

C++ Reactive Programming

Design concurrent and asynchronous applications using the
RxCpp library and Modern C++17

Praseed Pai
Peter Abraham

BIRMINGHAM - MUMBAI

C++ Reactive Programming
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Sandeep Mishra
Content Development Editor: Rohit Singh
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Aishwarya Gangawane
Graphics: Jason Monteiro
Production Coordinator: Shraddha Falebhai

First published: June 2018

Production reference: 1280618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78862-977-5

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Praseed Pai has been working in the software industry for the last 25 years, starting his
career as a MS-DOS systems programmer using ANSI C. He has been actively involved in
developing large-scale, cross-platform, native code-based systems using C++ on Windows,
GNU Linux, and macOS X. He has experience in COM+ and CORBA programming using
C++. In the last decade, he has worked with Java- and .NET-based systems.

He is the primary implementer of the SLANG4.net compilation system, which has been
ported to C++ with an LLVM backend. He coauthored .NET Design Patterns, by Packt
Publishing.

Peter Abraham has been a performance fanatic and a C/C++ programming language
enthusiast right from his college days, where he excelled in Microsoft Windows
programming and GNU Linux programming. He garnered experience in working with
CUDA, image processing, and computer graphics programs by virtue of working with
companies such as Quest Global, Siemens, and Tektronics.

Peter has been eagerly following the C++ standard and RxCpp libraries as part of his
profession. He has worked with cross-platform GUI toolkits such as Qt, WxWidgets, and
FOX toolkit.

About the reviewer
Sumant Tambe is a software engineer, researcher, open source contributor, blogger,
speaker, author, and gamer. He is experienced in using Modern C++, Kafka, data
distribution service, reactive programming, and stream processing to solve new problems
in big data and industrial IoT.

He has authored C++ Truths blog and the More C++ Idioms wikibook. He shares his learnings
on his blog, and at local code camps, meetups, and conferences. He has been a recipient of
the Microsoft MVP Award in development technologies for 5 years. He has a PhD in
computer science from Vanderbilt University.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Reactive Programming Model – Overview and History 6
Event-driven programming model 7

Event-driven programming on X Windows 7
Event-driven programming on Microsoft Windows 9
Event-driven programming under Qt 11
Event-driven programming under MFC 12
Other event-driven programming models 13
Limitations of classical event processing models 13

Reactive programming model 14
Functional reactive programming 14
The key interfaces of a reactive program 15
Pull-versus push-based reactive programming 17

The IEnumerable/IObservable duality 17
Converting events to IObservable<T> 21
The philosophy of our book 25
Summary 27

Chapter 2: A Tour of Modern C++ and its Key Idioms 28
The key concerns of the C++ programming language 29

Zero cost abstraction 29
Expressivity 29
Substitutability 32

Enhancements to C++ for writing better code 33
Type deduction and inference 33
Uniform initialization of variables 35
Variadic templates 36
Rvalue references 38
Move semantics 39
Smart pointers 41
Lambda functions 43
Functors and Lambdas 44
Composition, currying, and partial function application 47
Function wrappers 49

Composing functions together with the pipe operator 50
Miscellaneous features 52

Fold expressions 52
Variant type 53

Table of Contents

[ii]

Other important topics 54
Range-based for loops and observables 54
Summary 58

Chapter 3: Language-Level Concurrency and Parallelism in C++ 59
What is concurrency? 60
Hello World of concurrency (using std::thread) 61
Managing threads 62

Thread launch 63
Thread join 64
Passing arguments into a thread 65

Using Lambdas 68
Ownership management 69

Sharing data between threads 71
Mutexes 73
Avoiding deadlock 75
Locking with std::unique_lock 78
Condition variables 80

A thread-safe stack data structure 82
Summary 85

Chapter 4: Asynchronous and Lock-Free Programming in C++ 86
Task-based parallelism in C++ 87

Future and promise 87
std::packaged_task 90
std::async 91

C++ memory model 93
Memory access and concurrency 94
The modification contract 95
Atomic operations and types in C++ 95
Atomic types 96

std::atomic_flag 98
std::atomic<bool> 100

Standard atomic integral types 102
std::atomic<T*> – pointer arithmetic 103
std::atomic<> primary class template 104

Memory ordering 105
Sequential consistency 105
Acquire-release ordering 107
Relaxed ordering 109

A lock-free data structure queue 110
Summary 112

Chapter 5: Introduction to Observables 114
The GoF Observer pattern 115

Table of Contents

[iii]

The limitations of the GoF Observer pattern 118
A holistic look at GoF patterns 119
The OOP programming model and hierarchies 120
A Composite/Visitor pattern for expression processing 122
Flattening the composite for iterative processing 126
Map and filter operations on the list 129
Reversing the gaze for Observables! 130
Summary 134

Chapter 6: Introduction to Event Stream Programming Using C++ 135
What is Stream programming model? 136

Advantages of the Stream programming model 136
Applied Stream programming using the Streams library 137
Lazy evaluation 138

A simple Stream program 138
Aggregating values using the Stream paradigm 139
The STL and the Stream paradigm 140
A word about the Streams library 140

Event Stream programming 141
Advantages of Event Stream programming 141
The Streamulus library and its programming model 142

The Streamulus library – a peek into its internals 145
The Streamulus Library – a look into expression processing 146

The spreadsheet Library — a change-propagation engine 147
RaftLib – another Stream-processing library 149
What do these things have to do with Rx programming? 150

Summary 151

Chapter 7: Introduction to Data Flow Computation and the RxCpp
Library 152

The data flow computation paradigm 153
An introduction to the RxCpp library 154

The RxCpp library and its programming model 155
A simple Observable/Observer interaction 155
Filters and transformations with Observables 156
Streaming values from C++ containers 157

Creating Observables from scratch 157
Concatenating Observable Streams 158
Unsubscribing from Observable Streams 158

An introduction to marble diagrams for visual representation 159
RxCpp (Stream) operators 160

The average operator 160
The scan operator 160
Composing operators through the pipe operator 161
Working with Schedulers 162

Table of Contents

[iv]

A tale of two operators – flat versus concat map 164
More operators that are of importance 169

A peek into the things we haven't covered yet 171
Summary 172

Chapter 8: RxCpp – the Key Elements 173
Observables 174

What's a producer? 174
Hot versus cold Observables 174
Hot Observables 175
Hot Observables and the replay mechanism 178

Observers and their variants (subscribers) 179
Subjects 180
Schedulers 183

ObserveOn versus SubscribeOn 185
The RunLoop Scheduler 187

Operators 189
Creational operators 189
Transformation operators 190
Filtering operators 190
Combining operators 191
Error-handling operators 192
Observable utility operators 192
Conditional and Boolean operators 192
Mathematical and aggregate operators 193
Connectable Observable operators 194

Summary 194

Chapter 9: Reactive GUI Programming Using Qt/C++ 195
A quick introduction to Qt GUI programming 196

Qt object model 197
Signals and slots 198
Event system 199
Event handlers 200
Sending events 201
Meta-object system 201

Hello World – Qt program 202
Qt event model with signals/slots/MOC – an example 204

Creating a custom widget 204
Creating the application dialog 206
Executing the application 210

Integrating the RxCpp library with the Qt event model 212
Qt event filter – a reactive approach 212
Creating the window – setting layouts and alignments 214
Event type specific observables 215

Table of Contents

[v]

An introduction to RxQt 217
Summary 220

Chapter 10: Design Patterns and Idioms for C++ Rx Programming 222
The OOP and design patterns movement 222
Key pattern catalogs 224

GOF patterns 224
POSA catalog 225

The design pattern redux 226
From design patterns to reactive programming 227
Flattening the hierarchy to navigate through them 232
From iterators to observables 233
The cell pattern 235
The active object pattern 237
Resource loan pattern 239
The event bus pattern 240
Summary 245

Chapter 11: Reactive Microservices Using C++ 246
The C++ language and web programming 247

The REST programming model 247
The C++ REST SDK 248

HTTP client programming using the C++ REST SDK 248
HTTP server programming using the C++ REST SDK 250

Testing the HTTP server using CURL and POSTMAN 253
The libcurl and the HTTP client programming 254
Kirk Shoop's CURL Wrapper library 255

The JSON and HTTP protocols 258
The C++ REST SDK-based REST server 261
Invoking REST services using the RxCurl library 269
A word about the Reactive microservices architecture 272

Fine-grained services 273
Polyglot persistence 273
Independent deployment 274
Service orchestration and choreography 274
Reactive web service call 275

Summary 275

Chapter 12: Advanced Streams and Handling Errors 276
A short recap of the characteristics of a reactive system 277
RxCpp error and exception handling operators 278

Executing an action on an error 279
Resuming when an error occurs 281
Retry when an error occurs 284
Cleanup with the finally() operator 286

Table of Contents

[vi]

Schedulers and error handling 287
Event-based Stream handling – some examples 293

Aggregation based on Stream data 293
Application event handling example 295

Summary 299

Other Books You May Enjoy 300

Index 303

Preface
This book will help you learn how to implement the reactive programming paradigm with
C++ and build asynchronous and concurrent applications. The book includes real-world
problems that you will solve with the reactive programming model. It highlights the way
event processing has evolved in the programming world. You will learn about language-
level concurrency in C++ and functional reactive programming. Constructs in functional
programming and object-oriented programming will enable you to write efficient
programs. After this, you will learn about microservices in C++ and create your custom
operators for RxCpp.

Who this book is for
If you're a C++ developer interested in using reactive programming to build asynchronous
and concurrent applications, you'll find this book extremely useful. This book doesn't
assume any previous knowledge of reactive programming.

What this book covers
Chapter 1, Reactive Programming Model – Overview and History, introduces some key data
structures of the Rx programming model. It also covers GUI event handling, an overview of
reactive programming, and an implementation of GUI versions of different interfaces on
top of MFC.

Chapter 2, A Tour of Modern C++ and its Key Idioms, covers C++ features, type inference,
variadic templates, rvalue references and move semantics, lambda functions, elementary
functional programming, pipeable operators, and implementation of iterators and
observers.

Chapter 3, Language-Level Concurrency and Parallelism in C++, discusses the threading
library available in the C++ standard. You will learn how to launch and manage a thread,
and discuss different aspects of the threading library. This chapter lays a good foundation
for concurrency support introduced in Modern C++.

Chapter 4, Asynchronous and Lock-Free Programming in C++, discusses the facilities provided
by the standard library for writing task-based parallelism. It also discusses the new
multithreading-aware memory model that is available with the Modern C++ language.

Preface

[2]

 Chapter 5, Introduction to Observables, talks about the GoF Observer pattern and explains
its shortcomings. You will learn about the GoF Composite/Visitor pattern in the context of
modeling an expression tree.

Chapter 6, Introduction to Event Stream Programming Using C++, focuses on the topic of
event Stream programming. We will also look at the Streamulus library, which provides a
DSEL approach to the manipulation of event Streams, followed by a couple of programs.

Chapter 7, Introduction to Data Flow Computation and the RxCpp Library, starts with a
conceptual overview of the data flow computing paradigm and moves quickly to writing
some basic RxCpp programs. You will learn about the set of operators supported by the
RxCpp library.

Chapter 8, RxCpp – the Key Elements, gives you an understanding of how pieces of the Rx
programming model fit together. The chapter starts with Observables and moves on to
cover the subscription mechanism and scheduler implementation.

Chapter 9, Reactive GUI Programming Using Qt/C++, deals with the topic of reactive GUI
programming using Qt. You will learn about concepts in the Qt framework, such as the Qt
object hierarchy, the meta-object system, and signals and slots. Then, you will write an
application to handle mouse events and filter them. After this you will also learn advanced
topic of how we can create custom reactive operators in RxCpp, should an existing set of
operators not suffice for the purpose. This topic also helps you create composite operators
by composing the existing operators. This topic is not present in the book, but it is available
for download at https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/ ​downloads/ ​Creating_
Custom_​Operators_ ​in_ ​RxCpp. ​pdf.

Chapter 10, Design Patterns and Idioms for C++ Rx Programming, delves into the wonderful
world of design patterns and idioms. Starting with GOF design patterns, we will move on
to reactive programming patterns.

Chapter 11, Reactive Microservices Using C++, covers how the Rx programming model can
be used to write reactive microservices using C++. It introduces you to the Microsoft C++
REST SDK and its programming model.

Chapter 12, Advanced Streams and Handling Errors, discusses error handling in RxCpp, along
with some of the advanced constructs and operators that handle Streams in the RxCpp
library. We will discuss how to continue Streams when an error comes, how to wait for the
producer of the Stream to correct the error and continue the sequence, and how to perform
common operations that are applicable to both success and error paths.

https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf

Preface

[3]

To get the most out of this book
In order to follow the topics in this book, you need to have a knowledge of C++
programming.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​CPP- ​Reactive- ​Programming. In case there's an update to the code, it will
be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​CPPReactiveProgramming_ ​ColorImages. ​pdf.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/CPP-Reactive-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/CPPReactiveProgramming_ColorImages.pdf

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The preceding code snippet initializes a structure by the name
of WNDCLASS (or WNDCLASSEX for modern systems) with a necessary template for a
window."

A block of code is set as follows:

/* close connection to server */
XCloseDisplay(display);

return 0;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

/* close connection to server */
XCloseDisplay(display);

return 0;
}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In Windowing parlance, it is called a message loop."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Reactive Programming Model –

Overview and History
The X Windows system, Microsoft Windows, and IBM OS/2 Presentation Manager made
GUI programming popular on the PC platform. This was a major shift from the character
mode user interface and batch process style programming models that existed before them.
Responding to events became a major concern for software developers worldwide and
platform vendors resorted to the creation of low-level C-based APIs that relied on function
pointers and callbacks to enable programmers to handle the events. The programming
models were mostly based on the co-operative multithreaded model, and with the advent
of better microprocessors, most platforms began to support pre-emptive multithreading.
Handling events (and other asynchronous tasks) became more complex and responding to
events in the traditional way became less scalable. Even though excellent C++-based GUI
toolkits made their appearance, event handling was done mostly using message IDs,
function pointer based dispatches, and other low-level techniques. A prominent compiler
vendor even tried adding language extensions to the C++ language to enable better
Windows programming. Handling events, asynchrony, and associated issues require a
fresh look at the problem. Luckily, the Modern C++ standard has support for Functional
Programming, language-level concurrency (with a memory model), and better memory
management techniques to enable programmers to work with asynchronous data streams
(by treating events as streams). This is achieved using a programming model called reactive
programming. To put things in perspective, this chapter will outline the following topics:

Event-driven programming model and how it has been implemented in various
platforms.
What is reactive programming?
Different models of reactive programming.
Some simple programs to make conceptual understanding better.
The philosophy of our book.

Reactive Programming Model – Overview and History Chapter 1

[7]

Event-driven programming model
Event-driven programming is a programming model where flow control is determined by
events. Examples of events are mouse clicks, key presses, gestures, sensor data, messages
from other programs, and so on. An event-driven application has the mechanism to detect
events on a near real-time basis, and respond or react to them by invoking the appropriate
event handling procedure. Since the bulk of the earlier event processing programs were
written using C/C++, they resorted to low-level techniques such as callbacks (using function
pointers) to write those event handlers. Later systems such as Visual Basic, Delphi, and
other rapid application development tools did add native support for event-driven
programming. To make matters more clear, we will take a tour of the event handling
mechanism of the various platforms. This will help readers appreciate the issues that
reactive programming models are solving (from a GUI programming context).

Reactive programming treats data as streams and events in windowing
systems can be treated as streams to be processed in a uniform manner.
The Reactive programming model provides support for gathering events
from different sources as streams, filtering streams, the transformation of
streams, performing actions on streams, and so on. The programming
model handles asynchrony, scheduling details as part of the framework.
This chapter is mostly based on the key data structures of the Reactive
programming model and how we can implement basic Reactive
programs. In an industrial-strength reactive program, the code written
will be asynchronous and the examples from this chapter are
synchronous. We give the necessary background information and
language constructs in the following chapters before out of order
execution and schedules are discussed. These implementations are here
for elucidation and can be treated as learning examples.

Event-driven programming on X Windows
The X Windows programming model is a cross-platform API, is mostly supported on
POSIX systems, and has even been ported to Microsoft Windows. In fact, X is a network
windowing protocol, which required a Window manager to manage the Windows stack.
The screen contents are managed by the X server and the client library will pull the
contents and display them on the local machine. In desktop environments, the server runs
locally on the same machine. The following program will help the reader understand the
gist of the XLib programming model and how events are handled in the platform:

#include <X11/Xlib.h>

Reactive Programming Model – Overview and History Chapter 1

[8]

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main(void)
{
 Display *display;
 Window window;
 XEvent event;
 char *msg = "Hello, World!";
 int s;

The preceding code snippet includes the proper header files that a programmer is supposed
to include to get the function prototypes provided by the XLib C library. There are some
data structures that a programmer should be aware of while writing XLib programs from
scratch. Nowadays, people use libraries such as Qt, WxWidgets, Gtk+, Fox toolkit, and so
on to write commercial-quality X Programs.

 /* open connection with the server */
 display = XOpenDisplay(NULL);
 if (display == NULL){
 fprintf(stderr, "Cannot open display\n");
 exit(1);
 }
 s = DefaultScreen(display);
 /* create window */
 window = XCreateSimpleWindow(display,
 RootWindow(display, s), 10, 10, 200, 200, 1,
 BlackPixel(display, s), WhitePixel(display, s));

 /* select kind of events we are interested in */
 XSelectInput(display, window, ExposureMask | KeyPressMask);

 /* map (show) the window */
 XMapWindow(display, window);

The preceding code snippet initializes the server and creates a window to certain
specifications. Traditionally, most X Windows programs run under a window manager that
manages the cascading windows. We selected the messages that are of interest to us by
invoking the XSelectInput API call before displaying the window:

 /* event loop */
 for (;;)
 {
 XNextEvent(display, &event);

 /* draw or redraw the window */

Reactive Programming Model – Overview and History Chapter 1

[9]

 if (event.type == Expose)
 {
 XFillRectangle(display, window,
 DefaultGC(display, s), 20, 20, 10, 10);
 XDrawString(display, window,
 DefaultGC(display, s), 50, 50, msg, strlen(msg));
 }
 /* exit on key press */
 if (event.type == KeyPress)
 break;
 }

Then, the program goes to an infinite loop while polling for any events, and the appropriate
Xlib API will be used to draw a string on the Window. In Windowing parlance, it is called a
message loop. The retrieval of events will be done by the XNextEvent API call:

 /* close connection to server */
 XCloseDisplay(display);

 return 0;
 }

Once we are out of the infinite message loop, the connection to the server will be closed.

Event-driven programming on Microsoft
Windows
Microsoft Corporation created a GUI programming model, which can be considered as the
most successful windowing system in the world. The third edition of the Windows
software was a runaway success (in 1990) and Microsoft followed this with the Windows
NT and Windows 95/98/ME series. Let us look at the event-driven programming model of
Microsoft Windows (consult Microsoft documentation for a detailed look at how this
programming model works). The following program will help us understand the gist of
what is involved in writing Windows Programming using C/C++:

#include <windows.h>
//----- Prtotype for the Event Handler Function
LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam);
//--------------- Entry point for a Idiomatic Windows API function
int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow)
{

Reactive Programming Model – Overview and History Chapter 1

[10]

MSG msg = {0};
WNDCLASS wc = {0};
wc.lpfnWndProc = WndProc;
wc.hInstance = hInstance;
wc.hbrBackground = (HBRUSH)(COLOR_BACKGROUND);
wc.lpszClassName = "minwindowsapp";
if(!RegisterClass(&wc))
 return 1;

The preceding code snippet initializes a structure by the name of WNDCLASS (or
WNDCLASSEX for modern systems) with a necessary template for a Window. The most
important field in the structure is lpfnWndProc, which is the address of the function that
responds to the event inside an instance of this Window:

if(!CreateWindow(wc.lpszClassName,
 "Minimal Windows Application",
 WS_OVERLAPPEDWINDOW|WS_VISIBLE,
 0,0,640,480,0,0,hInstance,NULL))
 return 2;

We will invoke the CreateWindow (or CreateWindowEx on modern systems) API call to
create a window based on the class name provided in the WNDCLASS.lpszClassname
parameter:

 while(GetMessage(&msg, NULL, 0, 0) > 0)
 DispatchMessage(&msg);
 return 0;
}

The preceding code snippet gets into an infinite loop where messages will be retrieved from
the message queue until we get a WM_QUIT message. The WM_QUIT message takes us out of
the infinite loop. The Messages will sometimes be translated before calling the
DispatchMessage API call. DispatchMessage invokes the Window callback procedure
(lpfnWndProc):

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam) {
switch(message){
 case WM_CLOSE:
 PostQuitMessage(0);break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
}
return 0;
}

Reactive Programming Model – Overview and History Chapter 1

[11]

The preceding code snippet is a minimalist callback function. You can consult Microsoft
documentation to learn about Windows API programming and how events are handled in
those programs

Event-driven programming under Qt
The Qt Framework is an industrial-strength, cross-platform, and multi-platform GUI toolkit
that runs on Windows, GNU Linux, macOS X, and other Mac systems. The toolkit has been
compiled into embedded systems and mobile devices. The C++ Programming model has
leveraged something called Meta Object Compiler (MOC), which will peruse the source
code for directives (a bunch of macros and language extensions embedded in the source
code) and generate appropriate additional source code to generate event handlers. So,
before the C++ compiler gets the source code, the MOC pass has to run to generate legal
ANSI C++ by removing those extra linguistic constructs specific to the Qt system. Consult
the Qt documentation to learn more about this. The following simple Qt program will
demonstrate the key aspects of Qt programming and its event processing system:

#include <qapplication.h>
#include <qdialog.h>
#include <qmessagebox.h>
#include <qobject.h>
#include <qpushbutton.h>

class MyApp : public QDialog {
 Q_OBJECT
public:
 MyApp(QObject* /*parent*/ = 0):
 button(this)
 {
 button.setText("Hello world!"); button.resize(100, 30);

 // When the button is clicked, run button_clicked
 connect(&button,
 &QPushButton::clicked, this, &MyApp::button_clicked);
 }

The macro Q_OBJECT is a directive to the MOC to generate an Event Dispatch table.
When we connect the event source to an event sink, an entry will be given to the Event
Dispatch table. The generated code will be compiled along with the C++ code to produce
an executable:

public slots:
 void button_clicked() {

Reactive Programming Model – Overview and History Chapter 1

[12]

 QMessageBox box;
 box.setWindowTitle("Howdy");
 box.setText("You clicked the button");
 box.show();
 box.exec();
 }

protected:
 QPushButton button;
};

The language extension public slots will be stripped away by the MOC (after doing the job of
source code generation) to a form compatible with the ANSI C/C++ compiler:

int main(int argc, char** argv) {
 QApplication app(argc, argv);
 MyApp myapp;
 myapp.show();
 return app.exec();
}

The preceding code snippet initializes the Qt application object and displays the main
window. For all practical purposes, Qt is the most prominent application development
framework for the C++ language and it also has got a good binding to the Python
Programming language.

Event-driven programming under MFC
The Microsoft Foundation class library is still a popular library with which to write
Microsoft Windows-based desktop programs. It does have some support for web
programming if we mix ActiveX Template Library (ATL) along with it. Being a C++
library, MFC uses a mechanism called Message Mapping to handle events. A sample event
handling table given as macros is part of every MFC program:

BEGIN_MESSAGE_MAP(CClockFrame,CFrameWnd)
 ON_WM_CREATE()
 ON_WM_PAINT()
 ON_WM_TIMER()
END_MESSAGE_MAP()

Reactive Programming Model – Overview and History Chapter 1

[13]

The preceding message map will respond to OnCreate, OnPaint, and Ontimer standard
Windows API messages. Deep down these message maps are arrays on to which we will
use message id as an index for dispatching the events. On closer examination, it is not
much different from the standard Windows API messaging model.

The code listing is not given here because we have globally a GUI
implementation of one of the key interfaces for the Reactive Programming
model using MFC. The implementation is based on the MFC library and
the reader can go through the annotated listing to gain an understanding
of non-trivial event processing in MFC.

Other event-driven programming models
Distributed object processing frameworks such as COM+ and CORBA do have their own
event processing framework. The COM+ event model is based on the notion of Connection
Points (modeled by IConnectionPointContainer/IConnectionPoint interfaces) and
CORBA does have its own event service model. The CORBA standard provides both pull-
based and push-based event notifications. COM+ and CORBA are beyond the scope of this
book and the reader is expected to consult the respective documentation.

Limitations of classical event processing models
The whole purpose of making a tour of the event processing supported by various
platforms was to put things into the proper perspective. The event response logic in these
platforms is mostly coupled with the platform where the code is written. With the advent of
multi-core programming, writing low-level multi-threaded code is difficult and declarative
task-based programming models are available with the C++ programming language. But
the event sources are mostly outside the C++ standard! The C++ language does not have a
standard GUI programming library, an interface standard to access external devices, and so
on. What is the way out? Luckily, events and data from external sources can be aggregated
into streams (or sequences) and by using functional programming constructs such as
Lambda functions can be processed very efficiently. The added bonus is that if we resort to
some kind of restrictions regarding the mutability of variables and streams, concurrency,
and parallelism are built into the stream processing model.

Reactive Programming Model – Overview and History Chapter 1

[14]

Reactive programming model
Simply put, reactive programming is nothing but programming with asynchronous data
streams. By applying various operations on stream, we can achieve different computational
goals. The primary task in a reactive program is to convert data into streams, regardless of
what the source of the data is. While writing modern graphical user interface applications,
we process mouse move-and-click events. Currently, most systems get a callback and
process these events as and when they happen. Most of the time, the handler does a series
of filtering operations before it invokes the action methods associated with the event calls.
In this particular context, reactive programming helps us in aggregating the mouse move-
and-click events into a collection and sets a filter on them before notifying the handler logic.
In this way, the application/handler logic does not get executed unnecessarily.

The stream-processing model is well known, and it is very easy to encode by application
developers. Pretty much anything can be converted into a stream. Such candidates include
messages, logs, properties, Twitter feeds, blog posts, RSS feeds, and so on. Functional
programming techniques are really good at processing streams. A language such as
Modern C++, with excellent support for Object/Functional programming, is a natural choice
for writing reactive programs. The basic idea behind reactive programming is that there are
certain datatypes that represent a value over time. These datatypes (or rather data
sequences) are represented as Observable sequences in this programming paradigm.
Computations that involve these changing (time-dependent) values will, in turn,
themselves have values that change over time, and will need to asynchronously receive
notifications (as and when the dependent data changes).

Functional reactive programming
Almost all modern programming languages support functional programming constructs.
Functional programming constructs such as Transform, Apply, Filter, Fold, and so on are
good for processing streams. Programming asynchronous data streams using functional
programming constructs are generally called functional reactive programming (for all
practical purposes). The definition given here is an operational one. Consult the work done
by Conal Elliott and Paul Hudak as part of the Haskell community to understand the strict
definition. Mixing Reactive Programming with FP is gaining traction among developers
these days. The Emergence of libraries such as Rx.Net, RxJava, RxJs, and RxCpp and so on
is a testimony to this.

Reactive Programming Model – Overview and History Chapter 1

[15]

Even though reactive programming is the core subject of this book, in this
chapter we will be sticking to an OOP approach. This is necessitated
because of the fact that we need to introduce some standard interfaces
(emulated in C++ using virtual functions) necessary for doing Reactive
programming. Later on, after learning about FP constructs supported by
C++ , readers can do some mental model mapping from OOP to FP
constructs. We will also keep away from concurrency stuff to focus on
software interfaces in this chapter. Chapters 2, A Tour of the Modern C++
and Its Key Idioms, Chapter 3, Language-Level Concurrency and Parallelism in
C++, and Chapter 4, Asynchronous and Lock-Free Programming in C++, will
give the necessary background to understand reactive programming
using FP constructs.

The key interfaces of a reactive program
To help you understand what is really happening inside a reactive program, we will write
some toy programs to put things in proper context. From a software design point of view, if
you keep concurrency/parallelism aside to focus on software interfaces, a reactive Program
should have:

An event source that implements IObservable<T>
An event sink that implements IObserver<T>
A mechanism to add subscribers to an event source
When data appears at the source, subscribers will be notified

In this particular chapter, we have written code using classic C++
constructs. This is because we have not yet introduced Modern C++
constructs. We have also used raw pointers, something which we can
mostly avoid while writing Modern C++ code. The code in this chapter is
written to conform to the ReactiveX documentation in general. In C++, we
do not use inheritance-based techniques like we do in Java or C#.

To kickstart, let us define Observer, Observable, and a CustomException class:

#pragma once
//Common2.h

struct CustomException /*:*public std::exception */ {

Reactive Programming Model – Overview and History Chapter 1

[16]

 const char * what() const throw () {
 return "C++ Exception";
 }
};

The CustomException class is just a placeholder to make the interface complete. Since we
have decided that we will only use classic C++ in this chapter, we are not deviating from
the std::exception class:

template<class T> class IEnumerator {
public:
 virtual bool HasMore() = 0;
 virtual T next() = 0;
 //--------- Omitted Virtual destructor for brevity
};
template <class T> class IEnumerable{
public:
 virtual IEnumerator<T> *GetEnumerator() = 0;
 //---------- Omitted Virtual destructor for brevity
};

The Enumerable interface is used by the data source from which we can enumerate data
and IEnuerator<T> will be used for iteration by the client.

The purpose of defining interfaces for Iterator
(IEnuerable<T>/IEnumerator<T>) is to make the reader understand
that they are very closely related to the Observer<T>/Observable<T>
pattern. We will define Observer<T>/Observable<T> as follows:

template<class T> class IObserver
{
public:
 virtual void OnCompleted() = 0;
 virtual void OnError(CustomException *exception) = 0;
 virtual void OnNext(T value) = 0;
};
template<typename T>
class IObservable
{
public:
 virtual bool Subscribe(IObserver<T>& observer) = 0;
};

IObserver<T> is the interface that the data sink will use to receive notifications from the
data source. The data source will implement the IObservable<T> interface.

Reactive Programming Model – Overview and History Chapter 1

[17]

We have defined the IObserver<T> interface and it has got three
methods. They are OnNext (when the item is notified to the Observer),
OnCompleted (when there is no more data), and OnError (when an
exception is encountered). Observable<T> is implemented by the event
source and event sinks can insert objects that implement IObserver<T>
to receive notifications.

Pull-versus push-based reactive
programming
Reactive programs can be classified as push-based and pull-based. The pull-based system
waits for a demand to push the data streams to the requestor (or subscriber in our case).
This is the classic case where the data source is actively polled for more information. This
employs the iterator pattern, and IEnumerable <T>/IEnumerator <T> interfaces are
specifically designed for such scenarios that are synchronous in nature (the application can
block while pulling data). On the other hand, a push-based system aggregates events and
pushes through a signal network to achieve the computation. In this case, unlike the pull-
based system, data and related updates are handed to the subscriber from the source
(Observable sequences in this case). This asynchronous nature is achieved by not blocking
the subscriber, but rather making it react to the changes. As you can see, employing this
push pattern is more beneficial in rich UI environments where you wouldn't want to block
the main UI thread while waiting for some events. This becomes ideal, thus making
reactive programs responsive.

The IEnumerable/IObservable duality
If you take a closer look, there is only a subtle difference between these two patterns.
IEnumerable<T> can be considered the pull-based equivalent of the push-based
IObservable<T>. In fact, they are duals. When two entities exchange information, one
entity's pull corresponds to another entity pushing the information. This duality is
illustrated in the following diagram:

Reactive Programming Model – Overview and History Chapter 1

[18]

Let's understand this duality by looking at this sample code, a number sequence generator:

We have striven to use classic C++ constructs to write programs for this
particular chapter as there are chapters on Modern C++ language features,
language level concurrency, lock-free programming, and related topics for
implementing Reactive constructs in Modern C++.

#include <iostream>
#include <vector>
#include <iterator>
#include <memory>
#include "../Common2.h"
using namespace std;

class ConcreteEnumberable : public IEnumerable<int>
{
 int *numberlist,_count;
public:
 ConcreteEnumberable(int numbers[], int count):
 numberlist(numbers),_count(count){}
 ~ConcreteEnumberable() {}

 class Enumerator : public IEnumerator<int>
 {
 int *inumbers, icount, index;
 public:
 Enumerator(int *numbers,
 int count):inumbers(numbers),icount(count),index(0) {}
 bool HasMore() { return index < icount; }
 //---------- ideally speaking, the next function should throw
 //---------- an exception...instead it just returns -1 when the

Reactive Programming Model – Overview and History Chapter 1

[19]

 //---------- bound has reached
 int next() { return (index < icount) ?
 inumbers[index++] : -1; }
 ~Enumerator() {}
 };
 IEnumerator<int> *GetEnumerator()
 { return new Enumerator(numberlist, _count); }
};

The preceding class takes an array of integers as a parameter and we can enumerate over
the elements as we have implemented the IEnumerable<T> interface. The Enumeration
logic is implemented by the nested class, which implements the IEnumerator<T>
interface:

int main()
{
 int x[] = { 1,2,3,4,5 };
 //-------- Has used Raw pointers on purpose here as we have
 //------- not introduced unique_ptr,shared_ptr,weak_ptr yet
 //-------- using auto_ptr will be confusting...otherwise
 //-------- need to use boost library here... (an overkill)
 ConcreteEnumberable *t = new ConcreteEnumberable(x, 5);
 IEnumerator<int> * numbers = t->GetEnumerator();
 while (numbers->HasMore())
 cout << numbers->next() << endl;
 delete numbers;delete t;
 return 0;
}

The main program instantiates an implementation of the ConcreteEnuerable class and
walks through each element.

We will write an even number sequence generator to demonstrate how these data types
work together in converting a pull-based program to a push program. The robustness
aspect is given low priority to keep the listing terse:

#include "stdafx.h"
#include <iostream>
#include <vector>
#include <iterator>
#include <memory>
#include "../Common2.h"
using namespace std;

class EvenNumberObservable : IObservable<int>{
 int *_numbers,_count;
public:

Reactive Programming Model – Overview and History Chapter 1

[20]

 EvenNumberObservable(int numbers[],
 int count):_numbers(numbers),_count(count){}
 bool Subscribe(IObserver<int>& observer){
 for (int i = 0; i < _count; ++i)
 if (_numbers[i] % 2 == 0)
 observer.OnNext(_numbers[i]);
 observer.OnCompleted();
 return true;
 }
};

The preceding program takes an array of integers, filters out of the odd numbers, and
notifies Observer<T> if an even integer is encountered. In this particular case, the data
source is pushing data to observer. The implementation of Observer<T> is given as
follows:

class SimpleObserver : public IObserver<int>{
public:
 void OnNext(int value) { cout << value << endl; }
 void OnCompleted() { cout << _T("hello completed") << endl; }
 void OnError(CustomException * ex) {}
};

The SimpleObserver class implements the IObserver<T> interface and it has the
capability to receive notifications and react to them:

int main()
{
 int x[] = { 1,2,3,4,5 };
 EvenNumberObservable *t = new EvenNumberObservable(x, 5);
 IObserver<int>> *xy = new SimpleObserver();
 t->Subscribe(*xy);
 delete xy; delete t;
 return 0;
}

From the preceding example, you see how one can naturally subscribe for even numbers
from an Observable sequence of natural numbers. The system will automatically push
(publish) the values to the observer (subscriber) when an even number is detected.
The code gives explicit implementations for key interfaces so that one can understand, or
speculate what really happens under the hood.

Reactive Programming Model – Overview and History Chapter 1

[21]

Converting events to IObservable<T>
We have now understood how one can convert an IEnumerable<T>-based pull program
to an IObservable<T>/IObserver<T>-based push program. In real life, the event source
is not as simple as we found in the number stream example given earlier. Let us see how
we can convert a MouseMove event into a stream with a small MFC program:

We have chosen MFC for this particular implementation because we have
a chapter dedicated to Qt-based reactive programming. In that chapter,
we will be implementing Reactive programs in idiomatic asynchronous
push-based streams. In this MFC program, we simply do a filtering
operation to see whether the mouse is moving in a bounding rectangle
and, if so, notify the observer. We are using synchronous dispatch here.
This example is synchronous too:

#include "stdafx.h"
#include <afxwin.h>
#include <afxext.h>
#include <math.h>
#include <vector>
#include "../Common2.h"

using namespace std;
class CMouseFrame :public CFrameWnd,IObservable<CPoint>
{
private:
 RECT _rect;
 POINT _curr_pos;
 vector<IObserver<CPoint> *> _event_src;
public:
 CMouseFrame(){
 HBRUSH brush =
 (HBRUSH)::CreateSolidBrush(RGB(175, 238, 238));
 CString mywindow = AfxRegisterWndClass(
 CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS,
 0, brush, 0);
 Create(mywindow, _T("MFC Clock By Praseed Pai"));
 }

Reactive Programming Model – Overview and History Chapter 1

[22]

The preceding part of the code defines a Frame class that derives from the MFC library the
CFrameWnd class and also implements the IObservable<T> interface to force the
programmer to implement the Subscribe method. A vector of IObserver<T> will store
the list of observers or Subscribers. For this example, we will have only one observer.
There is no restriction on the number of observer in the code:

 virtual bool Subscribe(IObserver<CPoint>& observer) {
 _event_src.push_back(&observer);
 return true;
 }

The Subscribe method just stores the reference to the observer onto a vector and returns
true: when the mouse is moved, we get notification from the MFC library and if it is in a
rectangular area, observer will be notified (the notification code is as follows):

 bool FireEvent(const CPoint& pt) {
 vector<IObserver<CPoint> *>::iterator it =
 _event_src.begin();
 while (it != _event_src.end()){
 IObserver<CPoint> *observer = *it;
 observer->OnNext(pt);
 //---------- In a Real world Rx programs there is a
 //--------- sequence stipulated to call methods...
 //--------- OnCompleted will be called only when
 //--------- all the data is processed...this code
 //--------- is written to demonstrate the call schema
 observer->OnCompleted();
 it++;
 }
 return true;
 }

The FireEvent method walks through the observer's and calls the OnNext method of the
observer. It also calls the OnCompleted method of each instance of Observer's: The Rx
dispatching mechanism follows certain rules while calling the observer methods. If
OnComplete method is called, no more OnNext will be called on the same observer.
Similarly, if OnError is called, no further messages will be dispatched to the observer. If
we need to follow the conventions stipulated by the Rx model here, the listing will get
complicated. The purpose of the code given here is to show how the Rx programming
model works in a schematic manner.

 int OnCreate(LPCREATESTRUCT l){
 return CFrameWnd::OnCreate(l);
 }
 void SetCurrentPoint(CPoint pt) {

Reactive Programming Model – Overview and History Chapter 1

[23]

 this->_curr_pos = pt;
 Invalidate(0);
 }

The SetCurrentPoint method is invoked by observer to set the current point where the
text has to be drawn. The Invalidate method is invoked to trigger a WM_PAINT message
and the MFC subsystem will route it to OnPaint (as it is wired in the Message maps):

 void OnPaint()
 {
 CPaintDC d(this);
 CBrush b(RGB(100, 149, 237));
 int x1 = -200, y1 = -220, x2 = 210, y2 = 200;
 Transform(&x1, &y1); Transform(&x2, &y2);
 CRect rect(x1, y1, x2, y2);
 d.FillRect(&rect, &b);
 CPen p2(PS_SOLID, 2, RGB(153, 0, 0));
 d.SelectObject(&p2);

 char *str = "Hello Reactive C++";
 CFont f;
 f.CreatePointFont(240, _T("Times New Roman"));
 d.SelectObject(&f);
 d.SetTextColor(RGB(204, 0, 0));
 d.SetBkMode(TRANSPARENT);
 CRgn crgn;
 crgn.CreateRectRgn(rect.left,rect.top,
 rect.right ,rect.bottom);
 d.SelectClipRgn(&crgn);
 d.TextOut(_curr_pos.x, _curr_pos.y,
 CString(str), strlen(str));
 }

The OnPaint method is invoked by the MFC framework when the Invalidate call is made.
The method draws the literal string, Hello Reactive C++, on the screen:

 void Transform(int *px, int *py) {
 ::GetClientRect(m_hWnd, &_rect);
 int width = (_rect.right - _rect.left) / 2,
 height = (_rect.bottom - _rect.top) / 2;
 *px = *px + width; *py = height - *py;
 }

Reactive Programming Model – Overview and History Chapter 1

[24]

The Transform method computes the bound of the client area of the Frame and converts
Cartesian coordinates to devise coordinates. This computation can be better done
through world coordinate transformations:

 void OnMouseMove(UINT nFlags, CPoint point)
 {
 int x1 = -200,y1= -220, x2 = 210,y2 = 200;
 Transform(&x1, &y1);Transform(&x2, &y2);
 CRect rect(x1, y1, x2, y2);
 POINT pts;
 pts.x = point.x; pts.y = point.y;
 rect.NormalizeRect();
 //--- In a real program, the points will be aggregated
 //---- into a list (stream)
 if (rect.PtInRect(point)) {
 //--- Ideally speaking this notification has to go
 //--- through a non blocking call
 FireEvent(point);
 }
 }

The OnMouseMove method checks whether the mouse position is within a rectangle
centered inside the screen and fires the notification to the observer:

 DECLARE_MESSAGE_MAP();
};

BEGIN_MESSAGE_MAP(CMouseFrame, CFrameWnd)
 ON_WM_CREATE()
 ON_WM_PAINT()
 ON_WM_MOUSEMOVE()
END_MESSAGE_MAP()
class WindowHandler : public IObserver<CPoint>
{
private:
 CMouseFrame *window;
public:
 WindowHandler(CMouseFrame *win) : window(win) { }
 virtual ~WindowHandler() { window = 0; }
 virtual void OnCompleted() {}
 virtual void OnError(CustomException *exception) {}
 virtual void OnNext(CPoint value) {
 if (window) window->SetCurrentPoint(value);
 }
};

Reactive Programming Model – Overview and History Chapter 1

[25]

The preceding class WindowHandler implements the IObserver<T> interface and handles
the event notified by CMouseFrame, which implements the IObservable<CPoint>
interface. In this canned example, we set the current point by invoking
the SetCurrentPoint method to draw the string at the mouse position:

class CMouseApp :public CWinApp
{
 WindowHandler *reactive_handler;
public:
 int InitInstance(){
 CMouseFrame *p = new CMouseFrame();
 p->ShowWindow(1);
 reactive_handler = new WindowHandler(p);
 //--- Wire the observer to the Event Source
 //--- which implements IObservable<T>
 p->Subscribe(*reactive_handler);
 m_pMainWnd = p;
 return 1;
 }
 virtual ~CMouseApp() {
 if (reactive_handler) {
 delete reactive_handler;
 reactive_handler = 0;
 }
 }
};

CMouseApp a;

The philosophy of our book
The purpose of this chapter is to introduce readers to the key interfaces of the
reactive programming mode they are—IObservable<T> and IObserver<T>. They are in
fact the duals of the IEnumerable<T> and IEnumerator<T> interface. We learned how to
model those interfaces in classic C++ (well, mostly) and had toy implementations of all of
them. Finally, we implemented a GUI program that captures mouse movements and
notifies a list of Observers. These toy implementations are to get our feet wet with the ideas
and ideals of the Reactive programming model. Our implementations can be considered as
implementing of OOP-based reactive programming.

Reactive Programming Model – Overview and History Chapter 1

[26]

To be proficient in C++ reactive programming, a programmer has to be comfortable with
the following topics:

Advanced linguistic constructs provided by Modern C++
Functional programming constructs provided by Modern C++
Asynchronous programming (RxCpp handles it for you!) model
Event stream processing
Knowledge of industrial-strength libraries such as RxCpp
Applications of RxCpp in GUI and web programming
Advanced reactive programming constructs
Handling errors and exceptions

This chapter was mostly about key idioms and why we require a robust model for handling
asynchronous data. The next three chapters will cover language features of Modern C++,
handling concurrency/parallelism with C++ standard constructs, and lock-free
programming (made possible by memory model guarantees). The preceding topics will
give the user a firm foundation from which to master functional reactive programming.

In Chapter 5, Introduction to Observables, we will once again return to the topic of
Observables and implement interfaces in a functional manner to reiterate some of the
concepts. In Chapter 6, Introduction to Event Stream Programming Using C++, we will move
towards the advanced event stream processing topics with the help of two industrial-
strength libraries that use the Domain Specific Embedded Language (DSEL) approach
towards event stream processing.

By now, the stage will be set for the user to be exposed to the industrial-strength RxCpp
library and its nuances to write professional-quality Modern C++ programs. In Chapter 7,
Introduction to Data Flow Computation and the RxCpp Library and Chapter 8, RxCpp – the Key
Elements, we will cover this wonderful library. The following chapters will cover Reactive
GUI programming using the Qt library and advanced operators in RxCpp.

The last three chapters cover advanced topics of Reactive design patterns, micro-services in
C++, and handling errors/exceptions. By the end of the book, the reader who started with
classic C++ will have covered a lot of ground, not only in writing Reactive programs but in
the C++ language itself. Because of the nature of the topic, we will cover most of the
features of C++ 17 (at the time of writing).

Reactive Programming Model – Overview and History Chapter 1

[27]

Summary
In this chapter, we learned about some key data structures of the Rx programming model.
We implemented toy versions of them to familiarize us with the conceptual nuances
underpinning them. We started with how GUI events were handled by Windows API, XLib
API, MFC, and Qt. We briefly touched upon how events are handled in COM+/CORBA as
well. Then, a quick overview of Reactive programming was given. After introducing some
interfaces, we implemented them from scratch. Finally, a GUI version of these interfaces on
top of MFC was implemented for the sake of completeness. We also dealt with the key
philosophical aspects of the book.

In the next chapter, we will make a whirlwind tour of the key features of Modern C++ (C++
Versions 11/14/17) by emphasizing on move semantics, Lambdas, type inference, range-
based loops, pipe-able operators, smart pointers, and so on. This is essential for writing
even basic code for Reactive Programming.

2
A Tour of Modern C++ and its

Key Idioms
The classic C++ programming language was standardized in 1998 and it was followed by a
small revision (mostly corrections) in 2003. To support advanced abstractions, developers
relied on the Boost (http:/ ​/ ​www. ​boost. ​org) library and other public domain libraries.
Thanks to the next wave of standardization, the language (from C++ 11 onward) was
enhanced, and now developers can encode most widely used abstractions (supported by
other languages) without relying on external libraries. Even threads and file-system
interfaces, which came squarely under the aegis of libraries, are now part of the standard
language. Modern C++ (which stands for C++ versions 11/14/17) contains superb additions
to the language and its libraries, that make C++ the de-facto choice for writing industrial
strength production software. The features covered in this chapter are the minimum set of
features that a programmer has to understand to work with Reactive Programming
constructs in general and RxCpp in particular. The primary objective of this chapter is to
cover the most important additions to the language which makes implementing Reactive
Programming constructs easier without resorting to esoteric language techniques.
Constructs such as Lambda functions, automatic type inference, rvalue references, move
semantics, and language level concurrency are some of the constructs which the authors of
this book feel that every C++ programmer should know. In this chapter, we will cover the
following topics:

Key concerns for C++ programming language design
Some enhancements to C++ for writing better code
Better memory management through rvalue references and move semantics
Better object lifetime management using an enhanced set of smart pointers
Behavioral parameterization using Lambda functions and expressions
Function Wrappers (the std::function type)
Miscellaneous features
Writing Iterators and Observers (to put everything together)

http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org
http://www.boost.org

A Tour of Modern C++ and its Key Idioms Chapter 2

[29]

The key concerns of the C++ programming
language
As far as developers are concerned, the three key concerns that C++ programming language
designers keep in mind were (and still are) as follows:

Zero Cost Abstraction - No performance penalty for higher level abstraction
Expressivity - A user defined type (UDT) or class should be as expressive as
built-in types
Substitutability - A UDT can be substituted wherever built-in-types are expected
(as in generic data structures and algorithms)

We will discuss these briefly.

Zero cost abstraction
The C++ programming language has always helped developers to write code that exploits
the microprocessor (on which generated code runs) and also raise the level of abstraction
when it matters. While raising the abstraction, the designers of the language have always
tried to minimize (almost eliminate) their performance overhead. This is called Zero Cost
Abstraction or Zero Overhead Cost Abstraction. The only notable penalty you pay is the
cost of indirect calls (through function pointers) while dispatching virtual functions.
Despite adding tons of features to the language, the designers have maintained the "Zero
Cost Abstraction" guarantee implied by the language from its inception.

Expressivity
C++ helps a developer to write user defined types or classes that can be as expressive as the
built-in types of the programming languages. This enables one to write a arbitrary-
precision arithmetic class (monikered as BigInteger/BigFloat in some languages), which
contains all the features of a double or float. For the sake of explanation, we have defined a
SmartFloat class that wraps IEEE double precision floating point numbers and most of
the operators available to the double data type is overloaded. The following code snippets
show that one can write types that mimic the semantics of built-in types such as int, float, or
double:

//---- SmartFloat.cpp
#include <iostream>
#include <vector>

A Tour of Modern C++ and its Key Idioms Chapter 2

[30]

#include <algorithm>
using namespace std;
class SmartFloat {
 double _value; // underlying store
 public:
 SmartFloat(double value) : _value(value) {}
 SmartFloat() : _value(0) {}
 SmartFloat(const SmartFloat& other) { _value = other._value; }
 SmartFloat& operator = (const SmartFloat& other) {
 if (this != &other) { _value = other._value;}
 return *this;
 }
 SmartFloat& operator = (double value)
 { _value = value; return *this;}
 ~SmartFloat(){ }

The SmartFloat class wraps a double value and has defined some constructors and
assignment operators to initialize instances properly. In the following snippet, we will
define some operators that help to increment the value. Both the prefix and postfix variants
of operators are defined:

 SmartFloat& operator ++ () { _value++; return *this; }
 SmartFloat operator ++ (int) { // postfix operator
 SmartFloat nu(*this); ++_value; return nu;
 }
 SmartFloat& operator -- () { _value--; return *this; }
 SmartFloat operator -- (int) {
 SmartFloat nu(*this); --_value; return nu;
 }

The preceding code snippets implement increment operators (both prefix and postfix) and
are meant for demonstration purposes only. In a real-world class, we will check for floating
point overflow and underflow to make the code more robust. The whole purpose of
wrapping a type is to write robust code!

 SmartFloat& operator += (double x) { _value += x; return *this;}
 SmartFloat& operator -= (double x) { _value -= x;return *this; }
 SmartFloat& operator *= (double x) { _value *= x; return *this;}
 SmartFloat& operator /= (double x) { _value /= x; return *this;}

The preceding code snippets implement C++ style assignment operators and once again, to
make the listing short, we have not checked whether any floating point overflow or
underflow is there. We do not handle exceptions as well here to keep the listing brief.

 bool operator > (const SmartFloat& other)
 { return _value > other._value; }
 bool operator < (const SmartFloat& other)

A Tour of Modern C++ and its Key Idioms Chapter 2

[31]

 {return _value < other._value;}
 bool operator == (const SmartFloat& other)
 { return _value == other._value;}
 bool operator != (const SmartFloat& other)
 { return _value != other._value;}
 bool operator >= (const SmartFloat& other)
 { return _value >= other._value;}
 bool operator <= (const SmartFloat& other)
 { return _value <= other._value;}

The preceding code implements relational operators and most of the semantics associated
with double precision floating points have been implemented as shown:

 operator int () { return _value; }
 operator double () { return _value;}
};

For the sake of completeness, we have implemented conversion operators to int and
double. We will write two functions to aggregate values stored in an array. The first
function expects an array of double as parameter and the second one expects a
SmartFloat array as parameter. The code is identical in both routines and only the type
changes. Both will produce the same result:

double Accumulate(double a[] , int count){
 double value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}
double Accumulate(SmartFloat a[] , int count){
 SmartFloat value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}
int main() {
 // using C++ 1z's initializer list
 double x[] = { 10.0,20.0,30,40 };
 SmartFloat y[] = { 10,20.0,30,40 };
 double res = Accumulate(x,4); // will call the double version
 cout << res << endl;
 res = Accumulate(y,4); // will call the SmartFloat version
 cout << res << endl;
}

A Tour of Modern C++ and its Key Idioms Chapter 2

[32]

The C++ language helps us write expressive types that augment the semantics of basic
types. The expressiveness of the language also helps one to write good value types and
reference types using a myriad of techniques supported by the language. With support for
operator overloading, conversion operators, placement new, and other related techniques,
the language has taken the class design to a higher level compared to other languages of its
time. But, with power comes responsibility and the language sometimes gives you enough
rope to shoot yourself in the foot.

Substitutability
In the previous example, we saw how a user-defined type can be used to express all the
operations done on a built-in type. Another goal of C++ is to write code in a generic manner
where we can substitute a user-defined class that mimics the semantics of one of the built-in
types such as float, double, int, and so on:

//------------- from SmartValue.cpp
template <class T>
T Accumulate(T a[] , int count) {
 T value = 0;
 for(int i=0; i<count; ++i) { value += a[i]; }
 return value;
}
int main(){
 //----- Templated version of SmartFloat
 SmartValue<double> y[] = { 10,20.0,30,40 };
 double res = Accumulate(y,4);
 cout << res << endl;
}

The C++ programming language supports different programming
paradigms and the three principles outlined previously are just some of
them. The language gives support for constructs that can help create
robust types (domain-specific) for writing better code. These three
principles gave us a powerful and fast programming language for sure.
Modern C++did add a lot of new abstractions to make the life of a
programmer easier. But the three design principles outlined previously
have not been sacrificed in any way to achieve those objectives. This was
partly possible because of the meta programming support the language
had due to the inadvertent Turing completeness of the template
mechanism. Read about template meta programming (TMP) and Turing
Completeness with the help of your favorite search engine.

A Tour of Modern C++ and its Key Idioms Chapter 2

[33]

Enhancements to C++ for writing better
code
The programming language universe has changed a lot in the last decade and those
changes should reflect in the C++ programming language in its new avatar. Most of the
innovations in Modern C++ involve handling advanced abstractions and the introduction of
functional programming constructs to support language level concurrency. Most modern
languages have got a garbage collector and a run-time manages these complexities. The C++
programming language does not have automatic garbage collection as part of the language
standard. The C++ programming languages with its implicit guarantee of Zero cost
abstraction (you do not pay for what you do not use) and maximum run-time performance,
has to resort to a lot of compile-time tricks and meta programming techniques to achieve
the abstraction level supported by a language such as C#, Java, or Scala. Some of them are
outlined in the following sections and you can delve into these topics yourself. The website
http:/​/​en.​cppreference. ​com is a good site for advancing your knowledge of the C++
programming language.

Type deduction and inference
The Modern C++ language compiler does a wonderful job of deducing types from the
expressions and statements specified by the programmers. Most modern programming
languages do have support for type inference and so does Modern C++. This is an idiom
borrowed from Functional Programming languages such as Haskell and ML. Type
inferences are already available with the C# and Scala programming languages. We will
write a small program to kick-start us with type inference:

//----- AutoFirst.cpp
#include <iostream>
#include <vector>
using namespace std;
int main(){
 vector<string> vt = {"first", "second", "third", "fourth"};
 //--- Explicitly specify the Type (makes it verbose)
 for (vector<string>::iterator it = vt.begin();
 it != vt.end(); ++it)
 cout << *it << " ";
 //--- Let the compiler infer the type for us
 for (auto it2 = vt.begin(); it2 != vt.end(); ++it2)
 cout << *it2 << " ";
 return 0;
}

http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com
http://en.cppreference.com

A Tour of Modern C++ and its Key Idioms Chapter 2

[34]

The auto keyword specifies that the type of the variable will be deduced by the compiler
based on initialization and the return values of functions specified in the expression. In this
particular example, we do not gain much. As our declarations get more complicated, it is
better to let the compiler do the type inference. Our code listings will use auto to simplify
the code throughout the book. Now, let us write a simple program to make the idea even
more clear:

//----- AutoSecond.cpp
#include <iostream>
#include <vector>
#include <initializer_list>
using namespace std;
int main() {
 vector<double> vtdbl = {0, 3.14, 2.718, 10.00};
 auto vt_dbl2 = vtdbl; // type will be deduced
 auto size = vt_dbl2.size(); // size_t
 auto &rvec = vtdbl; // specify a auto reference
 cout << size << endl;
 // Iterate - Compiler infers the type
 for (auto it = vtdbl.begin(); it != vtdbl.end(); ++it)
 cout << *it << " ";
 // 'it2' evaluates to iterator to vector of double
 for (auto it2 = vt_dbl2.begin(); it2 != vt_dbl2.end(); ++it2)
 cout << *it2 << " ";
 // This will change the first element of vtdbl vector
 rvec[0] = 100;
 // Now Iterate to reflect the type
 for (auto it3 = vtdbl.begin(); it3 != vtdbl.end(); ++it3)
 cout << *it3 << " ";
 return 0;
}

The preceding code demonstrates the use of type inference while writing Modern C++ code.
The C++ programming language also has a new keyword that helps to query the type of
expression given as arguments. The general form of the keyword is decltype(<expr>).
The following program helps to demonstrate the use of this particular keyword:

//---- Decltype.cpp
#include <iostream>
using namespace std;
int foo() { return 10; }
char bar() { return 'g'; }
auto fancy() -> decltype(1.0f) { return 1;} //return type is float
int main() {
 // Data type of x is same as return type of foo()
 // and type of y is same as return type of bar()

A Tour of Modern C++ and its Key Idioms Chapter 2

[35]

 decltype(foo()) x;
 decltype(bar()) y;
 //--- in g++, Should print i => int
 cout << typeid(x).name() << endl;
 //--- in g++, Should print c => char
 cout << typeid(y).name() << endl;
 struct A { double x; };
 const A* a = new A();
 decltype(a->x) z; // type is double
 decltype((a->x)) t= z; // type is const double&
 //--- in g++, Should print d => double
 cout << typeid(z).name() << endl;
 cout << typeid(t).name() << endl;
 //--- in g++, Should print f => float
 cout << typeid(decltype(fancy())).name() << endl;
 return 0;
}

The decltype is a compile-time construct and it helps to specify the type of a variable (the
compiler will do the hard work to figure it out) and also helps us to force a type on a
variable (see the preceding fancy() function).

