы-
вается декорированием имени), чтобы иметь возможность осуществлять надежное
связывание типов. Надежное связывание типов гарантирует, что вызывается над-
лежащая функция и что аргументы согласуются с параметрами. Компилятор вы-
являет ошибки связывания и выдает сообщения о них.

Для различения функций с одинаковыми именами компилятор использует
только списки параметров. Перегруженные функции не обязательно должны
иметь одинаковое количество параметров.

Программисты должны быть осторожными, имея дело в перегруженных
функциях с параметрами по умолчанию, поскольку это может стать причиной не-
определенности. Функция с пропущенными аргументами по умолчанию может
оказаться вызванной аналогично другой перегруженной функции; это синтаксиче-
ская ошибка.

Рассмотренный аппарат перегрузки функций — только один из возможных
способов решения поставленной задачи, правда, универсальный, позволяющий ра-
ботать и с разными типами параметров, и с разным числом параметров. В следую-
щем разделе рассмотрен еще один механизм — шаблоны, позволяющий решать
аналогичные задачи, правда, для более узких классов функций.

Справочные данные по языку C++ 59

1.7.8 Шаблоны функций

Перегруженные функции обычно используются для выполнения сходных опе-
раций над различными типами данных. Если операции идентичны для каждого
типа, это можно выполнить более компактно и удобно, используя шаблоны функ-
ций. Вам достаточно написать одно единственное определение шаблона функции.
Основываясь на типах аргументов, указанных в вызовах этой функции, C++ авто-
матически генерирует разные функции для соответствующей обработки каждого
типа. Таким образом, определение единственного шаблона определяет целое се-
мейство решений.

Все определения шаблонов функций начинаются с ключевого слова template,
за которым следует список формальных типов параметров функции, заключенный
в угловые скобки "<" и ">". Каждый формальный тип параметра предваряется
ключевым словом class. Формальные типы параметров — это встроенные типы
или типы, определяемые пользователем. Они используются для задания типов ар-
гументов функции, для задания типов возвращаемого значения функции и для
объявления переменных внутри тела описания функции. После шаблона следует
обычное описание функции.

Каждый формальный параметр в определении шаблона должен хотя бы одна-
жды появиться в списке параметров функции. Каждое имя формального парамет-
ра в списке определения шаблона должно быть уникальным. Отсутствие ключево-
го слова class перед каждым формальным параметром шаблона функции является
ошибкой.

Приведем пример шаблона функции, возвращающей минимальный из трех
передаваемых в нее параметров любого (но одинакового) типа:

template <class T>
Т m i n (T xl , Т х2, Т х З)
{

Т Irain = xl;
if (x2 < Imin)

Imin = x2;
if (x3 < Imin)

Imin = x3;
return Imin;

}

В заголовке шаблона этой функции объявляется единственный формальный
параметр Т как тип данных, который должен проверяться функцией min. В сле-
дующем далее заголовке функции этот параметр Т использован для задания типа
возвращаемого значения (Т min) и для задания типов всех трех параметров xl -
хЗ. В теле функции этот же параметр Т использован для указания типа локальной
переменной Imin.

Объявленный таким образом шаблон можно использовать, например, следую-
щим образом:

int 11 = 1, 12 = 3, 13 = 2;
double rl = 2.5, r2 = 1.7, гЗ = 3.4;
AnsiString si = "строка 1", s2 = "строка 2", s3 = "строка 3";
Labell->Caption = m i n (i l , 1 2 , 1 3) ;
Label2->Caption = m i n (r l , r 2 , r 3) ;
Label3->Caption = m i n (s 3 , s2, s i) ;

Когда компилятор обнаруживает вызов min в исходном коде программы, этот
тип данных, переданных в min, подставляется всюду вместо Т в определении шаб-
лона и C++ создает законченную функцию для определения максимального из
трех значений указанного типа данных. Затем эта созданная функция компилиру-
ется. Таким образом, шаблоны играют роль средств генерации кода.

60 Глава 1

Например, при вызове функции с тремя целыми параметрами компилятор
сгенерирует функцию:

int m i n i int xl, int x2, int x3)
{

int Imin = xl;
if (x2 < Imin)

Imin = x2;
if (x3 < Imin)

Imin = x3;
return Imin;

}

Приведенный шаблон будет работать для любых предопределенных или вве-
денных пользователем типов, для которых определена операция отношения <.

При описании шаблонов функций можно широко использовать ключевое сло-
во typename. Оно означает, что идентификатор, записанный после него, является
именем типа. Пока не все компиляторы C++ поддерживают это ключевое слово.
Но компилятор C++Builder 6 поддерживает.

Словом typename, во-первых, можно заменить ключевое слово class в первой
строке объявления шаблона. Например:

template <typename T>]

Эта замена не дает ничего принципиально нового, но более отвечает контек-
сту. Ведь объявляемый формальный тип параметра вовсе не обязательно должен
быть классом, как можно было бы подумать при применении ключевого слова
class.

Можно также использовать слово typename в описании вводимых в шаблоне
типов данных.

1.8 Области видимости переменных и функций

1.8.1 Правила, определяющие область видимости

Область видимости или область действия переменной или функции — это
часть программы, в которой на нее можно ссылаться. При решении вопросов види-
мости важнейшее значение имеет понятие блока. Блок — это фрагмент кода, огра-
ниченный фигурными скобками "{ }".

Существуют четыре области действия идентификатора переменной или функ-
ции — область действия функция, область действия файл, область действия
блок и область действия прототип функции.

Идентификатор, объявленный вне любой функции (на внешнем уровне), имеет
область действия файл. Такой идентификатор «известен» всем функциям от точ-
ки его объявления до конца файла. Переменные, объявленные таким способом, на-
зываются глобальными. Глобальные переменные, описания функций и прототипы
функций, находящиеся вне функции — все они имеют областью действия файл.

Метки (идентификаторы с последующим двоеточием, например, start:) -
единственные идентификаторы, имеющие областью действия функцию. Метки
можно использовать всюду в функции, в которой они появились, но на них нельзя
ссылаться вне тела функции. Метки используются в структурах switch (как метки
case) и в операторах goto (см. разд. 1.10.1.2 и 1.10.1.3). Метки относятся к тем де-
талям реализации, которые функции «прячут» друг от друга. Это скрытие — один
из наиболее фундаментальных принципов разработки хорошего программного
обеспечения.

Идентификаторы, объявленные внутри блока (на внутреннем уровне), имеют
областью действия блок. Область действия блок начинается объявлением иденти-

Справочные данные по языку C++ 61

фикатора и заканчивается конечной правой фигурной скобкой блока. Если имеют-
ся вложенные блоки, то переменная внешнего блока видна и во вложенных бло-
ках.

Локальные переменные, объявленные в начале функции, имеют областью дей-
ствия блок так же, как и параметры функции, являющиеся локальными перемен-
ными.

Любой блок может содержать объявления переменных. Если блоки вложены
и идентификатор во внешнем блоке или идентификатор глобальной переменной
идентичен идентификатору во внутреннем блоке, одноименный идентификатор
внешнего блока или глобальный «невидим» (скрыт) до момента завершения рабо-
ты внутреннего блока. Это означает, что пока выполняется внутренний блок, он
видит значение своих собственных локальных идентификаторов, а не значения
идентификаторов с идентичными именами в охватывающем блоке.

Например:
int i = 1, k = 4 // объявление глобальных переменных
{
int i = 5 , j = 2 ; // объявление переменных внешнего блока

. . . // видны переменные j , k
// и переменная i этого блока

{
int i = 7; // объявление переменной i внутреннего блока

. . . // видны переменные j , k
// и переменная i внутренняя

}
... // видны переменные j , k

// и переменная i внешнего блока
}

Локальная переменная не только видима в пределах блока, в котором она объ-
явлена. Ее время жизни тоже определяется временем выполнения блока. Перемен-
ная создается в момент входа в блок и разрушается в тот момент, когда управление
выходит за пределы блока. Таким образом, подобная переменная не может сохра-
нять какие-то значения в промежутках между выполнением операторов блока.
В приведенном выше примере переменная i во внутреннем блоке будет создаваться
каждый раз, когда управление передается в этот блок, ей каждый раз будет при-
сваиваться значение 7, и она каждый раз будет разрушаться при выходе из блока.

Сказанное выше о времени жизни относится к так называемым автоматиче-
ским (auto) переменным и не относится к статическим переменным, объявленным
как static. Например:

static int i = 7;

Такие статические переменные существуют все время работы программы
и инициализируются только один раз. Таким образом, в этих переменных можно
накапливать какую-то информацию. Например, они могут служить счетчиками
числа обращений к блоку (см. соответствующий пример в разд. 1.6.2). Но областью
действия таких переменных является только блок, в котором они объявлены.

Из внутреннего блока можно получить доступ к одноименной глобальной пе-
ременной с помощью унарной операции разрешения области действия "::". Напри-
мер, выражение ::1 означает глобальную переменную I, даже если в данном блоке
объявлена локальная переменная I. В приведенном ранее примере с вложенными
блоками можно, например, записать во внутреннем блоке оператор

i = : : i + 1 ;

Этот оператор присвоит внутренней переменной i значение на единицу боль-
шее значения глобальной переменной i.

62 Глава 1

Подчеркнем, что таким образом можно получить доступ только к одноимен-
ной глобальной переменной, а не к локальной переменной, описанной во внешнем
блоке.

Единственными идентификаторами с областью действия прототип функции
являются те, которые используются в списке параметров прототипа функции (см.
разд. 1.7.1). Прототипы функций не требуют имен в списке параметров — требу-
ются только типы. Если в списке параметров прототипа функции используется
имя, компилятор это имя игнорирует. Идентификаторы, используемые в прототи-
пе функции, можно повторно использовать где угодно в программе, не опасаясь
двусмысленности.

Теперь остановимся на проблемах видимости переменных в приложениях,
имеющих несколько модулей. Пусть вы имеете два модуля — Unitl и Unit2 и хо-
тите в модуле Unit2 видеть и использовать переменные и функции, объявленные
в модуле Unitl. Вы можете в модуле Unit2 видеть те переменные, которые являют-
ся глобальными в модуле Unitl, т.е. объявлены вне каких-нибудь функций в заго-
ловочном файле модуля или в его файле реализации. Но для того, чтобы это было
возможно, вы должны повторно объявить их (без инициализации) в модуле Unit2
со спецификацией extern. Например, если в модуле Unitl имеется объявление гло-
бальной переменной

int al = 10;

то в модуле Unit2 вы можете использовать эту переменную, если запишете объяв-
ление

extern int al;•

Причем, это не зависит от того, включили ли вы директивой #include заголо-
вочный файл Unitl.h в модуль Unit2, или нет.

Отметим еще одну особенность использования переменных, описанных в дру-
гом модуле. Если в заголовочном модуле Unitl объявлена описанная выше пере-
менная al, а в модуле Unit2 вы включили директивой #include заголовочный
файл Unitl.h, но не записали объявление этой переменной со спецификацией
extern (вообще не дали объявление al), то в модуле Unit2 будет создана копия пе-
ременной al, инициализированная согласно объявлению в Unitl. Но это будет ко-
пия, совершенно изолированная от переменной al в модуле Unitl. В модулях
Unitl и Unit2 будут существовать две различные переменные с одним именем al.
И изменение одной из них никак не скажется на значении другой.

Все сказанное относится только к глобальным переменным. Локальные пере-
менные, объявляемые внутри функций, невозможно видеть в другом модуле.

Теперь рассмотрим видимость функций в приложениях, имеющих несколько
модулей. Если в модуле Unitl в еш заголовочном файле вне описания класса вы
объявили некоторую функцию F, то в другом модуле Unit2 вы можете использо-
вать ее при выполнении одного из двух условий:

• вы включаете директивой #include в модуль Unit2 заголовочный файл
Unitl.h

• вы повторяете в модуле Unit2 (в заголовочном файле или файле реализации)
объявление функции F
В обоих случаях вы сможете вызвать функцию F из любого места модуля

Unit2.
Если же функция F объявлена в модуле Unitl не заголовочном файле, а в фай-

ле реализации, то единственный способ использовать ее в модуле Unit2 — повто-
рить в нем объявление функции.

Если вы хотите предотвратить возможность обращения к функции из другого
модуля, ее надо объявить со спецификацией static. Например:

static void F(void);

Справочные данные по языку C++ 63

Подведем некоторые итоги проведенного рассмотрения проблем видимости пе-
ременных и функций.

• Переменные, объявленные в заголовочном файле модуля или в файле его реа-
лизации вне описания класса и функций, являются глобальными. Они доступ-
ны везде внутри данного модуля. Для доступа к ним из внешних модулей
в этих модулях должно быть повторено их объявление (без инициализации)
с добавлением спецификации extern.

• Функции, объявленные в заголовочном файле модуля вне описания класса,
являются глобальными. Они доступны везде внутри данного модуля. Для до-
ступа к ним из внешних модулей в этих модулях или надо повторить их объяв-
ление, или включить директивой #include заголовочный файл того модуля,
в котором функции описаны.

• Функции, объявленные в файле реализации модуля, являются глобальными.
Они доступны везде внутри данного модуля. Для доступа к ним из внешних
модулей в этих модулях надо повторить их объявление.

• Элементы (переменные и функции), объявленные в классе в разделе private,
видимы и доступны только внутри данного модуля. При этом из функций,
объявленных внутри класса, к ним можно обращаться непосредственно по
имени, а из других функций — только со ссылкой на объект данного класса.
Если в модуле описано несколько классов, то объекты этих классов взаимно
видят элементы, описанные в их разделах private.

• Элементы, объявленные в классе в разделе public, видимы и доступны для
объектов любых классов и для других модулей, в которых директивой #inclu-
de включен заголовочный файл данного модуля. При этом из объектов того же
класса, к ним можно обращаться непосредственно по имени, а из других объ-
ектов и процедур — только со ссылкой на объект данного класса.

• В классах, помимо обсуждавшихся ранее, могут быть еще разделы protec-
ted — защищенные. Элементы, объявленные в классе в разделе protected, ви-
димы и доступны для любых объектов внутри данного модуля, а также для
объектов классов — наследников данного класса в других модулях. Объекты
из других модулей, классы которых не являются наследниками данного клас-
са, защищенных элементов не видят.

• Элементы, объявленные внутри функции или блока, являются локальными,
т.е. они видимы и доступны только внутри данной функции или данного бло-
ка. При этом время жизни переменных, объявленных внутри функции или
блока, определяется временем активности данного блока. Сделать локаль-
ную переменную существующей постоянно можно с помощью спецификации
static.

• Переменные и функции, объявленные в головном файле проекта, являются
глобальными для этого файла. Если требуется доступ к ним из других моду-
лей, то для функций в них должны быть повторены их объявления, а для пе-
ременных — повторено объявление (без инициализации) со спецификацией
extern.

• Если во внутреннем блоке объявлена переменная с тем же именем, что во
внешнем блоке, или с тем же именем, что и глобальная переменная, то соот-
ветствующая внешняя или глобальная переменная в блоке не видна. В этом
случае подучить доступ к одноименной глобальной переменной можно только
с помощью унарной операции разрешения области действия "::".

\

64 Глава 1

1.8.2 Явное определение доступа с помощью объявлений
namespace и using

Изложенные в предыдущем разделе правила определяют автоматически уста-
навливаемые области видимости. Однако такого неявного задания областей види-
мости иногда может быть недостаточно. Если речь идет о большом проекте, кото-
рый создается несколькими разработчиками, всегда возможно перекрытие иденти-
фикаторов, определенных в разных местах программы. Поэтому желателен инст-
румент, позволяющий явным образом указывать области видимости идентифика-
торов.

Таким инструментом является объявление области видимости имен ключе-
вым словом namespace и последующее объявление использования функций и пе-
ременных из той или иной области ключевым словом using.

Синтаксис объявления области видимости:
namespace имя_области
{
объявления типов, переменных и функций
}

Например:
namespace A(

int 1 = 1;
void Fl (int i)
<

Forml->Labell->Caption = "Область A: i = " + IntToStr (i) ;
}

}
namespace B{

int i = 2;
void Fl (int i)
<
Forml->Labell->Caption = "Область В: i = " + IntToStr (i);

Приведенные операторы объявляют две области видимости с именами А и В.
В обеих областях объявлены переменные i и функции F1.

Объявление области с тем же именем может повториться в программе и содер-
жать объявления каких-то новых переменных и функций. Соответствующие иден-
тификаторы добавятся в указанную область.

Доступ к объявленным переменным и функциям из любой точки файла может
осуществляться несколькими способами. Самый простой — с помощью операции
разрешения области действия "::". Например, оператор

В: :F1 (A : : i) ;

вызовет функцию F1 из области В и передаст в нее значение переменной i из облас-
ти А.

Подобный доступ гибкий, но он требует каждый раз указывать область види-
мости. Если явное указание областей видимости сделано для того, чтобы устранить
появившиеся в программе случайные наложения идентификаторов, то явное ука-
зание при каждом применении идентификатора соответствующей области дейст-
вия потребует исправлений во многих местах программы и может привести к появ-
лению ошибок. Более простой способ указания области действия — применение
ключевого слова using. Одна из возможных форм применения using:

using namespace имя_области;

Например, если поместить в тексте оператор

using namespace A;

Справочные данные по языку C++ _ 65

то все последующие операторы будут брать идентификаторы из области А. Тогда,
например, размещенный где-то в тексте после using оператор

F l (i) ;

вызовет функцию F1 из области А и передаст в нее значение переменной i из облас-
ти А.

Операторы using могут иметь и другую форму, определяющую область для
конкретного идентификатора:

using имя_области : : идентификатор;

Например, после операторов

using A: : F1;
using В: : i;

оператор

Fl(i);

вызовет функцию F1 из области А и передаст в нее значение переменной i из облас-
ти В.

При объявлении области видимости с помощью namespace в теле объявления
могут присутствовать не только объявления переменных и функций, но и операто-
ры namespace, определяющие некоторые внутренние области видимости, и опера-
торы using namespace, ссылающиеся на ранее определенные области. Таким обра-
зом, области видимости могут быть вложенные. Например, объявления могут
иметь вид:

namespace A {

)
namespace В {
using namespace А;

namespace С {

Здесь область В использует ранее объявленную область А и содержит внутри
себя вложенную область С. Доступ к вложенным областям осуществляется после-
довательным применением операции разрешения области действия. Например:

using namespace В : : С;

1.9 Операции

1.9.1 Общее описание

Операции подобны встроенным функциям языка. Они применяются к выра-
жениям — операндам. Большинство операций имеют два операнда, один из кото-
рых помещается перед знаком операции, а другой — после. Например, операция
сложения "+" имеет два операнда: X + Y и складывает их. Такие операции называ-
ются бинарными. Существуют и унарные операции, имеющие только один опе-
ранд, помещаемый после знака операции. Например, запись "-Х" означает приме-
нение к операнду X операции унарного минуса "•-".

В сложных выражениях последовательность выполнения операций определя-
ется скобками, старшинством операций, а при одинаковом старшинстве — ассо-
циативностью операций. Эти вопросы будут обсуждены в разд. 1.9.16.

66 Глава 1

1.9.2 Арифметические операции

Арифметические операции применяются к действительным числам, целым
числам и указателям. Определены следующие бинарные арифметические опера-
ции:

Обозначение

+

-

*

/

%

Операция

сложение

вычитание

умножение

деление

остаток целочис-
ленного деления

Типы операндов и результата

арифметический, указатель

арифметический, указатель

арифметический

арифметический

целый

Пример

Х + Y

X - Y

X * Y

X / Y

I %6

Определены следующие унарные арифметические операции:

Обозначение

+

-

++

—

Операция

Унарный плюс (под-
тверждение знака)

Унарный минус
(изменение знака)

инкремент

декремент

Типы операндов и результата

арифметический

арифметический

арифметический, указатель

арифметический, указатель

Примеры

+7

-X

i++; ++i

i — ; — i

Для арифметических операций действуют следующие правила.
Бинарные операции сложения "+" и вычитания " " применимы к целым

и действительным числам, а также к указателям.
В операции сложения указателем может быть только один из двух операндов.

В этом случае второй операнд должен быть целым числом. Указатель, участвую-
щий в операции сложения, должен быть указателем на элемент массива. В этом
случае добавление к указателю целого числа эквивалентно сдвигу указателя на за-
данное число элементов массива.

В операции вычитания указатель на элемент массива может быть первым опе-
рандом (тогда второй операнд — целое число) или оба операнда могут быть указа-
телями на элементы одного массива. Вычитание из указателя целого числа эквива-
лентно сдвигу указателя на заданное число элементов массива. Вычитание двух
указателей возвращает число элементов массива, расположенных между теми эле-
ментами, на которые указывают указатели. Подробнее об арифметике указателей
см. в гл. 2 в разд. 2.8.

В операциях умножения "*" и деления "/" операнды могут быть любых ариф-
метических типов. При разных типах операндов применяются стандартные прави-
ла автоматического приведения типов (см. разд. 2.2). В операции вычисления ос-
татка от деления "%" оба операнда должны быть целыми числами.

В операциях деления и вычисления остатка второй операнд не может быть ра-
вен нулю. Если оба операнда в этих операциях целые, а результат деления являет-
ся не целым числом, то знак результата вычисления остатка совпадает со знаком
первого операнда, а для операции деления используются следующие правила:

1. Если первый и второй операнд имеют одинаковые знаки, то результат опера-
ции деления — наибольшее целое, меньшее истинного результата деления.

Справочные данные по языку C++ 67

2. Если первый и второй операнд имеют разные знаки, то результат операции де-
ления — наименьшее целое, большее истинного результата деления.

Округление всегда осуществляется по направлению к нулю.
Унарные операции инкремента "++" и декремента "• •" сводятся к увеличению

"++" или уменьшению " " операнда на единицу. Операции применимы к операн-
дам, представляющим собой выражения любых арифметических типов или типа ука-
зателя. Причем выражение должно быть модифицируемым L-значением, т.е. должно
допускать изменение. Например, ошибочным является выражение ++(а + Ь), по-
скольку (а + Ь) не является переменной, которую можно модифицировать.

Операции инкремента и декремента выполняются быстрее, чем обычное сло-
жение и вычитание. Поэтому, если переменная а должна быть увеличена на 1, луч-
ше применить операцию "++", чем выражения а = а + 1 или оператор а += 1, ис-
пользующий описанную в разд. 1.9.4 операцию "+==".

Если операция инкремента или декремента помещена перед переменной, гово-
рят о префиксной форме записи инкремента или декремента. Если операция ин-
кремента или декремента записана после переменной, то говорят о постфиксной
форме записи. При префиксной форме переменная сначала увеличивается или
уменьшается на единицу, а затем это ее новое значение используется в том выра-
жении, в котором она встретилась. При постфиксной форме в выражении исполь-
зуется текущее значение переменной, и только после этого ее значение увеличива-
ется или уменьшается на единицу.

Например, в результате выполнения операторов
int 1 = 1 , j ;
j = 1+ + * i++;

значение переменной i будет равно 3, а переменной j — 1. Оператор, присваиваю-
щий значение переменной j, будет работать следующим образом: сначала значение
i, равное 1, умножится само на себя, т.е. вычислится значение выражения в пра-
вой части оператора; затем это значение присвоится переменной j, а значение i уве-
личится на 1 в результате первой операции инкремента и еще раз увеличится на 1
в результате второй операции инкремента.

Если изменить эти операторы следующим образом:
i n t i = l , j ;
j = ++i * ++i;

то результат будет другим: значение i будет равно 3, а значение j — 9. В этом слу-
чае оператор, присваивающий значение переменной j будет работать следующим
образом: сначала выполнится первая операция инкремента и значение i станет
равно 2; затем выполнится вторая операция инкремента и значение i станет рав-
но 3; а затем это значение i умножится само на себя, т.е. вычислится значение вы-
ражения в правой части оператора и это значение присвоится переменной j.

1.9.3 Особенности выполнения арифметических операций
с целыми и действительными числами

В этом разделе мы рассмотрим ошибки, которые могут возникать при выпол-
нении арифметических операций. Начнем с операций с целыми числами. При це-
лочисленном делении на нуль генерируется исключение EDivByZero и его можно
обрабатывать методами, рассмотренными в разд. 1.12. Но результат сложения, вы-
читания, умножения целых чисел обычно не проверяется на переполнение. В ред-
ких случаях при переполнении генерируется исключение EIntOverflow. А чаще,
если результат превышает максимальное значение для данного типа, полученное
значение будет неправильным. Например, следующие операторы:

int i = 2147483646;
int il = 1;

68 Глава 1

int 12 = 2;
int 13 = 1 + 11;
int 14 = 1 + 12;
int 15 = 13 * 13;

дадут значения 13 = 2147483647, 14 = -2147483648 и 15 = 1. Первое из них прави-
льное, второе — совершенно неверное отрицательное число (минимально возмож-
ное значение целого int), а третье — также абсурдный результат. Неверные резуль-
таты элементарных арифметических операций объясняются тем, что максимально
допустимое значение int — 2147483647. При вычислении 14 это значение превы-
шено на 1, что привело к появлению отрицательного знака, так как лишний стар-
ший бит, установленный в 1, воспринимается как признак отрицательного числа.
С превышением допустимого значения связан и результат вычисления 15. Подоб-
ное поведение целых чисел надо учитывать и отслеживать программно. Иначе мо-
гут возникнуть трудно отлавливаемые ошибки выполнения.

Способ обработки ошибок выполнения операций с действительными числами
в C+-t-Builder зависит от маски FPU (floating-point unit) — слова, управляющего
исключениями при операциях с плавающей запятой. В число ошибок входят оши-
бочная операция, ненормализованная операция, деление на нуль, переполнение,
потеря порядка, потеря точности. Приведем некоторые примеры, связанные с та-
кими ошибками. Операторы

double
double
double

х = 1;
У = 0;
z = х /

вызывают ошибку деления на нуль. Операторы
float х;
double у = 1.5е-100;
х = у;

вызывают ошибки потери порядка и потери точности, поскольку переменная типа
float не может хранить столь малого числа. Операторы

float х = 1е20;
float у = х * х;

вызывают ошибку переполнения. Ошибки, связанные с ошибочными или ненор-
мализованными операциями, вообще говоря, в нормально скомпилированных про-
граммах обычно не возникают.

При возникновении одной из перечисленных выше ошибок она отражается
в слове состояния. Это слово можно видеть в процессе отладки в окне FPU. Первые
биты этого слова, относящиеся к рассматриваемым ошибкам, следующие:

Флаг

IE

DE

ZE

ОЕ

UE

РЕ

Описание

ошибочная операция

ненормализованная операция

деление на нуль

переполнение

потеря порядка

потеря точности

Бит

0

1

2

3

4

5

При возникновении той или иной ошибки соответствующий бит устанавлива-
ется в 1.

Справочные данные по языку C++ 69

Последующее зависит от установки масок в управляющем слове. Основные
биты этого слова определяют следующее:

Флаг

IM

DM

ZM

ОМ

им
РМ

PC

RC

Описание

Маска генерации исключений при ошибочных операциях

Маска исключений ненормализованных операций

Маска исключений деления на нуль

Маска исключений переполнения

Маска исключений потери порядка

Маска исключений точности

Управление точностью

Управление округлением

Биты

0

1

2

3

4

5

8, 9

10, 11

Первые шесть битов управляющего слова определяют маски генерации исклю-
чений. Если в соответствующем бите записан 0, то при возникновении ошибки,
связанной с этим битом, генерируется исключение. Тогда его надо перехватывать
обычными способами (см. разд. 1.12). Если же в бите записана 1, генерация ис-
ключения маскируется. В этом случае ошибка выполнения операции приведет
к тому, что в качестве результата будет выдано одно из следующих значений:
"INF" (положительная бесконечность), "-INF" (отрицательная бесконечность),
"NAN" (нецифровое значение). Так будут выглядеть результаты операции, если
отобразить их в виде строк. Последующее использование полученных значений
в арифметических операциях приведет к выдаче в качестве результата аналогич-
ных значений.

Задавать маски исключений можно функциями SetExceptionMask, _cont-
го!87, Set8087CW, описанными в гл. 4. Остановимся на одной из них — функции
_contro!87, а остальные, в некоторых отношениях более удобные, вы можете по-
смотреть в гл. 4. Функция _contro!87 объявлена следующим образом:

unsigned int _contro!87(unsigned int newcw, unsigned int m a s k) ;

Параметр newcw содержит устанавливаемое значение управляющего слова
FPU. А параметр mask содержит маску установки. В управляющем слове заменя-
ются только те биты, для которых в mask заданы 1. Функция возвращает новое
значение управляющего слова.

Например, оператор
__contro!87 (ОхЗР, ОхЗР) ;

маскирует генерацию всех исключений при выполнении арифметических опера-
ций.

Оператор
_contro!87(0, Ox3F);

стирает маски всех исключений.
Оператор
unsigned int m = _contro!87(0, 0) ;

заносит в переменную m текущее значение управляющего слова, не изменяя его.
Если генерация исключений замаскирована, можно определить, произошла

ли ошибка при выполнении операций с плавающей запятой по описанному выше
слову состояния. Это слово возвращается функцией _status87. Отдельные биты
слова можно проверять операцией И. Например, оператор

70 Глава 1

if (_status87() & 0x4)
ShowMessage("Деление на нуль");

прореагирует на произошедшее в предшествующих операциях деление на нуль.
А оператор

if (_status87() & 0x30)
ShowMessage("Ошибка операции с плавающей запятой");

прореагирует на любую ошибку операций с плавающей запятой.
Конечно, в реальной программе вместо указанных в приведенных операторах

абстрактных сообщений надо дать пользователю какие-то более осмысленные по-
яснения и советы, что надо делать для продолжения работы. А можно принять ка-
кие-то меры для исправления ошибки.

Маскирование исключений облегчает решение некоторых задач, но при отсут-
ствии в программе соответствующих проверок оно может привести к маскирова-
нию ошибок. Так что пользоваться им надо осторожно.

Биты 8 и 9 управляющего слова содержат флаг PC, управляющий точностью вы-
числений с плавающей запятой. Этот флаг может принимать следующие значения:

0

1
2

3

точность, соответствующая типу float (1 байта)

не используется

точность,

точность,

соответствующая

соответствующая

типу

типу

double

long

(8 байт)

double (10 байт)

К битам управления точностью, как и ко всем остальным битам управляюще-
го слова FPU, можно получить доступ с помощью описанной выше функции
_contro!87. Остановимся на ней. А описание более специализированной функции
управления точностью SetPrecisionMode вы можете посмотреть в гл. 4. Пусть, на-
пример, в вашем приложении есть операторы

double х = 3;
long double z = 1 / х;

Тогда, если перед вычислением значения z вы установите функцией _cont-
го!87 соответствующее значение флага точности, получите следующий результат:

оператор задания флага PC

_control87(OxFOOO, 0x300)

_contro!87(OxF200, 0x300)

_contro!87(OxF300, 0x300)

z

0.333333343267440796

0.333333333333333315

0.333333333333333333

Биты 10 и 11 управляющего слова содержат флаг RC, управляющий округле-
нием при вычислениях с плавающей запятой. Этот флаг может принимать следую-
щие значения:

0

1

2

3

округление к ближайшему значению

округление к меньшему значению,
тельной бесконечности

округление к большему значению,
тельной бесконечности

т.е.

т.е.

округление

округление

в сторону

в сторону

отрица-

положи-

усечение младших разрядов, т.е. округление в сторону нуля

Справочные данные по языку C++ 71

К битам управления округлением можно получить доступ с помощью все той
же функции _contro!87 (посмотрите также в гл. 4 описание более специализиро-
ванной функции SetRoundMode). Пусть, например, в вашем приложении есть опе-
раторы

float х = 3;
float у, z;
у = 1 / х;
2 = -1 / х;

Если перед вычислением значений у и z вы установите функцией _controI87
соответствующие значения флага округления, то получите результат, представ-
ленный в таблице:

оператор задания флага RC

_control87(OxFOOO, OxCOO)

_control87(OxF400, OxCOO)

_eontrol87(OxF800, OxCOO)

_contro!87(OxFCOO, OxCOO)

У

0,33333334327

0,33333331347

0,33333334327

0,33333331347

z

-0,33333334327

-0,33333334327

-0,33333331347

-0,33333331347

1.9.4 Операции присваивания, отличие присваивания
от метода Assign

В C++ определен ряд операций присваивания.

Обозначение

=

+=

"=

*=

/=

%'-

«=

»=

&=

"=

=

Операция

присваивание

присваивание со сложением

присваивание с вычитанием

присваивание с умножением

присваивание с делением

присваивание остатка целочис-
ленного деления

присваивание со сдвигом влево

присваивание со сдвигом вправо

присваивание с поразрядной
операцией И

присваивание с поразрядной
операцией исключающее ИЛИ

присваивание с поразрядной
операцией ИЛИ

Типы операндов
и результата

любые

арифметические,
указатели, структу-
ры, объединения

арифметические,
указатели, структу-
ры, объединения

арифметические

арифметические

целые

целые

целые

целые

целые

целые

Пример

Х = Y

Х + = Y

Х - = Y

Х * = Y

Х / = Y

X %= Y

Х«= Y

Х»= Y

Х & = Y

Х ~ = Y

X = Y

72 Глава 1

Помимо простой операции присваивания "=" все прочие являются составны-
ми операциями. Они присваивают первому операнду результат применения соот-
ветствующей простой операции, указанной перед символом "=", к первому и вто-
рому операндам.

Например, выражение X += Y эквивалентно выражению X = X + Y, но запи-
сывается компактнее и может выполняться быстрее. Аналогично определяются
и другие операции присваивания: X %= Y эквивалентно X = X % Y и т.д. (см. со-
ответствующие простые операции в разд. 1.9.2 и 1.9.6).

При записи составных операций присваивания между символом операции
и знаком равенства пробел не допускается.

В операциях присваивания первый операнд не может быть нулевым указате-
лям.

Операции присваивания возвращают как результат присвоенное значение.
Благодаря этому они допускают сцепление. Например, вы можете написать:

А = (В = С = 1) +1;

Выполняются операции присваивания справа налево. Поэтому приведенное
выражение задаст переменным В и С значения 1, а переменной А — 2. Вычислять-
ся это будет следующим образом. Сначала выполняются операции, заключенные
в скобки, а из них первой — самая правая (т.е. С = 1). Эта операция вернет 1, так
что далее будет выполнена операция В = 1. Она вернет значение 1, после чего вы-
полнится операция сложения 1 + 1. Полученное в результате значение 2 присвоит-
ся переменной А.

Применительно к указателям на объекты надо четко представлять различие
между оператором присваивания и методом копирования Assign, свойственным
многим классам объектов. Метод Assign используется следующим образом:

объект приемник->Азз!дп(объект_источник);

Например:
A->Assign(B);

Этот оператор копирует содержание объекта В (все его свойства) в объект А.
Для тех же самых объектов А и В можно записать оператор присваивания:

А = В;

Различие между двумя приведенными операторами следующее. Метод Assign
копирует содержимое одного объекта в другой. Таким образом, в памяти будет
иметься два объекта А и В одинакового содержания. А оператор присваивания,
примененный к указателям (имя объекта — это указатель на объект), присваивает
указателю А значение указателя В. Таким образом, и А, и В будут указывать на
один и тот же объект в памяти. А тот объект, на который до выполнения этого опе-
ратора указывал А, может быть вообще потерян, если в программе где-то не хра-
нится другой указатель на него.

1.9.5 Операции отношения и эквивалентности

Операции отношения и эквивалентности используются при сравнении двух
операндов. Они возвращают true — истина, если указанное соотношение операн-
дов выполняется, и false (0) — ложь, если соотношение не выполняется. Определе-
ны следующие операции отношения:

Справочные данные по языку C++ 73

Обозначение

==

N

<

>

-̂ —
>=

Операция

Равно

Не равно

Меньше чем

Больше чем

Меньше или равно

Больше или равно

Типы операндов

арифметический, указатели

арифметический, указатели

арифметический, указатели

арифметический, указатели

арифметический, указатели

арифметический, указатели

Пример

1 == Мах

X != Y

Х < Y

Len > 0

Cnt <= 1

1 >= 1

Операнды должны иметь совместимые типы, за исключением целых и дейст-
вительных типов, которые могут сравниваться друг с другом.

Применять операции "<", "<=", ">", ">=" к указателям имеет смысл, только
если оба операнда указывают на элементы одного массива.

Операции "==" и "!=" могут применяться к указателям на любые объекты.
В этом случае они вернут соответственно true и false, только если указатели ука-
зывают на один и тот же объект.

Следует предостеречь от довольно распространенной ошибки: случайного при-
менения вместо операции эквивалентности "==" операции присваивания "=". На-
пример, если вы по ошибке вместо оператора

i f (А == 2) ...;
\

написали оператор

if (А = 2)

то это не будет расценено как синтаксическая ошибка. Дело в том, что в C++ любое
выражение, имеющее некоторое значение, может использоваться в условных опе-
раторах, в частности, в if. Если значение выражения 0, то оно трактуется как fal-
se. Любое другое значение трактуется как true. Поэтому результат операции А = 2
будет трактоваться как true и независимо того, чему было равно значения А до вы-
полнения этого ошибочного оператора, условие в операторе if всегда будет считать-
ся выполненным. К тому же эта ошибка приведет к несанкционированному изме-
нению значения А.

К счастью, компилятор C++Builder замечает подобные недоразумения и при
записи в операторе if операции присваивания на всякий случай делает замечание:
"Possibly incorrect assignment" (Возможно некорректное присваивание). Это не
ошибка, а только замечание. Так что если вы не обратите внимание на него, то по-
тратите потом много времени на поиск ошибки в программе.

1.9.6 Логические операции

Логические операции принимают в качестве операндов выражения скалярных
типов и возвращают результат булева типа: true или false (0).

Обозначение

т

&&

II

Операция

Отрицание

Логическое И

Логическое ИЛИ

Пример

!А

А & & В

А|| В

74 Глава 1

Унарная операция логического отрицания "!" возвращает true, если операнд
возвращает ненулевое значение. Таким образом, выражение !А эквивалентно вы-
ражению А == 0.

Операция логического И "&&" возвращает true, если оба ее операнда возвра-
щают ненулевые значения. Если хотя бы один операнд возвращает 0 (false), то опе-
рация И также возвращает false. Поэтому для сокращения времени расчета, если
первый операнд возвращает нуль, то второй операнд даже не вычисляется.

Операция логического ИЛИ "||" возвращает true, если хотя бы один ее операнд
возвращает ненулевое значение. Если оба операнда возвращают 0 (false), то опера-
ция ИЛИ также возвращает false. Для сокращения времени расчета, если первый
операнд возвращает ненулевое значение, то второй операнд даже не вычисляется.

1.9.7 Поразрядные логические операции

Поразрядные логические операции работают с целыми числами и оперируют
с их двоичными представлениями, т.е. работают с двоичными разрядами операн-
дов.

Обозначение

-

&

I
*

«

»

Операция

поразрядное отрицание

поразрядное И

поразрядное ИЛИ

поразрядное исключающее ИЛИ

поразрядный сдвиг влево

поразрядный сдвиг вправо

Пример

~ Х

X & Y

Х| Y

X " Y

Х « 2

Y » I

Операция поразрядного отрицания "• •" инвертирует каждый бит операнда.
Поразрядные операции "&", "|" и " " работают в соответствии со следующей

таблицей, где Е1 и Е2 — сравниваемые биты операндов:

Е1

0

1

0

1

Е2

0

0

1

1

El & E 2

0

0

0

1

Е1 * Е2

0

1

1

0

Е1 |Е2

0

1

1

1

Операция поразрядного сдвига вправо "»" сдвигает биты левого операнда на
число разрядов, указанное правым операндом. При этом правые биты теряются.
Если левый операнд представляет собой целое без знака, то левые освободившиеся
биты заполняются нулями. В противном случае они заполняются символом знака.
Сдвиг целого числа на п разрядов вправо эквивалентен целочисленному делению
его на 2П.

Операция поразрядного сдвига влево "«" сдвигает биты левого операнда на
число разрядов, указанное правым операндом. При этом левые биты теряются,
а правые заполняются нулями. Сдвиг целого числа на п разрядов влево эквивален-
тен умножению его на 2П. у

Справочные данные по языку C++ _ 75

1.9.8 Операция запятая (последование)

Операция запятая ",", называемая операцией последования, соединяет два
произвольных выражения, которые вычисляются слева направо. Сначала вычис-
ляется выражение левого операнда. Тип его результата считается void. Затем вы-
числяется выражение правого операнда. Значение и тип результата операции по-
следования считается равным значению и типу правого операнда.

Например, фрагмент текста
а = 4;
b = а + 5;

можно записать как
а = 4, b = а + 5;

Можно рекурсивно соединить операциями запятая последовательность выра-
жений:

выражение_1, выражение_2, . . . , выражение_п

Выражения будут вычисляться слева направо, а самое правое выражение оп-
ределит значение и тип всей этой последовательности.

Соединяться запятыми могут не только выражения присваивания, но и дру-
гие. Например, вызов функции с тремя параметрами может иметь вид

f u n c (i , (j = 1 , j + 4) , k) ;

Здесь в качестве второго параметра передается значение операции последова-
ния, заключенной в скобки. В результате вызов производится со следующими ар-
гументами: (i, 5, k).

Операция последования используется в основном в операторах цикла for (см.
разд. 1.10.2.1) для задания в заголовке некоторой совокупности действий. Напри-
мер, цикл подсчета суммы элементов некоторого массива можно осуществить цик-
лом for без использования операции последования:

int А [10] , sum, i;

sum = А [0] ;
for (i = 1; i < 10; i++)

sum += A [i] ;

To же самое можно реализовать более компактно с помощью операции после-
дования:

int A[10] , sum, i;

for (i = 1, sum = A [0] ; i < 10; sum += A [i] ,

Здесь операция последования использована дважды: при задании действий,
выполняемых перед началом цикла (задание начальных значений i и sum), и при
описании действий, выполняемых в теле цикла (суммирование значений элемен-
тов в sum и инкремент счетчика i).

Можно посоветовать не использовать без нужды операцию последования ",".
Применение ее оправдано только при объединении одинаковых по смыслу выра-
жений в основном в операторах циклов. Более широкое применение операции по-
следования ухудшает читаемость кода, маскирует ошибки, усложняет сопровож-
дение программы.

1.9.9 Условная операция (?:)

Условная операция "?:" - единственная трехчленная (тернарная) операция
в C++, имеющая три операнда. Ее синтаксис:

76 Глава 1

условие ? выражение 1 : выражение 2

Первый операнд является условием, второй операнд содержит значение услов-
ного выражения в случае, если условие истинно (возвращает ненулевое значение),
а третий операнд равен значению условного выражения, если условие ложно (воз-
вращает нуль). Например, оператор

Labell->Caption =
grade > 3 ? "Вы хорошо знаете материал" : "Плохо";

в зависимости от значения переменной grade выдаст текст "Вы хорошо знаете ма-
териал" при значении grade, превышающем 3, и текст "Плохо" при меньшем зна-
чении grade.

Оператор с условной операцией выполняет фактически те же функции, что
и оператор if...else (см. разд. 1.10.1.1). Но в ряде случаев применение условной
операции компактнее и нагляднее оператора if...else. К тому же иногда условная
операция может использоваться в таких ситуациях, когда применение оператора
if...else синтаксически невозможно.

В условной операции условие может быть любым скалярным выражением. Ус-
ловные выражения могут быть практически любого типа (арифметические, указа-
тели, структуры, объединения), но типы двух выражений в операции должны
быть согласованными. В качестве условных выражений могут также фигуриро-
вать какие-то исполняемые действия.

1.9.10 Операция sizeof

Операция sizeof определяет размер в байтах своего операнда — переменной,
объекта, типа. Возвращаемый результат имеет тип size_t (unsigned).

Операция имеет две формы:
sizeof выражение
sizeof (имя типа)

Например:
sizeof *Labell;
sizeof(TLabel);
sizeof a;
sizeof (int);

Во всех случаях операция возвращает целое, равное числу байтов в объекте
(*Labell), типе (TLabel, int), переменной (а).

Надо учесть, что размер переменной, объекта, типа может изменяться в зави-
симости от машины и от используемой версии программного обеспечения. Поэто-
му во всех случаях, когда вам требуется знать размер объекта или типа, нельзя по-
лагаться на документацию, а надо использовать операцию sizeof.

Если операндом является выражение, то sizeof возвращает суммарный объем
памяти, занимаемый всеми переменными и константами, входящими в него. Если
операндом является массив, то возвращается объем памяти, занимаемый всеми
элементами массива (т.е. имя массива не воспринимается в данном случае как ука-
затель). Число элементов в массиве можно определить выражением sizeof array/
sizeof array[0].

Если операндом является параметр, объявленный как тип массива или функ-
ции, то возвращается размер только указателя. К функциям операция sizeof не
применима.

Если операция sizeof применяется к структуре или объединению, она возвра-
щает общий объем памяти, включая все наполнение этого объекта.

Справочные данные по языку C++ 77

1.9.11 Операция typeid

Операция typeid возвращает информацию времени выполнения type_info,
о типе или выражении. Операция имеет две формы:

typeid(выражение)
typeid(тип)

Если операндом является разыменованный указатель или ссылка на поли-
морфный тип, операция typeid возвращает динамический тип того реального объ-
екта, на который ссылается указатель или ссылка. Если оператор не полиморф-
ный, возвращается статический тип объекта.

1.9.12 Операции адресации (&) и косвенной адресации (*)

При работе с указателями и при передаче в функции параметров по ссылке ис-
пользуются операции "&" — адресации, и "*" — косвенной адресации или разыме-
нования. Применение этих операций при работе с указателями подробно рассмот-
рено в разд. 2.8. Применение их при передаче параметров в функции рассмотрено
в разд. 1.7.2.

1.9.13 Операции разрешения области действия (::)

Операции разрешения области действия обозначаются двумя двоеточиями, за-
писываемыми без пробела "::". Имеется две различных операции:

унарная:

:: переменная

и бинарная:

класс :: элемент_класса

Унарная операция разрешения области действия позволяет получить доступ
к глобальной переменной из блока, в котором объявлена локальная переменная
с тем же именем. Например, выражение ::1 означает глобальную переменную I,
даже если в данном блоке или в одном из обрамляющих блоков объявлена локаль-
ная переменная I. Подробнее об областях действия (видимости) см. в разд. 1.8.

Бинарная операция разрешения области действия позволяет сослаться на дан-
ные-элемент или функцию-элемент класса, даже если имеются одноименные пере-
менные или функции, определенные вне класса или в нескольких классах. Она ис-
пользуется также при описании функции-элемента вне класса. Вы можете увидеть
автоматическое применение этой операции в любом модуле, создаваемом C++Buil-
der, если взглянете на заголовок любого обработчика событий.

1.9.14 Операции доступа к элементам: точка (.) и стрелка (->)

Доступ к элементам структур и классов может осуществляться двумя опера-
циями: операцией точки "." или операцией стрелки "—>". Если доступ осуществ-
ляется через объект, то используется операция точка. Например, если объект
с именем А имеет свойство Prop и метод F(), то доступ к ним дается выражениями:

A.Prop
A . F ()

Если доступ осуществляется через указатель на объект, что чаще всего прак-
тикуется для доступа к компонентам в C++Builder, то используется операция
стрелка. Например:

78 Глава 1

Labell->Caption
Labell->Hide()

Правда, и в случае, если вы имеете указатель на объект, вы можете использо-
вать операцию точка, но тогда вы сначала должны разыменовать указатель:

(*Labell).Caption

Впрочем, вряд ли подобное усложнение записи целесообразно.

1.9.15 Операции поместить в поток («) и взять из потока (»)
Операции поместить в поток "«" и взять из потока "»" предназначены для

работы с потоками, как со стандартными потоками cout и cm, используемыми
в основном в консольных приложениях, так и с файлами (см. гл. 2, разд. 2.10.3.1).
В приведенных ниже примерах мы будем ориентироваться на то, что создается
файловый поток outfile для вывода данных и файловый поток infile для чтения
данных. Для этого должны быть выполнены операторы

#include <fstream.h>
// создание потока outfile, связанного с файлом "Test.dat"
ofstreaift outfile("Test.dat");
i f (lout f i le)

{
ShowMessage("Файл не удается создать");
return;

)

... // операторы поместить в поток

outfile.close(); // закрытие файла
// создание потока infile, связанного с файлом "Test.dat"
ifstream infile("Test.dat");
if(!infile)

{
ShowMessage("Файл не удается открыть");
return;

}

... // операторы взять их потока

inf i le .c lose() ; // закрытие файла

Пояснения этих операторов см. в гл. 2, в разд. 2.10.3.1.
Вывод в потоки может быть выполнен с помощью операции поместить в по-

ток, т.е. перегруженной операции "«". Операция "«" перегружена для вывода
элементов данных встроенных типов, для вывода строк и вывода значений указа-
телей. Она позволяет также с помощью манипуляторов потока осуществлять вы-
вод целых чисел в десятичном, восьмеричном и шестнадцатеричном форматах, вы-
вод значений с плавающей запятой с различной точностью, с указанием по выводу
десятичной точки, в экспоненциальном формате или в формате с фиксированной
точкой, вывод данных с выравниваем относительно какой-либо границы поля ука-
занной ширины, вывод данных с полями, заполненными заданными символами,
вывод буквами в верхнем регистре в экспоненциальном формате и при выводе ше-
стнадцатеричных чисел.

Операция "«" помещает в поток, являющийся ее первым операндом, аргу-
мент, являющийся ее вторым операндом. Размещение в потоке происходит в тек-
стовом виде. Например, оператор

outf i le « "Привет!' 1;

поместит в файл текст "Привет!". Операторы

Справочные данные по языку C++ 79

int i = 25;
outf i le « i;

поместят в файл текст "25".
Операция "«" возвращает ссылку на объект своего первого операнда, т.е. на

поток. Это позволяет использовать сцепленные операции поместить в поток, на-
пример, оператор

outf i le « " 2 * 2 = " « (2 * 2) ;

поместит в файл текст "2*2 = 4". Это произойдет потому, что левая операция «
поместит текст "2 * 2 = " и вернет outfile, после чего правая операция « будет
иметь вид-

outf i le « (2 * 2) ;

и добавит к тексту результат своего правого операнда.
Проверить работу этого и рассматриваемых далее операторов можно, напри-

мер, в следующем тестовом приложении. Разместите на форме компонент Memo,
кнопку и в обработчик ее события OnClick вставьте операторы:

char sin [80];

ofstream outfile("Test.dat");
if(!outfile)
{
ShowMessage("Файл не удается создать");
return;
}

// операторы записи в файл, например:
outfile « "2 * 2 = " « 2 * 2;
// закрытие файла
outfile.close ();

// открытие файла как входного потока
ifstream infile("Test.dat");
if(!infile)
{
ShowMessage("Файл не удается открыть");
return;
}
Memol->Clear () ;
w h i l e (! i n f i l e . e o f ())
{
infi le.getl ine (s i , 8 0) ;
Memol->Lines->Add(AnsiStr ing(s i));

}
// закрытие файла
in f i le .c lose() ;

Подробное пояснение этих операторов вы найдете в разд. 2.10.3.1. А смысл их
сводится к тому, что создается файл "Test.dat", связанный с потоком outfile, затем
в него заносится операциями "«" некоторый текст, после чего файл закрывается.
Затем он опять открывается, связываясь с потоком infile, и строки из него считы-
ваются и переносятся в окно Memol.

Продолжим рассмотрение операции "«". Последовательное применение опе-
раций поместить в поток (сцепленных или задаваемых самостоятельными операто-
рами) приводит к занесению текстов в одну строку, как в рассмотренном выше
примере. Если требуется перейти на новую строку, то можно или ввести в текст
символ конца строки "\п" или применить манипулятор потока endl (сокращение
от end line — конец строки). Например, операторы

outfi le « "2 * 2 : \ п " « (2 * 2) « "\п";

80 Глава 1

и
out f i le « "2 * 2 :" « endl « (2 * 2) « endl;

дадут один и тот же результат: первая строка будет содержать текст "2 * 2 :", вто-
рая - "4", а курсор файла будет переведен на третью строку.

В предыдущих примерах выводились константы и константные выражения.
При выводе переменных все работает точно так же. Например, операторы

int i = 25, j = 2;
out f i le « i « " * " « j « " = " « (i * j) « endl;

и операторы
int i = 25, j = 2;
char s[80] = "25 * 2 = ";
outf i le « s « (i * j) « endl;

выводят в файл один и тот же текст: "25 * 2 = 50".
Предыдущий пример показывает, что вывод строки типа char * осуществляет-

ся просто записью в качестве правого операнда указателя на эту строку. Однако
для строк типа AnsiString (см. разд. 2.5.2, 3.1.6, 3.4.2.3) операция "«" не пере-
гружена. Поэтому при выводе таких строк надо использовать приведение их к типу
char * с помощью метода c_str:

' AnsiString sa = "Это строка AnsiString";
out f i le « sa.c_str() « endl;

При выводе могут использоваться и достаточно сложные выражения. В приве-
денном ниже примере предполагается наличие двух окон редактирования Editl
и Edit2, в которые пользователь вводит целые числа, а программа выводит резуль-
тат их сравнения:

int i = StrToInt(Edit l->Text);
int j = StrToInt(Edit2->Text);
outf i le « i « (i == j ? " " : " не ") « "равно " « j

« endl;

В зависимости от введенных чисел будет выведен текст "... равно ..." или "...
не равно ,..".

Обратите внимание на то, что условный оператор заключен в скобки. Это необ-
ходимо делать, поскольку операция поместить в поток имеет сравнительно высо-
кий приоритет (см. разд. 1.9.16) и без скобок она применилась бы только к пере-
менной i, что вызвало бы сообщение о синтаксической ошибке.

Операция "«" позволяет выводить и указатели. Например, вы можете напи-
сать оператор

outfile « Memol endl;

и он выведет текст типа "0063F610" •— шестнадцатеричный адрес объекта Memol.
Особым приемом надо выводить при необходимости указатель на строку типа char *.
Если записать в операции поместить в поток сам указатель, например, s, то выве-
дется не указатель, а содержимое строки. Так перегружена операция "«" при вы-
воде строк. Если же нужен именно адрес, то перед именем указателя надо помес-
тить операцию приведения типа (void *). Например:

outfi le « (void *) s « endl;

Рассмотренные выше примеры далеко не исчерпывают возможностей вывода
с помощью операции "«". При выводе можно использовать немало манипулято-
ров потоков, позволяющих форматировать текст, выводимый операцией "«". Ра-
нее был рассмотрен только один манипулятор потока — endl. Описание других ма-
нипуляторов приведено в гл. 2, в разд. 2.10.3.2.

Теперь остановимся на операции взять из потока "»". Эта операция извлека-
ет данные из потока, заданного ее левым операндом, и заносит их в переменную,

Справочные данные по языку C++ 81

заданную правым операндом. Операция возвращает поток, указанный как ее ле-
вый операнд. Благодаря этому допускаются сцепленные операции взять из потока.
Например, оператор

inf i le » i » j ;

прочтет, начиная с текущей позиции файла, связанного с потоком infile, два це-
лых числа в переменные i и j. Если в текущей позиции файла первому из чисел
предшествуют пробельные символы или разделители, то они будут пропущены. За
окончание числа операция примет первый отличный от цифры символ, в частно-
сти, пробельный. Поэтому, если эти два числа были ранее записаны в файл напри-
мер, оператором

outf i le « i « ' ' « j « endl;
то они прочтутся нормально. Но если они были записаны оператором

out f i le « i « j « endl;

т.е. без пробела, то их цифры будут слиты вместе и это составное число прочтется
как i, а при чтении j произойдет ошибка.

Операцией "»" можно вводить из файла строки в переменные типа char *.
Например, операторы:

char s[80] ;
inf i le » s;

осуществляют чтение из файла в строку s. Но при этом читается не вся строка,
а только одна лексема —• последовательность символов, заканчивающаяся пробе-
льным или разделительным символом.

Если при выполнении операции взять из потока считывается символ конца по-
тока, то операция возвращает 0. Этим можно воспользоваться, чтобы, например,
читать все содержимое файла, разбитое на лексемы:

while (infi le»sl)

1.9.16 Приоритет и ассоциативность операций

В сложных выражениях, содержащих несколько операций, последователь-
ность их выполнения определяется прежде всего приоритетом операций. Имеется
16 уровней приоритета, приведенных ниже в таблице. Некоторые из этих уровней
содержат всего по одной операции. Наивысший уровень имеют операции, приве-
денные в первой строке таблицы, низший — в последней. Операции, указанные
в одной строке, имеют одинаковый уровень старшинства.

Там, где в таблице встречаются дубликаты операций (например, дубликаты
имеют операции сложения и вычитания), первая относится к унарной операции,
а вторая — к бинарной.

Если в выражении встречаются записанные подряд операции одного уровня
старшинства, то последовательность их выполнения определяется ассоциативно-
стью, которая может быть слева направо или справа налево.

Все операции, перечисленные в таблице, были рассмотрены в предыдущих
разделах, кроме операций new и delete, которые будут рассмотрены в разд. 1.11.

Операция

0 П -> "
+ - ++ — & * sizeof new delete

Ассоциативность

слева направо

справа налево

82 Глава 1

Операция

* _> *

* / %
+ -
« »
< <= > >=

i
&
-
I
&&
I
?:

= *= /= %= += -= &= "= = «= »=

,

Ассоциативность

слева направо

слева направо

слева направо

слева направо

слева направо

слева направо

слева направо

слева направо

слева направо

слева направо

справа налево

слева направо

справа налево

слева направо

Например, выражение а + b * с / d будет выполняться как а + ((Ь * с) / d). Сна-
чала выполнятся операции умножения и деления, имеющие более высокий при-
оритет, чем операция сложения. Поскольку ассоциативность операций умножения
и деления слева направо, то прежде всего будет выполнено умножения b * с, а затем
результат разделится на с. В заключение результат этого деления прибавится к а.

Вы можете легко изменять последовательность действий, применяя скобки,
которые имеют очень высокий приоритет.

1.9.17 Перегрузка операций

Все операции C++ могут быть перегружены, кроме операций точка ".", разы-
менование "*", разрешение области действия "::", условная "?:" и sizeof.

Операции "=","[]" ,"()" и "->" могут быть перегружены только как нестати-
ческие функции-элементы. Они не могут быть перегружены для перечислимых ти-
пов.

Все остальные операции можно перегружать, чтобы применять их к каким-то
новым типам объектов, вводимым пользователем. Кроме того, многие операции
уже перегружены в C++. Например, арифметические операции применяются
к разным типам данных — целым числам, действительным и т.д., именно в ре-
зультате того, что они перегружены.

Операции перегружаются путем составления описания функции (с заголовком
и телом), как это делается для любых функций, за исключением того, что в этом
случае имя функции состоит из ключевого слова operator, после которого записы-
вается перегружаемая операция. Например, имя функции operator+ можно ис-
пользовать для перегрузки операции сложения.

Чтобы использовать операцию над объектами классов, эта операция должна
быть перегружена, но есть два исключения. Операция присваивания "=" может
быть использована с каждым классом без явной перегрузки. По умолчанию опера-
ция присваивания сводится к побитовому копированию данных-элементов класса.
Такое побитовое копирование опасно для классов с элементами, которые указыва-
ют на динамически выделенные области памяти; для таких классов следует явно

Справочные данные по языку C++ 83

перегружать операцию присваивания. Операция адресации "&" также может быть
использована с объектами любых классов без перегрузки; она просто возвращает
адрес объекта в памяти. Но операцию адресации можно также и перегружать.

Перегрузка не может изменять старшинство и ассоциативность операций.
Нельзя также изменить число операндов операции. Например, унарную операцию
можно перегрузить только как унарную.

Перегрузка больше всего подходит для математических классов. Они часто
требуют перегрузки значительного набора операций, чтобы обеспечить согласован-
ность со способами обработки этих математических классов в реальной жизни. На-
пример, было бы странно перегружать только сложение класса комплексных чи-
сел, потому что обычно с комплексными числами используются и другие арифме-
тические операции.

Цель перегрузки операций состоит в том, чтобы обеспечить такие же краткие
выражения для типов, определенных пользователем, какие C++ обеспечивает с по-
мощью богатого набора операций для встроенных типов. Однако перегрузка опера-
ций не выполняется автоматически; чтобы выполнить требуемые операции, про-
граммист должен написать функции, осуществляющие перегрузки операций.

Ниже приведен упрощенный пример создания класса комплексных чисел
Complex, в котором переопределены операции сложения, вычитания и присваива-
ния. Дается описание не всех функций, поскольку очевидно, что сложение и вычи-
тание — операции идентичные с точностью до знака.

class Complex {
public:
double Re; // действительная часть
double Im; // мнимая часть
Complex(double = 0.0, double = 0.0); // конструктор
// операции сложения
Complex operator* (const Complex &) const; // бинарная
Complex operator* () const; // унарная
// операции вычитания
Complex operator-(const Complex &) const; // бинарная
Complex operator-() const; // унарная
Complex &operator=(const Complex &) ; // присваивание
};

// Конструктор
Complex::Complex(double R, double I)
(
Re = R;
Im = I;
}
// Перегруженная бинарная операция сложения
Complex Complex::operator+(const Complex &X) const
{
Complex R;
R.Re = Re + X.Re;
R.Im = Im -I- X.Im;
return R;
}

// Перегруженная унарная операция вычитания
Complex Complex::operator-(} const
{
Complex R;
R.Re = -Re;
R.Im = -Im;
return R;
}
// Перегруженная операция присваивания

84 Глава 1

Complex & Complex::operator=(const Complex SR)
{
Re = R.Re;
Im = R.Im;
return *this; // возможность сцепления

}

В этом классе вводится два открытых данных-элемента: Re — действительная
часть комплексного числа, и Im — мнимая часть. Конструктор по умолчанию зада-
ет действительную и мнимую части равными 0.

Оператор
Complex operator+(const Complex &) const;

объявляет прототип бинарной операции сложения. На то, что это операция бинар-
ная, указывает наличие параметра — правого операнда. Когда компилятор встре-
тит в тексте операцию "А 4- В", примененную к переменным типа Complex, он, не-
зримо для пользователя, заменит ее выражением "A.operator+(B) ".

Оператор
Complex operator+() const;

объявляет прототип унарной операции сложения, поскольку список параметров
пуст.

Прототипы операций вычитания и присваивания строятся аналогично.
В реализации функции бинарного сложения создается локальная переменная

R типа Complex, в которой формируется возвращаемое значение. В процессе фор-
мирования к данным левого операнда производится обращение просто по именам
Re и Im, а второй операнд является параметром, передаваемым в функцию по
ссылке. В заключение значение сформированной переменной возвращается как ре-
зультат функции.

В функции операции присваивания данные параметра просто пересылаются
в поля Re и Im. Обратите внимание на последнюю строку, которая возвращает
*this. Указатель this является указателем на объект данного класса. Подобный
возврат ссылки необходим, чтобы можно было использовать сцепленные операции
присваивания. Рассмотрим это подробнее.

Если компилятор встречает в тексте выражение А = В, примененное к пере-
менным типа Complex, он заменяет его выражением A.operator=(B). А что про-
изойдет, если встретится выражение А = В = С ? Поскольку ассоциативность опе-
рации присваивания справа налево, то сначала заменится вторая часть выражения
на B.operator=(C). После замены первого знака равенства получится выражение
A.operator=(B.operator=(C)). Для того чтобы это работало, нужно, чтобы выраже-
ние возвращало ссылку на объект В. Это и делается, возвращением в функции
ссылки *this. Тогда обеспечивается правильное выполнение сцепленных присваи-
ваний.

С описанным классом вы можете, например, выполнять такие действия:
Complex А (1 , 1) , B (2 , 2) , C , D ;
А = -А;
С = А + В + В;
D = А - В;
А = В = С;

Справочные данные по языку C++ 85

1.10 Операторы

1.10.1 Операторы передачи управления

1.10.1.1 Условные операторы выбора if

Оператор if предназначен для выполнения тех или иных действий в зависимо-
сти от истинности или ложности некоторого условия. Условие задается выражени-
ем, имеющим результат булева типа.

Оператор имеет две формы: if и if...else. Форма if имеет вид:
if (условие) оператор;

Скобки, обрамляющие условие, обязательны.
Условием может быть выражение, преобразуемое в булев тип. Если условие

истинно (возвращает true — ненулевое значение), то указанный в конструкции if
оператор выполняется. В противном случае управление сразу передается следую-
щему за конструкцией if оператору. Например, в результате выполнения операто-
ров

С = А;
if (В > А) С = В;

переменная С станет равна максимальному из чисел А и В, поскольку оператор С =
В будет выполнен только при В > А.

Поскольку в C++ арифметическое (целое или действительное) значение может
преобразовываться к булеву (любое ненулевое значение воспринимается как true,
а нулевое — как false), то условие может иметь целый тип. Например:

int а, Ь, с;

i f (а - Ь/с)

В данном случае условие if(a — b/c) эквивалентно if(a == b/c), поскольку а —
b/c возвращает нуль при равенстве а и Ь/с. Аналогичные условия формально мож-
но записывать и для действительных чисел:

double а, Ь, с;

if(а - Ь/с)

Но из-за ошибок округления это может не сработать, даже если теоретически
значения а и Ь/с должны совпадать.

В условии можно объявлять переменные. Например:
if (int v = f u n c (a)) . ..;

В этом случае область действия и существования объявленной переменной -
только данная структура if, включая ее выполняемый оператор.

Форма конструкции if...else имеет вид:
if (условие) оператор!;
else оператор2;

Если условие возвращает true, то выполняется первый из указанных операто-
ров, в противном случае выполняется второй оператор. Обратите внимание, что
в конце первого оператора перед ключевым словом else ставится точка с запятой.

Приведем примеры.
if (J == 0)

ShowMessage("Деление на нуль") ;
else

Result = I/J;

86 Глава 1

В качестве и первого, и второго оператора могут, конечно, использоваться
и составные операторы:

if (J == 0)
{
ShowMessage("Деление на нуль");
Result = 0;

)
else
Result = I/J;

Опять обратите внимание, что после фигурной скобки перед else точка с запя-
той не ставится.

При вложенных конструкциях if могут возникнуть неоднозначности в пони-
мании того, к какой из вложенных конструкций if относится элемент else. Компи-
лятор всегда считает, что else относится к последней из конструкций if, в которой
не было раздела else.

Например, в конструкции
if (условие!)
if (условие2)
оператор!;

'else оператор2;

else будет отнесено компилятором ко второй конструкции if, т.е. оператор2 будет
выполняться в случае, если первое условие истинно, а второе ложно. Иначе гово-
ря, вся конструкция будет прочитана как

if (условие!)
{
if (условие2) оператор!;

else оператор2;

}

Если же вы хотите отнести else к первому if, это надо записать в явном виде
с помощью фигурных скобок:

if (условие!)
!
if (условиеЗ) оператор!;

}
else оператор2;

1.10.1.2 Условный оператор множественного выбора switch

Оператор switch позволяет провести анализ значения некоторого выражения
и в зависимости от его значения выполнить те или иные действия. В общем случае
формат записи оператора switch следующий:

switch (выражение_выбора) {
case значение_1 : оператор_1;

break; // не обязательно

case значение_п : оператор_п;
break; // не обязательно

default : оператор; // не обязательно
)

В этой конструкции выражение выбора должно иметь порядковый тип — це-
лый, перечислимый и т.д. Поэтому, например, нельзя использовать выражения,
возвращающие действительные числа или строки.

Значения, указываемые в метках case, должны быть константными выраже-
ниями, соответствующими возможным значениям выражения выбора. После зна-
чения ставится двоеточие ":", а затем пишется оператор (может писаться состав-

Справочные данные по языку C++ 87

ной оператор), который должен выполняться, если выражение приняло указанное
в метке значение.

Если значение выражения выбора совпало со значением, указанным в одной
из меток case, то выполняется оператор, записанный после этой метки, после чего,
если не принять соответствующих мер, будут выполняться все последующие опе-
раторы остальных меток. Поскольку это обычно нежелательно, то, как правило,
после оператора, который должен выполняться, записывают оператор

break;

Он прерывает выполнение структуры switch и управление передается следую-
щему за ней оператору.

Если значение выражения выбора не соответствует ни одному из перечислен-
ных в метках, то выполняется оператор, следующий за меткой default. Впрочем,
метка default не обязательно должна включаться в структуру switch. В этом слу-
чае, если не нашлось соответствующего значения выражения выбора, то ни один
оператор не будет выполнен.

Значения в метках могут содержать константы и константные выражения, ко-
торые совместимы по типу с объявленным выражением и которые компилятор мо-
жет вычислить заранее, до выполнения программы. Недопустимо использование
переменных и многих функций. В метках не допускается повторение одних и тех
же значений, поскольку в этом случае выбор был бы неоднозначным.

Приведенный ниже пример анализирует переменную Key типа char, содержа-
щую символ, введенный пользователем в ответ на некоторый вопрос. При положи-
тельном ответе вызывается процедура FYes, при отрицательном — FNo, при иных
ответах отображается сообщение об ошибке.

switch (Key) {
case 'у': case 'Y': { FYes(); break; }
case 'n': case 'N

1
: { FNo(); break; }

default : ShowMessage("Ошибочный ответ");
}

Обратите внимание, что при необходимости выполнять одинаковые действия
при нескольких значениях выражения выбора, надо размещать подряд несколько
меток case.

1.10.1.3 Оператор передачи управления goto

Оператор goto позволяет прервать обычный поток управления и передать
управление в произвольную точку кода, помеченную специальной меткой. В свое
время при появлении концепции структурного программирования на оператор
goto обрушился поток критики и его применение стало рассматриваться как дур-
ной тон. Действительно, чрезмерно широкое применение goto делает структуру
программы крайне запутанной и затрудняет ее сопровождение. Однако во многих
случаях стремление обойтись без оператора goto не только не упрощает код, а еще
более его запутывает. Так что этот оператор, безусловно, имеет право на существо-
вание.

Метка в тексте программы обозначается идентификатором с последующим
двоеточием. Например,

Lbegin:

Метка отмечает точку, в которую передается управление оператором goto.
Метка может располагаться в любом месте блока, как после оператора goto, пере-
дающего на нее управление, так и до этого оператора. Надо только иметь в виду,
что передача управления извне внутрь цикла может приводить к непредсказуе-
мым последствиям, так что таких ситуаций следует избегать.

Метки имеет областью действия функцию. Метки можно использовать всюду
в функции, в которой они появились, но на них нельзя ссылаться вне тела функ-

88 Глава 1

ции. Метки используются также в структурах switch (как метки case -- см.
разд. 1.10.1.2).

После метки следует оператор, на который передается управление.
Сам оператор goto имеет форму:
goto метка;

Таким образом, организация работы с операторами goto может выглядеть, на-
пример, так:

goto L1;

second: . . .

LI: . . .

if (...) goto LI;
else goto second;

При этом, как видно, можно ссылаться на метки, расположенные после или до
оператора goto.

1.10.2 Операторы циклов

1.10.2.1 Оператор for
Оператор for обеспечивает циклическое повторение некоторого оператора

(в частности, составного оператора) заданное число раз. Повторяемый оператор на-
зывается телом цикла. Повторение цикла обычно определяется некоторой управ-
ляющей переменной (счетчиком), которая изменяется при каждом выполнении
тела цикла. Повторение завершается, когда управляющая переменная достигает
заданного значения.

Синтаксис структуры for:
for (выражение!; выражение2; выражениеЗ) оператор;

где выражение! задает начальное значение переменной, управляющей циклом,
выражение2 является условием продолжения цикла, а выражениеЗ изменяет
управляющую переменную.

Структура for работает следующим образом. Сначала выполняется выраже-
ние! (оно может состоять и из ряда выражений, разделенных запятой т.е. может
использоваться операция последования — см. разд. 1.9.8). Это выражение задает
начальные значения переменной (или переменных) цикла. Затем проверяется
выражение2 — условие продолжения цикла. Если условие истинно (возвращает
true — ненулевое значение), то выполняется тело цикла — оператор, записанный
в структуре for. После завершения тела цикла выполняется выражениеЗ, опреде-
ляющее обычно изменение переменной цикла. Затем опять проверяется условие,
записанное как выражение2, и при истинности этого условия выполнение цикла
продолжается. Как только в каком-нибудь цикле выражение2 вернет false (нуле-
вое значение), цикл прерывается и управление передается оператору, расположен-
ному следом за структурой for.

Приведем примеры использования цикла for. Следующие операторы вычисля-
ют максимальное значение и сумму элементов, расположенных в массиве целых
чисел Data размерностью 10:

int Max, Sum;
Мах = Sum = Data[0];
f o r (i n t i = 1; i < 10; i++)

{
if (Data[i] > Max) Max = Data[i] ;
Sum += Data[i] ;

Справочные данные по языку C++ 89

Здесь первое выражение в структуре for вводит целую переменную i, являю-
щуюся счетчиком циклов, и инициализирует ее значением 1. Второе выражение
проверяет условие завершения цикла. В данном случае цикл должен завершиться,
когда переменная 1, используемая в теле цикла как индекс массива, примет значе-
ние, большее 9. Третье выражение структуры for увеличивает после каждого вы-
полнения цикла значение i на 1 с помощью операции инкремента.

В данном случае переменная i объявлена в заголовке структуры for. Значит ее
область действия только эта структура. После завершения циклов переменная i
удаляется из памяти.

При использовании компилятора BCC32.EXE, запускаемого из командной
строки, подобное уничтожение локальной переменной, объявленной в цикле, мож-
но отменить опцией -Vd. Но вряд ли это имеет смысл делать

Теперь рассмотрим пример использования в структуре for операции запятая
(см. разд. 1.9.8). Пусть в приведенном выше примере нам надо найти только сумму
элементов массива. Тогда, если объявить переменные i и Sum до начала цикла,
собственно цикл можно весь разместить в заголовке структуры for:

int Sum,i;
f o r (S u m = Data[0] , i = 1; i < 10; Sum += D a t a [i + + J) ;

В этом примере первое выражение структуры for включает в себя два операто-
ра, разделенных операцией запятая и задающих начальные значения переменной
Sum, накапливающей сумму, и переменной цикла i. Третье выражение структуры
for объединяет в одном операторе формирование суммы и постфиксный инкремент
переменной цикла i. После структуры for стоит точка с запятой, что означает пус-
тое тело цикла.

В приведенных примерах переменная цикла увеличивалась на единицу при
каждом цикле. Можно, конечно, организовывать циклы с уменьшением перемен-
ной. Ниже приведен такой пример. В нем приведена программа, которая берет
строку, записанную в окне редактирования Editl, шифрует ее сложением по опе-
рации исключающее ИЛИ каждого символа строки с произвольным ключом и воз-
вращает строку в окно редактирования. Если повторно применить эту процедуру
с тем же ключом к зашифрованной строке, то будет произведена дешифровка
и в окне отобразится исходная строка.

AnsiString s;
char Key = 'A' ;
s = Editl->Text;
for (int i = s.Length(); i >0; s[i —] = s[i]

 л
 Key);

Editl->Text = s;

, В этом примере начальное значение переменной i задано равным числу симво-
лов в строке, полученному применением функции Length(). В дальнейшем при ка-
ждом выполнении цикла i уменьшается на 1 постфиксной операцией декремента.
В этом случае целесообразно именно уменьшение счетчика цикла, поскольку
в противном случае во втором выражении структуры for пришлось бы каждый раз
проверять с помощью функции Length(), не кончилась ли строка. А в приведенном
варианте обращение к Length() производится всего один раз.

Выражения в структуре for являются необязательными. Иногда может отсут-
ствовать первое выражение, если начальное значение управляющей переменной
задано где-то в другом месте программы. Если отсутствует второе выражение,
предполагается, что условие продолжения цикла всегда истинно и таким образом
создается бесконечно повторяющийся цикл. Выйти из такого цикла можно, прове-
рив в теле цикла какие-то условия и прервав выполнение передачей управления за
пределы цикла оператором goto или применить другие способы прерывания, рас-
смотренные в разд. 1.10.2.4. Может отсутствовать в структуре for и третье выра-
жение, если приращение переменной осуществляется операторами в теле структу-
ры или если приращение не требуется.

90 Глава 1

При пропуске какого-то из выражений, точка с запятой после пропущенного
выражения (кроме третьего) должна писаться. Например, в заголовке

f o r (; i<10;)

пропущено первое условие и третье.
Если условие продолжения цикла не удовлетворяется с самого начала, то опе-

раторы тела структуры for не выполняются ни разу.
Операторы цикла for могут быть вложенные. Следующий пример содержит

три вложенных цикла for, осуществляющих вычисление матрицы Mat, равной
произведению двух квадратных матриц Mat! и Mat2 размером М на М. Все матри-
цы представлены двумерными массивами. Формула для вычисления:

М

Mat[l, J] = £ Matl[l, К] • Mat2[K, J].
K=l

int I, J, К, X;
f o r (I = 1; I <= М; I++)

f o r (J = 1 ; J <= M; J++)
{

X = 0;
f o r (K = 1; К <= М; К++)

X += Mat l [I] [K] * M a t 2 [K] [J] ;
Mat [I] [J] = X;

}

1.10.2.2 Оператор do...while

Структура do...while используется для организации циклического выполне-
ния оператора или совокупности операторов, называемых телом цикла, до тех пор,
пока не окажется нарушенным некоторое условие. Синтаксис управляющей струк-
туры do...while:

do оператор while (условие);

Структура работает следующим образом. Выполняется оператор тела цикла.
Затем вычисляется условие — выражение, которое должно возвращать результат
булева типа. Если выражение возвращает true (не нулевое значение), то повторяет-
ся выполнение тела цикла и после этого снова вычисляется выражение. Такое цик-
лическое повторение цикла продолжается до тех пор, пока проверяемое выраже-
ние не вернет false (нуль). После этого цикл завершается и управление передается
оператору, следующему за структурой do...while.

Поскольку проверка выражения осуществляется после выполнения тела цик-
ла, то цикл будет заведомо выполнен хотя бы один раз, даже если выражение сразу
ложно. С другой стороны, программист должен быть уверен, что выражение рано
или поздно вернет false. Если этого не произойдет, то программа «зациклится»,
т.е. цикл будет выполняться бесконечно. Иногда такие бесконечные циклы ис-
пользуются. Но в этом случае внутри тела цикла должно быть предусмотрено его
прерывание в какой-то момент, например, оператором break или другими способа-
ми, рассмотренными в разд. 1.10.2.4.

Обычно оператор do целесообразно использовать для организации поиска сре-
ди множества объектов такого, который обладает каким-то определенным свойст-
вом. Причем заранее должно быть известно, что множество объектов не пустое,
т.е. хотя бы один объект в нем имеется. К тому же должен быть критерий, позво-
ляющий проверить, не является ли текущий объект последним. Тогда тело цикла
включает операторы перехода к новому объекту и какой-то его обработки, а усло-
вие while включает проверку, является ли объект не последним и отсутствуют ли
у него искомые свойства. Если объект последний или искомые свойства найдены,
выполнение цикла прерывается. Если же объект не последний и искомые свойства
у него не найдены, осуществляется переход к следующему объекту.

Справочные данные ло языку C++ 91

Если множество проверяемых объектов может быть пустым, следует использо-
вать другой оператор цикла — while (см. разд. 1.10.2.3). Если число повторений
циклов заранее известно, лучше применять оператор for (см. разд. 1.10.2.1).

Ниже приведен пример, в котором в файле Filel.txt ищется строка, содержащая
фрагмент текста (последовательность символов с учетом регистра), указанный поль-
зователем в окне редактирования Editl. Проверка наличия в строке заданного фраг-
мента проверяется функцией strstr. Окончание файла проверяется функцией feof.

FILE *F;
char S [256] = "";
AnsiString SKey = Editl->Text;
i f ({ F = f o p e n (" F i l e l . t x t " , " r ")) == NULL)
{

ShowMessage("Файл не найден");
return;

}

do
fgets(S,256,F);

while (!feof(F) S& (strstr (S,SKey.c__str ()) == NULL)) ;

fclose(F);
if (strstr(S,SKey.c_str()) == NULL)

Цикл будет выполняться, до тех пор, пока не достигнут конец файла и пока
функция strstr возвращает NULL (фрагмент не найден). Если хотя бы одно из этих
условий нарушается (достигнут конец файла или найден фрагмент), выполнение
цикла прекращается.

1.10.2.3 Оператор while
Оператор while используется для организации циклического выполнения тела

цикла, пока выполняется некоторое условие. Синтаксис структуры while:
while (условие) оператор;

Структура работает следующим образом. Сначала вычисляется условие, кото-
рое должно возвращать результат булева типа. Если выражение возвращает true
(ненулевое значение), то выполняется оператор тела цикла, после чего опять вы-
числяется выражение, определяющее условие. Такое циклическое повторение вы-
полнения оператора и проверки условия продолжается до тех пор, пока условие не
вернет false (нуль). После этого цикл завершается, и управление передается опера-
тору, следующему за структурой while.

Поскольку проверка выражения осуществляется перед выполнением операто-
ра тела цикла, то, если условие сразу ложно, оператор не будет выполнен ни одно-
го раза.

Программист должен быть уверен, что выражение рано или поздно вернет
false. Если этого не произойдет, то программа «зациклится», т.е. цикл будет вы-
полняться бесконечно. Иногда такие бесконечные циклы используются. Но в этом
случае внутри тела цикла должно быть предусмотрено его прерывание в какой-то
момент, например, оператором break, прерывающим цикл, или другими способа-
ми, рассмотренными в разд. 1.10.2.4.

Часто оператор while используется для организации поиска среди множества
объектов такого, который обладает каким-то определенным свойством. Причем не
исключается, что множество объектов может быть пустым, т.е. не содержащим ни
одного объекта. К тому же должен быть критерий, позволяющий проверить, не яв-
ляется ли текущий объект последним. Тогда тело цикла включает операторы пере-
хода к новому объекту и какой-то его обработки, а условие while включает провер-
ку, является ли объект не последним и не обладает ли он искомым свойством. Если

92 Глава 1

одно из этих условий нарушается (объект последний или имеет искомое свойство),
выполнение цикла прерывается.

Ниже повторен приведенный в предыдущем разделе пример поиска в файле
Filel.txt фрагмента текста, указанного пользователем в окне редактирования
Editl. Но если в предыдущем разделе для организации цикла использовался опе-
ратор do...while, то в данном случае использован оператор while. Этот оператор
здесь более уместен, поскольку проверка конца файла осуществляется до начала
цикла, т.е. до чтения из него строки. Поэтому все будет нормально работать даже
в случае, если файл окажется пустым и в нем не будет ни одной строки.

FILE *F;
char S[256] = "";
AnsiString SKey = Editl->Text;
i f ((F = fopen (" F i l e l . t x t " , " r ")) == NULL)
(

ShowMessage("Файл не найден");
return;

}

while(!feof(F)&&(strstr(S,SKey.c_str()) == NULL))
fgets(S,256,F);

fclose (F);
if (strstr(S,SKey.c_str()) == NULL)

В данном случае можно использовать и цикл for:
for(; Ifeof (F) && (strstr (S,SKey.c__str ()) == NULL) ;

fgets (S,256,F));

но цикл while выглядит наиболее естественным.

1.10.2.4 Прерывание цикла: операторы break. Continue, return,
функция Abort

В некоторых случаях желательно прервать повторение цикла, проанализиро-
вав какие-то условия внутри него. Это может потребоваться в тех случаях, когда
проверки условия окончания цикла громоздкие, требуют многоэтапного сравне-
ния и сопоставления каких-то данных и все эти проверки просто невозможно раз-
местить в выражении условия операторов for, do или while.

Один из возможных вариантов решения этой задачи — ввести в код какой-то
флаг окончания (переменную). При выполнении всех условий окончания этой пе-
ременной присваивается некоторое условное значение. Тогда условие в операторах
for, do или while сводится к проверке, не равно ли значение этого флага принято-
му условному значению.

Другой способ решения задачи — использование оператора break. Он исполь-
зуется как в операторах цикла, так и в структурах switch. Оператор break преры-
вает выполнение тела любого цикла for, do или while и передает управление сле-
дующему за циклом выполняемому оператору.

Например, цикл в рассмотренном в предыдущих разделах примере поиска
текста в файле мог бы быть организован следующим образом:

while (Ifeof (F))
{
fgets(S,256,F);
if(strstr(S,SKey.c_str()) !=NULL) break;

}

Еще один способ прерывания цикла — использование оператора goto, пере-
дающего управление какому-то оператору, расположенному вне тела цикла.

Справочные данные по языку C++ 93

Для прерывания циклов, размещенных в функциях, можно воспользоваться
оператором return. В отличие от оператора break, оператор return прервет не толь-
ко выполнение цикла, но и выполнение той функции, в которой расположен цикл.

Прервать выполнение цикла, а заодно — и блока, в котором расположен цикл,
можно также генерацией какого-то исключения (см. разд. 1.12). Наиболее часто
в этих целях используется процедура Abort, генерирующая «молчаливое» исклю-
чение, не связанное с каким-то сообщением об ошибке.

Описанные способы прерывали выполнение цикла. Имеется еще процедура
Continue, которая прерывает только выполнение текущей итерации, текущего вы-
полнения тела цикла и передает управление на следующую итерацию.

Чтобы продемонстрировать применение Continue, усложним рассмотренный
ранее пример поиска заданного фрагмента в текстовом файле. Пусть, например,
мы хотим найти заданный фрагмент не в любой строке файла, а только в такой, ко-
торая начинается с символа "*". Тогда поиск можно было бы организовать следую-
щим образом:

while(! feof (F))
{
fgets <S,256,F) ;
i f (S[0] != ' * ') continue;
i f (s t rs t r(S,SKey.c_str()) ! = N U L L) break;

}

В этом варианте при первом символе в строке, отличном от "*", текущая ите-
рация прерывается и поиск в такой строке не производится. Таким образом, не
тратится время на выполнение функции strstr для строк, в которых искать фраг-
мент не нужно.

1.11 Динамическое распределение памяти
Динамическое распределение памяти широко используется для экономии вы-

числительных ресурсов. Те переменные или объекты, которые становятся ненуж-
ными, уничтожаются, а освобожденное место используется для новых переменных
или объектов. Это особенно эффективно в задачах, в которых число необходимых
объектов зависит от обрабатываемых данных или от действий пользователя, т.е.
заранее не известно. В этих ситуациях остается только два выхода: заранее с запа-
сом отвести место под множество объектов или использовать динамическое распре-
деление памяти, создавая новые объекты по мере надобности. Первый путь, конеч-
но, неудовлетворительный, поскольку связан с излишними затратами памяти
и в то же время накладывает на размерность задачи необоснованные ограничения.

Для динамического распределения выделяется специальная область памя-
ти — heap. Динамическое распределение памяти в этой области может произво-
диться несколькими способами: с помощью библиотечных функций malloc, calloc,
realloc, free или с помощью операций new и delete.

Указанные функции объявлены в файле stdlib.h или alloc.h. Объявление
функции malloc следующее:

void *malloc(size_t size);

Функция выделяет в heap блок размером в size байтов. В случае успешного вы-
деления памяти функция возвращает указатель на выделенный блок. Если не хва-
тило места для блока требуемого размера или если size = 0, возвращается NULL.

Другая функция — calloc объявлена следующим образом:
void *calloc(size__t nitems, size_t s ize);

Функция выделяет память под nitems объектов, размер каждого из которых ра-
вен size. Таким образом общий объем выделяемой памяти составляет nitems * size.

94 Глава 1

Выделенная память инициализируется нулями. В случае успешного выделения па-
мяти функция возвращает указатель на выделенный блок. Если не хватило места для
блока требуемого размера или если size = 0 или nitems = 0, возвращается NULL.

Еще одна функция — realloc позволяет изменить размер ранее выделенного
блока памяти. Функция объявлена следующим образом:

void *realloc(void *block, size_t size);

Она изменяет размер блока в heap, на который указывает block, до размера
size. При этом предполагается, что block указывает блок памяти, выделенной ра-
нее функциями malloc, calloc или realloc. Если же аргумент block задан равным
NULL, то функция realloc работает так же, как описанная выше функция malloc.

Если размер size задан равным нулю, то выделенный ранее блок, на который
указывает block, освобождается, а функция возвращает NULL. Таким образом,
функция с size равным 0 может использоваться не для выделения памяти, а для
освобождения памяти, выделенной ранее.

Если блок нового размера не может быть выделен, то функция realloc возвра-
щает NULL. Если же память выделилась успешно, то возвращается адрес выделен-
ного блока. При этом он может отличаться от начального значения block, посколь-
ку функция при необходимости осуществляет копирование содержимого блока
в новое место.

Функция free объявлена следующим образом:
void free(void *block);

Она освобождает блок памяти, выделенный ранее функциями malloc, calloc
или realloc, на который указывает block.

Рассмотрим примеры использования описанных функций. Следующий код
динамически выделяет функцией malloc память под строку, а затем, после выпол-
нения с ней каких-то операций, освобождает выделенную память.

linclude <stdio.h>
tfinclude <alloc.h>
char *str;

// str — указатель на строку, под которую выделена память
str = (char *) raalloc(lOO);

// освобождение памяти
free(str);

В этом примере можно было бы использовать для выделения памяти функцию
calloc:

str = (char *) calloc(100, s i z e o f (c h a r)) ;

Размер выделенной функциями malloc или calloc памяти можно было бы из-
менить, например, следующим оператором:

str = (char *) realloc(str, 20) ;

Впрочем, к тому же результату привел бы и более простой оператор:
realloc(str, 20);

Необходимо помнить, что рассмотренные функции возвращают NULL (О),
если память не удалось выделить. Поэтому прежде, чем использовать возвращен-
ные ими указатели, надо обязательно проверять, не равны ли они NULL. Иначе
возможны очень тяжелые ошибки при работе программы.

Теперь рассмотрим другой подход к динамическому распределению памяти:
операции new и delete.

Операция new работает аналогично функции malloc, но лучше использовать
именно ее, а не malloc. Это пожелание становится безусловной необходимостью,

Справочные данные по языку C++ 95

если речь идет о динамическом размещении в памяти объектов библиотеки компо-
нентов C-H-Builder.

Операция new имеет следующий синтаксис:
<::> new <размещение> тип <(инициализатор)>
<::> new <размещение> (тип) < (инициализатор)>

Операция возвращает указатель на динамически размещенный в памяти объект.
Все элементы, заключенные в описании синтаксиса в угловые скобки, являют-

ся необязательными. Операция разрешения области действия "::" позволяет обра-
титься к глобальной версии new, если наряду с ней возможно использование пере-
груженных операций. Элемент размещение используется (если он предусмотрен пе-
регруженной версией) для дополнительной информации о месте размещения в па-
мяти. Инициализатор задает начальное значение создаваемого объекта.

Таким образом, обязательно должен быть указан только тип данных. Например:
double *A = new double;

В данном случае в памяти динамически создается объект — действительное
число. В дальнейшем доступ к нему осуществляется как *А. Например:

*А = 5.1;
Labell->Caption = *А;

Если нет желания вводить указатель на объект и в дальнейшем работать
с этим указателем, можно динамически разместить объект с помощью следующего
оператора:

double В = *new double;

В этом случае в дальнейшем на объект можно ссылаться просто по имени — В.
Создание динамически размещенного объекта можно совместить с его инициа-

лизацией. Например:
double *A = new double (5.1);
double В = *new double (5.5);

Ниже приведен пример создания и динамического размещения в памяти ком-
понента — окна редактирования типа TEdit:

TEdit *Edit = new TEdit(this);
Edit->Parent = Forml;

Первый оператор выделяет память под объект и создает его, передавая в него
указатель this как владельца Owner. Второй задает для компонента родителя -
Forml. В этот момент компонент станет виден на форме.

Рассмотрим подробнее выполнение операции new при создании и размещении
в памяти объекта. Операция определяет объем необходимой памяти, использую
неявно операцию sizeof(THn). Если в динамически распределяемой области памяти
есть место для размещения объекта, то выделяется соответствующий блок памяти
и операция new возвращает указатель на объект данного типа. При этом нет необ-
ходимости явно приводить тип этого указателя — все делается автоматически.
Созданный объект хранится в памяти, пока не будет уничтожен описанной далее
операцией delete или пока не завершится выполнение программы.

Если в памяти невозможно выделить блок требуемого размера, генерируется
исключение bad_alloc. Поэтому в программе всегда надо предусматривать блок
catch (см. разд. 1.12.5), который бы перехватывал это исключение прежде, чем
программа попытается получить доступ к создаваемому объекту. Таким образом,
динамическое размещение объектов в памяти, как правило, должно оформляться
следующим образом:

#include <iostream.h>
try

96 Глава 1

Операторы динамического распределения памяти с помощью new
}
catch(std::bad_alloc)
(
Операторы действий при недостаточной памяти

}

Можно отменить генерацию исключения bad_alloc, задавая указатель на свой
собственный обработчик событий, связанных с невозможностью выделить память.
Для этого используется оператор

set_new_handler(указатель)

который позволяет задать указатель на обработчик. При этом set_new_handler
возвращает прежний указатель, который был зарегистрирован до этого.

Например, вы можете описать функцию
void Fl(void)
{

ShowMessage("He хватает памяти");
exit(l) ;

}

которая обрабатывает ситуацию, связанную с нехваткой памяти, и ввести в про-
грамму (например, в обработчик события OnCreate формы) оператор

set_new_handler (Fl) ;

Вводимый таким образом обработчик не может ничего возвращать и должен
или освободить память для выполнения new, или сгенерировать исключение
bad_alloc, или завершить программу (это сделано в приведенном примере). Если
не выполнено ни одно из этих действий, возникнет бесконечный цикл обращений
к обработчику.

Можно отменить генерацию исключения bad_alloc, не вводя специального об-
работчика, а просто записав оператор

set_new_handler(0);

В этом случае при недостатке памяти операция new будет возвращать NULL.
Тогда проверку можно строить, проверяя, не равен ли значению NULL указатель,
возвращенный new.

Приведенные ранее примеры относились к динамическому размещению в па-
мяти одиночных объектов. Аналогичным образом можно размещать и массивы.
Например, оператор

double *A = new double [100];

динамически размещает массив из 100 действительных чисел. К его элементам
в дальнейшем можно обращаться как обычно, по индексу: A[ind]. При использова-
нии для создания массива операции new надо иметь в виду, что в момент создания
его нельзя инициализировать, как это делается с одиночными объектами.

Можно создавать и многомерные массивы. Например, оператор
double *M = new double[100] [100];

создает и динамически размещает в памяти двумерный массив. При размещении
многомерных массивов надо иметь в виду, что первый размер можно задавать пе-
ременной, но остальные размеры задаются только константами. Например:

double *М = new double[n] [100];

Динамически распределенную память надо освобождать, когда отпадает необ-
ходимость в размещенных в ней объектах. В противном случае получится неоправ-
данная утечка памяти. Освобождение памяти осуществляется операцией delete.
Она выполняет то же, что описанная ранее стандартная библиотечная функция
free. Но использование delete предпочтительнее. Во всяком случае все, что разме-
щается в памяти операцией new, должно удаляться операцией delete.

Справочные данные по языку C++ 97

Операция может иметь следующие формы записи:
<::> delete
<::> delete
delete <имя

<выражение>
<выражение>

массива> [];

Например:

double *А =

delete A;

new double (5.1);

или

double *А = new double[100];

delete [] A;

Операция delete освобождает память, но сама не задает указателю на эту па-
мять значения NULL. Поэтому желательно это делать программно, чтобы случайно
в дальнейшем не воспользоваться указателем, который уже ни на что не указывает:

delete A;
А = NULL;

1.12 Исключения

1.12.1 Исключения и их стандартная обработка

При работе программы могут возникать различного рода ошибки: переполне-
ние, деление на нуль, попытка открыть несуществующий файл и т.п. При возник-
новении таких исключительных ситуаций программа генерирует так называемое
исключение и выполнение дальнейших вычислений в данном блоке прекращается.
Исключение - - это объект специального вида, характеризующий возникшую
в программе исключительную ситуацию. Он может также содержать в виде пара-
метров некоторую уточняющую информацию. Особенностью исключений является
то, что это сугубо временные объекты. Как только они обработаны каким-то обра-
ботчиком, они разрушаются.

Если исключение не перехвачено нигде в программе (как это делать — будет
рассказано в последующих разделах), то оно обрабатывается методом Applicati-
on->HandleException. Он обеспечивает стандартную реакцию программы на боль-
шинство исключений — выдачу пользователю краткой информации в окне сооб-
щений и уничтожение экземпляра исключения. На рис. 1.3 приведены примеры
таких стандартных сообщений для случаев целочисленного деления на нуль и по-
пытки преобразовать функцией StrToInt строку "1.5" в целое число.

Если вы работаете в среде разработки C++Builder и отлаживаете свою про-
грамму, то при исключениях, помимо указанных на рис. 1.3 сообщений, могут по-
являться сообщения отладчика C++Builder, которые могут мешать вашей работе.
Если хотите, то можете отключить появление этих сообщений. О работе со средой
C++Builder см. в [1].

Если не принять соответствующих мер, то к неприятностям прекращения вы-
числений могут добавиться еще неприятности, связанные с так называемой утеч-

Рис. 1.3
Примеры стандартных
сообщений об ошибках
деления на нуль (а)
и преобразования (б)

а) б)

'i .5' is not a valid integer value.

OK

98 Глава 1

кой ресурсов. Под этим подразумеваются потери динамически распределяемой па-
мяти, незакрытые файлы, не уничтоженные временные файлы на диске и прочий
«мусор». Например, пусть вы выполняете некоторую программу, в которой имеют-
ся следующие операторы:

FILE *fp;
int size;
char *str;

fp = fopen("a.tmp", "w");
fprintf(fp,"файл a.tmp");
str = (char *) malloc (size);
<операторы, в которых может обнаружиться исключительная ситуация>

remove("а.tmp");
free(str) ;

Вы открываете временный файл (см. разд. 2.10.2) с именем a.tmp, чтобы хра-
нить в нем какие-то промежуточные данные вычислений. В конце работы вы наме-
рены уничтожить его процедурой remove. Вы динамически выделяете (см.
разд. 1.11) некоторую память процедурой malloc, намереваясь освободить ее, ко-
гда она вам больше не будет нужна, процедурой free. Но если в промежуточных
операторах возникнет исключение, то вычисления прервутся и процедуры remove
и free не будут выполнены. В результате память, выделенная процедурой malloc,
останется недоступной, а на диске сохранится временный и уже ненужный файл
a.tmp.

Помимо указанного, стандартная обработка исключений программой имеет
еще один недостаток — пользователь остается в полном недоумении, что же ему
дальше делать? И не только не очень квалифицированный пользователь, которого
приведенные на рис. 1.3 сообщения на английском языке могут повергнуть в шок.
Даже опытному человеку невозможно порой догадаться, что же в вашей програм-
ме делится на нуль и как этого можно избежать. Наверное, каждый попадал в по-
добные ситуации, даже применяя профессионально сделанные программы, вклю-
чая Windows.

Конечно, программист всегда должен принять все мыслимые меры, чтобы ни
при каких ошибках пользователя и ни при каких сочетаниях данных приложение
не заканчивалось бы аварийно. Но если все-таки аварийное завершение происхо-
дит, необходима полная зачистка «мусора» — удаление временных файлов, осво-
бождение памяти, разрыв связей с базами данных и т.д.

1.12.2 Способы защиты кодов зачистки — блоки try ... finally
и функции exit

Рассмотрим способы защиты кодов зачистки «мусора». Первый из них — ис-
пользование блока try ... finally. Блок, содержащий совокупность операторов,
способных привести к исключению, можно оформить следующим образом:

try
{

// операторы, способные привести к исключению

}
__finally
(

// операторы, выполняемые в любом случае

}

В этом случае операторы в разделе finally будут выполняться всегда, неза-
висимо от того, было или не было исключение. Если было исключение, то после
выполнения этих операторов вычисления, как и ранее, прерываются и возникает

Справочные данные по языку C++ 99

сообщение об исключении; в противном случае управление передается операторам,
следующим за разделом finally.

В качестве примера рассмотрим приведенный ранее фрагмент кода с времен-
ным файлом и динамическим распределением памяти, оформленный следующим
образом:

FILE *fp;
int size;
char *str;

try
<
fp = fopen("a.tmp", "w");
fprintf(fp,"файл a.tmp");
str = (char *) malloc(size);
// операторы, в которых может обнаружиться
// исключительная ситуация

)
finally

{
remove("а.tmp") ;
free(str);

}

В этом случае процедуры remove и free будут выполнены независимо от того,
сгенерировано ли исключение в операторах блока try, или все вычисления в них
закончились благополучно. Таким образом проблема зачистки «мусора» снимает-
ся — память в любом случае будет освобождена, а временный файл будет удален.
Причем, это достигается ничтожным дополнительным кодом по сравнению с гло-
бальной предварительной проверкой всех операций.

К сожалению, остаются другие из рассмотренных проблем: необходимость
принять какие-то меры для дальнейшей нормальной работы программы при гене-
рации исключения, а также необходимость уведомить пользователя о желатель-
ных действиях с его стороны (сообщения типа приведенных на рис. 1.3 в этом слу-
чае отображаются на экране, но они мало информативны для пользователя). Ре-
шить эти проблемы в данном случае невозможно, поскольку при выполнении опе-
раторов раздела finally программа не знает, произошло ли исключение, и если
произошло, то какое именно. Проверки наличия исключения с помощью функций
ExceptAddr и ExceptObject, специально предназначенных для этого, внутри раз-
дела finally ни к чему не приводят, так как исключение генерируется после вы-
полнения этих операторов.

Рассмотренные выше меры направлены на защиту кода зачистки в блоке. Од-
нако не все можно сделать на уровне блока. Поэтому полезно предусмотреть зачи-
стку при завершении приложения.

Один из способов завершения приложения — вызов функции exit:
tinclude <stdlib.h>
void exit(int s ta tus) ;

Параметр status определяет код завершения. Обычно 0 соответствует нор-
мальному завершению, а значение, отличное от нуля — аварийному при наличии
ошибки выполнения. Можно, но не обязательно, использовать для задания значе-
ния status предопределенные константы: EXIT_FAILURE — аварийное заверше-
ние, EXIT_SUCCESS — нормальное.

Например:
exit(O); // нормальное завершение
exit(EXIT_SUCCESS); // нормальное завершение
exit(l); // аварийное завершение
exit(EXIT_SUCCESS); // аварийное завершение

100 _ Глава 1

При завершении приложения с помощью exit перед прекращением работы за-
крываются все открытые файлы и очищаются все буфера вывода (печатается нахо-
дящийся в них текст). Эти операции совершаются по умолчанию. Если же вам
надо произвести еще какие-то действия (например, уничтожить временные файлы
на диске), то вы можете зарегистрировать одну или несколько собственных функ-
ций, которые всегда автоматически будут выполняться перед действиями по умол-
чанию.

Регистрируются собственные функции завершения с помощью функции
atexit:

#include <stdlib.h>
int atexit (void (_USERENTRY * func) (void)) ;

Здесь func — имя регистрируемой функции. Можно выполнить несколько вы-
зовов atexit, зарегистрировав таким образом несколько функций завершения. При
завершении приложения выполняться эти функции будут в обратной последова-
тельности: сначала — последняя из зарегистрированных, а в конце — зарегистри-
рованная первой.

Например, следующий код определяет две функции завершения — myexitl
и myexit2:

void myexitl (void)

{
// операторы зачистки

}
void myexit2 (void)

(
// операторы зачистки
}

Эти функции могут не объявляться в заголовочном файле, а просто включать-
ся в текст модуля.

Следующие операторы регистрируют эти функции:

atexit (myexitl) ;
atexit (myexit2) ;

Они могут быть включены, например, в обработчик события OnCreate главной
формы приложения. Тогда при выполнении в любой точке программы вызова
функции exit выполнятся операторы функции myexit2, затем операторы функции
myexitl, затем выполнится зачистка по умолчанию (закрытие файлов и буферов),
после чего произойдет завершение приложения.

Приведем пример функции myexitl, удаляющей в рабочем каталоге все вре-
менные файлы с расширением .tmp (использованные в примере функции findfirst,
findnext и remove см. в гл. 4):

void myexitl (void)

<
struct ffblk ffblk;
int D;
D = findfirst ("*. tmp", Sffblk, 0) ;
while (!D)

{
remove (ffblk. ff_name) ;
D = findnext (Sffblk) ;

Возможность ввести в процесс собственные функции зачистки делает заверше-
ние приложения вызовом exit «мягким» по сравнению с некоторыми другими спо-
собами.

Справочные данные по языку C++ 101

Если приложение завершается закрытием главной формы методом Close, то
коды зачистки можно вставить в обработчики событий, происходящих при выпол-
нении этого метода. Таким образом, это тоже «мягкий» способ завершения прило-
жения. Причем, он имеет дополнительные преимущества, так как позволяет про-
анализировать ситуацию и в зависимости от каких-то условий завершить прило-
жение, или не завершать его.

1.12.3 Иерархия классов исключений VCL

Для дальнейшего рассмотрения работы с исключениями надо представлять,
хотя бы в первом приближении, иерархию классов объектов исключений и свойст-
ва этих объектов. Ниже приведена таблица иерархии большинства предопределен-
ных в C++Builder классов исключений с краткими пояснениями. Создаваемые

•пользователем новые классы должны быть производными от одного из классов
этой иерархии. Следует отметить, что помимо исключений, наследующих базово-
му классу Exception и используемых в объектах (компонентах) библиотеки VCL,
имеются еще исключения, наследующие классу exception — базовому классу ис-
ключений стандартной библиотеки C++. Эти исключения рассмотрены в разд.
1.12.5.

Exception

•

Базовый класс исключений VCL

EAbort

EAbstractError

ЕАггауЕггог

EAssertion-
Failed

EBitsError

ECacheError

ECommon-
CalendarError

EComponent-
Error

EConvertError

EDatabaseError

«Молчаливое» исключение, предназначенное для
намеренного прерывания вычислений и быстрого
выхода из глубоко вложенных процедур и функций

Попытка вызвать абстрактный метод

Ошибка манипулирования с потомками класса
TBaseArray: использование ошибочного индекса
элемента массива, добавление слишком большого
числа элементов в массив фиксированной длины,
попытка вставки элемента в отсортированный мас-
сив

Ложное выражение, проверяемое процедурой As-
sert в объектах VCL или в модулях Pascal

Ошибка доступа к массиву булевых величин TBits

Ошибка построения кэша в кубе решений

Ошибки ввода в компоненты, наследующие классу
TCommonCalendar

EDateTimeError Ошибка ввода даты или времени
в компоненте TDateTimePicker

Ошибка регистрации или переименования компо-
нентов

Ошибка преобразования строк или объектов (в част-
ности, в функциях StrToInt, StrToFloat, StrToDate)

Ошибка работы с

EDBClient

базами данных

Ошибка в наборе данных клиен-
та. Свойство ErrorCode содержит
код ошибки, возвращаемый BDE

102 Глава 1

EDBEngineError

ENoResultSet

EUpdateError

EReconcile-
Error

Ошибка обновления
данных компонента
TClientDataset;
свойство Context со-
держит информа-
цию в виде сообще-
ния об ошибке,
а свойство ЕггогСо-
de содержит код
ошибки, возвращае-
мый BDE

Ошибка в BDE. Свойство Errors
содержит информацию об ошиб-
ке — объект типа TDBErrors.
Свойство Error-Count хранит чис-
ло ошибок

Генерируется компонентом TQue-
гу при попытке открыть запрос
без оператора SELECT

Ошибка при обновлении в ТРго-
vider

EDBEditError Ошибка при попытке приложения использовать
данные, не соответствующие заданной маске для
поля

EDimension-
МарЕггог

Ошибка формата данных в кубе решений

EDimlndex-
Еггог

Ошибочный индекс в задании размерности в кубе
решений

Е External Класс, перехватывающий исключения Windows

EAccess-
Violation

EControlC

EIntError

Ошибочный доступ к памяти; ге-
нерируется при попытке разыме-
нования нулевого указателя
NULL, попытке записи в кодо-
вую страницу, попытке доступа
к адресу вне памяти, распреде-
ленной приложению

Нажатие пользователем клавиш
Ctrl+C при выполнении консоль-
ного приложения. При обработке
этого исключения можно выдать
запрос пользователю, действите-
льно ли он хочет прервать рабо-
ту, и предпринять действия в за-
висимости от его ответа

Базовый класс исключений цело-
численных математических опе-
раций

EDivByZero Попытка целочис-
ленного деления на
нуль

Справочные данные по языку C++ 103

«V

EMathError

EPrivilege

EStackOverflow

ERange-
Еггог

Elnt-
Overflow

Целочисленное зна-
чение или индекс
вне допустимого
диапазона; исполь-
зуется только в Ob-
ject Pascal

Переполнение при
операции с целыми
числами

Базовый класс исключений опе-
раций с плавающей запятой; все-
гда генерируются только потом-
ки этого исключения; обработка
исключения EMathError может
использоваться для перехвата
всех исключений операций с пла-
вающей запятой

Elnvalid-
Argument

EInvalidOp

EOverflow

EUnderflow

EZeroDivide

Недопустимое зна-
чение параметра
при обращении
к математической
функции

Неопределенная
операция с плаваю-
щей запятой: про-
цессор наталкивает-
ся на неопределен-
ную инструкцию,
ошибочную опера-
цию или переполня-
ется стек процессо-
ра с плавающей за-
пятой

Переполнение реги-
стра при операциях
с плавающей запя-
той

Потеря значащих
разрядов при вы-
полнении операции
с плавающей запя-
той

Деление на нуль
числа с плавающей
запятой

Попытка приложения выполнить
инструкцию процессора, которая
недоступна для текущего уровня
привилегий

Переполнение стека

104 Глава 1

EExternal-
Exception

EHeapException

EInOutError

EIntfCastError

EInvalidCast

Elnvalid-
Graphic

Elnvalid-
Graphic-
Operation

ElnvalidGrid-
Operation

Elnvalid-
Operation

Неизвестный код исключения

Ошибка динамического распределения памяти

EInvalidPointer

EOutOfMemory

Ошибочная операция с указате-
лем, например, попытка дважды
освободить один и тот же блок
памяти

Неудачная попытка динамически
выделить память; может генери-
роваться процедурой OutOfMe-
шогуЕггог

EOutOf-
Resources

Генерируется при
попытке приложе-
ния создать деск-
риптор Windows,
когда Windows не
имеет места для
размещения допол-
нительных дескрип-
торов; возможно
и при выделении
других ресурсов
Windows

Ошибка ввода-вывода из файла; исключение гене-
рируется, если включена опция I/O checking на
странице Pascal окна опций проекта; информация
о конкретном виде ошибки содержится в локаль-
ной переменной ErrorCode

Ошибочное применение операции преобразования
типов интерфейса

Ошибка преобразования типа объекта

Нераспознаваемый графический файл

Ошибочная операция с графикой, например, по-
пытка изменить размер пиктограммы или копиро-
вание пиктограммы в буфер Clipboard

Ошибочная операция с таблицей

Ошибочная операция с компонентом; генерируется
при попытке выполнить операцию, которая требу-
ет обработчика окна, над компонентом, не имею-
щим родителя (свойство Parent = NULL). Это иск-
лючение также генерируется при выполнении опе-
раций перетаскивания над формой (например, при
попытке выполнить операцию Forml::BeginDrag).

Справочные данные по языку C++ 105

•

EListError

ELowCapacity-
Еггог

EMCIDevice-
Еггог

EMenuError

EOleCtrlError

EOleError

EOutlineError

EPackageError

EParserError

EPrinter

EPropReadOnly

EPropWrite-
Only

Ошибка работы с объектом типа списка TString-
List и TStrings: попытке сослаться на элемент
с индексом вне допустимых пределов, попытке до-
бавления дубликата строки в объект TStringList,
в котором значение свойства Duplicates равно du-
рЕггог, попытке вставить элемент в сортированный
список, так как это может нарушить правильную
последовательность элементов

Попытка выделить памяти больше, чем доступно
кубу решений; надо или увеличить значение Capa-
city, или уменьшить размерность куба

Ошибка доступа к устройствам мультимедиа через
драйвер Media Control Interface (MCI)

Ошибка, связанная с элементами меню

Генерируется при невозможности связать приложе-
ние с компонентом ActiveX

Низкоуровневая ошибка OLE; C++Builder проверя-
ет это исключение, но не генерирует его

EOleSysError Ошибка OLE, специфическая для
интерфейса OLE IDispatch; свой-
ство ErrorCode содержит номер
ошибки.

EOle-
Exception

Ошибка OLE, свя-
занная с методом
или свойством

Ошибка при работе с компонентом Outline

EOutOf- Генерируется при попытке при-
Resources ложения создать дескриптор

Windows, когда Windows не име-
ет места для размещения допол-
нительных дескрипторов; воз-
можно и при выделении других
ресурсов Windows

Исключение времени проектирования, генерируе-
мое при загрузке или использовании пакета

Ошибка преобразования текста описания формы
в двоичное представление, происходящая обычно
из-за синтаксической ошибки исходного текста (ча-
сто из-за исправления текста вручную)

Ошибка печати; например, приложение пытается
использовать принтер, которого нет, или задание
по какой-то причине не может быть послано на
принтер

Попытка записать с помощью автоматизации OLE
значение свойства, которое предназначено только
для чтения

Попытка прочитать с помощью автоматизации OLE
значение свойства, которое предназначено только
для записи

106 Глава 1

EPropertyError

ERegistry-
Exception

EResNotFound

EStreamError

j

EStringList-
Error

EThread

ETreeView-
Error

EUnsupported-
ТуреЕггог

EVariantError

EWin32Error

Ошибка при задании значения свойства

Ошибка при обращении к реестру

Ошибка при загрузке файла ресурсов .DFM или
.RES в процессе проектирования.

Базовый класс исключений ошибок потоков

EFCreateError

EFOpenError

EFilerError

Ошибка создания файла; напри-
мер, пользователь указал недопу-
стимое имя файла или указан-
ный файл уже существует и не
может быть перезаписан, так как
пользователь не обладает соответ-
ствующим уровнем доступа

Ошибка открытия файла

Базовый класс исключений фай-
ловых потоков

EReadError

EWrite-
Еггог

EClassNot-
Found

Elnvalid-
Image

Невозможно про-
честь заданное чис-
ло байтов

Невозможно запи-
сать заданное число
байтов

Компонент не свя-
зан с приложением

Невозможно про-
честь файл ресурсов

Ошибочный доступ к окну списка с неверным ин-
дексом

Конфликт в многопоточном приложении (напри-
мер, вызов метода Synchronize объекта Tthread до
успешного завершения его предыдущего вызова)

Ошибка индекса при работе с компонентом ТТгее-
View

Ошибка выбора типа поля в качестве размерности
куба решений

Ошибка, связанная с типом данных Variant

Ошибка Windows, генерируется процедурой
RaiseLastWm32Error, если Windows возвращает
ошибку

1.12.4 Базовый класс исключений VCL Exception

Все предопределенные в C++Builder классы исключений, как видно из их ие-
рархии, приведенной в разд. 1.12.3, являются прямыми или косвенными наслед-
никами класса Exception, объявленного в модуле SysUtils и наследующего непо-
средственно TObject.

"

Справочные данные по языку C++ 107

1.12.4.1 Свойства исключений

В классе Exception объявлено два свойства:

Свойство

Help-
Context

Message

Тип

hit

System::AnsiString

Описание

Целый идентификатор экрана контекстно-за-
висимой справки. Этот экран справки ото-
бражается, если пользователь, находясь в ок-
не с сообщением об ошибке, нажимает клави-
шу F I . По умолчанию значение равно 0

Строка сообщения, которая в дальнейшем при
обработке исключения системным обработчи-
ком отображается в окне сообщений; устанав-
ливается конструктором с умолчанием

Свойство Message имеет значение по умолчанию, которое присваивается при
автоматической генерации исключения. При преднамеренной генерации исключе-
ний их конструкторы, описанные в следующем разделе, могут задавать значение
свойства Message в виде переменной типа string или литеральной константы.

Свойство HelpContext хранит целый идентификатор экрана контекстно-зави-
симой справки. Этот экран справки отображается, если пользователь, находясь
в окне с сообщением об ошибке, нажимает клавишу F l .

По умолчанию значение свойства HelpContext равно 0. Это значение может
изменяться некоторыми конструкторами (см. следующий раздел). Например, опе-
ратор

throw Exception("He хватает исходных данных", 4) ;

генерирует исключение со значением свойства Message, равным тексту "Не хвата-
ет исходных данных", и значением свойства HelpContext, равным 4. При получе-
нии сообщения об этом исключении пользователь сможет нажать клавишу Fl и по-
лучить пояснения, что ему делать в этом случае.

Конечно, чтобы это работало, надо создать соответствующий файл справки
и связать его с приложением, установив соответствующую опцию Help f i le (файл
справки) в окне Project Options (опции проекта) на странице Application (приложе-
ние).

1.12.4.2 Конструкторы исключений

Класс Exception наследует все функции своего базового класса TObject, в част-
ности, полезную для идентификации неизвестного исключения функцию Class-
Name.

Кроме того, в интерфейсе класса Exception описано 8 конструкторов, насле-
дуемых всеми исключениями:

Конструктор

Exception(const System::AnsiString Msg)

Exception(const System: :AnsiString Msg,
const System::TVarRec * Args,
const int Args_Size)

Описание

Конструктор, передает строку сооб-
щения Msg свойству Message

Конструктор формирует строку
свойства Message, исходя из строки
описания формата Msg и массива
аргументов Args размером Args_Si-
ze

108 Глава 1

Конструктор Описание

Exception(int Ident) Конструктор задает строку свойства
Message идентификатором Ident
строки сообщения в ресурсах проекта

Exception(int Ident,
const System::TVarRec * Args,
const int Args_Size)

Конструктор задает строку свойства
Message идентификатором Ident
строки описания формата в ресур-
сах проекта и массивом аргументов
Args

Exception(const System::AnsiString Msg,
int AHelpContext)

Конструктор передает строку сооб-
щения Msg свойству Message; пере-
дает свойству HelpContext иденти-
фикатор HelpContext экрана кон-
текстно-зависимой справки по этому
исключению

Exception(const System::AnsiString Msg,
const System::TVarRec * Args,
const int Args_Size,
int AHelpContext)

Конструктор формирует строку
свойства Message, исходя из строки
описания формата Msg и массива
аргументов Args; передает свойству
HelpContext идентификатор Help-
Context экрана контекстно-зависи-
мой справки по этому исключению

Exception(int Ident, int AHelpContext) Конструктор задает строку свойства
Message идентификатором Ident
строки сообщения в ресурсах проек-
та; передает свойству HelpContext
идентификатор HelpContext экрана
контекстно-зависимой справки по
этому исключению

Exception(int Ident,
const System::TVarRec * Args,
const int Args_Size,
int AHelpContext)

Конструктор формирует строку
свойства Message исходя из строки
описания формата в ресурсах проек-
та, указываемой идентификатором
Ident, и массива аргументов Args;
передает свойству HelpContext
идентификатор HelpContext экрана
контекстно-зависимой справки по
этому исключению

Рассмотрим примеры использования различных конструкторов:
throw Exception("He хватает исходных данных");

throw Exception(Format("Задано %d параметров из %d",
OPENARRAY(TVarRec, (N1, N 2))) } ;

Последний пример использует функцию Format (см. гл. 4) для форматирован-
ного вывода информации о значениях переменных N1 и N2. При этом для переда-
чи в конструктор массива используется макрос OPENARRAY (о передаче в функ-
ции открытых массивов см. в гл. 2 в разд. 2.11.3). В результате, например, при
значениях переменных N1 = 5 и N2 = 7 будет сгенерировано исключение, в диало-
говом окне которого появится текст: "Задано 5 параметров из 7".

Следующий пример:

Справочные данные по языку C++ 109

throw Exception("Задано %d параметров из %d",
OPENARRAY(TVarRec,(N1, N2)));

Этот пример аналогичен предыдущему, но использует конструктор с непосред-
ственным заданием строки форматирования в качестве первого параметра. Поэто-
му запись получается несколько короче, чем в предыдущем примере.

Следующий пример генерирует исключение с указанием темы контекстно-за-
висимой справки:

throw Exception("He хватает исходных данных", 4) ;

Этот оператор сгенерирует исключение с тем же текстом, что и в одном из при-
веденных выше примеров, но если в диалоговом окне с сообщением об этом исклю-
чении пользователь нажмет клавишу F1, ему будет предъявлена контекстная
справка с идентификатором 4.

Пример применения конструктора, использующего строку ресурсов:
throw Except ion(65369) ;

Этот оператор передает в свойство Message строку с номером 65369 из файла
ресурсов. Оператор

raise EMy.CreateResFmt(65369, O P E N A R R A Y (T V a r R e c , (N 1 , N 2))) ;

берет из файла ресурсов строку с номером 65369 как строку описания формата
и передает в свойство Message сформатированные с ее помощью значения перемен-
ных N1 и N2.

1.12.5 Обработка исключений в блоках try ... catch

1.12.5.1 Синтаксис блоков try ... catch

Наиболее кардинальный путь борьбы с исключениями — отлавливание и об-
работка их с помощью блоков try ... catch. Синтаксис этих блоков следующий:

try
<

Исполняемый код
}
catch (TypeToCatch)
{

Код, исполняемый в случае ошибки
}

Операторы блока catch представляют собой обработчик исключения. Пара-
метр TypeToCatch может быть или одним из целых типов (int, char и т.п.), или
ссылкой на класс исключения, или многоточием, что означает обработку любых
исключений. Смысл параметров целого типа будет рассмотрен ниже
в разд. 1.12.6.1. А пока остановимся на случае, когда параметр является ссылкой
на класс исключений.

Операторы обработчика выполняются только в случае генерации в операторах
блока try исключения типа, указанного в заголовке catch. После блока try может
следовать несколько блоков catch для разных типов исключений. Таким образом,
в обработчиках catch вы можете предпринять какие-то действия: известить поль-
зователя о возникшей проблеме и подсказать ему пути ее решения, принять ка-
кие-то меры к исправлению ошибки (например, при переполнении заслать в ре-
зультат очень большое число соответствующего знака) и т.д. Наиболее ценным яв-
ляется то, что вы можете определить тип сгенерированного исключения и диффе-
ренцированно реагировать на различные исключительные ситуации. Причем пере-
хват исключения блоком catch приводит к тому, что это исключение далее не обра-
батывается стандартным образом, т.е. пользователю не предъявляется окно с непо-
нятными ему английскими текстами.

110 Глава 1

Приведем пример обработки исключений. Пусть в вашем приложении имеет-
ся два окна редактирования Editl и Edit2, в которых пользователь вводит действи-
тельные числа типа float. Приложение должно разделить их одно на другое. При
этом возможен ряд ошибок: пользователь может ввести в окно символы, не преоб-
разуемые в целое число, может ввести слишком большое число, может ввести вме-
сто делителя нуль, результат деления может быть слишком большим для типа
float. Следующий код отлавливает все эти ошибки:

float А;
try

{
А = StrToFloat(Editl->Text) / StrToFloat(Edit2->Text);
}
catch(EConvertError&)

{
Application->MessageBox("Вы ввели ошибочное число",

"Повторите ввод",МВ_ОК);

}
catch(EZeroDivide&)
{
Application->MessageBox("Вы ввели нуль",

"Повторите ввод",МВ__ОК) ;

}
catch(EOverflows)
{
Application->MessageBox("Переполнение",

"Ошибка вычислений",МВ_ОК);
if (StrToFloat(Editl->Text) * StrToFloat(Edit2->Text) >= 0)

A = 3.4E38;
else A = -3.4E38;
}

Если пользователь ввел неверное число (например, по ошибке нажал не циф-
ру, а какой-то буквенный символ), то при выполнении функции StrToFloat воз-
никнет исключение класса EConvertError. Соответствующий обработчик исклю-
чения сообщит пользователю о сделанной ошибке и посоветует повторить ввод.
Аналогичная реакция последует на ввод пользователем в качестве делителя нуля
(класс исключения EZeroDivide). Если возникает переполнение, то соответствую-
щий блок catch перехватывает исключение, сообщает о нем пользователю и ис-
правляет ошибку: заносит в результат максимально возможное значение соответ-
ствующего знака.

Поскольку исключения образуют иерархию, рассмотренную в разд. 1.12.3,
можно обрабатывать сразу некоторую совокупность исключений, производных от
одного базового исключения. Для этого надо в заголовке блока catch указать имя
этого базового исключения. Например, исключения EZeroDivide (целочисленное
деление на нуль), EOverflow (переполнение при целочисленных операциях), Eln-
validArgument (выход числа за допустимый диапазон) и некоторые другие явля-
ются производными от класса исключений EMathError. Поэтому все их можно от-
лавливать с помощью одного блока catch, например, такого:

catch(EMathErrors) ,
{
Application->MessageBox("Ошибка вычислений",

"Повторите ввод", MB O K) ;
}

Правда, в этом случае не конкретизируется причина прерывания исключений.
Однако такая конкретизация возможна, если воспользоваться свойствами исклю-
чений. Все исключения имеют свойство Message, которое представляет собой стро-
ку, отображаемую пользователю при стандартной обработке исключений.

Справочные данные по языку C++ 111

Чтобы воспользоваться свойствами исключений, надо в заголовке блока catch
не только указать тип исключения, но и создать временный указатель на объект
этого типа. Тогда через имя этого объекта вы получаете доступ к его свойствам.
Ниже приведен пример использования свойств исключений при перехвате исклю-
чений, наследующих классу EMathError:

catch(EMathErrors E)
{
AnsiString S = "Ошибка вычислений : ";
if(E.Message == "EZeroDivide") S += "деление на нуль";
if(E.Message == "EOverflow") S += "переполнение";
if(E.Message == "EInvalidArgument") S += "недопустимое число";
Application->MessageBox(S.c_str(), "Повторите ввод", МВ_ОК);
}

Вводимое в этом операторе имя ссылки на исключение Е носит сугубо локаль-
ный характер и вводится только для того, чтобы можно было сослаться на свойст-
во Message по имени объекта исключения.

Как уже говорилось выше, если в заголовке блока catch указано многоточие,
то этот блок перехватит любые исключения:

catch(...)
(
ShowMessage("Призошла ошибка.");
}

Блок catch(...) может сочетаться и с другими блоками catch, но в этом случае
он должен, конечно, располагаться последним. Поскольку этот блок перехватит
все исключения, то все блоки, следующие за ним, окажутся недоступными.
C++Builder следит за этим. Если блок catch(...) оказался не последним, вам будет
выдано компилятором сообщение об ошибке с текстом: "The handler must be last"
("Обработчик должен быть последним").

Следует отметить некоторую опасность применения блока catch(...). Перехват
всех исключений способен замаскировать какие-то непредвиденные ошибки в про-
грамме, что затруднит их поиск и снизит надежность работы.

1.12.5.2 Последовательность обработки исключений, обработка
на уровне приложения

Блоки try...catch могут быть вложенными явным или неявным образом. При-
мером неявной вложенности является блок try...catch, в котором среди операторов
раздела try имеются вызовы функций, которые имеют свои собственные блоки
try...catch. Рассмотрим последовательность обработки исключений в этих случа-
ях. При генерации исключения сначала ищется соответствующий ему обработчик
в том блоке try...catch, в котором создалась исключительная ситуация. Если соот-
ветствующий обработчик не найден, поиск ведется в обрамляющем блоке
try...catch (при наличии явным образом вложенных блоков) и т.д. Если в данной
функции обработчик не найден или вообще в ней отсутствуют блоки try...catch, то
поиск переходит на следующий уровень — в блок, из которого была вызвана дан-
ная функция. Этот поиск продолжается по всем уровням. И только если он закон-
чился безрезультатно, выполняется стандартная обработка исключения, заклю-
чающаяся, как уже было сказано, в выдаче пользователю сообщения о типе ис-
ключения.

Как только блок catch, соответствующий данному исключению, найден и вы-
полнен, объект исключения разрушается и управление передается оператору, сле-
дующему за соответствующим блоком try...catch.

Возможен также вариант, когда в самом обработчике исключения в процессе
обработки возникла исключительная ситуация. В этом случае обработка прерыва-
ется, прежнее исключение разрушается и генерируется новое исключение. Его об-

112 Глава 1

работчик ищется в блоке try...catch, внешнем по отношению к тому, в котором
возникло новое исключение.

Если исключение не перехвачено ни одним обработчиком в функциях, вы мо-
жете обработать его на уровне приложения. Для этого предусмотрены события
OnException компонента Application — самого приложения. Обработчик этих со-
бытий можно ввести в ваше приложение следующим образом. Пусть вы решили
назвать этот обработчик MyException. Тогда в заголовочный файл приложения
надо добавить его объявление:

void fastcall MyException(TObject *Sender, Exception *E);

В файл вашего модуля надо внести реализацию обработчика:
void fastcall TForml : :MyExcept ion(TObject 'Sender, Exception *E)
{
// операторы обработки
}

Осталось указать приложению на вашу функцию MyException как на обработ-
чик события OnException. Вы можете это сделать, включив, например, в обработ-
ку события формы OnCreate оператор:

Application->OnException = MyException;

Ваш обработчик не перехваченных ранее исключений готов. Осталось только
наполнить его операторами, сообщающими пользователю о возникших неполад-
ках и обеспечивающими дальнейшую работу программы. К вашей функции MyEx-
ception приложение будет обращаться, если было сгенерировано исключение и ни
один блок catch его не перехватил. В функцию передается указатель Е на объект
класса Exception. Этот объект является сгенерированным исключением, а класс
Exception — базовый класс всех исключений.

Простейшая обработка исключения могла бы производиться функцией Show-
Exception, обеспечивающей отображение информации об исключении:

Application->ShowException(Е);

Примеры сообщений, выдаваемых этой функцией, были приведены ранее на
рис. 1.3. В заголовке окна пишется имя приложения, а текст содержит описание
причины генерации исключения. Основным недостатком функции являются сооб-
щения на английском языке, что вряд ли -порадует пользователей вашего прило-
жения. Поэтому лучше сделать собственные сообщения. При этом для определе-
ния истинного класса сгенерированного исключения можно воспользоваться мето-
дом ClassName. Тогда обработчик события OnException может иметь, например,
следующий вид:

void fastcall TForml: :MyException(TObject *Sender,
Exception *E)

{
AnsiString S = "Ошибка вычислений : ";
if ((String(E->ClassName()) == "EZeroDivide")

|| (String(E->ClassName()) == "EDivByZero"))
S += "деление на нуль";

if (String (E->ClassName()) == "EOverflow")
S += "переполнение";

if(String (E->ClassName()) == "EInvalidArgument")
S += "недопустимое число";

if(String(E->ClassName()) == "EConvertError")
S += "ввели недопустимое число";

Application->MessageBox(S.c_str(),"Повторите ввод",MB OK);

Справочные данные по языку C++ 113

На рис. 1.4 приведены примеры сообщений, выдаваемых эти обработчиком.
Вероятно, пользователям более понравятся сообщения рис. 1.4, чем сообщения
рис. 1.3.

Рис. 1.4
Сообщения,
выдаваемые вашим
обработчиком при
делении на нуль (а)
и при неверной записи
вводимого числа (б)

а) Повторите ввод

Ошибка вычислении : деление на нуль

б) Повторите ввод т .*i
Ошибка вычислений : ввели недопустимое число

ОК

1.12.6 Преднамеренная генерация исключений

1.12.6.1 Оператор throw
В ряде случаев возникает потребность сгенерировать исключение искусствен-

но. Например, вы обработали какое-то исключение, но хотите, чтобы его обработка
была завершена обработчиком внешнего по отношению к данному блока
try.. .catch. В этом случае вам надо повторно сгенерировать исключение того же
типа, что и прежнее, поскольку прежнее разрушено данным обработчиком.

Повторная генерация исключения осуществляется ключевым словом throw.
Общая схема такой двухэтапной обработки исключений может иметь вид:

try
{
// операторы внешнего блока
try // начало внутреннего блока

{
// операторы внутреннего блока,

// способные привести к генерации исключения

}
catch (тип исключения &)

{
// обработка исключения, сгенерированного во внутреннем блоке

throw;' // повторная генерация того же исключения

}
// операторы внешнего блока;

// при генерации исключения не выполняются
} // завершение внешнего блока try
catch (тип исключения &)

{
// обработка исключений и внутреннего, и внешнего блоков

При такой организации программы Исключения, сгенерированные во внут-
реннем блоке, обрабатываются в два этапа: сначала обработчиком внутреннего бло-
ка, а затем обработчиком внешнего блока. При этом операторы внешнего блока,
следующие за внутренним, при генерации исключения во внутреннем блоке вы-
полняться не будут. Исключения, сгенерированные во внешнем блоке, будут обра-
батываться только обработчиками этого внешнего блока.

С помощью ключевого слова throw можно сгенерировать не только повторное
исключение, но и исключение любого типа в любом месте программы. Такая необ-
ходимость, в частности, возникает, когда пользователь что-то не так сделал и не
имеет смысла продолжать выполнение приложения. Например, пользователь дол-
жен был задать какую-то информацию в окнах редактирования, но забыл это сде-
лать. В этом случае прежде, чем продолжать работу, надо указать пользователю на
его ошибку. Это можно сделать, сгенерировав соответствующее исключение.

114 Глава 1

Генерация нестандартного исключения производится ключевым словом
throw, после которого указывается генерируемый объект любого типа. Это исклю-
чение может в дальнейшем перехватываться блоком catch, в заголовке которого
указан то же тип, что у сгенерированного объекта. Например, вы можете написать
оператор, который проверяет, задана ли информация в окне редактирования
Editl, и, если не задана, то генерируется исключение:

if(Editl->Text == "") throw "He задана требуемая информация";

В данном случае объект генерируемого исключения имеет тип char *. Подоб-
ных операторов с различными текстами в разных местах кода может быть много.
И все они могут быть перехвачены, например, следующим блоком catch:

catch(char * s)

Application->MessageBox(s, "Ошибка ввода", MB_ICONHAND|MB_OK);

Заголовок этого блока обеспечивает перехват любых исключений типа char *
и отображение их текстов в диалоговом окне, пример которого показан на рис. 1.5.

Рис. 1.5
Окно, отображающее текст
перехваченного исключения типа char

*!
Не задана требуемая информация

Вы можете в качестве параметра throw задавать целые числа, отображающие
некие номера ошибок. Например:

if (. . .) throw 1;

В данном случае генерируется объект исключения типа int. Поэтому подобные
исключения могут быть перехвачены и обработаны блоком вида:

c a t c h (i n t & i)
{
switch (i)
{
case 1 : . . .

break;
case 2 : . . .

break;

Можно генерировать объекты исключений и более сложных типов, например,
структуры с полями, которые анализируются в обработчике исключения. Пусть,
например, пользователь перед занесением в базу данных новой записи, относящей-
ся к некоторому объекту, должен задать некоторый минимум параметров (харак-
теристик) этого объекта. В приведенном ниже коде создается структура st типа
Pers и в ходе диалога с пользователем в нее заносится число заданных параметров
(st.il) объекта. Тогда перед занесением в базу данных программа может сверить
требуемое (st.il) и действительно заданное (st.i2) число параметров. Если парамет-
ров задано недостаточно, то генерируется исключение, объектом которого являет-
ся структура st. Обработчик этого исключения в свою очередь может проанализи-
ровать все поля структуры и выдать пользователю соответствующее сообщение.

Справочные данные по языку C++ 115

struct Pers
{
int il, 12;

1 st = { 0 , 5 } ;

try
{
i f (. . .) s t . i l++;

i f (s t . i l < st.12) throw st;
}
catch (Perss)
{
Application->MessageBox(("Требуется параметров - ' +

IntToStr(s t .12) + "ХпЗадано параметров — " +
IntToStr (st. 11)) . c__str () ,
"He хватает информации",MB_ICONHAND | MBJDK);

}

Пример выдачи информации таким обработчиком исключения приведен на
рис. 1.6.

Рис. 1.6
Пример выдачи сообщения об объекте исключения в виде
структуры Требуется параметров - 5

Задано параметров -1

1.12.6.2 Исключение EAbort и функция Abort

В C++Builder имеется исключение EAbort, несколько отличающееся от рас-
смотренных ранее. Генерация этого исключения, как и любых других, прерывает
процесс вычисления. Но если приложение не отлавливает соответствующим бло-
ком catch исключений этого класса, то они попадают в обработчик TApplicati-
on::HandleException и там, в отличие от других исключений, разрушаются без
всяких сообщений. Таким образом, это «молчаливое» прерывание процесса вычис-
ления, при котором не должно отображаться диалоговое окно с сообщением об
ошибке.

Простейший путь генерации исключения EAbort — вызов функции Abort.
Например:

if (. . .) Abort () ;

Только нельзя путать две похожие внешне функции: Abort - - генерация
«молчаливого» исключения, и abort — аварийное завершение программы.

Обычное применение EAbort — прерывание вычислений при выполнении не-
которого условия окончания или условия прерывания пользователем (например,
при нажатии клавиши Esc или какого-то оговоренного сочетания клавиш). Функ-
ция Abort прерывает текущую процедуру и все вызвавшие ее процедуры, переда-
вая управление на самый верх. Таким образом, это наиболее простой выход из глу-
боко вложенных процедур. Впрочем, можно при необходимости перехватить ис-
ключение на каком-то промежуточном уровне, предусмотрев на нем блок
try...catch и вставив соответствующий оператор обработки:

catch(EAbort&)

116 Глава 1

1.12.7 Стандартные исключения C++

В предыдущих разделах была рассмотрена обработка исключений, используе-
мая в C++Builder. Разработчики этой системы позаботились об автоматической ге-
нерации множества исключений, и пользователю остается только вовремя пере-
хватывать и обрабатывать их. В стандартном C++ все обстоит несколько иначе.

При использовании исключений стандартного C++ учтите, что помимо под-
ключения директивами #include соответствующих заголовочных файлов, надо
обеспечивать пространство имен стандартной библиотеки (см. гл. 5), вставляя
в ваш модуль оператор:

using namespace std;

Альтернативный подход — ссылка на соответствующее пространство имен не-
посредственно перед применением типа исключения. Например, std::bad_alloc.

Базовым классом исключений в C++ является класс exception, объявленный
в модуле stdexcept. Он имеет, кроме, естественно, конструкторов и деструктора,
одну виртуальную функцию-элемент: what (). Она возвращает текст сообщения,
заданный в том или ином исключении.

Классу exception наследуют следующие классы исключений:

Исключение

bad_alloc

bad_cast

bad_exception

bad_typeid

ios_base::failure

logic_error

runtime_error

Описание

Генерируется операцией new при от-
сутствии необходимого объема памяти
(см. подробное описание в разд. 1.11)

Генерируется операцией dynamic_cast,
примененной к ссылке, если операнд
не принадлежит ожидаемому типу

Неожиданное исключение, которое мо-
жет быть обработано особым образом
(см. далее)

Генерируется операцией typeid при ее
применении к нулевому указателю
или ссылке

Генерируется при ошибочных операци-
ях со стандартными потоками ввода
и вывода

Базовый класс исключений логиче-
ских ошибок в приложении

Базовый класс исключений различных
ошибок времени выполнения

Заголовочный файл

<new>

<typeinfo>

<exception>

<typeinfo>

<ios>

<exception>

<exception>

Первые пять из перечисленных исключений генерируются автоматически
средствами языка при возникновении ошибок в процессе выполнения соответст-
вующих операций. А два последних являются базовыми для ряда предопределен-
ных в библиотеке исключений, а также основой для объявления своих собствен-
ных исключений. Ниже приведены определенные в заголовочном файле
<stdexcept> наследники класса logic_error:

Справочные данные по языку C++ 117

domain_error

invalid_argument

length error

out_of_range

Используется в функциях для сообщения о выходе значения
за допустимые пределы

Используется для сообщения об ошибочном значении аргу-
мента функции

Используется в функциях для сообщения о превышении ка-
кого-то размера, например, при занесении лишних симво-
лов в строку ограниченной длины

Используется в функциях для сообщения о неверном значе-
нии индекса массива и т.п.

Конечно, все эти определения достаточно условны, и пользуясь конкретными
библиотечными функциями надо смотреть, какие исключения и в каких случаях
они генерируют.

Класс runtime_error имеет следующих наследников, объявленных в заголо-
вочном файле <stdexcept> и оповещающих о возникновении чисто вычислитель-
ных проблем:

range_error

overflow_error

underflow_error

Используется в
за допустимые

Используется

Используется

функциях
пределы

для

для сообщения о

в функциях для

сообщения 0 выходе значения

переполнении

сообщения 0 потере порядка

В C++ предполагается, что программист при написании тех или иных функ-
ций, прежде всего, библиотечных, проверяет возможные ошибочные ситуации
и генерирует в нужных случаях оператором throw соответствующие исключения.
В конструкторы исключений передается строка текста, который в дальнейшем мо-
жет быть прочитан в обработчике исключения функцией what().

Пусть, например, вы пишете некоторую функцию F, в которой вам надо разде-
лить 1 на некоторое число R. Тогда перед делением вы можете проверить, не равно
ли R нулю, и если равно, то сгенерировать исключение, передав в него сообщение
для пользователя. Аналогичным образом можно предусмотреть в функции другие
случаи, требующие генерации исключений. А в том блоке, который вызывает эту
функцию, можете установить универсальный перехватчик всех событий (пере-
хватчик базового класса exception) и в нем проинформировать пользователя о воз-
никших проблемах или сделать что-то более полезное. Все это может выглядеть
так:

finclude <stdexcept>
using namespace std;

double F (double R)

if (R == 0)
throw overflow_error ("Переполнение из-за деления на нуль");

else
А = 1 / R;

try
{

118 Глава 1

// вызов функции F
double В = F(B);
}
catch(exception & e)
(
// перехват исключения

ShowMessage(e .what()) ;
}

Для облегчения контроля того, какие исключения могут генерироваться
в функции, можно в ее заголовок добавить спецификацию исключений — ключевое
слово throw, после которого в скобках записывается список исключений, разде-
ляемых зпятыми. Например:

double F(double R) throw (overflow_error)

Если спецификации нет, как в приведенном ранее примере, то могут генериро-
ваться любые исключения. Если список в спецификации пуст:

double F(double R) throw ()

то не ожидается никаких исключений.
При наличии спецификации, генерация в функции непредусмотренного ис-

ключения все-таки возможна. В этом случае вызывается функция unexpected, ко-
торая аварийно завершает приложение вызовом функции terminate. Например,
если функция F имеет следующий вид:

double F(double R) throw (overflow_error)
{

throw overflow_error("Переполнение из-за деления на н у л ь ") ;

throw range_error("Ошибка диапазона");

то генерация исключения overflow_error может быть обработана во внешнем бло-
ке catch, а генерация исключения range_error приведет к аварийному заверше-
нию программы.

В документации на C++ указывается, что аварийного завершения можно избе-
жать, если включить в спецификацию исключение bad_exception. Тогда при появ-
лении непредусмотренного исключения функция terminate, вместо аварийного за-
вершения программы, будет генерировать исключение bad_exception, которое мо-
жет быть перехвачено обычным образом. Но C++Builder 6 этой возможности не
поддерживает. Тем не менее, аварийное завершение программы при генерации не-
предусмотренного исключения можно предотвратить. Имеется возможность ука-
зать собственную функцию unexpected. Для этого используется функция set_un-
expected, объявленная следующим образом:

typedef void (* unexpected_handler) О ;
unexpected_handler

set_unexpected(unexpected__handler unexpected f u n c) ;

В качестве аргумента в эту функцию передается указатель на вашу собствен-
ную функцию, заменяющую стандартную unexpected. А возвращается указатель
на текущую функцию unexpected.

Например, вы можете ввести в свою программу собственную функцию обра-
ботки непредусмотренного исключения:

void MyUnexpectedO
(
throw;

Справочные данные по языку C++ 119

В этом примере функция просто осуществляет повторную генерацию исключе-
ния. Сослаться на эту функцию можно, например, выполнив в нужный момент
оператор:

set_unexpected(MyUnexpected) ;

Если вы хотите, чтобы всегда работала эта функция, то указанный оператор
можно включить в обработчик события OnCreate вашей формы. А если вы хотите
включать вашу функцию, заменяющую unexpected, только в каких-то фрагментах
программы, возвращаясь потом к стандартной или другой вашей функции, то это
можно сделать следующим образом:

unexpected_handler UH;

// Задание новой функции и запоминание предыдущей
UH = set_unexpected(MyUnexpected);

// Восстановление прежней функции и запоминание текущей
UH = set_unexpected(UH);

Если вы тем или иным способом ввели приведенную выше замену функции
unexpected, вы сможете обрабатывать любые непредусмотренные исключения.
Например, вызов описанного выше варианта функции F с возможностью генера-
ции непредвиденного исключения, можно оформить так:

try
{
// вызов функции F
double В = F(StrToFloat(В));

}
catch(overflow_error & е)
{
// перехват исключения overflow_error

S h o w M e s s a g e (e . w h a t ()) ;
}
catch(exception & e)
{
// перехват всех прочих исключений
ShowMessage("Неожиданное исключение: " +

AnsiStr ing(e.what ())) ;
}

Другой способ предотвратить аварийное завершение программы при непредви-
денных исключениях — заменить с помощью функции set_terminate стандартную
функцию terminate точно так же, как это рассмотрено для unexpected.

1.13 Сигналы
Сигнал — это некоторое непредвиденное событие (прерывание), которое может

вызвать преждевременное завершение программы. Перечислим некоторые из та-
ких непредвиденных событий: прерывание программы, вызванное нажатием поль-
зователем клавиш Ctrl-C, появление недопустимой команды, ошибочный доступ
к памяти (нарушение сегментации), запрос от операционной системы о заверше-
нии работы, ошибка операций с вещественными числами (деление на нуль или пе-
ремножение слишком больших действительных чисел).

Ниже перечислены некоторые стандартные сигналы, определенные в заголо-
вочном файле signal.h (полный список приведен в гл. 4, в описании функции
signal).

120 Глава 1

SIGABRT

SIGFPE

SIGINT

SIGUSR1,
SIGUSR2,
SIGUSR3

Аварийное завершение программы (например, в результате вызова
функции abort). Действие по умолчанию — вызов _exit(3)

Ошибка арифметической операции, например, деление на нуль
или операция, вызвавшая переполнение. Действие по умолча-
нию — вызов _exit(l)

Получение интерактивного сигнала (например, прерывание Ctrl-C).
Действие по умолчанию — прерывание INT 23h

Определенные пользователем (только в Win32) сигналы пользова-
теля, генерируемые функцией raise. Действие по умолчанию -
игнорирование сигнала

Библиотека обработки сигналов содержит функцию signal, перехватывающую
сигналы. В функцию signal передаются два параметра: целочисленный номер сиг-
нала и указатель на функцию обработки сигнала.

Обычно сигналы автоматически генерируются при возникновении соответст-
вующих событий. Но программа может целенаправленно генерировать сигналы
функцией raise, в которую передаются целочисленное значение номера сигнала.

Например, вы можете предусмотреть в своей программе обработчик некоторо-
го вводимого вами сигнала SIGUSR1. Пусть вы дали ему имя Handl_SIGUSRl.
Тогда где-то в программе (например, при обработке события OnCreate формы) вам
надо установить в системе этот обработчик с помощью оператора

signal(SIGUSR1, Handl^SIGUSRl);

При этом не забудьте вставить в файл директиву
tinclude <signal.h>

Сам обработчик сигнала может иметь вид:
void Handl_SIGUSRl(int N)
{

i f (MessageDig("Продолжать?" , mtConfirmation,
TMsgDlgButtons() « mbYes « m b N o , 0) == m r Y e s)

// повторная установка обработчика:
signal(SIGUSR1, Handl^SIGUSRl);

else exit(EXIT_SUCCESS);
}

Этот обработчик принимает одно целое значение, соответствующее номеру
сигнала. В обработчике предусматриваются некоторые действия, необходимые при
появлении данного сигнала. Затем, если выполнение программы должно продол-
жаться, надо повторно установить обработчик сигнала с помощью функции signal,
как показано в приведенном примере. Если этого не сделать, то последующие со-
бытия SIGUSR1 не будут вызывать этот обработчик. После выполнения команды
повторной установки обработчика сигнала управление автоматически передается
в точку программы, в которой сигнал был обнаружен. В этом, в частности, корен-
ное отличие сигналов от исключений.

Генерация сигнала SIGUSR1 в необходимых местах программы осуществля-
ется оператором

ra ise(SIGUSR1);

Рассмотренный вариант функции сейчас считается несколько устаревшим.
Более современный вариант (подробнее о нем см. в гл. 4, в описании функции
signal) выглядит следующим образом. Определите в программе тип указателя на
функцию fptr:

typedef void (* f p t r) (i n t) ;

Справочные данные по языку C++ 121

Этот указатель используется в вызове функции signal:
signal (SIGFPE, (fptr)Handl_SIGFPE);

Весь остальной приведенный выше текст примера может не изменяться.

1.14 Сообщения Windows и их обработка
(

1.14.1 Обработка сообщений в приложениях C++Builder

Приложения Windows состоят из множества объектов, которые взаимодейст-
вуют друг с другом, обмениваясь сообщениями (messages). Источниками этих сооб-
щений могут быть: пользователь, оперирующий с клавиатурой и мышью, среда
Windows, посылающая сообщения приложениям, другие приложения, обмени-
вающиеся информацией с вашим приложением и, наконец, ваше приложение, по-
сылающее сообщения компонентам.

Большинство сообщений, которые вам могут потребоваться, C++Builder обра-
батывает сам, так что вам достаточно использовать обработчики стандартных со-
бытий компонентов. Но иногда вам может потребоваться самому обрабатывать со-
общения Windows. Такая необходимость возникает, если нужное вам сообщение
пока еще компонентами C++Builder не обрабатывается, или если вы определили
свое собственное сообщение.

Сообщение Windows представляет собой структуру TMessage, содержащую
поля. Наиболее важное из них — Msg содержит целое значение, идентифицирую-
щее данное сообщение. В модуле Messages.hpp в C++Builder содержатся объявле-
ния множества идентификаторов, позволяющие оперировать с мнемоническими
именами сообщений, а не с какими-то целыми значениями. Важная информация
о сообщении содержится также в двух полях параметров - - wParam (word
parameter — параметр типа word) и IParam (long parameter — параметр типа
long) и в поле результата Result. Впрочем, реально в C++Builder все эти поля име-
ют тип int. Каждое из них может быть также представлено как комбинация двух
полей типа Word: WParamLo, WParamHi, LParamLo, LParamHi, ResultLo,
ResultHi. В этих именах окончание "Hi" относится к старшим разрядам соответст-
вующего параметра, а окончание "Lo" - к младшим разрядам.

В API Windows и в C++Builder для большинства сообщений введены мнемони-
ческие имена параметров. Так что теперь, например, при обработке сообщения от
мыши можно ссылаться на понятные параметры XPos и YPos, а не на стандартные
и ни о чем не говорящие имена IParamLo и IParamHi.

В Windows предусмотрено множество сообщений. Для дальнейших экспери-
ментов нам потребуется только два сообщения. Первое из них — WM_CLOSE, сиг-
нализирующее, что окно или приложение закрывается. Это сообщение не имеет
параметров. По умолчанию оно уничтожает окно, которому послано. Если прило-
жение обрабатывает это сообщение, то оно должно возвращать нуль.

При обработке данного сообщения приложение может запросить пользователя
о необходимости закрывать окно и вызвать функцию закрытия окна только при
положительном ответе.

Второе сообщение, которое мы будем использовать — WM_ACTIVATE. Оно
посылается, когда окно переводится в активное или неактивное состояние. Снача-
ла сообщение посылается окну, переходящему в неактивное состояние, а потом —
активируемому.

Это сообщение определено следующим образом:
WM_ACTIVATE
fActive = LOWORD(wParam);
fMinimized = (BOOL) HIWORD(wParam);
hwndPrevious = (HWND) IParam;

122 Глава 1

*
Параметры этого сообщения означают следующее.
Параметр fActive показывает, как активируется или деактивируется окно.

Возможные значения параметра:

WA_ACTIVE

WA CLICKACTIVE

WA_INACTIVE

Окно активируется не щелчком мыши (например, функ-
цией Set Active Window или клавиатурой).

Окно активируется щелчком мыши.

Окно деактивируется.

Параметр fMinimized показывает, свернуто окно, или нет. Ненулевое значе-
ние соответствует свернутому окну.

Параметр hwndPrevious — это дескриптор, который указывает на окно, из ко-
торого фокус переключился на данное окно, если оно активируется, или на окно,
в которое передается управление, если данное окно деактивируется.

По умолчанию, если активируемое окно не свернуто, то оно получает фокус.
Если приложение обрабатывает это сообщение, то оно должно возвращать нуль.

1.14.2 Посылка сообщений

В API Windows определен ряд функций, позволяющих послать сообщение.

1.14.2.1 Функции SendMessage, PostMessage и Perform

Функция SendMessage посылает указанное в ней сообщение окну или множе-
ству окон и не возвращается, пока это сообщение обрабатывается. Этим она отли-
чается от функции PostMessage, которая возвращается сразу после передачи сооб-
щения.

Объявление функции SendMessage:
Int SendMessage(HWnd hWnd, unsigned int Msg,

WPARAM wParam, LPARAM IParam);

Параметр hWnd — дескриптор окна, которому передается сообщение. Если
этот параметр равен HWND_BROADCAST, то сообщение передается всем окнам
верхнего уровня в системе, включая недоступные и невидимые, кроме дочерних.

Параметр Msg определяет передаваемое сообщение. Параметры wParam и 1Ра-
ram могут содержать дополнительную информацию. Значение, возвращаемое
функцией, зависит,от вида сообщения.

Функция PostMessage объявлена следующим образом:
bool PostMessage(HWND hWnd, unsigned int Msg,

WPARAM wParam, LPARAM IParam);

Эта функция похожа на SendMessage, но в отличие от нее она помещает сооб-
щение в очередь и сразу возвращается. Таким образом, PostMessage не годится
для передачи срочных сообщений, но зато она не блокирует вызвавшее приложе-
ние на время обработки сообщения приемником.

Параметры hWnd и Msg аналогичны рассмотренным для функции SendMes-
sage. Если hWnd = NULL, то сообщение ставится в очередь сообщений (если она
есть) текущего процесса.

Функция PostMessage возвращает ненулевое значение при успешном завер-
шении и нуль в случае аварийного завершения. В этом случае причину ошибки
можно установить вызовом функции GetLastError.

Имеется еще один метод, который может посылать сообщение непосредствен-
но оконному компоненту. Это метод Perform, объявление которого имеет вид:

Perform(unsigned int Msg, WPARAM wParam, LPARAM IParam);

Справочные данные по языку C++ 123

Есть еще ряд функций, позволяющих передавать сообщения, но мы на них не
будем останавливаться, так как они реже используются в приложениях C-H-Buil-
der.

1.14.2.2 Пример посылки сообщений

Давайте построим простую программу, демонстрирующую посылку сообще-
ний. Начните новый проект, создайте в нем две формы Forml и Form2, сохраните
проект, назвав модули форм UlMessl и U2Messl соответственно, а файл проек-
та — PMessl. Форма Forml будет у нас главной, и она будет управлять видимо-
стью формы Form2. Поэтому в ее модуль введите директиву препроцессора

#include "U2Messl.h"

а свойство Visible формы Form2 должно быть равно false.
Перенесите на форму Forml две кнопки, дав им надписи "Show Form2"

и "Close Form2", В обработчике щелчка первой кнопки напишите оператор
Form2->Show();

а в обработчике щелчка второй кнопки — оператор
SendMessage(Form2->Handle,WM_CLOSE, 0,0) ;

Этот оператор посылает сообщение WM_ CLOSE (второй параметр функции
SendMessage) форме Form2. Первый параметр функции SendMessage содержит
дескриптор окна этой формы, полученный с помощью ее свойства Handle. Сообще-
ние WM_CLOSE не имеет параметров; поэтому параметры wParam и IParam зада-
ны равными нулю.

Приведенный выше оператор можно заменить следующим:
Form2->Perform(WM_CLOSE,0,0);

Результат будет тем же самым.
Сохраните и запустите приложение. Вы увидите, что нажатие пользователем

кнопки Show Form2 приводит к появлению на экране формы Form2, а нажатие
кнопки Close Form2 — к ее закрытию. Так что посылаемое формой Forml сообще-
ние достигает своего адресата.

Конечно, этот пример не очень интересный, поскольку сделать невидимой
форму Form2 мы могли бы, не посылая никаких сообщений Windows, а просто ис-
пользуя метод Hide. Поэтому пойдем дальше. Откройте новый проект, задайте за-
головок Caption ее формы равным "Приложение Pmess2" (этот текст мы будем да-
лее использовать для идентификации окна этого приложения) и сохраните проект
под именем PMess2, а модуль формы — под именем UlMess2. Откомпилируйте но-
вый проект и сохраните. В дальнейшем мы еще к нему вернемся.

Теперь давайте попробуем управлять этим проектом из формы Forml проекта
PMessl. Откройте опять проект PMessl и добавьте на форму Forml две кнопки,
сделав на них надписи "Exec Pmess2" и "Close Pmess2". В обработчике щелчка
первой кнопки напишите оператор

WinExec("Pmess2 .exe" ,SW_RESTORE);

который, как вы уже знаете, запускает приложение PMess2 на выполнение. А те-
перь давайте попробуем его закрыть. Для этого в обработчике щелчка кнопки Close
Pmess2 напишите оператор

SendMessage(FindWindow("TForml","Приложение Pmess2") , W M _ C L O S E , 0 , 0) ;

Этот оператор использует функцию FindWindow для получения дескриптора
окна приложения, которому надо послать сообщение, а затем функцией SendMes-
sage посылает сообщение WM_CLOSE.

Сохраните и запустите приложение. Теперь, нажимая кнопку Exec Pmess2, вы
можете выполнять приложение PMess2, причем можете создать несколько экземп-

124 Глава 1

ляров этого приложения. А кнопкой Close Pmess2 можете закрывать приложение
PMess2.

Вы получили возможность управлять из своего приложения другими. Но
в данном случае вы знали класс окна (TForml) внешнего приложения, поскольку
вы сами его создавали. Поэтому вы смогли применить функцию FindWindow, пе-
редав в нее и имя класса, и заголовок окна. А как быть, если вы хотите закрыть
какое-то чужое приложение? Например, вы из своего приложения выполнили
стандартное приложение Windows «Калькулятор», пользователь посчитал, что
ему было надо, а теперь вы хотите закрыть «Калькулятор», послав ему сообщение
WM_CLOSE (например, пользователь уже не работает с ним, а закрыть забыл).

При посылке сообщения другому приложению возникает задача определить
дескриптор нужного окна. Если вы определили имя класса необходимого вам при-
ложение (например, SciCalc для приложения «Калькулятор») с помощью Win-
Sight 32 и хотите послать из своего приложения сообщение о закрытии калькуля-
тора, вы можете выполнить оператор:

SendMessage(FindWindow ("SciCalc","Калькулятор"),WM_CLOSE,0,0);

1.14.3 Обработка сообщений

Во всех оконных компонентах предусмотрены обработчики сообщений Win-
dows по умолчанию. До сих пор вы пользовались именно стандартными обработчи-
ками сообщений. Однако вы можете определить и свои собственные обработчики,
заменив ими обработчики по умолчанию, или дополнив их.

Для введения собственного обработчика сообщения Windows надо сделать сле-
дующее:

1. Создать в объявлении класса карту (тар) сообщений и ввести в нее те сообще-
ния, которые вы хотите обрабатывать сами.

2. Добавить в объявление класса объявления вводимых вами обработчиков.

3. Описать эти обработчики в вашем модуле.

Первый шаг — объявление карты сообщений, легко осуществляется с помо-
щью следующих макросов:

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(parameter!, parameter2, parameters)

END_MESSAGE_MAP

Макрос BEGIN_MESSAGE_MAP открывает объявление карты сообщений,
макрос END_MESSAGE_MAP завершает это объявление, а один или несколько
макросов MESSAGE_HANDLER вводят в карту соответствующие сообщения.
В макросе MESSAGE_HANDLER первый параметр указывает имя сообщения,
второй — тип структуры сообщения, а третий — имя функции-обработчика.

Имя сообщения пишется заглавными буквами и должно соответствовать пре-
допределенному в Windows сообщению. Например, WM_CLOSE. Имя типа струк-
туры сообщения может быть любым, но обычно принято делать его тождествен-
ным имени обрабатываемого сообщения с исключенным из него символом подчер-
кивания и добавленным префиксом "Т". Например, TWMClose. Передаваемый
в обработчик параметр этого типа представляет собой структуру, через которую
в обработчик передаются параметры сообщения, а из обработчика возвращается
значение поля Result, фиксирующее результат обработки. Имя функции-обработ-
чика сообщения также может быть любым, но обычно оно образуется из имени со-
общения исключением первых символов "WM_" и добавлением префикса "On".
Например, OnClose.

Справочные данные по языку C++ 125

Давайте введем в рассмотренное ранее наше приложение PMess2 и в форму
Form2 приложения PMessl обработку тех сообщений WM_CLOSE, которые мы
посылаем им из формы Forml. Для этого поместим на форму Forml приложения
PMess2 и на форму Form.2 приложения PMessl метки Labell, чтобы отображать
в них текст, свидетельствующий о том, что обработка сообщения действительно
происходит. Введем в модулях этих форм следующие обработчики (текст приведен
для Form2; для Forml все то же самое с заменой идентификатора Form2 на
Forml):

// модуль U2Messl.h
class TForm2 : public TForm
{
published: // IDE-managed Components
TLabel *Labell;

private: // User declarations
void fastcall OnClose(TWMCloseS Message);

public: // User declarations
fastcall TForm2(TComponent* Owner);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_CLOSE, TWMClose, OnClose)

END_MESSAGE_MAP(TComponent)
};
/ /

// модуль U2Mess 1. cpp

void fastcall TForm2::OnClose(TWMCloseS a)
(
Label2->Caption = "Караул! Закрывают!";
if (MessageDlgPos("Меня хотят закрыть. Согласны?",
mtConfirmation, TMsgDlgButtons() « mbYes« mbNo « mbCancel,
0,BoundsRect.Left,BoundsRect.Bottom) == mrYes)
Close ();

else Label2->Caption = "He закроюсь!";
a.Result = 0;
}

В этом коде в файле U2Messl.h в разделе public объявлена карта сообщений,
в которую включено сообщение WM_CLOSE. Для этого сообщения объявлен обра-
ботчик OnClose и тип передаваемого в него параметра — TWMClose. В разделе
private объявлена функция этого обработчика. В нее передается параметр, назван-
ный message — структура сообщения.

В обработчике OnClose сообщения WM_CLOSE с параметром, которому дано
имя а, производится запрос подтверждения пользователя о закрытии окна. Для за-
проса использована процедура MessageDlgPos, позволяющая указать позицию
окна запроса вблизи окна формы, к которой относится запрос. При положитель-
ном ответе пользователя окно закрывается методом Close. В заключение операто-
ром a.Result = О возвращается нуль, так как это действие оговорено в приведенном
ранее описании сообщения WM_CLOSE.

Откомпилируйте оба ваших приложения и выполните приложение PMessl.
После того как вы сделаете кнопкой Show Form2 видимой форму Form2 и запустите
кнопкой Exec Pmess2 приложение PMess2, вы увидите, что окна формы Form2
и PMess2 оказывают сопротивление попыткам их зарыть, независимо от того, как
это делается: кнопками Close Form2 и Close Pmess2, или кнопками в полосах заго-
ловков этих окон. В любом случае они закрываются только после подтверждения
пользователя.

Кстати, вы можете наглядно посмотреть и очередь сообщений. Щелкните на
кнопке Close Pmess2 и, пока на экране отображено окно запроса, вернитесь, ничего
не отвечая, в окно формы Forml первого приложения и щелкните еще несколько
раз на кнопке Close Pmess2. После этого ответьте на запрос отрицательно. Вы уви-

126 Глава 1

дите, что окно запроса без всяких дополнительных действий с вашей стороны бу-
дет отображаться еще столько раз, сколько раз вы щелкнули перед этим на Close
Pmess2. Все сообщения, связанные с этими щелчками, запомнились в очереди и те-
перь очередь разгружается.

Приведенный пример обработки сообщений не очень показательный, посколь-
ку сообщение WM_CLOSE не имеет параметров. Давайте, усовершенствуем наши
приложения так, чтобы поработать с сообщениями, имеющими параметры. Вос-
пользуемся для этого описанным ранее (разд. 1.14.1) сообщением WM_ACTIVA-
ТЕ. Это сообщение получает любое окно при его активации или деактивации. Сооб-
щение имеет, в частности, параметр f Active. Значение WA_INACTIVE этого пара-
метра показывает, что окно деактивируется. Иные значения параметра показыва-
ют, что окно активируется.

Давайте введем во все наши формы (Forml и Form2 приложения PMessl,
и Forml приложения PMess2) обработчики сообщения WM_ACTIVATE. Чтобы
видеть, что эти обработчики работают правильно, поместим на эти формы допол-
нительно метки Label2, в которых будем отображать результаты обработки. И во
все три формы введем обработчики вида (приводится текст для формы Form2):

// модуль U2Messl. h
class TForm2 : public TForm

<
published: // IDE-managed Components

TLabel *Labell;
TLabel *Label2;

private: // User declarations
void fastcall OnClose(TWMCloseS Message);
void fastcall OnActivate(TWMActivateS Message);

public: // User declarations
fastcall TForm2(TComponent* Owner);

BEGIN_MESSAGE_MAP
MESSAGE_HANDLER(WM_CLOSE, TWMClose, OnClose)
MESSAGE_HANDLER(WM_ACTIVATE, TWMActivate, OnActivate)

END_MESSAGE_MAP(TComponent)

};
/ /
// модуль U2Mess 1.cpp

void fastcall TForm2::OnActivate(TWMActivateS a) '

{
if (a. Active == WA__INACTIVE)
Label2->Caption = "Меня покинули!";

else Label2->Caption = "Ура! Я работаю!";
a.Result = 0;
}

Обработчик OnActivate строится по тем же принципам, что и предыдущий.
В нем анализируется значение поля Active структуры а, передаваемой в процедуру
в качестве параметра и содержащей параметры сообщения. В зависимости от зна-
чения этого параметра производятся те или иные действия.

Откомпилируйте оба ваших приложения и выполните приложение PMessl.
Вы увидите, как при каждом переключении фокуса между окнами в них появля-
ются сообщения, отражающие потерю и обретение ими активности.

1.14.4 Определение собственных сообщений

В предыдущих разделах посылались и обрабатывались сообщения, предопре-
деленные API Windows. Однако вы можете описать свои собственные сообщения
и работать с ними так же, как с предопределенными.

Справочные данные по языку C++ 127

Номера своих собственных сообщений вы должна отсчитывать от константы
WM_USER, которая соответствует первому номеру сообщения пользователя.

Например, вы можете определить в своем приложении константы
tdefine WM_MyMessl WM_USER
#define WM_MyMess2 WMJJSER + 1

и затем оперировать с сообщениями WM_MyMessl и WM_MyMess2 как с предо-
пределенными в Windows, Например, можете вставить в карту сообщений объяв-
ление:

MESSAGE_HANDLER(WM_MyMessl, TMessage, OnMyMessl)

В данном объявлении в качестве типа параметра использован тип TMessage.
Этот тип определяет следующую структуру:

struct TMessage

(
unsigned int Msg;
long WParam;
long LParam;
long Result;

};

Вы можете при посылке сообщения передавать параметрами WParam и LPa-
ram любую необходимую информацию.

В качестве примера давайте добавим в нашем тестовом приложении PMessl на
форму Forml компонент CSpinEdit и кнопку, задав ей надпись Послание. В обра-
ботчик щелчка на этой кнопке мы хотим вставить посылку сообщения второму на-
шему приложению — PMess2, в котором в качестве кода послания передать число,
установленное пользователем в компоненте CSpinEdit.

Для того чтобы сделать это, объявите в заголовочном файле UlMessl.h номер
вашего сообщения с именем, например, WM_MyPost:

#define WM_MyPost WM_USER

а в обработчик события щелчка на кнопке Послание вставьте оператор
SendMessage(FindWindow("TForml","Приложение Pmess2"),

WM_MyPost,0,CSpinEditl->Value);

Вот и все! Сообщение будет посылаться. Можно было даже сделать проще: не
вводить константы, а просто в функции SendMessage указать вместо WM_MyPost
номер сообщения — WM_USER. Но с именем сообщения код читается проще.

Теперь осталось написать обработчик этого сообщения в приложении PMess2.
Это выглядит так же, как и для других обработчиков сообщений:

// модуль UlMess2.h

fdef ine WM_MyPost VWMJSER
/ /

class TForml : public TForm

private: // User declarations
void fastcall OnMyPost(TMessage& Message);

public: // Wser declarations
fastcal l TForml(TComponent* Owner) ;

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(WM_MyPost, TMessage, OnMyPost)
END MESSAGE MAP(TComponent)

128 Глава 1

// модуль UlMess2.cpp

void fastcall TForml: :OnMyPost(TMessageS a)
{
Label2->Caption = "Получено письмо " + I n t T o S t r (a . L P a r a m) ;

}

В объявлении и реализации обработчика использован тип TMessage — стан-
дартный тип параметра сообщения Windows.

Можете запускать приложения и убедиться, что послание нормально переда-
ется и воспринимается. Конечно, это просто демонстрация возможностей обмена
собственными сообщениями. В реальных приложениях можно по номеру парамет-
ра оператором switch выбирать тот или иной вид реакции приложения на получен-
ное сообщение.

Глава 2

Типы данных в языке C++

В данной главе не затрагивается множество типов, объявленных в стандарт-
ной библиотеке шаблонов STL, так как их невозможно рассматривать, пока не из-
ложены основы создания шаблонов (разд. 2.14.7). Все, связанное с STL, рассмотре-
но в гл. 5.

2.1 Классификация типов данных, объявление
типов

Все типы, используемые в C++Builder, можно разбить на четыре группы:

Aggregate

Array

struct

union

class

структуры данных

массивы

структуры

объединения

классы

Function функции

Scalar

Arithmetic

Enumeration

Pointer

Reference

скалярные

арифметические

перечислимые

указатели

ссылки

void отсутствие значения

Другой способ классификации типов связан с их разбиением на основные и
производные типы. К основным относятся: void, char, int, float и double, а также их
варианты с модификаторами short (короткий), long (длинный), signed (со знаком) и
unsigned (без знака). Например, unsigned char, unsigned int, signed int (модифика-
тор signed подразумевается по умолчанию и поэтому обычно не указывается).

Основные типы в C++ следующие:

Тип

char

unsigned char

short

Размер в байтах

1

1

2

Диапазон значений

от -128 до 126

от 0 до 255

от -32 768 до 32 767

130 Глава 2

Тип

unsigned short

enum

long

unsigned long

int

unsigned int

float

double

long double

bool

Размер в байтах

2

2

4

4

4

4

4

8

10

1

Диапазон значений

от 0 до 65 535

от -2 147 483 648 до 2 147 483 647

от -2 147 483 648 до 2 147 483 647

от 0 до 4 294 967 295

как в long

как в unsigned long

от 3.4 -Ю-38 до 3.4 -1038

от 1.7 -Ю-308 до 1.7-10308

от 3.4 -Ю-4932 до 1.1-104932

true или false

Имеются также основные типы int8, int!6, int32, int64, о которых
подробнее см. в разд. 2.3.

Следует отметить, что в C++Builder, в отличие от некоторых других версий
C++, булев тип bool реализован как отдельный тип, а не как псевдоним целого. Та-
кое определение булева типа в настоящий момент зафиксировано и в новом стан-
дарте C++. Однако это не мешает при желании использовать в логических выраже-
ниях целые значения вместо булевых. При этом значение 0 расценивается как
false, а любое ненулевое значение — как true.

Производные типы включают в себя указатели и ссылки на какие-то типы,
массивы каких-то типов, типы функций, классы, структуры, объединения. Эти
типы считаются производными, поскольку, например, классы, структуры, объе-
динения могут включать в себя объекты различных типов.

Можно выделить еще одну категорию типов — порядковые, в которых значе-
ния упорядочены и для каждого из них можно указать предшествующее и после-
дующее. К ним относятся целые, символы, перечислимые типы.

Типы данных указываются при объявлении любых переменных и функций
(см. разд. 1.6.1 и 1.7.1). Например:

double а = 5.4, b = 2;
int с;
void Fl(double A) ;

Пользователь может вводить в программу свои собственные типы. Объявления
типов могут делаться в различных местах кода. Место объявления влияет на об-
ласть видимости или область действия так же, как и в случае объявления перемен-
ных (см. разд. 1.8).

Синтаксис объявления типа:

typedef определение_типа идентификатор;

Здесь идентификатор — это вводимое пользователем имя нового типа, а опре-
деление_типа — описание этого типа. Например, оператор

typedef double A r [1 0] ;

объявляет тип пользователя с именем Аг как массив из 10 действительных чисел.
В дальнейшем на этот тип можно ссылаться при объявлении переменных. Напри-
мер:

Аг А = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 } ;

Объявление типа с помощью typedef можно использовать и для создания ново-
го типа, имя которого будет являться псевдонимом стандартного типа C++. Имен-

Типы данных в языке C++ 131

но так в C++Builder многие встроенные типы компонентов Object Pascal приведе-
ны к типам, характерным для C++. Эти переопределения типов содержатся в фай-
ле sysdefs.h. Например:

typedef bool Boolean;
typedef int Integer;
typedef short Smallint;
typedef unsigned char Byte;

Ниже дается таблица соответствия типов Delphi (т.е. типов Object Pascal) и ти-
пов C++.

Delphi

Shortlnt

Smallint

Longlnt

Byte

Word

Integer

Cardinal

Boolean

ByteBool

WordBool

LongBool

AnsiChar

WideChar

Char

AnsiString

String[n]

ShortString

String

Single

Double

Extended

Real

Размер или значение

целое 8 бит

целое 16 бит

целое 32 бита

целое без знака 8 бит

целое без знака 16 бит

целое 32 бита

целое без знака 32 бита

true/false

true/false или целое без
знака 8 бит

true/false или целое без
знака 16 бит

true/false или целое без
знака 32 бита

символ без знака 8 бит

символ Unicode размером
в слово

символ без знака 8 бит

AnsiString Delphi

прежний стиль строк Delphi,
n = 1..255 бит

прежний стиль строк Delphi,
255 бит

AnsiString Delphi

число с плавающей запятой
32 бита

чиело с плавающей запятой
64 бита

число с плавающей запятой
80 бит

число с плавающей запятой
32 бита

Соответствие C++

signed char

short

int

unsigned char

unsigned short

int

unsigned int

bool

unsigned char

unsigned short

BOOL (WinAPI)

char

wchar_t

char

AnsiString

SmallString<n>

SmallString<255>

AnsiString

float

double

long double

double

Реализация

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

класс

шаблон класса

typedef

typedef

typedef

typedef

typedef

typedef

132 Глава 2

Delphi

Pointer

PChar

PAnsiChar

Comp

OleVariant

Размер или значение

родовой указатель 32 бита

указатель на символы 32
бита

указатель на символы ANSI
32 бита

число с плавающей запятой
64 бита

значение variant OLE

Соответствие C++

void *

unsigned char *

unsigned char *

Comp

OleVariant

Реализация

typedef

typedef

typedef

класс

класс

2.2 Приведение типов
В арифметических выражениях, содержащих элементы различных арифмети-

ческих типов, C++Builder в процессе вычислений автоматически осуществляет
преобразование типов. Это стандартное преобразование всегда осуществляется по
принципу: если операция имеет операнды разных типов, то тип операнда «млад-
шего» типа приводится к типу операнда «старшего» типа. Иначе говоря, менее
точный тип приводится к более точному. Например, если в операции участвует ко-
роткое целое и длинное целое, то короткое приводится к длинному; если участвует
целый и действительный операнды, то целый приводится к действительному и т.д.
Таким образом, после подобного приведения типов оба операнда оказываются од-
ного типа. И результат применения операции имеет тот же тип.

Все это относится к арифметическим операциям, но не относится к операции
присваивания. Присваивание сводится к приведению типа результата выражения
к типу левого операнда. Если тип левого операнда «младше», чем тип результата
выражения, возможна потеря точности или вообще неправильный результат.

Рассмотрим примеры неявного автоматического преобразования типов. В ре-
зультате действия следующих операторов

double а = 5 .4 , b = 2;
int с = а * b;

переменная с получит значение 10, хотя истинное значение должно быть равно
10.8. Это значение действительно будет вычислено в результате умножения а * Ь,
но затем дробная часть будет отброшена, поскольку с — целая переменная.

Результатом выполнения операторов
int m =
double

! 1, n =
A = m /

будет значение А = 0. Поскольку т и п — целые переменные, то деление m / n све-
дется к целочисленному делению с отбрасыванием дробной части, результат кото-
рого равен нулю.

Результат выполнения похожих на предыдущие операторов
int m = 1;
double n = 2;
double A = m / n;

даст правильный результат — A = 0.5. Поскольку в данном случае один из операн-
дов операции деления имеет тип double, то тип другого, целого операнда будет
тоже приведен к double, и результат деления будет иметь тип double.

Еще один пример, который дает совершенно неверный результат:
double а = 300, b = 200;
short с = а * b;

Типы данных в языке C++ 133

Если вы попробуете реализовать этот пример, то увидите, что переменная с по-
лучит значение -5536, вместо ожидаемого 60 000. Дело в том, что переменная
типа short может хранить значение не больше, чем 32 767. Поскольку выражение
в правой части приведенного оператора дает результат 60 000, то его присваивание
переменной типа short дает совершенно неверное значение.

Как было видно из некоторых приведенных примеров, неявное автоматиче-'
ское приведение типов не всегда дает желаемый результат. Это можно исправить,
применив операцию явного приведение типов. Она записывается в виде

(тип)

перед той величиной, которую вы хотите привести к указанному типу. Вернемся
к уже рассмотренному примеру

int m = 1, n = 2;
double A = m / n;

который давал неверное значение переменной А. Этот результат можно исправить,
применив во втором операторе явное приведение типа:

double A = (double)m / n;

В этом случае переменная т, к которой применяется операция приведения
типа, рассматривается как действительная величина типа double. Тогда и перемен-
ная n неявно приводится к типу double, так что деление осуществляется уже не
с целыми, а с действительными числами. Результат получается правильным — 0.5.

Есть еще одна ситуация, которая требует явного приведения типов: в некото-
рых случаях компилятор не может выбрать среди перегруженных функций (о пе-
регрузке функций см. разд. 1.7.7), если под данный тип параметра подходит не-
сколько из них. Если в C++Builder 4 вы напишете код

TPoint Р;
Р.х = 5;
Р.у = 1;
Labell->Caption = "Координата х = " + I n t T o S t r (Р . х) ;

то получите сообщение компилятора об ошибке: "Ambiguity between '_fastcall Sy-
sutils::IntToStr(int64)' and '_fastcall Sysutils::IntToStr(int)'" (Неоднозначность
применения функции IntToStr к параметрам типов int64 и int). Компилятор,
как Буриданов осел, остановился между двумя (в данном случае идентичными)
возможностями и отказывается производить выбор. Помочь компилятору легко,
применив в последнем из приведенных операторов явное указание типа int:

Labell->Caption = "Координата х = " + IntToStr ((i n t) P . x) ;

Подобный текст компилятор обработает без проблем.
В C++Builder 6 и 5 компилятор более «интеллектуальный» и в приведенном

примере в подобной помощи не нуждается. Но в некоторых других сложных слу-
чаях подобное явное приведение типов может потребоваться. Ряд примеров явного
приведения типов вы найдете в разд. 2.8.3.

В новой версии C++ введен ряд новых операций приведения типа, которые, по
замыслу, должны заменить традиционную скобочную операцию, рассмотренную
выше. Первая из этих операций — static_cast:

static_cast< Т > (arg)

В этом выражении arg - переменная, а Т - тип, к которому приводится тип
этой переменной. Например, если R - действительное число, то следующие выра-
жения осуществляют указанное в комментариях приведение типа:

// приведение R к целому, аналог (int)R :
static__cast<int> (R)
// приведение R к строке, аналог (AnsiString)R :
static_cast<AnsiString>(R);

134 Глава 2

С помощью static_cast можно осуществлять преобразование целого типа в пе-
речислимый, нулевого указателя в нулевой указатель типа Т, указателя на объект
одного типа в указатель на объект другого типа. Можно также преобразовывать
указатель на класс X в указатель на один из наследующих ему классов Y (см. при-
мер в разд. 2.8.3).

Заданное операцией static_cast приведение типов осуществляется на этапе
компиляции. Имеется также операция явного приведения типов dynamic_cast,
которая позволяет осуществлять приведение типа и проверку его корректности во
время выполнения. Но это преобразование применимо только к указателям и
ссылкам на классы. Так что дальнейшее имеет смысл читать, только если вы вла-
деете знаниями по классам, указателям и ссылкам или уже изучили материал
разд. 2.8, 2.9, 2.14. Синтаксис операции dynamic_cast:

dynamic__cast< Т > (ptr)

Здесь Т - указатель (см. разд. 2.8) или ссылка (см. разд. 2.9) на тип класса или
void*, a ptr - выражение, которое может быть приведено к указателю или ссылке.
Если Т равно void*, то ptr должен быть указателем. В этом случае результирую-
щий указатель может давать доступ к объектам класса, непосредственно насле-
дующего в иерархии исходному классу. Такой класс не должен быть базовым для
каких-то других классов.

Преобразование класса-наследника в базовый класс или одного класса-наслед-
ника в другой требует выполнения следующего условия: если Т -- указатель и
ptr — указатель на класс, не являющийся базовым, результат является указате-
лем на уникальный подкласс. Аналогичное условие накладывается на ссылки:
если Т — ссылка и ptr — ссылка на класс, не являющийся базовым, результат яв-
ляется ссылкой на уникальный подкласс.

Преобразование класса-наследника в базовый класс возможно только в слу-
чае, если базовый класс полиморфного типа.

Преобразование в базовый класс осуществляется во время компиляции. А пре-
образования из базового класса в класс-наследник и преобразования, не связанные
с иерархией, осуществляется во время выполнения. В этом основное отличие
dynamic_cast от static_cast: в возможности преобразования типов и проверки кор-
ректности преобразования во время выполнения. Если преобразование заверши-
лось успешно, возвращается указатель или ссылка заданного типа. В противном
случае при преобразовании указателя возвращается 0, а при преобразовании ссыл-
ки генерируется исключение Bad_cast.

Развернутый пример применения dynamic_cast вы можете посмотреть в разд.
2.14.6.

Имеется еще две операции явного приведения типа. Операций const_cast:
const_cast< T > (arg)

позволяет удалить или добавить в тип переменной arg спецификаторы const и vo-
latile (см. разд. 1.6.2), не изменяя в остальном тип arg. Операция reinterpret_cas:

reinterpret_cast< T > (arg)

позволяет преобразовать указатель в целый тип или наоборот, целый тип в указа-
тель. Впрочем, поведение reinterpret_cas зависит от конкретной реализации ком-
пилятора. Так что лучше не использовать эту операцию, чтобы не ограничивать
переносимость вашего приложения.

2.3 Арифметические типы данных
Арифметические типы данных — это целые и действительные типы.
К целым типам относятся char, short, int и long вместе с их вариантами

signed — со знаком и unsigned — без знака. Из этих ключевых слов может форми-

Типы данных в языке C++ 135

роваться множество целых типов данных. Многие из них являются синонимами
друг друга, как следует из следующей таблицы.

Синонимы

char, signed char

unsigned char

char, unsigned char

signed char

int, signed int

unsigned, unsigned int

short, short int, signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

_

Примечания

Синонимы, если умолчанием для char за-
дано signed

Синонимы, если умолчанием для char за-
дано unsigned

Спецификаторы signed и unsigned могут применяться только к char, short,
int, long. Если тип обозначен просто как signed или unsigned, то подразумеваются
соответственно signed int и unsigned int.

При отсутствии в указании типа спецификатора unsigned для целых типов
подразумевается signed. Исключением из этого правила является тип char.
C++Builder позволяет вам установить в качестве умолчания для char signed или
unsigned. В этом случае, если вы пишете объявление

char ch;
\ i

оно воспринимается как

signed char ch;

Если же вы хотите объявить переменную типа char без знака, вы должны это
сделать явно:

unsigned char ch;

Спецификаторы long и short могут использоваться только с int. Если тип обо-
значен просто как long или short, то подразумеваются соответственно long int и
short int.

Объем памяти, занимаемый различными целыми типами, не лимитирован
стандартом ANSI С. Указано только, что short, int и long должны образовывать не-
убывающую последовательность, т.е. short <= int <= long. Поэтому не исключает-
ся, что все три типа требуют одинакового объема памяти. Таким образом, объем
памяти может меняться от одной платформы к другой и это надо учитывать, если
хотеть создавать переносимые программы.

Объемы памяти, занимаемые целыми типами в данной версии C+-HBuilder для
32 разрядных программ, приведены в таблице в разд. 2.1. В частности, из этой таб-
лицы вы можете увидеть, что int и long эквивалентны и занимают по 32 бита.

Типы со знаком используют старший бит для хранения знака: 0 — положи-
тельный, 1 — отрицательный.

Помимо рассмотренных выше имеются еще целые типы, имена которых начи-
наются с символов " int", за которыми следует число бит. При записи констант
этих типов можно использовать суффиксы i и ui, как показано в приведенной

136 Глава 2

ниже таблице. Впрочем, эти же суффиксы'можно использовать и при задании зна-
чений переменных других целых типов.

Тип

_int8

_int!6

_int32

_int64

unsigned int64

Суффикс

18

116

132

164

ui64

Пример

int8 с = 12718;

__intl6 s = 32767116;

int32 1 = 123456789132;

_int64 big = 12345654321164;

unsigned int64 hugelnt =
1234567887654321ui64;

Память (биты)

8

16

32

64

64

Основными типами данных для представления действительных чисел с пла-
вающей запятой являются типы float и double. Первый из них размещается в 32
битах, второй — в 64. К типу double может применяться спецификатор long, кото-
рый увеличивает размер памяти до 80 бит.

Диапазоны возможных значений и затраты памяти для действительных типов
в данной версии C+4-Builder для 32 разрядных программ приведены в таблице
в разд. 2.1. Стандарт ANSI С не накладывает никаких ограничений на способ реа-
лизации действительных чисел. Поэтому, если вы хотите делать переносимые про-
граммы, то не ориентируйтесь на тот или иной размер памяти для действительных
типов, а используйте для определения этого размера операцию sizeof (см. разд.
1.9.10, гл. 1).

2.4 Типы символов
Символы относятся к порядковым типам данных (см. разд. 2.1). Для них опре-

делен порядок следования и для любого символа можно сказать, какой символ рас-
положен перед ним или какой расположен после него.

Фундаментальными типами символов для C++Builder являются типы Ansi-
Char (char) и WideChar (wchar_t). Символы AnsiChar занимают в памяти 1 байт.
Каждому символу соответствует целое число. Тип AnsiChar отображает все множе-
ство символов ANSI, а их последовательность соответствует локализации, задан-
ной в операционной системе. Это значит, что последовательность символов кирил-
лицы соответствует русскому алфавиту. Заглавные символы кириллицы соответст-
вуют числам от 192 до 223, а строчные буквы - числам от 224 до 255. Исключени-
ем является буква "е" (число 168 соответствует заглавной букве, а 184 — строч-
ной). Заглавным латинским символам соответствуют числа от 65 до 90, а строч-
ным — от 97 до 122. Цифрам соответствуют числа от 48 (0) до 57 (1). В разд. 3.1.2
приведен более полный список символов и соответствующих им чисел.

С типами char и AnsiChar можно обращаться и как с целыми, и как с симво-
лами. Все зависит от контекста. Например, операторы

char ch = ' Б ' ;
Labell->Caption = ch;

выведут в метку символ "Б". А при том же самом значении ch оператор
Labell->Caption = (unsigned char jch;

выведет в метку "193" - число, соответствующее символу "Б".
Оператор
Labell->Caption = (c h a r) (c h + 1);

Типы данных в языке C++ 137

выведет в метку "В" •- символ, следующий за "Б". Т.е. в данном контексте ch вос-
примется как целое число, к которому добавляется 1. А затем результат сложения
явным образом приводится к символьному типу.

Оператор

for (int i = 1; i < 256; i++)
RichEditl->Lines->Add(IntToStr(i) + ' '4 (c h a r) i) ;

выведет в окно RichEditl строки вида "193 Б" для всех символов. Правда, видны
будут только те символы, которые могут отображаться в окне RichEdit.

Помимо множества символов ANSI, используемого в Windows, иногда, в част-
ности для консольных приложений DOS, требуется множество символов DOS (оно
называется множеством OEM). В гл. 4, в разд. «CharToOem — перевод строки
в текст DOS» и «OemToChar, OemToCharBuff — перевод текста DOS в строку» опи-
саны функции, обеспечивающие взаимное преобразование этих двух множеств.

Символы типа WideChar - аналога стандартного для программ на C++ типа
wchar_t, используют для своего хранения более одного байта. Последовательность
символов соответствует множеству символов Unicode. В настоящее время символы
WideChar и wchar_t в C++Builder используют 2 байта, но в дальнейшем число
байтов может быть увеличено. Дело в том, что в Linux символ типа wchar_t зани-
мает 4 байта. Впрочем, Linux и библиотеки GNU поддерживают и двухбайтовый
стандарт Unicode, а также однобайтный.

Первые 256 символов совпадают в множествах Unicode и ANSI.
Тип wchar_t является естественным для Unicode и для технологии XML. По-

этому компоненты библиотеки CLX в C++Builder 6 работают в основном с этим ти-
пом. А компоненты VCL работают или с однобайтовыми символами, или с много-
байтовыми символами MBCS. Это множество символов, используемое в азиатских
языках - японском, китайском и т.п. Вряд ли подобная экзотика потребуется чи-
тателям данной книги. Но надо учитывать, что применение типа wchar_t при ра-
боте с компонентами VCL требует некоторых дополнительных затрат времени на
трансляцию в MBCS.

2.5 Типы строк

2.5.1 Массивы символов

В языках С и C++ традиционно отсутствовал специальный тип строк. Впро-
чем, в стандартной библиотеке шаблонов STL имеется шаблон строк string, кото-
рый будет рассмотрен в гл. 5. Но традиционно строки в этих языках рассматрива-
лись как массивы символов, оканчивающиеся нулевым символом ('\0'). Строка
доступна через указатель на первый символ в строке. Значением строки является
адрес ее первого символа. Таким образом, можно сказать, что в C++ строка являет-
ся указателем — указателем на первый символ строки. В этом смысле строки по-
добны массивам, потому что массив тоже является указателем на свой первый эле-
мент. Подробно о работе с массивами символов см. в разд. 2.11.1, посвященном
массивам.

Строка может быть объявлена либо как массив символов, либо как перемен-
ная типа char*. Каждое из двух приведенных ниже эквивалентных объявлений

char S[] = "строка";,
char *Sp = "строка";

присваивает строковой переменной начальное значение «строка». Первое объяв-
ление создает массив из 7 элементов S содержащий символы 'с', 'т', 'р', 'о', 'к', 'а'
и '\0'. Второе объявление создает переменную указатель Sp, который указывает на
строку с текстом «строка», лежащую где-то в памяти. Но в любом случае число

138 Глава 2

хранимых символов на 1 больше числа значащих символов за счет оконечного ну-
левого символа.

Доступ к отдельным символам строки осуществляется по индексам, начинаю-
щимся с нуля. Например, S[0] и Sp[0] — первые символы объявленных выше
строк, S[l] и Sp[l] — вторые и т.д.

В приведенных объявлениях длина строк определялась автоматически компи-
лятором. Можно объявлять строковые переменные заданной длины. Например,
оператор

char b u f f [1 0 0] ;

объявляет переменную buff, которая может содержать строку до 99 значащих сим-
волов плюс заключительный нулевой символ.

Для обработки строк имеется ряд библиотечных функций. Основные из них
strcat — конкатенация (склеивание) двух строк, strcmp — сравнение двух строк,
strcpy — копирование одной строки в другую, strstr — поиск в строке заданной
подстроки, strlen — определение длины строки, strupr — преобразование симво-
лов строки к верхнему регистру, sprintf — построение строки по заданной строке
форматирования и списку аргументов и ряд других функций. Все они подробно
рассмотрены в гл. 3 и 4. А пока рассмотрим несколько примеров их применения.

Начнем с самого простого. Выше было приведено объявление массива симво-
лов buff. Как занести в него какой-то текст? Это можно сделать с помощью функ-
ции strcpy:

s t r c p y (b u f f , " Т е к с т , копируемый в b u f f ") ;

Эта функция копирует строку, являющуюся ее вторым параметром, в строку,
являющуюся первым параметром, и возвращает указатель на результат копирова-
ния.

Теперь решим задачу посложнее. Пусть, например, мы хотим прибавить в ко-
нец текста строки S1 текст, хранящийся в строке S2. Это можно сделать с помо-
щью функции strcat:

char SI [20] = "текст 1", S2[10] = "текст 2";
strcat(S1,S2);

Обратите внимание на то, что размер первой строки выбран с запасом, чтобы
в ней уместились оба текста. Если не задать в объявлении размер строки, то он оп-
ределится по присваиваемому ей тексту и в ней не останется места для каких-то
добавлений.

Функция strcat прибавляет к тексту строки, указанной ее первым парамет-
ром, текст строки, указанной вторым параметром, и возвращает указатель на пер-
вую строку. Последнее обстоятельство позволяет делать вложенные вызовы strcat,
если надо склеить несколько текстов. Давайте несколько усложним задачу. Пусть
мы хотим оставить в неприкосновенности обе строки, а в третьей строке S хотим
получить склеенные тексты строк S1 и S2, разделенные символом пробела. Это
можно сделать следующими операторами:

char *S1 = "текст 1", *S2 = "текст 2", S [2 0] ;
s trcat(strcat(strcat (S , S I) , " ") , S 2) ;

Самый внутренний вызов strcat склеивает пустую строку S и строку S1. Он
возвращает указатель на S и, значит, следующий вызов strcat склеивает текст,
появившийся в S, со строковой константой, содержащей символ пробела. Функ-
ция strcat опять возвращает указатель на S и последний внешний вызов strcat до-
бавляет к уже сформированной строке текст строки S2.

Приведенный код будет работать, если есть уверенность, что сначала текст в S
отсутствует. Чтобы не зависеть от исходного текста в S, лучше вместо внутреннего
вызова strcat применить функцию

s trcpy(S,SI)

Типы данных в языке C++ 139

При анализе текстовых строк часто надо найти в одной из строк фрагмент тек-
ста, заданный в другой строке. Этот фрагмент, например, может быть некоторым
ключевым словом, символом и т.п. Эту задачу позволяет решить функция

s t r s t r (SI,S2)

которая ищет в строке S1 первое вхождение текста строки S2 и, если поиск про-
шел удачно, возвращает указатель на первый символ этого вхождения. Если же
текст не был найден, возвращается нуль.

Теперь давайте решим более сложную задачу. Пусть нам надо найти в строке
S1 первое вхождение текста строки S2 и, если поиск прошел удачно, то заменить
найденный фрагмент на текст, содержащийся в строке S3. Иначе говоря, требует-
ся произвести контекстную замену в S1 текста S2 на текст S3. Один из возможных
вариантов решения этой задачи приведен ниже.

char S l [2 0] , S 2 [2 0] , S 3 [2 0] , S [6 0] , *St;
// операторы занесения текста в SI, S2, S3

St = strstr (SI,32) ;
if (St)
{
*St = 0;
St += s t r l e n (S 2) ;
Labell->Caption = s t r c a t (s t r c a t (s t r c p y (S , S I) , S 3) , S t) ;

}
else Labell->Caption = "Текст не найден";

Помимо строк SI, S2, S3 в этом коде объявлена строка S, являющаяся буфе-
ром, в который будет помещаться текст с произведенной в нем заменой. Объявлен
также указатель на строку St. Он нам потребуется в качестве вспомогательной пе-
ременной.

Первый выполняемый оператор кода ищет с помощью функции strstr вхожде-
ние строки S2 в строку S1 и присваивает результат поиска переменной St. Если
функция strstr вернула нуль (это эквивалентно false), то печатается сообщение
"Текст не найден". Если же поиск прошел успешно, то осуществляются следую-
щие операции. Сначала в символ, на который указывает St, засылается 0 — это эк-
вивалентно нулевому символу. Таким образом выделяется первая часть строки S1,
расположенная до заменяемого текста. Затем указатель St сдвигается на длину за-
меняемого текста, которая определяется функцией strlen. После этой операции St
начинает указывать на первый символ в строке S1 после заменяемого текста. Сле-
дующий оператор формирует в буфере S текст с заменой и отображает его в метке
Labell. Формирование текста осуществляется вложенными вызовами функций
strcat и strcpy. Сначала срабатывает вложенный вызов strcpy. Он копирует в S
строку, на которую указывает S1. Но поскольку вместо первого символа заменяе-
мого текста мы занесли нулевой символ, то скопирована будет только начальная
часть строки S1 до этого символа. Затем срабатывает вложенный вызов strcat и
к тексту, сформированному в S, добавляется строка S3. Последний внешний вызов
strcat добавляет к сформированному тексту часть строки S1, расположенную по-
сле замененного фрагмента. Именно на эту часть строки указывает St.

Чтобы это стало понятнее, разберем пример. Пусть строка S1 содержит текст
"Маша ела кашу", строка S2 содержит текст "ела", а строка S3 - "съела". Зна-
чит, строка S1 представляет собой массив:

' М 1 , ' а ' , ' ш ' , ' а ' , ' ' , ' е 1 , ' л ' , ' а ' , ' ' , ' к ' , ' а ' , ' ш 1 , ' у ' , ' \ 0 '

После выполнения функции strstr указатель St будет указывать на шестой
символ — букву 'е'. После того, как в этот символ заносится нуль, строка S1 имеет
вид:

' М ' , ' а ' , ' ш 1 , ' а ' , ' ' , ' \ 0 ' , ' л ' , ' а ' , ' ', ' к ' , ' а ' , ' ш ' , ' у ' , ' \ 0 '

140 Глава 2

. После изменения Pt он начинает указывать на девятый символ — пробел по-
сле слова "ела". После вызова strcpy в строку S копируется первая часть строки
S1, завершающаяся нулевым символом:

' М ' , ' а ' , ' ш ' , ' а ' , ' ' , ' \ 0 '

После вложенного вызова strcat к строке S добавляется текст строки S3:
' М ' , ' а ' , ' ш 1 , ' а ' , ' ' , ' с ' , ' ъ ' , ' е ' , ' л ' , ' а 1 , ' \ 0 '

И после внешнего вызова strcat к S добавляется строка, на которую указывает
St, т.е. часть строки S1, начинающаяся с пробела после "ела":

М 1 , ' а ' , ' ш 1 , ' а ' , ' ' , ' с ' , ' ъ ' , ' е ' , ' л 1 , ' а ' , ' ' , ' к ' , ' а ' , ' ш ' , ' у ' , ' \ 0 '

В качестве последнего примера рассмотрим использование функции sprintf.
Пусть в приложении имеется окно редактирования Editl, в котором пользователь
вводит фамилию сотрудника, и компонент CSpinEditl типа TCSpinEdit, в котором
вводится год рождения. Вы хотите сформировать строку вида "Сотрудник ..., ...
г.р.", в которой вместо точек должны подставляться введенные данные: фамилия
и год. Это можно сделать следующим кодом:

tinolude <stdio.h>
char S [4 0] ;
sprintf(S,"Сотрудник %s, %i r .p.",Edit l->Text, CSpinEditl->Value);

Первый аргумент функции sprintf — формируемая строка. Второй — строка
форматирования (ее полное описание см. в гл. 3, в разд. 3.1.3.1). Она указывает
текст формируемой строки и содержит спецификаторы, записываемые после сим-
вола "% ", которые указывают формат включения в строку аргументов, список ко-
торых расположен в вызове sprintf после строки форматирования. В данном слу-
чае первый из этих параметров — текст в окне Editl, вводимый со спецификато-
ром %s, что означает строку, а второй параметр — значение года в компоненте
CSpinEditl, вводимое со спецификатором %i, что означает целое число.

Мы рассмотрели применение основных библиотечных функций работы со
строками. Более полное изложение этих функций вы найдете в гл. 3 и 4.

C++Builder не ограничивается изложенным выше типичным для C++ подхо-
дом, сводящим строки к массивам символов. В нем реализованы в виде классов
еще некоторые очень полезные типы. Наиболее интересные из них — AnsiString,
имеющий множество методов и перегруженных операций, облегчающих работу со
строками, и типы списков строк TStrings и TStringList. Кроме того, в стандарт-
ной библиотеке шаблонов STL имеется шаблон строк string, который будет рас-
смотрен в гл. 5.

2.5.2 Тип строк AnsiString

В C++Builder тип строк AnsiString реализован как класс, объявленный в фай-
ле vcl/dstring.h и аналогичный типу длинных строк в Delphi. Это строки с нуле-
вым символом в конце. При объявлении переменные типа AnsiString инициализи-
руются пустыми строками.

Для AnsiString определены операции отношения ==, !=, >, <, >=, <=. Сравне-
ние производится с учетом регистра. Сравниваются коды символов, начиная с пер-
вого, и если очередные символы не одинаковы, строка, содержащая символ с мень-
шим кодом, считается меньше. Если все символы совпали, но одна строка длиннее
и в ней имеются еще символы, то она считается больше, чем более короткая.

Для AnsiString определены операции присваивания =, += и операция склеи-
вания строк (конкатенации) +. Определена также операция индексации []. Индек-
сы начинаются с 1. Например, если S1 = "Привет", то Sl[l] вернет 'П', Sl[2] вер-
нет 'р' и т.д.

Типы данных в языке C++ 141

Класс AnsiString имеет множество методов, подробно рассмотренных в разд.
3.1.6. Не останавливаясь сейчас на их перечислении, рассмотрим только некото-
рые примеры применения типа AnsiString.

Тип AnsiString используется для ряда свойств компонентов C++Builder. На-
пример, для таких, как свойства Text окон редактирования, свойства Caption ме-
ток и разделов меню и т.д. Этот же тип используется для отображения отдельных
строк в списках строк типа TStrings. Таким образом, постоянно имея дело с этими
свойствами, вы постоянно работаете с AnsiString.

Рассмотрим некоторые примеры работы с AnsiString. Следующий оператор
демонстрирует конкатенацию (склеивание) двух строк:

Labell->Caption = Editl->Text + ' ' + Edit2->Text;

В данном случае в свойстве Labell->Caption отображается текст, введенный
пользователем в окне редактирования Editl, затем записывается символ пробела,
а затем — текст, введенный в окне редактирования Edit2.

Как видите, склеивание строк типа AnsiString легко осуществляется перегру-
женной операцией сложения "+". Сравните это с теми вложенными вызовами
функций sir cat, которые приходилось делать в предыдущем разделе для тех же
операций со строками типа (char *), и вы почувствуете преимущества AnsiString.

Теперь попробуем повторить рассмотренный в предыдущем разделе поиск
в строке S1 фрагмента, заданного строкой S2, и замену его текстом строки S3.
Код, осуществляющий эти операции, может иметь вид:

AnsiStr ing SI, S2, S3;
// операторы занесения текста в SI, S2, S3

int i = S I . P o s (3 2) ;
if (i)

Labell->Caption = SI.Substring(1,i-1) + S3 +
S I . S u b S t r i n g (i + S 2 . L e n g t h () , 2 5 5) ;

else Labell->Caption = "Текст не найден";

В этом коде использован ряд функций-элементов класса AnsiString: Pos,
Substring, Length. Обратите внимание на то, что доступ к ним осуществляется
операцией точка (.), вместо более привычной в C++Builder операции доступа к ме-
тодам компонентов стрелка (—>). Дело в том, что к методам компонентов доступ
осуществляется через указатель на объект, а в данном случае к методам Ansi-
String доступ осуществляется через сами объекты — строки.

Первый выполняемый оператор приведенного кода использует функцию Pos.
Эта функция ищет в строке, к которой она применена (в нашем случае в S1), пер-
вое вхождение подстроки, заданной ее параметром (в нашем случае S2). Если по-
иск успешный, функция возвращает индекс первого символа найденного вхожде-
ния подстроки. Индексы начинаются с 1. Если подстрока не найдена, возвращает-
ся 0.

Следующий оператор с помощью структуры if...else проверяет, не равно ли
нулю (false) возвращенное функцией Pos значение. Если не равно, то производит-
ся формирование строки с заменой найденной подстроки. Строка формируется
склеиванием трех строк: начальной части строки S1, расположенной до найденно-
го вхождения подстроки, строки S3, заменяющей найденное вхождение, и заклю-
чительной части строки S1, расположенной после найденного вхождения. Для по-
лучения фрагментов строки S1 использована функция Substring. Эта функция
возвращает подстроку, начинающуюся с символа в позиции, заданной первым па-
раметром функции, и содержащую число символов, не превышающее значение,
заданное вторым параметром функции. Таким образом, выражение Sl.Sub-
String(l, i — 1) возвращает подстроку строки S1, начинающуюся с первого симво-
ла и содержащую i — 1 символов, т.е. часть строки S1, расположенную до найден-
ного вхождения подстроки S2. Аналогично, выражение Sl.SubString(i +

142 Глава 2

S2.Length(), 255) возвращает подстроку строки S1, расположенную после найден-
ного вхождения подстроки S2. При этом для определения начала этой подстроки
использована функция Length, возвращающая число символов в строке (в нашем
случае — в строке S2, содержащей заменяемый фрагмент). В приведенном выра-
жении в качестве второго параметра функции Substring задано число 255, кото-
рое, как ожидается, превышает длину подстроки. В действительности будет воз-
вращено менее 255 символов, столько, сколько имеется до завершающего S1 нуле-
вого символа.

Сравнение данного кода с приведенным в предыдущем разделе для типов
строк (char *), как мне кажется, показывает большую прозрачность действий со
строками AnsiString.

Если нам надо не отображать измененную строку в виде сообщения, а просто
произвести замену фрагмента в исходной строке S1, это еще более упрощает код,
который в этом случае сводится всего к двум операторам:

int i = SI.Pos (S 2) ;
SI = SI.Substring!!,i-1) + S3 + SI .Substr ing(i+S2.Length () , 2 5 5) ;

Подобная задача для строк (char *) была бы более сложной и потребовала бы
объявления дополнительного буфера для временного хранения формируемой
строки.

Давайте еще более усложним задачу: пусть в строке S1 надо заменить все вхо-
ждения S2 на строку S3. Эту задачу можно было бы решить следующим кодом:

int id = 0, i = Sl.Pos (S 2) ;
while (i)
{

SI = Sl .SubStringd, i -I- iO - 1) + S3 +
SI.Substring (i + iO + S 2 . L e n g t h () , 2 5 5) ;

iO += i - 1 + S3.Length () ;
i = S l .SubStr ing(iO + 1, 255) .Pos (S2) ;

}

Приведенный код мало отличается от рассмотренного ранее и не содержит ка-
ких-то новых функций. Основные отличия заключаются в следующем. Во-первых,
вводится переменная 10 — индекс, предшествующий первому символу еще не обра-
ботанной части строки S1. Значение Ю изменяется после обработки очередной час-
ти строки. Во-вторых, очередное вхождение строки S2 в S1 определяется не по
всей строке S1, а только по ее еще не обработанной части: Sl.SubString(iO + 1,
255).

Рассмотренную задачу контекстного поиска и замены в строке можно было бы
решить иначе, воспользовавшись функциями Delete и Insert класса AnsiString.
Функция Delete удаляет из строки, начиная с позиции, заданной первым парамет-
ром функции, число символов, заданное вторым параметром функции. Функция
Insert вставляет в строку подстроку, заданную первым параметром функции, в по-
зицию, заданную вторым параметром функции.

Применение этих функций позволяет выполнить контекстную замену с помо-
щью, например, следующего кода:

int 10 = 1, i = S l . P o s (S 2) ;
whi le(i > i O)
{
SI.Delete(i,32.Length()); // удаление вхождения S2
SI. Insert(S3,i); // вставка S3
iO = i + S3.Length();
i = iO - 1 + SI.Substr ing(iO, 255) . P o s (S 2) ;

}

Мы проиллюстрировали применение только малой части методов, имеющихся
в классе AnsiString. Полный перечень этих методов вы найдете в соответствую-

Типы данных в языке C++ 143

щем разд. 3.1.6. В заключение отметим только метод, позволяющий переходить от
типа AnsiString к типу (char *). Несмотря на то, что применение AnsiString прак-
тически всегда удобнее (char *), такие переходы приходится делать при передаче
параметров в некоторые функции, требующие тип параметра (char *). Чаще всего
это связано с вызовом функций API Windows или функций C++Builder, инкапсу-
лирующих такие функции. Например, на протяжении этой книги многократно ис-
пользовалась функция Application—>MessageBox, требующая в качестве двух сво-
их первых параметров (сообщения и заголовка окна) тип (char *). Аналогичные
преобразования требуются для функции PlaySound для передачи в нее имени фай-
ла и для многих других функций.

Преобразование строки AnsiString в строку (char *) осуществляется функци-
ей c_str() без параметров, возвращающей строку с нулевым символом в конце, со-
держащую текст той строки AnsiString, к которой она применена. Например, если
вы имеете строки S1 и S2 типа AnsiString, которые хотите передать в функцию
Application—>MessageBox в качестве сообщения и заголовка окна, то вызов
Application—>MessageBox может иметь вид:

Application->MessageBox(Sl. c_str О ,52.c_str(), МВ_ОК);

Возможно и обратное преобразование строки (char *) в строку AnsiString. Для
этого используется функция

AnsiString(char *S)

которая возвращает строку типа AnsiString, содержащую текст, записанной
в строке S, являющейся аргументом функции.

2.6 Перечислимые типы
Перечислимые типы определяют упорядоченное множество идентификаторов,

представляющих собой возможные значения переменных этого типа. Вводятся эти
типы для того, чтобы сделать код более понятным. В частности, многие типы
C-H-Builder являются перечислимыми, что упрощает работу с ними, поскольку
дает возможность работать не с абстрактными числами, а с осмысленными значе-
ниями.

Приведем пример, который покажет смысл введения пользователем своего пе-
речислимого типа. Пусть, например, в программе должна быть переменная Mode,
в которой зафиксирован один из возможных режимов работы приложения: чтение
данных, их редактирование, запись данных. Можно, конечно, дать переменной
Mode тип int и присваивать этой переменной в нужные моменты 'Времени одно из
трех условных чисел: 0 — режим чтения, 1 — режим редактирования, 2 — режим
записи. Тогда программа будет содержать операторы вида

if (Mode == 1) ...

Через некоторое время уже забудется, что означает значение Mode, равное 1, и
разбираться в таком коде будет очень сложно. А можно поступить иначе: опреде-
лить переменную Mode как переменную перечислимого типа и обозначить ее воз-
можные значения как mRead, mEdit, mWrite. Тогда приведенный выше оператор
изменится следующим образом:

if (Mode == mEdit) . . .

Конечно, такой оператор понятнее, чем предыдущий.
Переменные перечислимого типа могут определяться предложением вида:
enum {<константа 1>, . . . , <константа п>} <имена переменных>;

Например

enum {mRead, mEdit, mWrite} Mode;

144 Глава 2

Этот оператор вводит именованные константы mRead, mEdit, mWrite и пере-
менную Mode, которая может принимать значения этих констант. В момент объяв-
ления переменная инициализируется значением первой константы, в нашем при-
мере — mRead. В дальнейшем вы можете присваивать ей любые допустимые зна-
чения. Например:

Mode = mEdit;

Значение переменной перечислимого типа можно проверять, сравнивая ее ве-
личину с возможными значениями. Кроме того, надо учитывать, что перечисли-
мые типы относятся к целым порядковым типам и к ним применимы любые опера-
ции сравнения: >, < и т.п. Например, вы можете писать операторы:

i f(Mode > mRead) . . . ;
if(Mode < mWrite) . ..;
i f (Mode == mEdit)

Вы можете также использовать Mode в структуре switch:
switch (Mode)

{
case mRead:

break;
case mEdit:

break;
case mWrite: . . .

}

По умолчанию перечислимые значения, указанные в объявлении enum, ин-
терпретируются как целые числа, причем первое значение эквивалентно 0, вто-
рое — 1 и т.д. Именно эти значения рассматриваются в операциях отношения >, <
и др. Значения по умолчанию можно изменить, если после имени константы ука-
зать знак равенства (=) и задать присваиваемое целое значение, как положитель-
ное, так и отрицательное. Например:

enum {mRead = -1, mEdit, mWrite = 2} Mode;

Если после каких-то констант не задано их целое значение, оно считается на 1
больше предыдущего. Поэтому в приведенном примере mRead эквивалентно —1,
mEdit эквивалентно 0, mWrite эквивалентно 2.

После ключевого слова enum может следовать тег — имя объявляемого типа.
Например:

enum regim {mRead = -1, mEdit, mWrite = 2} Mode, Model;

Этот оператор объявляет две переменные Mode и Model перечислимого типа,
и кроме того определяет тип regim. В дальнейшем вы можете воспользоваться име-
нем regim для объявления каких-то новых переменных, например:

regim Mode3;

2.7 Множества
Множество — это группа элементов, которая ассоциируется с ее именем и с ко-

торой можно сравнивать другие величины, чтобы определить, принадлежат ли они
этому множеству. Как частный случай, множество может быть пустым.

Множество реализовано в С+-!-Builder как шаблон класса, определенный в го-
ловном файле vcl/sysdefs.h.

Объявляется множество оператором:
Set <type, minval, maxval> переменные;

Типы данных в языке C++ 145

Параметр type определяет тип элементов множества. Обычно это порядковые
типы int, char или перечислимый. Параметры minval и maxval типа unsigned
char определяют минимальное и максимальное значения элементов множества.
Минимальное значение должно быть не меньше 0, максимальное — не более 255.

Приведем примеры объявления множеств.
Объявление переменной si как множества всех заглавных латинских букв

имеет вид:
Set <char, ' A ' , ' Z ' > si;

Следующий оператор объявляет множество Ch, содержащее все символы:
Set <char, 0, 255> Ch;

Следующие операторы объявляют тип UPPERCASESet множества всех за-
главных латинских букв и объявляют переменные s2 и s3 этого типа:

typedef Set <char, ' A ' , ' Z ' > UPPERCASESet;
UPPERCASESet si, s2;

Следующие операторы определяют множество S, элементами которого явля-
ются данные перечислимого типа Е: red, yellow, green:

enum E { white, red, yellow, green };
Set <E, red, green> S;

Объявление переменной типа множества Set не инициализирует ее какими-то
значениями. Инициализацию можно делать с помощью описанной ниже опера-
ции « — добавление элемента в множество.

Для множества определены следующие операции (в описании операций слова-
ми «данное множество» обозначается левый операнд):

Операция

— |

*

*k

+

+=

Определение

Set fast call operator
-(const Set& rhs) const;

Set& fastcall operator
— =(const Set& rhs);

Set& fastcall operator
*=(const Set& rhs);

Set fastcall operator
*(const Set& rhs) const;

Set fastcall operator
+(const Set& rhs) const;

Set& fastcall operator +=(
const Set& rhs);

Описание

данное множество равно разно-
сти двух множеств: данного и
rhs (операция хог с их элемента-
ми)

создание нового множества,
определенного разностью двух
множеств: данного и rhs (опера-
ция хог с их элементами)

создание нового множества,
определенного пересечением
двух множеств: данного и rhs
(операция and с их элементами)

данное множество равно пересе-
чению двух множеств: данного и
rhs (операция and с их элемента-
ми)

создание нового множества,
определенного объединением
двух множеств: данного и rhs
(операция ог с их элементами)

данное множество равно объеди-
нению двух множеств: данного
и rhs (операция ог с их элемен-
тами)

146 Глава 2

Операция

«

«

»

»

=

— —

!=

Определение

Set& fastcall operator
«(const T el);

friend ostream& operator «(
ostream& os, const Set& arg);

Set& fastcall operator
»(const Т el);

friend istream& operator »
(istream& is, Set& arg);

Set& fastcall operator =(coiist
Set& rhs);

bool fastcall operator ==(const
Set& rhs) const;

bool fastcall operator !=(const
Set& rhs) const ;

Описание

добавление элемента el в данное
множество

поместить множество arg в поток
ostream (выводится 0 или 1 для
каждого элемента в зависимости
от его наличия в множестве)

удаление элемента el из данного
множества

извлечь множество arg из потока
istream (вводится 0 или 1 для
каждого элемента в зависимости
от его наличия в множестве)

присваивание данному множест-
ву содержимого множества rhs

эквивалентность двух множеств:
данного и rhs (совпадение всех
элементов)

неэквивалентность двух мно-
жеств: данного и rhs

Все операции можно применять только к множествам одного типа, то есть
к таким, при объявлении которых все аргументы объявления (type, minval и
maxval) совпадают. В операциях, создающих новое множество (операции +, — и *),
переменная, в которую заносится результат, также должна быть того же типа, что
и операнды. Операция эквивалентности возвращает true в случае, когда оба опе-
ранда содержат только совпадающие элементы. Соответственно только в этом слу-
чае операция неэквивалентности возвращает false.

Для множеств Set определены также два метода:

Метод

Clear

Contains

Определение

Set& fastcall ClearQ;

bool fastcall Contains(const Т el) const;

Описание

очистка множества

проверка наличия
в множестве элемента el

Рассмотрим примеры работы с множествами. Цусть вы задаете пользователю
в программе некоторый вопрос, подразумевающий ответ типа "Yes/No". Тогда воз-
можные символы, вводимые пользователем в качестве ответа, являются множест-
вом, содержащим символы "у", "Y", "п" и "N". Сформировать такое множество
можно операторами:

Set <char, 0, 255> TrueKey;

ТгиеКеу « ' у ' « ' ¥ ' « ' n 1 « ' N ' ;

Тогда проверить, принадлежит ли введенный пользователем символ Key мно-
жеству допустимых ответов, можно с помощью метода Contains:

if (ITrueKey.Contains(Key))
ShowMessge("Вы ввели ошибочный ответ");

else . . .

Типы данных в языке C++ 147

Рассмотрим еще один пример. Пусть вы хотите, чтобы в окне редактирования
Editl пользователь мог вводить только число, т.е. только цифры от 0 до 9. Это
можно сделать, включив в обработчик события OnKeyPress этого окна операторы:

Set <char, ' 0 ' , ' 9 ' > Dig;
Dig « ' 0 ' « '!' « ' 2 ' « '3 ' « ' 4 ' « ' 5 '

« ' 6 ' « ' 7 ' « ' 8 ' « ' 9 ' ;
if (!Dig.Contains(Key))

{Key = 0; BeepO ; }

При попытке пользователя ввести символ, отличный от цифры, раздастся
звук (его обеспечит функция Веер) и символ не появится в окне.

2.8 Указатели

2.8.1 Общие сведения
Указатель — это переменная, значение которой равно значению адреса памя-

ти, по которому лежит значение некоторой другой переменной. В этом смысле имя
этой другой переменной отсылает к ее значению прямо, а указатель — косвенно.
Ссылка на значение посредством указателя называется косвенной адресацией.

Указатели, подобно любым другим переменным, перед своим использованием
должны быть объявлены. Объявление указателя имеет вид:

type *ptr;

где type — один из предопределенных или определенных пользователем типов, а
ptr — указатель. Читается это объявление так: «ptr является указателем на значе-
ние типа type».

Например,
int *countPtr, count;

объявляет переменную countPtr типа int * (т.е. указатель на целое число) и пере-
менную count целого типа. Символ * в объявлении относится только к countPtr.
Каждая переменная, объявляемая как указатель, должна иметь перед собой знак
звездочки (*). Если в приведенном примере желательно, чтобы и переменная count
была указателем, надо записать:

int *countPtr, *count;

Символ * в этих записях обозначает операцию косвенной адресации.
Может быть объявлен и указатель на void:
void *Pv;

Это универсальный указатель на любой тип данных. Но прежде, чем его ис-
пользовать, ему надо в процессе работы присвоить значение указателя на какой-то
конкретный тип данных. Например:

Pv = countPtr;

Указатели должны инициализироваться либо при своем объявлении, либо
с помощью оператора присваивания. Указатель может получить в качестве на-
чального значения О, NULL или адрес. Указатель с начальным значением 0 или
NULL ни на что не указывает. NULL — это символическая константа, определен-
ная специально для цели показать, что данный указатель ни на что не указывает.
Пример объявления указателя с его инициализацией:

int *countPtr = NULL;

Как правило, при объявлении указателей им желательно присваивать значе-
ние NULL или определенный адрес. Учтите, что неинициализированный указа-
тель может при работе с ним приводить к самым неожиданным результатам.

148 Глава 2

Для присваивания указателю адреса некоторой переменной используется опе-
рация адресации (&), которая возвращает адрес своего операнда. Например, если
имеются объявления

int у = 5;
int *yPtr, х;

то оператор
yPtr = &у;

присваивает адрес переменной у указателю yPtr.
Для того чтобы получить значение, на которое указывает указатель, использу-

ется операция (*), обычно называемая операцией косвенной адресации или опера-
цией разыменования. Она возвращает значение объекта, на который указывает ее
операнд (т.е. указатель). Например, если продолжить приведенный выше пример,
то оператор

х = *yPtr

присвоит переменной х значение 5, т.е. значение переменной у, на которую указы-
вает yPtr.

Операцию разыменования нельзя применять к указателю на void, поскольку
для него неизвестно, какой размер памяти надо разыменовывать.

Массивы и указатели в C++ тесно связаны и могут быть использованы почти
эквивалентно. Имя массива можно понимать как константный указатель на пер-
вый элемент массива. Его отличие от обычного указателя только в том, что его
нельзя модифицировать.

Указатели можно использовать для выполнения любой операции, включая
индексирование массива. Пусть вы сделали следующее объявление:

int b [5] = (1 , 2 , 3 , 4 , 5 } , *Pt;

Тем самым вы объявили массив целых чисел Ь[5] и указатель на целое Pt. По-
скольку имя массива является указателем на первый элемент массива, вы можете
задать указателю Pt адрес первого элемента массива b с помощью оператора

Pt = b;

Это эквивалентно присваиванию адреса первого элемента массива следующим
образом

Pt = sb[0] ;

Теперь можно сослаться на элемент массива Ь[3] с помощью выражения
*(Pt + 3).

Указатели можно индексировать точно так же, как и массивы. Например, вы-
ражение Pt[3] ссылается на элемент массива Ь[3].

Таким образом манипуляции, определенные для массивов, определены и для
указателей на массивы. Но с точки зрения понятности программы лучше это без
крайней необходимости не использовать.

Указатели могут применяться как операнды в арифметических выражениях,
выражениях присваивания и выражениях сравнения. Однако не все операции,
обычно используемые в этих выражениях, разрешены применительно к перемен-
ным указателям.

С указателями может выполняться ограниченное количество арифметических
операций. Указатель можно увеличивать (++), уменьшать (—), складывать с ука-
зателем целые числа (+ или +=), вычитать из него целые числа (— или —=) или вы-
читать один указатель из другого.

Сложение указателей с целыми числами отличается от обычной арифметики.
Прибавить к указателю 1 означает сдвинуть его на число байтов, содержащихся
в переменной, на которую он указывал. Обычно подобные операции применяются

Типы данных в языке C++ 149

к указателям на массивы. Если продолжить приведенный выше пример, в котором
указателю Pt было присвоено значение b — указателя на первый элемент массива,
то после выполнения оператора

Pt += 2;

Pt будет указывать на третий элемент массива Ь. Истинное же значение указа-
теля Pt изменится на число байтов, занимаемых одним элементом массива, умно-
женное на 2. Например, если каждый элемент массива b занимает 2 байта, то зна-
чение Pt (т.е. адрес в памяти, на который указывает Pt) увеличится на 4.

Аналогичные правила действуют и при вычитании из указателя целого значе-
ния.

Переменные указатели можно вычитать один из другого. Например, если Pt
указывает на первый элемент массива Ь, а указатель Ptl — на третий, то результат
выражения Ptl — Pt будет равен 2 — разности индексов элементов, на которые
указывают эти указатели. И так будет, несмотря на то, что адреса, содержащиеся
в этих указателях, различаются на 4 (если элемент массива занимает 2 байта).

Арифметика указателей теряет всякий смысл, если она выполняется не над
указателями на массив. Нельзя полагать, чтоб две переменные одинакового типа
хранятся в памяти вплотную друг к другу, если только они не соседствуют в масси-
ве. Сравнение указателей операциями >, <, >=, <= также имеют смысл только для
указателей на один и тот же массив. Однако операции отношения == и != имеют
смысл для любых указателей. При этом указатели равны, если они указывают на
один и тот же адрес в памяти.

Указатель можно присваивать другому указателю, если оба указателя имеют
одинаковый тип. В противном случае нужно использовать операцию приведения
типа, чтобы преобразовать значение указателя в правой части присваивания
к типу указателя в левой части присваивания. Исключением из этого правила яв-
ляется указатель на void (т.е. void*), который является общим указателем, способ-
ным представлять указатели любого типа. Указателю на void можно присваивать
все типы указателей без приведения типа. Однако указатель на void не может быть
присвоен непосредственно указателю другого типа — указатель на void сначала
должен быть приведен к типу соответствующего указателя.

Мы рассмотрели ранее указатели на массивы. Однако соотношение между
массивами и указателями может быть и обратным — могут использоваться масси-
вы указателей. Подобные структуры часто используются в массивах строк или
в массивах указателей на различные объекты.

Например, вы можете сделать следующее объявление:
char *Sa[2] = ("Это первая строка", "Вторая"};

Вы объявили массив размером 2 элементов типа (char *). Каждый элемент та-
кого массива — строка. Но в C++ строка является, по существу, указателем на ее
первый символ. Таким образом, каждый элемент в массиве строк в действительно-
сти является указателем на первый символ строки. Каждая строка хранится в па-
мяти как строка, завершающаяся нулевым символом. Число символов в каждой
из строк может быть различным. Таким образом, массив указателей на строки по-
зволяет обеспечить доступ к строкам символов любой длины.

Указатели широко используются при передаче параметров в функции. Особен-
ности использования указателей в этих целях см. в разд. 1.7.2.

2.8.2 Указатели на объекты классов

В C++Builder указатели используются очень широко. В частности, все компо-
ненты, формы и т.д. объявляются именно как указатели на соответствующий объ-
ект, тип которого описан некоторым классом (см. разд. 2.14). Посмотрев заголо-
вочный файл любого приложения, вы увидите в нем объявления вида:

150 Глава 2

TForml *Forml;
TLabel *Labell;

Это объявления указателей на форму Forml и на размещенные на ней компо-
ненты (Labell). Можно создать и абстрактный указатель, не привязанный к како-
му-то конкретному объекту. Например, следующее объявление создает указатель
на объект класса TLabel (метку):

TLabel *Lab;

Создается не сам объект, а только указатель на любой объект данного типа.
В момент его создания указатель инициируется нулем. Нуль не может ассоцииро-
ваться ни с каким объектом в памяти. Поэтому определить, занесена в указатель
ссылка на конкретный объект, или нет, можно, например, оператором:

if (Lab = = 0) ... ;

Здесь многоточием обозначены некие действия, которые надо делать при от-
сутствии ссылки.

В C++ предопределена константа NULL, которая эквивалентна нулевому ука-
зателю. Поэтому приведенный выше оператор эквивалентен следующему:

if (Lab == NULL)

В дальнейшем этому указателю Lab можно присвоить ссылку на любой объект
соответствующего класса простым присваиванием. Например:

Lab = Labell;

Тогда указатель Lab становится как бы псевдонимом объекта Labell. Оба ука-
зателя: и Lab, и Labell ссылаются на один и тот же объект. Например, La-
bell— >Caption и Lab—>Caption ссылаются на надпись одной и той же метки.

В качестве типа объекта, на который ссылается указатель, можно задать void.
Например:

void *Lab;

Такой указатель на void можно рассматривать как указатель на объект любого
типа. В дальнейшем этому указателю можно задать простым присваиванием ссыл-
ку на объект любого типа. Но разыменование такого указателя требует примене-
ния явного приведения типов, поскольку компилятор не знает, на объект какого
типа в действительности ссылается указатель. Поэтому для него нельзя, напри-
мер, после присваивания ему ссылки на метку Labell (как в приведенном ранее
примере) написать просто Lab—>Caption. Для ссылки на надпись Caption через
этот указатель надо писать ((TLabel *)Lab)—>Caption, то есть явным образом при-
водить тип указателя Lab к типу «указатель на объект класса TLabel».

Можно создавать ссылку на объект с помощью указателя не на истинный
класс объекта, а на один из классов, которым наследует класс данного объекта.
Дело в том, что любой объект может рассматриваться не только как объект своего
класса, но и как объект любого класса-предка. Это в общем достаточно естественно
для обычного понимания объектов в реальном мире. Так любой автомобиль может
рассматриваться не только как объект автомобилей данной марки, например,
«Жигули», но и как один из объектов более общих классов — автомобили, средст-
ва передвижения и т.д. Так же и объект в C++ может рассматриваться как объект
любого из классов предков.

Например, универсальным указателем на любой компонент может быть указа-
тель на класс TControl — базовый класс всех компонентов:

TControl *Contr/

Такому указателю можно непосредственно присваивать ссылку на любой ком-
понент. Например,

Contr = Labell;

Типы данных в языке C++ 151

При таком присваивании компилятор сам производит необходимое приведе-
ние типов.

Но с этим указателем Con.tr уже нельзя работать непосредственно как с указа-
телем на метку. Для него известны только свойства, объявленные в классе
TControl. Это такие общие свойства всех компонентов, как, например, Name -
имя. Непосредственная ссылка на специфические свойства классов — наследников
невозможна. Например, попытка написать код Contr—>Caption вызовет сообщение
компилятора об ошибке с текстом: « 'Controls:: TControl "Caption' is not accessible. »,
смысл которого заключается в том, что свойство Caption в классе TControl недос-
тупно. Поэтому для доступа к методам и свойствам, отсутствующим в классе
TControl, надо осуществлять явное приведение типа указателя, например:

((TLabel *)Contr)->Caption

Этот код как бы говорит компилятору: «Рассматривай Contr как ссылку на
класс TLabel». И тогда никаких сообщений об ошибках не возникает.

Причина, по которой в ряде случаев для хранения ссылок на объекты исполь-
зуются указатели на объекты базовых классов, заключается в удобстве групповой
обработки объектов разных классов с помощью общих для них методов или для за-
дания значений общих для них свойств. Этот вопрос будет подробнее рассмотрен
в следующем разделе.

2.8.3 Идентификация объекта неизвестного класса

В предыдущем разделе было рассмотрено объявление указателей на объекты и
было показано, что тип такого указателя может определяться не обязательно клас-
сом конкретного объекта, но и любым классом-предком. В С+-t-Builder это исполь-
зуется достаточно широко. Например, во все обработчики событий передается в ка-
честве параметра Sender — указатель на объект, в котором произошло событие.
Зачем нужен этот параметр? Конечно, если вы пишете обработчик какого-то собы-
тия в конкретном компоненте, например, пишете для кнопки Button! обработчик
события OnClick, которое наступает при щелчке на ней мыши, то параметр Sender
вам не нужен. Вы и без этого параметра знаете, что событие произошло именно
в кнопке Buttonl. Но часто для разных компонентов нужна идентичная реакция
на идентичные события. В этих случаях писать отдельные одинаковые обработчи-
ки для разных компонентов нерационально. Можно ограничиться одним обработ-
чиком для всех этих компонентов. Это обеспечит существенно более компактный
код, его будет проще отлаживать, да и размер загрузочного модуля вашей про-
граммы будет меньше.

Во все обработчики событий в C++Builder передается по ссылке параметр
Sender, объявленный как TObject *Sender, т.е. как указатель на объект типа
TObject. Класс TObject является базовым классом всех компонентов в C++Builder.
Но в нем не объявлено никаких свойств, которые можно было бы использовать
в обработчике события. Поэтому при обращении к каким-то свойствам объектов
вам надо явным образом осуществлять приведение типа параметра Sender к тому
классу, в котором требуемые свойства объявлены. Пусть, например, вы пишете об-
работчик, который должен в качестве надписи (свойство Caption) метки Labell
выводить текст: "Произошло событие в компоненте ...". Имя компонента, которое
вам надо включать в эту надпись, содержится в свойстве Name. Но это свойство по-
является только начиная с класса TComponent. Значит, именно к этому классу
вам надо привести тип параметра Sender (о приведении типов см. в разд. 2.2). То-
гда соответствующий оператор будет иметь вид:

Labell->Caption = "Произошло событие в компоненте " +
((TComponent *)Sender)->Name;

152 Глава 2

Выражение ((TComponent *)Sender) является приведением типа параметра
Sender к типу указателя на объект класса TComponent. Только в этом классе и
в его потомках появляется свойство Name, которое вам нужно. Приведенный опе-
ратор будет работать для любых компонентов: окон, меток, кнопок и т.д., посколь-
ку классы всех компонентов являются производными от TComponent.

Аналогичное приведение типов можно осуществить с помощью описанной
в разд. 2.2 операции static_cast:

Labell->Caption = " Произошло событие в компоненте " +
static_cast<TComponent *>(Sender)->Name;

Если описанное приведение типов требуется во многих операторах вашей
функции, то для сокращения записи можно один раз определить указатель на объ-
ект Sender как указатель на требуемый класс, а затем во всех операторах исполь-
зовать его. Это сделано, например, в следующем коде:

TComponent *0bj = (TComponent *)Sender;

Labell->Caption="npoM3Ourno событие в компоненте " + Obj->Name;

Первый из этих операторов объявляет переменную Obj как указатель на объ-
ект класса TComponent и с помощью явного приведения типа присваивает этому
указателю ссылку на тот объект, на который указывает Sender. После этого пере-
менную Obj можно везде использовать как указатель на этот объект.

Аналогично, если вы хотите применить к параметру Sender некоторый метод,
объявленный в классах-наследниках, вы должны привести тип указателя к тому
классу, где этот метод имеется. Например, если вы хотите увеличить масштаб
оконного компонента, указателем на который является Sender, вы должны при-
вести его тип к указателю на объект класса TWinControl (или одного из производ-
ных от него классов), так как только начиная с базового класса всех оконных ком-
понентов TWinControl объявлен требуемый вам метод ScaleBy. Соответствующий
оператор будет иметь вид:

((TWinControl *)Sender)->ScaleBy(11,10) ;

В ряде случаев требуется определить истинный класс объекта, на который
указывает параметр Sender. Это можно сделать с помощью метода ClassName,
объявленного в классе TObject как

ShortString fastcall C l a s s N a m e () ;

Функция ClassName возвращает строку типа ShortString, содержащую ис-
тинный класс объекта. Например, оператор

Labell->Caption = Sender->ClassName() ;

может выдать текст "TButton", если Sender указывает на кнопку типа TButton.
Функцию ClassName можно использовать для выполнения каких-то действий

с объектами только одного конкретного класса. Например, оператор

if (Str ing(Sender->ClassName()) == "TLabel")

обеспечивает выполнение неких действий (обозначенных многоточием) только для
объектов класса TLabel.

Для тех же целей может использоваться еще одна функция — ClassNamels,
объявленная в классе TObject как:

bool fastcall ClassNamels(const AnsiString string);

Эта функция возвращает true, если класс объекта совпадает с заданным пара-
метром string. При использовании этой функции приведенный выше пример при-
обретает вид:

Типы данных в языке C++ 153

if (Sender->ClassNameIs("TLabel"))

В приведенных ранее примерах использования свойств и методов класса, к ко-
торому приводится указатель на класс-предшественник, вас может подстерегать
некая опасность. Выше был приведен пример масштабирования компонента с ис-
пользованием метода ScaleBy, объявленного в классе TWinControl. Но если ис-
тинный класс объекта, на который указывает Sender, окажется не потомком клас-
са TWinControl (например, меткой TLabel, которая не наследует TWinControl), то
метод ScaleBy не сработает. Еще более неприятные и непредсказуемые результаты
получатся, если вы обратитесь к свойству, отсутствующему у компонента.

Поэтому, если нет уверенности, что применяемый метод или свойство имеется
в обрабатываемом объекте, надо предварительно проверить, является ли класс
объекта потомком того класса, в котором требуемый метод или свойство объявле-
ны. Например, прежде, чем применять метод ScaleBy, надо убедиться, что класс
объекта является потомком TWinControl.

Для этих целей можно воспользоваться методом InheritsFrom, объявленным
в классе TObject и, следовательно, имеющимся в любых компонентах. Объявление
этого метода:

bool fastcal l InheritsFrom(TClass aClass) ;

Метод возвращает true, если класс данного объекта является потомком класса
aClass, указываемого как параметр метода. Этот параметр имеет тип TClass, кото-
рый может создаваться операцией classid:

classid(classType)

Аргументом этой операции является обычное имя класса, например, TWin-
Control.

Таким образом, проверка, является ли класс объекта, на который указывает
Sender, потомком TWinControl, может осуществляться оператором:

i f (Sender->InheritsFrom(c l a s s i d (T W i n C o n t r o l)))

С учетом этого приведенный ранее пример масштабирования методом ScaleBy
оконных компонентов более грамотно должен осуществляться следующим опера-
тором:

i f (Sender->InheritsFrom(c l a s s i d (T W i n C o n t r o l)))
((T W i n C o n t r o l *)Sender)->ScaleBy(11,10) ;

Еще одна функция — ClassParent, объявленная в классе TObject, возвращает
класс, являющийся непосредственным предком класса данного объекта. Функция
объявлена как:

TClass fastcall ClassParent()

Если данный класс не имеет предшественников (т.е. это класс TObject), то воз-
вращается NULL.

Функция ClassParent, используемая в цикле, позволяет восстановить всю ие-
рархию класса объекта. Следующий код заносит в список строки, перечисляющие
все классы, встречающиеся на пути по дереву классов от TObject до класса, на ко-
торый указывает параметр Sender.

TClass ClassRef= Sender->ClassType();
Lis tBoxl->Clear() ;
whi le(ClassRef != NULL)

ListBoxl->Items->Add(ClassRef->ClassName()) ;
ClassRef = ClassRef->ClassParent() ;

154 Глава 2

Так, если Sender указывает на объект типа TButton, то в списке ListBoxl ока-
жется текст:

TButton
TButtonControl

. TWinControl
TControl
TComponent
TPersistent
TObject

2.9 Ссылки
Ссылки — это специальный тип указателя, который позволяет работать с ука-

зателем как с объектом. Объявление ссылки делается с помощью операции ссыл-
ки, обозначаемой амперсандом (&) — тем же символом, который используется для
адресации. Если в вашей программе имеется указатель на объект какого-то типа
MyObject:

MyObject *P = new MyObject;

то вы можете создать ссылку на этот объект оператором:

MyObject & Ref = *Р;

Объявленная таким образом переменная Ref является ссылкой на объект
MyObject. Она может рассматриваться как псевдоним объекта. Эта переменная ре-
ально является указателем, а не самим объектом. Но работа с ней производится
как с объектом. Например, если вы хотите получить доступ к некоторому свойству
объекта х, то через указатель на объект вы обеспечиваете доступ выражением
Р—>х, т.е. через операцию стрелка. А через ссылку вы обеспечиваете доступ
к свойству х выражением Ref.x, т.е. через операцию точка.

Аналогичным образом вы можете получить доступ по ссылке и к любым ком-
понентам. Например, если в вашем приложении имеется метка Labell, то вы мо-
жет обращаться к его свойству Caption оператором

Labell->Caption = "Это обращение по указателю";

А можете ввести соответствующую ссылку и обращаться через нее:

TLabel & ref = *Labell;
ref .Caption = "Это обращение по ссылке";

Чаще всего ссылки используются при передаче в функции параметров по
ссылке. Этот вопрос подробно рассмотрен в разд. 1.7.2.

2.10 Файлы и потоки
Работа с файлами в C++Builder может производиться несколькими принципи-

ально различными (с точки зрения пользователя) способами:
• использование библиотечных компонентов
• работа с файлами как с потоками в стиле С
• работа с файлами как с потоками в стиле С++

Рассмотрим эти возможности.

2.10.1 Файловый ввод/вывод с помощью компонентов

Работа с текстовыми файлами может осуществляться с помощью методов
LoadFromFile и SaveToFile, имеющихся у классов TStrings и TStringList. Эти

Типы данных в языке C++ 155

классы описывают списки строк и обладают множеством методов, позволяющих
манипулировать строками.

Если вы хотите в своем приложении прочитать содержимое некоторого тексто-
вого файла, обработать текст и сохранить его в файле, вы можете сделать это сле-
дующим образом. Объявите и создайте две глобальные переменные: список типа
TStringList, в котором будет храниться текст файла, и строковую переменную
типа AnsiString, в которой можете сформировать имя файла. Например:

TStringList *List = new TStringList;
AnsiString SFile = "Test.txt";

He забудьте только, что если требуемый файл расположен не в текущем ката-
логе и вам надо указать путь к файлу, то обратные слэши в записи пути должны
быть сдвоенные (см. разд. 1.5.1). Например, если вам требуется файл "c:\My-
Test\Test.txt", то вы должны записать его как "с:\\MyTest\\Test.txt".

В момент, когда вы хотите загрузить в свой список файл, надо выполнить опе-
ратор

List->LoadFromFile(SFile);

Впрочем, ограничиться таким оператором можно, если есть уверенность, что
требуемый файл существует. В противном случае код надо несколько усложнить,
чтобы можно было перехватить сгенерированное исключение. Например:

t ry{
List->LoadFromFile(SFile);

}
c a t c h (. . .) {

ShowMessage("Файл \"" + SFile + " \ " не найден");
}

Если файл нормально загрузился в список List, вы можете работать с его тек-
стом. Текст расположен в свойстве списка Strings[int Index], в котором каждая
строка имеет тип AnsiString. Индексы начинаются с нуля. Для нашего примера
List->Strings[0] — это первая строка, List->Strings[l] — вторая и т.д.

Для списков типа TStringList предусмотрено множество методов. При обра-
ботке отдельных строк вы можете использовать операции и методы, предусмотрен-
ные для строк типа AnsiString (см. разд. 2.5.2 и соответствующие разделы гл. 3).

Если вы хотите сохранить файл после проведенного редактирования, можно
выполнить оператор

List->SaveToFile(SFile);

где SFile содержит прежнее или новое имя файла.
При открытии и сохранении файла вы можете воспользоваться стандартными

диалогами Windows, вызываемыми через соответствующие компоненты С++Ви-
ilder.

Если вы открываете файл для того, чтобы пользователь мог его просмотреть,
что-то в нем отредактировать и сохранить, вы можете обойтись без описанного
выше объекта типа TStringList. Для этих целей проще воспользоваться много-
строчными окнами редактирования типов ТМето или TRichEdit. В последнем
случае вы можете работать не только с обычными текстовыми файлами, но и
с файлами в обогащенном формате RTF. Свойства Lines этих компонентов имеют
тип TStrings, что позволяет применять к ним непосредственно методы LoadFrom-
File и SaveToFile. Например:

Memol->Lines->LoadFromFile(SFile);
RichEditl->Lines->LoadFromFile(SFile);

Через компоненты C++Builder можно работать не только с текстовыми файла-
ми, но и с файлами изображений и мультимедиа.

156 Глава 2

2.10.2 Файловый ввод/вывод с помощью потоков в стиле С

2.10.2.1 Общие сведения

В языках С и C++ файл рассматривается как поток (stream), представляющий
собой последовательность считываемых или записываемых байтов. При этом по-
ток «не знает», что и в какой последовательности в него записано. Расшифровка
смысла записанных последовательностей байтов лежит на программе.

Классический подход, принятый в С, заключается в том, что информация о
потоке (файле) заносится в структуру типа FILE, определенную в файле stdio.h.
Файл открывается с помощью функции fopen, которая возвращает указатель на
структуру типа FILE. Этот указатель потока используется далее во всех операциях
с файлами.

Синтаксис функции fopen:
#include <stdio.h>
FILE *fopen(const char *f i lename, const char *mode);

Функция fopen открывает файл с именем в виде строки, на которую ссылается
указатель filename, и связывает с ним поток. Аргумент mode указывает на строку,
которая определяет режим открытия. Она может содержать спецификаторы:

г

г+

а

а+

w

W+

открыть файл только для чтения

открыть существующий файл для чтения и записи

открыть или создать файл для записи

открыть или создать файл для чтения

данных в конец файла

или записи в конец файла

создать файл для записи

создать файл для чтения и записи

К указанным спецификаторам в конце или перед символом "+" может добав-
ляться символ "t" — текстовый файл, или "Ь" — бинарный, двоичный файл. На-
пример, rt, rb, r+t, г+b и т.д. Если ни символ "t", ни символ "Ь" не указаны, то
тип открываемого файла определяется значением глобальной переменной _fmode,
определенной в файле fcntl.h. Она может принимать значения О_ТЕХТ — тексто-
вый файл (по умолчанию) или O_BINARY — двоичный файл. Более подробное по-
яснение режимов открытия файлов вы найдете в гл. 3, в разд. 3.5.2.

Открываемый функцией fopen поток буферизуется, т.е. обмен информацией
происходит не непосредственно с файлом, "а с промежуточным буфером, располо-
женным в оперативной памяти. Информация переписывается из буфера в файл
только при переполнении буфера или при закрытии файла. В гл. 3, в разд. 3.5.2 вы
можете посмотреть функции, управляющие процессом буферизации.

Функция fopen возвращает указатель на объект, управляющий потоком. Если
попытка открыть файл закончилась неудачей, fopen возвращает нулевой указа-
тель.

После того, как необходимая работа с файлом (чтение или запись) завершена,
файл должен быть закрыт функцией fclose(FILE *), в которую передается указа-
тель потока.

2.10.2.2 Текстовые файлы

Рассмотрим сначала работу с текстовыми файлами. Открытие текстового фай-
ла «Test.txt» может иметь вид:

Типы данных в языке C++ 157

#include <stdio.h>

FILE *F;

if ((F = fopenC'Test.txt", "rt")) == NOLL)
{
ShowMessage("Файл не удается открыть");
return;

}
... // чтение из файла
fc lose(F) ; // закрытие файла

Здесь объявляется переменная F — указатель потока и связывается с файлом
«Test.txt», открываемым как текстовый только для чтения. Если открыть файл не
удалось (например, он не существует), появляется сообщение об ошибке.

Из открытого таким образом файла можно читать информацию. После оконча-
ния чтения файл должен быть закрыт функцией fclose(F).

Если бы файл открывался функцией
fopenC'Test.txt", "rt+")

то из такого файла можно было бы не только читать информацию, но и записывать
в него новые строки.

Из текстового файла можно читать информацию по строкам или по символам.
Чтение строки осуществляется функцией fgets:

char *fgets(char *s, int n, FILE *stream);

В вызове функции s — указатель на буфер, в который читается строка, n -
число читаемых символов. Чтение символов в строку происходит или до появле-
ния символа конца строки "\п" (этот символ записывается в строку), или читается
n — 1 символ. В конце прочитанной строки записывается нулевой символ.

Например, чтение и отображение в компоненте Memol всех строк файла мо-
жет быть организовано следующим образом:

char s [80] ;
Memol->Clear () ;
do
{
f g e t s (s , 8 0 , F) ;
i f (f e o f (F)) break;
i f(s[str len(s)-l] == ' \ n ') s[strlen(s)-l] = 0;
Memol->Lines->Add(s);

}
whi le(t rue) ;
f c l o s e (F) ; // закрытие файла

Функция fgets читает очередную строку. Функция feof проверяет, не прочи-
тан ли символ конца файла. При чтении этого символа feof возвращает ненулевое
значение и цикл прерывается. Если признака конца файла нет, то оператор

i f (s [strlen (s)-1] == ' \ n ') s [s tr len(s)-1] = 0;

убирает из строки последний символ, если он оказывается символом перевода
строки. Эта операция не обязательна, но наличие символа "\п" испортит вид стро-
ки в окне Memol. Затем прочитанная строка заносится в окно редактирования.

Чтение из текстового файла форматированных данных может осуществляться
функцией fscanf.

int f s c a n f (F I L E *stream, const char * format[, address, . . .]) ;

Ее параметр format определяет строку форматирования аргументов, заданных
своими адресами. Подробно строка форматирования рассмотрена в гл. 3, в разд.
3.1.3.2. Сейчас отметим только, что эта строка при чтении обычно состоит из по-
следовательности символов "%", после которых следует символ типа читаемых

158 Глава 2

данных. Ниже приведены некоторые наиболее часто используемые символы (под-
робнее см. в разд. 3.1.3.2):

Символ

i

I

d

D

u

и
e, E

s

с

Вводимое значение

Десятичное, восьмеричное или шестнад-
цатеричное целое

Десятичное, восьмеричное или шестнад-
цатеричное целое

Десятичное целое

Десятичное целое

Десятичное целое без знака

Десятичное целое без знака

Действительное с плавающей запятой

Строка символов

Символ

Тип аргумента функции

int *arg

long *arg

int *arg

long *arg

unsigned int *arg

unsigned long *arg

float *arg

char arg[]

char *arg

Перед символом типа могут добавляться модификаторы. В частности, модифи-
катор 1 расширяет тип целого до long int, а тип действительного до double.

Пусть, например, вы знаете, что, начиная с текущей позиции файла, в нем за-
писаны, разделенные пробелами, два целых и одно действительное число. Тогда
прочитать эти числа можно операторами:

12;int 11,
double r;
f s c a n f (F , & i 2 , & r)

Обратите внимание, что в качестве аргументов, в которые заносятся читаемые
функцией fscanf данные, всегда указываются адреса переменных, а не сами пере-
менные. Отсутствие операции адресации (&) — очень распространенная ошибка,
которая приводит к самым неожиданным результатам.

При форматированном чтении могут возникать ошибки из-за достижения кон-
ца файла или из-за неверного формата записанного в файле числа. Проверить, ус-
пешно ли прошло чтение, можно по значению, возвращаемому функцией fscanf.
При успешном чтении она возвращает число прочитанных полей. Поэтому в на-
шем примере лучше организовать чтение следующим образом:

if (fscanf (F, "%d%d%le", &i l , &12, &r) != 3)
{

ShowMessage ("Ошибка чтения") ;

Символ типа s позволяет читать из файла отдельное слово, точнее — так назы-
ваемую лексему -- последовательность символов, завершающуюся пробельным
символом. Пусть, например, мы хотим просмотреть файл, чтобы узнать, не встре-
чается ли в нем слово, которое пользователь ввел в окне редактирования Editl.
Для решения этой задачи после того, как файл открыт, можно выполнить, напри-
мер, следующий код:

char s [80] , key [10] ;
strcpy (key,Editl->Text.c_str ()) ; // загрузка ключевой строки
do

f scanf (F, "%s", & s) ;

Типы данных в языке C++ 159

i f (f e o f (F) | | ! s trcmp(s,key)) break;
}
while(true);
fclose(F);
if (!strcmp(s,key))

ShowMessage("Слово найдено");

В этом коде вводится рабочая строка s и строка key, в которую функцией
strcpy загружается ключевое слово. Далее в цикле функцией fscanf в строку s чи-
тается по одной лексеме из файла. Функция strcmp сравнивает эту лексему с клю-
чом. Она возвращает 0, если строки s и key совпадают. В этом случае, а также при
достижении конца файла цикл прерывается.

Мы рассмотрели вопросы чтения из текстового файла. Имеется также ряд
функций записи в текстовый файл. Наиболее часто используемая из них — функ-
ция fprintf:

int f p r i n t f (F I L E *stream, const char *format[, argument, . . .]) ;

Эта функция подобна рассмотренной выше функции fscanf, только строка
форматирования строится несколько иначе. В ней используются аналогичные рас-
смотренным ранее символы типа, помещаемые после символа "%". Но имеется
много возможностей по выбору формата печати данных в файл. Кроме того, все
символы строки форматирования, не предваряемые символом "%", просто поме-
щаются в выходной поток. Подробнее о функции fprintf и других функциях запи-
си вы можете посмотреть в гл. 3 и 4. А пока приведем только короткий пример.

Пусть у вас имеется строка s типа (char *), содержащая фамилию сотрудника,
и целое число year, содержащее год его рождения. Вы хотите создать текстовый
файл и занести в него запись, первая строка которой содержит слово «ХАРАКТЕ-
РИСТИКА», а вторая — текст «сотрудник ..., ... г.р.». Вместо точек в этом тексте
подразумевается фамилия и год рождения. Это можно сделать следующим кодом:

FILE *F;
if ((F = fopen ("Test.txt", " w t ")) == NULL)
{

ShowMessage("Файл не удается создать") ;
return;

}
char S[40] ;
int year = 1960;
strcpy(s,"Иванов") ;
fprintf(F, "ХАРАКТЕРИСТИКА\псотрудник %s, %i r . p . \ n " , &S, year);
fclose(F);

Файл открывается функцией fopen как текстовый файл для записи. Если фай-
ла с указанным именем не было, он создается. Если такой файл был, все его содер-
жимое уничтожается. Затем функцией fprintf в файл записывается требуемый
текст. В строке форматирования этой функции записан текст первой строки, затем
указан символ перехода на новую строку "\п"; далее следует начало второй стро-
ки — - "сотрудник ", затем символы "%s", задающие тип первого аргумента — ука-
зателя на S, затем символы "%i", задающие тип второго аргумента — числа year,
и наконец — заключительная часть второй строки. В результате в файл будут за-
писаны строки:

ХАРАКТЕРИСТИКА
сотрудник Иванов, 1960 г.р.

Рассмотренными функциями не ограничиваются возможности работы с тек-
стовыми файлами. Подробнее все эти функции вы можете посмотреть в гл. 3 и 4.

160 Глава 2

2.10.2.3 Двоичные файлы

Двоичный файл представляет собой просто последовательность символов,
в которой без каких-либо разделителей — пробелов, символов конца строки и т.п.
хранятся символы, отображающие самые различные объекты. Они совпадают
с тем, как хранятся соответствующие объекты в оперативной памяти. Что именно
и в какой последовательности лежит в двоичном файле — должна знать програм-
ма.

Двоичные файлы имеют немало преимуществ перед текстовыми при хранении
каких-то числовых данных. Операции чтения и записи с такими файлами произ-
водятся намного быстрее, чем с текстовыми, поскольку отсутствует необходимость
форматирования: перевода в текстовое представление и обратно. Двоичные файлы,
как правило, имеют существенно меньший объем, чем аналогичные текстовые
файлы. В двоичных файлах вы можете перемещаться в любую позицию и читать
или записывать данные в произвольной последовательности, в то время как в тек-
стовых фалах практически всегда производится последовательная обработка ин-
формации. Пожалуй, недостаток двоичного файла с точки зрения программиста
только один — просматривая его с помощью какого-то текстового редактора, труд-
но понять, где что в нем находится, и это в ряде случаев затрудняет отладку.

О том, как открываются двоичные файлы, уже рассказывалось в разд.
2.10.2.1. Запись и чтение в двоичные файлы чаще всего производятся соответст-
венно функциями fwrite и freed:

#include <stdio.h>
size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);
size_t fread(void *ptr, size_t size, size_t n, FILE *stream);

В обе функции передается указатель ptr на выводимые или вводимые данные.
Параметр size задает размер в байтах передаваемых данных, а параметр n опреде-
ляет число передаваемых данных. Применение этих функций иллюстрируется
приведенным ниже примером.

int i = 1, j = 25, il, j l ;
double a = 25e6, al;
char s[10], si [10];
strcpy(s,"Иванов");

FILE *F;
// запись в файл
if ((F = fopen("Test.dat", "wb")) == NULL)
{
ShowMessage("Файл не удается создать");
return;
}
fwrite(&i,sizeof(int),1,F); // запись i
fwrite(&j,sizeof(int),1,F); // запись j
fwrite(&a,sizeof(double),1,F); // запись a
fwrite(s,sizeof (char),strlen(s)+1,F); // запись строки s
fclose (F);

// чтение из файла
if ((F = fopen ("Test.dat", "rb")) == NULL)
{
ShowMessage("Файл не удается открыть");
return;

}
fread(&il,sizeof(int),1,F); // чтение i
fread(Sjl,sizeof(int),1,F); // чтение j
fread(sal,sizeof(double),1,F); // чтение а
fread(sl,sizeof(char),strlen(s)+1,F); // чтение строки s
fclose (F);

Типы данных в языке C++ 161

В данном примере создается двоичный файл "Test.dat" и в него записывается два
целых числа i и j, действительное число а и строка s. Затем этот файл закрывается,
открывается для чтения, и данные из него читаются в переменные il, jl, al и si,

В отношении записи и чтения чисел, вероятно, все понятно. А вопрос записи и
чтения строк имеет смысл обсудить подробнее.

В приведенном примере запись строки производится оператором
fwrite (s , s izeof(char) , s t r len (s)+1,F); // запись строки s

Запись ведется по символам и указано число записываемых символов -
strlen(s)+l (единица добавляется на нулевой символ в конце). Читается строка
аналогично:

fread(sl,sizeof(char),strlen (s)+ 1,F); // чтение строки s

При этом чтение тоже идет по символам и читается strlen(s)+l символов.
Тут внимательный читатель может увидеть некоторую подтасовку. В данном

учебном примере мы знаем длину строки, которую записали в файл, и можем про-
читать требуемое число символов. Но как быть в реальных задачах, когда мы, ско-
рее всего, не будем знать длину записанной строки? Эту проблему можно решить
несколькими путями. Проще всего записывать и читать весь массив символов как
единое целое:

fwr i te(s , s izeof(s) ,1 ,F) ;
f read(s i , s izeof(s) ,1 ,F) ;

Этот путь простой, но имеет один недостаток: записывается всегда весь массив
символов s, даже если содержащаяся в нем строка много короче размера массива.
Приведенные операторы в нашем примере эквивалентны операторам

fwrite(s,s izeof(char)*10,1,F);
fread(si,sizeof(char)*10,1,F);

Таким образом, при частичном заполнении массива в файле будут храниться
лишние байты. Если в файле много строк разной длины, а все они будут храниться
как максимальная из них, то размер файла будет значительно больше действи-
тельно необходимого.

Другой путь — записывать по-прежнему по символам, но при чтении прове-
рять каждый символ, чтобы при появлении нулевого символа закончить чтение
строки. Это может быть реализовано следующим образом:

// запись строки
fwrite(s,sizeof(char),strlen(s)+1,F);

// чтение строки
for(int ind = 0; ind < 10; ind++)
(
fread(sl + ind,s izeof(char),1,F);
i f(si[ind] == ' \ 0 ') break;

)

Здесь в цикле for читается за раз по одному символу и при обнаружении нуле-
вого символа цикл прерывается. Обратите внимание, что адрес чтения очередного
символа в данном случае задается выражением sl+ind. Нельзя было бы вместо это-
го использовать выражение sl[ind], так как функция fread требует указания
именно адреса, а не значения переменной, в которую осуществляется чтение.

Функцию fread в этом примере можно было бы заменить на fgetc, которая чи-
тает один символ из потока:

si[ind] = fgetc (F);

И, наконец, еще один вариант чтения строк неизвестной длины из двоичного
файла. Можно перед строкой записывать в файл целое число, равное числу симво-
лов в строке. Тогда чтение строки не встретит затруднений:

162 Глава 2

// запись строки
int it = strlen (s)-t-1;
fwrite (Sit,sizeof(int), 1,F);
fwrite(s,sizeof (char),it,F);
. . .
// чтение строки
fread(Sit,sizeof(int) , 1, F) ;
fread(si,sizeof (char), it, F) ;

В приведенных примерах чтение происходило последовательно. Но, работая
с двоичными файлами, можно организовать произвольное чтение данных. Для это-
го служит указатель (курсор) файла, который определяет текущую позицию в фай-
ле для чтения и записи. При чтении или записи указатель автоматически смещает-
ся на число обработанных байтов. Узнать позицию указателя можно функцией
ftell, которая возвращает текущую позицию:

long int ftell(FILE *stream);

Изменить позицию указателя можно функцией fseek:
int fseek(FILE *stream, long offset, int whence);

Эта функция задает сдвиг на число байтов offset относительно точки отсчета,
определяемой параметром whence. Параметр whence может принимать значения:

Константа

SEEK_SET

SEEK_CUR

SEEK_END

whence

0

1

2

Точка отсчета

Начало файла

Текущая позиция

Конец файла

Если задано значение whence = 1, то offset может быть положительным (сдвиг
вперед) или отрицательным (сдвиг назад).

Функция rewind перемещает указатель на начало файла (позиция 0). Впро-
чем, то же самое можно сделать оператором

f s e e k f F , OL, 0) ;

Возможность перемещать указатель особенно полезна в файлах, которые со-
стоят из однородных записей одинакового размера. Например, если в файле запи-
саны только действительные числа типа double, то для того, чтобы прочитать i-oe
число, достаточно выполнить операторы

fseek(F, sizeof(double)* (i-1), 0);
fread(&a,sizeof(double), 1, F) ;

Таким образом можно читать любые записи в любой последовательности.
С помощью перемещения указателя можно редактировать записи в файле.

Пусть, например, вы хотите одно из чисел, записанных в файле, изменить, умно-
жив его на 10. Это можно сделать, если открыть файл в режиме чтения и записи
(например, "rb+"), установить позицию, соответствующую изменяемому числу, и
выполнить операторы:

fread(&a,sizeof(double), 1,F);
a *= 10;
fseek(F,-sizeof(double),1);
fwrite(Sa,sizeof(double),1,F);

Первый из этих операторов читает число в переменную а, второй — умножает
его на 10. Третий оператор возвращает текущую позицию на одну запись назад, по-
скольку после выполнения fread позиция сдвинулась вперед. Последний оператор
пишет в ту позицию, в которой было прочитано число, новое значение.

Ту же задачу можно решить иначе:

Типы данных в языке C++ 163

long int pos = ftell(F); // запоминание позиции
fread(Sa,sizeof(double), 1, F) ;
a *= 10;
f s e e k (F , p o s , 0) ; // восстановление позиции
f w r i t e (& a , s i z e o f (d o u b l e) , 1 , F) ;

Здесь функция ftell запоминает позицию, из которой читается число, а функ-
ция fseek восстанавливает эту позицию перед записью измененного числа.

С помощью двоичных файлов можно записывать и читать не только числа и
строки, но и гораздо более сложные объекты, например, структуры. Ниже приве-
ден пример, в котором определяется тип структуры spers, объявляются перемен-
ные этого типа pers и persl, поля структуры pers заполняются, а затем она цели-
ком записывается в файл. После того, как файл закрывается, он открывается для
чтения, и данные из него читаются в структуру persl.

struct spers
{

char Name[20] ;
int year;

};

struct spers pers, persl;
strcpy(pers.Name,"Иванов");
pers.year = I960;

FILE *F;
if ((F = fopen("Test2.dat", "wb")) == NULL)
{
ShowMessage("Файл не удается создать");
return;

}
fwrite(&pers,sizeof(spers), 1,F) ;
fclose(F);

if ((F = fopen("Test2.dat", "rb")> == NULL)
{
ShowMessage("Файл не удается открыть");
return;
}
f r e a d f & p e r s l , s i z e o f (s p e r s) , 1 , F) ;
f c l o s e (F) ;

2.10.2.4 Ввод/вывод, использующий дескрипторы потоков

В С предусмотрен еще один механизм работы с файлами, основанный не на
указателях на структуру типа FILE, а на дескрипторах. Файлы, открываемые по-
добным образом, не работают с буферами и с форматированными данными.

В начале работы любой программы автоматически открываются три потока со
своими дескрипторами:

поток

stdin

stdout

stderr

дескриптор

0

1

2

стандартный входной поток — обычно клавиатура

стандартный выходной поток — обычно экран

стандартный поток сообщений об ошибках

Но программа может и явным образом открывать любые новые файлы с деск-
рипторами.

Функции, работающие с дескрипторами файлов, описаны в файле io.h. Ряд ис-
пользуемых флагов и констант описан также в файлах stdio.h, fcntl.h, sys\types.h
и sys\stst.h.

164 Глава 2

Файл открывается функцией open, которая возвращает дескриптор файла:
#include <fcnt l .h>
#include<io. h>
int open (const char *path, int access, unsigned m o d e) ;

Параметр path указывает имя открываемого файла. Параметр access опреде-
ляет режим доступа к файлу. Параметр mode является не обязательным и задает
режим открытия файла.

Параметр access формируется операцией ИЛИ (|) из ряда флагов. Вот некото-
рые из них (полный список см. в гл. 3, в разд. 3.5.1):

O_RDONLY

0_WRONLY

О RDWR

О CREAT

OJTRUNC

O_BINARY

О_ТЕХТ

только для чтения

только для записи

для чтения и записи

создание нового файла

если файл существует, он урезается до 0

двоичный файл

текстовый файл

Параметр mode может принимать значения:

S_IWRITE

S_IREAD

S_IREAD | S_IWRITE

разрешение записи

разрешение чтения

разрешение записи и чтения

Например, операторы
int handle;
if ((handle open ("Test.txt", 0__CREAT | О_ТЕХТ)) == -1)

ShowMessage ("Файл не удается создать");
return;

}

пытаются создать новый текстовый файл, а в случае неудачи (функция open верну-
ла -1) отображают сообщение об ошибке.

Имеется также функция _creat, осуществляющая примерно те же функции,
что и open.

Закрывается файл функцией close:
int close (int handle);

Запись и чтение при работе с файлами, определяемыми дескрипторами hand-
le, осуществляется функциями write и read:

#include <io.h>
int write (int handle, void *buf, unsigned len) ;
int read (int handle, void *buf, unsigned len);

В этих функциях buf — указатель на буфер, из которого записывается в файл
или в который читается из файла len байтов.

Чтобы продемонстрировать работу с файлами, определенными своими деск-
рипторами, давайте воспроизведем пример, приведенный в разд. 2.10.2.3, в кото-
ром осуществлялась запись и чтение двух целых числе i и j, действительного числа
а и строки s:

Типы данных в языке C++ 165

#include <stdio.h>
tinclude <stdlib.h>
ttinclude <fcntl.h>
tinclude <sys\stat.h>
tinclude <io.h>
tinclude <string.h>

int i = I,- j = 25, il, jl;
double a = 25e6, аГ;
char s[10], sl[10] ;
strcpy(s,"Иванов");

int handle;
// запись в файл
if ((handle = open ("Test.txt",

== -1)
0 WRONLY | 0 GREAT I 0 BINARY))

ShowMessage("Файл не удается создать");
return;

write(handle, &i, sizeof (int));
write (handle, &j, sizeof (int));
write(handle, &a, sizeof(double));
write(handle, s, strlen(s)+1);
close(handle);

// чтение из файла
if ((handle = open ("Test.txt", 0 RDONLY

// запись i
// запись j
// запись а
// запись строки s

О BINARY)) == -1)

ShowMessage("Файл не удается открыть");
return;
}
read (handle, si-1, sizeof (int));
read(handle, &jl, sizeof (int));
read(handle, &al, sizeof(double));
read(handle, si, strlen (s)+1);
close(handle);

// чтение i
// чтение j
// чтение а
// чтение строки s

Если вы сравните этот код с тем, который был приведен в разд. 2.10.2.3, то
увидите, что они практически идентичны и различаются только синтаксисом. Со-
ответственно, и все приемы записи и чтения строк произвольной длины, рассмот-
ренные в разд. 2.10.2.3, могут применяться и в данном случае.

Для работы с файлами, имеющими дескрипторы, могут использоваться функ-
ции tell и Iseek, аналогичные рассмотренным в разд. 2.10.2.3 функциям ftell и
fseek, производящими операции с указателями файлов. Имеются также функции
dup и dup2, производящие операции непосредственно с дескрипторами, позволяю-
щие создавать дубли дескрипторов или, например, перенаправлять стандартные
потоки. Описания этих и иных функций вы найдете в гл. 3, в разд. 3.5.3, 3.5.4.

2.10.3 Файловый ввод/вывод с помощью потоков в стиле C++

2.10.3.1 Ввод и вывод потоков

В C++ определены три класса файлового ввода/вывода:

ifstream

ofstream

fstream

входные файлы для чтения

выходные файлы для записи

файлы для чтения и записи

166 Глава 2

Чтобы использовать эти классы, надо включить в модуль директиву
#include <fstream.h>

При работе с файлами этих классов можно использовать ряд присущих им ме-
тодов, но, пожалуй, основным достоинством использования этих классов является
возможность применять очень удобные операции поместить в поток («) и взять из
потока (»).

Создаются объекты потоков, связанные с файлами, конструкторами соответст-
вующих классов. Например, операторы

ofstream outf i le (" T e s t . d a t ") ;
i f (! o u t f i l e)
{
ShowMessage("Файл не удается создать");
return;

создают выходной поток outfile, связанный с файлом "Test.dat", создавая одновре-
менно сам файл или, если он уже существует, урезая его длину до нуля. Если по
каким-то причинам операция не может быть выполнена, значение outfile равно О
и оператор if прерывает работу.

Аналогично может создаваться входной поток, связанный с файлом:
if stream inf i le ("Test . dat") ;
if (! inf i le)
{
ShowMessage ("Файл не удается открыть");
return;

К созданным таким образом потокам можно применять операции поместить
в поток («) и взять из потока (»), подробно рассмотренные в разд. 1.9.15. Пре-
имущество этих операций, работающих с текстовыми файлами, по сравнению
с рассмотренными в предыдущих разделах функциями является простота исполь-
зования и автоматическое распознавание типов данных. Рассмотрим, например,
следующий код:

int i = 1, j = 25, il, j l ;
double a = 25e6, al;
char s [40] , si [40] ;
strcpy (s, "Иванов") ;

// создание файла как выходного потока
ofstream outfile ("Test .dat") ;
if (! outfile)
{
ShowMessage ("Файл не удается создать");
return;

)
outfi le « i « ' ' « j « ' ' « a « ' ' « s « endl;
// закрытие файла
outfi le . close () ;

// открытие файла как входного потока
ifstream infile ("Test . dat") ;
if (! infile)
(

ShowMessage ("Файл не удается открыть");
return;

}
inf i le » il » jl » al » si;

Типы данных в языке C++ 167

// закрытие файла
in f i le .c lose() ;

В этом коде создается файл "Test.dat" и в него записываются в текстовом виде
два целых числа i и j, действительное число а и строка s, содержащая одно слово,
после чего манипулятором потока endl (см. разд. 1.9.15) осуществляется перевод
строки. Причем, запись всех этих данных осуществляется одним оператором, со-
держащим сцепленные операции поместить в поток. Если вы сравните это с анало-
гичными кодами, приведенными в предыдущих разделах, то убедитесь в компакт-
ности и простоте применения этой операции.

После того, как файл закроется, в нем будет записан текст "1 25 2.5е+07 Ива-
нов". Дальнейшие операторы создают входной поток, связанный с этим файлом и
одним оператором, содержащим сцепленные операции взять из потока читает все
эти данные.

Особенности применения операций « и » детально рассмотрены в гл. 1,
в разд. 1.9.15. Отметим только, что возможности операции поместить в поток мож-
но существенно расширить использованием манипуляторов потока, которые будут
обсуждаться в следующем разд. 2.10.3.2. Помимо этой операции выводить данные
в поток можно еще двумя способами: методом put и методом write.

Метод put выводит в поток один символ. Например, оператор

o u t f i l e . p u t (' Я 1) ;

выведет в поток символ "Я". Функции put допускают сцепленный вызов. Напри-
мер, оператор

outfile.put('Я') .put('\п') ;

выведет в поток символ "Я" и символ перевода строки.
Метод write выводит в файл из символьного массива, на который указывает

его первый параметр, число символов, указанных вторым параметром. Например,
оператор

out f i le .wr i te(s , 5) ;

записывает в поток outfile 5 символов из массива s. Причем эти символы никак не
обрабатываются, а просто выводятся в качестве сырых байтов данных. Среди этих
символов, например, может встретиться в любом месте нулевой символ, но он не
будет рассматриваться как признак конца строки.

Аналогичный метод read может затем прочитать эти символы в какой-то дру-
гой символьный массив и тоже без всякой обработки. Функция gcount сообщает о
количестве символов, действительно прочитанных последней операцией ввода.

Теперь остановимся подробнее на вводе данных из файлового потока.
Операция взять из потока (») обладает особенностью, которую надо учиты-

вать при вводе строк в массивы символов. Она читает не всю строку, а только одну
лексему — последовательность символов до первого пробельного или разделитель-
ного символа. Иначе говоря, она читает не строку до символа перевода строки, а
только одно слово. Это удобно, если надо производить анализ текста или искать
в нем какое-то ключевое слово. Но это становится недостатком, если надо просто
прочесть строку целиком.

В классе ifstream имеется еще два метода чтения из потока: get и getline. Ме-
тод get имеет три модификации: get(), get(char) и get(char *, int n, char delim).

Функция get без аргументов вводит одиночный символ из указанного потока
(даже, если это символ разделитель) и возвращает этот символ в качестве значения
вызова функции. Этот вариант функции get возвращает EOF, когда в потоке встре-
чается признак конца файла.

Следующий код использует функцию get без аргумента, чтобы построчно чи-
тать и обрабатывать весь текст файла:

168 Глава 2

char s [80], с;
ifstream inflie("Test.dat") ;
if (linfile)
{
ShowMessage("Файл не удается открыть");
return;

}
int i = 0;
while((с = infile.get()) != EOF)
(
if (c == '\n')
{

// занесение нулевого символа в конец строки
s[i] = 0;

// обработка строки

i = 0;
}

// формирование строки
else s[i++] = с;

}
// закрытие файла
inflie.close();

Здесь символы файла поочередно читаются в символьную переменную с. Если
прочитанный символ не является символом перевода строки "\п", то символ добав-
ляется в строку s. Если же символ равен "\п", то в конец строки заносится нулевой
символ, строка подвергается какой-то обработке, после чего начинает формиро-
ваться следующая строка. Отметим, что этот код имеет один недостаток: если сим-
волу конца файла не предшествует символ перевода строки, то последняя строка
оказывается без завершающего нулевого символа и остается необработанной. Не-
трудно придумать дополнение кода, которое ликвидировало бы этот недостаток.

Функцию get() удобно использовать для поиска в файле какого-то ключевого
символа. Например, цикл поиска в файле символа "$" можно организовать сле-
дующим образом:

while((с = infile.get ()) != EOF)
if(с == '$') break;

if (с =*= '$') ...

Другой вариант функции-элемента get с символьным аргументом вводит оче-
редной символ из входного потока (даже, если это символ разделитель) и сохраня-
ет его в символьном аргументе. Этот вариант функции get возвращает ложь, когда
встречается признак конца файла; в остальных случаях этот вариант функции get
возвращает ссылку на тот объект потока, для которого вызывалась функция-эле-
мент get.

При использовании этого варианта функции get приведенные ранее примеры
можно оставить практически без изменений, переписав только заголовки структур
while:

w h i l e (i n f i l e . g e t (c))

Третий вариант функции-элемента get принимает три параметра: символьный
массив s, максимальное число символов п и ограничитель delim (по умолчанию
символ перевода строки '\п'). Этот вариант читает символы из входного потока до
тех пор, пока не достигается число символов, на 1 меньшее указанного макси-
мального числа п, или пока не считывается ограничитель. Затем для завершения
введенной строки в символьный массив, используемый в качестве буфера програм-
мы, помещается нулевой символ. Ограничитель в символьный массив не помеща-
ется, а остается во входном потоке (он будет следующим считываемым символом).
Таким образом, результатом второго подряд использования функции get явится
пустая строка, если только ограничитель не удалить из входного потока.

Типы данных в языке C++ 169

Приведенный ранее пример чтения всего файла по строкам в данном случае
реализуется проще:

char s [80] ;
if stream inf ile ("Test .dat") , •
if (! inf ile)
{
ShowMessage ("Файл не удается открыть");
return;
}

while(!infile.eof())
(
inf ile. get (s, 80) ;
inf ile .get () ;

// обработка строки

}
// закрытие файла
inf ile. close () ;

В данном случае третий аргумент в вызове get не указан. Значит подразумева-
ется по умолчанию ограничитель "\п" и каждый вызов get читает одну строку
(подразумевается, что ее длина не более 80 символов). Обратите внимание на то,
что после оператора

infile.get (s, 80) ;

добавлен оператор
inf ile .get () ;

Этот оператор удаляет из потока ограничитель. Если этого не сделать, про-
грамма зациклится. *,>

Функция get с тремя параметрами не всегда удобна, поскольку* оставляет ог-
раничитель в потоке, и для повторного вызова функции его приходится убирать
отдельным оператором. Часто более удобна другая функция — getline. Эта функ-
ция действует подобно третьему варианту функции get и помещает нулевой сим-
вол после строки в символьном массиве. Но в отличие от get функция getline уда-
ляет символ ограничитель из потока (т.е. читает этот символ и отбрасывает его);
этот символ не сохраняется в символьном массиве.

С помощью getline рассмотренный выше цикл чтения файла по строкам мо-
жет быть записан следующим образом:

while ('.infile.eof ())
{
inf ile. get line (s, 80) ;

// обработка строки

2.10.3.2 Манипуляторы потоков
В разд. 2.10.3.1 и в гл. 1 в разд. 1.9.14 рассматривался один из манипуляторов

потоков — манипулятор endl, переводящий поток на новую строку. Имеется еще
много манипуляторов потока, позволяющих форматировать вывод в файл опера-
цией вывода в поток «.

Чтобы посмотреть возможности манипуляторов, вы можете построить прило-
жение, аналогичное рассмотренным в предыдущих разделах и содержащее окно
Memol и кнопку, обработчик события OnClick которой имеет следующий вид:

tinclude <fstream.h>
tinclude <iomanip.h>

char s [40] ;

170 Глава 2

// создание файла как выходного потока
ofstream outfile("Test.dat");
if('outfile)
{
ShowMessage("Файл не удается создать");
return;
}
// операторы, использующие операция вывести в поток

// закрытие файла
outfile.close();

ifstream infile("Test.dat");
if(!infile)
{
ShowMessage("Файл не удается открыть");
return;

}
Memol->Clear() ;
w h i l e (! i n f i l e . e o f ())
{
i n f i l e . g e t l i n e (s , 8 0) ;
Memol->Lines->Add(s);

>
// закрытие файла
infile.close();

Манипуляторы dec, oct, hex и setbase определяют систему счисления, в кото-
рой выводятся целые числа — соответственно десятичную, восьмеричную, шестна-
дцатеричную и с заданным основанием. По умолчанию целые числа выводятся как
десятичные. Послав в поток один из перечисленных модификаторов, вы можете
перейти к другой системе счисления, и она будет действовать до тех пор, пока вы
не примените новый модификатор. Модификатор setbase относится к параметри-
зированным модификаторам потоков. В качестве параметра в него передается ос-
нование системы счисления. Для применения этого и других параметризованных
модификаторов надо включить в проект заголовочный файл <iomanip.h>. Приве-
дем пример использования рассмотренных модификаторов. Операторы

int i = 31;
outfi le « i « ' ' « hex « i « ' ' « oct « i « ' '

« setbase (10) « i « endl;

приведут к записи текста "31 If 37 31". Сначала число 31 отображается в десяти-
чном виде, потом в восьмеричном, затем в шестнадцатеричном, и в заключение
опять в десятичном.

Можно управлять точностью выводимых чисел с плавающей запятой, т.е. чис-
лом разрядов справа от десятичной точки, используя манипулятор потока setpre-
cision или метод precision. Вызов любой из этих установок точности действует для
всех последующих операций вывода до тех пор, пока не будет произведена следую-
щая установка точности.

Чтобы посмотреть возможности способов управления точностью, вы можете
записать оператор:

for(int i = 0; i < 10; i + +)
o u t f i l e « setprecision(i) « s q r t (3 . 0) « endl;

Этот оператор изменяет в цикле параметр манипулятора setprecision от 0 до 9
и тем самым изменяет точность вывода в файл значения корня квадратного из 3.
Значение параметра 0 приводит к установке точности по умолчанию, которая рав-
на 6. Результат работы приведенного оператора следующий:

Типы данных в языке C++ 171

1.73205

1л
1.73
1.732
1.7321
1.73205
1.732051
1.7320508
1.73205081

Аналогичный результат даст следующий код, использующий метод precision:
f o r (i n t i = 0; i < 10;

outf lie .precision (i) ;
outfile « sqrt(3.0) « endl;

}

Если в функции precision не задавать параметров, например,
int i = outf ile. precision () ;

то она вернет текущую установку точности.
Манипулятор потока setw и метод width устанавливают ширину поля (т.е.

число символьных позиций, в которые значение будет выведено, или число симво-
лов, которые будут введены) и возвращает предыдущую ширину поля. Если обра-
батываемые значения имеют меньше символов, чем заданная ширина поля, то для
заполнения лишних позиций используются заполняющие символы. По умолча-
нию заполняющими символами являются пробелы и вставляются они перед знача-
щими символами, т.е. происходит выравнивание вправо. Если число символов
в обрабатываемом значении больше, чем заданная ширина поля, то лишние симво-
лы не отсекаются и число будет напечатано полностью. Установка ширины поля
влияет только на следующую операцию поместить в поток; затем ширина поля ус-
танавливается неявным образом на 0, т.е. поле для представления выходных зна-
чений будут просто такой ширины, которая необходима. Функция width, не имею-
щая аргументов, возвращает текущую установку ширины поля.

Заполняющие символы могут устанавливаться манипулятором setfill(char)
или методом fill.

Например, следующие операторы демонстрируют влияние ширины поля на
результат вывода числа 25:

int j = 25;
for (int i = 0; i < 5; i++)

out f i le « s e t w (i) « j « endl;

Результат работы этих операторов следующий:
25
25
25

25
25

Из этого результата видно, что пока ширина поля меньше числа символов
в выводимом числе, она ни на что не влияет, а при большой ширине поля происхо-
дит выравнивание числа вправо.

Такой же результат дает и следующий цикл, использующий метод width:
for (int i = 0; i < 5; i++)
{
out file. width (i) ;
outf i le « j « endl;

172 Глава 2

Если вывести в поток модификатор setfill, то заполняющие символы изменят-
ся. Например, оператор

f o r f i n t i = 0; i < 5; i++)
outfile « s e t f i l l C * ') « setw(i) « j « endl;

приведет к результату:
25
25
25
*25
**25

Мы рассмотрели многие (но еще не все) манипуляторы потоков. Пользователи
могут создавать собственные манипуляторы потоков. В качестве примера того, как
это делается, ниже приводится код функции, создающей манипулятор, названный
tab, который выводит в поток символ табуляции "\t".

//Создание манипулятора tab
ostreams tab (ostreams output)
{

return output « ' \ t ' ;
}

Если вы ввели в приложение такую функцию, то в дальнейшем можете ис-
пользовать этот манипулятор. Например, оператор

outfile « ' А ' « tab « ' В ' « tab « ' С 1 « endl;

выведет символы "А", "В" и "С", разделенные символами табуляции:

Л В С

2.10.3.3 Флаги состояния формата

В классе ios — базовом классе всех потоков ввода/вывода определены следую-
щие флаги формата.

ios:: skip ws

ios::left

ios::right

ios::internal

ios:: dec

ios::oct

ios::hex

ios::showbase

ios::showpoint

ios::uppercase

пропуск символов разделителей во входном потоке

выравнивание по левой границе поля

выравнивание по правой границе поля

выравнивание знака или основания системы счисления по
левой, а числа — по правой границам поля

десятичная система счисления, устанавливается манипуля-
тором dec

восьмеричная система счисления, устанавливается манипу-
лятором oct

шестнадцатеричная система счисления, устанавливается ма-
нипулятором hex

вывод основания системы счисления

обязательная печать десятичной точки и нулевых младших
разрядов

вывод в верхнем регистре символов "X" и "Е" в шестнад-
цатеричном и экспоненциальном форматах

Типы данных в языке C++ 173

ios::showpos

ios::scientific

ios::fived

вывод символа "+" перед положительным числом

экспоненциальное представление действительных чисел

формат действительных чисел с фиксированной точкой

Флаги состояния формата управляются методами flags, setf и unsetf, или ма-
нипуляторами потоков setw, setiosflags и resetiosflags.

Метод flags используется для задания сразу всех флагов. При этом те флаги,
которые должны быть установлены, объединяются операцией поразрядного ИЛИ
(|) в одно значение типа long, передаваемое методу как параметр. Метод flags воз-
вращает значение типа long, содержащее предыдущие значения опций. Это значе-
ние часто сохраняется с тем, чтобы можно было впоследствии вызвать функцию
flags с этим сохраненным значением и восстановить предыдущие значения опций.

Метод setf и параметризованный манипулятор потока setiosflags имеют един-
ственный аргумент, который устанавливает один или более флагов, соединенных
операцией |, и может использовать текущие установки флагов для создания ново-
го состояния формата. Например, манипулятор

setiosflags (ios : : showpos I ios : : showpoint)

устанавливает флаги ios::showpos и ios::showpoint.

Манипулятор потока resetiosflags и метод unsetf наоборот, сбрасывают флаги,
которые указаны их параметром. Чтобы использовать перечисленные параметри-
зованные манипуляторы потока, надо в приложение включить директиву #inclu-
de <iomanip.h>.

Приведем примеры использования перечисленных флагов состояния формата.
Оператор, использующий флаг showpoint:
out f i le « 1. « " " « 1.1 « " " «

set iosf lags(ios : : showpoint) « 1. « " " « 1.1 « endl;

дает результат:
1 1.1 1.00000 1.10000

Оператор, использующий флаги right, left и internal:
outfile « setw(6) « -1.1 « endl

« setw(6) « resetiosflags(ios::right)
« setiosflags (ios :-.left) « -1.1 « endl
« setw(6) « resetiosflags(ios::left)
« setiosflags(ios: : internal) « -1.1 « endl;

дает результат:
-1.1

-1.1
- 1.1
Обратите внимание на то, что надо сбрасывать модификатором resetiosflags

ранее установленный флаг, чтобы при каждом выводе только один из флагов right,
left и internal был установлен.

Оператор, использующий флаг showbase:
outfile « 63 « oct « " " « 63 « hex « " " « 63

« setiosflags (ios : : showbase) « dec « endl
« 63 « oct « " " « 63 « hex « " " « 63 « endl;

дает результат:
63 77 3f
63 077 Ox3f

174 * Глава 2

Обратите внимание, что флаги системы счисления устанавливаются не моди-
фикатором setiosflags, а модификаторами dec, oct, hex.