Uniform initialization of variables
Classic C++ had some kind of ad-hoc syntax for the initialization of variables. Modern C++
supports uniform initialization (we have already seen examples in the type inference
section). The language provides helper classes to developers to support uniform
initialization for their custom types:

//----------------Initialization.cpp
#include <iostream>
#include <vector>
#include <initializer_list>
using namespace std;
template <class T>
struct Vector_Wrapper {
 std::vector<T> vctr;
 Vector_Wrapper(std::initializer_list<T> l) : vctr(l) {}
 void Append(std::initializer_list<T> l)
 { vctr.insert(vctr.end(), l.begin(), l.end());}
};
int main() {
 Vector_Wrapper<int> vcw = {1, 2, 3, 4, 5}; // list-initialization
 vcw.Append({6, 7, 8}); // list-initialization in function call

A Tour of Modern C++ and its Key Idioms Chapter 2

[36]

 for (auto n : vcw.vctr) { std::cout << n << ' '; }
 std::cout << '\n';
}

The preceding listing shows how one can enable initialization lists for a custom class
created by a programmer.

Variadic templates
In C++ 11 and above, there is support for variadic templates as part of the standard
language. A variadic template is a template class or template function that takes a variable
number in a template argument. In classic C++, template instantiation happens with a fixed
number of parameters. Variadic templates are supported both at class level and function
level. In this section, we will deal with variadic functions as they are used extensively in
writing functional-style programs, compile-time programming (meta programming), and
pipeable functions:

//Variadic.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
//--- add given below is a base case for ending compile time
//--- recursion
int add() { return 0; } // end condition
//---- Declare a Variadic function Template
//---- ... is called parameter pack. The compiler
//--- synthesize a function based on the number of arguments
//------ given by the programmer.
//----- decltype(auto) => Compiler will do Type Inference
template<class T0, class ... Ts>
decltype(auto) add(T0 first, Ts ... rest) {
 return first + add(rest ...);
}
int main() { int n = add(0,2,3,4); cout << n << endl; }

A Tour of Modern C++ and its Key Idioms Chapter 2

[37]

In the preceding code, the compiler synthesizes a function based on the number of
arguments passed. The compiler understands that add is a variadic function and generates
the code by recursively unpacking the parameters during compile time. Compile time
recursion will stop when the compiler has processed all the parameters. The base case
version is a hint to the compiler to stop recursion. The next program shows how variadic
templates and perfect forwarding can be used to write a function that takes an arbitrary
number of parameters:

//Variadic2.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
//--------- Print values to the console for basic types
//-------- These are base case versions
void EmitConsole(int value) { cout << "Integer: " << value << endl; }
void EmitConsole(double value) { cout << "Double: " << value << endl; }
void EmitConsole(const string& value){cout << "String: "<<value<< endl; }

The three variants of EmitConsole print the argument to the console. We have functions
for printing int, double, and string. Using these functions as a base case, we will write a
function that uses universal references and perfect forwarding to write functions that take
arbitrary values:

template<typename T>
void EmitValues(T&& arg) { EmitConsole(std::forward<T>(arg)); }

template<typename T1, typename... Tn>
void EmitValues(T1&& arg1, Tn&&... args){
 EmitConsole(std::forward<T1>(arg1));
 EmitValues(std::forward<Tn>(args)...);
}

int main() { EmitValues(0,2.0,"Hello World",4); }

A Tour of Modern C++ and its Key Idioms Chapter 2

[38]

Rvalue references
If you have been programming in C++ for a long time, you might be familiar with the fact
that C++ references help you to alias a variable and you can do assignment to the references
to reflect the mutation in the variable aliased. The kinds of reference supported by C++
were called lvalue references (as they were references to variables that can come in the left
side of the assignment). The following code snippets show the use of lvalue references:

//---- Lvalue.cpp
#include <iostream>
using namespace std;
int main() {
 int i=0;
 cout << i << endl; //prints 0
 int& ri = i;
 ri = 20;
 cout << i << endl; // prints 20
}

int& is an instance of lvalue references. In Modern C++, there is the notion of
rvalue references. rvalue is defined as anything that is not an lvalue, the kind of stuff that
can appear on the right side of the assignment. In classic C++, there was no notion of an
rvalue references. Modern C++ introduced it:

///---- Rvaluref.cpp
#include <iostream>using namespace std;
int main() {
 int&& j = 42;int x = 3,y=5; int&& z = x + y; cout << z << endl;
 z = 10; cout << z << endl;j=20;cout << j << endl;
}

Rvalue references are indicted by two &&. The following program will clearly demonstrate
the use of rvalue references while invoking functions:

//------- RvaluerefCall.cpp
#include <iostream>
using namespace std;
void TestFunction(int & a) {cout << a << endl;}
void TestFunction(int && a){
 cout << "rvalue references" << endl;
 cout << a << endl;
}
int main() {
int&& j = 42;
int x = 3,y=5;
int&& z = x + y;

A Tour of Modern C++ and its Key Idioms Chapter 2

[39]

 TestFunction(x + y); // Should call rvalue reference function
 TestFunction(j); // Calls Lvalue Refreence function
}

The real power of rvalue references is visible in the case of memory management. The C++
programming language has got the notion of Copy constructor and Assignment operators.
They mostly copy the source object contents. With the help of rvalue references, one can
avoid expensive copying by swapping pointers, as rvalue references are temporaries or
intermediate expressions. The following section demonstrates this.

Move semantics
The C++ programming language implicitly warrants a Copy Constructor, Assignment
Operator, and a Destructor (some times virtual) with every class designed by us. This is
meant to do resource management while cloning an object or while assigning to an existing
object. Sometimes it is very expensive to copy an object and the movement of ownership
(through pointers) helps in writing fast code. Modern C++ has got a facility to provide a
Move Constructor and a Move assignment operator to help developers avoid copying large
objects, during the creation of a new object or assignment to a new object. Rvalue references
can act as a hint to the compiler that, when temporary objects are involved, a move version
of a constructor or a move version of assignment is better suited for the context:

//----- FloatBuffer.cpp
#include <iostream>
#include <vector>
using namespace std;
class FloatBuffer {
 double *bfr; int count;
public:
 FloatBuffer():bfr(nullptr),count(0){}
 FloatBuffer(int pcount):bfr(new double[pcount]),count(pcount){}
 // Copy constructor.
 FloatBuffer(const FloatBuffer& other) : count(other.count)
 , bfr(new double[other.count])
 { std::copy(other.bfr, other.bfr + count, bfr); }
 // Copy assignment operator - source code is obvious
 FloatBuffer& operator=(const FloatBuffer& other) {
 if (this != &other) {
 if (bfr != nullptr)
 delete[] bfr; // free memory of the current object
 count = other.count;
 bfr = new double[count]; //re-allocate
 std::copy(other.bfr, other.bfr + count, bfr);
 }

A Tour of Modern C++ and its Key Idioms Chapter 2

[40]

 return *this;
 }
 // Move constructor to enable move semantics
 // The Modern STL containers supports move sementcis
 FloatBuffer(FloatBuffer&& other) : bfr(nullptr) , count(0) {
 cout << "in move constructor" << endl;
 // since it is a move constructor, we are not copying elements from
 // the source object. We just assign the pointers to steal memory
 bfr = other.bfr;
 count = other.count;
 // Now that we have grabbed our memory, we just assign null to
 // source pointer
 other.bfr = nullptr;
 other.count = 0;
 }
// Move assignment operator.
FloatBuffer& operator=(FloatBuffer&& other) {
 if (this != &other)
 {
 // Free the existing resource.
 delete[] bfr;
 // Copy the data pointer and its length from the
 // source object.
 bfr = other.bfr;
 count = other.count;
 // We have stolen the memory, now set the pinter to null
 other.bfr = nullptr;
 other.count = 0;
 }
 return *this;
}

};
int main() {
 // Create a vector object and add a few elements to it.
 // Since STL supports move semantics move methods will be called.
 // in this particular case (Modern Compilers are smart)
 vector<FloatBuffer> v;
 v.push_back(FloatBuffer(25));
 v.push_back(FloatBuffer(75));
}

The std::move function can be used to indicate (while passing parameters) that the
candidate object is movable and the compiler will invoke appropriate methods (move
assignment or move constructor) to optimize the cost associated with memory
management. Basically, std::move is a static_cast to an rvalue reference.

A Tour of Modern C++ and its Key Idioms Chapter 2

[41]

Smart pointers
Managing object lifetimes has been a problematic area for the C++ programming language.
If the developer is not careful, the program can leak memory and will slow down
performance. Smart pointers are wrapper classes around a raw pointer where operators
such as dereferencing (*) and referencing (->) are overloaded. Smart pointers can do object
lifetime management, act as a limited form of garbage collection, free memory, and so on.
The Modern C++ language has:

unique_ptr<T>

shared_ptr<T>

weak_ptr<T>

A unique_ptr<T> is a wrapper for a raw pointer where there is exclusive ownership with
the wrapper. The following code snippet will demonstrate the use of <unique_ptr>:

//---- Unique_Ptr.cpp
#include <iostream>
#include <deque>#include <memory>
using namespace std;
int main(int argc , char **argv) {
 // Define a Smart Pointer for STL deque container...
 unique_ptr< deque<int> > dq(new deque<int>());
 //------ populate values , leverages -> operator
 dq->push_front(10); dq->push_front(20);
 dq->push_back(23); dq->push_front(16);
 dq->push_back(41);
 auto dqiter = dq->begin();
 while (dqiter != dq->end())
 { cout << *dqiter << "\n"; dqiter++; }
 //------ SmartPointer will free reference
 //------ and it's dtor will be called here
 return 0;
}

std::shared_ptr is a smart pointer that uses reference counting to keep track of
references made to a particular instance of an object. The underlying object is destroyed
when the last remaining shared_ptr pointing to it is destroyed or reset:

//----- Shared_Ptr.cpp
#include <iostream>
#include <memory>
#include <stdio.h>
using namespace std;
//

A Tour of Modern C++ and its Key Idioms Chapter 2

[42]

// Even If you pass shared_ptr<T> instance
// by value, the update is visible to callee
// as shared_ptr<T>'s copy constructor reference
// counts to the orgininal instance
//

void foo_byvalue(std::shared_ptr<int> i) { (*i)++;}

///////////////////////////////////////
// passed by reference,we have not
// created a copy.
//
void foo_byreference(std::shared_ptr<int>& i) { (*i)++; }
int main(int argc, char **argv)
{
 auto sp = std::make_shared<int>(10);
 foo_byvalue(sp);
 foo_byreference(sp);
 //--------- The output should be 12
 std::cout << *sp << std::endl;
}

std:weak_ptr is a container for a raw pointer. It is created as a copy of a shared_ptr.
The existence or destruction of weak_ptr copies of a shared_ptr have no effect on the
shared_ptr or its other copies. After all copies of a shared_ptr have been destroyed, all
weak_ptr copies become empty. The following program demonstrates a mechanism that
helps us to detect defunct pointers using weak_ptr:

//------- Weak_Ptr.cpp
#include <iostream>
#include <deque>
#include <memory>

using namespace std;
int main(int argc , char **argv)
{
 std::shared_ptr<int> ptr_1(new int(500));
 std::weak_ptr<int> wptr_1 = ptr_1;
 {
 std::shared_ptr<int> ptr_2 = wptr_1.lock();
 if(ptr_2)
 {
 cout << *ptr_2 << endl; // this will be exeucted
 }
 //---- ptr_2 will go out of the scope
 }
 ptr_1.reset(); //Memory is deleted.

A Tour of Modern C++ and its Key Idioms Chapter 2

[43]

 std::shared_ptr<int> ptr_3= wptr_1.lock();
 //-------- Always else part will be executed
 //-------- as ptr_3 is nullptr now
 if(ptr_3)
 cout << *ptr_3 << endl;
 else
 cout << "Defunct Pointer" << endl;
 return 0;
}

Classic C++ had a smart pointer type called auto_ptr and it has been removed from the
language standard. One needs to use unique_ptr instead.

Lambda functions
One of the major additions to the C++ language is Lambda functions and Lambda
expressions. They are anonymous functions that the programmer can define at the call site
to perform some logic. This simplifies the logic and code readability also increases in a
remarkable manner.

Rather than defining what a Lambda function is, let us write a piece of code that helps us
count the number of positive numbers in a vector<int>. In this case, we need to filter out
the negative values and count the rest. We will use an STL count_if to write the code:

//LambdaFirst.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
using namespace std;
int main() {
 auto num_vect =
 vector<int>{ 10, 23, -33, 15, -7, 60, 80};
 //---- Define a Lambda Function to Filter out negatives
 auto filter = [](int const value) {return value > 0; };
 auto cnt= count_if(
 begin(num_vect), end(num_vect),filter);
 cout << cnt << endl;
}

A Tour of Modern C++ and its Key Idioms Chapter 2

[44]

In the preceding code snippet, the variable filter is assigned an anonymous function and we
are using the filter in the count_if STL function. Now, let us write a simple Lambda
function that we will specify at the function call site. We will be using STL accumulate to
aggregate the values inside a vector:

//-------------- LambdaSecond.cpp
#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>
#include <numeric>
using namespace std;
int main() {
 auto num_vect =
 vector<int>{ 10, 23, -33, 15, -7, 60, 80};
 //-- Define a BinaryOperation Lambda at the call site
 auto accum = std::accumulate(
 std::begin(num_vect), std::end(num_vect), 0,
 [](auto const s, auto const n) {return s + n;});
 cout << accum << endl;
}

Functors and Lambdas
In classic C++, while using STL, we extensively use Function Objects or Functors by
overloading Function Operators to write transformation filters and perform reduction on
STL containers:

//----- LambdaThird.cpp
#include <iostream>
#include <numeric>
using namespace std;
//////////////////////////
// Functors to add and multiply two numbers
template <typename T>
struct addition{
 T operator () (const T& init, const T& a) { return init + a; }
};
template <typename T>
struct multiply {
 T operator () (const T& init, const T& a) { return init * a; }
};
int main()
{
 double v1[3] = {1.0, 2.0, 4.0}, sum;

A Tour of Modern C++ and its Key Idioms Chapter 2

[45]

 sum = accumulate(v1, v1 + 3, 0.0, addition<double>());
 cout << "sum = " << sum << endl;
 sum = accumulate(v1,v1+3,0.0, [] (const double& a ,const double& b)
{
 return a +b;
 });
 cout << "sum = " << sum << endl;
 double mul_pi = accumulate(v1, v1 + 3, 1.0, multiply<double>());
 cout << "mul_pi = " << mul_pi << endl;
 mul_pi= accumulate(v1,v1+3,1, [] (const double& a , const double& b){
 return a *b;
 });
 cout << "mul_pi = " << mul_pi << endl;
}

The following program clearly demonstrates the usage of Lambda by writing a toy sort
program. We will show how we can use Function Objects and Lambdas to write equivalent
code. The code is written in a generic manner, but it makes an assumption that numbers are
expected (double, float, integer, or a user defined equivalent):

/////////////////
//-------- LambdaFourth.cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
//--- Generic functions for Comparison and Swap
template <typename T>
bool Cmp(T& a , T&b) {return (a > b) ? true: false;}
template <typename T>
void Swap(T& a , T&b) { T c = a;a = b;b = c;}

Cmp and Swap are generic functions that will be used to compare adjacent elements and
swap elements, respectively, while performing the sort operation:

template <typename T>
void BubbleSortFunctor(T *arr , int length) {
 for(int i=0; i< length-1; ++i)
 for(int j=i+1; j< length; ++j)
 if (Cmp(arr[i] , arr[j]))
 Swap(arr[i],arr[j]);
}

Armed with Cmp and Swap, writing a bubble sort is a simple affair. We need to have a
nested loop where we will compare two elements and if Cmp returns true, we will invoke
Swap to exchange values:

A Tour of Modern C++ and its Key Idioms Chapter 2

[46]

template <typename T>
void BubbleSortLambda(T *arr , int length) {
 auto CmpLambda = [] (const auto& a , const auto& b)
 { return (a > b) ? true: false; };
 auto SwapLambda = [] (auto& a , auto& b)
 { auto c = a;a = b;b = c;};
 for(int i=0; i< length-1; ++i)
 for(int j=i+1; j< length; ++j)
 if (CmpLambda(arr[i] , arr[j]))
 SwapLambda (arr[i],arr[j]);
}

In the preceding routine, we define the comparison and swap function as Lambdas. The
Lambda function is a mechanism to specify a piece of code or expression inline, often
called anonymous functions. The definition can be given in a syntax specified by the C++
language, and can be assigned to a variable, passed as a parameter , or returned from a
function. In the preceding function, the variables CmpLambda and SwapLambda are
examples of anonymous functions specified in Lambda syntax. The body of the Lambda
functions is not much different from the preceding function version. To learn more about
Lambda functions and expression, you can consult the page at http:/ ​/​en. ​cppreference.
com/​w/​cpp/​language/ ​lambda.

template <typename T>
void Print(const T& container){
 for(auto i = container.begin() ; i != container.end(); ++i)
 cout << *i << "\n" ;
}

The Print routine just cycles through the elements in the container and prints the contents
to the console:

int main(int argc , char **argv){
 double ar[4] = {20,10,15,-41};
 BubbleSortFunctor(ar,4);
 vector<double> a(ar,ar+4);
 Print(a);
 cout << "===" << endl;
 ar[0] = 20;ar[1] = 10;ar[2] = 15;ar[3] = -41;
 BubbleSortLambda(ar,4);
 vector<double> a1(ar,ar+4);
 Print(a1);
 cout << "===" << endl;
}

http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda
http://en.cppreference.com/w/cpp/language/lambda

A Tour of Modern C++ and its Key Idioms Chapter 2

[47]

Composition, currying, and partial function
application
One advantage of Lambdas is you can compose two functions together to create a
composition of functions as you do in mathematics (read about function composition in the
context of mathematics and functional programming using favorite search engine). The
following program demonstrates the idea. This is a toy implementation and writing a
general-purpose implementation is beyond the scope of this chapter:

//------------ Compose.cpp
//----- g++ -std=c++1z Compose.cpp
#include <iostream>
using namespace std;
//---------- base case compile time recursion
//---------- stops here
template <typename F, typename G>
auto Compose(F&& f, G&& g)
{ return [=](auto x) { return f(g(x)); };}
//----- Performs compile time recursion based
//----- on number of parameters
template <typename F, typename... R>
auto Compose(F&& f, R&&... r){
 return [=](auto x) { return f(Compose(r...)(x)); };
}

Compose is a variadic template function and the compiler generates code by recursively
expanding the Compose arguments until all the arguments are processed. In the preceding
code, we have used [=] to indicate to the compiler that we should capture all variables
referenced in the body of the Lambda by value. You can study more about Closure and
Variable Capture in the context of functional programming. The C++ language gives
flexibility to Capture variables by value (as well as using [&]) or by specifying variables to
be captured explicitly (such as [&var]).

The functional programming paradigm is based on a mathematical formalism called
Lambda calculus invented by Alonzo Church, an American mathematician. The Lambda
calculus supports only unary functions and currying is a technique that breaks a multiple
argument function into a series of function evaluations that take one argument at a time.

A Tour of Modern C++ and its Key Idioms Chapter 2

[48]

Using Lambdas and writing functions in a specific manner, we can simulate currying in
C++:

auto CurriedAdd3(int x) {
 return [x](int y) { //capture x
 return [x, y](int z){ return x + y + z; };
 };
};

The partial function application involves the conversion of functions with multiple
arguments into a fixed number of arguments. If the fixed number of arguments is less than
the arity (parameter count) of the function, a new function will be returned that expects the
rest of the parameters. When all parameters are received, the function will be invoked. We
can treat the partial application as some form of memorization where parameters are
cached until we receive all of them to invoke them.

In the following code snippets, we have used constructs like template parameter pack and
variadic templates. A template parameter pack is a template parameter that accepts zero or
more template arguments (non-types, types, or templates). A function parameter pack is a
function parameter that accepts zero or more function arguments. A template with at least
one parameter pack is called a variadic template. A good idea about parameter pack and
variadic templates is necessary for understanding sizeof... constructs.

template <typename... Ts>
auto PartialFunctionAdd3(Ts... xs) {
 //---- http://en.cppreference.com/w/cpp/language/parameter_pack
 //---- http://en.cppreference.com/w/cpp/language/sizeof...
 static_assert(sizeof...(xs) <= 3);
 if constexpr (sizeof...(xs) == 3){
 // Base case: evaluate and return the sum.
 return (0 + ... + xs);
 }
 else{
 // Recursive case: bind `xs...` and return another
 return [xs...](auto... ys){
 return PartialFunctionAdd3(xs..., ys...);
 };
 }
}
int main() {
 // ------------- Compose two functions together
 //----https://en.wikipedia.org/wiki/Function_composition
 auto val = Compose(
 [](int const a) {return std::to_string(a); },
 [](int const a) {return a * a; })(4); // val = "16"
 cout << val << std::endl; //should print 16

A Tour of Modern C++ and its Key Idioms Chapter 2

[49]

 // ----------------- Invoke the Curried function
 auto p = CurriedAdd3(4)(5)(6);
 cout << p << endl;
 //-------------- Compose a set of function together
 auto func = Compose(
 [](int const n) {return std::to_string(n); },
 [](int const n) {return n * n; },
 [](int const n) {return n + n; },
 [](int const n) {return std::abs(n); });
 cout << func(5) << endl;
 //----------- Invoke Partial Functions giving different arguments
 PartialFunctionAdd3(1, 2, 3);
 PartialFunctionAdd3(1, 2)(3);
 PartialFunctionAdd3(1)(2)(3);
}

Function wrappers
Function wrappers are classes that can wrap any functions, function objects, or Lambdas
into a copiable object. The type of the wrapper depends upon the function prototype of the
class. std::function(<prototype>) from the <functional> header represents a
function wrapper:

//---------------- FuncWrapper.cpp Requires C++ 17 (-std=c++1z)
#include <functional>
#include <iostream>
using namespace std;
//-------------- Simple Function call
void PrintNumber(int val){ cout << val << endl; }
// ------------------ A class which overloads function operator
struct PrintNumber {
 void operator()(int i) const { std::cout << i << '\n';}
};
//------------ To demonstrate the usage of method call
struct FooClass {
 int number;
 FooClass(int pnum) : number(pnum){}
 void PrintNumber(int val) const { std::cout << number + val<< endl; }
};
int main() {
 // ----------------- Ordinary Function Wrapped
 std::function<void(int)>
 displaynum = PrintNumber;
 displaynum(0xF000);
 std::invoke(displaynum,0xFF00); //call through std::invoke

A Tour of Modern C++ and its Key Idioms Chapter 2

[50]

 //-------------- Lambda Functions Wrapped
 std::function<void()> lambdaprint = []() { PrintNumber(786); };
 lambdaprint();
 std::invoke(lambdaprint);
 // Wrapping member functions of a class
 std::function<void(const FooClass&, int)>
 class display = &FooClass::PrintNumber;
 // creating an instance
 const FooClass fooinstance(100);
 class display (fooinstance,100);
}

We will be using std::function in our code extensively in the coming sections, as it helps
to drag function calls as data.

Composing functions together with the
pipe operator
The Unix operating system's command line shell allows the standard output of one
function to be piped into the another to form a filter chain. Later, this feature became part of
every command line shell offered as part of most operating systems. While writing
functional style code, when we combine methods through functional composition, the code
becomes hard to read because of deep nesting. Now, with Modern C++ we can overload the
pipe (|) operator to allow chaining several functions together, like we do commands in a
Unix shell or Windows PowerShell console. That is why someone re-christened the LISP
language as Lots of Irritating and Silly Parentheses. The RxCpp library uses the | operator
extensively to compose functions together. The following code helps us understand how
one can create pipeable functions. We will take a look at how this can be implemented in
principle. The code given here is only good for expository purposes:

//---- PipeFunc2.cpp
//-------- g++ -std=c++1z PipeFunc2.cpp
#include <iostream>
using namespace std;

struct AddOne {
 template<class T>
 auto operator()(T x) const { return x + 1; }
};

A Tour of Modern C++ and its Key Idioms Chapter 2

[51]

struct SumFunction {
 template<class T>
 auto operator()(T x,T y) const { return x + y;} // Binary Operator
};

The preceding code creates a set of Callable classes and it will be used as part of a
compositional chain of functions. Now, we need to create a mechanism to convert an
arbitrary function to a closure:

//-------------- Create a Pipable Closure Function (Unary)
//-------------- Uses Variadic Templates Paramter pack
template<class F>
struct PipableClosure : F{
 template<class... Xs>
 PipableClosure(Xs&&... xs) : // Xs is a universal reference
 F(std::forward<Xs>(xs)...) // perfect forwarding
 {}
};
//---------- A helper function which converts a Function to a Closure
template<class F>
auto MakePipeClosure(F f)
{ return PipableClosure<F>(std::move(f)); }
// ------------ Declare a Closure for Binary
//------------- Functions
//
template<class F>
struct PipableClosureBinary {
 template<class... Ts>
 auto operator()(Ts... xs) const {
 return MakePipeClosure([=](auto x) -> decltype(auto)
 { return F()(x, xs...);}); }
};
//------- Declare a pipe operator
//------- uses perfect forwarding to invoke the function
template<class T, class F> //---- Declare a pipe operator
decltype(auto) operator|(T&& x, const PipableClosure<F>& pfn)
{ return pfn(std::forward<T>(x)); }

int main() {
 //-------- Declare a Unary Function Closure
 const PipableClosure<AddOne> fnclosure = {};
 int value = 1 | fnclosure| fnclosure;
 std::cout << value << std::endl;

A Tour of Modern C++ and its Key Idioms Chapter 2

[52]

 //--------- Decalre a Binary function closure
 const PipableClosureBinary<SumFunction> sumfunction = {};
 int value1 = 1 | sumfunction(2) | sumfunction(5) | fnclosure;
 std::cout << value1 << std::endl;
}

Now, we can create an instance of PipableClosure with a unary function as a parameter
and chain (or compose) together a series of invocations to the closure. The preceding code
snippet should print three on the console. We have also created a PipableBinaryClosure
instance to string together both unary and binary functions.

Miscellaneous features
So far, we have covered the most important semantic changes to the language beginning
with the C++ 11 standard. The purpose of this chapter is to highlight key changes that
might be useful in writing idiomatic Modern C++ programs. The C++ 17 standard added
some more stuff into the language. We will be highlighting a few more features of the
language to wrap up this discussion.

Fold expressions
The C++ 17 standard added support for fold expressions to ease the generation of variadic
functions. The Compiler does pattern matching and generates the code by inferring the
intent of the programmer. The following code snippet demonstrates the idea:

//---------------- Folds.cpp
//--------------- Requires C++ 17 (-std=c++1z)
//--------------- http://en.cppreference.com/w/cpp/language/fold
#include <functional>
#include <iostream>

using namespace std;
template <typename... Ts>
auto AddFoldLeftUn(Ts... args) { return (... + args); }
template <typename... Ts>
auto AddFoldLeftBin(int n,Ts... args){ return (n + ... + args);}
template <typename... Ts>
auto AddFoldRightUn(Ts... args) { return (args + ...); }
template <typename... Ts>
auto AddFoldRightBin(int n,Ts... args) { return (args + ... + n); }
template <typename T,typename... Ts>
auto AddFoldRightBinPoly(T n,Ts... args) { return (args + ... + n); }

A Tour of Modern C++ and its Key Idioms Chapter 2

[53]

template <typename T,typename... Ts>
auto AddFoldLeftBinPoly(T n,Ts... args) { return (n + ... + args); }

int main() {
 auto a = AddFoldLeftUn(1,2,3,4);
 cout << a << endl;
 cout << AddFoldRightBin(a,4,5,6) << endl;
 //---------- Folds from Right
 //---------- should produce "Hello World C++"
 auto b = AddFoldRightBinPoly("C++ "s,"Hello "s,"World "s);
 cout << b << endl;
 //---------- Folds (Reduce) from Left
 //---------- should produce "Hello World C++"
 auto c = AddFoldLeftBinPoly("Hello "s,"World "s,"C++ "s);
 cout << c << endl;
}

The expected output on the console is as follows

10
 25
 Hello World C++
 Hello World C++

Variant type
A geeky definition of variant would be "type safe union". We can give a list of types as a
template argument while defining variants. At any given time, the object will hold only one
type of data out of the template argument list. std::bad_variant_access will be thrown
if we try to access an index that does not hold the current value. The following code does
not handle this exception:

//------------ Variant.cpp
//------------- g++ -std=c++1z Variant.cpp
#include <variant>
#include <string>
#include <cassert>
#include <iostream>
using namespace std;

int main(){
 std::variant<int, float,string> v, w;
 v = 12.0f; // v contains now contains float
 cout << std::get<1>(v) << endl;
 w = 20; // assign to int

A Tour of Modern C++ and its Key Idioms Chapter 2

[54]

 cout << std::get<0>(w) << endl;
 w = "hello"s; //assign to string
 cout << std::get<2>(w) << endl;
}

Other important topics
Modern C++ supports features such as language-level concurrency, memory guarantees,
and asynchronous executions, which are covered in the next two chapters. The language
offers support for optional data types and the std::any type. One of the most important
feature is parallel versions of most of the STL algorithms.

Range-based for loops and observables
In this section, we will implement range-based for loops on a custom type written by us to
help you understand how all the things mentioned earlier in this chapter can be put
together to write programs that support modern idioms. We will implement a class that
returns a series of numbers within a bound and will implement infrastructure support for
the iteration of the values based on range-based for loops. First, we write the
"Iterable/Iterator" (aka "Enumerable/Enumerable") version by leveraging the range-based
for loops. After some tweaks, the implementation will be transformed to
Observable/Observer (the key interface of Reactive Programming) patterns: The
implementation of Observable/Observer pattern here is just for elucidation purpose and
should not be considered as an Industrial strength implementation of these patterns.

The following iterable class is a nested class:

// Iterobservable.cpp
// we can use Range Based For loop as given below (see the main below)
// for (auto l : EnumerableRange<5, 25>()) { std::cout << l << ' '; }
// std::cout << endl;
#include <iostream>
#include <vector>
#include <iterator>
#include <algorithm>
#include <functional>
using namespace std;

template<long START, long END>
class EnumerableRange {
public:
 class iterable : public std::iterator<

A Tour of Modern C++ and its Key Idioms Chapter 2

[55]

 std::input_iterator_tag, // category
 long, // value_type
 long, // difference_type
 const long*, // pointer type
 long> // reference type
 {
 long current_num = START;
 public:
 reference operator*() const { return current_num; }
 explicit iterable(long val = 0) : current_num(val) {}
 iterable& operator++() {
 current_num = (END >= START) ? current_num + 1 :
 current_num - 1;
 return *this;
 }
 iterable operator++(int) {
 iterable retval = *this; ++(*this); return retval;
 }
 bool operator==(iterable other) const
 { return current_num == other.current_num; }
 bool operator!=(iterable other) const
 { return !(*this == other); }
 };

The preceding code implements an inner class derived from std::iterator to take care of
the requirements for a type to be enumerable through range-based for loops. We will now
write two public methods, (begin() and end()), so consumers of the class can use range-
based for loops:

iterable begin() { return iterable(START); }
 iterable end() { return iterable(END >= START ? END + 1 :
 END - 1); }
};

Now, we can write code to consume the preceding class as follows:

for (long l : EnumerableRange<5, 25>())
 { std::cout << l << ' '; }

In the previous chapter, we defined the IEnumerable<T> interface. The idea was to stick
with the documentation of Reactive eXtensions. The iterable class is very similar to the
IEnumerable<T> implementation in the previous chapter. As outlined in the previous
chapter, the preceding class can be made push based, if we tweak the code a bit. Let us
write an OBSERVER class that contains three methods. We will be using Function Wrappers
available with standard library to define the methods:

A Tour of Modern C++ and its Key Idioms Chapter 2

[56]

struct OBSERVER {
 std::function<void(const long&)> ondata;
 std::function<void()> oncompleted;
 std::function<void(const std::exception &)> onexception;
};

The ObservableRange class given here contains a vector<T> that stores the list of
subscribers. When a new number is generated, the event will be notified to all subscribers.
If we dispatch the notification call from an asynchronous method, the consumer is
decoupled from the producer of the range stream. We have not implemented
the IObserver/IObserver<T> interface for the following class, but we can subscribe to
notifications through subscribe methods:

template<long START, long END>
class ObservableRange {
 private:
 //---------- Container to store observers
 std::vector<
 std::pair<const OBSERVER&,int>> _observers;
 int _id = 0;

We will store the list of subscribers in an std::vector as an std::pair. The first value in
the std::pair is the reference to the OBSERVER and the second value in the std::pair is
an integer that uniquely identifies the subscriber. Consumers are supposed to unsubscribe
by using the ID returned by the subscribe method:

//---- The following implementation of iterable does
//---- not allow to take address of the pointed value [&(*it)
//---- Eg- &(*iterable.begin()) will be ill-formed
//---- Code is just for demonstrate Obervable/Observer
class iterable : public std::iterator<
 std::input_iterator_tag, // category
 long, // value_type
 long, // difference_type
 const long*, // pointer type
 long> // reference type
 {
 long current_num = START;
 public:
 reference operator*() const { return current_num; }
 explicit iterable(long val = 0) : current_num(val) {}
 iterable& operator++() {
 current_num = (END >= START) ? current_num + 1 :
 current_num - 1;
 return *this;
 }

A Tour of Modern C++ and its Key Idioms Chapter 2

[57]

 iterable operator++(int) {
 iterable retval = *this; ++(*this); return retval;
 }
 bool operator==(iterable other) const
 { return current_num == other.current_num; }
 bool operator!=(iterable other) const
 { return !(*this == other); }
 };
 iterable begin() { return iterable(START); }
 iterable end() { return iterable(END >= START ? END + 1 : END - 1); }
// generate values between the range
// This is a private method and will be invoked from the generate
// ideally speaking, we should invoke this method with std::asnyc
void generate_async()
{
 auto& subscribers = _observers;
 for(auto l : *this)
 for (const auto& obs : subscribers) {
 const OBSERVER& ob = obs.first;
 ob.ondata(l);
 }
}

//----- The public interface of the call include generate which triggers
//----- the generation of the sequence, subscribe/unsubscribe pair
public:
 //-------- the public interface to trigger generation
 //-------- of thevalues. The generate_async can be executed
 //--------- via std::async to return to the caller
 void generate() { generate_async(); }
 //---------- subscribe method. The clients which
 //----------- expects notification can register here
 int subscribe(const OBSERVER& call) {
 // https://en.cppreference.com/w/cpp/container/vector/emplace_back
 _observers.emplace_back(call, ++_id);
 return _id;
 }
 //------------ has just stubbed unsubscribe to keep
 //------------- the listing small
 void unsubscribe(const int subscription) {}

};

int main() {
 //------ Call the Range based enumerable
 for (long l : EnumerableRange<5, 25>())
 { std::cout << l << ' '; }
 std::cout << endl;

A Tour of Modern C++ and its Key Idioms Chapter 2

[58]

 // instantiate an instance of ObservableRange
 auto j = ObservableRange<10,20>();
 OBSERVER test_handler;
 test_handler.ondata = [=](const long & r)
 {cout << r << endl; };
 //---- subscribe to the notifiactions
 int cnt = j.subscribe(test_handler);
 j.generate(); //trigget events to generate notifications
 return 0;
}

Summary
In this chapter, we learned about programming language features that a C++ programmer
should be comfortable with while writing Reactive programs, or for that matter any kind of
programs. We talked about type inference, Variadic templates, rvalue references and move
semantics, Lambda functions, elementary Functional programming, pipeable operators,
and implementation of Iterators and observers. In the next chapter, we will learn about
concurrent programming support provided by the C++ programming language.

3
Language-Level Concurrency

and Parallelism in C++
C++ has had excellent support for concurrent programming ever since the C++ 11 language
standard came out. Until then, threading was an affair that was handled by platform-
specific libraries. The Microsoft Corporation had its own threading libraries, and other
platforms (GNU Linux/macOS X) supported the POSIX threading model. A threading
mechanism as part of the language has helped C++ programmers write portable code that
runs on multiple platforms.

The original C++ standard was published in 1998, and the language design committee
firmly believed that threading, filesystems, GUI libraries, and so on are better left to the
platform-specific libraries. Herb Sutter published an influential article in the Dr. Dobbs
Journal titled, The Free Lunch Is Over, where he advocated programming techniques to
exploit multiple cores available in the processors of those days. While writing parallel code,
functional programming models are well-suited for the task. Features such as threads,
Lambda functions and expressions, move semantics, and memory guarantee helps people
write concurrent or parallel code without much hassle. This chapter aims to enable
developers to leverage thread libraries and their best practices.

In this chapter, we will cover the following topics:

What is concurrency?
A characteristic Hello World program using multiple threads
How to manage the lifetime and resources of threads
Sharing data between threads
How to write a thread-safe data structure

Language-Level Concurrency and Parallelism in C++ Chapter 3

[60]

What is concurrency?
At a basic level, concurrency stands for more than one activity happening at the same time.
We can correlate concurrency to many of our real-life situations, such as eating popcorn
while we watch a movie or using two hands for separate functions at the same time, and so
on. Well then, what is concurrency in a computer?

Computer systems were enabled to do task switching decades ago, and multitasking
operating systems have been in existence for a long time. Why is there renewed interest in
concurrency all of a sudden in the computing realm? The microprocessor manufacturers
were increasing computing power by cramming more and more silicon into a processor. At
a certain stage in the process, they could not cram more things into the same area as they
reached fundamental physical limits. The CPUs of those eras had a single path of execution
at a time and they were running multiple paths of instructions by switching tasks (stream
of instructions). At the CPU level, only one instruction stream was getting executed, and as
things happen very fast (compared to human perception), the users felt actions were
happening at the same time.

Around the year 2005, Intel announced their new multicore processors (which support
multiple paths of execution at the hardware level), which was a game changer. Instead of
one processor doing every task by switching between them, multicore processors came as a
solution to actually perform them in parallel. But this introduced another challenge to the
programmers; to write their code to leverage hardware-level concurrency. Also, the issue of
the actual hardware concurrency behaving differently compared to the illusion created by
the task switches arose. Until the multicore processors came to light, the chip
manufacturers were in a race to increase their computing power, expecting that it might
reach 10 GHz before the end of the first decade of the 21st century. As Herb Sutter
said in The Free Lunch is Over (http:/ ​/​www. ​gotw.​ca/ ​publications/ ​concurrency- ​ddj. ​htm),
"If software is to take advantage of this increased computing power, it must be designed to run
multiple tasks concurrently". Herb warned the programmers that those who ignored
concurrency must also take that into account while writing a program.

The modern C++ standard libraries provide a set of mechanisms to support concurrency
and parallelism. First and foremost, std::thread, along with the synchronization objects
(such as std::mutex, std::lock_guards, std::unique_lock,
std::condition_variables, and so on) empowers the programmers to write a
concurrent multithreaded code using standard C++. Secondly, to use task-based parallelism
(as in .NET and Java), C++ introduced the classes std::future and std::promise, which
work in pairs to separate the function invocation and wait for results.

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm

Language-Level Concurrency and Parallelism in C++ Chapter 3

[61]

Finally, to avoid the additional overhead of managing threads, C++ introduced a class
called std::async, which will be covered in detail in the following chapter where the
focus of discussion will be writing lock-free concurrent programs (well, at least minimizing
locks, wherever possible).

Concurrency is when two or more threads or execution paths can start,
run, and complete in overlapping time periods (in some kind of
interleaved execution). Parallelism means two tasks can run at the same
time (like you see on a multicore CPU). Concurrency is about response
time and parallelism is mostly about exploiting available resources.

Hello World of concurrency (using
std::thread)
Now, let's get started with our first program using the std::thread library. You are
expected to have C++ 11 or later to compile the programs we are going to discuss in this
chapter. Let's take a simple, classic Hello World example as a reference before going into a
multi-threaded Hello World:

//---- Thanks to Dennis Ritchie and Brian Kernighan, this is a norm for all
languages
#include <iostream>
int main()
{
 std::cout << "Hello World\n";
}

This program simply writes Hello World into the standard output stream (mainly the
console). Now, let's see another example that does the same stuff, but using a background
thread (often called a worker thread instead):

#include <iostream>
#include <thread>
#include <string>
//---- The following function will be invoked by the thread library
void thread_proc(std::string msg)
{
 std::cout << "ThreadProc msg:" << msg;
}
int main()
{
 // creates a new thread and execute thread_proc on it.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[62]

 std::thread t(thread_proc, "Hello World\n");
 // Waiting for the thread_proc to complete its execution
 // before exiting from the program
 t.join();
}

The first difference with traditional code is the inclusion of the <thread> standard header
file. All of the multithreading support functions and classes are declared in this new
header. But to achieve synchronization and shared data protection, the supporting classes
are available in other headers. If you are familiar with platform-level threads in Windows
or POSIX systems, all threads require an initial function. The same concept is what the
standard library is also following. In this example, the thread_proc function is the initial
function of a thread that's declared in the main function. The initial function (through the
function pointer) is specified in the constructor of the std::thread object t, and
construction starts the execution of the thread.

The most notable difference is that now the application writes the message into a standard
output stream from a new thread (background thread), which results in having two threads
or a path of execution in this application. Once the new thread has been launched, the main
thread continues its execution. If the main thread is not waiting for the newly started thread
to finish, the main() function would end and thus that would be the end of the
application—even before the new thread has had the chance to finish its execution. This is
the reason for calling join() before the main thread finishes, in order to wait for the new
thread, t, which is started here.

Managing threads
At runtime, the execution starts at the user entry point main() (after the execution of the
start-up code), and it will be executing in a default thread that's been created. So, every
program will have at least one thread of execution. During the execution of the program, an
arbitrary number of threads can be created through a standard library or platform-specific
libraries. These threads can run in parallel if the CPU cores are available to execute them. If
the number of threads are more than the number of CPU cores, even though there is
parallelism, we cannot run all of the threads simultaneously. So, thread switching happens
here as well. A program can launch any number of threads from the main thread, and those
threads run concurrently on the initial thread. As we can see, the initial function for a
program thread is main(), and the program ends when the main returns from its
execution. This terminates all the parallel threads. Therefore, the main thread needs to wait
until all the children threads finish execution. So, let's see how the launch and join of
threads occurs.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[63]

Thread launch
In the previous example, we saw that the initialization function is passed as an argument to
the std::thread constructor, and the thread gets launched. This function runs on its own
thread. The thread launch happens during the thread object's construction, but the
initialization functions can have other alternatives as well. A function object is another
possible argument in a thread class. The C++ standard library ensures that the
std::thread works with any callable type.

The modern C++ standard supports threads to be initialized through:

Function pointers (as in the previous section)
An object that implements the call operator
Lambdas

Any callable entity is a candidate for initializing a thread. This enables the std::thread to
accept a class object with an overloaded function call operator:

class parallel_job
{
public:
void operator() ()
{
 some_implementation();
}
};
parallel_job job;
std::thread t(job);

Here, the newly created thread copies the object into its storage, hence the copy behavior
must be ensured. Here, we can also use std::move to avoid problems related to copying:

std::thread t(std::move(job));

If you pass temporary (an rvalue) instead of a function object, the syntax is as follows:

std::thread t(parallel_job());

This code can be interpreted by the compiler as a declaration of a function that accepts a
function pointer and returns a std::thread object. However, we can avoid this by using
the new uniform initialization syntax, as follows:

std::thread t{ parallel_job() };

Language-Level Concurrency and Parallelism in C++ Chapter 3

[64]

An extra set of parenthesis, as given in the following code snippet, can also avoid the
interpretation of std::thread object declaration into a function declaration:

std::thread t((parallel_job()));

Another interesting way to launch a thread is by giving the C++ Lambdas as an argument
into a std::thread constructor. Lambdas can capture local variables and thus avoid
unnecessary usage of any arguments. Lambdas are very useful when it comes to writing
anonymous functions, but that doesn't mean that they should be used everywhere.

The Lambda function can be used along with a thread declaration as follows:

std::thread t([]{
 some_implementation();
});

Thread join
In the Hello World example, you might have noticed the use of t.join() at the end of
main() before leaving from the function. The call to join() on the associated thread
instance ensures that the launched function will wait until the background thread
completes its execution. In the absence of join, the thread will be terminated before the
thread starts until the current context is finished (their child threads will also be
terminated).

join() is a direct function, either waiting for the thread to finish or not. To get more
control over the thread, we have other mechanisms such as mutex, condition variables, and
futures, and they will be discussed in the later sections of this chapter and the next chapter.
The call to join() cleans up the storage associated with the thread, and so it ensures that
the object is no longer associated with the thread that was launched. This asserts that the
join() function can only be called once per thread; the call to joinable() will always
return false after a call to join(). The previous example with a function object can be
modified as follows to understand join():

class parallel_job
{
 int& _iterations;

public:
 parallel_job(int& input): _iterations(input)
 {}

 void operator() ()

Language-Level Concurrency and Parallelism in C++ Chapter 3

[65]

 {
 for (int i = 0; i < _iterations; ++i)
 {
 some_implementation(i);
 }
 }
};
void func()
{
 int local_Val = 10000;
 parallel_job job(local_Val);
 std::thread t(job);
 if(t.joinable())
 t.join();
}

In this case, at the end of the func() function, the thread object is verified to confirm
whether the thread is still in execution. We call joinable() to see its return value before
we place the join call.

To prevent the wait on func(), there is a mechanism that was introduced by the standard
to continue execution, even if the parent function finishes its execution. This can be
achieved using another standard function, detach():

if(t.joinable())
 t.detach();

There are a couple of things that we need to consider before detaching a thread; the t
thread will probably still be running when func() exits. As per the implementation given
in the preceding example, the thread is using the reference of a local variable created in
func(), which is not a good idea since the old stack variables can be overwritten at any
time on most architectures. These situations must always be addressed while using
detach() in your code. The most common way of handling this situation is making a
thread self-contained and copying the data into the thread instead of sharing it.

Passing arguments into a thread
So, we have figured out how to launch and wait over a thread. Now, let's see how to pass
arguments into a thread initialization function. Let's look at an example to find the factorial
of a number:

class Factorial
{
private:

Language-Level Concurrency and Parallelism in C++ Chapter 3

[66]

 long long myFact;
public:
 Factorial() : myFact(1)
 {
 }
 void operator() (int number)
 {
 myFact = 1;
 for (int i = 1; i <= number; ++i)
 {
 myFact *= i;
 }
 std::cout << "Factorial of " << number << " is " << myFact;
 }
};

int main()
{
 Factorial fact;
 std::thread t1(fact, 10);
 t1.join();
}

From this example, it is clear that passing arguments into a thread function or a thread
callable object can be achieved by passing additional arguments into an std::thread()
declaration. One thing we must keep in mind; the arguments passed are copied into the thread's
internal storage for further execution. It is important for a thread's execution to have its own
copy of arguments, as we have seen the problems associated with local variables going out
of scope. To discuss passing arguments into a thread further, let's go back to our first Hello
World example from this chapter:

void thread_proc(std::string msg);

std::thread t(thread_proc, "Hello World\n");

In this case, the thread_proc() function takes std::string as an argument, but we are
passing a const char* as an argument to the thread function. Only in the case of a thread
is the argument passed, converted, and copied into the thread's internal storage. Here,
const char* will be converted to std::string. The type of argument supplied to a
thread must be chosen while keeping this in mind. Let's see what happens if a pointer is
supplied to the thread as an argument:

void thread_proc(std::string msg);
void func()
{
 char buf[512];

Language-Level Concurrency and Parallelism in C++ Chapter 3

[67]

 const char* hello = "Hello World\n";
 std::strcpy(buf, hello);

 std::thread t(thread_proc, buf);
 t.detach();
}

In the preceding code, the argument supplied to the thread is a pointer to the local variable
buf. There is a probable chance that the func() function will exit before the conversion of
buf to an std::string happens on the thread. This could lead to an undefined behavior.
This problem can be resolved by casting the buf variable into std::string in the
declaration itself, as follows:

std::thread t(thread_proc, std::string(buf));

Now, let's look at the cases where you want a reference to get updated in the thread. In a
typical scenario, the thread copies the value supplied to the thread to ensure a safe
execution, but the standard library has also provided a means to pass the argument by
reference to a thread. In many practical systems, you might have seen that a shared data
structure is getting updated inside a thread. The following example shows how to achieve
pass by reference in a thread:

void update_data(shared_data& data);

void another_func()
{
 shared_data data;
 std::thread t(update_data, std::ref(data));
 t.join();
 do_something_else(data);
}

In the preceding code, wrapping the arguments passed into the std::thread constructor
with std::ref ensures that the variable supplied inside the thread is referenced to the
actual parameters. You might have noticed that the function prototype of the thread
initialization function is accepting a reference to the shared_data object, but why do you
still need an std::ref() wrapping for thread invocation? Consider the following code for
thread invocation:

std::thread t(update_data, data);

Language-Level Concurrency and Parallelism in C++ Chapter 3

[68]

In this case, the update_data() function expects the shared_data argument to be treated
as a reference to actual parameters. But when used as a thread initialization function,
arguments are simply copied internally. When the call to update_data() happens, it will
pass a reference to the internal copies of arguments and not a reference to the actual
parameters.

Using Lambdas
Now, let's see the usefulness of Lambda expressions for multithreading. In the following
code, we are going to create five threads and put those into a vector container. Each thread
will be using a Lambda function as the initialization function. The threads initialized in the
following code are capturing the loop index by value:

int main()
{
 std::vector<std::thread> threads;

 for (int i = 0; i < 5; ++i)
 {
 threads.push_back(std::thread([i]() {
 std::cout << "Thread #" << i << std::endl;
 }));
 }

 std::cout << "nMain function";

 std::for_each(threads.begin(), threads.end(), [](std::thread &t) {
 t.join();
 });
}

The vector container threads store five threads that have been created inside the loop. They
are joined at the end of the main() function once the execution is over. The output for the
preceding code may look as follows:

Thread # Thread # Thread # Thread # Thread #
Main function
0
4
1
3
2

Language-Level Concurrency and Parallelism in C++ Chapter 3

[69]

The output of the program could be different for each run. This program is a good example
to showcase the non-determinism associated with concurrent programming. In the
following section, we will discuss the move properties of a std::thread object.

Ownership management
From the examples discussed so far in this chapter, you might have noticed that the
function that launches the thread has to wait for the thread to complete its execution using
the join() function, otherwise it will call detach() with a cost of the program losing
control over the thread. In modern C++, many standard types are movable, but cannot be
copied; std::thread is one of them. This means that the ownership of a thread's execution
can be moved between std::thread instances with the help of move semantics.

There are many situations where we want to move the ownership to another thread, for
example, if we want the thread to run in the background without waiting for it on the
function that created the thread. This can be achieved by passing the thread ownership to a
calling function rather than waiting for it to complete in the created function. In another
instance, pass the ownership to some other function, which will wait for the thread to
complete its execution. Both of these cases can be achieved by passing the ownership from
one thread instance to another.

To explain further, let us define two functions to use as the thread functions:

void function1()
{
 std::cout << "function1()n";
}

void function2()
{
 std::cout << "function2()n";
}

Let's look into the main function that spawns threads from previously declared functions:

int main()
{
 std::thread t1(function1);
 // Ownership of t1 is transferred to t2
 std::thread t2 = std::move(t1);

Language-Level Concurrency and Parallelism in C++ Chapter 3

[70]

In the preceding code, a new thread started with t1 in the first line of main(). Ownership
is then transferred to t2 using the std::move() function, which is invoking the move
constructor of std::thread, which is associated with t2. Now, the t1 instance has no
associated thread of execution. The initialization function function1() is now associated
with t2:

 t1 = std::thread(function2);

Then, a new thread is started using an rvalue, which invokes the move assignment operator
of std::thread, which is associated with t1. Since we are using an rvalue, an explicit call
to std::move() is not required:

 // thread instance Created without any associated thread execution
 std::thread t3;
 // Ownership of t2 is transferred to t3
 t3 = std::move(t2);

t3 was instantiated without any thread of execution, which means it is invoking the default
constructor. The ownership currently associated with t2 is then transferred to t3 by the
move assignment operator, by explicitly calling the std::move() function:

 // No need to join t1, no longer has any associated thread of execution
 if (t1.joinable()) t1.join();
 if (t3.joinable()) t3.join();
 return 0;
}

Finally, the std::thread instances with an associated thread of execution are joined
before the program exits. Here, t1 and t3 are the instances with an associated thread of
execution.

Now, let's assume that the following code is present before the threads join() in the
preceding example:

t1 = std::move(t3);

Here, the instance t1 is already associated with a running function (function2). When
std::move() attempts to transfer the ownership of function1 back to t1,
std::terminate() is called to terminate the program. This guarantees the consistency of
the std::thread destructor.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[71]

The move support in std::thread helps in transferring the ownership of a thread out of a
function. The following example demonstrates such a scenario:

void func()
{
 std::cout << "func()n";
}

std::thread thread_creator()
{
 return std::thread(func);
}

void thread_wait_func()
{
 std::thread t = thread_creator();
 t.join();
}

Here, the thread_creator() function returns the std::thread associated with the
func() function. The thread_wait_func() function calls thread_creator(), and then
returns the thread object, which is an rvalue that is assigned to an std::thread object.
This transfers the ownership of the thread into the std::thread object t, and object t is
waiting for the completion of thread execution in the transferred function.

Sharing data between threads
We have seen how to start a thread and different methods of managing them. Now, let's
discuss how to share data between threads. One key feature of concurrency is its ability to
share data between the threads in action. First, let's see what the problems associated with
threads accessing common (shared) data are.

There won't be a problem if the data shared between threads is immutable (read-only),
because the data read by one thread is unaffected by whether the other threads are reading
the same data or not. The moment threads start modifying shared data is when problems
begin to emerge.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[72]

For example, if the threads are accessing a common data structure, the invariants associated
with the data structure are broken if an update is happening. In this case, the number of
elements is stored in the data structure, which usually requires the modification of more
than one value. Consider the delete operation of a self-balancing tree or a doubly linked list.
If you don't do anything special to ensure otherwise, if one thread is reading the data
structure, while another is removing a node, it is quite possible for the reading thread to see
the data structure with a partially removed node, so the invariant is broken. This might end
up corrupting the data structure permanently and could lead to the program crashing.

An invariant is a set of assertions that must always be true during the
execution of a program or lifetime of an object. Placing proper assertion
within the code to see whether invariants have been violated will result in
robust code. This is a great way to document software as well as a good
mechanism to prevent regression bugs. More can be read about this in the
following Wikipedia article: https:/ ​/​en. ​wikipedia. ​org/ ​wiki/
Invariant_ ​(computer_ ​science).

This often leads to a situation called race condition, which is the most common cause of bugs
in concurrent programs. In multithreading, race condition means that the threads race to
perform their respective operations. Here, the outcome depends on the relative ordering of
the execution of an operation in two or more threads. Usually, the term race condition
means a problematic race condition; normal race conditions don't cause any bugs.
Problematic race conditions usually occur where the completion of an operation requires
modification of two or more bits of data, such as deletion of a node in a tree data structure
or a doubly linked list. Because the modification must access separate pieces of data, these
must be modified in separate instructions when another thread is trying to access the data
structure. This occurs when half of the previous modifications have been completed.

Race conditions are often very hard to find and hard to duplicate because they occur in a
very short window of execution. For software that uses concurrency, the major complexity
of implementation comes from avoiding problematic race conditions.

There are many ways to deal with problematic race conditions. The common and simplest
option is to use synchronization primitives, which are lock-based protection mechanisms.
This wraps the data structure by using some locking mechanisms to prevent the access of
other threads during its execution. We will discuss the available synchronization primitives
and their uses in detail in this chapter.

https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Invariant_(computer_science)

Language-Level Concurrency and Parallelism in C++ Chapter 3

[73]

Another option is to alter the design of your data structure and its invariants so that the
modification guarantees the sequential consistency of your code, even across multiple
threads. This is a difficult way of writing programs and is commonly referred to as lock-free
programming. Lock-free programming and the C++ memory model will be covered in
Chapter 4, Asynchronous and Lock-Free Programming in C++.

Then, there are other mechanisms such as handling the updates to a data structure as a
transaction, as updates to databases are done within transactions. Currently, this topic is
not in the scope of this book, and therefore it won't be covered.

Now, let's consider the most basic mechanism in C++ standard for protecting shared data,
which is the mutex.

Mutexes
A mutex is a mechanism used in concurrency control to prevent race conditions. The
function of a mutex is to prevent a thread of execution to enter its critical section at the same
time another concurrent thread enters its own critical section. It is a lockable object
designed to signal when the critical sections of code need exclusive access, thereby
restricting other concurrent threads with the same protection in execution as well as
memory access. The C++ 11 standard introduced an std::mutex class into the standard
library to achieve data protection across concurrent threads.

The std::mutex class consist of the lock() and unlock() functions to create a critical
section in code. One thing to keep in mind while using the member functions to create
critical sections is that you should never skip an unlock function associated with a lock
function to mark the critical section in code.

Now, let's discuss the same code we used for discussing Lambdas with threads. There, we
observed that the output of the program was scrambled due to a race condition with a
common resource, std::cout, and std::ostream operators. That code is now being
rewritten using std::mutex to print the thread index:

#include <iostream>
#include <thread>
#include <mutex>
#include <vector>
std::mutex m;
int main()
{
 std::vector<std::thread> threads;

Language-Level Concurrency and Parallelism in C++ Chapter 3

[74]

 for (int i = 1; i < 10; ++i)
 {
 threads.push_back(std::thread([i]() {
 m.lock();
 std::cout << "Thread #" << i << std::endl;
 m.unlock();
 }));
 }
 std::for_each(threads.begin(), threads.end(), [](std::thread &t) {
 t.join();
 });
}

The output for the preceding code may look as follows:

Thread #1
Thread #2
Thread #3
Thread #4
Thread #5
Thread #6
Thread #7
Thread #8
Thread #9

In the preceding code, the mutex is used to protect the shared resource, which is the
std::cout and cascaded std::ostream operators. Unlike the older example, the addition
of a mutex in the code now avoids the scrambled output, but it will appear in a random
order. The use of lock() and unlock() functions in the std::mutex class guarantees the
output is not garbled. However, the practice to call member functions directly is not
recommended, because you need to call unlock on every code path in the function,
including the exception scenarios as well. Instead, C++ standard introduced a new template
class, std::lock_guard, which implemented the Resource Acquisition Is Initialization
(RAII) idiom for a mutex. It locks the supplied mutex in the constructor and unlocks it in
the destructor. The implementation of this template class is available in the <mutex>
standard header library. The previous example can be rewritten using std::lock_guard
as follows:

std::mutex m;
int main()
{
 std::vector<std::thread> threads;
 for (int i = 1; i < 10; ++i)
 {
 threads.push_back(std::thread([i]() {
 std::lock_guard<std::mutex> local_lock(m);

Language-Level Concurrency and Parallelism in C++ Chapter 3

[75]

 std::cout << "Thread #" << i << std::endl;
 }));
 }
 std::for_each(threads.begin(), threads.end(), [](std::thread &t) {
 t.join();
 });
}

In the preceding code, the mutex that protects the critical section is at global scope and the
std::lock_guard object is local to the Lambda each time thread execution happens. This
way, as soon as the object is constructed, the mutex acquires the lock. It unlocks the mutex
with the call to destructor when the Lambda execution is over.

RAII is a C++ idiom where the lifetime of entities such as database/file
handles, socket handles, mutexes, dynamically allocated memory on the
heap, and so on are bounded to the life cycle of the object holding it. You
can read more about RAII at the following Wikipedia page: https:/ ​/ ​en.
wikipedia. ​org/ ​wiki/ ​Resource_ ​acquisition_ ​is_ ​initialization.

Avoiding deadlock
While dealing with mutexes, the biggest problem that can arise is a deadlock. To
understand what deadlock is, just imagine an iPod. For an iPod to achieve its purpose, it
requires both an iPod as well as an earpiece. If two siblings share one iPod, there are
situations where both want to listen to music at the same time. Imagine one person got their
hands on the iPod and the other got the earpiece, and neither of them is willing to share the
item they possess. Now they are stuck, unless one of them tries to be nice and lets the other
person listen to music.

Here, the siblings are arguing over an iPod and an earpiece, but coming back to our
situation, threads argue over the locks on mutexes. Here, each thread has one mutex and is
waiting for the other. No mutex can proceed here, because each thread is waiting for the
other thread to release its mutex. This scenario is called deadlock.

Avoiding deadlock is sometimes quite straightforward because different mutexes serve
different purposes, but there are instances where handling such situations is not that
obvious. The best advice I can give you to avoid deadlock is to always lock multiple
mutexes in the same order. Then, you will never get deadlock situations.

https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

Language-Level Concurrency and Parallelism in C++ Chapter 3

[76]

Consider an example of a program with two threads; each thread is intended to print odd
numbers and even numbers alone. Since the intentions of the two threads are different, the
program uses two mutexes to control each thread. The shared resource between the two
threads is std::cout. Let's look at the following program with a deadlock situation:

// Global mutexes
std::mutex evenMutex;
std::mutex oddMutex;
// Function to print even numbers
void printEven(int max)
{
 for (int i = 0; i <= max; i +=2)
 {
 oddMutex.lock();
 std::cout << i << ",";
 evenMutex.lock();
 oddMutex.unlock();
 evenMutex.unlock();
 }
}

The printEven() function is defined to print all the positive even numbers into the
standard console which are less than the max value. Similarly, let us define a printOdd()
function to print all the positive odd numbers less than max, as follows:

// Function to print odd numbers
void printOdd(int max)
{
 for (int i = 1; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}

Now, let's write the main function to spawn two independent threads to print odd and
even numbers using the previously defined functions as the thread functions for each
operation:

int main()
{
 auto max = 100;
 std::thread t1(printEven, max);

Language-Level Concurrency and Parallelism in C++ Chapter 3

[77]

 std::thread t2(printOdd, max);
 if (t1.joinable())
 t1.join();
 if (t2.joinable())
 t2.join();
}

In this example, std::cout is protected with two mutexes, printEven and printOdd,
which perform locking in a different order. With this code, we always ends up in deadlock,
since each thread is clearly waiting for the mutex locked by the other thread. Running this
code would result in a hang. As mentioned previously, deadlock can be avoided by locking
them in the same order, as follows:

void printEven(int max)
{
 for (int i = 0; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}
void printOdd(int max)
{
 for (int i = 1; i <= max; i +=2)
 {
 evenMutex.lock();
 std::cout << i << ",";
 oddMutex.lock();
 evenMutex.unlock();
 oddMutex.unlock();
 }
}

But this code is clearly not clean. You already know that using a mutex with the RAII idiom
makes the code cleaner and safer, but to ensure the order of locking, the C++ standard
library has introduced a new function, std::lock—a function that can lock two or more
mutexes in one go without deadlock risk. The following example shows how to use this for
our previous odd-even program:

void printEven(int max)
{
 for (int i = 0; i <= max; i +=2)
 {

Language-Level Concurrency and Parallelism in C++ Chapter 3

[78]

 std::lock(evenMutex, oddMutex);
 std::lock_guard<std::mutex> lk_even(evenMutex, std::adopt_lock);
 std::lock_guard<std::mutex> lk_odd(oddMutex, std::adopt_lock);
 std::cout << i << ",";
 }
}
void printOdd(int max)
{
 for (int i = 1; i <= max; i +=2)
 {
 std::lock(evenMutex, oddMutex);
 std::lock_guard<std::mutex> lk_even(evenMutex, std::adopt_lock);
 std::lock_guard<std::mutex> lk_odd(oddMutex, std::adopt_lock);
 std::cout << i << ",";
 }
}

In this case, as soon as the thread execution enters the loop, the call to std::lock locks the
two mutexes. Two std::lock_guard instances are constructed for each mutex. The
std::adopt_lock parameter is supplied in addition to the mutex instance to
std::lock_guard to indicate that the mutexes are already locked, and they should just
adopt the ownership of the existing lock on the mutex rather than attempt to lock the mutex
in the constructor. This guarantees safe unlocking, even in exceptional cases.

However, std::lock can help you to avoid deadlocks in cases where the program
demands the locking of two or more mutexes at the same time; it doesn't help if they are
acquired separately. Deadlocks are one of the hardest problems that can occur in a
multithreaded program. It ultimately relies on the discipline of a programmer to not get
into any deadlock situations.

Locking with std::unique_lock
Compared to std::lock_guard, std::unique_lock provides a bit more flexibility in
operations. An std::unique_lock instance doesn't always own a mutex associated with
it. Firstly, you can pass std::adopt_lock as a second argument to the constructor to
manage a lock on a mutex similar to std::lock_guard. Secondly, the mutex can remain
unlocked during construction by passing std::defer_lock as a second argument to the
constructor. So, later in the code, a lock can be acquired by calling lock() on the same
std::unique_lock object. But the flexibility available with std::unique_lock comes
with a price; it is a bit slower than lock_guard in regards to storing this extra information
and is in need of an update. Therefore, it is recommended to use lock_guard unless there
is a real need for the flexibility that std::unique_lock offers.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[79]

Another interesting feature about std::unique_lock is its ability to transfer ownership.
Since std::unique_lock must own its associated mutexes, this results in the ownership
transfer of mutexes. Similar to std::thread, the std::unique_lock class is also a move
only type. All of the move semantic language nuances and rvalue reference handling
available in the C++ standard library applies to std::unique_lock as well.

The availability of member functions such as lock() and unlock(), similar to
std::mutex, increases the flexibility of its use in code compared to std::lock_guard.
The ability to release the lock before an std::unique_lock instance is destroyed, meaning
that you can optionally release it anywhere in the code if it's obvious that the lock is no
longer required. Holding down the lock unnecessarily can drop the performance of the
application drastically, since the threads waiting for locks are prevented from executing for
longer than is necessary. Hence, std::unique_lock is a very handy feature introduced by
the C++ standard library, which supports RAII idiom, and it can effectively minimize the
size of a critical section of the applicable code:

void retrieve_and_process_data(data_params param)
{
 std::unique_lock<std::mutex> local_lock(global_mutex, std::defer_lock);
 prepare_data(param);

 local_lock.lock();
 data_class data = get_data_to_process();
 local_lock.unlock();

 result_class result = process_data(data);

 local_lock.lock();
 strore_result(result);
}

In the preceding code, you can see the fine-grained locking achieved by leveraging the
flexibility of std::unique_lock. As the function starts its execution, an
std::unique_lock object is constructed with global_mutex in an unlocked state.
Immediately, data is prepared with params, which don't require exclusive access; it is
executing freely. Before retrieving the prepared data, the local_lock is marking the
beginning of a critical section using the lock member function in std::unique_lock. As
soon as the data retrieval is over, the lock is released, marking the end of the critical section.
Followed by that, a call to the process_data() function, which again does not require
exclusive access, is getting executed freely. Finally, before the execution of the
store_result() function, the mutex is locked to protect the write operation, which
updates the processed result. When exiting the function, the lock gets released when the
local instance of std::unique_lock is destroyed.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[80]

Condition variables
We already know that mutexes can be used to share common resources and synchronize
operations between threads. But synchronization using mutexes is a little complex and
deadlock-prone if you are not careful. In this section, we will discuss how to wait for events
with condition variables and how to use them for synchronization in an easier way.

When it comes to synchronization using mutexes, if the waiting thread has acquired a lock
over a mutex, it can't be locked by any other thread. Also, waiting for one thread to
complete its execution by checking on a status flag periodically that is protected by a mutex
is a waste of CPU resources. This is because these resources can be effectively utilized by
other threads in the system rather than having to wait for a longer time.

To address these problems, the C++ standard library has provided two implementations of
conditional variables: std::condition_variable and
std::condition_variable_any. Both are declared inside the <condition_variable>
library header, and both the implementations need to work with a mutex to synchronize
threads. The implementation of std::condition_variable is limited to working with
std::mutex. On the other hand, std::condition_variable_any can work with
anything that meets mutex-like criteria (mutex-like semantics), hence suffix _any.
Because of its generic behavior, std::condition_variable_any ends up consuming
more memory and degrades performance. It is not recommended unless a real, tailored
requirement is in place.

The following program is an implementation of odd-even threads that we discussed when
we talked about mutexes, which is now being re-implemented using condition variables:

std::mutex numMutex;
std::condition_variable syncCond;
auto bEvenReady = false;
auto bOddReady = false;
void printEven(int max)
{
 for (int i = 0; i <= max; i +=2)
 {
 std::unique_lock<std::mutex> lk(numMutex);
 syncCond.wait(lk, []{return bEvenReady;});
 std::cout << i << ",";
 bEvenReady = false;
 bOddReady = true;
 syncCond.notify_one();
 }
}

Language-Level Concurrency and Parallelism in C++ Chapter 3

[81]

The program starts with the declaration of a mutex, a conditional variable, and two Boolean
flags globally so that we can synchronize them between two threads. The printEven
function gets executed in a worker thread and prints only even numbers starting from 0.
Here, when it enters the loop, the mutex is protected with std::unique_lock instead of
std::lock_guard; we will see the reason for that in a moment. The thread then calls the
wait() function in std::condition_variable, passing the lock object and a Lambda
predicate function that expresses the condition being waited for. This can be replaced with
any callable object that returns bool. In this function, the predicate function returns the
bEvenReady flag, so that the function continues execution when it becomes true. If the
predicate returns false, the wait() function will unlock the mutex and wait for another
thread to notify it, hence the std::unique_lock object comes handy here with the
provided flexibility to lock and unlock.

As soon as std::cout prints the loop index, the bEvenReady flag is raised to false and
bOddReady is raised to true. Then, the call to the notify_one() function associated with
syncCond signals the waiting odd thread to write an odd number into the standard output
stream:

void printOdd(int max)
{
 for (int i = 1; i <= max; i +=2)
 {
 std::unique_lock<std::mutex> lk(numMutex);
 syncCond.wait(lk, []{return bOddReady;});
 std::cout << i << ",";
 bEvenReady = true;
 bOddReady = false;
 syncCond.notify_one();
 }
}

The printOdd function gets executed in another worker thread and prints only odd
numbers starting from 1. Like the printEven function, a loop iterates and prints the index
that is protected by the globally declared conditional variable and mutex. Unlike the
printEven function, the predicate used in the wait() function of a condition variable
returns bOddReady, and the bEvenReady flag is raised to true and the bOddReady flag is
raised to false. Followed by that, calling the notify_one() function associated with
syncCond signals the waiting even thread to write an even number into the standard
output stream. This interleaved printing of even and odd numbers continues until the max
value:

int main()
{

Language-Level Concurrency and Parallelism in C++ Chapter 3

[82]

 auto max = 10;
 bEvenReady = true;
 std::thread t1(printEven, max);
 std::thread t2(printOdd, max);
 if (t1.joinable())
 t1.join();
 if (t2.joinable())
 t2.join();
}

The main function launches two background threads, t1, which is associated with the
printEven function and t2, which is associated with the printOdd function. The output
starts when even parity is confirmed by raising the bEvenReady flag to true before the
threads are launched.

A thread-safe stack data structure
So far, we have discussed how to launch and manage a thread, and how to synchronize the
operations between concurrent threads. But, when it comes to actual systems, the data is
represented in the form of data structures, which must be chosen appropriately for the
situation to guarantee the performance of the program. In this section, we are going to
discuss how to design a concurrent stack using conditional variables and mutexes. The
following program is a wrapper to std::stack, which is declared under the library header
<stack>, and the stack wrapper will be available with different overloads for pop and
push functionalities (this has been done to keep the listing small, and this also demonstrates
how we can adapt a sequential data structure to work in a concurrent context):

template <typename T>
class Stack
{
private:
 std::stack<T> myData;
 mutable std::mutex myMutex;
 std::condition_variable myCond;
public:
 Stack() = default;
 ~Stack() = default;
 Stack& operator=(const Stack&) = delete;
 Stack(const Stack& that)
 {
 std::lock_guard<std::mutex> lock(that.myMutex);
 myData = that.myData;
 }

Language-Level Concurrency and Parallelism in C++ Chapter 3

[83]

The Stack class contains an object to the template class std::stack, along with member
variables for std::mutex and std::condition_variable. The constructor and
destructor of the class are marked as default, letting the compiler generate a default
implementation for those, and the copy assignment operator is marked as delete to prevent
the invocation of the assignment operator of this class at compile time itself. The copy
constructor is defined, which copies the std::stack member object myData, by invoking
its own copy assignment operator, which is protected by the right-hand side object's mutex:

 void push(T new_value)
 {
 std::lock_guard<std::mutex> local_lock(myMutex);
 myData.push(new_value);
 myCond.notify_one();
 }

The member function push() is wrapping the push function of std::stack container.
As you can see, the mutex member variable, myMutex, is locked by an std::lock_guard
object to safeguard the push operation that follows in the next line. Followed by that, the
notify_one() function is invoked using the member std::condition_variable object
to raise an event to notify the waiting threads over this same condition variable. There are
two overloads of the pop operation that you will see in the following code listings, which
wait over this condition variable to get signaled:

 bool try_pop(T& return_value)
 {
 std::lock_guard<std::mutex> local_lock(myMutex);
 if (myData.empty()) return false;
 return_value = myData.top();
 myData.pop();
 return true;
 }

The try_pop() function takes a template argument as a reference. Since the
implementation never waits for the stack to fill at least one element, this uses the
std::lock_guard object to protect the thread. The function returns false if the stack is
empty, otherwise it returns true. Here, the output is assigned to input a reference
argument by invoking the top() function of std::stack, which returns the topmost
element in the stack, followed by the pop() function to clear the topmost element from the
stack. All overloads for the pop function invoke the top() function followed by a call to the
pop() function of std::stack:

 std::shared_ptr<T> try_pop()
 {
 std::lock_guard<std::mutex> local_lock(myMutex);

Language-Level Concurrency and Parallelism in C++ Chapter 3

[84]

 if (myData.empty()) return std::shared_ptr<T>();
 std::shared_ptr<T> return_value(std::make_shared<T>(myData.top()));
 myData.pop();
 return return_value;
 }

This is another overload of the try_pop() function, which returns an instance
of std::shared_ptr (smart pointer) of the template type. As you have already seen, the
try_pop function overloads, and never waits for a stack to fill at least one element;
therefore, this implementation uses std::lock_guard. If the internal stack is empty, the
function returns an instance of std::shared_ptr and holds no element of the stack.
Otherwise, a std::shared_ptr instance that holds the top element of the stack is
returned:

 void wait_n_pop(T& return_value)
 {
 std::unique_lock<std::mutex> local_lock(myMutex);
 myCond.wait(local_lock, [this]{ return !myData.empty(); });
 return_value = myData.top();
 myData.pop();
 }
 std::shared_ptr<T> wait_n_pop()
 {
 std::unique_lock<std::mutex> local_lock(myMutex);
 myCond.wait(local_lock, [this]{ return !myData.empty(); });
 std::shared_ptr<T> return_value(std::make_shared<T>(myData.top()));
 return return_value;
 }
};

So far, the overloads of the pop function are not waiting for the stack to fill at least one
element if it is empty. To achieve that, two more overloads of the pop function are added,
which uses the wait function associated with std::condition_variable. The first
implementation returns the template value as an output argument, and the second one
returns an std::shared_ptr instance. Both functions use std::unique_lock to control
the mutex in order to supply the wait() function of std::condition_variable. In the
wait function, the predicate function is checking whether the stack is empty or not. If the
stack is empty, then the wait() function unlocks the mutex and continues to wait until a
notification is received from the push() function. As soon as the push is called, the
predicate will return true, and wait_n_pop continues its execution. The function overload
takes the template reference and assigns the top element into the input argument, and the
latter implementation returns an std::shared_ptr instance, holding the top element.

Language-Level Concurrency and Parallelism in C++ Chapter 3

[85]

Summary
In this chapter, we discussed the threading library available in C++ standard libraries. We
saw how to launch and manage a thread, and discussed different aspects of the threading
library, such as how to pass arguments into a thread, ownership management of a thread
object, sharing of data between threads, and so on. The C++ standard threading library can
execute most callable objects as threads! We have seen the importance of all the available
callable objects in association with threads, such as std::function, Lambdas, and
functors. We discussed the synchronization primitives available in the C++ standard
library, starting with the simple std::mutex, the use of the RAII idiom to protect mutexes
from unhandled exit cases to avoid explicit unlock, and using classes such as
std::lock_guard and std::unique_lock. We also discussed condition variables
(std::condition_variable) in the context of thread synchronization. This chapter lays a
good foundation for concurrency support introduced in modern C++ to kickstart the
journey of this book into functional idioms.

In the following chapter, we will be covering more concurrency library features in C++,
such as task-based parallelism and lock-free programming.

4
Asynchronous and Lock-Free

Programming in C++
In the previous chapter, we looked at the threading library introduced by Modern C++ and
various ways to create, manage, and synchronize threads. The way of writing code with
threads is a rather low level and is prone to potential errors associated with concurrent
code (deadlock, live-lock, and so on). Even though it is not noticed by many programmers,
the Modern C++ language provides a standard memory model that helps to write
concurrent code better. To be a concurrent programming language from the ground up, a
language has to provide certain guarantees to the developer regarding memory access and
the order in which things will be executed during runtime. If we are using constructs such
as mutexes, condition variables, and futures to signal events, one doesn't need to be aware
of the memory model. But awareness of the memory model and its guarantees will help us
write faster concurrent code using lock-free programming techniques. Locks can be
simulated using something called atomic operations, and we will look at this technique in
depth.

As we discussed in Chapter 2, A Tour of Modern C++ and its Key Idioms, zero-cost abstraction
remains one of the most fundamental principles of the C++ programming language. C++ is
always a system programmer's language, and the standard committee managed to strike a
good balance between higher-level abstraction mechanisms supported by the language and
the ability to access lower-level resources to write system programs. C++ exposes atomic
types and a set of associated operations to have fine-grained control over the execution of
programs. The standard committee has published detailed semantics of the memory model,
and the language has a set of libraries that help programmers to exploit them.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[87]

In the previous chapter, we learned how to synchronize actions in separate threads using
condition variables. This chapter discusses the facilities provided by the standard library to
perform task-based parallelism using futures. In this chapter, we will cover:

Task-based parallelism in C++
The C++ memory model
Atomic types and atomic operations
Synchronizing operations and memory ordering
How to write a lock-free data structure

Task-based parallelism in C++
A task is a computation that can be potentially executed concurrently with other
computations. A thread is a system-level representation of a task. In the previous chapter,
we learned how to execute a task concurrently with other tasks launched by constructing
an std::thread object with the task as its argument to the constructor. A task can be any
callable object such as a function, Lambda, or a functor. But this approach of executing a
function concurrently using std::thread is called a thread-based approach. The preferred
choice for concurrent execution is a task-based approach, and this will be discussed in this
chapter. The advantage of a task-based approach over a thread-based approach is to
operate at the (higher) conceptual level of tasks rather than directly at the lower level of
threads and locks. Task-based parallelism is achieved by following standard library
features:

Future and promise for returning a value from a task associated with a separate
thread
packaged_task to help launch tasks and provide a mechanism for returning a
result
async() for launching a task similar to a function call

Future and promise
The C++ tasks often behave like a data channel of sorts. The sending end, often called
promise, sends data to a receiving end, often called the future. The important notion about
futures and promises is that they enable a transfer of values between two tasks without the
explicit use of a lock. The transfer of values is handled by the system (runtime) itself. The
basic concept behind future and promise is simple; when a task wants to pass a value into
another, it puts the value into a promise.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[88]

A standard library makes sure that the future associated with this promise gets this value.
The other task can read this value from this future (the following diagram has to be read
from the right to the left):

The future comes in handy if a calling thread needs to wait for a specific one-off event. The
future representing this event makes itself available to the calling thread, and the calling
thread can access the value once the future is ready (when a value is set to a corresponding
promise). During its execution, a future may have data associated with it or not. Once the
event occurs, data will be available in the future and it can't be reset.

The template classes associated with task-based parallelism are declared inside the library
header <future>. There are two sorts of futures available in the standard library: unique
futures (std::future<>) and shared futures (std::shared_future<>). You can
correlate these with the smart pointers std::unique_ptr<> and std::shared_ptr<>,
respectively. The std::future instance refers to the one and only instance of the
associated event. On the contrary, multiple instances of std::shared_future may point
to the same event. In the case of shared_future, all the instances associated with a
common event will become ready at the same time and they may access the data associated
with the event. The template parameter is the associated data, and
the std::future<void> and std::shared_future<void> template specifications
should be used if there is no data associated with it. Even though data communication
between threads is managed internally by futures, the future objects themselves don't
provide synchronized access. If multiple threads need to access a single
std::future object, they must be protected with mutexes or other synchronization
mechanisms.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[89]

The classes std::future and std::promise work in pairs to separate task invocation
and wait for results. For an std::future<T> object f, we can access the value T associated
with it using the std::future class function get(). Similarly for an std::promise<T>,
there are two put operation functions available with it (set_value() and
set_exception()) to match the future's get(). For a promise object, you can either give it
a value by using set_value() or pass an exception to it using set_exception(). For
example, the following pseudo code helps you see how the values are set in the promise (in
func1) and how things are consumed in the function where invocation to future<T>::
get() is invoked (func2):

// promise associated with the task launched
void func1(std::promise<T>& pr)
{
 try
 {
 T val;
 process_data(val);
 pr.set_value(val); // Can be retrieved by future<T>::get()
 }
 catch(...)
 {
 // Can be retrieved by future<T>::get()
 // At the future level, when we call get(), the
 // get will propagate the exception
 pr.set_exception(std::current_exception());
 }
}

In the preceding case, the val of type T is set to promise pr after processing and obtaining a
result. If any exception happens during the execution, the exception is also set to promise.
Now, let's see how to access the value you set:

// future corresponding to task already launched
void func2(std::future<T>& ft)
{
 try
 {
 // An exception will be thrown here, if the corresponding
 // promise had set an exception ..otherwise, retrieve the
 // value sets by the promise.
 T result = ft.get()
 }
 catch(...)

Asynchronous and Lock-Free Programming in C++ Chapter 4

[90]

 {
 // Handle exception
 }
}

Here, the value set in the corresponding promise is accessed using the future passed as an
argument. The get() function associated with std::future() retrieves the value stored
during the execution of the task. The call to get() must be prepared to catch the exception
transmitted through the future and handle it. After explaining std::packaged_task, we
will show a complete example where futures and promises work together in action.

std::packaged_task
Now, let's discuss how we get a return value associated with a future into your code that
needs results. The std::packaged_task is a template class that is available in the
standard library to achieve task-based parallelism with the help of futures and promises. By
setting up futures and promises in threads, it simplifies setting up a task without any
explicit locks for sharing the result. A packaged_task instance provides a wrapper over
std::thread to put the return value or exception caught into a promise. The member
function get_future() in std::packaged_task will give you the future instance
associated with the corresponding promise. Let's look at an example that uses a packaged
task to find the sum of all elements in a vector (the working of promise is deep inside the
implementation of packaged_task):

// Function to calculate the sum of elements in an integer vector
int calc_sum(std::vector<int> v)
{
 int sum = std::accumulate(v.begin(), v.end(), 0);
 return sum;
}

int main()
{
 // Creating a packaged_task encapsulates a function
 std::packaged_task<int(std::vector<int>)> task(calc_sum);
 // Fetch associated future from packaged_task
 std::future<int> result = task.get_future();
 std::vector<int> nums{1,2,3,4,5,6,7,8,9,10};
 // Pass packaged_task to thread to run asynchronously
 std::thread t(std::move(task), std::move(nums));
 t.join();

Asynchronous and Lock-Free Programming in C++ Chapter 4

[91]

 // Fetch the result of packaged_task, the value returned by calc_sum()
 int sum = result.get();
 std::cout << "Sum = " << sum << std::endl;
 return 0;
}

The packaged_task object takes the type of task as its template argument and the function
pointer (calc_sum) as a constructor argument. The future instance is obtained through the
call to the get_future() function of the task object. The explicit std::move() is used
since the packaged_task instances cannot be copied. This is because it is a resource handle
and is responsible for whatever resources its task may own. Then, a call to the get()
function picks up the result from the task and prints it.

Now, let's see how packaged_task can be used along with Lambdas:

 std::packaged_task<int(std::vector<int>)> task([](std::vector<int>
 v) {
 return std::accumulate(v.begin(), v.end(), 0);
 });

Here, instead of a function pointer, a Lambda is passed into the constructor of
packaged_task. As you have already seen in previous chapters, for a small block of code
to run concurrently, Lambdas come in handy. The primary notion behind futures is to be
able to get results without having any concern for the mechanisms for managing
communication. Also, these two operations are running in two different threads and thus
are parallel.

std::async
Modern C++ provides a mechanism to execute a task like a function that might or might not
execute in parallel. Here, we are referring to std::async, which manages the threading
detail internally. std::async takes a callable object as its argument and returns an
std::future that will store the result or exception from the task that has been launched.
Let's rewrite our previous example to calculate the sum of all elements from a vector using
std::async:

// Function to calculate the sum of elements in a vector
int calc_sum(std::vector<int> v)
{
 int sum = std::accumulate(v.begin(), v.end(), 0);
 return sum;
}

Asynchronous and Lock-Free Programming in C++ Chapter 4

[92]

int main()
{
 std::vector<int> nums{1,2,3,4,5,6,7,8,9,10};
 // task launch using std::async
 std::future<int> result(std::async(std::launch::async, calc_sum,
std::move(nums)));
 // Fetch the result of async, the value returned by calc_sum()
 int sum = result.get();
 std::cout << "Sum = " << sum << std::endl;
 return 0;
}

Primarily, when using std::async for task-based parallelism, the launch of a task and
fetching result from the task are following straightforward syntax and well-separated with
task execution. In the preceding code, std::async is taking three arguments:

The async flag determines the launch policy of the async task
and std::launch::async, meaning that async executes the task on a new
thread of execution. The std::launch::deferred flag doesn't spawn a new
thread, but lazy evaluation is performed. If both the flags are set as in
std::launch::async and std::launch::deferred, it is up to the
implementation as to whether to perform an asynchronous execution or lazy
evaluation. If you explicitly don't pass any launch policy into std::async, it is
again up to the implementation to choose the method of execution.
The second argument to the std::async is a callable object, and it can be a
function pointer, function object, or a Lambda. In this example,
the calc_sum function is the task that gets executed in a separate thread.
The third argument is the input parameter to the task. Generally, that is a
variadic argument and it can pass the number of parameters required for a task
callable object.

Now, let's see how async and Lambda go together for the same example:

// Fetch associated future from async
std::future<int> result(async([](std::vector<int> v) {
return std::accumulate(v.begin(), v.end(), 0);
}, std::move(nums)));

In this example, the callable object argument has a Lambda function inside it, which returns
the result of std::accumulate(). As always, simple operations along with the Lambda
beautify the code's overall appearance and improve readability.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[93]

Using async, you don't have to think about threads and locks. But just think in terms of
tasks that do the computations asynchronously, and that you don't know how many
threads will be used because that's up to the internal implementation to decide based on the
system resources available at the time of calling. It checks for the idle cores (processors) that
are available before deciding how many threads to use. This points to the obvious
limitation with async in that it needs to be employed for tasks that share resources needing
locks.

C++ memory model
The classic C++ was essentially a single threaded language. Even though people were
writing multithread programs in C++, they were using respective platform threading
facilities to write them. Modern C++ can be considered a concurrent programming
language. The language standard provides a standard thread and task mechanism (as we
have already seen) with the help of standard libraries. Since it is a part of the standard
library, the language specification has defined how things should behave across the
platform in a precise manner. Having a consistent platform-agnostic behavior for threads,
tasks, and so on is a massive challenge that the standard committee handled really well.
The committee designed and specified a standard memory model for achieving consistent
behavior while the program is running. The memory model consists of two aspects:

Structural aspects, which relate to how data is laid out in memory
Concurrency aspects, which deal with the concurrent access of memory

For a C++ program, all data is made up of objects. The language defines an object as a region
of storage, which is defined with its type and lifetime. Objects can be an instance of a
fundamental type such as an int or double, or instances of user-defined types. Some objects
may have sub objects, but others don't. The key point is that every variable is an object,
including the members' objects of other objects, and every object occupies at least some
memory location. Now, let's take a look at what this has to do with concurrency.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[94]

Memory access and concurrency
For multithread applications, everything hangs on those memory locations. If multiple
threads access different memory locations, everything works fine. But if two threads access
the same memory location, then you must be very careful. As you have seen in Chapter
3, Language-Level Concurrency and Parallelism in C++, multiple threads trying to read from
the same memory location introduce no trouble, but as soon as any thread tries to modify
data in a common memory location, chances for race conditions to occur come into the
frame.

The problematic race conditions can only be avoided by enforced ordering between the
access in multiple threads. As discussed in Chapter 3, Language-Level Concurrency and
Parallelism in C++, lock-based memory access using mutexes is a popular option. The other
way is to leverage the synchronization properties of atomic operations by enforcing ordering
between the access in two threads. In later sections of this chapter, you will see the use of
atomic operations to enforce ordering.

Atomic operation appears to the rest of the system and occurs at once
without being interrupted (no task switch happens during atomic
operation) in concurrent programming. Atomicity is a guarantee of
isolation from interrupts, signals, concurrent processes, and threads. More
can be read on this topic at the Wikipedia article at https:/ ​/​en.
wikipedia. ​org/ ​wiki/ ​Linearizability.

If there is no enforced ordering between multiple accesses to a single memory location from
different threads, one or both accesses are not atomic. If there is a write involved, then it
can cause a data race and could lead to an undefined behavior. The data race is a serious
bug, and it must be avoided at all costs. The undefined behavior can be avoided by atomic
operations, but it doesn't prevent the race situation. The atomic operation makes sure that
thread switching never happens when the operation is going on. This is a guarantee against
interleaved access to memory. The atomic operations guarantee the preclusion of the
interleaved memory access (serial ordering), but cannot prevent race conditions (as there is
potential to overwrite updates).

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=48&action=edit#post_40
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Linearizability

Asynchronous and Lock-Free Programming in C++ Chapter 4

[95]

The modification contract
While a program or process is in execution, all the threads in the system should agree on
the modification order (for the memory). Every program is executed in an environment,
which involves the instruction stream, memory, registers, heap, stack, caches, virtual
memory, and so on. This modification order is a contract, between the programmer and
system, that is defined by the memory model. The system consists of the compiler (and
linker), which morphs the program into executable code, the processor, which executes the
instruction set specified in the stream, the cache, and associated states of the program. The
contract requires mandating the programmer to obey certain rules, which enables the
system to generate a fully optimized program. This set of rules (or heuristics) that a
programmer has to conform to while writing code to access memory is achieved with the
help of atomic types and atomic operations that were introduced in the standard library.

These operations are not only atomic, but they create synchronization and order constraints
on the program's execution. Compared to higher-level lock-based synchronization
primitives (mutexes and condition variables), discussed in Chapter 3, Language-Level
Concurrency and Parallelism in C++, you can tailor synchronizations and order constraints to
your needs. The important take away from the C++ memory model is this: even though the
language has adopted a lot of modern programming idioms and language features, C++, as
a system programmer's language, has given more low-level control to your memory
resources to optimize the code as you desire.

Atomic operations and types in C++
Generally, a non-atomic operation might be seen as half-done by other threads. As
discussed in Chapter 3, Language-Level Concurrency and Parallelism in C++, in such cases, the
invariance associated with the shared data structure will be broken. This happens when the
modification to a shared data structure requires modification of more than one value. The
best example of this is a partially removed node of a binary tree. If another thread tries to
read from this data structure at the same time, the invariant will be broken and could result
in undefined behavior.

Using an atomic operation, you can't observe an operation that's half-done from any thread
in the system, because atomic operations are indivisible. If any operation (such as read)
associated with an object is atomic, then all of the modifications to the object are also
atomic. C++ has provided atomic types so that you can use atomicity as you require.

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=48&action=edit#post_40
https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=48&action=edit#post_40

Asynchronous and Lock-Free Programming in C++ Chapter 4

[96]

Atomic types
All atomic types defined by the standard library can be found in the <atomic> header
library. The system guarantees the atomicity to these types and all the related operations
with these types. Some operations may not be atomic, but the system creates the illusion of
atomicity in such cases. The standard atomic types use a member
function, is_lock_free(), that allows the user to determine whether operations on a
given type are done directly with atomic instructions (is_lock_free() returns true) or
done using internal locks by the compiler and library (is_lock_free() returns false).

std::atomic_flag is different among all atomic types. The operations on this type are
required to be atomic as per the standard. Hence, this doesn't provide
the is_lock_free() member function. This is a very simple type with a minimal set of
allowed operations such as test_and_set() (they can be either queried or set) or
clear() (clears the value).

The remaining atomic types follow a similar signature as per the specifications of
the std::atomic<> class template. These types, compared to std::atomic_flag, are a
bit more fully featured, but not all operations are always atomic. The atomicity of operations
highly depends on the platform as well. On popular platforms, the atomic variants of built-
in types are indeed lock-free, but this is not guaranteed everywhere.

Instead of using std::atomic<> template classes, you can use the direct types supplied by
the implementation, as given in the following table:

Atomic type Corresponding specialization
atomic_bool std::atomic<bool>

atomic_char std::atomic<char>

atomic_schar std::atomic<signed char>

atomic_uchar std::atomic<unsigned char>

atomic_int std::atomic<int>

atomic_uint std::atomic<unsigned>

atomic_short std::atomic<short>

atomic_ushort std::atomic<unsigned short>

atomic_long std::atomic<long>

atomic_ulong std::atomic<unsigned long>

atomic_llong std::atomic<long long>

atomic_ullong std::atomic<unsigned long long>

atomic_char16_t std::atomic<char16_t>

Asynchronous and Lock-Free Programming in C++ Chapter 4

[97]

atomic_char32_t std::atomic<char32_t>

atomic_wchar_t std::atomic<wchar_t>

Along with all of these basic atomic types, the C++ standard library has also provided a set
of typedefs for atomic types compared to the typedefs available in the standard library
such as std::size_t. There is a simple pattern to identify the corresponding atomic
version of typedefs: for any standard typedef T, use the atomic_ prefix: atomic_T.
The following table lists the standard atomic typedefs and their corresponding built-in
typedefs:

Atomic typedef Standard library typedef
atomic_size_t size_t

atomic_intptr_t intptr_t

atomic_uintptr_t uintptr_t

atomic_ptrdiff_t ptrdiff_t

atomic_intmax_t intmax_t

atomic_uintmax_t uintmax_t

atomic_int_least8_t int_least8_t

atomic_uint_least8_t uint_least8_t

atomic_int_least16_t int_least16_t

atomic_uint_least16_t uint_least16_t

atomic_int_least32_t int_least32_t

atomic_uint_least32_t uint_least32_t

atomic_int_least64_t int_least64_t

atomic_uint_least64_t uint_least64_t

atomic_int_fast8_t int_fast8_t

atomic_uint_fast8_t uint_fast8_t

atomic_int_fast16_t int_fast16_t

atomic_uint_fast16_t uint_fast16_t

atomic_int_fast32_t int_fast32_t

atomic_uint_fast32_t uint_fast32_t

atomic_int_fast64_t int_fast64_t

atomic_uint_fast64_t uint_fast64_t

Asynchronous and Lock-Free Programming in C++ Chapter 4

[98]

The std::atomic<> class templates are not just a set of specializations; they have a
primary template to expand and an atomic variant of the user-defined type. Being a generic
template class, the operations supported are limited to load(), store(), exchange(),
compare_exchange_weak(), and compare_exchange_strong(). Each of the operations
on atomic types has an optional argument to specify the memory-ordering semantics that
are required. The concepts of memory ordering will be covered in detail in a later section of
this chapter. For now, just keep in mind that all atomic operations can be divided into three
categories:

Store operations: These operations can have memory_order_relaxed,
memory_order_release, or memory_order_seq_cst ordering
Load operations: These can have memory_order_relaxed,
memory_order_consume, memory_order_acquire, or
memory_order_seq_cst ordering
Read-modify-write operations: These operations can have
memory_order_relaxed, memory_order_consume, memory_order_acquire,
memory_order_release, memory_order_acq_rel, or
memory_order_seq_cst ordering

The default memory ordering for all atomic operations is memory_order_seq_cst.

Compared to conventional standard C++ types, standard atomic types are not copiable or
assignable. This means that they have no copy constructors or copy assignment operators.
Apart from direct member functions, they support from and implicit conversions to the
corresponding built-in types. All operations on atomic types are defined as atomic, and
assignment and copy-construction involve two objects. An operation involving two distinct
objects cannot be atomic. In both operations, the value must read from one object and be
written to the other. Therefore, these operations cannot be considered atomic.

Now, let's look at the operations that you can actually perform on each of the standard
atomic types, beginning with std::atomic_flag.

std::atomic_flag
std::atomic_flag represents a Boolean flag, and it is the simplest among all the atomic
types in the standard library. This is the only type where all operations on it are required to
be lock-free in every platform. This type is very basic, hence it is intended as a building block
only.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[99]

A std::atomic_flag object must always be initialized with ATOMIC_FLAG_INIT to set
the state to clear:

std::atomic_flag flg = ATOMIC_FLAG_INIT;

This is the only atomic type that requires such initialization, irrespective of the scope of its
declaration. Once it is initialized, there are only three operations permissible with this type:
destroy it, clear it, or set a query for the previous value. These correspond to the destructor,
the clear() member function, and the test_and_set() member function, respectively.
clear() is a store operation, whereas test_and_set() is a read-modify-write operation,
as discussed in the previous section:

flg.clear()
bool val = flg.test_and_set(std::memory_order_relaxed);

In the preceding code snippet, the clear() function call requests that the flag is cleared
with default memory order, which is std:: memory_order_seq_cst, while the call to
test_and set() uses the relaxed semantics (more on this in the Relaxed ordering), which
are explicitly used for setting the flag and retrieving the old value.

The primitive implementation of std::atomic_flag makes it ideal for the spin-lock
mutex. Let's see an example spin-lock:

class spin_lock
{
 std::atomic_flag flg;
 public:
 spin_lock() : flg(ATOMIC_FLAG_INIT){}
 void lock() {
 // simulates a lock here... and spin
 while (flg.test_and_set(std::memory_order_acquire));
 //----- Do some action here
 //----- Often , the code to be guarded will be sequenced as
 // sp.lock() Action_to_Guard()sp.unlock()
 }
 void unlock() {
 //------ End of Section to be guarded
 flg.clear(std::memory_order_release); // release lock
 }
};

In the preceding code snippet, the instance variable flg (of the std::atomic_flag type)
is cleared initially. In the lock method, it tries to set the flag by testing the flg to see
whether the value is cleared.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[100]

If the value is cleared, the value will be set and we will exit the loop. The value in the flag
will only be reset when the flag is cleared by the unlock() method. In other words, this
implementation achieves mutual exclusion with a busy wait in lock().

Because of its limitation, std::atomic_ flag cannot be used as a Boolean atomic type,
and it doesn't support any non-modifying query operations. So, let's look into
std::atomic<bool> to compensate the requirement of atomic Boolean flags.

std::atomic<bool>
std::atomic<bool> is a full-featured atomic Boolean type compared to
std::atomic_flag. But neither copy-construction nor assignment is possible with this
type. The value of an std::atomic<bool> object can initially be either true or false. The
objects of this type can be constructed or assigned values from a non-atomic bool:

std::atomic<bool> flg(true);
flg = false;

One thing needs to be noted about the assignment operator of atomic types, which is that
the operator returns the value of non-atomic types rather than the conventional scheme of
returning references. If a reference is returned instead of a value, it would create a situation
where the result of assignment gets the result of a modification by another thread, that is, if
it depends on the result of the assignment operator. While returning the result of the
assignment operator as a non-atomic value, this additional load can be avoided, and you
can infer that the value obtained is the value that has actually been stored.

Now, let's move on to the operations supported by std::atomic<bool>. First and
foremost, the store() member function, which is available in std::atomic<bool>, is
used for write operations (either true or false), and it replaces the corresponding
restrictive clear() function of std::atomic_flag. Also, the store() function is an
atomic store operation. Similarly, the test_and_set() function has been effectively
replaced with a more generic exchange() member function that allows you to replace the
stored value with a chosen new one and retrieves the original value. This is an atomic read-
modify-write operation. Then, std::atomic<bool> supports a simple non-modifying
query of the value with an explicit call to load(), which is an atomic load operation:

std::atomic<bool> flg;
flg.store(true);
bool val = flg.load(std::memory_order_acquire);
val = flg.exchange(false, std::memory_order_acq_rel);

Asynchronous and Lock-Free Programming in C++ Chapter 4

[101]

Apart from exchange(), std::atomic<bool> introduces an operation to perform a read-
modify-write operation, which executes the popular atomic compare-and-swap (CAS)
instructions. This operation stores a new value if the current value is equal to an expected
value. This is called a compare/exchange operation. There are two implementations of this
operation that are available in standard library atomic types: compare_exchange_weak()
and compare_exchange_strong(). This operation compares the value of the atomic
variable with a supplied expected value and stores the supplied value if they are equal. If
these values are not equal, the expected value is updated with the actual value of the
atomic variable. The return type of the compare/exchange function is a bool, which is true
if the store was performed; otherwise, it is false.

For compare_exchange_weak(), the store might not be successful, even if the expected
value and original value are equal. In such cases, the exchange of value will not happen and
the function will return false. This most often happens on a platform that lacks single
compare-and-swap instructions, which means that the processor cannot guarantee that the
operation will be executed atomically. In such machines, the thread performing the
operation might get switched out halfway through executing the sequence of instructions
associated with the operation, and another thread will be scheduled in its place by the
operating system with a given condition of more threads running than the number of
available processors. This condition is called spurious failure.

Since compare_exchange_weak() can cause spurious failure, it should be used in a loop:

bool expected = false;
atomic<bool> flg;
...
while(!flg.compare_exchange_weak(expected, true));

In the preceding code, the loop continues to iterate as long as expected is false, and it
denotes that spurious failure is happening to the compare_exchange_weak() call. On the
contrary, compare_exchange_strong() is guaranteed to return false if the actual value
isn't equal to the expected value. This can avoid the need for loops as in the previous
situations where you want to know the status of variables with respect to running threads.

The compare/exchange functions can take two memory-ordering parameters in order to
allow the memory-ordering semantics to differ in success and failure cases. Those memory-
ordering semantics are only valid for store operations and cannot be used for failure cases,
since a store operation won't occur:

bool expected;
std::atomic<bool> flg;

Asynchronous and Lock-Free Programming in C++ Chapter 4

[102]

b.compare_exchange_weak(expected, true, std::memory_order_acq_rel,
std::memory_order_acquire);
b.compare_exchange_weak(expected, true, std::memory_order_release);

If you won't specify any memory-ordering semantics, the default memory_order_seq_cst
will be taken for both success and failure cases. If you don't specify any ordering for failure,
then it's assumed to be the same as for success, except that the release part of the ordering is
omitted. memory_order_acq_rel becomes memory_order_acquire and
memory_order_release becomes memory_order_relaxed.

The specifications and consequences of memory ordering will be discussed in detail in
the Memory ordering section of this chapter. Now, let's see the use of atomic integral types as
a group.

Standard atomic integral types
Similar to std::atomic<bool>, standard atomic integral types can be neither copy-
constructible nor copy-assignable. However, they can be constructed and assigned from the
corresponding non-atomic standard variant. Apart from the mandatory is_lock_free()
member function, the standard atomic integral types, such as std::atomic<int> or
std::atomic<unsigned long long>, also have load(), store(), exchange(),
compare_exchange_weak(), and compare_exchange_strong() member functions,
with similar semantics to those of std::atomic<bool>.

The integral variants of atomic types do support mathematical operations such as
fetch_add(), fetch_sub(), fetch_and(), fetch_or() and fetch_xor(), compound-
assignment operators (+=, -=, &=, |= and ^=), and both post- and pre-increment and
decrement operators with ++ and --.

The named functions, such as fetch_add() and fetch_sub(), atomically perform their
operations and return the old value, but the compound-assignment operators return the
new value. Pre- and post-increment/decrement work as per usual C/C++ conventions: the
post-increment/decrement performs the operation, but returns the old value, and pre-
increment/decrement operators perform the operation and return the new value. The
following simple example can easily demonstrate the specifications of these operations:

int main()
{
std::atomic<int> value;

std::cout << "Result returned from Operation: " << value.fetch_add(5) <<
'n';

Asynchronous and Lock-Free Programming in C++ Chapter 4

[103]

std::cout << "Result after Operation: " << value << 'n';

std::cout << "Result returned from Operation: " << value.fetch_sub(3) <<
'n';
std::cout << "Result after Operation: " << value << 'n';

std::cout << "Result returned from Operation: " << value++ << 'n';
std::cout << "Result after Operation: " << value << 'n';

std::cout << "Result returned from Operation: " << ++value << 'n';
std::cout << "Result after Operation: " << value << 'n';

value += 1;
std::cout << "Result after Operation: " << value << 'n';

value -= 1;
std::cout << "Result after Operation: " << value << 'n';
}

The output for this code should look as follows:

Result returned from Operation: 0
Result after Operation: 5
Result returned from Operation: 5
Result after Operation: 2
Result returned from Operation: 2
Result after Operation: 3
Result returned from Operation: 4
Result after Operation: 4
Result after Operation: 5
Result after Operation: 4

Except for std::atomic_flag and std::atomic<bool>, all of the other listed atomic
types in the first table are atomic integral types. Now, let's look into the atomic pointer
specialization, std::atomic<T*>.

std::atomic<T*> – pointer arithmetic
Along with the usual set of operations such as load(), store(), exchange(),
compare_exchange_weak(), and compare_exchange_strong(), the atomic pointer
type is loaded with the pointer arithmetic operations. The member functions fetch_add()
and fetch_sub() provide operation support for the type to do atomic addition and
subtraction on the stored address, and the operators += and -=, and both pre- and post-
increment/decrement, use the ++ and -- operators.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[104]

The operators work in the same way as standard non-atomic pointer arithmetic works. If
obj is an std::atomic<some_class*>, an object points to the first entry of an array of
some_class objects. The obj+=2 changes it to point to the third element in the array and
returns a raw pointer to some_class* that points to the third element in the array. As
discussed in the Standard atomic integral types section, the named functions such as
fetch_add() and fetch_sub execute the operation on atomic types, but return the
pointer to the first element in the array.

The function forms of atomic operations also allow the memory-ordering semantics to be
specified in an additional argument to the function call:

obj.fetch_add(3, std::memory_order_release);

Since both fetch_add() and fetch_sub are read-modify-write operations, they can use
any memory ordering semantics in a standard atomic library. But, for the operator forms,
memory ordering cannot be specified, so these operators will always have
memory_order_seq_cst semantics.

std::atomic<> primary class template
The primary class template in the standard library allows the user to create an atomic
variant of a user-defined type (UDT). To use a user-defined type as an atomic type, you
have to follow some criteria before implementing the class. For a user-defined class UDT,
std::atomic<UDT> is possible if this type has a trivial copy-assignment operator. This
means that the user-defined class should not contain any virtual functions or virtual base
classes and must use the compiler-generated default copy-assignment operator. Also, every
base class and non-static data member of the user-defined class must have a trivial copy-
assignment operator. This allows the compiler to execute memcpy() or an equivalent
operation for assignment operations, since there is no user-written code to execute.

Along with the requirements on assignment operators, the user-defined types must be
bitwise equality comparable. This means that you must be able to compare the instances for
equality using memcmp(). This guarantee is required to ensure that the compare/exchange
operation will work.

For an instance of the standard atomic type with the user-defined type T, that
is, std::atomic<T>, the interface is limited to the operations available for
std::atomic<bool>: load(), store(), exchange(), compare_exchange_weak(),
compare_exchange_strong(), and the assignment from and conversion to an instance of
type T.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[105]

Memory ordering
We have already learned about the atomic types and atomic operators available in the
standard library. While performing operations on atomic types, we need to specify memory
ordering for certain operations. Now, we will talk about the significance and use cases for
the different memory-ordering semantics. The key idea behind atomic operations is to
provide synchronization in data access across multiple threads, and this is achieved by
enforcing the order of execution. For example, if writing to the data happens before the
read from the data, things will be fine. Otherwise, you are in trouble! There are six
memory-ordering options available with the standard library that can be applied to
operations on atomic types: memory_order_relaxed, memory_order_consume,
memory_order_acquire, memory_order_release, memory_order_acq_rel, and
memory_order_seq_cst. For all atomic operations on atomic
types, memory_order_seq_cst is the memory order by default unless you specify
something else.

These six options can be classified into three categories:

Sequentially consistent ordering: memory_order_seq_cst
Acquire-release ordering: memory_order_consume, memory_order_release,
memory_order_acquire, and memory_order_acq_rel
Relaxed ordering: memory_order_relaxed

The cost of execution varies with different CPUs for different memory-ordering models.
The availability of distinct memory-ordering models allows an expert to take advantage of
the increased performance of more fine-grained ordering relationships compared to
blocking sequentially consistent ordering, but to choose the appropriate memory model as
required, one should understand how these options affect the behavior of the program.
Let's look into the sequentially consistent model first.

Sequential consistency
The concept of sequential consistency was defined by Leslie Lamport in 1979. Sequential
consistency provides two guarantees in the execution of a program. First and foremost,
memory ordering the instructions of a program are executed in source code order, or an
illusion of source code order will be guaranteed by the compiler. Then, there is a global
order of all atomic operations in all threads.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[106]

For a programmer, the global ordering behavior of sequential consistency in which all
operations in all threads take place in a global clock is an interesting high ground, but is
also a disadvantage.

The interesting thing about sequential consistency is that the code works as per our
intuition of multiple concurrent threads, but with the cost of a lot of background work
being done by the system. The following program is a simple example to give us an edge
into sequential consistency:

std::string result;
std::atomic<bool> ready(false);

void thread1()
{
 while(!ready.load(std::memory_order_seq_cst));
 result += "consistency";
}

void thread2()
{
 result = "sequential ";
 ready=true;
}

int main()
{
 std::thread t1(thread1);
 std::thread t2(thread2);
 t1.join();
 t2.join();
 std::cout << "Result : " << result << 'n';
}

The preceding program synchronizes the threads thread1 and thread2 with the help of
sequential consistency. Because of sequential consistency, the execution is totally
deterministic, so the output of this program is always as follows:

Result : sequential consistency

Here, thread1 waits in the while loop until the atomic variable ready is true. As soon as
ready becomes true in thread2, thread1 continues its execution, hence the result always
gets updated with strings in the same order. The usage of sequential consistency allows
both threads to see the operations in other threads in the same order, hence both threads
follow the same global time clock. The loop statement also helps to hold the time clock for
the synchronization of both threads.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[107]

The details of acquire-release semantics will follow in the next section.

Acquire-release ordering
Now, let's dive deep into memory-ordering semantics provided by the C++ standard
library. This is the area where the programmer's intuition about ordering in multithread
code begins to fade, because there is no global synchronization between threads in acquire-
release semantics of atomic operations. These semantics only allow synchronization
between atomic operations on the same atomic variable. To elaborate, the load operation on
an atomic variable performing in one thread can be synchronized with store operation
happening on the same atomic variable in some other thread. A programmer must extract
this feature that establishes a happen-before relationship between atomic variables to
synchronize between threads. This makes working with an acquire-release model a bit
difficult, but at the same time more thrilling. The acquire-release semantics shorten the
journey towards lock-free programming, because you don't need to bother about
synchronization of threads, but synchronization of the same atomic variables in different
threads is the one we need to reason about.

As we explained previously, the key idea of acquire-release semantics is the
synchronization between a release operation with an acquire operation on the same atomic
variable and establishing an ordering constant in addition to this. Now, as the name implies,
an acquire operation involves acquiring a lock, which includes the operations used to read
an atomic variable, such as the load() and test_and_set() functions. Consequently, the
releasing of a lock is a release operation, which consists of atomic operations such
as store() and clear().

In other words, the lock of a mutex is an acquire operation, whereas the unlock is a release
operation. Thus, in a critical-section, the operation on a variable cannot be taken outside in
either direction. However, a variable can be moved inside a critical-section, because the
variable moves from an unprotected area to a protected area. This is represented in the
following diagram:

Asynchronous and Lock-Free Programming in C++ Chapter 4

[108]

The critical-section contains one-way barriers: an acquire barrier and a release barrier. The
same reasoning can be applied for starting a thread and placing a join-call on a thread, and
the operations related to all other synchronization primitives available with the standard
library.

Since synchronization takes place at atomic variable level rather than at thread level, let's
revisit the spin-lock that's been implemented using std::atomic_flag:

class spin_lock
{
 std::atomic_flag flg;
public:
 spin_lock() : flg(ATOMIC_FLAG_INIT)
 {}
 void lock()
 {
 // acquire lock and spin
 while (flg.test_and_set(std::memory_order_acquire));
 }
 void unlock()
 {
 // release lock
 flg.clear(std::memory_order_release);
 }
};

In this code, the lock() function is an acquire operation. Instead of using the default
sequentially consistent memory ordering that was used in the previous example, an explicit
acquire memory ordering flag is used now. Also, the unlock() function, which is a release
operation that was also using default memory order, has now been replaced with explicit
release semantics. So, the heavyweight synchronization with sequential consistency of two
threads is replaced by the lightweight and performant acquire-release semantics.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[109]

As the number of threads using the spin_lock increases more than two threads, the
general acquire semantics using std::memory_order_acquire will not be sufficient,
because the lock method becomes an acquire-release operation. Therefore, the memory
model has to be changed to std::memory_order_acq_rel.

So far, we have seen that sequentially consistent ordering ensures synchronization between
threads, while acquire-release ordering establishes ordering between read and write
operations on the same atomic variable on multiple threads. Now, let's see the
specifications of relaxed memory ordering.

Relaxed ordering
Operations on atomic types performed with relaxed memory ordering using the tag
std::memory_order_relaxed are not synchronization operations. In contrast with other
ordering options that are available in the standard library, they do not impose an order
among concurrent memory access. The relaxed memory ordering semantics only guarantee
that the operations on the same atomic type inside the same thread cannot be reordered,
and this guarantee is called modification order consistency. In fact, relaxed ordering only
guarantees atomicity and modification order consistency. Therefore, other threads can see
these operations in different orders.