Оператор, использующий флаги scientific и fixed:
outfile « "По умолчанию:" « endl

« 0.0123 « ' ' « 1.23еб « endl « endl
« "Флаг scientific:" « setiosflags(ios::scientific)
« endl
« 0.0123 « ' ' « 1.23e6 « endl « endl
« "Флаг fixed:" « resetiosflags(ios::scientific)
« setiosflags(ios::fixed) « endl
« 0.0123 « ' ' « 1.23e6 « endl;

дает результат:
По умолчанию:
0.0123 1.23е-Юб

Флаг scientific:
1.230000е-02 1 .230000е+06

Флаг fixed:
0.012300 1230000.000000

Обратите внимание, что по умолчанию значения чисел с плавающей запятой
сами выбирают формат представления и он, пожалуй, наиболее привлекателен.

Оператор, использующий флаги showpos и showpoint:
outf i le « setprecision(4) « s e t w (3) « 60. « endl

« setiosflags (ios::showpos I ios::showpoint) « 60.
« endl;

дает результат:
60

+60.00

В этом примере один манипулятор setiosflags устанавливает сразу два флага.

2.11 Массивы

2.11.1 Одномерные массивы
Массив представляет собой структуру данных, позволяющую хранить под од-

ним именем совокупность данных любого, но только одного какого-то типа. Мас-
сив характеризуется своим именем, типом хранимых элементов, размером (числом
хранимых элементов), нумерацией элементов и размерностью. В данном разделе
мы ограничимся одномерными массивами, т.е. массивами с размерностью 1.

Объявление переменной как одномерного массива имеет вид:
тип переменная [константное_выражение]

Например, оператор
int A[10];

объявляет массив с именем А, содержащий 10 целых чисел. Доступ к элементам
этого массива осуществляется выражением A[i], где i -- индекс, являющийся
в данном примере, как видно из объявления, целым числом в диапазоне 0-9. На-
пример, А[0] — значение первого элемента, А[1] — второго, А[9] — последнего.
Обратите внимание, что индекс последнего элемента на 1 меньше размера массива.
Это связано с тем, что индексы начинаются с 0.

Приведем примеры использования этого массива. Код

Типы данных в языке C++ 175

А[0] = 1;
А[1] = 1;
for(int i=2; i < 10; i++) A[i] = A[i-2] +A[i-l] ;

заполняет массив так называемыми числами Фибоначчи, первые 2 из которых
равны 1, а каждое последующее равно сумме двух предыдущих.

Элементы массива могут иметь любой тип. Например, предложение
char S[10] ;

объявляет массив символов. Массив символов это фактически строка
(см. разд. 2.5.1) и с ним можно во многом обращаться как со строкой, хотя можно
обращаться и как с массивом. При использовании массива символов как строки
надо только иметь в виду, что это строка фиксированной допустимой длины. И
число символов, помещаемых в строку, не должно превышает объявленного разме-
ра массива п - 1, поскольку строка кончается нулевым символом.

Объявление переменной массива можно совмещать с заданием элементам мас-
сива начальных значений. Эти значения перечисляются в списке инициализации
после знака равенства, разделяются запятыми и заключаются в фигурные скобки.
Например:

int А[10] = {1,2,3,4,5,6,7,8,9,10};
char S[10] = ("abcdefghi\0") ;

g

Если начальных значений меньше, чем элементов в массиве, оставшиеся эле-
менты автоматически получают нулевые начальные значения. Например, опера-
тор

int A [10] = (1,2,3);

задает значения первым трем элементам, а остальные будут равны 0. Оператор
int А[10] = (0} ;

присваивает нулевые значения всем элементам массива.
Если массив при его объявлении не инициализирован, то его элементы имеют

случайные значения. Элементы такого массива нельзя использовать в выражени-
ях, пока им не будут присвоены какие-нибудь значения.

В массивах символов задание нулей элементам, не указанным в списке ини-
циализации, равносильно заданию нулевых символов, означающих конец строки.
Поэтому приведенное выше объявление переменной S с ее инициализацией избы-
точно. Нулевой символ в конце можно не указывать. Например, нормально будут
восприняты такие объявления:

char S[10] = ("abcdefghi"} ;
char SI [10] = {"abc"};

Последнее объявление выделяет место под массив из 10 элементов, но инициа-
лизирует его строкой из трех элементов.

В объявлении со списком инициализации размер массива можно не указы-
вать. Тогда количество элементов массива будет равно количеству элементов в спи-
ске начальных значений. Например, объявление

int А[] = (1, 2, 3, 4, 5) ;

создает массив из пяти элементов. Объявление
char Sl[] = ("abc"};

создает массив из четырех элементов — три значащих символа плюс нулевой сим-
вол.

В объявлении массива в качестве размера лучше всегда использовать имено-
ванные константы. Например, ниже приведено объявление массива и оператор,
подсчитывающий сумму его элементов:

176 Глава 2

int
// операторы заполнения массива

// подсчет суммы
int Sum = A[0] ;
for (int i = 1; i < 10; i++) Sum += A[i];

Если в дальнейшем вы решите, что вам требуется массив А не из 10 элементов,
а, например, из 100, вы должны будете изменить размер массива и в объявлении
А, и во всех операторах, работающих с этим массивом (в данном случае в операто-
ре for). А ведь таких операторов в разных частях программы может быть очень
много. О такой программе говорят, что она плохо масштабируется.

Грамотнее реализовать этот пример следующим образом:
const Amax = 10;
int A [Amax] ;
// операторы заполнения массива

// подсчет суммы
int Sum = A[0] ;
for (int i = 1; i < Amax; i++) Sum += A[i];

В этом случае вы вводите именованную константу Amax и используете ее во
всех операторах, в которых вам требуется размер массива. Тогда при необходимо-
сти изменить размер массива вам достаточно изменить его только в одном операто-
ре, объявляющем Amax. Программа сразу становится масштабируемой. А объяв-
ление Amax как константы гарантирует, что объявленное значение не будет слу-
чайно изменено где-то в программе.

Аналогичный результат можно получить, если заменить объявление констан-
ты директивой компилятора #define (см. гл. 1, разд. 1.4.2).

fdefine Amax 10

Как правило, все размеры массивов в программе следует определять имено-
ванными константами или макросами. Это делает программу более понятной и су-
щественно облегчает ее отладку и сопровождение.

В ряде случаев требуются константные массивы, данные из которых програм-
ма может только читать. Такие массивы обязательно должны инициироваться
в момент объявления. Например:

const AnsiString Day[] = {"понедельник", "вторник", "среда",
"четверг", "пятница", "суббота",
"воскресенье" } ;

2.11.2 Многомерные массивы

Можно объявлять и многомерные массивы, т.е. массивы, элементами которых
являются массивы. Например, двумерный массив можно объявить таким образом:

int A2[10] [3];

Этот оператор описывает двумерный массив, который можно представить себе
как таблицу, состоящую из 10 строк и 3 столбцов.

Доступ к значениям элементов многомерного массива обеспечивается через
индексы, каждый из которых заключается в квадратные скобки. Например,
А2[3][2] - - значение элемента, лежащего на пересечении четвертой строки и
третьего столбца (помните, что индексы начинаются с 0).

Если многомерный массив инициализируется при его объявлении, список зна-
чений по каждой размерности заключается в фигурные скобки. Приведенный
ниже оператор объявляет трехмерный массив A3 размерностью 4 на 3 на 2.

Типы данных в языке C++ 177

int А3[4][3] [2] = {{{0,1},{2,3}, {4,5}} ,
1(6,7},(8,9},(10,11}},
({12,13),(14,15),(16,17}} ,
{ { 1 8 , 1 9 } , { 2 0 , 2 1 } , (2 2 , 2 3 } } } ;

Этот оператор создает массив A3, четыре строки которого являются матрица-
ми вида

Например, элемент А3[0][1][0] равен 2, элемент А3[3][0][1] равен 19 и т.д.
Если в списке инициализации в какой-то из размерностей не хватает данных,

то все дальнейшие не перечисленные элементы считаются равными нулям.

2.11.3 Операции с массивами, передача массивов
как параметров

Имя массива является константным указателем на первый элемент массива.
Взаимосвязь массивов и указателей подробно рассмотрена в разд. 2.8. Поскольку
имя массива — константный указатель, оно не может модифицироваться, и к нему
не применимы все операции присваивания.

К имени массива можно применять операцию sizeof, которая в этом случае
возвращает значение, равное общему объему памяти, отведенному под все элемен-
ты массива. Таким образом, число элементов массива А можно определить выра-
жением

s izeof(А) / s i zeof (А[0])

поскольку под каждый элемент массива отведен одинаковый объем памяти.
Подобное вычисление размера массива выполняет макрос ARRAYSIZE. При-

веденное выше выражение эквивалентно выражению
ARRAYSIZE(А)

При передаче массива в функцию в качестве параметра заголовок функции со-
держит тип и имя массива с последующими пустыми квадратными скобками. На-
пример, если функция F должна принимать массив как параметр, ее прототип мо-
жет иметь вид:

void F (int A r []) ;

Обращение к такой функции может быть записано так:
const Amax = 10;
int A[Amax];

F (A) ;

Как видно, в вызове функции указывается просто имя массива. Внутри функ-
ции к элементам этого массива можно обращаться обычным образом, например,
Аг[2]. C++ передает имя массива в функцию по ссылке (см. гл. 1, разд. 1.7.2). Это
значит, что если функция изменяет значения элементов массива, то изменяются
элементы исходного массива, который передавался в функцию.

В большинстве случаев только имени массива мало, чтобы провести в функ-
ции обработку его элементов. Внутри функции требуется знать размер массива,
чтобы можно было организовать его циклическую обработку. Поэтому обычно
в функцию передается не только массив, но и его размер. При этом заголовок
функции может иметь вид:

178 Глава 2

void F f i n t Ar[], int N) ;

а вызов функции:

F (A, Amax) ;

Чаще библиотечные функции требуют в качестве второго параметра не размер
массива, а значение его последнего индекса, которое на единицу меньше размера.
В этом случае вызов функции может иметь вид:

F(A, Amax - 1) ;

В частности, такого вызова требуют все функции Object Pascal, использующие
так называемый открытый массив. Поскольку подобные вызовы функции встреча-
ются довольно часто, в файле sysdefs.h определен макрос EXISTINGARRAY, ко-
торый позволяет оформить передачу массива более компактно. При использова-
нии этого макроса приведенный выше вызов можно оформить так:

F(EXISTINGARRAY(A)) ;

При развертывании макрос EXISTINGARRAY передаст в функцию имя мас-
сива как первый параметр и значение последнего индекса как второй параметр.
При этом макрос использует приведенное ранее выражение для подсчета числа
элементов массива через операцию sizeof.

Некоторые функции Object Pascal, используемые и в C-H-Builder, могут вос-
принимать в качестве параметров так называемые открытые массивы констант,
в которых могут содержаться элементы разных типов. В файле sysdefs.h описан
макрос OPENARRAY, позволяющий обращаться к таким функциям. Без дополни-
тельных разъяснений приведем форму записи такого макроса:

OPENARRAY(TVarRec, (элемент^!, элемент_2, . . .))

Число передаваемых элементов может достигать 19.
Передача массива по ссылке не гарантирует защиты от несанкционированного

изменения программой значений элементов массива. Если необходимо защитить
массив от подобных изменений, его надо передать в функцию как константный:

void F (const int Ar[] , int N) ;

Пусть, например, вы хотите написать функцию, подсчитывающую сумму эле-
ментов массива целых. Тогда вы можете оформить ее следующим образом:

int Sum(const int A [] , int N)
I
// N — размер массива
int S = A[0];
for (int i = 1; i < N; i + +) S += A[i];
return S;
)

Ниже приведен пример тестирования этой функции.
^define Bmax 10
int BflO] = {1,2,3,4,5,6,7,8,9,10};
ShowMessage("Сумма равна " + IntToStr(Sum(В,Bmax)));

При вызове функции не обязательно передавать весь массив. Можно передать
только какую-то его часть. Например, вы можете передать в функцию параметр
размера массива, меньший истинного. Если вы в приведенном примере в качестве
второго параметра передадите в функцию не Bmax, a Bmax - 2, то функция будет
обрабатывать только восемь первых элементов с индексами от 0 до 7. Можно и
в качестве начала массива передать в функцию указатель на какой-то элемент мас-
сива. Например, если вы обратитесь к функции так:

Sum(В + 2, Bmax - 2)

Типы данных в языке C++ 179

то вы передадите в нее указатель не на первый, а на третий элемент. Поэтому, ког-
да функция будет обращаться к элементам массива от 0 до 7, в действительности
она будет работать с элементами, индексы которых от 2 до 9. Т.е. сумма будет по-
считана по элементам, начиная с третьего.

Если в функцию передается многомерный массив, то в заголовке только квад-
ратные скобки первой размерности остаются пустыми, а в скобках следующих раз-
мерностей должны указываться константами их размеры. Например, если функ-
ция F2 должна принимать двумерный массив размером 3 на 3, то ее заголовок мо-
жет иметь вид:

void F(const int A r [] [3]) ;

Вызов этой функции производится обычной передачей в нее имени массива.
Например, F(A).

2.12 Структуры
2.12.1 Структуры в стиле С

Структуры —• это составные типы данных, построенные с использованием дру-
гих типов. Они представляют собой объединенный общим именем набор данных
различных типов. Именно тем, что в них могут храниться данные разных типов,
они и отличаются от массивов, хранящих данные одного типа.

Отдельные данные структуры называются элементами или полями. Все это на-
поминает запись в базе данных, только хранящуюся в оперативной памяти компь-
ютера.

Простейший вариант объявления структуры может выглядеть следующим об-
разом:

struct TPers {
AnsiString Fam,Nam,Par;
unsigned Year;
bool Sex;

AnsiString Dep;

Ключевое слово struct начинает определение структуры. Идентификатор
TPers — тег (обозначение, имя-этикетка) структуры. Тег структуры используется
при объявлении переменных структур данного типа. В этом примере имя нового
типа — TPers. Имена, объявленные в фигурных скобках описания структуры -
это элементы структуры. Элементы одной и той же структуры должны иметь уни-
кальные имена, но две разные структуры могут содержать не конфликтующие эле-
менты с одинаковыми именами. Каждое определение структуры должно заканчи-
ваться точкой с запятой.

Определение TPers содержит шесть элементов. Предполагается, что такая
структура может хранить данные о сотруднике некоего учреждения. Типы данных
разные: элементы Fam, Nam, Par и Dep — строки, хранящие соответственно фа-
милию, имя, отчество сотрудника и название отдела, в котором он работает. Эле-
мент Year целого типа хранит год рождения, элемент Sex булева типа хранит све-
дения о поле. Элементы структуры могут быть любого типа, но структура не может
содержать экземпляры самой себя. Например, элемент типа TPers не может быть
объявлен в определении структуры TPers. Однако может быть включен указатель
на другую структуру типа TPers. Структура, содержащая элемент, который явля-
ется указателем на такой же структурный тип, называется структурой с самоадре-
сацией. Такие структуры очень полезны для формирования различных списков
(см. разд. 2.12.2).

180 Глава 2

Само по себе объявление структуры не резервирует никакого пространства
в памяти; оно только создает новый тип данных, который может использоваться
для объявления переменных. Переменные структуры объявляются так же, как пе-
ременные других типов. Объявление

TPers Pers, PersArray[10], *Ppers;

объявляет переменную Pers типа TPers, массив PersArray — с 10 элементами типа
TPers и указатель Ppers на объект типа TPers.

Переменные структуры могут объявляться и непосредственно в объявлении
самой структуры после закрывающейся фигурной скобки. В этом случае указание
тега не обязательно:

struct {
AnsiString Fam,Nam,Par;
unsigned Year;
bool Sex;

AnsiString Dep;
}Pers, PersArray[10], *Ppers;

Для доступа к элементам структуры используются операции доступа к элемен-
там: операция точка (.) и операция стрелка (->). Операция точка обращается
к элементу структуры по имени объекта или по ссылке на объект. Например:

Pers.Fam = "Иванов";
Pers.Nam = "Иван";
Pers.Par = "Иванович";
Pers.Year = 1960;
Pers.Sex = true;
Pers.Dep = "Бухгалтерия";

Операция стрелка обеспечивает доступ к элементу структуры через указатель
на объект. Допустим, что выполнен оператор

Ppers = &Pers;

который присвоил указателю Ppers адрес объекта Pers. Тогда указанные выше
присваивания элементам структуры можно выполнить так:

Ppers->Fam = "Иванов";
Ppers->Nam = "Иван";
Ppers->Par = "Иванович";
Ppers->Year = 1960;
Ppers->Sex = true;
Ppers->Dep = "Бухгалтерия";

2.12.2 Самоадресуемые структуры

Теперь рассмотрим еще один вид структур — самоадресуемые структуры. Не-
редко в памяти надо динамически размещать (см. гл. 1, разд. 1.11) последователь-
ность структур, как бы формируя некий фрагмент базы данных, предназначенный
для оперативного анализа и обработки. Поскольку динамическое размещение про-
водится в непредсказуемых местах памяти, то такие структуры надо снабдить эле-
ментами, содержащими указатели на следующую аналогичную структуру. Такие
структуры со ссылками на аналогичные структуры и называются самоадресуемы-
ми. Ниже приведена схема связи таких структур в последовательность. Полю ука-
зателя в последней структуре обычно присваивается значение NULL, что является
признаком последней структуры при организации поиска в списке.

Типы данных в языке C++ 181

структура 1

указатель

структура 2

указатель

структура N

указатель
NULL

Рис. 2.1. Список структур

Если мы хотим структуру, рассмотренную в разд. 2.12.1, сделать самоадресуе-
мой, следует изменить ее объявление следующим образом:

struct TPers {
AnsiString Fam,Nam,Par;
unsigned Year;
bool Sex;
AnsiString Dep;
TPers * pr;

Приведем пример формирования в памяти списка таких структур. Для этого
надо определить три переменные, являющиеся указателями на структуры:

TPers *PO = NULL, *Pnew, *Pold;

Первая из этих переменных будет всегда указывать на первую структуру
в списке. Две остальные переменные — вспомогательные. Если в некоторый мо-
мент возникла необходимость динамически разместить в памяти очередную струк-
туру и вставить ее в конец списка, это можно сделать следующим кодом:

// выделение памяти под новую структуру
Pnew = new TPers;

i
// заполнение элементов структуры
Pnew->Fam = "Иванов";
Pnew->Nam = "Иван";
Pnew->Par = "Иванович";
Pnew->Year = I960;
Pnew->Sex = true;
Pnew ->Dep = "Бухгалтерия";
Pnew->pr = NULL;

if (PO == NULL) PO = Pnew;
else Pold->pr = Pnew;
Fold = Pnew;

// PO — указатель на первую структуру
// указатель на очередную структуру

Если список еще не начат (PO = NULL), то указателю РО присваивается ссыл-
ка на вновь размещенную структуру (Pnew). В противном случае ссылка на новую
структуру присваивается полю рг предыдущей структуры в списке (Fold). Таким
образом новая структура включается в общий список. Полю рг этой структуры
присваивается значение NULL. Это является признаком того, что данная структу-
ра является последней в списке.

Сформировав список в памяти, далее легко его просматривать, проходя в цик-
ле по указателям. Например:

Pnew = РО;
while(Pnew NULL)

ShowMessage(Pnew->Fam +
Pnew = Pnew->pr;

" + Pnew->Nam + " ' + Pnew->Par)
// переход к новой структуре

Легко также делать в списке перестановки структур, их удаление и т.п. Для
всех этих операций не надо ничего перемещать в памяти. Достаточно только изме-
нять соответствующие ссылки в полях рг.

182 Глава 2

Раньше подобные списки широко использовались для создания в памяти сте-
ков, очередей и других упорядоченных списков. Однако в C++Builder введены спе-
циальные типы данных TList и TStringList, которые ведут подобные списки и
имеют множество удобных методов для управления ими. Кроме того, аналогичное
объединение элементов в список используется для классов связных списков стан-
дартной библиотеки, рассмотренных в разд. 5.4.4.

2.12.3 Структуры в стиле C++

Все, что рассмотрено в предыдущих разделах, относится как к языку С, так и
к C++. Но в C++ понятие структуры существенно расширено и приближено к по-
нятию класса (см. разд. 2.14).

В частности, в структурах кроме рассмотренных ранее данных-элементов раз-
решается описывать функции-элементы. Рассмотрим это на примере использован-
ной в предыдущих разделах структуры TPers. Давайте введем в эту структуру
функцию-элемент Show, отображающую информацию, хранящуюся в структуре:

struct TPers {
AnsiString Fara, Nam, Par;
unsigned Year;
bool Sex;
AnsiString Dep;
TPers * pr;
void Show()
{

ShowMessage ("Сотрудник отдела \""+Dep+"\" "+Fam+" "+Nam+" "+
Par+", "+IntToStr (Year) +" r.p., пол "+
(Sex ? "мужской" : "женский")) ;

Функция Show отображает информацию вида: "Сотрудник отдела "Бухгалте-
рия" Иванов Иван Иванович, 1960 г. р., пол мужской".

Обращение к этой функции-элементу производится через переменную струк-
туры операцией точка или через указатель на переменную операцией стрелка. На-
пример:

Pers . Show () ;
Pnew->Show() ;

С использованием введенной функции Show приведенный в разд. 2.12.2 при-
мер просмотра списка можно упростить:

Pnew = РО;
while (Pnew != NULL)

(
Pnew->Show () ;
Pnew = Pnew->pr;

}

В C++ можно вводить спецификаторы доступа к данным-элементам и функци-
ям-элементам так же, как это делается в классе. Разрешаются спецификаторы
public (открытый) и private (закрытый). Закрытые элементы структуры могут
быть доступны только для функций-элементов этой структуры. Ни через объект,
ни через указатель на объект доступ к ним невозможен. Закрытыми объявляются
какие-то вспомогательные данные-элементы, не представляющие интереса для
пользователя, а также вспомогательные функции (утилиты), требующиеся для ра-
боты основных функций-элементов структуры.

Типы данных в языке C++ 183

Открытые элементы структуры могут быть доступны для любых функций
в программе. Основная задача открытых элементов состоит в том, чтобы дать кли-
ентам структуры представление о возможностях, которые она имеет. Это откры-
тый интерфейс структуры.

По умолчанию доступ к элементам структуры public — открытый. Если вам
надо спрятать от пользователя какие-то элементы, укажите спецификатор private,
завершающийся двоеточием, и помещайте после него объявления закрытых эле-
ментов. Все, что помещено после спецификатор private до конца структуры или до
спецификатора public, будет скрыто от пользователя. Например, в следующем
объявлении структуры

struct MyStr { .
int x, у;
int Get () ;

private:
int a, b;
void F(> ;

};

данные х и у и функция Get — открытые и могут использоваться при работе со
структурой, а данные а и b и функция F — закрытые и ими может пользоваться
только функция Get.

Есть еще ряд особенностей, сближающих в C++ структуры и классы. Они бу-
дут рассмотрены в разд. 2.14, посвященном классам.

2.12.4 Битовые поля

Язык Си++ предоставляет возможность задавать количество битов, в которых
хранятся элементы типов unsigned или int структуры (а также класса и объедине-
ния — см. разд. 2.14 и 2.13. Такие элементы называются битовыми полями. Бито-
вые поля позволяют рационально использовать память с помощью хранения дан-
ных в минимально требуемом количестве битов.

В структуре TPers, использовавшейся в предыдущих разделах, можно, напри-
мер, сократить затраты на хранение года рождения и пола сотрудника. Если ори-
ентироваться на даты до 2047 года, то для хранения года рождения достаточно
11 битов. Если вы рассчитываете, что ваша программа просуществует дольше, то
можете даже выделить под год 12 битов — этого хватит на ближайшие две тысячи
лет. А под хранение сведений о поле вполне достаточна 1 бита. Таким образом, под
эти два элемента вам достаточно 2 байтов, а в описанной ранее версии структуры
под эти элементы отводилось 5 байтов: 4 под год плюс один под пол. Выигрыш
3 байта. Конечно, немного, но если при выполнении вашей программы в памяти
формируются списки из тысяч структур, то такой выигрыш уже может быть заме-
тен.

При объявлении битового поля вслед за указанием типа элемента ставится
двоеточие ":" и пишется целочисленная константа, задающая ширину поля (т.е.
число битов, в которых хранится этот элемент). Ширина поля должна быть цело-
численной константой в диапазоне между 0 и заданным общим числом битов, ис-
пользуемых для хранения целого значения типа int в вашей системе. Например:

struct TPers {
AnsiStrinq Fam,Nam, Par ;
AnsiString Dep;
TPers * pr;
unsigned Year : 12;
bool Sex : 1;

184 Глава 2

Можно задавать неименованное битовое поле. Такое поле используется
в структуре как заполнение. Дело в том, что при работе с битовыми полями надо
учитывать длину машинного слова. Если следующий элемент структуры не явля-
ется битовым полем, то место его хранения должно начинаться с нового машинно-
го слова. Для округления объемов памяти до слова, т.е. для заполнения оставших-
ся неиспользованными битов и вводятся неименованные битовые поля. В приве-
денном ниже примере неименованное поле шириной в 3 бита используется как за-
полнение:

struct Example {
unsigned a : 13;
unsigned : 3;
unsigned b : 4;

};

Можно использовать неименованное битовое поле нулевой ширины, которое
воспринимается как указание выровнять следующее битовое поле по границе ново-
го элемента памяти.

Следует предостеречь от чрезмерного увлечения битовыми полями. Манипу-
ляции с битовыми полями являются машинно-зависимыми. Например, в некото-
рых компьютерах битовые поля могут пересекать границы машинного слова, тогда
как в других компьютерах это недопустимо.

2.13 Объединения
Объединение (union) — это область памяти, в которой в разные моменты вре-

мени могут находиться объекты разных типов. В любой момент времени объедине-
ние может содержать максимум один объект, потому что элементы объединения
совместно используют одну и ту же область памяти. На программиста возлагается
обязанность следить за тем, чтобы к данным в объединении обращались по имени
элемента соответствующего типа данных. Если тип ссылки на элемент объедине-
ния не соответствует типу данных, хранящемуся в этот момент в объединении, то
возникает ошибка, последствия которой зависят от реализации системы.

В разные отрезки времени выполнения программы некоторые объекты могут
быть не нужны, т.е. программе требуется только часть ее объектов. Вместо того,
чтобы впустую растрачивать память на объекты, которые используются не посто-
янно, можно поместить их в объединение, где они будут делить между собой одну
и ту же область памяти. Число байтов памяти, выделяемых для объединения,
должно быть не меньше, чем размер самого большого элемента объединения.

Не всегда объединение может быть легко перенесено на другие компьютерные
платформы. Перенесется ли объединение, или нет, часто зависит от соглашений о
выравнивании в памяти типов данных элементов объединения. Так что использо-
вание объединений снижает мобильность вашей программы.

Объединения объявляются при помощи ключевого слова union в таком же
формате, как структуры и классы (см. разд. 2.12.1 и 2.14). Например:

union Tunion {
int i ;
double d;
char * s;

};

Это объявление создает тип объединения с именем Tunion, которое хранит
в одной и той же области памяти или целое значение i, или действительное значе-
ние d, или указатель на строку s.

Типы данных в языке C++ 185

Само по себе объявление объединения создает новый тип, но не объект. В даль-
нейшем для использования объединения надо объявить переменную этого типа,
например:

Tunion N;

К элементам переменной типа объединения можно обращаться так же, как
к элементам структуры или класса. Например, вы можете записать операторы:

N.i = 5;

N.d = 5.1;

char *S = "объединение";
N.s = S;

Но учтите, что при использовании объединения вам надо все время знать, ка-
кое значение вы занесли в эту переменную последней операцией присваивания.
Если, например, вы выполнили первый из приведенных выше операторов, а затем
обратились к элементу d, то вы получите бессмысленное значение. А если вы по
ошибке обратились в этом случае к элементу s, то вас ждут крупные неприятности,
поскольку неизвестно, на что будет указывать s.

Использование объединений позволяет экономить ресурсы, но существенно
усложняет программирование и затрудняет отладку. Так что решайте, что вам
важнее, и не увлекайтесь излишне объединениями.

2.14 Классы
Классы и шаблоны классов - это, пожалуй, самое главное в C++. Все, связан-

ное с этими понятиями, в рамках данной книги рассмотреть невозможно. В реали-
зации классов и шаблонов есть масса тонкостей, на которых я останавливаться не
буду. Но все, необходимое для использования классов и их шаблонов, а также для
разработки достаточно сложных собственных классов и шаблонов, будет рассмот-
рено.

2.14.1 Объявление класса

Класс — это тип данных, определяемый пользователем. То, что в стандартной
библиотеке C++ и в C++Builder имеется множество предопределенных классов, не
противоречит этому определению — ведь разработчики C++Builder тоже пользова-
тели C++. Понятия класса, структуры (см.-разд. 2.12) и объединения (см. разд.
2.13) в C++ довольно близки друг к другу. Поэтому почти все, что будет далее гово-
риться о классах, применимо также к структурам и объединениям.

Класс должен быть объявлен до того, как будет объявлена хотя бы одна пере-
менная этого класса. Т.е. класс не может объявляться внутри объявления перемен-
ной.

Синтаксис объявления класса следующий:
class <имя класса> : <список классов — родителей>
{

public: // доступно всем
<данные, методы, свойства, события>
published // видны в Инспекторе Объекта и изменяемы

<данные, свойства>
protected: // доступно только потомкам

<данные, методы, свойства, события>
private: // доступно только в классе

<данные, методы, свойства, события>
) <список переменных>;

186 Глава 2

Например:

class MyClass : public Classl, Class2
{
public:
MyClass(int = 0) ;
void SetA(int);
int GetA(void);

private:
int FA;
double В, C;

protected:
int F(int);
};

Имя класса может быть любым допустимым идентификатором. Идентифика-
торы классов, наследующих классам библиотеки компонентов С+Ч-Builder, приня-
то начинать с символа "Т".

Класс может наследовать поля (они называются данные-элементы), методы
(они называются функции-элементы), свойства, события от других классов — сво-
их предков, может отменять какие-то из этих элементов класса или вводить но-
вые. Если предусматриваются такие классы-предки, то в объявлении класса после
его имени ставится двоеточие и затем дается список родителей. В приведенном
выше примере предусмотрено множественное наследование классам Classl и
CIass2. Если среди классов-предков встречаются классы библиотеки компонентов
C++Builder или классы, наследующие им, то множественное наследование запре-
щено.

Если объявляемый класс не имеет предшественников, то список классов-роди-
телей вместе с предшествующим двоеточием опускается. Например:

class MyClassl

Доступ к объявляемым элементам класса определяется тем, в каком разделе
они объявлены. Раздел public (открытый) предназначен для объявлений, которые
доступны для внешнего использования. Это открытый интерфейс класса. Раздел

published (публикуемый) содержит открытые свойства, которые появляются
в процессе проектирования на странице свойств Инспектора Объектов и которые,
следовательно, пользователь может устанавливать в процессе проектирования.
Раздел private (закрытый) содержит объявления полей и функций, используемых
только внутри данного класса. Раздел protected (защищенный) содержит объявле-
ния, доступные только для потомков объявляемого класса. Как и в случае закры-
тых элементов, можно скрыть детали реализации защищенных элементов от ко-
нечного пользователя. Однако в отличие от закрытых, защищенные элементы ос-
таются доступны для программистов, которые захотят производить от этого класса
производные классы, причем не требуется, чтобы производные классы объявля-
лись в этом же модуле.

В приведенном выше примере через объект данного класса можно получить
доступ только к функциям MyClass, SetA и GetA. Поля FA, В, С и функция F -
закрытые элементы. Это вспомогательные данные и функция, которые использу-
ют в своей работе открытые функции. Открытая функция MyClass с именем, сов-
падающим с именем класса, это так называемый конструктор класса, который
должен инициализировать данные в момент создания объекта класса. Присутст-
вие конструктора в объявлении класса не обязательно. При отсутствии конструк-
тора пользователь должен сам позаботиться о задании начальных значений дан-
ным — элементам класса.

Типы данных в языке C++ 187

Перед именами классов-родителей в объявлении класса также может указы-
ваться спецификатор доступа (в примере public). Смысл этого спецификатора тот
же, что и для элементов класса: при наследовании public (открытом наследовании)
можно обращаться через объект данного класса к методам и свойствам клас-
сов-предков, при наследовании private подобное обращение невозможно. Подроб-
нее этот вопрос рассмотрен в разд. 2.14.5.

По умолчанию в классах (в отличие от структур) предполагается специфика-
тор private. Поэтому можно включать в объявление класса данные и функции, не
указывая спецификатора доступа. Все, что включено в описание до первого специ-
фикатора доступа, считается защищенным. Аналогично, если не указан специфи-
катор перед списком классов-родителей, предполагается защищенное наследова-
ние.

Объявления данных-элементов (полей) выглядят так же, как объявления пе-
ременных или объявления полей в структурах:

<тип> <имена полей>;

В объявлении класса поля запрещается инициализировать. Для инициализа-
ции данных служат конструкторы, о которых упоминалось выше и которые рас-
сматриваются подробно в разд. 2.14.4.

Объявления функций-элементов в простейшем случае не отличаются от обыч-
ных объявлений функций (см. гл. 1 разд. 1.7.1).

После того, как объявлен класс, можно создавать объекты этого класса. Если
ваш класс не наследует классам библиотеки компонентов C-f+Builder, то объект
класса создается как любая переменная другого типа простым объявлением. На-
пример, оператор

MyClass MC, MC10[10], *Ртс;

создает объект МС объявленного выше класса MyClass, массив МС10 из десяти
объектов данного класса и указатель Рте на объект этого класса.

В момент создания объекта класса, имеющего конструктор, можно инициали-
зировать его данные, перечисляя в скобках после имени объекта значения данных.
Например, оператор

MyClass MC(3) ;

не только создает объект МС, но и задает его полю FA значение 3. Если этого не
сделать, то в момент создания объекта поле получит значение по умолчанию, ука-
занное в содержащемся в объявлении класса прототипе конструктора.

Создание переменных, использующих класс, можно совместить с объявлени-
ем самого класса, размещая их список между закрывающей класс фигурной скоб-
кой и завершающей точкой с запятой. Например:

class MyClass : public Classl, Class2
{

} МС, МС10[10], *Pmc;

Если создается динамически размещаемый объект класса (см. гл. 1, разд. 1.11),
то это делается операцией new. Например:

MyClass *PMC = new MyClass;

ИЛИ

MyClass *РМС1 = new M y C l a s s (3) ;

Эти операторы создают где-то в динамически распределяемой области памяти
сами объекты и создают указатели на них — переменные РМС и РМС1.

188 Глава 2

Создание объектов класса простым объявлением переменных возможно толь-
ко в случае, если среди предков вашего класса нет классов библиотеки компонен-
тов C++Builder. Если же такие предки есть, то создание указателя на объект этого
класса возможно только операцией new. Например, если класс объявлен так:

class MyClass2 : public TObject

то создание указателя на объект этого класса может осуществляться оператором
MyClass2 *Р2 = new MyClass2;

2.14.2 Функции-элементы, дружественные функции,
константные функции

Поля данных, исходя из принципа скрытия данных, всегда должны быть за-
щищены от несанкционированного доступа. Доступ к ним, как правило, должен
осуществляться только через функции, включающие методы чтения и записи по-
лей. В этих функциях должна осуществляться проверка данных, чтобы не запи-
сать случайно в поля неверные данные или чтобы не допустить их неверной трак-
товки. Кроме того, функции чтения позволят вам не переписывать использующую
их программу, даже если вы решили изменить что-то в типе, способах хранения и
размещения данных в классе.

Поэтому данные всегда целесообразно объявлять в разделе private — закры-
том разделе класса. В редких случаях их можно помещать в protected — защи-
щенном разделе класса, чтобы возможные потомки данного класса имели к ним
доступ.

Приведем пример. Пусть класс имеет следующее объявление:
class MyClass
{
public :

void SetA(int); // функция записи
int GetA (void) ; // функция чтения

private :
int FA;
double В, С;

};

Реализация функций записи и чтения может иметь вид:
void MyClass : :SetA (int Value)
{
if (. . .) // проверка корректности данных

FA = Value;
}

int MyClass :: GetA (void) {return FA;}

В данном случае функция чтения просто возвращает значение поля, но в более
сложных классах может потребоваться какая-то предварительная обработка дан-
ных. Обратите внимание, что все описания функций-элементов содержат ссылку
на класс с помощью операции разрешения области действия "::".

В приведенном примере объявление класса содержит только прототипы функ-
ций, а их реализация вынесена из описания класса. Для простых функций реали-
зация может быть размещена непосредственно в объявлении класса. Например:

class MyClass
{
public:

Типы данных в языке C++ 189

MyClass(int = 0);
void SetA(int Value) {FA= Value;}; // функция записи
int GetA(void) {return FA;}; // функция чтения

private:
int FA;
double В, C;

};

Функции, описание которых содержится непосредственно в объявлении клас-
са, в действительности являются встраиваемыми функциями inline (см. разд.
1.7.6, в котором обсуждаются достоинства и недостатки таких функций).

Введение описания функций в объявление класса — это плохой стиль про-
граммирования: следует избегать смешения открытого интерфейса класса, содер-
жащегося в его объявлении, и реализации класса. Если уж вы хотите реализовать
встраиваемые функции, то лучше поместить в объявлении класса их прототип со
спецификатором inline:

inline void SetA(int); // функция записи

и отдельно дать реализацию функции. При этом в реализации спецификатор inline
не указывается.

Объявления классов следует размещать в заголовочном файле модуля, а реа-
лизацию функций — элементов в отдельном файле реализации. При этом в объяв-
лении класса должны содержаться только прототипы функций. Это следует из
принципа скрытия информации — одного из основных в объектно-ориентирован-
ном программировании. Такая организация программы обеспечивает независи-
мость всех модулей, использующих заголовочный файл с объявлением класса, от
каких-то изменений в реализации функций-элементов класса.

Функции-элементы класса имеют доступ к любым другим функциям-элемен-
там и к любым данным-элементам, как открытым, так и закрытым. Клиенты
класса (какие-то внешние функции, работающие с объектами данного класса) име-
ют доступ только к открытым функциям-элементам и данным-элементам. Но в не-
которых случаях желательно обеспечить доступ к закрытым элементам для функ-
ций, не являющихся элементами данного класса. Это можно сделать, объявив со-
ответствующую функцию как друга класса с помощью спецификации friend. На-
пример, если в объявление класса включить оператор

friend void IncFA(MyClass *) ;

то функция IncFA, не являясь элементом данного класса, получает доступ к его за-
крытым элементам. Например, функция IncFA может быть описана где-то в про-
грамме следующим образом:

void IncFA(MyClass *P) (P->FA++;)

Дружественными могут быть не только функции, но и целые классы. Напри-
мер, вы можете поместить в объявление своего класса оператор

friend Classl;

и все функции-элементы класса Classl получат доступ к закрытым элементам ва-
шего класса.

Иногда программист может захотеть создать объект вашего класса как кон-
стантный с помощью спецификатора const. Например:

const Classl M C I (3) ;

Если при этом ваш класс содержит не только функции чтения, но и записи
данных, то реакция на такой оператор, введенный пользователем, зависит от вер-
сии и настройки компилятора. Компилятор может выдать сообщение об ошибке и
отказаться от компиляции, а может просто выдать предупреждение и проигнори-
ровать спецификатор пользователя const. Если же ваш класс содержит только
функции чтения, то все должно бы быть нормально. Но компилятор подойдет

190 Глава 2

к этому чисто формально и все равно выдаст предупреждение, а может и отказать-
ся компилировать программу.

Чтобы избежать этого, можно объявить функции чтения как константные.
Для этого и в прототипе, и в реализации после закрывающей список параметров
круглой скобки надо написать спецификатор const. Например, вы можете вклю-
чить в объявление класса оператор

int GetA(void) const;

а реализацию этой функции оформить как:
int My Class:-.Get A (void) const {return FA;}

Тогда неприятные замечания компилятора о константных объектах исчезнут.
Таким образом, если предполагается, что объект вашего класса может быть

объявлен константным, снабжайте все функции-элементы класса, предназначен-
ные для чтения данных, спецификаторами const.

2.14.3 Данные-элементы, статические данные,
константные данные

Теперь рассмотрим несколько подробнее данные-элементы. Обычно каждый
объект класса имеет свою собственную копию всех данных-элементов класса. Но
в определенных случаях во всех объектах класса должна фигурировать только
одна копия некоторых данных. Например, это может быть счетчик числа создан-
ных объектов класса.

Единственную копию данных полезно иметь и во многих иных случаях. На-
пример, если в классе имеются некоторые константы, одинаковые для всех объек-
тов класса, то нерационально хранить в каждом объекте собственные копии этих
констант. Рациональнее иметь единственные экземпляры этих констант для всех
объектов.

Для введения в класс подобных данных используются статические данные,
которые содержат информацию «для всего класса». Объявление статических эле-
ментов в классе начинается с ключевого слова static. Например:

static int D;

Статические элементы могут быть открытыми, закрытыми или защищенны-
ми (protected). Доступ к открытым статическим элементам класса возможен по-
средством любого объекта класса или посредством имени класса с помощью бинар-
ной операции разрешения области действия. Например:

M y C l a s s : : D = 10;

Закрытые и защищенные статические элементы класса должны быть доступ-
ны открытым функциям-элементам этого класса или друзей класса.

Статические элементы класса существуют даже тогда, когда не существует ни-
каких объектов этого класса. В этом случае доступ к открытому статическому эле-
менту обеспечивается так же, как указано выше: с помощью имени класса и би-
нарной операции разрешения области действия. Для обеспечения доступа в отсут-
ствие объектов к закрытому или защищенному элементу класса должна быть пре-
дусмотрена открытая статическая функция-элемент, которая должна вызываться
с добавлением перед ее именем имени класса и бинарной операции разрешения об-
ласти действия.

Начальные значения статических элементов (как открытых, так и закрытых)
должны задаваться вне объявления класса. Для этого достаточно разместить
где-то в файле, например, после объявления класса или среди реализаций функ-
ций-элементов (но не внутри их) оператор вида

int MyClass : :D = 0;

Типы данных в языке C++ 191

Статическим данным-элементам можно задать начальные значения один и
только один раз в области действия файл. Если вы нигде не инициализировали
статический элемент данных, будет выдано сообщение компилятора о неразрешен-
ной внешней ссылке и программа не будет скомпилирована. Если вы дважды ини-
циализируете статический элемент, будет выдано сообщение о дублировании ини-
циализации и программа также не будет скомпилирована.

Приведем пример, демонстрирующий все сказанное относительно статических
данных-элементов:

class MyClass
{
public:

static int D;
static int GetDl(void) ;

private:
static int Dl;

int M y C l a s s : : G e t D l (v o i d) {return D l ; }

int MyClass::D = 0;
int MyClass: :D1 = 1;

В этом примере имеются два статических элемента данных: открытый D и за-
крытый D1. Если пользователь должен иметь возможность получать значение за-
крытой статической переменной D1, то должна быть предусмотрена функция ее
чтения, названная в примере GetDl. Она должна быть объявлена открытой
(public) и статической (со спецификатором static). Статической может быть объяв-
лена любая функция, работающая только со статическими данными.

После объявления класса в примере расположена реализация функции GetDl.
В реализации не требуется указывать спецификатор static. Далее приведены пред-
ложения, инициирующие открытые и закрытые статические данные. На этом все,
связанное с объявление и инициализацией статических данных завершается.
В дальнейшем вы можете из любой внешней функции обращаться к ним с помо-
щью операции разрешения области действия. Например:

i = MyClass: :D;
j = MyClass::GetDl() ;

Среди данных — элементов могут быть объявлены именованные константы.
Например:

static const int MaxA = 10;
const int MinA;

Значения статических именованных констант могут задаваться в момент их
объявления в классе, как показано в предыдущем примере. Инициализация неста-
тических констант — вопрос более сложный, связанный с построением конструк-
торов. Он рассматривается в разд. 2.14.4.

2.14.4 Конструкторы и деструкторы

Остановимся теперь на конструкторах класса. Прежде всего отметим, что на-
личие конструктора в классе не обязательно. Но если конструктор отсутствует, то
клиенты класса (внешние функции, использующие класс) должны сами заботить-
ся об инициализации данных, т.е. о задании им некоторых начальных значений.
Это не всегда возможно. Например, если класс имеет закрытые данные, предназна-
ченные только для чтения, то для этих данных не предусматриваются открытые

192 Глава 2

функции записи. И клиент не в состоянии присвоить данным какие-то начальные
значения.

Конструктором класса называется открытая функция-элемент, которая вызы-
вается в момент создания объекта класса и должна инициализировать данные ука-
занными в вызове значениями или значениями по умолчанию. Конструктор имеет
то же имя, что и сам класс.

Пример объявления и реализации конструктора:
class MyClass
{
public:
MyClass(void); // конструктор класса

private:
int A;

MyClass::MyClass(void) {A = 0;}

В этом примере объявлен конструктор MyClass без параметров, который при
создании объекта задает начальное значение поля А равным 0. Обратите внимание
на то, что в отличие от других функций в объявлении конструктора не указывает-
ся тип возвращаемого значения.

Простое задание в конструкторе значений данных в общем случае не гаранти-
рует их целостность. Обычно нужна еще проверка допустимости данных. Напри-
мер, если в классе есть функция записи SetA, осуществляющая такие проверки,
то лучше обратиться к ней и при задании начального значения. В этом случае реа-
лизация конструктора может иметь вид:

MyClass::MyClass(void) { S e t A (O) ; }

Создание объекта описанного класса MyClass в программе должно осуществ-
ляться или объявлением соответствующей переменной:

MyClass MC;

или динамическим размещением переменной в памяти:
MyClass *PMC = new MyClass;

В момент выполнения каждого из этих операторов неявным образом вызыва-
ется конструктор, устанавливающий начальные значения данных.

Недостатком конструкторов показанного типа является то, что все начальные
значения данных задаются в них конструктором. Вызывающая функция никак не
может вмешаться в этот процесс и задать какое-то другое значение.

Другой крайностью являются конструкторы, в которых все начальные значе-
ния задаются как параметры. Например, прототип конструктора может иметь вид

M y C l a s s (i n t) ;

а его реализация:

MyClass : :MyClass(int a) (S e t A (a) ; }

В этом случае поле FA инициализируется параметром, передаваемым в конст-
руктор. Создание объекта подобного класса должно выполняться операторами

MyClass МС(1) ;

или

MyClass *PMC = new MyClass (1) ;

в которых подразумевается, что начальное значение поля FA должно быть равно 1.

Типы данных в языке C++ 193

Такой конструктор обычно тоже неудобен, поскольку в классе может быть
много параметров и задавать значения их всех при создании объекта очень гро-
моздко и чревато ошибками.

Чаще всего используются конструкторы с параметрами по умолчанию (см.
разд. 1.7.4). В этом случае объявление конструктора может иметь вид:

MyClass (int = 0) ;

а его реализация:

M y C l a s s : : M y C l a s s (i n t a) (S e t A (a) ; }

Объект такого класса можно создавать любым из приведенных ранее операто-
ров создания объекта. Если при создании указывается аргумент, то его значение
присваивается полю. Если аргумент не указывается, то присваивается значение по
умолчанию (в нашем примере 0). Этот вариант конструктора наиболее гибкий. По-
этому он чаще всего используется при построении классов.

В объявлении класса могут быть определены не только поля переменных, но и
некоторые именованные константы. Например:

const int MaxA;

Подобная константа может служить, в частности, предельно допустимым зна-
чением поля FA.

Если такая константа объявлена как статическая ,(см. разд. 2.14.3), то в ее
объявление в классе можно непосредственно включить инициализацию:

static const int MaxA = 10;

Но тогда это значение клиент при желании не сможет изменить. А задать зна-
чение такой константы в конструкторе невозможно, поскольку компилятор не раз-
решает присваивать значения константам. Выходом из положения является спе-
циальный синтаксис конструктора с инициализатором элементов. Инициализа-
тор элементов записывается после заголовка конструктора в его реализации, пред-
варяется двоеточием и содержит имена константных данных, после которых
в скобках указываются их значения. Например, если в объявлении вашего класса
MyClass имеются строки

const int MaxA;
const int MinA;

вводящие две константы — максимальное и минимальное значения переменной А,
то реализацию конструктора такого класса с описанным ранее прототипом

MyClass(int = 0) ;

надо дополнить инициализатором элементов:

M y C l a s s : : M y C l a s s (i n t a) : М а х А (Ю) , M i n A (l) (S e t A (a) ; } ;

В данном случае инициализатор задает константе МахА начальное значение
10, а константе MinA — значение 1.

Можно предоставить пользователю возможность изменять значения констант
в момент создания объекта. В этом случае в конструкторе с умолчанием надо пре-
дусмотреть для констант соответствующие значения по умолчанию:

MyClass(int A = 0, int MaxA = 10, int MinA = 1);

ИЛИ

MyClass(int = 0, int = 10, int = 1);

(второй вариант менее удобен, так как не позволяет по прототипу функции понять,
в какой последовательности должны задаваться параметры).

Тогда реализацию конструктора можно оформить так:

MyClass: -.MyClass (int a, int i, int j) : MaxA(i) , M i n A (j) { SetA(a); }

194 Глава 2

Создание объектов такого типа может осуществляться, например, такими опе-
раторами:

MyClass МС; // умолчание: А = 0, МахА = 10, MinA = 1
MyClass M C (2 0) ; // задано: А = 20, МахА = 10, MinA'= 1
MyClass M C (2 0 , 1 5) ; // задано: А = 20, МахА = 15, MinA = 1
MyClass M C (2 0 , 1 5 , 2) ; // задано: А = 20, МахА = 15, MinA = 2

Конструкторы глобальных переменных вызываются в самом начале выполне-.
ния приложения, до того, как будет вызвана функция WinMain или main. Если
директивами #pragma startup (см. разд. 1.4.4) указаны функции, которые долж-
ны вызываться до WinMain или main, то конструкторы глобальных переменных
вызываются ранее этих функций.

Теперь остановимся на деструкторах. Это специальные функции-элементы,
срабатывающие при уничтожении динамически размещенного объекта класса и
освобождающие занимаемую им память. Имя деструктора совпадает с именем
класса, но перед ним записывается символ тильда "-", Как и для конструктора,
в деструкторе не указывается возвращаемый тип. Например:

class MyClass
{
public:

-MyClass () ; // деструктор класса

Деструкторы необходимы, если конструктор или какие-то функции-элементы
класса динамически распределяют память, создавая в ней какие-то объекты. Тогда
деструктор должен эти объекты удалять. В остальных случаях можно обычно
обойтись без деструктора.

Если деструктор явным образом в классе не объявлен, компилятор сам генери-
рует необходимые коды освобождения памяти.

2.14.5 Копирование объектов классов

Объекты классов можно копировать. Это осуществляется с помощью конст-
руктора копии. Например, если у - объект класса X, то выражение

X х (у) ;

объявляет переменную х того же класса X и вызывает конструктор копии, кото-
рый заносит в х копию объекта у. То же самое можно сделать оператором, исполь-
зующим операцию присваивания,

X х = у;

или

X х = Х(у) ;

Во всех случаях значение х становится равным значению у, но в то же время х
и у - это разные объекты. В дальнейшем их значения могут изменяться независи-
мо друг от друга.

Конструктор копии работает также при указании объекта в качестве аргумен-
та функции, если используется передача его по значению.

Если соответствующий конструктор не объявлен, то C++Builder, когда это
требуется, автоматически генерирует конструктор копии. По умолчанию копиро-
вание сводится к побитовому копированию данных одного объекта в другой. В ре-
зультате будут скопированы все поля исходного объекта. Для простых объектов
этого достаточно. Но если, например, данные содержат какие-то указатели, то по-
битовое копирование, естественно даст неверный результат, так как указатели ко-

Типы данных в языке C++ 195

пии будут указывать на данные источника, а не копии. В подобных случаях надо
определять в классе конструктор копии. Необходимо это делать и в случаях, когда
копирование сопровождается приведением типов, т.е. когда типы источника и
приемника не тождественны друг другу. Создавать собственный конструктор ко-
пии надо также, если вы перегружаете операцию присваивания.

Построим простой пример, чтобы разобраться в работе конструкторов. Опиши-
те простой класс:

class X

public:
int а;
X(int = 0);
};

Класс имеет одно поле а и конструктор с умолчанием, реализацию которого
можно записать так:

X : : Х (i n t A)
{

а = А;
ShowMessage("конструктор с умолчанием, а = " + I n t T o S t r (a)) ;

)

Мы ввели в конструктор вызов диалогового окна с сообщением, чтобы знать,
когда и сколько раз он вызывается.

Теперь в обработчике щелчка на какой-то кнопке вы можете, например, напи-
сать операторы:

X yl;
X у 2 = Х(2) ;
X уЗ = 3.5;
X xl(yl);
X х2 = у2;
X хЗ = X (уЗ) ;
ShowMessage (IntToStr (xl .a) + ' ' -t-

IntToStr(x2.a) + ' ' + IntToStr(хЗ.а));

Если вы выполните ваше приложение и щелкните на кнопке, то увидите, что
конструктор вызывается три раза со значениями а, равными 0, 2 и 3. Это происхо-
дит при создании объектов yl, у2 и уЗ. Для yl срабатывает значение параметра по
умолчанию - 0. Для у2 значение 2 задается при явном вызове конструктора. А вот
для уЗ вступает в строй «интеллект» компилятора. Компилятор видит, что конст-
руктор может принять целый параметр. Он приводит заданное число 3.5 к целому
(естественно, округляя) и передает его в конструктор.

При создании объектов xl, х2 и хЗ конструктор не вызывается. Компилятор
автоматически генерирует для всех этих объектов конструктор копии, неявно вы-
зывает его и копирует поля переменных yl, у2, уЗ в поля переменных xl, х2, хЗ.

В данном случае все прекрасно. Но в более сложных случаях подобное творче-
ство компилятора может приводить к ошибкам. Так что иногда его требуется за-
претить. Это можно сделать, добавив перед объявлением конструктора в классе
ключевое слово explicit (явный):

explicit X(int = 0) ;

Тем самым вы запрещаете неявный вызов конструктора. Если теперь вы по-
пробуете откомпилировать приложение, компилятор выдаст сообщение об ошибке
в операторе, создающем объект уЗ. Смысл его сводится к тому, что он не может
привести действительное число к типу X. Точнее, мы запретили ему делать это.

Впрочем, если вы закомментируете операторы, связанные с переменными уЗ и
хЗ, то увидите, что все остальное работает нормально и компилятор по-прежнему
неявно создает и вызывает конструкторы копии.

196 Глава 2

Выше говорилось, что неявное побитовое копирование в ряде случаев может
приводить к ошибкам. В этих случаях надо явно определять в классе конструктор
копии, передавая в него ссылку на данный класс. В нашем случае это может иметь
вид:

class X
{
public:
int a, b;
X(int = 0);
X(XS) ;
};

Реализацию конструктора копии сделайте такой:
X: : Х (Х & х)
{
а = х. а;
ShowMessage("конструктор копии, а = " + IntToStr(a)) ;

}

В этой реализации опять предусмотрено сообщение, чтобы можно было убе-
диться, что работает именно этот конструктор.

Выполнив теперь приложение, вы сможете убедиться, что после трех вызовов
конструктора с умолчанием следуют три вызова вашего конструктора копии. Он
вызывается при создании объектов xl, х2, хЗ.

2.14.6 Наследование и полиморфизм, виртуальные функции,
абстрактные классы

При описании нового класса, производного от какого-то одного или несколь-
ких базовых классов, можно добавлять новые функции-элементы и данные-эле-
менты, сохраняя при этом все элементы родителей, а можно родительские элемен-
ты переопределить или перегрузить. В производном классе доступны открытые и
защищенные элементы базового класса (прямого или косвенного предшественни-
ка). Закрытые элементы базового класса в производном классе недоступны.

Производный класс может наследоваться от базового класса как public,
protected или private (см. синтаксис такого наследования в разд. 2.14.1). Защи-
щенное и закрытое наследования встречаются редко и каждое из них нужно ис-
пользовать с большой осторожностью.

При порождении класса как public открытые элементы базового класса стано-
вятся открытыми элементами производного класса, а защищенные элементы базо-
вого класса становятся защищенными элементами производного класса. Закрытые
элементы базового класса никогда не бывают доступны для производного класса.

При защищенном наследовании открытые и защищенные элементы базового
класса становятся защищенными элементами производного класса. При закрытом
наследовании открытые и защищенные элементы базового класса становятся за-
крытыми элементами производного класса. При закрытом и защищенном наследо-
ваниях не справедливо отношение, что объект производного класса является объ-
ектом базового класса.

В целом доступ к элементам базового класса из производного класса можно
представить следующей таблицей.

Типы данных в языке C++ 197

Спецификатор до-
ступа к элементам
в базовом классе

public

protected

private

Тип наследования

public
открытое наследо-
вание

public в производ-
ном классе
Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам,
дружественным
функциям и функ-
циям, не являю-
щимся элемента-
ми.

protected в произ-
водном классе
Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам и
дружественным
функциям.

невидим в произ-
водном классе
Может быть досту-
пен нестатическим
функциям-элемен-
там и дружествен-
ным функциям че-
рез открытые или
защищенные фун-
кции-элементы ба-
зового класса.

protected
защищенное на-
следование

protected в произ-
водном классе
Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам и
дружественным
функциям.

protected в произ-
водном классе
Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам и
дружественным
функциям.

невидим в произ-
водном классе
Может быть досту-
пен нестатическим
функциям-элемен-
там и дружествен-
ным функциям че-
рез открытые или
защищенные фун-
кции-элементы ба-
зового класса.

private
закрытое наследо-
вание

private в произ-
водном классе
Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам и
дружественным
функциям.

private в произ-
водном классе

Может быть досту-
пен непосредствен-
но любым нестати-
ческим функци-
ям-элементам и
дружественным
функциям.

невидим в произ-
водном классе
Может быть досту-
пен нестатическим
функциям-элемен-
там и дружествен-
ным функциям че-
рез открытые или
защищенные фун-
кции-элементы ба-
зового класса.

Если в классе-наследнике переопределить функцию-элемент (ввести новую
функцию с тем же именем), то для объектов этого класса новая функция отменит
родительскую. Если обращаться к объекту этого класса, то вызываться будет но-
вая функция. Если все-таки нужно вызвать именно функцию базового класса,
надо использовать операцию разрешения области действия.

Создайте в качестве примера приложение с классом форм Shape:

class Shape
{
public:
void Draw(void);
};

и наследующим ему классом кругов Circl:
class Circl : public Shape

198 Глава 2

public:
void Draw(void);

};

В каждом из классов вы объявили метод рисования Draw. Чтобы не услож-
нять задачу и не отвлекаться на методы рисования, ограничимся в реализации
этих методов сообщением о том, какая фигура рисуется. Тогда реализация методов
Draw может иметь вид:

void Shape: :Draw(void)
{
ShowMessage("Абстрактная фигура");

}
void C i r c l : : D r a w (v o i d)
{
ShowMessage("Круг") ;

}

А теперь введите в приложение кнопку и в обработчик щелчка на ней занесите
код:

Shape *PQ1 = new Shape;
PQl->Draw(); // вызов Draw класса Shape
Circl *PQ2 = new Circl;
PQ2->Draw(); // вызов Draw класса Circl
P Q 2 - > S h a p e : : D r a w () ; // вызов Draw класса Shape
((Shape *)PQ2)->Draw() ; // вызов Draw класса Shape

В комментариях к коду указано, функции Draw каких классов вызывают эти
операторы. Впрочем, выполнив приложение, вы сами увидите подтверждение это-
го. Если мы обращаемся через указатель к самому объекту типа Circl, то вызывает-
ся переопределенная в нем функция. Но если мы с помощью приведения типа об-
ращаемся к нему как к объекту базового класса (последний оператор), или соответ-
ствующим образом используем операцию разрешения области, то вызывается
функция базового класса.

Если бы в классе-наследнике Circl отсутствовала функция Draw, то все приве-
денные операторы вызывали бы функцию базового класса.

Таким образом, механизм наследования позволяет использовать функции ба-
зового класса или переопределять их.

Теперь рассмотрим другую задачу. Создайте несколько классов, наследующих
Shape. К уже имеющемуся у вас классу Circl добавьте аналогичные классы
Rectang (прямоугольник - не назовите его случайно Rectangle, так как возникнет
путаница с одноименным методом канвы) и Square (квадрат). Каждый из этих
классов имеет свою функцию Draw, которая умеет рисовать соответствующую
форму (для упрощения замените в новых классах рисование выдачей соответст-
вующего сообщения, как сделали это раньше). Мы хотим работать с объектами
этих фигур, как с объектами базового класса Shape, не разбираясь в истинной при-
роде каждого объекта. И при этом хотим, чтобы программа сама понимала, что это
за объект и как его рисовать. Например, введите в модуль глобальную перемен-
ную, являющуюся массивом указателей на объекты различных форм:

Shape *ShapeArray[3] ;

Загрузите его в обработчике события OnCreate формы указателями на объек-
ты разных фигур:

ShapeArray[0] = new Circl;
ShapeArray[1] = new Rectang;
ShapeArray[2] = new Square;

А теперь добавьте в приложение кнопку с обработчиком вида:
for(int i = 0; i < 3; i++)

ShapeArray[i]->Draw();

Типы данных в языке C++ 199

Мы хотим, чтобы в цикле рисовались фигуры объектов, хранящихся в массиве.
Рассмотренный ранее механизм наследования такую задачу решить не может.

Поскольку ко всем объектам мы обращаемся через тип их базового класса Shape,
то только функция этого класса и будет вызываться.

Поставленную задачу полиморфизма позволяют решить виртуальные функ-
ции. Они не связаны с другими функциями с тем же именем в классах — наслед-
никах. Если в классах — наследниках эти функция переопределены, то при обра-
щении к такой функции во время выполнения будет вызываться та из виртуаль-
ных функций с одинаковыми именами, которая соответствует классу объекта, ука-
занного при вызове. Поэтому, если в базовом классе Shape объявить функцию
Draw как виртуальную, то задача будет решена и каждая фигура будет рисоваться
своей функцией.

Синтаксически это оформляется следующим образом. В базовом классе Shape
функция объявляется следующим образом:

virtual void Draw(void);

И это все! Если функция была однажды объявлена виртуальной, она остается
виртуальной и во всех классах наследниках. Таким образом для решения задачи
полиморфизма хватило одного спецификатора virtual. Правда, обычно предпочи-
тают для большей ясности программы в классах-наследниках тоже вводить специ-
фикатор virtual, чтобы была ясна суть этих функций для тех, кто будет строить
наследников данного класса. Но с точки зрения языка C++ это не обязательно.

Выполните теперь ваше тестовое приложение. Вы убедитесь, что каждый объ-
ект использует свою собственную функцию рисования.

Подобное полиморфное поведение можно оформить совершенно иначе, вос-
пользовавшись описанной в разд. 2.2 операцией явного динамического приведе-
ния типов dynamic_cast. В этом случае можно воспользоваться одной универсаль-
ной функцией в базовом классе и в ней определять, объект какого реального типа
к ней обратился. Тогда в классах-наследниках эту функцию можно не переопреде-
лять. Но функция в базовом классе по-прежнему должна быть объявлена вирту-
альной.

Измените ваше тестовое приложение, чтобы опробовать этот механизм. Уда-
лите (закомментируйте) из классов Circl, Rectang и Square объявления функции
Draw и, соответственно, удалите реализации этих функций. А реализацию Draw
в классе Shape оформите следующим образом:

if (dynamic_cast<Circl *>(this) != 0)
ShowMessage("Круг");

else if (dynamic_cast<Rectang *>(this) != 0)
ShowMessage("Прямоугольник");

else if (dynamic_cast<Square *>(this) != 0)
ShowMessage("Квадрат") ;

else ShowMessage("Абстрактная фигура");

В этом коде с помощью dynamic_cast поочередно осуществляется приведение
класса указателя this к типу указателей различных классов-наследников. Ключе-
вое слово this определяет указатель на тот объект, из которого была вызвана функ-
ция. Если приведение типа завершилось успешно, операция dynamic_cast возвра-
щает ненулевое значение. Тогда рисуется соответствующая фигура (в нашем при-
мере просто выдается соответствующее сообщение). Если же приведение типа за-
кончилось неудачей, операция dynamic_cast возвращает 0. В этом случае функция
переходит к проверке указателя на принадлежность его следующему типу.

Выполнив приложение, вы можете убедиться, что полиморфное поведение со-
храняется.

Рассмотренный вариант компактнее предыдущего, так как требует описания
всего одной функции в базовом классе. Но он менее универсален. При создании но-
вых классов-наследников надо будет добавлять соответствующие коды в функцию

200 Глава 2

базового класса. А в первом варианте базовый класс не затрагивается. Просто,
надо написать соответствующую реализацию функции в новом классе-наследнике.

Иногда в базовом классе определяют чистую виртуальную функцию (абст-
рактную функцию). Это функция, для которой не указана реализация. Для того
чтобы определить такую функцию, достаточно указать, что ее тело равно нулю:

virtual void Draw(void)=0;

В первом варианте нашего примера именно так было бы целесообразно объя-
вить функцию Draw в базовом классе Shape, поскольку непонятно, как можно на-
рисовать просто абстрактную фигуру. Реализация для чистой полиморфной функ-
ции не пишется.

Класс, в котором имеется хоть одна чистая виртуальная функция, называется
абстрактным. Для абстрактного класса невозможно создать объект. Такие клас-
сы предназначены только для построения на их основе конкретных классов-на-
следников.

2.14.7 Особенности классов, наследующих классам
библиотеки компонентов C++Builder

2.14.7.1 Свойства

О некоторых особенностях построения классов, наследующих классам библио-
теки компонентов C-H-Builder, уже говорилось ранее. К этим особенностям отно-
сится невозможность для таких классов множественного наследования и необхо-
димость создавать объекты только с помощью операции new. Теперь остановимся
на других особенностях, связанных с понятиями свойства и события.

Понятие свойства (property), объединяет поле данных и функции (методы) его
записи и чтения. В рассматриваемых классах сами поля объявляются как обычно,
но, как правило, в разделе private. Традиционно идентификаторы полей совпада-
ют с именами соответствующих свойств, но с добавлением в качестве префикса
символа 'F'.

Свойство объявляется оператором вида:
property <тил> <имя> = {геасЗ=<имя поля или метода чтения>

write=<HMH поля или метода записи>
<директивы запоминания

и значения по умолчанию>;

Если в разделах read или write этого объявления записано имя поля, значит
предполагается прямое чтение или запись данных.

Если в разделе read записано имя метода чтения, то чтение будет осуществ-
ляться только функцией с этим именем. Функция чтения — это функция без пара-
метра, возвращающее значение того типа, который объявлен для свойства. Имя
функции чтения принято начинать с префикса Get, после которого следует имя
свойства.

Если в разделе write записано имя метода записи, то запись будет осуществ-
ляться только процедурой с этим именем. Процедура записи — это процедура с од-
ним параметром того типа, который объявлен для свойства. Имя процедуры запи-
си принято начинать с префикса Set, после которого следует имя свойства.

Если раздел write отсутствует в объявлении свойства, значит это свойство
только для чтения и пользователь не может задавать его значение.

Директивы запоминания определяют, как надо сохранять значения свойств
при сохранении пользователем файла формы .dfm. Чаще всего используется ди-
ректива

default Оначение по умолчанию>

Типы данных в языке C++ 201

Она не задает начальное значение. Это дело конструктора. Директива просто
говорит, что если пользователь в процессе проектирования не изменил значение
свойства по умолчанию, то сохранять значение свойства не надо.

Приведем пример. Пусть требуется объявить класс с именем MyClass, насле-
дующий непосредственно TObject и имеющий свойство целого типа с именем А.
Тогда объявление этого класса может иметь вид:

class MyClassl : public TObject
I
private:

int FA;
protected:

void fastcal l SetA(int); // функция записи
published:

property int A = (read = FA, write = SetA, default = true);
);

Здесь вводится закрытое поле FA, объявляется защищенная функция SetA,
используемая для записи значения в это поле, и вводится опубликованное свойст-
во А, оперирующее этим полем. В объявлении свойства после ключевого слова
read записано просто имя поля. Это означает, что функция чтения отсутствует и
пользователь может читать непосредственно значение поля. После ключевого сло-
ва write следует ссылка на функцию записи SetA, с помощью которой будут запи-
сываться в поле А новые значения. В этой функции можно предусмотреть какие-то
проверки допустимости вводимого значения А.

Описание этой функции может иметь вид:
void fastcall MyClassl::SetA(int Value)
{
if (. . .) FA = Value;

)

В приведенном примере описание свойства А помещено в раздел published.
Следовательно, если этот класс описывает создаваемый вами новый компонент, то
после его установки в систему свойство А будет появляться в окне Инспектора
Объектов при использовании этого компонента. Если перенести объявление свой-
ства в раздел public, то свойством по-прежнему можно будет пользоваться, но
только во время выполнения приложения, поскольку в окне Инспектора Объектов
оно появляться не будет. Если удалить из определения свойства слово write с по-
следующей ссылкой на функцию записи, то свойство станет свойством только для
чтения, т.к. изменить его непосредственно будет невозможно.

Для свойств типа массивов приведенный ранее оператор property изменяет-
ся следующим образом:

property <тип> <имя> <список размерностей> =
{read=<MMfl поля или метода чтения>

write=<MMH поля или метода записи>
<директивы запоминания
и значения по умолчанию>;

Список размерностей представляет собой последовательность квадратных ско-
бок, в которых записывается тип размерности и может записываться идентифика-
тор. Приведем в качестве примера возможный вариант описания класса матриц
действительных чисел размером N х М:

// Класс матриц действительных чисел
class Matrix
{

float «data;
int N; // число строк
int M; // число столбцов

202 Глава 2

public:
Matrix(int,int);
-Matrix() { delete[] data; }
property float Items [int i] [int j] =

{ read=Get!tems, write=Set!tems };
private:

float fastcall Getltems(int i, int j);
void fastcall Setltems (int i, int j, float value);

};

Matrix::Matrix(int n, int m) // конструктор

{
data = new float [n*m]; // создание экземпляра класса
for(int i = 0; i < n*m; i++) // инициализация
data[i] = 0.;

N = n;
M = m;

}

void fastcall Matrix::Setltems(int i, int j, float value)

{
// запись значения value в элемент (i,j)

if ((i<l) I I (i>N) I I (j<l) I I (j>M))
ShowMessage("Недопустимые индексы (" + intToStr(i) +

", " + IntToStr (j) + ") ") ;
else data[(i-l) * M + j - 1] = value;

}

float fastcall Matrix: .-Get I terns (int i, int j)
{
// чтение значения элемента (i,j)

if ((i<l) I I (i>N) | | (j<l) | | (j > M))
ShowMessage("Недопустимые индексы (" + IntToStr(i) +

"," + IntToStr (j) + ") ") ;
else return d a t a f (i - l) * M + j - 1]-;

}

В приведенном коде создается класс матриц Matrix. Класс имеет открытое
свойство Items, к которому можно обращаться как к двумерному массиву. Об этом
говорит его определение в операторе property: float Items [int i] [int j]. Указание
в списке размерностей идентификаторов i и j не является обязательным. Список
мог бы иметь вид: [int] [int]. •

Задание размерностей изменяет вид функций чтения и записи. В функцию
чтения Getltems передаются два целых параметра, определяющих индексы читае-
мого элемента матрицы. В приведенном примере индексы матриц отсчитываются
от 1, а не от нуля, что, вероятно, более удобно пользователю. В функцию записи
Setltems помимо записываемого значения value также передаются индексы того
элемента, в который должно быть записано это значение.

Создание экземпляра матрицы в программе может, осуществляться, напри-
мер, оператором:

Matrix x (4 , 5) ;

Этот оператор создает матрицу х размерностью 4 x 5 . Запись и чтение элемен-
тов матрицы в программе осуществляется через свойство Items. Например:

х.Items[2][3] = 1.5;
float у = х . I t e m s [2] [3];

Первый из этих операторов заносит значение 1,5 в 3-ий элемент 2-ой строки, а
второй оператор читает это значение.

Типы данных в языке C++ 203

2.14.7.2 События

Событие - - это специальное свойство, являющееся указателем функции.
В C++Builder тип обобщенного указателя на функцию, которой передается один
параметр типа TObject (обычно this), — TNotifyEvent. Подобный тип использует-
ся в C++Builder для событий типа OnClick и многих других, которые передают
в обработчик только один параметр - - TObject *Sender. Если требуется ввести
в класс подобное событие, достаточно определить в объявлении класса соответст-
вующее поле и метод работы с ним. Например:

private :

TNotifyEvent FMyEvent;

_ published:

_ property TNotifyEvent MyEvent = {read= FMyEvent,
write= FMyEvent};

Остается только вызвать в нужный момент обработчик событий пользователя,
если пользователь его предусмотрел. Проверка, имеется ли обработчик пользовате-
ля, осуществляется проверкой соответствующего события как булевой величины,
возвращающей true, если пользователь предусмотрел свой обработчик. Значит,
при возникновении события надо проверять, имеется ли обработчик пользователя,
и, если имеется, то вызывать его. Для этого можно использовать оператор вида:

if (FMyEvent) OnMyEvent (this) ;

Функция OnMyEvent, которая вызывается этим оператором, это и есть обра-
ботчик пользователя. Его имя совпадает с именем свойства, перед которым добав-
ляется префикс "On".

Место, куда надо включать подобный оператор, зависит от вида события. Если
событие вызывается каким-то из ваших методов, то вызов обработчика пользовате-
ля надо осуществлять из этого метода. Если событие связано с какими-то сообще-
ниями, поступающими от других приложений или от Windows, то надо предусмот-
реть обработчик соответствующего сообщения и из него вызывать обработчик
пользователя.

Если в обработчик события надо передать какие-то параметры помимо this, то
тип функции TNotifyEvent уже не подходит и надо объявить свой собственный
тип. Это объявление делается с помощью ключевого слова _ closure. Например:

typedef vc^id _ fastcall (_ closure *TMyEvent)
(System: :TObject *Sender, bools MyParam) ;

class Т : public TObject
{
private

TMyEvent FMyEvent;
published

_ property TMyEvent 'FMyEvent = {read= FMyEvent,
write= FMyEvent);

Выше было рассмотрено введение в класс какого-то нового события. Если же
вам надо переопределить одно из традиционных событий, связанных с клавиату-
рой, мышью и т.п., то это можно сделать, переопределив соответствующий стан-
дартный обработчик родительского класса.

204 Глава 2

2.14.8 Шаблоны классов

C++ позволяет определять шаблоны классов, называемые также родовыми
(generic) классами или генераторами классов. Иногда их называют параметризо-
ванными типами, так как они имеют один или большее количество параметров
типа, определяющих настройку шаблона класса на специфический тип данных
при создании объекта класса.

Для того чтобы использовать шаблонные классы, программисту достаточно
один раз описать шаблон класса. Каждый раз, когда требуется реализация класса
для нового типа данных, программист, используя простую краткую запись, сообща-
ет об этом компилятору, который и создает исходный код для требуемого класса.

Шаблоны классов задаются аналогично шаблонам функций (см. разд. 1.7.8).
Описание шаблона отличается от описания класса первой строкой

template <class идентификатор> class имя класса

В этой строке идентификатор является произвольным именем формального
типа, который используется далее в описании шаблона. Но негласно принято, если
нет каких-то иных соображений, задавать в качестве имени типа "Т". Например:

template <class T> class Matrix

Этот заголовок объявляет о создании шаблона класса Matrix и задает иденти-
фикатор Т для формального типа данных. Этот идентификатор следует использо-
вать в описании класса вместо указания типа соответствующих данных.

Определяемый в заголовке идентификатор типа (в приведенном примере — Т)
совершенно не обязательно должен быть классом. Пользователь может указать
при вызове шаблона любой тип. Например, float. Так что спецификатор class,
предшествующий имени типа в заголовке шаблона, является некоторым анахро-
низмом, искажающим истинную сущность идентификатора. В современном вари-
анте C++ вместо этого спецификатора можно задавать ключевое слово typename.
Например:

template <typename T> class Matrix
f

He все компиляторы пока поддерживают ключевое слово typename (компиля-
тор C++Builder 6 поддерживает), так что для общности стандартные библиотеки
пока обычо используют в заголовках спецификатор class.

Приведем в качестве примера шаблон класса матриц, аналогичных классу,
описанному в разд. 2.14.6.1.

// Шаблон класса матриц
template <class T> class Matrix
{

Т *data;
int N; // число строк
int M; // число столбцов

public:
Matrix(int,int) ;
-Matrix() { delete[] data; }
property Т Items [int i] [int j] =

{ read=Get!tems, write=Set!tems } ;
private:

Т fastcall Getltems(int i, int j);
void fastcall Setltems(int i, int j, Т value);

Типы данных в языке C++ 205

// конструктор
template <class T> Matrix<1> : :Matrix (int n, int m)
(
data = new T [n * m] ;
for (int i = 0; i < n*m;

data[i] = 0;
N = n;
M = m;

template <class T> void _ fastcall
Matrix<T>: :SetItems (int i, int j , Т value)

(
// запись значения value в элемент (i,j)
if ((i<l) I I (i>N)] | (j<l) | | (j>M))
ShowMessage ("Недопустимые индексы (" + intToStr(i) +

", " + IntToStr (j) + ") ") ;
else data[(i -I) * M + j - 1] = value;

template <class T> Т _ fastcal l
Matrix<T>: : Getltems (int i, int j)

{
// чтение значения элемента (i,j)

if ((i<l) | I (i>N) I | (j<l) I | (j>M))

ShowMessage ("Недопустимые индексы (" + IntToStr (i) +
", " + IntToStr (j) + ") ") ;

return 0 ;
}
else return data[(i - 1) * M + j — 1] ;

}

Если вы сравните этот код с приведенным ранее в разд. 2.14.6.1, то увидите,
что основное отличие заключается в замене типа float, который использовался
в разд. 2.14.6.1, на формальный тип Т. Благодаря этому в самом шаблоне не ука-
зывается действительный тип хранимых данных. И при создании конкретного эк-
земпляра класса можно будет задавать любой тип: целый, действительный, ком-
плексный и т.п. Другое отличие приведенного кода от рассмотренного в разд.
2.14.6.1 заключается в форме ссылок заголовков элементов-функций на шаблон
класса.

Создание экземпляра матрицы конкретного типа в программе может, осущест-
вляться, например, оператором:

Matrix<float> x (4 , 5) ;

Этот оператор создает матрицу х действительных чисел размерностью 4 x 5 .
Отличие от приведенного в разд. 2.14.6.1 аналогичного оператора заключается'
в том, что после имени класса в угловых скобках указывается тип, для которого
создается экземпляр класса. Компилятор заменит на этот тип (в данном случае
float) формальный тип Т, использованный в описании шаблона.

Запись и чтение элементов матрицы в программе осуществляется точно так
же, как в разд. 2.14.6.1, через свойство Items. Например:

х. Items [2] [3] = 1.5;
float у = х. Items [2] [3] ;

Первый из этих операторов заносит значение 1,5 в 3-ий элемент 2-ой строки, а
второй оператор читает это значение.

206 Глава 2

В объявлении шаблона может использоваться уже описанное выше ключевое
слово typename для обозначения того, что следующий за ним идентификатор явля-
ется именем типа. Это облегчает компилятору распознавание того, что скрывается
за тем или иным идентификатором. Например, если в описании шаблона встретит-
ся оператор

Т:х(у) ;

то компилятор будет в недоумении: то ли это вызов функции-элемента класса Т, то
ли это объявление переменной у типа Т:х, в котором вы почему-то заключили имя
переменной в скобки (это не запрещается синтаксисом C++). В подобных случаях
принято следующее правило. Если перед идентификатором записано ключевое
слово typename, то это имя типа. Например:

typename Т : х (у) ;

В остальных случаях идентификатор — это что угодно, но только не обозначе-
ние типа.

Глава 3

Функции С, C++, библиотек
C++Builderf API Windows

В настоящей главе описано около 650 функций С, C++, библиотек C++Builder,
API Windows. Это еще далеко не все функции, которые можно использовать. Но
ограничения на объем книги потребовали отобрать из всего трудно обозримого
множества функций те, которые используются чаще всего. Более подробные спи-
ски функций вы найдете в [2].

Многие из перечисленных в данной главе функций подробно рассмотрены
в гл. 4. В данной главе имена таких функций выделяются подчеркиванием. На-
пример, Ceil. Это значит, что подробную информацию об этой функции вы найдете
в гл. 4. Там же даются примеры применения этих функций. Но дать развернутые
описания всех функций не представлялось возможным. Поэтому ряд разделов дан-
ной главы снабжен комментариями, в которых даются разъяснения по тем функ-
циям, которые не описаны в гл. 4, но требуют некоторых пояснений.

3.1 Справочные сведения общего характера

3.1.1 Коды клавиш

Ниже приведены виртуальные коды клавиш, которыми можно пользоваться
при обработке символов, строк, при проверке параметра Key в обработчиках собы-
тий OnKeyDown и OnKeyUp. Символы кириллицы соответствуют тем клавишам
с латинскими символами, на которых они размещены.

Клавиша

Fl

F2

F3

F4

F5

F6

F7

F8

F9

F10

пробел

Backspace

Tab

Десятичное
число

112

113

114

115

116

117

118

119

120

121

32

8

9

Шестнадцатеричное
число

0x70

0x71

0x72

0x73

0x74

0x75

0x76

0x77

0x78

0x79

0x20

0x8

0x9

Символическое
имя

VK_F1

VK_F2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_F8

VK_F9

VK_F10

VK_SPACE

VK_BACK

VKJTAB

Сравнение
по символу

208 Глава 3

Клавиша

Enter

Shift

Ctrl

Alt

CapsLock

Esc

Insert

PageUp

PageDown

End

Home

<-

t

— >

1

Delete

PrintScreen

ScrollLock

Pause

NumLock

o,)
1, !

2, @

3, #

4,$

5, %

6, "

7, &

8,*

9, (

-

= +

[{

]}

Десятичное
число

13

16

17

18

20

27

45

33

34

35

36

37

38

39

40

46

44

145

19

144

48

49

50

51

52

53

54

55

56

57

192

189

187

219

221

Шестнадцатеричное
число

OxOD _

0x10

Oxll

0x12

0x14

OxlB

Ox2D

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

Ox2E

Ox2C

0x91

0x13

0x90

0x30

0x31

0x32

0x33

0x34

0x35

0x36

0x37

0x38

0x39

OxCO

OxBD

OxBB

OxDB

OxDD

Символическое
имя

VK_RETURN

VK_SHIFT

VK_CONTROL

VK_MENU

VK_CAPITAL

VK_ESCAPE

VK_INSERT

VK_PRIOR

VK NEXT

VK_END

VK_HOME

VKJLEFT

VK_UP

VKJRIGHT

VK_DOWN

VK_DELETE

VK_SNAPSHOT

VK_SCROLL

VK_PAUSE

VKJ4UMLOCK

Сравнение
по символу

.

'0'

'1'

'2'

'3'

'4'

'5'

'6'

'Т

'&'

'9'

Функции С, C++, библиотек C++Builder, API Windows 209

Клавиша

; ;

\ l

<

>

/ ?

а, А

Ь, В

с, С

d, D

е, Е

f, F

9, G

h, H

U

у
k, К

1, L

m, M

n, N

о,0

Р. Р

q, Q

г, R _
s, S

t , T

и, U

v, V

w, W

х, X

У, Y

z, Z

Десятичное
число

186

222

220

188

190

191

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Шестнадцатеричное
число

ОхВА

OxDE

OxDC

ОхВС

ОхВЕ

OxBF

0x41

0x42

0x43

0x44

0x45

0x46

0x47

0x48

0x49

Ох4А

Ох4В

Ох4С

Ox4D

Ох4Е

Ox4F

0x50

0x51

0x52

0x53

0x54

0x55

0x56

0x57

0x58

0x59

Ох5А

Символическое
имя

Сравнение
по символу

'А'

'В'

'С'

'D'

'Е1

•р-

'G'

'Н1

'Т

'«Г

'К'

'L'

•м-
'N'

'О'
•р-

•Q'

'R'

'S1

'Т'

•и1

•у

'W"

'X'
•у.

'Z'

На правой клавиатуре при выключенной клавише NumLock

0

1

96

97

0x60

0x61

VK_NUMPADO

VK_NUMPAD1

210 Глава 3

Клавиша

2

3

4

5

6

7

8

9
*

+

-

/

Десятичное
число

98

99

100

101

102

103

104

105

106

107

109

110

111

Шестнадцатеричное
число

0x62

0x63

0x64

0x65

0x66

0x67

0x68

0x69

ОхбА

ОхбВ

Ox6D

ОхбЕ

Ox6F

Символическое
имя

VK_NUMPAD2

VK_NUMPAD3

VK_NUMPAD4

VK_NUMPAD5

VK_NUMPAD6

VK_NUMPAD7

VK_NUMPAD8

VK_NUMPAD9

VK_MULTIPLY

VK_ADD

VK_SUBTRACT

VK_DECIMAL

VK_DIVIDE

Сравнение
по символу

Комментарии
Приведенные коды клавиш можно, например, использовать в обработчиках

событий OnKeyDown таких компонентов, как окна редактирования. В обработчи-
ки этих событий передается параметр Key, значение которого равно виртуальному
коду нажатой пользователем клавиши. Этот параметр является целым числом, оп-
ределяющим клавишу, а не символ. Например, один и тот же код соответствует
прописному и строчному символам "Y" и "у"- Если, как это обычно бывает, в рус-
ской клавиатуре этой клавише соответствуют символы кириллицы "Н" и "н", то
их код будет тем же самым. Различить прописные и строчные символы или симво-
лы латинские и кириллицы невозможно.

Проверять нажатую клавишу можно, сравнивая Key с целым десятичным ко-
дом клавиши, приведенном во втором столбце таблицы. Например, реакцию на на-
жатие пользователем клавиши Enter можно оформить оператором:

i f (Key == 13) . . . ;

Можно сравнивать Key и с шестнадцатеричным эквивалентом кода, приведен-
ным в третьем столбце таблицы. Например, приведенный выше оператор можно
записать в виде:

if(Key == OxOD) ... ;

Для клавиш, которым не соответствуют символы, введены также именован-
ные константы, которые облегчают написание программы, поскольку не требуют
помнить численные коды клавиш. Например, приведенный выше оператор можно
записать в виде:

i f (K e y == VK^RETURN) . . . ;

Для клавиш символов и цифр можно производить проверку сравнением с де-
сятичным или шестнадцатеричным кодом, но это не очень удобно, так как трудно
помнить коды различных символов. Другой путь — воспользоваться тем, что коды
латинских символов в верхнем регистре совпадают с виртуальными кодами, ис-
пользуемыми в параметре Key. Поэтому, например, если вы хотите распознать
клавишу, соответствующую символу "Y", вы можете написать:

i f (Key == ' Y ') . . . ;

Функции С, C++, библиотек C++Builder, API Windows 211

В этом операторе можно использовать только латинские символы в верхнем
регистре. Если вы напишете "у" или захотите написать русские символы, соответ-
ствующие этой клавише — "Н" или "н", то оператор не сработает.

3.1.2 Коды основных символов

Ниже приведена таблица основных символов и соответствующих им чисел
(см. разд. 2.4) при работе с русифицированными версиями Windows.

число

33

38

43

48

53

58

63

68

73

78

83

88

93

98

103

108

113

118

123

133

149

167

174

182

192

197

202

207

212

символ

!

&

+

0

5

:

?

D

I

N

S

X

]
b

g
1
q

V

{

...

•

§
®

11

А

Е

К

П

Ф

число

34

39

44

49

54

59

64

69

74

79

84

89

94

99

104

109

114

119

124

145

150

168

176

183

193

198

203

208

213

символ

•

»

1
6
*

@
Е

J

О

Т

Y

-
с

h

m

г

w

<

-

Ё
«

Б

Ж

Л

Р

X

число

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

146

151

169

177

184

194

199

204

209

214

символ

#

(

-

2

7

<

А

F

К

Р

и
Z

d

i

n

s

X

}
»

—

©
±

ё

В

3

M

с
Ц

число

36

41

46

51

56

61

66

71

76

81

86

91

96

101

106

111

116

121

126

147

153

171

178

185

195

200

205

210

215

символ

$
)
.

3

8

=

В

G

L

Q

V

[
'

е

i
о

t

У

-и

тм

«

I
№

Г

И

Н

Т

ч

число

37

42

47

52

57

62

67

72

77

82

87

92

97

102

107

112

117

122

132

148

166

172

179

187

196

201

206

211

216

символ

%

*

/

4

9

>

С

Н

м
R

W

\

а

f

k

Р

и

Z

„

J)

-
i

»

д
и
о
У

ш

212 Глава 3

число

217

222

227

232

237

242

247

252

символ

щ
Ю

г

и

н

т

ч

ь

число

218

223

228

233

238

243

248

253

символ

Ъ

Я

д

и

о

У

ш

э

число

219

224

229

234

239

244

249

254

символ

Ы

а

е

к

п

Ф

Щ

ю

число

220

225

230

235

240

245

250

255

символ

Ь

б

ж

л

р
X

Ъ

я

число

221

226

231

236

241

246

251

-

символ

Э

в

3

м

с

ц

Ы

-

3.1.3 Форматы и типы, используемые
при форматировании данных

3.1.3.1 Строка форматирования функций вывода
Строка формата, используемая во многих функциях вывода данных (printf.

cprintf. sprintf и др.)> состоит из обычных символов, управляющих последователь-
ностей символов и спецификаций полей формата вывода аргументов. Обычные
символы и управляющие последовательности просто копируются в выходную
строку.

Спецификации полей формата начинаются с символа % и имеют вид:
% [f l a g s] [w i d t h] [. p r e c i s i o n] [F | N | h | l | L] t y p e

Все символы спецификации записываются без пробелов между ними.
Единственно обязательным элементом спецификации является type — сим-

вол, указывающий на тип данных вводимого поля. Остальные необязательные эле-
менты задают параметры форматирования:

[flags]

[width]

[.precision]

[F|N|h|l|L]

Флаги выравнивания, управления печатью знака числа, управ-
ления пробелами, десятичной точкой, основанием печати (вось-
меричная, шестнадцатеричная)

Ширина поля — минимальное число выводимых символов

Спецификатор точности — максимальное количество печатае-
мых символов или минимальное количество разрядов печатае-
мого целого

Модификаторы, изменяющие размер аргумента по умолчанию:

N ближний указатель (near)
F дальний указатель (far)
h short int
I long
L long double

Ниже приведены возможные значения type.

Функции С, C++, библиотек C++Builder, API Windows 213

Символ Тип аргумента Формат вывода

Числа

d

i

о

u

X

X

f

e

E

g

(i

целый

целый

целый

целый

целый

целый

действительный

действительный

действительный

действительный

действительный

десятичное signed integer

десятичное signed integer

восьмеричное unsigned integer

десятичное unsigned integer

шестнадцатеричное unsigned int (с цифрами а,
b, c, d, e, f)

то же, что х, но с цифрами А, В, С, D, Е, F

формат с фиксированной точкой: [-Jdddd.dddd

экспоненциальный (научный) формат: [-Jd.dddd
e[+/-]ddd

то же, что е, но с символом Е

наиболее компактный из форматов е и f для дан-
ного числа и данной точности; незначащие нули
не выводятся

то же, что g, но с символом Е в экспоненциаль-
ном формате

Символы

с

s

%

символ

указатель на
строку

нет

один символ

строка символов до нулевого символа в конце
или с числом символов, заданных точностью

печать символа %

Указатели

n

P

указатель на int

указатель

в ячейку памяти, на которую указывает аргу-
мент, заносится количество выведенных к данно-
му моменту символов

печать аргумента как указателя; в зависимости
от используемой модели памяти печатается или
XXXX:YYYY, или YYYY (только смещение)

Перечисленные ниже флаги flags могут записываться в любой последователь-
ности и в любой комбинации.

Флаг

—

+
пробел

Пояснение

Выравнивание влево, оставшееся поле справа заполняется пробела-
ми. Если этот флаг не задан, то производится выравнивание вправо,
а оставшееся поле слева заполняется нулями или пробелами.

Обязательно перед числом указывается знак плюс (+) или минус (—).

Если значение не отрицательное, то печать начинается с пробела
вместо знака плюс (+). Для отрицательного значения знак минус (-)
печатается. Если наряду с этим флагом задан флаг +, то он должен
быть указан до флага пробела.

214 Глава 3

Флаг

#

Пояснение

В форматах о,
В форматах е,
ка. Кроме того
нулей.

X,

Е,
в

X добавляется
f, g, G во всех
форматах g, G

префикс 0, Ох, ОХ соответственно,
случаях выводится десятичная точ-
не подавляется вывод незначащих

Спецификатор width задает минимальную ширину поля. Спецификатор мо-
жет быть задан или явным образом — десятичным числом, или косвенно — симво-
лом звездочки (*). В последнем случае предполагается, что ширину поля задает
очередной аргумент из списка.

Спецификатор width указывает только минимальную ширину. Если вывод
данного аргумента требует большей ширины поля, то поле расширяется и значе-
ние никогда не усекается.

Спецификатор может принимать следующие значения:

в

On

*

Выводится по крайней мере п символов. Если для вывода требуется
меньше символов, то лишние позиции (слева или справа, в зависи-
мости от флагов) заполняются пробелами.

Выводится по крайней мере п символов. Если для вывода требуется
меньше символов, то лишние позиции слева заполняются нулями.

Ширину поля задает очередной аргумент из списка.

Спецификатор точности precision определяет максимальное число выводимых
символов или место десятичной точки. Он записывается после символа точки (.),
чтобы отделить его от предшествующего спецификатора width. Данный специфи-
катор, как и width, может быть задан или явным образом — десятичным числом,
или косвенно — символом звездочки (*). В последнем случае предполагается, что
точность задается очередным аргументом из списка.

Отсутствие спецификатора precision означает точность по умолчанию и экви-
валентно:

1
6
числу значащих цифр

выводу до нулевого символа

не влияет

для форматов d,

для форматов е,

для форматов g,

i, о,

Е, f

G

u, x, X

для формата s

на формат с

Возможные значения precision:

.0

.11

*

Для фоматов d, i, о, u, x эквивалентно точности по умолчанию.
Для форматов е, Е, f означает вывод без десятичной точки.

Задает вывод п символов или позицию п десятичной точки. Если
выводимая величина содержит более п символов, то строка симво-
лов усекается, а число может округляться (в зависимости от форма-
та).

Точность задает очередной аргумент из списка.

Функции С, C++, библиотек C++Builder, API Windows 215

Ниже приведены сведения о влиянии значения precision на различные форматы.

d, i, о, u, x, X

е, Е, f

g. G
с

s

Указывает, что должно выводиться по крайней
Если число имеет менее п цифр, позиции слева
нулями. Если число имеет более п цифр, число

Указывает, что после десятичной точки должно
цифр. Последняя цифра округляется.

мере п цифр,
заполняются
не усекается.

выводиться п

Указывает, что должно выводиться до п цифр.

Спецификатор не влияет.

Указывает, что должно выводиться не более п символов.

Примеры

Примеры влияния формата:

%f
110000.000000

-110000000.000000

0.000110

0.000000

12.000000

0.000000

%е

1.100000е+05

-1.100000е+08

1.100000е-04

1.100000е-07

1.200000е+01

О.ООООООе+00

%g

110000

-1.1е+08

0.00011

1.1е-07

12

0

%#G

110000.

-1.10000Е+08

0.000110000

1.10000Е-07

12.0000

0.00000

Примеры влияние флагов:

спецификация

%6i

%-6i

%+6i

%06i

результат

12
-12

12
-12

+ 12
-12

000012
-00012

Примеры влияния точности:

спецификация

%f

%.5f

% At

% .3f

%e

%.5e

123456789.000000

123456789.00000

123456789.0000

123456789.000

1.234568e+08

1.23457e+08

0.123457

0.12346

0.1235

0.123

1.234568e-01

1.23457e-01

216 Глава 3

спецификация

% Ле

%.3е

%g

%.5g

%.4g

%.3g

%.2g

1.2346e+08

1.235e+08

1.23457e+08

1.2346e+08

1.235e+08

1.23e+08

1.2e+08

1.2346e-01

1.235e-01

0.123457

0.12346

0.1235

0.123

0.12

Примеры использования строка форматирования вы можете также найти в гл. 4
в описаниях функций вывода.

3.1.3.2 Строка форматирования функций ввода
Описанная ниже строка формата, используется во многих функциях ввода

данных (scanf. fscanf. sscanf и др.). Строка может включать три вида элементов:
• пробельные символы (пробел " ", табуляцию "\t", символ новой строки "\п"
• не пробельные печатные символы (кроме %)
• спецификации формата

Если в строке встретился пробельный символ, то с этого момента пробельные
символы до первого не пробельного символа считываются из входного потока, но
не участвуют в присваивании значений переменным (игнорируются).

Если в строке встретился печатный не пробельный символ, то с этого момента из
входного потока считывается и игнорируется последовательность символов, встретив-
шаяся в строке формата. Если последовательность символов во входном потоке не со-
ответствует записанной в строке формата, то форматирование прерывается.

Спецификации формата начинаются с символа % и имеют вид:
% [*] [width] [F | N] [h | l | L] type

Все символы спецификации записываются без пробелов между ними.
Единственно обязательным элементом спецификации является type — сим-

вол, указывающий на то, как будет трактоваться вводимый аргумент. Остальные
необязательные элементы задают параметры форматирования:

[*]
[width]

[F|N]

[h|l|L]

Запрет занесения в память читаемого поля. Поле сканируется, но
его .значение не присваивается аргументу из списка.
Ширина поля — максимальное число читаемых символов. Реаль-
но может быть прочитано меньше символов, если во входном по-
токе раньше встретится пробельный символ или символ, который
не может быть преобразован согласно заданному формату.

Модификаторы, изменяющие размер аргумента по умолчанию:

N
F

ближний указатель (near)
дальний указатель (far)

Модификаторы, изменяющие размер аргумента по умолчанию:
h

1

L

short int

long int, если type соответствует целому числу, или do-
uble, если type соответствует действительному числу

long double

Функции С, C++, библиотек C++Builder, API Windows 217

Ниже приведены возможные значения type.

Символ

Числа

d

D

е,Е

f

g,G

о

О

i

I

и

и

X

X

Символы

S

с

%
Указатели

п

Р

Ожидаемый тип данных

целый

целый

действительный

действительный

действительный

восьмеричный целый

восьмеричный целый

десятичный, восьмеричный или
шестнадцатеричный целый

десятичный, восьмеричный или
шестнадцатеричный целый

десятичный целый без знака

десятичный целый без знака

шестнадцатеричный целый

шестнадцатеричный целый

строка символов

символ

символ %

указатель на hit (int *arg)

шестнадцатеричный формат:
YYYY:ZZZZ или ZZZZ

Тип аргумента

указатель на int (int *arg)

указатель на long (long *arg)

указатель на float (float *arg)

указатель на float (float *arg)

указатель на float (float *arg)

указатель на int (int *arg)

указатель на long (long *arg)

указатель на int (int *arg)

указатель на long (long *arg)

указатель на unsigned int (unsig-
ned int *arg)

указатель на unsigned long (un-
signed long *arg)

указатель на int (int *arg)

указатель на int (int *arg)

указатель на массив символов
(char arg[])

указатель на char (char *arg) или,
если задана ширина поля (напри-
мер, %5с), то на массив символов
размером W (char arg[W])

не преобразуется

в ячейку памяти, на которую
указывает аргумент, заносится
количество успешно прочитанных
к данному моменту символов

указатель на объект
(far* или near*)

Примеры использования строки форматирования вы можете найти в гл. 4
в описании функций ввода.

3.1.3.3 Строка форматирования функций типа Format
Описанная ниже строка форматирования используется в функциях Format.

FormatBuf, FmtStr, StrFmt, StrLFmt и др.

218 Глава 3

Строка содержит обычные символы и спецификаторы формата полей. Обыч-
ные символы просто копируются в выходную строку, а спецификаторы определя-
ют форматирование аргументов из заданного списка.

Спецификации формата начинаются с символа % и имеют вид:
"%" [index ":"] ["-"] [width] ["." prec] type

Единственно обязательным элементом спецификации является type — сим-
вол, указывающий на то, как будет трактоваться аргумент. Остальные необяза-
тельные элементы задают параметры форматирования:

[index ":"]

["-"]

[width]

["." prec]

Устанавливает текущий индекс массива аргументов в заданное
значение index. Индексы начинаются с 0. Например, специфика-
тор % 0: переводит индекс на начало массива и обеспечивает по-
вторное форматирование первого аргумента.

Обеспечивает выравнивание результата влево с заполнением остав-
шихся правых позиций поля пробелами. В отсутствие специфика-
тора ["--"] выравнивание производится вправо.

Устанавливает минимальную ширину поля в результирующей
строке. Если результат преобразования короче ширины поля, про-
исходит выравнивание вправо (или влево, если был записан специ-
фикатор ["—"]) с заполнением лишних позиций пробелами.

Спецификатор точности, определяющий число выводимых симво-
лов (в зависимости от принятого формата). Спецификатор записы-
вается после символа точки (.), чтобы отделить его от предшеству-
ющего спецификатора width.

Значения спецификаторов index, width и prec могут задаваться в виде целых
значений или в виде символа звездочки (*).В последнем случае предполагается,
что значение спецификатора задается очередным аргументом из списка.

Ниже приведены возможные значения type.

Символ Тип аргумента Формат вывода

целый Десятичный формат — строка десятичных цифр.
Если используется спецификатор ["." prec], то он
указывает минимальное количество выводимых
цифр. Если действительное количество цифр резу-
льтата меньше указанного спецификатором точно-
сти, то происходит выравнивание вправо с заполне-
нием лишних позиций нулями.

действительный Научный формат — строка вида "-d.ddd...E+ddd".
Перед десятичной точкой всегда помещается одна
цифра и для отрицательных величин — знак минус.
Если используется спецификатор ["." ргес], то он
указывает общее количество выводимых цифр,
включая цифру перед десятичной точкой (по умол-
чанию 15 цифр). После символа порядка "Е" всегда
указывается знак — плюс или минус.

действительный Формат с фиксированной точкой — строка вида
"—ddd.ddd...". Если используется спецификатор ["."
ргес], то он указывает количество выводимых цифр
после десятичной точки (по умолчанию 2 цифры).

Функции С, C++, библиотек C++Builder, API Windows 219

Символ

е

п

m

Р

S

X

Тип аргумента

действительный

действительный

действительный

указатель

символ, строка
или тип PChar

целый

Формат вывода

Универсальный формат — преобразование в научный
формат или формат с фиксированной точкой, в зави-
симости от того, какой из них дает более компакт-
ный результат. Если используется спецификатор ["."
ргес], то он указывает количество выводимых знача-
щих разрядов (по умолчанию — 15). Начальные
нули не печатаются, десятичная точка печатается,
если необходимо. Формат с фиксированной точкой
используется, если в преобразуемом значении число
цифр до десятичной точки меньше заданной точно-
сти и если значение не меньше 0.00001. В остальных
случаях используется научный формат.

Числовой формат — то же, что формат с фиксиро-
ванной точкой, но с добавлением разделителей ты-
сяч: "-d,ddd,ddd.ddd...".

Монетарный формат — число преобразуется в стро-
ку, отображающую денежную сумму. Формат конт-
ролируется глобальными переменными CurrencySt-
ring, Currency Format, NegCurrPormat, Thousand-
Separator, DecimalSeparator, CurrencyDecimals, за-
даваемыми для монетарного формата разделом Cur-
rency Format элемента International Контрольной пане-
ли Windows. Если используется спецификатор ["."
ргес], то он заменяет собой значение глобальной пе-
ременной CurrencyDecimals.

Указатель — значение преобразуется в строку вида
"XXXX:YYYY", где ХХХХ и YYYY — сегмент и
смещение, выраженные четырьмя шестнадцатерич-
ными цифрами.

Строка символов. Если используется спецификатор
["." ргес], то он задает максимальное число символов.
Если строка длиннее указанного числа, она усекается.

Шестнадцатеричный формат — строка шестнадцате-
ричных цифр. Если используется спецификатор ["."
ргес], то он указывает минимальное количество
цифр результата. Если результат короче, лишние
позиции слева заполняются нулями.

Все указанные в приведенной таблице обозначения форматов могут записы-
ваться в нижнем или верхнем регистре, что никак не влияет на результат.

Для форматов действительных чисел реально используемые символы десятич-
ной точки и разделителей тысяч определяются глобальными переменными Deci-
malSeparator и ThousandSeparator.

Примеры

Примеры влияния формата:

число

110000.

-1.1е+08

%f

110000,00

-110000000,00

%е

1ДОООООООООООООЕ+005

-1ДОООООООООООООЕ+008

%g

110000

-110000000

220 Глава 3

число

0.00011

1.1е-07

12.

0,

%f

0,00

0,00

12,00

0,00

%е

1 , 10000000000000Е-004

1ДОООООООООООООЕ-007

1,20000000000000Е+001

0,ООООООООООООООЕ+000

%g
0,00011

1ДЕ-7

12

0

Примеры влияния точности:

спецификация / число

%.2f

%.3f

% .4f

%.2е

% .Зе

% .4е

%.2g

%.3g

% -4g

1ДЕ-4

0,00

0,000

0,0001

1ДЕ-007

1ДОЕ-007

1ДООЕ-007

1ДЕ-7

1ДЕ-7

1ДЕ-7

12.

12,00

12,000

12,0000

1,2Е+001

1,20Е+001

1.200Е+001

12

12

12

0,00

0,000

0,0000

О.ОЕ+000

0,ОЕ+000

0,ООЕ+000

О.ОООЕ+000

0

0

0

3.1.3.4 TFloatFormat и TFIoatValue — типы форматирования
действительных чисел

Типы TFloatFormat и TFIoatValue определяют форматирование действитель-
ных чисел в таких функциях, как FloatToText, FloatToStrF. FloatToDecimal,
TextToFloat.

Синтаксис

#include <SysUtils.hpp>
enum TFloatFormat { ffGeneral, ffExponent, ffFixed, ffNumber,

ffCurrency };
enum TFIoatValue { fvExtended, fvCurrency };

Описание
TFIoatValue указывает тип преобразуемого числа. Значение fvExtended соот-

ветствует обычному числу с плавающей запятой, а значение fvCurrency — числу
типа Currency.

Тип TFloatFormat определяет коды форматирования чисел с плавающей запя-
той в функциях FloatToText, FloatToStrF. FloatToDecimal, TextToFloat. Воз-
можные значения формата определяют следующие правила форматирования:

ffGeneral Основной числовой формат. Число преобразуется по формату с фик-
сированной точкой или научному в зависимости от того, какой из
них оказывается короче. Начальные нули удаляются, десятичная
точка ставится только при необходимости. Фиксированный формат
используется, если число разрядов слева от точки не больше указан-
ной точности Precision и если значение не меньше 0.00001. В про-
тивном случае используется научный формат, в котором параметр
Digits определяет число разрядов степени — от 0 до 4.

Функции С, C++, библиотек C++Builder, API Windows 221

ffExponent Научный формат. Число преобразуется в строку вида
"-d.ddd...E+dddd". Общее число цифр, включая одну перед десяти-
чной точкой, задается параметром Precision. После символа "Е"
всегда следует знак "+" или "• " и до четырех цифр. Параметр Di-
gits определяет минимальное число разрядов степени — от 0 до 4.

ffFixed Формат с фиксированной точкой. Число преобразуется в строку
вида "-ddd.ddd...". По крайней мере одна цифра всегда предшест-
вует десятичной точке. Число цифр после десятичной точки зада-
ется параметром Digits, который может лежать в пределах от О
до 18. Если число разрядов слева от десятичной точки больше ука-
занного параметром Precision, то используется научный формат.

ffNumber Числовой формат. Число преобразуется в строку вида
'-d,ddd,ddd.ddd...". Данный формат совпадает с ffFixed за исклю-

чением наличия в нем разделителей тысяч.

ffCurrency Монетарный формат. Число преобразуется в строку, отображающую
денежную сумму. Формат контролируется глобальными переменны-
ми CurrencyString, CurrencyFormat, NegCurrFormat, ThousandSe-
parator, DecimalSeparator, задаваемыми для монетарного формата
разделом Currency Format элемента International Контрольной панели
Windows. Число цифр после десятичной точки задается параметром
Digits, который может лежать в пределах от 0 до 18.

Для всех форматов действительные символы, используемые в качестве деся-
тичной точки и разделителя тысяч, определяются глобальными переменными
DecimalSeparator и Thousands eparat or.

3.1.3.5 Строка форматирования функций типа FormatFloat

Строка форматирования, описанная ниже, применяется в функциях Format-
Float, FloatToTextFmt, в методе FormatFloat класса AnsiString и в некоторых
других.

В строке используются следующие символы:

О Сохранение позиции для цифры. Если форматируемое число со-
держит цифру в позиции, в которой в строке форматирования
имеется символ "О", то эта цифра копируется в выходную строку.
В противном случае в этой позиции в выходной строке содержит-
ся "О".

Сохранение позиции для цифры. Если форматируемое число со-
держит цифру в позиции, в которой в строке форматирования
имеется символ "#", то эта цифра копируется в выходную строку.
В противном случае в эту позицию в выходной строке ничего не
заносится.

Десятичная точка. Первый символ точки "." в строке форматиро-
вания определяет позицию десятичной точки в отформатирован-
ном числе. Любые последующие символы "." в строке игнориру-
ются. Действительный символ, используемый в качестве десяти-
чной точки, определяется глобальной переменной DecimalSepara-
tor, установленной в разделе Number Format элемента International
программы «Панель управления» Windows.

222 Глава 3

Разделитель тысяч. Если строка форматирования содержит один
или более символов ",", то в выходной строке будут использованы
разделители тысяч. Местоположение символов "," в строке форма-
тирования безразлично — это просто указание, что надо использо-
вать разделители тысяч. Действительный символ, используемый
в качестве разделителя, определяется глобальной переменной Tho-
usandSeparator, установленной в разделе Number Format элемента
International программы «Панель управления» Windows.

Е+, Е-
е+, е—

Научный формат. Если в строке форматирования встречаются си-
молы "Е+", "Е-", "е+" или "е-", то при форматировании исполь-
зуется научный формат. Сразу после этих символов может быть
расположена группа символов "О" (до четырех символов), которая
определяет минимальное число цифр в показателе степени. Если
в строке использованы символы "Е+" или "е+", то как перед по-
ложительной, так и перед отрицательной степенью будет всегда
помещаться знак "+" или "•-". Если в строке использованы симво-
лы "Е-" или "е-", то знак будет помещаться только перед отрица-
тельной степенью.

'хх'/"хх" Символы, заключенные в одинарные или двойные кавычки, выво-
дятся в выходную строку, никак не влияя на форматирование.

Символ разделяет разделы строки, связанные с форматированием
положительных, отрицательных и нулевых значений.

Расположение крайнего левого символа "О" перед десятичной точкой и край-
него правого символа "О" после десятичной точки определяет число цифр, всегда
присутствующих в выходной строке.

Форматируемое число всегда округляется до стольких десятичных разрядов,
сколько символов "О" и "#" находится справа от десятичной точки. Если строка
форматирования не содержит десятичной точки, значение форматируемого числа
округляется до ближайшего целого.

Если форматируемое число имеет больше цифр слева от десятичной точки,
чем количество расположенных в строке форматирования символов "О" и "#", то
лишние цифры все равно выводятся в начале числа.

Строка форматирования может содержать от одной до трех секций, разделяе-
мых точкой с запятой. Если задана только одна секция, то она применяется для
форматирования любых чисел. Если задано две секции, то первая используется
при форматировании положительных чисел и нуля, а вторая — при форматирова-
нии отрицательных чисел. Если заданы три секции, то первая относится к поло-
жительным числам, вторая — к отрицательным, третья — к нулю.

Если секции отрицательных чисел или нуля пустые (т.е. ничего не написано
после соответствующей точки с запятой), то вместо них используется секция поло-
жительных чисел.

Если секция положительных чисел пустая или вообще строка форматирова-
ния пустая, то используется основной формат чисел с плавающей запятой с 15 зна-
чащими разрядами. Этот формат соответствует формату ffGeneral типа TFloat-
Format (см. разд. 3.1.3.4). Этот же формат используется, если число имеет более
18 разрядов до десятичной точки и строка форматирования не содержит указания
на применение научного формата.

Примеры
Ниже приведены строки форматирования и соответствующие им выходные

строки.

Функции С, C++, библиотек C++Builder, API Windows 223

Строка форматирования

пустая

0

0.00

#.##

#,##0.00

#,##0.00;(#,##0.00)

#,##0.00;;Нуль

О.ОООЕ+00

#.###Е-0

1234

1234

1234,00

1234

1 234,00

1 234,00

1 234,00

1.234Е+03

1,234ЕЗ

-1234

-1234

-1234,00

-1234

-1 234,00

(1 234,00)

-1 234,00

-1.234Е+03

-1,234ЕЗ

0.5

1

0,50

,5

0,50

0,50

0,50

5,ОООЕ-01

5Е-1

0

0

0,00

0,00

0,00

Нуль

О.ОООЕ+00

ОЕО

3.1.4 Обработка ошибок времени выполнения, диагностика

Чтобы работать с сообщениями об ошибках времени выполнения, в приложе-
ние должна быть включена директива

#include <errno.h>

3.1.4.1 _doserrno, errno и _sys_nerr — переменные,
содержащие коды ошибок

Переменные _doserrno и еггпо типа int получают положительные значения
при возникновении различных ошибок времени выполнения. Значения_<1о8еггпо
и еггпо задаются одновременно, но иногда они могут различаться, поскольку
еггпо — переменная, совместимая с UNIX.

Коды ошибок, присваиваемые еггпо, являются одновременно индексами мас-
сива _sys_errlist, содержащего сообщения об ошибках. Кроме того имеется пере-
менная _sys_nerr, которая содержит номер ошибки и используется функцией
реггог (файл stdio.h) для вывода в стандартный поток сообщений об ошибках
stder. Поэтому доступ к соответствующему сообщению можно получить или как
_sys_errlist[errno], или как _sys_errlist[_sys_nerr].

Нормальное значение рассматриваемых переменных — 0. При выполнении
различных математических функций, при манипуляциях с файлами и т.п. это зна-
чение при возникновении ошибки изменяется и сохраняется таким вплоть до сле-
дующего обращения к соответствующей функции. Если это нежелательно, надо
программно сбрасывать значения в 0.

3.1.4.2 Коды ошибок
Ниже приводится таблица, содержащая мнемонические константы ошибок,

их коды и соответствующие сообщения из массива _sys_errlist.

Константа

E2BIG

EACCES

EAGAIN

EBADF

EBUSY

Код

20

5

42

6

44

Сообщение в _sys_errlist

Arg list too long

Permission denied

Resource temporarily unavailable

Bad file number

Resource busy

224 Глава 3

Константа

ECHILD

ECONTR

ECURDIR

EDEADLOCK

EDOM

EEXIST

EFAULT

EFBIG

EINTR

EINVACC

EINVAL

EINVDAT

EINVDRV

EINVENV

EINVFMT

EINVFNC

EINVMEM

ЕЮ

EISDIR

EMFILE

EMLINK

ENFILE

ENMFILE

ENODEV

ENOENT

ENOEXEC

ENOFILE

ENOMEM

ENOPATH

ENOSPC

ENOTBLK

ENOTDIR

ENOTSAM

ENOTTY

ENXIO

EPERM

Код

24

7

16

36

33

35

14

27

39

12

19

13

15

10

11

1

9

40

46

4

31

23

18

15

2

21

2

8

3

28

43

45

17

25

41

37

Сообщение в _sys_errlist

No child process

Memory blocks destroyed

Attempt to remove CurDir

Locking violation

Math argument

File already exists

Unknown error

Для UNIX — в MSDOS отсутствует

Interrupted function call

Invalid access code

Invalid argument

Invalid data

Invalid drive specified

Invalid environment

Invalid format

Invalid function number

nvalid memory block address

Input/output error

Для UNIX — в MSDOS отсутствует

Too many open files

Для UNIX — в MSDOS отсутствует

Too many open files

No more files

No such device

No such file or directory

Exec format error

File not found

Not enough core

Path not found

No space left on device

Для UNIX — в MSDOS отсутствует

Для UNIX — в MSDOS отсутствует

Not same device

Для UNIX — в MSDOS отсутствует

No such device or address

Operation not permitted

Функции С. C++, библиотек C++Builder, API Windows 225

Константа

EPIPE

ERANGE

EROFS

ESPIPE

ESRCH

ETXTBSY

EUCLEAN

EXDEV

EZERO

Код

32

34

30

29

38

26

47

22

0

Сообщение в _sys_errlist

Broken pipe

Result too large

Read-only file system

Illegal seek

Для UNIX — в MSDOS отсутствует

Для UNIX — в MSDOS отсутствует

Для UNIX — в MSDOS отсутствует

Cross-device link

Error 0

Стандартные сообщения можно изменять. Например, оператор
strcpy(_sys_errlist[ENOENT],"Нет такого файла или каталога");

русифицирует стандартное сообщение "No such file or directory".

Ниже приведена таблица других кодов ошибок -- ошибок файлового вво-
да-вывода, которые возникают, если в проекте C++Builder включена опция I/O
checking на странице Pascal окна опций проекта. Эти коды генерируются в С++Ви-
ilder при создании исключения EInOutError.

Код

2

3

4

5

100

101

106

Ошибка

Файл не найден

Неправильное имя файла

Слишком много открытых файлов

Файл не доступен

Достигнут конец файла (EOF)

Диск переполнен

Ошибка ввода

3.1.4.3 EDOM, ERANGE — константы сообщений об ошибках

Символические целочисленные константы EDOM и ERANGE используются
в математических и других функциях для сообщений об ошибках. Узнать, возник-
ла ли соответствующая ошибка при выполнении некоторой функции, можно про-
веркой переменной errno, например:

i f (e r r n o == EDOM)

3.1.4.4 jnatherr и jnatherrl — обработчики ошибок

Синтаксис
#include <math.h>
int _matherr(struct _exception *e);
int _matherrl(struct _exceptionl *e);

Описание
Функция _matherr или _matherrl (для типов long double) вызываются биб-

лиотечными математическими функциями при возникновении в них ошибок, свя-

226 Глава 3

занных с недопустимыми значениями параметров (корень или логарифм отрица-
тельного числа и т.п.). Функции перехватывают только ошибки, выхода за преде-
лы области определения и выхода за диапазон допустимых значений, но не реаги-
руют на исключения при выполнении математических операций, например, при
делении на 0. Для перехвата таких событий служит функция signal.

Стандартные варианты _matherr и _matherrl могут быть переопределены
пользователем, если он объявит в своем приложении аналогичные функции. Эти
функции пользователя должны возвращать ненулевое значение, если они обрабо-
тали ошибку. В этом случае не возникает стандартного сообщения об ошибке и не
изменяется значение переменной еггпо. Если переписанные пользователем вари-
анты _matherr и _matherrl не обработали данную ошибку, они должны вернуть 0.
Тогда будет проведена стандартная обработка ошибки.

В качестве параметра е в функции передаются структуры: *
struct _exception {

int type;
char *name;
double argl, arg2, retval;

};

struct _exceptionl {
int type;
char *name;
long double argl, arg2, retval;

};

Элемент структуры type определяет тип ошибки. Элемент name указывает на
строку, содержащую имя функции, в которой произошла ошибка. Элементы argl
и arg2 — это значения аргументов, приведшие к ошибкам (если функция имеет
один аргумент, то его значение помещается в argl). Элемент retval — возвращае-
мое по умолчанию значение функции. Пользователь может изменить это значение.

Тип ошибки, хранящийся в элементе type, может принимать одно из следую-
щих значений:

DOMAIN

SING

OVERFLOW

UNDERFLOW

TLOSS

аргумент выходит за пределы области определения; например,
log(-l)

аргумент соответствует особой точке функции; например,
pow(0, -2)

аргумент приводит к значению функции, превышающему
DBL_MAX (или LDBL_MAX); например, ехр(ЮОО)

аргумент приводит к значению функции, меньшему чем
DBL_MIN (или LDBL_MIN); например, ехр(-ЮОО)

аргумент приводит к значению функции с полной потерей
значащих разрядов; например, sin(10e70)

Фигурирующие в приведенном описании макросы DBL_MAX, DBL_MIN,
LDBL_MAX и LDBL_MIN определены в файле float.h.

Пример
Приведенный ниже пример показывает функцию, обрабатывающую ошибку

типа DOMAIN функции sqrt (корень из отрицательного числа), заменяя результат
на корень из положительного числа:

int _matherr (struct _exception *a)
{

if (a->type == DOMAIN)
if (!s trcmp(a->name,"sqrt"J) {

Функции С, C++, библиотек C++Builder, API Windows 227

a->retval = sqrt (- (a->argl));
return 1;

return 0;

3.1.5 Некоторые сообщения Windows

В разд. 1.14, в данной главе и в гл. 4 описан ряд функций работы с сообщения-
ми Windows. Ниже приводятся сведения о некоторых наиболее часто используе-
мых сообщениях.

WM_ACTIVATE

Сообщение посылается, когда окно переводится в активное или неактивное со-
стояние. Сначала посылается окну, переходящему в неактивное состояние, а по-
том — активируемому.

Определение
WM_ACTIVATE

fActive = LOWORD(wParam);
fMinimized = (BOOL) HIWORD(wParam);
hwndPrevious = (HWND) IParam;

Параметры
fActive — показывает, как активируется или деактивируется окно. Возмож-

ные значения:

WA_ACTIVE

WA_CLICKACTIVE

WA_INACTIVE

активируется не щелчком мыши (например, функцией
Set Active Window или клавиатурой)

активируется щелчком мыши

деактивируется

fMinimized — ненулевое значение, показывающее, что окно минимизировано.
hwndPrevious — дескриптор, который указывает на окно, из которого фокус

переключился на данное окно, если оно активируется, или на окно, в которое пере-
дается управление, если данное окно деактивируется.

Возвращаемое значение
Если приложение обрабатывает это сообщение, оно должно возвращать нуль.

Действие по умолчанию
Если активируемое окно не свернуто, то оно получает фокус.

Примечания
Если окно активируется щелчком мыши, оно получает также сообщение

WMJMOUSEACTIVATE.

WM_ACTIVATEAPP

Сообщение посылается при переходе активности от окна одного приложения
к окну другого приложения. Сообщения посылаются обоим окнам.

Определение
WM_AC TIVATEAPP

fActive = (BOOL) wParam;
dwThreadJD = (D W O R D) IParam;

228 Глава 3

Параметры
fActive — значение true означает, что окно становится активным, a false —

что окно теряет активность.
dwThreadID — указывает сторонний процесс, который теряет или приобрета-

ет активность.

Возвращаемое значение
Если приложение обрабатывает это сообщение, оно должно возвращать нуль.

WM_CANCELMODE

Сообщение посылается окну, имеющему фокус при отображении модальных
форм — диалогов и сообщений об ошибках. Дает возможность окну закрыться и
освобождает мышь.

Возвращаемое значение
Если приложение обрабатывает это сообщение, оно должно возвращать нуль.

Действие по умолчанию
Внутренний процесс завершается и мышь освобождается.

WM_CLOSE

Сигнализирует, что окно или приложение закрывается.

Определение
WM_CLOSE

Возвращаемое значение
Если приложение обрабатывает это сообщение, оно должно возвращать нуль.

Действие по умолчанию
Вызывается функция DestroyWindow, уничтожающая окно.

Примечания
Приложение при обработке этого сообщения может запросить пользователя о

необходимости закрывать окно и вызвать функцию DestroyWindow только при по-
ложительном ответе.

WM_GETMINMAXINFO

Посылается перед изменением размеров или положения окна. Обработчик со-
общения может использоваться для ограничения допустимых размеров и коорди-
нат положения на экране.

Определение
WM_GETMINMAXINFO
Ipmmi = (LPMINMAXINFO) IParam;

Параметры
Параметр Ipmmi указывает на структуру типа MINMAXINFO, содержащую

принятые по умолчанию пределы изменения размеров и координат положения
окна. Описание этой структуры:

typedef struct tagMINMAXINFO {
POINT ptReserved;
POINT ptMaxSize;
POINT ptMaxPosition;
POINT ptMinTrackSize;
POINT ptMaxTrackSize;

} MINMAXINFO;

Функции С, C++, библиотек C++Builder, API Windows 229

Поля структуры означают следующее:

ptReserved

ptMaxSize

ptMaxPosition

ptMinTrackSize

ptMaxTrackSize

Зарезервировано и пока не используется

Поле типа Point определяет ширину (Point
(Point.y) развернутого окна

.х) и высоту

Поле типа Point определяет положения левого (Point. х) и
верхнего (Point.y) краев развернутого окна

Поле типа Point определяет минимальную ширину (Point. х)
и минимальную высоту (Point.y) окна при изменении поль-
зователем размеров его рамки

Поле типа Point определяет максимальную
и максимальную высоту (Point.y) окна при
зователем размеров его рамки

ширину (Point. х)
изменении ноль-

Возвращаемое значение
Если приложение обрабатывает это сообщение, оно должно вернуть 0.

Пример
Приведенный ниже обработчик события WM_GETMINMAXINFO ограничива-

ет высоту окна в пределах 100 х 200 пикселов, ширину — в пределах 150 х 300 пик-
селов и задает координаты левого верхнего угла распахнутого окна равными теку-
щим координатам левого верхнего угла окна.

type
TForml = c l a s s (T F o r m)

private
procedure WMGetMinMaxInfо(var Info: TWMGetMinMaxInfo);

message WMJ3ETMINMAX1NFO;

end;

implementation

procedure TForml .WMGetMinMaxInfо(var I n f o : T W M G e t M i n M a x I n f o) ;
begin

with I n f o . M i n M a x I n f o A do
begin

ptMinTrackSize.x := 150;
ptMaxTrackSize.x := 300;
ptMinTrackSize.у := 100;
ptMaxTrackSize.у := 200;
ptMaxPosit ion.x:=BoundsRect .Left ;
ptMaxPosit ion.у:=BoundsRect.Top;

end;
inherited;

end;

WM_GETTEXT

Посылается, чтобы скопировать текст, связанный с окном, в указанный буфер.

Определение
WM_GETTEXT
wParam = (WPARAM) cchTextMax;
IParam = (LPARAM) IpszText;

230 Глава 3

Параметры
cchTextMax указывает минимальное число символов, которые должны быть

скопированы, включая нулевой конечный символ.
IpszText указывает на §уфер, принимающий текст.

Возвращаемое значение
Возвращает число скопированных символов.

Действие по умолчанию
Копируется текст, связанный с окном, в указанный буфер и возвращается чис-

ло скопированных символов.

Примечания
Для всех окон редактирования текст — это содержимое окна. Для выпадаю-

щих списков текст — это выделенный текст. Для кнопок текст — это имя кнопки.
Для остальных оконных компонентов текст — это заголовок окна.

Для копирования обогащенного текста, превышающего 64К, надо использо-
вать сообщения EM_STREAMOUT или EM_GETSELTEXT.

WM_SETFONT

Посылается, чтобы задать шрифт, который будет использоваться для текста
указанного окна.

Определение
WM_SETFONT
wParam = (WPARAM) hfont; // дескриптор шрифта
IParam = MAKELPARAM(fRedraw, 0); // флаг перерисовки

Параметры
hfont — указатель на шрифт. Если hfont задан равным NULL, будет использо-

ваться системный шрифт по умолчанию.
fRedraw — при значении true компонент будет немедленно перерисован после

изменения шрифта.

Возвращаемое значение
Сообщение не возвращает никакого значения.

Примечания
Сообщение можно посылать- диалоговым окнам и любым оконным компонен-

там. При изменении шрифта размер окна не изменяется. Так что, если необходимо
изменять размер окна, чтобы в нем поместился текст с новым шрифтом, это надо
делать отдельно.

Пример
Приведенный ниже оператор изменяет шрифт окна редактирования Editl

формы Form2, заменяя его выбранным пользователем в диалоге выбора шрифта,
инициированном компонентом FontDialogl:

if (FontDialogl.Execute) then
SendMessage(Form2.Editl.Handle, WM_SETFONT,

FontDialogl.Font.Handle, 0);

WM_SETTEXT

Посылается, чтобы задать текст указанного окна.

Определение
WM_SETTEXT
wParam = 0;
IParam = (LPARAM) (LPCTSTR)Ipsz;

Функции С, C++, библиотек C++Builder, API Windows 231

Параметры
Ipsz — указатель на строку текста окна с нулевым конечным символом.

Возвращаемое значение
Возвращает true, если текст установлен. В противном случае возвращает false

(для окна редактирования), LB_ERRSPACE (для списка) или CBJERRSPACE (для
выпадающего списка) если не хватает места для размещения текста. Возвращает
CB_ERR, если сообщение посылается выпадающему списку без окна редактирова-
ния.

Действие по умолчанию
Устанавливает и отображает текст окна.

Примечания
Для всех окон редактирования текст — это содержимое окна. Для выпадаю-

щих списков текст — это выделенный текст. Для кнопок текст — это имя кнопки.
Для остальных оконных компонентов текст — это заголовок окна.

Сообщение не изменяет текущее выделение в списках. Чтобы выделялся эле-
мент списка, соответствующий тексту, надо использовать сообщение CB_SELECT-
STRING.

3.1.6 AnsiString — тип строк

В C++Builder тип строк AnsiString реализован как класс, объявленный в фай-
ле vcl/dstring.h и аналогичный типу длинных строк в Delphi. Это строки с нуле-
вым символом в конце. При объявлении переменные типа AnsiString инициализи-
руются пустыми строками.

Для AnsiString определены операции отношения ==, !=, >, <, >=, <=. Сравне-
ние производится с учетом регистра. Сравниваются коды символов, начиная с пер-
вого, и если очередные символы не одинаковы, строка, содержащая символ с мень-
шим кодом считается меньше. Если все символы совпали, но одна строка длиннее
и в ней имеются еще символы, то она считается больше, чем более короткая.

Для AnsiString определены операции присваивания =, += и операция склеи-
вания строк (конкатенации) +. Определена также операция индексации []. Индек-
сы начинаются с 1. Например, если S1 = "Привет", то Sl[l] вернет 'П', Sl[2] вер-
нет 'р' и т.д.

Работа с классом AnsiString рассмотрена в гл. 2 в разд. 2.5.2. Основные мето-
ды класса AnsiString (в описаниях методов через S1 обозначена строка, метод ко-
торой используется):

Метод

AnsiCompare

AnsiCompareIC

AnsiLastChar

Синтаксис / Описание

hit AnsiCompare(const AnsiString& rhs) const
Сравнивает данную строку SI с rhs с учетом регистра. Срав-
нение зависит от текущих установок Windows и может отли-
чаться от сравнения, осуществляемого операциями сравнения.
Возвращает значение > 0 при SI > rhs, значение < 0 при S1
< rhs и значение 0 при Sl = rhs

hit AnsiCompareIC(const AnsiString& rhs) const

Осуществляет сравнение, аналогичное AnsiCompare, но без
учета регистра

char* AnsiLastChar() const
Возвращает указатель на последний значащий символ. Под-
держивает многобайтные символы

232 Глава 3

Метод

AnsiPos

AnsiString

c_str

CurrToStr

CurrToStrF

Delete

Синтаксис / Описание

int AnsiPos(const AnsiString& subStr) const
Возвращает индекс первого символа первого вхождения
subStr в S1. Индексы начинаются с 1. Если subStr не содер-
жится в S1, возвращается 0. В отличие от Pos поддерживает
многобайтные символы

AnsiS tring(apryMeHT)
Конструктор класса. В зависимости от типа аргумента создает:

Аргумент

Отсутствует

const char* src

const AnsiString& src

const char* src,
unsigned char len

const wchar_t* src

int src

double src

Создает

Пустую строку

Строку с нулевым символом в конце
из массива символов

Копию AnsiString src

Строку с нулевым символом в конце,
являющуюся копией первых len сим-
волов из src

Строку с нулевым символом в конце из
массива src символов типа wchar_t

Строку с нулевым символом в конце из
массива src целых значений символов

Строку с нулевым символом в конце
из массива src значений символов
с плавающей запятой; преобразуются
первые 15 значащих разрядов

char* c_str()const
Возвращает указатель на строку с нулевым символом в конце,
содержащую те же символы, что в AnsiString

static AnsiString CurrToStr(Currency value)
Преобразует значение value типа Currency в строку

static AnsiString CurrToStrF(Currency value,
TStringFloatFormat format, int digits)

Преобразует значение value типа Currency в строку, исполь-
зуя указанный формат преобразования чисел с плавающей за-
пятой (см. разд. 3.1.8). Параметр определяет задаваемое чис-
ло разрядов. Функция соответствует функции CurrToStrF
с заданной точностью 19 разрядов

void Delete(int index, int count)
Удаляет из строки, начиная с позиции index число символов,
равное count

Функции С, C++, библиотек C++Builder, API Windows 233

Метод

FloatToStrF

Format

FormatFloat

Insert

IntToHex

IsDelimiter

IsEmpty

LastDelimiter

Length

LowerCase

Pos

Синтаксис / Описание

static AnsiString FloatToStrF(long double value,
TStringFloatFormat format, int precision, int digits)

Преобразует значение value с плавающей запятой в строку,
используя указанный формат (см. разд. 3.1.8). Параметры
precision и digits задают точность и число разрядов. Точность
должна задаваться не более 7 для типа float, не более 15 для
double и не более 18 для Extended. Число разрядов зависит от
выбранного формата

static AnsiString Format(const AnsiString& format,
const TVarRec *args, int size)

Формирует строку, используя строку формата format и мас-
сив аргументов args

static AnsiString FormatFloat(const AnsiString& format,
const long double& value)

Преобразует значение value с плавающей запятой в строку,
используя указанный формат format

void Insert(const AnsiString& str, int index)
Вставляет в строку подстроку str, начиная с индекса index

static AnsiString IntToHex(int value, int digits)
Преобразует значение value в строку, содержащую минимум
digits шестнадцатеричных цифр

bool IsDelimiter(const AnsiString& delimiters, int index) const
Возвращает true, если символ с индексом index является од-
ним из разделителей, указанных в строке delimiters. Работает
и для многобайтных символов

bool IsEmpty() const
Возвращает true, если строка пустая

int LastDelimiter(const AnsiString& delimiters) const
Возвращает последний из символов строки, входящих в стро-
ку разделителей delimiters. Например, если

AnsiStr ing s = "с : \ \ f i l e n a m e . ext" ;

ТО

s .LastDelimiter (" \ \ .:") ;

вернет 12 (индекс символа точки)

int LengthQ const
Возвращает число символов в строке

AnsiString LowerCase() const
Возвращает строку, в которой все символы приведены к ниж-
нему регистру. Не влияет на исходную строку

int Pos(const AnsiString& subStr) const
Возвращает индекс первого символа первого вхождения
subStr в S1. Индексы начинаются с 1. Если subStr не содер-
жится в S1, возвращается 0. В отличие от AnsiPos не поддер-
живает многобайтные символы

234 Глава 3

Метод

SetLength

StringOfChar

Substring

ToDouble

Tolnt

ToIntDef

Trim

TrimLeft

TrimRight

Unique

UpperCase

WideChar

Синтаксис / Описание

void SetLength(int newLength)
Усекает строку до newLength символов. Если исходная строка
короче, то она не увеличивается

static AnsiString StringOfChar(char ch, int count)
Возвращает строку, в которой символ ch повторен count раз.
Например,

AnsiStr ing s = Ans iSt r ing : : StringOfChar (' A ' , 10) ;

задаст строке s значение "АААААААААА"

AnsiStrine SubString(int index, int count) const
Возвращает подстроку, начинающуюся с символа в позиции
index и содержащую count символов

double ToDouble() const
Преобразует строку в число с плавающей запятой. Если стро-
ка не соответствует формату числа с плавающей запятой, ге-
нерируется исключение EConvertError

int Tolnt() const
Преобразует строку в целое число. Если строка не соответст-
вует формату целого числа, генерируется исключение ECon-
vertError

int ToIntDef(int defaultValue) const
Преобразует строку в целое число. Если строка не соответст-
вует формату целого числа, возвращается значение по умолча-
нию defaultValue

AnsiString Trim() const
Возвращает строку, соответствующую исходной, но без пробе-
льных символов до и после значащих символов

AnsiString TrimLeft() const
Возвращает строку, соответствующую исходной, но без нача-
льных пробельных символов

AnsiString TrimRight() const
Возвращает строку, соответствующую исходной, но без заклю-
чительных пробельных символов

void Unique()
Делает строку уникальной, т.е. устанавливает число ссылок
на нее (refcnt) в 1. Таким образом, на нее ссылается только
один объект

AnsiString UpperCaseQ const
Возвращает строку, в которой все символы приведены к верх-
нему регистру. Не влияет на исходную строку

wchar_t* WideChar(wchar_t* dest, int destSize) const
Преобразует строку в массив символов dest типа wchar_t
и возвращает указатель на этот массив

Функции С, C++, библиотек C++Builder, API Windows 235

Метод

WideCharBuf-
Size

Синтаксис / Описание

int WideCharBufSize() const

Возвращает размер буфера, требуемого для функции WideChar

3.1.7 Тип данных TDateTime

Тип, используемый функциями и процедурами, работающими с датами и вре-
менем

Заголовочный файл systdate.h.

Описание
Тип TDateTime был введен в Object Pascal как число с плавающей запятой, це-

лая часть которого содержит число дней, отсчитанное от некоторого начала кален-
даря, а дробная часть равна части 24-часового дня, т.е. характеризует время и не
относится к дате. Для 32-разрядных версий за начало календаря принята дата 00
часов 30 декабря 1899 года. Прибавление к значению типа TDateTime целого чис-
ла D равносильно увеличению даты на D дней. Разность двух значений типа
TDateTime дает разность двух дат с точностью до долей дня.

В C++Builder тип TDateTime реализован в виде класса. Впрочем, его можно
использовать точно так же, как в Object Pascal. Но в действительности, возможно-
сти класса TDateTime шире. В частности, можно использовать конструктор, ини-
циирующий переменную заданным значением TDateTime. Например, оператор

TDateTime Т (N o w ()) ;

объявляет переменную Т и передает в нее текущую дату и время с помощью функ-
ции Now.

В классе определен ряд операций: "+" и " - сложение и вычитание числа
дней, включая дробную часть дня, "++" и•"• — прибавление и вычитание од-
ного дня, double — перевод в форму действительного числа, типичную для Delphi,
операции отношения и ряд других.

Можно также использовать ряд полезных функций-элементов данного класса:

Функция-элемент

CurrentDate

CurrentDateTime

CurrentTime

DateString

DateTimeString

Объявление / Описание

TDateTime CurrentDate()
Возвращает текущую дату с нулевым временем

TDateTime CurrentDateTime()
Возвращает текущую дату и время

TDateTime CurrentTime()
Возвращает текущее время с нулевой датой

AnsiStrinsf DateStringO const
Возвращает дату объекта TDateTime в виде строки, отфор-
матированной в соответствии с глобальной переменной
ShortDateFormat

AnsiString DateTimeStringO const
Возвращает дату и время объекта TDateTime в виде строки.
Дата форматируется в соответствии с глобальной перемен-
ной ShortDateFormat. Время форматируется в соответствии
с глобальной переменной LongTimeFormat

236 Глава 3

Функция-элемент

DayOfWeek

DecodeDate

DecodeTime

FileDate

FileDateToDate-
Time

FormatString

TimeString

Объявление / Описание

int DayOfWeek() const
Возвращает день недели объекта TDateTime (1 — воскресе-
нье, 7 — суббота)

void DecodeDate(unsigned short* year, unsigned short* month,
unsigned short* day) const

Выделяет год year, месяц month и день day из объекта
TDateTime

void DecodeTime(unsigned short* hour, unsigned short* min,
unsigned short* sec, unsigned short* msec) const

Выделяет час hour, минуту min, секунду sec и миллисекун-
ды msec из объекта TDateTime

int FileDateO const
Возвращает объект TDateTime, переведенный в формат дат
и времени DOS

TDateTime FileDateToDateTime(int fileDate)
Переводит в объект TDateTime дату и время fileDate, за-
данные в формате DOS

AnsiString FormatStringCconst AnsiString& format)
Возвращает строку объекта TDateTime, сформированную по
строке форматирования format

AnsiString TimeStringO const
Возвращает строку, содержащую время, записанное в объ-
екте, отформатированное с помощью глобальной перемен-
ной LongTimeFormat

Примеры
Labell->Caption = Т;
Label2->Caption = Т.DateTimeString();
Label3->Caption = Т.DateString() ;
Label4->Caption = Т.TimeString();

// 26. 05.2002 18:44:07

// 26. 05.2002
//18:44:07

Два первых оператора отобразят одно и то же: дату и время, в виде, показан-
ном в комментарии к первому из них. Третий и четвертый операторы отобразят со-
ответственно дату и время, вид которых указан в комментариях.

3.1.8 TStringFloatFormat - тип

В ряде методов и функций тип TStringFloatFormat определяет формат пред-
ставления чисел строкой.

Определение
enum TStringFloatFormat

Различные значения формата означают следующее:

sffGeneral, sffExponent, sffFixed,
sffNumber, sffCurrency};

Функции С, C++, библиотек C++Builder, API Windows 237

Значение Описание

sffGeneral Значение преобразуется в наиболее компактное из двух форматов:
с фиксированной точкой или научного формата. Младшие нуле-
вые разряды усекаются. Десятичная точка появляется только при
необходимости. Формат с фиксированной точкой используется то-
лько при числе цифр целой части большем не больше указанной
точности и при значениях не меньше 0.00001. В остальных слу-
чаях используется научный формат с минимальным числом цифр
в степени порядка (от 0 до 4).

sffExponent Научный формат. Значение преобразуется в строку вида

"-d.ddd...E+dddd". Символ '—' записывается только для отрицатель-
ных чисел. Перед десятичной точкой записывается всегда одна
цифра. Общее число цифр (включая цифру перед точкой) опреде-
ляется заданной точностью. После символа 'Е' всегда ставится
знак + или —, Число цифр в степени (порядок числа) лежит
в пределах от 0 до 4.

sffFixed Формат с фиксированной точкой. Значение преобразуется в стро-
ку вида "-ddd.ddd...". Символ '—' записывается только для отрица-
тельных чисел. Перед десятичной точкой записывается пот край-
ней мере одна цифра. Число цифр поле точки определяется задан-
ным числом разрядов (от 0 до 18). Если число цифр слева от точ-
ки должно быть больше заданной точности, используется науч-
ный формат.

sffN umber Числовой формат. Значение преобразуется в строку вида
"-d,ddd,ddd.ddd...". Совпадает с форматом sffFixed за исключением
наличия разделителей после каждых трех разрядов в целой час-
ти.

sffCurrency Монетарный формат для представления чисел, отображающих де-
нежные суммы. Определяется установками Windows (глобальными
переменными CurrencyString, CurrencyFormat, NegCurrFormat,
ThousandSeparator, DecimalSeparator). Число цифр после десяти-
чной точки определяется заданным числом разрядов (от 0 до 18).

3.2 Математические функции

3.2.1 Константы, используемые в математических выражениях

Константа

М_1_Р1

M_1_SQRTPI

М_2_Р1

M_2_SQRTPI

М_Е

М LN10

М LN2

MJLOG10E

Описание

1 / Я

корень из 1 / я

2 / л

2 / корень из я

число е

1п(10) — логарифм натуральный от 10

1п(2) — логарифм натуральный от 2

logio(e) — логарифм десятичный от е

Значение

0.318309886183790671538

0.564189583547756286948

0.636619772367581343076

1.12837916709551257390

2.71828182845904523536

2.30258509299404568402

0.693147180559945309417

0.434294481903251827651

238 Глава 3

Константа

M_LOG2E

M_PI

M_PI_2

M_PI_4

M_SQRT_2

M_SQRT2

Описание

Iog2(e) — логарифм по основанию 2
от е

число я

n / 2

к 1 4

корень из 2', деленный на 2

корень из 2

Значение

1.44269504088896340736

3.14159265358979323846

1.57079632679489661923

0.785398163397448309616

0.707106781186547524401

1.41421356237309504880

3.2.2 Арифметические и алгебраические функции

Функция

abs

cabs

cabsl

ceil

Ceil

ceill

_crotl

crotr

div

exp

expl

fabs

Синтаксис

int abs(int x)

double cabs(struct complex z)
struct complex {

double x, y;
};
long double cabsl(

struct _complexl z)
struct _complex {
long double x, y;

};
double ceil(double x)

int Ceil(Extended X);

long double ceill(long double x)

unsigned char _crotl(
unsigned char val, int count)

unsigned char _crotr(
unsigned char val, int count)

div_t div(int numer, int denom)
typedef struct {

int quot; // частное
int rem; // остаток

} div_t;

double exp(double x)

long double expl(long double x)

double fabs(double x)

Описание

абсолютное значение

модуль комплексного
числа z

модуль комплексного
числа z

округление вверх: наи-
меньшее целое, не ме-
ньшее X

округление вверх: наи-
меньшее целое, не ме-
ньшее X

округление вверх: наи-
меньшее целое, не ме-
ньшее X

циклический сдвиг va-
lue влево на count битов

циклический сдвиг va-
lue вправо на count би-
тов

целочисленное деление
numer / denom

экспонента

экспонента

абсолютное значение

Файл

stdlib.h

math.h

math.h

math.h

Math.hpp

math.h

stdlib.h

stdlib.h

math.h

math.h

math.h

math.h

Функции С, C++, библиотек C++Builder, API Windows 239

Функция

fabsl

floor

Floor

floorl

fmod

fmodl

frexp

Frexp

frexpl

IntPower

labs

Idexp

Ldexp

Idexpl

Idiv

LnXPl

log

loglO

LoglO

loglOl

Синтаксис

long double fabsl(long double x)

double floor(double x)

int Floor(Extended X);

long double floorl(long double x)

double fmod(double x, double y)

long double fmodl(
long double x,
long double y)

double frexp(double x,
int *exponent)

void Frexp(Extended X,
Extended &Mantissa,
int &Exponent)

long double frexpl(
long double x,
int *exponent)

Extended IntPower(
Extended Base,
int Exponent)

long labs(long int x)

double ldexp(double x, int exp)

Extended Ldexp(Extended X,
intP)

long double ldexpl(
long double x, int exp)

typedef struct {
long int quot; // целое
long int reni; // остаток

} ldiv_t;
ldiv_t ldiv(long int numer,

long int denom)

Extended LnXPl(Extended X)

double log(double x)

double loglO(double x)

Extended LoglO(Extended X)

long double Iogl01(long double x)

Описание

абсолютное значение

округление вниз: наи-
большее целое, не боль-
шее X

округление вниз: наи-
большее целое, не боль-
шее X

округление вниз: наи-
большее целое, не боль-
шее X

остаток от деления х / у

остаток от деления х / у

разделяет х на мантис-
су (возвращает) и сте-
пень exponent

разделяет X на мантис-
су Mantissa и степень
Exponent

разделяет х на мантис-
су (возвращает) и сте-
пень exponent

возводит Base в целую
степень Exponent

абсолютное значение

х.2ехр

х-2р

х.2ехр

целочисленное деление:
numer / denom;
quot — результат
rem — остаток

натуральный логарифм
(Х+ 1)

натуральный логарифм

десятичный логарифм

десятичный логарифм

десятичный логарифм

Файл

math.h

math.h

Math.hpp

math.h

math.h

math.h

math.h

Math.hpp

math.h

Math.hpp

stdlib.h

math.h

Math.hpp

math.h

math.h,
stdlib.h

Math.hpp

math.h

math.h

Math.hpp

math.h

240 Глава 3

Функция

Log2

log!

Log-N

Irotl

Irotr

max

min

modf

modfl

POly

Poly

polyl

DOW

Power

powl

rotl

rotr

sqrt

sqrtl

Синтаксис

Extended Log2(Extended X)

long double logl(long double x)

Extended LogN(Extended Base,
Extended X)

unsigned long lrotl(
unsigned long val,
int count)

unsigned long _lrotr(
unsigned long val, int count)

max(a, b)

min(a, b)

double modf(double x,
double *ipart)

long double modfl(long double x,
long double *ipart)

double poly(double x, int degree,
double coeffs[])

Extended Poly(Extended X,
const double * Coefficients,
const int Coefficients_Size)

long double polyl(long double x,
int degree,
long double coeffs[])

double pow(double x, double y)

Extended Power(Extended Base,
Extended Exponent)

long double powl(long double x,
long double y)

unsigned short _rotl(
unsigned short value,
int count)

unsigned short _rotr(
unsigned short value,
int count)

double sqrt(double x)

long double sqrtl(long double x)

Описание

логарифм по основа-
нию 2

натуральный логарифм

логарифм X по основа-
нию Base

циклический сдвиг val
влево на count битов

циклический сдвиг val
вправо на count битов

макрос возвращает мак-
симальное значение из
а и b любых типов

макрос возвращает ми-
нимальное значение из
а и b любых типов

разделяет х на целую
часть ipart и возвраща-
емую дробную часть

разделяет х на целую
часть ipart и возвраща-
емую дробную часть

полином от х степени
degree с коэффициента-
ми coeffs

полином от X степени
Coefficients_Size
с коэффициентами Co-
efficients

полином от х степени
degree с коэффициента-
ми coeffs

хУ

возводит Base в степень
Exponent

Х.У

циклический сдвиг va-
lue влево на count битов

циклический сдвиг va-
lue вправо на count би-
тов

корень квадратный

корень квадратный

Файл

Math.hpp

math.h

Math.hpp

stdlib.h

stdllb.h

stdlib.h

stdlib.h

math.h

math.h

math.h

Math.hpp

math.h

math.h

Math.hpp

math.h

stdlib.h

stdlib.h

math.h

math.h

Функции С, C++, библиотек C++Builder, API Windows 241

Комментарии
При работе с математическими функциями надо иметь в виду, что файлы

math.h и Math.hpp в C++Builder автоматически не подключаются к модулю вашего
приложения. Поэтому для использования описанных в этих файлах функций не-
обходимо вручную вводить директивы

#include <math.h>
linclude <Math.hpp>

Функции exp, expl, Idexp, Idexpl в случае выхода аргумента за диапазон до-
пустимых значений генерируют ошибку ERANGE.

Функции log, loglO, loglOl, logl в случае отрицательного аргумента генериру-
ют ошибку ERANGE, а при нулевом аргументе — EDOM.

Функции pow и powl генерируют ошибку EDOM, если х < 0 и у не является це-
лым числом, а также если х = 0 и у <= 0. Возможно также появление ошибки
ERANGE.

Функции sqrt и sqrtl генерируют ошибку EDOM, если х < 0.
Функции файла Math.hpp в основном повторяют возможности функций файла

math.h, но для типа Extended.

3.2.3 Тригонометрические функции

Функция

асов

acosl

ArcCos

ArcCosh

Arc Sin

ArcSinh

ArcTan2

ArcTanh

asin

asinl

atan

atan2

atan21

atanl

cos

cosh

Cosh

Синтаксис

double acos(double x)

long double acosl(long double x)

Extended ArcCos(Extended X)

Extended ArcCosh(Extended X)

Extended ArcSin(Extended X)

Extended ArcSinh(Extended X)

Extended ArcTan2(Extended Y,
Extended X)

Extended ArcTanh(Extended X)

double asin(double x)

long double asinl(long double x)

double atan(double x)

double atan2(double y, double x

long double atan21(long double y,
long double x)

long double atanl(long double x)

double cos(double x)

double cosh(double x)

Extended Cosh(Extended X)

Описание

арккосинус

арккосинус

арккосинус

арккосинус гипербо-
лический

арксинус

арксинус гиперболи-
ческий

арктангенс (Y / X)

арктангенс гипербо-
лический

арксинус

арксинус

арктангенс

арктангенс у / х

арктангенс у / х

арктангенс

косинус

косинус гиперболи-
ческий

косинус гиперболи-
ческий

Файл

math.h

math.h

Math.hpp

Math.hpp

Math.hpp

Math.h

Math.hpp

Math.hpp

math.h

math.h

math.h

math.h

math.h

math.h

math.h

math.h

Math.hpp

242 Глава 3

Функция

coshl

cosl

Cotan

CycleToRad

DegToRad

hypot

Hypot

hypotl

RadToCycle

RadToDeg

sin

SinCos

Sinh

sinh

sinhl

sinl

Tan

tan

Синтаксис

long double coshl(long double x)

long double cosl(long double x)

Extended Cotan(Extended X)

Extended CycleToRad(
Extended Cycles)

Extended DegToRad(
Extended Degrees)

double hypot(double x, double y)

Extended Hypot(Extended X,
Extended Y)

long double hypotl(long double x,
long double y)

Extended RadToCycle(
Extended Radians)

Extended RadToDeg(
Extended Radians)

double sin(double x)

void SinCos(Extended Theta,
Extended &Sin,
Extended &Cos)

Extended Sinh(Extended X)

double sinh(double x)

long double sinhl(long double x)

long double sinl(long double x)

Extended Tan(Extended X)

double tan(double x)

Описание

косинус гиперболи-
ческий

Файл

math.h

косинус math.h

котангенс Math.hpp

вычисляет угол в ра-
дианах по его значе-
нию в периодах Cyc-
les: 2п- Cycles.

вычисляет угол
в радианах по его
значению в граду-
сах Degrees:
Degrees -л: / 180.

гипотенуза треуголь-
ника с катетами х
и у

расчет гипотенузы
по катетам X и Y

гипотенуза треуголь-
ника с катетами х
и у

вычисляет угол
в периодах по его
значению в радиа-
нах Radians:
Radians / (2л).

вычисляет угол
в градусах по его
значению в радиа-
нах Radians:
Radians • 180 / я.

синус

расчет синуса Sin и
косинуса Cos угла
Theta

синус гиперболиче-
ский

синус гиперболиче-
ский

синус гиперболиче-
ский

синус

тангенс

тангенс

Math.hpp

Math.hpp

math.h

Math.hpp

math.h

Math.hpp

Math.hpp

math.h

Math.hpp

Math.hpp

math.h

math.h

math.h

Math.hpp

math.h

Функции С. C++, библиотек C++Builder, API Windows 243

Функция

Tanh

tanh

tanhl

tanl

Синтаксис

Extended Tanh(Extended X)

double tanh(double x)

long double tanhl(long double x)

long double tanl(long double x)

Описание

тангенс гиперболи-
ческий

тангенс гиперболи-
ческий

тангенс гиперболи-
ческий

тангенс

Файл

Math.hpp

math.h

math.h

math.h

Комментарии
При работе с тригонометрическими функциями надо иметь в виду, что файлы

math.h и Math.hpp в C++Builder автоматически не подключаются к модулю вашего
приложения. Поэтому для использования описанных в этих файлах функций не-
обходимо вручную вводить директивы

#include <math.h>
#include <Math.hpp>

Во всех тригонометрических функциях угол задается в радианах. Пересчет
угла в радианы из значения, заданного в градусах или периодах, позволяют осуще-
ствить функции DegToRad и CycleToRad. Например, оператор

double Rad = D e g T o R a d (9 0) ;

заносит в переменную Rad значение угла 90 градусов в радианах. То же самое зна-
чение заносит в переменную Rad оператор

double Rad = C y c l e T o R a d (0 . 2 5) ;

в котором значение угла задано в периодах (четверть периода). Следующее выра-
жение вычисляет синус 90 градусов:

double S = s in(DegToRad(90)) ;

Все обратные тригонометрические функции вычисляют главные значения:
acos и acosl — в диапазоне [0, я], asin, asinl, atan, atan'2, atan21, atanl — в диапа-
зоне [-я/2, я/2]. Результат возвращается в радианах. Пересчет угла в радианах
в значения градусов или долей периода позволяют осуществить функции RadTo-
Deg и RadToCycle. Например, операторы

double A = a t a n (Т) ;
double Al = R a d T o D e g (a t a n (Т)) ;
double А2 = R a d T o C y c l e (a t a n (T)) ;

вычисляют арктангенс Т в радианах (А), в градусах (А1) и в долях периода (А2).
В функциях acos, acosl, asin, asinl, если заданный аргумент не попадает

в диапазон значений [-1, + 1], происходит ошибка выхода за пределы области оп-
ределения (EDOM).

В гиперболических функциях cosh, coshl, sinh, sinhl, если заданный аргумент
слишком велик, происходит ошибка выхода за диапазон допустимых значений
(ERANGE).

3.2.4 Генерация псевдослучайных чисел

Функция

Irand

Синтаксис / Описание

long Irand(void)
Псевдослучайное целое, диапазон от 0 до 231 - 1

Файл

stdlib.h

244 Глава 3

Функция

rand

RandG

random

randomize

Randomize

srand

Синтаксис / Описание

int rand(void)
Псевдослучайное целое, диапазон от 0 до RAND_MAX

Extended RandG(Extended Mean, Extended StdDev)
Псевдослучайные числа, распределенные по нормально-
му закону; Mean — математическое ожидание,
StdDev — среднее квадратичное отклонение

int random(int num.)
Псевдослучайное целое, диапазон от 0 до num - 1

void randomize(void)
Рандомизация генераторов (кроме RandG) случайной
величиной

void Randomize(void)
Рандомизация RandG случайной величиной

void srand(unsigned seed)
Рандомизация генераторов (кроме RandG) числом seed

Файл

stdlib.h

Math.hpp

stdlib.h

stdlib.h

Math.hpp

stdlib.h

3.2.5 Функции обработки статистических данных

Приведенные ниже функции обрабатывают данные, хранящиеся в массиве
Data, в котором максимальное значение индекса равно Data_Size.

Функция

MaxIntValue

MaxValue

Mean

MeanAndStd-
Dev

MinlntValue

Min Value

Синтаксис / Описание

int MaxIntValue(const int * Data, const int Data Size)
Максимальное значение

double MaxValue(const double * Data,
const int Data_Size)

Максимальное значение

Extended Mean(const double * Data,
const int Data_Size)

Среднее значение (математическое ожидание)

void MeanAndStdDev(const double * Data,
const int Data_Size,
Extended &Mean,
Extended &StdDev)

Среднее значение Mean и среднее квадратичное от-
клонение StdDev

int MinIntValue(const int * Data, const int Data Size)
Минимальное значение

double MinValue(const double * Data,
const int Data_Size)

Минимальное значение

Файл

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Функции С, C++, библиотек C++Builder, API Windows 245

Функция

Moment Skew-
Kurtosis

Norm

PopnStdDev

Popn-
Variance

StdDev

Sum

Sumlnt

SumOf-
Squares

SumsAnd-
Squares

Total-
Variance

Variance

Синтаксис / Описание

void MomentSkewKurtosis(const double * Data,
const int Data Size, Extended &M1,
Extended &M2, Extended &M3,
Extended &M4, Extended &Skew,
Extended &Kurtosis)

Первые четыре момента Ml, M2, МЗ, М4, коэффици-
ент асимметрии Skew, эксцесс Kurtosis

Extended Norm(const double * Data,
const int Data_Size)

Эвклидова норма: корень из суммы квадратов

Extended PopnStdDev(const double * Data,
const int Data_Size)

Смещенная оценка среднего квадратичного отклонения

Extended PopnVariance(const double * Data,
const int Data Size)

Смещенная оценка дисперсии (см. Variance)

Extended StdDev(const double * Data,
const int Data_Size)

Несмещенная оценка среднего квадратичного откло-
нения

Extended Sum(const double * Data,
const int Data_Size)

Сумма значений

int Sumlnt(const int * Data, const int Data Size)
Сумма значений

Extended SumOfSquares(const double * Data,
const int Data Size)

Сумма квадратов значений

void SumsAndSquares(const double * Data,
const int Data Size, Extended &Sum,
Extended &SumOfSquares)

Сумма Sum и сумма квадратов значений SumOfSqu-
ares

Extended TotalVariance(const double * Data,
const int Data Size)

Сумма квадратов отклонений от среднего значения

Extended Variance(const double * Data,
const int Data_Size)

Несмещенная оценка дисперсии (см. PopnVariance)

Файл

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

Math.hpp

246 Глава 3

3.2.6 Функции управления FPU

Функция

clear87

clearfp

controI87

controlfp

fpreset

GetSOSTCW

GetExceptionMask

GetPrecisionMode

GetRoundMode

SetSOSTCW

SetExceptionMask

SetPrecisionMode

SetRoundMode

Синтаксис / Описание

unsigned int _clear87 (void)
Очищает слово состояния FPU

unsigned int _clearfp (void)
Очищает слово состояния FPU

unsigned int _contro!87(unsigned int newcw,
unsigned int mask)

Обеспечивает доступ к управляющему слову FPU

unsigned int _controlfp(unsigned int newcw,
unsigned int mask)

Обеспечивает доступ к управляющему слову FPU

void _fpreset(void)
Повторно инициализирует пакет математики с плавающей
запятой

Word Get8087CW(void)
Возвращает управляющее слово FPU

TFPUExceptionMask GetExceptionMask(void)
Возвращает маску исключений

TFPUPrecisionMode GetPrecisionMode(void)
Возвращает значение, соответствующее текущим значени-
ям битов управления точностью управляющего слова FPU,
в виде перечислимого тип TFPUPrecisionMode

TFPURoundingMode GetRoundMode(void)
Возвращает значение, соответствующее текущим значени-
ям битов управления округлением управляющего слова
FPU, в виде перечислимого тип TFPURoundingMode

void Set8087CW(Word NewCW)
устанавливает управляющее слово FPU

TFPUExceptionMask SetExceptionMask(
void TFPUExceptionMask Mask)

устанавливает маску исключений

TFPUPrecisionMode SetPrecisionMode(
const TFPUPrecisionMode Precision)

Возвращает и устанавливает значение, соответствующее
значениям битов управления точностью управляющего
слова FPU, в виде перечислимого тип TFPUPrecisionMode

TFPURoundingMode SetRoundMode(
const TFPURoundingMode RoundMode)

Возвращает и устанавливает значение, соответствующее
текущим значениям битов управления округлением управ-
ляющего слова FPU, в виде перечислимого тип TFPURo-
undingMode

Функции С, C++, библиотек C++Builder, API Windows 247

Функция

status87

statusfp

Синтаксис / Описание

unsigned int _status87(void)
Возвращает текущее значение слова состояния

unsigned int statusfp (void)
Возвращает текущее значение слова состояния

FPU

FPU

Комментарий
См. подробнее об FPU (floating-point unit) в разд. 1.9.3 и в описаниях функций

в гл. 4.

3.3 Преобразование типов данных

3.3.1 Функции взаимного преобразования чисел и строк

3.3.1.1 Функции взаимного преобразования чисел и строк типа char *

Функция

_atoi64

_atold

_i64toa

_itow

_ltoa

_strtold

_ui64toa

_ultow

_wcstold

_wtof

_wtoi

Синтаксис / Преобразует

int64 _atoi64(const char *s)
Строку s в целое

long double _atold(const char *s)
Строку s в число с плавающей запятой

char *_i64toa(int64 value, char *strP, int radix)
Целое value в строку; radix — основание (от 2 до 36)

wchar_t *_itow(int value, wchar_t *string, int radix)
Целое value в строку string по основанию radix

char *_ltoa(long value, char *string, int radix)
Целое value в строку; radix — основание (от 2 до 36)

long double _strtold(const char *s, char **endptr)
Строки s в действительное число

char *_ui64toa(unsigned int64 value, char *strP,
int radix)

Целое value в строку; radix — основание (от 2 до 36)

wchar_t *_ultow(unsigned long Value,
wchar_t *string, int radix)

Целое value в строку string по основанию radix

long double _wcstold(const wchar_t *s, wchar_t **endptr)
Строку s в действительное число

double _wtof(const wchar_t *s)
Строку s в число с плавающей запятой

int _wtoi(const wchar_t *s)
Строку s в целое

Файл

stdlib.h

math.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

math.h

stdlib.h

248 Глава 3

Функция

_wtoi64

_wtol

_wtold

atof

atoi

atol

ecvt

fcvt

gcvt

itoa

strtod

strtol

strtoul

ultoa

wcstod

wcstol

wcstoul

Синтаксис / Преобразует

int64 _wtoi64(const wchar_t *s)

Строку s в целое

long _wtol(const wchar_t *s)

Строку s в целое

long double _wtold(const wchar_t *s)

Строку s в число с плавающей запятой

double atof(const char *s)

Строку s в число с плавающей запятой

int atoi(const char *s)

Строку s в целое

long atol(const char *s)

Строку s в целое

char *ecvt(double value, int ndig, int *dec, int *sign)

Число с плавающей запятой value в строку с числом
цифр ndig; dec сохраняет позицию десятичной точки,
sign — знак

char *fcvt(double value, int ndig, int *dec, int *sign)

Число с плавающей запятой value в строку с числом
цифр ndig; dec сохраняет позицию десятичной точки,
sign — знак

char *gcvt(double value, int ndec, char *buf)

value в строку buf с числом цифр ndec

char *itoa(int value, char *string, int radix)

Целое value в строку string по основанию radix

double strtod(const char *s, char **endptr)

Строку s в действительное число

long strtol(const char *s, char **endptr, int radix)

Строку s в длинное целое

unsigned long strtoul(const char *s, char **endptr,
int radix)

Строку s в unsigned long по основанию radix

char *ultoa(unsigned long value, char *string, int radix)

Целое value в строку string по основанию radix

double wcstod(const wchar_t *s, wchar_t **endptr)

Строку s в действительное число

long wcstol(const wchar_t *s, wchar_t **endptr, int radix)

Строку s в длинное целое

unsigned long wcstoul(const wchar_t *s, wchar_t **endptr,
int radix)

Строку s в unsigned long по основанию radix

Файл

stdlib.h

stdlib.h

math.h

stdlib.h,
math.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

stdlib.h

Функции С, C++, библиотек C++Builder, API Windows 249

Комментарии
Функции преобразования строки в число требуют, чтобы строка была записа-

на в формате чисел соответствующего типа. Преобразование прерывается, когда
функция встречает первый символ, не соответствующий требуемому формату.
Если формат вообще не соответствует ожидаемому, функции возвращают 0.

Функции atof и strtod распознают кроме соответствующих цифровых после-
довательностей тексты "+INF" и "-INF", которыми обозначаются плюс и минус
бесконечности, а также тексты "+NAN" и "-NAN", обозначающие «не цифровая
величина».

В функциях strtod, strtol, _strtold, strtoul, wcstod, wcstol, wcstoul параметр
endptr может задаваться равным NULL. Например, оператор:

double у = s tr tod(Edit l->Text.c_str() , NULL) ;

преобразует текст, введенный пользователем в окне редактирования Editl, в зна-
чение у. Если же задать параметр endptr:

char *endptr;
double у = s t r tod(Edi t l ->Text .c_s t r () ,Sendptr) ;

то величина *endptr будет равна тому символу, на котором остановилось преобра-
зование строки. Этот параметр можно использовать для проверки правильности
преобразуемой строки.

Если при преобразовании наступает переполнение, то функции возвращают
положительные или отрицательные значения HUGE_VAL (для типа double) или
LHUGE_VAL (для типа long double).

Рассмотренные функции преобразования можно использовать и для типа
строк AnsiString (см. разд. 2.5.2). Но при этом эти строки надо переводить в тип
char * с помощью метода c_str(), как показано в двух предыдущих примерах.

3.3.1.2 Функции взаимного преобразования чисел и строк,
описанные в файле SysUtils.hpp

Функция

CurrToStr

CurrToStrF

FloatToDecimal

FloatToStr

FloatToStrF

Синтаксис / Преобразует

System-AnsiString CurrToStr(System::Currency Value)
число Value типа Currency в строку

System::AnsiString CurrToStrF(System::Currency Value,
TFloatFormat Format, int Digits)

число типа Currency в строку с помощью формата типа TFlo-
atFormat (см. разд. 3.1.2.4)

void FloatToDecimal(TFloatRec &Result, const void *Value,
TFloat Value ValueType, int Precision, int Decimals)

число Value типа ValueType (CM. TFloatValue в разд. 3.1.2.4)
в структуру TFloatRec

System::AnsiString FloatToStr(Extended Value)
число Value в строку

System::AnsiString FloatToStrF(Extended Value,
TFloatFormat Format, int Precision, int Digits)

число Value в строку с помощью формата типа TFloatFormat
(см. разд. 3.1.2.4)

250 Глава 3

Функция

FloatToText

FloatTo-
TextFmt

FmtStr

Format

FormatBuf

FormatCurr

FormatFloat

GetFormat-
Settings

IntToHex

IntToStr

Синтаксис / Преобразует

int FloatToText(char * Buffer, const void *VaIue,
TFloatValue ValueType, TFloatFormat Format,

int Precision, int Digits)
число Value типа ValueType в строку Buffer с помощью фор-
мата типа TFloatFormat (см. разд. 3.1.2.4)

int FloatToTextFmt(char * Buffer, const void *Value,
TFloatValue ValueType, char * Format)

число Value типа ValueType (CM. TFloatValue в разд. 3.1.2.4)
в строку Buffer с помощью формата FormatFloat (см. разд.
3.1.2.5)

void FmtStr(System::AnsiString &Result,
const System::AnsiString Format,
const System::TVarRec * Args, const int Args_Size)

аргументы из открытого массива Args размера Args_Size — 1
в строку Result по формату Format (см. разд. 3.1.2.3)

System::AnsiString Format(const System::AnsiString Format,
const System::TVarRec* Args, const int Args_Size)

аргументы из открытого массива Args размера Args_Size - 1
в строку по формату Format (см. разд. 3.1.2.3)

Cardinal FormatBuf(void *Buffer, Cardinal BufLen,
const void *Format, Cardinal FmtLen,
const System::TVarRec * Args, const int Args_Size)

аргументы из открытого массива Args размера Args_Size - 1
в строку Buffer длины BufLen по формату Format (см. разд.
3.1.2.3) длины FmtLen

System::AnsiString FormatCurr(
const System::AnsiString Format,

System::Currency Value)

число типа Currency в строку с помощью формата функции
FormatFloat (см. разд. 3.1.2.5)

System::AnsiString FormatFIoat(
const System::AnsiString Format,

Extended Value)
число Value в возвращаемую строку с помощью формата ти-
па FormatFloat (см. разд. 3.1.2.5)

void GetFormatSettings(void)
устанавливает значения по умолчанию всех глобальных пере-
менных, определяющих форматы дат и чисел

System::AnsiString IntToHex(int Value, int Digits)
целое Value в строку с минимум Digits шестнадцатеричных
цифр

System::AnsiString IntToStr(int Value)
целое Value в строку

Функции С, C++, библиотек C++Builder, API Windows 251

Функция

StrFmt

StrLFmt

StrToCurr

StrToCurrDef

StrToFloat

StrToFloatDef

StrToInt

StrToIntDef
f

TextToFloat

TrvStrToInt

Синтаксис / Преобразует

char * StrFmt(char * Buffer, char * Format,
const System::TVarRec * Args, const int Args_Size)

аргументы из открытого массива Args размера Args_Size - 1
в строку Buffer по формату Format (см. разд. 3.1.2.3)

char * StrLFmt(char * Buffer, Cardinal MaxLen,
char * Format, const System::TVarRec* Args,
const int Args_Size)

аргументы из открытого массива Args размера Args_Size - 1
в строку Buffer размера MaxLen по формату Format (см.
разд. 3.1.2.3)

System::Currency StrToCurr(const System::AnsiString S)
строку S в число типа Currency

System::Currency StrToCurrDef(const AnsiString S,
const System::Currency Default)

строку S в число типа Currency со значением по умолчанию
Default

Extended StrToFloat(const System::AnsiString S)
строку S в число

Extended StrToFloatDef(const AnsiString S;
const Extended Default)

строку S в число со значением по умолчанию Default

int StrToInt(const System::AnsiString S)
строку S в целое

int StrToIntDef(const System:: AnsiString S, int Default)
строку S в целое, при ошибке — значение Default по умолча-
нию

bool TextToFloat(char * Buffer, void *Value,
TFloatValue ValueType)

строку Buffer в число Value типа ValueType (см. TFloatVa-
lue в разд. 3.1.2.4)

bool fastcall TryStrToInt(const AnsiString S, int &Value)
строку S в целое Value, возвращая false в случае неудачи

Комментарии
Многие функции взаимного преобразования чисел и строк, объявленные

в файле SysUtils.hpp, используют для указания типа числа переменную Value-
Type, которая может принимать значение fvExtended — число с плавающей запя-
той типа Extended, или значение fvCurrency -- число типа Currency. Многие
функции используют для форматирования строку типа TFloatFormat, подробно
описанную в разд. 3.1.2.4, или формат функции FormatFloat, описанный в разд.
3.1.2.5, или строку форматирования функции, Format, описанную в разд. 3.1.2.3.

Ряд функций получает список форматируемых значений из открытого масси-
ва аргументов Args размера Args_Size - 1. В качестве Args_Size в них задается
последний индекс массива Args типа TVarRec. В этих функциях используется
строка форматирования, описанная в разд. 3.1.2.3.

252 Глава 3

При ошибках преобразования большинство рассматриваемых функций гене-
рирует исключение EConvertError. Это правило не затрагивает функции с суф-
фиксом "Def", которые в случае ошибки заносят в результат указанное в них зна-
чение по умолчанию, и функцию TryStrToInt, которая в случае ошибки возвраща-
ет false.

Функция FloatToDecimal преобразует число с плавающей запятой типа Ex-
tended или Currency в десятичное представление, которое может в дальнейшем
подвергаться дополнительному форматированию. Для значения типа Extended па-
раметр Precision указывает число значащих цифр от 1 до 18. Для значения типа
Currency параметр Precision игнорируется, а точность предполагается равной
19 разрядам.

Параметр Decimals указывает максимально требуемое число цифр слева от де-
сятичной точки. Таким образом, параметры Precision и Decimals совместно опре-
деляют способ округления результата. Чтобы результат всегда имел заданное ко-
личество значащих цифр независимо от значения числа, можно указать Decimals
равным 9999.

Результат преобразования заносится в структуру типа TFloatRec, имеющую
поля:

Exponent

Negative

Digits

Хранит количество значащих цифр до десятичной точки. Если чис-
ло меньше 1, то поле Exponent содержит отрицательное число, мо-
дуль которого равен номеру первого значащего разряда после деся-
тичной точки. Если значение равно NAN (не число), Exponent рав-
няется -32768. Если значение INF или — INF (плюс или минус бес-
конечность), то Exponent = 32767.

При отрицательном числе — true, при положительном или нуле -
false.

Строка с нулевым символом в конце, содержащая до 18 (для Exten-
ded) или 19 (для Currency) значащих цифр. Десятичная точка не
хранится. Завершающие нули удаляются. Если число рано нулю,
NAN или INF, Digits содержит только нулевой символ.

Ниже приведен пример использования функции FloatToDecimal:
struct TFloatRec Result;
Extended Value = . . . ;
FloatToDecimal(Result, S V a l u e , f v E x t e n d e d , 1 8 , 9 9 9 9) ;

При различных значениях Value получаются результаты:

Value

123.4567890123456789

1234567890123456789

-0.001234567890123456789

Exponent

3

19

-2

Negative

false

false

true

Digits

123456789012345681

123456789012345679

123456789012345671

3.3.2 Функции преобразования дат и времени

Функция

asctimc

Синтаксис / Описание

char *asctime(const struct tm *tblock)

Переводит структуру типа tm в строку

Файл

time.h

функции С, C++, библиотек C++Builder, API Windows 253

Функция

^ompareDate

CompareDateTime

2ompareTime

ctime

Date

DateTimeTo
FileDate

DateTimeToStr

DateTimeToString

DateTimeTo
SystemTime

DateTimeTo
TimeStamp

DateToStr

Синтаксис / Описание

Types::TValueRelationship CompareDate(
const System: :TDateTime A,
const System: :TDateTime B)

Сравнивает два значения дат А и В. Возвраща-
ет -1 при А < В, 0 при А = В, +1 при А > В

Types::TValueRelationship CompareDateTime(
const System::TDateTime A,
const System::TDateTime B)

Сравнивает два значения дат и времени А и
5. Возвращает -1 при А < В, 0 при А = В,
+1 при А > В

Types::TValueRelationship CompareTime(
const System: :TDateTime A,
const System::TDateTime B)

Сравнивает два значения времени А и В.
Возвращает -1 при А < В, 0 при А = В, +1
при А > В

char *ctime(const time_t *time)
Переводит время time, полученное функцией
time, в строку

System::TDateTime Date(void)

Возвращает текущую дату

int DateTimeToFileDate(
System::TDateTime DateTime)

Переводит DateTime в формат даты и време-
ни DOS

System::AnsiString DateTimeToStr(
System: :TDateTime DateTime)

Преобразует DateTime в строку

void DateTimeToString(
System::AnsiString &Result,
const System::AnsiString Format,

System::TDateTime DateTime)

Преобразует DateTime в строку Result no
формату Format

void DateTimeTo SystemTime(
System: :TDateTime DateTime,
_SYSTEMTIME &SystemTime)

Преобразует DateTime в формат TSystemTi-
me, используемый в API Windows

TTimeStamp DateTimeToTimeStamp(
System::TDateTime DateTime)

Преобразует DateTime в TTimeStamp

System::AnsiString DateToStr(
System: :TDateTime Date)

Преобразует дату Date в строку

Файл

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

time.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

254 Глава 3

Функция Синтаксис / Описание Файл

DayOf Word DayOf (const System:.-TDateTime
AValue)

Извлекает из значения AValue день месяца

DateUtils.fipp

DavOfTheMonth Word DayOfTheMonth(
const System::TDateTime AValue)

Извлекает из значения AValue день месяца

DateUtils.hpp

DavOfTheWeek Word DayOfTheWeek(
const System::TDateTime AValue)

Извлекает из даты AValue день недели (от 1
до 7, 1 — понедельник)

DateUtils.hpp

DavOfWeek Word DayOfWeek(
const System::TDateTime DateTime)

Извлекает из даты Date день недели (от 1
до 7, 1 — воскресенье)

DateUtils.hpp

DaysBetween int DaysBetween(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число полных суток между дву-
мя значениями даты и времени

DateUtils.hpp

DavSpan double DaySpan(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число суток между двумя значе-
ниями даты и времени

DateUtils.hpp

DecodeDate void DecodeDate(
const System::TDateTime DateTime,

Word &Year, Word &Month,
Word &Day)

Разбивает DateTime на год Year, месяц
Month, день Day

SysUtils.hpp

DecodeDateTime void DecodeDateTime(
const System::TDateTime DateTime,

Word &Year, Word &Month,
Word &Day, Word &Hour,
Word &Min, Word &Sec,
Word &MSec)

Разбивает DateTime на год Year, месяц
Month, день Day, часы Hour, минуты Min,
секунды Sec, миллисекунды MSec

DateUtils.hpp

DecodeTime void DecodeTime(System::TDateTime Time,
Word &Hour, Word &Min,
Word &Sec, Word &MSec)

Разбивает Time на часы Hour, минуты Min,
секунды Sec, миллисекунды MSec

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 255

Функция

EncodeDate

EncodeDateTime

EncodeTime

FormatDateTime

getdate

gettime

gmtime

HourOf

HourOfTheDav

HoursBetween

HourSpan

Синтаксис / Описание

TDateTime EncodeDate(Word Year,
Word Month, Word Day)

Преобразует год Year, месяц Month и день
Day в TDateTime

TDateTime EncodeDateTime(const Word Year,
const Word Month, const Word Day,
const Word Hour, const Word Min,
const Word Sec, const Word MSec)

Преобразует год Year, месяц Month, день Day
в TDateTime, часы Hour, минуты Min, секун-
ды Sec и миллисекунды MSec в TDateTime

TDateTime EncodeTime(Word Hour,
Word Min, Word Sec, Word MSec)

Преобразует часы Hour, минуты Min, секун-
ды Sec и миллисекунды MSec в TDateTime

System::AnsiString FormatDateTime(
const System::AnsiString Format,

System::TDateTime DateTime)

Преобразует DateTime в строку по формату
Format

void getdate(struct date *datep)

Заносит в datep текущую дату

void gettime(struct time *timep)

Заносит в timep текущее время

struct tm *gmtime(const time_t *timer)

Переводит время timer, полученное функ-
цией time, в структуру типа tm

Word HourOf(const System::TDateTime
AValue)

Извлекает из значения AValue час

Word HourOfTheDay(
const System::TDateTime AValue)

Извлекает из значения AValue день месяца

int HoursBetween(
const System: :TDateTime ANow,
const System: :TDateTime AThen)

Возвращает число полных часов между дву-
мя значениями даты и времени

double HourSpan(
const System::TDateTime ANow,
const Systenv.-.TDateTime AThen)

Возвращает число суток между двумя значе-
ниями даты и времени

Файл

SysUtils.hpp

DateUtils.hpp

I

SysUtils.hpp

SysUtils.hpp

dos.h

dos.h

time.h

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

256 Глава 3

Функция

IncMonth

IsLeapYear

IsToday

local time

MilliSecondOf

MilliSecond
OfTheSecond

MilliSecondsBet-
ween

MilliSecondSpan

MinuteOf

MinuteOfTheHour

MinutesBetween

ь

Синтаксис / Описание

System::TDateTime IncMonth(
const System:: TDateTime Date,

int NumberOfMonths)
Возвращает дату Date, измененную на Num-
berOfMonths месяцев

bool IsLeapYear(Word Year)
Возвращает true, если год Year високосный

bool IsToday(const System::TDateTime
AValue)

Возвращает true, если AValue соответствует
сегодняшней дате

struct tm *localtime(const time_t *timer)
Переводит время timer, полученное функ-
цией time, в структуру типа tm с поправкой
на локальное время

Word MilliSecondOf(
const System::TDateTime AValue)

Извлекает из значения AValue миллисекун-
ды

Word MilliSecondOfTheSecond(
const System::TDateTime AValue)

Извлекает из значения AValue миллисекун-
ды

int MilliSecondsBetween(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число миллисекунд между дву-
мя значениями даты и времени

double MilliSecondSpan(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число миллисекунд между дву-
мя значениями даты и времени

Word MinuteOf(
const System::TDateTime AValue)

Извлекает из значения AValue минуты

Word MinuteOfTheHour(
const System::TDateTime AValue)

Извлекает из значения AValue минуты

int MinutesBetween(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число полных минут между дву-
мя значениями даты и времени

Файл

SysUtils.hpp

SysUtils.hpp

DateUtlls.hpp

time.h

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 257

Функция

MinuteSpan

mktime

MonthOf

MonthOfTheYear

MonthsBetween

MonthSpan

MSecsToTime
Stamp

Now

SecondOf

SecondOfThe
Minute

SecondsBetween

Синтаксис / Описание

double MinuteSpan(
const System::TDateTime ANow,

const System: :TDateTime AThen)
Возвращает число миллисекунд между дву-
мя значениями даты и времени

time_t mktime(struct tm *t)
Переводит время из структуры типа tm
в формат time_t

Word MonthOf(const System::TDateTime
AValue)

Извлекает из значения AValue месяц

Word MonthOfTheYear(
const System: :TDateTime AValue)

Извлекает из значения AValue месяц

int MonthsBetween(
const System::TDateTime ANow,
const System: :TDateTime AThen)

Возвращает число полных месяцев между
двумя значениями даты и времени

double MonthSpan(
const System::TDateTime ANow,
const System: :TDateTime AThen)

Возвращает число месяцев между двумя зна-
чениями даты и времени

TTimeStamp MSecsToTimeStamp(
System: :Comp MSecs)

Преобразует миллисекунды MSecs в TTi-
meStamp

System::TDateTime Now(void)
Возвращает текущую дату и время

Word SecondOf (const System::TDateTime
AValue)

Извлекает из значения AValue секунды

Word SecondOfTheMinute(
const System: :TDateTime AValue)

Извлекает из значения AValue месяц

int SecondsBetween(
const System::TDateTime ANow,
const System::TDateTime AThen)

Возвращает число полных секунд между
двумя значениями даты и времени

Файл

Datelltils.hpp

time.h

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

SysUtils.hpp

SysUtils.hpp

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

258 Глава 3

Функция

SecondSpan

setdate

settime

stime

StrToDate

StrToDateDef

StrToDateTime

StrToDateTime
Def

StrToTime

StrToTimeDef

SystemTime
ToDateTime

Синтаксис / Описание

double SecondSpan(
const System: :TDateTime ANow,
const System: :TDateTime AThen)

Возвращает число секунд между двумя зна-
чениями даты и времени

void setdate(struct date *datep)
Задает дату datep как системную (если поль-
зователю разрешен доступ)

void settime(struct time *timep)
Задает время timep как системное

int stime(time_t *tp)
Задает системную дату и время из tp

System::TDateTime StrToDate(
const System::AnsiString S)

Преобразует строку S в дату TDateTime

System::TDateTime StrToDateDef(
const AnsiString S,
const System::TDateTime Default)

Преобразует строку S в дату TDateTime, за-
давая значение по умолчанию Default в слу-
чае ошибки

System::TDateTime StrToDateTime(
const System:: AnsiString S)

Преобразует строку S в дату и время TDate-
Time

System: .-TDateTime StrToDateTimeDef(
const AnsiString S,
const System: :TDateTime Default)

Преобразует строку S в дату и время TDate-
Time, задавая значение по умолчанию Defa-
ult в случае ошибки

System::TDateTime StrToTime(
const System::AnsiString S)

Преобразует строку S во время TDateTime

System::TDateTime StrToTimeDef(
const AnsiString S,
const System: :TDateTime Default)

Преобразует строку S во время TDateTime,
задавая значение по умолчанию Default
в случае ошибки

System::TDateTime SystemTimeToDateTime(
const _SYSTEMTIME &SystemTime)

Преобразует формат TSystemTime, использу-
емый в API Windows, в TDateTime

Файл

DateUtils.hpp

dos.h

dos.h

time.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 259

Функция

time
•

Time

TimeStamp
ToDateTime

TimeStampTo
MSecs

TimeToStr

Today

Tomorrow

TrvEncodeDate

TrvEncodeDate
Time

TrvEncodeTime

YearOf

Синтаксис / Описание

time_t time(time_t *timer)

Возвращает текущее время и заносит его
в timer (если timer не NULL)

System-TDateTime Time(void)

Возвращает текущее время

System::TDateTime TimeStampToDateTime(
const TTimeStamp &TimeStamp)

Преобразует структуру типа TTimeStamp
в TDateTime

System::Comp TimeStampToMSecs(
const TTimeStamp &TimeStamp)

Возвращает 64-разрядное значение числа
миллисекунд

System::AnsiString TimeToStr(
System::TDateTime Time)

Преобразует время в строку

TDateTime fastcall Today(void)

Возвращает текущую дату

TDateTime fastcall Tomorrow(void)

Возвращает дату завтрашнего дня

bool TryEncodeDate(Word Year, Word Month,
Word Day, System::TDateTime &Date)

Преобразует год Year, месяц Month и день
Day в Date, возвращая false в случае ошибки

bool TryEncodeDateTime(const Word Year,
const Word Month, const Word Day,
const Word Hour, const Word Min,
const Word Sec, const Word MSec,

System-TDateTime & Value)

Преобразует год Year, месяц Month, день
Day в TDateTime, часы Hour, минуты Min,
секунды Sec и миллисекунды MSec в TDate-
Time, возвращая false в случае ошибки

bool TryEncodeTime(Word Hour, Word Min,
Word Sec, Word MSec,
System::TDateTime &Time)

Преобразует часы Hour, минуты Min, секун-
ды Sec и миллисекунды MSec в Time, воз-
вращая false в случае ошибки

Word YearOf (const System: :TDateTime
AValue)

Извлекает из значения AValue год

Файл

time.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

DateUtils.hpp

DateUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

DateUtils.hpp

260 Глава 3

Функция

YearsBetween

YearSpan

Yesterday

Синтаксис / Описание

int YearsBetween(
const System: :TDateTime ANow,
const System: :TDateTime AThen)

Возвращает число полных лет между двумя
значениями даты и времени

double YearSpan(
const System: rTDateTime ANow,
const System: :TDateTime AThen)

Возвращает число лет между двумя значени-
ями даты и времени

TDateTime fastcall Yesterdav(void)
Возвращает дату вчерашнего дня

Файл

DateUtils.hpp

DateUtils.hpp

DateUtils.hpp

Комментарии
Большинство функций данного раздела использует тип TDateTime (см. разд.

3.1.7), представляющий собой число с плавающей запятой, целая часть которого
соответствует дате, дробная — времени. Некоторые функции используют также
тип TTimeStamp. Это структура, содержащая дату и время. Имеется еще один
формат представления дат и времени, принятый в DOS. Этот формат используется
в таких функциях, как FileAge, FileGetDate, FileSetDate, в поле Time структуры
типа TSearchRec, применяемой в функциях FindFirst и FindNext. Перевод в этот
формат значения типа TDateTime осуществляется функцией DateTimeToFileDate.
Наконец, имеется еще системный формат — TSystemTime, определенный как тип
_SYSTEMTIME. Он может требоваться при вызове функций API Windows. Преоб-
разование TDateTime в этот формат осуществляется функцией DateTimeToSys-
temTime, а обратное преобразование осуществляется функцией SystemTimeTo-
DateTime.

Функции из файла dos.h используют для хранения даты структуру типа date:
struct date{

int da_year;
char da_day;
char da_raon;

// текущий год
// день месяца
// номер месяца (1 — январь)

Все данные хранятся в виде целых чисел, что облегчает их дальнейшую обра-
ботку. Приведем пример использования такой структуры. Следующие операторы
создают структуру D типа date и заносят в нее текущую дату:

#include <dos.h>

struct date D;
getdate(&D);

В дальнейшем можно обращаться к полям этой структуры: D.da_year,
D.da_mon, D.da_day.

Аналогичная структура предусмотрена и для хранения времени:
struct time {

unsigned char ti_min;
unsigned char ti_hour;

unsigned char ti hund;
unsigned char ti_sec;

// минуты
// часы

// сотые доли секунды
// секунды

Функции С, C++, библиотек C++Builder, API Windows 261

Функция time возвращает текущее время в секундах, отсчитанное от 0 часов 1
января 1970 по Гринвичу. Это время может быть преобразовано в строку с нуле-
вым символом в конце, включающую год, месяц, день и т.д., с помощью функции
ctime с учетом поправок на локальное время. Вид строки:

Mon Nov 21 11:31:54 1983\п\0

к сожалению, с английскими сокращениями.
Время, возвращаемое функцией time, может также с помощью функций

gmtime (время по Гринвичу) или localtime (время с локальной поправкой) преоб-
разовываться в поля структуры типа tm:

// секунды
// минуты
// часы (0 - 23)

// день месяца (1 —31)
// месяц (0 - 11)
// год (календарный минус 1900)
// день недели (0 —6; 0 — воскресенье
// день года (0 -3651
// установлен ли 12-часовой формат

struct

int
int
int
int
int
int
int
int
int

tm {
tm sec;
tm min;
tm hour;
tm mday;
tm mon;
tm year;
tm wday;

tm yday;

tm isdst

Данная структура может быть преобразована в строку функцией asctime. На-
пример, операторы:

time_t t = t i m e (N U L L) ;
struct tm *tt = l o c a l t i m e (& t) ;
char s [80] ;
strcpy(s, a sc t ime(t t)) ;

создают структуру типа tm, заносят в нее текущее время, полученное функцией ti-
me и преобразованное функцией gmtime, после чего формируют строку s. Но учти-
те, что строка получится аналогичной строке, возвращаемой описанной выше фун-
кцией ctime — т.е. использующей английские сокращения.

3.3.3 Функции преобразования типов

Функция

Bounds

CurrTo
FMTBCD

FMTBCD
ТоСигг

Point

Синтаксис / Преобразует

Windows::TRect Bounds(int ALeft, int ATop,
int AWidth, int AHeight)

Координаты ALeft и АТор и размеры AWidth и
AHeight в TRect

bool CurrToFMTBCD(System::Currency Curr,
Bde::FMTBcd &BCD, int Precision, int Decimals)

Значение Curr в тип Bde::FMTBcd

bool FMTBCDToCurr(const Bde::FMTBcd &BCD,
System: :Currency &Curr)

Значение BCD в тип Currency

TPoint Point(int AX, int AY)
Координаты АХ и AY в TPoint

Файл

Classes.hpp

DBCommon.hpp

DBCommon.hpp

Classes.hpp

262 Глава 3

Функция

Rect

Синтаксис / Преобразует

Windows::TRect Rect(int ALeft, int ATop,
int ARight, int ABottom)

Windows::TRect Rect(constTPoint ATopLeft,
const TPoint ABottomRight)

Координаты ALeft, ATop, ARight, ABottom или
точки ATopLeft, ABottomRight в TRect

Файл

Classes.hpp

Комментарии
Функции CurrToFMTBCD и FMTBCDToCurr осуществляют взаимное преобра-

зование типа Currency и типа Bde::FMTBcd, используемого для хранения в полях
BCD баз данных.

3.4 Строки и символы

3.4.1 Функции обработки символов

Функция

_tolower

_toupper

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

Синтаксис / Описание

int _tolower(int eh)
Макрос приведения латинской буквы к нижнему регистру
(без проверки)

int _toupper(int ch)
Макрос приведения латинской буквы к верхнему регистру
(без проверки)

int isalnum(int с)
Макрос проверки на латинскую букву или цифру

int isalpha(int с)
Макрос проверки на латинскую букву

int isascii(int с)
Макрос проверки на символ из набора ASCII

int iscntrl(int с)
Макрос проверки на управляющий символ

int isdigit(int с)
Макрос проверки на цифру

int isgraph(int с)
Макрос проверки на печатный символ (исключая пробел)

int islower(int с)
Макрос проверки на латинскую букву в нижнем регистре

int isprint(int с)
Макрос проверки на печатный символ (включая пробел)

int ispunct(int с)
Макрос проверки на символ пунктуации (любой печатае-
мый, кроме латинской буквы, цифры, пробела)

Файл

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

Функции С, C++, библиотек C++Builder, API Windows 263

Функция

isspace

isupper

iswalnum

iswalpha

iswascii

iswcntrl

iswdigit

iswgraph

iswlower

iswprint

iswpunct

iswspace

iswupper

iswxdigit

isxdigit

toascii

tolower

Синтаксис / Описание

int isspace(int c)
Макрос проверки на пробельный символ (пробел, табуля-
ция, новая строка)

int isupper(int с)
Макрос проверки на латинскую букву в верхнем регистре

int iswalnum(wint_t с)
Макрос проверки на латинскую букву или цифру

int iswalpha(wint_t с)
Макрос проверки на латинскую букву

int iswascii(wint_t с)
Макрос проверки на символ из набора ASCII

int iswcntrl(wint_t с)
Макрос проверки на управляющий символ

int iswdigit(wint_t с)
Макрос проверки на цифру

int iswgraph(wint_t с)
Макрос проверки на печатный символ (исключая пробел)

int iswlower(wint_t с)
Макрос проверки на латинскую букву в нижнем регистре

int iswprint(wint_t с)
Макрос проверки на печатный символ (включая пробел)

int iswpunct(wint_t с)
Макрос проверки на символ пунктуации (любой печатае-
мый, кроме латинской буквы, цифры, пробела)

int iswspace(wint_t с)
Макрос проверки на пробельный символ (пробел, табуля-
ция, новая строка)

int iswupper(wint_t с)
Макрос проверки на латинскую букву в верхнем регистре

int iswxdigit(wint_t с)
Макрос проверки на шестнадцатеричную цифру

int isxdigit(int с)
Макрос проверки на шестнадцатеричную цифру

int toascii(int с)
Макрос преобразования целого в код ASCII (очистка всех
битов, кроме 7 младших) — в число от 0 до 127)

int tolower(int ch)
Макрос приведения латинской буквы к нижнему регистру,
если она в верхнем регистре

Файл

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

ctype.h

264 Глава 3

Функция

toupper

towlower

towupper

Синтаксис / Описание

int toupper(int ch)
Макрос приведения латинской буквы к верхнему регист-
ру, если она в нижнем регистре

int towlower(wint_t ch)
Макрос приведения латинской буквы к нижнему регистру,
если она в верхнем регистре

int towupper(wint_t ch)
Макрос приведения латинской буквы к верхнему регист-
ру, если она в нижнем регистре

Файл

ctype.h

ctype.h

ctype.h

Комментарии
Обратите внимание на то, что макросы, распознающие и преобразовывающие

буквы, не работают с символами кириллицы. Для кириллицы надо использовать ра-
ботающие с кириллицей функции строк (см. разд. 3.4.2.2 и 3.4.2.3): перевести сим-
вол в строку, преобразовать строку и взять ее первый символ. Например, оператор

Key = AnsiUpperCase(Key);

приведет символ Key типа char к верхнему регистру.

3.4.2 Функции обработки строк

3.4.2.1 Функции работы с областями памяти и строками

Функция

wmemcpv

wmemset

memccpy

memchr

memcmp

memcpv

memicmp

Синтаксис / Описание

void * wmemcpy(void *dest, const void *src, size t n)
Копирует п байтов из src в dest; src и dest не должны пе-
рекрываться в памяти (см. memmove); возвращает dest

void * wmemset(void *s, int с, size t n)
Заполняет n байтов блока s символом с; возвращает s

void *memccpy(void *dest, const void *src, int c, size t n)
Копирует символы из src в dest, пока не встретится символ
с или не будет скопировано n символов; возвращает dest

void *memchr(const void *s, int c, size_t n)
Возвращает указатель на первое вхождение символа с в пер-
вых n байтах s; если символ не найден, возвращает NULL

int memcmp(const void *sl, const void *s2, size_t n)
Сравнивает n символов из si и s2; результат < 0 при
si < s2, = 0 при si = s2, > 0 при si > s2

void *memcpy(void *dest, const void *src, size t n)
Копирует n байтов из src в dest; src и dest не должны пе-
рекрываться в памяти (см. memmove); возвращает dest

int memicmp(const void *sl, const void *s2, size_t n)
Сравнивает, игнорируя регистр (не кириллицу), n симво-
лов из si и s2; результат < 0 при si < s2, = 0 при
si = s2, > 0 при si > s2

Файл

mem.h

mem.h

mem.h

mem.h

mem.h

mem.h

mem.h

Функции С, C++, библиотек C++Builder, API Windows 265

Функция

memmove

ШШШМ

setmem

Синтаксис / Описание

void *memmove(void *dest, const void *src, size t n)
Копирует п байтов из src в dest; src и dest могут пере-
крываться в памяти (см. тетеру); возвращает dest

void *memset(void *s, int с, size_t n)
Заполняет n байтов блока s символом с; возвращает s

void setmem(void *dest, unsigned length, char value)
Заполняет блок dest размером length байтом value

Файл

mem.h

mem.h

mem.h

Комментарии
Приведенные в данном разделе функции могут работать как со строками с ну-

левым символом в конце, так и со строками без нулевого символа, а также с блока-
ми памяти, не являющимися строками.

3.4.2.2 Функции обработки строк с нулевым символом в конце

Функция

AnsiStr
Comp

AnsiStr
IComp

AnsiStr
LComp

AnsiStrLI
Comp

AnsiStr
Lower

AnsiStrPos

AnsiStr
RScan

AnsiStr
Scan

Синтаксис / Описание

int AnsiStrComp(char * SI, char * S2)

Сравнивает строки 81и S2 с учетом регистра; результат
< 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

int AnsiStrIComp(char * SI, char * S2)
Сравнивает строки 81и S2 без учета регистра; резуль-
тат < 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

int AnsiStrLComp(char * SI, char * S2,
Cardinal MaxLen)

Сравнивает до MaxLen символов строк 81и S2; резуль-
тат < 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

int AnsiStrLIComp(char * SI, char * S2,
Cardinal MaxLen)

Сравнивает до MaxLen символов строк 81и S2 без
учета регистра; результат < 0 при SI < S2, = 0 при
SI = S2, > 0 при SI > S2

char * AnsiStrLower(char * Str)
Возвращает строку, все символы которой приведены
к нижнему регистру

char * AnsiStrPos(char * Str, char * SubStr)
Возвращает первое вхождение подстроки SubStr
в Str или NULL

char * AnsiStrRScan(char * Str, char Chr)
Возвращает указатель на последнее вхождение сим-
вола Chr в Str или NULL

char * AnsiStrScan(char * Str, char Chr)
Возвращает указатель на первое вхождение символа
Chr в Str или NULL

Файл

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

266 Глава 3

Функция

AnsiStr
Upper

CharTo
Oem

OemBuff

Compare
Str

Compare
Text

LineStart

mbscpv

mbslwr

mbsncpv

mbsupr

Char

OemTo
CharBuff

StrAlloc

StrBufSize

Синтаксис / Описание

char * AnsiStrUpper(char * Str)
Возвращает строку, все символы которой приведены
к верхнему регистру

BOOL CharToOem(LPCTSTR IpszSrc, LPSTR IpszDst)

Переводит строку в текст MS-DOS

BOOL CharToOemBuff(LPCTSTR IpszSrc,
LPSTR IpszDst, DWORD cchDstLength)

Переводит строку в текст MS-DOS

int CompareStr(const System::AnsiString SI,
const System::AnsiString S2)

Сравнивает строки 81и S2 с учетом регистра; результат
< 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

int CompareText(const System::AnsiString SI,
const System::AnsiString S2)

Сравнивает строки 81и S2 без учета регистра; резуль-
тат < 0 при SI < S2, = 0 при SI = S2,.> 0 при SI > S2

char * LineStart(char * Buffer, char * BufPos)
Возвращает указатель на начало последней строки
в Buffer, кончающейся в позиции BufPos

unsigned char * mbscpy(unsigned char *dest,
const unsigned char *src)

Копирует строку src в dest

unsigned char * mbslwr(unsigned char *s)
Преобразует строку к нижнему регистру

unsigned char * mbsncpy(unsigned char *dest,
const unsigned char *src, size_t maxlen)

Копирует до maxlen символов строки src в dest

unsigned char * mbsupr(unsigned char *s)
Преобразует строку к верхнему регистру

BOOL OemToChar(LPCTSTR IpszSrc, LPSTR IpszDst)
Переводит текст MS-DOS в строку

BOOL OemToCharBuff(LPCTSTR IpszSrc,
LPSTR IpszDst, DWORD cchDstLength)

Переводит текст MS-DOS в строку

char * StrAlloc(Cardinal Size)
Динамически выделят блок памяти под строку дли-
ной Size — 1 и возвращает указатель на него; блок
должен освобождаться функцией StrDispose

Cardinal StrBufSize(char * Str)
Возвращает максимальное число символов, которые
могут разместиться в созданной функцией StrAlloc
строке Str

Файл

SysUtils.hpp

winuser.h

winuser.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

mbstring.h

mbstring.h

mbstring.h

mbstring.h

winuser.h

winuser.h

SysUtils.hpp

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 267

Функция

strcat

StrCat

strchr

strcmp

strcmpi

StrComp

StrCopv

strcpy

strcspn

strdup

StrECopy

StrEnd

strerror

Синтаксис / Описание

char *strcat(char *dest, const char *src)
Добавляет строку src в конец строки dest; возвраща-
ет указатель на результирующую строку

char * StrCat(char * Dest, char * Source)
Добавляет строку Source в конец строки Dest; воз-
вращает указатель на результирующую строку

char *strchr(const char * s, int с)
Возвращает указатель на первое вхождение C B S , или
NULL

int strcmp(const char *sl, const char *s2)
Сравнивает строки si и s2; результат < 0 при si < s2,
= 0 при si = s2, > 0 при si > s2

int strcmpi(const char *sl, const char *s2)
To же, что stricmp: сравнивает строки si и s2 без
учета регистра (не кириллицу); результат < 0 при
si < s2, = 0 при si = s2, > 0 при si > s2

int StrComp(char * Strl, char * Str2)
Сравнивает строки 81и S2 с учетом регистра (для ки-
риллицы лучше использовать AnsiStrComp); результат
< 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

char * StrCopy(char * Dest, char * Source)
Копирует Source в Dest и возвращает Dest

char *strcpy(char *dest, const char *src)
Копирует строку src в dest; возвращает dest

size_t strcspn(const char *sl, const char *s2)
Возвращает длину начальной части строки si, не со-
держащей ни одного из символов строки s2

char *strdup(const char *s)
Выделяет соответствующую область в памяти и копи-
рует в нее строку s; возвращает указатель на эту об-
ласть

char * StrECopy(char * Dest, char * Source)
Копирует Source в Dest и возвращает указатель на
конечный нулевой символ Dest

char * StrEnd(char * Str)
Возвращает указатель на конечный нулевой символ
Str

char *strerror(int errnum)
Возвращает указатель на строку сообщения об ошиб-
ке с номером errnum

Файл

string.h

SysUtils.
hpp

string.h

string.h

string.h

SysUtils.hpp

SysUtils.hpp

string.h

string.h

string.h

SysUtils.hpp

SysUtils.hpp

string.h

268 Глава 3

Функция

stricmp

StrlComp

StrLCat

StrLComp

StrLCopv

strlen

StrLen

StrLIComp

StrLower

strlwr

StrMove

Синтаксис / Описание

int stricmp(const char *sl, const char *s2)
To же, что strcmpi: сравнивает строки si и s2 без
учета регистра (не кириллицу); результат < 0 при
si < s2, = 0 при si = s2, > 0 при si > s2

int StrIComp(char * Strl, char * Str2)
Сравнивает строки 81и S2 без учета регистра (для ки-
риллицы надо использовать AnsiStrlComp); результат
< 0 при SI < S2, = 0 при SI = S2, > 0 при SI > S2

char * StrLCat(char * Dest, char * Source,
Cardinal MaxLen)

Копирует до MaxLen символов строки Source в конец
строки Dest и возвращает Dest

int StrLComp(char * Strl, char * Str2,
Cardinal MaxLen)

Сравнивает до MaxLen символов строк 81и S2 с уче-
том регистра (для кириллицы лучше использовать
AnsiStrLComp); результат < 0 при SI < S2, = 0 при
SI = S2, > 0 при SI > S2

char * StrLCopy(char * Dest, char * Source,
Cardinal MaxLen)

Копирует до MaxLen символов Source в Dest и воз-
вращает указатель на Dest

size_t strlen(const char *s)
Возвращает число символов в s, не считая нулевого
символа в конце

Cardinal StrLen(char * Str)
Возвращает число символов в Str, не считая нулевого
символа в конце

int StrLIComp(char * Strl, char * Str2,
Cardinal MaxLen)

Сравнивает до MaxLen символов строк 81и S2 без
учета регистра (для кириллицы надо использовать
AnsiStrLIComp); результат < 0 при SI < S2, = 0 при
SI = S2, > 0 при SI > S2

char * StrLower(char * Str)
Возвращает строку, все символы которой приведены
к нижнему регистру (для кириллицы надо использо-
вать AnsiStrLower);

char *strlwr(char *s)
Преобразует строку s в нижний регистр (только ла-
тинские буквы)

char * StrMove(char * Dest, char * Source,
Cardinal Count)

Копирует Count символов из Source в Dest и возвраща-
ет Dest; Source и Dest могут перекрываться в памяти

Файл

string.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

string.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

string.h

SysUtils.hpp

Функции С. C++, библиотек C++Builder, API Windows 269

Функция

strncat

strncmp

strncmpi

strncpy

StrNew

strnicmp

strnset

strpbrk

StrPCopy

StrPLCopy

StrPM

strrchr

Синтаксис / Описание

char *strncat(char *dest, const char *src,
size_t maxlen)

Копирует до maxlen символов строки src в конец стро-
ки dest и добавляет нулевой символ; возвращает dest

hit strncmp(const char *sl, const char *s2,
size_t maxlen)

Сравнивает до maxlen символов строк si и s2; резуль-
тат < 0 при si < s2, = 0 при si = s2, > 0 при si > s2

int strncmpi(const char *sl, const char *s2, size_t n)
To же, что strnicmp: сравнивает до maxlen символов
строк si и s2 без учета регистра (не кириллицу); резуль-
тат < 0 при si < s2, = 0 при si = s2, > 0 при si > s2

char *strncpy(char *dest, const char *src,
size_t maxlen)

Копирует до maxlen символов из src в dest; возвра-
щает dest

char * StrNew(char * Str)
Динамически размещает в памяти копию Str и воз-
вращает указатель на нее

int strnicmp(const char *sl, const char *s2,
size_t maxlen)

To же, что strncmpi: сравнивает до maxlen символов
строк si и s2 без учета регистра (не кириллицу); резуль-
тат < 0 при si < s2, = 0 при si = s2, > 0 при si > s2

char *strnset(char *s, int ch, size_t n)
Копирует символ ch в первые n символов s

char *strpbrk(const char *sl, const char *s2)
Возвращает первое вхождение в si любого из симво-
лов строки s2 или NULL

char * StrPCopy(char * Dest,
const System::AnsiString Source)

Копирует Source в Dest и возвращает Dest

char * StrPLCopy(char * Dest,
const System::AnsiString Source, Cardinal MaxLen)

Копирует до MaxLen символов из Source в Dest и
возвращает Dest

char * StrPos(char * Strl, char * Str2)
Возвращает первое вхождение подстроки Str2 в Strl
или NULL

char *strrchr(const char *s, int c)
Возвращает последнее вхождение символа C B S или
NULL

Файл

string.h

string.h

string.h

stdio.h

SysUtils.hpp

string.h

string.h

string.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

string.h

270 Глава 3

Функция

strrev

StrRScan

StrScan

strset

strspn

strstr

strtok

StrUpper

strupr

wcslwr

wcsupr

Синтаксис / Описание

char *strrev(char *s)
Инвертирует (переворачивает) строку s кроме нулево-
го символа

char * StrRScan(char * Str, char Chr)
Возвращает последнее вхождение символа Chr в Str
или NULL

char * StrScan(char * Str, char Chr)
Возвращает первое вхождение символа Chr в Str или
NULL

char *strset(char *s, int ch);
Заполняет всю строку s до нулевого символа символом ch

size_t strspn(const char *sl, const char *s2)
Возвращает число первых символов строки si, входя-
щих в множество символов строки s2 (последователь-
ность символов безразлична)

char *strstr(const char *sl, const char *s2)
Возвращает первое вхождение подстроки s2 в строку
si или NULL

char *strtok(char *sl, const char *s2)
Ищет первое вхождение разделителей из строки s2
в строке si и усекает строку si; возможны повторные
вызовы

char * StrUpper(char * Str)
Возвращает строку, все символы которой приведены
к верхнему регистру (для кириллицы надо использо-
вать AnsiStrUpper);

char *strupr(char *s)
Преобразует строку s в верхний регистр (только ла-
тинские буквы)

wchar t * wcslwr(wchar t *s)
Преобразует строку s в нижний регистр

wchar t * wcsupr(wchar t *s)
Преобразует строку s в верхний регистр

Файл

string.h

SysUtils.hpp

SysUtils.hpp

string.h

string.h

string.h

string.h

SysUtils.hpp

string.h

string.h

string.h

Комментарии
Функции файла string.h, распознающие регистр символов (strcmpi, stricmp,

strlwr, strncmpi, strnicmp, strupr), не позволяют оперировать с символами кирил-
лицы, записанными в разных регистрах. Для подобной работы с русскими текста-
ми надо использовать аналогичные функции файла SysUtils.hpp. Функции этого
файла могут работать с текстами на русском языке и с многобайтными символами.

Операции, выполняемые большинством функций, вероятно, понятны из пояс-
нений в таблице. Поэтому остановимся только на некоторых из них.

Функция strcat прибавляет к тексту строки, указанной ее первым парамет-
ром, текст строки, указанной вторым параметром. Она возвращает указатель на
строку, заданную ее первым параметром и содержащую суммарный текст обеих

Функции С, C++, библиотек C++Builder, API Windows 271

строк. Это позволяет делать вложенные вызовы strcat, если надо склеить несколь-
ко текстов. Функция strcpy копирует строку, являющуюся ее вторым параметром,
в строку, являющуюся первым параметром и возвращает указатель на результат ко-
пирования. Функция strstr позволяет искать в строке некоторую заданную последо-
вательность символов. Многочисленные примеры применения функций strcat,
strcpy, strstr и strlen вы можете посмотреть в гл. 2, в разд. 2.5.1.

Теперь рассмотрим функцию strtok, которая работает следующим образом.
При своем первом вызове для данной строки si функция ищет первое появление
в строке одного из символов, содержащихся в строке s2. Если такой символ най-
ден, то он заменяется на нулевой символ, т.е. строка si усекается на этом символе.
Функция возвращает указатель на первый символ усеченной строки si. Далее
можно повторно вызывать функцию strtok, задавая ей в качестве первого парамет-
ра NULL. Функция продолжит обработку той же строки si (строку s2 при этом
можно сменить), найдет вхождение следующего символа из s2, опять заменит его
нулевым символом и вернет указатель на начало нового просмотренного фрагмен-
та строки. Таким образом, получается чтение строки по фрагментам. Приведем
пример. Операторы

char s [80], *р;

р = strtok(s, " , . ") ;
if (p) Memol->Lines->Add(p);
while(p)

{
p = strtok(NULL, " ,.;");
if (p) Memol->Lines->Add(p);

}

осуществляют поиск в строке s символов — разделителей: пробела, запятой, точ-
ки. Обработанные фрагменты строки заносятся в строки окна Momol. Например,
если в s занесен'текст "Это текст строки, которая анализируется.", то приведен-
ный код выдаст в окно Memol строки:

Это
текст
строки
которая
анализируется

Если же мы уберем из второго параметра функции strtok символ пробела, то
результатом будет:

Это текст строки
которая анализируется

Функция LineStart производит поиск в буфере Buffer назад от позиции
BufPos символа конца строки "\п". Если символ найден, то функция возвращает
указатель на него, выделяя таким образом последнюю строку. Обратившись
к функции повторно и задав в качестве BufPos значение, на 1 меньшее возвращен-
ного, можно найти предпоследнюю строку и т.п. Если символ "\п" не найден, то
функция возвращает указатель на начало Buffer. Например, код "

char *Buf = "Это первая строка\пЭто вторая\пЭто третья",
*Р = StrEnd(Buf);

do
{
P=LineStart(Buf , P-l) ;

} w h i l e (P != B u f) ;

переберет по очереди, начиная с конца, все строки буфера Buf.

272 Глава 3

3.4.2.3 функции обработки строк типа AnsiString

Функция Синтаксис / Описание Файл

AdjustLine
Breaks

System::AnsiString AdjustLineBreaks(
const System::AnsiString S)

Заменяет в S символы конца строки на
CR/LF — стандартные для Unix

SysUtils.hpp

AnsiCompare
Sir

int AnsiCompareStr(const System::AnsiString SI,
const System::AnsiString S2)

Сравнивает строки 81и S2 с учетом регистра;
результат < 0 при SI < S2, = 0 при SI = S2, > О
при SI > S2

SysUtils.hpp

AnsiCompare
Text

int AnsiCompareText(
const System::AnsiString SI,
const System::AnsiString S2)

Сравнивает строки 81и S2 без учета регистра;
результат < 0 при SI < S2, = 0 при SI = S2, > О
при SI > S2

SysUtils.hpp

AnsiExtract
QuotedStr

System::AnsiString AnsiExtractQuotedStr(
char * &Src, char Quote)

Возвращает строку Src с удаленными из ее нача-
ла и конца символами кавычек, заданными как
Quote, и с заменой внутри двойных кавычек на
одинарные

SysUtils.hpp

AnsiLowerCase System::AnsiString AnsiLowerCase(
const System::AnsiString S)

Возвращает строку S, приведенную к нижнему
регистру (работает с кириллицей)

SysUtils.hpp

AnsiPos int AnsiPos(const System::AnsiString Substr,
const System::AnsiString S)

Возвращает позицию начала подстроки Substr
в S или О

SysUtils.hpp

AnsiQuotedStr System::AnsiString AnsiQuotedStr(
const System::AnsiString S, char Quote)

Возвращает строку S со вставленными в ее нача-
ло и конец символами кавычек, заданными как
Quote, и с заменой внутри строки одинарных
кавычек на двойные

SysUtils.hpp

AnsiUpperCase System::AnsiString AnsiUpperCase(
const System::AnsiString S)

Возвращает строку S, приведенную к верхнему
регистру (работает с кириллицей)

SysUtils.hpp

IsDelimiter bool IsDelimiter(
const System::AnsiString Delimiters,
const System::AnsiString S, int Index)

Определяет, является ли символ с индексом In-
dex в строке S одним из разделителей, указан-
ных в строке Delimiters

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 273

Функция Синтаксис / Описание Файл

IsPathDelimiter bool IsPathDelimiter(const System::AnsiString S,
int Index);

Определяет, является ли символ с индексом In-
dex в строке S обратным слэшем '\', используе-
мым для задания путей к файлам

SysUtils.hpp

LastDelimiter int LastDelimiter(
const System::AnsiString Delimiters,
const System-AnsiString S)

Возвращает индекс последнего вхождения
в строку S одного из разделителей, указанных
в строке Delimiters

SysUtils.hpp

LowerCase System::AnsiString LowerCase(
const System::AnsiString S)

Возвращает строку S, приведенную к нижнему
регистру (для кириллицы используйте AnsiLo-
werCase)

SysUtils.hpp

QuotedStr System::AnsiString QuotedStr(
const System::AnsiString S)

Возвращает строку S со вставленными в ее нача-
ло и конец символами одинарных кавычек и
с заменой внутри строки одинарных кавычек на
двойные (для многобайтных символов исполь-
зуйте AnsiQuotedStr)

SysUtils.hpp

StringReplace System::AnsiString StringReplace(
const System::AnsiString S,
const System::AnsiString OldPattern,
const System::AnsiString NewPattern,

TReplaceFlags Flags)

Возвращает строку S с заменой подстроки Old-
Pattern на NewPattern; Flags управляет замена-
ми подстрок

SysUtils.hpp

Trim System-AnsiString Trim(
const System::AnsiString S)

Возвращает строку S с удаленными начальными
и конечными пробельными и управляющими
символами

SysUtils.hpp

TrimLeft System::AnsiString TrimLeft(
const System::AnsiString S)

Возвращает строку S с удаленными начальными
пробельными и управляющими символами

SysUtils.hpp

TrimRight System-AnsiString TrimRight(
const System::AnsiString S)

Возвращает строку S с удаленными конечными
пробельными и управляющими символами

SysUtils.hpp

274 Глава 3

Функция Синтаксис / Описание Файл

UpperCase System::AnsiString UpperCase(
const Systeni::AnsiStrmg S)

Возвращает строку S, приведенную к верхнему
регистру (для кириллицы используйте AnsiTJp-
perCase)

SysUtils.hpp

WrapText System::AnsiString WrapText(
const System::AnsiString Line,
const System::AnsiString BreakStr,
const TSysCharSet &BreakChars,
int MaxCol)

Возвращает текст Line, разбитый на строки дли-
ной до MaxCol вставкой символов BreakStr и за-
меной на них символов множества BreakChars

SysUtils.hpp

Комментарии
Помимо функций, содержащихся в данной таблице, посмотрите в разд. 3.1.6

описание класса AnsiString. В нем вы найдете много удобных методов работы со
строками типа AnsiString.

Все функции, оперирующие со строками типа AnsiString, учитывают локали-
зацию и поэтому могут с равным успехом работать как для латинских букв, так и
для кириллицы. В этом их большое преимущество перед многими функциями, ра-.
ботающими со строками типа char *.

Несколько замечаний о приведенных в таблице функциях. В функциях
IsDelimiter и IsPathDelimiter индексы отсчитываются от 1 (вопреки утверждени-
ям встроенной справки C++Builder). Соответственно 1 — это первый символ стро-
ки, 2 — второй и т.д.

Функция IsDelimiter удобна для просмотра всех символов строки и замены
каких-то одних символов на другие. Например, код

AnsiString S, Delimiters;
Delimiters = " ' " ;
S =
for (int i = 1; i <= StrLen (S . c_str ()) ; 1++)

if (IsDelimiter (Delimiters, S, i))

заменит в строке S все символы одинарных кавычек на двойные кавычки.
В этой функции в строке Delimiters не обязательно должны быть именно раз-

делители. В нее могут быть занесены любые символы. Например, если приведен-
ный код изменить следующим образом:

AnsiString S, Delimiters;
Delimiters = "123456789";
S =
for (int i = 1; i <= StrLen (S . c_str ()) ; i++)

if (IsDelimiter (Delimiters, S, i))
S[i] -= 1;

то все символы цифр в строке, кроме 0, будут уменьшены на 1.
Функция StringReplace возвращает строку S с заменой подстроки OldPattern

на NewPattern. Если параметр Flags не включает флаг rfReplaceAH, то функция
заменят только первое вхождение подстроки OldPattern. Если параметр Flags
включает флаг rflgnoreCase, то операции выполняются без учета регистра. Напри-
мер, оператор

31 = StringReplace (S, OldPattern, NewPattern,
TReplaceFlags () «rfReplaceAH) ;

Функции С, C++, библиотек C++Builder, API Windows 275

поместит в строку S1 текст строки S с заменой в ней всех подстрок OldPattern на
NewPattern.

Функция WrapText разбивает заданный текст Line на строки. В качестве сим-
волов конца строки используются символы, заданные параметром BreakStr. Пара-
метр MaxCol задает максимальное количество символов в строке. Разбиение на
строки производится вставкой BreakStr после одного из символов, имеющихся
в множестве BreakChars. Вставка производится после того из символов в текущей
строке, который обеспечивает ее максимальную длину в пределах MaxCol. Если ни
одного символа из BreakChars не встретилось, длина строки может превысить
MaxCol. Например, операторы

TSysCharSet bchars;
bchars « ' ' « ' . ' « ' , ' « ';' « '+ ' « '-';
AnsiString S, SI;
S =
SI = WrapText(S, "Vn\r" , bchars, 10);

обеспечивают запись в SI текста S, разбитого на строки длиной до 10 символов,
причем разбиение проводится после пробелов и знаков пунктуации. Если в S запи-
сать текст: "Этот тест показывает разбиение на строки, в частности — на символах
+ и -.", то результат будет следующим:

"Этот тест "
"показывает "
"разбиение "
"на строки,"
" в "
"частности "
"- на "
"символах +"
" и - . "

Можно заметить, что вторая строка содержит 11 символов, включая пробел,
т.е. ее размер больше заданного.

Конечно, в этом примере указана очень маленькая длина строки и поэтому
разбиение выглядит некрасиво. При нормальной для печати.длине строк разбие-
ние получается лучше.

3.5 Потоки и файлы

3.5.1 Атрибуты и флаги файлов, стандартные файлы

Файлы могут иметь следующие атрибуты, определенные в dos.h:

FA_RDONLY

FA_HIDDEN

FA_SYSTEM

FAJLABEL

FA_DIREC

FA_ARCH

только для чтения

невидимый

системный

метка тома

каталог

архивный

Еще один альтернативный набор констант атрибутов приведен в разд. 3.5.6.
Атрибуты объединяются в одно слово операцией ИЛИ (|).

276 Глава 3

При открытии файла доступ к нему определяется следующими флагами (опре-
делены в файле fcntl.h):

О RDONLY

О WRONLY

О RDWR

0 CREAT

О TRUNC

О BINARY

О TEXT

О NOINHERIT

О NDELAY

O_APPEND

0_CREA

O_EXCL

файл отрыт только для чтения

файл отрыт только для записи

файл отрыт для чтения и записи

создание нового файла

если файл существует, он урезается до 0

двоичный файл

текстовый файл

файл не передается в дочерний процесс

не используется, введен для совместимости с UNIX

файл отрыт для добавления в конец, при каждой операции
вывода указатель файла автоматически устанавливается на
конец

если файл существует, то этот флаг не действует, если файл
создается, то его флаги доступа задаются специальным пара-
метром mode, принимающим значения, указанные в приве-
денной ниже таблице

используется только вместе с O_CREA и означает, что, если
файл уже существует, возвращается ошибка

Файлы могут открываться в следующих режимах mode (определены в файле
sys\stat.h):

S IWRITE

S IREAD

S_IREAD S_IWRITE

разрешение записи

разрешение чтения

разрешение записи и чтения

Файлы могут иметь следующие флаги совместного доступа нескольких прило-
жений (определены в файле share.h):

SH_COMPAT

SH_DENWR

SH_DENYNO

SH_DENYNONE

SH_DENYRD

SH_DENYRW

Установка режима совместного доступа. Объединяется с дру-
гими флагами (например, SH_COMPAT | SH_DENWR).
Происходит ошибка, если файл уже открыт с другим режи-
мом доступа

Запрещает запись, разрешает повторное открытие файла толь-
ко для чтения

Разрешает доступ для чтения и записи (оставлен наряду
с SH_DENYNONE для обратной совместимости)

Разрешает доступ для чтения и записи. Разрешает повтор-
ное открытие файла, но только с тем же SH_COMPAT

Запрещает чтение, разрешает повторное открытие файла толь-
ко для записи

Доступ к файлу обеспечивает только текущий дескриптор

Функции С, C++, библиотек C++Builder, API Windows 277

Флаги могут соединяться в одно слово операцией ИЛИ (|). Из флагов
SH_DENYRD, SH_DENYNO может быть задан только один.

Имеется и другой набор констант режимов, в которых могут быть открыты
файлы и которые определяют доступ к файлам других приложений (файл
SysUtils.hpp):

Имя константы

fmOpenRead

fmOpen Write

fmOpenReadWrite

fmShareCompat

fmShareExclusive

fmShareDeny Write

fmShareDenyRead

fmShareDenyNone

Значение

$0000

$0001

$0002

$0000

$0010

$0020

$0030

$0040

Режим

открыть только для чтения

открыть только для записи

открыть для чтения и записи

открыть совместимым с FCB

запрет другим приложениям
вать в файл

запрет другим приложениям
в файл

запрет другим приложениям

читать и записы-

записывать

читать из файла

полный доступ к файлу других приложений

В языках С и C++ файл рассматривается как поток (stream), представляющий
собой последовательность считываемых или записываемых байтов.

В C++Builder могут использоваться два подхода к работе с файлами. Первый
заключается в том, что информация о потоке (файле) заносится в структуру типа
FILE, определенную в файле stdio.h, и файл оказывается связанным с этой струк-
турой. Второй подход связывает файл с дескриптором (handle) — целым значени-
ем, характеризующим размещение информации о файле во внутренних таблицах
системы.

В начале работы любой программы автоматически открывается три потока со
своими дескрипторами:

поток

stdin

stdout

stderr

дескриптор

0

1

2

стандартный входной поток — обычно клавиатура

стандартный выходной поток — обычно экран

стандартный поток сообщений об ошибках

В чистом виде эти потоки используются только в консольных приложениях.
Но с помощью некоторых функций, описанных в последующих разделах, они мо-
гут быть перенаправлены в файлы и использоваться в этом случае в приложениях
Windows.

3.5.2 Управление потоками и файлами,
описываемыми структурами FILE

Управление файлами при подходе, описываемом структурами FILE, осущест-
вляется следующими функциями.

278 Глава 3

Функция

_fdopen

_fileno

_flushall

_fsopen

fclose

fflush

fopen

freopen

setbuf

setvbuf

tmpfile

Синтаксис / Описание

FILE *_fdopen(int handle, char * mode)
Связывает файл с дескриптором handle, открываемый
в режиме mode, с потоком и возвращает указатель на
связываемую с потоком структуру типа FILE или NULL

int _fileno(FILE *stream)
Возвращает дескриптор потока stream

int _flushall(void)
Очищает буферы всех входных и выходных потоков, за-
писывая в выходные потоки содержимое их буферов;
возвращает число открытых и закрытых потоков

FILE * fsopen(const char *filename, const char *mode,
int shflag)

Открывает файл filename совместного доступа, определя-
емого параметрами shflag и mode; возвращает указатель
на связываемую с ним структуру типа FILE или NULL

int fclose(FILE *stream)
Закрывает поток stream

int fflush(FILE *stream)
Очищает буфер выходного потока stream, сбрасывая его
содержимое в поток; возвращает 0 при успешном завер-
шении и EOF при ошибке

FILE *fopen(const char *filename, const char *mode)
Открывает файл с именем filename в режиме mode и
возвращает указатель на связываемую с ним структуру
типа FILE или NULL

FILE *freopen(const char *filename, const char *mode,
FILE *stream)

Связывает с открытым потоком stream файл с именем
filename в режиме mode и возвращает указатель на свя-
зываемую с ним структуру типа FILE или NULL

void setbuf(FILE *stream, char *buf)
Задает буфер buf для потока stream вместо буфера по
умолчанию

int setvbuf (FILE *stream, char *buf, int type, size_t size)
Задает буфер buf размера size для потока stream вместо
буфера по умолчанию

FILE *tmpfile(void)
Открывает временный двоичный файл для записи и воз-
вращает указатель на связываемую с ним структуру
типа FILE или NULL

Файл

stdio.h

stdio.h

stdio.h

stdio.h,
share.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

Комментарии
Открывается файл функцией fopen, в которую передается как параметр стро-

ка с именем файла filename. Аргумент mode указывает на строку, которая опреде-
ляет режим открытия. Она может содержать спецификаторы:

Функции С, C++, библиотек C++Builder, API Windows 279

г

r+

а

а+

w

W+

открыть файл только для чтения

открыть существующий файл для обновления — чтения и записи

открыть или создать файл для записи данных в конец файла

открыть или создать файл для чтения или записи в конец файла

создать файл для записи; если такой файл уже существует, он будет
перезаписан

создать файл для обновления — чтения и записи; если такой файл
уже существует, он будет перезаписан

К указанным спецификаторам в конце или перед символом "+" может добав-
ляться символ "t" — текстовый файл, или "Ь" — бинарный, двоичный файл. На-
пример, "rt", "rb", "r+t", "r+b" и т.д. Если ни символ "t", ни символ "Ь" не указа-
ны, то тип открываемого файла определяется значением глобальной переменной
_fmode, определенной в файле fcntl.h. Она может принимать значения О_ТЕХТ -
текстовый файл (по умолчанию) или O_BINARY — двоичный файл.

Если открытие файла прошло успешно, функция fopen возвращает указатель
на связываемую с потоком структуру типа FILE. Если произошла ошибка, то воз-
вращается NULL. Типичная процедура открытия файла имеет вид:

•FILE *F;
if ((F = fopen ("Test.txt", "rt")) =•= NULL)

{
ShowMessage("Файл не удается открыть");
return;

}

После того, как файл открыт, с ним связывается указатель, определяющий те-
кущую позицию чтения и записи. При каждой операции чтения и записи этот ука-
затель автоматически смещается на величину прочитанного или записанного
поля. Кроме того, указатель может смещаться программно с помощью функций
fseek и rewind, описанных в разд. 3.5.4. Однако если файл открыт для обновле-
ния — чтения и записи, то при работе с ним надо учитывать следующее:

• вывод (запись) не может следовать сразу за вводом (чтением) без предварите-
льной установки указателя явным образом с помощью функций fseek или re-
wind

• ввод не может следовать сразу за выводом без предварительной установки ука-
зателя явным образом с помощью функций fseek или rewind — в противном
случае ввод может неожиданно выдать признак конца файла
Функция _fsopen открывает файл filename совместного доступа для несколь-

ких процессов, определяемого параметрами shflag и mode. Флаги совместного дос-
тупа, из которых может формироваться shflag, см. в разд. 3.5.1. Параметр mode
аналогичен такому же параметру функции fopen. При работе с этой функцией
в DOS предварительно должна быть загружена программа SHARE.EXE.

Функция freopen связывает с открытым потоком stream файл с именем
filename в режиме mode. Отличие от функции fopen заключается только в том, что
поток stream уже был ранее открыт. Это позволяет, в частности, переназначить
стандартный поток. Например, оператор

FILE *F = freopen("output.txt", "wt", s tdout);

перенаправляет стандартный выходной поток stdout в текстовый файл "out-
put.txt". Все последующие выводы в поток stdout будут в действительности на-
правляться в этот файл.

280 Глава 3

Функция _fdopen осуществляет связь между файлами, открытыми с дескрип-
торами (об этом подходе см. в разд. 3.5.3), и потоками типа FILE. Например, опе-
ратор

FILE * stream = fdopen(handle, " w ") ;

связывает ранее открытый файл с дескриптором handle со структурой потока stre-
am.

Обратное преобразование - - получение дескриптора файла, связанного со
структурой FILE, осуществляет функция _fileno. В приведенном ниже примере
создается файл "Test.txt" для записи и определяется его дескриптор.

FILE *stream;
int handle;
stream = fopen("Test.txt", "w") ; // создание файла
handle = _fileno(stream); // определение дескриптора

f c l o s e (s t r e a m) ; // закрытие файла

Открываемые рассмотренными функциями потоки буферизуются, т.е. обмен
информацией происходит не непосредственно с файлами, а с промежуточными бу-
ферами, расположенными в оперативной памяти. Информация переписывается из
буфера в файл только при переполнении буфера, или при закрытии файла, или
функциями fflush и _flushall. Первая из них действует на буфер указанного вы-
ходного потока, вторая — на буферы всех входных и выходных потоков. Для вход-
ного потока функция очищает буфер, а для выходного — немедленно сбрасывает
все содержимое в поток, после чего буфер очищается. Потоки остаются открытыми
и буферы готовы к приему новой информации.

Программа автоматически осуществляет буферизацию всех потоков. Однако
этим процессом можно управлять функциями setbuf и setvbuf. Если в функции
setbuf параметр buf задать равным NULL, то буферизация потока производиться
не будет. Это может замедлить работу с потоком, но зато обеспечит немедленную
передачу информации без ожидания того, чтобы буфер переполнился. Если же buf
указывает на массив символов, то именно этот массив будет использоваться для
полной буферизации потока stream вместо буфера по умолчанию. Размер буфера
может достигать значения BUFSIZ, определенного в файле stdio.h. Например:

char outbuf[BUFSIZ];
setbuf(F, outbuf);

Функция setbuf должна вызываться сразу поле открытия потока или сразу по-
сле вызова функции fseek (см. разд. 3.5.4), устанавливающей позицию указателя
потока. В противном случае вызов setbuf может приврдить к непредсказуемым ре-
зультатам.

Функция setvbuf предоставляет более богатые возможности по управлению
процессом буферизации. В этой функции задание параметра buf = NULL приводит
к выделению в динамически распределяемой памяти с помощью функции malloc
места для буфера размером size.' Этот буфер автоматически освобождает память
при закрытии соответствующего потока. Размер открываемого буфера ограничен
сверху константой UINT_MAX, определенной в файле limits.h.

Параметр type может принимать следующие значения:

IOFBF Полная буферизация файла. Когда буфер ввода пуст, очередная
операция ввода пытается заполнить весь буфер. При выводе вы-
дача содержимого в файл производится после того, как буфер за-
полнится до отказа.

Функции С, C++, библиотек C++Builder, API Windows 281

_IOLBF

_IONBF

Буферизация строк. Когда буфер ввода пуст, очередная операция
ввода пытается, как и в предыдущем случае, заполнить весь бу-
фер. Однако при выводе выдача содержимого в файл производит-
ся после того, как в потоке появляется символ новой строки.

Небуферизованный
игнорируются .

ввод/вывод. При этом параметры buf и size

При успешном завершении функция setvbuf возвращает 0.
Файлы, открытые рассмотренными ранее функциями fopen и freopen, долж-

ны закрываться функцией fclose. При этом автоматически открытые буферы пото-
ков освобождают память. Но если буферы назначались явным образом функциями
setbuf и setvbuf с параметром buf отличным от NULL, то они автоматически не ос-
вобождают память.

Функция tmpfile открывает временный двоичный файл для записи в режиме
(w+b) и возвращает указатель на связываемую с ним структуру типа FILE. При не-
удаче возвращается NULL. Если после создания временного файла программа не
изменяет текущий каталог, то при завершении программы временный файл авто-
матически удаляется с диска.

Подробное рассмотрение работы с файлами, описываемыми структурами FILE,
см. в гл. 2 в разд. 2.10.2.

3.5.3 Управление потоками и файлами,
связанными с дескрипторами

Управление файлами осуществляется следующими функциями.

Функция

_creat

_rtl_close

_rtl_creat

_rtl_open

_sopen

close

creatnew

Синтаксис / Описание

int _creat(const char *path, int mode)
Создает новый или переписывает существующий файл
в режиме mode; возвращает дескриптор или —1

int _rtl_close(int handle)
Закрывает поток с дескриптором handle

int _rtl_creat(const char *path, int attrib)
Создает новый или переписывает существующий файл
path с атрибутами attrib; возвращает дескриптор или -1

int _rtl_open(const char *filename, int oflags)
Открывает существующий файл filename для чтения
или записи с атрибутами oflags; возвращает дескрип-
тор или -1

int _sopen(char *path, int access, int shflag [, int mode])
Открывает файл path совместного доступа, определяе-
мого параметрами access, shflag, mode; возвращает
дескриптор или -1

int close(int handle)
Закрывает поток с дескриптором handle

int creatnew(const char *path, int attrib)
Аналогична _rtl_creat, но выдает ошибку, если файл
существует

Файл

io.h,
sys\stat.h

io.h

io.h, dos.h

io.h, dos.h

fcntl.h,
sys\stat.h,
share.h, io.h,
stdio.h

io.h

io.h, dos.h

282 Глава 3

Функция

creattemp

dup

dup2

FileClose

FileCreate

FileOpen

lock

locking

setmode

umask

unlock

Синтаксис / Описание

int creattemp(char *path, int attrib)
Создает временный файл с уникальным именем и ат-
рибутами attrib в каталоге path

int dup(int handle)
Создает и возвращает дубликат дескриптора handle

int dup2(int oldhandle, int newhandle)
Создает и возвращает дубликат newhandle дескрипто-
ра oldhandle

void FileClose(int Handle)
Закрывает файл с дескриптором Handle

int FileCreate(const System::AnsiString FileName)
Создает файл FileName и возвращает его дескриптор
в случае успеха или —1

int FileOpen(const System::AnsiString FileName,
int Mode)

Открывает файл FileName в режиме Mode и возвра-
щает его дескриптор или -1

int lock(int handle, long offset, long length)
Блокирует в файле handle length байтов, начиная
с позиции offset от чтения или записи другими про-
цессами

int locking(int handle, int cmd, long length)
Блокирует или разблокирует в файле handle length
байтов, начиная с текущей позиции для доступа дру-
гих процессов

int setmode(int handle, int amode)
С помощью параметра amode задает и возвращает тип
открытого файла с дескриптором handle:
O_BINARY — двоичный, OJTEXT — текстовый

unsigned umask(unsigned mode)
Задает маску режима чтения/записи mode, принимае-
мую по умолчанию функциями open и creat:
S_IWRITE, S_IREAD или S_IREAD|S_I WRITE; воз-
вращает предыдущую маску

int unlock(int handle, long offset, long length)
Разблокирует в файле handle length байтов, начиная
с позиции offset, для чтения или записи другими про-
цессами

Файл

io.h, dos.h

io.h

io.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

io.h

io.h, sys\loc-
king.h

io.h

io.h

io.h

Комментарии
Функция _creat создает новый или переписывает существующий файл в ре-

жиме mode. Параметр path указывает имя файла или имя с путем к нему. Вид
файла — текстовый или двоичный, задается глобальной переменной _fmode -
О_ТЕХТ или O_BINARY. Если файл существует и для него установлен атрибут за-
писи, то длина файла усекается до 0. Если же файл существует и имеет атрибут

Функции С, C++, библиотек C++Builder, API Windows • 283

только для чтения, то функция _creat выдает ошибку, а файл сохраняется неиз-
менным.

Режим, в котором создается файл, определяется параметром mode, который мо-
жет принимать значения, определенные в файле sys\stat.h и указанные в разд. 3.5.1.

При успешном завершении возвращается дескриптор созданного файла. При
ошибке возвращается -1, а значение еггпо (см. разд. 3.1.4.1) может иметь значе-
ния EACCES, ENOENT, EMFILE.

В настоящее время функция _creat считается устаревшей и вместо нее реко-
мендуется использовать _rtl_creat. Она действует подобно функции _creat, но все-
гда создает двоичный файл и позволяет своим параметром attrib установить опера-
цией ИЛИ (|) атрибуты: FA_RDONLY — только для чтения, FA_HIDDEN — неви-
димый, FA_SYSTEM — системный (подробнее об атрибутах см. в разд. 3.5.1).

Функция creatnew аналогична функции _rtl_creat во всем, кроме того, что
возвращает -1 в случае, если файл с данным именем уже существует.

Функция _rtl_open открывает существующий файл filename для чтения или
записи с атрибутами oflags. Таблица возможных атрибутов приведена в разд.
3.5.1. При успешном завершении возвращается дескриптор открытого файла и его
указатель устанавливается на начало файла. При ошибке возвращается —1, а зна-
чение еггпо (см. разд. 3.1.4.1) может иметь значения EINVACC, EACCES, ENO-
ENT, EMFILE.

Функция _sopen открывает файл path совместного доступа, определяемого па-
раметрами access, shflag, mode. Параметр access задает совокупность О_... флагов
доступа, перечисленных в разд. 3.5.1. Если среди этих флагов задан O_CREA, то
режим открытия файла определяется параметром mode (см. разд. 3.5.1). Параметр
shflag определяет флаги совместного доступа к файлу нескольких приложений.
Значения этих флагов приведены в разд. 3.5.1. При успешном завершении функ-
ция возвращает дескриптор открытого файла и его указатель устанавливается на
начало файла. При ошибке возвращается -1, а еггпо (см. разд. 3.1.4.1) может при-
нимать значения EINVACC, EACCES, ENOENT, EMFILE.

Функция creattemp создает временный файл с уникальным именем и атрибу-
тами attrib в каталоге path. Вид файла — текстовый или двоичный, определяется
значением глобальной переменной _fmode (O_TEXT или O_BINARY). Параметр
attrib может равняться нулю или принимать уже рассмотренные значения
FA_HIDDEN, FA_RDONLY или FA_SYSTEM (см. разд. 3.5.1).

Число файлов одновременно открытых перечисленными функциями, не долж-
но превышать HANDLE_MAX.

Функции close, _rtl_close и FileClose закрывают файл, открытый ранее функ-
циями creat, creatnew, creattemp, dup, dup2, open, _rtl_creat, _rtl_open, File-
Open. При этом в выходной файл не записывается автоматически признак конца
файла Qrl-Z. Если этот символ требуется, вам надо предварительно записать его яв-
ным образом.

При успешном завершении функций они возвращают 0. При ошибке возвра-
щают значение -1 и задают глобальной переменной еггпо (см. разд. 3.1.4.1) значе-
ние EBADF.

Таким образом, стандартная схема работы с файлами, связанными с дескрип-
торами, следующая:

int hout = open("output.txt", OJ3REAT I 0_WRONLY,S_IWRITE);

close(hout);

Например, операторы

int handle;
if ((handle = open ("Test.txt", 0_CREAT | 0_TEXT)) == -1)

{
ShowMessage("Файл не удается создать");

284 Глава 3

return;

close (handle) ;

пытаются создать новый текстовый файл, а в случае неудачи (функция open верну-
ла -1) отображают сообщение об ошибке.

Функции FileOpen, FileCreate и FileClose дают альтернативный подход к от-
крытию и закрытию файлов, связанных с дескрипторами. Функция FileOpen от-
крывает файл в режиме Mode, задаваемом константами fmShare (см. разд. 3.5.1).
В дальнейшем с этими файлами можно работать с помощью функций FileRead,
FileWrite, FileSeek, описанных в разд. 3.5.4.

При совместном доступе к файлам нескольких приложений помимо установки
флагов доступа может использоваться блокировка и деблокировка отдельных об-
ластей файла с помощью функций lock, unlock, locking. При работе с этими функ-
циями в DOS предварительно должна быть загружена программа SHARE.EXE.
В функции locking режим работы определяется параметром cmd:

LK

LK

LK

LK

LK

_LOCK

_RLCK

_NBLCK

_NBRLCK

_UNLCK

Блокировать область. Если не удалось, то прежде, чем отказа-
ться от блокировки, делается новая попытка через 10 секунд.

То же, что LK_LOCK.

Блокировать область. Если не удалось, то происходит отказ от
попытки блокировки.

То же, что LK_NBLCK.

Разблокировать ранее заблокированную область файла.

При успешном завершении функции возвращается 0. При неудаче возвраща-
ется -1, а значение еггпо (см. разд. 3.1.4.1) может иметь значения EACCES,
EBADF, EDEADLOCK — невозможность блокировки, несмотря на повторную по-
пытку через 10 секунд (при cmd равном LK_LOCK или LK_RLCK), EINVAL -
ошибка в cmd или не загружена программа SHARE.EXE.

Функции dup и dup2 позволяют оперировать с дескрипторами файлов. Функ-
ция dup создает и возвращает дубликат (псевдоним) дескриптора handle. Дубли-
кат связан с тем же открытым файлом или устройством, что и исходный дескрип-
тор, имеет тот же режим доступа (только чтение, только запись, чтение и запись) и
имеет тот же указатель позиции в файле. Изменение указателя в одном из деск-
рипторов приводит к синхронному сдвигу указателя в другом дескрипторе. Функ-
ция dup2 создает и возвращает аналогичный функции dup дубликат newhandle де-
скриптора oldhandle. Функции dup и dup2 могут использоваться, в частности, для
перенаправления стандартных потоков. Например, операторы

int hout = open ("output . tx t " , 0_CREAT
d u p 2 (h o u t , 1) ;

I 0 W R O N L Y , S I W R I T E) ;

перенаправляют стандартный выходной поток stdout (его дескриптор равен 1 -
см. разд. 3.5.1) в файл "output.txt".

3.5.4 Функции ввода/вывода

Функция

fgetchar

Синтаксис / Описание

int fgetchar(void)

Вводит символ из потока stdin

Файл

stdlo.h

Функции С, C++, библиотек C++Builder, API Windows 285

Функция

feetwchar

fuutchar

fputwchar

_getw

-"*"

cgets

clearerr

cprintf

cputs

cscanf

eof

feof

ferror

fgetc

fgetpos

Синтаксис / Описание

wint t fgetwchar(void)
Вводит символ из потока stdin

int fputchar(int с)
Выводит символ с в поток stdout, то же, что fputc(c,
stdout); при ошибке возвращает EOF

wint t fputwchar(int с)
Выводит символ с в поток stdout, то же, что fputc(c,
stdout); при ошибке возвращает EOF

int _getw(FILE *stream)
Вводит целое число из потока stream

wchar_t *_getws(wchar_t *s)
Читает строку из стандартного входного потока stdin

char *cgets(char *str)
Читает строку символов с консоли

void clearerr(FILE *stream)
Очищает индикаторы ошибок и конца файла потока
stream

int cprintf(cbnst char *format [, argument, ...]
Выводит на экран список аргументов argument no
формату format (см. разд. 3.1.3.1)

int cputs(const char *str)
Выводит строку на экран; возвращает последний
символ

int cscanf(char *format [, address, ...])
Вводит данные с консоли в список аргументов по ад-
ресам argument по формату format; возвращает число
успешно введенных полей или EOF при конце файла

int eof(int handle)
Возвращает 0 при достижении конца потока (файла),
связанного с дескриптором handle

int feof(FILE *stream)
Возвращает 0 при достижении конца потока (файла)
stream

int ferror(FILE *stream)
Проверяет ошибки ввода/вывода потока stream и
возвращает 0 при отсутствии ошибки

int fgetc(FILE *stream)
Вводит символ из потока stream и возвращает его об-
ратно

int fgetpos(FILE *stream, fpos_t *pos)
Заносит в pos текущую позицию файла stream; при
успехе возвращает 0

Файл

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

conio.h

stdio.h

conio.h

conio.h

conio.h

io.h

stdio.h

stdio.h

stdio.h

stdio.h

286 Глава 3

Функция

fgets

FileRead

FileSeek

FileWrite

fprintf

fputc

fputs

fputwc

fputws

fread

fscanf

Синтаксис / Описание

char *fgets(char *s, int n, FILE *stream)
Вводит в s и возвращает строку до n символов из по-
тока stream

int FileRead(int Handle, void *Buffer, int Count)
Выводит из файла с дескриптором Handle, открыто-
го функциями FileOpen или FileCreate, Count бай-
тов в буфер Buffer; возвращает число прочитанных
байтов или —1

int FileSeek(int Handle, int Offset, int Origin)
Перемещает указатель файла с дескриптором Hand-
le, открытого функциями FileOpen или FileCreate,
на Offset байтов от позиции Origin; возвращает 0
при успешном завершении

int FileWrite(int Handle, const void *Buffer, int Count)
Вводит в файл с дескриптором Handle, открытый
функциями FileOpen или FileCreate, Count байтов
из буфера Buffer; возвращает число записанных бай-
тов или -1

int fprintf(FILE *stream, const char *format [, argu-
ment, ...])
Выводит в файл stream список аргументов argument
по формату format; возвращает число успешно запи-
санных байтов или EOF при ошибке

int fputc(int с, FILE *stream)
Выводит символ с в поток stream

int fputs(const char *s, FILE *stream)
Выводит строку s в поток stream; при ошибке воз-
вращает EOF

wint_t fputwc(wint_t c, FILE *stream)
Выводит символ с в поток stream

int fputws(const wchar_t *s, FILE *stream)
Выводит строку s в поток stream; при ошибке воз-
вращает EOF

size_t fread(void *ptr, size_t size, size_t n,
FILE *stream)

Неформатированное чтение из stream в ptr n элемен-
тов данных размером size каждый; возвращает число
успешно прочитанных байтов (n * size)

int fscanf(FILE *stream,
const char *format [, address, ...])

Вводит данные из файла stream в список аргументов
по адресам argument по формату format; возвращает
число успешно введенных полей или EOF при конце
файла

Файл

stdio.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

Функции С, C++, библиотек C++Builder, API Windows 287

Функция

fseek

fsetpos

ftell

fwrite

getc

getch

getchar

getche

getpass

gets

kbhit

Iseek

perror

printf

putc

Синтаксис / Описание

int fseek(FILE *stream, long offset, int fromwhere)
Перемещает указатель файла stream на offset байтов
от позиции fromwhere; возвращает 0 при успешном
завершении

int fsetpos(FILE *stream, const fpos_t *pos)
Устанавливает указатель потока stream в позицию pos

long int ftell(FILE *stream)
Возвращает текущую позицию файла stream

size_t fwrite(const void *ptr, size t size, size t n,
FILE *stream)

Неформатированная запись из ptr в stream n элемен-
тов данных размером size каждый; возвращает число
успешно записанных байтов (n * size)

int getc(FILE *stream)
Вводит символ из потока stream

int getch(void)
Вводит символ с консоли без эхо на экране

int getchar(void)
Вводит символ из stdin; то же, что getc(stdin)

int getche(void)
Вводит символ с консоли с эхо на экране

char *getpass(const char *prompt)
Вводит пароль с консоли до восьми символов после
печати на экране приглашения prompt; возвращает
введенную строку

char *gets(char *s)
Вводит строку из stdin

int kbhit(void)
Проверяет нажатие клавиши консоли; если ни одна
клавиша не нажата — возвращает 0

long lseek(int handle, long offset, int fromwhere)
Перемещает указатель файла с дескриптором handle
на offset байтов от позиции fromwhere; возвращает 0
при успешном завершении

void perror(const char *s)
Выводит в стандартный выходной поток ошибок со-
общение s

int printf(const char *format [, argument, ...])
Выводит в стандартный поток stdout список аргумен-
тов argument по формату format (см. разд. 3.1.2.1)

int putc(int с, FILE *stream)
Выводит символ с в поток stream

Файл

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

conio.h

stdio.h

conio.h

conio.h

stdio.h

conio.h

io.h

stdio.h

stdio.h

stdio.h

288 Глава 3

Функция

putch

putchar

puts

_putws

puttext

putw

read

scanf

sprintf

sscanf

tell

ungetc

ungetch

Синтаксис / Описание

int putch(int c)
Выводит символ с на экран

int putchar(int с)
Макрос, выводящий символ с в stdout; эквивалентен
putc(c, stdout)

int puts(const char *s)
Выводит строку s в stdout и добавляет симв'ол новой
строки

int _putws(const wchar_t *s)
Выводит строку s в stdout и добавляет символ новой
строки

int puttext(int left, int top, int right, int bottom,
void *source)

Выводит содержимое блока памяти source на экран
в текстовом режиме в прямоугольник с координата-
ми left, top, right, bottom

int _putw(int w, FILE *stream)
Выводит в поток stream целое w

int read(int handle, void *buf, unsigned len)
Чтение из файла с дескриптором handle в буфер buf
len байтов

int scanf(const char *format [, address, ...])
Вводит данные из потока stdin в список аргументов
по адресам argument по формату format (см. разд.
3.1.3.2)

int sprintf(char *buffer,
const char *format [, argument, ...])

Выводит в строку buffer список аргументов argu-
ment по формату format (см. разд. 3.1.3.1)

int sscanf(const char *buffer,
const char *format [, address, ...])

Вводит данные из строки buffer в список аргументов
по адресам argument по формату format

long tell(int handle)
Возвращает текущую позицию файла с дескриптором
handle

int ungetc(int с, FILE *stream)
Возвращает символ ch в поток stream, чтобы он стал
следующим символом для чтения

int ungetch(int ch)

Возвращает символ ch на консоль, чтобы он стал сле-
дующим символом для чтения

Файл

conio.h

stdio.h

stdio.h

stdio.h

conio.h

stdio.h

io.h

stdio.h

conio.h

conio.h

io.h

stdio.h

conio.h

Функции С, C++, библиотек C++Builder, API Windows 289

Функция

vfprintf

vfscanf

vprintf

vscanf

vsprintf

vsscanf

write

Синтаксис / Описание

int vfprintf(FILE *stream, const char *format,
va_list arglist)

Выводит в файл stream список аргументов arglist no
формату format (см. разд. 3.1.3.1)

int vfscanf(FILE *stream, const char *format,
va_list arglist)

Вводит данные из потока stream в список адресов ар-
гументов arglist по формату format (см. разд. 3.1.3.2)

int vprintf(const char *format, va_list arglist)
Выводит в stdout список аргументов arglist по фор-
мату format (см. разд. 3.1.3.1)

int vscanf(const char *format, va_list arglist)
Вводит данные из потока stdin в список адресов аргу-
ментов arglist по формату format (см. разд. 3.1.3.2)

int vsprintf(char *buffer, const char *format,
va_list arglist)

Выводит в строку buffer список аргументов arglist
по формату format (см. разд. 3.1.3.1)

int vsscanf(const char *buffer, const char *format,
va_list arglist)

Вводит данные из буфера buffer в список адресов ар-
гументов arglist по формату format (см. разд. 3.1.3.2)

int write(int handle, void *buf, unsigned len)
Выводит в файл с дескриптором handle из буфера
buf len байтов

Файл

stdio.h

stdio.h

stdarg.h

stdarg.h

stdarg.h

stdarg.h

io.h

Комментарии
Для работы с текстовыми файлами чаще всего используются функции scanf

для чтения и printf для записи.
Функции printf, sprintf, vfprintf, vprintf, vsprintf производят форматирован-

ный вывод данных из списка указанных в них аргументов. Строка форматирова-
ния подробно рассмотрена в разд. 3.1.3.1. Функции возвращают число успешно за-
писанных байтов или EOF при ошибке.

Функции fscanf, scanf, cscanf, sscanf, vfscanf, vscanf, vsscanf производят
форматированный ввод данных в список адресов аргументов. Строка форматирова-
ния подробно рассмотрена в разд. 3.1.3.2.

Функции getchar, _fgetchar, cgets, cprintf, _fputchar, putch, puttext, getch,
getche, cputs, getpass, cscanf, kbhit, ungetc, ungetch, vprintf, vscanf не могут ис-
пользоваться в приложениях с графическим интерфейсом для Win32.

В приложениях с графическим интерфейсом для Win32 при использовании
функций scanf, gets должен быть перенаправлен поток stdin, а при использовании
функций printf, putchar, puts должен быть перенаправлен поток stdout.

Функции getchar, _fgetchar, getc, fgetc возвращают читаемый символ, преоб-
разованный в целое без знака.

Функции getchar, _fgetchar, getc, gets, fgets, fgetc, fputc при ошибке преоб-
разования или при окончании файла возвращают EOF.

290 Глава 3

Функции getc, fgetc, getchar после чтения возвращают символ в поток. При
этом функции getc увеличивают указатель потока на 1, подготавливая чтение сле-
дующего символа.

Функция _getw возвращает целое, прочитанное из потока. Поток (файл) дол-
жен быть открыт в текстовом режиме. Функции putw, puts записывают соответст-
венно целое и строку в поток. При ошибке преобразования или при окончании
файла все эти функции возвращают EOF. Поскольку EOF является допустимым
возвращаемым значением, для проверки конца файла или ошибки преобразования
надо использовать функции feof и ferror.

Функция gets читает последовательность символов до символа конца строки,
который не помещает в возвращаемую строку, заменяя его нулевым символом.

Функция fgets читает последовательность символов до заданного числа симво-
лов п или до символа конца строки, который помещает в возвращаемую строку,
помещая после него нулевой символ.

Функция puttext, используемая только в консольных приложениях, выводит
содержимое блока памяти, на который указывает source, на экран в текстовом ре-
жиме в прямоугольник с координатами left, top, right, bottom. Координаты лево-
го верхнего угла (1,1). Каждой позиции на экране соответствуют 2 байта, первый
из которых — символ, а второй — атрибуты вывода. Функция возвращает ненуле-
вое значение при успешном выводе и 0 — при ошибке.

Функции fseek и Iseek перемещают указатель файла на offset байтов от пози-
ции fromwhere. Для текстового файла параметр offset должен быть равен 0 или со-
ответствовать допустимому значению, возвращенному функцией ftell. Параметр
fromwhere, определяющий точку, относительно которой производится смещение
offset, может принимать значения:

SEEK_SET

SEEK_CUR

SEEK END

0

1

2

начало файла

текущая позиция файла

конец файла

Функции возвращают 0 при успешном завершении.
Функции FileRead, File Write и FileSeek используются для работы с файлами,

открытыми функциями FileOpen или FileCreate.

3.5.5 Функции обработки имен файлов

Функция Синтаксис / Описание Файл .

_mktemp char *_mktemp(char *template)
Генерирует, заносит в template и возвращает уни-
кальное имя файла, которое может в дальнейшем
использоваться для создания временных файлов

dir.h

ChangeFileExt System::AnsiString ChangeFiIeExt(
const System::AnsiString FileName,
const System::AnsiString Extension)

Возвращает имя файла FileName с измененным
расширением на Extension; сам файл не переиме-
новывается

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 291

Функция Синтаксис / Описание Файл

ExpandFile
Name

System: :AnsiString ExpandFileName(
const System::AnsiString FileName)

Расширяет имя файла FileName, добавляя
к нему текущие путь и диск; проверка существо-
вания такого файла не проводится

SysUtils.hpp

ExpandUNC
FileName

System::AnsiString ExpandUNCFileName(
const System::AnsiString FileName)

Расширяет имя файла FileName, добавляя
к нему текущие путь и том в формате UNC:
"\\<servername>\<sharename>", если том указы-
вает на сеть

SysUtils.hpp

ExtractFileDir System::AnsiString ExtractFileDir(
const System::AnsiString FileName)

Извлекает из FileName и возвращает путь к файлу

SysUtils.hpp

ExtractFile
Drive

System::AnsiString ExtractFileDrive(
const System::AnsiString FileName)

Возвращает диск файла FileName (например,
"с:") или в формате UNC: "\\<servername>\<sha-
rename>", если путь указывает на сеть

SysUtils.hpp

ExtractFileExt System::AnsiString ExtractFileExt(
const System::AnsiStrmg FileName)

Возвращает расширение файла FileName

SysUtils.hpp

ExtractFile
Name

System::AnsiString ExtractFileName(
const System::AnsiString FileName)

Возвращает имя файла, извлеченное из FileName,
т.е. конец строки после последнего обратного слэ-
ша или двоеточия

SysUtils.hpp

ExtractFile
Path

System::AnsiString ExtractFilePath(
const System::AnsiString FileName)

Возвращает путь к файлу, извлеченный из File-
Name, включая последний обратный слэш или
двоеточие, отделяющие путь от имени

SysUtils.hpp

Extract
RelativePath

System::AnsiString ExtractRelativePath(
const System::AnsiString BaseName,
const System::AnsiString DestName)

Возвращает относительный путь файла DestNa-
me относительно каталога BaseName, включая
форматы вида "..\"

SysUtils.hpp

ExtractShort
PathName

System::AnsiString ExtractShortPathName(
const System::AnsiString FileName)

Возвращает путь и имя файла FileName, преоб-
разовывая имена в формат 8.3

SysUtils.hpp

MatchesMask bool MatchesMask(
const System::AnsiString Filename,
const System::AnsiString Mask)

Проверяет Filename на использование маски Mask

Masks.hpp

292 Глава 3

Функция

MinimizeName

ProcessPath

tmpnam

Синтаксис / Описание

System: :AnsiString MinimizcName(
const System:: AnsiString Filename,
Graphics: :TCanvas * Canvas, int MaxLen)

Минимизирует имя Filename, сокращая путь до
размера, вмещающегося при изображении на
канве Canvas в MaxLen пикселов

void ProcessPath(
const System::AnsiString EditText,
char &Drive, System::AnsiString &DirPart,

System::AnsiString &FilePart)
Разделяет путь процесса EditText на драйвер
Drive, путь DirPart и имя FilePart

char *tmpnam(char *s)
Создает уникальное имя файла, которое может
в дальнейшем использоваться для создания вре-
менных файлов

Файл

filectrl.hpp

filectrl.hpp

stdio.h

Комментарии
Все функции (кроме tmpnam и _mktemp) возвращают строку типа AnsiString

(см. разд. 2.5.2 и 3.1.7), содержащую результат преобразования имени файла
FileName. Могут работать с многобайтными символами. Если FileName не содер-
жит пути или расширения, то соответствующие функции ExtractFile... возвраща-
ют пустую строку.

Не забывайте, что обратный слэш в строке пути к файлу должен повторяться
дважды. Например:

"C:\\Program Files\\Bcb.exe"

Функция ExtractFileDir возвращает путь к файлу в том виде, который нужен
для передачи в функции CreateDir, GetCurrentDir, RemoveDir, SetCurrentDir
(см. разд. 3.5.6).

Функция ExtractShortPathName возвращает путь и имя файла FileName, со-
кращая имена каталогов и файлов до формата 8.3. Например, строка

С:\Program Files\Borland\CBuilder\Bin\Bcb.exe

будет возвращена как

С:\Progra~l\Bor land\CBui lder\Bin\Bcb.exe

Функция MatchesMask проверяет Filename на использование маски Mask.
Маска может содержать обычные алфавитно-цифровые символы, множества, сим-
волы "*" — любое количество любых символов и "?" — любой один символ. Мно-
жества заключаются в квадратные скобки []. В скобках без пробелов записывают-
ся возможные символы или диапазоны в виде <символ>-<символ>. Например,
"а-с". Если первый символ в множестве — восклицательный знак "!", то это мно-
жество содержит символы, которые не должны встречаться. Сравнение с маской
призводится без учета регистра. Функция MatchesMask возвращает true, если
Filename соответствует маске, false, если не соответствует и генерирует исключе-
ние при синтаксически неверной маске. Например, маске

" [a - b] : \ \ t e s t \ \ * . * "

будут соответствовать все имена файлов, расположенных на дисководах а: или Ь:
в каталоге "test".

Функции С, C++, библиотек C++Builder, API Windows 293

Функция MinimizeName минимизирует имя Filename, сокращая путь до раз-
мера, вмещающегося при изображении на канве Canvas в MaxLen пикселов. Вме-
сто выброшенных частей пути изображаются точки. Например, оператор

Labell->Caption = MinimizeName("С:\\Program Files\\Bcb.exe",
Labell->Canvas, 100) ;

приведет к появлению в метке Labell надписи:
С:\. . .\Bcb.exe

Функции tmpnam и _mktemp создают уникальное имя файла, которое может
в дальнейшем использоваться для создания временных файлов. Последовательное
обращение к функции tmpnam может создавать до ТМР_МАХ = 65 535 уникаль-
ных имен. Параметр s этой функции должен задаваться или равным NULL, или
указывать на массив размером не менее L_tmpnam символов (эта константа опре-
делена в stdio.h). В случае параметра равного NULL, функция tmpnam сама созда-
ет необходимый объект с именем файла и возвращает указатель на него.

Если вы создаете затем временный файл с именем, сгенерированным tmpnam
или _mktemp, то должны сами позаботиться о его удалении в конце работы про-
граммы. Автоматически он не удаляется.

3.5.6 Управление каталогами и файлами на дисках

Функция

_getdcwd

_rmdir

_rtl_chmod

_unlink

_waccess

_wrtl_chmod

access

Синтаксис / Описание

char * _getdcwd(int drive, char *buffer, int buflen)
Заносит в буфер buffer размером buflen текущий
каталог диска drive (0 — текущий диск, 1 — А и
т.д.); возвращает указатель на buffer или NULL;
при buffer = NULL создает буфер и возвращает
указатель на него

int _rmdir(const char *path)
Удаляет каталог path (пустой, не текущий и не
корневой); возвращает 0 при успехе или -1

int _rtl_chmod(const char *path, int func [,
int attrib])

При func = 0 возвращает текущие атрибуты файла,
при func = 1 устанавливает файлу атрибуты attrib

int _unlink(const char *filename)
Удаляет с диска файл filename; возвращает 0 или -1

int _waccess(const wchar_t *filename, int amode)
Определяет, существует ли файл filename и какие
операции с ним доступны; режим работы задается
параметром amode

int _wrtl_chmod(const wchar_t *path, int func, ...)
При func = 0 возвращает текущие атрибуты файла,
при func = 1 устанавливает файлу атрибуты attrib

int access(const char ^filename, int amode)
Определяет, существует ли файл filename и какие
операции с ним доступны; режим работы задается
параметром amode

Файл

direct.h

dir.h

io.h, dos.h

io.h

io.h

io.h, dos.h

io.h

294 Глава 3

Функция

chdir

chmod

chsize

CreateDir

DeleteFile

Directory
Exists

DiskFree

DiskSize

FileAge

FileDateTo
DateTime

FileExists

FileGetAttr

FileGetDate

.

Синтаксис / Описание

int chdir(const char *path)
Задает path в качестве текущего каталога; возвра-
щает 0 при успехе или -1

int chmod(const char *path, int amode)
Изменяет режим доступа amode к файлу path; воз-
вращает 0 при успехе или — 1; amode содержит
одно или оба значения S_IWRITE и S_IREAD

int chsize(int handle, long size)
Изменяет размер файла с дескриптором handle, от-
крытого для записи, до size байтов; возвращает 0
или -1

bool CreateDir(const System::AnsiString Dir)
Создает каталог Dir и возвращает true в случае
успеха

bool DeleteFile(const System::AnsiString FileName)
Удаляет файл FileName с диска и возвращает true
в случае успеха

bool DirectoryExists(const System::AnsiString Name)
Определяет, существует ли каталог Name

int DiskFree(Byte Drive)
Возвращает число свободных байтов на диске Drive
или -1, если Drive ошибочный (Drive =0 — теку-
щий диск, 1 — А, 2 — В и т.д.)

int DiskSize(Byte Drive)
Возвращает размер в байтах диска Drive или -1,
если Drive ошибочный (Drive =0 — текущий диск,
1 — А, 2 — В и т.д.)

int FileAge(const System: :AnsiString FileName)
Возвращает дату создания файла FileName или -1,
если такого файла нет

System::TDateTime FileDateToDateTime(
int FileDate)

Возвращает в формате типа TDateTime дату и
время FileDate, заданные в формате DOS

bool FileExists(const System::AnsiString FileName)
Определяет, существует ли файл FileName

int FileGetAttr(const System::AnsiString FileName)
Возвращает атрибуты файла FileName

int FileGetDate(int Handle)
Возвращает дату создания файла с дескриптором
Handle или -1, если такого файла нет

Файл

dir.h

io.h

io.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

Функции С, C++, библиотек C++Builder, API Windows 295

Функция

filelength

FileSearch

FileSetAttr

FileSetDate

FindClose

FindFirst

findfirst

wfindfirst

FindNext

findnext

wfindnext

Синтаксис / Описание

long filelength(int handle)
Возвращает длину в байтах файла с дескриптором
handle; при ошибке возвращает -1

System::AnsiString FileSearch(
const System:: AnsiString Name,
const System::AnsiString DirList)

Ищет в списке каталогов DirList файл Name; воз-
вращает полный путь к файлу или пустую строку

hit FileSetAttr(const System::AnsiString FileName,
int Attr)

Устанавливает файлу FileName атрибуты Attr; воз-
вращает 0 или код ошибки

int FileSetDate(int Handle, int Age)
Устанавливает дату Age файлу с дескриптором
Handle; возвращает 0 или код ошибки

void FindClose(TSearchRec &F)
Завершает последовательность поиска функциями
FindFirst и FindNext со структурой F и освобожда-
ет память

int FindFirst(const System::AnsiString Path,
int Attr, TSearchRec &F)

Начинает поиск файлов по шаблону Path с атрибу-
тами Attr; заносит результат в F; возвращает 0
или код ошибки

int findfirst(const char FAR * path,
struct ffblk _FAR * ffblk, int attrib)

Начинает поиск файлов по шаблону path с атри-
бутами attrib; заносит результат в ffblk; воз-
вращает 0 при успехе или -1

int wfindfirst(const wchar t *pathname,
struct _wffblk *ffblk, int attrib)

Начинает поиск файлов по шаблону pathname с ат-
рибутами attrib; заносит результат в _wffblk; воз-
вращает 0 при успехе или -1

int FindNext(TSearchRec &F)
Продолжает поиск файлов, начатый функцией Fin-
dFirst со структурой F; заносит результат в F; воз-
вращает 0 или код ошибки

int findnext(struct ffblk FAR * ffblk)
Продолжает поиск файлов, начатый функцией fin-
dfirst со структурой ffblk; возвращает 0 при
успехе или -1

int wfindnext(struct wffblk *ffblk)
Продолжает поиск файлов, начатый функцией
_wfindfirst со структурой ffblk; возвращает 0 при
успехе или -1

Файл

io.h

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

SysUtils.hpp

dir.h

dir.h

SysUtils.hpp

dir.h

dir.h

296 Глава 3

Функция

fnmerge

fnsplit

Force
Directories

fstat

getcurdir

GetCurrent
Dir

getcwd

getdisk

getftime

GetSystem
Directory

GetWindows
Directory

Синтаксис / Описание

void fnmerge(char *path, const char *drive,
const char *dir, const char *name,
const char *ext)

Формирует строку path пути к файлу из его отде-
льных составляющих: диска drive, каталога dir,
имени файла name и расширения ext

int fnsplit(const char *path, char *drive, char *dir,
char *name, char *ext)

Разделяет строку path пути к файлу на его отдель-
ные составляющие: диск drive, каталог dir, имя
файла name и расширение ext

void ForceDirectories(System::AnsiString Dir)

Создает каталог Dir и все промежуточные родитель-
ские каталоги, если они отсутствуют

int fstat(int handle, struct stat *statbuf)
Заносит в структуру statbuf информацию об от-
крытом файле с дескриптором handle; возвращает
0 или -1

int getcurdir(int drive, char *directory)
Заносит в directory текущий каталог диска drive
(0 — текущий диск, 1 — А и т.д.) без имени диска
и начального символа "\"

System::AnsiString GetCurrentDir()

Возвращает текущий каталог

char *getcwd(char *buf, int buflen)
Возвращает и сохраняет в буфере buf размером
buflen полный путь к текущему каталогу, включая
диск; возвращает указатель на buf или NULL; при
buf = NULL создает буфер и возвращает указатель
на него

int getdisk(void)
Возвращает текущий диск: 0 — А, 1 — В и т.д.

int getftime(int handle, struct ftime *ftimep)
Читает время и дату создания файла handle
в структуру ftimep; возвращает 0 или -1

UINT GetSystemDirectory(LPTSTR IpBuffer,
UINT uSize)

Функция API Windows, заносит в буфер IpBuffer
размером uSize системный каталог Windows

UINT GetWindowsDirectory(LPTSTR IpBuffer,
UINT uSize)

Функция API Windows, заносит в буфер IpBuffer
размером uSize каталог Windows

Файл

dir.h

dir.h

FileCtrl.hpp

sys\stat.h

dir.h

SysUtils.hpp

dir.h

dir.h

io.h

Функции С, C++, библиотек C++Builder, API Windows 297

Функция

isatty

mkdir

remove

RemoveDir

rename

RenameFile

searchpath

SetCurrent
Dir

setdisk

setftime

stat

Синтаксис / Описание

int isatty(int handle)
Возвращает ненулевое значение, если файл с деск-
риптором handle связан с одним из устройств: тер-
минал, консоль, принтер, последовательный порт

int mkdir(const char *path)
Создает каталог path; возвращает 0 при успехе или -1

int remove(const char *filename)
Макрос, удаляет с диска файл filename; возвраща-
ет 0 или -1

bool RemoveDir(const System::AnsiString Dir)
Удаляет с диска каталог Dir

int rename(const char *oldname,
const char *newname)

Переименовывает файл oldname, давая ему новое
имя newname; может использоваться для перемеще-
ния файла без изменения диска; возвращает 0 или -1

bool RenameFile(const System::AnsiString OldName,
const System::AnsiString NewName)

Переименовывает файл OldName, давая ему новое
имя NewName; если файл с именем NewName уже
существует или нет файла OldName, возвращается
false

char *searchpath(const char *file)
Ищет файл file в каталогах, указанных в перемен-
ной окружения PATH; возвращает полный путь
к файлу или NULL

bool SetCurrentDir(const System::AnsiString Dir)
Задает Dir в качестве текущего каталога

int setdisk(int drive)
Устанавливает в качестве текущего диск drive: 0 — А,
1 — В и т.д.; возвращает число доступных дисков

int setftime(int handle, struct ftime *ftimep)
Устанавливает время и дату создания файла handle
по данным структуры ftimep; возвращает 0 или -1

int stat(const char *path, struct stat *statbuf)
Заносит в структуру statbuf информацию об от-
крытом файле path; возвращает 0 или -1

Файл

io.h

dir.h

stdio.h

SysUtils.hpp

stdio.h

SysUtils.hpp

dir.h

SysUtils.hpp

dir.h

io.h

sys\stat.h

Комментарии
Функции fstat и stat заносят в структуру типа stat информацию об открытом

файле. Структура имеет поля:

st_mode

st_dev

битовая маска режима файла

номер диска файла или дескриптор, если файл на устройстве

298 Глава 3

st_mode

st rdev

st nlink

st size

st_atime

st mtimc

st_ctime

битовая маска режима файла

то же, что st_dev

константа 1

размер файла в байтах

время последнего открытия (в Windows) или изменения (в DOS)

то же, что st_atime

то же, что st_atime

Маска st_ipode содержит информацию о режиме открытого файла и включает
в себя следующие биты.

Должен быть установлен один из следующих битов:

S_IFCHR

S_IFREG

если дескриптор ссылается на устройство

если дескриптор ссылается на обычный файл

Должен быть установлен один или оба следующих битов:

S_IWRITE

S_IREAD

пользователю разрешена запись в файл

пользователю разрешено чтение из файла

Системы HPFS и NTFS учитывают следующее различие между полями st_ati-
me, st_mtime и st_ctime:

st_atime

st_mtime

st_ctime

время последнего доступа к файлу

время последней модификации файла

время создания файла

Следующий пример демонстрирует работу функции stat:
#include <stdio.h> f

#include <time.h>
finclude <sys\s tat .h>

struct stat s tatbuf;
FILE *stream;
if ((stream = fopen ("TEST.TXT", "r-t-t")) == NOLL)
{

ShowMessage("Невозможно открыть файл");
return;

stat("TEST.TXT", sstatbuf);
fclose(stream);

// чтение информации

// отображение информации:
if (statbuf.st_mode & S_IFCHR)

Memol->Lines->Add("Дескриптор устройства");
if (statbuf.st_mode & S_IFREG)

Memol->Lines->Add("Ссылка на файл");
if (s tatbuf.st_mode & S_IREAD)

Memol->Lines->Add("Разрешено чтение из файла")
if (statbuf .st_mode & S_IWRITE)

Memol->Lines->Add("Разрешена запись в файл") ;

Функции С. C++, библиотек C++Builder, API Windows 299

Memol->Lines->Add("Файл расположен на диске " +
A n s i S t r i n g ((c h a r) (' A 1 + s t a t b u f . s t _ d e v))) ;

Memol->Lines->Add("Размер файла в байтах: " +
I n t T o S t r (s t a t b u f . s t ^ s i z e)) ;

Memol->Lines->Add("Последний раз файл был открыт " +
AnsiString (ct ime(Sstatbuf .s t_ct ime)));

Функции remo.ve и _unlink удаляют с диска указанный файл. Если файл от-
крыт, то перед удалением его надо закрыть. Файл с атрибутом только для чтения
не может быть удален. Сначала надо изменить его атрибут функциями chmod или
_rtl_chmod.

Функции access и _waccess определяют разрешенный доступ к файлу, задан-
ному параметром filename. Различаются ени только типом строки, содержащей
имя файла. Функции проверяют, существует ли файл, и если существует, то разре-
шено ли чтение, запись или выполнение этого файла.

Параметр amode определяет, что именно должно проверяться:

06

04

02

01

00

Проверка разрешения чтения и записи

Проверка разрешения чтения

Проверка разрешения записи

Проверка, является ли файл выполняемым

Проверка существования файла

В DOS, OS/2 и Windows все существующие файлы имеют разрешение чтения.
Поэтому значения amode 00 и 04 дают одинаковый результат. В DOS разрешение
записи подразумевает и разрешение чтения. Поэтому 06 и 02 также дают одинако-
вый результат.

Если в качестве filename задан не файл, а каталог, то функции просто прове-
ряют, существует ли каталог.

Функции возвращают 0, если файл имеет запрошенный уровень доступа.
В противном случае возвращается 1, а глобальная переменная еггпо устанавлива-
ется в одно из следующих состояний:

ENOENT путь или файл не найден
EACCES ошибка доступа

Функция FileSearch ищет в списке каталогов DirList файл Name. Список
DirList представляет собой перечень обычным образом записанных путей к ката-
логам, разделенных точками с запятой. При успешном поиске функция возвраща-
ет имя файла с полным путем к нему (если файл найден в текущем каталоге, воз-
вращается только имя файла). Если файл не найден, возвращается пустая строка.

Функция searchpath ищет файл file в списке каталогов, указанных в перемен-
ной окружения PATH. Возвращает полный путь к файлу или NULL.

Функция FileExists определяет, существует ли указанный файл.
Функция fnmerge формирует строку path пути к файлу из его отдельных со-

ставляющих: диска drive, каталога dir, имени файла name и расширения ext.
В итоге получается строка вида drive:\path\name.ext. Каждая из составляющих
пути (dir, path, name, ext) может быть задана равной NULL. Тогда эта составляю-
щая в результирующий путь не включается. Функция fnsplit осуществляет обрат-
ную операцию: разделяет полный путь к файлу на его составляющие.

Функция DirectoryExists определяет, существует ли каталог Name. Если
Name содержит полный путь, то проверяется наличие именно указанного катало-
га. В противном случае Name воспринимается как путь относительно текущего ка-
талога.

300 Глава 3

Функции CreateDir и ForceDirectori.es создают переданный им как параметр
каталог Dir. Функция ForceDirectories отличается от других подобных функций
тем, что она может создать не только конечный каталог, но одновременно и его ро-
дительские каталоги, если они отсутствуют. Например, оператор

ForceDirectories (" С : \ \ T e s t \ \ T e s t l ") ;

создаст не только каталог Testl, но и его родительский каталог Test, если он от-
сутствует. Проверить, создан ли нужный каталог этой функцией, можно с помо-
щью функции DirectoryExists.

Функции getcurdir и GetCurrentDir позволяют определить текущий каталог
на заданном или текущем диске.

Функция API Windows GetSystemDirectory, заносит в буфер строку, характе-
ризующую системный каталог Windows. Это тот каталог, в котором размещены
файлы библиотек, драйверов, шрифтов. Приложение не должно создавать ка-
кие-то файлы в системном каталоге. Создавать свои файлы можно в каталоге, воз-
вращаемом другой аналогичной функцией — GetWindowsDirectory, дающей путь
к каталогу Windows. Этот каталог содержит файлы приложений Windows, файлы
инициализации .ini и файлы справок .Ыр. В этом каталоге вы можете хранить
файлы инициализации и файлы справок своего приложения. Если приложение
создает другие файлы, которые вы хотите хранить, не допуская к ним других
пользователей, то помещайте их в каталог, указанный в переменной окружения
НОМЕРАТН. При соответствующей установке этот каталог различен для всех
пользователей.

Параметр IpBuffer функций GetSystemDirectory и GetWindowsDirectory явля-
ется указателем на строку с нулевым символом в конце, в которую передается най-
денный путь. Этот путь записывается без заключительного обратного слэша "\",
если только каталог не является корневым.

Параметр uSize указывает максимальный размер буфера в символах. Его ве-
личина должна быть не менее значения МАХ_РАТН.

При успешном выполнении функции копируют путь в IpBuffer и возвращают
число символов в строке, не считая последнего нулевого. Если длина строки больше,
чем uSize, то возвращенное значение позволяет узнать требуемый размер буфера.

Если функция не смогла успешно завершиться, то она возвращает нулевое
значение. В этом случае узнать причину отказа можно, вызвав GetLastError.

Приведем пример. Если ваш системный каталог Windows назван WINDOWS\
SYSTEM и расположен на диске С:, то операторы

Char s[МАХ_РАТН];
GetSystemDirectory(s,MAX__PATH);

занесут в s путь: C:\WINDOWS\SYSTEM. Полученный путь можно, например, испо-
льзовать для проверки, имеются ли на компьютере пользователя нужные библио-
теки, драйверы и шрифты.

Функции FileGetAttr, FileSetAttr, _rtl_chmod позволяют определять или ус-
танавливать атрибуты файла (см. описание атрибутов в разд. 3.5.1). Устанавливая
атрибуты их можно объединять в одно слово атрибутов операцией поразрядного
ИЛИ. Возвращенные функциями FileGetAttr и _rtl_chmod атрибуты можно про-
верять с помощью операции поразрядного И.

Функция _rtl_chmod позволяет определить или установить атрибуты файла
(см. их описание в разд. 3.5.1). При func = 0 функция возвращает слово текущих
атрибутов файла path, а при func = 1 устанавливает файлу path атрибуты attrib.
Например, следующий оператор устанавливает для файла, заданного строкой
SFile, атрибут «невидимый»:

rtl chmod(SFile, I, FA HIDDEN);

Функции С, C++, библиотек C++Builder, API Windows 301

Возвращенные функциями FileGetAttr и _rtl_chmod атрибуты можно прове-
рять с помощью операции поразрядного И.

Следующие два оператора добавляют к атрибутам файла, заданного строкой
SFile, атрибут «невидимый»:

int attrib = _rtl_chmod(SFile, 0) ;
_rtl_chmod(SFile, 1, attrib I FA_HIDDEN);

Следующие операторы определяют и отображают в окне редактирования
Memol атрибуты файла SFile:

int attrib = _rtl_chmod(SFile, 0) ;
if (attrib == -1)
{
Memol->Lines->Add("Ошибка номер " + IntToStr(errno));
return;

)
if (attrib & FA_RDONLY)

Memol->Lines->Add(SFile + " — файл только для ч т е н и я ") ;
if (attrib & FA_HIDDEN)

Memol->Lines->Add(SFile + " — невидимый файл") ;
if (attrib & FA__SYSTEM)

Memol->Lines->Add(SFile + " — системный ф а й л ") ;
if (attrib & FA_DIREC)

Memol->Lines->Add(SFile + " — каталог") ;
if (attrib & FA^ARCH)

Memol->Lines->Add(SFile + " — архивный ф а й л ") ;

Функции FileAge, FileGetDate и FileSetDate оперируют с данными о времени
создания файла в формате DOS. В этом же формате хранится значение поля Time
структуры типа TSearchRec, используемой в функциях FmdFirst и FindNext.
Преобразование этого формата в тип TDateTime может осуществляться функцией
FileDateToDateTime. См. также разд. 3.3.2, посвященный преобразованиям фор-
матов дат и времени.

Функция getftime читает время и дату создания файл, заданного своим деск-
риптором handle (он может быть определен функцией fileno), и заносит их в струк-
туру типа ftime, на которую указывает параметр ftimep. Функция setftime выпол-
няет обратную задачу: задает файлу время и дату в соответствии с данными, запи-
санными в структуру ftimep. Файл должен быть доступен для записи. В противном
случае произойдет ошибка EACCES. После установки времени и даты в файл ниче-
го нельзя записывать, пока он не закрыт. Иначе установка будет изменена.