Relaxed memory ordering can be used effectively in places where synchronization or
ordering is not required, and atomicity can be an added advantage for performance
boosting. One typical example would be incrementing counters, such as reference counters
of std::shared_ptr, where they only require atomicity. But decrementing the reference count
needs acquire-release synchronization with the destructor of this template class.

Let's see a simple example to count the number of threads that were spawned with relaxed
ordering:

std::atomic<int> count = {0};

void func()
{
 count.fetch_add(1, std::memory_order_relaxed);
}

int main()
{
 std::vector<std::thread> v;
 for (int n = 0; n < 10; ++n)
 {
 v.emplace_back(func);

Asynchronous and Lock-Free Programming in C++ Chapter 4

[110]

 }
 for (auto& t : v)
 {
 t.join();
 }
 std::cout << "Number of spawned threads : " << count << 'n';
}

In this code, ten threads are spawned from the main() function with a thread function
func(), where on each thread the atomic integer value is incremented by one using the
atomic operation fetch_add(). In contrast to compound assignment operators and post-
and pre-increment operators, available with std::atomic<int>, the fetch_add()
function can accept the memory ordering argument and it is
std::memory_order_relaxed.

The program prints the number of threads spawned in the program as follows:

Number of spawned threads : 10

The output of the program remains the same for any other relevant memory-ordering tags,
but the relaxed memory ordering ensures atomicity and thus performance.

Until now, we have discussed the levels of the different memory models, and their effect on
atomic and non-atomic operations. Now, let's dive into an implementation of a lock-free
data structure using atomic operations.

A lock-free data structure queue
As we already know, the data in an actual system is often represented in the form of a data
structure, and when it comes to concurrent operations on a data structure, performance is a
big deal. In Chapter 3, Language-Level Concurrency and Parallelism in C++, we learned how to
write a thread-safe stack. However, we used locks and condition variables to implement it.
To explain how to write a lock-free data structure, let's write a very basic queue system
using a producer/consumer paradigm without using locks or condition variables. This will
improve the performance of the code for sure. Rather than using a wrapper over a standard
data type, we will roll it out from scratch. We have made an assumption that there is a
single producer and a single consumer in this case:

template<typename T>
class Lock_free_Queue
{
private:
 struct Node

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=48&action=edit#post_40

Asynchronous and Lock-Free Programming in C++ Chapter 4

[111]

 {
 std::shared_ptr<T> my_data;
 Node* my_next_node;
 Node() : my_next_node(nullptr)
 {}
 };
 std::atomic<Node*> my_head_node;
 std::atomic<Node*> my_tail_node;
 Node* pop_head_node()
 {
 Node* const old_head_node = my_head_node.load();
 if(old_head_node == my_tail_node.load())
 {
 return nullptr;
 }
 my_head_node.store(old_head_node->my_next_node);
 return old_head_node;
 }

The Lock_free_stack class contains a structure to represent a queue node (named Node)
with data members to represent the data of a node (my_data) and a pointer to the next
node. Then, the class contains two instances of an atomic pointer to the user-defined
structure Node, which is already defined inside the class. One instance stores the pointer to
the head node of the queue, while the other points to the tail node. Finally, a
private pop_head_node() function is used to retrieve the head node of the queue by
calling an atomic store operation, but only if the queue contains at least one element. Here,
the atomic operation follows the default sequentially consistent memory-ordering
semantics:

public:
Lock_free_Queue() : my_head_node(new Node),
my_tail_node(my_head_node.load())
 {}
 Lock_free_Queue(const Lock_free_Queue& other) = delete;
 Lock_free_Queue& operator= (const Lock_free_Queue& other) = delete;
 ~Lock_free_Queue()
 {
 while(Node* const old_head_node = my_head_node.load())
 {
 my_head_node.store(old_head_node->my_next_node);
 delete old_head_node;
 }
 }

Asynchronous and Lock-Free Programming in C++ Chapter 4

[112]

The head node is instantiated and the tail points to that memory when the queue object is
constructed. The copy constructor and copy assignment operators are marked as deleted to
prevent them from being used. Inside the destructor, all of the elements in the queue are
deleted iteratively:

 std::shared_ptr<T> dequeue()
 {
 Node* old_head_node = pop_head_node();
 if(!old_head_node)
 {
 return std::shared_ptr<T>();
 }
 std::shared_ptr<T> const result(old_head_node->my_data);
 delete old_head_node;
 return result;
 }
 void enqueue(T new_value)
 {
 std::shared_ptr<T> new_data(std::make_shared<T>(new_value));
 Node* p = new Node;
 Node* const old_tail_node = my_tail_node.load();
 old_tail_node->my_data.swap(new_data);
 old_tail_node->my_next_node = p;
 my_tail_node.store(p);
 }
};

The preceding code snippet implements standard queue operations, which are Enqueue
and Dequeue. Here, we have ensured that there is a happens before relationship between
Enqueue and Dequeue using the swap and store atomic operations.

Summary
In this chapter, we have discussed facilities provided by the standard library to write task-
based parallelism. We saw how to use futures and promises with std::packaged_task
and std::async. We discussed the new multi-threading-aware memory model that is
available with the Modern C++ language. After that, we covered atomic types, and
operations associated with them. The most important thing that we learned about are the
various memory-ordering semantics of the language. In a nutshell, this particular chapter
and the previous one will enable us to reason about the concurrency aspects of the reactive
programming model.

Asynchronous and Lock-Free Programming in C++ Chapter 4

[113]

In the following chapter, we will shift our attention from language and concurrency to the
standard interface of the reactive programming model. We will be covering Observables!

5
Introduction to Observables

In the last three chapters, we learned about the linguistic features of modern C++:
multithreading, lock-free programming models, and so on. The topics covered there can be
considered as sort of prerequisites to start learning about the reactive programming model.
The reactive programming model warrants skills in functional programming, concurrent
programming, schedulers, object/functional programming, design patterns, and event
Stream processing, to name a few. We have already covered or touched upon functional
programming, object/functional programming, and some topics that are related to
scheduling in the previous chapter. This time, we will cover the wonderful world of design
patterns to appreciate the crux of reactive programming in general and Observables in
particular. In the next chapter, we will deal with the topic of event Stream programming
before we jump into the RxCpp library. The design pattern movement reached critical mass
with the publication of a book titled Design Patterns: Elements of Reusable Object Oriented
Software by the Gang of Four (GoF). who cataloged a set of 23 patterns grouped into
creational, structural, and behavioral families. The GoF catalog defined the Observer
pattern in the category of behavioral patterns. A key message we want to deliver here is
that the reactive programming model can be understood through knowledge of the
venerable GoF patterns. In this chapter, we will cover:

The GoF Observer pattern
Limitations of the GoF Observer pattern
A holistic look at design patterns and Observables
Modeling real-world hierarchies using composite design patterns
Behavioral processing of composites using visitors
Flattening the composite and navigating through the Iterator pattern
Transformation from Iterator to Observable/Observer by reversing the gaze!

Introduction to Observables Chapter 5

[115]

The GoF Observer pattern
The GoF Observer pattern is also referred to as a publish-subscribe pattern in the GoF book.
The idea is simple. EventSource (classes that emits events) will have a one-to-many
relationship with event sinks (classes that listen to the event notification). Every
EventSource will have a mechanism for the event sinks to subscribe to, in order to get
different types of notification. A single EventSource might emit multiple events. An
EventSource can send notifications to thousands of subscribers (event sinks or
listeners) when there is a change in state or something significant happens in its realm. The
EventSource will walk through the list of subscribers and notify them one by one. The
GoF book was written at a time when the world was mostly doing sequential
programming. Topics such as concurrency were mostly related to platform-specific libraries
or the POSIX thread library. We will write a simple C++ program to demonstrate the whole
idea of the Observer pattern. The purpose is to quickly understand the Observer pattern,
and ideas such as robustness have been given secondary priority. The listing is self-
contained and easily understandable:

//-------------------- Observer.cpp
#include <iostream>
#include <vector>
#include <memory>
using namespace std;
//---- Forward declaration of event sink
template<class T>
class EventSourceValueObserver;
//----------A toy implementation of EventSource
template<class T>
class EventSourceValueSubject{
 vector<EventSourceValueObserver<T> *> sinks;
 T State; // T is expected to be a value type
 public:
 EventSourceValueSubject() { State = 0; }
 ~EventSourceValueSubject() {
 sinks.clear();
 }
 bool Subscribe(EventSourceValueObserver<T> *sink) {
sinks.push_back(sink);}
 void NotifyAll() { for (auto sink : sinks) { sink->Update(State); }}
 T GetState() { return State; }
 void SetState(T pstate) { State = pstate; NotifyAll(); }
};

Introduction to Observables Chapter 5

[116]

The previous code snippet implements a trivial EventSource, which can potentially store
an integral value as the state. In modern C++, we can use type traits to detect whether the
consumer has instantiated this class with an integral type. Since our focus is on elucidation,
we have not added assertions pertaining to type constraints. In the next C++ standards,
there is a notion called concept (known as Constraints in other languages) that will help in
enforcing that directly (without type traits). In a real-life scenario, an EventSource might
store lots of variables or Streams of values. Any changes in them will be broadcast to all
subscribers. In the SetState method, when a consumer of the EventSource class (the
event sink itself is the consumer in this class) mutates the state, the NotifyAll() method
will get triggered. The NotifyAll() method works through the list of sinks and invokes
the Update() method. Then, event sinks can do the tasks that are specific to their context.
We have not implemented methods such as unsubscribe to focus on the core issues:

//--------------------- An event sink class for the preceding EventSources
template <class T>
class EventSourceValueObserver{
 T OldState;
 public:
 EventSourceValueObserver() { OldState = 0; }
 virtual ~EventSorceValueObserver() {}
 virtual void Update(T State) {
 cout << "Old State " << OldState << endl;
 OldState = State;
 cout << "Current State " << State << endl;
 }
};

The EventSourceValueObserver class has implemented the Update method to do a task
that is relevant for its context. Here, it just prints the values of the old state and current state
onto the console. In real life, sinks might modify a UX element or relay the propagation of
state to other objects through notifications. Let's also write another event sink, which will
inherit from EventSourceValueObserver:

//------------ A simple specialized Observe
class AnotherObserver : public EventSourceValueObserver<double> {
 public:
 AnotherObserver():EventSourceValueObserver() {}
 virtual ~AnotherObserver() {}
 virtual void Update(double State)
 { cout << " Specialized Observer" << State << endl; }
};

Introduction to Observables Chapter 5

[117]

We have implemented a specialized version of the Observer for demonstration purposes.
This has been done to show that we can have subscribers that are instances of two classes
(which can be inherited from EventSourceObserver<T>). Here also, we do not do much
when we get a notification from the EventSource:

int main() {
 unique_ptr<EventSourceValueSubject<double>>
 evsrc(new EventSourceValueSubject<double>());
 //---- Create Two instance of Observer and Subscribe
 unique_ptr<AnotherObserver> evobs(new AnotherObserver());
 unique_ptr<EventSourceValueObserver<double>>
 evobs2(new EventSourceValueObserver<double>());
 evsrc->Subscribe(evobs.get());
 evsrc->Subscribe(evobs2.get());
 //------ Change the State of the EventSource
 //------ This should trigger call to Update of the Sink
 evsrc->SetState(100);
}

The previous code snippet instantiates an EventSource object and adds two subscribers.
When we change the state of the EventSource, the notification will be received by the
subscribers. This is the crux of the Observer pattern. In a normal OOP program, the
consumption of objects is done in the following way:

Instantiate the object1.
Call a method to compute some value or change state2.
Do something useful based on the return value or a change in the state3.

Here, in the case of the Observer, we have done the following:

Instantiate the object (EventSource)1.
Subscribe for the notification by implementing Observers (for event listening)2.
When something changes at the EventSource, you will be notified3.
Do something with the value received through the notification4.

The Method function outlined here helps in the separation of concerns, and modularity has
been achieved. This is a good mechanism to implement event-driven code. Rather than
polling for events, you are asking to be notified. Most GUI toolkits today use similar
paradigms.

Introduction to Observables Chapter 5

[118]

The limitations of the GoF Observer pattern
The GoF pattern book was written at a time when the world was really doing sequential
programming. The architecture of Observer pattern implementation had lot of anomalies,
judging from the current programming model world view. Here are some of them:

The close coupling between Subjects and Observers.
The lifetime of the EventSource is controlled by the Observers.
Observers (sinks) can block the EventSource.
The implementation is not thread-safe.
Event filtering is done at the sink level. Ideally speaking, the data should be
filtered at the place where the data is (at the subject level, before notification).
Most of the time, Observers do not do much and the CPU cycles will be wasted.
The EventSource should ideally publish the value to the environment. The
environment should notify all the subscribers. This level of indirection can
facilitate techniques such as event aggregation, event transformation, event
filtering, and canonicalizing the event data to name a few.

With the advent of functional programming techniques such as immutable variables,
functional composition, functional style transformation, lock-free concurrent programming,
and so on, we can circumvent the limits of the classic Observer pattern. The solution
outlined by the industry is the notion of Observables.

In the classic Observer pattern, a diligent reader might have seen the potential for the
asynchronous programming model to be incorporated. The EventSource can make
asynchronous calls to the Subscribers method, rather than looping the subscribers
sequentially. By using a fire and forget mechanism, we can decouple the EventSource
from its sinks. The invocation can be done from a background thread, async task, or
packaged task, or a suitable mechanism for the context. The asynchronous invocation of
notification methods has the added advantage that if any of the client blocks (by getting
into an infinite loop or a crash), others can still get the notification. The asynchronous
method works on the following schema:

Define methods for handling data, exceptions, and the end of the data (on the1.
event sink side)
An Observer (event Sink) interface should have OnData, OnError, and2.
OnCompleted methods
Every event sink should implement the Observer interface3.
Every EventSource (Observable) should have subscribe and unsubscribe4.
methods

Introduction to Observables Chapter 5

[119]

The event sink should subscribe to an instance of Observable through Subscribe5.
methods
When an event happens, the Observer will be notified by the Observable6.

Some of these things were already mentioned in Chapter 1, Reactive Programming Model –
Overview and History. We did not cover the asynchronous part then. In this chapter, we will
revisit those ideas. Based on the experience which authors had based on the technical
presentations and interaction with developers, jumping right into the Observable/Observer
model of programming does not help in comprehension. Most developers are confused
regarding Observable/Observer because of the fact that they do not know what particular
problem this pattern solves. The classic GoF Observer implementation given here is to set
the context for discussions on Observable Streams.

A holistic look at GoF patterns
The design pattern movement started at a time when the World was struggling to come to
terms with complexities of object-oriented software design methods. The GoF book and the
associated pattern catalog gave developers a set of techniques for designing large-scale
systems. Topics such as concurrency and parallelism were not in the minds of the people
who designed the catalog. (At least, their work did not reflect this!)

We have seen that event handling through the classic Observer pattern has some
limitations, which might be a problem in some cases. What is the way out? We need to take
a fresh look at the problem of event handling by taking a step back. We will digress into the
subject of philosophy a bit to have a different outlook on the problem that the reactive
programming model (programming with Observable Streams!) is trying to solve. Our
Journey will help us to transition nicely from GOF patterns to the world of Reactive
programming using functional programming constructs.

The following content in this section is bit abstract and has been given here to provide a
conceptual background from which authors of this book have approached the subject
covered in this chapter. Our approach to explaining Observables starts from the GoF
Composite/Visitor pattern and iteratively reaches the topic of Observables. The idea of this
approach came from a book on Advaita Vedanta, a mystical philosophical tradition that
originated in India. The topic has been explained in Western Philosophical terms. If a
matter seems bit abstract, feel free to gloss over it.

Introduction to Observables Chapter 5

[120]

Nataraja Guru (1895-1973) was an Indian philosopher who was a proponent of the Advaita
Vedanta Philosophy, an Indian philosophical school based on the non-dualism of a
supreme force that governs all of us. According to this philosophical school, whatever we
see around , be it humans, animals, or plants, are manifestations of the Absolute (called
Brahman in Sanskrit) and its only positive affirmation is SAT-CHIT-ANAND (Vedanta
philosophy uses negation and proof by contradiction to depict Brahman). This can be
translated into the English language as existence, essence, and bliss (the implied meaning of
bliss is "good" here). In a book titled The Unitive Philosophy published by DK Print World,
New Delhi, he gives a mapping of SAT-CHIT-ANAND to Ontology, Epistemology, and
Axiology (the three primary branches of philosophy). The Ontology, Epistemology, and
Axiology are the theories of existence, knowledge, and values respectively. The following
table gives possible mappings of SAT-CHIT-ANAND to other entities that mean more or
less the same:

SAT CHIT ANAND
Existence Essence Bliss
Ontology Epistemology Axiology
Who am I? What can I know? What should I do?
Structure Behavior Function

In Vedanta (the Advaita school) philosophy, the whole World is viewed as existence,
essence, and bliss. From the table, we will map the problems in the software design world
into the problem of structure, behavior, and function. Every system in the world can be
viewed from the structural, behavioral, and functional perspectives. The canonical structure
for a OOP programs is hierarchies. We will model the world we are interested in as
hierarchies and process them in a canonical manner. The GOF pattern catalog has got
Composite pattern (structural) for modelling hierarchies and Visitor pattern (behavioral)
to process them.

The OOP programming model and
hierarchies

This section is bit conceptual in nature and those of you who have not
dabbled with GoF design patterns will find it a bit difficult. The best
strategy could be to skip this section and focus on the running example.
Once you have understood the running example, this particular section
can be revisited.

Introduction to Observables Chapter 5

[121]

Object-oriented programming is very good at modeling hierarchies. In fact, the hierarchy
can be considered the canonical data model for the object-oriented processing of data. In
the GoF pattern world, we model hierarchies using the Composite pattern. The Composite
pattern is categorized as a structural pattern. Whenever there is a Composite pattern used,
the Visitor pattern will also be part of the system. The Visitor pattern is good for processing
composites to add behavior to the structure. The Visitor/Composite patterns come as a pair
in real-life contexts. Of course, one instance of the Composite can be processed by different
visitors. In a Compiler project, the Abstract Syntax Tree (AST) will be modeled as a
composite and there will be Visitor implementations for type checking, code optimization,
code generation, and static analysis to name a few.

One of the problems with the Visitor pattern is the fact that it has to have some notion of
the structure of the Composite to do the processing. Moreover, it will result in code bloat
in the context where it needs to process a filtered subset of the available data in the
Composite hierarchy. We might require different visitors for each filter criterion. The GoF
pattern catalog has another pattern that falls into the behavioral category, called Iterator,
something that every C++ programmer is familiar with. The Iterator pattern is good at
processing data in a structure-agnostic manner. Any kind of hierarchical structure has to be
linearized or flattened to be in a shape amenable to be processed by an Iterator. An example
could be a tree, which can be processed using a BFS Iterator or a DFS Iterator. For the
application programmer, all of a sudden the tree appears as a linear structure. We need to
flatten the hierarchies to be in a state where the structure is amenable to Iterators. The
process will be implemented by the person who has implemented the API. There are some
limitations to the Iterator pattern (which is pull-based) and we will reverse the gaze and
make the system push-based using a pattern called Observerable/Observer, an enhanced
version of the Observer pattern. This section is a bit abstract, but after going through the
entire chapter, you can come back and make sense of what is happening. In a nutshell, we
can sum up the whole thing as follows:

We can model hierarchical structures using the Composite pattern
We can process the Composite using the Visitor pattern
We can flatten or linearize the Composite to navigate it through Iterators
Iterators follow a pull method and we need to reverse the gaze for a push-based
scheme
Now, we have managed to reach the Observable/Observer way of implementing
things
Observables and Iterators are binary opposites (one man's push is another man's
pull!)

We will implement all of the preceding points to have a firm grounding on Observables.

Introduction to Observables Chapter 5

[122]

A Composite/Visitor pattern for expression
processing
To demonstrate the journey from the GoF pattern catalog to Observables, we will model a
four-function calculator as a running example. Since expression trees or AST are
hierarchical in nature, they will be a good example to model as a Composite pattern. We
have purposefully omitted writing a parser to keep the code listing small:

#include <iostream>
#include <memory>
#include <list>
#include <stack>
#include <functional>
#include <thread>
#include <future>
#include <random>
#include "FuncCompose.h" // available int the code base
using namespace std;
//---------------------List of operators supported by the evaluator
enum class OPERATOR{ ILLEGAL,PLUS,MINUS,MUL,DIV,UNARY_PLUS,UNARY_MINUS };

We have defined an enum type to represent the four binary operators (+ , - , * , /) and two
unary operators (+ , -). Other than the standard C++ headers, we have included a custom
header (FuncCompose.h), which is available at the GitHub repo associated with this book.
It contains code for the Compose function and pipe operator (|) for functional composition.
We can use Unix pipeline style composition to tie together a collection of transformations:

//------------ forward declarations for the Composites
class Number; //----- Stores IEEE double precision floating point number
class BinaryExpr; //--- Node for Binary Expression
class UnaryExpr; //--- Node for Unary Expression
class IExprVisitor; //---- Interface for the Visitor
//---- Every node in the expression tree will inherit from the Expr class
class Expr {
 public:
 //---- The standard Visitor double dispatch method
 //---- Normally return value of accept method are void.... and Concrete
 //---- classes store the result which can be retrieved later
 virtual double accept(IExprVisitor& expr_vis) = 0;
 virtual ~Expr() {}
};
//----- The Visitor interface contains methods for each of the concrete
node
//----- Normal practice is to use
struct IExprVisitor{

Introduction to Observables Chapter 5

[123]

 virtual double Visit(Number& num) = 0;
 virtual double Visit(BinaryExpr& bin) = 0;
 virtual double Visit(UnaryExpr& un)=0 ;
};

The Expr class will act as the base class for all the nodes that are part of the Expression Tree.
Since our purpose is to demonstrate the Composite/Visitor GoF pattern, we support only
constants, binary expressions, and unary expressions. The accept method in the Expr class
accepts a Visitor reference as a parameter and the body of the method will be the same for
all the nodes. The method will redirect the call to the appropriate handler on the Visitor
implementation. To gain more insight into the whole subject covered in this section, read
about double dispatch and Visitor pattern by searching the web using your favorite search
engine.

The Visitor interface (IExprVisitor) contains methods to process all the node types
supported by the hierarchy. In our case, there are methods for processing constant
numbers, binary operators, and unary operators. Let's see the code for the Node types. We
start with the Number class:

//---------A class to represent IEEE 754 interface
class Number : public Expr {
 double NUM;
 public:
 double getNUM() { return NUM;}
 void setNUM(double num) { NUM = num; }
 Number(double n) { this->NUM = n; }
 ~Number() {}
 double accept(IExprVisitor& expr_vis){ return expr_vis.Visit(*this);}
};

The Number class wraps an IEEE double precision floating point number. The code is
obvious and all we need to bother about is the content of the accept method. The method
receives a parameter of type visitor (IExprVisitor&). The routine just reflects the call back
to the appropriate node on the Visitor implementation. In this case, it will call
Visit(Number&) on IExpressionVisitor:

//-------------- Modeling Binary Expresison
class BinaryExpr : public Expr {
 Expr* left; Expr* right; OPERATOR OP;
 public:
 BinaryExpr(Expr* l,Expr* r , OPERATOR op) { left = l; right = r; OP =
op;}
 OPERATOR getOP() { return OP; }
 Expr& getLeft() { return *left; }
 Expr& getRight() { return *right; }

Introduction to Observables Chapter 5

[124]

 ~BinaryExpr() { delete left; delete right;left =0; right=0; }
 double accept(IExprVisitor& expr_vis) { return expr_vis.Visit(*this);}
};

The BinaryExpr class models a binary operation with left and right operands. The
operands can be any of the classes in the hierarchy. The candidate classes are Number,
BinaryExpr, and UnaryExpr. This can go to an arbitrary depth. The terminal node is
Number in our case. The previous code has support for four binary operators:

//-----------------Modeling Unary Expression
class UnaryExpr : public Expr {
 Expr * right; OPERATOR op;
 public:
 UnaryExpr(Expr *operand , OPERATOR op) { right = operand;this-> op =
op;}
 Expr& getRight() { return *right; }
 OPERATOR getOP() { return op; }
 virtual ~UnaryExpr() { delete right; right = 0; }
 double accept(IExprVisitor& expr_vis){ return expr_vis.Visit(*this);}
};

The UnaryExpr method models a unary expression with an operator and a right side
expression. We support unary plus and unary minus for this implementation. The right
side expression can in turn be a UnaryExpr, BinaryExpr, or Number. Now that we have
implementations for all the node types supported, let's focus on the implementation of the
Visitor Interface. We will write a Tree Walker and Evaluator to compute the value of the
expression:

//--------An Evaluator for Expression Composite using Visitor Pattern
class TreeEvaluatorVisitor : public IExprVisitor{
 public:
 double Visit(Number& num){ return num.getNUM();}
 double Visit(BinaryExpr& bin) {
 OPERATOR temp = bin.getOP(); double lval =
bin.getLeft().accept(*this);
 double rval = bin.getRight().accept(*this);
 return (temp == OPERATOR::PLUS) ? lval + rval: (temp == OPERATOR::MUL)
?
 lval*rval : (temp == OPERATOR::DIV)? lval/rval : lval-rval;
 }
 double Visit(UnaryExpr& un) {
 OPERATOR temp = un.getOP(); double rval = un.getRight().accept(*this);
 return (temp == OPERATOR::UNARY_PLUS) ? +rval : -rval;
 }
};

Introduction to Observables Chapter 5

[125]

This does a depth-first walk of the AST and recursively evaluates the node. Let's write an
expression processor (an implementation of IExprVisitor) that will print the expression
tree to the console in Reverse Polish Notation (RPN) form:

//------------A Visitor to Print Expression in RPN
class ReversePolishEvaluator : public IExprVisitor {
 public:
 double Visit(Number& num){cout << num.getNUM() << " " << endl; return
42;}
 double Visit(BinaryExpr& bin){
 bin.getLeft().accept(*this); bin.getRight().accept(*this);
 OPERATOR temp = bin.getOP();
 cout << ((temp==OPERATOR::PLUS) ? " + " :(temp==OPERATOR::MUL) ?
 " * " : (temp == OPERATOR::DIV) ? " / ": " - ") ; return 42;
 }
 double Visit(UnaryExpr& un){
 OPERATOR temp = un.getOP();un.getRight().accept(*this);
 cout << (temp == OPERATOR::UNARY_PLUS) ?" (+) " : " (-) "; return
42;
 }
};

The RPN notation is also called the postfix notion, where the operator comes after the
operands. They are suitable for processing using an evaluation stack. They form the basis of
the stack-based virtual machine architecture leveraged by the Java Virtual Machine and the
.NET CLR. Now, let's write a main function to put everything together:

int main(int argc, char **argv){
 unique_ptr<Expr>
 a(new BinaryExpr(new Number(10) , new Number(20) ,
OPERATOR::PLUS));
 unique_ptr<IExprVisitor> eval(new TreeEvaluatorVisitor());
 double result = a->accept(*eval);
 cout << "Output is => " << result << endl;
 unique_ptr<IExprVisitor> exp(new ReversePolishEvaluator());
 a->accept(*exp);
}

Introduction to Observables Chapter 5

[126]

This code snippet creates an instance of a composite (an instance of BinaryExpr) and also
instantiates an instances of TreeEvaluatorVisitor and ReversePolshEvaluator.
Then, the accept method of Expr is called to start processing. We will see the value of the
expression and an RPN equivalent of the expression on the console. In this section, we
learned how to create a Composite and process the Composite using a Visitor interface.
Other potential examples for Composites/Visitors are storing directory contents and their
traversal, XML processing, document processing, and so on. Popular opinion says that, if
you know the Composite/Visitor duo, you have understood the GoF pattern catalog well.

We have seen that the Composite pattern and Visitor pattern act as a pair to take care of the
structural and behavioral aspects of a system and provide some functionality. The Visitor
has to be written in a manner that presupposes the cognizance of the structure of the
Composite. This can be a potential problem from an abstraction perspective. An
implementer of a hierarchy can provide a mechanism to flatten the hierarchy into a list
(which is possible in most cases). This will enable the API implementer to provide an
Iterator-based API. The Iterator-based API is good for functional-style processing as well.
Let's see how it works.

Flattening the composite for iterative
processing
We have already learned that the Visitor pattern has to know the structure of the composite
for someone to write an instance of the Visitor interface. This can create an anomaly called
abstraction leak. The GoF pattern catalog has a pattern that will help us to navigate the
contents of a tree in a structure-agnostic manner. Yes, you might have guessed it correctly:
the Iterator pattern is the candidate! For the Iterator to do its job, the composite has to be
flattened into a list sequence or Stream. Let's write some code to flatten the expression tree
that we modeled in the previous section. Before we write the logic to flatten a Composite,
let's create a data structure to store the contents of an AST as a list. Every node in the list
has to store either an operator or value, depending upon whether we need to store
operators or operands. We describe a data structure called EXPR_ITEM for this purpose:

////////////////////////////
// A enum to store discriminator -> Operator or a Value?
enum class ExprKind{ ILLEGAL_EXP, OPERATOR , VALUE };
// A Data structure to store the Expression node.
// A node will either be a Operator or Value
struct EXPR_ITEM {
 ExprKind knd; double Value; OPERATOR op;
 EXPR_ITEM():op(OPERATOR::ILLEGAL),Value(0),knd(ExprKind::ILLEGAL_EXP){}

Introduction to Observables Chapter 5

[127]

 bool SetOperator(OPERATOR op)
 { this->op = op;this->knd = ExprKind::OPERATOR; return true; }
 bool SetValue(double value)
 { this->knd = ExprKind::VALUE;this->Value = value;return true;}
 string toString() {DumpContents();return "";}
 private:
 void DumpContents() { //---- Code omitted for brevity }
};

The list<EXPR_ITEM> data structure will store the contents of the composite as a linear
structure. Let's write a class that will flatten the composite:

//---- A Flattener for Expressions
class FlattenVisitor : public IExprVisitor {
 list<EXPR_ITEM> ils;
 EXPR_ITEM MakeListItem(double num)
 { EXPR_ITEM temp; temp.SetValue(num); return temp; }
 EXPR_ITEM MakeListItem(OPERATOR op)
 { EXPR_ITEM temp;temp.SetOperator(op); return temp;}
 public:
 list<EXPR_ITEM> FlattenedExpr(){ return ils;}
 FlattenVisitor(){}
 double Visit(Number& num){
 ils.push_back(MakeListItem(num.getNUM()));return 42;
 }
 double Visit(BinaryExpr& bin) {
 bin.getLeft().accept(*this);bin.getRight().accept(*this);
 ils.push_back(MakeListItem(bin.getOP()));return 42;
 }
 double Visit(UnaryExpr& un){
 un.getRight().accept(*this);
 ils.push_back(MakeListItem(un.getOP())); return 42;
 }
};

The FlattenerVistor class will flatten the composite Expr node to a list of EXPR_ITEM.
Once the composite has been linearized, it is possible to process items using the Iterator
pattern. Let's write a small global function to convert an Expr tree to list<EXPR_ITEM>:

list<EXPR_ITEM> ExprList(Expr* r) {
 unique_ptr<FlattenVisitor> fl(new FlattenVisitor());
 r->accept(*fl);
 list<EXPR_ITEM> ret = fl->FlattenedExpr();return ret;
 }

Introduction to Observables Chapter 5

[128]

The global subroutine ExprList will flatten an arbitrary expression tree of a list of
EXPR_ITEM. Once we have flattened the composite, we can use an iterator to process the
content. After linearizing the structure as a list, we can use a stack data structure to
evaluate the expression data to produce the output:

//-------- A minimal stack to evaluate RPN expression
class DoubleStack : public stack<double> {
 public:
 DoubleStack() { }
 void Push(double a) { this->push(a);}
 double Pop() { double a = this->top(); this->pop(); return a; }
};

DoubleStack is a wrapper around the STL stack container. This can be considered as some
kind of helper routine to keep the listing terse. Let's write an evaluator for the flattened
expression. We will iterate through list<EXPR_ITEM> and push the value to the stack, if a
value is encountered. If an operator is encountered, we will pop the values from the stack
and apply the operation. The result is pushed into the stack once again. At the end of the
iteration, the existing element in the stack will be the value associated with the expression:

//------Iterator through eachn element of Expression list
double Evaluate(list<EXPR_ITEM> ls) {
 DoubleStack stk; double n;
 for(EXPR_ITEM s : ls) {
 if (s.knd == ExprKind::VALUE) { stk.Push(s.Value); }
 else if (s.op == OPERATOR::PLUS) { stk.Push(stk.Pop() + stk.Pop());}
 else if (s.op == OPERATOR::MINUS) { stk.Push(stk.Pop() - stk.Pop());}
 else if (s.op == OPERATOR::DIV) { n = stk.Pop(); stk.Push(stk.Pop()
/ n);}
 else if (s.op == OPERATOR::MUL) { stk.Push(stk.Pop() * stk.Pop()); }
 else if (s.op == OPERATOR::UNARY_MINUS) { stk.Push(-stk.Pop()); }
 }
 return stk.Pop();
}
//----- Global Function Evaluate an Expression Tree
double Evaluate(Expr* r) { return Evaluate(ExprList(r)); }

Let's write a main program that will call this function to evaluate the expression. The code
listing in the evaluator is easy to understand because we are reducing a list. In the tree-
based interpreter, things were not obvious:

int main(int argc, char **argv){
 unique_ptr<Expr>

Introduction to Observables Chapter 5

[129]

 a(new BinaryExpr(new Number(10) , new Number(20) ,
OPERATOR::PLUS));
 double result = Evaluate(&(*a));
 cout << result << endl;
}

Map and filter operations on the list
Map is a functional operator where a function will be applied to a list. Filter will apply a
predicate to a list and return another list. They are the cornerstone of any functional
processing pipeline. They are also called higher-order functions. We can write a generic
Map function, using std::transform for std::list and the std::vector:

template <typename R, typename F>
R Map(R r , F&& fn) {
 std::transform(std::begin(r), std::end(r), std::begin(r),
 std::forward<F>(fn));
 return r;
}

Let's also write a function to filter a std::list (we assume only a list will be passed). The
same can work on std::vector. We can compose a higher-order function using the pipe
operator. The composite function can also be passed as a predicate:

template <typename R, typename F>
R Filter(R r , F&& fn) {
 R ret(r.size());
 auto first = std::begin(r), last = std::end(r) , result =
std::begin(ret);
 bool inserted = false;
 while (first!=last) {
 if (fn(*first)) { *result = *first; inserted = true; ++result; }
 ++first;
 }
 if (!inserted) { ret.clear(); ret.resize(0); }
 return ret;
}

Introduction to Observables Chapter 5

[130]

In this implementation of Filter, due to limitations in std::copy_if, we were forced to roll
our own iteration logic. It is generally advised to use the STL implementation of functions
to write wrappers. For this particular scenario, we need to detect whether a list is empty or
not:

//------------------ Global Function to Iterate through the list
void Iterate(list<EXPR_ITEM>& s){
 for (auto n : s) { std::cout << n.toString() << 'n';}
}

Let's write a main function to put everything together. The code will demonstrate how to
use Map and Filter in the application code. The logic for functional composition and the
pipe operator are available in the FuncCompose.h:

int main(int argc, char **argv){
 unique_ptr<Expr>
 a(new BinaryExpr(new Number(10.0) , new Number(20.0) ,
OPERATOR::PLUS));
 //------ExprList(Expr *) will flatten the list and Filter will by
applied
 auto cd = Filter(ExprList(&(*a)) ,
 [](auto as) { return as.knd != ExprKind::OPERATOR;});
 //----- Square the Value and Multiply by 3... used | as composition
Operator
 //---------- See FuncCompose.h for details
 auto cdr = Map(cd, [] (auto s) { s.Value *=3; return s; } |
 [] (auto s) { s.Value *= s.Value; return s; });
 Iterate(cdr);
}

The Filter routine creates a new list<Expr>, which contains only the values or
operands used in the expression. The Map routine applies a composite function on the list of
values to return a new list.

Reversing the gaze for Observables!
We have already learned that we can transform a composite to a list and traverse them
through an Iterator. The Iterator pattern pulls data from the data source and manipulates
the result at the consumer level. The most important problem we face is that we are
coupling our EventSource and event sink. The GoF Observer pattern also does not help
here.

Introduction to Observables Chapter 5

[131]

Let's write a class that can act as an event hub, which the sinks will subscribe to. By having
an event hub, we will now have an object that will act as an intermediary between the
EventSource and event sink. One advantage of this indirection is readily obvious from the
fact that our class can aggregate, transform, and filter out events before they reach the
consumer. The consumer can even set transformation and filtering criteria at the event hub
level:

//----------------- OBSERVER interface
struct OBSERVER {
 int id;
 std::function<void(const double)> ondata;
 std::function<void()> oncompleted;
 std::function<void(const std::exception &)> onexception;
};
//--------------- Interface to be implemented by EventSource
struct OBSERVABLE {
 virtual bool Subscribe(OBSERVER * obs) = 0;
 // did not implement unsuscribe
};

We have already covered the OBSERVABLE and OBSERVER in Chapter 1, Reactive
Programming Model – Overview and History and Chapter 2, A Tour of Modern C++ and its Key
Idioms. The EventSource implements OBSERVABLE and the event sinks implement the
OBSERVER interface. A class derived from OBSERVER will implement the following
methods:

ondata (for receiving data)
onexception (exception processing)
oncompleted (end of the data)

The EventSource class will be derived from OBSERVABLE and has to implement:

Subscribe (subscribe to notification)
Unsubscribe (not implemented in our case)

//------------------A toy implementation of EventSource
template<class T,class F,class M, class Marg, class Farg >
class EventSourceValueSubject : public OBSERVABLE {
 vector<OBSERVER> sinks;
 T *State;
 std::function<bool(Farg)> filter_func;
 std::function<Marg(Marg)> map_func;

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=53&action=edit#post_26

Introduction to Observables Chapter 5

[132]

map_func and filter_func are functions that can help us to transform and filter the
values before they are dispatched to the subscribers in an asynchronous manner. We give
these values as parameters when we instantiate the EventSource class. Currently, we have
written the code under the assumption that only the Expr object will be stored in the
EventSource. We can have a list or vector of expressions and Stream the value to the
subscribers. For this, implementation a scalar value can be pushed to the listeners:

 public:
 EventSourceValueSubject(Expr *n,F&& filter, M&& mapper) {
 State = n; map_func = mapper; filter_func = filter; NotifyAll();
 }
 ~EventSourceValueSubject() { sinks.clear(); }
 //------ used Raw Pointer ...In real life, a shared_ptr<T>
 //------ is more apt here
 virtual bool Subscribe(OBSERVER *sink) { sinks.push_back(*sink);
return true;}

We have made some assumptions that the Expr objects will be owned by the caller. We
have also omitted the implementation of the unsubscribe method. The constructor takes an
Expr object, a Filter predicate (it can be a composite function using the | operator), and a
Mapping function (it can be a composite function using the | operator):

 void NotifyAll() {
 double ret = Evaluate(State);
 list<double> ls; ls.push_back(ret);
 auto result = Map(ls, map_func);; // Apply Mapping Logic
 auto resulttr = Filter(result,filter_func); //Apply Filter
 if (resulttr.size() == 0) { return; }

After evaluating the expression, the scalar value will be put into an STL list. Then, the Map
function will be applied on the list to transform the value. In future, we will handle a list of
values. Once we have mapped or transformed the values, we will apply a filter to the list. If
there is no value in the list, the method returns without notifying the subscribers:

 double dispatch_number = resulttr.front();
 for (auto sink : sinks) {
 std::packaged_task<int()> task([&]()
 { sink.ondata(dispatch_number); return 1; });
 std::future<int> result = task.get_future();task();
 double dresult = result.get();
 }
 }

Introduction to Observables Chapter 5

[133]

In this code, we will call packaged_task to dispatch the data to the event sinks. Industrial-
strength libraries use a piece of code called Scheduler to do this part of the task. Since we
are using fire and forget, the sinks will not be able to block the EventSource. This is one of
the most important use cases of Observables:

 T* GetState() { return State; }
 void SetState(T *pstate) { State = pstate; NotifyAll(); }
};

Now, let's write a method to emit random expressions based on the modern C++ random
number generator with a uniform probability distribution. The choice of this distribution is
rather arbitrary. We can try other distributions as well to see different results:

Expr *getRandomExpr(int start, int end) {
 std::random_device rd;
 std::default_random_engine reng(rd());
 std::uniform_int_distribution<int> uniform_dist(start, end);
 double mean = uniform_dist(reng);
 return new
 BinaryExpr(new Number(mean*1.0) , new Number(mean*2.0) ,
OPERATOR::PLUS);
}

Now, let's write a main function to put everything together. We will instantiate the
EventSourceValueSubject class with an Expr, a Filter, and a Mapper:

int main(int argc, char **argv){
 unique_ptr<Expr>
 a(new BinaryExpr(new Number(10) , new Number(20) ,
OPERATOR::PLUS));
 EventSourceValueSubject<Expr,std::function<bool(double)>,
 std::function<double(double)>,double,double>
 temp(&(*a),[] (auto s) { return s > 40.0; },
 [] (auto s) { return s+ s ; } |
 [] (auto s) { return s*2;});

While instantiating the object, we have used the pipe operator to compose two Lambdas.
This is to demonstrate that we can compose an arbitrary list of functions to form a
composite function. When we write RxCpp programs, we will exploit this technique a lot:

 OBSERVER obs_one ; OBSERVER obs_two ;
 obs_one.ondata = [](const double r) { cout << "*Final Value " << r
<< endl;};
 obs_two.ondata = [] (const double r){ cout << "**Final Value " << r
<< endl;};

Introduction to Observables Chapter 5

[134]

In this code, we have instantiated two OBSERVER objects and assigned them to the ondata
member using Lambda functions . We have not implemented other methods. This is for
demonstration purposes only:

 temp.Subscribe(&obs_one); temp.Subscribe(&obs_two);

We subscribed to event notification using the OBSERVER instances. We have only
implemented the ondata method. Implementing onexception and oncompleted are
trivial tasks:

 Expr *expr = 0;
 for(int i= 0; i < 10; ++i) {
 cout << "--------------------------" << i << " "<< endl;
 expr = getRandomExpr(i*2, i*3); temp.SetState(expr);
 std::this_thread::sleep_for(2s); delete expr;
 }
}

We evaluated a series of random expressions by setting the expression to the EventSource
object. After transformation and filtering, if there is a value left, the value will be notified to
the OBSERVER and it will printed to the console. With this, we have managed to write a
non-blocking EventSource using packaged_taks. We have demonstrated the following
in this chapter:

Modeling an expression tree using a Composite
Processing a Composite through the Visitor interface
Flattening the expression tree into a list and processing it through Iterators (pull)
Reversing the gaze from EventSource to the event sink (push)

Summary
We have covered a lot of ground in this chapter, inching towards the reactive programming
model. We learned about the GoF Observer pattern and understood its shortcomings. Then,
we digressed into philosophy to understand the method of looking at the world from a
structural, behavioral, and functional perspective. We learned about the GoF
Composite/Visitor pattern in the context of modeling an expression tree. We learned how to
flatten the hierarchy into a list and navigate them through the Iterator. Finally, we
transformed the scheme of things a bit to reach Observables. Normally, Observables work
with Streams, but in our case it was a scalar value. In the next chapter, we will learn about
event Stream processing to complete our prerequisites for learning reactive programming.

6
Introduction to Event Stream

Programming Using C++
This chapter will be the last in the series of pre-requisite chapters required for
programming reactive systems using C++. The reason why we need to go through quite a
number of concepts is due to the fact that the reactive programming model unifies a lot of
computing concepts in realizing its robust programming model. To start thinking in a
reactive way, a programmer has to be familiar with object-oriented programming,
functional programming, language-level concurrency, lock-free programming, the
asynchronous programming model, design patterns, scheduling algorithms, data flow
programming model, declarative-style programming, and even a bit of graph theory! We
started the book with a peek into the event-driven programming models of various GUI
systems and ways to structure our code around them. We covered the core essence of
Modern C++ Chapter 2, A Tour of Modern C++ and its Key Idioms. In Chapter 3, Language-
Level Concurrency and Parallelism in C++, and Chapter 4, Asynchronous and Lock-Free
Programming in C++, we covered the language-level concurrency supported by the C++
language and lock-free programming, respectively. In Chapter 5, Introduction to
Observables, we focused on how to put the reactive programming model into perspective by
dealing with it in the context of GOF patterns. What is left is event Stream programming.
Now we will be focusing on the processing of event Streams or event Stream programming.
In this chapter, we will look at the following:

What is the Stream programming model?
Advantages of the Stream programming model
Stream programming using C++ with a public domain library
Stream programming using Streamulus
Event Stream programming

Introduction to Event Stream Programming Using C++ Chapter 6

[136]

What is Stream programming model?
Before we get into the topic of the Stream programming model, we will take a step back to
look at parallels with the POSIX shell programming model. In a typical command line shell
program, every command is a program and every program is a command. We can pipe the
output of one program to another program after achieving a computational objective or
task. In effect, we can chain a series of commands to achieve bigger computational task. We
can see it as a stream of data passing through a series of filters or transformations to fetch
the output. We can also call the preceding process as command composition. There are real-
life cases where huge programs are being replaced by small amount of shell code using
command composition . The same process can be realized in a C++ program, by treating the
input of a function as a stream, sequence, or list. The data can be passed from one function
or function object (aka functor) to another as a standard data container.

Dr. Donald Knuth, the legendary computer scientist and Stanford
University Professor was asked to write a program that:

Reads a text file and determines n frequently used words
Prints out a sorted list of words along with their frequencies

Knuth's solution was a ten-page Pascal program! Doug McIlroy realized
the same with just the following shell script:

tr -cs A-Za-z ' n ' | tr A-Z a-z | sor t | uniq -c | sor
t -rn | sed ${1}q

So much for the power of command composition.

Advantages of the Stream programming model
Traditional OOP programs model hierarchies well, and processing hierarchies is mostly a
difficult process compared to processing a linear collection. In the case of the Stream
programming model, we can treat the input as a stream of entities put into a container and
the output as a bag of entities, without modifying the input data stream. Using C++ generic
programming techniques, we can write container-agnostic code to process streams. Some
advantages of this model are:

Stream programming simplifies program logic
Streams can support lazy evaluation and functional style transforms
Streams are better suited for the concurrent programming model (Source Streams
are immutable)

Introduction to Event Stream Programming Using C++ Chapter 6

[137]

We can compose functions to create higher-order functions to process them
Streams facilitate the declarative programming model
They can aggregate, filter, and transform data from different sources
They decouple data sources and the entities that process them
They improve code readability (developers can comprehend code faster)
They can exploit data parallelism and task parallelism
We can leverage hundreds of well-defined Stream operators (algorithms) to
process data

Applied Stream programming using the
Streams library
In this section, we will introduce the topic of Stream programming using the
Streams library ,a public domain library written by Jonah Scheinerman. The library is
hosted at https:/ ​/​github. ​com/ ​jscheiny/ ​Streams and the API documentation is available
from http:/​/​jscheiny. ​github. ​io/ ​Streams/ ​api.​html#. An introduction has been given as
following (taken from the library GitHub page):

Streams is a C++ library that provides lazy evaluation and functional-
style transformations on data, to ease the use of C++ standard library
containers and algorithms. Streams supports many common functional
operations such as map, filter, and reduce, as well as various other useful
operations such as various set operations (union, intersection, difference),
partial sum, and adjacent difference, as well as many others.

We can see that a programmer who is familiar with the standard template library (STL)
will clearly be at ease with this library. The STL Containers are treated as Stream data
source and the STL algorithms can be considered as transformations on the Stream data
source. The library uses functional programming idioms supported by Modern C++ and
also supports lazy evaluation. The concept of lazy evaluation is very significant here, as it is
the corner stone of functional programming model and Rx programming model.

https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
https://github.com/jscheiny/Streams
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html

Introduction to Event Stream Programming Using C++ Chapter 6

[138]

Lazy evaluation
In programming languages, there are two prominent ways to evaluate arguments to a
function they are as follows:

Applicative-order evaluation (AO)
Normal-order evaluation (NO)

In the case of AO, arguments are evaluated in the calling context, before being passed to the
callee. Most conventional programming languages follow this method. In the case of NO,
the evaluation of the variables is deferred until the result of the computation is warranted
in the context of the callee. Some functional programming languages, such as Haskell, F#,
and ML, follow the NO model. In functional programming languages, most of the
evaluation of functions is referentially transparent (the invocation of the functions does not
produce side-effects); we need to evaluate the expression only once (for a particular value
as argument) and the result can be shared, when the evaluation with the same function
with the same arguments appears once again for execution. This is called lazy evaluation.
Thus, lazy evaluation can be considered a NO coupled with sharing of the previously
computed results. The C++ programming language does not provide support for lazy
evaluation of function parameters by default, but can be emulated using different
techniques available such as Variadic Templates and expression templates.

A simple Stream program
To get started with the Streams library, let's write a small program to generate a Stream of
numbers and compute the square of the first ten numbers:

//--------- Streams_First.cpp
#include "Stream.h"
using namespace std;
using namespace Stream;
using namespace Stream::op;
int main(){
 //-------- counter(n) - Generate a series of value
 //-------- Map (Apply a Lambda)
 //-------- limit(n) -- Take first ten items
 //-------- Sum -- aggregate
 int total = MakeStream::counter(1)
 | map_([] (int x) { return x * x; } // Apply square on each elements
 | limit(10) //take first ten elements

Introduction to Event Stream Programming Using C++ Chapter 6

[139]

 | sum(); // sum the Stream contents Streams::op::sum
 //----------- print the result
 cout << total << endl;
}

The previous code snippet generates a list of values (using MakeStream::counter(1))
and the generated values will be transformed using the map function (in this case,
computing the square). When ten elements are assembled (limit(10)) in the Stream, we
call the operator sum on the Stream.

Aggregating values using the Stream paradigm
Now that we understand the basics of Stream programming as envisaged by the Stream
library, let's write a piece of code that computes the average of numbers stored in
a std::vector container:

//--------------- Streams_Second.cpp
// g++ -I./Streams-master/sources Streams_Second.cpp
//
#include "Stream.h"
#include <ioStream>
#include <vector>
#include <algorithm>
#include <functional>
using namespace std;
using namespace Stream;
using namespace Stream::op;
int main() {
 std::vector<double> a = { 10,20,30,40,50 };
 //------------ Make a Stream and reduce
 auto val = MakeStream::from(a) | reduce(std::plus<void>());
 //------ Compute the arithematic average
 cout << val/a.size() << endl;
}

The previous code snippet creates a Stream out of std::vector and applies a reduction
process using the std::plus functor. It is tantamount to aggregating the values in the
Stream. Finally, we divide the aggregated value with by the of elements in std::vector.

Introduction to Event Stream Programming Using C++ Chapter 6

[140]

The STL and the Stream paradigm
The Streams library can work seamlessly with the STL containers. The following code
snippets will map a function on Streams and resultant data is being transformed to a vector
container:

//--------------- Streams_Third.cpp
// g++ -I./Streams-master/sources Streams_Third.cpp
//
#include "Stream.h"
#include <ioStream>
#include <vector>
#include <algorithm>
#include <functional>
#include <cmath>
using namespace std;
using namespace Stream;
using namespace Stream::op;
double square(double a) { return a*a; }
int main() {
 std::vector<double> values = { 1,2,3,4,5 };
 std::vector<double> outputs = MakeStream::from(values)
 | map_([] (double a) { return a*a;})
 | to_vector();
 for(auto pn : outputs)
 { cout << pn << endl; }
}

The previous code snippet converts std::vector<double> into a Stream, applies the
square function, and converts the stuff back to std:::vector<double>. After that, the
vector is iterated to print the content. The Streams library documentation is very elaborate
and contains lot of code samples that you can use to write code for production-quality
applications. Consult the API documentation, available at http:/ ​/​jscheiny. ​github. ​io/
Streams/​api.​html.

A word about the Streams library
The Streams library is a well-designed piece of software with an intuitive programming
model. Any programmer who has worked with a functional programming and Streams
programming will really be comfortable with it in a matter of hours. Those of you who are
familiar with STL will also find the library to be very intuitive as well. From a
programming model perspective, the API can be divided into:

http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html
http://jscheiny.github.io/Streams/api.html

Introduction to Event Stream Programming Using C++ Chapter 6

[141]

Core methods (Stream initialization)
Generators (Stream creators)
Stateful intermediate operators (functional immutable transformations)
Stateless intermediate operators
Terminal operators

The previously mentioned documentation of the library sheds light on the each of the
aspects of this wonderful library.

Event Stream programming
We have got some kind of understanding about the working of Stream programming
model. When we process events as Streams, it can be categorized as Event Stream
programming. In the programming community, event-driven architecture is being
projected as a better model for crafting modern programs. A wonderful example of
software that relies on Event Stream programming is version control systems. In a version
control system, everything is treated as an event. Typical examples include checking out the
code, commits, rollbacks, and branching.

Advantages of Event Stream programming
Aggregating events as a Stream and processing them in downstream systems has many
advantages compared to the traditional Event programming model. Some of the key
advantages are:

Event source and Event sinks are not coupled
Event sinks can process events without bothering with Event sources
We can apply Stream processing operators to process and filter Streams
The transformation and filtering can be done at the aggregation level
The events can be propagated through a Stream-processing network
Event processing can be parallelized easily (declarative parallelism)

Introduction to Event Stream Programming Using C++ Chapter 6

[142]

The Streamulus library and its programming
model
The Streamulus library, from Irit Katiel, is a library that makes the programming of event
Streams easier with a programming model, which implements domain-specific embedded
language (DSEL). To understand the programming model, let's inspect a program that
Streams data into a class that aggregates received data:

#include "Streamulus.h"
#include <ioStream>
using namespace std;
using namespace Streamulus;
struct print {
 static double temp;
 print() { }
 template<typename T>
 T operator()(const T& value) const {
 print::temp += value;
 std::cout << print::temp << std::endl; return value;
 }
};
double print::temp = 0;

The preceding functor just accumulates the value passed into a static variable. For each
invocation of the function by the Streamify template (Streamify<print>(s)), the value
accumulated so far will be printed to the console. More on this can be understood by going
through the listing as follows:

void hello_Stream() {
 using namespace Streamulus;
 // Define an input Stream of strings, whose name is "Input Stream"
 InputStream<double> s =
 NewInputStream<double>("Input Stream", true /* verbose */);
 // Construct a Streamulus instance
 Streamulus Streamulus_engine;

We create a Stream using the NewInputStream<T> template method. The function expects
a parameter that determines whether logs should be printed to the console. By giving the
second parameter as false, we can turn off verbose mode. We need to create an instance of
the Streamulus engine to orchestrate the data flow. The Streamulus engine does a
topological sort of the Stream expressions to determine the change propagation order:

 // For each element of the Stream:
 // aggregate the received value into a running sum

Introduction to Event Stream Programming Using C++ Chapter 6

[143]

 // print it
 Streamulus_engine.Subscribe(Streamify<print>(s));

We use the Streamify<f> strop (Stream operator) to serialize calls to the print functor we
just created. We can create our own Stream operators, and usually Streamify would suffice
for us. Streamfiy creates a single event functor and a strop:

 // Insert data to the input Stream
 InputStreamPut<double>(s, 10);
 InputStreamPut<double>(s, 20);
 InputStreamPut<double>(s, 30);
}
int main() { hello_Stream(); return 0; }

The previous code snippets emit some values into the Stream. We would be able to see the
accumulated sum to be printed on the console three times. In the main function, we invoke
the hello_Stream function to trigger all the actions.

Now that we have learned how the Streamulus systems work with a simple program, let's
write a program that clarifies the semantics of the library much better. The following
program Streams data through a host of single argument functors to demonstrate the
functioning of the library. We also use Stream expressions liberally in the listings:

///////////////////////////
// g++ -I"./Streamulus-master/src" -I<PathToBoost>s Streamulus_second.cpp
#include "Streamulus.h"
#include <ioStream>
using namespace std;
using namespace Streamulus;
//------- Functors for doubling/negating and halfving values
struct twice {
 template<typename T>
 T operator()(const T& value) const {return value*2;}
};
struct neg {
 template<typename T>
 T operator()(const T& value) const{ return -value; }
};
struct half{
 template<typename T>
 T operator()(const T& value) const { return 0.5*value;}
};

Introduction to Event Stream Programming Using C++ Chapter 6

[144]

The preceding set of functors is arithmetical in nature. The twice functor doubles the
argument, the neg functor flips the sign of the argument, and the half functor scales the
value by 0.5 to halve the value of the argument:

struct print{
 template<typename T>
 T operator()(const T& value) const{
 std::cout << value << std::endl;
 return value;
 }
};
struct as_string {
 template<typename T>
 std::string operator()(const T& value) const {
 std::stringStream ss;
 ss << value;
 return ss.str();
 }
};

How the preceding two function objects work is obvious—the first one (print) just outputs
the value to the console. as_string converts the argument to the string using the
std::stringStream class:

void DataFlowGraph(){
 // Define an input Stream of strings, whose name is "Input Stream"
 InputStream<double> s =
 NewInputStream<double>("Input Stream", false /* verbose */);
 // Construct a Streamulus instance
 Streamulus Streamulus_engine;
 // Define a Data Flow Graph for Stream based computation
 Subscription<double>::type val2 =
Streamulus_engine.Subscribe(Streamify<neg>
 (Streamify<neg>(Streamify<half>(2*s))));
 Subscription<double>::type val3 = Streamulus_engine.Subscribe(
 Streamify<twice>(val2*0.5));
Streamulus_engine.Subscribe(Streamify<print>(Streamify<as_string>(val3*2)))
;
 //------------------ Ingest data into the Stream
 for (int i=0; i<5; i++)
 InputStreamPut(s, (double)i);
}

Introduction to Event Stream Programming Using C++ Chapter 6

[145]

DataFlowGraph() created InputStream<T> to process a double-valued Stream. After
instantiating the Streamulus object (engine), we glued a series of functors through a
Streamify<f> Stream operator. The operation can be considered a kind of functional
composition with a single argument function. After setting up the mechanism, we injected
data to the Stream using the InputStreamPut function:

int main(){
 DataFlowGraph(); //Trigger all action
 return 0;
}

The Streamulus library – a peek into its internals
The Streamulus library basically creates a change propagation graph to ease Stream
processing. We can treat the node of a graph as computation, and the edges as buffers that
take the data from one node to another. Almost all data flow systems follow the same
semantics. The Streamulus library helps us to build a graph of dependent variables, which
help us propagate the changes to child nodes. The order in which variables should be
updated will be defined by doing a topological sort on the graph.

A graph is a data structure where a set of dependent entities is represented as
nodes (or vertices) and their relationship (as edges) between them. In
computer science, especially when it comes to scheduling and analyzing
dependencies, a particular version of graph, called directed acyclic graphs, is
preferred for its unique qualities. A DAG is a directed graph without cycles.
We can perform an operation called a topological sort to determine the linear
order in which the entities are dependent. The topological sorting can only be
performed on a DAG and they are not unique. In the following graph, we can
find multiple topological orders:

Introduction to Event Stream Programming Using C++ Chapter 6

[146]

The Streamulus Library – a look into expression
processing
We will take a look at how Streamulus processes expressions using a simple Stream
expression:

InputStream<int>::type x = NewInputStream<int>("X");
Engine.Subscribe(-(x+1));

The - (x+1) Stream expression will produce the following graph. The term strop stands
for Stream operators and each of the nodes is organized as a strop:

Once the node has been labeled correctly, a topological sort on the graph will be done to
determine the execution order. The following diagram shows a topological sort (you can
have multiple topological orders):

The Streamulus engine walks through the graph to find out the order in which Stream
operators have to be applied on the data propagating through the network. The TO label
stands for topological order. After topological sort, a linear list of Stream operators ranked
by Topological order will be produced. The execution engine will execute the code in
topological order.

Introduction to Event Stream Programming Using C++ Chapter 6

[147]

The Streamulus engine performs its magic using the boost proto library.
The latter manages expression trees for the Streamulus library. To really
go through the source code of the library, you need to be comfortable with
template meta programming, especially expression templates. Meta
programming is a technique where we write code to generate or
transform source code. It turned out that the C++ template mechanism
was Turing complete by Erwin Unruh in the year 1994.

The spreadsheet Library — a change-propagation
engine
An electronic spreadsheet is often touted as the quintessential example of a reactive system.
In a spreadsheet, a page is organized as a matrix of cells. When there is a change in a cell,
all dependent cells will be re-computed to reflect the change. This happens for every cell. In
effect, modelling a spreadsheet is easy, if you have a library such as Streamulus.
Fortunately, the designer of the library itself wrote another library that relies on Streamulus
for change propagation.

Spreadsheet is a C++ library that enables spreadsheet-programming, that
is, setting up variables (cells) where each cell is assigned an expression
that can contain the values of other cells. Changes are propagated to all
dependent cells, as in a spreadsheet. Spreadsheet was developed to
demonstrate the use of Streamulus. Spreadsheet is a header-only library. It
uses boost and Streamulus. So put these three libraries in your include
path. The details of the library can be found at https:/ ​/​github. ​com/
iritkatriel/ ​spreadsheet.

We will go through a sample program that leverages the Spreadsheet library, which is
included in the project's GitHub repository (main.cpp):

#include "spreadsheet.hpp"
#include <ioStream>
int main (int argc, const char * argv[]) {
 using namespace spreadsheet;
 Spreadsheet sheet;
 Cell<double> a = sheet.NewCell<double>();
 Cell<double> b = sheet.NewCell<double>();
 Cell<double> c = sheet.NewCell<double>();
 Cell<double> d = sheet.NewCell<double>();
 Cell<double> e = sheet.NewCell<double>();
 Cell<double> f = sheet.NewCell<double>();

https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet
https://github.com/iritkatriel/spreadsheet

Introduction to Event Stream Programming Using C++ Chapter 6

[148]

The previous code snippet creates a set of cells, which acts as a container for IEEE double-
precision floating-point numbers. After we have initialized the cell, we will start mutating
the values of the cell with the following set of expressions:

 c.Set(SQRT(a()*a() + b()*b()));
 a.Set(3.0);
 b.Set(4.0);
 d.Set(c()+b());
 e.Set(d()+c());

Now, we will mutate the values with the preceding expressions. After each assignment
through the Set method, a computational pass will get triggered through the cells. The
Streamulus library manages the underlying flow:

 std::cout << " a=" << a.Value()
 << " b=" << b.Value()
 << " c=" << c.Value()
 << " d=" << d.Value()
 << " e=" << e.Value()
 << std::endl;

The previous code snippet prints the value of the cells to the console. Once again, we will
change the cells' expressions to trigger a computational flow graph:

 c.Set(2*(a()+b()));
 c.Set(4*(a()+b()));
 c.Set(5*(a()+b()));
 c.Set(6*(a()+b()));
 c.Set(7*(a()+b()));
 c.Set(8*(a()+b()));
 c.Set(a());
 std::cout << " a=" << a.Value()
 << " b=" << b.Value()
 << " c=" << c.Value()
 << " d=" << d.Value()
 << " e=" << e.Value()
 << std::endl;
 std::cout << "Goodbye!n";
 return 0;
}

The source code of the library can be perused to understand the internal workings of the
library. A spreadsheet is a wonderful example of how the Streamulus library can be
leveraged to write robust software.

Introduction to Event Stream Programming Using C++ Chapter 6

[149]

RaftLib – another Stream-processing library
RaftLib is a library that is worth checking out for anyone (developers) who are interested
in doing parallel programming or Stream-based programming. The library is available
at https:/​/​github. ​com/ ​RaftLib/ ​RaftLib . The following description is available from the
preceding site

RaftLib is a C++ Library for enabling Stream/data-flow parallel
computation. Using simple right-shift operators (just like the C++ Streams
that you would use for string manipulation), you can link parallel
compute kernels together. With RaftLib, we do away with explicit use of
pthreads, std::thread, OpenMP, or any other parallel threading library.
These are often mis-used, creating non-deterministic behavior. RaftLib's
model allows lock-free FIFO-like access to the communications channels
connecting each compute kernel. The full system has many auto-
parallelization, optimization, and convenience features that enable
relatively simple authoring of performant applications.

We won't be covering RaftLib in detail in this particular book, due to space constraints. A
wonderful talk by the author of the library (Jonathan Beard) is available at https:/ ​/​www.
youtube.​com/​watch? ​v=​IiQ787fJgmU. Let's go through a code snippet that shows the
working of this library:

#include <raft>
#include <raftio>
#include <cstdlib>
#include <string>

class hi : public raft::kernel
{
public:
 hi() : raft::kernel(){ output.addPort< std::string >("0"); }
 virtual raft::kstatus run(){
 output["0"].push(std::string("Hello Worldn"));
 return(raft::stop);
 }
};

int main(int argc, char **argv) {
 /** instantiate print kernel **/
 raft::print< std::string > p;
 /** instantiate hello world kernel **/
 hi hello;
 /** make a map object **/
 raft::map m;

https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://github.com/RaftLib/RaftLib
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU
https://www.youtube.com/watch?v=IiQ787fJgmU

Introduction to Event Stream Programming Using C++ Chapter 6

[150]

 /** add kernels to map, both hello and p are executed concurrently **/
 m += hello >> p;
 /** execute the map **/
 m.exe();
 return(EXIT_SUCCESS);
}

As a programmer, you are supposed to define a kernel for custom computation and use the
>> operator to Stream the data. In the preceding code, the hi class is such a kernel. Consult
the Raftlib documentation (available at the preceding RaftLib URL) and source code
examples to learn more about this wonderful library.

What do these things have to do with Rx
programming?
Basically, the reactive programming model treats events as a Stream of data propagating
through a change-propagation graph. For this to happen, we need to aggregate event
elements to a container-based data structure and create a Stream out of that. Sometimes, we
even apply statistical techniques to sample events, if there is plenty of data. The generated
Stream can be filtered and transformed at the source level using functional transformation,
before being notified to the observers who are waiting to get notified. The event source is
supposed to take a fire-and-forget approach to event-Stream dispatch, to avoid the
coupling between Event source sinks and the Event sinks . When to dispatch the event data
will be determined by scheduling software which runs the functional transformation
pipeline in an asynchronous manner. So, the key elements of reactive programming are:

Observables (a Stream of data in which others are interested)
Observer (entities which is interested in an Observable and Subscribe for
notification)
Scheduler (which determines when the Stream should be propagated down the
network)
Functional Operators (event filtering and transformation)

In a nutshell, the Scheduler (part of the Rx Engine) takes an Observable for filtering and
transformation asynchronously before notifying the subscribers, as shown:

Introduction to Event Stream Programming Using C++ Chapter 6

[151]

Summary
In this chapter, we covered the topic of event Stream programming. Treating events as
Streams has many advantages over the traditional event-processing model. We started with
the Streams library and learned about its programming model. We also wrote some
programs to familiarize ourselves with the library and its semantics. The Streams library
has excellent documentation and you should consult its documentation to learn more about
it. After Streams library, we looked at the Streamulus library, which provides a DSEL
approach to the manipulation of event Streams. We wrote a couple of programs and also
studied some sample programs that come with the Streamulus library. We also mentioned
the Raftlib library, an alternative library for the Stream processing . With the coverage of
Event Stream programming model, We have now finished dealing with the prerequisites
for understanding reactive programming in general and the RxCpp library in particular. In
the next chapter, we will start using the RxCpp library to get into the programming model
of the reactive system design.

7
Introduction to Data Flow

Computation and the RxCpp
Library

From this chapter onward, we will get into the meat of the reactive programming model.
You can consider the earlier chapters as a kind of prerequisite to understanding the reactive
programming model, more specifically functional reactive programming. If we look back,
we covered the necessary prerequisites, which includes the following:

The event programming models on various GUI platforms
A whirlwind tour of the Modern C++ language (including functional
programming)
Language-level concurrency for better concurrent systems
Lock-free programming models (as a step toward declarative programming)
Advanced design patterns and the concept of Observables
Event Stream programming

All of these topics come together in a systematic manner in the case of functional reactive
programming (FRP).

Simply put, reactive programming is nothing but programming with asynchronous data
Streams. By applying various operations on Streams, we can achieve different
computational goals. The primary task in a reactive program is to convert data into
Streams, regardless of the source of the data. Event Streams are typically called Observables
and event Stream subscribers are called Observers. Betweene Observables and Observers,
there are Stream operators (filters/transforms).

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[153]

Since it is implicitly assumed that the data source won't be mutated while data is passed
through operators, we can have multiple operator paths between Observables and
Observers. Immutability gives options for out-of-order execution, and scheduling can be
delegated to a special piece of software called Schedulers. Thus Observables, Observers,
Stream operators, and Schedulers form the backbone of the FRP model.

In this chapter, we will cover the following topics:

A short discussion about the data flow computing paradigm
Introduction to the RxCpp library and its programming model
Some basic RxCpp programs to get our feet wet
Rx Stream operators
Marble diagrams
Scheduling
flat/concat map oddities
Some more operators

The data flow computation paradigm
Traditionally, programmers encode their program in terms of control flow. That means we
encode programs as a series of small statements (sequence, branching, iteration) or
functions (including recursive), with their associated states. We use constructs, such as
selection (if/else), iteration (while/for), and recursive functions, to encode our
computation. Handling concurrency and state management for these types of program are
really problematic and they lead to subtle bugs. We need to place locks and other
synchronization primitives around shared mutable states. At the compiler level, the
language compiler will parse the source code to create an abstract syntax tree (AST), do
type analysis, code generation, and code generation. In fact, AST is an information flow
graph where you can perform data-flow analysis (for data/register level optimization) and
control-flow analysis to exploit code pipeline optimization at the processor level. Even
though programmers encode programs in terms of control flow, the compiler (at least some
part of it) tries to see the program in terms of data flow as well. The bottom line here is the
fact that there is an implicit data flow graph dormant in every program.

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[154]

The data flow computation organizes computation as an explicit graph, where nodes are
computations and edges are paths for data to flow between the nodes. If we place certain
restrictions (such as preservation of the data state by working on a copy of the input data,
(the avoidance of in-place algorithms) on computations at the nodes, we can exploit
opportunities for parallelism. The Scheduler will find opportunities for parallelism by
doing a topological sort on the graph data structure. We will construct the graph using
Streams (Path) and operations on Streams (Node). This can be done declaratively, as
operators can be encoded as Lambdas, which do some local computations. There is a set of
primitive standard (functional/stream) operators, such as map, reduce, filter, and take,
identified by the functional programming community. There is a provision in the data flow
computation framework to convert data into Streams. The TensorFlow library for machine
learning is one library that uses this paradigm. The RxCpp library can also be considered as
a data flow computation library, even though graph creation is not fully explicit, as in the
case of TensorFlow. Since functional programming constructs support lazy evaluation, we
are creating a computation flow graph, when we construct a Stream pipeline with
asynchronous data Streams and operations.

An introduction to the RxCpp library
We will be using the RxCpp library to write our reactive programs in the rest of the book.
The RxCpp library is a header-only C++ library that can be downloaded from a GitHub
repo: http:/​/​reactive- ​extensions. ​github. ​io/ ​RxCpp/ ​. RxCpp relies on Modern C++
constructs, such as language-level concurrency, Lambda functions/expressions, functional
composition/transformation, and operator-overloading, to implement reactive
programming constructs. The RxCpp library is structured along the lines of libraries such
as Rx.net and Rxjava.

Like any other reactive programming framework, there are some key constructs that
everyone should understand before they write the first line of code. They are:

Observables (Observable Streams)
Observers (who subscribe to the Observables)
Operators (for example, filters, transformations, and reductions)
Schedulers

http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/
http://reactive-extensions.github.io/RxCpp/

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[155]

RxCpp is a header-only library and most of the computation is based on the notion of
Observables. The library provides lot of primitives to create Observable Streams from
various data sources. The data sources can be Ranges, STL containers, and so on. We can
place operators between Observables and their consumers (monikered as Observers). Since
functional programming constructs support composition of functions, we can place a chain
of operators as a single entity between Observables and Observers who subscribe to the
Streams. The Scheduler associated with the library will make sure that when data is
available in Observable Streams, it will be passed through the operators and a notification
will be issued to subscribers, if there is data out there, after a series of filters and
transformations. The Observers will need to bother about things, when one of the Lambda
methods from subscribers are called. The Observers can focus on the tasks for which they
are primarily responsible.

The RxCpp library and its programming model
In this section, we will write some programs that will help the reader to understand the
programming model of the RxCpp libraries. The aim of these programs is to elucidate Rx
concepts and they are mostly trivial in nature. The code will be sufficient for a programmer
to incorporate them into a production implementation with minor tweaks. Data producers
and their Observables will be based on ranges, STL containers, and so on.

A simple Observable/Observer interaction
Let's write a simple program that will help us understand the programming model of the
RxCpp library. In this particular program, we will have an Observable Stream and an
Observer that subscribes to the Stream. We will generate a series of numbers from 1 to 12,
using a range object. After creating the range of values and an Observable over them, we
will attach a subscriber to the observable. When we execute the program, it will print a
series of numbers to the console with an additional test:

//////////
// First.cpp
// g++ -I<PathToRxCpplibfoldersrc> First.cpp
#include "rxcpp/rx.hpp"
#include <ioStream>
int main() {
 //------------- Create an Observable.. a Stream of numbers
 //------------- Range will produce a sequence from 1 to 12
 auto observable = rxcpp::observable<>::range(1, 12);

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[156]

 //------------ Subscribe (only OnNext and OnCompleted Lambda given
 observable.Subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompleted\n");});
}

The preceding program will print the numbers to the console and OnCompleted will be
emitted to the console. This program demonstrates how we can create an Observable
Stream and connect an Observer to the Stream using the Subscribe method.

Filters and transformations with Observables
The following program will help us understand how the filter and map operators work,
besides the usual mechanism of connecting an observer to Observable Streams using the
subscribe method. The filter method evaluates a predicate on each item of the Stream, and
if the evaluation happens to produce a positive assertion, the item will be present in the
output Stream. The map operator applies an expression on each element of the input Stream
and helps produce an output queue:

///////////////////////////////////////
// Second.cpp
#include "rxcpp/rx.hpp"
#include <ioStream>
int main() {
 auto values = rxcpp::observable<>::range(1, 12).
 filter([](int v){ return v % 2 ==0 ;}).
 map([](int x) {return x*x;});
 values.subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompleted\n");});
}

The preceding program generates a Stream of numbers and passes the Stream through a
filter function. The filter function tries to detect whether the number is even. The output
Stream will be passed to the map function, which will square the contents of the Stream.
Eventually, the contents of the Stream will be printed to the console.

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[157]

Streaming values from C++ containers
Even though Rx is meant for processing data varying over time, we can convert an STL
container into a Reactive Stream. We need to use the Iterate operator to do the conversion.
This can be handy at times and has been helpful in integrating code from code bases that
use STL:

// STLContainerStream.cpp
#include "rxcpp/rx.hpp"
#include <ioStream>
#include <array>
int main() {
 std::array< int, 3 > a={{1, 2, 3}};
 auto values = rxcpp::observable<>::iterate(a);
 values.subscribe([](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompleted\n");});
}

Creating Observables from scratch
So far, we have written programs that create an Observable Stream from a range object or
STL containers. Let's see how we can create an Observable Stream from scratch. Well,
almost:

// ObserverFromScratch.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
int main() {
 auto ints = rxcpp::observable<>::create<int>(
[](rxcpp::subscriber<int> s){
 s.on_next(1);
 s.on_next(4);
 s.on_next(9);
 s.on_completed();
 });
 ints.subscribe([](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
}

The preceding program calls the next method to emit a series of numbers that are perfect
squares. Those numbers will be printed to the console.

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[158]

Concatenating Observable Streams
We can concatenate two Streams to form a new Stream and this can be handy in some
cases. Let's see how this works by writing a simple program:

//------------- Concactatenate.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
int main() {
 auto values = rxcpp::observable<>::range(1);
 auto s1 = values.take(3).map([](int prime) { return 2*prime;);});
 auto s2 = values.take(3).map([](int prime) { return prime*prime);});
 s1.concat(s2).subscribe(rxcpp::util::apply_to(
 [](int p) { printf(" %dn", p);}));
}

The concat operators append the Streams one after another by preserving the order.

Unsubscribing from Observable Streams
The following program shows how you can subscribe to an Observable Stream and stop the
subscription. The program just shows the options available, and documentation should be
consulted to:

//---------------- Unsubscribe.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {
 auto subs = rxcpp::composite_subscription();
 auto values = rxcpp::observable<>::range(1, 10);
 values.subscribe(
 subs,[&subs](int v){
 printf("OnNext: %dn", v);
 if (v == 6)
 subs.unsubscribe(); //-- Stop recieving events
 },
 [](){printf("OnCompletedn");});
}

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[159]

An introduction to marble diagrams for
visual representation
It is difficult to visualize reactive Streams, as the data flows asynchronously. The designers
of Rx systems have created a set of visualization cues called marble diagrams:

//------------------ Map.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
#include <array>
int main() {
 auto ints = rxcpp::observable<>::range(1,10).
 map([] (int n) {return n*n; });
 ints.subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
}

Rather than giving a description of marble diagrams, let's look at a marble diagram that
depicts the map operator:

The top part of the marble diagram shows two timelines, and those timelines will be
combined together by appending the contents of the second timeline to the first time line to
form a composite timeline.

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[160]

RxCpp (Stream) operators
One of the primary advantages of Stream-oriented processing is the fact that we can apply
functional programming primitives on them. In RxCpp parlance, the processing is done
using operators. They are nothing but filters, transformations, aggregations, and reductions
on Streams. We have already seen how the map, filter, and take operators work in the
previous examples.

The average operator
The average operator computes the arithmetic mean of values from the Observable
Streams. The other statistical operators supported include:

Min
Max
Count
Sum

The following program just demonstrates the average operators. The schema is the same
for other operators in the preceding list:

//----------- Average.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {
 auto values = rxcpp::observable<>::range(1, 20).average();
 values.subscribe(
 [](double v){printf("average: %lfn", v);},
 [](){printf("OnCompletedn");});
}

The scan operator
The scan operator applies a function on each element of the Stream sequentially and
accumulates the value into a seed value. The following program produces the average of a
series of numbers as and when the values are accumulated:

//----------- Scan.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[161]

#include <ioStream>
int main() {
 int count = 0;
 auto values = rxcpp::observable<>::range(1, 20).
 scan(0,[&count](int seed, int v){
 count++;
 return seed + v;
 });
 values.subscribe(
 [&](int v){printf("Average through Scan: %fn", (double)v/count);},
 [](){printf("OnCompletedn");});
}

The running average will be printed on to the console. OnNext will be called nineteen times
before OnCompleted is called.

Composing operators through the pipe operator
The RxCpp library allows you to chain or compose operators to enable operator
composition. The library allows you to use the pipe (|) operator to compose operators, and
programmers can pipe the output of one operator to another as if they are in the command
line of a UNIX shell. This enables us to understand what a piece of code does. The
following program uses the | operator to map a range. RxCpp samples contain many
examples using pipe functions:

//------------------ Map_With_Pipe.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
namespace Rx {
using namespace rxcpp;
using namespace rxcpp::sources;
using namespace rxcpp::operators;
using namespace rxcpp::util;
}
using namespace Rx;
#include <ioStream>
int main() {
 //---------- chain map to the range using the pipe operator
 //----------- avoids the use of . notation.
 auto ints = rxcpp::observable<>::range(1,10) |
 map([] (int n) {return n*n; });
 ints.subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
}

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[162]

Working with Schedulers
We have already learned about Observables, Operators, and Observers in the previous
section. We already know that, between Observables and Observers, we can apply standard
Rx operators to filter and transform Streams. In the case of Functional Programming, we
write immutable functions (functions without side-effects) and a consequence of
immutability is the potential for an out-of-order execution. The order in which we evaluate
does not matter, if we can guarantee that the input to an operator is never modified. Since
an Rx program will be manipulating multiple observers and subscribers, we can delegate
the task of choosing the execution order to a Scheduler module. By default, RxCpp will
schedule the execution in the thread which we called the subscriber method. It is
possible to specify a different thread using the observe_on and subscriber_on
operators. Also, some Observable operators take a Scheduler as a parameter, where
execution can happen in a thread managed by the Scheduler.

The RxCpp library supports the following two Scheduler types:

ImmediateScheduler

EventLoopScheduler

The RxCpp library is single-threaded by default. But you can configure it to run in multiple
threads using certain operators:

//----------ObserveOn.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
#include <thread>
int main(){
 //---------------- Generate a range of values
 //---------------- Apply Square function
 auto values = rxcpp::observable<>::range(1,4).
 map([](int v){ return v*v;});
 //------------- Emit the current thread details
 std::cout << "Main Thread id => "
 << std::this_thread::get_id()
 << std::endl;
 //---------- observe_on another thread....
 //---------- make it blocking to
 values.observe_on(rxcpp::synchronize_new_thread()).as_blocking().
 subscribe([](int v){
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << " " << v << std::endl ;},
 [](){ std::cout << "OnCompleted" << std::endl; });

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[163]

 //------------------ Print the main thread details
 std::cout << "Main Thread id => "
 << std::this_thread::get_id()
 << std::endl;
}

The preceding program will produce the following output. We will be using the STD C++
thread ID to help us distinguish the items scheduled in the new thread (one of which is
different from the main thread):

Main Thread id => 1
Observable Thread id => 2 1
Observable Thread id => 2 4
Observable Thread id => 2 9
Observable Thread id => 2 16
OnCompleted
Main Thread id => 1

The following program will demonstrate the usage of the subscribe_on method. There
are subtle differences between the observe_on and subscribe_on methods in terms of
behavior. We will explore this in the next chapter. The purpose of the following listing is to
show the options available for declarative scheduling:

//---------- SubscribeOn.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
#include <thread>
#include <mutex>
//------ A global mutex for output synch.
std::mutex console_mutex;
//------ Print the Current Thread details
void CTDetails() {
 console_mutex.lock();
 std::cout << "Current Thread id => "
 << std::this_thread::get_id() << std::endl;
 console_mutex.unlock();
}
//---------- a function to Yield control to other threads
void Yield(bool y) {
 if (y) { std::this_thread::yield(); }

}
int main(){
 auto threads = rxcpp::observe_on_event_loop();
 auto values = rxcpp::observable<>::range(1);
 //------------- Schedule it in another thread

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[164]

 auto s1 = values.subscribe_on(threads).
 map([](int prime) {
 CTDetails(); Yield(true); return std::make_tuple("1:",
prime);});
 //-------- Schedule it in Yet another theread
 auto s2 = values. subscribe_on(threads).
 map([](int prime) {
 CTDetails(); Yield(true) ; return std::make_tuple("2:",
prime);});

 s1.merge(s2). take(6).as_blocking().subscribe(rxcpp::util::apply_to(
 [](const char* s, int p) {
 CTDetails();
 console_mutex.lock();
 printf("%s %dn", s, p);
 console_mutex.unlock();
 }));
}

A tale of two operators – flat versus concat map
A source of confusion among developers is often centered around the flat map and
concat map operators. Their differences are really subtle and we will cover them in this
section. Let's take a look at the flat map operator andn how it works:

//----------- Flatmap.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
namespace rxu=rxcpp::util;
#include <array>
int main() {
 std::array< std::string,4 > a={{"Praseed", "Peter", "Sanjay","Raju"}};
 //---------- Apply Flatmap on the array of names
 //---------- Flatmap returns an Observable<T> (map returns T)
 //---------- The First lamda creates a new Observable<T>
 //---------- The Second Lambda manipulates primary Observable and
 //---------- Flatmapped Observable
 auto values = rxcpp::observable<>::iterate(a).flat_map(
 [] (std::string v) {
 std::array<std::string,3> salutation=
 { { "Mr." , "Monsieur" , "Sri" }};
 return rxcpp::observable<>::iterate(salutation);
 },
 [] (std::string f , std::string s) {return s + " " +f;});

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[165]

 //-------- As usual subscribe
 //-------- Here the value will be interleaved as flat_map merges the
 //-------- Two Streams
 values.subscribe(
 [] (std::string f) { std::cout << f << std::endl; } ,
 [] () {std::cout << "Hello World.." << std::endl;});
 }

The previous program produces output in an interleaved manner. The output of the
program is shown as follows. The reason for this behavior has to do with the post
processing of the Stream after the mapping operation:

Mr. Praseed
Monsieur Praseed
Mr. Peter
Sri Praseed
Monsieur Peter
Mr. Sanjay
Sri Peter
Monsieur Sanjay
Mr. Raju
Sri Sanjay
Monsieur Raju
Sri Raju
Hello World..

The following marble diagram shows the schema of the operation. The flat map applies
the Lambda on the Observable Stream and produces a new Observable Stream. The
Streams produced are merged together to provide the output. In the diagram, the red ball
gets transformed into a pair of similarly colored diamonds, whereas the output of the green
and blue balls produces interleaved diamonds as output in the newly created Observable:

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[166]

Let us look at the concat_map operator by going through a listing. The program listing is
identical. The only change is the renaming of the flatMap with concatMap. Even though
there is no difference in the listing, there is a marked difference in the output behavior.
Maybe concatMap produces output that suits the mental model of the programmer:

//----------- ConcatMap.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
namespace rxu=rxcpp::util;

#include <array>
int main() {

 std::array< std::string,4 > a={{"Praseed", "Peter", "Sanjay","Raju"}};
 //---------- Apply Concat map on the array of names
 //---------- Concat Map returns an Observable<T> (oncat returns T)
 //---------- The First lamda creates a new Observable<T>
 //---------- The Second Lambda manipulates primary Observable and
 //---------- Concatenated Observable
 auto values = rxcpp::observable<>::iterate(a).flat_map(
 [] (std::string v) {
 std::array<std::string,3> salutation=
 { { "Mr." , "Monsieur" , "Sri" }};
 return rxcpp::observable<>::iterate(salutation);
 },
 [] (std::string f , std::string s) {return s + " " +f;});

 //-------- As usual subscribe
 //-------- Here the value will be interleaved as concat_map concats
the
 //-------- Two Streams
 values.subscribe(
 [] (std::string f) { std::cout << f << std::endl; } ,
 [] () {std::cout << "Hello World.." << std::endl;});
 }

Here is how the output will look:

Mr. Praseed
Monsieur Praseed
Sri Praseed
Mr. Peter
Monsieur Peter
Sri Peter
Mr. Sanjay
Monsieur Sanjay

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[167]

Sri Sanjay
Mr. Raju
Monsieur Raju
Sri Raju
Hello World..

The following marble diagram shows concatMap in operation. Unlike the Flatmap marble
diagram, the output is synchronized (red, green, and blue balls produce the same colored
output in the order in which the input is processed):

In the case of flatMap, we got the output in an interleaved manner. But in the case of
concatMap, we got the value in the order that we expected the output. What is the real
difference here? To make the difference clear, let's take a look at two operators: concat and
merge. Let's look into the way the concatenation of the Streams works. It basically appends
the contents of the Stream one after the another, preserving the order:

//---------------- Concat.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
#include <array>
int main() {
 auto o1 = rxcpp::observable<>::range(1, 3);
 auto o3 = rxcpp::observable<>::from(4, 6);
 auto values = o1.concat(o2);
 values.subscribe(
 [](int v){printf("OnNext: %dn",
v);},[](){printf("OnCompletedn");});
}

The following marble diagram clearly shows what happens when a concat operator is
applied on two Streams. We create a new Stream by appending the second to the contents
of the first. This preserves the order:

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[168]

Now, let's see what happens when two Streams are merged. The following code shows how
you can merge two Streams:

//------------ Merge.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
#include <array>
int main() {
 auto o1 = rxcpp::observable<>::range(1, 3);
 auto o2 = rxcpp::observable<>::range(4, 6);
 auto values = o1.merge(o2);
 values.subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
}

The following marble diagram clearly shows what happens when we merge two
Observable Streams. The contents of the output queue will be an interleaved combination
of two Streams:

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[169]

Both flat map and concact map more or less do the same operation. The difference lies
in the way values are combined together. The flat map uses the merge operator, while
the concat map uses the concact operator. In the case of merge, the order does not
matter. The concat operator appends Observables one after the another. That is why you
get the values in the order that we expect.

More operators that are of importance
We now understand the crux of the reactive programming model, because we covered
basic topics such as Observables, Observers, Operators, and Schedulers. There are some
more operators we should know about to write our logic better. In this section, we will
cover the tap and buffer operators. We will explore the tap operator, which helps peek
into the contents of the Stream:

//----------- TapExample.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {
 //---- Create a mapped Observable
 auto ints = rxcpp::observable<>::range(1,3).
 map([] (int n) {return n*n; });
 //---- Apply the tap operator...The Operator
 //---- will act as a filter/debug operator
 auto values = ints.tap(
 [](int v) {printf("Tap - OnNext: %dn", v);},
 [](){printf("Tap - OnCompletedn");
 });
 //------- Do some action
 values.subscribe(
 [](int v){printf("Subscribe - OnNext: %dn", v);},
 [](){printf("Subscribe - OnCompletedn");});
 }

Now, let's take a look at the defer operator. The defer operator takes an Observable
factory as a parameter to create an Observable for each client that subscribes to it. In the
following program, we invoke the observable_factory Lambda when somebody tries to
connect to the specified Observable:

//----------- DeferExample.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[170]

 auto observable_factory = [](){
 return rxcpp::observable<>::range(1,3).
 map([] (int n) {return n*n; });
 };
 auto ints = rxcpp::observable<>::defer(observable_factory);
 ints.subscribe([](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
 ints.subscribe(
 [](int v){printf("2nd OnNext: %dn", v);},
 [](){printf("2nd OnCompletedn");});
}

The buffer operator emits an Observable that contains the non-overlapping contents of an
Observable, each containing at most the number of items specified by the count parameter.
This will help us to process the items in a manner suitable for the content:

//----------- BufferExample.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {
 auto values = rxcpp::observable<>::range(1, 10).buffer(2);
 values.subscribe([](std::vector<int> v){
 printf("OnNext:{");
 std::for_each(v.begin(), v.end(), [](int a){
 printf(" %d", a);
 });
 printf("}n");
 },
 [](){printf("OnCompletedn");});
}

The timer operator emits an Observable that takes the interval period as a parameter.
There is an option to specify the Scheduler object as a parameter. There are various
versions of this function in the library; we have shown one in the following code:

//----------- TimerExample.cpp
#include "rxcpp/rx.hpp"
#include "rxcpp/rx-test.hpp"
#include <ioStream>
int main() {
 auto Scheduler = rxcpp::observe_on_new_thread();
 auto period = std::chrono::milliseconds(1);
 auto values = rxcpp::observable<>::timer(period, Scheduler).
 finally([](){
 printf("The final actionn");
 });

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[171]

 values.as_blocking().subscribe(
 [](int v){printf("OnNext: %dn", v);},
 [](){printf("OnCompletedn");});
}

A peek into the things we haven't covered
yet
The Rx programming model can be considered as the confluence of the following:

Data-flow computation
Declarative concurrency
Functional programming
Stream processing (event)
Design patterns and idioms

To get a comprehensive view of the whole discipline, you need to work with the
programming model extensively. Initially, things won't make much sense. At some point,
you'll reach a click point where everything will make sense. So far, we have covered the
following topics:

Observables and Observers
Basic and intermediate operators
Basic and intermediate scheduling

This is just the beginning, and we need to cover many more topics to get familiar with the
programming model. They are:

Hot and cold Observables (Chapter 9, Reactive GUI Programming Using Qt/C++)
A detailed exploration of Rx components (Chapter 9, Reactive GUI Programming
Using Qt/C++)
Advanced scheduling (Chapter 9, Reactive GUI Programming Using Qt/C++)
Programming GUI systems (Chapter 9, Reactive GUI Programming Using Qt/C++)
Advanced operators (Chapter 9, Reactive GUI Programming Using Qt/C++)
Reactive design patterns (Chapter 10, Design Patterns and Idioms for C++ Rx
Programming)
Programming for robustness (Chapter 12, Advanced Streams and Handling Errors)

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86
https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86
https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86
https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86

Introduction to Data Flow Computation and the RxCpp Library Chapter 7

[172]

Summary
In this chapter, we covered quite a bit of ground in understanding the Rx programming
model in general, and RxCpp in particular. We started with a conceptual overview of the
data flow computing paradigm and moved quickly to writing some basic RxCpp programs.
After introducing Rx marble diagrams, we learned about the set of operators supported by
the RxCpp library. We also introduced the important topic of Scheduler, and finally we
discussed the difference between the flat map and concat map operators. In the next
chapter, we will cover hot and cold Observables, advanced scheduling, and topics that we
have not covered in this chapter.

8
RxCpp – the Key Elements

In the previous chapter, we were introduced to the RxCpp library and its programming
model. We wrote some programs to understand the workings of the library. We also
covered the essential elements of the RxCpp library. In this chapter, we will cover, in some
depth, the key elements of the RxCpp library in particular and the reactive programming
model in general, which include the following:

Observables
Observers and their variants (subscribers)
Subjects
Schedulers
Operators

In effect, the key aspects of reactive programming are as follows:

Observables are streams to which Observers can subscribe for notifications
A Subject is a combination of Observables and Observers
schedulers execute the action associated with Operators and help the flow of
data from Observables to Observers
Operators are functions that take an Observable and emit another Observable

RxCpp – the Key Elements Chapter 8

[174]

Observables
In the previous chapter, we created Observables from scratch and wrote subscribers to
those Observables. In all of our examples, the Observables created an instance of the
Producer class. The Producer class produces an event Stream. In other words,
Observables are functions that connect subscribers to producers. Before we proceed, let's
dissect an Observable and the core activities related to it:

An Observable is a function that takes an Observer as a parameter and returns a
function
An Observable connects an Observer to a producer (producer is opaque for
Observer)
A producer is a source of values for an Observable
An Observer is an object that has the on_next, on_error, and on_completed
methods

What's a producer?
A Producer is a source of values for an Observable. Producers can be windows, timers,
WebSocket's, DOM trees, Iterators over collections/containers, and so on. They can be
anything that can be a source of data that can be passed on to an Observer. Next (value) (In
RxCpp, observer.on_next(value).)

Hot versus cold Observables
In most of the examples in the previous chapter, we saw that producers were created in
Observable functions. A producer can be created outside an Observable function, and a
reference to the producer can be put inside the Observable function. An Observable that
refers to a producer instance inside it is called a hot Observable. Any Observable we have
created a producer inside is called a cold Observable. To make matters clear, let's write a
program to demonstrate a cold Observable:

//---------- ColdObservable.cpp
#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[])
{

RxCpp – the Key Elements Chapter 8

[175]

 //----------- Get a Coordination
 auto eventloop = rxcpp::observe_on_event_loop();
 //----- Create a Cold Observable
 auto values = rxcpp::observable<>::interval(
 std::chrono::seconds(2)).take(2);

The interval creates a cold Observable, as the producer for the event Stream is instantiated
by the interval function. A cold Observable will emit data when a subscription or an
Observer is attached to the Observable. Even if there is a delay in subscription, the result
will be consistent. This means that we will get all the data emitted by the Observable:

 //----- Subscribe Twice
 values.subscribe_on(eventloop).
 subscribe([](int v){printf("[1] onNext: %dn", v);},
 [](){printf("[1] onCompletedn");});
 values.subscribe_on(eventloop).
 subscribe([](int v){printf("[2] onNext: %dn", v);},
 [](){printf("[2] onCompletedn");});
 //---- make a blocking subscription to see the results
 values.as_blocking().subscribe();
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
}

The output emitted by the program is as follows. For each run, the order of content in the
console may change, as we are scheduling the execution of the Observer methods in the
same thread. There won't be any data loss due to the delay in subscription:

[1] onNext: 1
[2] onNext: 1
[2] onNext: 2
[1] onNext: 2
[2] onCompleted
[1] onCompleted

Hot Observables
We can convert a cold Observable into a hot Observable by calling the Observable's
publish method. The consequence of converting a cold Observable to a hot Observable
will be data being missed by later subscriptions. A hot Observable emits data whether there
is a subscription or not. The following program demonstrates this:

//---------- HotObservable.cpp

RxCpp – the Key Elements Chapter 8

[176]

#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[]) {
 auto eventloop = rxcpp::observe_on_event_loop();
 //----- Create a Cold Observable
 //----- Convert Cold Observable to Hot Observable
 //----- using .Publish();
 auto values = rxcpp::observable<>::interval(
 std::chrono::seconds(2)).take(2).publish();
 //----- Subscribe Twice
 values.
 subscribe_on(eventloop).
 subscribe(
 [](int v){printf("[1] onNext: %dn", v);},
 [](){printf("[1] onCompletedn");});
 values.
 subscribe_on(eventloop).
 subscribe(
 [](int v){printf("[2] onNext: %dn", v);},
 [](){printf("[2] onCompletedn");});
 //------ Connect to Start Emitting Values
 values.connect();
 //---- make a blocking subscription to see the results
 values.as_blocking().subscribe();
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
}

In the next example, we will take a look at the publish_synchronized mechanism
supported by RxCpp. From a programming interface perspective, this is just a small change.
Take a look at this program:

//---------- HotObservable2.cpp
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {

 auto eventloop = rxcpp::observe_on_event_loop();
 //----- Create a Cold Observable
 //----- Convert Cold Observable to Hot Observable
 //----- using .publish_synchronized();
 auto values = rxcpp::observable<>::interval(
 std::chrono::seconds(2)).
 take(5).publish_synchronized(eventloop);

RxCpp – the Key Elements Chapter 8

[177]

 //----- Subscribe Twice
 values.
 subscribe(
 [](int v){printf("[1] onNext: %dn", v);},
 [](){printf("[1] onCompletedn");});

 values.
 subscribe(
 [](int v){printf("[2] onNext: %dn", v);},
 [](){printf("[2] onCompletedn");});

 //------ Start Emitting Values
 values.connect();
 //---- make a blocking subscription to see the results
 values.as_blocking().subscribe();

 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
}

The output of the program is as follows. We can see that the output is well synchronized,
that is, the output is printed in the correct order:

[1] onNext: 1
[2] onNext: 1
[1] onNext: 2
[2] onNext: 2
[1] onNext: 3
[2] onNext: 3
[1] onNext: 4
[2] onNext: 4
[1] onNext: 5
[2] onNext: 5
[1] onCompleted
[2] onCompleted

RxCpp – the Key Elements Chapter 8

[178]

Hot Observables and the replay mechanism
A hot Observable emits data, whether there is a subscriber available or not. This can be an
issue sometimes. There is a mechanism within reactive programming to cache data so that
later subscribers can be notified of the data available with an Observable. We can use the
.replay() method to create such an Observable. Let's write a program that will
demonstrate the replay mechanism, which is useful when writing hot Observables:

//---------- ReplayAll.cpp
#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[]) {

 auto values = rxcpp::observable<>::interval(
 std::chrono::milliseconds(50),
 rxcpp::observe_on_new_thread()).
 take(5).replay();
 // Subscribe from the beginning
 values.subscribe(
 [](long v){printf("[1] OnNext: %ldn", v);},
 [](){printf("[1] OnCompletedn");});
 // Start emitting
 values.connect();
 // Wait before subscribing
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(125)).subscribe([&](long){
 values.as_blocking().subscribe(
 [](long v){printf("[2] OnNext: %ldn", v);},
 [](){printf("[2] OnCompletedn");});
 });
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });

}

When writing reactive programs, you really need to understand the semantic difference
between hot and cold Observables. We have touched on only some aspects of this. Please
refer to the RxCpp documentation and ReactiveX documentation to learn more. There are
countless articles available on the internet on this topic.

RxCpp – the Key Elements Chapter 8

[179]

Observers and their variants (subscribers)
An Observer subscribes to an Observable and waits for events to be notified. Observers
were already covered in the previous chapter. Hence, we will be focusing on subscribers,
which are a combination of Observers and Subscriptions. A subscriber has the facility to
unsubscribe. With a vanilla Observer, you can only subscribe. The following program will
explain these concepts very well:

//---- Subscriber.cpp
#include "rxcpp/rx.hpp"
int main() {
 //----- create a subscription object
 auto subscription = rxcpp::composite_subscription();
 //----- Create a Subscription
 auto subscriber = rxcpp::make_subscriber<int>(
 subscription,
 [&](int v){
 printf("OnNext: --%dn", v);
 if (v == 3)
 subscription.unsubscribe(); // Demonstrates Un Subscribes
 },
 [](){ printf("OnCompletedn");});

 rxcpp::observable<>::create<int>(
 [](rxcpp::subscriber<int> s){
 for (int i = 0; i < 5; ++i) {
 if (!s.is_subscribed())
 break;
 s.on_next(i);
 }
 s.on_completed();
 }).subscribe(subscriber);
 return 0;
}

For writing nontrivial programs with concurrency and dynamism, the ability to subscribe
and unsubscribe is very handy. Take a deeper look at the topic by consulting the RxCpp
documentation.

RxCpp – the Key Elements Chapter 8

[180]

Subjects
A subject is an entity that is simultaneously an Observer and an Observable. It helps to
relay notifications from one Observable to a set of Observers. We can implement
sophisticated techniques such as the caching and buffering of data. We can also use a
subject to convert a hot Observable into a cold Observable. There are four variants of
subjects implemented in RxCpp. They are as follows:

SimpleSubject

BehaviorSubject

ReplaySubject

SynchronizeSubject

Let's write a simple program that will subscribe data as an Observer and act as an
Observable for a pair of subscribers:

//------- SimpleSubject.cpp
#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[]) {
 //----- Create an instance of Subject
 rxcpp::subjects::subject<int> subject;
 //----- Retreive the Observable
 //----- attached to the Subject
 auto observable = subject.get_observable();
 //------ Subscribe Twice
 observable.subscribe([] (int v) { printf("1------%dn",v); });
 observable.subscribe([] (int v) { printf("2------%dn",v);});
 //--------- Get the Subscriber Interface
 //--------- Attached to the Subject
 auto subscriber = subject.get_subscriber();
 //----------------- Emit Series of Values
 subscriber.on_next(1);
 subscriber.on_next(4);
 subscriber.on_next(9);
 subscriber.on_next(16);
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
}

RxCpp – the Key Elements Chapter 8

[181]

BehaviorSubject is a variant of subject that stores the last emitted (current) value as part
of the implementation. Any new subscriber will get the current value immediately.
Otherwise, it behaves like a normal subject. BehaviorSubject is also called a property or
a cell. It is useful in scenarios where we update a particular cell or memory with a series of
data, such as in a transaction. Let's write a program that demonstrates the workings of
BehaviorSubject:

//-------- BehaviorSubject.cpp
#include <rxcpp/rx.hpp>
#include <memory>

int main(int argc, char *argv[]) {

 rxcpp::subjects::behavior<int> behsubject(0);

 auto observable = behsubject.get_observable();
 observable.subscribe([] (int v) {
 printf("1------%dn",v);
 });

 observable.subscribe([] (int v) {
 printf("2------%dn",v);
 });

 auto subscriber = behsubject.get_subscriber();
 subscriber.on_next(1);
 subscriber.on_next(2);

 int n = behsubject.get_value();

 printf ("Last Value%dn",n);

}

ReplaySubject is a variant of subject that stores data that has already been emitted. We
can specify parameters to indicate how many values have to be retained by the subject. This
is very handy when dealing with hot Observables. Prototypes for various replay overloads
are as follows:

replay (Coordination cn,[optional] composite_subscription cs)
replay (std::size_t count, Coordination cn,
[optional]composite_subscription cs)
replay (duration period, Coordination cn, [optional] composite_subscription
cs)
replay (std::size_t count, duration period, Coordination cn,[optional]
composite_subscription cs).

RxCpp – the Key Elements Chapter 8

[182]

Let's write a program to see the semantics of ReplaySubject:

//------------- ReplaySubject.cpp
#include <rxcpp/rx.hpp>
#include <memory>
int main(int argc, char *argv[]) {
 //----------- instantiate a ReplaySubject
 rxcpp::subjects::replay<int,rxcpp::observe_on_one_worker>
 replay_subject(10,rxcpp::observe_on_new_thread());
 //---------- get the observable interface
 auto observable = replay_subject.get_observable();
 //---------- Subscribe!
 observable.subscribe([] (int v) {printf("1------%dn",v);});
 //--------- get the subscriber interface
 auto subscriber = replay_subject.get_subscriber();
 //---------- Emit data
 subscriber.on_next(1);
 subscriber.on_next(2);
 //-------- Add a new subscriber
 //-------- A normal subject will drop data
 //-------- Replay subject will not
 observable.subscribe([] (int v) { printf("2------%dn",v);});
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
}

We have covered three variants of a subject in this section. The primary use case is
harnessing events and data from different sources by using the Observable interface and
allowing a group of subscribers to consume the harnessed data. SimpleSubject can act as
both an Observable and an Observer to process Streams of data. BehaviorSubject is
useful for monitoring changes in a property or variable over a period of time.
ReplaySubject will help you to avoid the loss of data due to latency in a subscription.
SynchronizeSubject is a subject that has synchronization logic built into its
implementation.

RxCpp – the Key Elements Chapter 8

[183]

Schedulers
The RxCpp library provides a declarative threading mechanism, thanks to the robust
scheduling subsystem packaged with it. From an Observable, data can be streamed through
different paths along the change propagation graph. By giving hints to the Stream
processing pipeline, we can schedule the execution in different threads, the same thread, or
a background thread. This helps to capture the intent of the programmer much better.

The declarative scheduling model in RxCpp is possible because of the immutability of the
Streams in an operator's implementation. A stream operator takes an Observable as a
parameter and returns a fresh Observable as the result. The input parameter is not
modified. This helps in out-of-order execution. The scheduling subsystem of RxCpp
contains the following constructs:

Scheduler
Worker
Coordination
Coordinator
Schedulable
TimeLine

Version 2 of RxCpp borrows its scheduling architecture from the RxJava system. It relies
on Scheduler and Worker idioms used by RxJava. Here are some important facts
about Scheduler:

The Scheduler has a timeline.
The Scheduler can create lots of workers in the timeline.
The Worker owns a queue of schedulable in the timeline.
The schedulable owns a function (called Action) and has a lifetime.
A Coordination functions a factory for a coordinator and has a Scheduler.
Every coordinator has a Worker and is a factory for the following:

Coordinated schedulable
Coordinated Observables and subscribers

We have been using Rx schedulers in our programs, without bothering about how they
work under the hood. Let's write a toy program, which will help us understand how
scheduling works under the hood:

//------------- SchedulerOne.cpp
#include "rxcpp/rx.hpp"

RxCpp – the Key Elements Chapter 8

[184]

int main(){
 //---------- Get a Coordination
 auto Coordination function= rxcpp::serialize_new_thread();
 //------- Create a Worker instance through a factory method
 auto worker = coordination.create_coordinator().get_worker();
 //--------- Create a action object
 auto sub_action = rxcpp::schedulers::make_action(
 [] (const rxcpp::schedulers::schedulable&) {
 printf("Action Executed in Thread # : %dn",
 std::this_thread::get_id());
 });
 //------------- Create a schedulable and schedule the action
 auto scheduled =
rxcpp::schedulers::make_schedulable(worker,sub_action);
 scheduled.schedule();
 return 0;
}

In RxCpp, all operators that take multiple streams as input, or deal with tasks that have a
bearing on time, take a Coordination function as a parameter. Some of the
Coordination functions using a particular Scheduler are as follows:

identity_immediate()

identity_current_thread()

identity_same_worker(worker w)

serialize_event_loop()

serialize_new_thread()

serialize_same_worker(worker w)

observe_on_event_loop()

observe_on_new_thread()

In the previous program, we manually scheduled an action (which, in fact, is nothing but a
Lambda). Let's move on to the declarative aspects of Scheduler. We will write a program
that will schedule tasks using a Coordination function:

//----------- SchedulerTwo.cpp
#include "rxcpp/rx.hpp"
int main(){
 //-------- Create a Coordination function
 auto Coordination function= rxcpp::identity_current_thread();
 //-------- Instantiate a coordinator and create a worker
 auto worker = coordination.create_coordinator().get_worker();
 //--------- start and the period
 auto start = coordination.now() + std::chrono::milliseconds(1);

RxCpp – the Key Elements Chapter 8

[185]

 auto period = std::chrono::milliseconds(1);
 //----------- Create an Observable (Replay)
 auto values = rxcpp::observable<>::interval(start,period).
 take(5).replay(2, coordination);
 //--------------- Subscribe first time using a Worker
 worker.schedule([&](const rxcpp::schedulers::schedulable&){
 values.subscribe([](long v){ printf("#1 -- %d : %ldn",
 std::this_thread::get_id(),v); },
 [](){ printf("#1 --- OnCompletedn");});
 });
 worker.schedule([&](const rxcpp::schedulers::schedulable&){
 values.subscribe([](long v){printf("#2 -- %d : %ldn",
 std::this_thread::get_id(),v); },
 [](){printf("#2 --- OnCompletedn");});
 });
 //----- Start the emission of values
 worker.schedule([&](const rxcpp::schedulers::schedulable&)
 { values.connect();});
 //------- Add blocking subscription to see results
 values.as_blocking().subscribe(); return 0;
}

We created a hot Observable using the replay mechanism to take care of the late
subscription by some Observers. We also created a Worker to do the scheduling for
subscription and to connect the Observers with the Observable. The previous program
demonstrates how the Scheduler works in RxCpp.

ObserveOn versus SubscribeOn
The ObserveOn and SubscribeOn operators behave in a different manner, and this has
been a source of confusion for reactive programming newbies. The ObserveOn operator
changes the thread of the operators and Observers below it. In the case of SubscribeOn, it
affects the operators and methods that are above and below it as well. The following
program demonstrates subtle changes in the behavior, caused by the way the
SubscribeOn and ObserveOn operators behave. Let's write a program that uses the
ObserveOn operator:

//-------- ObservableOnScheduler.cpp
#include "rxcpp/rx.hpp"
int main(){
 //------- Print the main thread id
 printf("Main Thread Id is %dn",
 std::this_thread::get_id());
 //-------- We are using observe_on here

RxCpp – the Key Elements Chapter 8

[186]

 //-------- The Map will use the main thread
 //-------- Subscribed Lambda will use a new thread
 rxcpp::observable<>::range(0,15).
 map([](int i){
 printf("Map %d : %dn", std::this_thread::get_id(),i);
 return i; }).
 take(5).observe_on(rxcpp::synchronize_new_thread()).
 subscribe([&](int i){
 printf("Subs %d : %dn", std::this_thread::get_id(),i);
 });
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
 return 0;
}

The output of the preceding program is as follows:

Main Thread Id is 1
Map 1 : 0
Map 1 : 1
Subs 2 : 0
Map 1 : 2
Subs 2 : 1
Map 1 : 3
Subs 2 : 2
Map 1 : 4
Subs 2 : 3
Subs 2 : 4

The output of the preceding program clearly shows that map worked in the primary thread
and the subscribe method got scheduled in the secondary thread. This clearly shows that
ObserveOn only worked on operators and subscribers below it. Let's write a more or less
identical program that uses the SubscribeOn operator instead of the ObserveOn operator.
Take a look at this:

//-------- SubscribeOnScheduler.cpp
#include "rxcpp/rx.hpp"
int main(){
 //------- Print the main thread id
 printf("Main Thread Id is %dn",
 std::this_thread::get_id());
 //-------- We are using subscribe_on here
 //-------- The Map and subscribed Lambda will
 //--------- use the secondary thread
 rxcpp::observable<>::range(0,15).

RxCpp – the Key Elements Chapter 8

[187]

 map([](int i){
 printf("Map %d : %dn", std::this_thread::get_id(),i);
 return i;
 }).
 take(5).subscribe_on(rxcpp::synchronize_new_thread()).
 subscribe([&](int i){
 printf("Subs %d : %dn", std::this_thread::get_id(),i);
 });
 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(
 std::chrono::milliseconds(2000)).
 subscribe([&](long){ });
 return 0;
}

The output of the preceding program is as follows:

Main Thread Id is 1
Map 2 : 0
Subs 2 : 0
Map 2 : 1
Subs 2 : 1
Map 2 : 2
Subs 2 : 2
Map 2 : 3
Subs 2 : 3
Map 2 : 4
Subs 2 : 4

The output of the preceding program shows that both map and subscription methods
worked in the secondary thread. This clearly shows that SubscribeOn changes the
threading behavior of items before and after it.

The RunLoop Scheduler
The RxCpp library does not have a built-in main thread Scheduler. The closest you can do
is to leverage the run_loop class to simulate scheduling in the main thread. In the
following program, the Observable executes in a background thread, and the subscription
methods run in the main thread. We are using subscribe_on and observe_on to achieve
this objective:

//------------- RunLoop.cpp
#include "rxcpp/rx.hpp"
int main(){
 //------------ Print the Main Thread Id

RxCpp – the Key Elements Chapter 8

[188]

 printf("Main Thread Id is %dn",
 std::this_thread::get_id());
 //------- Instantiate a run_loop object
 //------- which will loop in the main thread
 rxcpp::schedulers::run_loop rlp;
 //------ Create a Coordination functionfor run loop
 auto main_thread = rxcpp::observe_on_run_loop(rlp);
 auto worker_thread = rxcpp::synchronize_new_thread();
 rxcpp::composite_subscription scr;
 rxcpp::observable<>::range(0,15).
 map([](int i){
 //----- This will get executed in worker
 printf("Map %d : %dn", std::this_thread::get_id(),i);
 return i;
 }).take(5).subscribe_on(worker_thread).
 observe_on(main_thread).
 subscribe(scr, [&](int i){
 //--- This will get executed in main thread
 printf("Sub %d : %dn", std::this_thread::get_id(),i); });
 //------------ Execute the Run Loop
 while (scr.is_subscribed() || !rlp.empty()) {
 while (!rlp.empty() && rlp.peek().when < rlp.now())
 { rlp.dispatch();}
 }
 return 0;
}

The output of the preceding program is as follows:

Main Thread Id is 1
Map 2 : 0
Map 2 : 1
Sub 1 : 0
Sub 1 : 1
Map 2 : 2
Map 2 : 3
Sub 1 : 2
Map 2 : 4
Sub 1 : 3
Sub 1 : 4

We can see that map was scheduled in the worker thread and subscription methods were
executed in the main thread. This is enabled because of the judicious placement of the
Subscribe_on and Observe_on methods, which we covered in the previous section.

RxCpp – the Key Elements Chapter 8

[189]

Operators
An operator is a function that acts on an Observable to produce a new Observable. In the
process, the original Observable is not mutated but is a pure function. We have already
covered lots of operators in the sample programs that we have written. In Chapter
9, Reactive GUI Programming Using Qt/C++, we will learn how to create custom operators to
work on Observables. The fact that an operator does not mutate an Observable is a reason
why declarative scheduling works in the Rx programming model. Rx operators can be
categorized as follows:

Creation operators
Transformation operators
Filtering operators
Combining operators
Error-handling operators
Utility operators
Boolean operators
Mathematical operators

There are some operators available that do not fall into these categories. We will outline
some of the key operators in the preceding categories in a table for quick reference.