При успешном завершении функции возвращают 0. В противном случае воз-
вращается —1, а глобальная переменная еггпо устанавливается в одно из следую-
щих состояний:

EACCES ошибка доступа
EBADF ошибочный номер файла
EINVFNC ошибочный номер функции

Структура типа ftime имеет вид:
struct ft ime {

unsigned ft_tsec: 5; // пары секунд
unsigned ft min: 6; // минуты
unsigned ft_hour: 5; // часы
unsigned ft_day: 5; // день
unsigned ft_month: 4; // месяц
unsigned f t_yeart 7; // год — 1980
) ;

Следующий код в качестве примера определяет дату создания файла "Test.txt",
уменьшает день на 1 (делает дату вчерашней — предполагается, что день не равен 1)
и устанавливает файлу эту измененную дату:

302 Глава 3

FILE *stream; •
std::ftime ft;
char buffer[80] ;
if ((stream = fopen ("TEST.TXT", "r+t")) ==NULL)

(
ShowMessage("Невозможно открыть файл для записи");
return;
} •
getftime(fileno(stream), Sft); // чтение даты
sprintf(buffer, "Дата создания файла: %u/%u/%u",

ft.ft_day, ft.ft_month, f t. f t__year+1980) ;
ShowMessage(buffer);
ft.ft day—; // изменение даты-
setftTme(fileno(stream), &ft); // установка даты
fclose(stream);

3.6 Управление процессами

3.6.1 Функции управления текущим процессом

Функция

_c_exit

_cexit

_exit

abort

Abort

atexit

exit

Синтаксис / Описание

void _c_exit(void)
Выполняет все действия, аналогичные функции exit,
по закрытию файлов и очистке буферов, но не вызыва-
ет функций окончания и не прерывает выполнение
программы

void _cexit(void)
Выполняет все действия, аналогичные функции exit, по
закрытию файлов, очистке буферов и вызову функций
окончания, но не прерывает выполнение программы

void _exit(int status)
Завершает выполнение программы, но в отличие от
exit не сбрасывает буферы, не закрывает файлы и не
вызывает функции окончания; status — устанавливае-
мый код завершения

void abort(void)
Аварийное завершение программы

void Abort(void)
Генерирует исключение EAbort

int atexit(void (_USERENTRY * func)(void))
Регистрирует функцию окончания func; при успехе
возвращает 0

void exit(int status)
Завершает выполнение программы, закрывая все от-
крытые файлы, сбрасывая выходные буферы в соот-
ветствующие потоки, и вызывая все зарегистрирован-
ные функцией atexit функции окончания; status -
устанавливаемый код завершения

Файл

process.h

process.h

stdlib.h

stdlib.h

SysUtils.hpp

stdlib.h

stdlib.h

Функции С, C++, библиотек C++Builder, API Windows 303

Функция

raise

signal

Синтаксис / Описание

int raise(int sig)
Генерирует сигнал sig; при успешной генерации воз-
вращает 0

void (USERENTRY *signal(
int sig, void (_USERENTRY *func)
(int sig[, int subcode])))(int)

Задание обработчика func сигнала sig

Файл

signal.h

signal.h

Комментарии
Функция atexit регистрирует в системе функцию окончания. Эта функция бу-

дет вызываться при завершении работы программы функциями exit и _cexit. Обыч-
но в этой функции предусматривается «зачистка мусора» — освобождение динами-
чески распределенной памяти, уничтожение временных файлов, разрыв соединений
с базами данных и т.п. (см. подробнее в разд. 1.12.2.). Например, оператор

atex i t (Ex i t l) ;

регистрирует функцию окончания, которую вы можете записать в виде:
void Exi t l (vo id)

Всего в приложении может быть зарегистрировано до 32 функций окончания.
При завершении приложения они срабатывают в последовательности, обратной
последовательности их регистрации, т.е. последняя зарегистрированная функция
будет вызываться первой.

Семейство функций exit выполняет операции по завершению работы прило-
жения. Наиболее полное завершение выполняет функция exit. Прежде, чем завер-
шить приложение, она закрывает все открытые файлы, сбрасывает выходные бу-
феры в соответствующие потоки, вызывает все зарегистрированные функцией
atexit функции окончания. Параметр status функции exit — это устанавливаемый
код завершения.

Приведенная ниже таблица показывает, какие из этих операций выполняются
другими функциями семейства exit, а какие нет.

Функция

exit

exit

_cexit

_c_exit

Закрытие
файлов

+

-

+

+

Сброс буферов

+

-

+

+

Вызов функ-
ций окончания

+

-

+

-

Завершение
приложения

+

•+

-

-

304 Глава 3

3.6.2 Функции выполнения порождаемых процессов

Функция

CreateProcess

cwait

excel

excel e

execlp

ехесЩе

execv

execve

execvp

execvpe

Синтаксис / Описание

bool fastcall CreateProcess(
const char * IpAppIicationName,
char * IpCommandLine,

SECURITY ATTRIBUTES * IpProcessAttributes,
_SECURITY_ATTRIBUTES * IpThreadAttributes,
bool blnheritHandles,
unsigned long dwCreationFlags,
void * IpEnvironment,
const char * IpCurrentDirectory,
STARTUPINFO * IpStartupInfo,

PROCESS_INFORMATION * IpProcessInformation)

Порождает дочерний процесс

int cwait(int *statloc, int pid, int action);

Обеспечивает ожидание завершения указанного по-
рожденного процесса, заносит в statloc статус завер-
шения, возвращает ID порожденного процесса или -1

int execl(char *path, char *argO, *argl, ..., *argn,
NULL)

Выполняет порожденный процесс path с аргумента-
ми argO — argn

int execle(char *path, char *argO, *argl *argn,
NULL, char **env)

Выполняет порожденный процесс path с аргумента-
ми argO — argn и с окружением env

int execlp(char *path, char *argO,*argl, ..., *argn,
NULL)

Выполняет порожденный процесс path с аргумента-
ми argO — argn, с поиском в PATH

int execlpe(char *path, char *argO, *argl, ..., *argn,
NULL, char **env)

Выполняет порожденный процесс path с аргументами
argO — argn, с поиском в PATH и с окружением env

int execv(char *path, char *argv[])

Выполняет порожденный процесс path с аргументами
argvf]

int execve(char *path, char *argv[], char **env)

Выполняет порожденный процесс path с аргумента-
ми argv[] и с окружением env

int execvp(char *path, char *argv[])

Выполняет порожденный процесс path с аргумента-
ми argv[], с поиском в PATH

int execvpe(char *path, char *argv[], char **env)

Выполняет порожденный процесс path с аргумента-
ми argv[], с поиском в PATH и с окружением env

Файл

winbase.h

process.h

process.h

process.h

process.h

process.h

process.h

process.h

process.h

process.h

Функции С, C++, библиотек C++Builder, API Windows 305

Функция

Find
Executable

ShellExecute

spawnl

spawnle

spawnlo

spawnlpe

spawnv

spawnve

spawn vp

spawn vpe

Синтаксис / Описание

HINSTANCE FindExecutable(LPCTSTR IpFile,
LPCTSTR IpDirectory, LPTSTR IpResult)

Возвращает имя и путь приложения, связанного
с указанным файлом

HINSTANCE ShellExecute(HWND hwnd,
LPCTSTR IpOperation,
LPCTSTR IpFile,
LPCTSTR IpParameters,
LPCTSTR IpDirectory, INT nShowCmd)

Открывает или печатает указанный файл или откры-
вает указанную папку

int spawnl(int mode, char *path,
char *argO, argl, ..., argn, NULL)

Выполняет в режиме mode порожденный процесс
path с аргументами argO — argn

int spawnle(int mode, char *path,
char *argO, argl, ..., argn,
NULL, char *envp[])

Выполняет в режиме mode порожденный процесс path
с аргументами argO — argn и с окружением envp

int spawnlp(int mode, char *path,
char *argO, argl, ..., argn, NULL)

Выполняет в режиме mode порожденный процесс
path с аргументами argO — argn, с поиском в PATH

int spawnlpe(int mode, char *path,
char *argO, argl, ..., argn,
NULL, char *envp[])

Выполняет в режиме mode порожденный процесс
path с аргументами argO — argn, с поиском в PATH и
с окружением envp

int spawnv(int mode, char *path, char *argvf])
Выполняет в режиме mode порожденный процесс
path с аргументами argv[]

int spawnve(int mode, char *path, char *argv[],
char *envp[])

Выполняет в режиме mode порожденный процесс path
с аргументами argv[] и с окружением envp

int spawnvp(int mode, char *path, char *argv[])
Выполняет в режиме mode порожденный процесс
path с аргументами argv[], с поиском в PATH

int spawnvpe(int mode, char *path, char *argv[],
char *envp[])

Выполняет в режиме mode порожденный процесс
path с аргументами argv[], с поиском в PATH и
с окружением envp

Файл

Shell-
API.h

Shell-
API.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

process.h,
stdio.h

306 Глава 3

Функция

system

wsvstem

wait

WinExec

Синтаксис / Описание

int system(const char *command)
Выполняет команду command операционной системы
и возвращается в приложение

int _wsystem(const wchar_t *command)
Выполняет команду command операционной системы
и возвращается в приложение

int wait(int *statloc)
Обеспечивает ожидание завершения одного или более
порожденных процессов, заносит в statloc статус за-
вершения, возвращает ID порожденного процесса
или -1

UINT WinExec(LPCSTR IpCmdLine,
UINT uCmdShow)

Выполняет указанное приложение

Файл .

stdlib.h

stdlib.h

process.h

winbase.h

3.6.3 Сообщения об ошибках при запуске внешних програм

Если перечисленные в таблице разд. 3.6.2 функции API Windows Create-
Process. FindExecutable. ShellExecute. WinExec и некоторые другие возвращают
значение, меньшее или равное 32, это указывает на ошибку. Значения ошибок оз-
начают следующее (в Windows 95, 98, 2000 и NT для некоторых из этих ошибок
имеются именованные константы):

Значение

0

2

3

5

6

8

10

11

12

Именованная константа

ERROR FILE
NOT_FOUND

ERROR PATH
NOT_FOUND

SE_ERR_ACCESSDENIED

SE_ERR_OOM

ERROR_BAD_FORMAT

Пояснение

Системе не хватает памяти, выполняе-
мый файл испорчен или произошло
ошибочное перераспределение памяти.

Файл не найден.

Путь не найден.

Была попытка динамически связаться
с задачей, была ошибка многопроцес-
сорного выполнения или ошибка защи-
ты сети.

Библиотека требует отдельных сегмен-
тов данных для каждой задачи.

Недостаточно памяти для запуска при-
ложения.

Ошибочная версия Windows.

Ошибочный выполняемый файл. Или
это не приложение Windows, или ошиб-
ка в .ехе файле.

Приложение спроектировано для дру-
гой операционной системы.

Функции С, C++, библиотек C++Builder, API Windows 307

Значение

13

14

15

16

19

20

21

26

27

28

29

30

31

32

Именованная константа

i

SE_ERR_SHARE

SE ERR
ASSOCINCOMPLETE

SE_ERR_DDETIMEOUT

SE ERR DDEFAIL

SE_ERR_DDEBUSY

SE_ERR_NOASSOC

SE_ERR_DLLNOTFOUND

Пояснение

Приложение спроектировано для
MS-DOS 4.0.

Неизвестный тип выполняемого файла.

Попытка запустить приложение, рабо-
тающее только на более ранних версиях
Windows.

Попытка запустить второй экземпляр
приложения, содержащего сегменты
данных, не помеченные «только для
чтения».

Попытка запустить архивированный
файл. Файл должен быть разархивирован,
прежде чем его можно будет загрузить.

Ошибочный файл одной из DLL, требуе-
мой для приложения.

Приложение требует 32-битного расши-
рения Windows.

Нарушение права доступа.

Файл, связанный с указанной опера-
цией не полный или ошибочный.

Транзакция DDE не может быть выпол-
нена из-за нехватки времени.

Транзакция DDE закончилась ошибкой

Транзакция DDE не может быть выпол-
нена, поскольку выполняется другая
транзакция DDE.

Нет приложения, связанного с файлом
указанного типа, или нет файла, свя-
занного с указанной операцией.

Не найдена библиотека DLL.

3.7 Функции различного назначения

3.7.1 Функции динамического распределения памяти

Функция

_msize

new handler

Синтаксис / Описание

size_t _msize(void *block)

Возвращает размер блока с указателем block,
выделенного ранее функциями malloc, calloc,
realloc; только для 32-разрядных приложений

typedef void (*pvf)();
pvf _new_handler

Указатель на функцию, вызываемую при не-
возможности выделить память операцией new

Файл

malloc.h

new.h

308 Глава 3

Функция

alloca

AllocMem

calloc

free

GetMemory
Manager

malloc

realloc

set new
handler

SetMemory
Manager

SysFreeMem

Синтаксис / Описание

void *alloca(size_t size)
Выделяет пространство размером size в стеке;
возвращает указатель на него или NULL

void * AllocMem(Cardinal Size)
Динамически выделяет область памяти размером
Size байтов и возвращает указатель (void *) на
выделенную область; эта область в дальнейшем
может быть освобождена процедурой ГгееМеш

void *calloc(size_t nitems, size_t size)
Выделяет память под nitems элементов разме-
ром size каждый; возвращает указатель на вы-
деленный блок памяти или NULL

void free(void *block)
Освобождает блок памяти block, выделенный
ранее функциями calloc, malloc, realloc

void GetMemoryManager(TMemoryManager
&MemMgr)

Возвращает указатель MemMgr на функции
пользователя, выделяющие и освобождающие
память

void *malloc(size_t size)
Выделяет блок памяти размером size; возвра-
щает указатель на этот блок или NULL

void *realloc(void *block, size_t size)
Изменяет размер блока block, выделенного ра-
нее функциями malloc, calloc, realloc, на size;
возвращает указатель на выделенный блок па-
мяти или NULL

typedef void (new * new_handler)();
new_handler set_new_handler(

new_handler my_handler)
Устанавливает функцию my_handler, которая
будет вызываться при невозможности выделить
память операцией new

void SetMemoryManager(
const TMemoryManager &MemMgr)

Устанавливает параметром MemMgr функции
пользователя, выделяющие и освобождающие
память

extern PACKAGE int SysFreeMem(void * P)
Освобождает память, выделенную под блок
с указателем Р заказным диспетчером памяти

Файл

malloc.h

SysUtils.hpp

stdlib.h

stdlib.h

System.hpp

stdlib.h
или alloc.h

stdlib.h

new.h

System.hpp

System.hpp или
ShareMem.hpp

Функции С, C++, библиотек C++Builder, API Windows 309

Функция

SysGetMem

SysRealloc
Mem

THeapStatus

Синтаксис / Описание

extern PACKAGE void * SysGetMem(int Size)
Выделяет блок памяти размером Size, если
введен заказной диспетчер памяти; возвращает
указатель на блок или NULL

extern PACKAGE void * SysReallocMem(void * P,
int Size)

Изменяет размер блока с указателем Р до раз-
мера Size, если введен заказной диспетчер па-
мяти; возвращает указатель на блок или NULL

System: :THeapStatus GetHeapStatus(void)
Заносит информацию о состоянии heap в струк-
туру типа TheapStatus

Файл

System.hpp или
ShareMem.hpp

System.hpp или
ShareMem.hpp

System.hpp или
ShareMem.hpp

Комментарии
Для функций, в которых в приведенной таблице указано два заголовочных

файла — System.hpp или ShareMem.hpp, файл System.hpp надо подключать, если
динамически распределяется глобальная область памяти, а файл ShareMem.hpp
надо подключать, если динамически распределяется область памяти, которую мо-
гут совместно использовать различные процессы.

Для динамического распределения выделяется специальная область памя-
ти — heap. Динамическое распределение памяти в этой области может произво-
диться несколькими способами: с помощью библиотечных функций malloc, calloc,
realloc, free или с помощью операций new и delete (см. в гл. 1, в разд. 1.11).

Функция THeapStatus заносит информацию о состоянии памяти в структуру
типа THeapStatus, содержащую поля:

TotalAddrSpace

TotalUncommitted

TotalCommitted

TotalAHocated

TotalFree

FreeSmall

FreeBig

Общее текущее адресное пространство в байтах, доступное
программе. Увеличивается по мере увеличения динамиче-
ски распределяемой памяти.

Общее число байтов в TotalAddrSpace, которое не выделе-
но для своппируемого файла.

Общее число байтов в TotalAddrSpace, которое выделено
для своппируемого файла. Справедливо соотношение Tota-
lUncommitted + TotalCommitted = TotalAddrSpace.

Объем в байтах динамически выделенной в программе об-
ласти памяти.

Полное число байтов, доступное для программы. Если это
число превышается и доступно достаточно виртуальной
памяти, то OS увеличивает доступное адресное пространст-
во. Соответственно увеличивается и TotalAddrSpace.

Число байтов небольших блоков памяти, которые могут
быть еще выделены вашей программе.

Число байтов больших блоков памяти, которые могут быть
еще выделены вашей программе. Большие свободные бло-
ки могут создаваться объединением смежных малых сво-
бодных блоков или динамическим выделением большого
блока.

310 Глава 3

Unused

Overhead

HeapErrorCode

Общее число байтов, которые не могут использоваться
программой. Справедливо соотношение: Unused + FreeBig
+ FreeSmall = TotalFree.

Число байтов, требуемое диспетчером динамически рас-
пределяемой памяти для управления всеми блоками.

Индикатор внутреннего состояния динамически распреде-
ляемой памяти.

Поля TotalAddrSpace, TotalUncommitted и TotalCommitted относятся к па-
мяти, выделенной для программы системой. А поля Total Allocated и TotalFree от-
носятся к области динамически распределяемой памяти (в дальнейшем для крат-
кости будем называть ее heap). Так что для проверки возможностей динамического
выделения памяти надо ориентироваться на TotalAllocated и TotalFree.

Функция SetMemoryManager позволяет пользователю заменить функции,
выделяющие и освобождающие память, своими собственными. Эти функции поль-
зователя задаются полями параметра MemMgr типа TMemoryManage. Структура
типа TMemoryManage имеет поля:

GetMem Указывает на функцию, выделяющую в памяти блок с заданным
числом байтов Size и возвращающую указатель на выделенный
блок (аналог функции malloc). Параметр Size функции GetMem.
не должен быть равен нулю. Если GetMem не может выделить
блок заданного размера, она должна возвращать NULL.

FreeMem Указывает на функцию, освобождающую блок памяти, на кото-
рый указывает ее параметр (аналог функции free). Параметр
функции FreeMem не должен быть равен NULL. Если FreeMem
успешно освободила память, она должна возвращать 0. В против-
ном случае должно возвращаться ненулевое значение.

ReallocMem Указывает на функцию, которая изменяет размер блока, на ко-
торый указавает ее параметр, до заданной новой величины Size
(аналог функции realloc). Указатель, передаваемый в функцию
ReallocMem, не должен быть равен NULL, а параметр Size не
должен быть равен 0. Функция ReallocMem должна изменить
размер блока, при необходимости переместив его на новое место,
если нельзя обеспечить требуемый размер на прежнем месте. Ин-
формация, хранившаяся в прежнем блоке, должна быть сохране-
на, но вновь выделяемое пространство может не инициализиро-
ваться. Функция должна возвращать указатель на блок или
NULL, если изменить размер блока невозможно.

Функции пользователя, которые устанавливаются функцией SetMemoryMa-
nager, могут оперировать с объектами, их конструкторами и деструкторами, стро-
ками и т.п. Функция GetMemoryManager возвращает структуру типа TMemory-
Manager, содержащую указатели на установленные функции. Через поля этой
структуры можно обращаться к установленным функциям.

Приведем пример. Пусть вы хотите вести учет числа обращений к функциям
динамического распределения памяти и учет объемов выделяемой и освобождае-
мой памяти. Это можно сделать следующим кодом:

tinclude <malloc.h>

TMemoryManager* mmNew;
TMemoryManager* mmOld;

Функции С, C++, библиотек C++Builder, API Windows 311

long alloc, dealloc, Nalloc, Ndealloc;

void * _ fastcall NewGetMem(int Size)
!
alloc += Size;
Nalloc++;
return mm01d->GetMem(Size) ;

int _ fastcall NewFreeMem(void *p)
{
dealloc = _msize (p) ;
Ndealloc ++;
return minOld->FreeMem (p) ;

void * _ fastcall NewReallocMem(void *p, int Size)
(
alloc += Size;
dealloc = _msize (p) ;
Nalloc++;
Ndealloc + +;
return mm01d->ReallocMem(p, Size);

fastcall TForml : :TForml (TComponent* Owner)
: TForm (Owner)

mmNew = new TMemoryManager ();
mmOld = new TMemoryManager ();
mmNew->GetMem = NewGetMem;
mmNew->FreeMem = NewFreeMem;
mmNew->ReallocMem = NewReallocMem;
GetMemoryManager (*mra01d) ;
SetMemoryManager (*mmNew) ;

void fastcall TForml::ButtonlClick(TObject *Sender)

{
Labell->Caption = "Nalloc = "+IntToStr(Nalloc)+

"Ndealloc = "+IntToStr(Ndealloc)+
" выделено " +IntToStr(alloc)
" освобождено " +IntToStr (dealloc);

В этом примере при щелчке на кнопке Buttonl в метке Labell отображается
сообщение о динамическом распределении памяти.

3.7.2 Функции вызова диалоговых окон с сообщениями

Функция

CreateMessage
Dialog

Синтаксис / Описание

Forms::TForm* CreateMessageDialog(
const AnsiString Msg,
TMsgDlgType DlgType,
TMsgDlgButtons Buttons)

Создает (но не отображает) диалоговое окно
типа DlgType, с кнопками Buttons, с сообщени-
ем Msg

Файл

Dialogs.hpp

312 Глава 3

Функция Синтаксис / Описание Файл

InnutBox AnsiString InputBox(constAnsiString ACaption,
const AnsiString APrompt,
const AnsiString ADefault)

Предлагает пользователю диалоговое окно с за-
головком ACaption, с предложением APrompt
пользователю что-то написать и с окошком ре-
дактирования, в котором предварительно загру-
жено начальное значение текста ADefault

Dialogs.hpp

InputQuerv bool InputQuery(constAnsiString ACaption,
const AnsiString APrompt,

AnsiString &Value)
Предлагает пользователю диалоговое окно с за-
головком ACaption, с предложением APrompt
пользователю что-то написать и с окошком ре-
дактирования, в котором предварительно загру-
жено начальное значение текста ADefault. Воз-
вращаемое значение показывает, нажал ли поль-
зователь кнопку ОК

LoginDialog bool LoginDialog(
constAnsiString ADatabaseName,

AnsiString &AUserName,
AnsiString &APassword)

Вызывает стандартное окно Windows (неруси-
фицированное), содержащее запрос имени и па-
роля пользователя для доступа к базам данных.
Параметр ADatabaseName является строкой,
содержащей имя базы данных, параметр
AUserName — строка, содержащая имя поль-
зователя, параметр APassword — строка, со-
держащая введенный пароль

DBLogDlg.hpp

LoginDialogEx bool LoginDialogEx(
const AnsiString ADatabaseName,

AnsiString &AUserName,
AnsiString &APassword,
bool NamcReadOnly)

To же, что LoginDialog,но имеет параметр Na-
meReadOnly, который можно задать равным
true, чтобы запретить изменения имени пользо-
вателя в диалоге

DBLogDlg.hpp

MessageDlg int MessageDlg(constAnsiString Msg,
TMsgDlgType DlgType,
TMsgDlgButtons Buttons, int HelpCtx)

отображает диалоговое окно типа DlgType
с кнопками Buttons, с темой справки HelpCtx,
с сообщением Msg

Dialogs.hpp

Функции С, C++, библиотек C++Builder, API Windows 313

Функция

MessageDlgPos

SelectDirectory

ShowMessage

ShowMessage
Fmt

ShowMessage
Fmt

Синтаксис / Описание

int MessageDlgPos(constAnsiString Msg,
TMsgDlgType DlgType,
TMsgDlgButtons Buttons,
int HelpCtx, int X, int Y)

To же, что MessageDlg, но с заданной позицией
окна (X, Y)

bool SelectDirectory(const AnsiString Caption,
const WideString Root,
AnsiString &Directory)

bool SelectDirectory(AnsiString &Directory,
TSelectDirOpts Options,
int HelpCtx)

Предоставляет пользователю возможность вы-
брать каталог с помощью стандартного диалога

void ShowMessage(const System:: AnsiString Msg)
Отображает диалоговое окно с сообщением Msg

void ShowMessageFmt(const AnsiString Msg,
const System: :TVarRec Params,
const int Params_Size)

Отображает диалоговое окно с сообщением по
формату Msg, применяемому к параметрам Pa-
rams

void ShowMessagePos(constAnsiString Msg,
int X, int Y)

Отображает диалоговое окно с сообщением Msg
в позиции, левый верний угол которой задается
координатами X и Y

Файл

Dialogs.hpp

FileCtrl.hpp

Dialogs.hpp

Dialogs.hpp

Dialogs.hpp

Комментарии
Помимо перечисленных функций см. также метод MessageBox компонента

Application, отображающий, пожалуй, наиболее удачный вариант диалогового
окна.

Функции LoginDialog и LoginDialogEx вызывают стандартные окна Windows,
содержащие запрос имени и пароля пользователя для доступа к базам данных. Па-
раметр ADatabaseName является строкой, содержащей имя базы данных, с кото-
рой требуется соединиться. Параметр AUserName -- строка, содержащая имя
пользователя. При вызове функции LoginDialog в этот параметр можно записать
имя пользователя по умолчанию, и оно будет отображаться в диалоге в окошке
User Name. А по окончании диалога в параметре AUserName содержится имя, ука-
занное пользователем, или имя по умолчанию, если пользователь его не изменял.
Параметр APassword — строка, содержащая пароль, введенный пользователем
в процессе диалога.

Функция LoginDialog возвращает true, если пользователь завершил диалог,
щелкнув в нем на кнопке ОК. В этом случае программа может пытаться открыть
базу данных с указанными именем и паролем пользователя или предварительно
проверить, зарегистрирован ли такой пользователь, правильный ли указан пароль
и какой уровень доступа разрешен этому пользователю. Если пользователь пре-
рвал диалог, то возвращается false.

В диалоговом окне, отображаемом функцией LoginDialog, пользователь мо-
жет изменять имя, указываемое в окошке User Name. Другая функция Login-

314 Глава 3

DialogEx — позволяет запретить изменение имени. Для этого надо положить рав-
ным true параметр NameReadOnly.

Существенным недостатком функций LoginDialog и LoginDialogEx являются
нерусифицированные диалоговые окна. Так что в большинстве приложений вряд
ли стоит использовать эти функции. Окна, отображаемые этими функциями, лег-
ко создать самому, причем с русскими надписями.

3.7.3 Функции воспроизведения звуков

Функция

Веер

Веер

MessageBeep

PlaySound

Синтаксис / Описание

extern PACKAGE void Beep(void)
Функция C++Builder, воспроизводит стандарт-
ный звуковой сигнал

BOOL Beep(DWORD dwFreq, DWORD dwDuration);
Функция API Windows, только для Windows NT/
2000/XP, воспроизводит звуковой сигнал с часто-
той dwFreq Герц и длительностью dwDuration
миллисекунд

BOOL MessageBeep(UINT uType);
Функция API Windows, воспроизводит звуковой
сигнал типа uType

BOOL PlaySound(LPCSTR pszSound,
HMODULE hmod,
DWORD fdwSound)

Функция API Windows, воспроизводит звук ука-
занного волнового файла, или звука системного
события, или звука из ресурса

Файл

SysUtils.hpp

mmsystem.hpp

Комментарии
Функция C++Builder Beep воспроизводит стандартный звуковой сигнал, вы-

зывая функцию MessageBeep API Windows с нулевым параметром. При этом вос-
производится стандартный звуковой сигнал, установленный в Windows, если ком-
пьютер имеет звуковую карту и стандартный сигнал задан (он устанавливается
в «Панели управления» после щелчка на пиктограмме Звук). Если звуковой карты
нет или стандартный сигнал не установлен, звук воспроизводится через динамик
компьютера.

Воспроизведение асинхронное, т.е. приложение продолжает выполняться во
время воспроизведения звука.

Функция Веер API Windows, примененная в Windows NT/2000/XP, синхрон-
но воспроизводит звук простого тона через динамик и не возвращается до оконча-
ния звука. В Windows NT параметр dwFreq задает частоту звука в герцах. Он мо-
жет иметь значения в диапазоне от 37 до 32,767 (от 0x25 до Ox7FFF). Параметр
dwDuration устанавливает длительность звука в миллисекундах.

Воспроизведение синхронное: функция не возвращается до окончания воспро-
изведения звука.

Все сказанное относится только к Windows NT/2000/XP. В Windows 95 и 98 па-
раметры игнорируются и функция становится подобной функции Веер C-b+Builder.
Отличие этих функций остается только в том, что Веер C++Builder ничего не воз-
вращает, а Веер API Windows при успешном выполнении возвращает ненулевое
значение. При аварийном завершении она возвращает нуль. Тогда более разверну-
тую информацию об ошибке можно получить вызовом функции GetLastError.

Функции С, C++, библиотек C++Builder, API Windows 315

Компилятор автоматически разбирается, какая именно из функций Веер ис-
пользована в программе, по наличию или отсутствию параметров.

Функция MessageBeep воспроизводит звуковой сигнал указанного типа. Зву-
ки, соответствующие различным типам сигналов, хранятся в реестре в разделе
[sounds] и устанавливаются пользователем с помощью программы «Панель управ-
ления» щелчком на пиктограмме Звук.

Целый без знака параметр иТуре функции MessageBeep определяет воспроиз-
водимый звук. Для него предопределены следующие константы:

Значение

OxFFFFFFFF

MB_ICONASTERISK

MB_ICONEXCLAMATION

MBJCONHAND

MB_ICONQUESTION

MB_OK

Звук

Стандартный звук через динамик

Звездочка

Восклицание

Критическая ошибка

Вопрос

Стандартный звук

При успешном завершении функция возвращает ненулевое значение (true).
Если функция вернула нулевое значение, то получить информацию об ошибке
можно с помощью вызова GetLastError.

После инициализации воспроизведения звука функция MessageBeep возвраща-
ет управление в точку вызова и воспроизведение звука производится асинхронно.

Если функция MessageBeep не нашла указанный тип звука, она пытается вос-
произвести стандартный звук. Если и он не установлен или если компьютер не
снабжен звуковой картой, то звук воспроизводится через динамик компьютера.

Функция PlaySound API Windows воспроизводит звук указанного волнового
файла, или звука системного события, или звука из ресурса.

Параметр pszSound представляет собой строку с нулевым символом в конце и
определяет воспроизводимый звук. В зависимости от значений флага fdwSound
(SND_FILENAME, SND_ALIAS или SND^RESOURCE) параметр pszSound мо-
жет определять имя волнового файла, псевдоним системного события или иденти-
фикатор ресурса. Если ни один из этих флагов не указан, функция ищет в реестре
Windows или в файле W I N . I N I указанное имя звука. Если звук найден, то он вос-
производится. Если звук не найден, то параметр pszSound интерпретируется как
имя файла.

Звук, указанный параметром pszSound, должен помещаться в доступную па-
мять и должен подходить для установленного драйвера устройства воспроизведе-
ния волновых файлов. Функция PlaySound ищет файл звука в следующих катало-
гах: текущем, каталоге Windows, системном каталоге Windows, каталогах, пере-
численных в переменной среды PATH, в списке каталогов, предоставляемых сетью.
Более подробно последовательность поиска в каталогах рассмотрена в документа-
ции по функции OpenFile.

Если указанный звук не находится, функция PlaySound воспроизводит сис-
темный звук по умолчанию. Если функция не может найти и его, то воспроизведе-
ния не будет, а вернется значение false.

Если параметр pszSound задан равным 0, то воспроизведение любого волново-
го файла прерывается. Для прерывания воспроизведения звука, не связанного
с волновым файлом, надо указывать SND_PURGE в параметре fdwSound.

Параметр hmod используется только при параметре fdwSound равном
SND_RESOURCE. В этом случае hmod является дескриптором выполняемого фай-

316 Глава 3

ла, содержащего ресурс, который должен загружаться. В противном случае значе-
ние hmod задается равным 0.

Параметр fdwSound задает флаги воспроизведения звука. Флаги могут комби-
нироваться друг с другом операцией ИЛИ "|". Возможны следующие значения
флагов:

SND_ALIAS

SND_ALIAS_ID

SND_APPLICATION

SND_ASYNC

SND FILENAME

SND_LOOP

SND_MEMORY

SND_NODEFAULT

SND_NOSTOP

SND_NOWAIT

SND_PURGE

SND_RESOUECE

SND_SYNC

Параметр pszSound определяет псевдоним системного
события в реестре Windows или в файле WIN.INI. Нельзя
использовать совместно с SND FILENAME и
SND RESOURCE.
Параметр szSound является предопределенным иденти-
фикатором звука.
Звук воспроизводится с использованием установок при-
ложения.
Звук воспроизводится асинхронно и функция PlaySo-
und возвращается немедленно после начала воспроизве-
дения. Чтобы прекратить асинхронное воспроизведение
волнового файла, надо вызвать PlaySound с параметром
pszSound, равным 0.

Параметр pszSound является именем файла.

Воспроизведение звука постоянно повторяется, пока не
вызовется PlaySound с параметром pszSound, равным 0.
Одновременно надо указать флаг SND_ASYNC асинхрон-
ного воспроизведения звука.
Файл звука события загружен в память. В этом случае
параметр pszSound должен указывать на образ звука
в памяти.

Звук события, кроме звука по умолчанию. Если указан-
ный звук не найден, PlaySound вернется, не воспроиз-
водя звук по умолчанию.

Если заданный звук не может быть воспроизведен, по-
скольку ресурсы, необходимые для воспроизведения, за-
няты воспроизведением другого звука, функция PlaySo-
und немедленно вернет false, не воспроизводя заданного
звука. Если данный флаг не указан, функция PlaySo-
und пытается остановить воспроизведение другого зву-
ка, чтобы устройство могло быть использовано для вос-
произведения нового звука.

Если драйвер занят, функция сразу вернется без воспро-
изведения заданного звука.

Останавливается воспроизведение любых звуков, вы-
званных в данной задаче. Если pszSound не 0, останав-
ливаются все экземпляры указанного звука. Если
pszSound равен '0, то останавливаются все звуки, свя-
занные с данной задачей. Отдельно надо указать деск-
риптор для остановки событий SND_RESOURCE.

Параметр pszSound является идентификатором ресурса.
Параметр hmod должен указывать на источник ресурса.

Синхронное воспроизведение звука события. Функция
PlaySound возвращается только после окончания вос-
произведения.

Функции С, C++, библиотек C++Builder, API Windows 317

Функция PlaySound при успешном выполнении возвращает true, в противном
случае — false.

3.7.4 Некоторые вспомогательные функции C++ и C++Builder

Функция Синтаксис / Описание Файл

ARRAYSIZE ARRAYSIZE(const void *a)
Макрос возвращает число элементов массива а

sysdefs.h

bsearch void *bsearch(const void *key,
const void *base, size_t nelem,
size_t width, int (_USERENTRY *fcmp)
(const void *, const void *))

Выполняет двоичный поиск по ключу key в масси-
ве (таблице) base из nelem элементов по width
байт каждый с помощью функции fcmp; возвраща-
ет адрес элемента или О

stdlib.h

EXISTING
ARRAY

EXISTINGARRAY(const void *a)
Макрос возвращает индекс последнего элемента

sysdefs.h

массива а

getenv char *getenv(const char *name)
Возвращает или удаляет переменную окружения

stdlib.h

name

GetLongllint extern PACKAGE System::AnsiString GetLongHint(
const System::AnsiString Hint)

Возвращает вторую часть строки формата, исполь-
зуемого в свойствах компонентов Hint

Controls.hpp

GetShort
Hint

extern PACKAGE System::AnsiString GetShortHint(
const System::AnsiString Hint)

Возвращает первую часть строки формата, исполь-
зуемого в свойствах компонентов Hint

Controls.hpp

Ifind void *lfind(const void *key,
const void *base, size_t *num,
size_t width, int (_USERENTRY *fcmp)
(const void *, const void *))

Выполняет линейный поиск по ключу key в масси-
ве (таблице) base из num записей по width байт
в каждый с помощью функции fcmp; возвращает
адрес элемента или О

stdlib.h

Isearch void *lsearch(const void *key,
void *base, size_t *num,
size_t width, int(_USERENTRY *fcmp)
(const void *, const void *))

Выполняет линейный поиск по ключу key в масси-
ве (таблице) base из num записей по width байт
в каждый с помощью функции fcmp; если элемент
не найден, он добавляется в таблицу; возвращает
адрес элемента

stdlib.h

318 Глава 3

Функция

OPENARRAY

ParamCount

ParamStr

putenv

qsort

*

Shortcut

Shortcut
ToText

swab

TextTo
Shortcut

va end

Синтаксис / Описание

OPENARRAY(type argl, ..., type arg!9)
Макрос обеспечивает передачу в функцию открыто-
го массива, содержащего до 19 элементов

extern PACKAGE int fastcall ParamCount(void);
Возвращает число параметров командной строки

extern PACKAGE AnsiString fastcall
ParamStr(int Index);

Возвращает параметр с индексом Index командной
строки

int putenv(const char *name)
Устанавливает переменную окружения name

void qsort(void *base, size t nelem, size t width,
int (_USERENTRY *fcmp)
(const void *, const void *))

Выполняет быструю сортировку в массиве (табли-
це) base из nelem элементов по width байт каждый
с помощью функции fcmp

extern PACKAGE TShortCut ShortCut(Word Key,
Classes-TShiftState Shift)

Создает структуру, используемую для задания ком-
бинации «горячих» клавиш Key и Shift разделу
меню

extern PACKAGE System::AnsiString
ShortCutToText(TShortCut Shortcut)

Преобразует структуру Shortcut, содержащую ком-
бинацию «горячих» клавиш раздела меню, в стро-
ку текста

void swab(char *from, char *to, int nbytes)
Копирует nbytes байтов строки from в строку to,
меняя местами каждую пару смежных байтов

extern PACKAGE TShortCut TextToShortCut(
System::AnsiString Text)

Создает из строки текста Text структуру, использу-
емую для задания комбинации «горячих» клавиш
разделу меню

type va_arg(va_list ар, type)
Макрос возвращает текущий аргумент списка пере-
менной длины типа type и переводит указатель ар
на следующий аргумент; предварительно указатель
должен быть установлен с помощью va_start или
va_arg

void va_end(va_list ар)
Макрос обеспечивает завершение передачи в функ-
цию списка аргументов произвольной длины, обра-
ботанного макросами va_start и va_arg

Файл

sysdefs.h

System.hpp

System.hpp

stdlib.h

stdlib.h

Menus.hpp

Menus.hpp

stdlib.h

Menus.hpp

stdarg.h

stdarg.h

Функции С, C++, библиотек C++Builder, API Windows 319

Функция

va start

Синтаксис / Описание

void va start(va list ap, lastfix)
Макрос устанавливает ар на первую переменную,
передаваемую в функции, использующие списки ар-
гументов произвольной длины; lastfix — последний
переданный в функцию обязательный аргумент

Файл

stdarg.h

Комментарии
Макросы EXISTINGARRAY, ARRAYSIZE, OPENARRAY используются при

передаче в функции массивов. Описание способов работы с этими макросами см.
в разд. 2.11.3. Примеры использования макросов приведены также в описании
функции Format в гл. 4.

Функции bsearch, Ifind, Isearch, qsort предназначены для поиска и сортиров-
ки в массивах (таблицах). Во всех этих функциях параметр base указывает на на-
чало массива, параметр nelem или num определяет число элементов, параметр
width определяет число байтов, занимаемых элементом, а параметр fcmp указыва-
ет на функцию сравнения, которую вы должны определить и которая сигнализи-
рует о результатах сравнения двух элементов, заданных своими указателями.

Функция bsearch осуществляет двоичный поиск (дихотомию) элемента, соот-
ветствующего ключу key. Подобный поиск самый быстрый, но он требует, чтобы
элементы массива были расположены в порядке возрастания критерия поиска.
Функция сравнения fcmp в данном случае получает как параметры два указателя:
*eleml и *elem2. Функция должна провести сравнение значений, на которые они
указывают, и вернуть результат сравнения:

< 0

== 0

> 0

при *eleml < *elem2

при *eleml == *elem2

при *eleml > *elem2

Здесь знак < означает, что элемент *eleml расположен в массиве раньше эле-
мента *elem2, знак > означает, что элемент *eleml расположен в массиве после
элемента *elem2, а знак равенства означает, что элементы равны. Эта оговорка су-
щественна, поскольку элементами могут быть не только числа, но и объекты любо-
го типа, например, записи со множеством полей.

Функция qsort выполняет быструю сортировку массива по критерию, задан-
ному функцией сравнения. Сама функция сравнения используется такая же, как
описанная выше.

Ниже приведен пример использования функций qsort и bsearch. В примере
объявлен массив array неупорядоченных целых чисел. Функция fcmp — это функ-
ция сравнения, одинаковая для qsort и bsearch. При щелчке на кнопке Buttonl
массив сначала упорядочивается функцией qsort, а затем в нем ищется с помощью
bsearch элемент, соответствующий указанному пользователем в окне Editl.

#include <malloc.h>
tinclude <stdlib.h>

int a r ray[] = (8 0 0 , 1 2 3 , 5 1 2 , 6 2 7 , 9 3 3 , 1 4 5) ;

int fcmp (const void *pl, const void *p2)
{ return (*(int*)pl - *(int*)p2); }

void fastcall TForml::ButtonlClick(TObject *Sender)

320 Глава 3

int key = StrToInt (Editl->Text) ;
int *elem;
qsort (array, ARRAYSIZE (array) , sizeof (int) , fcmp);
elem = (int *) bsearch (& k e y , array, ARRAYSIZE (ar ray) ,

sizeof (int), fcmp) ;
if (elem == 0) ShowMessage ("Элемент " + IntToStr (key) +

" не найден") ;
else ShowMessage ("Индекс элемента " + IntToStr (*elem) +

" равен " + IntToStr (elem- a r r a y)) ;
}

Функции Ifind и Isearch выполняют в массиве линейный поиск. Он медлен-
нее, чем дихотомия, но может применяться к неупорядоченным массивам. Функ-
ции различаются тем, что Isearch, если элемент не обнаружен, добавляет его в ко-
нец массива. Функции поиска в Ifind и Isearch отличаются от рассмотренных
выше. Они должны возвращать нуль при совпадении элементов и ненулевое значе-
ние, если элементы различны.

Ниже приведен пример использования функции Isearch, похожий на рассмот-
ренный ранее. В примере объявлен массив array неупорядоченных целых чисел.
Функция fcmpl — это функция сравнения. При щелчке на кнопке Buttonl в мас-
сиве ищется элемент, соответствующий указанному пользователем в 'окне Editl.
Если элемент не найден, он добавляется в конец массива.

tinclude <malloc.h>
#include <stdlib.h>
int array[10] = {800,123,512,627,933,145};
unsigned Narray = 6;

int fcmpl (const void *pl, const void *p2)
{ return (* (int*) pi != * (int*) p2) ; }

void _ fastcall TForml : :ButtonlClick (TObj ect *Sender)

{
int key = StrToInt (Editl->Text) ;
int *elem;

elem = (int *) Isearch (Skey, array, SNarray,
sizeof (int), fcmpl);

ShowMessage ("Индекс элемента " + IntToStr (key) +
" равен " + IntToStr (elem- array)) ;

}

Функции GetShortHint и GetLongHint возвращают соответственно первую и
вторую части строки формата

<текст первой части> | <текст второй части>

Строки такого вида, в частности, задаются в свойстве компонентов Hint.

Функции getenv и putenv позволяют работать с переменными окружения. Пе-
ременные окружения представляют собой строки таблицы параметров окружения
в виде name=string\0. Функция getenv ищет или удаляет указанную переменную
окружения name. Если в функции getenv задать имя переменной окружения, она
вернет указатель на строку, содержащую значение этой переменной. Например,
оператор

Labell->Caption = getenv ("PATH") ;

отображает в метке Labell содержание строки переменной PATH.
Имена переменных DOS и OS/2 должны записываться в верхнем регистре. Ос-

тальные переменные могут записываться как в верхнем, так и в нижнем регистрах.

Функции С, C++, библиотек C++Builder, API Windows 321

Если переменная окружения с этим именем отсутствует, то возвращается
NULL. Если в функции getenv задать параметр name в виде "name=", то перемен-
ная name будет удалена из окружения. Например, оператор

g e t e n v (" P A T H = ") ;

очистит переменную PATH.
Функция putenv устанавливает переменную окружения. Параметр name зада-

ется в виде " name=string". Например:
p u t e n v (" Р А Т Н = с : \ \ t e m p ") ;

Функции Shortcut, ShortCutToText и TextToShortCut используются для за-
дания свойства Shortcut раздела меню, определяющего соответствующую этому
разделу комбинацию «горячих» клавиш. Функция Shortcut упаковывает пара-
метр Key, определяющий виртуальный код клавиши, и параметр Shift, задающий
комбинацию вспомогательных клавиш типа Shift, Ctrl и Alt, в значение типа
TShortCut, эквивалентное типу Word. Функция TextToShortCut создает анало-
гичное значение из строки текста. Функция Shortcut выполняется быстрее, но
зато функцию TextToShortCut удобнее использовать в диалоге, когда комбинацию
«горячих» клавиш задает пользователь с помощью окна редактирования.

Функция ShortCutToText позволяет получить текстовое описание значения
Shortcut типа TShortCut. Эту функцию удобно использовать для вывода пользо-
вателю принятой в разделе меню комбинации «горячих» клавиш, если ему предос-
тавляется возможность изменять эту комбинацию.

Рассмотрим примеры использования этих трех функций. Оператор
MOpen->ShortCut = Shortcut('О', TShiftState() « ssCtrl);

задает разделу меню с именем МОреп «горячие» клавиши Ctrl-O. Оператор
MOpen->ShortCut = Shortcut('О 1,TShiftState()<<ssCtrl«ssAlt);

задает тому же разделу комбинацию Ctrl-Alt-O.
Еще один пример. Приведенные ниже процедуры обеспечивают задание поль-

зователем комбинации «горячих» клавиш для раздела меню, названного в про-
грамме Open. Первая процедура с помощью ShortCutToText задает начальное зна-
чение текста в окне редактирования, равное исходной комбинации клавиш. А вто-
рая — с помощью функции TextToShortCut изменяет комбинацию на заданную
пользователем. Пользователь может задать, например, комбинацию Ctrl-O или как
"ЛО", или как "Ctrl+0".

void fastcall TForml : :But tonlCl ick(TObject *Sender)
{
Editl->Text = ShortCutToText (MOpen->ShortCut);

}
/ /

void fastcal l TForml : :But ton2Cl ick(TObjec t *Sender)
{
MOpen->ShortCut = TextToShortCut(Editl->Text);

}

Функции ParamStr и ParamCount позволяют работать с командной строкой.
Функции ParamStr возвращает параметр командной строки с указанным индек-
сом Index. Нулевым параметром командной строки является имя выполняемого
файла приложения вместе с полным путем к нему. Таким образом, выражение
ParamStr(O) вернет, например, строку "D:\\TEST\\PROJECT1.EXE", т.е. имя
файла, приведенное к верхнему регистру. Из этого имени можно извлечь путь
к выполняемому файлу. Это очень часто требуется, если программа использует ка-
кие-то другие файлы, расположенные в том же каталоге, в котором располагается
выполняемый файл.

Если при запуске приложения в него через командную строку переданы ка-
кие-то параметры, то эти параметры могут быть прочитаны соответственно выра-

322 Глава 3

жениями ParamStr(l), ParamStr(2) и т.п. При этом регистр параметров будет тем,
который использован при запуске программы. Так что при чтении параметров же-
лательно программно приводить их к верхнему или нижнему регистрам.

Функция ParamCount возвращает число параметров, переданных через ко-
мандную строку. Она позволяет организовывать циклы по параметрам командной
строки. Например, код

for (int i=l;i<=ParamCount () ;i
if (LowerCase (ParamStr (i)) == "-e")

обеспечивает выполнение некоторых действий (обозначены многоточием), если
среди параметров командной строки встретится "— е" или "— Е".

Следует отметить, что в файле объявлена переменная CmdLine типа (char *).
Эта переменная содержит полный текст командной строки, в котором параметры
отделены друг от друга пробелами. Регистр всех параметров в строке CmdLine,
включая нулевой, соответствует тому, который использовался при запуске прило-
жения на выполнение. Еще один альтернативный способ работы с командной стро-
кой рассмотрен в гл. 1, в разд. 1.2.2.

3.7.5 Некоторые вспомогательные функции API Windows

Функция

CloseWindow

Destroy Window

Enable Window

FindWindow

GetLastError

GetNextWindow

GetWindow

GetWindowText

Синтаксис / Описание

BOOL Close Window(HWND hWnd)

Сворачивает, не уничтожая, окно, указанное дескриптором
hWnd

BOOL DestroyWindow(HWND hWnd)
Уничтожает окно, указанное дескриптором hWnd, и всех его
потомков, освобождает отведенную память

BOOL Enable Window(HWND hWnd, BOOL bEnable)

Делает доступным (при bEnable = true) или недоступным
(при bEnable = false) окно, указанное дескриптором hWnd

HWND FindWindow(LPCTSTR IpClassName,
LPCTSTR IpWindowName)

Возвращает дескриптор окна класса IpClassName с заголов-
ком IpWindowName

DWORD GetLastError(VOID)
Возвращает код последней ошибки

HWND GetNextWindow(HWND hWnd, UINT wCmd)

Возвращает дескриптор следующего за hWnd или предыду-
щего окна в Z-последрвательности

HWND GetWindow(HWND hWnd, UINT wCmd)

Возвращает дескриптор окна, находящегося с указанным ок-
ном hWnd в указанном соотношении wCmd

int GetWindowText(HWND hWnd, LPTSTR IpString,
int nMaxCount)

Копирует текст, связанный с окном или оконным элементом
hWnd, в буфер IpString размера nMaxCount

Функции С, C++, библиотек C++Builder, API Windows 323

3.8 Работа с сообщениями Windows
Работа с сообщениями Windows рассмотрена в гл. 1, в разд. 1.14. Ниже приво-

дятся справочные сведения по функциям, которые использовались в гл. 1.

Функция Синтаксис / Описание Файл

PostMessage BOOL PostMessage(HWND hWnd, UINT Msg,
WPARAM wParam, LPARAM IParam)

Помещает указанное в ней сообщение окну в оче-
редь сообщений потока, и возвращается, не дожи-
даясь окончания обработки этого сообщения

winuser.h

RegisterWindow
Message

UINT RegisterWindowMessage(
LPCTSTR IpString)

Определяет новое окно сообщения с гарантирован-
ной уникальностью его в системе, которое может
использоваться в функциях SendMessage и Po-
stMessage

winuser.h

SendMessage LRESULT SendMessage(HWND hWnd,
UINT Msg, WPARAM wParam,
LPARAM IParam)

Посылает указанное в ней сообщение окну и не
возвращается, пока это сообщение обрабатывается

winuser.h

Глава 4

Описания функций

В гл. 3 были приведены краткие описания функций С, C++, C++Builder и API
Windows. В данной главе дается описание тех из них (более 300), которые наиболее
часто используются или которые требуют развернутых пояснений и примеров.
Полное описание всех функций невозможно в рамках данной книги. Может быть,
в недалеком будущем мною будет подготовлен ряд относительно небольших книг,
содержащих полное описание стандартных библиотек функций С, C++, С++Ви-
ilder и API Windows. Отмечу также, что значительно большее число описаний
функций имеется в [2].

Ряд типов данных в этой главе помечен в тексте подчеркиванием. Например,
TDateTime. Это означает, что подробные описания этих типов вы можете найти
в соответствующих главах книги. Аналогично подчеркиванием выделены функ-
ции, подробно рассмотренные в данной главе.

abort — функция завершения выполнения
Завершает выполнение приложения в случае ошибки

Синтаксис
tinclude <stdlib.h>
void abort(void);

Описание
Функция abort вызывает завершение выполнения приложения, свидетельст-

вуя о появившейся ошибке времени выполнения. В родительский процесс или
в операционную систему возвращается код завершения 3.

При вызове функции abort она, в свою очередь, вызывает raise(SIGABRT), ге-
нерируя тем самым сигнал SIGABRT (см. разд. «signal и raise — функции работы
с сигналами», а также гл. 1, разд. 1.13. Если в приложении нет обработчика этого
сигнала, то функция abort пишет в stderr (см. разд. 2.10.2.4) сообщение
«Abnormal program termination» и затем завершает работу приложения вызовом
функции exit с кодом 3.

Abort — функция генерации исключения
Генерирует исключение EAbort

Заголовочный файл SysUtils.hpp

Объявление
extern PACKAGE void fastcall Abort (void);

Описание
Функция Abort применяется для прерывания вычислений в процедурах

и функциях (особенно, глубоко вложенных) без сообщения об ошибке. Процедура
генерирует специальное «молчаливое исключение» EAbort, срабатывающее как
любое другое исключение, но не вызывающее сообщения об ошибке. Функция
Abort прерывает текущую процедуру и все вызвавшие ее процедуры, передавая
управление на самый верх — в конец последнего из блоков try ... finally. Таким
образом, это наиболее простой выход из глубоко вложенных процедур. Впрочем,
можно при необходимости перехватить исключение на каком-то промежуточном

326 Глава 4

уровне, предусмотрев на нем блок try ... catch и вставив соответствующий опера-
тор обработки:

catch(EAbortS)

abs и другие функции вычисления модуля
Функции вычисления модуля

Заголовочные файлы math.h, stdlib.h

Синтаксис
tinclude <stdlib.h>
int abs (int x) ;
long labs(long int x) ;

tinclude <math.h>
double fabs(double x);
long double fabsl(long double x);

Описание
Функции возвращают значение модуля аргумента соответствующего типа.

Функции fabs и fabsl принимают и возвращают действительные значения. Функ-
ции abs и labs принимают и возвращают целые значения. Если abs вызывается из
приложения, в которое подключен файл stdlib.h, то она развертывается как мак-
рос. Если это нежелательно и вы хотите использовать именно функцию abs, надо
после директивы

#include <stdlib.h>

включить директиву

#undef abs

Функция abs возвращает значение в диапазоне от 0 до INT_MAX (описана
в файле limit.h).

AnsiCompareStr и другие функции сравнения строк
Сравнивают две строки

Заголовочный файл SysUtils.hpp

Объявления
extern PACKAGE int fastcal l

AnsiCompareStr(const AnsiString SI, const AnsiString 5 2) ;
extern PACKAGE int fastcall

AnsiCompareText(const AnsiString SI, const AnsiString S 2) ;

Описание
Функции сравнивают две строки SI и S2 типа AnsiString. Возвращают значе-

ние < 0, если SI < S2, 0, если SI = S2, и > 0, если SI > S2.
Сравнение строк осуществляется по символам, начиная с первого. Если очеред-

ные символы не равны друг другу, то строка, в которой символ больше, считается
больше другой строки, и функция возвращает соответствующее значение. Сравне-
ние символов кириллицы производится в соответствии с русским алфавитом. Счита-
ется, что латинские символы меньше символов кириллицы, символы цифр меньше
символов букв, символы пунктуации (включая пробел) меньше символов цифр.

Если в процессе сравнения оказывается, что в одной строке символы закончились,
а в другой еще имеются, строка с меньшим числом символов считается меньшей.

Описания функций 327

Функция AnsiCompareText проводит сравнение, не учитывая регистр, в кото-
ром набраны символы. Т.е. символы "а" и "А" считаются равными. Причем, в от-
личие от функции CompareText. это распространяется на символы кириллицы.

Функция AnsiCompareStr учитывает регистр, в котором набраны символы.
Заглавная буква (символ, набранный в верхнем регистре) считается больше анало-
гичной прописной (набранной в нижнем регистре). Так что строка "а" считается
меньше строки "А".

Примеры
Следующие операторы обеспечивают различные действия (обозначены много-

точиями) в зависимости от сравнения текстов в окнах Editl и Edit2.

if (AnsiCompareStr (Editl->Text, Edit2->Text) < 0)

else if (AnsiCompareStr (Editl->Text, Edit2->Text) == 0)

else . . .

Аналогичный оператор можно записать и для функции AnsiCompareText.
В приведенной ниже таблице даны различные варианты строк S1 и S2 и ре-

зультаты их сравнения

Editl->Text

строка 1

Строка

Строка

Edit

Строка

Edit2->Text

строка 2

Строка

строка

edit

СтрокИ

AnsiCompareStr

<0

0

> 0

> 0

< 0

AnsiCompareText

<0

0

0

0

< 0

AnsiCompareText — сравнение строк без учета регистра
Сравнивает две строки без учета регистра.
См. разд. «AnsiCompareStr и другие функции сравнения строк».

AnsiLowerCase и другие функции преобразования строки
к нижнему регистру

Преобразуют строку к нижнему регистру.

Заголовочные файлы SysUtils.hpp, string.h, mbstring.h

Синтаксис
extern PACKAGE AnsiString fastcall

AnsiLowerCase (const AnsiString S) ;
extern PACKAGE char * fastcall

AnsiStrLower (char * Str);
extern PACKAGE AnsiString fastcall

Lowercase(const AnsiString S);
extern PACKAGE char * fastcall StrLower (char * Str);

char *strlwr(char *s);
wchar t * wcslwr(wchar_t *s);
unsigned char *_mbslwr(unsigned char *s) ;

Описание
Функции возвращают строку Str или s типа (char *) или строку S типа

AnsiString, преобразованную к нижнему регистру. Функции StrLower, Lower-
Case, strlwr, _wcslwr, _mbslwr работают только с латинскими символами и непри-

328 Глава 4

менимы к символам кириллицы. Для русских текстов должны использоваться
функции AnsiStrLower и AnsiLowerCase. Функция AnsiLowerCase применима
также к многобайтным символам.

При работе с компонентами VCL обычно удобнее использовать функции Ansi-
LowerCase и LowerCase, работающие со строками типа AnsiString.

Примеры
Пусть в окне редактирования Editl записан текст: "Hi! Привет!". Ниже приве-

дена таблица, в которой показаны результаты, возвращаемые различными функ-
циями.

Выражение

AnsiLowerCase(Edit I ->Text)

LowerCase(Editl->Text)

AnsiStrLower((Editl->Text).c_str())

StrLower((Editl->Text).c_str())

Результат

hi! привет!

hi! Привет!

hi! привет!

hi! Привет!

Вы можете видеть, что функции AnsiLowerCase, AnsiStrLower работают нор-
мально, а функции LowerCase, Sir Lower не преобразует русский текст. Можно
также видеть' что при работе со свойствами компонентов VCL функции AnsiLow-
erCase, LowerCase удобнее, поскольку не требуют приведения типов.

См. также примеры в разд. «AnsiPos и другие функции поиска подстроки».

AnsiPos и другие функции поиска подстроки

Возвращают позицию первого вхождения заданной подстроки в строку.

Заголовочный файл SysUtils.hpp

Синтаксис
extern PACKAGE int fastcall

AnsiPos(const AnsiString Substr, const AnsiString S);
extern PACKAGE char * fastcall

AnsiStrPos (char * Str, char * SubStr) ;
extern PACKAGE char * fastcall

StrPos(const char * Strl, const char * Str2);

Описание
Функции AnsiStrPos и StrPos возвращают указатель на первое вхождение под-

строки SubStr (STR2) в строку Str (STR1). Возвращаемое значение — указатель на
первый символ найденной подстроки. Если SubStr нет в Str, возвращается NULL.

Если строки содержат символы кириллицы, надежнее использовать функцию
AnsiStrPos, чем StrPos. А в случае многобайтных символов работает только Ansi-
StrPos.

Функция AnsiPos тоже осуществляет поиск первого вхождения подстроки, но
возвращает индекс первого вхождения подстроки, отсчитанный от 1. Например,
если строка S начинается с подстроки Substr, вернется 1. Если подстрока не най-
дена, возвращается 0.

Обратите внимание на разную последовательность аргументов, в вызовах функ-
ций: в AnsiStrPos и StrPos первым аргументом указывается строка, а в AnsiPos —
подстрока.

Примеры
Пусть вам надо произвести какие-то действия, если текст, хранящийся в стро-

ке, записанной в окне Edit2, встречается в тексте, записанном в окне Editl. Срав-
нение надо производить независимо от регистра, в котором набраны тексты.

Описания функций 329

Поиск текста одной строки в другой производится функцией AnsiPos. Но, что-
бы сделать поиск нечувствительным к регистру, надо сначала привести обе строки
к одному регистру, как это сделано с помощью функции AnsiLowerCase в следую-
щем примере:

if (AnsiPos(AnsiLowerCase(Edit2->Text),
AnsiLowerCase(Edit l->Text)) > 0)

или с помощью функции AnsiUpperCase в следующем:
if (AnsiPos(AnsiUpperCase(Edit2->Text) ,

AnsiUpperCase(Editl->Text)) > 0)

В приведенных примерах функцию AnsiPos можно заменить функцией Ansi-
StrPos или StrPos:

if (Ans iSt rPos(Ans iLowerCase(Edi t l -XText) .c_s t r () ,
AnsiLowerCase(Edit2->Text) .c_str()) != NULL)

Результат будет тем же самым. Обратите внимание на то, что в функциях
AnsiStrPos и StrPos, в отличие от AnsiPos, подстрока передается вторым парамет-
ром, а строка — первым.

Следующий оператор отображает в метке Labell часть текста окна Editl, на-
чинающуюся с первого вхождения в него подстроки из окна Edit2:

Labell->Caption =
A n s i S t r P o s (A n s i s t r L o w e r ((E d i t l - > T e x t) . c _ s t r ()) ,

A n s i S t r L o w e r ((E d i t 2 - > T e x t) . c _ s t r ())) ;

Если вхождения подстроки не найдено, в метку ничего не заносится.
Во всех приведенных примерах вместо функций AnsiStrLower и AnsiStrUp-

рег можно использовать функции AnsiLowerCase. LowerCase. StrLower. AnsiUp-
perCase. UpperCase. StrUpper. но с учетом ограничений, свойственных этим
функциям.

AnsiStrComp — сравнение строк
Сравнивает две строки с учетом регистра.

Заголовочный файл SysUtils.hpp

Синтаксис
extern PACKAGE int fastcall AnsiStrComp(char * SI, char * 32) ;

Описание
Функция сравнивает две строки SI и S2 с учетом регистра. Возвращает значе-

ние < 0, если SI < S2, 0, если SI = S2, и > 0, если SI > S2.
Сравнение строк осуществляется по символам, начиная с первого. Если оче-

редные символы не равны друг другу, то строка, в которой символ больше, счита-
ется больше другой строки, и функция возвращает соответствующее значение. За-
главные буквы (символы, набранные в верхнем регистре) считаются больше про-
писных (набранных в нижнем регистре). Сравнение символов кириллицы произво-
дится в соответствии с русским алфавитом. Считается, что латинские символы
меньше символов кириллицы, символы цифр меньше символов букв, символы
пунктуации (включая пробел) меньше символов цифр. Если в процессе сравнения
оказывается, что в одной строке символы закончились, а в другой еще имеются,
строка с меньшим числом символов считается меньшей.

Функция применима к русским текстам, в то время, как аналогичная функ-
ция StrComp может на русских текстах давать сбои.

330 Глава 4

AnsiStrlComp — сравнение строк
Сравнивает две строки без учета регистра.

Заголовочный файл SysUtils.hpp

Синтаксис
extern PACKAGE int fastcal l AnsiStr lComp(char * SI, char * S 2) ;

Описание
Функция сравнивает две строки SI и S2 без учета регистра. Возвращает значе-

ние < 0, если SI < S2, 0, если SI = S2, и > 0, если SI > S2. Функция работает как
с латинскими символами, так и с кириллицей. Этим она отличается от функции
StrlComp, работающей только с латинскими символами.

Сравнение строк осуществляется по символам, начиная с первого. Регистр,
в котором набраны символы, не учитывается. Если очередные символы не равны
друг другу, то строка, в которой символ больше, считается больше другой строки,
и функция возвращает соответствующее значение. Сравнение символов кирилли-
цы производится в соответствии с русским алфавитом. Считается, что латинские
символы меньше символов кириллицы, символы цифр меньше символов букв,
символы пунктуации (включая пробел) меньше символов цифр. Если в процессе
сравнения оказывается, что в одной строке символы закончились, а в другой еще
имеются, строка с меньшим числом символов считается меньшей.

См. также функцию AnsiCompareText. которая во многих отношениях удоб-
нее функции AnsiStrlComp.

Пример
Следующие операторы обеспечивают различные действия (обозначены много-

точиями) в зависимости от сравнения текстов в окнах Editl и Edit2.
String SI = Editl->Text;
String S2 = Edit2->Text;
switch (A n s i S t r l C o m p (S I . c _ s t r () , S 2 . c _ s t r ()))
{

case -1: . . . ;
break;

case 0 : . . . ;
break;

case 1 :
}

Приведенный выше текст можно было бы упростить, удалив из него перемен-
ные S1 и S2 и заменив оператор switch следующим:

switch (A n s i S t r l C o m p ((E d i t l - > T e x t) . c _ s t r () , (E d i t 2 - > T e x t) . c _ s t r () })

В приведенной ниже таблице даны различные варианты строк S1 и S2 и ре-
зультаты их сравнения

S1

"строка 1"

"строка

"Строка 1"

"строка"

S2

"строка 2"

"строка"

"строка 1"

"строки"

Возвращаемое значение

-1

+1

0

-1

Описания функций 331

AnsiStrLower — преобразование строки к нижнему регистру
Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

AnsiStrPos — поиск подстроки
Возвращает указатель на позицию первого вхождения заданной подстроки

в строку.
См. разд. «AnsiPos и другие функции поиска подстроки».

AnsiStrUpper — преобразование строки к верхнему регистру
Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистр».

AnsiToOem — макрос перевода строки в текст DOS
Устаревший, оставленный для совместимости с 16-разрядными приложения-

ми вариант перевода строки текста в текст MS-DOS. Сейчас реализован в виде мак-
роса, использующего более современную функцию CharToOem. которую и следует
вызывать при необходимости перевода строк (см. разд. «CharToOem и другие
функции перевода строки в текст DOS»).

AnsiUpperCase и другие функции преобразования строки
к верхнему регистру

Преобразуют строку к верхнему регистру.

Заголовочные файлы SysUtils.hpp, string.h, mbstring.h.

Синтаксис

extern PACKAGE char * fastcall AnsiStrUpper(char * S t r) ;
extern PACKAGE AnsiString fastcall

AnsiUpperCase(const AnsiStr ing S) ;
extern PACKAGE char * fastcall StrUpper(char * Str);
extern PACKAGE AnsiStr ing fastcal l

Uppercase(const AnsiString S) ;

char *strupr(char *s) ;
wchar_t *_wcsupr(wchar_t * s) ;
unsigned char *_mbsupr(unsigned char *s) ;

Описание
Функции возвращают строку Str или s типа (char *), или строку S типа

AnsiString, преобразованную к верхнему регистру. Функции StrUpper, Upper-
Case, strupr, _wcsupr, _mbsupr работают только с латинскими символами и не-
применимы к символам кириллицы. Для русских текстов должны использоваться
функции AnsiStrUpper и AnsiUpperCase. Функция AnsiUpperCase применима
также к многобайтным символам.

При работе с компонентами VCL обычно удобнее использовать функции
AnsiUpperCase и Uppercase, работающие со строками типа AnsiString.

Примеры
Пусть в окне редактирования Editl записан текст: "Hi! Привет!". Ниже приве-

дена таблица, в которой показаны результаты, возвращаемые различными функ-
циями.

3(32 Глава 4

Выражение

AnsiUpperCase(Editl->Text)

UpperCase(Editl->Text)

AnsiStrUpper((Editl->Text).c_str())

StrUpper((Editl->Text).c_str()>

Результат

HI! ПРИВЕТ!

HI! Привет!

HI! ПРИВЕТ!

HI! Привет!

Вы можете видеть, что функции AnsiUpperCase, AnsiStrUpper работают нор-
мально, а функции UpperCase, StrUpper не преобразует русский текст. Можно
также видеть, что при работе со свойствами компонентов VCL функции AnsiUp-
perCase, UpperCase удобнее, поскольку не требуют приведения типов.

См. также примеры в разд. «AnsiPos и другие функции поиска подстроки».

assert — макрос диагностики

Обеспечивает диагностику при отладке.

Синтаксис
#include <assert.h>
void assert(int test);

Описание
Макрос assert используется в программах для диагностики. Если при расши-

рении макроса значение параметра test ложно (равно нулю), то assert выдает
в стандартный файл ошибок stderr сообщение:

Assertion failed: test, f i le <имя файла>, line <номер строки>

После этого макрос assert производит вызов функции abort.
Если в исходном файле перед директивой
tinclude <assert.h>

появляется директива препроцессора

#define NDEBUG

то все последующие макросы assert игнорируются. Таким образом, вы можете вве-
сти в свое приложение какие-то проверки, необходимые для отладки, а затем
в окончательном файле отключить их приведенной выше директивой.

Пусть, например, вы хотите проверять, не окажется ли в результате какой-то
ошибки введенный вами указатель Р равным NULL. Тогда вы в соответствующем
месте кода можете ввести оператор:

assert(Р == N U L L) ;

Если при выполнении этого оператора значение Р окажется равным NULL, то
будет отображено диалоговое окно, содержащее сообщение об ошибке, и приложе-
ние завершит работу.

Bounds и другие функции формирования прямоугольной области
Формируют прямоугольную область типа TRect.

Заголовочные файлы Types.hpp, Classes.hpp.

Синтаксис
#include <Types.hpp>
struct TRect
{
int left, top, right, bottom;

Описания функций 333

struct TPoint

(
int x;
int y;
);

extern PACKAGE Types::TRect fastcall
Bounds(int ALeft, int ATop, int AWidth, int AHeight);

tinclude <Classes.hpp>
extern PACKAGE TRect fastcall

Rect(int ALeft, int ATop, int ARight, int ABottom);
. extern PACKAGE TRect fastcall

Rect (const TPoint ATopLeft, const TPoint ABottomRight) ;

Описание
Функции возвращают структуру типа TRect. используемую во многих функ-

циях C++Builder и Windows. Она определяет в пикселах размеры и размещение
различных окон и областей. В качестве системы координат принимается система
координат родительского окна или экрана. За начало координат всегда принимает-
ся левый верхний угол родительского окна или экрана.

Функция Bounds формирует TRect из координат X (ALeft) и Y (ATop) левого
верхнего угла области, из ее ширины (AWidth) и высоты (AHeight). Первая форма
функции Rect вместо ширины и высоты задает координаты X (ARight) и Y (ATop)
правого нижнего угла области. А вторая форма функции Rect формирует область
заданием двух точек типа TPoint, определяющих ее левый верхний и правый ниж-
ний углы. Задавать значения TPoint обычно удобно функцией Point.

В C++Builder рассматриваемые функции применяются, в частности, для зада-
ния значений таким свойствам компонентов, как BoundsRect, ClientRect и др.

Примеры
Приведенный ниже оператор размещает окно текстового редактора Memol на

его родительской панели Panel 1, оставляя слева, внизу и справа зазор в 10 пиксе-
лов (для более приятного вида), а сверху — зазор 40 пикселов (например, для раз-
мещения заголовка окна):

Memol->BoundsRect = Rect(10,40,Panel l->ClientWidth-10,
Panell->ClientHeight-10);

To же самое можно сделать оператором:
Memol->BoundsRect = Bounds(10,40,Panel l->ClientWidth-20,

Panell->ClientHeight-50);

Ниже приведен ряд операторов, иллюстрирующих функции Rect и Point.
а также применение типов TRect и TPoint:

TRect R, Rl, R3;
R = R e c t (1 0 , 1 0 0 , 2 0 , 2 0 0) ;
Rl = R;

TPoint PI, P2;
PI = Point(10, 100) ;
P2 = Point (10, 200);
R3 = TRect(PI, P2);'

TRect R2(PI, P2);

R.Left'= 15;
int W = R.Width (); <
if(Rl != R) ...

334 Глава 4

calloc — функция выделения памяти
Функция выделяет память под заданное число объектов.
См. разд. «malloc и другие функции динамического.распределения памяти».

ceil — округление действительного числа
Округляет действительное число до целого значения.
См. разд. «Ceil и другие функции округления действительных чисел».

Ceil и другие функции округления действительных чисел
Функции округления действительных чисел до целых значений.

Заголовочные файлы math.fi и math.hpp.

Синтаксис
#include <math.h>
double ceil(double x) ;
double floor(double x);
long double ceill (long double x);
long double floorl(long double x);

ttinclude <math.hpp>
extern PACKAGE int fastcall Ceil(Extended X);
extern PACKAGE int fastcall Floor(Extended X);

Описание
Функции ceil, ceill, Ceil, floor, floorl, Floor округляют значения своих аргу-

ментов, являющихся действительными числами различных типов. Округление
производится в разные стороны: ceil, ceill и Ceil округляют в сторону положитель-
ной бесконечности (до минимального целого числа, не меньшего, чем значение ар-
гумента); floor, floorl и Floor округляют в сторону отрицательной бесконечности
(до максимального целого числа, не большего, чем значение аргумента). Обратите
внимание, что результат выполнения всех этих функций — не целое значение,
а действительное, округленное до целого.

Ниже приведены примеры округления:

Функция

ceil, ceill, Ceil

floor, floorl, Floor

X = 3.5

4

3

X = -3.5

-3

-4

X = 3

3

3

ceill — округление действительного числа
Округляет действительное число до целого значения.
См. разд. «Ceil и другие функции округления действительных чисел».

cgets — ввод строки из потока

Вводит строку из стандартного потока.
См. разд. «fputs и другие функции ввода/вывода строк».

Описания функций 335

CharToOem, CharToOemBuff — функции перевода строки в текст DOS

Функции API Windows, переводят строку в текст MS-DOS.

Заголовочный файл winuser.h.

Синтаксис
#include <systera.hpp>
BOOL CharToOem(

LPCTSTR IpszSrc, // исходная строка
LPSTR -IpszDst // результат перевода

) ;
BOOL CharToOemBuff(

LPCTSTR IpszSrc, // исходная строка
LPSTR IpszDst, // результат перевода
DWORD cchDstLength // число символов

) ;

Описание
Функции применяются для перевода строки текста в формате ASCII («просто

текст») в строку формата «текст MS-DOS». Это требуется, в частности, в консоль-
ных приложениях для вывода на экран русских текстов. Необходим подобный пе-
ревод и в случаях, когда в окно редактирования загружен русский текст и его надо
сохранить в файле в формате DOS.

Параметр IpszSrc — указатель на строку, которую надо перекодировать. Па-
раметр IpszDst — указатель на строку, в которую заносится перекодированный
текст. Параметр cchDstLength в функции CharToOemBuff определяет число пере-
кодированных символов, которые заносятся в результирующую строку. Если это
число меньше числа символов в исходной строке, то остальные символы не зано-
сятся в результирующую строку.

Имеются два варианта функций, работающие с кодами ANSI и с многобайтны-
ми кодами Unix. В случае, если работа идет с кодами ANSI, адреса исходной и ре-
зультирующей строк могут совпадать, т.е. параметры IpszSrc и IpszDst могут ука-
зывать на одну строку.

Функции всегда возвращают ненулевое значение.
Имеется также функция OemToChar. которая осуществляет обратное преобра-

зование.

Примеры
Ниже приведен пример консольного приложения, демонстрирующий вывод

и ввод сообщений в кодировке DOS. Для вывода русских текстов используется
функция CharToOem.

tinclude <stdio.h>
#include <system.hpp>

int main()
{

char SI[20], S2[20];
CharToOem("Введите Ваше имя:\п", SI);
printf(SI);
scanf ("%20s", S2);
CharToOem("Привет, ", SI);
printf(strcat(strcat(SI, 32) , "! ! !\n"));
// Чтобы не закрылось окно DOS
fflush(stdin) ;
getchar () ;
return 0;

}

В следующем примере, текст из окна RichEditl сохраняется в формате DOS
в файле, указанном пользователем.

336 Глава 4

#include <stdio.h>

if (SaveDialogl->Execute())

{
char *S = (char *) malloc(sizeof(RichEditl->Text)+1);
CharToOem((RichEditl->Text) .c_str(), S) ;

FILE *F;
F = fopen((SaveDialogl->FileName).c_str(), "wt");

fprintf(F,"%s", S);
fclose (F);
free (S) ;

}

Первый оператор в структуре if вызывает диалог сохранения файла. Если
пользователь выбрал в нем файл, то далее отводится память под строку S, необхо-
димая для хранения в ней текста окна RichEditl. Следующий оператор заносит
в нее перекодированный текст. Дальнейшие операторы создают текстовый файл
с заданным именем, заносят в него перекодированный текст и закрывают файл.
Последний оператор освобождает память.

_clear87 и другие функции очистки слова состояния FPU
Очищают слово состояния FPU.

Заголовочный файл float.h.

Синтаксис

tinclude <f loat .h>
unsigned int _clear87 (void) ;
unsigned int _clearfp (void);

Описание
Функции _clear87 и _clearfp очищают слово состояния FPU (см. разд. 1.9.3),

отображающее состояние после выполнения операций с плавающей запятой. Это
слово содержит следующие флаги:

Флаг

IE

DE

ZE

ОЕ

UE

РЕ

SF

ES

СО

С1

С2

ST

сз
BF

Описание

Исключение при ошибочных операциях

Исключение ненормализованных операций

Исключение деление на нуль

Исключение переполнения

Исключение потери порядка

Исключение точности

Ошибка стека

Состояние ошибочного суммирования

Условный код 0 (CF)

Условный код 1

Условный код 2 (PF)

Вершина стека

Условный код 3 (ZF)

Флаг занятости FPU

Биты

0

1

2

3

4

5

6

7

8

9

10

11-13

14

15

Описания функций 337

Слово состояния отражает характер результата текущей операции с плаваю-
щей запятой. Например, если при выполнении приложения встретилось деление
переменной с плавающей запятой на нуль, флаг ZE слова состояния переключится
в 1, свидетельствуя об этой ошибочной операции. Вот такие установленные биты
и сбрасываются функциями _с!еаг87 и _clearfp.

Обе функции идентичны. Функция _clearfp определена только для совмести-
мости с Microsoft.

Функции возвращают значение слова состояния до того, как оно очищено.
Возвращенное значение можно использовать для анализа результатов выполнения
арифметических операций с плавающей запятой. Это имеет смысл применять
в случае, если до возникновения ошибки генерация исключений замаскирована
функцией controls?. Например, оператором:

_contro!87(Ox3F, Ox3F);

Тогда при возникновении ошибок операций с плавающей запятой исключения
не генерируются и о наличии ошибок можно судить, проверяя отдельные биты воз-
вращенного слова операцией И. Например, оператор

if (c lear87() & 0 x 4) ShowMessage("Деление на н у л ь ") ;

прореагирует на произошедшее в предшествующих операциях деление на нуль
и очистит слово. А оператор

if (_clear87() & 0x30)
ShowMessage("Ошибка операции с плавающей з а п я т о й ") ;

прореагирует на любую ошибку операций с плавающей запятой и очистит слово от
последствий ошибок.

_clearfp — очистка слова состояния FPU
Очищает слово состояния FPU.
См. разд. «_clear87 и другие функции очистки слова состояния FPU».

CompareDate и другие функции сравнения дат и времени
Сравнивают два значения дат и времени.

Заголовочный файл Datelltils.hpp.

Синтаксис
tinclude <DateUtils.hpp>
typedef int TValueRelationship;

extern PACKAGE Types::TValueRelationship fastcall
CompareDate(const System::TDateTime A,

const System::TDateTime B) ;
extern PACKAGE Types::TValueRelationship fastcall

CompareDateTime(const System::TDateTime A,
const System::TDateTime B) ;

extern PACKAGE Types::TValueRelationship fastcall
CompareTime(const System::TDateTime A,

const System::TDateTime B);

Описание
Функции CompareDate, CompareDateTime, CompareTime сравнивают два зна-

чения даты и времени А и В типа TDateTime. но по-разному. Функция Compare-
Date сравнивает только даты, игнорируя время. Так что два значения, относящихся
к одной и той же дате, но различающихся по времени, считаются одинаковыми.
Функция CompareDateTime сравнивает и дату, и время. При этом осуществляется
полное сравнение, причем более достоверное, чем сравнение А и В как действитель-

338 Глава 4

ных чисел. Функция CompareTime сравнивает только время, игнорируя дату. Так
что она считает равными значение, которые совпадают по времени вплоть до милли-
секунды, но относятся к разным датам. И может, например, указать, что А > В,
если время А больше В, хотя при этом дата А может быть меньше В.

Все функции возвращают:

Значение

-1

0

+1

Именованная константа

LessThanValue

EqualsValue

GreaterThan Value

Условие

A <B

A = В

A > В

CompareDateTime — сравнение дат и времени
Сравнивает два значения дат и времени.
См. разд. «CompareDate и другие функции сравнения дат и времени».

CompareText — сравнение строк
Сравнивает две строки без учета регистра.

Заголовочный файл SysUtils.hpp.

Синтаксис
extern PACKAGE int fastcall CompareText(const AnsiString SI,

const AnsiString S 2) ;

Описание
Функция сравнивает две строки SI и S2 типа AnsiString. Для латинских тек-

стов сравнение происходит без учета регистра. Для кириллицы это не работает.
Возвращает значение > 0, если SI = S2. В остальных случаях возвращается 0.

Например, выражение
CompareText(Editl->Text, Edit2->Text)

вернет 0, если в окнах Editl и Edit2 записан одинаковый текст или он не содержит
символов кириллицы и различается только регистром. Например, "Edit" и "edit".
В остальных случаях вернется положительное значение. Но если тексты содержат
символы кириллицы в разных регистрах (например, "Окно" и "окно"), то вернется
положительное число, т.е. строки будут признаны разными.

Для сравнения русских текстов следует использовать функцию AnsiStrComp.

CompareTime — сравнение значений времени
Сравнивает два значения времени.
См. разд. «CompareDate и другие функции сравнения дат и времени».

Compare Value и другие функции сравнения числовых значений
Сравнивают два числовые значения.

Заголовочный файл Math.hpp.

Объявления
typedef int TValueRelationship;

extern PACKAGE TValueRelationship fastcall
CompareValue(const int A, const i n t ' B) ;

extern PACKAGE TValueRelationship fastcal l
CompareValue(const int64 A, const int64 B) ;

Описания функций 339

extern PACKAGE TValueRelationship fastcall
CompareValue(const float A, const float B,

float Epsilon = 0);
extern PACKAGE TValueRelationship fastcall

CompareValue(const double A, const double B,
double Epsilon = 0);

extern PACKAGE TValueRelationship fastcall
CompareValue(const Extended A, const Extended B,

Extended Epsilon =0);

extern PACKAGE bool fastcall SameValue(const float A,
const float B, float Epsilon = 0);

extern PACKAGE bool fastcall SameValue(const double A,
const double B, double Epsilon = 0);

extern PACKAGE bool fastcall SameValue(const Extended A,
const Extended B, Extended Epsilon = 0);

Описание

Различные перегруженные формы функции CompareValue сравнивают значе-
ния двух своих числовых аргументов А и В различного типа. Функции возвращают:

Значение

-1

0

+1

Именованная константа

LessThanValue

EqualsValue

GreaterThanValue

Условие

А < В

А = В

А> В

При сравнении действительных значений параметр Epsilon позволяет задать
различие значений, при котором они еще считаются равными. Это дает возмож-
ность устранить влияние ошибок округления.

Перегруженные формы функций SameValue осуществляют сравнение А и В
только на эквивалентность с точностью до Epsilon. Функции возвращают true, если
модуль разности значений А и В не превышает Epsilon. Впрочем, по умолчанию
Epsilon = 0, так что осуществляется точное сравнение. Поскольку аргументы — дей-
ствительные числа, то в этом случае несовпадение может быть связано с ошибками
округления. Так что обычно лучше задавать конечное значение Epsilon.

Примеры
Пусть А и В — действительные числа, причем А = 10.05, а В = 10. Тогда выраже-

ние CompareValue(A, В) вернет +1, а выражение CompareValue(A, B, 0.01*abs(B))
вернет 0, так как это выражение сравнивает число с точностью до 1%. Выражение
SameValue(A, В) вернет false, а выражение SameValue(A, B, 0.01*abs(B)) вернет
true.

_contro!87 и другие функции доступа к управляющему слову FPU
Обеспечивают доступ к управляющему слову FPU.

Заголовочные файлы float.h, System.hpp.

Синтаксис
#include <float .h>
unsigned int _contro!87(unsigned int newcw, unsigned int m a s k) ;
unsigned int _controlfp(unsigned' int newcw, unsigned int m a s k) ;

#include <System.hpp>
extern PACKAGE Word ^fastcall Get8087CW (void) ;
extern PACKAGE void fastcall Set8087CW(Word N e w C W) ;

340 Глава 4

Описание
Функции обеспечивают доступ к управляющему слову FPU (см. разд. 1.9.3),

определяющему точность вычислений, способы округления и генерацию исключе-
ний при выполнении операций с плавающей запятой.

Программную установку управляющего слова имеет смысл проводить, если
вы решили запретить генерацию каких-то видов исключений. Это, в частности,
приходится делать при использовании некоторых пакетов. Например, при исполь-
зовании для трехмерной графики OpenGL надо запретить генерацию всех исключе-
ний.

В функциях _contro!87 и _controlfp параметр newcw содержит устанавливае-
мое значение управляющего слова FPU. Параметр mask — маска, которая опреде-
ляет, какие именно биты из newcw будут действительно заноситься в управляю-
щее слово. В управляющем слове заменяются только те биты, для которых в mask
заданы 1. Например, вызов функции

_contro!87(0x4, 0 x 4)

использует маску, двоичное представление которой равно 0100. Значит, такой вы-
зов функции установит в единицу третий бит (если младший бит считать пер-
вым) — маску исключений деления на нуль, оставив остальные биты управляюще-
го слова неизменными. Вызов функции

_contro!87 (0x4, Ox3F)

(маска 00111111, новое значение слова — 00000100) установит в единицу 3-й бит
и в 0 все остальные из первых 6-ти битов, отвечающих за маски исключений. Оста-
льные биты управляющего слова останутся неизменными.

Функции возвращают новое значение управляющего слова. Если же маска
равна нулю, то вернется текущее значение слова. Например, оператор

unsigned int m = _contro!87(0, 0) ;

вернет в переменную m текущее значение управляющего слова, причем само слово
останется неизменным.

Функция _controlfp введена для совместимости с Microsoft. Она отличается от
_controI87 только тем, что всегда выключает флаг DM, соответствующий ненорма-
лизованным операциям.

Функция Get8087CW возвращает текущее состояние управляющего слова.
А функция Set8087CW позволяет установить новое значение слова NewCW.

При установке слова функциями _controlfp, _contro!87, Set8087CW можно
использовать переменную DefauIt8087CW. которая содержит значение по умолча-
нию управляющего слова FPU.

Рассмотренные функции — не самый удобный способ решать задачи измене-
ния управляющего слова. Часто более удобно использовать функции GetExcepti-
onMask. SetExceptionMask. GetPrecisionMode. SetPrecisionMode. GetRoundMo-
de. SetRoundMode.

Примеры
Если вам в каком-то фрагменте кода надо запретить генерацию исключения

при делении на нуль, а затем восстановить прежнее состояние управляющего сло-
ва, это можно сделать следующим кодом:

// запоминание слова
unsigned int m = _contro!87(0, 0) ;
_contro!87(0x4, 0 x 4) ; // маскирование исключения

<код, в котором может возникнуть исключение>

controls?(m, O x F F F F) ; // восстановление слова

Описания функций 341

Первый оператор этого кода запоминает в переменной m управляющее слово
с помощью функции _contro!87 с нулевой маской. Затем той же функцией с соот-
ветствующей маской маскируется исключение. А последний оператор восстанав-
ливает прежнее значение управляющего слова.

Ниже приведен аналогичный пример, использующий функции Get8087CW
и Set8087CW:

Word 01d8087CW;
01d8087CW = G e t 8 0 8 7 C W () ; //запоминание слова
S e t 8 0 8 7 C W (O x l 3 3 f) ; // маскируются все исключения

<код, в котором могут возникать исключения>

Set8087CW(01d8087CW); //восстановление слова

Еще один пример. Пусть вы хотите в некоторый момент запретить генерацию
исключения, связанного с делением на нуль. Для этого вам надо установить в 1 бит
ZM (см. разд. 1.9.3), запрещающий генерацию этого исключения. Но этого мало,
так как при этом все-таки будет сгенерировано исключение, связанное с ошибочной
операцией деления. Так что одновременно надо установить в 1 бит ОМ (маску ис-
ключения переполнения), или бит IM, запрещающий генерацию исключения при
ошибочных операциях. Остальные биты слова мы хотим оставить без изменения.

Эту задачу можно решить оператором:
S e t 8 0 8 7 C W (G e t 8 0 8 7 C W () | O x D) ;

Он устанавливает в слове, возвращаемом функцией Get8087CW. биты ZM
и ОМ в 1, оставляя остальные биты неизменными. Аналогичный результат дает
оператор

Set8087CW(Get8087CW | 5) ;

который устанавливает в 1 биты ZM и IM.
Многочисленные примеры использования рассмотренных функций вы найде-

те также в разд. 1.9.3, гл. 1 и в описаниях других функций, работающих с управ-
ляющим словом FPU.

_controlfp — доступ к управляющему слову FPU
Обеспечивает доступ к управляющему слову FPU.
См. разд. «_contro!87 и другие функции доступа к управляющему слову FPU».

cprintf — форматированный вывод на экран
Выводит форматированные данные в выходной поток.
См. разд. «fprintf и другие функции форматированного вывода».

cputs — вывод строки в поток
Выводит строку в стандартный поток вывода.
См. разд. «fputs и другие функции ввода/вывода строк».

CreateMessageDialog — создание диалогового окна
Создает диалоговое окно, позволяющее анализировать ответ пользователя.
См. разд. «MessageDlg и другие функции отображения диалоговых окон».

CreateProcess — порождение дочернего процесса
Функция API Windows, порождает дочерний процесс.

342 Глава 4

Объявление

bool fastcall CreateProcess(
const char * IpApplicationName,
char * IpCommandLine,
_SECURITY_ATTRIBUTES * IpProcessAttributes,
_SECURITY_ATTRIBUTES * IpThreadAttribUtes,
bool blnheritHandles,
unsigned long dwCreationFlags,
void * IpEnvironment,
const char * IpCurrentDirectory,
STARTUPINFO * IpStartupInfo,
PROCESS__INFORMATION * IpProcessInforraation

);

Описание
Функция CreateProcess порождает новый дочерний процесс и его первый по-

ток (нить). В рамках этого процесса выполняется указанный файл IpApplication-
Name с командной строкой IpCommandLine. Впрочем, параметр IpApplication-
Name может быть равен NULL, а имя выполняемого модуля в этом случае должно
быть первым элементом командной строки, задаваемой параметром IpCommand-
Line. Сам выполняемый модуль может быть любого вида: 32-разрядным приложе-
нием Windows, приложением MS-DOS, OS/2 и т.п. Однако если из приложения
Windows создается процесс MS-DOS, то параметр IpApplicationName должен быть
равен NULL, а имя файла и его командная строка включаются в IpCommandLine.
Так что, как правило, чтобы не ошибиться, проще всегда задавать IpApplication-
Name = NULL и помещать всю информацию в IpCommandLine.

Если имя файла не содержит расширения, то предполагается расширение
.ехе. Но если имя кончается символом точки или если файл задан вместе с путем,
то расширение .ехе к имени не добавляется.

Если путь к файлу не задан, файл ищется в каталогах в следующей последова-
тельности:

• Каталог, из которого запускается приложение
• Текущий каталог родительского процесса
• Системный каталог Windows, возвращаемый функцией GetSystemDirectory
• Каталог SYSTEM (Windows NT/2000/XP).
• Каталог Windows, возвращаемый функцией GetWindowsDirectory
• Каталоги, перечисленные в переменной окружения PATH

Если функция успешно выполнена, она возвращает ненулевое значение (true).
Если произошла ошибка — возвращается 0 (false). Тогда информацию об ошибке
можно получить, вызвав функцию GetLastError.

Функция CreateProcess пришла на смену прежним функциям WinExec и Lo-
adModule, которые теперь реализуются посредством вызова CreateProcess.

Функция CreateProcess возвращается, не ожидая окончания инициализации
порождаемого процесса. Но в ряде случаев родительский процесс должен взаимо-
действовать с порожденным. Такое взаимодействие возможно только после того,
как закончена инициализация порожденного процесса. Приостановить выполне-
ние до окончания инициализации дочернего процесса можно функцией WaitFor-
Inputldle. В некоторых случаях выполнение родительского процесса должно быть
приостановлено до завершения порожденного процесса. Это необходимо, напри-
мер, если родительский процесс должен использовать какие-то результаты, полу-
ченные порожденным процессом. Для ожидания завершения порожденного про-
цесса можно использовать функцию WaitForSingleObiect.

Порожденный процесс остается в памяти системы, пока не завершатся все его
потоки (нити) и пока все его дескрипторы не закроются вызовом CloseHandle.

Описания функций 343

Если эти дескрипторы не нужны, лучше всего закрыть их сразу после инициализа-
ции процесса.

Чтобы досрочно прекратить выполнение дочернего процесса лучше всего ис-
пользовать функцию ExitProcess.

Множество параметров функции позволяют определить условия выполнения
и управлять дочерним процессом. Ниже приведено краткое описание параметров
функции.

IpApplicationName

IpCommandLine

IpProcess Attributes ,
IpThreadAttributes

blnheritHandles

dwCreationFlags

IpEnvironment

IpCurrentDirectory

IpStartupInfo

IpProcessInformation

Указатель на строку, содержащую имя выполняемого
модуля: или с полным путем, или только имя (тогда
файл должен находиться в текущем каталоге). Если
IpApplicationName = NULL, имя модуля должно зада-
ваться первым элементом строки IpCommandLine (по-
дробнее см. выше в описании функции).

Указатель на строку, содержащую командную строку
выполняемого файла. Если IpCommandLine = NULL, то
в качестве командной строки выступает IpApplication-
Name (подробнее см. выше в описании функции).

Указатели на структуры типа PSequrityAttributes,
определяющие наследование дескриптора в дочернем
процессе. Если эти параметры равны NULL, наследова-
ние невозможно.

Определяет, наследуют ли новые процессы дескрипторы
родительских. Если true — наследуют с тем же уровнем
доступа, что и в родительском процессе.

Определяет флаги dwCreationFlags, задающие характе-
ристики создаваемого процесса.

Указывает на блок окружения нового процесса. Если па-
раметр равен NULL, используется окружение родитель-
ского процесса. Блок окружения состоит из оканчиваю-
щихся нулевым символом строк вида:

<имя>=< значение >

Если задан блок окружения, то информация о текущем
каталоге в окружение нового процесса автоматически не
передается. Блок может состоять из символов UNICODE
или ANSI (см. флаги dwCreationFlags). Блок ANSI дол-
жен завершаться двумя нулевыми символами (один для
строки, другой для блока). Блок UNICODE должен за-
вершаться четырьмя нулевыми символами.

Указывает на строку, определяющую текущий каталог
и диск дочернего процесса. Это используется в приложе-
ниях — оболочках, выполняющих различные приложе-
ния с различными рабочими каталогами. Если параметр
равен NULL, текущий каталог совпадает с родительским.

Указывает на структуру типа STARTUPINFO или тож-
дественного ему TStartupInfo, определяющую основное
окно дочернего процесса.

Указывает на структуру типа PROCESS_INFORMATION
или тождественного ему TProcessInformation, из которой
родительское приложение может получать информацию
о выполнении нового процесса.

344 Глава 4

Параметры IpProcessAttributes, IpThreadAttributes, IpEnvironment, blnhe-
ritHandles определяют наследование дочерним процессом свойств родительского
процесса. Если не вдаваться в подробности наследования, то можно первые три из
этих параметров задавать равными NULL, а последний — false. Параметр IpCur-
rentDirectory указывает на строку, определяющую текущий каталог и диск дочер-
него процесса. Это используется в приложениях-оболочках, выполняющих раз-
личные приложения с различными рабочими каталогами. Если параметр равен
NULL, текущий каталог совпадает с родительским.

Параметр dwCreationFlags определяет флаги, задающие характеристики соз-
даваемого процесса.

Указанные ниже флаги, управляющие созданием процесса, могут задаваться
в любых комбинациях (кроме специально оговоренных) с помощью операции ИЛИ (|).

CREATE_DEFAULT
ERROR MODE

Новый процесс не наследует режим ошибок роди-
тельского процесса. В нем устанавливается режим
по умолчанию вызовом SetErrorMode. Обычно ис-
пользуется в многопоточных процессах.

CREATE NEW CONSOLE Создается новое консольное приложение. Этот
флаг не может использоваться совместно
с DETACHED PROCESS.

CREATE_NEW_PROCESS
GROUP "

Новый процесс является корневым для новой
группы процессов: всех процессов, которые будут
наследовать создаваемому. Идентификатор новой
группы — тот, который возвращается параметром
IpProcessInfо filiation. Группы процессов исполь-
зуются функцией GenerateConsoleCtrlEvent для
посылки сигналов Ctrl-C или Ctrl-Break группе кон-
сольных процессов.

CREATE_SEPARATE
WOW VDM

Используется только в Windows NT для создания
16-битных процессов. Его установка приводит
к использованию для процесса отдельной VDM.
В этом случае отказ в данном процессе не приве-
дет к гибели других выполняемых процессов.

CREATE_SHARED
WOW VDM

Используется только в Windows NT для создания
16-битных процессов. Если ключ DefaultSeparate-
VDM в разделе Windows файла WIN.INI установлен
в true, то этот флаг приводит к изменению ключа
и все новые процессы запускаются в общей VDM.

CREATE SUSPENDED Основной поток (нить) нового приложения созда-
ется в состоянии ожидания и не выполняется,
пока не будет вызвана функция ResumeThread.

CREATE_UNICODE
ENVIRONMENT

При установке этого флага блок окружения, на
который указывает IpEnvironment, использует
символы Unicode. В отсутствие флага используют-
ся символы ANSI.

DEBUG PROCESS При установке этого флага родительский процесс
воспринимается как отладчик дочернего процесса.
Система информирует отладчик обо всех событиях
в отлаживаемом процессе. В этом режиме функция
WaitForDebugEvent может использоваться только
для потока, созданного функцией CreateProcess.

Описания функций 345

DEBUG ONLY THIS
PROCESS

DETACHED_PROCESS

Если этот флаг отсутствует, и родительский про-
цесс отлаживается, новые процессы тоже отлажи-
ваются тем же отладчиком.

Новый консольный процесс не имеет доступа
к консоли родительского. Он может позднее вы-
звать функцию AllocConsole для создания новой
консоли. Этот флаг не может использоваться со-
вместно с флагом CREATE_NEW_CONSOLE.

Параметр dwCreationFlags может также контролировать класс приоритета но-
вого процесса. Если ни один из описанных ниже флагов приоритета не установлен,
по умолчанию используется NORMAL_PRIORITY_CLASS, если только родитель-
ский процесс не имеет класс IDLE_PRIORITY_CLASS. В последнем случае для до-
черних процессов по умолчанию принимается класс IDLE_PRIORITY_CLASS.

Приоритет может задаваться одним из следующих флагов:

HIGH_PRIORITY_CLASS

IDLE_PRIORITY_CLAS S

NORMAL PRIORITY
CLASS

REALTIME PRIORITY
CLASS

Указывает на процесс как на критическую зада-
чу, которая должна выполняться немедленно.

Все потоки процесса выполняются только во вре-
мя простоя системы. Пример — хранители экра-
на. Все наследники такого процесса будут иметь
тот же класс приоритета.

Нормальный приоритет процесса.

Высокий приоритет, превышающий приоритеты
других процессов, включая приоритеты процессов
операционной системы.

Параметр IpStartupInfo указывает на структуру типа TStartupInfo, соответст-
вующего типу структуры STARTUPINFO API Windows. Структура определяет
свойства главного окна создаваемого процесса. Для процессов с графическим интер-
фейсом пользователя (GUI) эта информация относится к первому окну, создаваемо-
му функцией CreateWindow и отображаемому функцией ShowWindow. Для кон-
сольных приложений эта информация относится к создаваемому консольному окну.

Объявление этого типа:
typedef STARTUPINFOA STARTUPINFO;
typedef LPSTARTUPINFOA LPSTARTUPINFO;
typedef struct ̂ STARTUPINFOA {

DWORD cb;
LPSTR IpReserved;
LPSTR IpDesktop;
LPSTR IpTitle;
DWORD dwX;
DWORD dwY;
DWORD dwXSize;
DWORD dwYSize;
DWORD dwXCountChars;
DWORD dwYCountChars;
DWORD dwFillAttribute;
DWORD dwFlags;
WORD wShowWindow;
WORD cbReserved2;
LPBYTE lpReserved2;
'HANDLE hStdlnput;

346 Глава 4

HANDLE hStdOutput;
HANDLE hStdError;

} STARTUPINFOA, *LPSTARTUPINFOA;

Поля структуры обозначают следующее:

Cb Размер в байтах данной структуры.

IpReserved Зарезервировано. Пока значение должно быть NULL.

IpDesktop Только для Windows NT. Указывает на строку или только
с именем desktop, или с именем окна и desktop для данного
процесса.

IpTitle Для консольных процессов — надпись в заголовке окна. Для
процессов GUI и консольных, не создающих новое окно, зна-
чение должно быть NULL.

dwX, dwY Игнорируются, если dwFlags не включает флаг
STARTF_USEPOSITION. При включенном флаге
STARTF_USEPOSITION определяют координаты левого
верхнего угла окна.

dwXSize,
dwYSize

Игнорируется, если dwFlags не включает флаг
STARTF_USESIZE. При включенном флаге
STARTF_USESIZE определяют ширину и высоту окна.

dwXCountChars,
dwYCountChars

Игнорируются, если dwFlags не включает флаг
STARTF_USECOUNTCHARS. При включенном флаге
STARTF_USECOUNTCHARS и только для консольных при-
ложений, создающих новое окно, определяют буферы шири-
ны и высоты экрана в числе символов. В остальных случаях
эти поля игнорируются.

dwFillAttribute Игнорируются, если dwFlags не включает флаг
STARTF_USEFILLATTRIBUTE. При включенном флаге
STARTF_USEFILLATTRIBUTE и только для консольных
приложений, создающих новое окно, определяют цвета тек-
ста и фона. Значение поля может быть комбинацией следую-
щих значений: FOREGROUND_BLUE,
FOREGROUND_GREEN, FOREGROUND_RED,
FOREGROUND_INTENSITY, BACKGROUND_BLUE,
BACKGROUND_GREEN, BACKGROUND_RED,
BACKGROUND_INTENSITY. Например, следующая комби-
нация определяет красный цвет текста на белом фоне:
FOREGROUND_RED BACKGROUND_RED |
BACKGROUND GREEN BACKGROUND BLUE.

Описания функций 347

dwFlags

wShowWindow

cbReserved2

lpReserved2

hStdlnput

hStdOutput

hStdError

I
Битовое поле, определяющее флаги, указывающие на исполь-
зование тех или иных полей структуры при создании окна
процесса. Может содержать любые комбинации следующих
значений:
STARTF_USESHOWWINDOW — игнорировать поле
wShow Window
STARTF_USEPOSITION — использовать поля dwX и dwY
STARTF_USESIZE — использовать поля dwXSize и dwYSize
STARTF_USECOUNTCHARS — использовать поля dwXCo-
untChars и dwYCoimtChars
STARTF_USEFILLATTRIBUTE — использовать поле dwFill-
Attribute
STARTF_FORCEONFEEDBACK — если этот флаг установ-
лен, курсор указывает на процесс создания на протяжении
2 секунд после вызова CreateProcess. Если за это время про-
цесс сделал первый вызов GUI, система дает еще 5 секунд на
процесс показа окна. Если за это время окно не нарисовано,
дается еще 5 секунд на завершение рисования. Форма курсо-
ра восстанавливается после первого вызова GetMessage
STARTF_FORCEOFFFEEDBACK — восстанавливать форму
курсора сразу после запуска процесса
STARTF_USESTDHANDLES — использовать дескрипторы
потоков ввода, вывода и ошибок, указываемые полями
hStdlnput, hStdOutput, hStdError

Игнорируется, если dwFlags не включает флаг
STARTF_USESHOWWINDOW. Может содержать любые
константы SW , объявленные в файле WINUSER.H. Напри-
мер, SW_SHOWNORMAL — обычное окно, SWJHIDE -
невидимое.

Зарезервировано, должно равняться 0.

Зарезервировано, должно равняться NULL.

Игнорируется, если dwFlags не включает флаг
STARTF_USESTDHANDLES. Определяет дескриптор стан-
дартного потока ввода.

Игнорируется, если dwFlags не включает флаг
STARTF_USESTDHANDLES. Определяет дескриптор стан-
дартного потока вывода.

Игнорируется, если dwFlags не включает флаг
STARTF_USESTDHANDLES. Определяет дескриптор стан-
дартного потока ошибок.

Из всех полей этой структуры обязательным для заполнения является только
cb — размер в байтах данной структуры. Остальные можно не заполнять, что обес-
печит вид окна по умолчанию.

Параметр IpProcessInformation указывает на структуру TProcessInformation,
или тождественного ему типа структуры PROCESS_INFORMATION API Win-
dows. Из этой структуры приложение может получать информацию о выполнении
нового процесса.

348 Глава 4

Объявление этого типа:
typedef struct __PROCESS_INFORMATION {

HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessId;
DWORD dwThreadld;

} PROCESS_INFORMATION, *PPROCESS_INFORMATION,
*LPPROCESS_INFORMATION;

Поля обозначают следующее:

hProcess

hThread

dwProcessId

dwThreadld

Возвращает дескриптор созданного процесса. Используется во
всех функциях, осуществляющих операции с объектом процесса.

Возвращает дескриптор первого потока (нити) созданного про-
цесса. Используется во всех функциях, осуществляющих опера-
ции с объектом потока.

Возвращает глобальный идентификатор процесса. Значение доступ-
но с момента создания процесса и до момента его завершения.

Возвращает глобальный идентификатор потока. Значение до-
ступно с момента создания потока и до момента его завершения.

Пример
В качестве примера порождения дочернего процесса функцией CreateProcess

приведем код, который при щелчке на кнопке запускает консольный процесс ар-
хивации всех файлов текущего каталога:

STARTUPINFO Startlnfo = { sizeof (TStartupInfo) };
PROCESS_INFORMATION Proclnfo;
LPCTSTR s;
Startlnfo.cb = sizeof (Startlnfo);
Startlnfo.dwFlags = STARTF_USESHOWWINDOW;
Startlnfo.wShowWindow = SW_SHOWNORMAL;
if (! CreateProcess(NULL, "arj a all *.*",

NULL, NULL, false,
CREATE^NEW^CONSOLE |
HIGH__PRIORITY_CLASS,
NULL, NULL, SStartlnfo, SProcInfo))

ShowMessage("Ошибка " + IntToStr(GetLastError()));
else
{
if (WaitForSingleObject(Proclnfo.hProcess, 10000)

== WAIT^TIMEOUT)
ShowMessage("За 10 сек. архивация не завершена");
CloseHandle(Proclnfo.hProcess);

_crotl — циклический сдвиг кода символа влево

Осуществляет циклический сдвиг влево кода символа.
См. разд. «_rotl и другие функции циклического сдвига».

_crotr — циклический сдвиг кода символа вправо
Осуществляет циклический сдвиг вправо кода символа.
См. разд. «_rotl и другие функции циклического сдвига».

Описания функций 349

cscanf — форматированный ввод с клавиатуры
Вводит форматированные данные из входного потока (с клавиатуры).
См. разд. «scanf и другие функции форматированного ввода».

cwait и другие функции ожидания завершения порожденного процесса
Ожидают завершения порожденного процесса.

Заголовочный файл process.fi.

Синтаксис
#include <process.h>
int cwait(int *statloc, int pid, int act ion);
int wai t (int *statloc);

Описание
Функции cwait и wait позволяют организовать в программе ожидание завер-

шения процесса, порожденного функциями семейств exec... и spawn....
Функция wait обеспечивает ожидание завершения порожденного процесса

или нескольких процессов. Окончания процессов, запущенных из этих порожден-
ных процессов с вытеснением родителей, функция не ждет.

Если параметр statloc функции wait не NULL, то он указывает на целое, пред-
ставляющее собой статус завершения порожденного процесса. При нормальном его
завершении биты этого целого означают следующее:

биты 0-7

биты 8-15

Нули

Старшие разряды кода возврата порожденного процесса. Это то
значение, которое передает программа в функцию exit или в опе-
ратор return функции main. Если порожденный процесс просто
покинул main без оператора return, то значение этих битов не
определено

При аварийном завершении порожденного процесса биты его статуса означают:

биты 0-7

биты 8-15

1

2

3

неисправимая ошибка
генерация исключения
прерывание внешним сигналом

Нули

При нормальном завершении функция wait возвращает идентификатор поро-
жденного процесса. При неудаче возвращается -1, а переменная еггпо равна
EINTR — ненормальное завершение процесса, или ECHILD — порожденного про-
цесса нет.

Функция cwait подобна wait, но дает большую гибкость. Помимо параметра
statloc, рассмотренного выше, она имеет еще два параметра: pid и action. Если па-
раметр pid задан равным 0, это означает, что происходит ожидание окончания лю-
бого порожденного процесса. Но в качестве значения pid может быть задан иденти-
фикатор конкретного порожденного процесса. Тогда происходит ожидание завер-
шения именно указанного процесса.

Параметр action может принимать одно из двух значений: WAIT_CHILD -
ожидание окончания указанного дочернего процесса, или WAIT_GRANDCHILD -
ожидание окончания не только самого порожденного процесса, но и всех дочерних
процессов, порожденных им.

350 Глава 4

См. пример организации ожидания порожденного процесса в описании функ-
ций семейства spawn....

Date и другие функции определения даты и времени
Определяют текущую дату и время.

Заголовочные файлы SysUtils.hpp, DateUtils.hpp.

Синтаксис
#include <SysUtils.hpp>
extern PACKAGE System::TDateTime fastcal l Date(void) ;
extern PACKAGE System::TDateTime fas toa l l N o w (v o i d) ;
extern PACKAGE System::TDateTime fastcal l T i m e (v o i d) ;
extern PACKAGE bool fastcal l

IsToday(const System::TDateTime A V a l u e) ;

#include <DateUtils.hpp>
extern PACKAGE System::TDateTime fastcall T o d a y (v o i d) ;
extern PACKAGE System::TDateTime fa s tca l l Tomorrow'(void);
extern PACKAGE System::TDateTime fastcall Y e s t e r d a y (v o i d) ;

Описание
Функции Date и Today возвращают текущую дату в виде значения типа

TDateTime. Часть возвращаемого значения, определяющая время, равна 0. Функ-
ция Time возвращает текущее время, а часть возвращаемого значения, определяю-
щая дату, равна 0. Функция Now возвращает дату и время, объединяя возможно-
сти Date и Time.

Функции Tomorrow и Yesterday возвращают соответственно завтрашнюю
и вчерашнюю дату, не указывая времени. Функция IsToday позволяет проверить,
соответствует ли AValue сегодняшней дате.

Значения, возвращаемые описанными функциями, могут быть преобразованы
в строку функциями DateToStr. TimeToStr. DateTimeToStr. DateTimeToString
и др. Функции DecodeDate и др. позволяют выделить из даты отдельно день, ме-
сяц, год, час и т.п.

Примеры
Оператор

Editl->Text = "Сегодня " + D a t e T o S t r (D a t e ()) ;

помещает в окне Editl текст вида "Сегодня 25.05.02".
Код
AnsiStr ing D a y s [7] = {"Воскресенье", "Понедельник", "Вторник",

"Среда", "Четверг", "Пятница", "Суббота"};
Editl->Text = "Сегодня " + DateToStr (Date ()) + " (" +

D a y s [D a y O f W e e k (D a t e ()) - 1] + ") " ;

помещает в окне Editl текст вида "Сегодня 25.05.2002 (Суббота)".
Если вместо функции DayOfWeek. использованной в последнем примере, при-

менить функцию DayOfTheWeek. надо одновременно изменить последователь-
ность дней в массиве Days:

AnsiStr ing D a y s [7] = ("Понедельник", "Вторник", "Среда",
"Четверг", "Пятница", "Суббота", "Воскресенье"};

Editl->Text = "Сегодня " + D a t e T o S t r (D a t e ()) + " (" +
D a y s [D a y O f T h e W e e k (D a t e ()) - !] + ") " ;

Оператор

Editl->Text = D a t e T i m e T o S t r (N o w ()) ;

записывает в окно Editl строку вида "25.05.2002 14:35:49". А оператор

Описания функций 351

Editl->Text = DateTimeToStr(Date());

записывает в окно Editl строку вида "25.05.2002".
Оператор
Editl->Text = "Сейчас " + T i m e T o S t r (T i m e ()) ;

помещает в окне Editl текст вида "Сейчас 14:38:26".
Если вам надо зафиксировать интервал времени, на протяжении которого выпол-

няются какие-то длинные вычисления, вы можете сделать это следующим кодом:
TDateTime Tl = Time О;
<операторы, соответствующие длительному процессу>
Editl->Text = "Прошло " + TimeToStr(Time() - T l) ;

В результате в окно Editl будет помещен текст вида "Прошло 0:01:25".

DateTimeToStr — преобразование даты в строку
Преобразует дату в строку.
См. разд. «DateToStr и другие функции преобразования даты и времени

в строку».

DateTimeToString и другие функции форматированного
преобразования даты и времени в строку

Преобразуют дату и время в строку по заданному формату.

Заголовочный файл SysUtils.hpp.

Синтаксис
extern PACKAGE void fastcall

DateTimeToString(AnsiString ^Result,
const AnsiString Format,
System::TDateTime DateTime);

extern PACKAGE AnsiString fastcall
FormatDateTime(const AnsiString Format,

System::TDateTime DateTime);

Описание
Функция DateTimeToString заносит в параметр Result, а функция Format-

DateTime возвращает строку, отображающую по формату, заданному строкой фор-
матирования Format, дату и время, заданные параметром DateTime типа TDate-
Time. Строка форматирования поддерживает следующие спецификаторы:

Спецификатор

с

d

dd

ddd

Действие спецификатора

Отображает дату в формате, соответствующем глобальной пе-
ременной ShortDateFormat ("день. месяц. год", год отображает-
ся двузначным числом) и время в формате, соответствующем
глобальной переменной LongTimeFormat ("час:минута:секун-
да"). Если DateTime содержит только дату, то время не ото-
бражается.

Отображает день числом без предшествующего нуля: 1-31.

Отображает день, причем всегда двузначным числом: 01-31.

Отображает день недели аббревиатурой, задаваемой глобаль-
ной переменной ShortDayNames. Для русифицированных
Windows это обычно аббревиатуры: "Пн", "Вт", "Ср", "Чт",
"Пт", " Сб", "Вс".

352 Глава 4

Спецификатор

dddd

ddddd

dddddd

ш

mm

mmm

mnimm

УУ

УУУУ

h

hh

n

nn

s

ss

z

zzz

t

tt

am/pm

a/p

Действие спецификатора

Отображает день недели полными наименованиями, задавае-
мыми глобальной переменной LongDayNames: "понедель-
ник" "воскресенье".

Отображает дату в формате, соответствующем глобальной пе-
ременной ShortDateFormat: "день. месяц. год" (год отображает-
ся двузначным числом).

Отображает дату в формате, соответствующем глобальной пе-
ременной LongDateFormat: день, название месяца, год (четы-
рехзначное число с последующими символами "г.").

Отображает месяц числом без предшествующего нуля: 1-12.
Если спецификатор m следует сразу за спецификатором h или
hh, то он отображает не месяц, а минуты: 0-59.

Отображает месяц двузначным числом: 01-12. Если специфи-
катор m следует сразу за спецификатором h или hh, то он ото-
бражает не месяц, а минуты: 00-59.

Отображает месяц его аббревиатурой, задаваемой глобальной
переменной ShortMonthNames: "янв" "дек".

Отображает месяц его полным именем, задаваемым глобаль-
ной переменной LongMonth Names: "Январь" "Декабрь".

Отображает 'год двузначным числом: 00-99.

Отображает год четырехзначным числом: 0000-9999.

Отображает час числом без предшествующего нуля: 0-23.

Отображает час всегда двузначным числом: 00-23.

Отображает минуты числом без предшествующего нуля: 0-59.

Отображает минуты всегда двузначным: 00-59.

Отображает секунды числом без предшествующего нуля: 0-59.

Отображает секунды всегда двузначным числом: 00-59.

Отображает миллисекунды числом без предшествующего
нуля: 0-999.

Отображает миллисекунды всегда трехзначным числом:
000-999.

Отображает время в формате, соответствующем глобальной пе-
ременной ShortTimeFormat ("час:минута").

Отображает время в формате, соответствующем глобальной пе-
ременной LongTimeFormat ("час:минута:секунда").

используется при 12-часовом отображении времени для записи
символов "am" или "рт". регистр символов соответствует ре-
гистру, использованному в записи спецификатора.

Используется при 12-часовом отображении времени для запи-
си символов "а" или "р". Регистр символов соответствует ре-
гистру, использованному в записи спецификатора.

Описания функций 353

Спецификатор

a in pin

/

:

'хх'/"хх"

Действие спецификатора

Используется при 12 -часовом отображении времени для запи-
си символов, задаваемых глобальными переменными TimeAM-
String и TimePM String (в русифицированных Windows обыч-
но пустые).

Отображает разделитель дат, заданный глобальной перемен-
ной DateSeparator (обычно "/")•

Отображает разделитель времени, заданный глобальной пере-
менной TimeSeparator (обычно":").

Символы, заключенные в одинарные или двойные кавычки,
как и символы, отличные от других спецификаторов, перено-
сятся в результирующую строку без форматирования.

Все спецификаторы могут записываться в строке форматирования в любом ре-
гистре. Если строка форматирования Format пуста, то отображение производится,
как при спецификаторе "с".

Примеры
Ниже приведена таблица, содержащая строки форматирования и соответст-

вующие им результирующие строки.

Формат

пустой

с

Сегодня с

Сегодня d mmmm yyy года

Сегодня dddddd

Московское время h час. m мин.

Строка результата

27.09.00 21:00:11

27.09.00 21:00:11

Сегодня 27.09.00 21:00:11

Сегодня 27 Сентябрь 2000 года

Сегодня 27 Сентябрь 2000 г.

Московское время 21 час. 0 мин.

Оператор

Editl->Text = FormatDateTime("Московское время h час. m мин.", Now ()) ;

заносит в окно редактирования Editl текст, который приведен в последней строч-
ке таблицы.

Код
AnsiString S;

DateTimeToString(S, "Сегодня d mmmm yyy года", N o w ()) ;

формирует строку вида "Сегодня 25 Май 2002 года".

DateToStr и другие функции преобразования даты и времени в строку
Преобразуют дату и время в строку.

Заголовочный файл SysUtils.hpp.

Синтаксис
extern PACKAGE AnsiString fastcall

DateTimeToStr(const System::TDateTime DateTime);
extern PACKAGE AnsiString fastcall

DateToStr(const System::TDateTime DateTime);

354 Глава 4

extern PACKAGE AnsiString fastcall
TimeToStr(const System::TDateTime DateTime);

Описание
Функция DateTimeToStr возвращает строку, отображающую дату и время, за-

данные параметром DateTime типа TDateTime.
Если параметр DateTime содержит только дату, то часть строки, связанная со

временем, отсутствует. Аналогично, функция DateToStr возвращает строку, ото-
бражающую дату, а функция TimeToStr — строку, отображающую время.

Для отображения дат все функции используются формат преобразования, оп-
ределяемый глобальной переменной ShortDateFormat, а для отображения време-
ни — формат, определяемый глобальной переменной LongTimeFormat. Для руси-
фицированных Windows эти форматы обычно имеют вид "день.месяц.год" и "час:
минута:секунда". Более широкие возможности форматирования дат и времени
предоставляют функции Da'teTimeToString и FormatDateTime.

См. примеры применения функций в разд. «Date и другие функции определе-
ния даты и времени ».

DayOf и другие функции дешифрации дат и времени
Извлекают отдельные составляющие даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
#include <DateUtils.hpp>
extern PACKAGE Word fastcall

DayOf (const System::TDateTime AValue);
extern PACKAGE Word fastcall

DayOfTheMonth(const System::TDateTime AValue);
extern PACKAGE Word fastcall

HourOf(const System::TDateTime AValue);
extern PACKAGE Word fastcall

HourOfTheDay(const System::TDateTime AValue);
• extern PACKAGE Word fastcall

MilliSecondOf(const System::TDateTime AValue);
extern PACKAGE Word fastcall

MilliSecondOfTheSecond(constTDateTime AValue);
extern PACKAGE Word fastcall

MinuteOf(const System::TDateTime AValue);
extern PACKAGE Word fastcall

MinuteOfTheHour(const System::TDateTime AValue);
extern PACKAGE Word fastcall

MonthOf(const System::TDateTime AValue);
extern PACKAGE Word fastcall

MonthOfTheYear(const System::TDateTime AValue);
extern PACKAGE Word fastcall

SecondOf(const System::TDateTime AValue);
extern PACKAGE Word fastcall

SecondOfTheMinute(const System::TDateTime AValue);
extern PACKAGE Word fastcall

YearOf (const System::TDateTime AValue);

Описание

Функции извлекают из значения AValue типа TDateTime отдельные состав-
ляющие даты и времени: год (YearOf), месяц (MonthOf, MonthOfTheYear), день
месяца (DayOf, DayOfTheMonth), час (HourOf, HourOfTheDay), минуту (Minute-
Of, MinuteOfTheHour), секунду (SecondOf, SecondOfTheMinute), миллисекунды
(MilliSecondOf, MilliSecondOfTheSecond). Наличие пар одинаковых функций
с разными именами объясняется стремлением к однозначности и точности имен.
Например, день может обозначать день месяца, день недели, день года. В данном

Описания функций 355

случае речь идет о дне месяца. Поэтому соответствующая функция названа
DayOfTheMonth, чтобы отличить ее, например, от функции DayOfTheWeek, воз-
вращающей день недели. Аналогичные соображения относятся и к остальным
функциям.

См. также функции DecodeDate и DecodeTime. которые позволяют получить те
же значения, но не по отдельности, а группами, относящимися к дате и времени.

Примеры
Операторы
ShowMessage("Сейчас " + I n t T o S t r (Y e a r O f (N o w ())) + " г о д ") ;
ShowMessage("Сегодня " + I n t T o S t r (D a y O f (N o w ())) + "-Й день " +

IntToStr (MonthOf(Now())) + "-го месяца " +
IntToStr (Y e a r O f (N o w ())) + " года") ;

отображают сообщения вида: "Сейчас 2002 год" и "Сегодня 8-й день 5-го месяца
2002 года".

DayOfTheMonth — дешифрация дня

Определяет день месяца.
См. разд. «DayOf и другие функции дешифрации дат и времени».

DayOfTheWeek и другие функции определения дня недели

Определяют день недели.

Заголовочные файлы DateUtils.hpp, SysUtils.hpp.

Синтаксис
tinclude <DateUtil.s.hpp>
extern PACKAGE Word fastcall

DayOfTheWeek(const System::TDateTime AValue);
tinclude <SysUtils.hpp>
extern PACKAGE Word fastcall

DayOfWeek(const System::TDateTime DateTime);

Описание
Функции DayOfTheWeek и DayOfWeek возвращают день недели, соответст-

вующий дате, заданной параметром Date типа TDateTime. День возвращается
в виде целого числа от 1 до 7. В функции DayOfTheWeek 1 соответствует понедель-
нику, 7 - - воскресенью. Это согласуется со стандартом ISO 8601. В функции
DayOfWeek 1 соответствует воскресенью, 7 — субботе. Различаются функции так-
же модулями, в которых они описаны.

См. примеры применения функций в разд. «Date и другие функции определе-
ния даты и времени».

DayOfWeek — день недели

Определяет день недели.
См. разд. «DayOfTheWeek и другие функции определения дня недели».

DaysBetween и другие функции определения разности дней двух дат

Возвращают число дней между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
#include <DateUtils.hpp>
extern PACKAGE int fastcall

DaysBetween (const System::TDateTime ANow,
const System::TDateTime AThen);

356 Глава 4

extern PACKAGE double fastcall
DaySpan(const System::TDateTime ANow,

const System::TDateTime AThen);

Описание
Функции DaysBetween и DaySpan возвращают число суток между двумя зна-

чениями даты и времени ANow и AThen типа TDateTime. Функция DaysBetween
возвращает число полных суток между двумя датами с учетом времени. А функ-
ция DaySpan возвращает действительное число, содержащее дробную часть, ото-
бражающую неполные сутки с учетом времени.

Примеры
Операторы
TDateTime Tl = EncodeDateTime(2002, 10, 5, 11, 25, 45, 3 0 0) ;
TDateTime T2 = EncodeDateTime(2002, 10, 6, 11, 2 4 , 45, 3 0 0) ;
int i = DaysBetween(T2, T l) ;
double r = DaySpan(T2, Tl) ;

зададут переменной i значение О, а переменной г значение 0,99930555555. В этом
примере значения дат и времени Т1 и Т2 задаются с помощью функции EncodeDa-
teTime. Различие между двумя значениями составляет 23 часа 59 минут. Поэтому
функция DaysBetween возвращает 0, так как разность значений менее суток.
А функция DaySpan возвращает число, близкое к единице.

DaySpan — разность дней двух дат
Возвращает число дней между двумя значениями даты и времени.
См. разд. «DaysBetween и другие функции определения разности дней двух

дат».

DecodeDate и другие функции декодирования дат
и времени типа TDateTime

Выделяют отдельные составляющие дат и времени.

Заголовочные файлы SysUtils.hpp, DateUtlls.hpp.

Синтаксис
tinclude <SysUtils.hpp>
extern PACKAGE void fastcall

DecodeDate(const System::TDateTime DateTime,
Word SYear, Word SMonth, Word & D a y) ;

extern PACKAGE void fastcall
DecodeTime(const System::TDateTime DateTime,

Word SHour, Word SMin, Word &Sec,
Word SMSec);

tinclude <DateUtils.hpp>
extern PACKAGE void fastcall

DecodeDateTime(const System::TDateTime DateTime,
Word &Year , Word SMonth,
Word &Day, Word sHour,
Word SMin, Word sSec,
Word SMSec);

Описание
Функции выделяют из значения параметра DateTime типа TDateTime отдель-

ные составляющие даты и времени: Year — год, Month — месяц, Day — день,
Hour — часы, Min — минуты, Sec — секунды, MSec — миллисекунды. Функции
DecodeDate и DecodeTime декодируют соответственно только дату и время. Функ-
ция DecodeDateTime осуществляет декодирование и даты, и времени.

Описания функций 357

См. также функции, описанные в разд. «DayOf и другие функции дешифра-
ции дат и времени» и позволяющие извлекать отдельные составляющие времени.

Примеры
Ниже приведен код, определяющий по значению переменной Year_b, в кото-

рой хранится год рождения какого-то сотрудника, его возраст Age в текущем году:
Word Year, Month, Day, Age, Year_b;

DecodeDate(Now() , Year, Month, Day) ;
Age = Year - Year_b;

После вызова процедуры DecodeDate в переменных Year, Month и Day хра-
нятся соответственно текущий год, месяц и день. Значение Year используется для
вычисления возраста.

Если вам надо зафиксировать с точность до секунды интервал времени, на про-
тяжении которого выполняются какие-то длинные вычисления, вы можете сде-
лать это следующим кодом:

Word Hourl, Hour2, Mini, Min2, Seel, Sec2, MSec;
DecodeTime(Time(), Hourl, Mini, Seel, MSec);

<операторы, соответствующие длительному процессу>
DecodeTime(Time(), Hour2, Min2, Sec2, MSec);
Editl->Text = "Прошло " + IntToStr(Hour2 - Hourl) + " часов, "

+ IntToStr(Min2- Mini) + " минут, "
+ IntToStr(Sec2- Seel) + " секунд";

В результате в окно Editl будет помещен текст вида: "Пробило ... часов, ... ми-
нут, ... секунд".

DecodeDateTime — декодирование дат и времени типа TDateTime
Выделяет отдельные составляющие даты и времени.
См. разд. «DecodeDate и другие функции декодирования дат и времени типа

TDateTime».

DecodeTime — декодирование значения времени типа TDateTime

Выделяет отдельные составляющие времени.
См. разд. «DecodeDate и другие функции декодирования дат и времени типа

TDateTime».

div и другие функции целочисленного деления

Целочисленное деление, возвращающее целое значение частного и остаток.

Заголовочные файлы stdlib.h, Math.hpp.

Синтаксис
tinclude <stdlib.h>
typedef struct {

int quot; // частное
int rem; // остаток

} div_t;

div_t div(int numer, int);

typedef struct {
long int quot; // частное
long int rem; // остаток
} ldiv_t;

Idiv t ldiv(long int numer, long int denom);

358 Глава 4

^include <Math.hpp>
extern PACKAGE void fastcall

DivMod(int Dividend, Word Divisor,
Word &Result, Word ««Remainder) ;

Описание

Функции осуществляют целочисленное деление двух целых чисел с подсчетом
целого результата и остатка. В функциях div и Idiv значение numer делится на
denom. Результат деления возвращается в структуру типа div_t или Idiv_t соответ-
ственно. Поле quot этой структуры содержит целое значение частного, а поле
rem — целое значение остатка.

Функция DivMod осуществляет целочисленное деление Dividend на Divisor,
возвращая результат Result (целую часть) и остаток Remainder (разность между
Dividend и Result * Divisor).

Примеры
finclude <stdlib.h>
div_t x;
x = div(StrTo!nt(Edit l->Text) , StrToInt(Edit2->Text)) ;

В этом примере осуществляется целочисленное деление чисел, введенных
пользователем в окна Editl и Edit2. Пример результатов приведен в следующей
таблице:

текст Editl

10

10

10

текст Edit2

3

4

5

x.quot

3

2

2

x.rem

1

2

0

Еще пример. Оператор

DivMod(l l , 4, Result, Remainder);

возвращает Result = 2 и Remainder = 3.

DivMod — целочисленное деление
Осуществляет целочисленное деление, возвращая результат и остаток.
См. разд. «div и другие функции целочисленного деления».

EncodeDate и другие функции формирования типа TDateTime
Формируют дату и время из отдельных составляющих времени.

Заголовочные файлы SysUtils.hpp, DateUtlls.hpp.

Синтаксис
tinclude <SysUtils.hpp>
extern PACKAGE System::TDateTime fastcall

EncodeDate(Word Year, Word Month, Word D a y) ;
extern PACKAGE bool fastcall

TryEncodeDate(Word Year, Word Month, Word Day,
System::TDateTime & D a t e) ;

extern PACKAGE System::TDateTime fastcall
EncodeTime(Word Hour, Word Min, Word Sec,

Word MSec);
extern PACKAGE bool fastcall

TryEncodeTime(Word Hour, Word Min, Word Sec,
Word MSec, System::TDateTime STime);

Описания функций 359

#include <DateUtils.hpp>
extern PACKAGE System::TDateTime fastcall

EncodeDateTime(const Word Year,
const Word Month, const Word Day,
const Word Hour, const Word Kin,
const Word Sec, const Word MSec);

extern PACKAGE bool fastcall
TryEncodeDateTime(const Word Year,

const Word Month, const Word Day,
const Word Hour, const Word Min,
const Word Sec, const Word MSec,
System::TDateTirae iValue);

Описание
Функции EncodeDate, EncodeTime, EncodeDateTime возвращают значение

даты и времени типа TDateTime. сформированное из года Year, месяца Month, дня
Day, часов Hour, минут Min, секунд Sec, миллисекунд MSec. Допустимые значе-
ния Year лежат в пределах от 1 до 9999, Month — от 1 до 12, Day — от 1 до 28-31
в зависимости от месяца, а для февраля — от того, високосный год, или нет. До-
пустимые значения Hour лежат в пределах от 0 до 24, Min и Sec — от 0 до 59,
MSec — от 0 до 999. Если Hour = 24, то Min, Sec, MSec должны быть = 0 — это на-
чало следующего дня.

Значение, возвращаемое функцией EncodeDate, имеет нулевую часть, описы-
вающую время, а значение, возвращаемое функцией EncodeTime, имеет нулевую
часть, описывающую дату. Функция EncodeDateTime возвращает и дату, и время.

При неверных значениях параметров перечисленные функции генерируют ис-
ключение EConvertError.

Функции, имя которых начинается с "Try", формируют дату и время анало-
гичным образом, но заносят результат по адресу своего последнего параметра
(Date, Time или Value). Но основное их отличие в другом: при неверных значени-
ях параметров они не генерируются исключение, а возвращают false.

Примеры
Приведенный ниже код переводит в тип TDateTime дату 25 октября 1917 года:
TDateTime Т = EncodeDate(1917, 10, 2 5) ;

Аналогичный результат дадут операторы:

TDateTime Т;
TryEncodeDate(1917, 10, 25, Т) ;

Но если вы определите следующие переменные:
Word Year = 1917, Month = 10, Day = 32;

то оператор
TDateTime Т = EncodeDate(Year, Month, Day);

вызовет генерацию исключения (Day не может равняться 32), а операторы

TDateTime Т;
TryEncodeDate(Year, Month, Day, Т) ;

исключения не сгенерируют. Так что при возможной ошибке в исходных данных
вызов функции EncodeDate надо оформлять так:

try
{
TDateTime Т = EncodeDate(Year, Month, Day);

)
catch(EConvertError &)
{
ShowMessage("Неверная дата");

360 Глава 4

А для функции TryEncodeDate аналогичный код имеет вид:
if (! TryEncodeDate(Year, Month, Day, Т))

ShowMessage("Неверная дата") ;

Приведенный ниже код переводит в тип TDateTime время 17 часов 45 минут: ,
TDateTime Т = EncodeTime(17, 45, О, О) ;

Аналогичный результат дадут операторы:

TDateTime Т;
TryEncodeTime(17, 45, О, О, Т);

EncodeDateTime — формирование даты и времени типа TDateTime

Формирует дату и время из отдельных составляющих.
См. разд. «EncodeDate и другие функции формирования типа TDateTime».

EncodeTime — формирование времени типа TDateTime

Формирует время из отдельных его составляющих.
См. разд. «EncodeDate и другие функции формирования типа TDateTime».

EnsureRange — число, ближайшее к указанному

Возвращает число, ближайшее к указанному в заданном диапазоне.

Заголовочный файл Math.hpp.

Синтаксис
extern PACKAGE int fastcall EnsureRange(const int AValue,

const int AMin, const int AMax);
extern PACKAGE int64 fastcall EnsureRange(

const int64 AValue, const int64 AMin,
const int64 AMax);

extern PACKAGE double fastcall EnsureRange(
const double AValue, const double AMin,
const double AMax);

Описание
Перегруженные варианты функции EnsureRange возвращают для разных ти-

пов параметров число, ближайшее к AValue в диапазоне AMin — AMax. Если
AValue находится внутри диапазона, возвращается значение AValue. Если
AValue < AMin, возвращается AMin. Если AValue > AMax, возвращается AMax.

Например,
EnsureRange(5, 1, 10); // возвращается 5
EnsureRange(11, 1, 10); // возвращается 10
EnsureRange(0, 1, 10); // возвращается 1

exec... — функции выполнения порождаемых процессов _^

Порождают новый процесс.

Заголовочный файл process.h.

Синтаксис
#include <process.h>
int execl(char *path, char *argO *argl, ..., *argn, NULL);
int _wexecl(wchar_t *path, wchar_t *argO *argl, ..., *argn, NULL);

int execle(char *path, char *argO, *argl, ...,
*argn, NULL, char **env);

Описания функций 361

int _wexecle(wch,ar_t *path, wchar_t *argO, *argl, ...,
*argn, NULL, wchar_t **env);

int execlp(char *path, char *argO,*argl, ...,
*argn, NULL);

int _wexeclp(wchar_t *path, wchar_t *argO,*argl, ...,
*argn, NULL);

int execlpe(char *path, char *argO, *argl, ...,
*argn, NULL, char **env);

int _wexeclpe(wchar_t *path, wchar_t *argO, *argl,
..., *argn, NULL, wchar_t **env);

int execv(char *path, char *argv[]);
int _wexecv(wchar_t *path, wchar_t *argv[]);

int execve(char *path, char *argv[], char **env);
int _wexecve(wchar_t *path, wchar_t *argv[],

wchar_t **env);

int execvp(char *path, char *argv[]);
int _wexecvp(wchar_t *path, wchar_t *argv[]);

int execvpe(char *path, char *argv[], char **env);
int _wexecvpe(wchar_t *path, wchar_t *argv[],

wchar_t **env);

Описание
Функции exec... загружают в память и выполняют некоторую внешнюю про-

грамму path, называемую порожденным процессом. Вызванная программа заме-
щает в памяти вызвавший ее процесс. Таким образом, родительский процесс за-
вершается и начинается новый.

Различия между функциями семейства exec... определяются их суффиксами,
которые обозначают следующее:

В процесс передается список указателей на аргументы argO, argl, ...,
argn. Обычно используется, если число аргументов заранее известно.

В процесс передается указатель argv[] на массив указателей на аргу-
менты argO, argl, ..., argn. Обычно используется, если число переда-
ваемых аргументов может изменяться.

Файл загружаемой программы ищется в каталогах, указанных в пере-
менной окружения PATH. Если параметр path не содержит явного ука-
зания каталога, поиск ведется сначала в текущем каталоге, а затем
в каталогах, указанных в PATH. Если функция не содержит суффикса
"р", то файл ищется только в рабочем каталоге.

В порождаемый процесс может быть передан аргумент env, указываю-
щий на окружение порождаемого процесса. Если функция не содер-
жит суффикса "е", то порождаемый процесс наследует окружение ро-
дительского процесса.

Каждая из функций exec... должна передать в порождаемый процесс хотя бы
один аргумент (argO), и по соглашению этот аргумент — копия path. Впрочем, пе-
редача другого значения не является ошибкой. Суммарная длина всех аргументов
(не учитывая нулевых символов, но учитывая пробелы) не должна превышать
128 символов.

362 Глава 4

В функциях с суффиксом "1" аргументы перечисляются непосредственно
в операторе вызова функции как указатели на строки с нулевым символом в кон-
це. Количество аргументов не ограничено. Последним аргументом передается
NULL, что является признаком окончания списка.

В функции с суффиксом "v" в качестве параметра передается указатель на
массив произвольной длины, содержащий указатели на строки, являющиеся аргу-
ментами порождаемого процесса. Последним из указателей в массиве должен быть
NULL, показывающий, что список аргументов завершился.

В функции с суффиксом "е" передается массив указателей env на строки, оп-
ределяющие переменные окружения порождаемого процесса. Эти строки обычно
имеют вид

<имя_переменной> = <значение>

Если env = NULL, то для функций с суффиксом "е" так же, как и для всех ос-
тальных функций, порождаемый процесс наследует окружение родительского
процесса.

Файлы, открытые на момент вызова порождаемого процесса, остаются откры-
тыми и для этого процесса. Однако в порожденный процесс не передается режим,
в котором отрыты файла (текстовый или двоичный). Если режим отличается от
принятого по умолчанию, то в порожденном процессе надо произвести его установ-
ку соответствующими функциями.

Поиск файла path, загружаемого функциями exec..., осуществляется следую-
щим образом. Если в параметре path явно указано расширение файла или стоит
точка, ищется файл такой, который задан. Если же расширение не задано, то сна-
чала ищется файл такой, который задан. Если он не находится, к имени добавля-
ется расширение .ехе и поиск повторяется. Если файл опять не находится, к имени
добавляется расширение .com и поиск повторяется. Функции без суффикса "р" ве-
дут поиск файла только в текущем каталоге (если только каталог не задан явно
в path). А функции с суффиксом "р" сначала ведут поиск в текущем каталоге, а за-
тем — в каталогах, указанных в переменной окружения PATH.

Все функции возвращают 0 при успешной загрузке порожденного процесса,
а при ошибке возвращают —1. В этом случае глобальная переменная еггпо может
принимать значения EACCES — нарушение права доступа, EMFILE — слишком
много открытых файлов, ENOENT — не найден путь или файл, ENOEXEC -
ошибка формата, ENOMEM — не хватает памяти.

Если в программе требуется организовать ожидание завершения порожденно-
го процесса, используются функции cwait и wait.

Рассмотренные функции могут найти достаточно ограниченное применение,
поскольку они обеспечивают безвозвратную передачу управления из вызвавшего
приложения в новое. И для возврата в исходное приложение надо принимать спе-
циальные меры: например, вызванное приложение в конце своей работы должно
аналогичной функцией exec... вызвать первоначальное приложение. Зато у этих
функций есть и большое преимущество — оверлэйная загрузка приложений. Но-
вое приложение загружается в оперативную память на место вызвавшего его при-
ложения. Соответственно сокращаются затраты памяти, так как не требуется дер-
жать в ней оба приложения.

Таким образом, сфера применения функции exec...:
• построение входного интерфейса к какому-то приложению, работающего толь-

ко перед запуском этого приложения
• создание оверлэйных приложений, загружаемых в память по частям

Имеется родственное рассмотренному семейству функций семейство функций
spawn... (см. разд. «spawn... — функции выполнения порождаемых процессов»),
также решающее задачи порождения процессов, но обладающее более широкими
возможностями.

Описания функций 363

Примеры
Оператор
i f(execl("Fl.exe","Fl.exe", NULL))

ShowMessage("Программа Fl.exe не выполнена");

завершает текущий процесс и передает управление программе с выполняемым
файлом Fl.exe. Этот файл должен быть расположен в рабочем каталоге. Иначе
функция execl вернет -1 и будет выдано сообщение функцией ShowMessage. Ана-
логичное сообщение будет выдано, если, например, для загрузки Fl.exe не хватает
оперативной памяти.

Оператор
execlp("nc","nc", N U L L) ;

передает управление программе Norton Commander (файл пс.ехе), если только путь
к этой программе указан в переменной окружения PATH.

Операторы
char * prog = "command.com";
execlp(prog,prog, N U L L) ;

передают управление DOS, если только путь к файлу command.com указан в пере-
менной окружения PATH.

Оператор

execlp("Winword","Winword", " F . d o c " , N U L L))

запускает редактор Word и передает в него файл F.doc.
Вызов редактора Word можно оформить иначе:
char *arg[5] = { " W i n w o r d " } ; // может принять до трех аргументов
arg[l] = "Fl .doc";
arg[2] = "F2.doc";
execvp(arg[0] ,arg) ;

В массив arg при его объявлении заносится в качестве нулевого аргумента имя
программы "Winword", а остальные четыре элемента массива по умолчанию-полу-
чают значения NULL. После этого в элементы с индексами 1 и 2 заносятся имена
передаваемых в Word файлов. Следующий элемент остается прежним — NULL.
В результате функция execvp передаст управление программе Winword и загрузит
в редактор два указанных файла.

fabs, fabsl — вычисление модуля

Функции вычисляют модуль действительного числа.
См. разд. «abs и другие функции вычисления модуля».

fgetc и другие функции ввода/вывода символа

Вводят символ из потока и выводят символ в поток.

Заголовочные файлы stdio.h, conio.h.

Синтаксис
ttinclude <stdio.h>
int fgetc (FILE *stream);
wint_t fgetwc(FILE * stream);

int fputc(int c, FILE *stream);
wint_t fputwc(wint_t c, FILE * stream);

int getc(FILE *stream);
wint_t getwc(FILE *stream);

364 Глава 4

int putc(int c, FILE * stream);
wint_t putwc(wint_t c, FILE *stream);

int getchar(void);
wint_t getwchar(void);
int _fgetchar(void);
wint t _fgetwchar(void);

int putchar(int c);
wint_t putwchar(wint_t c) ;
int _fputchar(int c) ;
wint_t _fputwchar(wint_t c);

int ungetc(int c, FILE *stream);
wint_t ungetwc(wint_t c, FILE *stream);

#include <conio.h>
int getch(void);
int getche(void);
int ungetch(int ch) ;

Описание
Функции fgetc и fgetwc возвращают очередной символ из потока stream. Сим-

вол возвращается преобразованным в целое без знака. Если при чтении произошла
ошибка или достигнут конец потока, возвращается EOF. В качестве потока stream
может фигурировать стандартный входной поток stdin, который по умолчанию
связан с клавиатурой. Функции используются в основном в консольных приложе-
ниях. Например:

#include <stdio.h>
finclude <string.h>

int main(void)
{
char s [80], ch;
m e m s e t f s , ' \0 ', s izeof(s) - 1);
do s[s tr len(s)] = fgetc (stdin);
while (s[s t r len(s)- l] != ' . ') ;
puts (s) ;
f f lush(s td in) ;
fgetc(stdin);

}

Функция memset очищает строку s. Затем в цикле do ... while функцией fgetc
читаются вводимые пользователем символы и добавляются в строку s. Для опреде-
ления позиции, в которую следует заносить символ, используется функция strlen.
Когда занесенный символ оказывается точкой, чтение завершается и прочитанная
строка выдается на экран функцией puts. Два последних оператора введены, что-
бы предотвратить закрытие окна DOS до того, как пользователь посмотрит резуль-
тат. Вызов функции fflush очищает входной поток, а последний вызов fgetc обес-
печивает ожидание момента, когда пользователь нажмет Enter.

В приведенном примере функция fgetc работает так. При первом вызове вы-
полнение приложения останавливается и программа ждет, пока пользователь вво-
дит текст. После того как пользователь что-то написал и нажал Enter, функция
fgetc возвращает первый введенный символ, выполнение программы возобновля-
ется и поочередно читаются (уже без ожидания) все остальные введенные символы
(если не встречается указанный в операторе while символ точки), включая символ
перехода к новой строке. Все эти символы заносятся в s. Затем при очередном вы-
зове fgetc выполнение опять приостанавливается и повторяется ожидание ввода
и чтение новой строки. Последний оператор вызова fgetc обеспечивает завершение

Описания функций 365

приложения и, значит, закрытие окна DOS только после того, как пользователь
нажмет клавишу Enter.

Функцию fgetc можно использовать в приложениях Windows или в консоль-
ных приложениях для чтения из любого потока, в частности, из текстового файла.
Пусть, например, требуется найти в текстовом файле input.txt фрагмент, располо-
женный после символа "$" и кончающийся символом точки ".". Это можно сде-
лать следующим кодом:

char s [2 5 6] , ch;
memset(s, ' \ 0 ' , s izeof(s) - 1);
FILE *F;
F = fopen("input.txt", "r t");
while (f g e t c (F) ! = ' $ ') ;
do s [strlen(s)] = fgetc(F);

while (s[str len (s)-1] != ' . ') ;
ShowMessage(s);
f c l o s e (F) ;

Первый оператор while обеспечивает просмотр в файле всех символов до тех
пор, пока не встретится символ "$". Далее цикл do ... while обеспечивает занесение
в s всех последующих символов файла вплоть до символа точки.

Функции getc и getwc идентичны рассмотренным функциям fgetc и fgetwc.
Отличие заключается в том, что getc и getwc реализованы макросами, а не функ-
циями.

Функции getchar и getwchar — макросы, используемые только для стандартно-
го потока stdin и реализованные через вызовы getc(stdin) и getwc(stdin). Так что
эти функции предназначены только для консольных приложений и их нельзя при-
менять в приложениях Win32 с графическим интерфейсом. Аналогично _fgetchar
и _fgetwchar — макросы, реализованные как fgetc(stdin) и fgetwc(stdin) и также
предназначенные только для консольных приложений.

Функция getch читает символ непосредственно с клавиатуры, не отображая
его на экране. При вызове функции выполнение приложения останавливается до
тех пор, пока пользователь не нажмет какую-то (любую) клавишу. Символ, соот-
ветствующей нажатой клавише на экране не отобразится. Функция getch вернет
нажатый символ, после чего выполнение приложения продолжится.

Эта функция может использоваться только в консольных приложениях Win32
без графического интерфейса. Она полезна, например, для организации ожидания
действий пользователя при завершении консольного приложения. Ниже приведен
пример подобной функции (она названа MyClose), которая предлагает пользовате-
лю нажать любую клавишу, чтобы закрыть окно DOS. Подобное завершение требу-
ется почти всегда, чтобы пользователь мог спокойно просмотреть результаты рабо-
ты программы и только после этого завершить ее. Для вывода русского текста ис-
пользуется функция CharToOem. Для ожидания нажатия пользователем клавиши
используется функция getch, не отображающая нажатый символ на экране.

#include <stdio.h>
#include <system.hpp>
void MyClose(void)
{
char S[] = "ХпНажмите любую клавишу";
CharToOem(S, S);
puts (S) ;
getch () ;

}

Подобную функцию можно вызывать в конце выполнения приложения опера-
тором

MyClose () ;

366 Глава 4

Функция getche работает так же, как getch, но отображает на экране введен-
ный символ. Эта функция полезна, например, при организации в консольном при-
ложении простейшего диалога. Пусть вы хотите, чтобы пользователь в ответ на во-
прос программы выбрал одну из трех возможностей: 1, 2 или 3. Тогда после зада-
ния вопроса вы можете поместить код:

switch (g e t c h e ())
{
сазе Ч ' : . . .

break;
case ' 2 ' : . . .

break;
case '3 ' : . . .

break;
default : . . .

}

В этом коде точками обозначены действия, которые надо осуществить при том
или ином ответе пользователя.

Функции fputc и fputwc помещают в выходной поток stream символ с. Это мо-
жет быть стандартный выходной поток stdout, связанный по умолчанию с экра-
ном, или текстовый файл. Например, следующий код, вставленный в консольное
приложение:

char *S = "Hello world";
f o r f i n t i=0; i <strlen (S) ; i++)

{ f p u t c (S [i] , stdout); Sleep (5 0 0) ; }

обеспечит посимвольный постепенный (с задержками в 500 миллисекунд — см.
описание функции Sleep) вывод строки S. Впрочем, для консольных приложений
разумнее использовать функции putchar и putwchar, которые выводят символ
в выходной поток stdout и только в консольных приложениях могут использовать-
ся. Так что приведенный в примере вызов fputc целесообразнее заменить на:

p u t c h a r (S [i]) ;

Функции putc и putwc являются полными аналогами fputc и fputwc, но реа-
лизованы в виде макросов. Аналогично _fputchar и _fputwchar — макросы, реа-
лизованные как fputc(c, stdout) и fputwc(c, stdout). Все эти макросы предназначе-
ны только для консольных приложений без графического интерфейса Windows.

Функции ungetc и ungetwc заносят символ с в поток stream, открытый для
чтения. В этом их уникальность, так как иными способами занести символ во
входной (а не выходной) поток невозможно. Функция ungetch заносит символ
в буфер клавиатуры. После вызова этих функций последующий вызов любой из
рассмотренных ранее функций чтения прочтет именно этот символ, искусственно
занесенный во входной поток. Например, ранее в описании функции fgetc приво-
дился пример выделения фрагмента текстового файла, следующего за символом
"$". Но если надо, чтобы сам символ "$" входил в выделенный фрагмент, доста-
точно в этом примере перед циклом do вставить оператор:
t u n g e t c (' $ ' , F) ;

Тогда очередной вызов функции fgetc введет повторно этот символ.
Основное применение ungetc и ungetch — возврат символа, прочитанного из

стандартного входного потока stdin (с клавиатуры) в некоторую переменную ch,
обратно во входной поток: ungetc(ch, stdin) или ungetch(ch), чтобы его можно
было повторно прочитать функцией getc или fread. Можно использовать также
функции ungetc и ungetch для имитации нажатия пользователем определенной
клавиши.

Описания функций 367

Необходимо учитывать, что функции ungetc, ungetwc, ungetch могут занести
во входной поток только один символ. Повторный их вызов без промежуточного
вызова getc просто сотрет символ, занесенный предыдущим вызовом. Учтите так-
же, что вызовы функций fflush, fsetpos, rewind удаляют символ, занесенный в па-
мять функциями ungetc, ungetwc, ungetch.

_fgetchar — ввод символа из потока

Вводит символ из входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

fgets — ввод строки из потока

Вводит строку из указанного потока.
См. разд. «fputs и другие функции ввода/вывода строк».

fgetwc — ввод симвбла из потока
Вводит символ из указанного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

_fgetwchar — ввод символа из потока

Вводит символ из входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

fgetws — ввод строки из потока
Вводит строку из указанного потока.
См. разд. «fputs и другие функции ввода/вывода строк».

FindClose — завершение поиска файлов
Завершает поиск файлов, начатый функцией FindFirst.
См. разд. «FindFirst и другие функции поиска файлов из библиотеки С++Ви-

ilder».

FindExecutable — функция API Windows

Возвращает имя и путь приложения, связанного с указанным файлом.

Модуль ShellAPI

Определение
HINSTANCE FindExecutable(
LPCTSTR IpFile, // строка с именем файла документа
LPCTSTR IpDirectory, // строка каталога по умолчанию
LPTSTR IpResult // строка с именем выполняемого файла

);

Описание
Функция FindExecutable позволяет получить имя выполняемого файла .ехе,

связанного с файлом, указанным параметром IpFile. Параметр IpDirectory опреде-
ляет каталог по умолчанию. Оба параметра являются указателями на строки с ну-
левым символом в конце. Параметр IpResult является указателем на буфер в виде
строки с нулевым символом в конце, в который функция заносит имя и путь при-
ложения, связанного с файлом IpFile.

При успешном завершении функция FindExecutable возвращает значение,
большее 32. Если возвращено меньшее значение, это свидетельствует об ошибке.

368 Глава 4

Пример
Операторы
char A P c h a r [2 5 4] ;
FindExecutable("Doc.doс",NULL,APchar);

приведут к тому, что в массив APchar будет занесено имя приложения, связанного
с файлом типа Doc.doc, например:

C : \ \ P R O G R A M FILESX\MICROSOFT O F F I C E \ \ O F F I C E \ \ W I N W O R D . E X E

Правда, при этом файл Doc.doc должен существовать в доступном каталоге.
Успешность завершения функции FindExecutable можно проверить с помо-

щью функции GetLastError. Если она возвращает значение не большее 32, значит
произошла ошибка. Эту проверку могут, например, осуществить следующие опе-
раторы:

int i = GetLas tError() ;
if (i <= 32)

ShowMessage("Программа не найдена. Код ошибки " + I n t T o S t r (i)) ;

findfirst и другие стандартные функции поиска файлов
Обеспечивают поиск файлов, удовлетворяющих заданному шаблону и имею-

щих указанные атрибуты.

Заголовочный файл dir.h.

Синтаксис
tinclude <dir.h>
struct ffblk {

long
long
unsigned long
unsigned short
unsigned short
char

struct _wffblk {
long
long
unsigned long
unsigned short
unsigned short
wchar t

ff reserved;
ff_fsize;
ff_attrib;
ff_ftime;
ff_fdate;

// Для Win32
// Зарезервировано
// Размер файла
// Атрибуты файла
// Время создания
// Дата создания

ff name[256]; // Имя файла

ff_reserved;
ff_fsize;
ff_attrib;
ff_ftime;
ff_fdate;

// Для Unicode
// Зарезервировано
// Размер файла
// Атрибуты файла
// Время создания
// Дата создания

ff name[256]; // Имя файла

int findfirst(const char *pathname, struct ffblk *ffblk, int attrib);
int __wfindfirst(const wchar_t *pathname,

struct _wffblk *ffblk, int attrib);

int findnext(struct ffblk *ffblk);
int _wfindnext(struct _wffblk *ffblk);

Описание
Функции findfirst и findnext, а также их аналоги для Unicode _wfindfirst

и _wfindnext, обеспечивают поиск файлов, удовлетворяющих шаблону и имею-
щих указанные атрибуты.

Начинается поиск вызовом функции findfirst. Параметр pathname определяет
путь и шаблон искомых файлов. Например, если pathname = "c:\\test*.*", то бу-
дут искаться все файлы в каталоге c:\test\. Если pathname = "c:\\test*.tmp", то
в каталоге c:\test\ будут искаться файлы с расширением .tmp. А если pathname =
"*.tmp", то файлы с расширением .tmp будут искаться в текущем каталоге.

Описания функций 369

Параметр Attr определяет флаги атрибутов, которые должны иметь искомые
файлы:

FA_RDONLY

FA_HIDDEN

FA_SYSTEM

FAJLABEL

FA_DIREC

FA_ARCH

файл только для чтения

невидимый файл

системный файл

метка диска

каталог

архивный файл

Флаги могут объединяться. Например, если Attr = FA_RDONLY | FAJHIDDEN,
то будут искаться невидимые файлы только для чтения.

Функция возвращает 0, если файл, удовлетворяющий условиям поиска, най-
ден. Если файл не найден или если задан ошибочный путь к файлу, возвращается
-1, переменная еггпо принимает значение ENOENT, а переменная _doserrno при-
нимает значение ENMFILE, если файл не найден, или ENOENT, если имеется
ошибка в пути или в имени файла.

Если файл найден, то сведения о нем заносятся в поля структуры типа ffblk,
определяемой параметром ffblk. В поле ff_name этой структуры можно найти имя
файла вместе с его расширением. Например, "Test.txt". Поля ff_ftime и ff_fdate
содержат информацию о дате и времени создания файла. Оба поля представляют
собой 16-битовые структуры, биты которых содержат:

биты

0-4

5-10

11-15

ff ftime

секунды, деленные на 2
(т.е. 1 — это 2 сек.)

минуты

час

ffjdate

день

месяц

год, отсчитанный от 1980
(например, 22 — это 2002 г.

Аналогично использует биты структура ftime, объявленная в io.h.
Поле ff_attrib структуры ffblk содержит атрибуты файла. Определить тип

найденного файла можно комбинированием соответствующего флага с полем ffblk
по операции И (&). Если файл имеет данный атрибут, то результат этой операции
будет ненулевой. Например, чтобы узнать, является ли найденный файл систем-
ным, надо записать выражение

(f f b l k . f f_attrib & FA__SYSTEM)

Это выражение вернет не 0, если файл системный.
Таким образом, вызов findfirst может найти первый файл, удовлетворяющий

условиям поиска, или убедиться, что ни одного такого файла нет. Продолжение
поиска осуществляется вызовом функции findncxt и передачей в нее в качестве па-
раметра ffblk той же записи, которая передавалась в findfirst. Если findfirst вер-
нет 0, значит, нашелся еще один файл, удовлетворяющий условиям поиска. Ин-
формация об этом файле занесется в ту же запись ffblk, после чего можно снова
вызывать findfirst для поиска следующего файла. Если findfirst вернет ненулевое
значение, значит, больше нет файлов, удовлетворяющих условиям поиска.

Альтернативный способ поиска файлов обеспечивают функции библиотеки
C++Builder, рассмотренные в разд. «FindFirst и другие функции поиска файлов из
библиотеки C++Builder».

370 Глава 4

Примеры
Приведенный ниже код обеспечивает отображение в окне Memol всех подка-

талогов и файлов, содержащихся в каталоге c:\My.
#include <dir.h>
struct ffblk F;
int ires = findfirst ("c: \\My*. *", &F, FA_DIREC | FA_ARCH) ;
Memol->Clear () ;

while (! ires)
{

if (F . f f_a t t r ib & FA_DIREC)
Memol->Lines->Add ("Каталог \t" + AnsiString (F. f f_name)) ;

else Memol->Lines->Add ("Файл \t" + AnsiString (F. f f_jiame)) ;
ires = f indnext (& F) ;

}

Ниже приведен пример функции myexitl (см. разд. 1.12.2), удаляющей в ра-
бочем каталоге все временные файлы с расширением .tmp:

finclude <dir.h>
#include <stdio.h>

void myexitl (void)
{
struct ffblk ffblk;
int D;
D = findfirst ("*. tmp", sffblk, 0) ;
while (!D)
{
remove (ffblk. ff^name) ;
D = f indnext (Sffblk) ;

FindFirst и другие функции поиска файлов из библиотеки C++Builder
Обеспечивают поиск файлов, удовлетворяющих заданному шаблону и имею-

щих указанные атрибуты.

Заголовочный файл SysUtils.hpp.

Синтаксис
#include <SysUtils .hpp>
struct TSearchRec
{

int Time; // Время создания файла
int Size; // Размер файла в байтах
int Attr; // Атрибуты файла
AnsiString Name; // Имя файла
int ExcludeAttr;
int FindHandle;
_WIN32_FIND_DATAA FindData;

) ;

extern PACKAGE int _ fastcall
FindFirst (const AnsiString Path, int Attr, TSearchRec &F) ;

extern PACKAGE int _ fastcall FindNext (TSearchRec SF) ;
extern PACKAGE void _ fastcall FindClose (TSearchRec &F) ;

Описание
Функции FindFirst, FindNext и FindClose обеспечивают поиск файлов, удов-

летворяющих заданному шаблону и имеющих указанные атрибуты.

Описания функций 371

Начинается поиск вызовом функции FindFirst. Параметр Path определяет
путь и шаблон искомых файлов. Например, если Path = "c:\\test*.*", то будут
искаться все файлы в каталоге c:\test\. Если Path = "c:\\test*.tmp", то в катало-
ге c:\test\ будут искаться файлы с расширением .tmp. А если Path = "*.tmp", то
файлы с расширением .tmp будут искаться в текущем каталоге.

Параметр Attr определяет флаги атрибутов, которые должны иметь искомые
файлы:

Константа

faReadOnly

i284faffidden

faSysFile

faVolumelD

faDirectory

faArchive

faAnyFile

Значение

$00000001

$00000002

$00000004

$00000008

$00000010

$00000020

$0000003F

Пояснение

файл только для чтения

невидимый файл

системный файл

идентификатор диска

каталог

архивный файл

любой файл

Флаги могут объединяться. Например, если Attr = faReadOnly + faHidden, то
будут искаться невидимые файлы только для чтения.

Функция возвращает 0, если файл, удовлетворяющий условиям поиска, най-
ден. В противном случае возвращается код ошибки.

Если файл найден, то сведения о нем заносятся в поля записи типа TSe-
archRec, определяемой параметром F. В поле Name этой записи можно найти имя
файла вместе с его расширением. Например, "Test.txt". В поле Time заносится
дата и время создания файла. Это время в формате DOS. Его можно перевести
в значение типа TDateTime функцией FileDateToDateTime, а если требуется пере-
вести его в строку, то к полученному значению можно затем применить функцию
DateTimeToStr. Таким образом, выражение вида

DateTimeToStr(Fi leDateToDateTime(F.Time))

вернет дату и время создания файла в виде строки.
Поле Attr записи F содержит атрибуты файла. Определить тип найденного

файла можно комбинированием соответствующего флага с полем Attr по операции
ИЛИ (|). Если файл имеет данный атрибут, то результат этой операции будет боль-
ше 0. Например, чтобы узнать, является ли найденный файл системным, надо за-
писать выражение

(F.Attr & faSysFi le)

Это выражение вернет true, если файл системный.
Таким образом, вызов FindFirst может найти первый файл, удовлетворяющий

условиям поиска, или убедиться, что ни одного такого файла нет. Продолжение
поиска осуществляется вызовом функции FindNext и передачей в нее в качестве
параметра F той же записи, которая передавалась в FindFirst. Если FindNext вер-
нет 0, значит нашелся еще один файл, удовлетворяющий условиям поиска. Ин-
формация об этом файле занесется в ту же запись F, после чего можно снова вызы-
вать FindNext для поиска следующего файла. Если FindNext вернет ненулевое
значение, значит больше нет файлов, удовлетворяющих условиям поиска. В этом
случае надо вызвать процедуру FindClose с тем же параметром F. Эта процедура
завершает поиск и освобождает ресурсы, выделенные для него.

372 Глава 4

Альтернативный способ поиска файлов обеспечивают функции стандартной
библиотеки С, рассмотренные в разд. «findfirst и другие стандартные функции по-
иска файлов ».

Примеры
Следующие операторы осуществляют поиск всех файлов и подкаталогов теку-

щего каталога и выводят результаты в окно редактирования Memol:
TSearchRec sr;
Memol~>Clear() ;
if (! FindFirst("*.*", faAnyFile I faDirectory, sr)}
{
Memol->Lines->Add(sr.Name + ", размер: " + IntToStr (sr.Size));
while (! FindNext(sr))
Memol->Lines->Add(sr.Name + ", размер: " + IntTcStr (sr.Size));

}
FindClose(sr);

Следующий пример удаляет из каталога c:\MyTemp все файлы с расширением
.tmp. Подобные функции полезно применять при зачистке мусора (см. разд. 1.12).

TSearchRec sr;
int D;
D = FindFirst("с.-\\MyTemp*.tmp", faAnyFile, sr) ;
while (!D)

{
DeleteFi le(sr .Name);
D = FindNext(sr);

}
FindClose(sr);

Приведем более сложный пример. Следующий обработчик щелчка на кнопке
Buttonl обеспечивает в текущем каталоге и во всех его подкаталогах поиск и уда-
ление файлов с расширением .tds:

void fastcall TForml: .-ButtonlClick (TObject *Sender)
{
AnsiString CurDir = GetCurrentDir();
TSearchRec sr;
if (! FindFirst("*.*", faAnyFile I faDirectory, sr))
{
if(! CompareText(ExtractFileExt(sr.Name),".tds"))

DeleteFile(sr.Name);
else if((sr.Attr == faDirectory)&&(sr.Name !=".")

&&(sr.Name !=".."))

{
SetCurrentDir(ExtractFileDir(sr.Name));
ButtonlClick(Sender);
SetCurrentDir(CurDir);

}
while (FindNext (sr) == 0)
i
if(! CompareText(ExtractFileExt(sr.Name) , ".tds"))

DeleteFile(sr.Name);
else if((sr.Attr == faDirectory)&&(sr.Name !=".")

&&(sr.Name !=".."))
{
SetCurrentDir (sr.Name);
ButtonlClick (Sender);
SetCurrentDir (CurDir);

FindClose(sr);

Описания функций 373

Приведенная функция использует рекурсивный вызов самой себя при перехо-
де в подкаталоги.

FindNext — продолжение поиска файлов
Продолжает поиск файлов, начатый функцией FindFirst.
См. разд. «FindFirst и другие функции поиска файлов из библиотеки С++Ви-

ilder».

findnext — стандартная функция продолжения поиска файлов
Обеспечивает продолжение поиска файлов, начатого функцией findfirst.
См. разд. «findfirst и другие стандартные функции поиска файлов».

FindWindow — функция API Windows
Функция API Windows, возвращает дескриптор окна, заданного класса и с за-

данным текстом.

Модуль winuser.

Объявление ,
HWND FindWindow(const char *lpClassName, const char * lpWindowName);

Описание
Функция FindWindow возвращает дескриптор окна, заданного класса IpClass-

Name и с заданным текстом заголовка окна IpWindowName. Параметр IpClass-
Name указывает на строку с нулевым конечным символом, содержащую имя клас-
са. Параметр IpWindowName указывает на строку с нулевым конечным символом,
содержащую имя окна (это свойство Caption формы, отображаемое в полосе заго-
ловка окна). Если этот параметр равен NULL, то считается, что под критерий по-
иска подходит любое окно указанного класса.

Если поиск прошел успешно, то функция возвращает дескриптор окна, имею-
щего указанное имя класса и имя окна. В противном случае возвращается NULL.

Эту функцию легко использовать, если вы знаете имя класса искомого окна.
Например, если ваше приложение вызвало другое приложение, созданное вами са-
мими, то вы знаете имя класса формы этого другого приложения. Тогда вы може-
те, например, с помощью кода

HWND Н = FindWindow("TForml","Приложение 2");

определить дескриптор окна приложения, класс формы которого TForml, а значе-
ние свойства Caption формы - "Приложение 2".

Если же приложение, которым вы хотите управлять, создано не вами, то текст
полосы заголовка вы легко можете увидеть, выполнив его, а вот имя класса вам не-
известно. Одна из возможностей узнать имя класса какого-то приложения — вос-
пользоваться поставляемой вместе с C++Builder программой WinSight 32 (файл
...\Program Files\Borland\CBuilder6\Bin\ws32.exe). Запустите интересующее вас прило-
жение, затем запустите WinSight 32, выполните команду Spy | Find Window и вы
увидите список всех окон, зарегистрированных в данный момент в Windows. Луч-
ше, чтобы в этот момент у вас было бы открыто не очень много окон, чтобы проще
было найти среди них нужное.

В списке, который вы увидите, для каждого окна будут указаны среди прочей
информации имя класса в фигурных скобках "{ }" и заголовок окна — последний
элемент данных в строке каждого окна. Например, запустив «Калькулятор», вы
можете с помощью WinSight 32 найти, что имя класса окна этого приложения -
«SciCalc». Следовательно, определить в своем приложении дескриптор открытого
приложения «Калькулятор» вы можете оператором:

374 Глава 4

^HWND H = FindWindowC'SciCalc" ,"Калькулятор");

(см. пример в разд. «PostMessage»).
Другой способ найти дескриптор окна — воспользоваться функцией GetNext-

Window API Windows.

FloatToStr — преобразование действительного числа в строку

Преобразует действительное число в строку.

Заголовочный файл SysUtils.hpp

Синтаксис
extern PACKAGE AnsiString fastcall FloatToStr(Extended Value);

Описание
Функция FloatToStr преобразует действительное значение Value в строку.

Параметр Value — действительная константа или выражение. При преобразова-
нии используется основной числовой формат с 15 значащими цифрами. Это обыч-
но слишком много, если преобразуются числа с большим числом значащих цифр
или иррациональные числа.

Если преобразовываемое выражение окажется не числом, функция вернет
значение "NAN". Если преобразовываемое значение превышает по модулю вели-
чину, допустимую для объявленного типа данных, функция вернет значение
"INF" (бесконечность) или "-INF" (минус бесконечность).

Если вам требуется управление форматом представления чисел, лучше ис-
пользовать функции FloatToStrF или FloatToText.

Примеры
Если S — строка, a R — действительное число или выражение, то оператор
S = F l o a t T o S t r (R) ;

даст следующие результаты при разных значениях R:

R

-3

5.1Е20

sqrt(2)

1Е5000

S

-3

5ДЕ20

1,4142135623731

INF

FloatToStrF — преобразование действительного числа в строку
Преобразовывает действительное число в строку, используя заданный формат,

точность и число цифр.

Заголовочный файл SysUtils.hpp.

Синтаксис
enum TFloatFormat (f fGenera l , f fExponent, f fFixed,

ffNumber, ffCurrency };
extern PACKAGE AnsiString fastcal l FloatToStrF(

Extended Value, TFloatFormat Format,
int Precision, int Digits);

Описание
Функция FloatToStrF преобразовывает действительное значение Value в стро-

ку, используя заданный формат Format, точность Precision и число цифр Digits.

Описания функций 375

Параметр Value — действительная константа или выражение. Возможные значе-
ния параметра Format означают следующее:

ffGeneral

ffExponent

ffFixed

ffN umber

ffCurrency

Основной числовой формат

Научный формат

Формат с фиксированной запятой

Числовой формат

Монетарный формат

Подробное описание всех этих форматов см. в разд. 3.1.3.4, посвященном типу
TFloatFormat.

Параметр Precision определяет точность преобразовываемого значения. Зна-
чение Precision должно быть не более 7 при преобразовании типа Single, не более
15 для Double, не более 18 для Extended.

Параметр Digits совместно с Format определяет форматирование строки. Под-
робнее см. в описании TFloatFormat в разд. 3.1.3.4.

Если преобразовываемое выражение окажется не числом, функция вернет
значение "NAN". Если преобразовываемое значение превышает по модулю вели-
чину, допустимую для объявленного типа данных, функция вернет значение
"INF" (бесконечность) или "-INF" (минус бесконечность).

Примеры
Если S — строка, a R — действительное число или выражение, то оператор
S = F l o a t T o S t r F (R , f f G e n e r a l , 7 , 0) ;

даст следующие результаты при разных значениях R:

R

-3

5.1Е20

sqrt(2)

1Е5000

S
_Q

5ДЕ20

1,414214

INF

Эти результаты аналогичны получаемым при использовании функции Float-
ToStr. но для корня из 2 число цифр результата не превышает заданного значе-
ния 7: 1,414214. Как правило, формат ffGeneral с ограниченным числом цифр
наиболее удачен для большинства применений.

floor, Floor, floorl — округление действительного числа
Округляют действительное число до целого значения.
См. разд. «Ceil и другие функции округления действительных чисел».

fmod, fmodl — функции вычисления остатка
Вычисляют остаток целочисленного деления.

Заголовочный файл math.h.

Синтаксис
tinclude <math.h>
double fmod(double x, double y) ;
long double fmodl(long double x, long double y);

376 Глава 4

Описание
Функции осуществляют деление двух действительных чисел — х на у и воз-

вращают остаток от деления.

Пример
tinclude <math.h>
Edit3->Text = fmod(StrToFloat(Edi t l->Text) ,

S t r T o F l o a t (E d i t 2 - > T e x t)) ;

В этом примере осуществляется деление чисел, введенных пользователем
в окна Editl и Edit2. Остаток от деления заносится в окно EditS. Пример результа-
тов приведен в следующей таблице:

текст Editl

10

10

11

текст Edit2

3

3,5

3,5

текст EditS

1

3

0,5

Format — форматирование строки аргументов
Возвращает строку, содержащую аргументы, отформатированные по заданно-

му формату.

Заголовочный файл SysUtils.hpp.

Синтаксис
#include <SysUtils.hpp>
extern PACKAGE AnsiStr ing fastcal l

Format(const AnsiString Format,
const Sys tem: :TVarRec* Args, const int Args S ize) ;

Описание
Функция форматирует набор аргументов, заданный массивом Args типа TVar-

Rec. Параметр Args_Size указывает последний индекс этого массива, т.е. он на 1
меньше числа аргументов. Параметр Format задает строку форматирования, син-
таксис которой приведен в разд. 3.1.2.3.

Для задания параметров Args и Args_Size удобно использовать макросы
EXISTINGARRAY и OPENARRAY (см. разд. 2.11.3) как в приведенных ниже
примерах.

Функция возвращает отформатированную строку. При ошибках преобразова-
ния генерируется исключение EConvertError.

Примеры
AnsiStr ing s;
TVarRec A r g s [3] = {11, -l. le+08, 0 .00011};
s = Format("Результат: %d %g % f " , Args, 2) ;

В этом примере объявлена переменная s, в которую производится запись ре-
зультатов форматирования, и массив Args, в который занесены форматируемые
числа. Обратите внимание на то, что размер массива равен 3, а в функцию Format
передается в качестве размера число 2 — максимальное значение индекса, на 1
меньшее размера. Если бы нужно было форматировать не все три, а, например,
только два первых числа массива, то в качестве размера можно было бы передать 1.

Строка форматирования в этом примере сначала заносит в строку s текст "Ре-
зультат: ", а затем записывает значения элементов массива по форматам "%d",
"%g", "%f", оставляя между ними пробелы (пробелы между спецификациями
в строке форматирования переносятся в строку результата).

Описания функций 377

Более сложное форматирование:
s = F o r m a t (" % d %g %f % 0 : 1 0 d %10g % 1 0 . 5 f " , Args , 2) ;

Здесь сначала в строку s заносятся значения элементов массива по форматам
"%d", "%g", "%f". Затем спецификация "%0:10d" сбрасывает индекс массива на
О, приводя к повторному форматированию элементов массива. Повторно они фор-
матируются с заданной шириной поля 10, а последнее число еще и с заданной точ-
ностью 5.

Для ссылки на массив аргументов можно было бы воспользоваться макросом
EXISTINGARRAY:

s = Format("%d %д %f %0:10d %10д %10.5f",EXISTINGARRAY(Args));

Можно было бы и не создавать заранее массива аргументов, а сформировать
его непосредственно в вызове функции Format с помощью макроса OPEN ARRAY:

s = Format("%d %g %f %0:10d %10g %10.5f",
OPENARRAY(TVarRec,(11, -l.le+08, 0.00011)));

FormatDateTime — преобразование даты и времени в строку
Преобразует дату и время в строку по заданному формату.
См. разд. «DateTimeToString и другие функции форматированного преобразо-

вания даты и времени в строку».

fprintf и другие функции форматированного вывода
Выводят форматированные данные в выходной поток, в файл, в буферный

массив.

Заголовочные файлы stdio.h, conio.h.

Синтаксис
tinclude <stdio.h>
int printf (const char * f o r m a t [, argument, . . .]) ;
int w p r i n t f (c o n s t wchar_t * f o r m a t [, argument, . . .]) ;
int vprintf(const char *format, va_list arglist);
int vwprintf (const wchar_t * format, va_list arg l i s t) ;

int fprintf (FILE *stream,
const char * format[, argument, . . .]) ;

int f w p r i n t f (F I L E *stream,
const wchar_t *format[, argument, . . .]) ;

int vfprintf (FILE *stream, const char *format,
va_list arg l i s t) ;

int v f w p r i n t f (F I L E *stream, const wchar_t *format,
va_list arglist);

int spr int f(char * b u f f e r ,
const char *format[, argument, . . .]) ;

int swpr int f (wchar_t * b u f f e r ,
const wchar_t * format ! , argument, . . .]) ;

int vsprintf(char *buffer, const char *forraat,
va_list arg l i s t) ;

int vswprintf(wchar_t * b u f f e r , const wchar_t * format,
va_list arglist);

tinclude <conio.h>
int cprintf (const char * format!, argument, ...]');

Описание
Все описанные ниже функции осуществляют форматированный вывод в виде

строки или последовательности строк на экран, в файл или в буферный массив

378 Глава 4

в памяти. При этом производится вывод произвольного числа числовых, символь-
ных и иных аргументов argument, причем числовые значения преобразуются
в текстовое представление с заданными характеристиками отображения. Пара-
метр format указывает строку форматирования. Она определяет текст формируе-
мой строки и содержит спецификаторы, записываемые после символа "%", кото-
рые указывают формат включения в строку аргументов. Подробнее вы можете по-
смотреть полное описание строки форматирования в разд. 3.1.3.1. А для приведен-
ных ниже примеров достаточно знать, что спецификатор "%i" отображает целые
числа, спецификатор "%g" — действительные, спецификатор "%s" - строки.

Функции printf и wprintf обеспечивают форматированный вывод в стандарт-
ный поток вывода stdout (см. разд. 2.10.3). Параметр format указывает строку
форматирования, которая применяется к множеству аргументов argument, распо-
ложенных в вызовах функций после строки форматирования.

Функции возвращают число выведенных байтов. Если при выводе происходят
ошибки, возвращается значение EOF.

Функции находят применение в основном в консольных приложениях, в кото-
рых поток stdout соответствует выводу на экран. Например:

tinclude <stdio.h>
void main(void)
{
int I = 10;
double A = 5.1;
char S[] = "string";
pr int f ("Output with p r i n t f \ n ") ;
p r i n t f (" I = %i S = %s A = %g \ n " , I, S, A) ;
getchar() ;

}

Приведенный код обеспечивает вывод на экран двух строк:
Output with printf
I = 10 S = string A = 5.1

Для упрощения в этом коде использованы-английские тексты. О выводе в кон-
сольных приложениях русских текстов см. в разд. «CharToOem, CharToOem-
Buff — перевод строки в текст DOS».

Функция cprintf аналогична по синтаксису printf и тоже обеспечивает вывод
на экран. Строка пишется или прямо в память экрана, или выводится посредством
вызова BIOS в зависимости от значения глобальной переменной _directvideo. В от-
личие от других функций вывода, cprintf не транслирует символ "\п" в пару сим-
волов "\г\п" и не разворачивает символ табуляции "\t" в пробелы.

Если желательно применять функции printf и wprintf для записи в файл, то
предварительно надо перенаправить поток stdout. Однако для форматированного
вывода в файл естественнее использовать функции fprintf и fwprintf. Они работа-
ют так же, как printf, а параметр stream указывает поток или файл, в который
осуществляется вывод. Например, операторы:

FILE *F;
int I = 10;
double A = 5.1;
char S [] = "строка";
F = fopen("output . tx t " , " w t ") ;
fpr int f (F, "Вывод функцией f p r i n t f \ n ") ;
if (f p r i n t f (F , "I = %i S = %s A = %g \n", I, S, A) == EOF)

ShowMessage("Ошибка записи в файл") ;
f c l o s e (F) ;

запишут в файл output.txt две строки:

Описания функций 379

'
Вывод функцией fpr int f
I = 10 S = string A = 5.1

Функции sprintf и swprintf аналогичны рассмотренным ранее, но формируют
строку вывода не на экране, не в файле, а в массиве символов buffer. В конец стро-
ки заносится нулевой символ. В дальнейшем эта строка может быть выведена на
экран или в файл. Может она также использоваться в различных диалоговых ок-
нах, в метках и т.п.

Пример формирования строки:
char b u f f e r [1 0 0] ;
int I = 10;
double A = 5.1;
char S[] = "строка";
s p r i n t f (b u f f e r , "Вывод функцией s p r i n t f \ n ") ;
s p r i n t f (b u f f e r + s t r l e n (b u f f e r) ,

"I = %i S = %s A = %g \n", I, S, A) ;

Первый вызов sprintf заносит соответствующую строку в buffer. А в последую-
щих вызовах приемником строки может указываться адрес buffer+strlen(buffer).
Это обеспечит добавление новой строки после прежнего текста.

В дальнейшем сформированный в буфере текст может быть выведен в файл
функцией fputs. Например:

FILE *F;

F = fopen ("output.txt", "wt");
fputs(buffer, F);

fclose(F);

Имеются определенные преимущества подобного предварительного формиро-
вания текста в памяти. Прежде всего, функция неформатированного вывода fputs
работает быстрее, чем функция форматированного вывода fprintf. К тому же, вы-
вод осуществляется один раз и может заменить целую последовательность вызовов
fprintf. Эта последовательность заменяется последовательностью вызовов sprintf
и однократным вызовом fputs, а запись в память, естественно, осуществляется на-
много быстрее, чем запись в файл. Еще одно преимущество предварительного фор-
мирования текста в памяти проявляется в том случае, если с файлом поочередно
работает несколько приложений. В этом случае требуется, чтобы каждое из них за-
хватывало файл на минимальное время. Формирование текста без открытия файла
и последующее открытие его только на время выполнения быстрой функции fputs
решает эту задачу.

Варианты рассмотренных функций с именами, начинающимися с символа
"v", работают так же, как описанные выше, но в них передается не список аргу-
ментов, а указатель на список типа va list (см. разд. 1.7.5). Это позволяет вам соз-
давать собственную функцию вывода, принимающую произвольное число аргу-
ментов. Ниже приведен пример такой функции рг, в точности воспроизводящей
функцию fprintf.

finclude <stdio.h>
#include <stdarg.h>

int pr(FILE *F,char *fmt, . . .)
{

va_list arg;
int cnt;
va_start(arg, f m t) ;
cnt = v f p r i n t f (F , f m t , arg) ;
va_end(arg);
r e t u r n (c n t) ;

380 Глава 4

Вызов такой функции не отличается от вызова fprintf (кроме имени) и работа-
ет она точно так же. Но, конечно, реально имеет смысл создавать собственную
функцию вывода только в том случае, если она должна чем-то отличаться от
fprintf: заносить какие-то разделительные линии между строками, какие-то над-
писи, осуществлять табулированный вывод и т.п.

fputc — вывод символа в поток
Выводит символ в указанный поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

_fputchar — вывод символа в поток
Выводит символ в выходной поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

fputs и другие функции ввода/вывода строк
Вводят строки из потоков и выводят строки в потоки.

Заголовочные файлы stdio.h, conio.h.

Синтаксис
#include <stdio.h>
int fputs(const char *s, FILE *stream);
int fputws (const wchar_t *s, FILE *stream);

int puts(const char *s);
int _putws(const wchar^t *s) ;

char *fgets(char *s, int n, FILE *stream);
wchar_t *fgetws(wchar_t *s, int n, FILE *stream);

char *gets(char *s);
wchar_t *_getws(wchar_t *s);

#include <conio.h>
int cputs(const char *str);
char *cgets(char *str);

Описание
Функции fputs и fputws выводят в выходной поток stream строку символов s

с нулевым символом в конце. В выходной поток не добавляется символ перехода на
новую строку. Концевой нулевой символ исходной строки в поток не копируется.

В случае успешной записи в поток функции возвращают неотрицательное зна-
чение. При ошибке возвращается EOF.

В качестве потока stream может фигурировать стандартный выходной поток
stdout, который по умолчанию связан с экраном. Функции используются в основ-
ном в консольных приложениях. Например:

tinclude <stdio.h>
void main(void)
{

f p u t s (" H e l l o wor ldXn" , s tdout) ;
}

Для вывода русских текстов в консольных приложениях надо использовать
функцию CharToOem.

Можно в качестве потока указать текстовый файл. Например:
#include <stdio.h>

Описания функций 381

FILE *F;
F = fopen("output2 . tx t " , " w t ") ;
i f (fputs("Привет ! ! ! \ n " , F) < 0)

ShowMessage("Ошибка записи в файл");
f c l o s e (F) ;

Функции puts и _putws также выводят строку, но только в выходной поток
stdout. При этом в выходной поток заносится после вывода символ перехода на но-
вую строку. Функции предназначены для применения в консольных приложени-
ях. Если их почему-то требуется использовать в приложениях Windows, стандарт-
ный поток stdout должен быть перенаправлен.

Функция cputs тоже обеспечивает вывод на экран. Строка пишется или прямо
в память экрана, или выводится посредством вызова BIOS в зависимости от значе-
ния глобальной переменной _directvideo. В отличие от других функций вывода,
cputs не транслирует символ "\п" в пару символов "\г\п" и не разворачивает сим-
вол табуляции "\t" в пробелы. Функция возвращает последний выведенный сим-
вол. В приложениях Windows функцию применять не следует.

Функции fgets и fgetws читают строку символов из потока stream в строку s.
Чтение завершается, если прочитано п - 1 символов или если раньше встретился
символ перехода на новую строку. Так что значение п должно задаваться исходя
из допустимого размера s. Прочитанный из потока символ перехода на новую стро-
ку заносится в s. В конец s заносится нулевой символ. Функции возвращают ука-
затель на прочитанную строку s или NULL, если достигнут конец файла или про-
изошла ошибка чтения. Следующий пример демонстрирует чтение по строкам тек-
стового файла input.txt:

tinclude <stdio.h>

char S [2 5 6] ;
FILE *F;
F = f o p e n (" i n p u t . t x t " , " r t ") ;
whi le(fge t s (S, 256, F))

•соператоры обработки строки S>
fclose (F) ;

Функции gets и _getws читают в s строку из стандартного входного потока
stdin, который по умолчанию связан с клавиатурой. Чтение происходит до появле-
ния во входном потоке символа новой строки. Этот символ в s заменяется нулевым
символом. Функция возвращает указатель на прочитанную строку s или возвра-
щает NULL в случае ошибки. При чтении не осуществляется проверка длины
строки s. Так что при вводе недопустимо длинной строки могут быть непредсказуе-
мые последствия. С этой точки зрения надежнее описанная выше функция fgets,
которая может контролировать длину читаемой строки. При использовании fgets
для чтения из стандартного входного потока в нее в качестве stream надо передать
stdin. Функции gets и _getws предназначены в основном для использования в кон-
сольных приложениях. При использовании в приложениях Windows поток stdin
надо перенаправить.

Функция cgets тоже обеспечивает чтение с клавиатуры в строку str. Чтение
происходит до появления во входном потоке символов новой строки и возврата ка-
ретки — комбинации "CR/LF", или до достижения максимально допустимого для
чтения числа символов (см. ниже). Если прочитаны символы конца строки и воз-
врата каретки, их комбинация заменяется в str нулевым символом.

Максимальное число читаемых символов должно быть занесено до вызова
cgets в str[0]. После окончания чтения функция заносит в str[l] число реально
прочитанных символов. Сами прочитанные символы начинаются с позиции str[2].
В случае успешного завершения чтения функция возвращает указатель на первый
из прочитанных символов, т.е. на str[2].

382 Глава 4

Функция cgets неприменима для приложений Windows.

Помимо рассмотренных функций для ввода и вывода строк могут использо-
ваться функции форматированного ввода и вывода, описанные в разд. «scanf
и другие функции форматированного ввода» и «fprintf и другие функции форма-
тированного вывода».

fputwc — вывод символа в поток
Выводит символ в указанный поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

_fputwchar — вывод символа в поток
Выводит символ в выходной поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

fputws — вывод строки в поток
Выводит строку в указанный поток.
См. разд. «fputs и другие функции ввода/вывода строк».

free — освобождение памяти
Функция освобождает блок памяти.
См. разд. «malloc и другие функции динамического распределения памяти».

frexp, frexpl, Frexp — выделение мантиссы
Разбивают число на мантиссу и показатель степени 2.

Заголовочные файлы math.h и math.hpp.

Синтаксис
#include <math.h>
double f rexp (double x, int *exponent);
long double frexpl(long double x, int *exponent);

tinclude <math.hpp>
extern PACKAGE void fastcal l

Frexp(Extended X, Extended &Mantissa, int ^exponent);

Описание
Функции разделяют значение X на мантиссу и показатель степени 2. Т.е. чис-

ло представляется в виде: X = Mantissa • 2exP°nent. Показатель степени заносится
в параметр exponent, а мантисса в функциях frexp и frexpl возвращается как зна-
чение функции, а в функции Frexp заносится в параметр Mantissa.

Пример
#include <math.h>
double number;
int exponent;

number = StrToFloat(Edit l->Text);
Edit3->Text = f rexp(number, Sexponent);
Edit2->Text = exponent;

В этом примере число, вводимое пользователем в окне Editl, разбивается на
показатель степени exponent, отображаемый в окне Edit2, и мантиссу, отображае-
мую в окне EditS.

Описания функций 383

Пример результатов приведен в следующей таблице:

X

1
2

10

1.5

exponent

1

2

4

1

Возвращаемый результат

0,5

0,5

0,625

0.75

fscanf — форматированный ввод из файла

Вводит форматированные данные из файла.
См. разд. «scanf и другие функции форматированного ввода».

fwprintf — форматированный вывод в файл

Выводит форматированные данные в файл.
См. разд. «fprintf и другие функции форматированного вывода».

fwscanf — форматированный ввод из файла
Вводит форматированные данные из файла.
См. разд. «scanf и другие функции форматированного ввода».

get — функция-элемент ifstream

Вводит символы из входного потока.

Класс ifstream

Объявления

char get () ;
bool get(char);
void get(char *, int n, char delim);

Описание
Метод get представляет собой функции-элементы класса входного потока

ifstream. Он вводит символы из файла, связанного с потоком. Метод имеет три
приведенные выше модификации.

Первая модификация
Функция get без аргументов вводит одиночный символ из указанного потока

(даже, если это символ разделитель) и возвращает этот символ в качестве значения
вызова функции. Этот вариант функции get возвращает EOF, когда в потоке встре-
чается признак конца файла.

Следующий код использует функцию get без аргумента, чтобы построчно чи-
тать и обрабатывать весь текст файла:

char s [80] , с;
ifstream infile("Test.dat");
if (linfile)

f
ShowMessage("Файл не удается открыть");
return;

}
int i = 0;
while ((с = in f i l e .ge tO) != EOF)
(
i f (c == ' \ n ')

384 Глава 4

// занесение нулевого символа в конец строки
s[i] = 0;
// обработка строки

i = 0;

}
// формирование строки
else s[i++] = с;
}
// закрытие файла
inf lie. close () ;

Здесь символы файла поочередно читаются в символьную переменную с. Если
прочитанный символ не является символом перевода строки "\п", то символ добав-
ляется в строку s. Если же символ равен "\п", то в конец строки заносится нулевой
символ, строка подвергается какой-то обработке, после чего начинает формиро-
ваться следующая строка. Отметим, что этот код имеет один недостаток: если сим-
волу конца файла не предшествует символ перевода строки, то последняя строка
оказывается без завершающего нулевого символа и остается необработанной. Не-
трудно придумать дополнение кода, которое ликвидировало бы этот недостаток.

Функцию get() удобно использовать для поиска в файле какого-то ключевого
символа. Например, цикл поиска в файле символа "$" можно организовать сле-
дующим образом:

while ((с = inf i le .get ()) != EOF)
{
if (с == ' $ ') break;
if (с = = ' $ ') . . .
}

Вторая модификация
Второй вариант функции-элемента get с символьным аргументом вводит оче-

редной символ из входного потока (даже, если этот символ разделитель) и сохраня-
ет его в символьном аргументе. Этот вариант функции get возвращает ложь, когда
встречается признак конца файла; в остальных случаях этот вариант функции get
возвращает ссылку на тот объект потока, для которого вызывалась функция-эле-
мент get.

При использовании этого варианта функции get приведенные ранее примеры
можно оставить практически без изменений, переписав только заголовки структур
while:

while (infile.get (с))

Третья модификация
Третий вариант функции-элемента get принимает три параметра: символьный

массив s, максимальное число символов п и ограничитель delim (по умолчанию
символ перевода строки "\п"). Этот вариант читает символы из входного потока до
тех пор, пока не достигается число символов, на 1 меньше указанного максималь-
ного числа п, или пока не считывается ограничитель. Затем для завершения вве-
денной строки в символьный массив, используемый в качестве буфера программы,
помещается нулевой символ. Ограничитель в символьный массив не помещается,
а остается во входном потоке (он будет следующим считываемым символом). Та-
ким образом, результатом второго подряд использования функции get явится пус-
тая строка, если только ограничитель не удалить из входного потока.

Приведенный ранее пример чтения всего файла по строкам в данном случае
реализуется проще:

char s [80] ;
ifstream infile ("Test .dat") ;
if (! infile)

Описания функций 385

ShowMessage ("Файл не удается открыть") ;
return

}
white (!inf ile.eof ())

{
inf i le .get (s, 80) ;
inf i le .get () ;
// обработка строки

}
// закрытие файла

inf lie. close () ;

В данном случае третий аргумент в вызове get не указан. Значит подразумева-
ется по умолчанию ограничитель "\п" и каждый вызов get читает одну строку
(подразумевается, что ее длина не более 80 символов). Обратите внимание на то,
что после оператора

inf i le .get (s , 8 0) ;

добавлен оператор
inf ile .get () ;

Этот оператор удаляет из потока ограничитель. Если этого не сделать, программа
зациклится.

Функция get с тремя параметрами не всегда удобна, поскольку оставляет ог-
раничитель в потоке, и для повторного вызова функции его приходится убирать
отдельным оператором. Часто более удобна другая функция — getline.

Get8087CW — доступ к управляющему слову FPU _
Обеспечивает доступ к управляющему слову FPU.
См. разд. «_contro!87 и другие функции доступа к управляющему слову FPU».

getc — ввод символа из потока _
Вводит символ из указанного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

getch — ввод символа из потока
Вводит символ из входного потока без эхо на экране.
См. разд. «fgetc и другие функции ввода/вывода символа».

getchar — ввод символа из потока _
Вводит символ из входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

getche — ввод символа из потока _
Вводит символ из входного потока с отображением на экране.
См. разд. «fgetc и другие функции ввода/вывода символа».

GetExceptionMask и другие функции доступа к маскам исключений
Обеспечивают доступ к маскам исключений управляющего слова FPU.

Заголовочный файл math.hpp.

386 Глава 4

Объявления

tinclude <raath.hpp>
enum TFPUException {exInvalidOp, exDenormalized, exZeroDivide,

exOverflow, exUnderflow, exPrecision};
typedefSet<TFPUException, exInvalidOp, exPrecision>

TFPUExceptionMask;

extern PACKAGE TFPUExceptionMask fastoall
GetExceptionMask(void);

extern PACKAGE TFPUExceptionMask fastcall
SetExceptionMask(void TFPUExceptionMask Mask);

Описание
Функции GetExceptionMask и SetExceptionMask обеспечивают доступ к мас-

кам исключений управляющего слова FPU (см. разд. 1.9.3). Обе функции возвра-
щают текущую маску исключений. Но функция SetExceptionMask, помимо этого,
устанавливает заданную маску Mask.

Маска представляет множество значений, соответствующих определенным би-
там управляющего слова FPU и маскирующих генерацию различных видов исклю-
чений при выполнении операций с плавающей запятой:

exInvalidOp

exDenormalized

exZeroDivide

exOverflow

exUnderflow

exPrecision

Маска исключений при ошибочных операциях

Маска исключений ненормализованных операций

Маска исключений деления на нуль

Маска исключений переполнения

Маска исключений потери порядка

Маска исключений точности

Если какое-то из перечисленных значений TFPUExceptionMask включено
в маску, генерация соответствующего исключения блокируется. В этих случаях
ошибка выполнения операции приведет к тому, что в качестве результата будет
выдано значение одной из предопределенных в C++Builder 6 констант: Infinity
(положительная бесконечность), Neglnfinity (отрицательная бесконечность), NaN
(нецифровое значение).

Обычно по умолчанию маска имеет вид: [exDenormalized, exUnderflow, ex-
Precision], т.е. блокируется генерация исключений, связанных с ненормализован-
ными операциями, потерей порядка и точностью.

Программную установку масок управляющего слова имеет смысл проводить,
если вы решили запретить генерацию каких-то видов исключений. Это, в частно-
сти, приходится делать, при использовании некоторых пакетов. Например, при
использовании для трехмерной графики OpenGL надо запретить генерацию всех
исключений.

Примеры
Пусть вы объявили глобальную переменную Mask:
#include <math.hpp>
TFPUExceptionMask Mask;

Тогда следующий оператор очищает все маски исключений, сохраняя в Mask
прежние значения масок:

Mask = SetExceptionMask(Mask.Clear()) ;

В результате при всех ошибках выполнения операций с плавающей запятой
будут генерироваться соответствующие исключения.

Описания функций 387

Следующий оператор устанавливает в 1 все маски исключений:
Mask = SetExceptionMask(Mask « exInvalidOp «

exDenormalized « exZeroDivide «
exOverflow « exUnderflow «
exPrecision);

В результате никакие исключения, связанные с операциями с плавающей за-
пятой, генерироваться не будут.

Если в дальнейшем после того фрагмента кода, в котором вы маскировали ис-
ключения, требуется удалить маски, достаточно выполнить оператор:

Mask = SetExceptionMask(Mask) ;

Он восстановит маски, запомненные предыдущим оператором, и запомнит те-
кущие маски.

getline — функция-элемент ifstream

Вводит строку символов из потока.

Класс ifstream

Объявления

void getline(char *s, int n);

%
 void getline (.char *s, int n, char delim);

Описание
Метод getline представляет собой функцию-элемент класса входного потока

ifstream. Он вводит строку символов из файла, связанного с потоком.
Функции getline принимает три параметра: символьный массив s, максималь-

ное число символов n и ограничитель delim (по умолчанию символ перевода стро-
ки "\п"). Функция читает символы из входного потока до тех пор, пока не достига-
ется число символов, на 1 меньше указанного максимального числа п, или пока не
считывается ограничитель. Затем для завершения введенной строки в символьный
массив, используемый в качестве буфера программы, помещается нулевой символ.
Ограничитель в символьный массив не помещается и удаляется из входного пото-
ка. В этом основное отличие функции getline от варианта функции get, читающего
строки символов. Функция get оставляет разделитель во входном потоке и его при-
ходится удалять из него, чтобы прочитать следующую строку. Так что в этом отно-
шении функция getline удобнее.

Пример
Ниже приведен пример чтения файла по строкам с помощью функции getline.

Сравнив его с аналогичным примером, приведенным в описании функции get, вы
можете увидеть преимущества функции getline.

char s [8 0] , с;
ifstream infile("Test.dat");
if (! in f i le)
(
ShowMessage("Файл не удается открыть");
return;

}
while(!infile.eof ())

(
infile.getline (s,80);
// обработка строки
if (s[0] != 0) Labell->Caption = s;

}
// закрытие файла
infile.close();

388 Глава 4

GetLastError — функция API Windows
Функция API Windows, возвращает значение кода последней ошибки данного

потока.

Объявление
DWORD GetLastError(VOID) ;

Описание
Функция GetLastError возвращает значение кода последней ошибки данного

потока. Эти коды индивидуальны для каждого потока и другие потоки их не изме-
няют. Различные функции задают эти коды функцией SetLastError.

Функция GetLastError должна вызываться сразу после возврата функции,
ошибку которой вы хотите проверить. Это связано с тем, что некоторые функции
вызывают при своем успешном завершении SetLastError(O), что уничтожает код
ошибки.

Большинство функций API Win32 устанавливают код последней ошибки при
аварийном завершении, хотя некоторые устанавливают этот код в случае успешно-
го выполнения. Обычно функции задают такие коды, как FALSE, NULL,
OxFFFFFFFF или -1.

Код ошибки — 32-битовое значение. Наиболее значимый бит 31. Бит 29 зарезер-
вирован для кода, определяемого приложением. В системных кодах этот бит не ис-
пользуется. Таким образом, этот бит показывает, что код был определен приложени-
ем. Это гарантирует отсутствие пересечения между вашими и системными кодами.

Чтобы получить строку сообщения об ошибке по коду, используйте функцию
FormatMessage. Полный список кодов ошибок имеется в заголовочном файле
WINNT.H в Win32 SDK.

Пример
Проверку ошибки при выполнении какой-то функции можно осуществить, на-

пример, так:
int i = GetLastError() ;
if (i <= 32)

ShowMessage("Код ошибки "+IntToStr(i)) ;

GetNextWindow — функция API Windows
Функция API Windows, определяет дескриптор следующего или предыдущего

окна в Z-последовательности.

Объявление
HWND GetNextWindow(

HWND hWnd,
UINT wCmd);

Описание
Функция GetNextWindow определяет дескриптор следующего или предыду-

щего окна в Z-последовательности. Если указано дочернее окно, то поиск ведется
среди дочерних окон.

Параметр hWnd — дескриптор окна, от которого начинается отсчет. Параметр
wCmd определяет направление поиска. Если wCmd = GW_HWNDNEXT, то ищет-
ся следующее окно, находящееся ниже. Если wCmd = GW_HWNDPREV, то ищет-
ся предыдущее окно, находящееся выше.

Если окно найдено, то возвращается его дескриптор. Если следующего или пре-
дыдущего окна нет (в зависимости от значения wCmd), то возвращается 0. Разверну-
тую информацию об ошибке можно получить вызовом функции GetLastError.

Описания функций 389

Использование функции GetNextWindow дает тот же самый результат, что
и вызов функции GetWindow со значениями параметра GW_HWNDNEXT или
GW_HWNDPREV.

См. пример в разд. «GetWindowText — функция API Windows».

GetPrecisionMode и другие функции управления точностью
Обеспечивают доступ к битам управления точностью управляющего слова FPU.

Заголовочный файл Math.hpp.

Синтаксис
enum TFPUPrecisionMode {pmSingle, pmReserved,

pmDouble, pmExtended}

extern PACKAGE TFPUPrecisionMode fastcall
GetPrecisionMode(void);

extern PACKAGE TFPUPrecisionMode fastcall
SetPrecisionMode(const TFPUPrecisionMode Precision);

Описание
Функции GetPrecisionMode и SetPrecisionMode обеспечивают доступ к битам

управления точностью управляющего слова FPU (см. разд. 1.9.3). Обе функции
возвращают значение, соответствующее текущим значениям этих битов, в виде пе-
речислимого тип TFPUPrecisionMode. Но функция SetPrecisionMode, помимо
этого, устанавливает заданное значение битов управления точностью Precision.

Биты управления точностью могут принимать следующие значения:

pmSingle

pmReserved

pmDouble

pmExtended

точность, соответствующая типу Single

не используется

точность, соответствующая типу Double

точность, соответствующая типу Extended

К битам управления точностью, как и ко всем остальным битам управляюще-
го слова FPU, можно также получить доступ с помощью функций Get8087CW.
Set8087CW. controls?, controlfp.

GetRoundMode и другие функции управления округлением
Обеспечивают доступ к битам управления округлением управляющего слова

FPU.

Заголовочный файл Math.hpp.

Синтаксис
enum TFPURoundingMode (rmNearest, rmDown, rmUp, rmTruncate)

extern PACKAGE TFPURoundingMode fastcall GetRoundMode(void) ;
extern PACKAGE TFPURoundingMode fastcal l

SetRoundMode(const TFPURoundingMode RoundMode);

Описание
Функции GetRoundMode и SetRoundMode обеспечивают доступ к битам

управления округлением управляющего слова FPU (см. разд. 1.9.3). Обе функции
возвращают значение, соответствующее текущим значениям этих битов, в виде пе-
речислимого тип TFPURoundingMode. Но функция SetRoundMode, помимо этого,
устанавливает заданное значение битов управления округлением RoundMode.

390 Глава 4

Биты управления округлением могут принимать следующие значения:

rmNearest

rmDown

rmUp

rmTruncate

округление к

округление к
рицательной

округление к
ложительной

ближайшему значению

меньшему значению,
бесконечности

большему значению,
бесконечности

т.е.

т.е.

округление

округление

в сторону

в сторону

от-

по-

усечение младших разрядов, т.е. округление в сторону нуля

К битам управления округлением, как и ко всем остальным битам управляю-
щего слова FPU, можно также получить доступ с помощью функций Get8087CW.
Set8087CW. _contro!87. controlfp.

gets — ввод строки из потока
Вводит строку из стандартного потока.
См. разд. «fputs и другие функции ввода/вывода строк».

getwc — ввод символа из потока
Вводит символ из указанного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

getwchar — ввод символа из потока
Вводит символ из входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

Get Window — функция API Windows
Определяет дескриптор окна, находящегося с указанным в указанном соотно-

шении (по Z-последовательности или по последовательности владельцев).

Объявление
HWND GetWindow(

HWND hWnd,
UINT uCmd

Описание
Функция GetWindow определяет дескриптор окна hWnd, находящегося с ука-

занным в указанном родственном отношении uCmd. Эта функция позволяет найти
при использовании различных значений uCmd дескрипторы любых открытых
окон Windows.

Параметр hWnd — дескриптор окна, по отношению к которому определяются
соотношения родства. Параметр uCmd определяет соотношения родства и может
принимать значения:

GW_CHILD

GW_HWNDFIRST

Определяется дескриптор дочернего окна на вершине Z-по-
следовательности, если указано родительское окно. В про-
тивном' случае возвращается дескриптор NULL. Проверя-
ются только дочерние окна указанного окна, но не его по-
томков.

Определяется дескриптор окна того же типа, находящего-
ся в верху Z-последовательности.

Описания функций 391

GW_HWNDLAST

GW_HWNDNEXT

GW_HWNDPREV

GW_OWNER

Определяется дескриптор окна того же типа, находящего-
ся в внизу Z-последовательности.

Определяется дескриптор следующего окна в Z-последова-
тельности.

Определяется дескриптор предыдущего окна в Z-последо-
вательности.

Определяется дескриптор окна, являющегося владельцем
указанного.

Если окно найдено, т/о возвращается его дескриптор. Если требуемого окна не
существует, то возвращается 0. Развернутую информацию об ошибке можно полу-
чить вызовом функции GetLastError.

GetWindowText — функция API Windows _ _
Функция API Windows, копирует текст, связанный с указанным окном, в ука-

занный буфер.

Объявление
int GetWindowText (

HWND hWnd, // дескриптор окна, содержащего текст
LPTSTR IpString, // буфер
int nMaxCount // максимальное число, символов

Описание
Функция API Windows GetWindowText копирует текст, связанный с указан-

ным окном (отображаемый в его полосе заголовка) или оконным элементом в ука-
занный буфер указанного размера. Она не может воспринять текст окна редакти-
рования из другого приложения.

Параметр hWnd — дескриптор окна. Параметр IpString указывает на буфер,
в который копируется текст. Параметр nMaxCount определяет максимальное чис-
ло копируемых символов. Если число символов в тексте превышает эту величину,
текст усекается.

Если функция выполнилась успешно, она возвращает число скопированных
символов, исключая завершающий нулевой символ. Если окно не имеет полосы за-
головка или текст заголовка отсутствует, или при неверном дескрипторе возвра-
щается нуль. Развернутую информацию об ошибке можно получить вызовом
функции GetLastError.

Функция посылает указанному окну или элементу, указанному в ее вызове,
сообщение Windows WM_GETTEXT.

Пример
В приведенном ниже коде предполагается, что неизвестен класс приложения

Windows «Калькулятор». Код проверяет, имеется ли выполняемое приложение
«Калькулятор», и если имеется, то его выполнение завершается посылкой функ-
цией SendMessage сообщения WM CLOSE.

HWND H =Handle;
char Pen [128] ;
do

H = GetNextWindow(H,

GetWindowText (H, Pch,
if (CompareText (Pch,
break;

) while (H != NULL) ;

GW_HWNDNEXT) ;
128) ;
"Калькулятор") == О)

392 Глава 4

if (H != NULL)
SendMessage(H, WM_CLOSE,0,0);

Первый выполняемый оператор присваивает переменной Н значение свойства
Handle формы вашего приложения. Далее в цикле просматриваются окна, лежа-
щие ниже в Z-последовательности, и их текст функцией GetWindowText заносит-
ся в переменную Pch. При этом ищется окно с текстом «Калькулятор». Для этого
используется функция CompareText. сравнивающая без учета регистра строку, на
которую указывает Pch, со строкой «Калькулятор». Если строки совпадают, функ-
ция CompareText возвращает нуль. Пользуясь тем, что C++ позволяет опериро-
вать с целыми значениями как с булевыми, строку оператора if можно было бы за-
писать и в таком виде:

if(! CompareText(Pch, "Калькулятор"))

Окно калькулятора будет найдено, если оно получало фокус после запуска ва-
шего приложения. Таким образом, если пользователь запустил «Калькулятор» из
вашего приложения или даже если «Калькулятор» был запущен ранее или незави-
симо от вашего приложения, дескриптор его окна будет найден.

Если цикл завершается со значением H = NULL, значит приложение «Кальку-
лятор» в данный момент не открыто.

_getws — ввод строки из потока
Вводит строку из стандартного потока.
См. разд. «fputs и другие функции ввода/вывода строк».

HourOf — дешифрация часа
Определяет час.
См. разд. «DayOf и другие функции дешифрации дат и времени».

HourOfTheDay — дешифрация часа дня
Определяет час дня.
См. разд. «DayOf и другие функции дешифрации дат и времени».

HoursBetween и другие функции определения разности часов двух дат
Возвращают число часов между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
#include <DateUtils.hpp>
extern PACKAGE int fastcall HoursBetween(

const System::TDateTime ANow,
const System::TDateTime AThen);

extern PACKAGE double fastcall HourSpan(
const System::TDateTime ANow,
const System::TDateTime AThen);

Описание
Функции HoursBetween и HourSpan возвращают число часов между двумя

значениями даты и времени ANow и AThen типа TDateTime. Функция Days-
Between возвращает число полных часов между двумя датами. А функция Day-
Span возвращает действительное число, содержащее дробную часть, отображаю-
щую неполные часы.

Примеры
Операторы
TDateTime Tl = EncodeDateTime(2002, 10, 5, 11, 00, 45, 3 0 0) ;

Описания функций 393

TDateTime Т2 = EncodeDateTime(2002, 10, 5, 11, 59, 45, 3 0 0) ;
int i = HoursBetween(T2, T l) ;
double r = HourSpan(T2, T l) ;

зададут переменной i значение О, а переменной г значение 0,983333333220799.
В этом примере значения дат и времени Т1 и Т2 задаются с помощью функции En-
codeDateTime. Различие между двумя значениями составляет 59 минут. Поэтому
функция HoursBetween возвращает 0, так как разность значений менее часа.
А функция HourSpan возвращает число, близкое к единице.

HourSpan — разность часов двух дат
Возвращает число часов между двумя значениями даты и времени.
См. разд. «HoursBetween и другие функции определения разности часов двух

дат».

InputBox — диалог запроса пользователю
Возвращает текст, введенный пользователем в диалоговом окне с указанным

заголовком и сообщением.

Заголовочный файл Dialogs.hpp.

Синтаксис
linclude <Dialogs.hpp>
extern PACKAGE AnsiString fastcall InputBox(

constAnsiString ACaption, const AnsiString APrompt,
const AnsiString A D e f a u l t) ;

Описание
Функция InputBox предлагает пользователю диалоговое окно (см. рис. 4.1) с за-

головком ACaption, с предложением APrompt пользователю что-то написать и
с окошком редактирования, в котором предварительно загружено значение текста
по умолчанию ADefault. Если пользователь нажмет в окне ОК, то функция вернет
введенную им строку текста. Если же пользователь в диалоге нажал Cancel, или на-
жал Esc, или закрыл окно системной кнопкой, то функция вернет строку ADefault,
даже если перед этим пользователь что-то написал в окошке редактирования.

Понять по возвращенному результату, написал ли пользователь какой-то
текст, или отказался от ввода, можно, сравнив возвращенный результат со значе-
нием ADefault. Впрочем, результат останется неизменным и в случае, если поль-
зователь ничего не написал в диалоге, но нажал кнопку ОК. Если надо достоверно
знать, отказался ли пользователь от диалога, или нажал ОК, следует использовать
похожую на InputBox функцию InputQuery.

Пример
Оператор
AnsiString Goal = InputBox("Регистрация",

"Укажите цель Вашего приезда",
"Неизвестна");

отобразит окно, представленное на рис. 4.1, и вернет текст, введенный пользовате-
лем, или строку "Неизвестна".

Рис. 4.1
Пример окна, выводимого функцией InputBox Укажите цепь Вашего приезда

[Неизвестна

ОК | Caned

394 Глава 4

Еще один пример использования InputBox приведен в описании функции
SelectDirectorv.

InputQuery — диалог запроса пользователю
Возвращает текст, введенный пользователем в диалоговом окне с указанным за-

головком и сообщением, и позволяет определить действия пользователя в диалоге.

Заголовочный файл Dialogs.hpp.

Синтаксис
#include <Dialogs.hpp>
extern PACKAGE bool fastcall InputQuery(

constAnsiString ACaption, const AnsiString APrompt,
AnsiString S V a l u e) ;

Описание
Функция InputQuery предлагает пользователю диалоговое окно (см. рис. 4.2)

с заголовком ACaption, с предложением APrompt пользователю что-то написать и
с окошком редактирования, в котором пользователь может написать ответ. Пара-
метр Value — это строка текста в окошке редактирования. Вы можете присвоить
ей начальное значение, а после вызова InputQuery в параметре Value будет нахо-
диться ответ пользователя.

Рис. 4.2
Пример окна, выводимого функцией InputQuery

Пожалуйста, представьтесь

Укажите, как в дальнейшем о6|идй!ъся к В

•Неизвестный

ОК Cancst

Функция InputQuery возвращает true только в том случае, если пользователь
вышел из диалога, нажав ОК. В остальных случаях (при нажатой Esc, при щелчке
на системной кнопке окна или на кнопке Cancel) возвращается false, а значение
параметра Value сохраняется тем, какое было до обращения к InputQuery. Этой
возможностью достоверно определить, нажал ли пользователь ОК или вышел из
окна иным способом, функция InputQuery отличается от похожей на нее функции
InputBox.

Пример
Операторы
AnsiString Ыате="Неизвестный";
if (I InputQuery("Пожалуйста, представьтесь",

"Укажите, как в дальнейшем обращаться к Вам", N a m e))
ShowMessage("Вы не представились, господин Неизвестный");

else ShowMessage("Здравствуйте, господин " + Name + " ! ") ;

отобразят окно, представленное на рис. 4.2, и после окончания диалога выдадут
сообщение, зависящее от того, нажал ли пользователь в диалоге ОК, или нет.

InRange — функция
Определяет, лежит ли указанное число в заданном диапазоне.

Заголовочный файл Math.hpp.

Синтаксис
extern PACKAGE bool fastcall InRange(const int AValue,

const int AMin, const int AMax)

L = InRangedl, 1, 10) ;
L = InRange(0, 1, 10);

Описания функций 395

extern PACKAGE bool fastcall InRange(const int64 AValue,
const int64 AMin, const int64 AMax);

extern PACKAGE bool fastcall InRange(const double AValue,
const double AMin, const double AMax);

Описание
Перегруженные варианты функции InRange возвращают true, если число

AValue лежит в диапазоне AMin - AMax, включая границы. Возвращается false,
если AValue строго меньше AMin или строго больше АМах.

Например, операторы
L = InRange(5, 1, 10) ;
L = InRange (1, I , 10);
L = InRange (10, 1, 10);

присвоят булевой переменной L значение true, а операторы
L = InRangedl,
L = InRange(0,

присвоят L = false.

IntPower — возведение в целую степень

Возводит заданное число в заданную целую степень.
См. разд. «pow, powl и другие функции возведения в степень».

IntToStr — преобразование целого числа в строку

Преобразует целое число в строку.

Заголовочный файл SysUtils.hpp.

Синтаксис
extern PACKAGE AnsiString fastcall IntToStr(int Value);
extern PACKAGE AnsiString fastcall IntToStr(int64 Value);

Описание
Функция IntToStr преобразует целое значение Value в строку. Параметр

Value — целая константа или выражение. Если преобразовываемое значение пре-
вышает величину, допустимую для целого типа данных, результат преобразования
может быть неверным.

Примеры
Операторы
int A = 40000;
int В = 40000;
Editl->Text = IntToStr(A * В);

обеспечат отображение в окне Editl строки "1600000000". Но если в этих операто-
рах заменить число 40000 на 50000, то результат будет "-1794967296", т.е. невер-
ным, так как выражение, переданное в функцию IntToStr, превысит допустимое
значение.

Islnfinite — проверка на бесконечность
Определяет, равен ли аргумент бесконечности.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE bool fastcall Islnfinite(const double AValue);

396 Глава 4

Описание
Функция Islnfinite определяет, не равен ли аргумент значениям Infinity или

Neglnfinity — константам, определяющим положительную и отрицательную бес-
конечности (см. в гл. 1 разд. 1.9.3). В случае бесконечного значения аргумента воз-
вращается true. В этом случае знак бесконечности можно определить функцией
Sign.

Например:
if (I s l n f i n i t e (X))

if (Sign(X) < 0)
ShowMessage("Отрицательная бесконечность");

else ShowMessage ("Положительная бесконечность");

Учтите, что константы Infinity и Neglnfinity нельзя непосредственно исполь-
зовать в операциях сравнения. Именно для таких сравнений и предусмотрена
функция Islnfinite. Учтите также, что бесконечные значения появляются при вы-
числениях с плавающей запятой только в случае, если вы замаскировали генера-
цию соответствующих исключений

IsNan — функция
Определяет, не равен ли аргумент нечисловому значению.

Заголовочный файл Math.hpp.

Синтаксис
- extern PACKAGE bool fastcall IsNan (const double AValue);

Описание
Функция IsNan определяет, равен ли аргумент значению NaN — константе, оп-

ределяющей нечисловой результат выполнения арифметической операции (см. в гл. 1
разд. 1.9.3). Если аргумент равен NaN, то возвращается true. Учтите, что константу
NaN нельзя непосредственно использовать в операциях сравнения. Именно для тако-
го сравнения и введена функция IsNan. Учтите также, что значение NaN появляется
при вычислениях с плавающей запятой только в случае, если вы замаскировали гене-
рацию соответствующих исключений.

IsToday — определяет, является ли дата сегодняшней
Позволяет определить, является ли дата сегодняшней.
См. разд. «Date и другие функции определения даты и времени».

labs •— функция вычисления модуля
Функция вычисляет модуль целого числа.
См. разд. «abs, labs, fabs, fabsl — функции вычисления модуля.

Idexp, Idexpl, Ldexp — умножение на 2 в степени
Умножают число на 2 в заданной степени.

Заголовочные файлы math.h и math.hpp.

Синтаксис
tfinclude <math.h>
double Idexp (double x, int exp);
long double Idexpl (long double x, int exp) ;

#include <math.hpp>
extern PACKAGE Extended fastcall Ldexp(Extended X, int exp);

Описания функций 397

Описание
Функции вычисляют х • 2ехР, т.е. умножают число х на 2 в заданной степени ехр.
Если при вычислении возникают ошибки, их обработчик можно изменить с по-

мощью функций _matherr (для Idexp) и _matherrl (для Idexpl) (см. разд. 3.1.4.4).

Idiv — целочисленное деление
Целочисленное деление, возвращающее целое значение частного и остаток.
См. разд. «div и другие функции целочисленного деления».

LnXPl — вычисление натурального логарифма
Вычисляют логарифмы по разным основаниям.
См. разд. «log и другие логарифмические функции».

log и другие логарифмические функции
Вычисляют логарифмы по разным основаниям.

Заголовочные файлы math.h и math.hpp.

Синтаксис
tinclude <math.h>
double log (double x) ;
long double logl(long double x) ;
double loglO(double x) ;
long double loglOl (long double x) ;

linclude <math.hpp>
extern PACKAGE Extended fastcal l LoglO(Extended X) ;
extern PACKAGE Extended fastcall Log2(Extended X) ;
extern PACKAGE Extended fastcall LogN (Extended N, Extended X) ;
extern PACKAGE Extended fastcal l LnXPl(Extended X) ;

Описание
Функции вычисляют логарифмы по разным основаниям и для разных типов

данных. Функции log и logl вычисляют натуральный логарифм по основанию е.
Функции loglO и loglOl, LoglO вычисляют десятичный логарифм по основа-
нию 10. Функция Log2 вычисляет логарифм по основанию 2. Функция LogN вы-
числяет логарифм по произвольному основанию, передаваемому в нее через пара-
метр N. Функция LnXPl вычисляет натуральный логарифм, но не от аргумента X,
а от выражения (Х+1). Эту функцию удобно использовать при значениях X « 1.

Если в функции (кроме LnXPl) передается отрицательный аргумент, глобаль-
ной переменной еггпо задается значение EDOM. Если в те же функции передается
аргумент, равный 0, то возвращается отрицательное значение HUGE_VAL (функ-
ции log и loglO), или _LHUGE_VAL (функции logl и loglOl). Переменной еггпо
задается при этом значение ERANGE.

Стандартный обработчик ошибок этих функций можно изменить, задав собст-
венные обработчики — функции _matherr и _matherrl (см. разд. 3.1.4.4).

loglO, loglOl, logl — вычисление логарифмов
Вычисляют десятичные и натуральные логарифмы.
См. разд. «log и другие логарифмические функции».

LoglO, Log2, LogN — вычисление логарифмов
Вычисляют логарифмы по разным основаниям.
См. разд. «log и другие логарифмические функции».

398 Глава 4

LowerCase — преобразование строки к нижнему регистру
Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

_lrand — генерация псевдослучайных чисел
Генерирует целые псевдослучайные числа.
См. разд. «random и другие функции генерации псевдослучайных чисел».

_lrotl — циклический сдвиг целого числа влево
Осуществляет циклический сдвиг влево целого числа.
См. разд. «_rotl и другие функции циклического сдвига».

_lrotr — циклический сдвиг целого числа вправо
Осуществляет циклический сдвиг вправо целого числа.
См. разд. «_rotl и другие функции циклического сдвига».

main — функция
Главная функция консольных приложений С и C++.

Определения
#include <dos.h>
extern int _argc;
extern char **_argv; «
extern wchar_t ** _wargv;
extern char ** _environ;
extern wchar_t ** _wenviron;

int main ()
int main(int argc)
int main(int argc, char * argv[])
int main(int argc, char * argv[], char * envf])
int wmain(int argc, wchar_t *argv[])
int _tmain(int argc, _TCHAR *argv[])

Описание
Функция main размещается в головном файле консольного приложения С

и C++ и ей передается управление в начале выполнения приложения.
В настоящее время стандарт C++ признает только две формы функции — пер-

вую и третью. Впрочем, реально компиляторы признают и остальные формы,
и даже иные — например, с возвращаемым типом void.

Вариант wmain является версией Unicode, в которой третий параметр — стро-
ка Unicode. Вариант _tmain — это макрос, форма развертывания которого автома-
тически изменяется в зависимости от типа приложения.

Параметр argc содержит число параметров, передаваемых в приложение через
командную строку. В число этих параметров входит и нулевой параметр, представ-
ляющий собой имя выполняемого файла с полным путем к нему. Таким образом,
если никакие параметры через командную строку не переданы, argc = 1.

Параметр argv — это массив указателей на строки, содержащие значения па-
раметров, переданных через командную строку. Параметр env — это аналогичный
параметру argv массив указателей на строки, содержащие информацию о перемен-
ных окружения в форме:

имя_переменной=значение

Имена переменных — это такие имена, как PATH, COMSPEC и т.п.

Описания функций 399

В заголовке функции main можно не указывать никаких параметров. В этом
случае доступ к параметрам командной строки и к переменным окружения можно
получить с помощью глобальных переменных _argc, _argv и _environ.

Согласно стандарту C++, функцию не обязательно завершать оператором
return. В отличие от С, C++ при отсутствии этого оператора неявно вставляет
в конце функции оператор

return 0;

свидетельствующий об успешном выполнении.

Примеры
Следующий код отображает всю информацию о параметрах командной строки

и переменных окружения, полученную из параметров функции main. Для просто-
ты тексты сообщений даны английские. Для использования в консольных прило-
жениях русских текстов надо перекодировать их в формат DOS с помощью функ-
ций CharToOem или CharToOemBuff (см. разд. «CharToOem, CharToOemBuff -
перевод строки в текст DOS»).

tinclude <stdio.h>
tinclude <stdlib.h>

int main(int argc, char *argv[], char *env[])
{

int i;
printfC'The value of argc is %d \n\n", argc);
printf("These are the %d command-line arguments"

" passed to main:\n\n", argc);
for (i = 0; i < argc; i++)
printf (" argv[%d]: %s\n", i, argv[i]);

printf("\nThe environment string(s) "
"on this system are:\n\n");

for (i = 0; env[i] != NULL; i++)
printf (" env[%d]: %s\n", i, env[i]);

getchar();
return 0;

}

Выдаваемый это программой текст может иметь вид (считается, что через ко-
мандную строку передан один параметр "-v"):

The value of argc is 2

These are the 2 command-line arguments passed to main:

argv [0] : С:\CBOILDER\TEST.EXE
argv[l]: -v

The environment string (s) on this system are

env[0]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINT;С:\DOS;С:\ CBUILDER

Ниже приведен аналогичный пример, в котором вместо параметров функции
main используются глобальные переменные:

#include <stdio.h>
tinclude <stdlib.h>

int m a i n (/ * i n t argc, char *argv[-], char * e n v [] * /)
{
int i;
printfC'The value of argc is %d \n\n", _argc);

400 Глава 4

printf("These are the %d command-line arguments"
" passed to _argc\n\n", _argc);

for (1 = 0; 1 < __argc; i + +)
printf (" argv[%d] : %s\n", 1, _argv[i]);

p r i n t f (" \ n T h e environment s t r i n g (s) "
"on this system a r e : \ n \ n ") ;

for (i = 0; _environ[i] != NULL; i++)
p r i n t f (" e n v [% d] : % s \ n " , i , _ e n v i r o n [i]) ;

getchar () ;
return 0;

}

Результат выполнения этой программы аналогичен приведенному выше.
В данном примере весь вывод помещен в тело функции main. Но с таким же

успехом он мог бы быть помещен в любую другую функцию, определенную в при-
ложении.

malloc и другие функции динамического распределения памяти
Функции динамически выделяют и освобождают память.

Заголовочные файлы stdlib.h или alloc.h.

Синтаксис
void *malloc(size_t size);
void *calloc(size_t nitems, size_t size);
void *realloo(void *block, size_t size);
void free(void *block);

Описание
Функции malloc и calloc динамически выделяют блок памяти под объекты

(см. гл. 1, разд. 1.11). Функция realloc позволяет изменить размер ранее выделен-
ного блока. А функция free освобождает выделенную этими функциями память.
Имеется также альтернативный подход к динамическому распределению памя-
ти — операции new и delete, описанные в разд. 1.11.

Функция malloc выделяет в динамически распределяемой области памяти
(heap) блок размером в size байтов. В случае успешного выделения памяти функ-
ция возвращает указатель на выделенный блок. Если не хватило места для блока
требуемого размера или если size = 0, возвращается NULL.

Другая функция — calloc выделяет память под nitems объектов, размер каж-
дого из которых равен size. Таким образом, общий объем выделяемой памяти со-
ставляет nitems * size. Выделенная память инициализируется нулями. В случае
успешного выделения памяти функция возвращает указатель на выделенный
блок. Если не хватило места для блока требуемого размера, или если size = 0, или
nitems = 0, возвращается NULL.

Еще одна функция — realloc позволяет изменить размер ранее выделенного бло-
ка памяти. Она изменяет размер блока в heap, на который указывает block, до разме-
ра size. При этом предполагается, что block указывает блок памяти, выделенной ра-
нее функциями malloc, calloc или realloc. Если же аргумент block задан равным
NULL, то функция realloc работает так же, как описанная выше функция malloc.

Если размер size задан равным нулю, то выделенный ранее блок, на который
указывает block, освобождается, а функция возвращает NULL. Таким образом,
функция с size равным 0 может использоваться не для выделения памяти, а для
освобождения памяти, выделенной ранее.

Если блок нового размера не может быть выделен, то функция realloc возвраща-
ет NULL. Если же память выделилась успешно, то возвращается адрес выделенного
блока. При этом он может отличаться от начального значения block, поскольку функ-
ция при необходимости осуществляет копирование содержимого блока в новое место.

Описания функций 401

Функция free освобождает блок памяти, выделенный ранее функциями mal-
loc, calloc или realloc, на который указывает block.

Примеры
Следующий код динамически выделяет функцией malloc память под строку,

а затем, после выполнения с ней каких-то операций, освобождает выделенную па-
мять.

tinclude <stdio.h>
#include <alloc.h>
char *str;

// str - указатель на строку, под которую выделена память
str = (char *) m a l l o c (1 0 0) ;

// освобождение памяти
f ree(s t r) ;

В этом примере можно было бы использовать для выделения памяти функцию
calloc:

str = (char *) cal loc(100, s i z e o f (c h a r)) ;

Размер выделенной функциями malloc или calloc памяти можно было бы из-
менить, например, следующим оператором:

str = (char *) realloc (str, 20) ;

Впрочем, к тому же результату привел бы и более простой оператор:
realloc(str, 20);

Необходимо помнить, что рассмотренные функции возвращают NULL (0),
если память не удалось выделить. Поэтому прежде, чем использовать возвращен-
ные ими указатели, надо обязательно проверять, не равны ли они NULL. Иначе
возможны очень тяжелые ошибки при работе программы.

MaxIntValue, Max Value — вычисление максимального значения

Возвращают максимальное значение со знаком элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
finclude <Math.hpp>
extern PACKAGE int fastcall

MaxIntValue(const int * Data, const int Data__Size);

extern PACKAGE double fastcall
MaxValue(const double * Data, const int Data_Size);

Описание
Функции MaxIntValue и MaxValue возвращают максимальное значение со

знаком элементов массива Data соответственно целых или действительных чисел.
Параметр Data_Size — индекс последнего элемента массива, учитываемого при
подсчете среднего значения.

Например, оператор
В = MaxValue(A, 99);

присваивает действительной переменной В максимальное из значений первых
100 элементов, хранящихся в массиве действительных чисел А.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

402 Глава 4

_mbscpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

_mbslwr — преобразование строки к нижнему регистру

Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

_mbsncpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

_mbsupr — преобразование строки к верхнему регистру

Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистру».

Mean — вычисление среднего значения

Возвращает среднее арифметическое значение элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE Extended fastcall

Mean(const double * Data, const int Data_Size);

Описание
Функция Mean возвращает среднее арифметическое значение (математическое

ожидание) элементов массива действительных чисел Data. Параметр Data_Size -
индекс последнего элемента массива, учитываемого при подсчете среднего значе-
ния. Если имеется массив действительных чисел А, содержащий п элементов, то
среднее значение рассчитывается по формуле

п

j=l

Например, оператор
В = Mean(А, 99) ;

присваивает действительной переменной В значение математического ожидания
первых 100 элементов, хранящихся в массиве действительных чисел А.

Если необходимо одновременно рассчитывать математическое ожидание и сред-
нее квадратическое отклонение, то лучше воспользоваться более быстрой процеду-
рой MeanAndStdDev.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел ».

MeanAndStdDev — вычисление среднего значения
и среднего квадратического отклонения

Вычисляет математическое ожидание и среднее квадратическое отклонение
элементов массива.

Описания функций 403

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE void fastcall

MeanAndStdDev(const double * Data, const int Data_Size,
Extended &Mean, Extended &StdDev);

Описание
Функция MeanAndStdDev рассчитывает для массива Data (Data_Size — ин-

декс последнего элемента массива, учитываемого при подсчете) одновременно ма-
тематическое ожидание Mean и несмещенную оценку среднего квадратического
отклонения StdDev. Время вычислений по процедуре MeanAndStdDev вдвое мень-
ше, чем при последовательном вызове функций Mean и StdDev. Поэтому, если тре-
буется знать и математическое ожидание, и среднее квадратическое отклонение,
то лучше использовать именно эту процедуру.

Формулы вычислений те же, которые приведены в описаниях функций Mean
и StdDev.

При очень больших значениях математического ожидания (> 107) и сравни-
тельно малых значениях среднего квадратического отклонения при расчетах воз-
можны погрешности.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

memccpy — копирование блоков памяти
Копирует блок памяти.
См. разд. «тетеру и другие функции копирования и заполнения блоков памя-

ти».

тетеру и другие функции копирования и заполнения блоков памяти
Копируют блоки памяти или заполняют блок заданными значениями.

Заголовочные файлы mem.h, string.h.

Синтаксис
void *memcpy(void *dest, const void *src, size_t n); <
void *_wmemcpy'(void *dest, const void *src, size_t n) ;
void *memmove(void *dest, const void *src, size_t n);

^void *memccpy(void *dest, const void *src,
int c, size t n);

void *memset (void *s, int c, size__t n) ;
void *_wmemset(void *s, int c, size_t n) ;

Описание
Функции memcpy и _wmemcpy копируют в блок dest n байтов из блока src.

Например, операторы
char Sl[] = "12345", S2[] = "6789";
memcpy(SI, S2, strlen(S2)) ;

приведут к тому, что в массиве S1 будет храниться текст "67895". Как видите, при
копировании в конце копии не записывается нулевой символ. Так что после скопи-
рованных символов идут те символы, которые были записаны в приемник ранее.
Если это не устраивает, надо перед копированием очистить приемник описанной
далее функцией memset.

Функции возвращают указатель на приемник копирования. Но это указатель
типа (void *), так что перед использованием его надо явным образом приводить

404 Глава 4

к требуемому типу. Например, если в приведенном выше коде заменить второй
оператор на

char *Р = (char *) merncpy (SI, S2, strle'n (S2)) ;

то Р будет указывать на строку SI, содержащую результат копирования.
При применении функций memcpy и _wmemcpy блоки источника и приемни-

ка не должны перекрываться в памяти. Иначе результат непредсказуем. Функция
memmove отличается тем, что работает даже при перекрытии блоков в памяти.
Т.е. она работает так, как будто блок-источник сначала копируется во временный
массив, а затем содержание этого массива переносится в блок-приемник.

Функция memccpy копирует src в dest, пока или не скопирует первый символ,
совпадающий с заданным значением с, или не скопирует п символов. Если символ
с скопирован, функция возвращает указатель на байт в dest, следующий непосред-
ственно за ним. Если символ с не скопирован, возвращается NULL.

Ниже приведен пример применения функции memccpy:
char S[21];
char *Source = (Editl->Text).c_str();
char *P = (char *)memccpy(S, Source, ' ', 20) ;
if (P == NULL)

ShowMessage("Пробел в первых 20 символах не найден");
else
{
МР-1) = ' \ 0 ' ;
ShowMessage("Слово '"+AnsiString(S)+"', символов "+

IntToStr(Р - S - 1));

}

Создается буфер S на 20 значащих символов (плюс нулевой символ). В строку
Source заносится текст из окна Editl. Затем из Source в S копируется текст до
символа пробела (одно слово), но не более 20-ти символов. Если указатель Р, кото-
рый вернула функция memccpy, равен NULL, выводится соответствующее сообще-
ние. В противном случае в S заносится нулевой символ в позицию, на 1 меньшую,
чем та, на которую указывает Р. Выводится сообщение о найденном слове и числе
символов в нем.

Функции memset и _wmemset заполняют первые п байтов блока s символами
с и возвращают указатель на s. Например, оператор

memset(S, ' \ 0 ' , s i z e o f (S) - 1);

заполняет всю строку S нулевыми символами. Это можно использовать для пред-
варительной очистки строки перед копированием в нее рассмотренными ранее
функциями. Операторы

memset(S, ' * ' , s izeof(S) - 1);
* (S + sizeof (S)-l) = ' \ 0 ' ;

заполняют строку S символами "*" и записывают в конец нулевой символ. Подоб-
ная строка может использоваться далее для записи разделительных строк в ка-
ких-то операциях вывода.

Если блоки памяти являются строками (массивами символов), то, помимо рас-
смотренных выше функций, для копирования можно использовать функции копи-
рования строк, описанные в разд. «StrCopy и другие функции копирования строк».

memmove — копирование блоков памяти
Копирует блок памяти.
См. разд. «memcpy и другие функции копирования и заполнения блоков памя-

ти».

Описания функций 405

memset — заполнение блока памяти
Заполняет блок памяти заданным символом.
См. разд. «memcpy и другие функции копирования и заполнения блоков памя-

ти».

MessageBox — метод TApplication
Метод, отображающий полностью русифицированное диалоговое окно сообщения.

Модуль Forms

Объявление

function MessageBox(Text, Caption: PChar; Flags: Longint) : Integer;

Описание
Функция MessageBox является методом переменной Application типа TAppli-

cation, доступной в любом проекте C++Builder. Он позволяет устранить основной
недостаток других функций и процедур отображения диалоговых окон, таких, как
ShowMessage. ShowMessageFmt. MessageDlg. MessageDlgPos. CreateMessage-
Dialog. Этим недостатком является отсутствие русификации диалоговых окон:
английские надписи на кнопках и невозможность указать русский текст заголовка
окна (кроме функции CreateMessageDialog).

Функция MessageBox отображает диалоговое окно с заданными кнопками, со-
общением и заголовком и позволяет проанализировать ответ пользователя. Функ-
ция инкапсулирует функцию MessageBox API Windows. Параметр Text представ-
ляет собой текст сообщения, которое может превышать 255 символов. Для длин-
ных сообщений осуществляется автоматический перенос текста. Параметр Caption
представляет собой текст заголовка окна. Он тоже может превышать 255 симво-
лов, но не переносится. Так что длинный заголовок приводит к появлению длинно-
го и не очень красивого диалогового окна.

Параметр Flags представляет собой множество флагов, определяющих вид
и поведение диалогового окна. Этот параметр может комбинироваться операцией
сложения по одному флагу из следующих групп.

i
Флаги кнопок, отображаемых в диалоговом окне

Флаг

MB_ABORTRETRYIGNORE

МВ_ОК

MB_OKCANCEL

MB_RETRYCANCEL

MB YESNO

MB_YESNOCANCEL

Значение (в скобках даны надписи в русифици-
рованных версиях Windows)

Кнопки Abort (Стоп), Retry (Повтор) и Ignore (Пропу-
стить).

Кнопка ОК. Этот флаг принят по умолчанию.

Кнопки ОК и Cancel (Отмена).

Кнопки Retry (Повтор) и Cancel (Отмена),

Кнопки Yes (Да) и No (Нет).

Кнопки Yes (Да), No (Нет) и Cancel (Отмена).

Флаги пиктограмм в диалоговом окне

Флаг

MB ICONEXCLAMATION,
MB ICONW ARMING

Пиктограмма

Восклицательный
преждение).

знак (замечание, преду-

406 Глава 4

Флаг

MB ICONINFORMATION,
MB ICONASTERISK

MB_ICONQUESTION

MB ICONSTOP,
MB ICONERROR,
MB ICONHAND

Пиктограмма

Буква "i" в круге (подтверждение).

Знак вопроса (ожидание ответа).

Знак креста на красном круге (запрет,
ошибка).

Флаги, указывающие кнопку по умолчанию (которая в первый момент на-
ходится в фокусе)

Флаг

MB_DEFBUTTON1

MB_DEFBUTTON2

MB DEFBUTTON3

MB_DEFBUTTON4

Кнопка

Первая кнопка. Это принято по умолчанию.

Вторая кнопка.

Третья кнопка.

Четвертая кнопка.

Флаги модальности

Флаг Пояснение

MB APPLMODAL Пользователь должен ответить на запрос, прежде чем
сможет продолжить работу с приложением. Но он мо-
жет перейти в окна другого приложения. Он может так-
же работать со всплывающими окнами данного прило-
жения. Этот флаг принят по умолчанию.

MB SYSTEMMODAL То же самое, что MB_APPLMODAL, но окно диалога
отображается в стиле WS_EX_TOPMOST, то есть всегда
остается поверх других окон, даже если пользователь
перешел к другим приложениям. Используется для пре-
дупреждения о серьезных ошибках, требующих немед-
ленного вмешательства.

Некоторые дополнительные флаги (могут задаваться оба флага)

Флаг

MB_HELP

MBJTOPMOST

Пояснение

Добавляет в окно кнопку Help (Справка), щелчок на которой
или нажатие клавиши F1 генерирует событие Help.

Помещает окно всегда сверху (в стиле WS EX TOPMOST).

Возможны еще некоторые флаги, определяющие характер поведения окна при
работе в сети нескольких пользователей, позволяющие отображать тексты справа
налево (для восточных языков) и т.п.

Функция возвращает нуль, -если не хватает памяти для создания диалогового
окна. Если же функция выполнена успешно, то возвращаемая величина свиде-
тельствует о следующем:

Описания функций 407

Значение

IDABORT

IDCANCEL

IDIGNORE

IDNO

IDOK

IDRETRY

IDYES

Численное
значение

3

2

5

7

1

4

6

Пояснение

Выбрана кнопка Abort (Стоп).

Выбрана кнопка Cancel (Отмена) или нажата кла-
виша Esc.

Выбрана кнопка Ignore (Пропустить).

Выбрана кнопка No (Нет).

Выбрана кнопка ОК.

Выбрана кнопка Retry (Повтор).

Выбрана кнопка Yes (Да).

Пример
Ниже приведен текст, предусматривающий проверку правильности ввода дан-

ных перед пересылкой записи в базу данных.
if (проверка введенных данных)
{
if (Application->MessageBox (

"Хотите занести текущую запись в базу данных?",
"Подтвердите занесение в базу данных",
MB_YESNOCANCEL + MB_ICONQUESTION) != IDYES)

DataSet->Cancel () ;
Abort () ;

else

{
Application->MessageBox ("Ошибочные данные", "Ошибка",

MB_ICONSTOP) ;
Abort () ;

Отображаемые этим кодом окна приведены на рис. 4.3. Безусловно, они более
удачны за счет русификации, чем аналогичные окна, приведенные в гл. 4, в описа-
ниях функций MessageDlg и MessageDlgPos.

Рис. 4.3
Диалоговые окна, отображаемые функцией
Application->MessageBox

•> .
:^t j Хотите занести текущую запись в

!1::ж::з1 & \ о™

базу данных?

б)

MessageDlg и другие функции отображения диалоговых окон
Отображают диалоговые окна и анализируют ответ пользователя.

408 Глава 4

Заголовочный файл Dialogs.hpp.

Синтаксис

enum TMsgDlgType {mtWarning, mtError, mtlnformation,
mtConfirmation, mtCustom } ;

enum TMsgDlgBtn {mbYes, mbNo, mbOK, mbCancel, mbAbort,
mbRetry, mblgnore, mbAll, mbNoToAll,
mbYesToAll, mbHelp };

tdefine mbYesNoCancel (System::Set<TMsgDlgBtn, mbYes, mbHelp>
() « mbYes « mbNo « mbCancel)

tdefine mbYesNoAHCancel (System::Set<TMsgDlgBtn, mbYes,
mbHelp> () « mbYes «mbYesToAll «
mbNo « mbNoToAll « mbCancel)

tdefine mbOKCancel (System::Set<TMsgDlgBtn, mbYes, mbHelp> ()
« mbOK « mbCancel)

tdefine mbAbortRetrylgnore (System::Set<TMsgDlgBtn, mbYes,
mbHelp> () « mbAbort « mbRetry « mblgnore)

tdefine mbAbortlgnore (System::Set<TMsgDlgBtn, mbYes, mbHelp>
() « mbAbort « mblgnore)

typedef Set<TMsgDlgBtn, mbYes, mbHelp> TMsgDlgButtons;

extern PACKAGE int fastcall
MessageDlg(constAnsiString Msg, TMsgDlgType DlgType,

TMsgDlgButtons Buttons, int HelpCtx);
extern PACKAGE int fastcall

MessageDlgPos(constAnsiString Msg, TMsgDlgType DlgType,
TMsgDlgButtons Buttons, int HelpCtx,
int X, int Y);

extern PACKAGE Forms::TForm* fastcall
CreateMessageDialog (const AnsiString Msg',

TMsgDlgType DlgType,
TMsgDlgButtons Buttons);

Описание
Вызов MessageDlg отображает диалоговое окно и ожидает ответа пользовате-

ля. Сообщение в окне задается параметром функции Msg.
Вид отображаемого окна задается параметром DlgType. Возможные значения

этого параметра:

Значение

mtConfirmation

mtlnformation

mtError

mtWarning

mtCustom

Описание

Окно подтверждения, содержащее зеленый вопросительный
знак (см. рис. 4.4 а)

Информационное окно, содержащее голубой символ
рис. 4.4 б)

Окно ошибок, содержащее красный стоп-сигнал (см.
в)

"i" (см.

рис. 4.4

Окно замечаний, содержащее желтый восклицательный знак
(см. рис. 4.4 г)

Заказное окно без рисунка. Заголовок соответствует
выполняемого файла приложения (см. рис. 4.4 д)

имени

Параметр AButtons определяет, какие кнопки будут присутствовать в окне.
Тип TMsgDlgBtns параметра AButtons является множеством, которое включает
различные кнопки. Возможные значения видов кнопок:

Описания функций 409

_ 1 :J<j
*f "\ Действительно хотите закончить приложение?

б)

V
Работа приношение закончена

ошибка, : Будьте внимательнее.

Рис. 4.4. Примеры диалоговых окон, выводимых функциями MessageDlg и MessageDlgPos

Значение

mbYes

mbNo

mbOK

mbCancel

mbHelp

mbAbort

mbRetry

mblgnore

mbAll

Описание

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

Кнопка с надписью

"Yes"

"No"

"OK"

"Cancel"

"Help"

"Abort"

"Retry"

"Ignore"

"All"

Необходимые кнопки заносятся в Buttons операцией "«", поскольку пара-
метр Buttons является множеством. Если не занести в этот параметр ничего,
в окне не будет ни одной кнопки и пользователю придется закрывать окно систем-
ными кнопками Windows.

Кроме множества значений, соответствующих отдельным кнопкам, определены
три константы, соответствующие множествам часто используемых сочетаний кнопок:

Множество

mbYesNoCancel

mbOkCancel

mbAbortRetrylgnore

Описание

Включает

Включает

Включает

в

в

в

окно

окно

окно

кнопки

кнопки

кнопки

Yes,

OK

No и Cancel

я

Abort,

Cancel

Retry и Ignore

Эти предопределенные множества имеют тип TMsgDlgButtons и могут непо-
средственно включаться в вызов функции вместо параметра Buttons.

Параметр HelpCtx определяет экран контекстной справки, соответствующий
данному диалоговому окну. Этот экран справки будет появляться при нажатии
пользователем клавиши F 1 . Если вы справку не планируете, при вызове Messa-
geDlg надо задать нулевое значение параметра HelpCtx.

Функция MessageDlg возвращает значение, соответствующее выбранной
пользователем кнопке. Возможные возвращаемые значения:

mrNone
mrOk
mrCancel

mr Abort
mrRetry
mrlgnore

mrYes
mrNo
mrAll

.

410 Глава 4

Функция MessageDlgPos, во всем подобная MessageDlg, отображает диалого-
вое окно сообщений в заданном месте экрана. Координаты определяются парамет-
рами X и Y.

Функция CreateMessageDialog позволяет создать диалоговое окно сообщения
в виде объекта формы. Функция только создает окно, но не отображает его. Ото-
бражение осуществляется обычными для форм методами Show или ShowModal.
При использовании метода ShowModal можно анализировать ответ пользователя
так же, как это делается для любых модальных форм.

Использованные для задания типа диалога DlgType и кнопок окна Buttons
типы данных TMsgDlgType и TMsgDlgButtons были описаны выше.

Функцию CreateMessageDialog имеет смысл применять для создания диало-
гового окна, которое будет использоваться в приложении многократно. При этом
преимуществом этого окна по сравнению с теми, которые создавались ранее рас-
смотренными функциями, заключается в том, что вы можете задать русскую над-
пись в заголовке окна, как делаете это для любой формы. В то же время существен-
ным недостатком применения функции CreateMessageDialog является то, что объ-
ект диалогового окна хранится в памяти все время, пока он не будет уничтожен
явно методом Free. Это приводит к непроизводительным затратам памяти.

См. также метод MessageBox. обеспечивающий, пожалуй, наиболее удачное
полностью русифицируемое диалоговое окно.

В диалогах, не требующих ответа пользователя, можно использовать функ-
ции, описанные в разд. «ShowMessage и другие функции вывода простых диалого-
вых окон сообщений».

Примеры
Ниже приведен пример диалога при окончании работы приложения:
i f(MessageDlg("Действительно хотите закончить приложение?",

mtConfirmation, TMsgDlgButtons() « mbYes« mbNo,
0) == m r Y e s)

{
MessageDlg("Работа приложение закончена", mt lnformat ion,

TMsgDlgButtons() « mbOK, 0) ;
Close () ;

}

Первый вызов MessageDlg приводит к отображению окна типа mtConfirmation
с вопросом о завершении приложения (см. рис. 4.4 а). Если пользователь нажимает
кнопку Yes, то выводится второе окно типа mtlnformation с сообщением о заверше-
нии (см. рис. 4.4 б).

Следующий пример иллюстрирует диалог при генерации исключения (см.
рис. 4.4 в и 4.4 г):

catch (. . .)
{
MessageDlg("Произошла ошибка.", mtError,

TMsgDlgButtons() « mbOK, 0) ;
MessageDlg("Будьте внимательнее.", mtWarning,

TMsgDlgButtons() « mbOK, 0) ;
}

Следующий пример иллюстрирует работу с базой данных, когда после редак-
тирования пользователем записи ему предлагается вопрос о сохранении ее в базе
данных (см. рис. 4.4 д). Если пользователь выбирает кнопку Yes, запись сохраняет-
ся методом Post; если пользователь выбирает кнопку No, результаты редактирова-
ния уничтожаются методом Cancel; если же пользователь выбирает кнопку Cancel,
форма закрывается.

switch (MessageDlg("Занести запись в БД?", mtCustom,
mbYesNoCancel, 0))

Описания функций 411

case mrYes: Tablel->Post () ;
break;

case mrNo : Tablel->Cancel () ; >»
break;

case mrCancel : Close О ;
}

Оператор

MessageDlgPos ("Будьте внимательнее.", mtWarning,
TMsgDlgButtons () « mbOK, 0, 250, 0);

вызовет появление окна сообщения вверху экрана (параметр Y = 0) примерно
в центре. А оператор

MessageDlgPos ("Ошибка в этом окне!", mtError,
TMsgDlgButtons () « mbOK, О,
BoundsRect .Left , BoundsRect .Bottom) ;

отобразит диалоговое окно вблизи нижнего левого угла формы, в которой записан
данный оператор.

Приведем пример использования CreateMessageDialog. Операторы
TForm * FMess;

FMess = CreateMessageDialog ("Будьте внимательнее.", mtWarning,
TMsgDlgButtons () « mbOK) ;

FMess->Caption = "Предупреждение";

создают объект FMess диалогового окна, задают текст его сообщения и заголовок
"Предупреждение". Вид этого окна (рис. 4.5) идентичен приведенному ранее на
рис. 4.4 г, за исключением заголовка "Предупреждение" вместо непонятного не
слишком опытному пользователю заголовка "Warning". Оператор

FMess->ShowModal () ;

отображает окно как модальную форму. Оператор
FMess->Free () ;

уничтожает объект, после чего окно уже не сможет отображаться.

Рис. 4.5
Окно, созданное функцией CreateMessageDialog

MessageDlgPos — отображение диалогового окна в указанной позиции
Отображает диалоговое окно в указанной позиции и анализирует ответ пользо-

вателя.
См. разд. «MessageDlg и другие функции отображения диалоговых окон».

MilliSecondOf — дешифрация миллисекунды
Определяет миллисекунду.
См. разд. «DayOf и другие функции дешифрации дат и времени».

MilliSecondOfTheSecond — дешифрация миллисекунды
Определяет миллисекунду.

412 Глава 4

См. разд. «DayOf и другие функции дешифрации дат и времени».

MilliSecondsBetween и другие функции
определения разности миллисекунд

Возвращают число миллисекунд между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
finclude <DateUtils.hpp>
extern PACKAGE int fastcall

MilliSecondsBetween(const System::TDateTime ANow,
const System::TDateTime AThen);

extern PACKAGE double fastcall
MilliSecondSpan(const System::TDateTime ANow,

const System::TDateTime AThen);

Описание
Функции MilliSecondsBetween и MilliSecondSpan возвращают число милли-

секунд между двумя значениями даты и времени ANow и AThen типа TDateTime.
Возвращаемые функциями значения различаются только типом данных.

MilliSecondSpan — разность миллисекунд двух дат

Возвращает число миллисекунд между двумя значениями даты и времени.
См. разд. «MilliSecondsBetween и другие функции определения разности мил-

лисекунд».

MinlntValue, MinValue — вычисление минимального значения

Возвращают минимальное значение со знаком элементов массива.
Заголовочный файл Ma.th.hpp.

Синтаксис
tinclude <Math.hpp>
extern PACKAGE int fastcall

MinlntValue (const int * Data, const int Data_Size);
extern PACKAGE double fastcall

MinValue(const double * Data, const int Data_Size);

Описание
Функции MinlntValue и MinValue возвращают минимальное значение со зна-

ком элементов массива Data соответственно целых или действительных чисел. Па-
раметр Data_Size — индекс последнего элемента массива, учитываемого при под-
счете среднего значения.

Например, оператор
В = M i n V a l u e (A , 99) ;

присваивает действительной переменной В минимальное из значений первых
100 элементов, хранящихся в массиве действительных чисел А.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

MinuteOf — дешифрация минуты

Определяет минуту.
См. разд. «DayOf и другие функции дешифрации дат и времени».

Описания функций 413

MinuteOfTheHour — дешифрация минуты
Определяет минуту часа.
См. разд. «DayOf и другие функции дешифрации дат и времени».

MinutesBetween и другие функции определения разности минут
Возвращают число минут между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
^include <DateUtils.hpp>
extern PACKAGE int fastcall

MinutesBetween(const System::TDateTime ANow,
const System::TDateTime AThen);

extern PACKAGE double fastcall
MinuteSpan (const System::TDateTime ANow,

const System::TDateTime AThen);

Описание
Функции MinutesBetween и MinuteSpan возвращают число минут между дву-

мя значениями даты и времени ANow и AThen типа TDateTime. Функция
MinutesBetween возвращает число полных минут между двумя значениями.
А функция MinuteSpan возвращает действительное число, содержащее дробную
часть, отображающую неполные минуты.

Примеры
Операторы
TDateTime Tl = EncodeDateTime(2002, 10, 5, 11, 00, 00, 3 0 0) ;
TDateTime T2 = EncodeDateTime(2002, 10, 5, 11, 00, 59, 3 0 0) ;
int i = MinutesBetween (T2, T l) ;
double r = MinuteSpan(T2, T l) ;

зададут переменной i значение О, а переменной г значение 0,98333333269693.
В этом примере значения дат и времени Т1 и Т2 задаются с помощью функции En-
codeDateTime. Различие между двумя значениями составляет 59 секунд. Поэтому
функция MinutesBetween возвращает 0, так как разность значений менее минуты.
А функция MinuteSpan возвращает число, близкое к единице.

MinuteSpan — разность минут
Возвращает число минут между двумя значениями даты и времени.
См. разд. «MinutesBetween и другие функции определения разности минут».

MomentSkewKurtosis — вычисление моментов
Вычисляет первые четыре момента, коэффициент асимметрии и эксцесс эле-

ментов массива.

Заголовочный файл Matli.hpp.

Синтаксис
ftinclude <Math.hpp>
extern PACKAGE void fastcall

MomentSkewKurtosis(const double * Data, const int Data_Size,
Extended &M1, Extended Ш2, Extended &M3,
Extended SM4, Extended &Skew,
Extended SKurtos i s) ;

Описание
Функция MomentSkewKurtosis рассчитывает первые четыре момента Ml, M2,

МЗ, М4, коэффициент асимметрии Skew и эксцесс Kurtosis. Это набор характери-

414 Глава 4

стик, описывающий закон распределения случайной величины. Первый момент Ml
равен среднему значению (математическому ожиданию), возвращаемому функция-
ми Mean и MeanAndStdDev. Моменты М2, МЗ и М4 — это смещенные оценки цен-
тральных моментов. К-ый центральный момент рассчитывается по формуле

Таким образом, второй центральный момент равен смещенной оценке диспер-
сии, возвращаемой функцией Popn Variance . Третий центральный момент МЗ ха-
рактеризует асимметрию закона распределения. Для симметричных распределе-
ний МЗ = 0. Чаще асимметрия характеризуется не самим третьим моментом, а без-
размерным коэффициентом асимметрии, равным частному от деления МЗ на куб
среднего квадратического отклонения. Эту величину процедура MomentSkew-
Kurtosis заносит в параметр Skew. Четвертый центральный момент М4 характе-
ризует «островершинность» распределения. Ексцесс, возвращаемый функцией
MomentSkewKurtosis в параметр Kurtosis, равен моменту М4, деленному на чет-
вертую степень среднего квадратического отклонения. Следует сказать, что в оте-
чественной литературе чаще в качестве характеристики эксцесса используется эта
величина, уменьшенная на 3. В этом случае эксцесс нормального закона распреде-
ления равен нулю. А коэффициент Kurtosis для. нормального закона распределе-
ния равен 3.

Параметр Data_Size функции — это индекс последнего элемента массива,
учитываемого при подсчете среднего значения.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

MonthOf — дешифрация месяца _
Определяет месяц.
См. разд. «DayOf и другие функции дешифрации дат и времени».

MonthOfTheYear — дешифрация месяца _
Определяет месяц.
См. разд. «DayOf и другие функции дешифрации дат и времени».

MonthsBetween и другие функции определения разности месяцев _
Возвращают число месяцев между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
tinclude <DateUtils.hpp>
extern PACKAGE int _ fastcall

MonthsBetween (const System: : TDateTime ANow,
const System: :TDateTime AThen);

extern PACKAGE double _ fastcall
MonthSpan (const System: : TDateTime ANow,

const System: : TDateTime AThen);

Описание
Функции MonthsBetween и MonthSpan возвращают число месяцев между

двумя значениями даты и времени ANow и AThen типа TDateTime. Функция
MonthsBetween возвращает число полных месяцев между двумя значениями.
А функция MonthSpan возвращает действительное число, содержащее дробную
часть, отображающую неполный месяц.

Описания функций 415

Хотя месяцы имеют разную продолжительность, функции MonthsBetween
и MonthSpan это не учитывают и исходят из усредненного значения 30.4375 дней
в месяце. Например, для дат 01.02 и 01.03 любого года функция MonthsBetween
выдаст число полных месяцев 0, так как февраль содержит меньше дней, чем при-
нято в этой функции.

Примеры
Операторы

TDateTime Tl = EncodeDateTime(2002, 01, 4, 11, 00, 00, 3 0 0) ;
TDateTime T2 = EncodeDateTime(2002, 02, 4, 00, 00, 00, 3 0 0) ;
int i = MonthsBetween(T2, T l) ;
double r = MonthSpan(T2, T l) ;

зададут переменной i значение 1, а переменной г значение 1,00342231348407.
В этом примере значения дат и времени Т1 и Т2 задаются с помощью функции Еп-
codeDateTime. Различие между двумя значениями составляет менее месяца (не
хватает 11 часов). Но из-за принятых округлений функция MonthsBetween воз-
вращает 1, а функция MonthSpan возвращает даже число, большее единицы.

MonthSpan — разность месяцев
Возвращает число месяцев между двумя значениями даты и времени.
См. разд. «MonthsBetween и другие функции определения разности месяцев».

_new_handler — указатель на обработчик ошибок выделения памяти
Функция _new_handler указывает на обработчик события, связанного с невоз-

можностью динамически выделить требуемый блок памяти.
См. разд. «set_new_handler и другие функции обработки ошибок выделения

памяти».

Norm — вычисление кория из суммы квадратов
Возвращает корень из суммы квадратов значений элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE Extended fastcall

Norm(const double * Data, const int Data_Size);

Описание
Функция Norm возвращает евклидову норму: корень из суммы квадратов зна-

чений элементов массива Data. Параметр Data_Size — индекс последнего элемен-
та массива, учитываемого при подсчете среднего значения.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

Now — текущая дата и время
Возвращает текущую дату и время.
См. разд. «Date и другие функции определения даты и времени».

OemToChar, OemToCharBuff — перевод текста DOS в строку
Функции API Windows, переводят текст MS-DOS в строку.

Заголовочный файл winuser.h.

416 Глава 4

Синтаксис

finclude <system.hpp>
BOOL OemToChar('

LPCTSTR IpszSrc, // исходная строка
LPSTR IpszDst // результат перевода

) ;
BOOL OemToCharBuff(

LPCTSTR IpszSrc, // исходная строка
LPSTR IpszDst, // результат перевода
DWORD cchDstLength // число символов

);

Описание
Функции применяются для перевода строки в формат MS-DOS. Это требуется,

в частности, если возникает задача сохранить в файле в формате DOS текст из окна
редактирования. Подобный файл далее может читаться приложениями DOS.

Параметр IpszSrc — указатель на строку, которую надо перекодировать. Па-
раметр IpszDst — указатель на строку, в которую заносится перекодированный
текст. Параметр cchDstLength в функции OemToCharBuff определяет число пере-
кодированных символов, которые заносятся в результирующую строку. Если это
число меньше числа символов в исходной строке, то остальные символы не зано-
сятся в результирующую строку.

Имеются два варианта функций, работающие с кодами ANSI и с многобайтны-
ми кодами Unix. В случае, если работа идет с кодами ANSI, адреса исходной и ре-
зультирующей строк могут совпадать, т.е. параметры IpszSrc и IpszDst могут ука-
зывать на одну строку.

Функции всегда возвращают ненулевое значение.
Имеется также функция CharToOem. которая осуществляет обратное преобра-

зование.

Пример
В следующем примере, текст, загруженный из файла в формате DOS в окно ре-

дактирования RichEditl, переводится в формат ASCII.

char *S = (char *) malloc (s i z e o f (R i c h E d i t l - > T e x t)) ;
O e m T o C h a r ((R i c h E d i t l - > T e x t) . c _ s t r () , S) ;
RichEditl->Text = S;
f r e e (S) ;

Первый оператор отводит память под строку S, необходимую для хранения
в ней текста окна RichEditl. Второй оператор заносит в нее перекодированный
текст. Третий оператор возвращает этот текст в окно RichEditl. Последний опера-
тор освобождает память.

Point и другие функции формирования точки
Формируют точку из координат.

Заголовочные файлы Types.hpp и Classes.hpp.

Синтаксис
#include <Types.hpp>
struct TPoint

{
int x;
int y;
};

extern PACKAGE TPoint fastcall Point (int AX, int AY)

^include <Types.hpp>

Описания функций 417

struct TSmallPoint
{
short x;
short y;

}

extern PACKAGE Types::TSmallPoint fastcall
SmallPoint(short AX, short AY);

Описание
Функции возвращают структуры, содержащие заданные координаты точки

АХ и AY. Такие структуры используются во многих функциях C++Builder (см.,
в частности, описание функции Rect). Координаты задаются в пикселах. В качест-
ве системы координат принимается система координат родительского окна или эк-
рана. За начало координат всегда принимается левый верхний угол родительского
окна или экрана.

Функция Point формирует структуру типа TPoint. Функция SmallPoint фор-
мирует структуру типа TSmallPoint, в которой координаты представлены 16-бит-
ными целыми.

См. примеры применения Point в разд. «Bounds и другие функции формирова-
ния прямоугольной области».

poly, polyl, Poly — вычисление полиномов
Вычисляют значение полинома заданной степени с заданными коэффициента-

ми.

Заголовочные файлы math.h и math.hpp.

Синтаксис
tinclude <math.h>
double poly(double x, int degree, double c o e f f s f]) ;
long double polyl(long double x, int degree, long double c o e f f s []) ;

#include <math.hpp>
extern PACKAGE Extended fastcall

Poly(Extended X, const double * Coeff ic ients,
const int Coef f ic ients_Size) ;

Описание
Функции poly и polyl возвращают полином от переменной х степени degree

с коэффициентами, хранящимися в массиве coeffs:
c o e f f s [0] + c o e f f s [l] * x + . . . + c o e f f s [d e g r e e] * (х л degree)

Функция Poly осуществляет те же самые вычисления. Только последователь-
ность ее аргументов иная: сначала указывается массив коэффициентов Coeffi-
cients, а затем — степень полинома Coefficients_Size.

Примеры
Следующий код вычисляет с помощью функции poly значение полинома 1 +

2*х + 3*х2 + 4*х3 при х = 10:
double a r r a y [4] = { 1 , 2 , 3 , 4) ;
double result = poly (10, 3, a r ray) ;

Результат вычислений — 4321.
Следующий код осуществляет те же вычисления с помощью функции Poly:
double a r r a y [4] = { l , 2 , 3 , 4) ;
double result = Poly(10, array, 3) ;

418 Глава 4

PopnStdDev — вычисление среднего квадратического отклонения

Возвращает среднее квадратическое отклонение элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE Extended fastcall

PopnStdDev(const double * Data, const, int Data_Size);

Описание
Функция PopnStdDev возвращает смещенную оценку среднего квадратиче-

ского отклонения элементов массива действительных чисел Data. Параметр
Data_Size — индекс последнего элемента массива, учитываемого при подсчете
среднего значения. Если массив А содержит п элементов, то смещенная оценка
среднее квадратическое отклонение рассчитывается по формуле

Jl(A[i]-A)2/n,
V i-l

где А — среднее значение (математическое ожидание) элементов массива. Эта
смещенная оценка статистически менее достоверна, чем несмещенная оценка,
возвращаемая функцией StdDev или MeanAndStdDev. Но в некоторых расчетах
используется именно такая смещенная оценка.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

PopnVariance — вычисление дисперсии

Возвращает дисперсию элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE Extended fastcall

PopnVariance(const double * Data, const int Data_Size);

Описание
Функция PopnVariance возвращает смещенную оценку дисперсии элементов

массива действительных чисел Data, т.е. среднее значение квадрата отклонения
значений элементов от их среднего значения. Параметр Data_Size — индекс по-
следнего элемента массива, учитываемого при подсчете среднего значения. Если
массив А содержит п элементов, то дисперсия рассчитывается по формуле

2(A[i]-A)2/n,
i-l

где А — среднее значение (математическое ожидание) элементов массива. Это
смещенная оценка дисперсии, статистически менее точная, чем сумма квадра-
тов отклонений, деленная на п — 1, возвращаемая функцией Variance.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

.

Описания функций 419

PostMessage — функция API Windows
Функция API Windows, помещает указанное в ней сообщение окну или мно-

жеству окон в очередь сообщений потока, создавшего эти окна, и возвращается, не
дожидаясь окончания обработки этого сообщения.

Модуль winuser.

Объявление
BOOL PostMessage(
HWND hWnd, // дескриптор окна - приемника
UINT Msg, // сообщение
WPARAM wParam, // первый параметр сообщения
LPARAM IParam // второй параметр сообщения

);

Описание
Функция PostMessage ставит указанное в ней сообщение окну или множеству

окон в очередь сообщений потока, создавшего эти окна, и возвращается, не дожи-
даясь окончания обработки этого сообщения. Этим функция PostMessage отлича-
ется от функции SendMessage. которая ждет окончания обработки сообщения и на
это время блокирует приложение, которое послало сообщение. Сообщения в даль-
нейшем изымаются из очереди функциями GetMessage и PeekMessage.

Параметр hWnd — дескриптор окна, которому передается сообщение. Если
этот параметр равен HWND_BROADCAST, то сообщение передается всем окнам
верхнего уровня в системе, включая недоступные, невидимые, перекрытые други-
ми и всплывающие, за исключением дочерних окон. Если этот параметр NULL, то
сообщение ставится в очередь сообщений (если она есть) текущего процесса.

Параметр Msg определяет передаваемое сообщение. Параметры wParam и 1Ра-
гаш могут содержать дополнительную информацию.

Функция возвращает ненулевое значение при успешном завершении и нуль
при аварийном завершении. В этом случае причину ошибки можно установить вы-
зовом функции GetLastError.

Для определения дескриптора, передаваемого в функцию в качестве парамет-
ра hWnd, можно использовать функцию Find Window.

Если вы посылаете сообщение в диапазоне ниже WM_USER асинхронной
функцией PostMessage, надо быть уверенным, что параметры сообщения не вклю-
чают указателей. В противном случае из-за немедленного возврата функции может
оказаться, что к моменту, когда поток начнет обрабатывать сообщение, приложе-
ние, которое его послало, окажется уже удаленным из памяти.

Приложения, использующие hWnd = HWND_BROADCAST для связи между
окнами разных приложений, должны предварительно зарегистрировать уникаль-
ность своих сообщений функцией RegisterWindowMessage.

Примеры
Оператор
PostMessage(Form2->Handle,WM_CLOSE,0,0);

посылает форме Form2 сообщение WM_CLOSE, закрывающее окно этой формы.
Первый параметр функции PostMessage содержит дескриптор окна формы Form2,
полученный с помощью ее свойства Handle. Сообщение WM_CLOSE не имеет па-
раметров; поэтому параметры wParam и IParam заданы равными нулю.

Оператор
PostMessage(FindWindow("SciCalc","Калькулятор"), W M _ C L O S E , 0 , 0) ;

использует функцию FindWindow для получения дескриптора окна приложения,
которому надо послать сообщение WM_CLOSE. В качестве параметров в FindWin-
dow передаются класс формы SciCalc и ее заголовок «Калькулятор». Это стандарт-
ное приложение Windows «Калькулятор».

420 Глава 4

pow, powl и другие функции возведения в степень
Возводят число в заданную степень.

Заголовочные файлы math.h и math.hpp.

Синтаксис
#include <math.h>
double pow(double x, double y) ;
long double powl(long double x, long double y) ;
double p o w l O (i n t p) ;
long double powlOl(int p);

tinclude <math.hpp>
extern PACKAGE Extended fastcall Power(

Extended Base, Extended Exponent);
extern PACKAGE Extended fastcall IntPower(

Extended Base, int Exponent);

Описание
Функции pow и powl возвращают значение х, возведенное в степень у. Если

вычисление вызывает переполнение, функции возвращают значение HUGE_VAL
(функция pow) или _LHUGE_VAL (функция powl). Глобальная переменная еггпо
может при этом установиться в значение ERANGE.

Если показатель степени не целое число, а аргумент х отрицательный, гло-
бальная переменная еггпо устанавливается в EDOM. То же самое происходит при
возведении 0 в 0.

Стандартный обработчик ошибок этих функций можно изменить, задав собст-
венные обработчики — функции _matherr и _matherrl (см. разд. 3.1.4.4).

Функция Power производит те же вычисления -- возводит значение Base
в произвольную степень Exponent. Если Exponent не целое число или число, боль-
шее Maxlnt, значение Base должно быть положительным.

Функция IntPower тоже возводит Base в степень Exponent, но только для це-
лых Exponent. Так что в этой функции значение Base может быть любым.

Функции powlO и powlOl возвращают число 10, возведенное в заданную сте-
пень р.

powlO, powlOl — возведение в целую степень
Возводят число в заданную целую степень.
См. разд. «pow, powl и другие функции возведения в степень».

Power — возведение в заданную степень
Возводит число в заданную степень.
См. разд. «pow, powl и другие функции возведения в степень».

printf — форматированный вывод на экран
Выводит форматированные данные в выходной поток.
См. разд. «fprintf и другие функции форматированного вывода».

putc — вывод символа в поток
Выводит символ в указанный поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

putchar — вывод символа в поток
Выводит символ в выходной поток.

Описания функций 421

См. разд. «fgetc и другие функции ввода/вывода символа».

puts — вывод строки в поток

Выводит строку в стандартный поток вывода.
См. разд. «fputs и другие функции ввода/вывода строк».

putwc — вывод символа в поток

Выводит символ в указанный поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

putwchar — вывод символа в поток

Выводит символ в выходной поток.
См. разд. «fgetc и другие функции ввода/вывода символа».

_putws — вывод строки в поток

Выводит строку в стандартный поток вывода.
См. разд. «fputs и другие функции ввода/вывода строк».

raise — генерация сигнала

Функция генерации заданного сигнала.
См. разд. «signal и другие функции работы с сигналами».

rand, randomize, Randomize, RandG — генерации случайных чисел

Осуществляют генерацию последовательностей псевдослучайных чисел.
См. разд. «random и другие функции генерации псевдослучайных чисел».

random и другие функции генерации псевдослучайных чисел

Осуществляют генерацию последовательностей псевдослучайных чисел.

Заголовочные файлы stdlib.h, System.hpp, Math.hpp.

Синтаксис
#include <stdlib.h>
long _lrand(void);
int rand(void);
int random(int num) ;
void randomize(void);
void srand(unsigned seed);

#include <System.hpp>
extern PACKAGE void fastcall Randomize(void);

#include <Math.hpp>
extern PACKAGE Extended fastcall RandG(

Extended Mean, Extended StdDev);

Описание
Функция rand возвращает целые псевдослучайные числа, равномерно распре-

деленные в диапазоне от 0 до RAND_MAX (Ox7FFFU - 32767). Длина отрезка апе-
риодичности псевдослучайных чисел 232 = 4 294 967 296. Число используемых
случайных чисел не должно превышать эту величину. Если вам все-таки требуется
больше чисел, то вы должны при приближении к границе отрезка апериодичности
(а лучше задолго до нее) обновить последовательность чисел с помощью функций
randomize или srand.

422 Глава 4

Если желательно генерировать случайные числа, лежащие в диапазоне от 0 до
некоторого значения N, то это легко делать операцией вычисления остатка %. На-
пример, выражение

rand () % 101

возвращает числа в диапазоне от 0 до 100, а выражение
(rand (} % 201) - 100

возвращает числа в диапазоне от -100 до 100.
Функцию rand можно использовать и для генерации действительных случай-

ных чисел. Например, выражение
10. * гand() / RAND_MAX

генерирует псевдослучайные действительные числа, распределенные в диапазоне
от 0 до 10.

Функция _lrand работает аналогично функции rand, но имеет больший отре-
зок апериодичности — 264 и диапазон от 0 до 231 - 1.

Функция random отличается от предыдущих тем, что имеет параметр num,
определяющий верхнюю границу диапазона генерируемых чисел. Поэтому, если
надо, например, генерировать целые числа в диапазоне от 0 до 100, это можно сде-
лать выражением

random(101);

не прибегая, как для предыдущих функций, к операции %.
Функция RandG генерирует квазислучайные действительные числа, распре-

деленные по нормальному закону (закону Гаусса) с математическим ожиданием
Mean и средним квадратичным отклонением StdDev.

Поскольку генерируемые рассматриваемыми функциями числа являются
псевдослучайными, то при каждом новом запуске вашего приложения будет выра-
батываться одна и та же последовательность чисел. Это удобно в процессе отладки.
Однако в законченном приложении это во многих случаях недопустимо. Чтобы из-
бежать этого, надо рандомизировать генератор чисел, т.е. задавать ему каждый
раз новое случайное исходное число. Рандомизацию всех генераторов, кроме
RandG, осуществляет функция randomize. Достаточно вставить где-то в текст про-
граммы (например, в событие OnCreate формы) оператор

randomize();

чтобы при каждом запуске приложения генерировалась новая последовательность
чисел.

Функция srand отличается от randomize тем, что задает в качестве начального
не случайное число, а значение своего параметра seed.

Рандомизацию генератора RandG осуществляет функция Randomize, анало-
гичная randomize. Задание конкретного начального числа для этого генератора
можно осуществить, задавая значение целой переменной RandSeed, определенной
в файле System.hpp.

Пример
Ниже приведен пример генерации нормально распределенных квазислучай-

ных чисел и вычисления характеристик полученного распределения.
double A[1001];
long double M, Me, Std, StdD, StdD2, Ml, M2, МЗ, М4, Skew,

Kurtosis, MinA, MaxA, V, TV, PV, N, SOS, S, SoS, S2;
// заполнение массива нормально распределенными числами
for(int i = 0; i < 1001;

A[i] = RandG(20,4) ;
Me = M e a n (A , 1 0 0 0) ;
V = Variance(A,1000);

Описания функций 423

TV = TotalVariance(A,1000);
MeanAndStdDev(A,1000, М, StdD) ;
PV = PopnVariance (A, 1-000) ;
Std = StdDev(A,1000);
StdD2 = PopnStdDev(A,1000);
N = Norm(A,1000);

MomentSkewKurtosis(A,1000,M1,M2,M3,M4,Skew,Kurtosis);
MinA = MinValue(A,1000) ;
MaxA = MaxValue(A,1000);
SumsAndSquares(A, 1000, S,. SoS) ;
SOS = SumOfSquares(A,1000) ;
S2 = Sum(A,1000);

realloc — функция выделения памяти
Функция изменяет размер динамически выделенного блока памяти.
См. разд. «malloc и другие функции динамического распределения памяти».

Rect — формирование прямоугольной области
Формирует прямоугольную область типа TRect.
См. разд. «Bounds и другие функции формирования прямоугольной области».

RegisterWindowMessage — функция API Windows
Функция API Windows, определяет новое окно сообщения с гарантированной

уникальностью его в системе, которое может использоваться в функциях Send-
Message и Post Message.

Модуль winuser.

Объявление
UINT RegisterWindowMes'sage (

LPCTSTR IpString // адрес строки сообщения
) ;

Описание
Функция Register WindowMessage используется для регистрации сообщений,

предназначенных для связи между различными совместно работающими прило-
жениями. В частности, необходимо для использования функций SendMessage
и PostMessage с hWnd = HWND_BROADCAST. Если два приложения регистриру-
ют одну и ту же строку сообщения, то им возвращается одинаковый номер этого
сообщения. Регистрация действительна до конца сеанса работы Windows.

Параметр LpString — указатель на строку с нулевым символом, содержащую
регистрируемое сообщение.

Если регистрация прошла успешно, то возвращается идентификатор сообще-
ния в диапазоне от ОхСООО до OxFFFF. Если регистрация завершилась аварийно,
то возвращается нулевое значение.

Функцию RegisterWindowMessage следует использовать только в случаях,
когда несколько приложений должны обрабатывать одно и то же сообщение. Для
посылки собственных сообщений внутри данного класса оконных компонентов
следует использовать любое целое в диапазоне от WM USER до OxTFFF.

_rotl и другие функции циклического сдвига
Осуществляют циклический сдвиг целого числа без знака или кода символа.

Заголовочный файл stdlib.h.

424 Глава 4

Синтаксис

tinclude <stdlib.h>
unsigned short _rotl(unsigned short val, int count);
unsigned short _rotr(unsigned short val, int count);
unsigned long Irotl(unsigned long val, int count);
unsigned long _lrotr(unsigned long val, int count);
unsigned char __crotl(unsigned char val, int count);
unsigned char _crotr(unsigned char val, int count);

Описание
Функции _rotl, _rotr, _lrotl, _lrotr осуществляют циклический сдвиг целого

числа без знака val на count разрядов. Функции _rotl и _lrotl сдвигают влево, заме-
няя освобождающиеся младшие разряды старшими. Например, _rotl(l, 15) вернет
32768 — единицу младшего разряда, сдвинутую влево на 15 разрядов. A _rotl(l, 16)
вернет 1 — поскольку единица младшего разряда, сдвинувшись влево на 15 разря-
дов, сдвинется еще на 1 разряд и перенесется в первый младший разряд.

Функции _rotr и _lrotr аналогично сдвигают число вправо, заменяя освобож-
дающиеся старшие разряды младшими.

Функции _crotl и _crotr осуществляют аналогичный сдвиг влево или вправо
кода символа. Например, _crotl('l',0) вернет 49 — код символа "1", a _crotl('l',l)
вернет 98 — вдвое больший код (это код символа "Ь"). Соответственно, выражение
(char)_crotl('l",l) вернет символ "Ь". Циклический сдвиг символа val на 8 разря-
дов вернет то же значение val, что пояснялось выше для функции _rotl.

_rotr — циклический сдвиг целого числа вправо
Осуществляет циклический сдвиг вправо целого числа.
См. разд. «_rotl и другие функции циклического сдвига».

RoundTo и другие функции округления
Округляют действительное число до заданного десятичного порядка.

Заголовочный файл Math.hpp.

Синтаксис
typedef Word TRoundToRange;

extern PACKAGE double fastcall RoundTo(const double AValue,
const TRoundToRange ADigit);

extern PACKAGE double fastcall SimpleRoundTo(
const double AValue,
const TSimpleRoundToRange ADigit = -2) ;

Описание
Функции RoundTo и SimpleRoundTo округляют действительное число до за-

данного десятичного порядка. Параметр AValue — округляемое число. Параметр
ADigit указывает десятичный порядок, ниже которого производится округление.
Он может принимать значения от -37 до 37 включительно. Например, если
ADigit = 3, это значит, что будут округлены все разряды, младше 1000 (103).
А если ADigit = -1, то будут округлены разряды, младше одной десятой (10"1).

Функции RoundTo и SimpleRoundTo используют несколько разные алгорит-
мы в случаях, когда округляемое число расположено точно посередине между дву-
мя значениями, имеющими заданное число значащих разрядов. Функция Round-
To в этом случае округляет до четного числа. А функция SimpleRoundTo в этом
случае округляет до большего числа.

См. также разд. «Ceil, ceil, ceill, Floor, floor, floorl — функции округления
действительных чисел» и «GetRoundMode, SetRoundMode — управление округле-
нием» .

Описания функций 425

Примеры

AValue

1234567

1234500

1.23456

-1.23456

ADigit

3

3

-3

-3

RoundTo

1234000

1234000

1.235

-1.235

SimpleRoundTo

1234000

1235000

1.235

-1.234

Same Value — сравнение действительных значений

Проверяет совпадение двух действительных значений.
См. разд. «CompareValue и другие функции сравнения числовых значений».

scanf и другие функции форматированного ввода

Вводят форматированные данные из входного потока (с клавиатуры), из фай-
из буферного массива.

Заголовочные файлы stdio.h, conio.h.

Синтаксис

ла,

#include <stdio.h>
int scanf(const char *format[, address, ...]);
int wscanf(const wchar_t *format[, address, ...]);
int vscanf(const char *format, va_list arglist);

int fscanf(FILE *stream,
const char *format[, address, ...]);

int fwscanf(FILE *stream,
const wchar_t * format!, address, ...]);

int vfscanf(FILE *stream,
const char *format,va list arglist);

int sscanf(const char *buffer,
const char *format[address, . . .]

int swscanf(const wchar_t *buffer,
const wchar_t * format[, address,

int v s scanf(const char * b u f f e r ,
const char *format, va_list argl is t) ;

#include <conio.h>
int cscanf (char *format[, address, . . .]) ;

См. также методы get и getline — функции-элементы класса ifstream.

Описание
Все описанные ниже функции осуществляют ввод строки и форматированное

преобразование ее полей в числа или символьные массивы. Если поле числовое, то
считается, что оно закончилось, при появлении символа, который не может при-
сутствовать в формате числа. А если поле — строка, то оно состоит из произволь-
ной последовательности символов до разделителя — пробела, символа табуляции,
символа новой строки и т.п. Функции производят ввод произвольного числа по-
лей, преобразуют их в соответствии с заданными форматами и затем сохраняют
преобразованные значения в числовых и символьных объектах, чьи адреса указа-
ны в списке аргументов argument. Параметр format указывает строку форматиро-
вания. Она определяет способ преобразования отдельных полей и содержит специ-
фикаторы, записываемые после символа "%". Подробнее вы можете посмотреть

426 Глава 4

в полном описании строки форматирования (см. разд. 3.1.3.2), а для приведенных
ниже примеров достаточно знать, что спецификатор "%d" преобразует поле в це-
лое число, спецификатор "%е" — в действительные, спецификатор "%s" •— в стро-
ку. Символ "*" между символом "% " и символом типа поля обеспечивает сканиро-
вание очередного поля без его преобразования и сохранения. Иначе говоря, это
поле пропускается.

Функции форматированного ввода с клавиатуры
Функции scanf и wscanf обеспечивают форматированный ввод из стандартно-

го потока ввода stdin. По умолчанию входной поток связан с клавиатурой. Пара-
метр format указывает строку форматирования, которая применяется к множест-
ву аргументов argument, расположенных в вызовах функций после строки форма-
тирования.

Функции возвращают число успешно введенных, преобразованных и сохра-
ненных полей. Если ни одно поле не сохранено, возвращается 0. Если делается по-
пытка читать после конца входной строки, возвращается значение EOF.

Функции находят применение в основном в консольных приложениях, в кото-
рых поток stdin соответствует вводу с клавиатуры. Например:

#include <stdio.h>
int main(void)

int I;
float R;
char S[80] ;
puts("Enter integer number, float number,"

"s tr ing:\n") ;
if (scanf ("%d %e %s", SI, &R, &S) < 3)

p u t s (" W r o n g i n p u t \ n ") ;
else p r i n t f C ' Y o u enter %i, %g, %s", I, R, S) ;
f f l u s h (s t d i n) ;
getchar () ;

Приведенный код сначала функцией puts выводит предложение пользователю
ввести целое число, действительное число и строку. Для упрощения в этом коде
использованы английские тексты (о выводе в консольных приложениях русских
текстов см. в разд. «CharToOem, CharToOemBuff — перевод строки в текст DOS»).
После этого осуществляется вызов функции scanf и в ее строке форматирования
указывается, что ожидается чтение целого числа (спецификатор "%е"), действи-
тельного (спецификатор "%g"), и строки (спецификатор "%s"). После строки фор-
матирования в вызове функции указаны адреса, по которым должны быть занесе-
ны результаты ввода. Обратите внимание, что указываются не переменные, вос-
принимающие результаты, а их адреса.

При выполнении этой команды пользователь видит окно DOS, в котором дол-
жен ввести требуемые данные. Он может разделять эти данные символами пробе-
лов, символом табуляции, нажатием клавиши Enter. Например: "5 5.6 текст". В ре-
зультате переменные получат значения I = 5, R = 5.6, S = "текст". Впрочем, тот же
результат будет, если пользователь забудет ввести пробел перед текстом: "5
5-бтекст". При появлении во входном потоке символа "т" функция ввода "пой-
мет", что числовое поле кончилось, и последующие символы введет в строковую
переменную. А вот если пользователь вообще забудет о разделителях и введет
"55.6текст", то в результате переменные получат значения I = 55, R = 0.6, S =
"текст". Иначе говоря, символ точки воспримется как окончание целого поля.

Функция cscanf аналогична по синтаксису scanf и тоже обеспечивает форма-
тированный ввод с клавиатуры. Но в отличие от scanf она читает символы непо-
средственно с клавиатуры до их отображения на экране, производит их формати-
рование и затем выводит непосредственно на экран. Переносимость приложений,

Описания функций 427

использующих cscanf, ограничена, так что ее можно рекомендовать использовать
только в исключительных случаях.