Creational operators
These operators will help one to create various kinds of Observables from input data. We
have already demonstrated the use of create, from, interval, and range in our example code.
Consult these examples and the RxCpp documentation to learn more about them. A table
containing some of the operators as follows:

Observables Description
create Create an observable by calling the Observer method programmatically
defer Create a fresh Observable for each Observer/subscriber
empty Create an Observable that does not emit anything (emits only completed)
from Create an Observable based on the parameters (Polymorphic)
interval Create an Observable that emits a sequence of values in a time interval
just Create an Observable that emits a single value
range Create an Observable that emits a range of values

https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86
https://cdp.packtpub.com/c___reactive_programming/wp-admin/post.php?post=79&action=edit#post_86

RxCpp – the Key Elements Chapter 8

[190]

never Create an Observable that never emits anything
repeat Create an Observable that repeats a stream of values
timer Create an Observable that emits a value after a delay specified as a parameter
throw Create an Observable that emits an error

Transformation operators
These operators help one to create a new Observable without modifying the source
Observable. They act on individual items in the source Observable by applying a Lambda
to them. A table containing some of the most useful transformation operators is as follows:

Observables Description
buffer Observable that collects values in the past and emits them when signaled

flat_map
Observable that emits the results of applying a function to a pair of values
emitted by the source Observable and the collection Observable

group_by Observable that helps to group values from an Observable

map
Observable that emits the items from the source Observable, transformed by
the specified function

scan Observable that emits the results of each call to the accumulator function

window
Observable that emits connected, non-overlapping windows, each
containing, at most, count items from the source Observable

Filtering operators
The ability to filter Streams is a common activity in stream processing. It is not unusual that
the Rx programming model defines a lot of such operators. The Filtering operators are
mostly predicate functions or Lambdas. The following table contains a list of filtering
operators:

Observables Description

debounce
Observable that emits an item if a particular time span has passed
without emitting another item from the source Observable

distinct
Observable that emits those items from the source Observable that
are distinct

element_at Observable that emits an item located at a specified index location

filter
Observable that emits only those items emitted by the source
Observable that the filter evaluates as true

RxCpp – the Key Elements Chapter 8

[191]

first
Observable that emits only the very first item emitted by the source
Observable

ignore_eleements
Observable that emits a termination notification from the source
Observable

last
Observable that emits only the very last item emitted by the source
Observable

sample
Observable that emits the most recent items emitted by the source
Observable within periodic time intervals

skip
Observable that is identical to the source Observable, except that it
does not emit the first t items that the source Observable emits

skip_last
Observable that is identical to the source Observable, except that it
does not emit the last t items that the source Observable emits

take
Observable that emits only the first t items emitted by the source
Observable, or all of the items from the source Observable if that
Observable emits fewer than t items

take_last
Observable that emits only the last t items emitted by the source
Observable

Combining operators
One of the primary goals of the Rx programming model is to decouple the event source
from event sinks. Obviously, there is a need for operators that can combine streams from
various sources. The RxCpp library implements a set of such operators. The following table
outlines a set of commonly used combining operators:

Observables Description

combine_latest
When an item is emitted by either of two Observables, combine the
latest item emitted by each Observable via a specified function and emit
items based on the results of this function

merge
This combines multiple Observables into one by merging their
emissions

start_with
This emits a specified sequence of items before beginning to emit the
items from the source Observable

switch_on_next
This converts an Observable that emits Observables into a single
Observable that emits the items emitted by the most recently emitted of
those Observables

RxCpp – the Key Elements Chapter 8

[192]

zip
This combines the emissions of multiple Observables together via a
specified function and emits single items for each combination based on
the results of this functions

Error-handling operators
These are operators that help to recover from error notifications from an Observable. Take a
look at this table:

Observables Description
Catch Not supported by RxCpp

retry
An observable that mirrors the source Observable, resubscribing to it if it
calls on_error up to a specified number of retries

Observable utility operators
The following is a toolbox of useful Operators for working with Observables:

Observables Description

finally
Observable that emits the same items as the source Observable, then
invokes the given action

observe_on Specify the Scheduler on which an Observer will observe this Observable
subscribe Operate upon the emissions and notifications from an Observable
subscribe_on Specify the Scheduler an Observable should use when it is subscribed to
scope Create a disposable resource that has the same lifespan as the Observable

Conditional and Boolean operators
The following are Operators that evaluate one or more Observables or items emitted by
Observables:

Observables Description

all
Observable that emits true if every item emitted by the source
Observable satisfies a specified condition; otherwise, it emits false

amb
Observable that emits the same sequence as whichever of the source
Observables first emitted an item or sent a termination notification

contains
An Observable that emits true if the source Observable emitted a
specified item; otherwise it emits false

RxCpp – the Key Elements Chapter 8

[193]

default_if_empty
An Observable that emits true if the source Observable emitted a
specified item; otherwise it emits false

sequence_equal
Observable that emits true only if both sequences terminate normally
after emitting the same sequence of items in the same order;
otherwise, it will emit false

skip_until
Discard items emitted by an Observable until a second Observable
emits an item

skip_while
Discard items emitted by an Observable until a specified condition
becomes false

take_until
Discard items emitted by an Observable after a second Observable
emits an item or terminates

take_while
Discard items emitted by an Observable after a specified condition
becomes false

Mathematical and aggregate operators
These operators operate on the entire sequence of items emitted by an Observable:

Observables Description

average
Calculate the average of numbers emitted by an Observable and emit this
average

concat Emit the emissions from two or more Observables without interleaving them

count
Count the number of items emitted by the source Observable and emit only
this value

max Determine and emit the maximum-valued item emitted by an Observable
Min Determine and emit the minimum-valued item emitted by an Observable

reduce
Apply a function to each item emitted by an Observable, sequentially, and
emit the final value

sum Calculate the sum of numbers emitted by an Observable and emit this sum

RxCpp – the Key Elements Chapter 8

[194]

Connectable Observable operators
Connectable Observable operators are special Observables that have more precisely
controlled subscription dynamics. The following table lists some of them:

Observables Description
connect Instruct a connectable Observable to begin emitting items to its subscribers
publish Convert an ordinary Observable into a connectable Observable
ref_count Make a Connectable Observable behave like an ordinary Observable

replay
Ensure that all Observers see the same sequence of emitted items, even if
they subscribe after the Observable has begun emitting items

Summary
In this chapter, we gained an understanding of how pieces of the Rx programming model
fit together. We started with Observables and quickly moved on to the topic of hot and cold
Observables. Then, we covered the subscription mechanism and its use. We then moved on
to the important topic of subjects and understood how a number of variants of subjects
Scheduler implementation. Finally, we classified various Operators available with the
RxCpp system. In the next chapter, we will learn how we can use this knowledge to write
GUI programs in a reactive manner using the Qt framework.

9
Reactive GUI Programming

Using Qt/C++
The Qt (pronounced cute) ecosystem is a comprehensive C++ based framework for writing
cross-platform and multiplatform GUI applications. If you write your programs using the
portable core of the library, you can leverage the Write Once and Compile
Everywhere paradigm supported by the framework. In some cases, people use the platform-
specific features, such as support for the ActiveX programming model for writing
Windows-based applications.

We come across situations where Qt is preferred over MFC for writing applications in
Windows. A plausible reason for this could be ease of programming, as Qt uses a very tiny
subset of C++ language features for its library. The original goal of the framework was, of
course, cross-platform development. Qt's single source portability across platforms, feature
richness, availability of source code, and well-updated documentation, make it a very
programmer-friendly framework. This has helped it thrive for more than two decades, ever
since its first release, in 1995.

Qt provides a complete interface environment, with support for developing multiplatform
GUI applications, Webkit APIs, media streamers, filesystem browsers, OpenGL APIs, and
so on. Covering the full features of this wonderful library would take a book of its own. The
purpose of this chapter is to introduce how to write reactive GUI applications, by
leveraging Qt and the RxCpp library. We have already covered the core of the Reactive
programming model in Chapter 7, Introduction to Data Flow Computation and the RxCpp
Library, and Chapter 8, RxCpp – the Key Elements. Now, it is time to put what we learned in
the previous chapters into practice! The Qt framework itself has a robust event processing
system, and one needs to learn these library features before he or she can incorporate
RxCpp constructs into the mix.

Reactive GUI Programming Using Qt/C++ Chapter 9

[196]

In this chapter, we will explore:

A quick introduction to Qt GUI programming
Hello World – Qt program
The Qt event model, with signals/slots/MOC – an example
Integrating the RxCpp library with the Qt event model
Creating Custom Operators in Rxcpp

A quick introduction to Qt GUI programming
Qt is a cross-platform application development framework for writing software that can
run on numerous platforms as a native application without changing much code, with
native platform capabilities and speed. Aside from GUI applications, we can also write
console or command-line applications using the framework—but the primary use cases are
graphical user interfaces.

Although applications using Qt are usually written in C++, QML bindings to other
languages also exist. Qt simplifies many aspects of C++ development, using comprehensive
and powerful APIs and tools. Qt supports many compiler toolchains, such as the GCC C++
compiler and the Visual C++ compiler. Qt also provides Qt Quick (which includes QML, a
declarative scripting language based on ECMAScript) to write logic. This helps with rapid
application development for mobile platforms, although the logic can be written using
native code for the best possible performance. The ECMAScript/C++ combination provides
the best of declarative development and native code speed.

Qt is currently being developed and maintained by The Qt Company, and the framework is
available with open source and proprietary licenses. When first launched, Qt used its own
paint engine and controls by emulating the look and feel of a different platform (thanks to
the custom paint engine, one can create a Windows look and feel under GNU Linux). This
helped developers easily port across platforms, because of the minimal target platform
dependency. As the emulation was imperfect, Qt started to use native-style APIs for the
platforms, with its own native widget set. This resolved the issue with emulation of Qt's
own paint engine, but at the cost of no more uniform look and feel across the
platforms. The Qt library has an excellent binding with the Python programming language,
christened as PyQt.

There are some essential things a programmer must understand before he/she leverages the
library. In the following sections, we will quickly cover aspects of the Qt object model,
signals and slots, the event system, and the meta-object system.

Reactive GUI Programming Using Qt/C++ Chapter 9

[197]

Qt object model
In a GUI framework, both run-time efficiency and high-level flexibility are key factors. The
standard C++ object model provides very efficient run-time support, but its static nature is
inflexible in certain problematic domains. The Qt framework combines the speed of C++
with the flexibility of the Qt object model.

The Qt object model supports the following features:

Signals and slots, for seamless object communication
Queryable and designable object properties
Powerful events and event filters
Powerful internally driven timers, enabling smooth, non-blocking work in many
of the tasks in an event-driven GUI
Internationalization with contextual string translation
Guarded pointers (QPointers) that are automatically set to 0 when the referenced
object is destroyed
A dynamic cast working across library boundaries

Many of these features are implemented as standard C++ classes, based on inheritance from
QObject. Others, like signals and slots and the object properties system, require the meta-
object system provided by Qt's own Meta-object compiler (MOC). The meta-object system
is an extension of the C++ language, to make it better suited for GUI programming. The
MOC acts as an pre-compiler, which generates code based on the hints embedded in the
source, and removes those hints for an ANSI C++ compiler to perform its normal
compilation tasks.

Let us look at some classes in the Qt object model:

Class Name Description

QObject
The base class of all Qt objects (http:/ ​/​doc. ​qt.​io/ ​archives/
qt- ​4. ​8/​qobject. ​html)

QPointer
The template class that provides guarded pointers to
QObject (http:/ ​/​doc. ​qt. ​io/​archives/ ​qt- ​4.​8/​qpointer.
html)

QSignalMapper
Bundles signals from identifiable senders (http:/ ​/​doc. ​qt. ​io/
archives/ ​qt- ​4. ​8/​qsignalmapper. ​html)

QVariant
Acts like a union for the most common Qt data types (http:/ ​/
doc. ​qt. ​io/ ​archives/ ​qt-​4. ​8/​qvariant. ​html)

http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qobject.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qpointer.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qsignalmapper.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html
http://doc.qt.io/archives/qt-4.8/qvariant.html

Reactive GUI Programming Using Qt/C++ Chapter 9

[198]

QMetaClassInfo
Additional information about a class (http:/ ​/​doc. ​qt. ​io/
archives/ ​qt- ​4. ​8/​qmetaclassinfo. ​html)

QMetaEnum
Metadata about an enumerator (http:/ ​/​doc. ​qt. ​io/​archives/
qt- ​4. ​8/​qmetaenum. ​html)

QMetaMethod
Metadata about a member function (http:/ ​/ ​doc.​qt. ​io/
archives/ ​qt- ​4. ​8/​qmetamethod. ​html)

QMetaObject
Contains meta-information about Qt objects (http:/ ​/​doc. ​qt.
io/ ​archives/ ​qt- ​4.​8/ ​qmetaobject. ​html)

QMetaProperty
Metadata about a property (http:/ ​/​doc. ​qt.​io/ ​archives/ ​qt-
4.​8/ ​qmetaproperty. ​html)

QMetaType
Manages named types in the meta-object system (http:/ ​/​doc.
qt. ​io/ ​archives/ ​qt-​4. ​8/​qmetatype. ​html)

QObjectCleanupHandler
Watches the lifetimes of multiple QObject (http:/ ​/​doc. ​qt.
io/ ​archives/ ​qt- ​4.​8/ ​qobjectcleanuphandler. ​html)

Qt objects are generally treated as identities, not values. Identities are cloned, not copied or
assigned; cloning an identity is a more complex operation than copying or assigning a
value. Therefore, QObject and all subclasses of QObject (direct or indirect) have their copy
constructors and assignment operators disabled.

Signals and slots
Signals and slots are mechanisms used in Qt to achieve communication between objects.
The signals and slots mechanism is a central feature of Qt, as a GUI framework. Widgets get
notified about changes in other widgets in Qt through this mechanism. In general, objects of
any kind communicate with one another using this mechanism. For example, when a user
clicks on a close button, we probably want the window's close() function to be called.

Signals and slots are alternatives to the callback technique in C/C++. A signal gets emitted
when a particular event occurs. All of the widgets in the Qt framework have predefined
signals, but we can always subclass a widget to add our own signals to it. A slot is a
function that gets called in response to a signal. Similar to predefined signals, the Qt
widgets have many predefined slots, but we can add custom slots to handle the signals that
we are interested in.

The following diagram from Qt's official documentation (http:/ ​/​doc. ​qt.​io/ ​archives/ ​qt-
4.​8/​signalsandslots. ​html), demonstrates how inter-object communication happens
through signals and slots:

http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaclassinfo.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetaenum.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetamethod.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaobject.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetaproperty.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qmetatype.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/qobjectcleanuphandler.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html
http://doc.qt.io/archives/qt-4.8/signalsandslots.html

Reactive GUI Programming Using Qt/C++ Chapter 9

[199]

Signals and slots are loosely coupled communication mechanisms; the class that emits a
signal doesn't care about the slot which receives the signal. Signals are a perfect example of
fire and forget systems. The signals and slots system ensures that if a signal is connected to
a slot, the slot will be called with the signal's parameters at the right time. Both signals and
slots can take any number of arguments of any type, and they are completely type safe. The
signatures of both signals and receiving slots must match; hence, the compilers can help us
to detect type mismatches, as a bonus.

All objects inherited from QObject, or any of its subclasses (such as QWidget), can contain
signals and slots. Signals are emitted by an object when it changes its state, which may be
interesting to other objects. The object doesn't know (or care) if there are any objects at the
receiving end. A signal can be connected to as many slots as needed. Similarly, we can
connect as many signals as we want to a single slot. It is even possible to connect a signal to
another signal; thus, signal chaining is possible.

Hence, together, signals and systems make an extremely flexible and pluggable component
programming mechanism.

Reactive GUI Programming Using Qt/C++ Chapter 9

[200]

Event system
In Qt, events represent things that have happened within an application or a user activity
that the application needs to know about. In Qt, events are the objects derived from an
abstract QEvent class. Events can be received and handled by any instance of a QObject
subclass, but they are especially relevant to widgets.

Whenever an event occurs, an appropriate QEvent subclass instance gets constructed and
gives its possession to a particular instance of QObject (or any relevant subclass) by calling
its event() function. This function does not handle the event itself; based on the type of
event delivered, it calls an event handler for that specific type of event and sends a
response based on whether the event was accepted or ignored.

Some events, such as QCloseEvent and QMoveEvent, come from the application itself;
some, such as QMouseEvent and QKeyEvent, come from the window system; and some,
such as QTimerEvent, come from other sources. Most events have specific subclasses
derived from QEvent, and sometimes event-specific functions to meet the specific behavior
of the extended events. To exemplify, the QMouseEvent class adds x() and y() functions
to enable widgets to discover the positions of the mouse cursor.

Every event has a type associated with it, defined under QEvent::Type, and this is a
convenient source of run-time type information that is used to quickly identify what
subclass the event has been constructed from.

Event handlers
Generally, events are rendered by calling associated virtual functions. The virtual function
is responsible for responding as intended. If custom virtual function implementations do
not perform all that is necessary, we may need to call the base class's implementations.

For example, the following example handles the left mouse button clicks on a custom label
widget, while passing all other button clicks to the base QLabel class:

void my_QLabel::mouseMoveEvent(QMouseEvent *evt)
{
 if (event->button() == Qt::LeftButton) {
 // handle left mouse button here
 qDebug() <<" X: " << evt->x() << "t Y: " << evt->y() << "n";
 }
 else {
 // pass on other buttons to base class
 QLabel::mouseMoveEvent(event);

http://doc.qt.io/archives/qt-4.8/qt-module.html

Reactive GUI Programming Using Qt/C++ Chapter 9

[201]

 }
}

If we want to replace base class functionality, we must implement everything in the virtual
function override. If the requirement is to simply extend base class functionality, we can
implement what we want, and call the base class function for any other case that we don't
want to handle.

Sending events
Many applications that are using the Qt framework want to send their own events, just like
the framework-provided events. Suitable custom events can be constructed by using event
objects and sending them with QCoreApplication::sendEvent() and
QCoreApplication::postEvent().

sendEvent() is synchronous in execution; therefore, it processes the event immediately.
For many event classes, there is a function called isAccepted(), which tells us whether
the event was accepted or rejected by the last handler that was called.

postEvent() is asynchronous in execution; hence, it posts the event in a queue for later
dispatch. The next time Qt's main event loop runs, it dispatches all posted events, with
some optimization. For example, if there are several resize events, they are compressed into
one, as a union of all resize events, which avoids flickering in the user interface.

Meta-object system
The Qt meta-object system realizes the signals and slots mechanism for inter-object
communication, the dynamic property system, and run-time type information.

The Qt meta-object system is based on three key aspects:

QObject class: The base class that provides the advantages of the meta-object
system to Qt objects
Q_OBJECT macro: The macro to provide in the private section of the class
declarations, used to enable meta-object features, such as dynamic properties,
signals, and slots
The MOC: It supplies each QObject subclass with the necessary code to
implement meta-object features

Reactive GUI Programming Using Qt/C++ Chapter 9

[202]

The MOC executes before the actual compilation of a Qt source file. When the MOC finds
class declarations that contain the Q_OBJECT macro, it produces another C++ source file,
with meta-object code, for each of those classes. This generated source file is either included
in the class's source file using #include or, more usually, compiled and linked with the
class's implementation.

Hello World – Qt program
Now, let's get started with GUI application development using Qt/C++. Before getting into
the following sections, download Qt SDK and Qt Creator from Qt's official site (https:/ ​/
www.​qt.​io/​download). The codes that we are going to discuss in this chapter are entirely
LGPL compatible and will be hand-coded by writing pure C++ code. The Qt framework is
designed to be pleasant and intuitive so that you can handcode an entire application
without using the Qt Creator IDE.

Qt Creator is a cross-platform C++, JavaScript, and QML integrated
development environment, a part of the SDK for the Qt GUI application
development framework. It includes a visual debugger and an integrated
GUI layout and forms designer. The editor's features include syntax
highlighting and autocompletion. Qt Creator uses the C++ compiler from
the GNU Compiler Collection on Linux and FreeBSD. On Windows, it can
use MinGW or MSVC, with the default install, and can also use Microsoft
Console Debugger, when compiled from source code. Clang is also
supported. – Wikipedia (https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Qt_​Creator)

Let's begin with a simple Hello World program, using a label widget. In this example, we
will create and show a label widget, with the text Hello World, QT!:

#include <QApplication>
#include <QLabel>

int main (int argc, char* argv[])
{
 QApplication app(argc, argv);
 QLabel label("Hello World, QT!");
 Label.show();
 return app.execute();
}

https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://www.qt.io/download
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator

Reactive GUI Programming Using Qt/C++ Chapter 9

[203]

In this code, we have included two libraries: <QApplication> and <QLabel>. The
QApplication object is defined in the QApplication library, which manages the
resources in an application, and it is required to run any Qt GUI-based application. This
object accepts the command-line arguments from the program, and, when app.execute()
is called, the Qt event loop gets launched.

An event loop is a program structure that permits events to be prioritized,
queued, and dispatched to objects. In an event-based application, certain
functions are implemented as passive interfaces that get called in response
to certain events. The event loop generally continues running until a
terminating event occurs (the user clicks on the QUIT button, for
example).

QLabel is the simplest widget among all Qt widgets, defined in <QLabel>. In this code, the
label is instantiated with the text Hello World, QT. When label.show() gets called, a
label with instantiated text will appear on the screen in its own window frame.

Now, to build and run the application, the first thing we need is a project file. To create a
project file and compile the application, we need to follow these steps:

Create a directory and save the source code in a CPP file, residing in this1.
directory.
Open a shell and verify the version of qmake installed by using the qmake -2.
v command. If qmake can't be found, the installation path needs to be added to
the environment variable.
Now, change the directory into the Qt file path in the shell, and execute3.
the qmake -project command. This will create a project file for the application.
Open the project file and add the following line to the .pro file after4.
INCLUDEPATH:

...
INCLUDEPATH += .
QT += widgets
...

Then, run qmake without arguments to create the make file that contains the rules5.
to build your application.
Run make (nmake or gmake, depending on the platform), which builds the6.
application according to the rules specified in Makefile.
If you run the application, a small window with a label saying Hello World,7.
QT! will appear.

Reactive GUI Programming Using Qt/C++ Chapter 9

[204]

The steps to building any Qt GUI applications are the same, except for the
changes that may be required in project files. For all of the future
examples that we will discuss in this chapter, build and run means to
follow these steps.

Before we go on to the next example, let's have some fun. Replace the QLabel instantiation
with the following code:

QLabel label("<h2><i>Hello World</i>, QT!</h2>");

Now, rebuild and run the application. As this code illustrates, it is easy to customize the
Qt's user interface by using some simple HTML-style formatting.

In the next section, we will learn how to handle the Qt events and the use of signals and
slots for object communication.

Qt event model with signals/slots/MOC – an
example
In this section, we will create an application to handle mouse events in QLabel. We will
override the mouse events in a custom QLabel and handle them in the dialog where the
custom label is placed. The approach to this application is as follows:

Create a custom my_QLabel class, inherited from the framework QLabel class,1.
and override the mouse events, such as mouse-move, mouse-pressed, and
mouse-leave.
Define the signals that correspond to these events in my_QLabel, and emit them2.
from the corresponding event handlers.
Create a dialog class inherited from the QDialog class, and handcode the3.
positions and layouts of all of the widgets, including the custom widget created
to handle mouse events.
In the dialog class, define the slots to handle the emitted signals from4.
the my_QLabel object, and display the appropriate results in the dialog.
Instantiate this dialog under the QApplication object, and execute.5.
Create the project file to build a widget application and get it up and running.6.

Reactive GUI Programming Using Qt/C++ Chapter 9

[205]

Creating a custom widget
Let's write the header file my_qlabel.h to declare the class my_QLabel:

#include <QLabel>
#include <QMouseEvent>

class my_QLabel : public QLabel
{
 Q_OBJECT
public:
 explicit my_QLabel(QWidget *parent = nullptr);

 void mouseMoveEvent(QMouseEvent *evt);
 void mousePressEvent(QMouseEvent* evt);
 void leaveEvent(QEvent* evt);

 int x, y;

signals:
 void Mouse_Pressed();
 void Mouse_Position();
 void Mouse_Left();
};

QLabel and QMouseEvent are defined under the included libraries, <QLabel> and
<QMouseEvent>. The class is derived from QLabel to inherit its default behavior, and
QObject is propertied to handle the signaling mechanism.

In the private section of the header file, we have added a Q_OBJECT macro to notify the
MOC that it must generate meta-object code for this class. The meta-object code is required
for the signals and slots mechanism, the run-time type information, and the dynamic
property system.

In the class header, along with the constructor declaration, the mouse events such
as mouse-move event, mouse-press event, and mouse-leave event are overridden. Also, the
public integer variables hold the current X and Y coordinates of the mouse pointer. Finally,
the signals emitted from each mouse event are declared under the signals section.

Now, let's define these items in a CPP file, my_qlabel.cpp:

#include "my_qlabel.h"

my_QLabel::my_QLabel(QWidget *parent) : QLabel(parent), x(0), y(0) {}

void my_QLabel::mouseMoveEvent(QMouseEvent *evt)

Reactive GUI Programming Using Qt/C++ Chapter 9

[206]

{
 this->x = evt->x();
 this->y = evt->y();
 emit Mouse_Position();
}

In the constructor, the parent is passed on to the QLabel base class to inherit the unhandled
cases in the overridden class, and the coordinate variables are initialized to zero. In the
mouse-move event handler, the member variables holding the mouse coordinates get
updated, and a signal Mouse_Position() is emitted. The dialog using my_QLabel can
connect this signal to the corresponding mouse-move slot in the parent dialog class and
update the GUI:

void my_QLabel::mousePressEvent(QMouseEvent *evt)
{
 emit Mouse_Pressed();
}

void my_QLabel::leaveEvent(QEvent *evt)
{
 emit Mouse_Left();
}

From the mouse-press event handlers, the signal Mouse_Pressed() is emitted, and from
the mouse-leave event, the Mouse_Left() signal is emitted. These signals get connected
to corresponding slots in the parent widget (Dialog class) and update the GUI. Hence, we
have written a custom label class to handle the mouse events.

Creating the application dialog
As the label class has been implemented, we need to implement the dialog class to place all
of the widgets and handle all of the signals emitted from the my_QLabel object. Let's start
with the dialog.h header file:

#include <QDialog>

class my_QLabel;
class QLabel;

class Dialog : public QDialog
{
 Q_OBJECT
public:
 explicit Dialog(QWidget *parent = 0);

Reactive GUI Programming Using Qt/C++ Chapter 9

[207]

 ~Dialog();

private slots:
 void Mouse_CurrentPosition();
 void Mouse_Pressed();
 void Mouse_Left();

private:
 void initializeWidgets();
 my_QLabel *label_MouseArea;
 QLabel *label_Mouse_CurPos;
 QLabel *label_MouseEvents;
};

Here, we are creating a Dialog class inherited from QDialog, defined under
the <QDialog> library. The classes QLabel and my_QLabel are forward declared in this
class header, as the actual libraries will be included in the class definition file. As we
already discussed, the Q_OBJECT macro must be included to generate meta-object code for
enabling signals and slots mechanisms, the run-time type information, and the dynamic
property system.

In addition to the constructor and destructor declarations, private slots are declared to
connect to the signals emitted from the my_QLabel object. The slots are normal functions,
and can be called normally; their only special feature is that signals can be connected to
them. The Mouse_CurrentPosition() slot will be connected to the signal emitted from
the mouseMoveEvent() of the my_QLabel object. Similarly, Mouse_Pressed() will be
connected to mousePressEvent(), and MouseLeft() will be connected to
the leaveEvent() of the my_QLabel object.

Finally, the declaration of all widget pointers and one private function
called initializeWidgets() is done to instantiate and lay out the widgets in the dialog.

The implementation of the Dialog class belongs in dialog.cpp:

#include "dialog.h"
#include "my_qlabel.h"
#include <QVBoxLayout>
#include <QGroupBox>

Dialog::Dialog(QWidget *parent) : QDialog(parent)
{
 this->setWindowTitle("My Mouse-Event Handling App");
 initializeWidgets();

 connect(label_MouseArea, SIGNAL(Mouse_Position()), this,

Reactive GUI Programming Using Qt/C++ Chapter 9

[208]

SLOT(Mouse_CurrentPosition()));
 connect(label_MouseArea, SIGNAL(Mouse_Pressed()), this,
SLOT(Mouse_Pressed()));
 connect(label_MouseArea, SIGNAL(Mouse_Left()), this,
SLOT(Mouse_Left()));
}

In the constructor, the title of the application dialog is set to My Mouse-Event Handling
App. Then, the initializeWidgets() function gets called—that function will be
explained shortly. After creating and setting the layouts calling initializeWidgets(),
the signals that emit from my_QLabel objects are connected to the corresponding slots
declared in the Dialog class:

void Dialog::Mouse_CurrentPosition()
{
 label_Mouse_CurPos->setText(QString("X = %1, Y = %2")
 .arg(label_MouseArea->x)
 .arg(label_MouseArea->y));
 label_MouseEvents->setText("Mouse Moving!");
}

The Mouse_CurrentPosition() function is the slot to the signal emitted from the mouse-
move event of the my_QLabel object. In this function, the label
widget label_Mouse_CurPos gets updated with the current mouse coordinates, and
label_MouseEvents updates its text to Mouse Moving!:

void Dialog::Mouse_Pressed()
{
 label_MouseEvents->setText("Mouse Pressed!");
}

The Mouse_Pressed() function is the slot to the signal which has been emitted from the
mouse-press event that gets called every time a user clicks inside of the mouse area
(the my_QLabel object). The function updates the text in the label_MouseEvents label as
"Mouse Pressed!":

void Dialog::Mouse_Left()
{
 label_MouseEvents->setText("Mouse Left!");
}

Finally, whenever the mouse leaves the mouse area, the mouse-leave event of
the my_QLabel object emits a signal connected to the Mouse_Left() slot function. Then, it
updates the text in the label_MouseEvents label to "Mouse Left!".

Reactive GUI Programming Using Qt/C++ Chapter 9

[209]

Use the initializeWidgets() function to instantiate and set the layouts in the dialog, as
follows:

void Dialog::initializeWidgets()
{
 label_MouseArea = new my_QLabel(this);
 label_MouseArea->setText("Mouse Area");
 label_MouseArea->setMouseTracking(true);
 label_MouseArea->setAlignment(Qt::AlignCenter|Qt::AlignHCenter);
 label_MouseArea->setFrameStyle(2);

In this code, the label_MouseArea object is instantiated with the custom label
class, my_QLabel. Then, the label properties are modified (such as the label text modified to
"Mouse Area"), mouse tracking is enabled inside the label_MouseArea object, the
alignment is set to center and the frame style is set to a thick line.

label_Mouse_CurPos = new QLabel(this);
label_Mouse_CurPos->setText("X = 0, Y = 0");
label_Mouse_CurPos->setAlignment(Qt::AlignCenter|Qt::AlignHCenter);
label_Mouse_CurPos->setFrameStyle(2);
label_MouseEvents = new QLabel(this);
label_MouseEvents->setText("Mouse current events!");
label_MouseEvents->setAlignment(Qt::AlignCenter|Qt::AlignHCenter);
label_MouseEvents->setFrameStyle(2);

The label objects label_Mouse_CurPos and label_MouseEvents are updating its
properties, such as text alignment and frame style, similar to the label_MouseArea object.
But the text in label_Mouse_CurPos is initially set to "X = 0, Y = 0", and the
label_MouseEvents label to "Mouse current events!":

 QGroupBox *groupBox = new QGroupBox(tr("Mouse Events"), this);
 QVBoxLayout *vbox = new QVBoxLayout;
 vbox->addWidget(label_Mouse_CurPos);
 vbox->addWidget(label_MouseEvents);
 vbox->addStretch(0);
 groupBox->setLayout(vbox);

 label_MouseArea->move(40, 40);
 label_MouseArea->resize(280,260);
 groupBox->move(330,40);
 groupBox->resize(200,150);
}

Reactive GUI Programming Using Qt/C++ Chapter 9

[210]

Finally, a vertical box layout (QVBoxLayout) is created, and the label_Mouse_CurPos and
label_MouseEvents label widgets are added to it. Also, a group box is created with the
tag Mouse Events, and the layout of the group box is made into a vertical box layout,
created with the widgets. At last, the positions and sizes of the mouse area label and the
mouse events group box are set to predefined values. Hence, the widget creation and
layout settings are done.

Executing the application
We can now write main.cpp to create the Dialog class and display it:

#include "dialog.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 Dialog dialog;
 dialog.resize(545, 337);
 dialog.show();
 return app.exec();
}

This piece of code is exactly like the Hello World Qt application that we discussed. Instead
of a QLabel, we are instantiating the Dialog class we created, resizing the dialog window
frame to a predefined value by using the resize() function. Now, the application is ready
to build and run. But, before building the application, let us handcode the project file:

QT += widgets

SOURCES +=
 main.cpp
 dialog.cpp
 my_qlabel.cpp

HEADERS +=
 dialog.h
 my_qlabel.h

Reactive GUI Programming Using Qt/C++ Chapter 9

[211]

Now, build the application and run it. A dialog box will pop up as follows (Windows
platform):

As we hover the mouse pointer through the left side label (Mouse Area), the coordinates of
the mouse will get updated in the first label on the right side, and the second label on the
right side will display the text, Mouse Moving! Upon pressing any mouse button in the
mouse area, the text in the second label will change to Mouse Pressed! When the mouse
pointer leaves the mouse area, the text will be updated to Mouse Left!

In this section, we learned how to create a dialog window, widgets under a dialog, layouts
in the widgets, and so on. We also learned how to enable customizing a widget (the label
widget), and how to handle system events. We then learned about the creation and
connection of objects using user-defined signals and slots. Finally, we used all of these
widgets, including a custom widget, and created an application to handle Qt mouse events
in a window.

Now, let's implement a similar application to handle mouse events in a QLabel and display
mouse coordinates in another label. Here, the event handling is performed by using event
subscription and event filtering, with RxCpp observables and Qt event filters.

Reactive GUI Programming Using Qt/C++ Chapter 9

[212]

Integrating the RxCpp library with the Qt
event model
We already saw the Qt framework from a bird's eye view in the previous sections. We
learned how to handle Qt events, especially mouse events and the signals/slots mechanism.
We also learned about the RxCpp library and its programming model in the previous two
chapters. In the process, we came across many significant reactive operators that matter
while writing programs leveraging the reactive approach.

In this section, we are going to write an application to handle mouse events in a label
widget, which is similar to the previous example. In this example, instead of handling
mouse events to emit signals (like we did in the last example), we will be subscribing to Qt
mouse events using the RxCpp subscriber and will filter different mouse events from the
resultant mouse events Stream. The events (that are not filtered out) will be related to the
subscribers.

Qt event filter – a reactive approach
As mentioned previously, the Qt framework has a robust event mechanism. We need to
bridge between the Qt and RxCpp scheme of things. To get started with this application, we
are going to write a header file, rx_eventfilter.h, wrapping the required RxCpp
headers and the Qt event filter:

#include <rxcpp/rx.hpp>
#include <QEvent>
namespace rxevt {
 // Event filter object class
 class EventEater: public QObject {
 Public:
 EventEater(QObject* parent, QEvent::Type type,
rxcpp::subscriber<QEvent*> s):
 QObject(parent), eventType(type), eventSubscriber(s) {}
 ~EventEater(){ eventSubscriber.on_completed();}

Reactive GUI Programming Using Qt/C++ Chapter 9

[213]

The <rxcpp/rx.hpp> library is included to get the definitions for RxxCppsubscriber and
observable, which we use in this class, and the <QEvent> library for QEvent definition.
The entire header file is defined under the namespace rxevt. Now, the EventEater class
is a Qt event filter class implanted to filter-in the only Qt events the member
eventType is initialized with. To achieve that, the class has two member variables. The first
one is eventSubscriber, which is an rxcpp::subscriber of the QEvent type, and the
next one is eventType, to hold the QEvent::Type.

In the constructor, the parent QObject (the widget upon which events need to be filtered)
is passed to the base class QObject. The member variables eventType and
eventSubscriber get initialized with the QEvent::Type that needs to be filtered and
the rxcpp::subscriber of the corresponding event type:

 bool eventFilter(QObject* obj, QEvent* event) {
 if(event->type() == eventType)
 { eventSubscriber.on_next(event);}
 return QObject::eventFilter(obj, event);
 }

We have overridden the eventFilter() function to call on_next() only if the event type
is the same as the initialized type. The EventEater is an event filter object that receives all
events that are sent to this object. The filter can either stop the event or forward it to this
object. The EventEater object receives events via its eventFilter() function. The
eventFilter() function (http:/ ​/​doc. ​qt. ​io/​qt- ​5/​qobject. ​html#eventFilter) must
return true if the event should be filtered (in other words, stopped); otherwise, it must
return false:

 private:
 QEvent::Type eventType;
 rxcpp::subscriber<QEvent*> eventSubscriber;
 };

So, let's write a utility function under the same header file to create and return
an rxcpp::observable from the event Stream using the EventEater object:

 // Utility function to retrieve the rxcpp::observable of filtered
events
 rxcpp::observable<QEvent*> from(QObject* qobject, QEvent::Type type)
 {
 if(!qobject) return rxcpp::sources::never<QEvent*>();
 return rxcpp::observable<>::create<QEvent*>(
 [qobject, type](rxcpp::subscriber<QEvent*> s) {
 qobject->installEventFilter(new EventEater(qobject, type,
s));

http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter
http://doc.qt.io/qt-5/qobject.html#eventFilter

Reactive GUI Programming Using Qt/C++ Chapter 9

[214]

 }
);
 }
} // rxevt

In this function, we are returning the observable of QEvent from the stream of events that
we will filter using the EventEater object. A QObject instance can be set to monitor the
events of another QObject instance before the latter object even sees them. This a really
powerful feature of Qt's event model. The call of the installEventFilter() function
makes it possible, and the EventEater class has the conditions to perform filtering.

Creating the window – setting layouts and
alignments
Now, let's write the application code to create the widget window, which contains two label
widgets. One label will be used as the mouse area, similar to the previous example, and the
latter will be used to display the filtered mouse event and the mouse coordinates.

Let's look into the code in main.cpp as two sections. Initially, we will discuss the code to
create and set the layout for the widgets:

#include "rx_eventfilter.h"
int main(int argc, char *argv[])
{
 QApplication app(argc, argv);
 // Create the application window
 auto widget = std::unique_ptr<QWidget>(new QWidget());
 widget->resize(280,200);
 // Create and set properties of mouse area label
 auto label_mouseArea = new QLabel("Mouse Area");
 label_mouseArea->setMouseTracking(true);
 label_mouseArea->setAlignment(Qt::AlignCenter|Qt::AlignHCenter);
 label_mouseArea->setFrameStyle(2);
 // Create and set properties of message display label
 auto label_coordinates = new QLabel("X = 0, Y = 0");
 label_coordinates->setAlignment(Qt::AlignCenter|Qt::AlignHCenter);
 label_coordinates->setFrameStyle(2);

Reactive GUI Programming Using Qt/C++ Chapter 9

[215]

We have included the rx_eventfilter.h header file to use the event filtering mechanism
implemented using the RxCpp library. In this application, instead of creating these widgets
inside of a dialog, a QWidget object is created, and the two QLabel widgets are added into
a QVBoxLayout layout; this is set as the layout of the application widget. The size of the
application window is a predefined value of 200pixels wide and 280pixels high.
Similar to the previous application, mouse tracing is enabled for the first label:

 // Adjusting the size policy of widgets to allow stretching
 // inside the vertical layout
 label_mouseArea->setSizePolicy(QSizePolicy::Expanding,
QSizePolicy::Expanding);
 label_coordinates->setSizePolicy(QSizePolicy::Expanding,
QSizePolicy::Expanding);
 auto layout = new QVBoxLayout;
 layout->addWidget(label_mouseArea);
 layout->addWidget(label_coordinates);
 layout->setStretch(0, 4);
 layout->setStretch(1, 1);
 widget->setLayout(layout);

The size policy of both widgets is set to QSizePolicy::Expanding to allow for the
stretching of widgets inside the vertical layout box. This allows us to make the mouse area
label larger than the status display label. The setStretch() function sets the stretch factor
at the position index to stretch.

Event type specific observables
The code to subscribe to the rxcpp::observable of mouse events is as follows:

Mouse move
Mouse button press
Mouse button double-click

The program is as follows:

 // Display the mouse move message and the mouse coordinates
 rxevt::from(label_mouseArea, QEvent::MouseMove)
 .subscribe([&label_coordinates](const QEvent* e){
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(QString("Mouse Moving : X = %1, Y = %2")
 .arg(me->x())
 .arg(me->y()));
 });

Reactive GUI Programming Using Qt/C++ Chapter 9

[216]

The rxevt::from() function returns the rxcpp::observable of the events from
label_mouseArea, based on the QEvent::Type we are passing as the argument. In this
code, we are subscribing to an Observable of events in label_mouseArea, which are of
the QEvent::MouseMove type. Here, we are updating the label_coordinates text with
the current X and Y positions of the mouse pointer:

 // Display the mouse signle click message and the mouse coordinates
 rxevt::from(label_mouseArea, QEvent::MouseButtonPress)
 .subscribe([&label_coordinates](const QEvent* e){
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(QString("Mouse Single click at X = %1, Y
= %2")
 .arg(me->x())
 .arg(me->y()));
 });

Similar to mouse-move filtering, an observable of QEvent is returned by the
rxevt::from() function, including only events of the type
QEvent::MouseButtonPress. Then, the text is updated in label_coordinates, with the
position of the mouse click:

 // Display the mouse double click message and the mouse coordinates
 rxevt::from(label_mouseArea, QEvent::MouseButtonDblClick)
 .subscribe([&label_coordinates](const QEvent* e){
 auto me = static_cast<const QMouseEvent*>(e);
 label_coordinates->setText(QString("Mouse Double click at X = %1, Y
= %2")
 .arg(me->x())
 .arg(me->y()));
 });
 widget->show();
 return app.exec();
} // End of main

Finally, the event type QEvent::MouseButtonDblClick is also handled similar to a single
mouse click, and the text in label_coordinates is also updated with the double-click
position. Then, the show() function of the application window widget is called, and the
exec() function is called to start the event loop.

Reactive GUI Programming Using Qt/C++ Chapter 9

[217]

The project file, Mouse_EventFilter.pro, is as follows:

QT += core widgets
CONFIG += c++14

TARGET = Mouse_EventFilter
INCLUDEPATH += include

SOURCES +=
 main.cpp
HEADERS +=
 rx_eventfilter.h

Since the RxCpp library is a header-only library, a folder named include is created inside
of the project directory, and the RxCpp library folder is copied there. Updating
INCLUDEPATH will help the application to fetch any include files present in the directories
specified there. Now, let's build and run the application.

An introduction to RxQt
The RxQt library is a public domain library written over the RxCpp library and makes it
easy to program with Qt events and signals in a reactive manner. To understand the
library, let us jump into an example so that we can track the mouse events and filter them
using the observable supplied by the library. The library can be downloaded from the
GitHub repository at https:/ ​/​github. ​com/ ​tetsurom/ ​rxqt:

#include <QApplication>
#include <QLabel>
#include <QMouseEvent>
#include "rxqt.hpp"

int main(int argc, char *argv[])
{
 QApplication app(argc, argv);

 auto widget = new QWidget();
 widget->resize(350,300);
 widget->setCursor(Qt::OpenHandCursor);

 auto xDock = new QLabel((QWidget*)widget);
 xDock->setStyleSheet("QLabel { background-color : red}");
 xDock->resize(9,9);
 xDock->setGeometry(0, 0, 9, 9);

https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt
https://github.com/tetsurom/rxqt

Reactive GUI Programming Using Qt/C++ Chapter 9

[218]

 auto yDock = new QLabel((QWidget*)widget);
 yDock->setStyleSheet("QLabel { background-color : blue}");
 yDock->resize(9,9);
 yDock->setGeometry(0, 0, 9, 9);

The preceding code creates QWidget, which acts as the parent of two other QLabels. Two
label widgets are created to move inside the parent widget, along the top and left border of
the windows. The dockable label along the X-axis is colored red, and the one along the Y-
axis is blue in color:

 rxqt::from_event(widget, QEvent::MouseButtonPress)
 .filter([](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 return (Qt::LeftButton == me->buttons());
 })
 .subscribe([&](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 widget->setCursor(Qt::ClosedHandCursor);
 xDock->move(me->x(), 0);
 yDock->move(0, me->y());
 });

In the preceding code, the rxqt::from_event() function filters all of the events from the
widget class, except for the QEvent::MouseButtonPress event, and returns a
rxcpp::observable<QEvent*> instance. The rxcpp::observable here is already
filtered with those mouse events if the button is the left mouse button. Then, inside the
Lambda function of the subscribe() method, we are changing the cursor into
Qt::ClosedHandCursor. We also set the position of xDock to the mouse x-position value,
along with the top edge of the window, and the yDock position to the mouse y-position,
along with the left edge of the window:

 rxqt::from_event(widget, QEvent::MouseMove)
 .filter([](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 return (Qt::LeftButton == me->buttons());
 })
 .subscribe([&](const QEvent* e) {
 auto me = static_cast<const QMouseEvent*>(e);
 xDock->move(me->x(), 0);
 yDock->move(0, me->y());
 });

Reactive GUI Programming Using Qt/C++ Chapter 9

[219]

In this code, we are filtering all the mouse-move events from the widget window using the
RxQt library. The observable here is a stream of mouse events with both mouse-move and
left mouse button press events are present. Inside the subscribe method, the code updates
the position of xDock and yDock along the top and left edges of the window:

 rxqt::from_event(widget, QEvent::MouseButtonRelease)
 .subscribe([&widget](const QEvent* e) {
 widget->setCursor(Qt::OpenHandCursor);
 });

 widget->show();
 return app.exec();
}

Finally, the filtered mouse button release events are filtered, and the mouse cursor is set
back to Qt::OpenHandCursor. To add some more fun to this application, let's create one
more widget, similar to xDock and yDock; this will be a gravity object. The gravity object
will follow the mouse cursor when it is pressed:

#ifndef GRAVITY_QLABEL_H
#define GRAVITY_QLABEL_H

#include <QLabel>

class Gravity_QLabel : public QLabel
{
 public:
 explicit Gravity_QLabel(QWidget *parent = nullptr):
 QLabel(parent), prev_x(0), prev_y(0){}

 int prev_x, prev_y;
};

#endif // GRAVITY_QLABEL_H

Now, we must create an instance of the gravity widget under the application window (from
the newly created Gravity_QLabel class):

 auto gravityDock = new Gravity_QLabel((QWidget*)widget);
 gravityDock->setStyleSheet("QLabel { background-color : green}");
 gravityDock->resize(9,9);
 gravityDock->setGeometry(0, 0, 9, 9);

Reactive GUI Programming Using Qt/C++ Chapter 9

[220]

Similar to the creation and size settings of xDock and yDock, the new gravityDock object
has been created. Also, the position of this object must be set in the mouse coordinate
values whenever a press event is thrown. Therefore, inside of the Lambda function of the
subscribe method for QEvent::MouseButtonPress, we need to add the following line of
code:

 gravityDock->move(me->x(),me->y());

Lastly, the position of gravityDock needs to be updated, as per the mouse move. To
achieve that, inside of the Lambda function of the subscribe method for
QEvent::MouseMove, we need to add the following code:

 gravityDock->prev_x = gravityDock->prev_x * .96 + me->x() * .04;
 gravityDock->prev_y = gravityDock->prev_y * .96 + me->y() * .04;
 gravityDock->move(gravityDock->prev_x, gravityDock->prev_y);

Here, the position of gravityDock is updated to a new value, which is the sum of 96% of
the previous value and 4% of the new position. Hence, we are filtering the Qt events using
the RxQt and RxCpp libraries to create an X-Y mouse position indicator and a gravity
object. Now, let's build and run the application.

Summary
In this chapter, we dealt with the topic of reactive GUI programming using Qt. We started
with a quick overview of GUI application development using Qt. We learned about
concepts in the Qt framework, such as the Qt object hierarchy, the meta-object system, and
signals and slots. We wrote a basic Hello World application using a simple label widget.
Then, we wrote a mouse event handling application using a custom label widget. In that
application, we learned more about how the Qt event system works, and how to use the
signals and slots mechanism for object communication. Finally, we wrote an application to
handle mouse events and filter them by using the RxCpp subscription model and Qt event
filters. We covered how RxCpp can be used in a GUI framework (such as Qt) to follow a
Reactive programming model. We also covered the RxQt library, a public domain that
integrates RxCpp and the Qt library.

Reactive GUI Programming Using Qt/C++ Chapter 9

[221]

Before proceeding to the next chapter, you need to learn about writing custom operators for
RxCpp observables. This topic is covered in the online section. You can refer to the following
link: https:/​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/ ​downloads/ ​Creating_ ​Custom_
Operators_​in_​RxCpp. ​pdf.

After you have completed reading the preceding mentioned topic, we can proceed to the
next chapter, where we will take a look at design patterns and idioms for C++ reactive
programming.

https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf
https://www.packtpub.com/sites/default/files/downloads/Creating_Custom_Operators_in_RxCpp.pdf

10
Design Patterns and Idioms for

C++ Rx Programming
We have covered quite a bit of ground on using the reactive programming model with C++.
So far, we have learned about the RxCpp library and its programming model, the key
elements of the RxCpp library, and reactive GUI programming.

In this chapter, we will cover the following topics:

An introduction to patterns and the pattern movement
Design patterns and reactive programming
Some reactive programming patterns and idioms

The OOP and design patterns movement
Object-oriented programming (OOP) has reached a critical mass, thanks to proliferation of
good C++ compilers in the early nineties. The programmers of the early 1990s often
struggled to understand OOP and how to effectively use it in large projects. Without a viral
medium such as the internet, it was quite a struggle. Early adopters published technical
reports, wrote in periodicals/journals, and conducted seminars to popularize OOP
techniques. Magazines such as Dr. Dobb's Journal and C++ Report used to carry columns
featuring OOP.

There was a need to transfer the wisdom of experts to the ever-increasing programming
community, but this knowledge propagation was not happening. The legendary German
mathematician Carl Friedrich Gauss remarked, always learn from the masters. Even though
Gauss had mathematics in mind, his statement is true for any non-trivial human endeavor.
However, previously, masters of OOP technique were few, and the apprenticeship model
was not scaling well.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[223]

James Coplien published an influential book entitled Advanced C++ Styles
and Idioms, which dealt with the low-level patterns (idioms) associated
with usage of the C++ programming language. Even though it is not
widely cited, authors consider it a notable book for cataloging the best
practices and techniques for OOP.

Erich Gamma began to work on a pattern catalog as part of his Ph.D. thesis, getting
inspiration from a building architect named Christopher Alexander. Christopher
Alexander's A Pattern of Towns and building was a source of inspiration for Erich Gamma.
After this, people with similar ideas, namely Ralph Johnson, John Vlissides, and Richard
Helm, joined hands with Erich Gamma to create a catalog of 23 design patterns, now
affectionately known as Gang of Four (GOF) design patterns. Addison Wesley published
the book Design Patterns : Elements of Reusable Object-Oriented Software in 1994. This soon
became a great reference for programmers, and fueled pattern-oriented software
development. The GOF catalog was mostly focused on software design.

In 1996, a group of engineers from Siemens published the book, Pattern Oriented Software
Architecture, which mainly focused on the architectural aspects of building a system. The
entire POSA pattern catalog was documented in five books, published by John Wiley and
Sons. The group was joined by Douglas Schmidt, the creator of the adaptive
communication environment (ACE) network programming library and TAO (the ACE
ORB). He later became the chair of object management group (OMG), which develops,
adopts, and maintains standards, such as CORBA and UML.

A flood of activity followed the two preceding initiatives; further notable pattern catalogs
are as follows:

Patterns of Enterprise Application Architecture, by Martin Fowler, et al.
Enterprise Integration Patterns, by Gregor Hope and Boby Wulf.
Core J2EE Patterns, by Deepak Alur, et al.
Domain Driven Design, by Eric Evans.
The Enterprise Patterns and the MDA, by Jim Arlow and Illa Neustadt.

Even though these books were significant in their own rights, they were skewed towards
the then-burgeoning area of enterprise software development. For C++ developers, the GOF
catalog and the POSA catalog are the most important.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[224]

Key pattern catalogs
A pattern is a named solution to a commonly occurring problem in software design.
Patterns are most often cataloged in some kind of pattern repository. Some of them are
published as books. The most popular and widely used pattern catalog is GOF.

GOF patterns
The Gang of Four (GOF), named after the creators of the catalog, started the pattern
movement. The creators were mostly focused on designing and architecting object-oriented
software. The ideas of Christopher Alexander were borrowed to Software Engineering
Discipline and applied to application architecture, concurrency, security, and so on. The
Gang of Four divided the catalog into structural, creational, and behavioral patterns. The
original book used C++ and Smalltalk for explaining the concepts. These patterns have been
ported and leveraged in most of the programming languages that exist today. Take a look
at this table:

Sl.
No. Pattern Type Patterns

1 Creational patterns Abstract Factory, Builder, Factory Method, Prototype, Singleton

2 Structural patterns Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
Proxy

3 Behavioral patterns
Chain of Responsibility, Command, Interpreter, Iterator,
Mediator, Memento, Observer , State, Strategy, Template
Method, Visitor

We believe that a good understanding of GOF patterns is necessary for any programmer.
These patterns occur everywhere, regardless of the application domain. GOF patterns help
us to communicate and reason about systems in a language agnostic manner. They are
widely implemented in the .NET and Java worlds. The Qt framework leverages the patterns
in the GOF repository extensively, for giving an intuitive programming model.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[225]

POSA catalog
Patterns of Software Architecture (five volumes) is an influential book series, which covers
most of the applicable patterns for developing mission critical systems. The catalog is good
for people who write mission critical sub-systems of large software, especially database
engines, distributed systems, middleware systems, and so on. Another advantage of the
catalog is that it is well suited for C++ programmers.

The catalog, which spans five published volumes, is listed in the following table:

Sl.
No. Pattern Type Patterns

1 Architectural Layers, Pipes and Filters, Blackboard, Broker, MVC,
Presentation-Abstraction-Control, Microkernel, Reflection

2 Design
Whole-Part, Mater-Slave, Proxy, Command Processor, View
Handler, Forwarder-Receiver, Client-Dispatcher-Server,
Publisher-Subscriber

3 Service access and
configuration patterns

Wrapper Façade, Component Configurator, Interceptor,
Extension Interface

4 Event handling patterns Reactor, Proactor, Asynchronous Completion Token,
Acceptor-Connector

5 Synchronization
patterns

Scoped Locking, Strategized Locking, Thread-Safe Interface,
Double-Checked Locking Optimization

6 Concurrency patterns Active Object, Monitor Object, Half-Sync/Half-Async,
Leader/Followers, Thread-Specific Storage

7 Resource acquisition
patterns

Lookup, Lazy Acquisition, Eager Acquisition, Partial
Acquisition

8 Resource lifecycle Caching, Pooling, Coordinator, Resource Lifecycle Manager

9 Resource release
patterns Leasing, Evictor

10 A pattern language for
distributive computing

Consolidation of patterns from different catalogs in the
context of distributed programming

11 On patterns and pattern
languages

This last volume gives some meta-information about
patterns, pattern languages, and usage

The POSA catalog needs to be studied to gain deep insights into the architectural
underpinnings of large-scale systems, which are deployed across the world. We believe
that, despite its importance, this catalog has not received the attention it deserves.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[226]

The design pattern redux
The GOF pattern and reactive programming have a deeper connection that is obvious from
the surface. The GOF pattern is mostly concerned with writing OOP-based programs.
Reactive programming is about functional programming, stream programming, and
concurrency. We already learned that reactive programming covers some deficiencies in
classic GOF observer patterns (in the first section of Chapter 5, Introduction to Observables,
we covered this deficiency).

OOP programs are basically about modeling hierarchies, and from the pattern world, the
composite pattern is the way to model part/whole hierarchies. Wherever there is a
composite, a collection of visitor implementations will follow suit. In other words, the
composite-visitor duo is the canonical pattern for writing object-oriented systems.

The visitor implementations should possess some awareness of the structure of the
composites. Behavioral processing using the visitor pattern becomes difficult, as the
number of visitors proliferates. Moreover, adding transformations and filters to the
processing further complicates the matter.

Enter the iterator pattern, which is good for the navigation of a sequence, stream, or list of
items. Using object/functional programming constructs, we can filter and transform
sequences very easily. Microsoft's language integrated query and Lambda/Streams
processing in Java (8 and above) are good examples of the iterator pattern.

Now, how will we transform the hierarchical data into a linear structure? Most hierarchies
can be flattened into a stream for further processing. Recently, people have started doing
the following:

Modeling their hierarchies using the composite pattern.
Flattening the hierarchy into a sequence by using a visitor meant for the purpose.
Navigating those sequences using the iterator pattern.
Applying a series of transformations and filters to sequences before performing
actions on them.

The preceding method is called the pull method of programming. Consumers or clients
pull the data from the event or data source to process it. This scheme suffers from the
following issues:

The data is unnecessarily pulled into the client.
The transformations and filters are applied to the event sink side.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[227]

The event sink can block the server.
The style is not good for asynchronous processing, where data varies over time.