Функции форматированного ввода из текстового файла
Если желательно применять функции scanf и wscanf для чтения из текстового

файла, то предварительно надо перенаправить поток stdin. Однако для форматиро-
ванного ввода из файла естественнее использовать функции fscanf и fwscanf. Они
работают так же, как scanf, а параметр stream указывает поток или файл, из кото-
рого осуществляется ввод. Например, операторы:

tinclude <stdio.h>

FILE *F;
int I;
double R;
char S[80] ;
if ((F = fopen ("input.txt", "rt")) == NULL)
{
ShowMessage("Файл не удается открыть");
return;

}
F = fopen(" input . txt" , "rt");
if (fscanf (F, "%i %le %s ", &I, &R, &S) < 3)

ShowMessage("Ошибка чтения из файла") ;
else

ShowMessage("I = " + IntToStr(I) + ", R = " +
FloatToStr(R) + ", S = " + S);

f c l o s e (F) ;

обеспечивают чтение из файла input.txt записанного там целого числа, дейст-
вительного числа и лексемы — символьной строки без разделителей. Если чтение
прошло нормально, то возвращается число прочитанных и сохраненных полей
(в данном примере 3). Если вернулось меньшее число, значит при чтении какого-то
поля произошла ошибка.

Обратите внимание на то, что при чтении в переменную R в формате добавлен
спецификатор "1". Связано это с тем, что тип R объявлен равным double, и надо до-
бавлять этот спецификатор long, как указано в описании строки форматирования
(см. разд. 3.1.3.2).

При чтении из файла иногда надо пропускать какие-то поля. Пусть, напри-
мер, файл подготовлен какой-то программой, которая занесла в него строки неко-
торой таблицы в виде

X = 1 У = 1
X = 2 Y = 4

И пусть вам надо прочитать в этих строках только численные значения пере-
менных X и Y и занести результаты в соответствующие массивы. Сделать это мож-
но следующим кодом:

FILE *F;
int i = 0; I
double X[10], Y[10];
if ((F = fopen(" input . tx t " , " r t ")) == NULL)
{
ShowMessage("Файл не удается открыть");
return;

}
while (! feof(F))

1
fscanf(F, "%*s %*s %le %*s %*s %le", &X[i], SY[i]);

428 Глава 4

f c l o s e (F) ;

Здесь спецификаторы "%*s" обеспечивают пропуск символьных полей и со-
храняют в памяти только цифровые значения.

Функции ввода из памяти
Функции sscanf и swscanf аналогичны рассмотренным ранее, но читают

и форматируют данные не с клавиатуры, не из файла, а из массива символов
buffer. Исходная строка в буфере может формироваться программно. А может
предварительно читаться из файла без форматирования, а затем форматироваться
функцией sscanf. Например, цикл в приведенном выше примере можно было бы
организовать следующим образом:

char S[256];

while (! f e o f (F))
{
fgets(S, 256, F) ;
sscanf(S, "%*s %*s %le %*s %*s %le", & X [i] , S Y [i]) ;

Функция fgets читает в переменную S очередную строку, а затем из нее извле-
каются число функцией sscanf. Преимущества подобной организации чтения свя-
заны с тем, что ввод функцией fgets осуществляется много быстрее форматирован-
ного ввода функцией fscanf, а функция sscanf, работающая с памятью, работает
тоже намного быстрее, чем fscanf.

Функции v...
Варианты рассмотренных функций с именами, начинающимися с символа

"v", работают так же, как описанные выше, но в них передается не список аргу-
ментов, а указатель на список типа va_list. Это позволяет вам создавать собствен-
ную функцию ввода, принимающую произвольное число аргументов. Ниже приве-
ден пример такой функции ге, в точности воспроизводящей функцию fscanf.

#include <stdio.h>
#include <stdarg.h>

int re(FILE *F,char *fmt, . . .)

va_list arg;
int cnt;
va_start(arg, fmt);
cnt = v f s c a n f (F , f m t , arg);
va_end(arg);
r e t u r n (c n t) ;

Вызов такой функции не отличается от вызова fscanf (кроме имени) и работа-
ет она точно так же. Но, конечно, реально имеет смысл создавать собственную
функцию ввода только в том случае, если она должна чем-то отличаться от fscanf:
использовать какие-то сложные строки форматирования, производить предвари-
тельную обработку вводимых данных и т.п.

SecondOf — дешифрация секунды
Определяет секунду.
См. разд. «DayOf и другие функции дешифрации дат и времени».

SecondOfTheMinute — дешифрация секунды
Определяет секунду.
См. разд. «DayOf и другие функции дешифрации дат и времени».

Описания функций 429

SecondsBetween и другие функции определения разности секунд
Возвращают число секунд между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
tinclude <DateUtils.hpp>
extern PACKAGE int fastcall

SecondsBetween(const System::TDateTime ANow,
const System::TDateTime AThen);

extern PACKAGE double fastcall
SecondSpan(const System::TDateTime ANow,

const System::TDateTime AThen);

Описание
Функции SecondsBetween и SecondSpan возвращают число секунд между

двумя значениями даты и времени ANow и AThen типа TDateTime. Функция Se-
condsBetween возвращает число полных секунд между двумя значениями.
А функция SecondSpan возвращает действительное число, содержащее дробную
часть, отображающую неполную секунду.

Примеры
Операторы
TDateTime Tl = EncodeDateTime(2002, 10, 5, 11, 00, 45, 3 0 0) ;
TDateTime T2 = EncodeDateTime(2002, 10, 5, 11, 00, 4 6 , 2 9 9) ;
int i = SecondsBetween(T2, T l) ;
double r = SecondSpan(T2, T l) ;

зададут переменной i значение 0, а переменной г значение 0,998999434523284.
В этом примере значения дат и времени Т1 и Т2 задаются с помощью функции En-
codeDateTime . Различие между двумя значениями чуть-чуть меньше секунды (не
хватает одной миллисекунды). Поэтому функция SecondsBetween возвращает О,
а функция SecondSpan возвращает число, близкое к единице.

SecondSpan — разность секунд
Возвращает число секунд между двумя значениями даты и времени.
См. разд. «SecondsBetween и другие функции определения разности секунд».

SelectDirectory — диалоги выбора каталога
Предоставляет пользователю возможность выбрать каталог с помощью стан-

дартного диалога.

Заголовочный файл FileCtrl.hpp\

Синтаксис
tinclude <FileCtrl.hpp>
extern PACKAGE bool fastcal l SelectDirectory(

const AnsiString Caption,
const WideString Root, AnsiString SDirectory);

enum TSelectDirOpt {sdAllowCreate, sdPerformCreate,
sdPrompt);

typedef Set<TSelectDirOpt, sdAllowCreate, sdPrompt>
TSelectDirOpts;

extern PACKAGE bool fastcal l SelectDirectory(
AnsiString SDirectory,
TSelectDirOpts Options, int HelpCtx);

430 Глава 4

Описание
Функция SelectDirectory предоставляет пользователю возможность вызвать

стандартный диалог Windows и, работая с ним, выбрать каталог. Функция имеет
две перегруженных формы. Остановимся сначала на первой форме.

Функция вызывает стандартный диалог Windows для поиска каталога (пап-
ки), примеры которого приведены на рис. 4.6. Параметр Caption содержит строку,
отображаемую в диалоге как указание пользователю (текст «Укажите каталог ус-
тановки программы» на рис. 4.6. Параметр Root задает корневой каталог, внутри
которого пользователь может выбирать подкаталоги. За пределы каталога Root
пользователь выйти не может. При вызове SelectDirectory в примере рис. 4.6
а указано Root = "d:\\". Если указать вместо Root пустую строку или отсутствую-
щий на компьютере каталог, то в диалоговом окне отобразится дерево всех папок
(рис. 4.6 б), и пользователь имеет возможность выбрать на любом диске любой ка-
талог.

Укажите каталог установки программы

В %»XP(D:)
ф-gj Documents and Settings
Ф в FrontPage webs
B-jjJl Program Ftes
I ф-ЁЭ Adobe
i frfij ahead
i f-fij Borland

I Eb£3l CBulder6
I ф-Q Bin

-£Э DOCUMENTATION

Examples

OK

6)
Укажите K

В (р| Рабочий стол

ffi I£J Мои документы

В У Мой компьютер

EMO SYSTEM (С:)

И •*•» ХР (D:)

Ш «*• PROG (ЕО

В-(» TESTS (F:)

! 3 Н) CDExampD
i И Igjj DATABASE

i-Q CURRENCY

::::£** DRTRU^F

OK Отмена

Рис. 4.6. Диалоговое окно поиска каталога при заданном (а) и не заданном (б) значении Root

Выходной параметр Directory содержит результат выбора пользователя.
Функция возвращает true, если пользователь выбрал каталог и нажал ОК. Если
пользователь нажал Отмена или закрыл каталог, не произведя выбора, то функция
возвращает false.

Рассмотрим пример. Пусть вы делаете программу установки вашего приложе-
ния и хотите, чтобы пользователь указал каталог, в котором надо установить про-
грамму. Соответствующий диалог можно оформить следующим образом:

#include <FileCtrl.hpp>

AnsiString Dir;

if(SelectDirectory("Укажите каталог установки программы", "", Dir))
Dir = InputBox("Можете уточнить каталог",

"Программа расположится в каталоге:", Dir);
else
(

Application->MessageBox("Вы не указали каталог",
"Установка прервана !", MB_ICONSTOP);

Application->Terminate();

Описания функций 431

В этом примере вызов функции SelectDirectory приводит к появлению окна,
представленного на рис. 4.6 б, поскольку параметр Root указан пустой строкой.
Если пользователь выбрал каталог и нажал ОК, то SelectDirectory возвращает
true. В этом случае пользователю предлагается диалоговое окно, вызываемое
функцией Input Box. Оно показано на рис, 4.7 а. В этом окне пользователь может,
если хочет, уточнить каталог. Если же пользователь в окне рис. 4.6 б не выбрал ка-
талог, то функцией Application.MessageBox вызывается окно, показанное на
рис. 4.7 б, и установка прерывается.

а] Можете уточнить каталог

Программа расположится в каталоге:

|FADATABASE\DBACCESS

1 Cancel

6) Установка прерывала!

Вы не указали каталог

ОК

Рис. 4.6. Продолжение диалога выбора каталога

Теперь рассмотрим вторую форму функции SelectDirectory. Она предоставля-
ет более гибкий диалог (рис. 4.8). Возвращаемое значение по-прежнему указывает,
выбрал ли пользователь каталог. Параметр Directory, как и раньше, содержит вы-
бранный пользователем каталог. Если перед вызовом SelectDirectory задано на-
чальное значение Directory, то именно этот каталог будет раскрыт в окне диалога
в первый момент времени. Параметр HelpCtx является ссылкой на контекстную
справку, содержащую подсказку по действиям пользователя. А параметр Options
является множеством следующих опций:

sdAllowCreate В диалоговом окне отображается окошко редактирования Di-
rectory Name (см. рис. 4.8), в котором пользователь может
написать каталог, который отсутствует. Эта опция не созда-
ет сам каталог. Это задача приложения, которое прочтет
имя каталога и при необходимости создаст его.

sdPerformCreate Применяется только в сочетании с sdAllowCreate и обеспе-
чивает создание каталога, если указанный пользователем
каталог отсутствует.

sdPrompt Применяется только в сочетании с sdAllowCreate. Если поль-
зователь указал несуществующий каталог, ему предлагается
вопрос, надо ли его создавать. Если пользователь ответил
утвердительно (нажал ОК) и опция sdPerformCreate включе-
на в множество Options, то каталог будет создан. Если же оп-
ция sdPerformCreate не задана, то приложение должно само
создать нужный каталог.

Если множество Options пустое, то пользователь не может указать каталог,
которого не существует.

Если применить эту форму функции SelectDirectory в приведенном выше при-
мере, то начало кода может иметь вид:

tinclude <FileCtrl.hpp>

AnsiString Dir = "d:\\";

if (SelectDirectory(Dir, TSelectDirOpts() « sdAllowCreate
« sdPerformCreate « sdPrompt, 0))

432 Глава 4

Рис. 4.8
Вторая форма диалога выбора
каталога

1

JD.\ProgramFiles\Bo[|and\CBijilder6

Directories: Files: ("."I

I Bin
QDoc
Г-] DOCUMENTATION

|SSd:[:<p]

OK Cancel Нф

В этом коде задается начальное значение каталога и в параметр Options вклю-
чены все опции: sdAllowCreate, sdPerformCreate и sdPrompt. Вызываемое диало-
говое окно подобно приведенному на рис. 4.8, но не будет иметь кнопки Help, по-
скольку идентификатор контекстной справки задан равным нулю.

Если пользователь напишет в окошке редактирования Directory Name каталог,
который отсутствует в дереве, ему будет предложено окно запроса, показанное на
рис. 4.9. Если пользователь нажмет в нем No, то вернется в окно рис. 4.8. Если же
он нажмет Yes, то отсутствующий каталог будет создан.

Рис. 4.9
Запрос создания отсутствующего каталога

И
The;

Как видно, вторая форма функции SelectDirectory дает дополнительную гиб-
кость диалогу. Но она имеет существенный недостаток: окна рис. 4.8 и 4.9 содер-
жат английские тексты. От окна запроса на создание каталога (рис. 4.9) безуслов-
но лучше отказаться. Если допустимо создание нового каталога без дополнитель-
ного запроса, то следует задавать Options равным [sdAllowCreate, sdPerform-
Create]. Если же .запрос все-таки нужен, то лучше задать Options равным [sdAl-
lowCreate], а запрос и создание каталога обеспечить программно. Так что от анг-
лийского окна запроса избавиться несложно. Но с английскими надписями в ос-
новном диалоговом окне (рис. 4.8) сделать ничего невозможно.

SendMessage — функция API Windows

Функция API Windows, посылает указанное в ней сообщение окну или множе-
ству окон и не возвращается, пока это сообщение обрабатывается.

Модуль winuser.

Объявление

LRESULT SendMessage(
HWND hWnd, // дескриптор окна - приемника
UINT Msg, // сообщение
WPARAM wParam, // первый параметр сообщения
LPARAM IParam // второй параметр сообщения

Описания функций 433

Описание
Функция SendMessage посылает указанное в ней сообщение окну или всем ок-

нам верхнего уровня в системе, включая недоступные и невидимые, кроме дочер-
них. Функция не возвращается, пока это сообщение обрабатывается. Таким обра-
зом, приложение, пославшее сообщение, блокируется на время его обработки.
Этим функция SendMessage отличается от функции PostMessage. которая возвра-
щается сразу после передачи сообщения.

Параметр hWnd — дескриптор окна, которому передается сообщение. Если
этот параметр равен HWND_BROADCAST, то сообщение передается всем окнам
верхнего уровня в системе, включая недоступные, невидимые, перекрытые други-
ми и всплывающие, за исключением дочерних окон.

Параметр Msg определяет передаваемое сообщение. Параметры wParam и 1Ра-
гат могут содержать дополнительную информацию.

Значение, возвращаемое функцией, зависит от вида сообщения.
Для определения дескриптора, передаваемого в функцию в качестве парамет-

ра hWnd, можно использовать функцию Find Window.
Приложения, использующие hWnd = HWND_BROADCAST для связи между

окнами разных приложений, должны предварительно зарегистрировать уникаль-
ность своих сообщений функцией RegisterWindowMessage.

Примеры
Оператор
SendMessage(Form2->Handle,WM_CLOSE,0,0);

посылает форме Form2 сообщение WM_CLOSE, закрывающее окно этой формы.
Первый параметр функции SendMessage содержит дескриптор окна формы Form2,
полученный с помощью ее свойства Handle. Сообщение WM_CLOSE не имеет пара-
метров; поэтому параметры wParam и IParam заданы равными нулю.

Оператор
SendMessage(FindWindow("SciCalc","Калькулятор"), W M _ C L O S E , 0 , 0) ;

использует функцию FindWindow для получения дескриптора окна приложения,
которому надо послать сообщение WM_CLOSE. В качестве параметров в FindWin-
dow передаются класс формы SciCalc и ее заголовок «Калькулятор». Это стандарт-
ное приложение Windows «Калькулятор».

См. также пример в разд. «FindWindow».

set_new_handler и другие функции
обработки ошибок выделения памяти

Функция set_new_handler устанавливает заказной обработчик события, свя-
занного с невозможностью динамически выделить требуемый блок памяти.

Заголовочный файл new.h.

Синтаксис
typedef void (new * n e w _ h a n d l e r) () ;
new_handler set_new_handler(new_handler my_handler);

typedef void (* p v f) () ;
pvf _new_handler;

Описание
При динамическом выделении памяти операцией new (см. в гл. 1 разд. 1.11)

может оказаться, что выделить блок требуемого размера невозможно. В этом слу-
чае генерируется исключение bad_alloc, которое можно перехватывать в блоке
catch. Но можно отменить генерацию исключения bad_alloc, задавая указатель на
свой собственный обработчик событий, связанных с невозможностью выделить па-

434 Глава 4

мять. Задание этого обработчика можно осуществить или непосредственным при-
сваиванием указателя на него указателю на функцию _new_handler, или с помо-
щью функции set_new_handler. Возможности функции set_new_handler шире
и использовать ее проще. Так что далее рассмотрен этот более современный вари-
ант задания обработчика. А функция _new_handler оставлена в C++ для обратной
совместимости с версией C++ 1.2.

В качестве аргумента myjhandler в функцию set_new_handler передается
указатель на введенный вами обработчик. Функция возвращает прежний указа-
тель, который был зарегистрирован до этого.

Например, вы можете описать функцию
void Fl (vo id)
{
ShowMessage("He хватает памяти");
exit(1);

}

которая обрабатывает ситуацию, связанную с нехваткой памяти, и ввести в про-
грамму (например, в обработчик события OnCreate формы) оператор

set_new_handler(Fl);

Вводимый таким образом обработчик не может ничего возвращать и должен
или освободить память для успешного повторного выполнения new, или сгенери-
ровать исключение bad_alloc, или завершить программу (это сделано в приведен-
ном примере). Если не выполнено ни одно из этих действий, возникнет бесконеч-
ный цикл обращений к обработчику.

Если обработчик не прерывает выполнение, то после него повторно выполня-
ется операция new, что позволяет надеяться на успех, если обработчик освободил
память.

Можно отменить генерацию исключения bad_alloc, не вводя специального об-
работчика, а просто записав оператор

set__new h a n d l e r (0) ;

В этом случае при недостатке памяти операция new будет возвращать NULL. Тогда
проверку можно строить, проверяя, не равен ли значению NULL указатель, воз-
вращенный new.

Set8087CW — установка управляющего слова FPU

Обеспечивает установку управляющего слова FPU.
См. разд. «_contro!87 и другие функции доступа к управляющему слову FPU».

SetExceptionMask — установку масок исключений

Обеспечивает установку и запоминание масок исключений управляющего сло-
ва FPU.

См. разд. «GetExceptionMask и другие функции доступа к маскам исключе-
ний».

SetPrecisionMode — управление точностью

Обеспечивает доступ к битам управления точностью управляющего слова FPU.
См. разд. «GetPrecisionMode и другие функции управления точностью».

SetRoundMode — управление округлением

Обеспечивает доступ к битам управления округлением управляющего слова
FPU.

См. разд. «GetRoundMode и другие функции управления округлением».

Описания функций 435

ShellExecute — функция API Windows
Открывает или печатает указанный файл или открывает указанную папку.

Модуль ShellAPI.

Определение
HINSTANCE ShellExecute (

HWND hwnd, // дескриптор родительского окна
LPCTSTR IpOperation, // строка выполняемой операции
LPCTSTR IpFile, // строка с именем файла или папки
LPCTSTR IpParameters,// строка параметров выполняемого файла
LPCTSTR IpDirectory, // строка каталога по умолчанию
INT nShowCmd // режим открытия файла

) ;

Описание
Функция ShellExecute позволяет выполнить любое приложение Windows.

Можно также открыть файл документа, что означает выполнение связанного с ним
приложения и загрузку в него этого документа. Например, обычно с документами,
имеющими расширение .doc, связан Word. В этом случае открыть файл, напри-
мер, с именем "file.doc" означает запустить Word и передать ему в качестве пара-
метра имя файла "file.doc". Кроме описанных возможностей функция Shell-
Execute позволяет распечатать указанный файл или открыть указанную папку.
Последнее означает, что будет запущена программа «Проводник» с открытой ука-
занной папкой.

Для использования функции ShellExecute в модуль надо добавить директиву
препроцессора

tinclude "ShellAPI.h"

подключающую модуль ShellAPI, в котором описана функция. Автоматически
C-l-+Builder эту директиву не добавляет.

Параметр hwnd является дескриптором родительского окна, в котором отобра-
жаются сообщения запускаемого приложения. Обычно в качестве него можно про-
сто указать Handle.

Параметр IpOperation указывает на строку с нулевым символом в конце, кото-
рая определяет выполняемую операцию. Эта строка может содержать текст "open"
(открыть) или "print" (напечатать). Для 32-разрядных Windows определено еще
одно значение: "explore" (исследовать) — открыть папку программой Windows
«Проводник». Если параметр IpOperation равен NULL, то по умолчанию выполня-
ется операция "open".

Параметр IpFile указывает на строку с нулевым символом в конце, которая
определяет имя открываемого файла или имя открываемой папки.

Параметр IpParameters указывает на строку с нулевым символом в конце, ко-
торая определяет передаваемые в приложение параметры, если IpFile определяет
выполняемый файл. Если IpFile указывает на строку, определяющую открывае-
мый документ или папку, то параметр IpParameters задается равным NULL.

Параметр IpDirectory указывает на строку с нулевым символом в конце, кото-
рая определяет каталог по умолчанию.

Параметр nShowCmd определяет режим открытия указанного файла. Этот па-
раметр может принимать следующие значения:

SW_HIDE

SW_MINIMIZE

Окно делается невидимым и фокус передается
другому окну.

Свертывает (минимизирует) указанное окно и ак-
тивизирует следующее в Z-последовательности
окно верхнего уровня в списке системы.

436 Глава 4

SW MAXIMIZE

SW_RESTOKE

SW_SHOW

SW_SHOWDEFAULT

SW_SHOWMAXIMIZED

SW_SHOWMINIMIZED

SW_SHOWMINNOACTIVE

SW_SHOWNA

SW_SHOWNOACTIVATE

SW_SHOWNORMAL

Развертывает (максимизирует) указанное окно.

Активизирует и отображает окно. Если это окно
свернуто или развернуто, то оно восстанавливает-
ся до своих первоначальных размеров и отобра-
жается в первоначальной позиции (почти то же
самое, что SW_SHOWNORMAL).

Активизирует и отображает окно в его текущей
позиции и с текущими размерами.

Устанавливает состояние в соответствии с флагом
SW_ в структуре STARTUPINFO, передаваемой
в функцию CreateProcess программой, запускаю-
щей приложение. Приложение должно вызывать
Show Window с этим флагом, чтобы задать началь-
ное состояние своего главного окна.

Активизирует и отображает окно в развернутом
виде (максимизированном).

Активизирует и отображает окно в свернутом
виде (в виде пиктограммы).

Отображает окно в свернутом виде (в виде пик-
тограммы). Активным остается то окно, которое
было активным до этого.

Отображает окно в его текущей позиции и с теку-
щими размерами. Активным остается то окно,
которое было активным до этого.

Отображает окно в его последней позиции и с по-
следними размерами. Активным остается то
окно, которое было активным до этого.

Активизирует и отображает окно. Если это окно
свернуто или развернуто, то оно восстанавливает-
ся до своих первоначальных размеров и отобра-
жается в первоначальной позиции (почти то же
самое, что SW_RESTORE).

Чаще всего используется значение SW_RESTORE, при котором окно запускае-
мого приложения активизируется и отображается на экране. Если это окно в дан-
ный момент свернуто или развернуто, то оно восстанавливается до своих первона-
чальных размеров и отображается в первоначальной позиции. Для приложений не
Windows, для файлов PIF и т.д. состояние окна определяет само приложение.

Функция ShellExecute возвращает дескриптор открытого приложения или де-
скриптор сервера DDE приложения. Если возвращаемое значение меньше или рав-
но 32, это указывает на ошибку.

Примеры
Пусть вы хотите открыть файл документа с именем "file.doc", т.е. запустить

Word (обычно именно он связан с файлами .doc), загрузив в него указанный файл.
Тогда вы можете написать:

ShellExecute(Handle,NULL,"file.doc",NULL,NULL,SW_RESTORE);

Если вы хотите не открыть, а напечатать документ, записывается аналогич-
ный оператор, но изменяется значение параметра IpOperation:

ShellExecute(Handle,"print","f i le.doc",NULL,NULL,SW RESTORE);

Описания функций 437

Выполнение этого оператора будет протекать следующим образом. Запустится
Word, связанный с файлами .doc, в него загрузится файл file.doc, затем из Word
запустится печать с атрибутами по умолчанию, после чего файл file.doc выгрузит-
ся из Word.

Приведенный ниже оператор открывает приложение Windows «Калькулятор»:
ShellExecute(Handle,"open","Calc",NULL,NULL,SW_RESTORE);

Следующий пример открывает папку c:\Program Files\Borland:
ShellExecute (Handle,"open","c:\\Program Files\\Borland",

NULL,NULL,SW_RESTORE);

А оператор

Shel lExecute(Handle,"explore","c:\\Program Files\\Borland",
NULL,NULL,SW_RESTORE);

открывает программу «Проводник» с открытой папкой c:\Program Files\Borland.

SHGetFilelnfo — получение информации об объекте файловой системы
Функция API Windows, позволяет получить разнообразную информацию об

объекте файловой системы: файле, папке, диске.

Заголовочный файл ShellAPI.h.

Синтаксис
tinclude <ShellAPI.h>
unsigned int SHGetFileInfoA(const char * pszPath,

unsigned long dwFileAttributes,
__SHFILEINFOA *psf i ,
unsigned int cbFile lnfo,
unsigned int uFlags) ;

Описание
Функция SHGetFilelnfo дает возможность получить разнообразную информа-

цию об объекте файловой системы: файле, папке, диске. В частности, можно полу-
чить доступ к спискам пиктограмм Windows. Параметр pszPath задает файл или
шаблон файлов, о которых требуется получить информацию. Параметр dwFile-
Attributes определяет атрибуты файла и используется только при флаге SHGFI_
USEFILEATTRIBUTES. В остальных случаях этот параметр игнорируется и его
можно задавать равным 0. В передаваемую по ссылке структуру psfi типа
_SHFILEINFOA или эквивалентного ему типа TSHFilelnfo функция заносит по-
лученную информацию. Параметр cbFilelnfo задает размер структуры psfi. А па-
раметр uFlags включает наборы флагов. Возвращаемое функцией значение зави-
сит от включенных флагов.

Структура psfi содержит поля:

поле

Ысоп

ilcon

dwAttributes

szDisplayName

szTypeName

тип

HICON

int

DWORD

char — массив длиной

char — массив длиной

80 элементов

80 элементов

Параметр uFlags может включать следующие флаги:

438 Глава 4

SHGFI_ATTRIBUTES

SHGFI_DISPLAYNAME

SHGFI_EXETYPE

SHGFI_ICON

SHGFI_ICONLOCATION

SHGFI_LARGEICON

SHGFI_LINKOVERLAY

SHGFI_OPENICON

SHGFI_PIDL

SHGFI_SELECTED

SHGFI_SHELLICONSIZE

SHGFI_SMALLICON

SHGFI_SYSICONINDEX

SHGFI_TYPENAME

SHGFI
USEFILEATTRIBUTES

Получение атрибутов файла. Флаги атрибутов зано-
сятся в поле dwAttributes структуры psfi.

Получение полного имени файла. Имя заносятся
в поле szDisplayName структуры psfi.

Если pszPath — имя выполняемого файла, то функ-
ция возвращает тип файла (см. пояснения ниже).

Доступ к дескриптору пиктограммы файла или
к системному списку пиктограмм. Применяется
вместе с рядом модификаторов. Дескриптор зано-
сится в поле hlcon структуры psfi, а индекс пиктог-
раммы — в поле ilcon. Функция возвращает деск-
риптор системного списка пиктограмм.

Доступ к имени файла, содержащего пиктограмму
данного файла. Имя заносится в поле szDisplayNa-
me структуры psfi.

Модификатор SHGFI_ICON, дающий доступ к спис-
ку больших пиктограмм.

Модификатор SHGFI_ICON, дающий оверлейную
связь с пиктограммами файлов.

Модификатор SHGFI_ICON, дающий доступ к спис-
ку пиктограмм, соответствующих открытому кон-
тейнеру (папке, каталогу).

Указывает, что pszPath — адрес структуры
ITEMIDLIST, а не имя файла.

Модификатор SHGFI_ICON, дающий доступ к списку
пиктограмм с цветом, соответствующим выделению.

Модификатор SHGFI_ICON, дающий доступ к списку
пиктограмм, размер которых определяется средой.

Модификатор SHGFI_ICON, дающий доступ к спис-
ку малых пиктограмм.

Доступ к индексу пиктограммы в системном спис-
ке. Индекс заносится в поле ilcon структуры psfi.
Функция возвращает дескриптор системного списка
пиктограмм.

Доступ к строке описания типа файла. Строка зано-
сится в поле szTypeName структуры psfi.

Указывает, что функция должна использовать пара-
метр dwFileAttributes.

Если вы хотите определить тип исполняемого файла, в параметре uFlags надо
задать только SHGFI_EXETYPE. Тогда возвращаемое функцией SHGetFilelnfo
значение указывает тип файла:

0

LOWORD = NE или РЕ (17744)
HIWORD = 3.0, 3.5 или 4.0

невыполняемый файл или ошибка

приложение Windows

Описания функций 439

LOWORD = MZ (23117)

HIWORD = 0

LOWORD = РЕ (17744)\

HIWORD = 0

файлы MS-DOS .EXE, .COM или .ВАТ

консольное приложение Win32

Типичное применение функции SHGetFilelnfo — доступ к системным спискам
пиктограмм. Сочетание флагов SHGFI_SMALLICON or SHGFI_ICON or SHGFI_
SYSICONINDEX или SHGFIJLARGEICON or SHGFIJCON or SHGFI_SYSICON-
INDEX дает соответственно доступ к спискам малых и больших пиктограмм Windows.

Примеры
Ниже приведен пример определения типа исполняемого файла. Пусть в вашем

приложении имеется кнопка, при щелчке на которой пользователь может с помо-

щью диалога OpenDialogl выбрать файл и получить о нем информацию. Это мо-

жет быть реализовано следующим образом:

void _ fastcall TForml : :ButtonlClick (TObject *Sender)
{
TSHFilelnfo fi;

if (OpenDialogl->Execute ())
{
unsigned int W = SHGetFilelnfo (

(OpenDialogl->FileName) .c__str () , 0,
Sfi, sizeof(fi), SHGFI_EXETYPE) ;

if (W == 0)
ShowMessage ("Файл '" + OpenDialogl->FileName +

"' неисполняемый");
else if ((LOWORD (W) == П744) && (HIWORD (W) > 0))

ShowMessage ("Файл '" + OpenDialogl->FileName +
"' - приложение Windows");

else if ((LOWORD (W) == 23111) && (HIWORD (W) == 0))
ShowMessage ("Файл '" + OpenDialogl->FileName +

"' - приложение MS-DOS");
else if ((LOWORD (W) == 17744) && (HIWORD (W) == 0))

ShowMessage ("Файл '" + OpenDialogl->FileName +
"' - консольное приложение Win32");

Следующий пример демонстрирует доступ к системным пиктограммам. При-
веденный ниже код создает объекты списков изображений и связывает их с сис-
темными списками:

TImageList *SmallImages = new TImageList (Forml) ;
TImageList *LargeImages = new TImageList (Forml) ;

void _ fastcall TForml :: FormCreate (TObject *Sender)
(
TSHFilelnfo f i ;

SmallImages->Handle = SHGetFilelnfo ("*.*", 0, & f i ,
s izeof(f i) , SHGFI_SMALLICON I
SHGFI_ICON I SHGFI__SYSICONINDEX) ;

LargeImages->Handle = SHGetFilelnfo ("*.*", 0, & f i ,
s i z e o f (f i) , SHGFI_LARGEICON |
SHGFI_ICON I SHGFI_SYSICONINDEX) ;

DrawGridl->ColCount = 10;
DrawGridl->RowCount = ceil (LargeImages->Count / 10);

440 Глава 4

В этом коде объявляются (и создаются операцией new) две переменные
Smalllmages и Largelmages типа TImageList. А в обработчике события формы
OnCreate в качестве их дескрипторов задаются ссылки на списки соответствую-
щих пиктограмм Windows. В результате список Smalllmages будет соответство-
вать списку малых пиктограмм, а список Largelmages — списку больших пикто-
грамм. Далее их можно использовать в приложении как обычные компоненты
типа TImageList. Например, если ввести в приложение таблицу изображений
TDrawGrid достаточной вместимости, то следующий обработчик ее события Оп-
DrawCell обеспечит отображение в ней списка малых системных пиктограмм:

void fastcall TForml::DrawGridlDrawCell(T0bje,ct *Sender, int ACol,
int ARow, TRect SRect, TGridDrawState State)

{
SmallImages->Draw(DrawGridl->Canvas, Rect. Lef t + 10, Rect. Top-t-10,

ARow * DrawGridl->ColCount + ACol,true);

}

Для того чтобы обеспечить достаточную вместимость таблицы DrawGridl, мож-
но добавить в конце приведенного ранее обработчика события формы OnCreate опе-
раторы:

DrawGridl->ColCount = 10;
DrawGridl->RowCount = ceil(SmallImages->Count / 10);

ShowMessage и другие функции вывода
простых диалоговых окон сообщений

Отображают простые диалоговые окна сообщений.

Заголовочный файл Dialogs.hpp.

Синтаксис
#include <Dialogs.hpp>
extern PACKAGE void fastcall ShowMessage(constAnsiString Msg);
extern PACKAGE void _^fastcall ShowMessageFmt(constAnsiString Msg,

const System: .-TVarRec *Params,
const int Params_Size);

extern PACKAGE void fastcall ShowMessagePos(.constAnsiString Msg,
int X, int Y) ;

Описание
В приложениях часто приходится отображать различные простые диалоговые

окна, чтобы дать пользователю какие-то указания. В законченном приложении
желательно эти окна проектировать самому, обеспечивая единство стиля всех окон
приложения, русские надписи на кнопках и т.п. Но при разработке прототипа бу-
дущего проекта и в процессе отладки удобно пользоваться готовыми диалоговыми
окнами и вызывающими их функциями.

Простейшей из таких функций является ShowMessage, отображающая окно
сообщения с кнопкой ОК. Текст сообщения задается параметром Msg. Заголовок
окна совпадает с именем выполняемого файла прилржения.

Функция ShowMessagePos выводит такое же окно, как и функция Show-
Message, но позволяет указать координаты левого верхнего угла окна X и Y. Это
в ряде случаев позволяет привязать окно сообщения к тому окну формы или
к тому его компоненту, к которому данное сообщение относится. Подобная привяз-
ка помогает пользователю понять, на что конкретно указывает данное сообщение.

Функция ShowMessageFmt, позволяет выводить в диалоговое окно формати-
рованное сообщение. Параметр Msg в этой функции задает строку описания фор-
мата (см. разд. 3.1.3.3), а параметры Params и Params_Size задают массив пара-
метров, форматируемых строкой Msg, и размер этого массива. Для передачи мае-

Описания функций 441

сива в функцию удобно использовать макрос OPEN ARRAY (см. разд. 2.11.3). То-
гда вызов функции ShowMessageFmt имеет вид:

ShowMessageFmt(Msg,OPENARRAY(TVarRec, (argl ,arg2, . . - .))) ;

Более содержательные диалоговые окна, позволяющие задать пользователю
вопрос и узнать его реакцию, отображаются функциями MessageDlg. Message-
DlgPos и CreateMessageDialog. См. также метод MessageBox. обеспечивающий,
пожалуй, наиболее удачное полностью русифицируемое диалоговое окно.

Примеры
Операторы

ShowMessage("Работа приложения успешно завершена");
ShowMessageFmt("Задано %d параметров из %d ",

OPENARRAY(TVarRec, (N 1 , N 2))) ;

вызывают диалоговые окна, вид которых показан на рис. 4.10.

Рис. 4.10
Сообщения, выдаваемые функциями
ShowMessage (a), ShowMessageFmt (б)
и ShowMessagePos (в)

Работа приложения успешно завершена

ок

б)
Задано 5 п.

[Project1

Данное окно будет закрыто.

ОК

Операторы

ShowMessagePos("Данное окно будет закрыто",
Form2->Left, Form2->Top + Form2->Height);

Form2->Close();

перед закрытием окна формы Form2 выводят диалоговое окно с сообщением «Дан-
ное окно будет закрыто» (рис. 4.10 в), привязанное к левому нижнему углу формы
Гогт2.

ShowMessageFmt — простое диалоговое окон
с форматированным сообщением

Отображает простое диалоговое окно с форматированным сообщением.
См. разд. «ShowMessage и другие функции вывода простых диалоговых окон

сообщений».

ShowMessagePos — простое диалоговое окон с сообщением
в заданной позиции

Отображает в заданной позиции простое диалоговое окно с сообщением.
См. разд. «ShowMessage и другие функции вывода простых диалоговых окон

сообщений».

Sign — функция

Определяет знак аргумента.

442 Глава 4

Заголовочный файл Math.hpp.

Синтаксис

extern PACKAGE int
extern PACKAGE int
extern PACKAGE int

_fastcall Sign(const double AValue);
fastcall Sign (const int AValue);
fastcall Sign(const int64 AValue),

Описание
Перегруженные формы функции Sign определяют знак аргумента AValue.

Они возвращают:

0

-1
+1

если AValue = 0

если AValue < 0

если AValue > 0

signal и другие функции работы с сигналами

Функции обработки и генерации сигналов.

Синтаксис
#include <signal.h>
(JJSERENTRY *signal(int sig,

void (JJSERENTRY * f u n c)
(int sig[, int s u b c o d e]))) (i n t) ;

void signal(SIGUSR1, Handl_SIGUSRl);

int raise(int sig);

Описание
Функция signal позволяет определить обработчик указанного сигнала прерыва-

ния sig. Функция raise генерирует сигнал типа sig (см. о сигналах в гл. 1, разд. 1.13).
В файле signal.fi предопределены следующие сигналы:

SIGABRT

SIGBREAK

SIGFPE

SIGILL

SIGINT

SIGSEGV

SIGTERM

SIGUSR1,
SIGUSR2,
SIGUSR3

Аварийное завершение программы. Генерируется только вызо-
вом функций abort, raise и необработанными исключениями.
Действие по умолчанию — вызов _exit(3).

Прерывание нажатием клавиш Ctrl-Break.

Ошибка арифметической операции, например, деления на нуль
или операции, вызвавшей переполнение. Действие по умолча-
нию — вызов _exit(l).

Появление в коде недопустимой команды. Действие по умолча-
нию — вызов _exit(l).

Получение интерактивного сигнала (например, прерывание
Ctrl+C). Действие по умолчанию — прерывание INT 23h.

Нарушение доступа к памяти. Действие по умолчанию — вызов
_exit(l).

«Мягкое» завершение процесса. Действие по умолчанию — вы-
зов _exit(l).

Определенные пользователем (только в Win32) сигналь! пользо-
вателя, генерируемые функцией raise. Действие по умолча-
нию — игнорирование сигнала.

Описания функций 443

Функция signal имеет две формы, приведенные выше. Первая из них основ-
ная, вторая сохраняется для обратной совместимости и не рекомендуется в новых
приложениях.

В функцию signal передаются два параметра: целочисленный номер сигнала
sig и указатель func на функцию обработки сигнала. Обработчик fane может быть
определенной пользователем функцией или одним из трех предопределенных об-
работчиков: SIG_DFL — завершение программы, SIG_IGN — игнорирование сиг-
налов данного вида, SIG_ERR — генерация ошибки. Например:

// генерация сообщения об ошибке
signal (SIGINT, SIG_ERR);

ИЛИ

// игнорирование сигнала SIGINT
signal(SIGINT, SIG_IGN);

Если вы хотите задать свой обработчик стандартного сигнала или определен-
ного вами сигнала, это может выглядеть так. Пусть, например, вы хотите преду-
смотреть в своей программе обработчик некоторого вводимого вами сигнала
SIGUSR1. Назовем функцию этого обработчика Handl_SIGUSRl. Определите
в программе тип указателя на функцию fptr:

typedef void (* f p t r) (i n t) ;

Тогда где-то в начале программы надо ввести оператор:
signal(SIGFPE, (fptr)Handl_SIGFPE);

Этот оператор установит функцию Handl_SIGUSR как обработчик сигнала SIG-
USR1. В нужных местах программы вставьте оператор генерации вашего сигнала:

raise(SIGUSR1);

Рассмотрим подробнее последовательность операций системы при выполнении
этого оператора. Если в программе задан приведенным выше оператором signal об-
работчик пользователя для данного события, то происходит обращение к этому об-
работчику, но прежде система сбрасывает установку на SIG_DFL. Это значит, что
при следующей генерации этого сигнала, если не повторить вызов функции signal,
система забудет прежнюю установку и не будет опять обращаться к обработчику
пользователя. Поэтому обычно в конце обработчика повторяют вызов signal.

Примеры
Ниже приведен пример определения обработчика Handl_SIGUSRl вводимого

пользователем типа сигнала SIGUSR1.
linclude <signal.h>
typedef void (*fptr)(int);
void Handl_SIGUSRl(int N)

{

if (...)
i

// повторная установка обработчика для продолжения работы:
signal(SIGFPE, (fptr)Handl_SIGFPE);

}
else exit(EXIT_SUCCESS);

}

Этот обработчик принимает одно целое значение, соответствующее номеру
сигнала. В обработчике предусматриваются некоторые действия, необходимые при
появлении данного сигнала. Затем, если выполнение программы должно продол-
жаться, надо повторно установить обработчик сигнала с помощью функции signal,
как показано в приведенном примере. Если этого не сделать, то последующие со-

444 Глава 4

бытия SIGUSR1 не будут вызывать этот обработчик. После выполнения команды
повторной установки обработчика сигнала управление автоматически передается
в точку программы, в которой сигнал был обнаружен. В этом, в частности, корен-
ное отличие сигналов от исключений.

Указание системе на этот обработчик осуществляется оператором
signal (SIGFPE, (fptr) Handl_SIGFPE) ;

Такой оператор вы можете вставить, например, в обработчик события OnCreate ва-
шей формы.

Генерация сигнала в требуемых местах программы осуществляется с помо-
щью функции raise оператором

raise (SIGUSR1) ;

SimpleRoundTo — округление _
Округляет действительное число до заданного десятичного порядка.
См. разд. «RoundTo и другие функции округления».

Sleep — функция задержки выполнения _
Задерживает выполнение приложения на заданный интервал времени.

Заголовочный файл winbase.h.

Синтаксис
void Sleep (DWORD dwMilliseconds);

Описание
Функция Sleep обеспечивает задержку выполнения текущего потока (нити) на

dwMilliseconds миллисекунд. На это время управление переключается на другие
процессы с тем же или более высоким приоритетом.

Например, оператор
' Sleep (10000) ;

задержит выполнение приложения на 10 сек.
Иногда надо задержать выполнение какой-то функции, но при этом сохранить

возможность управлять приложением. Это можно сделать, разбив одну задержку
на ряд более коротких и в промежутках между ними вызывать метод Process-
Messages приложения Application.

Например, создайте форму с двумя кнопками и одним окном редактирования.
В обработчик первой кнопки внесите операторы:

Sleep (10000) ;
ShowMessage ("End") ;

При щелчке на этой кнопке выполнение приложение остановится на 10 сек.
В течение этого времени вы не сможете им управлять: нажать какую-то другую
кнопку, ввести текст в окно редактирования, изменить размер формы. А в обработ-
чик второй кнопки внесите код:

for(int i=l; i <= 100;

Sleep (100) ;
Application->ProcessMessages () ;

}
ShowMessage ("End") ;

Щелчок на этой кнопке также задержит выполнение процедуры его обработки
на 10 сек. Но через каждые 100 миллисекунд будет выполняться метод Process-

Описания функций 445

Messages, который обеспечит реакцию на все сообщения Windows. В результате
управление приложением не будет потеряно: вы сможете на протяжении задержки
вводить текст в окно редактирования, нажать первую кнопку, изменить размер
формы и т.п.

См. также один из примеров в разд. «fgetc и другие функции ввода/вывода
символа».

Реализация функции Sleep зависит от платформы. В Windows инкапсулиру-
ется соответствующая функция API. В Linux функция реализуется совершенно
иначе. Но и в приложениях Windows, и в консольных приложениях, и в приложе-
ниях Linux она работает.

Для задержки выполнения или какой-то синхронизации процессов может так-
же использоваться компонент Timer или таймеры Windows.

SmallPoint — формирование точки из координат

Формирует точку из координат.
См. разд. «Point и другие функции формирования точки».

spawn... — функции выполнения порождаемых процессов

Порождают новый процесс.

Заголовочный файл process.Л.

Синтаксис
#include <process.h>
int spawnl(int mode, char *path, char *argO, argl,

. . . , argn, N U L L) ;
int _wspawnl (int mode, wchar_t *path, wchar_t *argO,

argl, ..., argn, NULL);

int spawnle(int mode, char *path, char *argO, argl,
..., argn, NULL, char *envp[]);

int wspawnle(int mode, wchar_t *path, wchar_t *argO,
argl, ..., argn, NULL, wchar_t *envp[]);

int spawnlp(int mode, char *path, char *argO, argl,
..., argn, NULL);

int wspawnlp(int mode, wchar_t *path, wchar_t *argO,
argl, ..., argn, NULL);

int spawnlpe(int mode, char *path, char *argO, argl,
..., argn, NULL, char *envp[]);

int _wspawnlpe(int mode, wchar_t *path, wchar_t *argO,
argl, ..., argn, NULL, wchar_t *envp[]);

int spawnv(int mode, char *path, char *argv[]);
int _wspawnv(int mode, wchar_t *path,

wchar_t *argv[]);

int spawnve(int mode, char *path, char *argv[],
char *envp[]);

int _wspawnve(int mode, wchar_t *path,
wchar_t *argv[], wchar_t *envp[]);

int spawnvp(int mode, char *path, char *argv[]);
int wspawnvp(int mode, wchar_t *path,

wchar_t *argv[]>;

int spawnvpe (int mode, char *path, char *argv[],
char *envp[]);

446 Глава 4

int wspawnvpe (int mode, wchar_t *path,
wchar_t *argv [] , wchar_t *envp [])

Описание
Функции spawn... загружают в память и выполняют некоторую внешнюю про-

грамму path, называемую порожденным процессом.
Имеется родственное рассматриваемому семейству функций семейство функ-

ций exec.... также решающее задачи порождения процессов. Но функции spawn...
обладают более широкими возможностями, чем exec..., благодаря наличию пара-
метра mode, задающего режим выполнения порождаемого процесса. Этот пара-
метр может принимать следующие значения:

P_WAIT

P_NOWAIT

P_NOWAITO

P_DETACH

P_OVERLAY

Родительский процесс ждет завершения порожденного процесса,
после чего продолжается выполнение родительского процесса.

Родительский процесс продолжает выполняться пока выполня-
ется порожденный процесс. Поскольку функция возвращает ID
порожденного процесса, можно применить функцию cwait или
wait, чтобы обеспечить ожидание завершения порожденного
процесса. Этот режим недоступен в 16-разрядных Windows
и DOS.

Идентичен P_NOWAIT, но ID порожденного процесса не сохра-
няется операционной системой, так что применение функций
cwait или wait невозможно.

Идентичен P_NOWAITO, но порожденный процесс выполняет-
ся в фоновом режиме, так что не имеет доступа к клавиатуре
и дисплею.

Порождаемый процесс замещает в памяти родительский. То
же, что вызов соответствующей функции exec....

Различия между функциями семейства spawn... определяются их суффикса-
ми, которые обозначают следующее:

L

V

Р

е

В процесс передается список указателей на аргументы argO,
argl, ..., argn. Обычно используется, если число аргументов за-
ранее известно.

В процесс передается указатель argv[] на массив указателей на
аргументы argO, argl, ..., argn. Обычно используется, если
число передаваемых аргументов может изменяться.

Файл загружаемой программы ищется в каталогах, указанных
в переменной окружения PATH. Если параметр path не содер-
жит явного указания каталога, поиск ведется сначала в теку-
щем каталоге, а затем в каталогах, указанных в PATH. Если
функция не содержит суффикса "р", то файл ищется только
в рабочем каталоге.

В порождаемый процесс может быть передан аргумент env,
указывающий на окружение порождаемого процесса. Если фун-
кция не содержит суффикса "е", то порождаемый процесс на-
следует окружение родительского процесса.

Каждая из функций spawn... должна передать в порождаемый процесс хотя
бы один аргумент (argO), и по соглашению этот аргумент — копия path. Впрочем,
передача другого значения не является ошибкой. Суммарная длина всех аргумен-

Описания функций 447

тов (не учитывая нулевых символов, но учитывая пробелы) не должна превышать
128 символов.

В функциях с суффиксом "1" аргументы перечисляются непосредственно
в операторе вызова функции как указатели на строки с нулевым символом в кон-
це. Количество аргументов не ограничено. Последним аргументом передается
NULL, что является признаком окончания списка.

В функции с суффиксом "v" в качестве параметра передается указатель на
массив произвольной длины, содержащий указатели на строки, являющиеся аргу-
ментами порождаемого процесса. Последним из указателей в массиве должен быть
NULL, показывающий, что список аргументов завершился.

В функции с суффиксом "е" передается массив указателей envp на строки, оп-
ределяющие переменные окружения порождаемого процесса. Эти строки обычно
имеют вид

<имя переменной> = <значение>

Если envp = NULL, то для функций с суффиксом "е" так же, как и для всех
остальных функций, порождаемый процесс наследует окружение родительского
процесса.

Файлы, открытые на момент вызова порождаемого процесса, остаются откры-
тыми и для этого процесса. Однако в порожденный процесс не передается режим,
в котором отрыты файла (текстовый или двоичный). Если режим отличается от
принятого по умолчанию, то в порожденном процессе надо произвести его установ-
ку функциями.

Поиск файла path, загружаемого функциями spawn..., осуществляется сле-
дующим образом. Если в параметре path явно указано расширение файла или сто-
ит точка, ищется файл такой, который задан. Если же расширение не задано, то
сначала ищется файл такой, который задан. Если он не находится, к имени добав-
ляется расширение .ехе и поиск повторяется. Если файл опять не находится,
к имени добавляется расширение .com и поиск повторяется. Функции без суффик-
са "р" ведут поиск файла только в текущем каталоге (если только каталог не задан
явно в path). А функции с суффиксом "р" сначала ведут поиск в текущем катало-
ге, а затем — в каталогах, указанных в переменной окружения PATH.

Все функции возвращают 0 при успешной загрузке порожденного процесса,
а при ошибке возвращают -1. В этом случае глобальная переменная еггпо может
принимать значения E2BIG — слишком длинный список аргументов, EINVAL —
ошибочный аргумент, ENOENT — не найден путь или файл, ENOEXEC — ошибка
формата, ENOMEM — не хватает памяти.

Если в программе требуется организовать ожидание завершения порожденно-
го процесса, используются функции cwait и wait.

Примеры
Операторы
if (s p a w n l p (P _ W A I T , " a r j " , "ar j " , "e doc .ar j a l . txt" , N U L L))

ShowMessage("Программа arj не выполнена");
else

{
Memol->Clear();
Memol->Lines->LoadFromFile("al.txt");
DeleteFile("al.txt");

}

запускают архиватор arj, извлекающий из архива doc.arj файл al.txt. Приложение
ждет, пока программа arj закончит работу, затем загружает разархивированный
файл в окно редактирования Memol и удаляет этот файл с диска.

448 Глава 4

В приведенном примере все аргументы, передаваемые в порождаемый про-
цесс, объединены в одной строке. Тот же самый результат получился бы, если пе-
редать их все в отдельности:

if (spawnlp (P_WAIT, "arj ", "ar j " , "e", "doc.arj ", "al . txt",NULL))

Операции, подобные рассмотренным выше, невозможно было бы выполнить
функциями exec..., поскольку они не обеспечивают возвращения в исходное при-
ложение. Нельзя было бы выполнить эти операции и функциями spawn... при ре-
жиме, отличном от P_WAIT, поскольку в этом случае оператор загрузки файла
в окно редактирования выполнялся бы раньше, чем успевал распаковываться ар-
хив. Впрочем, можно было бы использовать и режим P_NOWAIT, но с добавлени-
ем функций cwait или wait:

int ID = spawnlp (P_ NOWAIT, "ar j " , "ar j " , "e doc.ar j a l . tx t" , N U L L) ;
if (ID == -1}

ShowMessage ("Программа ar j не выполнена");
else
{

if (wait (NULL) != ID)
ShowMessage ("Ошибка разархивации") ;

else

{
Memol->Clear () ;
Memol->Lines->LoadFromFile ("al . txt") ;
DeleteFile ("al .txt") ;

В этом коде функция spawnlp выполняется в режиме P_NOWAIT, не обеспе-
чивающем ожидание конца порожденного процесса. Но затем вызывается функ-
ция wait, которая обеспечивает ожидание. Если эта функция вернет значение, от-
личное от идентификатора порожденного процесса, значит при выполнении поро-
жденного процесса произошло его аварийное завершение.

Надо отметить, что приведенный выше пример разархивации файла обладает
двумя недостатками. Первый из них связан с тем, что выполняется программа arj,
предназначенная для DOS. Поэтому при ее выполнении вызывается сеанс DOS,
и после его окончания пользователь видит окно DOS, которое ему надо закрыть,
чтобы продолжить работу. Это, конечно, очень неудобно. Устранить этот недоста-
ток легко, например, написанием пакетного файла arj.bat вида:

@echo off
a r j .exe e doc %1
exit

В нем помимо команда разархивации предусмотрена команда exit — оконча-
ние сеанса работы с окном DOS. Тогда обращение к разархивации в приложении
может быть даже короче, чем раньше:

if (spawnlp (P_WAIT, "arj .bat", "arj .bat", "al.txt", NULL))

Обращение к пакетному файлу arj.bat позволяет порожденному процессу авто-
матически, без вмешательства пользователя вернуться в родительский процесс. Ос-
тается еще один недостаток рассмотренного примера — на время выполнения разар-
хивации получаются неприятные изменения экрана, связанные с выходом в DOS.

Рассмотрим еще один пример использования функции spawnlp. Пусть вы раз-
работали пользовательский интерфейс, в котором хотите предоставить пользовате-
лю возможность запускать различные приложения. Ваш интерфейс достаточно
большой и поэтому желательно запускать из него внешние приложения в оверлэй-
ном режиме. Эту задачу можно решить следующим образом.

Описания функций 449

Пусть имя вашего приложения POverlay.exe. Создайте еще одно приложение,
названное, например, OMenage.exe. Это приложение будет управлять запуском
требуемых программ. Оно может быть очень маленьким, не содержать ни одной
формы и располагаться в оперативной памяти одновременно с запускаемыми про-
граммами. Весь текст его файла следующий:

tinclude <vcl.h>
tpragma hdrstop
tinclude <process.h>
WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR IpCmdLine, int)
I
spawnlp(P_WAIT,IpCmdLine,IpCmdLine, NULL);
spawnlp(P_OVERLAY,"POverlay.exe","POverlay.exe", NULL);
return 0;

Первый вызов функции spawnlp обеспечивает запуск в режиме ожидания того
приложения, имя которого передано через командную строку IpCmdLine. Второй
вызов spawnlp обеспечивает оверлэйный вызов вашего основного приложения
POverlay.exe.

Предположим, что в вашем основном приложении POverlay.exe имя запускае-
мой программы записано в окне редактирования Editl. Тогда вызов этой програм-
мы может осуществляться оператором:

if(spawnlp(P_OVERLAY,"OMenage.exe","OMenage.exe",Editl->Text, N U L L))
ShowMessage("Программа " + Editl->Text + " не выполнена;"+

" нет файла OMenage.exe");

Этот оператор прервет выполнение приложения POverlay.exe и загрузит на его
место в памяти короткую (примерно 10 К) программу OMenage.exe, передав в нее
как параметр имя запускаемого приложения. Программа OMenage.exe вызовет в ре-
жиме ожидания эту программу, а по окончании ее работы удалится из памяти
и опять вызовет основное приложение POverlay.exe. Таким образом, во время вы-
полнения вызываемой программы в памяти будет находиться не ваше большое при-
ложение POverlay.exe, а только маленькая программа управления OMenage.exe.

Описанное взаимодействие программ имеет некоторый недостаток: при воз-
врате в POverlay.exe текст в окне Editl будет утерян. Этот недостаток легко устра-
нить. Измените основной файл приложения POverlay следующим образом:

tinclude <vcl.h>
tpragma hdrstop
USERES("POverlay.res");
USEFORM("UOverlayl.cpp", Forml);
tinclude "UOverlayl.h" // включение головного файла приложения

it • ,

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR IpCmdLine, int)

try

Application->Initialize();
Application->CreateForm(classid(TForml), &Forml);
Forml->Editl->Text = IpCmdLine; // Загрузка окна Editl
Application->Run();

catch (Exception &exception)

Application->ShowException («.exception) ;

return 0;

}

450 Глава 4

По сравнению со стандартным файлом, созданным C-H-Builder, в него добавле-
но две строки (отмечены комментариями): директива, включающая заголовочный
файл модуля UOverlayl.h, содержащего описание вашей формы Forml, и опера-
тор, загружающий в окно Editl текст, переданный через командную строку. Еще
одно изменение по сравнению, со стандартным файлом — введение в заголовок
функции WinMain параметра IpCmdLine — ссылки на командную строку. Если
в файле приложения POverlay сделаны такие изменения, то в приложении ОМеп-
age второй вызов функции должен быть изменен на следующий:

spawnlp(PJ3VERLAY,"POVERLAY.exe","POVERLAY.exe", IpCmdLine, NULL);

Этот вызов отличается от того, что был раньше, передачей в программу той ко-
мандной строки, которая была задана при вызове OMenage, Таким образом в про-
грамму POverlay вернется имя запускавшейся программы, которое будет загруже-
но в окно Editl.

sprintf — форматированный вывод в массив символов
Выводит форматированные данные в буферный массив.
См. разд. «fprintf и другие функции форматированного вывода».

srand — генерация псевдослучайных чисел
Рандомизирует последовательность псевдослучайных чисел.
См. разд. «random и другие функции генерации псевдослучайных чисел».

sscanf — форматированный ввод из буфера в памяти
Вводит форматированные данные из буфера в памяти.
См. разд. «scanf и другие функции форматированного ввода».

_status87 и другие функции получения слова состояния FPU
Возвращают текущее значение слова состояния FPU.

Заголовочный файл float.h.

Синтаксис
#include < f l o a t . h >
unsigned int _status87(void) ;
unsigned int _statusfp(void);

Описание
Функции _status87 и _statusfp возвращают текущее значение слова состояния

FPU (см. разд. 1.9.3). При возникновении одной из ошибок, связанных с вычисле-
ниями с плавающей запятой, она отражается в слове состояния. Если генерация ис-
ключений при этих ошибках замаскирована (см. разд. «_contro!87, _controlfp -
доступ к управляющему слову FPU», то получение и анализ слова состояния — ос-
новной инструмент реагирования на ошибки вычислений.

Функция _statusfp идентична функции _status87. Она введена для совмести-
мости с Microsoft.

Слово состояния можно также получить функциями controls?, controlfp
и функциями _clear87. _clearfp. но последние, возвращая слово состояния, к тому
же очищают его.

Пример
float х;
double у = 1.5е-100;
Labell->Caption = I n t T o H e x ((i n t) _ s t a t u s 8 7 () , 4) ;
x = у; // ошибки потери порядка и точности
Label2->Caption = IntToHex((int) status87() , 4) ;

Описания функций 451

В этом примере при выполнении присваивания переменной х значения пере-
менной у возникают ошибки потери порядка и точности, поскольку переменная
типа double не может хранить столь малого значения, которое присвоено перемен-
ной х. В результате в метке Labell отобразится начальное значение слова состоя-
ния — • "0000", а в метке Label2 — значение "0030", биты которого свидетельству-
ют о появлении ошибок. Конечно, приведенный код будет нормально выполнять-
ся, если замаскирована генерация соответствующих исключений (см. разд. 1.9.3).

_statusfp — текущее значение слова состояния FPU

Возвращает текущее значение слова состояния FPU.
См. разд. «_status87 и другие функции получения слова состояния FPU».

StdDev — вычисление среднего квадратического отклонения
Возвращает среднее квадратическое отклонение элементов массива.

Заголовочный файл Math.hpp.

Синтаксис •
linclude <Math.hpp>
extern PACKAGE Extended fastcall

StdDev(const double * Data, const int Data_Size);

Описание
Функция StdDev возвращает несмещенную оценку среднего квадратического

отклонения элементов массива действительных чисел Data. Параметр Data_Size —
индекс последнего элемента массива, учитываемого при подсчете среднего значе-
ния. Если массив А содержит п элементов, то среднее квадратическое отклонение
рассчитывается по формуле

где А — среднее значение (математическое ожидание) элементов массива. Это
несмещенная оценка, статистически более точная, чем корень из суммы квад-
ратов отклонений, деленной на п.

Например, оператор
В = StdDev(А, 99) ;

присваивает действительной переменной В значение среднего квадратического от-
клонения первых 100 элементов, хранящихся в массиве действительных чисел А.

Если необходимо одновременно рассчитывать математическое ожидание и сред-
нее квадратическое отклонение, то лучше воспользоваться более быстрой функцией
MeanAndStdDev.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

StrCopy и другие функции копирования строк

Копируют одну строку в другую.

Заголовочные файлы SysUtils.hpp, string.h, wchar.h, mbstring.h.

Синтаксис
extern PACKAGE char * fastcall

StrCopy (char * Dest, const char * Source);

452 Глава 4

extern PACKAGE char * fastcall
StrECopy(char * Dest, const char * Source);

extern PACKAGE char * fastcall
StrLCopy(char * Dest, const char * Source,

unsigned MaxLen);
extern PACKAGE char * fastcall

StrMove(char * Dest, const char * Source,
unsigned Count);

char * strcpy(char *dest, const char *src);
wchar_t * wcscpy(wchar_t *dest, const wchar_t *src);
unsigned char *

_mbscpy(unsigned char *dest, const unsigned char *src);
char * strncpy(char *dest, const char *src, size_t maxlen);
wchar_t *

wcsncpy(wchar t *dest, const wchar_t *src, size_t maxlen);
unsigned char *

_mbsncpy(unsigned char *dest, const unsigned char *src,
size_t maxlen);

Описание
Функции копируют строку Source (src) в Dest (dest). Например:
char b u f f [100];

. s t rcpy(buf f , "Текст, копируемый в b u f f ") ;

Все функции, кроме StrECopy, возвращают указатель на результат копирова-
ния. Например, если в приведенном выше коде заменить второй оператор на

char *Р = s t r c p y (b u f f , " Т е к с т , копируемый в b u f f ") ;

то Р будет указывать на строку buff.
Функция StrECopy отличается от остальных тем, что возвращает указатель на

последний символ скопированной строки. Это дает возможность вложенными вы-
зовами склеивать несколько строк. Например, операторы

char *S1 = "текст 1", *S2 = "текст 2", S[20];
StrECopy(StrECopy(StrECopy(S,SI)," "),S2) ;

приведут к формированию в S строки: "текст 1 текст 2". Использование таких вло-
женных вызовов StrECopy более эффективно, чем многократный вызов StrCat.

Функции StrPCopy и StrPLCopy одновременно с копированием осуществляют
преобразование строки типа AnsiString в строку с нулевым символом в конце.

Функции копирования не осуществляют проверки размера строки, в которую
производится копирование. Так что надо программно проверять размеры строк
функцией StrLen. Размер приемника должен быть по крайней мере на 1 больше
числа символов в строке-источнике, чтобы разместить заключительный нулевой
символ. Если размер приемника меньше, то нарушится распределение памяти, что
может привести к непредсказуемым последствиям.

Если приемник не способен вместить всю копируемую строку, можно восполь-
зоваться для копирования функциями StrLCopy, StrPLCopy, StrMove, strncpy
и другими, в которых параметр MaxLen (Count, maxlen) указывает максимальное
число копируемых символов. Если в источнике меньше символов, то копируется
вся строка и лишние символы заменяются нулевыми. Но если в источнике симво-
лов больше, чем MaxLen, то копируются только первые MaxLen символов. Так что
если задать значение MaxLen на 1 меньше размера приемника, то будет гарантия,
что приемник не переполнится. Например, копирование строки Source в строку S
можно осуществлять оператором

StrLCopy(S,Source, s i z e o f (S) - 1) ;

Приемник не переполнится при любом числе символов в Source, хотя, конечно,
длинная строка не скопируется в приемник полностью.

Описания функций 453

Функция StrMove отличается от других тем, что источник и приемник могут
перекрывать друг друга в памяти.

Помимо перечисленных в данном разделе функций, для копирования можно
применять функции memmove, memcpy и другие, копирующие блоки памяти,
в качестве которых могут выступать и строки (см. разд. «memcpy и другие функ-
ции копирования и заполнения блоков памяти»).

strcpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

StrECopy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

StrLCopy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

StrLower — преобразование строки к нижнему регистру

Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

strlwr — преобразование строки к нижнему регистру

Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

StrMove — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк.

strncpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

StrPos — поиск подстроки

Возвращает указатель на позицию первого вхождения заданной подстроки
в строку.

См. разд. «AnsiPos и другие функции поиска подстроки».

StrToCurr, StrToInt, StrToFloat и другие функции преобразования
строки в число

Преобразуют строку в монетарное, целое или действительное число.

Заголовочный файл SysUtils.hpp.

Синтаксис
extern PACKAGE System::Currency fastcall

StrToCurr(const AnsiString S) ;

454 Глава 4

extern PACKAGE System::Currency fastcall
StrToCurrDef(const AnsiString S,

const System::Currency Default);

extern PACKAGE Extended fastcall
StrToFloat (const AnsiString S) ;

extern PACKAGE Extended fastcall
StrToFloatDef(const AnsiString S;

const Extended Default);

extern PACKAGE int fastcall StrToInt(const AnsiString S);
extern PACKAGE int fastcall StrToIntDef(const AnsiString S;

const int Default);
extern PACKAGE bool fastcall TryStrToInt (const AnsiString S,

int SValue);

Описание
Функции преобразуют строку S в число: StrToCurr — в монетарное типа

Currency, StrToInt — в целое, StrToFloat — в действительное. Если строка запи-
сана в неправильном формате, то все эти функции генерируют исключение
EConvertError.

Функции с суффиксом "Def" при ошибочном значении формата строки возвра-
щают число, указанное параметром Default.

Функция TryStrToInt преобразует строку S в число Value. Если строка запи-
сана в неправильном формате, функция возвращает false.

Примеры
Следующие операторы читают тексты, введенный пользователем в окна редак-

тирования Editl и Edit2. Если при переводе строки генерируется исключение, то
срабатывает оператор раздела catch:

try
{
System::Currency С = StrToCurr(Editl->Text);
Extended R = StrToFloat(Editl->Text);
int I = StrToInt(Edit2->Text);

}
catch(EConvertError &)

{
// Перехват исключения при ошибочном числе
Application->MessageBox("Неверный формат чисел",

"Исправьте данные",
MB_OK+MB_ICONSTOP);

>

Оператор
int i = StrToIntDef(Editl->Text, 0) ;

присваивает переменной i значение, введенное пользователем в окно Editl. Если
пользователь ввел недопустимое число, значение i будет равно нулю.

StrToDate и другие функции преобразования строки в дату и время
Преобразуют строку в дату и время.

Заголовочный файл SysUtils.hpp.

Синтаксис
tinclude <SysUtils.hpp>
extern PACKAGE System::TDateTime fastcal l

StrToDate(const AnsiString S);
extern PACKAGE System::TDateTime fastcal l

StrToDateTime(const AnsiString S) ;

'

Описания функций 455

extern PACKAGE System::TDateTime fastcall
StrToTime(const AnsiString S);

extern PACKAGE System::TDateTime fastcall
StrToDateDef(const AnsiString S,

const System::TDateTime Default);
extern PACKAGE System::TDateTime fastcall

StrToDateTimeDef(const AnsiString S,
const System::TDateTime Default);

extern PACKAGE System::TDateTime fastcall
StrToTimeDef(const AnsiString S,

const TDateTime Default);

Описание
Функции StrToDate и StrToDateDef преобразуют строку S в дату типа

TDateTime. Функции StrToTime и StrToTimeDef аналогично преобразуют строку
S во время, а функции StrToDateTime и StrToDateTimeDef преобразуют строку
в значение, содержащее и дату, и время.

Если преобразуемые строки не соответствует формату дат и времени, то функ-
ции без суффикса "Def" генерируют исключение EConvertError, а функции с суф-
фиксом "Def" возвращают значение по умолчанию, заданное параметром Default,
не генерируя исключение.

Часть преобразуемой строки, обозначающая дату, должна содержать два или
три двузначных числа, разделенных символами, определенными в глобальной пе-
ременной DateSeparator (для русифицированных версий Windows это обычно точ-
ка "."). Последовательность чисел определяется глобальной переменной Short-
DateFormat: или месяц/день/год — это по умолчанию, или день/месяц/год — это
обычно принято в русифицированных версиях Windows, или год/месяц/день.
Если заданы только 2 числа, они воспринимаются как месяц и день текущего года.

Двузначное число, обозначающее две последние цифры года, может лежать
в пределах 00-99. При его преобразовании в год используется глобальная перемен-
ная TwoDigitYearCent игу Window. Если TwoDigitYearCentury Window = 0, то чис-
ло обозначает год текущего столетия. Например, в 1999 году числа 99 и 00 обозна-
чали соответственно 1999 и 1900 годы, а в 2000 они обозначают 2099 и 2000 годы.
Если же задать TwoDigitYearCentury Window > 0, то заданное значение вычитает-
ся из текущего года, сдвигая точку отсчета. Тогда годы, превышающие эту новую
точку отсчета, относятся по-прежнему к текущему столетию, а годы, предшест-
вующие новой точке отсчета, переносятся в следующее столетие. Например, при
TwoDigitYearCenturyWindow = 50 и в 1999" году, и в 2000 году (точки отсчета
1949 и 1950) числа 99 и 00 обозначают соответственно 1999 и 2000 годы.

Часть преобразуемой строки, определяющая время, должна содержать 2 или 3
двузначных числа, разделенных символами, определенными в глобальной пере-
менной TimeSeparator (для русифицированных версий Windows это обычно двое-
точие ":"). Первое число обозначает час, второе — минуты, третье — секунды.
Если задано два числа, то они воспринимаются как час и минуты, а секунды счита-
ются равными нулю.

Примеры
Ниже приведены строки и результаты их восприятия различными функция-

ми. Подразумевается, что текущий год — 2002. Прочерки означают, что данную
строку функция воспринимает как ошибочную и генерирует исключение. Функ-
ции с суффиксом "Def" в этих случаях возвращают значения по умолчанию.

Строка

1.5.2

Воспринимается

StrToDate

01.05.2002

StrToTime

—

StrToDateTime

01.05.2002

456 Глава 4

Строка

1.5

17:5

17:5:7

1.5.2 17:5

1.5.0 17:5:7

Воспринимается

StrToDate

01.05.2002

—

—

—

—

StrToTime

—

17:05:00

17:05:07

—

—

StrToDateTime

01.05.2002

17:05:00

17:05:07

01.05.2002
17:05:00

01.05.2002
17:05:07

StrToDateDef — преобразование строки в дату

Преобразует строку в дату.
См. разд. «StrToDate и другие функции преобразования строки в дату и время».

StrToDateTime — преобразование строки в дату и время

Преобразует строку в дату и время.
См. разд. «StrToDate и другие функции преобразования строки в дату и время».

StrToDateTimeDef — преобразование строки в дату и время

Преобразует строку в дату и время.
См. разд. «StrToDate и другие функции преобразования строки в дату и время».

StrToTime — преобразование строки во время

Преобразует строку во время.
См. разд. «StrToDate и другие функции преобразования строки в дату и время».

StrToTimeDef — преобразование строки во время

Преобразует строку во время.
См. разд. «StrToDate и другие функции преобразования строки в дату и время».

StrUpper — преобразование строки к верхнему регистру

Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистру».

strupr — преобразование строки к верхнему регистру

Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистру».

Sumlnt и Sum — вычисление сумм

Возвращают сумму значений элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
f include <Math.hpp>

Описания функций 457

extern PACKAGE int fastcall
Sumlnt(const int * Data, const int Data_Size);

extern PACKAGE Extended fastcall
Sumfconst double *'Data, const int Data_Size);

Описание
Функции Sumlnt и Sum возвращают сумму значений элементов массива Data

соответственно целых-или действительных чисел. Параметр Data_Size — индекс
последнего элемента массива, учитываемого при подсчете среднего значения.

Если необходимо одновременно рассчитывать сумму и сумму квадратов значе-
ний элементов массива, то лучше воспользоваться более быстрой функцией Sums-
AndSuuares.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

SumOfSquares — вычисление суммы квадратов

Возвращает сумму квадратов значений элементов массива действительных чи-
сел.

Заголовочный файл Math.hpp.

Синтаксис
tinclude <Math.hpp>
extern PACKAGE Extended fastcal l

SumOfSquares(const double * Data, const int Data_Size);

Описание
Функция SumOfSquares возвращает сумму квадратов значений элементов

массива действительных чисел Data. Параметр Data_Size — индекс последнего
элемента массива, учитываемого при подсчете среднего значения.

Если необходимо одновременно рассчитывать сумму и сумму квадратов значе-
ний элементов массива, то лучше воспользоваться более быстрой функцией Sums-
AndSquares.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

SumsAndSquares — вычисление суммы и суммы квадратов

Вычисляет сумму и сумму квадратов значений элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
tinclude <Math.hpp>
extern PACKAGE void fastcall

SumsAndSquares(const double * Data, const int Data_Size,
Extended &Sum, Extended SSumOfSquares);

Описание
Процедура SumsAndSquares рассчитывает для массива Data одновременно

сумму Sum и сумму квадратов SumOfSquares значений элементов. Параметр
Data_Size — индекс последнего элемента массива, учитываемого при подсчете
среднего значения. Время вычислений по процедуре SumsAndSquares меньше,
чем при последовательном вызове функций Sum и SumOfSquares. Поэтому, если
требуется знать и сумму, и сумму квадратов, то лучше использовать именно эту
процедуру.

458 Глава 4

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

swprintf — форматированный вывод в массив символов

Выводит форматированные данные в буферный массив.
См. разд. «fprintf и другие функции форматированного вывода».

swscanf — форматированный ввод из буфера в памяти

Вводит форматированные данные из буфера в памяти.
См. разд. «scanf и другие функции форматированного ввода».

system и другие функции выполнения команд операционной системы

Выполнение команды операционной системы.

Заголовочный файл process.h.

Синтаксис
#include <process.h>
int system(const char *command);
int _wsystem(const wchar_t *command);

Описание
Функции system и _wsystem выполняют команду command и возвращают

управление в вызвавшее приложение. Команда command может быть командой
операционной системы, командой выполнения программы DOS или пакетного
(batch) файла. Программа должна быть в текущем каталоге или в одном из катало-
гов, перечисленных в переменной окружения PATH. Команда выполняется команд-
ным процессором DOS, что вызывает в Windows в ряде случаев неприятное измене-
ние экрана на время выполнения команды. Функции возвращают 0 при успешном
начале работы командного процессора и -1 в случае неудачи.

Примеры
// команда DOS dir с занесением результатов
// в текстовый файл dir, txt
system("dir » dir.txt");

// команда DOS mkdir, создающая каталог с:\\ttt
system("mkdir c:\\ttt");

// выполнение Norton Commander
system("nc");

Time — текущее время

Возвращает текущее время.
См. разд. «Date и другие функции определения даты и времени».

TimeToStr — преобразование времени в строку

Преобразует время в строку.
См. разд. «DateToStr и другие функции преобразования даты и времени

в строк».

_tmain — макрос функции main

Макрос, развертывающийся в ту или иную форму функции main.

Описания функций 459

См. разд. «main — функция».

Today — текущая дата _

Возвращает текущую дату.
См. разд. «Date и другие функции определения даты и времени».

Tomorrow — завтрашняя дата _

Возвращает завтрашнюю дату.
См. разд. «Date и другие функции определения даты и времени».

TotalVariance — вычисление суммы квадратов отклонений

Возвращает сумму квадратов отклонений значений элементов массива от их
среднего значения.

Заголовочный файл Math.hpp.

Синтаксис
tinclude <Math.hpp>
extern PACKAGE Extended _ fastcall

TotalVariance (const double * Data, const int Data_Size) ;

Описание
Функция TotalVariance рассчитывает сумму квадратов отклонений значений

элементов массива Data от их среднего значения:

1=1
Это вспомогательная величина, входящая в выражения для дисперсии и сред-

него квадратического отклонения, вычисляемые функциями Variance. Popn-
Variance. MeanAndStdDev.

Параметр Data_Size — индекс последнего элемента массива, учитываемого
при подсчете среднего значения.

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

TryEncodeDate — формирование даты типа TDateTime _

Формирует дату из отдельных ее составляющих.
См. разд. «EncodeDate и другие функции формирования типа TDateTime».

TryEncodeDateTime — формирование даты времени типа TDateTime

Формирует дату и время из отдельных составляющих.
См. разд. «EncodeDate и другие функции формирования типа TDateTime».

TryEncodeTime — формирование времени типа TDateTime _

Формирует время из отдельных его составляющих.
См. разд. «EncodeDate и другие функции формирования типа TDateTime».

_tWinMain — функция _

Главная функция приложений Windows.
См. разд. «WinMain — функция».

460 Глава 4

ungetc — возврат символа во входной поток
Возвращает символ в буфер входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

ungetch — возврат символа во входной поток
Возвращает символ в буфер входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

ungetwc — возврат символа во входной поток
Возвращает символ в буфер входного потока.
См. разд. «fgetc и другие функции ввода/вывода символа».

UpperCase — преобразование строки к верхнему регистру
Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистру».

va_start, va_arg, va_end — макросы
Обеспечивают доступ к параметрам в функциях, в которые передается неопре-

деленное число аргументов,

Синтаксис
#include <stdarg.h>
typedef void _FAR *va_list;
void va_start(va_list ap, l a s t f i x) ;
type va_arg (va__list ap, type);
void va_end(va_list ap) ;

Описание
Макросы va_start, va_arg и va_end используются в функциях, в которые пе-

редается неопределенное число аргументов (см. гл. 1, разд. 1.7.5).
Макрос va_start начинает работу со списком аргументов, устанавливая его ука-

затель ар на первый передаваемый в функцию аргумент. Параметр lastfix — это
имя последнего из обязательных аргументов функции, предшествующих списку.

Макрос va_arg возвращает значение очередного аргумента из списка. Пара-
метр type указывает тип аргумента. Перед вызовом va_arg значение ар должно
быть установлено вызовом va_start или предшествующим вызовом va_arg. Каж-
дый вызов va_arg переводит указатель ар на следующий аргумент.

Макрос va_end завершает работу со списком, освобождая память. Он должен
вызываться после того, как с помощью va_arg прочитан весь список аргументов.
В противном случае могут быть непредсказуемые последствия.

Примеры
Пусть требуется создать функцию average, которая рассчитывает и отобража-

ет в метке Labell среднее значение передаваемых в нее целых положительных чи-
сел. Функция принимает в качестве первого аргумента некоторое сообщение, кото-
рое должно отображаться перед результатами расчета. Список обрабатываемых
чисел может быть любой длины и заканчиваться нулем. Такая функция может
быть реализована следующим образом:

#include <stdarg.h>

void average(AnsiString mess,...)
{
double A = 0;

Описания функций 461

int i = 0, arg;
va_list ар;
va_start (ар, mess);
while ((arg = va arg (ap, int)) != 0)
f
i++;
A += arg;
}
Forml— >Labell->Caption = mess + "N = " +IntToStr(i) +

", среднее = " + FloatToStr (A/i) ;
va_end(ap) ;
}

Вызов функции может быть, например, таким:
average ("Результаты экзамена: " , 4 , 2 , 3 , 5 , 4 , 0) ;

В результате функция выдаст в метку Labell сообщение:
Результаты экзамена: N = 5, среднее = 3,6

Функцию average можно было бы организовать иначе, не вводя специальную
конечную метку в список (в приведенном примере — 0), а предваряя список аргу-
ментов параметром N, указывающим размер списка:

void average (AnsiString mess, int N, . . .)
{
double A = 0;
va_list ap;
va_start(ap, N) ;
for (int i = 0; i < N; i++)

A += va_arg (ap, int) ;
Forml->Labell->Caption = mess + "N = " + I n t T o S t r (N) +

", среднее = " + FloatToStr (A / N) ;
va_end (ap) ;

}

Вызов функции может быть, например, таким:
average ("Результаты экзамена: " , 5 , 4 , 2 , 3 , 5 , 4) ;

Variance — вычисление дисперсии _
Возвращает дисперсию элементов массива.

Заголовочный файл Math.hpp.

Синтаксис
#include <Math.hpp>
extern PACKAGE Extended _ fastcall

Variance (const double * Data, const int Data_Size) ;

Описание
Функция Variance возвращает несмещенную оценку дисперсии элементов

массива действительных чисел Data. Параметр Data_Size — индекс последнего
элемента массива, учитываемого при подсчете среднего значения. Если массив А
содержит п элементов, то дисперсия рассчитывается по формуле

-

где А — среднее значение (математическое ожидание) элементов массива. Это не-
смещенная оценка, статистически более точная, чем сумма квадратов отклонений,
деленная на п, возвращаемая функцией PopnVariance.

Дисперсия равна квадрату среднего квадратического отклонения, вычисляе-
мого функциями StdDev и MeanAndStdDev. Таким образом, выполняется соотно-
шение Sqr(StdDev(A)) = Variance(A).

462 Глава 4

Пример
См. пример в разд. «random и другие функции генерации псевдослучайных

чисел».

vfprintf — форматированный вывод в файл

Выводит форматированные данные в файл.
См. разд. «fprintf и другие функции форматированного вывода».

vfscanf — форматированный ввод из файла

Вводит форматированные данные из файла.
См. разд. «scanf и другие функции форматированного ввода».

vfwprintf — форматированный вывод в файл

Выводит форматированные данные в файл.
См. разд. «fprintf и другие функции форматированного вывода».

vprintf — форматированный вывод на экран

Выводит форматированные данные в выходной поток.
См. разд. «fprintf и другие функции форматированного вывода».

vscanf — форматированный ввод с клавиатуры

Вводит форматированные данные из входного потока (с клавиатуры).
См. разд. «scanf и другие функции форматированного ввода».

vsprintf — форматированный вывод в массив символов

Выводит форматированные данные в буферный массив.
См. разд. «fprintf и другие функции форматированного вывода».

vsscanf — форматированный ввод из буфера в памяти

Вводит форматированные данные из буфера в памяти.
См. разд. «scanf и другие функции форматированного ввода».

vswprintf — форматированный вывод в массив символов

Выводит форматированные данные в буферный массив.
См. разд. «fprintf и другие функции форматированного вывода».

vwprintf — форматированный вывод на экран

Выводит форматированные данные в выходной поток.
См. разд. «fprintf и другие функции форматированного вывода».

wait — ожидание завершения порожденного процесса

Ожидает завершения порожденного процесса.
См. разд. «cwait и другие функции ожидания завершения порожденного про-

цесса» .

wcscpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

Описания функций 463

wcsncpy — копирование строк

Копирует одну строку в другую.
См. разд. «StrCopy и другие функции копирования строк».

__wcslwr — преобразование строки к нижнему регистру

Преобразует строку к нижнему регистру.
См. разд. «AnsiLowerCase и другие функции преобразования строки к нижне-

му регистру».

_wcsupr — преобразование строки к верхнему регистру

Преобразует строку к верхнему регистру.
См. разд. «AnsiUpperCase и другие функции преобразования строки к верхне-

му регистру».

_wexec... — функции выполнения порождаемых процессов

Порождают новый процесс.
См. разд. «exec... — функции выполнения порождаемых процессов».

_wfindfirst — стандартная функция начала поиска файлов

Обеспечивает начало поиска файлов, удовлетворяющих заданному шаблону
и имеющих указанные атрибуты.

См. разд. «findfirst и другие стандартные функции поиска файлов».

_wfindnext — стандартная функция продолжения поиска файлов

Обеспечивает продолжение поиска файлов, начатого функцией _wfindfirst.
См. разд. «findfirst и другие стандартные функции поиска файлов».

WinExec — функция API Windows

Функция API Windows, выполняет указанное приложение.

Определение
UINT W i n E x e c (

LPCSTR IpCmdLine, // адрес командном строки
UINT uCmdShow // режим открытия приложения

) ;

Описание
Функция WinExec позволяет выполнить указанное приложение. Параметр

IpCmdLine является указателем на строку с нулевым символом в конце, содержа-
щую имя выполняемого файла и, если необходимо, параметры командной строки.

Если имя указано без пути, то Windows ищет выполняемый файл в следующей
последовательности:

• Каталог, из которого загружено приложение.
• Текущий каталог.

. • Системный каталог Windows, возвращаемый функцией GetSystemDirectorv.
• Каталог Windows, возвращаемый функцией GetWindowsDirectory.
• Список каталогов из переменной окружения PATH.

Параметр uCmdShow определяет форму представления окна запускаемого
приложения Windows. Он может принимать следующие значения:

464 Глава 4

SW_HIDE

SW_MINIMIZE

SW MAXIMIZE

SW_RESTORE

SW_SHOW

SW_SHOWDEFAULT

SW_SHOWMAXIMIZED

SW_SHOWMINIMIZED

SW_SHOWMINNOACTIVE

SW_SHOWNA

SW SHOWNOACTIVATE

SW_SHOWNORMAL

Окно делается невидимым и фокус передается
другому окну.

Свертывает (минимизирует) указанное окно и ак-
тивизирует следующее в Z-последовательности
окно верхнего уровня в списке системы.

Развертывает (максимизирует) указанное окно.

Активизирует и отображает окно. Если это окно
свернуто или развернуто, то оно восстанавливает-
ся до своих первоначальных размеров и отобра-
жается в первоначальной позиции (почти то же
самое, что SW_SHOWNORMAL).

Активизирует и отображает окно в его текущей
позиции и с текущими размерами.

Устанавливает состояние в соответствии с флагом
SW_ в структуре STARTUPINFO, передаваемой
в функцию CreateProcess программой, запускаю-
щей приложение. Приложение должно вызывать
ShowWindow с этим флагом, чтобы задать нача-
льное состояние своего главного окна.

Активизирует и отображает окно в развернутом
виде (максимизированном).

Активизирует и отображает окно в свернутом
виде (в виде пиктограммы).

Отображает окно в свернутом виде (в виде пиктог-
раммы). Активным остается то окно, которое
было активным до этого.

Отображает окно в его текущей позиции и с теку-
щими размерами. Активным остается то окно, ко-
торое было активным до этого.

Отображает окно в его последней позиции и с по-
следними размерами. Активным остается то окно,
которое было активным до этого.

Активизирует и отображает окно. Если это окно
свернуто или развернуто, то оно восстанавливает-
ся до своих первоначальных размеров и отобра-
жается в первоначальной позиции (почти то же
самое, что SW_RESTORE).

Чаще всего используется значение SW_RESTORE, при котором окно запускае-
мого приложения активизируется и отображается на экране. Если это окно в дан-
ный момент свернуто или развернуто, то оно восстанавливается до своих первона-
чальных размеров и отображается в первоначальной позиции. Для приложений не
Windows, для файлов PIF и т.д. состояние окна определяет само приложение.

При успешном выполнении запуска приложения функция WinExec возвраща-
ет значение, большее 31. Если возвращено меньшее значение, это свидетельствует
об ошибке.

Достоинством функции WinExec является ее совместимость с ранними вер-
сиями Windows. Собственно для этого она и сохраняется в WIN32, хотя для Win32
рекомендуется пользоваться функцией CreateProcess.

Описания функций 465

При работе с Win32 функция WinExec завершает работу, если вызванное при-
ложение вызывает функцию GetMessage или заканчивается выделенный лимит
времени. Таким образом, ожидание можно прервать, предусмотрев в процессе, за-
пущенном с помощью WinExec, в нужный момент вызов функции GetMessage.

Примеры
Оператор
WinExec(" f i l e .exe" ,SW_RESTORE) ;

запускает программу file.exe. Оператор
W i n E x e c (" n c " , S W _ R E S T O R E) ;

запускает Norton Commander. Оператор
WinExec("COMMAND.COM",SW^RESTORE);

приводит к запуску MS-DOS.
Операторы

int i = WinExec(Edi t l->Text .c_s t r () ,SW_RESTORE) ;
if (i < 32)

ShowMessage("Код ошибки "+ IntToStr (i)) ;

обеспечивают выполнение любой программы, имя которой пользователь набрал
в окне редактирования Editl. Поскольку первый параметр функции должен иметь
тип (char *), а текст окна имеет тип AnsiString. то для приведения типов прихо-
дится использовать метод c_str().

Ниже приведен пример процедуры, обеспечивающей выполнение любой вы-
бранной пользователем программы. Откройте новый проект и разместите на форме
компонент OpenDialog, задав в нем фильтр

программы

все файлы

.ехе;.com;*.pif;*.dat
_

Разместите на форме кнопку Button (назовите ее ВЕхес), при щелчке на кото-
рой пользователь может выбрать в окне Открыть файл программу и выполнить ее.
Обработчик события OnClick этой кнопки может иметь вид:

if (OpenDialogl->Execute ())
{
int i = WinExec (OpenDialogl->FileName.c_str () , SW_RESTORE) ;
switch (i)

{
case 0 : ShowMessage ("He хватает памяти или ресурсов");

break;
case ERROR_BAD_FORMAT :

ShowMessage ("Ошибочный файл " + OpenDialogl->FileName) ;
break;

case ERROR_PATH_NOT_FOUND:
ShowMessage ("He найден каталог " +

ExtractFilePath (OpenDialogl->FileName)) ;
break;

case ERROR_FILE_NOT__FOUND:
ShowMessage ("He найден файл " -t- OpenDialogl->FileName) ;

Запустите ваше приложение на выполнение и попробуйте вызывать из него
различные программы Windows и MS-DOS.

466 Глава 4

WinMain — главная функция
Главная функция приложений Windows.

Модуль winbase.

Определения
int PASCAL WinMain(HINSTANCE hCurlnstance,

HINSTANCE hPrevInstance,
LPSTR IpCmdLine, int nCmdShow)

int PASCAL wWinMain (HINSTANCE hCurlnstance,
HINSTANCE hPrevInstance,
LPWSTR IpCmdLine, int nCmdShow)

int PASCAL _tWinMain (HINSTANCE hCurlnstance,
HINSTANCE hPrevInstance,
LPTSTR IpCmdLine, int nCmd.Show)

Описание
Функция WinMain размещается в головном файле приложения Windows и ей

передается управление в начале выполнения приложения.
Вариант wWinMain является версией Unicode, в которой третий параметр —

строка Unicode. Вариант _tWinMain — это макрос, форма развертывания которого
автоматически изменяется в зависимости от типа приложения.

Параметр hCurlnstance типа HINSTANCE является дескриптором данного эк-
земпляра приложения. Дескриптор — это некий уникальный указатель, позво-
ляющий Windows разбираться в множестве одновременно открытых окон различ-
ных приложений. Дескрипторы используются при обращении к различным функ-
циям API Windows (API Windows — это пользовательский интерфейс Windows, со-
держащий множество полезных функций).

Параметр hPrevInstance типа HINSTANCE — это дескриптор предыдущего
экземпляра вашего приложения (если пользователь выполняет одновременно не-
сколько таких приложений).

Параметр IpCmdLine типа LPSTR является указателем на строку с нулевым
символом в конце, содержащую параметры, передаваемые в программу через ко-
мандную строку. Иногда такие параметры используются для переключения режи-
мов работы программы или для задания различных опций при запуске приложе-
ния из диспетчера программ или функциями WinExec. CreateProcess и др.

Последний параметр nCmdShow — целое число, определяющее окно приложе-
ния. Этот параметр может в дальнейшем передаваться в функцию ShowWindow.

В консольных приложениях Win32 имеется два отличия от описания, приве-
денного выше для приложений Windows: параметр hPrevInstance всегда возвраща-
ет NULL, а параметр IpCmdLine указывает на строку, содержащую всю командную
строку, а не только ее параметры. Впрочем, в консольных приложениях С и C++
практически всегда используется в качестве главной функции не WinMain, a main.

Значение, возвращаемое функцией WinMain, в Windows не используется. Его
можно использовать только в процессе отладки.

Примеры реализации функции WinMain см. в разд. 1.2.2.

wmain — функция
Главная функция консольных приложений С и C++ в Unicode.
См. разд. «main — функция».

_wmemcpy — копирование блоков памяти
Копирует блок памяти.
См. разд. «memcpy и другие функции копирования и заполнения блоков памя-

ти».

Описания функций 467

_wmemset — заполнение блока памяти

Заполняет блок памяти заданным символом.
См. разд. «memcpy и другие функции копирования и заполнения блоков памя-

ти».

wprintf — форматированный вывод на экран

Выводит форматированные данные в выходной поток.
См. разд. «fprintf и другие функции форматированного вывода».

wscanf — форматированный ввод с клавиатуры

Вводит форматированные данные из входного потока (с клавиатуры).
См. разд. «scanf и другие функции форматированного ввода».

_wspavn... — функции выполнения порождаемых процессов

Порождают новый процесс.
См. разд. «spavn... — функции выполнения порождаемых процессов».

_wsystem — выполнение команды ОС

Выполнение команды операционной системы.
См. разд. «system и другие функции выполнения команд операционной системы».

wWinMain — главная функция

Главная функция приложений Windows.
См. разд. «WinMain — функция».

YearOf — дешифрация года

Определяет год.
См. разд. «DayOf и другие функции дешифрации дат и времени».

YearsBetween и другие функции определения разности лет

Возвращают число лет между двумя значениями даты и времени.

Заголовочный файл DateUtils.hpp.

Синтаксис
tinclude <DateUtils.hpp>
extern PACKAGE int fastcall

YearsBetween(const System::TDateTime ANow,
const System::TDateTime AThen);

extern PACKAGE double fastcall
YearSpan (const System::TDateTime'ANow,

const System::TDateTime AThen);

Описание
Функции YearsBetween и YearSpan возвращают число лет между двумя зна-

чениями даты и времени ANow и AThen типа TDateTime. Функция YearsBetween
возвращает число полных лет между двумя значениями. А функция YearSpan воз-
вращает действительное число, содержащее дробную часть, отображающую непол-
ный год.

Хотя годы (високосные и не високосные) имеют разную продолжительность,
функции YearsBetween и YearSpan это не учитывают и исходят из усредненного
значения 365.25 дней в году. Например, для дат 01.01 и 31.12 одного года функ-

468 Глава 4

ция YearsBetween выдаст число полных лет 1 для високосного года, и 0 для не ви-
сокосного.

Примеры
Операторы
TDateTime 11 = EncodeDateTime(2001, 01, 1, 00, 00, 00, 3 0 0) ;
TDateTime Т2 = EncodeDateTime(2002, 01, 1, 00, 00, 00, 3 0 0) ;
int i = YearsBetween (T2, Tib-
double r = YearSpan(T2, T l) ;

зададут переменной i значение 1, а переменной г значение 1,00205338809035.
В этом примере значения дат и времени Т1 и Т2 задаются с помощью функции En-
codeDateTime и их разность ровно 1 год. Но из-за принятого округления функция
YearSpan возвращает число, большее единицы, поскольку 2000 год високосный.
Если выполнить аналогичные операторы для 2001 и 2002 годов, то функция Years-
Between вернет 0, a YearSpan — 0,999315537303217.

YearSpan — разность лет

Возвращает число лет между двумя значениями даты и времени.
См. разд. «YearsBetween и другие функции определения разности лет».

Yesterday — вчерашняя дата

Возвращает вчерашнюю дату.
См. разд. «Date и другие функции определения даты и времени».

Глава 5

Обзор стандартной
библиотеки шаблонов STL

\

5.1 Стоит ли знакомиться с STL?
Стандартная библиотека шаблонов STL является мощным инструментом, спо-

собным оказать вам большую помощь в разработке сложных программ на C++.
Она включает в себя множество шаблонов контейнеров, способных хранить упоря-
доченные данные различных типов, итераторов, дающих доступ к этим данным,
алгоритмов, работающих с данными, и многое другое. При начальном знакомстве
с STL может возникнуть законный вопрос: стоит ли тратить немалое время на по-
пытки разобраться в хитросплетениях этой библиотеки? Ведь каждому програм-
мисту известно, что часто проще самому написать программу, чем разбираться
в программе, написанной кем-то другим. Особенно, если эта программа не слиш-
ком хорошо документирована.

У меня самого в свое время возник этот вопрос. Но, затратив определенные
усилия на знакомство с STL, я понял, что не зря потерял время. Прелесть стан-
дартной библиотеки заключается, прежде всего, конечно, в готовых алгоритмах,
которые вы можете использовать в своих задачах, вместо того, чтобы заново от-
крывать Америку, создавая с нуля подобные алгоритмы. Но, может быть, еще
важнее то, что STL предоставляет вам инструментарий для разработки собствен-
ных алгоритмов, беря на себя с помощью множества описанных в ней объектов
и утилит всю черновую работу. Так что, несомненно, изучать STL стоит. Вопрос
только в том, насколько доскональным должно быть это изучение. Если вы не со-
бираетесь дополнять эту библиотеку собственными сложными шаблонами, необхо-
димыми для решения ваших задач, то достаточно знакомства с STL на уровне
пользователя. То есть необходимо знать функциональные возможности, парамет-
ры и основные функции-элементы и данные-элементы объектов библиотеки. Тон-
кости реализации шаблонов библиотеки при этом вас не должны интересовать. Да
и сами коды шаблонов можно вообще не смотреть. И только если вы намерены
своими силами создавать нечто, подобное STL, тогда детальное знакомство с кода-
ми будет для вас прекрасной школой обретения высшей квалификации в C++.

Рассмотрение STL в этой главе ориентировано именно на уровень пользовате-
лей, а не разработчиков библиотек. Правда, описание даже на этом уровне всех
возможностей STL нереально из-за ограничения на объем книги. Я очень надеюсь,
что в недалеком будущем смогу написать отдельную небольшую книгу для пользо-
вателей STL. А пока в данной главе ограничиваюсь только поневоле кратким обзо-
ром основных элементов этой библиотеки.

5.2 Использование STL в C++Builder
В C++Builder 6 включена новая реализация STL — STLport 4.5. Одновремен-

но, для обратной совместимости оставлена реализация библиотеки STL Rogue
Wave разработанная по стандартам 1998 года, выпущенным American National
Standards Institute (ANSI) и International Standards Organization (ISO). Ho no
умолчанию используется STLport. Если вы хотите использовать Rogue Wave, вам
надо определить директивой #define макрос _USE_OLD_RW_STL.

470 Глава 5

Помимо основной рабочей версии STLport, в C++Builder имеется отладочная
версия библиотеки. Она заметно снижает производительность приложения, так
что использовать ее имеет смысл только при отладке. Но зато она предусматривает
множество проверок, которые помогут вам легче находить различные ошибки
в процессе отладки. Для использования отладочной версии вам надо определить
директивой #define макрос _STLP_DEBUG.

При работе с STL, помимо подключения необходимых заголовочных файлов,
необходимо принимать меры, чтобы идентификаторы классов, функций и т.п. со-
ответствовали пространству имен стандартной библиотеки (см. разд. 1.8.2). Об-
ласть видимости STL названа std. Так что наиболее простой способ использования
идентификаторов STL — включить в ваш файл оператор

using namespace std;

Подобный оператор делает доступными все идентификаторы STL. Но тогда, если
вам необходимо использовать в программе одноименные идентификаторы из дру-
гих файлов, надо будет указывать для них область видимости явным образом.

Если вам требуется использовать только немногие идентификаторы из STL,
можно явным образом задать область видимости именно для них. Например, опе-
ратор

using s td: : swap;

сделает доступной в любом месте вашего файла функцию swap из STL.
Третий вариант — указывать область видимости std непосредственно в момент

использования соответствующего идентификатора. Например,
s t d : : s w a p (x , у) ;

5.3 Основные концепции STL

STL реализована как библиотека шаблонов. Основы построения и использова-
ния шаблонов вы можете посмотреть в разд. 2.14.8 и 1.7.8. Применение шаблонов
позволяет существенно сократить размер библиотеки и повышает ее универсаль-
ность. Действительно, без технологии шаблонов, введенной в C++, разработчикам
библиотеки пришлось бы многократно повторять одни и те же классы и алгоритмы
для различных типов данных. И универсальность все равно не была бы достигну-
та, так как невозможно предвидеть, какие типы данных, структуры и т.п. потребу-
ются пользователям в их конкретных задачах.

Правда, система шаблонов в STL достаточно сложна, и попытка проследить
в ней все связи приведет вас к серьезным затратам сил и времени. Эта система мо-
жет вызвать шок, особенно у программистов, привыкших работать с другими язы-
ками программирования, где шаблонов нет. Но большинству пользователей вовсе
и не надо разбираться в этих премудростях. Ведь не разбираетесь вы, как реализо-
ваны стандартные функции, имеющиеся в любом языке, и, как правило, не заду-
мываетесь, как рассчитывается в них sin или cos. Вы просто вызываете стандарт-
ные функции, передаете в них нужные аргументы и получаете результат. Так же
можно работать и с шаблонами. Надо только привыкнуть, что кроме обычных ар-
гументов в шаблоны надо передавать, заключая в угловые скобки, типы данных,
необходимые для работы. А погружение в хитросплетения STL отложите до того
момента, когда решите дополнить стандартную библиотеку собственными шабло-
нами, типами и алгоритмами.

Итак, что же содержит STL, что реализовано в ней в виде шаблонов? Прежде
всего, контейнеры. Контейнеры — это объекты, которые могут хранить множест-
во элементов — объектов некоторого типа. Поэтому при создании контейнера все-
гда надо указывать для него тип хранимых данных. Но контейнеры не просто хра-
нят данные. Элементы в контейнерах упорядочены. Контейнеры могут содержать

Обзор стандартной библиотеки шаблонов STL 471

простые последовательности, как в массивах или строках, могут содержать связ-
ные списки: очереди, стеки. Есть контейнеры, способные хранить иерархические
конструкции типа деревьев. Так что библиотечные контейнеры избавят вас от не-
обходимости программировать подобные структуры данных. И работа со строками
становится много проще, чем при использовании стандартного типа char *. Впро-
чем, никто не мешает вам создавать собственные шаблоны контейнеров по образу
и подобию библиотечных, содержащие экзотические виды связей между элемента-
ми, необходимые в вашей работе. В библиотеке имеется немало шаблонов, которые
помогут вам в этой работе.

Для управления памятью контейнеры используют стандартный распредели-
тель памяти — шаблон allocator, описанный в файле <memory>. Распределитель
применяет операции new и delete (см. разд. 1.11) для динамического выделения
и освобождения памяти. Так что контейнеры совместно с распределителями памя-
ти освобождают программиста от ранее неизбежной, требующей особого внимания
и достаточно неприятной обязанности организовывать выделение памяти под объ-
екты с изменяющимися размерами.

Распределитель по умолчанию alloc обеспечивает хорошие характеристики,
так что лучше всего, обычно, использовать именно его. Из других распределителей
можно указать еще pthread_alloc, который применяется в тех многопоточных
приложениях, в которых для каждого потока выделена своя область памяти. Рас-
пределитель pthread_alloc можно использовать только в многопоточных операци-
онных системах. Он может работать быстрее, чем alloc, особенно в многопроцес-
сорных системах. Но зато может приводить к фрагментации памяти, поскольку
память, выделенная под один поток, не может использоваться другими потоками.

Вы можете также спроектировать собственный распределитель памяти. Впро-
чем, для большинства приложений вполне достаточно тех операций с памятью, ко-
торые выполняются распределителем по умолчанию. Так что забудьте о проблеме
памяти, библиотечные шаблоны решат ее за вас.

Доступ к элементам, размещенным в контейнерах, обеспечивают итераторы
различных типов. Они позволяют читать значения элементов, изменять их, встав-
лять в контейнер новые элементы. Итераторы избавляют вас от необходимости
знать что-либо о физическом размещении элементов в контейнере и вообще об осо-
бенностях реализации контейнера. Все основные операции с контейнерами осуще-
ствляются с помощью итераторов, и, разрабатывая какой-либо алгоритм, вы явно
или неявно будете иметь дело только с итераторами.

Каждый контейнер имеет набор функций-элементов, обеспечивающих те опе-
рации с данными, которые чаще всего требуются для работы с контейнером данно-
го типа. Вы можете вызывать их при выполнении своих алгоритмов обработки
данных. Помимо этого, библиотека содержит много глобальных функций, обеспе-
чивающих традиционные процедуры работы с наборами данных различных типов.

И, наконец, библиотека содержит ряд алгоритмов — достаточно сложных
процедур обработки данных. Поэтому прежде, чем программировать необходимый
алгоритм, посмотрите, нет ли его уже в стандартной библиотеке. Если есть и его
работа вас устраивает, то не стоит открывать Америку и тратить свое драгоценное
время на то, что уже сделали для вас разработчики стандартной библиотеки.

На этом закончим обзор того, что имеется в STL, и рассмотрим основные кате-
гории элементов этой библиотеки.

472 Глава 5

5.4 Контейнеры

5.4.1 Общие сведения
В STL имеются следующие виды контейнеров: string - - строки, vector,

valarray и bitset — векторы (массивы), list — связный список, queue и deque -
очереди, stack — стек, set и multiset — множества, тар и multimap — ассоциа-
тивные массивы, hash_set, hash_multiset, hash_map, hash_multimap — контей-
неры, аналогичные перечисленным ранее, но использующие хэш-функции (функ-
ции быстрого поиска).

Строго говоря, не все перечисленные типы являются полноценными контейне-
рами. Базовыми, полноценными контейнерами являются vector, list, deque, map.
Некоторые виды контейнеров являются адаптерами. Адаптер — это контейнер,
построенный на основе базового, но предоставляющий ограниченный интерфейс.
Например, queue и stack — адаптеры контейнера deque. Ряд перечисленных кон-
тейнеров: string, valarray, bitset являются «почти контейнерами». Они обладают
основными чертами контейнеров, но в них реализовано не все то, что присуще кон-
тейнерам. Цель подобной неполной реализации — оптимизация выполнения ос-
новных операций. Следует отметить также, что в качестве некоторого подобия
контейнера, правда, очень несовершенного, может выступать и обычный одномер-
ный массив. Этот вопрос рассмотрен в разд. 5.4.3.

Впрочем, для пользователя все эти тонкости классификации значения не име-
ют. Ему надо знать типы, свойства и методы, доступные в контейнерах. Основные
из этих элементов, присущие всем контейнерам, мы и рассмотрим в данном разде-
ле, чтобы избежать повторений при описании конкретных типов контейнеров.

Основные типы, объявляемые как данные-элементы контейнера некоторого
класса X:

Тип

Тип элемента

Тип итератора

Тип итератора

Тип ссылки

Тип ссылки

Тип указателя

Тип расстояния

Тип размера

Тип итератора-

Тип итератора

Тип ключа

Обозначение

X::value_type

X::iterator

X: :const_iterator

X: reference

X::const_reference

X::pointer

X::difference_type

X::size_type

X::reverse_iterator

X: :const_reverse_
iterator

X::key_type

Описание

Тип элементов контейнера

Тип итератора чтения и записи

Тип итератора чтения

Тип ссылки на элемент контейнера

Тип константной ссылки на элемент кон-
тейнера '

Тип указателя на элемент контейнера

Целый тип со знаком, представляющий
расстояние между двумя итераторами

Целый тип без знака, используемый
в контейнере для индексации элементов

Тип инверсного итератора чтения и запи-
си, позволяющего перемещаться в инвер-
сном направлении

Тип инверсного итератора чтения, позво-
ляющего перемещаться в инверсном на-
правлении

Тип ключа ассоциированного контейнера

Обзор стандартной библиотеки шаблонов STL 473

Из перечисленных типов чаще всего, пожалуй, используется X::iterator. Он
указывается как тип итератора (см. подробнее в разд. 5.5), создаваемого вами для
работы с элементами контейнера. Например, следующий оператор создает итера-
тор II для работы с векторами целых чисел:

vector<int>::iterator II;

Остальные типы могут понадобиться только при обращении к каким-то шаб-
лонам, требующим указание соответствующего типа.

Для контейнеров определены следующие основные функции-элементы:

Функция

begin

empty

end

max_size

size

swap

Синтаксис / Описание

iterator begin()
const_iterator begin() const
Возвращают итератор, указывающий на первый элемент

bool empty() const
Возвращает true (ненулевое значение), если контейнер

в контейнере

пуст

iterator end ()
const_iterator end () const
Возвращают итератор, указывающий на позицию после последнего
элемента в контейнере

size_type max_size() const
Возвращает максимальное число элементов, которое может хранить
контейнер

size_type size() const
Возвращает число элементов в контейнере

void swap(X& x)
Обмен элементами с контейнером х того же типа

Функция begin() возвращает итератор, указывающий на первый элемент по-
следовательности, хранящейся в контейнере. А функция end() указывает пози-
цию, размещенную после последнего элемента. То есть последний элемент распо-
ложен в позиции, предшествующей end().Таким образом, интервал, в котором рас-
положены элементы: [beginQ, end()). Перемещаться по элементам можно только
в пределах этого интервала.

Разность итераторов end() — begin() равна числу элементов последовательно-
сти. Эта же величина возвращается функцией si/e()- А функция max_size() пока-
зывает максимальное число элементов, которое можно разместить в контейнере.
Функция empty() позволяет проверить, не пуст ли контейнер. Это то же самое, что
проверить, не равняется ли нулю size().

Функция-элемент swap(b) позволяет обменяться всеми элементами данного
контейнера с элементами другого контейнера b того же типа. Надо сказать, что име-
ется также глобальная функция обмена swap, применимая к двум объектам любого
(но одинакового) типа, доступного для присваивания. Она имеет синтаксис:

#include <algorithras>
void swap(AssignableS a, Assignables b) ;

Функция осуществляет обмен значений элементов двух объектов а и Ь. Реализа-
ция функции сводится к трем операциям: создается временная копия объекта а,
затем в а заносится копия объекта Ь, и затем в b заносится сохраненная временная
копия а.

474 v Глава 5

Например, оператор
swap(a, b);

приводит к обмену данными между объектами а и b одного типа.
Таким образом, если а и b — контейнеры одного типа, то операторы

a.swap(b);
b. swap (a) ;
swap (а, Ь);

приводят к одному и тому же результату. Различие в том, что время выполнения
глобальной функции swap линейно зависит от размера контейнера, а время выпол-
нения функций-элементов swap для ряда контейнеров не зависит от размера кон-
тейнера. Так что в общем случае функция-элемент эффективнее.

Помимо перечисленных функций-элементов, каждый контейнер имеет, конеч-
но, конструктор, с помощью которого создается контейнер. Формы конструкторов
для различных контейнеров будут рассмотрены в последующих разделах. Но кроме
этих конструкторов контейнеры имеют конструкторы копий (см. разд. 2.14.5). Они
неявно вызываются компилятором в необходимых случаях. Например, если а -
контейнер типа X, то оператор

X Ь (а) ;

объявляет переменную b класса X и вызывает конструктор копии, который зано-
сит в b копию контейнера а. То же самое можно сделать оператором, использую-
щим операцию присваивания,

X b = а;

ИЛИ

X b = X (а) ;

А оператор присваивания

b = а;

копирует в уже объявленный контейнер b все элементы контейнера а.

5.4.2 Контейнеры последовательностей

Последовательность — это упорядоченный линейный набор элементов, в кото-
ром допускается вставка новых элементов в заданную позицию и удаление сущест-
вующих элементов. Так что контейнеры последовательностей — это контейнеры,
размер которых может изменяться в зависимости от операций вставки и удаления.

К контейнерам последовательностей относятся векторы, связные списки и оче-
реди. Эти контейнеры имеют все функции, описанные в разд. 5.4.1, но дополнитель-
но имеют еще функции-элементы, перечисленные ниже. В их описании Т — тип
элементов контейнера, а — объект контейнера.

Функция Синтаксис / Описание

assign void assign(lnputlterator first, Inputlterator last)

Удаляет все элементы, хранившиеся в контейнере, а потом встав-
ляет копии элементов, лежащих в интервале [first, last]

void assign(size_type n, const T& t)
Удаляет все элементы, хранившиеся в контейнере, а потом встав-
ляет n элементов со значением t

Обзор стандартной библиотеки шаблонов STL 475

Функция

back

clear

erase

front

insert

pop_back

push_back

rbegin

Синтаксис / Описание

reference back()
const_reference back() const
Возвращает ссылку на последний элемент последовательности. Эк-
вивалент *(a.end() - 1)

void clear()
Удаляет все элементы контейнера

iterator erase(iterator position)
Удаляет элемент, на который указывает position. Возвращает ите-
ратор, указывающий на элемент, следующий за удаленным, или
end(), если удалялся последний элемент

iterator erase(iterator first, iterator last)
Удаляет элементы, в интервале [first, last), т.е. начиная с first
и исключая last. Возвращает итератор, указывающий на элемент,
следующий за удаленными, или end(), если удалялись последние
элементы

reference frontQ

const_reference front() const
Возвращают ссылку на первый элемент. Эквивалент *(a.first())

iterator insert(iterator position, const T& x)
Вставляет копию значения х в позицию, указанную итератором po-
sition. Возвращает итератор, указывающий на вставленный элемент

void insert(iterator position, size_type n, const T& x)
Вставляет n копий значения х в позицию, указанную итератором
position

void insert(iterator position, Inputlterator first, Inputlterator last)
Вставляет копии элементов, лежащих в интервале [first, last],
в позицию, указанную итератором position

void pop_back()
Удаляет последний элемент последовательности. Эквивалент а.ега-
se(a.end() - 1)

void push_back(const T& х)
Вставляет копию х в конец последовательности — после последне-
го элемента. Эквивалент a.insert(a.end(), x)

reverse_iterator rbeginQ
const_reverse_iterator rbegin() const
Возвращают итератор, указывающий на первый элемент для обрат-
ного итератора, т.е. на последний элемент контейнера (на него же
указывает итератор a.end() - 1)

476 Глава 5

Функция

rend

resize

Синтаксис / Описание

reverse_iterator rendQ
const_reverse_iterator rend() const
Возвращают итератор, указывающий на конец последовательности
для обратного итератора, т.е. на позицию перед первым элементом
контейнера (на такую же позицию указывает итератор a.beginQ - 1)

void resize(size_type sz)
Изменяет число элементов до sz

void resize(size_type sz, Т с)
Изменяет число элементов до sz, задавая
ние с

новым элементам значе-

Большинство перечисленных функций изменяет число элементов в контейне-
ре, т.е. изменяет size. Функции clear и erase уменьшают size. Первая форма erase
удаляет один элемент, а вторая удаляет сразу группу следующих друг за другом
элементов. В обоих случаях последовательность смыкается, т.е. последующие эле-
менты перемещаются на место удаленных. Пусть, например, имеется контейнер
V, содержащий последовательность целых чисел: (1, 2, 3, 4, 5, 6, 7, 8). И пусть
имеется итератор II, которому присвоено значение begin() + 1:

11 = V.begin () + 1;

Такой итератор указывает на второй элемент. Тогда оператор:
V . e r a s e (I l) ;

удалит второй элемент и последовательность станет равной (1, 3, 4, 5, 6, 7, 8).
Поскольку функция erase возвращает итератор, указывающий на позицию

элемента, следующего за удаленным, то вызов erase в цикле удалит несколько сле-
дующих друг за другом элементов. Например, при том же значении II цикл:

for(int i=l; i <= 5; i++)
V.erase(II) ;

удалит элементы со второго по шестой и последовательность станет равной: (1, 7, 8).
Аналогичного результата можно достичь (причем, с меньшими затратами времени),
если создать для контейнера еще один итератор 12, задать ему значение

12 = V.begin () + 6;

и выполнить оператор

V.erased l , 12);

Функция insert вставляет новые элементы с заданным значением х в пози-
цию, на которую указывает итератор. Последующие элементы сдвигаются, освобо-
ждая место для новых элементов. Возвращается итератор, указывающий на новый
элемент, т.е. тот же итератор, который указывал позицию вставки. Например, при
прежних предположениях о значении итератора II оператор

V . insert (II, 9);

вставит значение 9 во вторую позицию, так что последовательность примет вид: (1,
9, 2, 3, 4, 5, 6, 7, 8). Оператор

V. inser t (II , 3, 9) ;

вставит 3 элемента со значениями 9: (1, 9, 9, 9, 2, 3, 4, 5, 6, 7, 8).
Третья форма оператора insert позволяет копировать в новые элементы значе-

ния из какого-то другого контейнера или из того же самого контейнера. Например,
для того же контейнера V оператор

V. inser td l , V . e n d () - 2 , V . e n d (J) ;

Обзор стандартной библиотеки шаблонов STL 477

скопирует два последних элемента во вторую позицию: (1, 7, 8, 2, 3, 4, 5, 6, 7, 8).
В подобном операторе итераторы могут указывать диапазон в другом контейнер,
и тогда значения будут копироваться именно оттуда.

Две формы функции присваивания assign отличаются от второй и третьей
форм функции insert тем, что предварительно очищает контейнер, удаляя все хра-
нившиеся в нем элементы, а потом вставляют новые элементы, начиная с первой
позиции. Так что если выполнить оператор

V.ass ign (3, 9) ;

в контейнере останется последовательность из трех чисел: (9, 9, 9);
Функция resize изменяет число элементов, хранящихся в контейнере до sz.

Если sz > size(), то в конец последовательности вставляется sz - size() новых элемен-
тов. В первой форме функции значения новых элементов будут равны значениям по
умолчанию, установленным для данного типа элементов. Во второй форме функции
значения новых элементов равны с. Например, для того же контейнера V оператор

V . r e s i z e (10) ;

даст последовательность: (1, 2, 3, 4, 5, 6, 7, 8, О, О). А оператор
V. resize (10, 9) ;

даст результат: (1, 2, 3, 4, 5, 6, 7, 8, 9, 9).
Если в функции resize значение sz < size(), то лишние элементы будут удале-

ны из последовательности.
Помимо рассмотренных функций-элементов, контейнеры последовательно-

стей имеют ряд конструкторов:

Синтаксис конструктора класса Т / Описание

explicit T(const Allocator& alloc = Allocator())
Конструктор по умолчанию. Обычно можно использовать стандартный распре-
делитель памяти (см. разд. 5.3), так что вызов конструктора часто ограничива-
ется просто указанием типа контейнера

explicit T(size_type n)
Создает контейнер на n элементов, задавая им значения, принятые в типе эле-
ментов по умолчанию

T(size_type n, const T& value, const Allocator& alloc = Allocator())

Создает контейнер на n элементов, задавая им значения value. Распределитель
памяти обычно можно не указывать

T(lnputlterator first, Inputlterator last, const Allocator& alloc = Allocator())
Создает контейнер с числом элементов last — first. Элементы копируются из того
крнтейнера, на который указывают итераторы first и last, в интервале [first,
last), т.е. исключая last. Распределитель памяти обычно можно не указывать

Отметим, что последняя форма конструктора позволяет создавать контейнер,
содержащий копию части другого контейнера того же типа.

5.4.3 Векторы
Вектор — это последовательность элементов, каждый из которых занимает

в последовательности ту позицию, которая ему назначена при записи, или кото-
рую он приобретает в результате вставки и удаления каких-то элементов. Позиция
элемента в последовательности никак не связана со значением элемента. Число
элементов вектора может изменяться во время выполнения. Доступ к элементам

478 Глава 5

произвольный (см. разд. 5.5.4). Удалять и вставлять элементы можно в начале,
в середине, или в конце последовательности. Аналогом вектора является одномер-
ный массив с изменяющимся размером.

Базовый шаблон вектора:
template <class Т, class Allocator = allocator<T> >
class vector (

подключается к проекту заголовочным файлом vector. Класс Т — это класс элемен-
тов вектора. Распределитель памяти Allocator, как было сказано в разд. 5.3, мож-
но обычно не задавать, используя распределитель по умолчанию.

Вектор имеет все типы конструктора, описанные в разд. 5.4.2, и все функ-
ции-элементы, описанные в разд. 5.4.1 и 5.4.2. Например, создание пустого векто-
ра может быть выполнено операторами:

#include <vector>
using namespace std;

vector<int> V;

Они создают вектор целых чисел int с длиной size = 0. Следующий оператор
вставляет в созданный вектор 5 элементов, задавая всем им значение 1.

V . insert (V . begin () , 5, 1) ;

То же самое можно сделать следующим оператором:

V . resize (5, 1) ;

или следующим:
V . assign (5, 1) ;

Ну, а проще всего воспользоваться соответствующим конструктором и сразу со-
здать вектор с пятью элементами, равными 1:

vector<int> V (5 , 1);

Операторы

vector<int> V;
for (int i = 1; i <= 10; i+ +)

V.push_back (i) ;

создают вектор целых чисел и заполняют его элементами от 1 до 10.
Все использованные в приведенных примерах конструкторы и функции-эле-

менты описаны в предыдущих разделах. А ниже приведена таблица тех функ-
ций-элементов, которые в предыдущих разделах не рассматривались.

Функция

at

capacity

reserve

Синтаксис / Описание

reference at(size_type n)
const_reference at(size_type) const

Возвращают ссылку на элемент с индексом п. Индексы
с нуля, так что значение n должно быть в пределах [0,

начинаются
size - 1]

size_type capacity() const

Возвращает емкость контейнера — число элементов, которые мож-
но разместить в выделенной под вектор памяти

void reserve(size_type n)

Увеличивает емкость контейнера capacity, не добавляя
вых элементов

в вектор но-

Обзор стандартной библиотеки шаблонов STL 479

Функция at возвращает ссылку на элемент вектора с индексом п. Индексы на-
чинаются с 0 и заканчиваются значением size() - 1. Так что выражение

V . a t (0)

возвращает значение первого элемента, а выражение
V . a t (V . s i z e () - 1))

возвращает значение последнего элемента.
Если значение индекса п лежит вне допустимых пределов, генерируется ис-

ключение out_of_range. Этим можно воспользоваться для проверки, имеет ли не-
который итератор, с которым вы хотите работать, правильное значение. Пусть, на-
пример, II — итератор, в значении которого вы не до конца уверены. Тогда приме-
нение этого итератора имеет смысл оформить следующим образом:

try
{

V . a t (I I - V . b e g i n ()) ;
<операторы, использующие 11>

}
catch(out_of_range)

1
ShowMessage("Ошибка диапазона");

}

Теперь рассмотрим функцию capacity. Емкость, которую возвращает capa-
city, — это число элементов, под которые в данный момент выделена память. Зна-
чение capacity() всегда не меньше, чем size(), но обычно больше. Т.е. память выде-
ляется под число элементов, большее, чем пока имеется в векторе. Делается это
для того, чтобы предотвратить потери времени на перераспределение памяти при
добавлении,каждого нового элемента. Если число добавляемых элементов меньше,
чем capacity() — size(), перераспределения памяти не происходит и добавление
производится быстро. Если при добавлении число элементов превышает capacity(),
память перераспределяется, и емкость вектора скачком увеличивается, обеспечи-
вая запас для добавления последующих элементов. В стандарте не оговорен алго-
ритм изменения емкости. В версии STL, используемой в C++Builder 6, емкость
при перераспределении удваивается.

Перераспределение памяти неприятно не только из-за затрат времени. При пе-
рераспределении теряются значения всех итераторов, которые вы создали для век-
тора (подробнее об итераторах см. в разд. 5.5). Это заставляет вас усложнять алго-
ритмы работы, если они используют итераторы и добавляют в вектор новые эле-
менты. Контролировать момент перераспределения памяти можно по изменению
значения, возвращаемого capacity(). Например, в начале работы вашего алгоритма
вы можете записать оператор

int old_capacity = V . c a p a c i t y () ;

А затем, после вставки очередных элементов, организовать такую проверку:
if (old capacity != V.capacity ())
(

<операторы восстановления итераторов>
old_capacity = V.capacity () ;

}

Емкость capacity вы не можете задавать программно. Но емкостью можно
управлять с помощью функции reserve, которая позволяет перераспределить па-
мять заранее, если вы знаете, сколько элементов будет добавляться. Тогда вы за-
даете в качестве аргумента этой функции число, обеспечивающее выделение памя-
ти под все ожидаемые элементы. Например, если вы ожидаете, что вектор в итоге
будет включать в себя не больше 1000 элементов, вы можете после создания векто-
ра написать оператор

480 Глава 5

V.reserve(500);

Поскольку емкость вектора в C++Builder 6 устанавливается с двойным запасом, то
capacity станет равна 1000, и вы не будете знать проблем с перераспределением па-
мяти.

Если вы зададите значение аргумента в reserve, превышающее допустимую
величину max_size(), будет сгенерировано исключение length_error, которое вы
можете перехватить и как-то прореагировать на невозможность работать с таким
большим вектором.

Значения итераторов теряются при перераспределении памяти функцией
reserve или при описанном выше автоматическом увеличении емкости. В докумен-
тации утверждается, что при вставке и удалении элементов где-то в середине век-
тора должны теряться значения итераторов, указывающих на позиции, располо-
женные после позиции вставки и удаления. Правда, эксперименты показывают,
что в C++Builder 6 этого не происходит. При любых вставках и удалениях, не при-
водящих к перераспределению памяти, значения все итераторов сохраняются. Но,
поскольку это не оговорено в стандарте, может быть все-таки лучше прислушаться
к совету, данному в документации, и по возможности заранее выделять память
функцией reserve, а все вставки и удаления делать в конечной позиции вектора.

К элементам вектора можно получить доступ не только с помощью итерато-
ров. Для вектора определена операция индексации [п], дающая доступ к элементу
с индексом п. Индексы отсчитываются от 0, так что максимальный индекс на 1
меньше size(). Например, следующий код обеспечивает поочередное отображение
всех элементов вектора

for (int i=0; i<V.size О-1; i++)
S h o w M e s s a g e (V [i]) ;

Благодаря операции индексации, с вектором можно работать как с обычным
массивом, но допускающим изменение размера и обладающим множеством полез-
ных методов, описанных выше. В разд. 5.5.1 показано, что и с обычными массива-
ми можно работать с помощью итераторов, и что к ним применим ряд функций,
предназначенных для работы с контейнерами.

Конструктор вектора позволяет также создать копию обычного массива в виде
вектора. Например:

int v[10] = {1,2,3,4,5,6,7,8,9,10};
vector<int> V(v,v+10);

Но имейте в виду, что вектор V — это копия массива v, в которую загружены зна-
чения элементов массива на момент создания копии. Дальнейшие изменения зна-
чений элементов вектора и массива совершенно не влияют друг на друга.

Мы рассмотрели многие особенности базового класса векторов vector. В после-
дующих разделах вы найдете еще немало примеров работы с этим классом.
А в данном разделе рассмотрим коротко некоторые другие классы векторов.

Тип элементов, для которого строится вектор, может быть самым различным:
целые или действительные числа, структуры и т.п. За такую универсальность при-
ходится расплачиваться не самой высокой производительностью при решении
конкретных задач. Поэтому в библиотеке имеется несколько вариантов векторов,
в которых, за счет сужения множества допустимых типов элементов, достигается
более высокая производительность и вводятся новые, специализированные функ-
ции. К сожалению, из-за ограничения на объем книги нет никакой возможности
подробно рассмотреть эти классы векторов. Поэтому ограничусь кратким обзором,
надеясь, что смогу вернуться к этим и другим классам библиотеки в небольшой от-
дельной книге.

Прежде всего, надо сказать о варианте вектора с элементами булева типа
bool — vector<bool>. Он реализован как специальный случай вектора и отличает-
ся, прежде всего, тем, что каждый элемент хранится в отдельном бите, в то время,

Обзор стандартной библиотеки шаблонов STL 481

как в остальных векторах для хранения элементов используется, по крайней мере,
один байт. Весь интерфейс векторов сохраняется и для vector<bool>. Только опе-
рации выполняются более эффективно. Более того, в vector<bool> добавлены две
новые функции:

Функция

flip

swap

Синтаксис / Описание

void Шр()

Инвертирует значения всех элементов:
и наоборот

true изменяется на false

void swap(reference x, reference у)
Обмен элементами х и у

Функция flip изменяет значения всех элементов вектора на противополож-
ные: те, которые имели значения true, становятся равными false и наоборот.

Например, следующий код создает, заполняет и отображает вектор булевых
значений:

vector<bool> V(4);
V[0] = true;
V[l] = false;
V[2] = false;
V[3] = true;

for (int i=0; i < V . s i z e O ; i + +)
V [i] ? ShowMessage ("true") : ShowMessage ("false") ;

Созданный вектор содержит элементы: (true, false, false, true). Но если вы по-
сле создания вектора выполните оператор

V. flip () ;

то значения элементов будут равны: (false, true, true, false).
Введенная для vector<bool> специальная форма функции swap, рассмотрен-

ной в разд. 5.4.1, связана с хранением элементов в битах, а не байтах.
Не все компиляторы поддерживают особые возможности vector<bool> . Поэто-

му в библиотеке временно оставлен для обратной совместимости класс bit_vector,
который реализует вектор булевых значений и не отличается по интерфейсу от
vector<bool>.

Еще большее удобство при работе с векторами битовых величин дает класс
bitset. В шаблон bitset<N>, объявленный в заголовочном файле bitset, передается
параметр N, указывающий размер вектора. В дальнейшем этот размер не может
изменяться, т.е. вектор bitset имеет постоянную длину. Отмечу только, что в этом
классе введены поразрядные логические операции (см. разд. 1.9.7), которые облег-
чают работу с битовыми величинами.

Теперь рассмотрим коротко вектор valarray, объявленный в заголовочном фай-
ле valarray. Честно говоря, именно этот шаблон, а не vector, является настоящим
вектором, поддерживающим векторную арифметику. Основная особенность реали-
зации valarray — оптимизация вычислений для больших векторов. А с точки зре-
ния пользователя, основное — это множество операций, недоступных в vector.

Приведенный ниже код создает вектор из 10 действительных чисел и заполня-
ет его числами от 1 до 10:

#include <valarray>

valarray<double>
for (int i = 1; i <= 10;

V [i] = i;

482 Глава 5

Теперь посмотрим использование ряда операций, введенных в valarray. Опе-
ратор

V *= 10;

масштабирует вектор, умножая каждый его элемент на 10. Не правда ли, компакт-
но и просто?

Следующие операторы манипулируют тремя векторами valarray V, VI и V2
одинакового размера и с элементами одного типа:

V = 10 * VI; // V[i] = 10 * VI [i]
V = VI + V2; // V[i] = VI [i] + V2[i]
V = VI * V2; // V[i] = Vl[i] * V2[i]

Первый из этих операторов заносит в V элементы вектора VI, умноженные на 10.
Второй оператор осуществляет сложение двух векторов VI и V2, занося в элемен-
ты V суммы соответствующих элементов складываемых векторов. Третий опера-
тор выглядит формально как умножение векторов. Но это не так. Это не скалярное
или векторное произведение. Просто в элементы вектора V заносятся произведе-
ния соответствующих элементов векторов VI и V2.

В векторах valarray определен целый ряд полезных функций-элементов:
сдвиг (shift) и циклический сдвиг (cshift) элементов на заданное число позиций,
определение суммы значений элементов (sum), минимального (min) и максималь-
но (шах) значений, вызов функций, вычисляемых сразу для всех элементов. Име-
ется также возможность с помощью срезов (slice) работать с одномерной последо-
вательностью как с матрицей. Словом, мы, к сожалению, должны завершить рас-
смотрение векторов и перейти к контейнерам других типов. Но, надеюсь, что даже
приведенных сведений достаточно, чтобы можно было эффективно использовать
векторы во многих задачах. А остальные сведения придется черпать из встроенной
в C++Builder 6 справки по STL или из специальной литературы.

5.4.4 Связные списки

Базовым шаблоном класса связных списков является list. Он описывает по-
следовательность, оптимизированную для вставки и удаления элементов. Каждый
элемент имеет указатели на предыдущий элемент и последующий. Такой список
называется двусвязным. Аналогичные связи, только однонаправленные, описаны
в разд. 2.12.2 при рассмотрении самоадресуемых структур. По списку можно пере-
мещаться в обе стороны, но только от одного элемента к соседнему. Поэтому, в от-
личие от векторов, в списках не предусмотрена операция индексации и нет итера-
торов с произвольным доступом (см. разд. 5.5.4). Доступен только двунаправлен-
ный итератор (разд. 5.5.4), который позволяет смещаться только на одну позицию
к концу или началу последовательности операциями инкремента и декремента.
Зато быстро осуществляются вставки и удаления элементов, поскольку при этом
остальные элементы не перемещаются. Они остаются на отведенных им в памяти
местах. Манипуляции осуществляются только над указателями, которые и объе-
диняют элементы в некоторую последовательность.

Базовый шаблон списка list:
template <class Т, class Allocator = allocator<T> >
class list (

подключается к проекту заголовочным файлом list. Класс Т — это класс элементов
списка. Распределитель памяти Allocator, как было сказано в разд. 5.3, можно
обычно не задавать, используя распределитель по умолчанию.

Обзор стандартной библиотеки шаблонов STL 483

Создание объектов списков производится так же, как для других контейнеров.
Например, следующие операторы создают и заполняют два списка строк: Depl
и Dep2.

#include <list>
tinclude <string>
using namespace std;

list<string> Depl, Dep2;
Depl .push back (
Depl .push back(
Depl .push back (
Dep2 .push back (
Dep2 .push back (
Dep2 .push back (

'Сидоров") ;
'Иванов") ;
'Петров") ;
'Семенов") ;
'Иванов") ;
'Павлов") ;

В результате список Depl будет иметь вид: ("Сидоров", "Иванов", "Петров"),
а список Dep2: ("Семенов", "Иванов", "Павлов").

В этом примере для строк использован тип std::string, рассмотренный в разд. 5.6.
В list имеются все типы и операции, описанные в разд. 5.4.3 для класса

vector, кроме операции индексации и функций capacity и reserve. В частности,
вставка и удаление элементов могут осуществлять функциями insert и erase. Но,
кроме того, в классе имеются следующие ранее не описанные функции-элементы:

Функция Синтаксис / Описание

merge void merge(list<T, Allocator>& x)
Объединяет два списка, сортированных с использованием опера-
ции "<", перемещая элементы списка х на соответствующие пози-
ции данного списка

template<class BinaryPredicate>
void merge(list<T, Allocator>& x, BinaryPredicate comp)
Объединяет два списка, сортированных с помощью функции
comp, перемещая элементы списка х на соответствующие позиции
данного списка

pop_front void pop_front()
Удаляет первый элемент списка

push_front void push_front(const T& х)
Вставляет копию элемента х в начало списка

remove void remove(const T& value)
Удаляет все элементы, значение которых равно value

template <class Predicate>
void remove_if(Predicate pred)
Удаляет все элементы, для значений которых pred возвращает true

sort void sort()
Сортирует список с использованием операции "<"

template<class BinaryPredicate>
void sort(BinaryPredicate comp)
Сортирует список с использованием comp()

484 Глава 5

Функция Синтаксис / Описание

splice void splice(iterator position, list<T, Allocator>& x)
Перемещает все элементы списка х в позицию position

void splice(iterator position, list<T, Allocator>& x, iterator i)
Перемещает элемент списка х, на который указывает итератор i,
в позицию position

void splice(iterator position, list<T, Allocator >& x,
iterator first, iterator last)

Перемещает элементы списка х, лежащие в интервале [first, last),
в позицию position

unique void unique()
Удаляет из списка дубли элементов, оставляя из группы дублей
первый элемент

template <class BinaryPredicate>
void unique(BinaryPredicate binary_pred)
Оставляет в списке по одному из групп элементов, для которых
binary_pred сообщает об их эквивалентности

Функция splice позволяет перемещать элементы из одного списка в другой
или осуществлять перемещение элементов в пределах одного списка. Перемеще-
ние означает, что из прежней позиции элемент удаляется. Первая форма функции
перемещает все элементы из списка х в позицию, указанную итератором position.
В результате список х оказывается пустым. Например, оператор

Depl . sp l ice(Depl .begin() , Dep2);

перенесет весь список Dep2 в начало списка Depl. В результате в Depl сформиру-
ется список: ("Семенов", "Иванов", "Павлов", "Сидоров", "Иванов", "Петров"),
а список Dep2 окажется пустым.

Вторая форма функции splice перемещает элемент списка х, на который ука-
зывает итератор i, в позицию итератора position. Третья форма функции переме-
щает элементы списка х, лежащие в интервале [first, last), в указанную позицию.
Обратите внимание, что перемещаются элементы, включая тот, на который указы-
вает first, и исключая тот, на который указывает last. Например, следующий опе-
ратор переставляет в созданном ранее объединенном списке Depl элементы, начи-
ная с четвертого и до конца, в начало списка:

Depl.splice (Depl.begin(), Depl, ++(+ +(+ + Depl.begin ())) , Depl.end ()) ;

В результате получится список: ("Сидоров", "Иванов", "Петров", "Семенов",
"Иванов", "Павлов").

В приведенном примере для того, чтобы указать на четвертый элемент списка
пришлось три раза применить к итератору Depl.begin() операцию инкремента. Это
следствие того, что в списках нет итераторов с произвольным доступом, и прихо-
дится многократно применять инкремент или декремент, чтобы добраться до нуж-
ного элемента. Но зато перестановка элементов осуществляется очень быстро, так
как сводится к изменению указателей и не требует перемещения самих элементов
в памяти.

Обзор стандартной библиотеки шаблонов STL 485

Функция sort обеспечивает сортировку списка. Например, оператор

Depl.sort О ;

сортирует список Depl. Если в Depl ранее был создан описанный выше объединен-
ный список, то после сортировки он приобретет вид: ("Иванов", "Иванов", "Пав-
лов", "Петров", "Сидоров").

Если есть элементы с одинаковыми значениями (в нашем примере "Иванов"), то
после сортировки их последовательность будет той, какая была в несортированном
списке. Сортировка не нарушает никаких итераторов, указывавших ранее на элемен-
ты списка. После сортировки они будут продолжать указывать на те же элементы.

Функция unique просматривает значения элементов списка, и если обнаружи-
ваются группы элементов с одинаковыми значениями, то оставляется первый из
них, а остальные удаляются. Правда, дубли удаляются только в том случае, когда
они расположены в списке рядом друг с другом. В частности, это гарантировано
в сортированном списке. Так что применение unique к полученному выше сорти-
рованному списку Depl оператора

Depl.unique () ;

удалит из списка второй из элементов со значением "Иванов".
Функция remove удаляет из списка все элементы, значения которых равны

заданному. Например, оператор
Depl.remove("Иванов");

удалит из списка Depl все элементы со значением "Иванов".
Функция merge объединяет два сортированных списка, перемещая элементы

списка х на соответствующие позиции данного списка. Например, если применить
сортировку к рассмотренным в начале спискам Depl и Dep2, а затем выполнить
оператор

Depl.merge(Dep2);

то получим тот же сортированный список, который получали ранее последователь-
ным применением функций splice и sort.

Мы рассмотрели функции-элементы списка. Но к списку могут применяться
и глобальные функции библиотеки. Например, для поиска и замены в списках мо-
жет использоваться функция find, объявленная в файле algorithm следующим об-
разом:

tinclude <algorithm>
template <class Inputlterator, class T>

Inputlterator f ind(Inputlterator f irst, Inputlterator last,
const T& value);

Параметры first и last указывают итераторы, определяющие диапазон поиска
в контейнере: [first, last), т.е. включая элемент, на который указывает first, и ис-
ключая тот, на который указывает last. Параметр value — это искомое значение
элемента. Функция возвращает итератор, указывающий на найденный элемент,
или last, если элемент не найден. Пусть, например, в нашем списке, который по-
лучился после объединения Depl и Dep2, мы хотим различить двух Ивановых, до-
бавив в значения соответствующих элементов их инициалы. Это может быть сде-
лано, например, следующим кодом:

tinclude <functional>

* f i n d (D e p l . b e g i n () , Depl.end О, "Иванов") += " A . A . " ;
* f i n d (D e p l . b e g i n () , D e p l . e n d () , "Иванов") += " И . И . " ;

После выполнения первого оператор первый элемент со значением "Иванов" изме-
нит свое значение на "Иванов А.А.". Поэтому при выполнении следующего опера-
тора функций find укажет второго Иванова и присвоит ему инициалы "И.И.".

486 Глава 5

Приведенный пример неэффективен, так как второй поиск ведется опять во
всем списке, хотя надо было бы проводить его в оставшейся части списка. Поэтому
более разумен следующий код:

list<string>::iterator I = find(Depl.begin(), Depl.end(), "Иванов");
*I += " A . A . " ;
* f ind(I , Depl.endO, "Иванов") += " И . И . " ;

Следующий пример демонстрирует замену значений всех элементов списка, перво-
начально имевших некоторое заданное значение. Конечно, пример странный, но
пусть мы хотим переименовать всех Ивановых в списке в Петровых. Это можно
сделать следующим образом:

list<string>::iterator I = Depl .begin() ;
while ((I = f i n d (I , D e p l . e n d O , "Иванов")) ! = D e p l . e n d O)

*I = "Петров";

Здесь перед присваиванием нового значения проверяется сравнением с Depl.endO,
действительно ли найден очередной элемент. И только если найден, его значение
изменяется.

Мы рассмотрели двусвязный список list. В библиотеке STL, используемой
в C-f+Builder 6, имеется также класс slist — односвязный список, в котором каж-
дый элемент имеет указатель только на следующий элемент и «не знает» предыду-
щего. Класс slist во многом похож на list. К тому же, он не входит в стандарт биб-
лиотеки. Так что останавливаться на нем не будем.

5.4.5 Очереди

Очередь представляет собой последовательность, отличающуюся тем, что
вставка и удаление элементов производится, как правило, только в ее начале или
в конце. Очереди используются в приложениях достаточно часто. Например, они
применяются, если в ваше приложение поступают какие-то сообщения от других
приложений. Пока приложение не готово к их обработке, они накапливаются
в очереди, добавляясь в ее конец. А при обработке они поочередно извлекаются из
начала очереди, т.е. в порядке их поступления. Это дисциплина обслуживания
FIFO: первым пришел — первым ушел. Возможна и другая организация очере-
ди — стек, в котором и ввод и вывод элементов производится в конце очереди.
В этом случае первым обрабатывается элемент, который был поставлен в очередь
последним. Стеки используются при обработке вложенных запросов, вложенных
вызовов каких-то процедур, при грамматическом разборе выражений. Во всех
этих случаях обработку надо начинать с самого внутреннего из вложенных элемен-
тов, пришедшего последним, поскольку результат обработки должен передаваться
во внешний элемент.

Наиболее общий вид очереди реализован шаблоном deque (произносится
«дек»). Это очередь, допускающая итераторы с произвольным доступом и эффек-
тивно работающая как с последним, так и с первым элементом. Отсюда и название
«deque» — double-ended queue (очередь с двумя концами).