A good solution to the problem is to reverse the gaze, where data is pushed from the server
asynchronously as a stream, and the event sink will react to the Stream. Another advantage
of this kind of system is the placement of transformations and filters on the event source
side. This leads to a scenario where only data that is absolutely essential needs to be
processed on the sink side.

The scheme is as follows:

The data is treated in streams, which are called observables.
We can apply a series of operators, or higher order operators, to them.
An operator always takes an observable and returns another observable.
We can subscribe to an observable for notifications.
Observers have standard mechanisms to process them.

In this section, we learned how OOP patterns and reactive programming are closely
related. Judicious mixing of both paradigms produces high quality, maintainable code. We
also discussed how OOP design patterns (composite/visitor) can be transformed (flattening
the structure) to leverage iterator pattern. We discussed how the scheme of iteration can be
improved with a slight nudge (a fire and forget idiom on the event source side). In the next
section, we will demonstrate the whole technique by writing code.

From design patterns to reactive
programming
Even though the design pattern movement is aligned with OOP, and reactive programming
is aligned towards FP, there are close similarities between them. In a previous chapter, we
learned the following:

The OOP model is good for modeling the structural aspects of a system.
The FP model is good for modeling the behavioral aspects of a system.

To illustrate the connection between OOP and reactive programming, we will write a
program that will traverse directories to enumerate files and sub-folders within a given
folder.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[228]

We will create a composite structure that contains the following:

A FileNode (inherits from EntryNode) that models file information
A DirectoryNode (inherits from EntryNode) that models folder information

After defining the preceding composites, we will define visitors for the following:

Printing filenames and folder names
Converting a composite hierarchy to a list of filenames

Without further ado, let's get into the meat of the stuff. Take a look at this code:

//---------- DirReact.cpp
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
#include <string>
#include <vector>
#include <windows.h> // This is omitted in POSIX version
#include <functional>
#include <thread>
#include <future>
using namespace std;
////////////////////////////////////
//-------------- Forward Declarations
//-------------- Model Folder/File
class FileNode;
class DirectoryNode;
////////////////////////////////
//------------- The Visitor Interface
class IFileFolderVisitor;

The preceding forward declarations are undertaken to silence the compiler from issuing
errors and warnings while compiling the programs. The FileNode stores a filename and its
size as an instance variable. The DirectoryNode stores a folder name and a list of
FileNode, to indicate the files and folders within a directory. The
FileNode/DirectoryNode hierarchy is processed by the IFileFolderVisitor interface.
We can see the declarations as follows:

/////////////////////////////////
//------ a Type to store FileInformation
struct FileInformation{
 string name;
 long size;
 FileInformation(string pname,long psize)

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[229]

 { name = pname;size = psize; }
};
//////////////////////////////
//-------------- Base class for File/Folder data structure
class EntryNode{
 protected:
 string name;
 int isdir;
 long size;
 public:
 virtual bool Isdir() = 0;
 virtual long getSize() = 0;
 virtual void Accept(IFileFolderVisitor& ivis)=0;
 virtual ~EntryNode() {}
};

When we create a composite, we need to create a node class that acts as a base class for all
members of the hierarchy. In our case, the EntryNode class does that. We store the file or
folder name, the size, and so on, in the base class. Other than the three virtual functions,
which should be implemented by the derived class, we have a virtual destructor, as well.
The presence of a virtual destructor makes sure that destructors in therapy are called
properly, as shown here :

//-------------The Visitor Interface
class IFileFolderVisitor{
 public:
 virtual void Visit(FileNode& fn)=0;
 virtual void Visit(DirectoryNode& dn)=0;
};

Whenever we define a hierarchy using a composite pattern style implementation, we define
a visitor interface to process the nodes in the hierarchy. For each node in the hierarchy,
there will be a visit method for it in the visitor interface. Every node in the class hierarchy
of the composite will have an accept method, and the visitor interface dispatches the call
to the respective node's accept method. The accept method dispatches the call back to
the correct visit method in the visitor. This process is called double dispatch:

// The Node which represents Files
class FileNode : public EntryNode {
 public:
 FileNode(string pname, long psize) { isdir = 0; name = pname; size =
psize;}
 ~FileNode() {cout << "....Destructor FileNode" << name << endl; }
 virtual bool Isdir() { return isdir == 1; }
 string getname() { return name; }

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[230]

 virtual long getSize() {return size; }
 virtual void Accept(IFileFolderVisitor& ivis){ivis.Visit(*this);}
};

The FileNode class just stores the name and the size of the file, which is stored in the node.
The class also implements all of the virtual methods declared in the base class (EntryNode).
The accept method redirects the call to the correct visitor level method, as shown here:

// Node which represents Directory
class DirectoryNode : public EntryNode {
 list<unique_ptr<EntryNode>> files;
public:
 DirectoryNode(string pname)
 { files.clear(); isdir = 1; name = pname;}
 ~DirectoryNode() {files.clear();}
 list<unique_ptr<EntryNode>>& GetAllFiles() {return files;}
 bool AddFile(string pname , long size) {
 files.push_back(unique_ptr<EntryNode> (new FileNode(pname,size)));
 return true;
 }
 bool AddDirectory(DirectoryNode *dn) {
 files.push_back(unique_ptr<EntryNode>(dn));
 return true;
 }
 bool Isdir() { return isdir == 1; }
 string getname() { return name; }
 void setname(string pname) { name = pname; }
 long getSize() {return size; }
 void Accept(IFileFolderVisitor& ivis){ivis.Visit(*this); }
};

The DirectoryNode class models a folder with a list of files and sub-folders. We are using
Smart Pointers to store the entry. As usual, we have also implemented all virtual functions
associated with the EntryNode class. The methods AddFile and AddDirectory are meant
to populate the list. While traversing the directory using the OS specific functions, we
populate a directory with the preceding two methods:

//------Directory Helper Has to be written for Each OS
class DirHelper {
 public:
 static DirectoryNode *SearchDirectory(const std::string&
refcstrRootDirectory){
 //--------------- Do some OS specific stuff to retrieve
 //--------------- File/Folder hierarchy from the root folder
 return DirNode;
}};

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[231]

The DirHelper logic varies between Windows and GNU Linux/macOS X. We have
omitted the source code from the book. The associated website contains the full source code
for the preceding programs. Basically, the program recursively traverses the directory to
populate the data structure, as shown here:

/////////////////////////////////////
//----- A Visitor Interface that prints
//----- The contents of a Folder
class PrintFolderVisitor : public IFileFolderVisitor
{
 public:
 void Visit(FileNode& fn) {cout << fn.getname() << endl; }
 void Visit(DirectoryNode& dn) {
 cout << "In a directory " << dn.getname() << endl;
 list<unique_ptr<EntryNode>>& ls = dn.GetAllFiles();
 for (auto& itr : ls) { itr.get()->Accept(*this);}
 }
};

The PrintFolderVisitor class is a visitor implementation that spits the file and folder
information to the console. The class demonstrates how a basic visitor can be implemented
for a composite. In our case, the composite has only two nodes, and it is very easy to write
the visitor implementation. In certain cases, the number of node types in a hierarchy are
numerous, and writing a visitor implementation is not trivial. Writing filters and
transformations for visitors can be difficult, and the logic is ad hoc. Let's write a program to
print the contents of a folder. Here it is:

void TestVisitor(string directory){
 // Search files including subdirectories
 DirectoryNode *dirs = DirHelper::SearchDirectory(directory);
 if (dirs == 0) {return;}
 PrintFolderVisitor *fs = new PrintFolderVisitor ();
 dirs->Accept(*fs); delete fs; delete dirs;
}

The preceding function recursively traverses a directory and creates a composite
(DirectoryNode *). We use PrintFolderVisitor to print the contents of the folder, as
shown here:

int main(int argc, char *argv[]) { TestVisitor("D:\Java"); }

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[232]

Flattening the hierarchy to navigate through
them
The visitor implementation has to have some idea of the structure of the composite. In some
instances of composite implementation, there will be scores of visitors to be implemented.
Moreover, applying transformations and filters on nodes is a bit difficult in the case of
visitor interfaces. The GOF pattern catalog has an iterator pattern that can be used to
navigate a sequence of items. The problem is: How can we linearize a hierarchy for
processing using the iterator pattern? Most hierarchies can be flattened to a list, sequence,
or stream by writing a visitor implementation for that purpose. Let us write a flattening
visitor for the said task.

Take a look at the following code:

// Flatten the File/Folders into a linear list
class FlattenVisitor : public IFileFolderVisitor{
 list <FileInformation> files;
 string CurrDir;
 public:
 FlattenVisitor() { CurrDir = "";}
 ~FlattenVisitor() { files.clear();}
 list<FileInformation> GetAllFiles() { return files; }
 void Visit(FileNode& fn) {
 files.push_back(FileInformation{ CurrDir +"\" +
fn.getname(),fn.getSize()));
 }
 void Visit(DirectoryNode& dn) {
 CurrDir = dn.getname();
 files.push_back(FileInformation(CurrDir, 0));
 list<unique_ptr<EntryNode>>& ls = dn.GetAllFiles();
 for (auto& itr : ls) { itr.get()->Accept(*this);}
 }
};

The FlattenVisitor class collects the files and folders in an STL list. For each directory,
we iterate through the list of files and issue the accept method. Using the familiar double
dispatch, let us write a function that returns a list of FileInformation for us to iterate
through. Here is the code:

list<FileInformation> GetAllFiles(string dirname){
 list<FileInformation> ret_val;
 // Search files including subdirectories
 DirectoryNode *dirs =DirHelper::SearchDirectory(dirname);
 if (dirs == 0) {return ret_val;}

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[233]

 FlattenVisitor *fs = new FlattenVisitor();
 dirs->Accept(*fs);
 ret_val = fs->GetAllFiles();
 delete fs; delete dirs;
 return ret_val;
}
int main(int argc, char *argv[]) {
 list<FileInformation> rs = GetAllFiles("D:\JAVA");
 for(auto& as : rs)
 cout << as.name << endl;
}

The FlattenVisitor class traverses the DirectoryNode hierarchy and collects the fully
expanded pathname into an STL list structure. Once we have linearized the hierarchy into a
list, we can iterate over it.

We have learned how to model a hierarchy as a composite, and eventually flatten it to a
form that is suitable for navigation with the iterator pattern. In the next section, we will
learn how iterators can be transformed into observables. We will use RxCpp to implement
the observables by using a fire and forget the model, pushing values from the source to the
sink.

From iterators to observables
The iterator pattern is the standard mechanism to pull data from STL containers,
generators, and streams. They are well-suited for data that has been aggregated in the
space. Essentially, this means that we know ahead of time how much data is supposed to be
retrieved, or that the data has already been captured. There are scenarios where the data
arrives asynchronously and the consumers are not aware of how much data there is or
when the data arrives. In such cases, iterators need to wait, or we need to resort to timeout
strategies to handle the scenarios. In such a scenario, a push-based approach seems to be a
better option. Using the subject construct of Rx, we can use a fire-and-forget strategy. Let's
write a class that emits the contents of a directory, as shown here:

//////////////////////////////
// A Toy implementation of Active
// Object Pattern...
template <class T>
struct ActiveObject {
 rxcpp::subjects::subject<T> subj;
 // fire-and-forget
 void FireNForget(T & item){subj.get_subscriber().on_next(item);}
 rxcpp::observable<T> GetObservable()

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[234]

 { return subj.get_observable(); }
 ActiveObject(){}
 ~ActiveObject() {}
};
///////////////////////
// The class uses a FireNForget mechanism to
// push data to the Data/Event sink
//
class DirectoryEmitter {
 string rootdir;
 //-------------- Active Object (a Pattern in it's own right)
 ActiveObject<FileInformation> act; // more on this below
 public:
 DirectoryEmitter(string s) {
 rootdir = s;
 //----- Subscribe
 act.GetObservable().subscribe([] (FileInformation item) {
 cout << item.name << ":" << item.size << endl;
 });
 }
 bool Trigger() {
 std::packaged_task<int()> task([&]() { EmitDirEntry(); return
1; });
 std::future<int> result = task.get_future();
 task();
 //------------ Uncomment the below line
 //------------ to return immediately
 double dresult = result.get();
 return true;
 }
 //----- Iterate over the list of files
 //----- uses ActiveObject Pattern to do FirenForget
 bool EmitDirEntry() {
 list<FileInformation> rs = GetAllFiles(rootdir);
 for(auto& a : rs) { act.FireNForget(a); }
 return false;
 }
};
int main(int argc, char *argv[]) {
 DirectoryEmitter emitter("D:\JAVA");
 emitter.Trigger(); return 0;
}

The DirectoryEmitter class uses modern C++'s packaged_task construct to make
asynchronous calls in a fire and forget manner. In the preceding listing, we are waiting for
the result (using std::future<T>). We can uncomment to return immediately.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[235]

The cell pattern
We have already learned that reactive programming is all about processing values that vary
over time. They are centered on the notion of observables. There are two variants, which
are as follows:

Cells: A cell is an entity (a variable, or a memory location) where values are
regularly updated over time. They are also called properties or behaviors, in
some contexts.
Streams: A stream represents a stream of events. They are data that is often
associated with actions. When people think of observables, they have got Stream
variant of Observables.

We will implement a toy version of a cell-programming pattern. We will only focus on
implementing basic functionality. The code needs tidying up for production use.

The following implementation can be optimized, if we are implementing a Cell Controller
class that each Cell will notify, when there is change in them. Then, the cell controller class
can update the dependencies by evaluating expressions. This implementation shows how
the cell pattern is a viable mechanism for dependent computations:

//------------------ CellPattern.cpp
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
using namespace std;
class Cell
{
 private:
 std::string name;
 std::map<std::string,Cell *> parents;
 rxcpp::subjects::behavior<double> *behsubject;
 public:
 string get_name() { return name;}
 void SetValue(double v)
 { behsubject->get_subscriber().on_next(v);}
 double GetValue()
 { return behsubject->get_value(); }
 rxcpp::observable<double> GetObservable()
 { return behsubject->get_observable(); }
 Cell(std::string pname) {
 name = pname;
 behsubject = new rxcpp::subjects::behavior<double>(0);
 }

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[236]

 ~Cell() {delete behsubject; parents.clear();}
 bool GetCellNames(string& a , string& b)
 {
 if (parents.size() !=2) { return false; }
 int i = 0;
 for(auto p : parents) {
 (i == 0)? a = p.first : b = p.first;
 i++;
 }
 return true;
 }
 /////////////////////////////
 // We will just add two parent cells...
 // in real life, we need to implement an
 // expression evaluator
 bool Recalculate() {
 string as , bs ;
 if (!GetCellNames(as,bs)) { return false; }
 auto a = parents[as];
 auto b = parents[bs];
 SetValue(a->GetValue() + b->GetValue());
 return true;
 }
 bool Attach(Cell& s) {
 if (parents.size() >= 2) { return false; }
 parents.insert(pair<std::string,Cell *>(s.get_name(),&s));
 s.GetObservable().subscribe([=] (double a) { Recalculate() ;});
 return true;
 }
 bool Detach(Cell& s) { //--- Not Implemented
 }
};

The cell class makes an assumption that each cell has two parent dependencies, and
whenever there is a change in the value of the parents, the cell's value will be recalculated.
We have implemented an addition operator (to keep listings small). The recalculate
method implements the logic, as shown here:

int main(int argc, char *argv[]) {
 Cell a("a");
 Cell b("b");
 Cell c("c");
 Cell d("d");
 Cell e("e");
 //-------- attach a to c
 //-------- attach b to c
 //-------- c is a + b

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[237]

 c.Attach(a);
 c.Attach(b);
 //---------- attach c to e
 //---------- attach d to e
 //---------- e is c + d or e is a + b + d;
 e.Attach(c);
 e.Attach(d);
 a.SetValue(100); // should print 100
 cout << "Value is " << c.GetValue() << endl;
 b.SetValue(200); // should print 300
 cout << "Value is " << c.GetValue() << endl;
 b.SetValue(300); // should print 400
 cout << "Value is " << c.GetValue() << endl;
 d.SetValue(-400); // should be Zero
 cout << "Value is " << e.GetValue() << endl;
}

The main program demonstrates how we can use the cell pattern to propagate changes
down into the dependencies. By changing values, we force the recomputation of values in
the dependent cells.

The active object pattern
An active object is a class that decouples method invocations and method executions, and is
well suited for fire and forget asynchronous calls. A scheduler attached to the class handles
the execution requests. The pattern consists of six elements, which are as follows:

A proxy, which provides an interface for clients with publicly accessible methods
An interface that defines the method request on an active object
A list of pending requests from clients
A scheduler, which decides what request to execute next
The implementation of the active object method
A callback or variable, for the client to receive the result

We will dissect an implementation of the active object pattern. This program is written for
elucidation; for production use, we need to use a bit more sophistication. Attempting a
production quality implementation would make the code considerably longer. Let's take a
look at the code:

#include <rxcpp/rx.hpp>
#include <memory>
#include <map>

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[238]

#include <algorithm>
#include <string>
#include <vector>
#include <windows.h>
#include <functional>
#include <thread>
#include <future>
using namespace std;
//------- Active Object Pattern Implementation
template <class T>
class ActiveObject {
 //----------- Dispatcher Object
 rxcpp::subjects::subject<T> subj;
 protected:
 ActiveObject(){
 subj.get_observable().subscribe([=] (T s)
 { Execute(s); });
 }
 virtual void Execute(T s) {}
 public:
 // fire-and-forget
 void FireNForget(T item){ subj.get_subscriber().on_next(item);}
 rxcpp::observable<T> GetObservable() { return subj.get_observable(); }
 virtual ~ActiveObject() {}
};

The preceding implementation declares an instance of the subject<T> class, to act as a
notification mechanism. The FireNForget method places the value into the subject by
invoking the get_subscriber method. The method immediately returns, and the
subscription method will retrieve the value and call the Execute method. The class is
supposed to be overridden by a concrete implementation. Let's take a look at the code:

class ConcreteObject : public ActiveObject<double> {
 public:
 ConcreteObject() {}
 virtual void Execute(double a) { cout << "Hello World....." << a <<
endl;}
};
int main(int argc, char *argv[]) {
 ConcreteObject temp;
 for(int i=0; i<=10; ++i)
 temp.FireNForget(i*i);
 return 0;
}

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[239]

The previous code snippet calls the FireNForget method, with a double value. On the
console, we can see the value being printed. The overridden Execute method is
automatically invoked.

Resource loan pattern
The loan pattern, as the name suggests, loans a resource to your function. It performs the
following steps:

It creates a resource that you can use1.
It loans the resource to the function that will use it2.
This function is passed by the caller3.
The resource is destroyed4.

The following code implements the resource loan pattern for resource management. The
pattern helps to avoid resource leakage when writing code:

//----------- ResourceLoan.cpp
#include <rxcpp/rx.hpp>
using namespace std;
//////////////////////////
// implementation of Resource Loan Pattern. The Implementation opens a
file
// and does not pass the file handle to user defined Lambda. The Ownership
remains with
// the class
class ResourceLoan {
 FILE *file;
 string filename;
 public:
 ResourceLoan(string pfile) {
 filename = pfile;
 file = fopen(filename.c_str(),"rb");
 }
 ////////////////////////////
 // Read upto 1024 bytes to a buffer
 // return the buffer contents and number of bytes
 int ReadBuffer(std::function<int(char pbuffer[],int val)> func)
 {
 if (file == nullptr) { return -1; }
 char buffer[1024];
 int result = fread (buffer,1,1024,file);
 return func(buffer,result);

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[240]

 }
 //---------- close the resource
 ~ResourceLoan() { fclose(file);}
};
////////////////////////////////
// A Sample Program to invoke the preceding
// class
//
int main(int argc, char *argv[]) {
 ResourceLoan res("a.bin");
 int nread ;
 //------------- The conents of the buffer
 //------------- and size of buffer is stored in val
 auto rlambda = [] (char buffer[] , int val) {
 cout << "Size " << val << endl;
 return val;
 };
 //------- The File Handle is not available to the
 //------- User defined Lambda
 while ((nread = res.ReadBuffer(rlambda)) > 0) {}
 //---- When the ResourceLoan object goes out of scope
 //---- File Handle is closed
 return 0;
}

The resource loan pattern is suitable for avoiding resource leakage. The holder of the
resource never hands the handle or pointer over to the resource to the consumer. The main
program demonstrates how we can consume the implementation.

The event bus pattern
The event bus acts as a mediator between event sources and event sinks. An event source,
or producer, emits the events to a bus, and classes that have subscribed to events
(consumers) will get notified. The pattern could be an instance of the mediator pattern. In
an event bus implementation, we have the following:

Producers: Classes that produce events
Consumers: Classes that consume events
Controllers: Classes that act as producers and consumers

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[241]

In the implementation that follows, we have omitted the implementation of controllers. The
following code implements an event bus:

//----------- EventBus.cpp
#include <rxcpp/rx.hpp>
#include <memory>
#include <map>
#include <algorithm>
using namespace std;
//---------- Event Information
struct EVENT_INFO{
 int id;
 int err_code;
 string description;
 EVENT_INFO() { id = err_code = 0 ; description ="default";}
 EVENT_INFO(int pid,int perr_code,string pdescription)
 { id = pid; err_code = perr_code; description = pdescription; }
 void Print() {
 cout << "id & Error Code" << id << ":" << err_code << ":";
 cout << description << endl;
 }
};

The EVENT_INFO struct models an event, and it has the following content:

Id: Event ID
err_code: Error code
description: Description of the events

The rest of the code is fairly obvious; here it is:

//----------- The following method
//----------- will be invoked by
//----------- Consumers
template <class T>
void DoSomeThingWithEvent(T ev)
{ev.Print();}

//---------- Forward Declarations
template <class T>
class EventBus;
//------------- Event Producer
//------------- Just Inserts event to a Bus
template <class T>
class Producer {
 string name;

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[242]

 public:
 Producer(string pname) { name = pname;}
 bool Fire(T ev,EventBus<T> *bev) {
 bev->FireEvent(ev);
 return false;
 }
};

Implementation of the producer class is fairly simple. The skeleton implementation is
rather trivial. The Fire method takes a compatible EventBus<T> as a parameter and calls
the FireEvent method of the EventBus<T> class. A production implementation requires
some bells and whistles. Let's take a look at the code:

//------------ Event Consumer
//------------ Subscribes to a Subject
//------------ to Retrieve Events
template <class T>
class Consumer {
 string name;
 //--------- The subscription member helps us to
 //--------- Unsubscribe to an Observable
 rxcpp::composite_subscription subscription;
public:
 Consumer(string pname) { name = pname;}
 //--------- Connect a Consumer to a Event Bus
 bool Connect(EventBus<T> *bus) {
 //------ If already subscribed, Unsubscribe!
 if (subscription.is_subscribed())
 subscription.unsubscribe();
 //------- Create a new Subscription
 //------- We will call DoSomeThingWithEvent method
 //------- from Lambda function
 subscription = rxcpp::composite_subscription();
 auto subscriber = rxcpp::make_subscriber<T>(
 subscription,[=](T value){
 DoSomeThingWithEvent<T>(value);
 },[](){ printf("OnCompletedn");});
 //----------- Subscribe!
 bus->GetObservable().subscribe(subscriber);
 return true;
 }
 //-------- DTORUnsubscribe
 ~Consumer() { Disconnect(); }
 bool Disconnect() {

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[243]

 if (subscription.is_subscribed())
 subscription.unsubscribe();
 }
};

The functionality of Consumer<T> is pretty obvious. The Connect method does the work
of subscribing to the observable side of the subject in the EventBus<T> class. Each time a
new connection request comes in, the existing subscription is unsubscribed, as shown here:

//--- The implementation of the EventBus class
//--- We have not taken care of Concurrency issues
//--- as our purpose is to demonstrate the pattern
template <class T>
class EventBus
{
 private:
 std::string name;
 //----- Reference to the Subject...
 //----- Consumers get notification by
 //----- Subscribing to the Observable side of the subject
 rxcpp::subjects::behavior<T> *replaysubject;
 public:
 EventBus<T>() {replaysubject = new rxcpp::subjects::behavior<T>(T());}
 ~EventBus() {delete replaysubject;}
 //------ Add a Consumer to the Bus...
 bool AddConsumer(Consumer<T>& b) {b.Connect(this);}
 //------ Fire the Event...
 bool FireEvent (T& event) {
 replaysubject->get_subscriber().on_next(event);
 return true;
 }
 string get_name() { return name;}
 rxcpp::observable<T> GetObservable()
 { return replaysubject->get_observable(); }
};

EventBus<T> acts as a conduit between the producers and consumers. We are using a
replaysubject under the hood, to notify the consumers, as shown here:

/////////////////////
//The EntryPoint
//
//
int main(int argc, char *argv[]) {
 //---- Create an instance of the EventBus
 EventBus<EVENT_INFO> program_bus;
 //---- Create a Producer and Two Consumers

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[244]

 //---- Add Consumers to the EventBus
 Producer<EVENT_INFO> producer_one("first");
 Consumer<EVENT_INFO> consumer_one("one");
 Consumer<EVENT_INFO> consumer_two("two");
 program_bus.AddConsumer(consumer_one);
 program_bus.AddConsumer(consumer_two);
 //---- Fire an Event...
 EVENT_INFO ev;
 ev.id = 100;
 ev.err_code = 0;
 ev.description = "Hello World..";
 producer_one.Fire(ev,&program_bus);
 //---- fire another by creating a second
 //---- Producer
 ev.id = 100;
 ev.err_code = 10;
 ev.description = "Error Happened..";
 Producer<EVENT_INFO> producer_two("second");
 producer_two.Fire(ev,&program_bus);
}

In the main function, we are performing the following tasks:

Creating an instance of the EventBus<T>1.
Creating an instance of producers2.
Creating an instance of consumers3.
Dispatching the events to the bus4.

We have only covered a subset of the design patterns that are suitable for writing reactive
programs. Primarily, our focus has been on bridging the GOF design patterns with the
reactive programming world. In fact, the authors believe that the reactive programming
model is an enhanced implementation of classic GOF design patterns. The enhancement is
possible due to the functional programming constructs added to modern programming
languages. In fact, object/functional programming is a good approach for writing modern
C++ code. This chapter was largely based on that very idea.

Design Patterns and Idioms for C++ Rx Programming Chapter 10

[245]

Summary
In this chapter, we delved into the wonderful world of design patterns and idioms. Starting
with GOF design patterns, we moved on to reactive programming patterns. We covered
patterns such as cell, active object, resource loan, and event bus. Bridging from GOF
patterns to reactive programming helps you to look at reactive programming in a broader
sense.

In the next chapter, we will learn about microservice development using C++.

11
Reactive Microservices Using

C++
So far, we have covered the essential aspects of reactive programming using C++. Some of
the key topics covered include:

The reactive programming model and its cognitive prerequisites
The RxCpp library and its programming model
Reactive GUI programming using Qt/RxCpp
Design patterns and the reactive programming model

If you take a closer look, all the examples so far in this book are related to what happens
inside a process. Or, we were essentially focusing on shared memory parallel and
concurrent techniques. The Rx.net, RxJava is mostly concerned with shared memory
concurrent and parallel programming. A system such as Akka applies the reactive
programming model to the distributed world. In Akka, we can write reactive logic that
spans the process. The reactive programming model is also good for exposing REST-based
web services and consuming them. The RxJs library is mostly used for consuming REST-
based services from a browser page. The RxCpp library can be used for writing web clients
for aggregating the contents from various service endpoints. We can leverage RxCpp from
a consoler and GUI applications. Another use case is aggregating data from multiple fine-
grained services and delivering it to web clients.

In this chapter, we will write a basic web application, using C++, that will leverage the C++
REST SDK to write the server part and use its client library to consume those services. In
the process, we will explain what microservices are and how to consume them. We will also
explain how RxCpp can be used to access REST endpoints and HTML pages by writing a
wrapper on top of the libcurl library. We are planning to leverage Kirk Shoop's RxCurl
library (written as part of his Twitter analysis application) to demonstrate this technique.

Reactive Microservices Using C++ Chapter 11

[247]

The C++ language and web programming
Nowadays, most web-centric applications are developed using Python, Java, C#, PHP, and
other high-level languages. But, for these applications, people place reverse proxies, such as
NGINX, Apache Web server, or IIS redirector, to manage the traffic to the apps written in
high-level languages. All of these reverse proxies are written in C++. Likewise, most of the
web browsers and HTTP client libraries, such as libwww, libcurl, and WinInet, are
written using C++.

One reason why Java, (statically-typed) C#, and other dynamic languages (such as Python,
Ruby, and PHP) became popular is that these languages support reflective capabilities (in
the case of static languages, such as C#/Java) and duck typing (supported by dynamic
languages). These features help the web application servers to load handlers dynamically.
Read about them by searching for keywords such as Reflection API and Duck Typing.

The REST programming model
REST, which stands for representational state transfer, is an architectural style spearheaded
by Roy Fielding as part of his PhD thesis. Nowadays, it is one of the most popular
techniques for exposing and consuming web services. REST follows a resource-centric
approach and nicely maps to the CRUD pattern, which is popular among programmers
who are versed in writing enterprise business applications. We use JavaScript Object
Notation (also known as JSON) as payload while writing REST services, instead of the
XML format (which is in vogue for SOAP services). The REST programming model relies
on HTTP verbs to indicate the kind of operations to be executed while receiving a REST
API call. The most popular methods supported are:

POST: Creates a new resource
GET: Retrieves a resource
PUT: Updates an existing resource (if it's a new resource, behaves like POST)
DELETE: Deletes a resource

Reactive Microservices Using C++ Chapter 11

[248]

The C++ REST SDK
The C++ REST SDK is a Microsoft project for cloud-based client-server communication in
native code using a modern asynchronous C++ API design. This project aims to help C++
developers connect to and interact with services. The SDK has the following features that
help you to write robust services:

HTTP client/server
JSON
Asynchronous streams
WebSocket's client
oAuth

The C++ REST SDK relies on the parallel patterns library's task API. The PPL tasks is a
powerful model for composing asynchronous operations based on modern C++ features.
The C++ REST SDK supports Windows desktop, Windows Store (UWP), Linux, macOS,
Unix, iOS, and Android.

HTTP client programming using the C++ REST
SDK
The C++ REST SDK programming model is asynchronous in nature, and we can invoke the
API calls in a synchronous manner as well. The following program will demonstrate how
we can invoke the HTTP client API calls asynchronously. The program demonstrates the
workings of the client side of the HTTP protocol supported by the C++ REST SDK. We use a
technique called task continuation (a technique of chaining blocks of code) to retrieve the
data from a web page and store it in a local disk file. The C++ REST SDK follows an
asynchronous I/O model and we chain operations together. Finally, we invoke the
composition using the Wait method:

#include <cpprest/http_client.h>
#include <cpprest/filestream.h>
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <fstream>
#include <random>
#include "cpprest/json.h"
#include "cpprest/http_listener.h"

Reactive Microservices Using C++ Chapter 11

[249]

#include "cpprest/uri.h"
#include "cpprest/asyncrt_utils.h"
//
// A Simple HTTP Client to Demonstrate
// REST SDK Client programming model
// The Toy sample shows how one can read
// contents of a web page
//
using namespace utility; // Common utilities like string conversions
using namespace web; // Common features like URIs.
using namespace web::http;// Common HTTP functionality
using namespace web::http::client;// HTTP client features
using namespace concurrency::streams;// Asynchronous streams

int main(int argc, char* argv[])
{
 auto fileStream = std::make_shared<ostream>();
 // Open stream to output file.
 pplx::task<void> requestTask =
 fstream::open_ostream(U("google_home.html")).
 then([=](ostream outFile)
 {
 *fileStream = outFile;
 // Create http_client to send the request.
 http_client client(U("http://www.google.com"));
 // Build request URI and start the request.
 uri_builder builder(U("/"));
 return client.request(methods::GET, builder.to_string());

 }).then([=](http_response response)
 {
 printf("Received response status code:%un",
 response.status_code());
 return response.body().
 read_to_end(fileStream->streambuf());
 }).then([=](size_t){
 return fileStream->close();
 });

 // We have not started execution, just composed
 // set of tasks in a Continuation Style
 // Wait for all the outstanding I/O to complete
 // and handle any exceptions, If any
 try
 {
 //-- All Taskss will get triggered here
 requestTask.wait();
 }

Reactive Microservices Using C++ Chapter 11

[250]

 catch (const std::exception &e)
 {
 printf("Error exception:%sn", e.what());
 }
 //---------------- pause for a key
 getchar();

 return 0;
}

The program demonstrates the workings of the task continuation style of programming.
The bulk of the code is about composing operations, and the actual execution starts when
the wait() method is called. We can invoke the operation in a synchronous manner as
well. Consult the C++ REST SDK documentation to learn more.

HTTP server programming using the C++ REST
SDK
We have already learned about the HTTP client programming model supported by the C++
REST SDK. We worked with the asynchronous task-continuation-based API to retrieve the
content of a web page and persist it into a disk file. Now, it is time to start concentrating on
the REST SDK HTTP server programming. The C++ REST SDK has a listener interface that
will handle the HTTP request, and we can place handlers for each type of the HTTP verbs,
such as GET, PUT, and POST:

/////////////////////////////////
// A Simple Web Application with C++ REST SDK
// We can use Postman Or Curl to test the Server
using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;
/////////////////////////////
// SimpleServer is a Wrapper over
// http_listener class available with C++ REST SDK
class SimpleServer
{
public:

 SimpleServer(utility::string_t url);
 ~SimpleServer() {}
 pplx::task<void> Open() { return m_listener.open(); }

Reactive Microservices Using C++ Chapter 11

[251]

 pplx::task<void> Close() { return m_listener.close(); }

private:
 //--- Handlers for HTTP verbs
 void HandleGet(http_request message);
 void HandlePut(http_request message);
 void HandlePost(http_request message);
 void HandleDelete(http_request message);
 //--------------- The HTTP listener class
 http_listener m_listener;
};

The SimpleServer C++ class is basically a wrapper on top of the http_listener class
supported by the C++ REST SDK. The class listens for the incoming HTTP request, and it is
possible to set request handlers for each request type (GET, POST, PUT, and so on). When a
request arrives, http_listener will dispatch the request information to the associated
handlers:

//////////////////////////////////
// The Constructor Binds HTTP verbs to instance methods
// Based on the naming convention, we can infer what is happening
SimpleServer::SimpleServer(utility::string_t url) : m_listener(url)
{
 m_listener.support(methods::GET, std::bind(&SimpleServer::HandleGet,
 this, std::placeholders::_1));
 m_listener.support(methods::PUT, std::bind(&SimpleServer::HandlePut,
 this, std::placeholders::_1));
 m_listener.support(methods::POST, std::bind(&SimpleServer::HandlePost,
 this, std::placeholders::_1));
 m_listener.support(methods::DEL, std::bind(&SimpleServer::HandleDelete,
 this, std::placeholders::_1));

}

The previous code snippets bind the request handlers to the http_request object. We are
only focusing on the GET, PUT, POST, and DELETE verbs. These verbs are the most popular
commands supported by REST implementations:

/////////////////////////////////////
// For this implementation, what we do is
// spit the HTTP request details on the Server Console
// and return 200 OK and a String which indicates Success of Operations
void SimpleServer::HandleGet(http_request message){
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK,L"GET Operation Succeeded");
}
void SimpleServer::HandlePost(http_request message){

Reactive Microservices Using C++ Chapter 11

[252]

 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"POST Operation Succeeded");
};

void SimpleServer::HandleDelete(http_request message){
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"DELETE Operation Succeeded");
}
void SimpleServer::HandlePut(http_request message){
 ucout << message.to_string() << endl;
 message.reply(status_codes::OK, L"PUT Operation Succeeded");
};

The previous code block follows a pattern that can be easily deciphered by any developer.
All the handler does is print the request parameters to the console of the server and return a
string to the client to indicate that the operation was successful. We will show how we can
access these services through the POSTMAN and CURL utilities:

////////////////////////////////
// A Smart Pointer for Server Instance...
//
std::unique_ptr<SimpleServer> g_http;
//
// STart the Server with the Given URL
//
void StartServer(const string_t& address)
{
 // Build our listener's URI from the address given
 // We just append DBDEMO/ to the base URL
 uri_builder uri(address);
 uri.append_path(U("DBDEMO/"));
 auto addr = uri.to_uri().to_string();
 /////////////////////////////////
 // Create an Instance of the Server and Invoke Wait to
 // start the Server...
 g_http = std::unique_ptr<SimpleServer>(new SimpleServer(addr));
 g_http->Open().wait();
 //---- Indicate the start and spit URI to the Console
 ucout << utility::string_t(U("Listening for requests at: ")) <<
 addr << std::endl;

 return;
}

//
// Simply Closes the Connection... Close returns
// pplx::task<void> ...we need to Call wait to invoke the

Reactive Microservices Using C++ Chapter 11

[253]

// operation...
void ShutDown(){
 g_http->Close().wait();
 return;
}
///////////////////////////////
// EntryPoint function
int wmain(int argc, wchar_t *argv[])
{
 utility::string_t port = U("34567");
 if (argc == 2){ port = argv[1];}
 //--- Create the Server URI base address
 utility::string_t address = U("http://localhost:");
 address.append(port);
 StartServer(address);
 std::cout << "Press ENTER to exit." << std::endl;
 //--- Wait Indefenintely, Untill some one has
 // pressed a key....and Shut the Server down
 std::string line;
 std::getline(std::cin, line);
 ShutDown();
 return 0;
}

The main function instantiates an n instance of SimpleListener through the
StartServer function. Then, the main function waits for a key to be pressed before the
ShutDown function is called. Once we have kick-started the application, we can use the
CURL tool or POSTMAN to test how the program works.

Testing the HTTP server using CURL and
POSTMAN
CURL is a command-line tool that is portable across Windows, GNU Linux, macOS, and
other POSIX-compliant systems. The tool helps to transfer data using various TCP/IP-based
application protocols. Some of the common protocols supported include HTTP, HTTPS,
FTP, FTPS, SCP, SFTP, TFTP, DICT, TELNET, and LDAP.

Reactive Microservices Using C++ Chapter 11

[254]

We will be using the CURL tool to test the HTTP server we wrote. The command-line utility
can be invoked by giving the requisite command-line parameters to place HTTP requests
with associated verbs. We give the command-line parameters for invoking the GET and the
PUT request to the server we wrote:

 curl -X PUT http://localhost:34567/DBDEMO/ -H "Content-Type:
application/json" -d '{"SimpleContent":"Value"}'
 curl -X GET -H "Content-Type: application/json"
http://localhost:34567/DBDEMO/

Embed the previous command in a batch file or shell script, depending upon your
platform. The output on the console should be as follows:

PUT Operation Succeeded
GET Operation Succeeded

Similarly, by consulting the CURL documentation, we can test the other HTTP verbs as well.

POSTMAN is a powerful HTTP client for testing HTTP-based services. It started as a side
project of an Indian developer by the name of Abhinav Asthana; it was a Chrome plugin
that went viral. Today, it is an independent platform and there exists a company formed
around the application, of which Asthana is the CEO. You can download the POSTMAN
tool to test these services.

The libcurl and the HTTP client programming
We have already come across the CURL utility. The CURL utility is a wrapper on top of the
libcurl library. We will use the library to access the REST services in this chapter. To get
you familiar with the programming model, we will write a basic HTTP client using the
library:

///////////////////////////////////
// A Simple Program to demonstrate
// the usage of libcurl library
//
#include <stdio.h>
#include <curl/curl.h>
///////////////////////
// Entrypoint for the program
//
int main(void)
{
 CURL *curl;
 CURLcode res;

Reactive Microservices Using C++ Chapter 11

[255]

 ///////////////////////////
 // Initialize the library
 //
 curl = curl_easy_init();
 if(curl) {
 //----------- Set the URL
 curl_easy_setopt(curl, CURLOPT_URL,
 "http://example.com");
 //
 // To support URL re-direction, we need to configure
 // the lib curl library with CURLOPT_FOLLOWLOCATION
 //
 curl_easy_setopt(curl,
 CURLOPT_FOLLOWLOCATION, 1L);
 ///
 // Now that, we have setup the options necessary,
 // invoke the operation to pull data
 //
 res = curl_easy_perform(curl);
 if(res != CURLE_OK) {
 //----- if error, print the error on console
 cout << "curl_easy_perform() failed: "
 << curl_easy_strerror(res) << endl;
 }
 curl_easy_cleanup(curl);
 }
 return 0;
}

The previous code pings the http:/ ​/​example. ​com URL to retrieve its contents and prints
them to the console. The programming model is very simple, and the documentation of the
library is really good. It is one of the most popular libraries for accessing the TCP/IP
application services.

Kirk Shoop's CURL Wrapper library
The primary implementer of the RxCpp library is Kirk Shoop, who is currently associated
with Microsoft. He wrote a Twitter analysis sample app (https:/ ​/​github. ​com/ ​kirkshoop/
twitter) to demonstrate the various facets of reactive programming. One of the things he
did as part of the initiative was write a reactive wrapper over libcurl to implement the
HTTP GET and POST methods. The authors of this book have extended the code to support
the PUT and DELETE methods.

http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
http://example.com
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter
https://github.com/kirkshoop/twitter

Reactive Microservices Using C++ Chapter 11

[256]

Take a look at the RxCurl library bundled with the source code of this book:

//
// A Simple program to pull HTTP conent
// using a Rx wrapper on top of the Libcurl
//
//
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <map>
#include <chrono>
using namespace std;
using namespace std::chrono;
////////////////////////
// include Curl Library and
// Rxcpp library
//
#include <curl/curl.h>
#include <rxcpp/rx.hpp>
using namespace rxcpp;
using namespace rxcpp::rxo;
using namespace rxcpp::rxs;
//////////////////////////
// include the modified rxcurl library from
// Kirk Shoop's Twitter Analysis app
//
#include "rxcurl.h"
using namespace rxcurl;
int main() {
 /////////////////////////////////////
 //
 // Create a factory object to create
 // HTTP request. The http_request structure
 // is defined in rxcurl.h
 string url = "http://example.com";
 auto factory = create_rxcurl();
 auto request = factory.create(http_request{url, "GET",{}, {}}) |
 rxo::map([](http_response r){
 return r.body.complete;
 });

Reactive Microservices Using C++ Chapter 11

[257]

We created an observable by using the factory class for creating the HTTP request
object. The map function just retrieves the body of the response object. The most important
structure in the whole code is the http_request struct, whose definition is as follows:

struct http_request{
 string url;
 string method;
 std::map<string, string> headers;
 string body;
};
 //
 // make a blocking call to the url..
 observable<string> response_message;
 request.as_blocking().subscribe([&] (observable<string> s) {
 response_message = s.sum();
 } ,[] () {});

The request Observable can be subscribed for on_next using a Lambda function that
takes observable<string> as the map function returns observable<string>. In the
body of the on_next function, we aggregate the content to produce a string using the
observable<string>::sum() reducer:

 ///////////////////////////////
 // retrieve the html content form the site
 string html;
 response_message.as_blocking().subscribe([&html] (string temp) {
 html = temp;
 }, [&html] () { });
 //------------ Print to the Console...
 cout << html << endl;
}

The response_message Observable is subscribed with a Lambda, which stake the string
as a parameter. In the body of the on_next function, we simply assign the string containing
the HTML to the html variable. Finally, we print the value to the console. Please take a look
at the rxcurl.h header file to see how the library works.

Reactive Microservices Using C++ Chapter 11

[258]

The JSON and HTTP protocols
The payload format for invoking web services was once monopolized by the XML format.
The SOAP-based services mostly support the XML format. With the advent of REST-based
services, developers use JavaScript Object Notation (JSON) as the payload format. The
following table shows a comparison between XML and the corresponding JSON object:

XML JSON

<person>
 <firstName>John</firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd
Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumber>
 <type>home</type>
 <number>212 555-1234</number>
 </phoneNumber>
 <phoneNumber>
 <type>fax</type>
 <number>646 555-4567</number>
 </phoneNumber>
 <gender>
 <type>male</type>
 </gender>
</person>

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021"
 },
 "phoneNumber": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
],
 "gender": {
 "type": "male"
 }
}

The JSON format contains the following data types:

String
Number
Object (JSON object)
Array
Boolean

The following JSON objects, we have covered most of the preceding data type. The
mappings are:

name: The value is string type ("john")
age: The value is number (35)

Reactive Microservices Using C++ Chapter 11

[259]

spouse: This is a JSON object
siblings: This is an array
employed: This is a Boolean (true)

The code is as follows:

{
 { "name":"John" },
 { "age":35 },
 {
 "spouse":{ "name":"Joanna",
 "age":30,
 "city":"New York" }
 },
 {
 "siblings":["Bob", "Bill", "Peter"]
 },
 { "employed":true }
}

Now that we have a better understanding of JSON and its core aspects, we will write a
simple program that demonstrates the usage of the JSON API, available as part of the REST
SDK:

///////////////////////////////////
// A Console Application to demonstrate JSON API
// available as part of the C++ SDK
using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;
///////////////////////////////////////
// Define a Simple struct to demonstrate the
// Working of JSON API
struct EMPLOYEE_INFO{
 utility::string_t name;
 int age;
 double salary;
 /////////////////////////////////
 // Convert a JSON Object to a C++ Struct
 //
 static EMPLOYEE_INFO JSonToObject(const web::json::object & object){
 EMPLOYEE_INFO result;
 result.name = object.at(U("name")).as_string();
 result.age = object.at(U("age")).as_integer();

Reactive Microservices Using C++ Chapter 11

[260]

 result.salary = object.at(U("salary")).as_double();
 return result;
 }

The JSonToObject static method converts a JSON object to the EMPLOYEE_INFO
structure. json::at returns a reference to json::value based on the string that we used
to index it. The resultant json::value reference is used to invoke the type-specific
conversion methods, such as as_string, as_integer, and as_double:

 ///
 // Convert a C++ struct to a Json Value
 //
 web::json::value ObjectToJson() const{
 web::json::value result = web::json::value::object();
 result[U("name")] = web::json::value::string(name);
 result[U("age")] = web::json::value::number(age);
 result[U("salary")] = web::json::value::number(salary);
 return result;
 }
};

ObjectToJson is an instance method of EMPLOYEE_STRUCT, which helps to produce JSON
output from the instance data. Here, we use conversion methods to transfer instance data to
json::value. Next, we will focus on how we can create json::object from scratch:

///
// Create a Json Object group and Embed and
// Array in it...
void MakeAndShowJSONObject(){
 // Create a JSON object (the group)
 json::value group;
 group[L"Title"] = json::value::string(U("Native Developers"));
 group[L"Subtitle"] =
 json::value::string(U("C++ devekioers on Windws/GNU LINUX"));
 group[L"Description"] =
 json::value::string(U("A Short Description here "));
 // Create a JSON object (the item)
 json::value item;
 item[L"Name"] = json::value::string(U("Praseed Pai"));
 item[L"Skill"] = json::value::string(U("C++ / java "));
 // Create a JSON object (the item)
 json::value item2;
 item2[L"Name"] = json::value::string(U("Peter Abraham"));
 item2[L"Skill"] = json::value::string(U("C++ / C# "));
 // Create the items array
 json::value items;
 items[0] = item;

Reactive Microservices Using C++ Chapter 11

[261]

 items[1] = item2;
 // Assign the items array as the value for the Resources key
 group[L"Resources"] = items;
 // Write the current JSON value to wide char string stream
 utility::stringstream_t stream;
 group.serialize(stream);
 // Display the string stream
 std::wcout << stream.str();
}

int wmain(int argc, wchar_t *argv[])
{
 EMPLOYEE_INFO dm;
 dm.name = L"Sabhir Bhatia";
 dm.age = 50;
 dm.salary = 10000;
 wcout << dm.ObjectToJson().serialize() << endl;

We create an EMPLOYEE_INFO struct and assign some values into the fields. We then invoke
EMPLOYEE_INFO::ObjectToJSon() to create a json::value object. We call the
serialize() method to generate the JSON textual output:

 utility::string_t port =
 U("{"Name": "Alex Stepanov","Age": 55,"salary":20000}");;
 web::json::value json_par;
 json::value obj = json::value::parse(port);
 wcout << obj.serialize() << endl;

The previous code snippets demonstrate the use to parse textual strings to produce
json::value objects. We invoked the serialize method to print the JSON string to the
console:

 MakeAndShowJSONObject();
 getchar();
 return 0;
}

The C++ REST SDK-based REST server
In this section, we have leveraged code from Marius Bancila's excellent article about the
C++ REST SDK. In fact, the key/value database code is borrowed from his implementation.
The authors are thankful to him for the excellent article, available at https:/ ​/
mariusbancila.​ro/ ​blog/ ​2017/ ​11/ ​19/ ​revisited- ​full- ​fledged- ​client- ​server- ​example-
with-​c-​rest-​sdk- ​2- ​10/ ​.

https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/
https://mariusbancila.ro/blog/2017/11/19/revisited-full-fledged-client-server-example-with-c-rest-sdk-2-10/

Reactive Microservices Using C++ Chapter 11

[262]

Let's write a microservice that puts everything we have learned so far in the context of the
Microsoft C++ REST SDK. We will consume the REST services by leveraging the RxCurl
library written by Kirk Shoop as part of his Twitter analysis application. We have added
support to the DELETE and PUT verbs. The REST service implemented here supports the
following verbs:

GET: Lists all the key/value pairs in the storage. The response will be in the {
key:value,key:value} format.
POST: Retrieves values corresponding to an array of keys. The request should be
in the [key1,...,keyn] format. The response will be in the
{key:value,key:value....} format.
PUT: Inserts a collection of key/value pairs into the storage. The request should be
in the {key:value,key:value} format.
DELETE: Deletes an array of keys and their corresponding values from the
storage. The request should be in the [key,key] format.

Let's have a look at the code:

// MicroServiceController.cpp : Defines the entry point for the console
application.
#include <cpprest/http_client.h>
#include <cpprest/filestream.h>
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
#include <iostream>
#include <fstream>
#include <random>
#include <set>

#include "cpprest/json.h"
#include "cpprest/http_listener.h"
#include "cpprest/uri.h"
#include "cpprest/asyncrt_utils.h"

#ifdef _WIN32
#ifndef NOMINMAX
#define NOMINMAX
#endif
#include <Windows.h>
#else
include <sys/time.h>
#endif

Reactive Microservices Using C++ Chapter 11

[263]

using namespace std;
using namespace web;
using namespace utility;
using namespace http;
using namespace web::http::experimental::listener;

//////////////////////////////
//
// The following code dumps a json to the Console...
void DisplayJSON(json::value const & jvalue){
 wcout << jvalue.serialize() << endl;
}

///
// A Workhorse routine to perform an action on the request data type
// takes a lambda as parameter along with request type
// The Lambda should contain the action logic...whether it is PUT,POST or
DELETE
//
void RequeatWorker(http_request& request,
function<void(json::value const &, json::value &)> handler)
{
 auto result = json::value::object();
 request.extract_json().then([&result, &handler](pplx::task<json::value>
task) {
 try{
 auto const & jvalue = task.get();
 if (!jvalue.is_null())
 handler(jvalue, result); // invoke the lambda
 }
 catch (http_exception const & e) {
 //----------- do exception processsing
 wcout << L"Exception ->" << e.what() << endl;
 }
 }).wait();
 request.reply(status_codes::OK, result);
}

The RequestWorker is a global function, that takes http_request as a parameter along,
with a Lambda with a specific signature. The Lambda takes two parameters:

An incoming JSON object of the json::value type (a constant)
An output JSON object that contains the result from the Lambda call

Reactive Microservices Using C++ Chapter 11

[264]

The JSON payload is extracted and passed to the then continuation. Once the data is
retrieved, the handler Lambda is invoked. Since the result is passed by reference, we can
use the resultant JSON for generating the HTTP response. Now, we will create a simple
key/value data store to simulate an industrial-strength key/value database:

///
// A Mock data base Engine which Simulates a key/value DB
// In Real life, one should use an Industrial strength DB
//
class HttpKeyValueDBEngine {
 //////////////////////////////////
 //----------- Map , which we save,retrieve, update and
 //----------- delete data
 map<utility::string_t, utility::string_t> storage;
public:
 HttpKeyValueDBEngine() {
 storage[L"Praseed"]= L"45";
 storage[L"Peter"] = L"28";
 storage[L"Andrei"] = L"50";
 }

The key/value pairs are stored in an STL map for the sake of ease of implementation. In the
constructor, we initialize the map with some records. We can use PUT and POST to add
additional records, and DELETE for deleting records:

 //
 // GET - ?Just Iterates through the Map and Stores
 // the data in a JSon Object. IT is emitted to the
 // Response Stream
 void GET_HANDLER(http_request& request) {
 auto resp_obj = json::value::object();
 for (auto const & p : storage)

 resp_obj[p.first] = json::value::string(p.second);
 request.reply(status_codes::OK, resp_obj);
 }

The GET_HANLDER method will be invoked by the HTTP listener, when it encounters an
HTTP GET verb as part of the request. After creating json::value::object, we stuff the
contents of the storage map into it. The resulting JSON object is returned to the HTTP
client:

 //
 // POST - Retrieves a Set of Values from the DB
 // The PAyload should be in ["Key1" , "Key2"...,"Keyn"]
 // format

Reactive Microservices Using C++ Chapter 11

[265]

 void POST_HANDLER(http_request& request) {
 RequeatWorker(request,
 [&](json::value const & jvalue, json::value & result){
 //---------- Write to the Console for Diagnostics
 DisplayJSON(jvalue);
 for (auto const & e : jvalue.as_array()){
 if (e.is_string()){
 auto key = e.as_string();
 auto pos = storage.find(key);
if (pos == storage.end()){
 //--- Indicate to the Client that Key is not found
 result[key] = json::value::string(L"notfound");
 }
 else {
 //------------- store the key value pair in the result
 //------------- json. The result will be send back to
 //------------- the client
 result[pos->first] = json::value::string(pos->second);
 }
 }
 }
 });
 }

POST_HANDLER expects an array of JSON values in the body, and cycles through each
element and retrieves the data corresponding to the keys provided. The resultant object
stores the returned value. If some keys are not present in the key/value DB, a string is
returned to indicate that the value is not found:

 //
 // PUT - Updates Data, If new KEy is found
 // Otherwise, Inserts it
 // REST Payload should be in
 // { Key1..Value1,...,Keyn,Valuen} format
 //
 //
 void PUT_HANDLER(http_request& request) {
 RequeatWorker(
 request,
 [&](json::value const & jvalue, json::value & result){
 DisplayJSON(jvalue);
 for (auto const & e : jvalue.as_object()){
 if (e.second.is_string()){
 auto key = e.first;
 auto value = e.second.as_string();
 if (storage.find(key) == storage.end()){
 //--- Indicate to the client that we have

Reactive Microservices Using C++ Chapter 11

[266]

 //--- created a new record
 result[key] =
json::value::string(L"<put>");
 }
 else {
 //--- Indicate to the client that we have
 //--- updated a new record
result[key] = json::value::string(L"<updated>");
 }
 storage[key] = value;
 }
 }
 });
 }

PUT_HANDLER expects a list of key/value pairs in JSON format. The collection of keys is
iterated to do the lookup into the storage. If the key already exists in the storage, the value
is updated, otherwise the key/value is inserted into the storage. A JSON object (result) is
returned to indicate the action performed on each key (whether it was an insert or an
update):

 ///
 // DEL - Deletes a Set of Records
 // REST PayLoad should be in
 // [Key1,....,Keyn] format
 //
 void DEL_HANDLER(http_request& request)
 {
RequeatWorker(
 request,[&](json::value const & jvalue, json::value &
result)
 {
 //--------------- We aggregate all keys into this set
 //--------------- and delete in one go
 set<utility::string_t> keys;
 for (auto const & e : jvalue.as_array()){
 if (e.is_string()){
 auto key = e.as_string();
 auto pos = storage.find(key);
 if (pos == storage.end()){
result[key] = json::value::string(L"<failed>");
 }
 else {
result[key] = json::value::string(L"<deleted>");
 //---------- Insert in to the delete list
 keys.insert(key);
 }

Reactive Microservices Using C++ Chapter 11

[267]

 }
 }
 //---------------Erase all
 for (auto const & key : keys)
 storage.erase(key);
 });
 }
};

DEL_HANDLER expects an array of keys as the input, and it cycles through the array to
retrieve the data. If the key is already present in the storage, the keys are added to a delete
list (keys - an STL Set). A JSON object (result) is populated with the kind of action taken on
a key. The resultant object will be returned to the client:

///
//
// Instantiates the Global instance of key/value DB
HttpKeyValueDBEngine g_dbengine;

Now that we have a functional simulated key/value database engine, we will use the
functionality of the database to the outside world as a REST service endpoint with the GET,
POST, PUT, and DELETE commands. The HTTP handlers will just delegate the call to the
HttpValueDBEngine instance. The code is very similar to the code that we wrote for the
SimpleServer class:

class RestDbServiceServer{
public:
 RestDbServiceServer(utility::string_t url);
 pplx::task<void> Open() { return m_listener.open(); }
 pplx::task<void> Close() { return m_listener.close(); }
private:
 void HandleGet(http_request message);
 void HandlePut(http_request message);
 void HandlePost(http_request message);
 void HandleDelete(http_request message);
 http_listener m_listener;
};
RestDbServiceServer::RestDbServiceServer(utility::string_t url) :
m_listener(url)
{
 m_listener.support(methods::GET,
 std::bind(&RestDbServiceServer::HandleGet, this,
std::placeholders::_1));
 m_listener.support(methods::PUT,
 std::bind(&RestDbServiceServer::HandlePut, this,
std::placeholders::_1));

Reactive Microservices Using C++ Chapter 11

[268]

 m_listener.support(methods::POST,
 std::bind(&RestDbServiceServer::HandlePost, this,
std::placeholders::_1));
 m_listener.support(methods::DEL,
 std::bind(&RestDbServiceServer::HandleDelete, this,
std::placeholders::_1));
}

The previous code binds the HTTP verbs to the corresponding handlers. The bodies of the
handlers are similar in character, as the handlers are just delegating the call to the key/value
engine:

void RestDbServiceServer::HandleGet(http_request message)
{g_dbengine.GET_HANDLER(message);};
void RestDbServiceServer::HandlePost(http_request message)
{g_dbengine.POST_HANDLER(message);};
void RestDbServiceServer::HandleDelete(http_request message)
{g_dbengine.DEL_HANDLER(message);}
void RestDbServiceServer::HandlePut(http_request message)
{g_dbengine.PUT_HANDLER(message);};
//---------------- Create an instance of the Server
std::unique_ptr<RestDbServiceServer> g_http;
void StartServer(const string_t& address)
{
 uri_builder uri(address);
 uri.append_path(U("DBDEMO/"));
 auto addr = uri.to_uri().to_string();
 g_http = std::unique_ptr<RestDbServiceServer>(new
RestDbServiceServer(addr));
 g_http->Open().wait();
 ucout << utility::string_t(U("Listening for requests at: ")) <<
 addr << std::endl;
 return;
}
void ShutDown(){
 g_http->Close().wait();
 return;
}
///////////////////////////////
// The EntryPoint function
int wmain(int argc, wchar_t *argv[]){
 utility::string_t port = U("34567");
 if (argc == 2){port = argv[1];}
 utility::string_t address = U("http://localhost:");
 address.append(port);
 StartServer(address);
 std::cout << "Press ENTER to exit." << std::endl;

Reactive Microservices Using C++ Chapter 11

[269]

 std::string line;
 std::getline(std::cin, line);
 ShutDown();
 return 0;
}

The code for the HTTP controller is not different from SimpleServer, which we wrote
earlier in the chapter. We provided the listing here for the sake of completeness. With this,
we have learned how to expose a REST service endpoint to the outside world.

We have already discussed how we can expose a REST endpoint and how to write handlers
for the various HTTP verbs. In a microservices architecture style, we will have lots of REST
endpoints deployed independently. The process of breaking a coarse-grained service into a
microservice is an art that is highly dependent upon context. The microservices are exposed
to the outside world, sometimes through aggregation services. The aggregation services are
a candidate for writing reactive client logic for accessing the REST microservices. Since
network calls are asynchronous, the reactive programming model is natural here.

Invoking REST services using the RxCurl
library
The RcCurl library, written by Kirk Shoop, originally had support only for the GET and
POST verbs. The Twitter analysis app only warrants that. The authors of this book have
added support for the PUT and DELETE verbs. The following code snippets help us to
support the PUT verb. You can refer to the source of rxcurl.h to see the necessary changes
to support additional verbs:

#include <iostream>
#include <stdio.h>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <map>
#include <chrono>
using namespace std;
using namespace std::chrono;
////////////////////////
// include Curl Library and
// Rxcpp library
//
#include <curl/curl.h>
#include <rxcpp/rx.hpp>

Reactive Microservices Using C++ Chapter 11

[270]

using namespace rxcpp;
using namespace rxcpp::rxo;
using namespace rxcpp::rxs;
//////////////////////////
// include the modified rxcurl library from
// Kirk Shoop's Twitter Analysis app
//
#include "rxcurl.h"
using namespace rxcurl;
rxcurl::rxcurl factory;

Using the factory object, we can issue requests by calling the create method. The
creates method expects:

The URL endpoint
The HTTP method
HTTP headers
The body of the request:

string HttpCall(string url ,
 string method,
 std::map<string,string> headers,
 string body)
{
 auto request =
factory.create(http_request{url,method,headers,body}) |
 rxo::map([](http_response r){
 return r.body.complete;
 });

The previous code creates a request object by composing the creation of the HTTP request
and a function to map from http_response to the HTTP body. There is an option to
return chunks of data. We are expecting only a small amount of data here:

 //
 // make a blocking call to the url..
 observable<string> response_message;
 request.as_blocking().subscribe([&] (observable<string> s) {
 response_message = s.sum();
 } ,[] () {printf("");});

Reactive Microservices Using C++ Chapter 11

[271]

The previous code makes a blocking call to observable we created earlier. The body of the
subscribe method's on_next function concatenates the content to form another
observable. In real life, we can make this call in an asynchronous manner as well. That
involves a little more programming effort. Moreover, the code listing won't fit in the
available page budget:

 ///////////////////////////////
 //
 // retrieve the html content form the site
 string html;
 response_message.as_blocking().subscribe([&html] (string temp) {
 html = temp;
 }, [] () { printf(""); });
 return html;
}
/////////////////////////
// The EntryPoint...
//
int main() {

 ///////////////////////////////////
 // set the url and create the rxcurl object
 string url = "http://localhost:34567/DBDEMO/";
 factory = create_rxcurl();
 /////////////////////////////////
 // default header values
 std::map<string,string> headers;
 headers["Content-Type"] = "application/json";
 headers["Cache-Control"] = "no-cache";

 //------- invoke GET to retrieve the contents
 string html = HttpCall(url,"GET",headers, "");
 cout << html << endl;

 //------- Retrieve values for the following
 string body = string("["Praseed"]rn");
 html = HttpCall(url,"POST", headers,body);
 cout << html << endl;
 //--------- Add new Values using PUT
 body = string("rn{"Praveen": "29","Rajesh" :"41"}rn");
 html = HttpCall(url,"PUT", headers,body);
 cout << html << endl;
 //-------- See whether values has been added
 html = HttpCall(url,"GET",headers, "");
 cout << "-------------------------current database state" << endl;
 cout << html << endl;
 //--------------- DELETE a particular record

Reactive Microservices Using C++ Chapter 11

[272]

 body = string("["Praseed"]rn");
 html = HttpCall(url,"DELETE", headers,body);
 cout << "Delleted..." << html << endl;
 html = HttpCall(url,"GET",headers, "");
 cout << "-------------------------current database state" << endl;
 cout << html << endl;
}

The main method demonstrates how we can invoke the HttpCall method created by us.
The code has been provided to show how you can leverage the RxCurl library. We can use
the library to issue multiple requests asynchronously and wait for their completion as well.

A word about the Reactive microservices
architecture
We have learned how to write a microservices controller using the C++ REST SDK. Maybe
we can say that the server we just implemented can be a microservice instance. In a real-life
microservices scenario, there will be multiple services hosted in different boxes (Docker
containers or virtual machines), and the microservices controller will access these
independently deployed services to cater to the client. The microservices controller will
aggregate output from different services to send as a response to the client. A basic
architecture for a microservice application is shown in the following diagram:

In the previous diagram, the REST (HTTP) client makes an HTTP call to the microservices
controller, which wraps http_listener objects. The controller invokes three
microservices to retrieve the data, and the resultant data will be assembled or merged to
provide a response to the REST client. The endpoints can be deployed in a container or in
different containers, using technologies such as Docker.

Reactive Microservices Using C++ Chapter 11

[273]

According to Martin Fowler:

 "The term "Microservice Architecture" has sprung up over the last few years to describe a
particular way of designing software applications as suites of independently deployable services.
While there is no precise definition of this architectural style, there are certain common
characteristics around organization around business capability, automated deployment, intelligence
in the endpoints, and decentralized control of languages and data."

The topic of microservices architecture is a subject in its own right, and the topic warrants a
book of its own. What we have covered here is how we can leverage the C++ programming
language to write web applications in this style. The description given here is meant to
point readers to the right information. The reactive programming model is suitable for
aggregating information from different service endpoints and presenting it uniformly to the
client. The aggregation of the services is the key concern, which ought to be researched by
the readers.

When we talk about microservices architecture, we need to understand the following
topics:

Fine-grained services
Polyglot persistence
Independent deployment
Service orchestration and service choreography
Reactive web service calls

We will discuss them in detail in the following sections.

Fine-grained services
Traditional SOA- and REST-based services are mostly coarse-grained services and are
written with a mindset in which a network roundtrip is the core concern. To reduce the
network roundtrip, developers often created payload formats that were composite in
nature. So, an endpoint or a URI was used to handle more than one concern, and violated
the principle of separation of concerns. The microservices architecture expects the services
to perform a single responsibility, and payload formats are tailored for that. In this way, the
service becomes granular.

Reactive Microservices Using C++ Chapter 11

[274]

Polyglot persistence
Polyglot persistence is a term used to denote the use of multiple storage technologies while
persisting the data. The term come from the term polyglot programming, where the choice
of programming language is determined by the context. In the case of polyglot
programming, we mix different programming languages. The authors have come across
systems that use Java for the application server code, Scala for stream processing, C++ for
storage-related concerns, C# for writing the web layer, and, of course, TypeScript/JavaScript
for the client-side programming. In the case of polyglot persistence, we have a choice of
using RDBMS, key/value stores, document databases, graph databases, columnar
databases, and even time series databases.

An e-commerce portal is a classic example of a system where polyglot persistence can be
really handy. Such a platform will deal with many types of data (for example, shopping
cart, inventory, and completed orders). Instead of trying to store all this data in one
database, we might use RDBMS (to record transactions), key/value DBs (caching and
lookup), a document database for storing logs, and so on. Choose the right persistence model
for your concern is the main motto here.

Independent deployment
The biggest difference between microservices architecture and traditional SOA is in the
area of deployment. With the evolution of container technologies, we can deploy services
independently and in isolation very nicely. The DevOps movement helped a lot in
popularizing the independent deployment model of services and applications. We can now
automate the process of provisioning a VM and associated containers with CPU, memory,
storage, additional disks, virtual networks, firewalls, load balancing, and auto scaling in
deployment policies attached to a cloud service, such as AWS or Google Cloud. Policies
help you deploy the microservices in an automatic manner using a script.

While developing applications using the microservice architectural style, the notion of
container technology will pop up again and again. An associated movement, called
DevOps, is brought into the realm of discussion. Covering DevOps and containerization
(and cluster management) in the context of independent deployment is beyond the scope of
this book. You can search for Docker, Kubernetes, and "Infrastructure as code" to gain more
insight into these technologies.

Reactive Microservices Using C++ Chapter 11

[275]

Service orchestration and choreography
Let's start with service orchestration. You put together several services by a fixed logic. This
logic is described in a single place. But we might deploy multiple instances of the same
services for assurance. An aggregator service will call these services independently and
aggregate the data for the downstream systems. On the other hand, in service
choreography, the decision logic is distributed with no centralized point. There is no
centralized logic. A call to the service will trigger multiple calls between the services, before
the data reaches the downstream system. Service choreography requires more effort than
implementing orchestration. You can read more about service orchestration and
choreography by searching the web.

Reactive web service call
The processing of web requests is nicely mapped to the reactive programming model. In
the case of applications with responsive UI, we typically make a call to the server once. An
aggregator service will spawn a series of requests asynchronously. The resulting responses
are aggregated to give a response to the UI layer. The modified RxCurl can be used as a
mechanism to invoke multiple services.

Summary
In this chapter, we covered how the Rx programming model can be used to write reactive
microservices using C++. As part of the process, we introduced you to the Microsoft C++
REST SDK and its programming model. The C++ REST SDK follows an asynchronous
programming model based on a technique called task continuation style, while writing
client-side code. To write REST clients, we leveraged Kirk Shoop's RxCurl library, with
some modifications to support the PUT and DELETE verbs. Finally, we wrote a REST server
and consumed it in a reactive manner.

In the next chapter, we will learn how to handle errors and exceptions using the constructs
available in the RxCpp library.

12
Advanced Streams and

Handling Errors
In this book, we have covered quite a bit of ground in explaining modern C++ techniques
and the RxCpp library. We started with a set of prerequisites for undertaking reactive
programming using C++. The first six chapters were mostly about prerequisites and getting
acclimatized with the features that are embodied in functional reactive programming in
general, and in the RxCpp library in particular. We have used the term functional reactive
programming in a loose sense—we are leveraging functional programming techniques to
write reactive programs. Some purists differ from us on this. They do not consider the Rx
family of libraries to be a complete implementation of functional reactive programming.
The biggest shift a programmer has to undergo is the mindset change to adopt a declarative
programming paradigm.

Traditionally, we design elaborate data structures, and write algorithms upon those data
structures, to write our programs. This is appropriate for programs that manipulate data
that exists in space. When time comes into the picture, asynchrony is a natural
consequence. In reactive programming, we reduce complicated data structures into Streams
of data and place operators in the Streams, before getting notified to perform some action,
based on the notification. We have seen how this can simplify programming in the case of
GUI programs, web programs, and console applications, using the C++ programming
language.

In our examples, we have omitted exception handling (and error handling) logic in reactive
programs. This was on purpose, so as to focus on the core reactive elements and their
interactions. Now that we have covered all of the essentials, and beyond, we will focus on
exception handling in a reactive program. Before getting into error and exception handling,
we will cover the characteristics of reactive systems.

Advanced Streams and Handling Errors Chapter 12

[277]

In this chapter, we will cover the following topics:

A short recap of the characteristics of a reactive system
RxCpp—error handling operators
Scheduling and error handling
Event-based Stream handling—some examples

A short recap of the characteristics of a
reactive system
We now live in a world that warrants increased scalability and rapid response. The concept
of reactive programming is a need that has arisen to meet the demands of high availability,
scalability, and quick response. As per the reactive manifesto (https:/ ​/​www.
reactivemanifesto. ​org/ ​), reactive systems are:

Responsive: The ability (of a system) to complete assigned tasks within a
timeframe. Responsiveness also means that the problems are detected quickly,
and dealt with effectively. The key point is the consistent behavior of a system.
Consistency helps the users to build confidence in the system.
Resilient: In the context of changes in behavior, the ability of a system to defend
itself from failure is resilience. It is correlated to the responsiveness, as the
consistency guarantees error handling as well. Resilience is achieved by the
isolation and containment of components subject to error situation and
protecting the system from failures.
Elastic: Elasticity is the ability of a system to adapt to workload changes by
reallocating the resources required in an automated manner. In turn, at each
instance of time, the resources in use match the demand as closely as possible.
reactive systems achieve elasticity by providing relevant live performance
measures.
Message-driven: Reactive systems achieve isolation and the loose coupling of
systems through the ability to communicate through the asynchronous message-
passing mechanism. With the use of a message queue, the interdependent
processing of different modules and commands is made possible in reactive
systems. Non-blocking communication through message-driven architecture
allows the recipients to consume resources only when active:

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/

Advanced Streams and Handling Errors Chapter 12

[278]

The reactive systems are made composable by applying these principles at all levels of their
construction.

The focus of this chapter will be the resilient properties of the reactive systems, through
explaining advanced Streams and error handling.

RxCpp error and exception handling
operators
In a real-world scenario, no system is perfect. As we discussed in the previous section,
resilience is one of the qualities of a reactive system. How a system handles errors and
exceptions decides the future of that system. Early detection and the seamless handling of
errors makes a system consistent and responsive. Compared to imperative programming
approaches, the reactive programming model helps the user to handle errors separately, as
and when the system detects an error or throws an exception.

In this section, we will take a look at how to handle exceptions and errors by using the
RxCpp library. There are a variety of RxCpp operators that can be used to react to
on_error notifications from Observables. For instance, we might:

Handle the error by exiting from the sequence gracefully
Ignore the error and switch over to a backup Observable to continue the
sequence
Ignore the error and emit a default value

Advanced Streams and Handling Errors Chapter 12

[279]

Ignore the error and immediately try to restart the failed Observable
Ignore the error and try to restart the failed Observable, after some back-off
interval

The exception handling is possible because the observer<> contains three methods:

on_next

on_completed

on_error

The on_error method is meant to handle exceptions when they occur, or when they are
thrown by observable<> or any operators in the composition chain. The examples so far
have ignored the error handling aspects of the system. The prototypes for the observer
methods are as follows:

void observer::on_next(T);

void observer::on_error(std::exception_ptr);

void observer::on_completed();

Executing an action on an error
When an error occurs, we need to handle it in a graceful manner. So far, in the RxCpp
programs discussed in this book, the programs were written to only handle the on_next
and on_completed scenarios in the subscribe method. The subscribe function has one
more method, where it can accept a Lambda function for on_error scenarios as well. Let's
look at a simple example to understand how to use the error handler inside the subscribe
function:

//------ OnError1
#include "rxcpp/rx.hpp"

int main()
{
 //------ Creating Observable with an error appended
 //------ A canned example to demonstrate error
 auto values = rxcpp::observable<>::range(1, 3).
 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer!")));

 values.
 subscribe(

Advanced Streams and Handling Errors Chapter 12

[280]

 //--------------- on_next
 [](int v) { printf("OnNext: %dn", v); },
 //---------------- on_error
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str());
 },
 //---------------- on_completed
 []() { printf("OnCompletedn"); });
}

With the second Lambda, the function passed into the subscribe function invokes the
action that is needed when there is an error. The output of the code will look like this:

OnNext: 1
OnNext: 2
OnNext: 3
OnError: Error from producer!

In the previous code, the error is appended to the Observable Stream to kick-start the
discussion on exception/error handling at the subscriber end. Let's see how an exception
can be propagated to the subscriber level, through the Observable Streams:

//------- OnError2.cpp
#include "rxcpp/rx.hpp"

int main() {
 //------- Create a subject instance
 //------ and retrieve subscriber abd Observable handle
 rxcpp::rxsub::subject<int> sub;
 auto subscriber = sub.get_subscriber();
 auto observable = sub.get_observable();
 //--------------------------- Subscribe!
 observable.subscribe(
 [](int v) { printf("OnNext: %dn", v); },
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str());
 },
 []() { printf("OnCompletedn"); }
);

Advanced Streams and Handling Errors Chapter 12

[281]

The previous code creates an instance of a subject<T> class, which we covered in
chapter-8, RxCpp - the Key Elements. We subscribe to the Observable part of the
subject<T>. We also retrieve the subscriber handle to emit the value or exception into the
Stream:

 for (int i = 1; i <= 10; ++i) {
 if (i > 5) {
 try {
 std::string().at(1);
 }
 catch (std::out_of_range& ex) {
 //------------ Emit exception.
 subscriber.on_error(std::make_exception_ptr(ex));
 }
 }
 subscriber.on_next(i * 10);
 }
 subscriber.on_completed();
}

The on_next() function emits a new value to the subscriber, and the function will be
called multiple times. The on_next() function won't be called once on_completed() or
on_error() is being invoked on the Stream. The on_completed() function notifies the
subscriber that the Observable has finished sending push-based notifications. The
Observable will not call this function if it has already invoked the on_error() function.
Finally, the on_error() function notifies the subscriber that the Observable has
experienced an error condition, and if the Observable calls this function, it will not call
on_next() or on_completed() thereafter.

Resuming when an error occurs
An error occurrence breaks the sequence flow of a standard reactive Stream. The RxCpp
library provides mechanisms to invoke actions on an error occurrence, also. Sometimes,
however, users want to resume the sequence with a default option; that's what
on_error_resume_next() does:

//------- OnError3.cpp
#include "rxcpp/rx.hpp"

int main()
{
 //------- Create an Observable with appended error
 auto values = rxcpp::observable<>::range(1, 3).

Advanced Streams and Handling Errors Chapter 12

[282]

 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer! "))).
 //------- Resuming with another Stream
 on_error_resume_next([](std::exception_ptr ep) {
 printf("Resuming after: %sn", rxcpp::util::what(ep).c_str());
 return rxcpp::observable<>::range(4,6);
 });

 values.
 subscribe(
 [](int v) {printf("OnNext: %dn", v); },
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str()); },
 []() {printf("OnCompletedn"); });
}

The Observable operator on_error_resume_next() gets executed if there is an error in
the Stream. In this code, a new Stream is returned from the Lambda given as a parameter,
to resume the sequence with this new Stream. This way, the error propagation can be
prevented, by continuing with a meaningful sequence. The output of the previous program
will look like this:

OnNext: 1
OnNext: 2
OnNext: 3
Resuming after: Error from producer!
OnNext: 4
OnNext: 5
OnNext: 6
OnCompleted

As well as resuming with another sequence, the sequence can be resumed with a default
single item. In the previous example, replace the invocation of the operator
on_error_resume_next() with the following lines:

 //------- Resuming with a default single value
 on_error_resume_next([](std::exception_ptr ep) {
 printf("Resuming after: %sn", rxcpp::util::what(ep).c_str());
 return rxcpp::observable<>::just(-1);
 });

Advanced Streams and Handling Errors Chapter 12

[283]

The output, after replacing the code, will look like this:

OnNext: 1
OnNext: 2
OnNext: 3
Resuming after: Error from source
OnNext: -1
OnCompleted

Let's look at the marble diagram that depicts the on_error_resume_next() operator:

In short, the on_error_resume_next() function returns an Observable instance when it
encounters an error from a particular Observable. The Stream switches to the new
Observable and resumes the execution.

The on_error_resume_next() operator comes in handy in many places, where the user
needs to continue the propagation of an error. For instance, between the creation and
subscription of the Streams, there is a chance that the Streams may undergo different
transformations and reductions. Also, as explained in Chapter 9, Reactive GUI Programming
Using Qt/C++, the user-defined operators can be constructed by composing existing RxCpp
operators. In such cases, it is intended to use the on_error_resume_next() operator at
every single stage of aggregation and transformations to translate the exceptions/errors till
the subscription phase. Similar to the default value or a sequence emitted from this
operator, the error itself can be retransmitted, to resume the flow of the error until the
subscribe() operator's error handler:

auto processed_strm = Source_observable.
map([](const string& s) {
return do_string_operation(s);
 }).
// Translating exception from the source
on_error_resume_next([](std::exception_ptr){
return
rxcpp::sources::error<string>(runtime_error(rxcpp::util::what(ep).c_str()))
;
 });

Advanced Streams and Handling Errors Chapter 12

[284]

The previous fragment of code explains how the on_error_resume_next() operator can
be used to translate the error.

Retry when an error occurs
In many situations, the normal sequence may be broken by a temporary failure on the
producer end. In such scenarios, it is worthwhile to have an option to wait until the
anomalies are fixed at the producer end, to continue the normal execution flow. RxCpp
gives the users a very similar option to retry when an error occurs. The retry option is best
suited to when you are expecting the sequence to encounter predictable issues.

The retry operator responds to an on_error notification from the source Observable by
resubscribing to the source Observable, instead of passing that call through to its observers.
This gives the source another opportunity to complete its sequence without an error. The
retry always passes on_next notifications through to its observers, even from sequences
that terminate with an error; this can cause duplicate emissions. The following marble
diagram will explain this further:

Here is an example that uses the retry() operator:

//------- Retry1.cpp
#include "rxcpp/rx.hpp"

int main()
{
 auto values = rxcpp::observable<>::range(1, 3).
 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer!"))).
 retry().
 take(5);

Advanced Streams and Handling Errors Chapter 12

[285]

 //----- Subscription
 values.
 subscribe(
 [](int v) {printf("OnNext: %dn", v); },
 []() {printf("OnCompletedn"); });
}

In this example, as the error is appended to the Stream using the concat() operator, we
are using the take() operator to avoid the infinite wait. Because of the infinite wait on the
retry operator in error scenarios, the subscriber can omit error handler used in the
subscription.

The output of this code will be:

OnNext: 1
OnNext: 2
OnNext: 3
OnNext: 1
OnNext: 2
OnCompleted

Most of the time, it is better to use a fixed number of retries for error situations. This can be
achieved by another overload of retry(), which accepts the number of retries:

//------- Retry2.cpp
#include "rxcpp/rx.hpp"

int main()
{
 auto source = rxcpp::observable<>::range(1, 3).
 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer!"))).
 retry(2);

 source.
 subscribe(
 [](int v) {printf("OnNext: %dn", v); },
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str()); },
 []() {printf("OnCompletedn"); });
}

Advanced Streams and Handling Errors Chapter 12

[286]

The output for the code will look like this:

OnNext: 1
OnNext: 2
OnNext: 3
OnNext: 1
OnNext: 2
OnNext: 3
OnError: Error from producer!

Cleanup with the finally() operator
So far, in this chapter, we have seen that the source sequence in RxCpp can terminate
gracefully after throwing exceptions. The finally() operator is useful when we are using
external resources, or when there's a need to free up some resources allocated in some other
parts of the program. As we know, there are millions of lines of code that are already
written for building various systems in C++, and it is highly likely that we need to handle
resource management when using legacy external dependencies. This is a place where
finally() comes in handy in RxCpp:

//------- Finally.cpp
#include "rxcpp/rx.hpp"

int main()
{
 auto values = rxcpp::observable<>::range(1, 3).
 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer!"))).
 //----- Final action
 finally([]() { printf("The final actionn");
 });

 values.
 subscribe(
 [](int v) {printf("OnNext: %dn", v); },
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str()); },
 []() {printf("OnCompletedn"); });
}

Advanced Streams and Handling Errors Chapter 12

[287]

The finally() operator adds a new action at the end of the newly created Observables.
The output of the previous program is as shown:

OnNext: 1
OnNext: 2
OnNext: 3
OnError: Error from producer!
The final action

It can be seen, in the previous output, that if the source generates an error, the final action is
still called. If we remove the error concatenated to the source Observable, the output of the
program will look as follows:

OnNext: 1
OnNext: 2
OnNext: 3
OnCompleted
The final action

Schedulers and error handling
We already covered the topic of scheduling in Chapter 8, RxCpp – the Key Elements. The
schedulers in RxCpp queue up the values and deliver the queued up value using the
supplied coordination. The coordination could be the current execution thread, the RxCpp
run loop, the RxCpp event loop, or a new thread. The execution of scheduler operations can
be achieved by using the RxCpp operators, such as observe_on() or subscribe_on().
These operators accept the chosen coordination as an argument. By default, the RxCpp
library is single-threaded, so it does the scheduler operations. The user has to explicitly
choose the thread in which execution happens:

//----------OnError_ObserveOn1.cpp
#include "rxcpp/rx.hpp"
#include <iostream>
#include <thread>

int main() {
 //---------------- Generate a range of values
 //---------------- Apply Square function
 auto values = rxcpp::observable<>::range(1, 4).
 transform([](int v) { return v * v; }).
 concat(rxcpp::observable<>::
 error<int>(std::runtime_error("Error from producer!")));

 //------------- Emit the current thread details

Advanced Streams and Handling Errors Chapter 12

[288]

 std::cout << "Main Thread id => "
 << std::this_thread::get_id()
 << std::endl;

We have created an Observable Stream using the range operator, and have concatenated an
error, to demonstrate how basic error handling works with schedulers in RxCpp:

 //---------- observe_on another thread....
 //---------- make it blocking too
 values.observe_on(rxcpp::synchronize_new_thread()).as_blocking().
 subscribe([](int v) {
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << " " << v << std::endl; },
 [](std::exception_ptr ep) {
 printf("OnError: %sn", rxcpp::util::what(ep).c_str()); },
 []() { std::cout << "OnCompleted" << std::endl; });

 //------------------ Print the main thread details
 std::cout << "Main Thread id => "
 << std::this_thread::get_id()
 << std::endl;
}

Using observe_on() operator, the observable stream is subscribed into a new thread as its
coordination. Similar to the previous examples that we discussed in this chapter, the error
handler is provided with the subscribe() function. The output of the code may look like
this:

Main Thread id => 5776
Observable Thread id => 12184 1
Observable Thread id => 12184 4
Observable Thread id => 12184 9
Observable Thread id => 12184 16
OnError: Error from producer!
Main Thread id => 5776

Now, let's take a look at another example, with two subscribers from the same source. The
subscribers are supposed to be notified in two different threads:

//------- OnError_ObserveOn2.cpp
#include "rxcpp/rx.hpp"
#include <mutex>

std::mutex printMutex;

int main() {

Advanced Streams and Handling Errors Chapter 12

[289]

 rxcpp::rxsub::subject<int> sub;
 auto subscriber = sub.get_subscriber();
 auto observable1 = sub.get_observable();
 auto observable2 = sub.get_observable();

A subject instance is created to add data to the source Stream; from the subject instance,
one subscriber and two Observables are created, to be scheduled in two distinct threads:

 auto onNext = [](int v) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << "t OnNext: " << v << std::endl;
 };

 auto onError = [](std::exception_ptr ep) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << "t OnError: "
 << rxcpp::util::what(ep).c_str() << std::endl;
 };

Two Lambda functions are declared for use with the subscribe method, with mutex
synchronization applied on the usage of the std::ostream operator to get an organized
output. Placing a mutex around std::ostream will avoid interleaved output, if the thread
switch happens during a write to the Stream:

 //------------- Schedule it in another thread
 observable1.
 observe_on(rxcpp::synchronize_new_thread()).
 subscribe(onNext, onError,
 []() {printf("OnCompletedn"); });

 //------------- Schedule it in yet another thread
 observable2.
 observe_on(rxcpp::synchronize_event_loop()).
 subscribe(onNext, onError,
 []() {printf("OnCompletedn"); });

Advanced Streams and Handling Errors Chapter 12

[290]

Two Observables are retrieved from the source Stream, and they are scheduled to observe
from separate threads. For the observable1 function object, a separate C++ thread is
specified as the coordinator by passing rxcpp::synchronize_new_thread() as the
argument in the observe_on() operator. For the second Observable, observable2, the
coordinator is an event loop, by passing rxcpp::observe_on_event_loop() into
observe_on():

 //------------- Adding new values into the source Stream
 //------------- Adding error into Stream when exception occurs
 for (int i = 1; i <= 10; ++i) {
 if (i > 5) {
 try {
 std::string().at(1);
 }
 catch (...) {
 std::exception_ptr eptr = std::current_exception();
 subscriber.on_error(eptr);
 }
 }
 subscriber.on_next(i * 10);
 }
 subscriber.on_completed();

 //----------- Wait for Two Seconds
 rxcpp::observable<>::timer(std::chrono::milliseconds(2000)).
 subscribe([&](long) {});
}

Finally, the values are added to the Observable Stream by using a subject instance, and an
exception is passed into the Stream explicitly, to understand the behavior of the schedulers
and error handlers together. The output of this code will be as follows:

Observable Thread id => 2644 OnNext: 10
Observable Thread id => 2304 OnNext: 10
Observable Thread id => 2644 OnNext: 20
Observable Thread id => 2304 OnNext: 20
Observable Thread id => 2644 OnNext: 30
Observable Thread id => 2304 OnNext: 30
Observable Thread id => 2644 OnNext: 40
Observable Thread id => 2304 OnNext: 40
Observable Thread id => 2304 OnNext: 50
Observable Thread id => 2304 OnError: invalid string position
Observable Thread id => 2644 OnNext: 50
Observable Thread id => 2644 OnError: invalid string position

Advanced Streams and Handling Errors Chapter 12

[291]

This example demonstrates how the propagation of data happens through two separate
Observables that are subscribed to a common source. The error generated in the source is
received and handled by both of the Observables at the corresponding subscribe
functions. Now, let's look at an example that demonstrates how error handling can be done
in scheduling by using the subscribe_on() operator:

//---------- SubscribeOn.cpp
#include "rxcpp/rx.hpp"
#include <thread>
#include <mutex>

//------ A global mutex for output sync.
std::mutex printMutex;

int main() {
 //-------- Creating Observable Streams
 auto values1 = rxcpp::observable<>::range(1, 4).
 transform([](int v) { return v * v; });

 auto values2 = rxcpp::observable<>::range(5, 9).
 transform([](int v) { return v * v; }).
 concat(rxcpp::observable<>:
:error<int>(std::runtime_error("Error from source")));

Two random Observable Streams on integers are created using the
rxcpp::observable<>::range() operator, and one Stream is concatenated with an
error, to explain error handling in scheduled sequences:

 //-------- Schedule it in another thread
 auto s1 = values1.subscribe_on(rxcpp::observe_on_event_loop());

 //-------- Schedule it in Yet another thread
 auto s2 = values2.subscribe_on(rxcpp::synchronize_new_thread());

The Observable Streams are queued up in different threads using the subscribe_on()
operator. The first Stream is scheduled with an event loop as its coordination thread, and
the second Stream is scheduled on another C++ thread:

 auto onNext = [](int v) {
 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << "tOnNext: " << v << std::endl;
 };

 auto onError = [](std::exception_ptr ep) {

Advanced Streams and Handling Errors Chapter 12

[292]

 std::lock_guard<std::mutex> lock(printMutex);
 std::cout << "Observable Thread id => "
 << std::this_thread::get_id()
 << "tOnError: "
 << rxcpp::util::what(ep).c_str() << std::endl;
 };

The preceding Lambda functions are defined to be passed as parameters in place of
the on_next and on_error functions of the subscribe method. These Lambda functions
are protected with mutex, to synchronize the calls to the std::ostream operator:

 //-------- Subscribing the merged sequence
 s1.merge(s2).as_blocking().subscribe(
 onNext, onError,
 []() { std::cout << "OnCompleted" << std::endl; });

 //-------- Print the main thread details
 std::cout << "Main Thread id => "
 << std::this_thread::get_id()
 << std::endl;
}

The output of the code will look like this:

Observable Thread id => 12380 OnNext: 1
Observable Thread id => 9076 OnNext: 25
Observable Thread id => 12380 OnNext: 4
Observable Thread id => 9076 OnNext: 36
Observable Thread id => 12380 OnNext: 9
Observable Thread id => 12380 OnNext: 16
Observable Thread id => 9076 OnNext: 49
Observable Thread id => 9076 OnNext: 64
Observable Thread id => 9076 OnNext: 81
Observable Thread id => 9076 OnError: Error from producer!
Main Thread id => 10692

Advanced Streams and Handling Errors Chapter 12

[293]

Event-based Stream handling – some
examples
Before we conclude this chapter, let's discuss a few examples, to work with an event-based
system using the RxCpp library. In this section, we'll discuss two examples to understand
how effective the RxCpp library can be in meeting real-world scenarios. We will discuss an
example that demonstrates the aggregation of data in a Stream and application event
handling, using the RxCpp library.

Aggregation based on Stream data
In this section, the Stream item is a user-defined type to represent an employee, and the
code is intended to group the input Stream based on the roles and salaries of employees:

#include "rxcpp/rx.hpp"

namespace Rx {
 using namespace rxcpp;
 using namespace rxcpp::sources;
 using namespace rxcpp::subjects;
 using namespace rxcpp::util;
}

using namespace std;

struct Employee {
 string name;
 string role;
 int salary;
};

The libraries and namespaces required in the code are included, and the data structure to
represent an Employee is declared. The Employee type is a simple structure, with data
items such as name, role, and salary. We have treated the salary field as an integer:

int main()
{
 Rx::subject<Employee> employees;

 // Group Salaries by Role
 auto role_sal = employees.

Advanced Streams and Handling Errors Chapter 12

[294]

 get_observable().
 group_by(
 [](Employee& e) { return e.role; },
 [](Employee& e) { return e.salary; });

In the main() function, a subject is created with the Employee type, to create a hot
Observable. The grouping, based on role and salary, is performed on the Observable from
the subject. The RxCpp operator, group_by(), returns an Observable that emits
grouped_observables, each of which corresponds to a unique key/value pair from the
source Observable:

 // Combine min max and average reductions based on salary.
 auto result = role_sal.
 map([](Rx::grouped_observable<string, int> group) {
 return group.
 count().
 combine_latest([=](int count, int min, int max, double
average) {
 return make_tuple(group.get_key(), count, min, max,
average);
 },
 group.min(),
 group.max(),
 group.map([](int salary) -> double { return salary; }).average());
 }).
 merge();

Here, the resultant Observable combines the Observable based on the role, and the
reduction, based on the salary, is performed by appending the minimum salary, maximum
salary, and average salary per role. The Lambda inside of the combine_latest() will be
called when all of the arguments have a value. In this case, when a particular group
completes, all of the values inside of the Streams corresponding to the group are reduced to
single tuples. Therefore, the Lambda is called only once per role, with the final value of
each iteration. Here, the map applied on the group returns an Observable of the type
observable<tuple<string, int, int, int, double>>, and the merge() operator
returns an Observable of the type tuple<string, int, int, int, double>. The
merge is applied to prevent the data loss, as the grouped Observable is hot, and the data
will be lost if it is not subscribed to immediately:

 // Display the aggregated result
 result.
 subscribe(Rx::apply_to(
 [](string role, int count, int min, int max, double avg) {
 std::cout << role.c_str() << ":tCount = " << count <<
 ", Salary Range = [" << min

Advanced Streams and Handling Errors Chapter 12

[295]

 << "-" << max << "], Average Salary = " << avg << endl;
 }));

 // Supplying input data
 Rx::observable<>::from(
 Employee{ "Jon", "Engineer", 60000 },
 Employee{ "Tyrion", "Manager", 120000 },
 Employee{ "Arya", "Engineer", 92000 },
 Employee{ "Sansa", "Manager", 150000 },
 Employee{ "Cersei", "Accountant", 76000 },
 Employee{ "Jaime", "Engineer", 52000 }).
 subscribe(employees.get_subscriber());

 return 0;
}

The resultant Observable is then subscribed, in order to display the aggregated result of
input data. The data items are supplied to the subscriber from the employees subject,
created with the Employees type. In the previous code, the source can be anything, such as
data retrieved over the network or from another thread. Since the Observable created here
is a hot Observable, aggregation is performed based on the latest data supplied.

The output of this code is as follows:

Accountant: Count = 1, Salary Range = [76000-76000], Average Salary =
76000
Engineer: Count = 3, Salary Range = [52000-92000], Average Salary =
68000
Manager: Count = 2, Salary Range = [120000-150000], Average Salary =
135000

Application event handling example
The following example is a command-line program, with events to represent the primitive
operations of a user interface application. We will be handling the flow of these events by
using RxCpp in this program. The application is a command-line program, and can easily
be mapped to a GUI program. This has been done for brevity in the code listing:

//--------- UI_EventsApp.cpp
#include <rxcpp/rx.hpp>
#include <cassert>
#include <cctype>
#include <clocale>

namespace Rx {

Advanced Streams and Handling Errors Chapter 12

[296]

 using namespace rxcpp;
 using namespace rxcpp::sources;
 using namespace rxcpp::operators;
 using namespace rxcpp::util;
 using namespace rxcpp::subjects;
}

using namespace Rx;
using namespace std::chrono;

// Application events
enum class AppEvent {
 Active,
 Inactive,
 Data,
 Close,
 Finish,
 Other
};

The libraries and namespaces that we will be using in the programs are included (declared)
here. Also, an enum AppEvent is declared, to represent some of the basic event states that
can be emitted from a generic system:

int main()
{
 //-------------------
 // A or a - Active
 // I or i - Inactive
 // D or d - Data
 // C or c - Close
 // F or f - Finish
 // default - Other
 auto events = Rx::observable<>::create<AppEvent>(
 [](Rx::subscriber<AppEvent> dest) {
 std::cout << "Enter Application Events:n";
 for (;;) {
 int key = std::cin.get();
 AppEvent current_event = AppEvent::Other;

 switch (std::tolower(key)) {
 case 'a': current_event = AppEvent::Active; break;
 case 'i': current_event = AppEvent::Inactive; break;
 case 'd': current_event = AppEvent::Data; break;
 case 'c': current_event = AppEvent::Close; break;
 case 'f': current_event = AppEvent::Finish; break;
 default: current_event = AppEvent::Other;

Advanced Streams and Handling Errors Chapter 12

[297]

 }

 if (current_event == AppEvent::Finish) {
 dest.on_completed();
 break;
 }
 else {
 dest.on_next(current_event);
 }
 }
 }).
 on_error_resume_next([](std::exception_ptr ep) {
 return rxcpp::observable<>::just(AppEvent::Finish);
 }).
 publish();

In the previous code, we created an Observable Stream of the AppEvent type by mapping
some of the keyboard entries to defined event types. The infinite loop inside the Lambda of
the create function represents the event_loop/message_loop in GUI applications. To
make the cold Observable declare into hot, and to get the connections to the source
independent of following subscriptions, the publish() operator is used. It also helps to
send the most recent value in the Stream to new subscribers:

 // Event fires when application is active
 auto appActive = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Active;
 });

 // Event fires when application is inactive
 auto appInactive = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Inactive;
 });

 // Event fires when data Stream starts
 auto appData = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Data;
 });

 // Event fires when application is closed
 auto appClose = events.
 filter([](AppEvent const& event) {
 return event == AppEvent::Close;
 });

Advanced Streams and Handling Errors Chapter 12

[298]

Some filtered Observables are defined, to handle the use cases of the reactive system. The
appActive Observable filters out whenever an AppEvent::Active event is available in
the Stream. Similarly, appInactive for AppEvent::Inactive, appData for
AppEvent::Data, and appClose for AppEvent::Close events:

 auto dataFromApp = appActive.
 map([=](AppEvent const& event) {
 std::cout << "**Application Active**n" << std::flush;
 return appData. // Return all the data events
 take_until(appInactive). // Stop when the application goes
inactive
 finally([]() {
 std::cout << "**Application Inactive**n";
 });
 }).
 switch_on_next(). // only listen to most recent data
 take_until(appClose). // stop everything when Finish/Close event
recieved
 finally([]() {
 std::cout << "**Application Close/Finish**n";
 });

 dataFromApp.
 subscribe([](AppEvent const& event) {
 std::cout << "**Application Data**n" << std::flush;
 });

 events.connect();

 return 0;
}

The program will start accepting the data Streams from the events Observable only if
the AppEvent::Active event is received. Then, the application will accept the data
until AppEvent::Inactive is received. The event flow will resume only when the next
AppEvent::Active is emitted. When AppEvent::Close or AppEvent::Finish is
emitted, the application will exit gracefully, similar to a Close or Apply event/message in a
GUI application.

Advanced Streams and Handling Errors Chapter 12

[299]

Summary
In this chapter, we discussed error handling in RxCpp, along with some of the advanced
constructs and operators to handle Streams in the RxCpp library. We visited the basic
principles of a reactive system, and gave more emphasis to one of the key pillars of a
reactive system, resilience, when we discussed error handling mechanisms. We discussed
features such as error handlers (on_error), which need to be used with subscription. Also,
we discussed RxCpp operators, such as on_error_resume_next(), retry(), and
finally(), to discuss how to continue Streams when an error comes, how to wait for the
producer of the Stream to correct the error and continue the sequence, and how to perform
common operations that are applicable to both success and error paths. Finally, we
discussed two sample programs, to understand more about Stream processing. These
programs illustrated how the RxCpp library can be used to process a Stream of UX events
(simulated using a console program) and aggregate data Streams.

In the next chapter, we will take a look at writing custom operators for RxCpp observables.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

C++ Data Structures and Algorithms
Wisnu Anggoro

ISBN: 978-1-78883-521-3

Know how to use arrays and lists to get better results in complex scenarios
Build enhanced applications by using hashtables, dictionaries, and sets
Implement searching algorithms such as linear search, binary search, jump
search, exponential search, and more
Have a positive impact on the efficiency of applications with tree traversal
Explore the design used in sorting algorithms like Heap sort, Quick sort, Merge
sort and Radix sort
Implement various common algorithms in string data types
Find out how to design an algorithm for a specific task using the common
algorithm paradigms

https://www.packtpub.com/application-development/c-data-structures-and-algorithms

Other Books You May Enjoy

[301]

C++ High Performance
Viktor Sehr

ISBN: 978-1-78712-095-2

Benefits of modern C++ constructs and techniques
Identify hardware bottlenecks, such as CPU cache misses, to boost performance
Write specialized data structures for performance-critical code
Use modern metaprogramming techniques to reduce runtime calculations
Achieve efficient memory management using custom memory allocators
Reduce boilerplate code using reflection techniques
Reap the benefits of lock-free concurrent programming
Perform under-the-hood optimizations with preserved readability using proxy
objects
Gain insights into subtle optimizations used by STL algorithms
Utilize the Range V3 library for expressive C++ code
Parallelize your code over CPU and GPU, without compromising readability

https://www.packtpub.com/application-development/c-high-performance

Other Books You May Enjoy

[302]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstract syntax tree (AST) 153
acquire-release ordering 107
active object pattern 237
ActiveX Template Library (ATL) 12
adaptive communication environment (ACE) 223
aggregate operator 193
Applicative-order evaluation (AO) 138
applied stream programming
 Streams library, using 137
atomic operations
 about 95
 load operations 98
 read-modify-write operations 98
 store operations 98
atomic types
 about 95, 96
 atomic 100
 atomic_flag 98
 pointer arithmetic 103
 primary class template 104
 standard atomic integral types 102
 std::atomic 100
average operator 160

B
boolean operators 192

C
C++ programming language
 composition 47
 concerns 29
 currying 47
 enhancements, for writing better code 33
 expressivity 29

 function wrappers 49
 functors 44
 inference 33
 lambda functions 43
 lambdas 44
 partial function application 47
 pointers 41
 RValue references 38
 semantics 39
 substitutability 32
 type deduction 33
 variables uniform initialization 35
 variadic templates 36
 zero cost abstraction 29
C++ REST SDK-based REST Server 261, 264,

268, 269
C++ REST SDK
 about 248
 used, for HTTP client programming 248
 used, for HTTP Server programming 250
cell pattern 235
compare-and-swap (CAS) 101
Composite pattern
 used, for expression processing 122
concept 116
concurrency 60, 94
 Hello World example 61
condition variables 80
conditional operators 192
Connectable Observable operators 194
creational operators 189
CURL
 used, for testing HTTP server 254

D
data flow computation paradigm 153

[304]

deadlock
 avoiding 75
design pattern redux 226
design patterns
 about 222
 migrating, to reactive programming 227
Domain Specific Embedded Language (DSEL) 26,

142

E
error handling 287
Error-Handling operators 192
event bus pattern
 about 240
 consumers 240
 controllers 240
 producers 240
event filter
 URL 213
Event Stream programming
 about 141
 advantages 141
 RaftLib 149
 Rx programming 150
 spreadsheet Library 147
 Streamulus library 142, 145, 146
event-based Stream handling
 about 293
 aggregation, based on Stream data 293
 application event handling, example 295
event-driven programming model
 about 7
 alternatives 13
 limitations 13
 MFC 12
 on Microsoft Windows 9
 on X Windows 7
 with Qt 11
exception handling operators
 about 278
 action, executing on error 279
 cleaning up, with finally() operator 286
 resuming, on error occurrence 281
 retry option 284

F
filter operation
 applying, on list 129
flat map operator
 versus concat map operator 164
fold expressions 52
functional reactive programming (FRP) 14, 152
functions
 composing, with pipe operator 50
future 87

G
Gang of Four (GoF) 114, 223, 224
GoF Observer pattern
 about 115, 117
 limitations 118

H
hierarchy
 about 121
 flattening 232
hot Observables
 about 175, 294
 replay mechanism 178
 versus cold Observables 174
HTTP protocol 258
HTTP server
 CURL Wrapper library, Kirk Shoop 255
 HTTP client programming 254
 LibCurl 254
 testing, with CURL 253
 testing, with POSTMAN 253

I
IObservable
 events, converting 21
iterative processing
 composite, flattening 126, 128
iterator pattern
 migrating, to observables 233

[305]

J
JavaScript Object Notation (JSON) 247, 258

L
Lambda function
 ownership management 69
 using 68
lazy evaluation
 about 138
 STL 140
 Stream program 138
 Streams library 140
 values, aggregating with stream paradigm 139
linearizability
 URL 94
lock-free data structure 110

M
map operation
 applying, on list 129
marble diagrams
 using, for representation 159
mathematical operator 193
memory access 94
memory model 93
memory ordering
 about 105
 acquire-release ordering 107
 relaxed ordering 109
 sequential consistency 105
Meta Object Compiler (MOC) 11, 197
modification contract 95
modification order consistency 109
mutexes 73

N
Normal-order evaluation (NO) 138

O
object management group (OMG) 223
object-oriented programming (OOP) 121, 222
Observable Utility Operators 192
Observables

 about 174
 creating, from scratch 157
 filters 156
 gaze, reversing 130, 134
 hot Observables 175
 hot Observables, replay mechanism 178
 hot Observables, versus cold Observables 174
 producer 174
 Streams, concatenation 158
 Streams, unsubscribing 158
 transformations 156
Observers 153
operators
 about 189
 aggregate operators 193
 boolean operators 192
 combining 191
 conditional operators 192
 Connectable Observable operators 194
 creational operators 189
 Error-Handling 192
 filtering 190
 mathematical operators 193
 Observable Utility Operators 192
 transformation operators 190

P
pattern catalogs
 about 224
 GOF patterns 224
 POSA catalog 225
Patterns of Software Architecture (POSA) 225
pipe operator
 functions, composing 50
pointer arithmetic 103
Polyglot programming 274
POSTMAN
 used, for testing HTTP server 253
primary class template 104
producers 174
promise 88
pull method 226
push-based reactive program
 IEnumerable/IObservable duality 17
 versus pull-based reactive program 17

[306]

Q
Qt event model
 application dialog, creating 206, 210
 application, executing 210
 custom widget, creating 205
 event filter 212, 214
 event type specific observables 215
 RxCpp library, integrating 212
 RxQt library 217
 window, creating 214
 with MOC 204
 with signals 204
Qt GUI programming
 about 196
 event handlers 200
 event system 200
 meta-object system 201
 Qt object model 197
 signals and slots 198
Qt object model
 features 197
Qt program 202, 204
Qt
 URL 202

R
race condition 72
RaftLib
 about 149
 URL 149
range-based
 for loops 54
 for observables 54
reactive manifesto
 URL 277
Reactive Microservices Architecture
 about 272
 fine-grained services 273
 independent deployment 274
 Polyglot persistence 274
 service orchestration 275
 web service call 275
reactive program
 interfaces 15

reactive programming model 14
reactive system
 elastic 277
 message-driven 277
 resilient 277
 responsive 277
relaxed ordering 109
Resource Acquisition Is Initialization (RAII)
 about 74
 URL 75
resource loan pattern 239
REST programming model 247
REST services
 invoking, with RxCurl library 269
RxCpp (Stream) operators
 about 160
 average operator 160
 flat map, versus concat map 164
 operators 169
 operators, composing through pipe operator 161
 scan operator 160
 Schedulers, working with 162
RxCpp error 278
RxCpp library
 about 154
 filters, with Observables 156
 integrating, with Qt event model 212
 programming model 155
 simple Observable interaction 155
 transformations, with Observables 156
 URL 154
 values, streaming from C++ containers 157
RxCurl library
 used, for invoking REST services 269
RxQt library 217

S
scan operator 160
schedulers
 about 183, 287
 ObserveOn, versus SubscribeOn 185
 RunLoop scheduler 187
 working with 162
sequential consistency 105
signals and slots

 about 198
 URL 198
spurious failure 101
standard template library (STL) 137
std
 :atomic 100
stream programming model
 about 136
 advantages 136
subjects 180, 182
subscribers 179

T
task continuation 248
task-based parallelism
 about 87
 async, using 91
 future 87
 packaged_task 90
 promise 87
thread-safe stack data structure 82
threads
 arguments, passing 65

 condition variables 80
 data, sharing between 71
 deadlock, avoiding 75
 join() 64
 launching 63
 managing 62
 mutexes 73
 unique_lock, used for locking 78
transformation operators 190

U
user-defined type (UDT) 104

V
variant type 53
visitor pattern
 used, for expression processing 122

W
web programming
 about 247
 REST programming model 247

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Reactive Programming Model – Overview and History
	Event-driven programming model
	Event-driven programming on X Windows
	Event-driven programming on Microsoft Windows
	Event-driven programming under Qt
	Event-driven programming under MFC
	Other event-driven programming models
	Limitations of classical event processing models

	Reactive programming model
	Functional reactive programming
	The key interfaces of a reactive program
	Pull-versus push-based reactive programming
	The IEnumerable/IObservable duality

	Converting events to IObservable<T>
	The philosophy of our book
	Summary

	Chapter 2: A Tour of Modern C++ and its Key Idioms
	The key concerns of the C++ programming language
	Zero cost abstraction
	Expressivity
	Substitutability

	Enhancements to C++ for writing better code
	Type deduction and inference
	Uniform initialization of variables
	Variadic templates
	Rvalue references
	Move semantics
	Smart pointers
	Lambda functions
	Functors and Lambdas
	Composition, currying, and partial function application
	Function wrappers

	Composing functions together with the pipe operator
	Miscellaneous features
	Fold expressions
	Variant type
	Other important topics

	Range-based for loops and observables
	Summary

	Chapter 3: Language-Level Concurrency and Parallelism in C++
	What is concurrency?
	Hello World of concurrency (using std::thread)
	Managing threads
	Thread launch
	Thread join
	Passing arguments into a thread

	Using Lambdas
	Ownership management

	Sharing data between threads
	Mutexes
	Avoiding deadlock
	Locking with std::unique_lock
	Condition variables

	A thread-safe stack data structure
	Summary

	Chapter 4: Asynchronous and Lock-Free Programming in C++
	Task-based parallelism in C++
	Future and promise
	std::packaged_task
	std::async

	C++ memory model
	Memory access and concurrency
	The modification contract
	Atomic operations and types in C++
	Atomic types
	std::atomic_flag
	std::atomic<bool>
	Standard atomic integral types

	std::atomic<T*> – pointer arithmetic
	std::atomic<> primary class template

	Memory ordering
	Sequential consistency
	Acquire-release ordering
	Relaxed ordering

	A lock-free data structure queue
	Summary

	Chapter 5: Introduction to Observables
	The GoF Observer pattern
	The limitations of the GoF Observer pattern
	A holistic look at GoF patterns
	The OOP programming model and hierarchies
	A Composite/Visitor pattern for expression processing
	Flattening the composite for iterative processing
	Map and filter operations on the list
	Reversing the gaze for Observables!
	Summary

	Chapter 6: Introduction to Event Stream Programming Using C++
	What is Stream programming model?
	Advantages of the Stream programming model

	Applied Stream programming using the Streams library
	Lazy evaluation
	A simple Stream program
	Aggregating values using the Stream paradigm
	The STL and the Stream paradigm
	A word about the Streams library

	Event Stream programming
	Advantages of Event Stream programming
	The Streamulus library and its programming model
	The Streamulus library – a peek into its internals
	The Streamulus Library – a look into expression processing

	The spreadsheet Library — a change-propagation engine
	RaftLib – another Stream-processing library
	What do these things have to do with Rx programming?

	Summary

	Chapter 7: Introduction to Data Flow Computation and the RxCpp Library
	The data flow computation paradigm
	An introduction to the RxCpp library
	The RxCpp library and its programming model
	A simple Observable/Observer interaction
	Filters and transformations with Observables
	Streaming values from C++ containers

	Creating Observables from scratch
	Concatenating Observable Streams
	Unsubscribing from Observable Streams

	An introduction to marble diagrams for visual representation
	RxCpp (Stream) operators
	The average operator
	The scan operator
	Composing operators through the pipe operator
	Working with Schedulers
	A tale of two operators – flat versus concat map
	More operators that are of importance

	A peek into the things we haven't covered yet
	Summary

	Chapter 8: RxCpp – the Key Elements
	Observables
	What's a producer?
	Hot versus cold Observables
	Hot Observables
	Hot Observables and the replay mechanism

	Observers and their variants (subscribers)
	Subjects
	Schedulers
	ObserveOn versus SubscribeOn
	The RunLoop Scheduler

	Operators
	Creational operators
	Transformation operators
	Filtering operators
	Combining operators
	Error-handling operators
	Observable utility operators
	Conditional and Boolean operators
	Mathematical and aggregate operators
	Connectable Observable operators

	Summary

	Chapter 9: Reactive GUI Programming Using Qt/C++
	A quick introduction to Qt GUI programming
	Qt object model
	Signals and slots
	Event system
	Event handlers
	Sending events
	Meta-object system

	Hello World – Qt program
	Qt event model with signals/slots/MOC – an example
	Creating a custom widget
	Creating the application dialog
	Executing the application

	Integrating the RxCpp library with the Qt event model
	Qt event filter – a reactive approach
	Creating the window – setting layouts and alignments
	Event type specific observables
	An introduction to RxQt

	Summary

	Chapter 10: Design Patterns and Idioms for C++ Rx Programming
	The OOP and design patterns movement
	Key pattern catalogs
	GOF patterns
	POSA catalog

	The design pattern redux
	From design patterns to reactive programming
	Flattening the hierarchy to navigate through them
	From iterators to observables
	The cell pattern
	The active object pattern
	Resource loan pattern
	The event bus pattern
	Summary

	Chapter 11: Reactive Microservices Using C++
	The C++ language and web programming
	The REST programming model

	The C++ REST SDK
	HTTP client programming using the C++ REST SDK
	HTTP server programming using the C++ REST SDK

	Testing the HTTP server using CURL and POSTMAN
	The libcurl and the HTTP client programming
	Kirk Shoop's CURL Wrapper library

	The JSON and HTTP protocols
	The C++ REST SDK-based REST server
	Invoking REST services using the RxCurl library
	A word about the Reactive microservices architecture
	Fine-grained services
	Polyglot persistence
	Independent deployment
	Service orchestration and choreography
	Reactive web service call

	Summary

	Chapter 12: Advanced Streams and Handling Errors
	A short recap of the characteristics of a reactive system
	RxCpp error and exception handling operators
	Executing an action on an error
	Resuming when an error occurs
	Retry when an error occurs
	Cleanup with the finally() operator

	Schedulers and error handling
	Event-based Stream handling – some examples
	Aggregation based on Stream data
	Application event handling example

	Summary

	Other Books You May Enjoy
	Index