Класс deque очень похож на вектор vector (см. разд. 5.4.2). Основное отличие
в том, что в данном классе оптимизированы операции с первым и последним эле-
ментами. А в остальном, с точки зрения пользователя, эти классы идентичны.

Базовый шаблон списка deque:
template <class Т, class Allocator = allocator<T> >

class deque;

подключается к проекту заголовочным файлом deque. Класс Т — это класс элемен-
тов списка. Распределитель памяти Allocator, как было сказано в разд. 5.3, можно
обычно не задавать, используя распределитель по умолчанию.

Обзор стандартной библиотеки шаблонов STL 487

Создание объектов списков производится так же, как для других контейнеров.
Например, следующие операторы создают и заполняют очередь текстовых элемен-
тов Equ:

#include
tinclude <string>
using namespace std;

deque<string> Equ;
f o r (i n t i=l

Equ. push_back(("Сообщение " + IntToStr (i)) . c_str ()) ;

В этом примере для строк использован тип std::string, рассмотренный в разд. 5.6.
В deque имеются все типы, операции и функции-элементы, описанные в разд.

5.4.3 для класса vector, кроме операции индексации и функций capacity и reser-
ve. Так что работа с очередью проводится так же, как с вектором. Пусть, напри-
мер, в приложении объявлена строковая переменная s, которая должна содержать
сообщения, которые заносятся и читаются из очереди:

string s;

Занесение в нее поступающего сообщения из какого-то элемента VCL может офор-
мляться, например, следующим образом:

s = Editl->Text .c_str () ;

Тогда при организации очереди FIFO занесение очередного сообщения в оче-
редь производится оператором

Equ .push_back(s) ;

А чтение и удаление сообщения из очереди производится операторами
if (! Equ. empty ())

<
s = Equ. front () ;
Equ . pop_f ront () ;

)
else . . .

При организации стека занесение в стек осуществляется так же, как показано
выше, а чтение тоже аналогично, только операции с первым элементом надо заме-
нить аналогичными операциями с последним элементом:

if (! Equ. empty ())
{
s = Equ. back () ;
Equ . pop_back () ;

}
else . . .

Несмотря на то, что deque — это очередь, в классе может использоваться про-
извольный доступ к любым элементом, функция insert и др. Эта избыточность воз-
можностей устранена в адаптерах (см. разд. 5.4.1) stack (стек) и queue (очередь),
обеспечивающих построение обычного стека и обычной очереди на основе заданно-
го типа контейнера. Они представляют собой просто интерфейсы, которые могут
относиться к различным видам контейнеров.

Заголовок шаблона stack, подключающийся к проекту заголовочным файлом
stack, имеет вид:

include <stack>

template <class T, class Container>
class stack

488 Глава 5

Параметр Т, как всегда, указывает класс элементов стека. А параметр Container
указывает класс контейнера, на основе которого создается стек. По умолчанию
Container — класс deque с элементами Т. Но в качестве контейнера может использо-
ваться любой другой тип, который имеет функции back(), push_back() и pop_back().

Например, операторы
include <stack>
tinclude <string>
using namespace std;

stack<string> St;

создают стек на основе deque с элементами типа string. А оператор
stack<string, vector<string> > St;

создают стек на основе vector с элементами типа string. Обратите внимание на не-
обходимость пробела между двумя символами ">", чтобы они не были восприняты
как операция "»".

Шаблон стека отменяет доступ ко всем функциям контейнера, на основе кото-
рого он создан, оставляя только empty() для проверки, не пуст ли стек, size() -
число элементов в стеке, и переименовывая три функции, работающие с вершиной
стека (так в стеках называют последний элемент последовательности):

Функция

top

push

pop

Синтаксис и реализация / Описание

reference top() { return c.back(); }
const_reference top() const { return c.back(); }
Возвращает, не удаляя, вершину стека — последний элемент по-
следовательности

void push(const value_type& x) { c.push_back(x); }
Заносит значение х в вершину стека — в последний элемент после-
довательности

void pop(){ c.pop_back(); }
Выталкивает (удаляет) элемент в вершине стека (последний эле-
мент последовательности)

Таким образом, занесение в стек очередного элемента в нашем примере может
осуществляться операторами:

string s;

St.push (s);

Чтение вершины стека без удаления осуществляется оператором:
if (! S t . e m p t y O) s = St . topO;

Удаление элемента из вершины осуществляется оператором:
i f (! S t .emptyO) St .popO;

В двух последних операторах перед чтением и удалением проверяется, не яв-
ляется ли стек пустым.

Очередь queue также является адаптером, призванным выделить из контейне-
ра, на базе которого строится очередь, только то, что для этой очереди требуется.
Заголовок шаблона queue, подключающийся к проекту заголовочным файлом
queue, имеет вид:

template <class Т, class Container>
class queue

Обзор стандартной библиотеки шаблонов STL 489

Как и в стеке, параметр Т указывает класс элементов очереди, а параметр
Container указывает класс контейнера, на основе которого создается очередь. По
умолчанию Container — класс deque с элементами Т. Но в качестве контейнера мо-
жет использоваться любой другой тип, который имеет функции front(), back(),
push_back() и pop_back().

Например, операторы
tinclude <queue>'
tinclude <string>
using namespace std;

queue<string> Que;

создают очередь на основе deque с элементами типа string. А оператор
queue<string, vector<string> > Que;

создает очередь на основе vector с элементами типа string. Опять обратите внима-
ние на необходимость пробела между двумя символами ">", чтобы они не были
восприняты как операция "»".

Адаптер подразумевает очередь с дисциплиной FIFO. Так что он содержит
только такие функции-элементы, которые дают доступ к первому и последнему
элементам, причем первый элемент можно только читать и удалять, а послед-
ний — записывать и читать. Набор функций весьма скромный: empty(), size(),
front() — чтение первого элемента, back() — чтение последнего элемента, push
(const value_type& x) — запись в конец очереди значения х, рор() — удаление пер-
вого элемента. Приведем примеры:

string s;

Que.push (s); // запись в очередь
if (! Que.empty()) s = Que.back(); // Чтение последнего элемента
if (! Que.emptyO) s = Que. front О; // Чтение первого элемента
if (! Que.emptyO) Que.popO; // Удаление последнего элемента

В библиотеке имеется еще адаптер priority_queue — очередь с приоритетом.
Она может реализовываться на основе контейнеров vector (это реализация по
умолчанию) или deque. Набор функций еще более скромный, чем в queue: empty(),
size(), top() - - чтение элемента с наивысшим приоритетом, push (const va-
lue_type& x) — запись элемента х в очередь, рор() — удаление элемента с наивыс-
шим приоритетом.

Особенность очереди с приоритетом состоит в том, что вставка нового элемента
осуществляется в позицию, зависящую от его величины (приоритета). Элементы
всегда располагаются так, что элемент с наивысшим приоритетом располагается
в вершине очереди. Именно к нему обеспечивает доступ функция top. И именно он
удаляется операцией pop.

Рассмотрим примеры. Операторы
include <queue>
using namespace std;

priority_queue<int> PQ;
PQ.push(l);
PQ.push(lO);
PQ.push(S);

создают очередь целых чисел с приоритетом. Тогда оператор
int i = PQ.top () ;

вернет значение 10 — максимальное число, а оператор
PQ.popO ;

удалит значение 10 из очереди, после чего максимальным числом, расположен-
ным в вершине, станет 5.

490 Глава 5

Для сравнения элементов при упорядочивании очереди используется по умол-
чанию функция-объект less<T>. Эту функцию можно указать явно в объявлении
очереди. Например, приведенный ранее оператор создания очереди PQ может
иметь вид:

priority_queue<int, vector<int>, less<int> > PQ;

Здесь вторым аргументом конструктора задается контейнер vector<int>, на основе
которого создается очередь, а третьим аргументом задается функция сравнения
less<int>. В данном случае эти аргументы соответствуют значениям по умолча-
нию. Но вы можете указать во втором .аргументе deque<int>, изменив тем самым
базовый контейнер. Можете изменить функцию сравнения. Например, если вы со-
здадите очередь оператором

priority_queue<int, vector<int>, greater<int> > PQ;

то в вершине очереди будет располагаться не максимальное, а минимальное число.
Можете написать и свою собственную функцию сравнения и упорядочивать оче-
редь по собственным критериям.

5.4.6 Ассоциативные контейнеры

5.4.6.1 Общие сведения
Ассоциативные контейнеры обеспечивают доступ к элементам с помощью

ключей. Элементы в контейнере упорядочены в соответствии с заданными ключа-
ми. Для упорядочивания используются функции сравнения. По умолчанию это
функция less<T>, обеспечивающая упорядочивание по нарастанию. При этом эле-
менты контейнера должны поддерживать операцию отношения "<".

В контейнерах set и multiset ключами являются сами значения элементов.
В контейнерах тар и multimap каждый элемент имеет ключ и ассоциированное
с ним значение. Контейнеры могут допускать наличие элементов с одинаковыми
значениями ключей (multiset и multimap), или запрещать наличие дубликатов
(set и тар).

Тип ключа задается как key_type. Он может совпадать с типом значения эле-
мента value_type (для set и multiset это обязательно), или может отличаться от
него.

Помимо обычных для контейнеров функций-элементов, в ассоциативных кон-
тейнерах определены следующие функции-элементы:

Функция

find

lower_bound

upper_bound

count

Синтаксис / Описание

iterator find(const key_type& x) const;

Возвращает итератор, указывающий на элемент со значением
ключа х

iterator lower_bound(const key_type& x) const;

Возвращает итератор, указывающий на первый элемент, значе-
ние ключа которого больше или равно х. Если такой элемент не
находится, возвращается end()

iterator upper_bound(const key_type& x) const;

Возвращает итератор, указывающий на первый элемент, значе-
ние ключа которого строго больше х. Если такой элемент не на-
ходится, возвращается end()

size_type count(const key_type& x) const;

Возвращает число элементов, имеющих значение ключа х

Обзор стандартной библиотеки шаблонов STL 491

Ассоциативные контейнеры поддерживают двунаправленные итераторы, но
не поддерживают итераторы с произвольным доступом. Впрочем, с помощью
функции find можно получить доступ к любому элементу.

5.4.6.2 Контейнеры multiset и set

Эти контейнеры могут содержать упорядоченное множество элементов. Клю-
чами, по которым проводится упорядочивание, являются значения элементов. По
умолчанию для упорядочивания используется функция less<T>, что обеспечивает
упорядочивание в порядке возрастания. Различие между multiset и set проявляет-
ся в том, что set не допускает включения нескольких элементов с одинаковыми
значениями ключей. В остальном контейнеры эквивалентны. Оба типа контейне-
ров описаны в заголовочном файле <set>.

Создание и заполнение множеств осуществляется несколькими способами, ко-
торые иллюстрируются приведенными ниже примерами.

tinclude <set>

using namespace std;

multiset<int> MS;

MS.insert (7);

MS.insert (4) ;

MS.insert (4) ;

MS.insert (1) ;

MS.insert(9);

// Результат {1, 4, 4, 7, 9}

int A [4] = {6, 4, 1, 10} ;
set<int> M S I (A , A + 4) ;
// Результат { I , 4 , 6 , 10}

multiset<int, greater<int> > M S 2 (M S . b e g i n () , M S . e n d O) ;
// Результат {9, 7, 4, 4, 1}

multiset<int> MS3;
MS3. inser t (MS.begin() , M S . e n d O) ;
// Результат (1, 4, 4, 7, 9}

Множество MS типа multiset заполнено с помощью последовательного приме-
нения функции insert. Как видно из комментария, приведенного в тексте, после-
довательность элементов определяется их значениями, а не той последовательно-
стью, в которой они добавлялись в контейнер.

Множество MS1 типа set сформировано из обычного одномерного массива це-
лых чисел. Применен конструктор, указывающий итераторы начала и конца кон-
тейнера или его части, из которой загружаются значения элементов. В результате
создается множество, содержащее те же элементы, которые были в массиве, но
в множестве они упорядочены по значениям.

При создании множества MS2 применен аналогичный конструктор, загру-
жающий элементы множества MS. Но вместо используемой по умолчанию функ-
ции сравнения less указана функция greater. Поэтому элементы упорядочиваются
в порядке убывания.

При создании множества MS3 применена функция insert, в которую передаются
итераторы начала и конца контейнера или его части, из которой загружаются значе-
ния элементов. В данном случае в MS3 вставляются все элементы множества MS.

Можно задавать и собственную функцию сравнения. Она должна принимать
два параметра соответствующего типа и возвращать true, если значение первого
параметра меньше второго. Пусть, например, мы хотим создать копию MS4 мно-
жества MS, в которой сначала располагаются нечетные числа, а потом четные,
причем внутри каждой группы чисел элементы располагаются в порядке нараста-

492 Глава 5

ния. Это можно оформить следующим образом (см. подробнее о функциях-объек-
тах в разд. 5.8). Введите глобальную переменную:

struct comp

{
bool operator () (const int II, const int 12) const

{
if ((II % 2) == (12 % 2))
return (II < 12) ;

else return (II % 2);

Далее вы можете ссылаться на эту переменную как на функцию сравнения:
multiset<int, comp > MS4 (MS. begin () , MS. end О) ;

В результате будет создан контейнер, в котором элементы расположатся в следую-
щей последовательности: {1, 7, 9, 4, 4}.

Теперь рассмотрим некоторые примеры работы с множествами. Следующий
код обеспечивает просмотр по порядку всех элементов множества и вывод их зна-
чений пользователю:

AnsiString S = "";
multiset<int>: : iterator It;
It = MS. begin () ;
while (It != MS. end ())

S += IntToStr (*It++) + "\t";
ShowMessage (S) ;

В коде создается итератор It, через который в цикле читаются все значения
множества и заносятся в строку S.

Следующий оператор определяет число элементов, имеющих значение, ука-
занное пользователем в окне Editl:

int i = MS. count (StrToInt (Editl-XText)))

Например, если пользователь укажет "4", i равно 2, а если пользователь укажет
"5", i равно 0.

Следующий код с помощью функции find (см. разд. 5.4.6.1) сообщает пользо-
вателю, имеется ли в множестве значение, указанное в окне Editl:

if (MS. f ind (StrToInt (Editl-XText)) = = M S . e n d ())
ShowMessage ("отсутствует") ;

else ShowMessage ("найдено") ;

Оператор
MS . erase (MS . find (4)) ;

удаляет из множества элемент, значение которого равно 4. Как видим, с помощью
функции find легко получить доступ к любому элементу, хотя произвольный до-
ступ в ассоциированных контейнерах не предусмотрен.

Оператор
MS. erase (MS. f ind (4) , MS . end ()) ;

удаляет из множества все элементы, начиная с того, значение которого равно 4,
и до конца.

Оператор
ShowMessage (IntToStr (*MS .lower_bound (StrToInt (Editl->Text))) +

" - " + IntToStr (*MS . upper_bound (StrToInt (Editl-XText)))) ;

с помощью функций lowerjbound и upper_bound (см. разд. 5.4.6.1) определяет
значения верхней границы множества, включая или не включая значение самого
элемента, записанное в окне Editl. Для нашего примера для значения "7" будет
выдан текст "7 - 9", а для значения "5" — текст "7-7".

Обзор стандартной библиотеки шаблонов STL 493

Операторы

tinclude <algorithm>

multiset<int> MS4;
insert_iterator<multiset<int> > I t l (M S 4 , M S 4 . b e g i n ()) ;
set_union (MS. begin () , MS.endO, MSI. begin () , MSl .endO, It l);

создают множество MS4, итератор Itl этого множества, а затем алгоритмом
set_union (см. алгоритмы в разд. 5.7) заносят в это множество объединение мно-
жеств MS и MS1. В качестве аргументов в алгоритм передаются итераторы начала
и конца первого множества, итераторы начала и конца второго множества и итера-
тор результирующего множества. Результатом объединения является множество,
содержащее все элементы первого, плюс элементы второго, отсутствующие в пер-
вом. Отличие от классического определения объединения множеств в том, что если
какой-то элемент входит в первое множество п раз, а во второе m раз, то в резуль-
тат этот элемент войдет max(n, m) раз. Для нашего примера множество MS4 полу-
чится следующим: {1, 4, 4, 6, 7, 9, 10}.

Если в приведенном коде заменить вызов set_union на вызов set_intersection,
то будет получено пересечение двух множеств: множество, состоящее из элемен-
тов, входящих и в первое, и во второе множество. Отличие от классического опре-
деления пересечения множеств в том, что если какой-то элемент входит в первое
множество п раз, а во второе m раз, то в результат этот элемент войдет min(n, m)
раз. Для нашего примера множество MS4 получится следующим: {1, 4}.

Если в приведенном коде вызывать set_difference, то будет получена разность
двух множеств: множество, состоящее из элементов первого множества, отсутст-
вующих во втором. Для "нашего примера множество MS4 получится следующим:
{4, 7, 9}.

Наконец, если в приведенном коде вызывать set_symmetric_difference, то бу-
дет получено множество, в которое входят элементы первого множества, отсутст-
вующие во втором, плюс элементы второго множества, отсутствующие в первом.
Для нашего примера множество MS4 получится следующим: {4, 6, 7, 9, 10}.

Оператор
if (includes (MS. begin () , MS.endO ,MSI.begin О , M S l . e n d O))

ShowMessage("найдено");
else ShowMessage("отсутствует");

показывает, имеется ли в множестве, заданном первыми двумя итераторами (в на-
шем случае MS), подмножество, заданное следующими двумя итераторами (в на-
шем случае MS1).

Теперь остановимся на различиях множеств multiset и set. Различие заключа-
ется в том, что множество set не допускает включения в него дубликатов — эле-
ментов с одинаковыми значениями. При попытке включить в set дубликат функ-
цией insert с одним аргументом включение просто не произойдет. В связи с этой
особенностью функции insert с одним аргументом различаются для разных клас-
сов множеств. В multiset эта функция возвращает итератор, указывающий на
вставленный элемент. А в set функция insert возвращает объект типа pair. Этот
тип содержит значения двух величин указанных типов. При создании объекта
типа pair в шаблон передается два типа значений. А сами значения хранятся в по-
лях first и second.

Функция insert заносит в поле first итератор, указывающий на вставленный
элемент (если вставка произошла), а в поле second — булево значение: true, если
элемент вставился, и false, если вставка не получилась. Следующий код демонст-
рирует применение типа pair при вставке элемента в множество set:

pair< set<int>::iterator, b6ol> p;
p = MSI. insert(StrToInt(Edit i->Text)) ;
if (p.second)

494 Глава 5

ShowMessage("Вставлен элемент " + I n t T o S t r (* p . f i r s t)) ;
else ShowMessage("Элемент " + IntToStr(*p. f i r s t) +

" не вставлен");

Впрочем, если проверка вставки не требуется, можно просто применять функ-
цию insert, игнорируя возвращаемый ею результат.

5.4.6.3 Контейнеры multimap и тар
Эти контейнеры могут содержать упорядоченное множество элементов. Каж-

дый элемент характеризуется парой величин: ключом и значением. Они хранятся
в описанном в предыдущем разделе типе pair<const Key, Data>. Здесь Key -
ключ, Data — значение элемента. Например, ключом может быть фамилия со-
трудника, а значением элемента — его год рождения, или ключи — названия отде-
лов, а значения — фамилии сотрудников соответствующего отдела.

Упорядочивание элементов производится по ключам. Ключ — неотъемлемая
и неизменяемая часть элемента, в то время как значение элемента можно изме-
нять. По умолчанию для упорядочивания используется функция less<T>, что
обеспечивает упорядочивание в порядке возрастания ключей, которые сравнива-
ются по операции "«".

Различие между multimap и тар проявляется в том, что тар не допускает
включения нескольких элементов с одинаковыми значениями ключей. В осталь-
ном контейнеры эквивалентны. Оба типа контейнеров описаны в заголовочном
файле <тар>.

Рассмотрим в качестве примера контейнер, ключами элементов которого яв-
ляются фамилии сотрудников (строки), а значениями элементов — года рождения
(целые числа). Создание и заполнение такого контейнера может быть сделано сле-
дующими операторами:

tinclude <map>
using namespace std;

typedef multimap<AnsiString, int> TMM;
TMM MM1;
MM1.insert(TMM::value_type("Сидоров", 1 9 7 0)) ;
MM1. insert (TMM: : value___type ("Иванов", 1980)) ;
MM1.insert(TMM::value_type("Петров", 1975));
MM1.insert(TMM::value_type("Иванов", 1960));

В приведенном коде объявление типа ТММ введено просто для того, чтобы
в дальнейшем избежать многократного повторения описания типа multimap<An-
siString, int>.

В результате выполнения приведенного кода в контейнере ММ1 элементы рас-
положатся следующим образом:

Иванов 1980
Иванов 1960
Петров 1975
Сидоров 1970

Элементы упорядочены по алфавиту, а при одинаковых ключах (два Иванова)
размещаются в последовательности добавления элементов в контейнер.

Можно создавать контейнер на основе другого, уже существующего:
map<AnsiString, int, greater<AnsiString> > ММ2(ММ1.begin(), M M l . e n d O) ;

Данный оператор создает контейнер ММ2 типа map, загружая в него элемен-
ты ранее созданного контейнера ММ1. Одновременно задана функция сравнения
greater вместо используемой по умолчанию less. В результате в контейнере ММ2
элементы расположатся следующим образом:

Обзор стандартной библиотеки шаблонов STL 495

Сидоров 1970
Петров 1975
Иванов 1980

Элементы расположены в последовательности убывания ключей, а из двух
Ивановых остался один, так как контейнер типа тар не допускает наличия дубли-
катов.

Следующий код отображает список всех элементов контейнера:
AnsiString S = "";
ТММ: : iterator It = ММ1 .begin ();
while (It != MMl.endO)
{
S += (*It). first + " - " + IntToStr((*It) .second) + "\n";

ShowMessage (S) ;

Итератор It в цикле проходит все элементы контейнера. А доступ к ключам
и значениям элементов осуществляется через поля first и second. В результате ото-
бразится такой текст:

Иванов - 1980
Иванов - I960
Петров - 1975
Сидоров — 1970

Следующий оператор иллюстрирует изменение значения элемента (уточняет-
ся год рождения Петрова):

if ((I t = ММ1. f ind ("Петров")) == M M l . e n d O)
ShowMessage ("отсутствует") ;

else (*It) .second = 1976;

Для доступа к элементу используется функция find, о которой уже говорилось
в предыдущем разделе.

Мы рассмотрели специфику контейнеров multimap и тар. А в остальном ра-
бота с ними ведется так же, как было описано в предыдущем разделе для контей-
неров multiset и set.

5.5 Итераторы

5.5.1 Общая характеристика итераторов

Итераторы являются обобщением указателей. Как и указатели, итераторы
указывают на объекты. Но применительно к итераторам речь идет об указании на
один из элементов набора объектов, хранящихся в некоем контейнере. Впрочем,
имеется два итератора: istream_iterator и ostream_iterator, связанных не с кон-
тейнерами, а с входным и выходным потоками. Итераторы позволяют переме-
щаться по набору объектов в некоторой последовательности: к предыдущему эле-
менту или к последующему.

Итераторы обеспечивают интерфейс между контейнером и алгоритмами, опе-
рирующими с объектами в контейнере. При разработке алгоритма можно ничего
не знать о деталях реализации контейнера, о том, как расположены в памяти его
элементы. Достаточно оперировать с итераторами, и вы получите доступ к интере-
сующим вас элементам.

В STL имеется 6 видов итераторов. Простейший итератор (Trivial Iterator) не
имеет самостоятельного значения и используется только как базовый для построе-
ния других видов итераторов. Входной итератор (Input Iterator) обеспечивает толь-
ко чтение и может перемещаться только от начала к концу последовательности.

496 Глава 5
'—_^ .——

Выходной итератор (Output Iterator) обеспечивает только запись, и может переме-
щаться только от начала к концу последовательности. Остальные виды итераторов
обеспечивают и чтение, и запись. При этом однонаправленный итератор (Forward
Iterator) может перемещаться только от начала к концу последовательности, дву-
направленный итератор (Bidirectional Iterator) может перемещаться в оба конца
последовательности, а итератор с произвольным доступом (Random Access Iterator)
обеспечивает прямой доступ к любому элементу последовательности. Может воз-
никнуть вопрос: зачем так много итераторов, если итератор с произвольным досту-
пом может реализовывать все функции других итераторов? Основной ответ заклю-
чается в том, что чем больше функциональные возможности итератора, тем он
сложнее и, значит, менее эффективен. Так что для каждой конкретной задачи
надо стараться выбирать тот итератор, который обеспечивает ее решение и не име-
ет дополнительных возможностей, не реализуемых в данной задаче.

В каждый момент итератор указывает на некоторый текущий элемент после-
довательности. С помощью функции-элемента контейнера begin() вы можете при-
своить итератору значение, указывающее на первый элемент последовательности.
Аналогично функция-элемент end() указывает на позицию в контейнере, располо-
женную после последнего элемента последовательности. Таким образом, интервал,
в котором расположены элементы: [begin(), end()). To есть последний элемент рас-
положен в позиции, предшествующей end(). А разность указателей end() и begin()
равна числу элементов последовательности.

Операция разыменования итератора (*) дает доступ к тому элементу, на кото-
рый указывает итератор. Она является основной для записи и чтения с помощью
итератора. Если р является итератором, а х — переменной, то оператор

*Р = х;
записывает в контейнер или в выходной поток значение х, а оператор

х = *р;

читает значение текущего элемента в переменную х. В обоих случаях работает
конструктор копии, создающий в соответствующем контейнере копию х или созда-
ющий в х копию элемента.

Все реально используемые итераторы поддерживают префиксную и постфикс-
ную формы записи операции инкремента (++). Таким образом, они позволяют пе-
ремещаться от текущего элемента к последующему. Префиксная форма операции
перемещает итератор на следующий элемент и возвращает новую позицию итера-
тора. Постфиксная форма возвращает прежнюю позицию и затем перемещает ите-
ратор на новую позицию. Вообще говоря, постфиксный инкремент выполняется
менее эффективно, чем префиксный, так как его реализация требует промежуточ-
ного возврата на прежнюю позицию. Так что в случаях, когда форма записи без-
различна, лучше применять

++Р;
чем

Р++;

Приведем пример использования рассмотренных функций и операций. Пусть,
например, вы имеете вектор (см. разд. 5.4.3) целых чисел V, заполненный некото-
рыми значениями. Создание и заполнение подобного вектора может быть осущест-
влено операторами:

#include <vector>
using namespace std;

vector<int> V;
for(int i = 1; i <= 10;

V.push__back (i) ;

Обзор стандартной библиотеки шаблонов STL 497

Использованная в этом коде функция-элемент вектора push_back создает
в контейнере V 10 элементов, содержащих числа от 1 до 10.

Большинство контейнеров имеют элементы с именем iterator. Это тип итера-
тора соответствующего контейнера. Пусть после описанного выше создания векто-
ра V вы записали операторы:

vector<int>::iterator II = V.begin О;
*!!++ = 11;
*I1 = 12;
Labell->Caption = *(++!!);

Первый из этих операторов создает итератор II вектора и присваивает ему зна-
чение, указывающее на первый элемент последовательности. Второй оператор за-
носит в первый элемент последовательности число 11 и перемещает итератор к сле-
дующему элементу. Третий оператор задает значение 12 этому элементу (второму
в последовательности). Третий оператор перемещает итератор II на следующую
позицию (к третьему элементу последовательности) и выводит в метку Labell зна-
чение этого элемента.

При итерациях по элементам последовательности надо следить, чтобы итера-
тор не вышел за пределы числа элементов. Это можно делать, сравнивая его со зна-
чением end(). Например, следующий код продолжает приведенный выше пример,
отображая в диалоговом окне поочередно значения всех элементов вектора:

II = V . b e g i n () ;
while (II != V.endO)

ShowMessage(*!!++);

Рассмотрим еще один пример. Пусть вы хотите в векторе V найти элемент,
имеющий целое значение Num, и, если такой элемент найден, умножить его на 10.
Эта задача решается следующим кодом:

vector<int>::iterator II = f i n d (V . b e g i n () , V . e n d O , N u m) ;
if (II != V . e n d O)
{
*I1 *=, 10;
ShowMessage("Позиция: " + (AnsiString)(II - V.begin() + 1) +

", значение:" + *I1);
)
else ShowMessage("Элемент не найден");

Первый оператор создает итератор II и заносит в него результат поиска, осу-
ществляемого функцией find. Ее объявление:

#include <algorithm>
template <class Inputlterator, class T>

Inputlterator f ind(Inputl terator f i r s t , Inputlterator last,
const T& v a l u e) ;

Параметры first и last определяют диапазон поиска, а параметр value — это
искомое значение. Функция возвращает позицию найденного элемента контейне-
ра, или значение end(), если элемент не найден.

Выше была показана работа с итератором контейнера iterator. Многие контей-
неры имеют также итераторы с именем reverse_iterator. Это итераторы, просмат-
ривающие последовательность в обратном направлении, от конца к началу. Для
инверсных итераторов вместо begin() и end() используются rbegin() и rend(). При
этом rbegin() указывает на последний элемент последовательности, a rend() указы-
вает позицию, предшествующую первому элементу последовательности. Инкре-
мент инверсного итератора означает его перемещение на 1 позицию к началу по-
следовательности. Так что если в приведенном ранее примере просмотра вектора
вы объявите итератор

vector<int>::revers iterator Ir;

498 Глава 5

то код:
Ir = V.rbegin();
whiledr != V . r e n d f))

ShowMessage(*Ir++);

обеспечит просмотр вектора от последнего элемента к первому.
Помимо итераторов iterator и reverse_iterator в контейнерах обычно преду-

сматриваются итераторы с именами const_iterator и const_reverse_iterator. Они
отличаются тем, что разрешают только чтение данных. При попытке записать дан-
ные через такой итератор компилятор выдаст сообщение об ошибке.

Для всех итераторов, кроме итераторов записи, можно определить расстояние
между двумя итераторами. Расстояние (число элементов, размещенных между по-
зициями, на которые они указывают) определяется функцией distance. Она имеет
две формы:

template <class Inputlterator>
inline iterator_traits<lnputlterator>::difference_type

distance(Inputlterator f i rs t , Inputlterator las t) ;

template <class Inputlterator, class Distance>
void distance (Inputlterator f irst, Inputlterator last,

Distances n) ;

Первая форма возвращает расстояние между двумя итераторами first и last,
указывающими на одну и ту же последовательность. Например, оператор

Labell->Caption = d i s t a n c e (V . b e g i n () , V . e n d ()) ;

выведет в метку Labell число элементов, имеющихся в векторе V. А оператор
Label2->Caption = d i s t a n c e (V . b e g i n () , I I) ;

выведет в метку Label2 номер того элемента последовательности, на который
в данный момент указывает итератор II.

Вторая форма функции distance была определена в прежнем стандарте STL.
Пока она оставлена для обратной совместимости, поскольку еще не все компилято-
ры обрабатывают новую версию. Но в будущем поддержка второй формы функции
может прекратиться. Эта форма ничего не возвращает, а добавляет (не записывает,
а именно добавляет) в переменную n расстояние между итераторами first и last. Она
менее удобна, чем первая форма, так как требует объявить дополнительную пере-
менную n и инициализировать ее нулем, чтобы получить требуемое расстояние.

При использовании любой формы distance надо иметь в виду, что итератор
first должен указывать на элемент, предшествующий итератору last. В противном
случае поведение функции не определено.

Функция distance применима к большинству видов итераторов (кроме выход-
ных), но она относительно медленная, так как ее реализация сводится к инкремен-
ту итератора first до тех пор, пока он не сравняется с last. Для длинных последова-
тельностей это может требовать большого времени. Итераторы с произвольным
доступом позволяют определить расстояние проще и намного эффективнее опера-
цией вычитания. Так что для итераторов вектора в приведенных примерах целесо-
образнее использовать операцию вычитания:

Labell->Caption = V.endO - V.begin О;
Label2->Caption = II - V.begin ();

В качестве контейнеров могут выступать обычные массивы языка С, а в каче-
стве их итераторов — обычные указатели на элементы массивов. Повторим рас-
смотренные выше примеры, используя в качестве контейнера массив:

int V[10] = {1,2,3,4,5,6,7,8,9,10};
int * Vbegin = V, * Vend = V + 10;
int * II;

.

Обзор стандартной библиотеки шаблонов STL 499

Я специально использовал в этом примере те же идентификаторы, что и при
работе с вектором. Указатели Vbegin и Vend — аналоги итераторов begin() и end().
А указатель II аналог итератора, использованного в предыдущих примерах.

Рассмотренный ранее пример просмотра последовательности в данном случае
может выглядеть так:

II = Vbegin;
whi le(II != Vend)

ShowMessage {'*!!++) ;

А пример поиска элемента с заданным значением Num и его умножением на
10 имеет вид:

II = f ind(Vbegin, Vend, Num) ;
i f (I I != Vend)
(
*I1 *= 10;

ShowMessage("Позиция: " + (Ans iStr ing)(II - V . b e g i n () + 1) +
", значение:" + *I1);

}
else ShowMessage("Элемент не найден");

Сравнив эти коды с ранее приведенными примерами, вы увидите, что они раз-
личаются только идентификаторами Vbegin и Vend. Может быть, эти примеры,
использующие обычные указатели, помогут вам глубже почувствовать смысл ите-
раторов. Кроме того, как видите, обычные указатели могут использоваться в вызо-
вах функций STL (в данном примере — в вызове find). Так что вы можете пользо-
ваться многими функциями STL при работе с обычными массивами.

5.5.2 Итераторы чтения

Рассмотрим теперь различия между видами итераторов. Простейший итератор
является базовым шаблоном для построения иных видов итераторов и самостоя-
тельного значения не имеет. Этот итератор является аналогом обычного указателя.
Для него определены операции разыменования (*), эквивалентности (==) и опера-
ция стрелка (—>) для доступа к элементам класса. Впрочем, для тех компиляторов
C++, которые не поддерживают операцию стрелка, предусмотрена возможность дос-
тупа к элементам класса совместным применением операций точка (.) и разымено-
вания. Например, если объект it является итератором, тип которого предусматрива-
ет элемент т, то получить доступ к m можно выражением it—>m, или, если подоб-
ная нотация компилятором не поддерживается, то выражением (*it).m.

Итератор чтения, помимо операций разыменования, эквивалентности и досту-
па к элементу класса, поддерживает префиксную и постфиксную формы записи
операции инкремента. Таким образом, он позволяет перемещаться от текущего
элемента к последующему. Определена также разность значений итераторов, кото-
рая показывает в виде целого числа количество элементов, расположенных между
двумя итераторами. В приведенных ранее примерах практически во всех случаях,
кроме нескольких операторов записи, мы имели дело с итераторами чтения.

Операция разыменования итератора чтения дает значение элемента в той пози-
ции, на которую указывает итератор. Это значение можно использовать для копиро-
вания в какую-то переменную, в операциях сравнения и т.п. Но итератор чтения
нельзя использовать для записи нового значения элемента. Иначе говоря, разыме-
нование итератора не должно быть левым операндом оператора присваивания.

Особо надо сказать об итераторе чтения стандартного входного потока istre-
am_iterator. При объявлении в его шаблон надо передать параметр Т — тип объек-
тов, которые читает данный итератор. Это должен быть такой тип, который имеет
конструктор с параметрами по умолчанию и который может использоваться в вы-
ражениях вида cm » Т.

500 Глава 5

Итератор имеет два конструктора. Один из них имеет синтаксис:
istream_iterator(istreami s)

В качестве аргумента s в него передается входной поток. Обычно это стандартный
входной поток cin — клавиатура. Второй конструктор не имеет параметров:

istream_iterator()

Он создает итератор стандартного входного потока с позицией после конца этого
потока. Так что такой итератор можно использовать для итераций по потоку до его
конца.

Ниже приведен пример консольной программы, читающей из входного потока
два целых числа:

#include<iterator>
#include <iostream>
#include <conio.h>
using namespace std;
int main(void)
{
istream_iterator<int> I (cin);
int II = *!++;
int 12 = *I;
cout « II « ' ' « 12 « endl;
getch() ;

}

Первый оператор функции main объявляет итератор I для чтения целых чисел
из входного потока. Второй оператор читает из потока целое число, заносит его
в переменную II и смещает итератор операцией инкремента на следующую пози-
цию. Далее аналогично читается в 12 второе число, после чего прочитанные числа
выводятся на экран и функцией getch создается ожидание нажатия пользователем
какой-либо клавиши.

В приведенном коде смещение итератора осуществляется постфиксным инкре-
ментом после чтения. Но в стандарте не оговорено, как должна выполняться такая
операция, и разные компиляторы могут выполнять ее по-своему. Поэтому, если вы
заботитесь о переносимости своего кода, лучше инкремент осуществлять отдель-
ным оператором:

int II = *1;
I++;
int 12 = *1;

Во всяком случае, все шаблоны STL используют такой подход.
Можно читать значения непосредственно в контейнер. Например:

#include<vector>
#include<iterator>
#include <iostream>
finclude <conio.h>
using namespace std;
int main(void)
{
istream_iterator<int> I (cin);
V.pusHJaack(*!++);
V.push_back(*I);
copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
getch () ;
}

В этом примере для вывода прочитанных значений на экран используется
функция сору:

#include <algorithm>

Обзор стандартной библиотеки шаблонов STL 501

template <class Inputlterator, class Outputlterator>
Outputlterator copy(Inputlterator f i r s t , Inputlterator last,

Outputlterator result);

Параметры first и last указывают начало и конец копируемых данных, а пара-
метр result — это выходной итератор записи. В приведенном примере в качестве
него использован итератор записи в выходной поток ostream_iterator, о котором
будет сказано немного позднее.

В заключение рассказа об итераторе istream_iterator приведу пример, в кото-
ром используется вторая форма его конструктора:

#include<vector>
#include<iterator>
^include <iostream>
tinclude <conio.h>
using namespace std;
int main(void)
{
copy(istream_iterator<int>(cin), istream_iterator<int>() ,

b a c k _ i n s e r t e r (V)) ;
c o p y (V . b e g i n () , V . e n d O , ostream_iterator<int>(cout, " ")) ;
getch() ;

}

В этом коде для чтения используется только что описанная функция сору.
В качестве ее второго аргумента указан итератор istream_iterator<mt>(). По-
скольку в его конструктор не переданы параметры, то этот итератор указывает по-
зицию после конца входного потока. Таким образом, в вектор V будут читаться все
вводимые пользователем данные. Чтение закончится после очередного нажатия
пользователем клавиши Enter, если во введенном тексте окажется символ конца
файла (клавиши Ctrl-Z), или окажутся какие-то символы (например, буквы), кото-
рые не могут встретиться в целом числе.

В качестве итератора, записывающего прочитанные данные в вектор V, ис-
пользован адаптер итератора back_inserter. Он вставляет данные в конец последо-
вательности соответствующего контейнера, указанного как его параметр (в приве-
денном примере контейнер — вектор V).

Итератор чтения, в частности, итератор чтения из потока, может повторно
прочитать последний из прочитанных элементов, если не сдвигать его позицию.
Правда, в стандарте это не оговорено, но в версии C++Builder 6 работает. Однако
итератор чтения не может вернуться назад и прочитать какой-то из ранее прочи-
танных элементов. Поэтому итераторы чтения неприменимы в многопроходных
алгоритмах, требующих многократного просмотра последовательности.

5.5.3 Итераторы записи

Теперь коротко рассмотрим итераторы записи. Они по набору операций близ-
ки к итераторам чтения. Но операторы записи не могут участвовать в операциях
сравнения и с их помощью можно только записывать данные, но не читать их. Ра-
зыменование итератора чтения давало значение очередного читаемого элемента.
А разыменование итератора записи определяет место, в которое должна произво-
диться запись, а не значение элемента на этом месте. Например, если I — итератор
записи, то оператор

*-I = t;

заносит в указываемую итератором позицию значение объекта t. Операция разы-
менования итератора записи может встречаться только в левом операнде операто^
ра присваивания, как в приведенном примере.

502 Глава 5

Итераторы записи построены так, что после очередной записи ожидается ин-
кремент итератора. А после инкремента ожидается запись. Так что последователь-
ность записей предполагается такой:

*I = tl;
++I;
*I = t2;

или такой:
*!++ = tl;
*I = t2;

Иное чередование операций с итератором записи может привести к непредсказуе-
мым последствиям. Например, неизвестно, как сработают следующие операторы:

*I = tl;

*I = t2;

Это зависит от конкретной реализации STL и компилятора. Так что надо рекомен-
довать не нарушать стандартизованную последовательность операций.

К числу итераторов записи относятся: insert_iterator — итератор вставки,
front__insert_iterator — итератор вставки в начало последовательности, back_in-
sert_iterator — итератор вставки в конец последовательности, ostream_iterator —
итератор записи в выходной поток. Первые три из них — итераторы контейнеров.

Начнем их рассмотрение с итератора вставки insert_iterator. В его шаблон пе-
редается один тип — тип контейнера. Конструктор итератора имеет вид:

insert_iterator (Containers С, Container :: iterator i)

Параметр С — контейнер, для которого создается итератор, а параметр i — итера-
тор этого контейнера, указывающий позицию вставки.

Вставка в контейнер, содержащий некоторую последовательность, осуществ-
ляется следующим образом. Размер контейнера увеличивается на 1, все элементы,
расположенные после позиции i, сдвигаются к концу на одну позицию, а в пози-
цию i заносится записываемое значение. Этим запись через итератор вставки отли-
чается от записи через итератор контейнера iterator (см. примеры в разд. 5.5.1),
который просто заменяет элемент последовательности новым значением.

Приведем пример. Если V — вектор целых чисел, неоднократно фигурировав-
ший в предыдущих разделах, то операторы

insert_iterator<vector<int> > II (V, V . begin () + 3) ;
*!!++ = Numl;
*I1 = Num2;

вставят в четвертую и пятую позиции соответственно значения целых переменных
Numl и Num2, а позиции всех элементов, которые располагались ранее начиная
с четвертой позиции увеличатся на 2. Соответственно на 2 увеличится и размер
вектора.

В версии STL, используемой в C++Builder 6, можно для итератора вставки не
делать инкремент между операциями записи. Очередная запись автоматически бу-
дет осуществлена в следующую позицию. А если между записями сделать несколь-
ко инкрементов, это тоже ни на что не повлияет. Так что в приведенном выше при-
мере можно вообще убрать инкремент. Но если вы рассчитываете, что ваш код, мо-
жет быть, будет компилироваться и в какой-то другой системе, отличной от
C++Builder, то лучше не нарушать стандарт и чередовать запись с инкрементом.

Мы рассмотрели вставку в контейнер, содержащий последовательность. Име-
ются и другие виды контейнеров, в частности, ассоциативные контейнеры (см.
разд. 5.4.6), в которых расположение элементов осуществляется в зависимости от
их значений. В этих случаях текущая позиция итератора вставки рассматривается

Обзор стандартной библиотеки шаблонов STL 503

как начальное приближение, а после вставки проводится поиск той позиции, в ко-
торой должен размещаться новый элемент.

Итератор front_insert_iterator аналогичен итератору insert_iterator, но все-
гда осуществляет вставку в первую позицию последовательности. Поэтому в конст-
руктор итератора front_insert_iterator передается только один параметр — кон-
тейнер. Но нельзя отождествлять итератор front_insert_iterator с итератором
insert_iterator, установленным на первую позицию последовательности. Если за-
писывать в контейнер несколько чисел итератором insert_iterator, они располо-
жатся в той последовательности, в которой записывались. Причина в том, что по-
сле каждой записи позиция итератора явно или неявно увеличивается на 1 . А за-
пись с помощью итератора front_insert_iterator приведет к тому, что числа распо-
ложатся в обратной последовательности, так как позиция итератора фиксирова-
на — всегда первая.

Рассмотрим пример. Правда, воспользоваться вектором, который фигуриро-
вал во всех предыдущих примерах, нам не удастся, так как для него итератор
front_insert_iterator не определен. Так что возьмем для примера другой контей-
нер — список list:

#include
tinclude <iterator>

list<int> L;
front_insert_iterator<list<int> > 12 (L) ;
for(int i = 1; i <= 5; i-n-)

*I2++ = i; '
list<int>: : iterator I = L. begin (), •
while (I != L.endO)

ShowMessage (*!++) ;

В приведенном коде запись в список L осуществляется итератором 12 типа
front_insert_iterator. В результате последовательность чисел в списке будет та-
кая: 5, 4, 3, 2, 1, так как каждое очередное число вставляется перед записанными
ранее.

Итератор back_insert_iterator отличается от front_insert_iterator только тем,
что осуществляет вставку всегда в конец последовательности. Так что если в пре-
дыдущем примере заменить объявление итератора на:

back_insert_iterator<list<int> > 12 (t) ;

то список заполнится последовательностью: 1, 2, 3, 4, 5.
Осталось рассмотреть еще один итератор записи — ostream_iterator. Он пред-

назначен для записи в выходной поток. В шаблон итератора передается один пара-
метр — тип данных. А его конструктор имеет две формы:

ostream_iterator (ostreams s)
ostream_iterator (ostreams s, const char* delim)

Параметр s указывает выходной поток. Обычно, это стандартный выходной
поток — экран. В первой форме конструктора s — единственный параметр. И за-
пись через создаваемый им итератор некоторого элемента t эквивалентна выраже-
нию s » t. Во вторую форму конструктора передается дополнительно параметр
delim — символ разделителя, помещаемый после каждой записи. Так что запись
элемента t через такой итератор эквивалентна выражению s » t » delim.

Например, операторы
ostream_iterator<int> lout (cout, " ");
*Iout = Numl;
++Iout;
*Iout = Num2;

выводят в стандартный выходной поток значения целых переменных Numl
и Num2, разделенные пробелом, указанным в конструкторе в качестве разделителя.

504 Глава 5

5.5.4 Итераторы, допускающие чтение и запись
Итераторы, обеспечивающие и чтение, и запись данных, представлены тремя

группами: однонаправленные итераторы, двунаправленные и итераторы с произ-
вольным доступом.

Однонаправленные итераторы не имеют каких-то дополнительных операций
или возможностей по сравнению, например, с итераторами чтения. Но в них сни-
мается ряд ограничений, свойственных итераторам чтения. Прежде всего, эти ите-
раторы могут использоваться и для чтения, и для записи. Кроме того, несмотря на
их однонаправленность от начала к концу последовательности, они могут исполь-
зоваться в некоторых многопроходных алгоритмах.

В двунаправленных итераторах ко всем этим возможностям добавляются опе-
рации префиксного и постфиксного декремента. Так что эти итераторы могут пере-
мещаться по последовательности в обоих направлениях, обеспечивая чтение и пе-
резапись значений любых элементов. В некоторых контейнерах, например, в спи-
ске list, именно этот тип итератора используется как элемент list<T>::iterator.

Недостатком двунаправленных итераторов является возможность перемеще-
ния только на одну позицию вперед или назад за одну операцию инкремента или
декремента. Этот недостаток устранен в итераторах с произвольным доступом.
В них в дополнение к операциям, поддерживаемым двунаправленными итератора-
ми, введены операции "+", "•-", "+=", "• =", в которых могут участвовать итерато-
ры и целочисленное выражения. Если целочисленное выражение имеет значение
п, то соответственная операция означает сдвиг текущей позиции итератора на п
позиций вперед (при п > 0) или назад (при п < 0). Введена также операция "[п]"
для доступа к элементу последовательности, лежащему в позиции, отстоящей на п
от текущей. Определены операции отношения меду двумя итераторами, указы-
вающими на одну и ту же последовательность: "<", "<=", ">", ">=", возвращаю-
щие булево значение.

Таким образом, если i и j — итераторы с произвольным доступом к объектам
типа X, а п — целочисленное значение со знаком, то возможны следующие выра-
жения:

i += п

i + п
или
n + i

i -= n

i — n

i ~ J

i[n]

i[n] = t

i< j

сдвиг итератора вперед (при n > 0), или назад (при п < 0) на п позиций

две идентичные формы, эквивалентные выражению i += п

сдвиг итератора назад (при п > 0), или вперед (при п < 0) на п пози-
ций; эквивалент выражения i += (— п)

эквивалент выражения i — = п

расстояние между i и j, указывающими на одну и ту же последователь-
ность; возвращает такое п, при котором i = j + n

возвращает значение типа X элемента, лежащего в позиции, отстоя-
щей на п от текущей; текущая позиция не изменяется; эквивалент
выражения *(i + n)

копирование значения t типа X в элемент, лежащий в позиции, отсто-
ящей на п от текущей; текущая позиция не изменяется; эквивалент
выражения *(i + n) = t

возвращает булево значение true, если позиция i меньше j; выраже-
ние допустимо, если i и j указывают на одну и ту же последователь-
ность

Обзор стандартной библиотеки шаблонов STL 505

Итераторами с произвольным доступом являются элементы iterator и const_
iterator классов векторов vector и очередей deque.

Большинство операций над итераторами с произвольным доступом уже иллю-
стрировались в примерах разд. 5.4. Осталось, пожалуй, проиллюстрировать толь-
ко операции "[п]" и "<". Ниже приведен пример работы с вектором целых чисел V,
в который уже записано не менее трех элементов. Пусть мы хотим просмотреть эти
данные, начиная со второй позиции и кончая предпоследней позицией последова-
тельности, и для каждой позиции найти разность значений элементов, располо-
женных справа и слева от нее. Это можно сделать следующим кодом:

vector<int>::iterator II;
for (II = V.begin () + 1; II < V.endO - 1; I1++)

ShowMessage("Позиция: " + IntToStr(Il - V.beginO + 1) +
", разность соседних элементов: " +
IntToStr(II[1] - II [-1]));

Начальная позиция итератора II задается равной V.begin() + 1, т.е. это вторая
позиция последовательности. Так что это иллюстрирует применение операции "+".
Конец цикла определяется операцией отношения "<", причем в записи ее правого
операнда использована операция "-". В строке, выводимой функцией ShowMes-
sage, номер текущей позиции рассчитывается, исходя из расстояния между II и на-
чалом последовательности V.beginO. А для определения разности значений сосед-
них элементов использована операция "[п]". При этом 11[1] — значение элемента,
расположенного справа, а 11[—1] — значение элемента, расположенного слева.

5.6 Класс строк string
Класс строк string предоставляет пользователю существенно более удобные

операции работы со строками, чем основной в C++ тип строк char *. Основное дос-
тижение, пожалуй, связано с автоматическим выделением памяти при изменении
размеров строки string, что исключает утомительные и чреватые множеством
ошибок манипуляции с памятью, присущие типу char *. Впрочем, на мой взгляд,
класс string все-таки во многих отношениях менее удобен, чем класс AnsiString,
введенный в C++Builder.

Класс string определен следующим образом:
typedef basic_string <char> string;

Таким образом, string является псевдонимом класса basic_string. Имеется
аналогичный класс wstring, работающий с типом символов wchar_t. Классы объ-
явлены в заголовочном модуле <string>.

Создание объекта типа string может быть выполнено следующим образом:
#include <string> .
using namespace std;

string S("Привет ! ") ;

или оператором

string S = "Привет !";

В последнем случае присваивание вызывает конструктор копии класса.
В string, в отличие от AnsiString, не предусмотрено приведение числовых

и символьных типов. Так что операторы вида:
string SI (2);
string SI ('а

1
);

вызовут ошибку компилятора. Впрочем, присваивание символа переменной типа
все-таки возможно:

506 Глава 5

string S2;
52 = ' ! ' ;

Строки типа string, в отличие от char *, не требуют завершающего нулевого
символа. Они хранят свою длину вместе со значением. Текущее значение длины
строки (число символов) может быть получено функцией-элементом length. Так
для приведенного выше примера переменной S выражение S.length() вернет 8.

К отдельным символам строки можно получить доступ операцией [ind]. Ин-
дексы начинаются с 0. Максимальный индекс равен length - 1. Например, выра-
жение S[0] вернет символ "П", а выражение S[7] вернет "!".

Операция [ind] не осуществляет проверки допустимости индекса. Так что, на-
пример, результат выражения S[8] непредсказуем. Альтернативный способ досту-
па к символам — использование функции at(ind). Она работает так же, как опера-
ция [ind], но при выходе индекса за допустимые пределы (например, в случае вы-
ражения S.at(8)) генерирует исключение.

Склеивание строк (конкатенация) осуществляется операцией "+", как и в типе
AnsiString. При этом можно смешивать строки и символы. Например, оператор

S = S1 + ' ' + S2;

занесет в строку S строки S1 и S2, разделенные символом пробела. Определена
и операция "+=". Например, оператор

S += S2;

прибавит к содержимому строки S строку S2. Аналогичный результат можно по-
лучить с помощью функции append:

S.append(32);

Для класса определены операции отношения "<", ">", "==" и другие. Так что
можно использовать выражения вида:

i f (S I < 32}

Сравнение проводится с учетом регистра. Латинские буквы считаются меньше
букв кириллицы.

Имеется также функция-элемент compare, осуществляющая сравнение строк.
Например, выражение

SI.compare(S2)

возвращает 0, если строки S1 и S2 эквивалентны, отрицательное число, если SI < S2,
и положительное число, если SI > S2.

Это простейший вариант функции compare. Другая перегруженная форма
этой функции позволяет сравнивать фрагмент данной строки с указанной строкой.
Например, выражение

SI.compare(1, 3, S2)

сравнивает символы со второго по четвертый строки S1 со строкой S2. Первый па-
раметр функции compare показывает индекс первого сравниваемого символа дан-
ной строки. Второй параметр указывает число сравниваемых символов. А третий
параметр указывает строку, с которой проводится сравнение.

Имеется еще одна перегруженная форма функции compare, в которой фраг-
мент данной строки сравнивается с фрагментом другой строки. В этой форме до-
бавляются еще четвертый и пятый параметры, указывающие соответственно на-
чальный символ и длину фрагмента другой строки. Например, выражение

SI.compare(0, 4, 52, 1, 4)

сравнивает первые четыре символа строки S1 с символами со второго по пятый
строки S2.

Обзор стандартной библиотеки шаблонов STL 507

Функция substr выделяет из данной строки подстроку. Первый аргумент
функции указывает индекс первого символа подстроки, а второй аргумент опреде-
ляет число символов в подстроке. Например, оператор

S1 = S2.substr(1, 4) ;

заносит в строку S1 подстроку из S2, начинающуюся со второго символа (индекс 1)
и содержащую 4 символа.

Имеется функция swap, осуществляющая обмен между двумя строками. На-
пример, оператор

S l . s w a p (S 2) ;

заносит в S1 содержимое S2, а в S2 — содержимое S1.
Ряд перегруженных вариантов функции insert выполняет вставку строк или

подстрок в указанную позицию данной строки. Например, оператор
S I . i n s e r t (4 , S 2) ;

вставляет строку S2 после четвертого символа строки S1. Соответственно все сим-
волы исходной строки, начи&ая с пятого, сдвигаются, освобождая место для встав-
ленной строки. Имеются варианты функции insert, вставляющие подстроку, а не
целую строку, вставляющие заданное число указанных символов и т.п.

Функция erase удаляет из строки заданное число символов, начиная с указан-
ной позиции. Например, оператор

SI.erase (2 , 4) ;

удаляет из строки S1 4 символа, начиная с позиции 2 (т.е. начиная с третьего сим-
вола). Если значение второго параметра, указывающего число удаляемых симво-
лов, велико, то удалятся все символы, начиная с указанного первым параметром
и до конца строки.

Имеется ряд функций, осуществляющих поиск заданной подстроки или сим-
волов. Функции find и rfind осуществляют поиск соответственно первого и послед-
него вхождения подстроки в данную строку. При успешном поиске возвращается
индекс начала найденной подстроки. Если подстрока не найдена, возвращается
константа string::npos.

Например, если заданы строки
string SI = "В лесу родилась елочка, в лесу она росла.";
string S2= "лес";

то операторы
int i = S l . f i n d (S 2) ;
int j= Sl . .r f ind(S2) ;

вернут значения i = 2, j = 26.
Пусть, например, мы хотим заменить в приведенной выше строке S первое

слово "лесу" на слово "лесочке". Это может быть оформлено следующим образом:
string S2= "лесу", S3 = "лесочке";
int i;
if ((i = S l . f i n d (S 2)) != str ing: :npos)
{
SI.erase(i, S 2 . l e n g t h ()) ;
SI.insert (i, S3) ;

}
else ShowMessage("Подстрока не найдена");

Функция erase удаляет найденную подстроку S2, а функция insert вставляет
в ту же позицию строку S3.

Вторым аргументом в функцию find может быть передана позиция в данной
строке, с которой надо начинать поиск. Это позволяет организовать поиск всех
вхождений подстроки:

508 Глава 5

string S2 = "лесу", S3 = "лесочке";
int i = 0;
while ((i = Sl.find(S2, i+1)) != string::nposj

{
SI.erase (i, S2.length ());
SI.insert (i, S3);
}

Каждый следующий поиск в цикле начинается с позиции, следующей за най-
денной ранее (i -I- 1), т.е. осуществляется в оставшейся части строки. Поэтому при-
веденный код произведет замену всех вхождений подстроки S2 на S3.

Функции find_first_of и find_last_of осуществляют поиск соответственно пер-
вого или последнего вхождения в строку одного из заданных символов. Например,
оператор

int i = Sl . f ind_first_of(" . , :;");

вернет индекс первого из символов ".", ",", " ", ":", ";" в строке S1, т.е. найдет
окончание первого слова строки. Указанные символы перечисляются в строке, пе-
редаваемой в функцию как аргумент. Вторым аргументом функции может задава-
ться индекс, начиная с которого должен производиться поиск. Это позволяет так
же, как в функции find, осуществлять в цикле поиск всех вхождений указанного
множества символов.

Функции find_first_not_of и find_last_not _of решают противоположную за-
дачу: находят индекс первого или последнего символа, отличного от заданных
в строке аргумента.

Выше были приведены примеры контекстного поиска и замены, демонстри-
рующие применение функций erase и insert. Однако ту же контекстную замену
можно сделать проще с помощью функции replace. В качестве первого аргумента
в нее передается индекс начала заменяемой подстроки, в качестве второго аргу-
мента указывается число символов подстроки, а третьим аргументом указывается
строка, которая должна заменить удаляемую подстроку. Например, код

int i = 0;
while ((i = Sl . f ind(S2, i+1)) != string::npos)

SI.replace (i, S 2 . l e n g t h () , S3) ;

осуществит замену всех вхождений S2 в SI на S3.
Мы рассмотрели основные функции класса string. Останавливаться на всех

этих функциях и их перегруженных вариантах в рамках данной книги невозмож-
но. Отметим также, что строки string являются обычными контейнерами STL
и могут работать с итераторами так же, как другие ранее рассмотренные контейне-
ры. В целом, как видим, класс string достаточно удобен для работы. Но в реаль-
ных приложениях обычно фигурируют строки разных типов. Например, функции
API Windows требуют, как правило, строки типа char *. А большинство строковых
свойств компонентов С-f+Builder имеют тип AnsiString. Так что часто возникает
необходимость приведения одних типов строк к другим.

Значение строки типа char * можно непосредственно присваивать переменным
типа string. Например:

char * Sen = "Привет";
string S = Sch;

Однако значение строки типа AnsiString присвоить непосредственно строке
типа string невозможно. Выходом из положения является функция-элемент c_str()
класса AnsiString, которая преобразует тип AnsiString в char *. А строку этого
типа можно присвоить переменной класса string. Таким образом, если требуется за-
писать в переменные класса string какие-то строковые свойства компонентов VCL,
использующие тип AnsiString, это делается операторами вида:

string S = (Editl->Text).c_str();
string SI = (Memol->Text).с s t r () ;

Обзор стандартной библиотеки шаблонов STL 509

Аналогичная функция-элемент c_str() имеется и в классе string. Она преобра-
зует строку в тип char *. А поскольку строки типа char * можно присваивать пере-
менным типа AnsiString, то эта же функция дает возможность преобразования
string в AnsiString. Приведем пример:

string S = "Привет";
ShowMessage(S.c_s t r ()) ;
Editl->Text = S.c_str() ;

Второй из этих операторов использует приведение типа string к char *, который
требуется для функции ShowMessage. А третий оператор присваивает значение
свойству Editl—>Text, имеющему тип AnsiString.

5.7 Алгоритмы

5.7.1 Общие сведения
В STL включено свыше 100 алгоритмов и их вариантов различного назначе-

ния. Естественно, в рамках данной книги невозможно рассмотреть их хоть сколь-
ко-нибудь подробно. Надеюсь, что скоро смогу подготовить отдельную небольшую
книгу по STL, в которой рассмотрю все эти алгоритмы с соответствующими приме-
рами и методикой создания своих собственных алгоритмов. Надеюсь также вклю-
чить в ближайшем будущем соответствующую справку в [2]. А пока вынужден ог-
раничиться только перечнем алгоритмов с краткими комментариями. Некоторые
примеры применения алгоритмов см. в раз. 5.8.

Алгоритмы построены так, что для них безразличны особенности реализации
разных контейнеров. Они работают с итераторами, в качестве которых могут вы-
ступать итераторы любых контейнеров и даже указатели на обычные массивы.
В этом и заключается универсальность принципов построения алгоритмов, приня-
тая в STL. Впрочем, надо обращать внимание в объявлениях алгоритмов, какие
типы итераторов они используют. Это определяет, к каким классам контейнеров
можно применять тот или иной алгоритм. Например, если алгоритм использует
итератор произвольного доступа, то этот алгоритм можно применять только к кон-
тейнерам, поддерживающим такие итераторы.

Для использования любых алгоритмов библиотеки в модуль должна быть
включена директива

#include <algorithm>

В большинстве алгоритмов последовательность, с которой работает алгоритм,
задается двумя итераторами: first и last. При этом полагается, что последователь-
ность указана на интервале [first, last), т.е. рассматриваются элементы, начиная
с того, на который указывает first, и до элемента, предшествующего позиции last.
Если в качестве first указать beginQ, а в качестве last указать end(), то будет рас-
сматриваться все содержимое контейнера.

Многие алгоритмы имеют две модификации: первая использует для сравнения
стандартную операцию отношения (обычно это операция <), а вторая указывает
стандартную или введенную пользователем функцию сравнения. Применение соб-
ственной функции сравнения позволяет определить нестандартное упорядочива-
ние элементов. В частности, это безусловно необходимо, если элементы представ-
ляют собой указатели на объекты или, например, структуры. В подобных случаях
стандартная операция отношения, естественно, не работает. В разд. 5.8 приводят-
ся сведения о стандартных функциях-объектах и создании собственных функций.

Последующие разделы группируют алгоритмы по кругу решаемых ими задач
и дают краткие описания всех алгоритмов библиотеки.

510 Глава 5

5.7.2 Алгоритмы заполнения контейнеров

Алгоритм Синтаксис / Описание

fill template <class Forwardlterator, class T>
void fill(Forward!terator first, Forwardlterator last,

const T& value);
Заполняет контейнер в интервале [first, last) значениями value

fill n template <class Outputlterator, class Size, class T>
void fill_n(OutputIterator first, Size n, const T& value);

Заполняет n элементов контейнера, начиная с first, значениями
value

generate template <class Forwardlterator, class Generator>
void generate(Forward!terator first, Forwardlterator last,

Generator gen);
Заполняет контейнер в интервале [first, last) значениями, генери-
руемыми указанной функцией gen. Это функция пользователя без
аргументов, возвращающая значение типа, соответствующего эле-
ментам контейнера

generate_n template <class Outputlterator, class Size, class Generator>
void generate_n(Output!terator first, Size n, Generator gen);

Заполняет n элементов контейнера, начиная с first, значениями,
генерируемыми указанной функцией gen. Это функция пользова-
теля без аргументов, возвращающая значение типа, соответствую-
щего элементам контейнера

5.7.3 Алгоритмы поиска в несортированных последовательностях

Алгоритм Синтаксис / Описание

adjacent_find template <class Forwardlterator> Forwardlterator
Forwardlterator adjacent_find(Forward!terator first,

Forwardlterator last);

template <class Forwardlterator, class BinaryPredicate>
Forwardlterator adjacent_find(Forward!terator first,

Forwardlterator last, BinaryPredicate pred);
Возвращает итератор, указывающий на первый из двух последова-
тельно расположенных элементов, удовлетворяющих заданному
критерию. В первом варианте критерий — равенство элементов.
Во втором варианте критерий определяется заданной функцией
pred. Поиск ведется в интервале [first, last). Если пара элементов,
удовлетворяющая критерию, не найдена, возвращается last

count template<class Inputlterator, class T>
typename iterator_traits<lnputlterator>::difference_type

count(Inputlterator first, Inputlterator last, const T& value);

template <class Inputlterator, class T, class Size>
void count(lnputlterator first, Inputlterator last,

const T& value, Size& n);
Подсчитывает, сколько раз в интервале [first, last) встречается
значение value. Первый вариант возвращает подсчитанное зна-
чение. Второй вариант добавляет подсчитанное значение к n

Обзор стандартной библиотеки шаблонов STL 511

Алгоритм Синтаксис / Описание

count if template<class Inputlterator, class Predicate>
typename iterator_traits<lnputlterator>::difference_type

count_if(lnputlterator first, Inputlterator last,
Predicate pred);

template <class Inputlterator, class Predicate, class Size>
void count_if(Inputlterator first, Inputlterator last,

Predicate pred, Size& n);
Подсчитывает, сколько элементов в интервале [first, last) удов-
летворяют критерию, заданному указанной функцией pred.
Первый вариант возвращает подсчитанное значение. Второй ва-
риант добавляет подсчитанное значение к n

find template <class Inputlterator, class T> Inputlterator
Inputlterator find(lnputlterator first, Inputlterator last,

const T& value);
Возвращает итератор, указывающий на первый элемент в ин-
тервале [first, last), значение которого равно value. Если эле-
мент не найден, возвращает last

find end template <class Forwardlteratorl, class Forwardlterator2>
Forwardlteratorl find_end(

Forwardlteratorl firstl, Forwardlteratorl last I,
Forwardlterator2 first2, Forwardlterator2 Iast2);

template <class Forward Iteratorl, class Forwardlterator2,
class BinaryPredicate>

Forwardlteratorl find_end(
Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 Iast2,
BinaryPredicate pred);

Ищет последнее вхождение какого-то из элементов последовате-
льности [first2, Iast2) в последовательность [firstl, lastl). Воз-
вращает итератор, указывающий на найденное вхождения, или
lastl, если элемент не найден. В первом варианте сравниваются
значения элементов последовательностей [first2, Iast2) и [firstl,
lastl). Во втором варианте соответствие элементов последователь-
ностей определяется указанной функцией pred

find if template <class Inputlterator, class Predicate>
Inputlterator find_if(lnputlterator first, Inputlterator last,

Predicate pred);
Возвращает итератор, указывающий на первый элемент в ин-
тервале [first, last), значение которого соответствует критерию,
заданному функцией pred. Если такой элемент не найден, воз-
вращает last

512 Глава 5

Алгоритм Синтаксис / Описание

find first of template <class Forwardlteratorl, class Forwardlterator2>
Forwardlteratorl find_first_of(

Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 Iast2);

template <class Forward Iteratorl, class Forwardlterator2,
class BinaryPredicate>

Forwardlteratorl find_first_of(
Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 Iast2,
BinaryPredicate pred);

Ищет первое вхождение какого-то из элементов последовательно-
сти [first2, Iast2) в последовательность [firstl, lastl). Возвращает
итератор, указывающий на найденное вхождения, или lastl,
если элемент не найден. В первом варианте сравниваются значе-
ния элементов последовательностей [first2, Iast2) и [firstl, lastl).
Во втором варианте соответствие элементов последовательностей
определяется указанной функцией ргей

search template <class Forwardlteratorl, class Forwardlterator2>
Forwardlteratorl search(

Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 Iast2);

template <class Forwardlteratorl, class Forwardlterator2,
class BinaryPredicate>

Forwardlteratorl search (
Forwardlteratorl firstl, Forwardlteratorl lastl,
Forwardlterator2 first2, Forwardlterator2 Iast2,
BinaryPredicate binary_pred);

Ищет вхождение подпоследовательности [first2, Iast2) в после-
довательность [firstl, lastl). Возвращает итератор, указываю-
щий на первый элемент найденного вхождения, или lastl, если
подпоследовательность не найдена. В первом варианте сравнива-
ются значения элементов последовательностей [first2, Iast2)
и [firstl, lastl). Во втором варианте соответствие элементов по-
следовательностей определяется указанной функцией pred

search n template <class Forwardlterator, class Size, class T>
Forwardlterator search_n (Forwardlterator first,

Forwardlterator last, Size count, const T& value);

template <class Forwardlterator, class Size, class T,
class BinaryPredicate>

Forwardlterator search_n (Forwardlterator first,
Forwardlterator last, Size count, const T& value,
BinaryPredicate pred);

Ищет в последовательности [first, last) подпоследовательность,
состоящую из count элементов с значениями, равными value
(первый вариант) или со значениями, удовлетворяющими кри-
терию, заданному функцией pred и параметром value (второй
вариант). Возвращает итератор, указывающий на первый эле-
мент найденной подпоследовательности, или lastl, если подпос-
ледовательность не найдена

Обзор стандартной библиотеки шаблонов STL 513

5.7.4 Алгоритмы бинарного поиска в сортированных
последовательностях

Алгоритм Синтаксис / Описание

binary _search template <class Forwardlterator, class T>
bool binary_search(ForwardIterator first,

Forwardlterator last, const T& value);

template <class Forwardlterator, class T, class Compare>
bool binary_search(Forward!terator first, Forwardlterator last,

const T& value, Compare comp);
Возвращает true, если в интервале [first, last) найден элемент,
равный value (первый вариант) или со значением, удовлетворя-
ющим критерию, заданному функцией-объектом comp и пара-
метром value (второй вариант)

equal_range template <class Forwardlterator, class T>
pair<Forward!terator, Forwardlterator>

equal_range(Forward!terator first, Forwardlterator last,
const T& value);

template <class Forwardlterator, class T, class Compare>
pair<Forward!terator, Forwardlterator>

equal_range(Forward!terator first, Forwardlterator last,
const T& value, Compare comp);

Возвращает пару типа pair итераторов из диапазона [first, last),
первый из которых указывает на первый элемент, не меньший
чем value, а второй — на первый элемент, больший чем value.
Иначе говоря, это диапазон, в который можно вставить новый
элемент со значением value, не нарушая упорядоченности по-
следовательности. В первом варианте при сравнении элемента
и значения value используется операция <. Во втором варианте
для сравнения используется критерий, заданный указанной
функцией comp

lower bound template <class Forwardlterator, class T>
Forwardlterator lower_bound(Forward!terator first,

Forwardlterator last, const T& value);

template <class Forwardlterator, class T, class Compare>
Forwardlterator lower_bound(Forward!terator first,

Forwardlterator last, const T& value,
Compare comp);

Возвращает итератор из диапазона [first, last), который указы-
вает на первый элемент, не меньший чем value. Это первый из
итераторов, возвращаемых алгоритмом equal_range. В первом
варианте при сравнении элемента и значения value использует-
ся операция <. Во втором варианте для сравнения используется
критерий, заданный указанной функцией comp

514 Глава 5

Алгоритм Синтаксис / Описание

upper_boimd template <class Forwardlterator, class T>
Forwardlterator upper_bound(Forward!terator first,

Forwardlterator last, const T& value);

template <class Forwardlterator, class T, class Compare>
Forwardlterator upper_bound(ForwardIterator first,

Forwardlterator last, const T& value,
Compare comp);

Возвращает итератор из диапазона [first, last), который указы-
вает на первый элемент, больший чем value. Это второй из ите-
раторов, возвращаемых алгоритмом equal_range. В первом ва-
рианте при сравнении элемента и значения value используется
операция <. Во втором варианте для сравнения используется
критерий, заданный указанной функцией comp

Комментарий
Все описанные функции имеют по два перегруженных варианта. В первом для

сравнения используется операция <, причем предполагается, что с помощью этой
же операции упорядочены элементы контейнера. Во втором перегруженном вари-
анте каждой функции для сравнения используется функция-объект (см. разд. 5.8)
comp, являющаяся бинарным предикатом. Первым ее параметром является эле-
мент последовательности, а вторым — значение value. Предполагается, что после-
довательность в контейнере упорядочена с помощью той же функции сотр.

Алгоритм lower_bound возвращает первый из пары итераторов, возвращае-
мых алгоритмом equal_range. А алгоритм upper_bound возвращает второй из
пары итераторов, возвращаемых алгоритмом equal_range. Эти алгоритмы могут
использоваться для определения диапазона, в который можно вставить новый эле-
мент со значением value, не нарушая упорядоченности последовательности.

5.7.5 Алгоритмы сравнения

Алгоритм Синтаксис / Описание

equal template <class Inputlteratorl, class Inputlterator2>
boot equal(lnputlteratorl firstl, Inputlteratorl last 1,

Inputlterator2 first2);

template <class Inputlteratorl, class Inputlterator2,
class BinaryPredicate>

bool equal(lnputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, BinaryPredicate binary_pred);

Возвращает true, если все элементы в интервале [firstl, lastl)
одной последовательности совпадают с соответствующими эле-
ментами другой последовательности, начинающейся с итера-
тора first2. Предполагается, что во второй последовательно-
сти, начинающейся с first2, по крайней мере столько элемен-
тов, сколько в интервале [firstl, lastl). Первый вариант алго-
ритма использует при сравнении операцию ==. Второй вари-
ант сравнивает элементы с помощью указанной функции Ы-
nary_pred

Обзор стандартной библиотеки шаблонов STL 515

Алгоритм Синтаксис / Описание

lexicographical
_compare

template <class Inputlteratorl, class Inputlterator2>
bool lexicographical_comparc(

Inputlteratorl first, Inputlterator2 lastl,
Inputlterator2 first2, Inputlterator Iast2);

template <class Inputlteratorl, class Inputlterator2,
class Compare>

bool lexicographical_compare(
Inputlteratorl first, Input Iterator 2 lastl,
Inputlterator2 first2, Inputlterator Iast2,
Compare comp);

Возвращает true, если последовательность [firstl, lastl) лек-
сикографически меньше или равна другой последовательности
[first2, last2). Каждый элемент первой последовательности
сравнивается с соответствующим элементом второй последова-
тельности. Функция возвращает true, как только обнаружи-
вается пара элементов, в которой элемент первой последовате-
льности меньше, чем во второй, или если все элементы пер-
вой последовательности совпали с соответствующими элемен-
тами второй последовательности, но вторая последователь-
ность длиннее. Возвращает false, как только обнаруживается
пара элементов, в которой элемент второй последовательности
меньше, чем в первой. В первом варианте алгоритма сравне-
ние осуществляется операцией <. Во втором критерий сравне-
ния определяется указанной функцией comp

mismatch template <class Inputlteratorl, class Inputlterator2>
pair<lnputlteratorl,lnputlterator2> mismatch^

Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2);

template <class Inputlteratorl, class Inputlterator2,
class BinaryPredicate>

pair<lnputlteratorl, Inputiterator2> mismatch^
Inputlterator firstl, Inputlteratorl lastl,
Inputlterator2 first2,
BinaryPredicate binary_pred);

Сравнивает элементы последовательность [firstl, lastl) с соот-
ветствующими элементами последовательности, начало кото-
рой задано итератором first2. Предполагается, что вторая по-
следовательность содержит по крайней мере столько элемен-
тов, сколько имеется в первой. Функция возвращает пару ите-
раторов, указывающих на первые несовпадающие элементы
последовательностей. Если последовательности идентичны
в пределах числа элементов первой последовательности, то
возвращается итератор lastl и соответствующий ему итератор
второй последовательности. Первый вариант алгоритма испо-
льзует при сравнении операцию эквивалентности ==. Второй
вариант сравнивает элементы с помощью указанной функции
binary_pred

516 Глава 5

5.7.6 Алгоритмы копирования

Алгоритм Синтаксис / Описание

сору template <class Inputlterator, class Outputlterator>
Outputlterator copy(lnputlterator first, Inputlterator last,

Outputlterator result);
Копирует элементы в интервале [firstl, lastl) в последователь-
ность, начинающуюся с итератора result. Этот итератор может от-
носиться к другому контейнеру или к тому же контейнеру. В пер-
вом случае осуществляется копирование элементов одного контей-
нера в другой. Во втором часть элементов контейнера копируется
в другое место того же контейнера. В этом случае полагается, что
итератор result не лежит в интервале [firstl, lastl). Но он может
указывать на позицию, предшествующую first, и в этом случае ко-
пия может перекрывать часть интервала [firstl, lastl). Ничего
страшного в этом случае не произойдет, поскольку копирование на-
чинается с первого элемента последовательности

сору_
backward

template <class Bidirectionallteratorl,
class Bidirectionallterator2>

Bidirectionallterator2 copy_backward(BidirectionalIteratorl first,
Bidirectionallteratorl last, Bidirectionallterator2 result);

Копирует элементы в интервале [firstl, lastl) в последователь-
ность, заканчивающуюся итератором result. Копирование начина-
ется с конца, т.е. с элемента, указанного итератором last - 1. Ите-
ратор result может относиться к другому контейнеру или к тому
же контейнеру. В первом случае осуществляется копирование эле-
ментов одного контейнера в другой. Во втором часть элементов
контейнера копируется в другое место того же контейнера. В этом
случае полагается, что итератор result не лежит в интервале
[firstl, lastl). Но он может указывать на позицию, превышающую
last, и в этом случае копия может перекрывать часть интервала
[firstl, lastl). Ничего страшного в этом случае не произойдет, по-
скольку копирование начинается с последнего элемента последова-
тельности

5.7.7 Алгоритмы преобразования последовательностей

Алгоритм Синтаксис / Описание

partition template <class Bidirectionallterator, class Predicate>
Bidirectionallterator partition (Bidirectionallterator first,

Bidirectionallterator last, Predicate pred);
В интервале [first, last) алгоритм размещает все элементы, удов-
летворяющие критерию, заданному функцией pred, перед элемен-
тами, не удовлетворяющими этому критерию. Возвращает итера-
тор, указывающий на первый элемент второй группы, т.е. группы
элементов, не удовлетворяющих критерию pred. Алгоритм не га-
рантирует сохранение относительного расположения элементов
каждой группы. При необходимость сохранять последовательность
элементов надо использовать алгоритм stable_partition

Обзор стандартной библиотеки шаблонов STL 517

Алгоритм Синтаксис / Описание

random
shuffle "

template <class RandomAccessIterator>
void random_shuffle(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator,
class RandomNumberGeiierator>

void random_shuffle (RandomAccessIterator first,
RandomAccessIterator last,
RandomNumberGenerator& rand);

Перетасовывает элементы в интервале [first, last), используя для
выбора позиций элементов равномерно распределенные целые слу-
чайные числа. Второй вариант использует функцию-объект генера-
тора случайных чисел, указанную аргументом rand

replace template <class Forwardlterator, class T>
void replace (Forwardlterator first, Forwardlterator last,

const T& old_value, const T& new_value);

В интервале [first, last) замещает элементы, имеющие значение
old value, элементами со значением new value

replace_
copy

template <class Inputlterator, class Outputlterator, class T>
Outputlterator replace_copy(lnputlterator first, Inputlterator last,

Outputlterator result,
const T& old_value, const T& new_value);

Копирует элементы в интервале [first, last) в последовательность,
начинающуюся с result, присваивая при этом значение new_value
копиям элементов, имеющих в исходной последовательности значе-
ние old_value. Возвращает итератор result-f(last-first), т.е. указы-
вающий на позицию, следующую за последней копией

гер!асе_
copy_if

template <class Inputlterator, class Outputlterator, class Predicate,
class T>

Outputlterator replace_copy_if(lnputlterator first, Inputlterator last,
Outputlterator result, Predicate pred,
const T& new_value);

Копирует элементы в интервале [first, last) в последовательность,
начинающуюся с result, присваивая при этом значение new_value
копиям элементов, удовлетворяющих критерию pred. Возвращает
итератор result-l-(last-first), т.е. указывающий на позицию, следу-
ющую за последней копией

replace_if template <class Forwardlterator, class Predicate, class T>
void replace_if(Forward!terator first, Forwardlterator last,

Predicate pred const T& new_value);

Замещает в интервале [first, last) значения элементов, удовлетво-
ряющих критерию pred, значением new_value

reverse template <class Bidirectionallterator>
void reverse(Bidirectional!terator first, Bidirectionallterator last);

Изменяет последовательность элементов в интервале [first, last) на
обратную

518 Глава 5

Алгоритм Синтаксис / Описание

reverse,
сору

template <class Bidirectionallterator, class Outputlterator>
Outputlterator reverse_copy (Bidirectionallterator first,

Bidirectionallterator last, Outputlterator result);

Копирует элементы в интервале [first, last) в последовательность,
начинающуюся с result, изменяя при этом последовательность эле-
ментов на обратную

rotate template <class Forwardlterator>
void rotate (Forwardlterator first, Forwardlterator middle,

Forwardlterator last);

Циклически сдвигает последовательность [first, last) на число по-
зиций middle - first. В итоге обменяются местами элементы после-
довательности, расположенные в интервале [first, middle), с эле-
ментами в интервале [middle, last). Например, если исходная по-
следовательность {1, 2, 3, 4, 5} и middle = first + 2 (указывает на
элемент 3), то результирующая последовательность: {3, 4, 5, 1, 2}.
Предполагается, что middle указывает на внутреннюю точку интер-
вала [first, last)

rotate_
copy

template <class Forwardlterator, class Outputlterator>
Outputlterator rotate_copy (Forwardlterator first,

Forwardlterator middle, Forwardlterator last,
Outputlterator result);

Копирует в последовательность, начинающуюся с result, сначала
элементы в интервале [middle, last), а затем элементы в интервале
[first, middle). Это эквивалентно циклическому сдвигу копии после-
довательности [first, last) на middle - first позиций. Например, если
исходная последовательность {1, 2, 3, 4, 5} и middle = first + 2 (ука-
зывает на элемент 3), то копия: {3, 4, 5, 1, 2}. Предполагается, что
middle указывает на внутреннюю точку интервала [first, last)

stable_
partition

template <class Bidirectionallterator, class Predicate>
Bidirectionallterator stable_partition(Bidirectional!terator first,

Bidirectionallterator last, Predicate pred);

В интервале [first, last) размещает все элементы, удовлетворяющие
критерию, заданному функцией pred, перед элементами, не удов-
летворяющими этому критерию. Возвращает итератор, указываю-
щий на первый элемент второй группы, т.е. группы элементов, не
удовлетворяющих критерию pred. Алгоритм сохраняет относитель-
ное расположение элементов внутри каждой группы, в отличие от
более быстрого алгоритма partition

swap template <class T>
void swap (T& a, T& b);

Обменивает друг с другом значения элементов а и b

swap_
ranges

template <class Forwardlteratorl, class Forwardlterator2>
Forwardlterator2 swap_ranges (Forwardlteratorl firstl,

Forwardlteratorl lastl, Forwardlterator2 first2);
Обменивает друг с другом значения соответствующих элементов
последовательности [firstl, lastl) и последовательности, начинаю-
щейся с first2

Обзор стандартной библиотеки шаблонов STL 519

Алгоритм Синтаксис / Описание

transform template <class Inputlterator, class Outputlterator,
class UnaryOperation>

Outputlterator transform (Inputlterator first, Inputlterator last,
Outputlterator result, UnaryOperation op);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class BinaryOperation>

Outputlterator transform (
Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Outputlterator result,
BinaryOperation binary_op);

Первый вариант алгоритма применяет ко всем элементам в интер-
вале [first, last) унарную операцию ор (например, вычисляющую
квадрат значения, или умножающую значение на константу) и по-
мещает результирующее значение каждого элемента в выходную
последовательность, начинающуюся с result. Если result совпадает
со входным итератором, то производится замена элементов исход-
ной последовательности.
Второй вариант алгоритма применяет ко всем элементам в интерва-
ле [firstl, lastl) и соответствующим элементам последовательно-
сти, начинающейся с first2 бинарную операцию binary_op (напри-
мер, складывает или перемножает значения элементов) и помещает
результирующее значение каждого элемента в выходную последо-
вательность, начинающуюся с result. Если result совпадает с ите-
ратором первой или второй последовательности, то производится
замена элементов соответствующей последовательности

5.7.8 Алгоритмы сканирования

Алгоритм Синтаксис / Описание

accumulate template <class Inputlterator, class T>
Т accumulate (Inputlterator first, Inputlterator last, Т init);

template <class Inputlterator, class T, class BinaryOperation>
Т accumulate (Inputlterator first, Inputlterator last, Т init,

BinaryOperation binary_op);
Первый вариант алгоритма просматривает поочередно каждый эле-
мент в интервале [first, last) и возвращает начальное значение init
плюс сумму значений элементов. Так что если задать init = 0, то
результат равен сумме значений всех элементов. Второй вариант
алгоритма применяет к каждому элементу и текущему значению
init бинарную операцию Ыпагу_ор. Например, если задать init = 1
и применить операцию умножения multiplies, то результат равен
произведению значений всех элементов

for each template <class Inputlterator, class Function>
void for_each(lnputlterator first, Inputlterator last, Function f);

В интервале [first, last) алгоритм поочередно применяет функцию
f к каждому элементу. Поскольку итераторы последовательности
не допускают изменение значений элементов, то функция может
только как-то обрабатывать значения аргументов: накапливать их
сумму, сумму квадратов, распечатывать значения и т.п.

520 Глава 5

Комментарий
Для использования алгоритма accumulate в модуль надо включить директиву:
#include <numeric>

Пример использования вы найдете в разд. 5.8.

5.7.9 Алгоритмы удаления элементов

Алгоритм Синтаксис / Описание

remove template <class Forwardlterator, class T>
Forwardlterator remove(Forward!terator first,

Forwardlterator last, const T& value);

Удаляет в интервале [first, last) элементы, значения которых
равны value. Последующие элементы перемещаются, заполняя
позиции удаленных. Но размер контейнера не изменяется. По-
следние позиции остаются пустыми. Алгоритм возвращает ите-
ратор, указывающий на позицию, следующую за последним
оставшимся элементом. Это можно использовать, если требуется
устранить пустые позиции следующим образом: container.era-
se(remove(first,last,value),container.end());

remove_copy template <class Inputlterator, class Outputlterator, class T>
Outputlterator remove_copy(lnputlterator first,

Inputlterator last, Outputlterator result, const T& value);
Копирует в последовательность result все элементы в интервале
[first, last), кроме тех, значения которых равны value. Возвра-
щает итератор, указывающий конец результирующей последова-
тельности

remove_
copy_if

template <class Inputlterator, class Outputlterator,
class Predicate>

Outputlterator remove_copy_if(lnputlterator first,
Inputlterator last, Outputlterator result, Predicate pred);

Копирует в последовательность result все элементы в интервале
[first, last), кроме тех, для которых выполняется критерий pred.
Возвращает итератор, указывающий конец результирующей по-
следовательности

remove if template <class Forwardlterator, class Predicate>
Forwardlterator remove_if(Forward!terator first,

Forwardlterator last, Predicate pred);
Удаляет в интервале [first, last) элементы, значения которых
удовлетворяют критерию pred. Последующие элементы переме-
щаются, заполняя позиции удаленных. Но размер контейнера не
изменяется. Последние позиции остаются пустыми. Алгоритм
возвращает итератор, указывающий на позицию, следующую за
последним оставшимся элементом. Это можно использовать,
если требуется устранить пустые позиции следующим образом:
container. erase(remove_if (first, last, pred), container. end());

Обзор стандартной библиотеки шаблонов STL 521

Алгоритм Синтаксис / Описание

unique template <class Forwardlterator>
Forwardlterator unique(ForwardIterator first,

Forwardlterator last);

template <class Forwardlterator, class BinaryPredicate>
Forwardlterator unique(Forward!terator first,

Forwardlterator last, BinaryPredicate binary_pred);
Просматривает в интервале [first, last) все элементы, и если
встречаются два расположенных подряд элемента со значения-
ми, равными (в первом варианте) или удовлетворяющими крите-
рию binary_pred (во втором варианте), то второй элемент удаля-
ется. Таким образом, из группы расположенных подряд эквива-
лентных элементов остается только первый. Алгоритм возвраща-
ет итератор, указывающий на позицию, следующую за послед-
ним оставшимся элементом

unique_copy template <class Inputlterator, class Outputlterator>
Outputlterator unique_copy(lnputlterator first,

Inputlterator last, Outputlterator result);

template <class Inputlterator, class Outputlterator,
class BinaryPredicate>

Outputlterator unique_copy(lnputlterator first,
Inputlterator last, Outputlterator result,
BinaryPredicate binary_pred);

Просматривает в интервале [first, last) все элементы и копирует их
в выходную последовательность result. Если встречается группа
расположенных подряд элементов со значениями, равными (в пер- ,
вом варианте) или удовлетворяющими критерию binary_pred (во
втором варианте), то копируется только первый элемент. Алгоритм
возвращает итератор, указывающий на позицию, следующую за по-
следним элементом выходной последовательности

5.7.10 Алгоритмы сортировки

Алгоритм Синтаксис / Описание

inplace_
merge

template <class Bidirectionallterator>
void inplace_merge(BidirectionalIterator first,

Bidirectionallterator middle, •
Bidirectionallterator last);

template <class Bidirectionallterator, class Compare>
void inplace_merge(BidirectionalIterator first,

Bidirectionallterator middle,
Bidirectionallterator last, Compare comp);

Объединяет две сортированные последовательности [first, middle)
и [middle, last) и помещает результат в [first, last). Если в первой
и второй последовательностях есть одинаковые элементы, то в резу-
льтирующей последовательности элементы первой последовательно-
сти будут предшествовать соответствующим элементам второй по-
следовательности. В первом варианте алгоритма при объединении
используется операция <, а во втором — функция сравнения comp

522 Глава 5

Алгоритм Синтаксис / Описание

merge template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>

Outputlterator merge(lnputlterator firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator Iast2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator merge(lnputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first 2, Inputlterator Iast2,
Outputlterator result, Compare comp);

Объединяет две сортированные последовательности [firstl, lastl)
и [first2, Iast2) и помещает результат в последовательность, на-
чинающуюся с result. Если в первой и второй последовательно-
стях есть одинаковые элементы, то в результирующей последова-
тельности элементы первой последовательности будут предшест-
вовать соответствующим элементам второй последовательности.
В первом варианте алгоритма при объединении используется опе-
рация <, а во втором — функция сравнения comp

nth element template <class RandomAccessIterator>
void nth_element(RandomAccessIterator first,

RandomAccessIterator nth, RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void nth_element (RandomAccessIterator first,

RandomAccessIterator nth, RandomAccessIterator last,
Compare comp);

Разделяет все элементы в интервале [first, last) на две группы:
сначала располагаются элементы, значения которых меньше
того, на который указывает nth, затем располагается этот гра-
ничный элемент, а затем располагаются элементы, значения ко-
торых больше того, на который указывает nth. Внутри каждой из
групп элементы не упорядочиваются. В первом варианте алгорит-
ма при сортировке используется операция >, а во втором — фун-
кция сравнения comp

partial_sort template <class RandomAccessIterator>
void parftal_sort(RandomAccess!terator first,

RandomAccessIterator middle,
RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void partial_sort(RandomAccess!terator first,

RandomAccessIterator middle,
RandomAccessIterator last,
Compare comp) ;

Проводит частичную сортировку: только middle - first элементов
из всех элементов в интервале [first, last). В итоге первые [mid-
dle, last) элементов оказываются сортированными так, как если
бы сортировалась вся последовательность, а остальные элементы
остаются несортированными. Если задать middle = last, будет от-
сортирована вся последовательность. В первом варианте алгорит-
ма при сравнении используется операция <, а во втором — функ-
ция сравнения comp .

Обзор стандартной библиотеки шаблонов STL 523

Алгоритм Синтаксис / Описание

partial_
sort_copy

template <class Inputlterator, class RandomAccessIterator>
void partial_sort_copy (Inputlterator first, Inputlterator last,

RandomAccessIterator result_first,
RandomAccessIterator result_last);

template <class Inputlterator, class RandomAccessIterator,
class Compare>

void partial_sort_copy (Inputlterator first, Inputlterator last,
RandomAccessIterator result_first,
RandomAccessIterator result_last,
Compare comp);

Проводит частичную сортировку, эквивалентную следующей про-
цедуре: элементы из интервала [first, last) помещаются в буфер,
там сортируются и затем столько первых элементов, сколько мо-
жет поместиться в интервале [result_first, result_last), помеща-
ются в выходную последовательность, начинающуюся с ге-
sult_first. В действительности, конечно, все делается не так, но
итог тот же: в выходной последовательности оказываются п пер-
вых элементов сортированной исходной последовательности, где
n = min{ last - first, result_last - result_first}. В первом вариан-
те алгоритма при сравнении используется операция <, а во вто-
ром — функция сравнения comp

sort template <class RandomAccessIterator>
void sort (RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort (RandomAccessIterator first,

RandomAccessIterator last,
Compare comp);

Проводит сортировку элементов из интервала [first, last). В первом
варианте алгоритма при сортировке используется операция < и по-
следовательность упорядочивается в порядке увеличения значений
элементов, а во втором сортировка проводится с помощью функ-
ции сравнения сотр. При сортировке не гарантируется сохранение
последовательности элементов с равными значениями. Эффектив-
ность может оказаться ниже, чем в алгоритме stable_sort

stable sort template <class RandomAccessIterator>
void stable_sort(RandomAccess!terator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void stable_sort (RandomAccessIterator first,

RandomAccessIterator last, Compare comp);
Проводит сортировку элементов из интервала [first, last). В пер-
вом варианте алгоритма при сортировке используется операция
<, а во втором — функция сравнения сотр. Гарантируется сохра-
нение последовательности элементов с равными значениями. Эф-
фективность при достаточном объеме памяти может оказаться
выше, чем в алгоритме sort

524 Глава 5

5.7.11 Операции с множествами

Алгоритм Синтаксис / Описание

includes template <class Inputlteratorl, class Inputlterator2>
bool includes (Inputlteratorl firstl, Inputlteratorl lastl,

Inputlterator2 first2, Inputlterator2 Iast2);

template <class Inputlteratorl, class Inputlterator2, class Compare>
bool includes (Inputlteratorl firstl, Inputlteratorl lastl,

Inputlterator2 first2, Inputlterator2 Iast2, Compare comp);
Возвращает true, если каждый элемент сортированного множества
[first2, Iast2) содержится в сортированном множестве [firstl,
lastl). В первом варианте алгоритма при предварительной сорти-
ровке и сравнении множеств используется операция <, а во вто-
ром — функция сравнения comp

set_
difference

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>

Outputlterator set_difference(lnputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Inputlterator2 Iast2, Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_difference (Inputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Inputlterator2 Iast2, Outputlterator result, Compare comp);

Формирует в последовательности, начинающейся с result, сортиро-
ванную разность двух сортированных множеств [firstl, lastl)
и [first2, Iast2). Она содержит элементы, входящие в [firstl,
lastl), но не входящие в [first2, Iast2). Алгоритм возвращает ите-
ратор, указывающий конец сформированной последовательности.
В первом варианте алгоритма при предварительной сортировке
и сравнении множеств используется операция <, а во втором -
функция сравнения comp

set_inter-
section

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>

Outputlterator set_intersection (Inputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Inputlterator Iast2, Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_intersection (Inputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Input] terator2 Iast2, Outputlterator result, Compare comp);

Формирует в последовательности, начинающейся с result, сортиро-
ванное пересечение двух сортированных множеств [firstl, lastl)
и [first2, Iast2). Оно содержит элементы, входящие и в [firstl,
lastl), и в [first2, Iast2), причем в результат копируются элементы
первого множества. Алгоритм возвращает итератор, указывающий
конец сформированной последовательности. В первом варианте ал-
горитма при предварительной сортировке и сравнении множеств
используется операция <, а во втором — функция сравнения comp

Обзор стандартной библиотеки шаблонов STL 525

Алгоритм Синтаксис / Описание

set_
symmetric_
difference

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>

Outputlterator set_symmetric_difference (Inputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Inputlterator2 Iast2, Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_symmetric_difference (Inputlteratorl firstl,
Inputlteratorl lastl, Inputlterator2 first2,
Inputlterator2 Iast2, Outputlterator result,
Compare comp);

Формирует в последовательности, начинающейся с result, сортиро-
ванное множество, в которое входят элементы множества [firstl,
lastl), отсутствующие в множестве [first2, Iast2), плюс элементы
множества [first2, Iast2), отсутствующие в [firstl, lastl). Алго-
ритм возвращает итератор, указывающий конец сформированной
последовательности. В первом варианте алгоритма при предварите-
льной сортировке и сравнении множеств используется операция <,
а во втором — функция сравнения comp

set union template <class Inputlteratorl, class Inputlterator2,
class Outputlterator>

Outputlterator set_union (
Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 first2, Inputlterator2 Iast2,
Outputlterator result);

template <class Inputlteratorl, class Inputlterator2,
class Outputlterator, class Compare>

Outputlterator set_union (
Inputlteratorl firstl, Inputlteratorl lastl,
Inputlterator2 t'irst'2, Inputlterator2 Iast2,
Outputlterator result, Compare comp);

Формирует сортированное объединение двух множеств [firstl,
lastl) и [first2, Iast2). Результат заносится в result. В первом ва-
рианте алгоритма при сравнении используется операция <, а во
втором — функция сравнения сотр. Результатом объединения яв-
ляется множество, содержащее все элементы первого, плюс эле-
менты второго, отсутствующие в первом. В этом отличие от объе-
динения двух множеств алгоритмом merge, который добавляет
к элементам первого множества все элементы второго. Отличие от
классического определения объединения множеств состоит в том,
что если какой-то элемент входит в первое множество п раз, а во
второе m раз, то в результат этот элемент войдет max(n, m) раз

526 Глава 5

5.7.12 Операции с кучей (heap)

Алгоритм Синтаксис / Описание

makc_heap template <class RandomAccessIterator>
void make_heap(RandomAccess!terator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void make_heap(RandomAccessIterator first,

RandomAccessIterator last, Compare comp);
Создает кучу из последовательности [first, last), перемещая эле-
мент с максимальным значением на первую позицию. Расположе-
ние остальных элементов неопределенно. В первом варианте алго-
ритма для сравнения элементов используется операция <, а во
втором — функция сравнения comp

pop_heap template <class RandomAccessIterator>
void pop_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void pop_heap(RandomAccess!terator first,

RandomAccessIterator last,
Compare comp);

Выталкивает из кучи [first, last) первый элемент с наибольшим
значением, перемещая его в позицию last - 1 и создавая кучу из
элементов в интервале [first, last - 1). В первом варианте алго-
ритма для сравнения элементов используется операция <, а во
втором — функция сравнения comp

push_heap template <class RandomAccessIterator>
void pusb_heap(RandomAccess!terator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void push_heap(RandomAccessIterator first,

RandomAccessIterator last,
Compare comp);

Добавляет элемент, расположенный в позиции last - 1, в кучу,
сформированную в интервале [first, last - 1), превращая таким
образом всю последовательность [first, last) в кучу. Добавление
элемента в кучу означает, что если он больше первого элемента
кучи, то перемещается в первую позицию, а в противном случае
остается на последней позиции. В первом варианте алгоритма для
сравнения элементов используется операция <, а во втором —
функция сравнения comp

Обзор стандартной библиотеки шаблонов STL 527

Алгоритм Синтаксис / Описание

sort_heap template <class RandomAccessIterator>
void sort_heap(RandomAccessIterator first,

RandomAccessIterator last);

template <class RandomAccessIterator, class Compare>
void sort_heap(RandomAccessIterator first,

RandomAccessIterator last,
Compare comp);

Сортирует кучу [first, last), превращая ее в последовательность,
упорядоченную в порядке убывания элементов. В первом варианте
алгоритма для сравнения элементов используется операция <,
а во втором — функция сравнения comp

Комментарий
Кучей (heap) в данном контексте называется такая организация последователь-

ности, в которой первым расположен элемент с наибольшим значением. Алгоритм
make_heap создает кучу из указанной последовательности. Алгоритм pop_heap вы-
талкивает из кучи первый элемент (с наибольшим значением), перемещая его на по-
следнее место и превращая последовательность остальных элементов (их уже на 1
меньше) опять в кучу. Последовательное применение pop_heap ко все уменьшаю-
щейся куче приводит, в конце концов, к упорядочиванию всей последовательности
в порядке убывания элементов. Алгоритм push_heap включает новый элемент
в кучу. Перед применением этого алгоритма надо добавить новый элемент в после-
довательность, например, функцией-элементом контейнера pop_back. Алгоритм
sort_heap сортирует кучу, превращая ее в последовательность, упорядоченную в по-
рядке убывания элементов.

5.7.13 Алгоритмы определения минимума и максимума

Алгоритм Синтаксис / Описание

max template <class T>
const T& max(const T&, const T&);

template <class T, class Compare>
const T& max(const T&, const T&, Compare);

Возвращает максимальное из двух значений. В первом варианте
алгоритма для сравнения элементов используется операция <,
а во втором — указанная функция сравнения

max element template <class Forwardlterator>
Forwardlterator max_element(ForwardIterator first,

Forwardlterator last);

template <class Forwardlterator, class Compare>
Forwardlterator max_element(ForwardIterator first,

Forwardlterator last, Compare comp);

Возвращает итератор, указывающий на элемент с наибольшим
значением в последовательности [first, last). Если несколько эле-
ментов имеют одинаковое наибольшее значение, возвращается
итератор, указывающий на первый из них. В первом варианте ал-
горитма для сравнения элементов используется операция <, а во
втором — указанная функция сравнения

528 Глава 5

Алгоритм Синтаксис / Описание

mm template <class T>
const T& min(const T&, const T&);

template <class T, class Compare>
const T& min(const T& a, const T&, Compare);

Возвращает минимальное из двух значений. В первом варианте
алгоритма для сравнения элементов используется операция <,
а во втором — указанная функция сравнения

min element template <class Forwardlterator>
Forwardlterator min_element(ForwardIterator first,

Forwardlterator last);

template <class Forwardlterator, class Compare>
Forwardlterator min_element(ForwardIterator first,

Forwardlterator last, Compare comp);
Возвращает итератор, указывающий на элемент с наименьшим
значением в последовательности [first, last). Если несколько эле-
ментов имеют одинаковое наименьшее значение, возвращается
итератор, указывающий на первый из них. В первом варианте
алгоритма для сравнения элементов используется операция <,
а во втором — указанная функция сравнения

5.7.14 Генераторы перестановок

Алгоритм Синтаксис / Описание

next_
permutation

template <class Bidirectionallterator>
bool next_permutation(BidirectionalIterator first,

Bidirectionallterator last);

template <class Bidirectionallterator, class Compare>
bool next_permutation(Bidirectional!terator first,

Bidirectionallterator last, Compare comp);

Пытается сделать следующую (см. комментарий) перестановку
последовательности [first, last). Если следующая перестановка
существует, она осуществляется и алгоритм возвращает true.
Если следующей перестановки нет, делается первая перестанов-
ка и возвращается false. В первом варианте алгоритма для срав-
нения элементов используется операция <, а во втором — ука-
занная функция сравнения

prev_
permutation

template <class Bidirectionallterator>
bool prev_permutation(BidirectionalIterator first,

Bidirectionallterator last);

template <class Bidirectionallterator, class Compare>
bool prev_permutation(BidirectionalIterator first,

Bidirectionallterator last, Compare comp);

Пытается сделать предыдущую (см. комментарий) перестановку
последовательности [first, last). Если предыдущая перестановка
существует, она осуществляется и алгоритм возвращает true.
Если предыдущей перестановки нет, делается последняя переста-
новка и возвращается false. В первом варианте алгоритма для
сравнения элементов используется операция <, а во втором —
указанная функция сравнения

Обзор стандартной библиотеки шаблонов STL 529

Комментарий
Генераторы перестановок предполагают наличие последовательности без дуб-

лей, например, {1 2 3}. Множество всех перестановок упорядочивается в лексико-
графической последовательности, т.е. результат каждой следующей перестановки
больше предыдущей. Для трех элементов это дает следующую последовательность
перестановок: {1 2 3}, {1 3 2}, {2 1 3}, {2 3 1}, {3 1 2}, {3 2 1}. Таким образом, первая
перестановка соответствует упорядочиванию элементов в порядке нарастания, а по-
следняя — упорядочиванию элементов в порядке убывания. Алгоритм next_per-
mutation анализирует текущее расположение элементов и делает следующую пере-
становку. А если следующей перестановки нет (элементы расположены в убываю-
щей последовательности, т.е. соответствуют последней перестановке), то осуществ-
ляется первая перестановка — элементы располагаются в порядке возрастания.
Аналогично работает алгоритм prev_permutation, осуществляя предыдущую пере-
становку или, если предыдущей нет, осуществляя последнюю перестановку — эле-
менты располагаются в порядке убывания.

5.8 Функции-объекты
В разд. 5.7 вы можете увидеть, что многие алгоритмы допускают указание

функций, используемых для сравнения каких-то значений или каких-то вычисле-
ний. В качестве таких функций в STL используются функции-объекты.

Функция-объект — это объект, содержащий операцию operator (). К такой
функции можно получить доступ и через указатель на функцию, и как к объекту
с операцией operator (). Структура функций-объектов разработана так, чтобы обес-
печить высокую эффективность использующих их алгоритмов.

Унарные функции-объекты принимают один аргумент, а бинарные функ-
ции-объекты принимают два аргумента. Базовые классы шаблонов унарных и би-
нарных функций-объектов объявлены следующим образом:

template <class Arg, class Result>
struct unary_funct ion {

typedef Arg argument type;
typedef Result result_type;

};

template <class Argl , class Arg2, class Result>
struct binary_function {

typedef Argl first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;

};

Как видно, шаблоны унарных функций включают объявление двух типов:
argument_typ — тип аргумента, и result_type — тип результата. Шаблоны бинар-
ных функций включают объявление трех типов: first_argument_type и second_ar-
gument_type — типы аргументов, result_type — тип результата.

Ниже приведен список стандартных функций-объектов, включенных в биб-
лиотеку. В их описании х — первый аргумент, у — второй аргумент (для бинарных
функций). Функции объявлены в заголовочном файле <functional>.

Арифметические функции

Функция

plus

minus

Результат

сложение х + у

вычитание х - у

530 Глава 5

Функция

multiplies

divides

modulus

negate

Результат

умножение х * у

деление х / у

остаток целочисленного деления х % У

изменение знака — х

Аргументы во всех функциях имеют одинаковый тип. Тип результата во всех
функциях совпадает с типом аргументов. Так что во все шаблоны требуется переда-
вать всего один тип. Например, объявление функции-объекта multiplies имеет вид:

template<class T>
struct multiplies: binary_functiorKT, T, T> {

Т operator () (const Т&, const T &) const;
};

По такому же принципу строятся объявления и других функций. В качестве при-
мера рассмотрим Применение функции multiplies для вычисления произведения эле-
ментов массива целых чисел с помощью алгоритма accumulate (см. разд. 5.7.8):

#include <numeric>
#include<functional>
using namespace std;

int a[5] = (1, 2, 3, 4, 5};
int mult = accumulate(a, a+5, 1, multiplies<int>());

В результате выполнения алгоритма accumulate переменная mult получит
значение 120.

Функции сравнения

Функция

equal_to

not_equal_to

greater

less

ht greater_equal

less_equal

Результат равен true, если ...

х == у

x ! = y

х > у

х < у

х >= у

х <= у

Аргументы во всех функциях имеют одинаковый тип. Тип результата во всех
функциях bool. Так что во все шаблоны требуется передавать всего один тип — тип
аргументов. Например, объявление функции-объекта greater имеет вид:

template <class T>
struct greater : binary_function<T, T, bool> {

bool operator() (const TS, const T &) const;

По такому же принципу строятся объявления и других функций.
В качестве примера рассмотрим применение функции greater для упорядочи-

вания массива целых чисел в порядке убывания значений элементов с помощью
алгоритма sort (см. разд. 5.7.10). По умолчанию этот алгоритм использует функ-
цию less и упорядочивает последовательность в порядке нарастания значений эле-
ментов. Но следующий код изменяет функцию сравнения и обеспечивает упорядо-
чивание в порядке уменьшения значений элементов:

Обзор стандартной библиотеки шаблонов STL 531

tinclude <numeric>
#include<functional>
using namespace std;

int a[5] = (3, 2, 1, 5, 4 } ;
sort(a, a+5, greater<int> ()) ;

В результате выполнения алгоритма sort с функцией greater элементы в мас-
сиве располагаются следующим образом: {5, 4, 3, 2, 1}.

Логические функции

Функция

logical_and

logical_or

logical_not

Результат

логическое И х && у

логическое ИЛИ х || у

логическое отрицание ! х

Аргументы во всех функциях имеют одинаковый тип. Тип результата во всех
функциях bool. Так что во все шаблоны требуется передавать всего один тип — тип
аргументов. Например, объявление функции-объекта logical_and имеет вид:

template <class T>
struct logical_and : binary_function<T, T, bool> {

bool operator () (const T&, const T &) const;
);

По такому же принципу строятся объявления и других функций. Поскольку
функции производят логические операции над передаваемыми в них аргументами,
то практически всегда в шаблоны функций передается тип bool (иногда int).

Рассмотрим следующий пример:
bool 11 [4] = (true, fa lse, false, t rue) ;
bool 12[4] = {false, false, true, t rue);
t ransform(l l , 11 + 3, 12, 11, logical_and<bool>());

Имеется два массива булевых значений 11 и 12. 6 результате применения алго-
ритма transform (см. разд. 5.7.7) в массив И заносятся значения, соответствую-
щие применению логической операции И к начальным значениям элементов этих
массивов. В данном примере элементы массива 11 получат значения {false, false,
false, true}.

В заключение данного раздела остановимся коротко на создании собственных
функций-объектов. Они строятся по тому же принципу, который вы видели выше
в объявлениях стандартных функций. Один пример создания собственной функ-
ции приведен в разд. 5.4.6.2. Там эта функция была ориентирована только на це-
лые числа и поэтому реализовывалась не в виде шаблона. Теперь рассмотрим похо-
жий пример шаблонной реализации функции.

Пусть мы хотим создать функцию сравнения двух числовых значений, кото-
рая позволяла бы реализовать следующее упорядочивание последовательности:
сначала должны располагаться положительные числа, за ними отрицательные,
а внутри отрицательных и положительных чисел элементы должны располагаться
в порядке нарастания. Для упрощения кода предположим, что элементы не могут
иметь нулевое значение.

Описание такой функции сравнения может иметь вид:
tinclude <math.hpp>

template <class T>
struct mycomp: binary_function<T, T, bool> {
bool operator!) (const T& x, const T& y) const

532 Глава 5

if (Sign (x) == Sign (у)) return (x < у) ;
else return (x >= 0) ;

Рассмотрим это описание. Функция сравнения должна принимать два аргу-
мента, которыми являются значения двух элементов последовательности. Функ-
ция должна возвращать true, если первый элемент надо разместить в последова-
тельности ранее второго, т.е. если он должен считаться меньше второго. Так что
вашу функцию сравнения надо объявить как бинарную с некоторым типом Т для
обоих аргументов и типом bool результата. Тип Т должен передаваться как пара-
метр шаблона, чтобы пользователь мог использовать эту функцию как для целых,
так и для действительных чисел.

Заголовок шаблона
template <class T>

обеспечивает передачу в функцию типа Т, а заголовок структуры
struct mycomp: binary_function<T, T, bool>

определяет, что эта функция-объект (ей дано имя mycomp) является бинарной
с параметрами типа Т и результатом типа bool.

Реализация функции, вероятно, особых пояснений не требует. В ней исполь-
зуется библиотечная функция определения знака Sign, для которой необходимо
подключить к модулю заголовочный файл math.hpp. А далее все просто. Если зна-
ки аргументов совпадают, то возвращается true, если первый аргумент меньше
второго. А если знаки различны, то возвращается true, если первый аргумент по-
ложительный.

Описав в своем модуле подобный шаблон, вы можете, например, выполнить
следующий код:

int а[5] = {3, -10, -2, 5, 4};
double b[5] = (-4.5, 6, 5.1, 0.5, -10};
sort (a, а+5, mycomp<int> ()) ;
sort (b, Ы-5, mycomp<double> ()) ;

В результате его выполнения массивы а и b приобретут вид: а = {3, 4, 5, -10, -2},
b = {0.5, 5.1, 6, -10, -4.5}.

Предметный указатель

Ниже приведены ссылки на те разделы книги, в которых обсуждаются те или
иные понятия. Из списка исключены функции, описания которых приведены в гл.
4, так как в этой главе разделы расположены в алфавитном порядке и требуемые
функции легко найти, не обращаясь к данному предметному указателю. Включе-
ны только те функции, описание которых затерялось где-то внутри текста. Не
включены в список также многие понятия, вынесенные в заголовки разделов, так
как их тоже нетрудно найти в тексте книги.

#
##
#define
#elif
#else
#endif
#error
#if

#ifdef
#ifndef
#include
#line
#pragma
#undef
..

classid
closure

_finally
property
published

_atoi64
_atold
_c_exit
_cexit
_creat
_doserrno
_exception
_exceptionl
_exit
_fdopen
_fileno
_flushall

1.4.5
1.4.5
1.4.2.1, 1.4.2.2
1.4.3
1.4.3
1.4.3
1.4.4
1.4.3
1.4.3
1.4.3
1.4.1
1.4.4
1.4.4
1.4.2.3
1.8.1, 1.8.2,
1.9.13
2.8.3
2.14.7.2
1.12.1
2.14.7.1
2.14.1
3.3.1.1
3.3.1.1
3.6.1
3.6.1
3.5.3
3.1.4.1
3.1.4.4
3.1.4.4
3.6.1
3.5.2
3.5.2
3.5.2

_fsopen
_getdcwd
_getw
_i64toa
_itow
_ltoa
_matherr
_matherrl
_mktemp
_msize
_rmdir
_rtl_chmod
_rtl_close
_rtl_creat
_rtl_open
_sopen
_STLP_DEBUG
_strtold
_sys_errlist
_sys_nerr
_tolower
_toupper
_ui64toa
_ultow
_unlink
_USE_OLD_RW_STL
_waccess
_wcstold
_wrtl_chmod
_wtof
_wtoi
_wtoi64

wtol

3.5.2
3.5.6
3.5.4
3.3.1.1
3.3.1.1
3.3.1.1
3.1.4.4
3.1.4.4
3.5.5
3.7.1
3.5.6
3.5.6
3.5.3
3.5.3
3.5.3
3.5.3
5.2

3.3.1.1
3.1.4.1
3.1.4.1
3.4.1
3.4.1
3.3.1.1
3.3.1.1
3.5.6
5.2

3.5.6
3.3.1.1
3.5.6
3.3.1.1
3.3.1.1
3.3.1.1
3.3.1.1

534 Справочное пособие по C++Builder 6

_wtold

access

accumulate

acos

acosl

adjacent_find

AdjustLineBreaks
alloca

allocator

AllocMem

AnsiChar

AnsiExtractQuotedStr

AnsiQuotedStr

AnsiStrLComp

Ansi StrLIComp

AnsiStrRScan

AnsiStrScan

ArcCos

ArcCosh

Arc Sin

ArcSinh

ArcTan2

ArcTanh

ARRAYSIZE

asctime

asin

asinl

assign

at

atan

atan2

atan21

atanl

atexit

atof

atoi

atol

auto

back

back_insert_iterator
back_inserter
Beep

begin ч

BEGIN_MESSAGE_MAP

3.3.1.1

3.5.6

5.7.8

3.2.3

3.2.3

5.7.3

3.4.2.3

3.7.1

5.3

3.7.1

2.4

3.4.2.3

3.4.2.3

3.4.2.2

3.4.2.2

3.4.2.2

3.4.2.2

3.2.3

3.2.3

3.2.3

3.2.3

3.2.3

3.2.3

2.11.3, 3.7.4

3.3.2

3.2.3

3.2.3

5.4.2

5.4.3

3.2.3

3.2.3

3.2.3

3.2.3

1.12.1, 3.6.1

3.3.1.1

3.3.1.1

3.3.1.1

1.6.2, 1.8.1

5.4.2

5.5.3

5.5.2

3.7.3

5.4.1

1.14.3

binary_function

binary_search

bitset

break

bsearch

cabs

cabsl

capacity

catch

ChangeFileExt

char

char*

chdir

chmod

chsize

cin

class

ClassParent

clear

clearerr

close

Close Window

CompareStr

const

const_cast

const_iterator

const_reference

const_reverse_iterator
continue

copy

copyjbackward
cos

Cosh

coshl

cosl

Cotan

count

count_if

cout

CreateDir

creatnew

creattemp
ctime

CurrToFMTBCD

5.8

5.7.4

5.4.3

1.10.2.4
3.7.4

3.2.2

3.2.2

5.4.3

1.12.5, 1.12.6.1

3.5.5

2.4, 2.5.1

2.5.1

3.5.6

3.5.6

3.5.6

1.9.15

1.7.8, 2.14.8

2.8.3

5.4.2

3.5.4

3.5.3

3.7.5

3.4.2.2

1.7.3, 2.14.2
2.2

5.4.1

5.4.1

5.4.1

1.10.2.4

5.7.6

5.7.6

3.2.3

3.2.3

3.2.3

3.2.3

3.2.3

5.4.6.1, 5.7.3

5.7.3

1.9.15

3.5.6

3.5.3

3.5.3

3.3.2

3.3.3

Предметный указатель 535

CurrToStrF

CycleToRad

date

DateTimeToFileDate

DateTimeToSystem-
Time

DateTimeToTime-
Stamp

DBL_MAX

DBL_MIN

dec

default

DegToRad

delete

DeleteFile

deque

Destroy Window

difference_type

DirectoryExists

DiskFree

DiskSize

distance

divides

DOMAIN

dup

dup2

dynamic_cast

ecvt

EDOM

empty

Enable Window

end

END_MES S AGE_M AP

endl

enum

eof

equal

equal_range

equal_to

ERANGE

erase

errno

Exception

exception

3.3.1.2

3.2.3

3.3.2

3.3.2

3.3.2

3.3.2

3.1.4.4

3.1.4.4

2.10.3.2

2.14.7.1

3.2.3

1.11

3.5.6

5.4.5

3.7.5

5.4.1

3.5.6

3.5.6

3.5.6

5.5.1

5.8

3.1.4.4

3.5.3

3.5.3

2.2, 2.14.6

3.3.1.1

3.1.4.3

5.4.1

3.7.5

5.4.1

1.14.3

1.9.15

2.6

3.5.4

5.7.5

5.7.4

5.8

3.1.4.3

5.4.2

3.1.4.1

1.12.4

1.12.7

EXISTINGARRAY

exit

exp

ExpandFileName

ExpandUNCFileName

expl

explicit

extern

ExtractFileDir

ExtractFileDrive

ExtractFileExt

ExtractFileName

ExtractFilePath

ExtractRelativePath

ExtractShortPathName

FA_...

fclose

fcvt

feof

ferror

f flush

fgetpos

FILE

FileAge

FileClose

FileCreate

FileDateToDateTime

FileExists

FileGetAttr

FileGetDate

filelength

FileOpen

FileRead

FileSearch

FileSeek

FileSetAttr

FileSetDate

FileWrite

fill

fill_n

find

find_end

find_first_of

2.11.3, 3.7.4

1.4.4, 1.12.2,
3.6.1

3.2.2

3.5.5

3.5.5

3.2.2

2.14.5

1.6.2, 1.8.1

3.5.5

3.5.5

3.5.5

3.5.5

3.5.5

3.5.5

3.5.5

3.5.1

2.10.2.1, 3.5.2

3.3.1.1

2.10.2.2, 3.5.4

3.5.4

3.5.2

3.5.4

2.10.2.1, 3.5.2

3.5.6

3.5.3

3.5.3

3.5.6

3.5.6

3.5.6

3.5.6

3.5.6

3.5.3

3.5.4

3.5.6

3.5.4

3.5.6

3.5.6

3.5.4

5.7.2

5.7.2

5.4.6.1, 5.7.3

5.7.3

5.7.3

536 Справочное пособие по C++Builder 6

find_if

flip

FloatToDecimal

FloatToText

FloatToTextFmt

fm...

FMTBCDToCurr

FmtStr

fnmerge

fnsplit
fopen

for_each

ForceDirectories

FormatBuf

FormatCurr

FormatFloat

FPU

fread
freopen

friend

front

front_insert_iterator

fseek

fsetpos

fstat

fstream

ftell

ftime

fwrite

gcvt

generate

generate_n

getcurdir

GetCurrentDir

getcwd

getdate
getdisk

getenv

GetFormatSettings
getftime

GetLongHint

GetMemoryManager

getpass

gets

5.7.3

5.4.3

3.1.3.4, 3.3.1.2

3.1.3.4, 3.3.1.2

3.1.3.5, 3.3.1.2

3.5.1

3.3.3

3.1.3.3, 3.3.1.2

3.5.6

3.5.6
2.10.2.1, 3.5.2

5.7.8

3.5.6

3.1.3.3, 3.3.1.2

3.3.1.2

3.1.3.5, 3.3.1.2

1.9.2, 3.2.6

2.10.2.3, 3.5.4

3.5.2

2.14.2

5.4.2

5.5.3

2.10.2.3, 3.5.4

3.5.4

3.5.6

2.10.3.1

2.10.2.3, 3.5.4

3.5.6

2.10.2.3, 3.5.4

3.3.1.1

5.7.2

5.7.2

3.5.6

3.5.6

3.5.6
3.3.2

3.5.6

3.7.4
3.3.1.2

3.5.6

3.7.4

3.7.1

3.5.4

3.5.4

GetShortHint

GetSystemDirectory

gettime

GetWmdowsDirectory

gmtime

greater

greater_equal

hdrstop

heap

hex

HUGE_VAL

hypot

Hypot

hvDotl.7 г

ifstream

includes

IncMonth

InheritsFrom

inline

inplace_merge

insert

insert_iterator

IntToHex

isalnum

isalpha

isascii

isatty

iscntrl

IsDelimiter

isdigit

isgraph

IsLeapYear

islower

IsPathDelimiter

isprint

ispunct

isspace

istream_iterator
isupper ,

iswalnum

iswalpha

iswascii

iswcntrl

iswdigit

3.7.4

3.5.6

3.3.2

3.5.6

3.3.2

5.8

5.8
1.4.4

1.11, 5.7.12

2.10.3.2

3.3.1.1

3.2.3

3.2.3

3.2.3

1.9.15, 2.10.3.1

5.7.11

3.3.2

2.8.3

1.7.6, 2.14.2

5.7.10

5.4.2

5.5.3

3.3.1.2

3.4.1

3.4.1

3.4.1

3.5.6

3.4.1

3.4.2.3

3.4.1

3.4.1

3.3.2

3.4.1

3.4.2.3

3.4.1

3.4.1

3.4.1

5.5.2
3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

Предметный указатель 537

iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
isxdigit
iterator
itoa
kbhit
key_type
LastDelimiter
LDBL_MAX
LDBL_MIN
less
less_equal
lexicographical_
compare
Wind
LHUGE_VAL
LineStart
list
localtime
lock
locking
logic_error
logical_and
logical_not
logical_or
LoginDialog
LoginDialogEx
lower_bound
IP агат
LParamHi
LParamLo
Isearch
Iseek
make_heap
manifest
map

MatchesMask
max

3.4.1
3.4.1
3.4.1
3.4.1
3.4.1
3.4.1
3.4.1
3.4.1
5.4.1
3.3.1.1
3.5.4
5.4.1
3.4.2.3
3.1.4.4
3.1.4.4
5.8

5.8

5.7.5

3.7.4
3.3.1.1
3.4.2.2
5.4.4
3.3.2
3.5.3
3.5.3
1.12.7
5.8

5.8

5.8

3.7.2
3.7.2
5.4.6.1, 5.7.4
1.14.1
1.14.1
1.14.1
3.7.4
2.10.2.4, 3.5.4
5.7.12
1.5.3
5.4.6.1, 5.4.6.2,
5.4.6.3
3.5.5
3.2.2, 5.7.13

max_element
max_size
memchr
memcmp
memicmp
merge
message
Message
MES S AGE_HANDLER
MessageBeep
min

min_element
MinimizeName
minus
mismatch
mkdir
mktime
modf
modfl
modulus
MSecsToTimeStamp
multimap
multiplies
multiset
namespace
negate
new

next_permutation
not_equal_to
nth_element
NULL
O_...
oct

ofstream
OPEN ARRAY

ostream_iterator
OVERFLOW
package
ParamCount
ParamStr
partial_sort
partial_sort_copy
partition

5.7.13
5.4.1
3.4.2.1
3.4.2.1
3.4.2.1
5.4.4, 5.7.10
1.4.4
1.12.4.1
1.14.3
3.7.3
3.2.2, 5.7.13
5.7.13
3.5.5
5.8

5.7.5
3.5.6
3.3.2
3.2.2
3.2.2
5.8

3.3.2
5.4.6.1, 5.4.6.3
5.8

5.4.6.1, 5.4.6.2
1.8.2
5.8

1.11
5.7.14
5.8

5.7.10
2.8.2
3.5.1
2.10.3.2
1.9.15, 2.10.3.1
1.12.4.2,
2.11.3, 3.7.4
5.5.3
3.1.4.4
1.4.4
3.7.4
3.7.4
5.7.10
5.7.10
5.7.7

538 Справочное пособие по C++Builder 6

реггог
PlaySound
plus
pointer
pop

pop_back
pop_front
pop_heap
precision
prev_permutation
priority_queue
private
ProcessPath
protected
pthread_alloc
public
push
push_back
push_front
push_heap
putch
putenv
puttext
putw
qsort
queue
QuotedStr
RadToCycle
RadToDeg
random_shuffle
rbegin
read
reference
register
reinterpret_cast
remove

remove_copy
rem ove_copy_if
remove_if
RemoveDir
rename
RenameFile
rend

3.5.4
3.7.3
5.8

5.4.1
5.4.5
5.4.2
5.4.4
5.7.12
2.10.3.2
5.7.14
5.4.5
2.12.3, 2.14.1
3.5.5
2.14.1
5.3

2.12.3, 2.14.1
5.4.5
5.4.2
5.4.4
5.7.12
3.5.4
3.7.4
3.5.4
3.5.4
3.7.4
5.4.5
3.4.2.3
3.2.3
3.2.3
5.7.7
5.4.2
2.14.7.1, 3.5.4
5.4.1
1.6.2
2.2

3.5.6, 5.4.4,
5.7.9
5.7.9
5.7.9
5.7.9
3.5.6
3.5.6
3.5.6
5.4.2

replace
replace_copy
replace_copy_if
replace_if
reserve
resetiosflags
resize
resource
Result
ResultHi
ResultLo
return
reverse
reverse_copy
reverse_iterator
rotate
rotate_copy
runtime_error
S_...
search
search_n
searchpath
Sender
Set
set

set_difference
set_intersection
set_symmetric_difference
set_terminate
set_unexpected
set_union
setbase
setbuf
SetCurrentDir
setdate
setdisk
setfill
setftime
setiosflags
setmem
SetMemory Manager
setmode
setprecision
set time

5.7.7
5.7.7
5.7.7
5.7.7
5.4.3
2.10.3.3
5.4.2
1.4.4
1.14.1
1.14.1
1.14.1
1.7.1, 1.10.2.4
5.7.7
5.7.7
5.4.1
5.7.7
5.7.7
1.12.7
3.5.1
5.7.3
5.7.3
3.5.6
2.8.3
2.7

5.4.6.1, 5.4.6.2
5.7.11
5.7.11
5.7.11
1.12.7
1.12.7
5.7.11
2.10.3.2
3.5.2
3.5.6
3.3.2
3.5.6
2.10.3.2
3.5.6
2.10.3.3
3.4.2.1
3.7.1
3.5.3
2.10.3.2
3.3.2

Предметный указатель 539

setvbuf
setw
SH_...
Shortcut
ShortCutToText
ShowException
sin
SinCos
SING
Sinh
sinh
sinhl
sinl
size
size_type
sizeof
slist
sort
sort_heap
splice
sqrt
sqrtl
stable_partition
stable_sort
stack
startup
stat
static

static_cast
stime
StrAlloc
StrBufSize
strcat
StrCat
strchr
strcmp
strcmpi
StrComp
strcspn
strdup
StrEnd
strerror

3.5.2
2.10.3.2
3.5.1
3.7.4
3.7.4
1.12.5.2
3.2.3
3.2.3
3.1.4.4
3.2.3
3.2.3
3.2.3
3.2.3
5.4.1
5.4.1
1.9.10
5.4.4
5.4.4, 5.7.10
5.7.12
5.4.4
3.2.2
3.2.2
5.7.7
5.7.10
5.4.5
1.4.4
3.5.6
1.6.2, 1.7.1,
1.8.1, 2.14.3,
2.14.4
2.2, 2.8.3
3.3.2
3.4.2.2
3.4.2.2
2.5.1, 3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2

StrFmt
stricmp
StrlComp
string
StringReplace
StrLCat
StrLComp
strlen
StrLen
StrLFmt
StrLIComp
strncat
strncmp
strncmpi
StrNew
strnicmp
strnset
strpbrk
StrPCopy
StrPLCopy
strrchr
strrev
StrRScan
StrScan
street
strspn
strstr
strtod
strtok
strtol
strtoul
struct

swab
swap

swap_ranges
SysFreeMem
SysGetMem
SysReallocMem
SystemTimeToDateTime
Tan
tan
Tanh

3.1.3.3, 3.3.1.2
3.4.2.2
3.4.2.2
5.6
3.4.2.3
3.4.2.2
3.4.2.2
2.5.1, 3.4.2.2
3.4.2.2
3.1.3.3, 3.3.1.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
3.4.2.2
2.5.1, 3.4.2.2
3.3.1.1
3.4.2.2
3.3.1.1
3.3.1.1
2.12.1, 2.12.3,
2.12.4
3.7.4
5.4.1, 5.4.3,
5.7.7
5.7.7
3.7.1
3.7.1
3.7.1
3.3.2
3.2.3
3.2.3
3.2.3

540 Справочное пособие по C++Builder 6

tanh
tanhl
tanl
tell
template
terminate
text
TextToFloat

TextToShortCut
TFloatFormat
TFloatValue
THeapStatus
this
throw

time

TimeStampToDateTime
TimeS tampToMS ecs
TLOSS
tm

TMemoryManage
tmpfile
tmpnam
toascii
tolower
topг
toupper
towlower
towupper
transform
Trim
TrimLeft

§

TrimRight
try

typedef
typeid

typename
ultoa
umask
unary_f unction
UNDERFLOW
unexpected
unexpected_handler

3.2.3
3.2.3
3.2.3
2.10.2.4, 3.5.4
1.7.8, 2.14.8
1.12.7
1.4.4
3.1.3.4, 3.3.1.2
3.7.4
3.1.3.4
3.1.3.4

3.7.1
2.14.6
1.12.4.1,
1.12.4.2,
1.12.6.1, 1.12.7
3.3.2
3.3.2
3.3.2
3.1.4.4

3.3.2
3.7.1
3.5.2
3.5.5
3.4.1
3.4.1
5.4.5
3.4.1
3.4.1
3.4.1
5.7.7
3.4.2.3
3.4.2.3
3.4.2.3
1.12.2, 1.12.5
2.1

1.9.11

1.7.8, 2.14.8
3.3.1.1
3.5.3
5.8

3.1.4.4
1.12.7
1.12.7

union
unique
unique_copy
unlock
upper bound
using
valarray
value_type

vector
virtual
void
volatile
wchar_t
wcstod

wcstol
wcstoul
what
WideChar
WM_ACTIVATE
WM ACTIVATEAPP
WM_CANCELMODE
WM_CLOSE

WM_GETMINMAXINFO
WM GETTEXT
WM_SETFONT
WM SETTEXT
wParam
WParamffi
WParamLo
WrapText
write
абстрактные классы
автоматический класс па-
мяти
блок

виртуальные функции
время жизни

глобальные идентифика-
торы

данные-элемент
декремент
инкремент
классы памяти
комментарии

2.13
5.4.4, 5.7.9

5.7.9
3.5.3
5.4.6.1, 5.7.4
1.8.2
5.4.3
5.4.1
5.4.3
2.14.6
1.7.1, 2.1, 2.8.1
1.6.2, 2.2, 2.14

2.4

3.3.1.1
3.3.1.1
3.3.1.1
1.12.7
2.4

3.1.5
3.1.5
3.1.5
3.1.5
3.1.5
3.1.5
3.1.5
3.1.5
1.14.1
1.14.1
1.14.1

3.4.2.3
2.14.7.1, 3.5.4
2.14.6
1.6.2, 1.8.1

1.6.2, 1.8.1

2.14.6
1.6.2
1.6.2, 1.8.1

2.14.1, 2.14.3
1.9.2, 2.8.1
1.9.2, 2.8.1
1.6.2
1.1

Предметный указатель 541

конструктор копии
локальные идентифика-
торы
макросы

область видимости (дей-
ствия)

операнд

полиморфизм
потоки

2.14.5
1.6.2, 1.8.1

1.4.1, 1.4.2.1,
1.4.2.2
1.6.2, 1.8.1

1.9.1
2.14.6
1.9.15, 2.10.2,
2.10.3

пространство имен
прототип функции
разрешение области дей-
ствия
сигнатура
составной оператор
статический класс памяти
тег

функция-объект
функция-элемент

1.8.2
1.7.1
1.8.1, 1.8.2,
1.9.13
1.7.7
1.1

1.6.2, 1.8.1
2.12.1

5.8

2.14.1, 2.14.2

Дополнительные источники информации о C++
и C++Builder 6

Ниже приведены сведения о некоторых книгах и иных информационных ма-
териалах автора по C++ и C++Builder. Оперативную информацию о готовящихся
к выпуску и вышедших книгах вы можете найти на сайте автора http://delci.hl.ru
и сайте издательства www.binom-press.ru.

1. Архангельский А. Я. Программирование в C++BuiIder 6 — М: ЗАО «Изда-
тельство БИНОМ», 2002

Книга содержит методические и, частично, справочные материалы по С++Ви-
ilder 6 и предшествующим версиям C++Builder 5 и 4. Рассмотрены такие возмож-
ности C++Builder, как построение кросс-платформенных приложений, технологии
доступа к данным ADO, InterBase Express, dbExpress, компоненты-серверы COM,
технологии распределенных приложений COM, CORBA, MIDAS, новая методика
диспетчеризации действий. Дается методика построения прикладных программ,
реализующих текстовые и графические редакторы, мультипликацию и мультиме-
диа, работу с базами данных, создание отчетов, приложений для Интернет, распре-
деленных приложений, клиентов и серверов.

Справочная часть книги содержит некоторые материалы по языку, функци-
ям, типам и классам C++Builder, но, конечно, сведения по языку и функциям при-
водятся в значительно меньшем объеме, чем в данной книге. Зато, там дается ме-
тодика построения приложений самого разного назначения, рассказывается о тех-
ники связи с базами данных, о построении распределенных приложений и т.п. Ко-
нечно, та и данная книги частично перекликаются, поскольку каждая из них
должна быть самодостаточной. Но, мне кажется, что они в значительной степени
дополняют друг друга. Конечно, хорошо бы было объединить их в одну и совсем
избежать повторов. Но книгу такого объема (порядка полутора тысяч страниц)
технически невозможно издать, и пользоваться ею тоже было бы невозможно -
уж очень она была бы увесистой.

2. Серия справочных файлов «Русские справки по C++Builder»

Серия справок — это программный продукт, призванный оказать вам под-
держку в процессе проектирования. Справки встраиваются в среду C++Builder ко-
мандой Help | Customize в дополнение к англоязычной справке и в процессе проек-
тирования при нажатии клавиши F1 вам предлагаются на выбор темы английских
или русских справок. Русские справки — это не перевод с английского, а, скорее,
расширенный электронный вариант материалов данной книги и книги [1]. Так что
они могут быть полезны не только тем, кто испытывает определенные сложности

542 Справочное пособие по C++Builder 6

с английским, но и всем пользователям C++Builder, поскольку содержат иначе по-
строенное и скомпонованное изложение справочных данных, иные примеры, в них
устранен ряд ошибок англоязычных справок (надеюсь, не добавлено собственных
ошибок). Честно говоря, в них значительно больше справочных сведений, чем
в данной книге.

В настоящее время серия включает в себя три справки: по C++ в C++Builder,
по компонентам и классам C++Builder, по графикам и диаграммам TeeChart. Чис-
ло входов предметного указателя справок около 3000, а число страниц текста в три
раза превышает объем данной книги. Намечен также выпуск дополнительных
справок по стандартной библиотеке STL, по Интернет, по методике проектирова-
ния, по развернутым и прокомментированным примерам и ряд других.

Достоинство справок по сравнению с книгами в том, что они обеспечивают
оперативную помощь в среде разработки C++Builder, облегчают поиск нужной ин-
формации (в книгах это делать значительно сложнее), позволяют легко переносить
примеры в свой проект. Да и стоят справки намного дешевле, чем книги. Но, ко-
нечно, справки не заменяют книг, хотя и содержат много материала, не поместив-
шегося в книги.

Справки распространяются через Интернет по адресу: http://labl8.ipu.rssi.ru/
help2/. Там вы найдете условия распространения, включающие бесплатную под-
держку — каждые 3-4 месяца выходят дополнения к справкам, которые распро-
страняются бесплатно тем, кто приобрел начальную версию.

Распространение справок через Интернет не означает, что вы обязательно
должны иметь доступ в Интернет с домашнего компьютера и иметь собственный
адрес e-mail. Достаточно, если доступ в Интернет и e-mail есть у вас на работе или
у кого-то из ваших друзей и знакомых. Вы можете воспользоваться этими возмож-
ностями, а затем на дискетах перенести файлы на свой компьютер.

3. Архангельский А. Я., Тагин М. А. Стандартная библиотека функций С. — М:
ЗАО «Издательство БИНОМ», 2002

Эта книга (надеюсь, подготовить ее осенью) будет содержать полное и подроб-
ное описание и примеры применения всех функций стандартной библиотеки язы-
ка С. Форма описания будет подобной главам 3 и 4 данной книги. Но число подроб-
но описанных функций будет намного больше — по видимому, свыше 500. По-
скольку стандартная библиотека С используется в самых разных системах, то пла-
нируемая книга будет рассчитана не только на пользователей C++Builder. В ней
будут содержаться примеры применения функций в Turbo С и Turbo C++,
C++Builder, Visual C++. Планируемый объем книги — 300 стр.

4. Архангельский А. Я., Тагин М. А. Стандартная библиотека STL языка C++. —
М: ЗАО «Издательство БИНОМ», 2002

Эта книга (она будет подготовлена после предыдущей) будет содержать полное
и подробное описание библиотеки STL, коротко рассмотренной в главе 5 данной
книги. Будут описаны шаблоны, функции, алгоритмы, классы библиотеки, мето-
дика разработки собственных шаблонов функций и алгоритмов. Описание будет
рассчитано на пользователей и содержать много примеров применения всех функ-
ций и алгоритмов библиотеки. Поскольку стандартная библиотека C++ использу-
ется в самых разных системах, то планируемая книга будет рассчитана не только
на пользователей C++Builder. В ней будут содержаться примеры ее применения
в Turbo C++, C++Builder, Visual C++. Планируемый объем книги — 300 стр.

Предметный указатель 543

5. Архангельский А. Я. Решение типовых задач в C++Builder 6. — М: ЗАО
«Издательство БИНОМ», 2003
Эта книга будет готова не раньше следующего года (в этом году, надеюсь, вый-

дет аналогичная книга по Delphi 6). Она рассчитана на подготовленных читателей,
ознакомившихся с C++Builder, например, по книге [1] или данной. В ней рассмат-
риваются вопросы, совершенно не затронутые в данной книге и в «Программиро-
вании в C++Builder 6», или только в них упомянутые: решение типовых вычисли-
тельных задач (решение систем линейных и нелинейных уравнений, операции
с матрицами, векторами и т.п.), ориентированное на особенности C++Builder 6;
графики и диаграммы в C++Builder 6; разработка распределенных приложений;
множество задач, связанных с работой в Интернет и интранет и многое другое.
Книга содержит множество примеров прикладных программ, многие из которых
могут рассматриваться как законченные программные продукты. Так что вы про-
сто можете использовать их в своей текущей работе. В книге содержатся указания
по доработке этих приложений для ваших целей, так что вы можете на их основе
создавать свои собственные программные средства.

Запланированы в книге также главы «Обо всем понемногу», в которых будет
рассмотрено множество частных задач. С подобными задачами приходится сталки-
ваться при разработке приложений и по ним задается множество вопросов на раз-
личных форумах в Интернет.

Научно-техническое издание

Архангельский Алексей Яковлевич

C++Builder б. Справочное пособие.
Книга 1. Язык C++

Оформление обложки И.Ю. Буровой
Компьютерная верстка С.В. Лычагина, К.А. Свиридова

Подписано в печать 26.08.02. Формат 70Х100/16.
Гарнитура «Школьная». Бумага газетная. Печать офсетная.

Усл. печ. л. 44,2. Тираж 4000 экз. Заказ № 3145.

Издательство «БИНОМ-ПРЕСС», 2002 г.
170026, г. Тверь, Комсомольский пр., 12.

Отпечатано в полном соответствии
с качеством предоставленных диапозитивов

в издательско-полиграфическом комплексе «Звезда».
614990, г. Пермь, ГСП-131, ул. Дружбы, 34.

	Содержание
	От автора 15
	Глава 1. Справочные данные по языку C++ 17
	1.1 Язык C++ и его синтаксис 17
	1.2 Программы на C++ 18
	1.3 Компиляция и компоновка проекта 29
	1.4 Директивы препроцессора 31
	1.5 Константы 41
	1.6 Переменные 45
	1.7 Функции 48
	1.8 Области видимости переменных и функций 60
	1.9 Операции. 65
	1.10 Операторы 85
	1.11 Динамическое распределение памяти 93
	1.12 Исключения 97
	1.13 Сигналы 119
	1.14 Сообщения Windows и их обработка 121

	Глава 2. Типы данных в языке C++ 129
	2.1 Классификация типов данных, объявление типов 129
	2.2 Приведение типов 132
	2.3 Арифметические типы данных 134
	2.4 Типы символов 136
	2.5 Типы строк 137
	2.6 Перечислимые типы 143
	2.7 Множества 144
	2.8 Указатели 147
	2.9 Ссылки ^ 154
	2.10 Файлы и потоки 154
	2.11 Массивы 174
	2.12 Структуры 179
	2.13 Объединения 184
	2.14 Классы 185

	Глава 3. Функции С, C++, библиотек C++Builder, API Windows 207
	3.1 Справочные сведения общего характера 207
	3.2 Математические функции 237
	3.3 Преобразование типов данных 247
	3.4 Строки и символы 262
	3.5 Потоки и файлы 275
	3.6 Управление процессами 302
	3.7 Функции различного назначения 307
	3.8 Работа с сообщениями Windows 323

	Глава 4. Описания функций 325
	Глава 5. Обзор стандартной библиотеки шаблонов STL 469
	5.1 Стоит ли знакомиться с STL? 469
	5.2 Использование STL в C++Builder 469
	5.3 Основные концепции STL 470
	5.4 Контейнеры 472
	5.5 Итераторы 495
	5.6 Класс строк string 505
	5.7 Алгоритмы 509
	5.8 Функции-объекты 529

	Предметный указатель 533
	Дополнительные источники информации о C++ и C++Builder 6 541

	Untitled

