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Introduction

The C++ programming language is a general-purpose multiparadigm 

language created by Bjarne Stroustrup. The development of the language 

started in 1979 under the name “C with classes.” As the name implies, 

it was an extension of the C language with the additional concept 

of classes. Stroustrup wanted to create a better C that combined the 

power and efficiency of C with high-level abstractions to better manage 

large development projects. The resulting language was renamed C++ 

(pronounced “C-plus-plus”) in 1983. As a deliberate design feature, C++ 

maintains compatibility with C, and so most C code can easily be made to 

compile in C++.

The introduction of C++ became a major milestone in the software 

industry as a widely successful language for both system and application 

development. System programming involves software that controls 

the computer hardware directly, such as drivers, operating systems, 

and software for embedded microprocessors. These areas remain the 

core domain of the language, where resources are scarce and come at a 

premium. C++ is also widely used for writing applications, which run on 

top of system software, especially high-performance software such as 

games, databases, and resource-demanding desktop applications. Despite 

the introduction of many modern, high-level languages in this domain—

such as Java, C#, and Python—C++ still holds its own and overall remains 

one of the most popular and influential programming languages in use 

today.

There are several reasons for the widespread adoption of C++. The 

foremost reason was the rare combination of high-level and low-level 

abstractions from the hardware. The low-level efficiency was inherited 
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from C, and the high-level constructs came in part from a simulation 

language called Simula. This combination makes it possible to write C++ 

software with the strength of both approaches. Another strong point of the 

language is that it does not impose a specific programming paradigm on its 

users. It is designed to give the programmer a lot of freedom by supporting 

many different programming styles or paradigms, such as procedural, 

object-oriented, and generic programming.

C++ is updated and maintained by the C++ standards committee. In 

1998, the first international standard was published, known informally as 

C++98. The language has since undergone five more revisions with further 

improvements, including C++03, C++11, C++14, C++17, and most recently 

C++20, which is the latest ISO standard for the C++ programming language 

released in 2020.

IntroductionIntroduction
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CHAPTER 1

Hello World 

�Choosing an IDE
To begin developing in C++, you need a text editor and a C++ compiler. 

You can get both at the same time by installing an Integrated Development 

Environment (IDE) that includes support for C++. A good choice is 

Microsoft's Visual Studio Community Edition, which is a free version of 

Visual Studio that is available from Microsoft’s website.1 The C++ compiler 

that comes with this IDE has good support for the C++17 standard and 

includes many features of C++20 as of the 2019 version. If you are running 

the Visual Studio installer on Windows, make sure to select the “Desktop 

development with C++” workload to enable development in C++.

Visual Studio is available on Windows and Mac, and there is a 

lightweight version called Visual Studio Code which can also be run on 

Linux. Two other popular cross-platform IDEs include NetBeans and 

Eclipse CDT. Alternatively, you can develop using a simple text editor 

such as Notepad, although this is less convenient than using an IDE. If you 

choose to use a simple text editor, just create an empty document with a 

.cpp file extension and open it in the editor of your choice.

1�http://visualstudio.microsoft.com

https://doi.org/10.1007/978-1-4842-5995-5_1#DOI
http://visualstudio.microsoft.com
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�Creating a Project
After installing Visual Studio 2019, go ahead and launch the program. You then 

need to create a project, which will manage the C++ source files and other 

resources. Go to File ➤ New ➤ Project in Visual Studio to display the Create a 

new project window. From there, select the C++ language from the drop-down 

list to view only the C++ project templates. Then select the Empty Project 

template and click the Next button. At the next screen, you can configure the 

name and location of the project if you want to. When you are finished, click 

the Create button to let the wizard create your empty project.

�Adding a Source File
You have now created a C++ project. In the Solution Explorer pane (choose 

View ➤ Solution Explorer), you can see that the project consists of three 

empty folders: Header Files, Resource Files, and Source Files. Right-click 

the Source Files folder and choose Add ➤ New Item. From the Add New 

Item dialog box, choose the C++ File (.cpp) type. Give this source file the 

name MyApp and click the Add button. An empty .cpp file will now be 

added to your project and opened for you.

�Selecting Language Standard
To enable the latest features of the C++ language outlined in this book, it 

is necessary to manually change the language standard setting for your 

project. You can do this by first going to Project ➤ Properties to bring up 

the Property pages. From there, navigate to Configuration Properties ➤ 

C/C++ ➤ Language ➤ C++ Language Standard. Select the latest standard 

from the drop-down list (std:c++latest). Click OK and the project will now 

be configured to compile with the latest supported C++20 features.

Chapter 1  Hello World 
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�Hello World
The first thing to add to the source file is the main() function. This is the entry 

point of the program, and the code inside of the curly brackets is executed 

when the program runs. The brackets, along with their content, are referred to 

as a code block, or just a block.

int main() {}

The first application will simply output the text "Hello World" to the 

screen. Before this can be done, the iostream header needs to be included. 

This header provides input and output functionality for the program, and 

it is one of the standard library files that comes with all C++ compilers. 

The #include directive effectively replaces the line with everything in the 

specified header before the file is compiled into an executable.

#include <iostream>

int main() {}

With iostream included, you gain access to several new functions. 

These are all located in the standard namespace called std, which you 

can examine by using a double colon, also called the scope resolution 

operator (::). After typing this in Visual Studio, the IntelliSense window 

will automatically open, displaying the namespace contents. Among the 

members, you find the cout stream. This is the standard output stream in 

C++ which can be used to print text to a console window. It uses two less 

than signs, collectively known as the insertion operator (<<), to indicate 

what to output. The string can then be specified, delimited by double 

quotes, and followed by a semicolon. The semicolon is used in C++ to 

mark the end of a statement.

Chapter 1  Hello World 
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#include <iostream>

int main()

{

  std::cout << "Hello World";

}

�Using the Standard Namespace
To make things a bit easier, you can add a using directive to specify that this 

code file uses the standard namespace. You then no longer have to prefix cout 

with the namespace (std::) since it is used by default.

#include <iostream>

using namespace std;

int main()

{

  cout << "Hello World";

}

�IntelliSense
When writing code in Visual Studio, a window called IntelliSense will pop 

up wherever there are multiple predetermined alternatives from which to 

choose. This window can also be brought up manually at any time by pressing 

Ctrl+Space to provide quick access to any code entities you are able to use 

within your program. This is a very powerful feature that you should learn to 

make good use of.

Chapter 1  Hello World 



5© Mikael Olsson 2020 
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_2

CHAPTER 2

Compile and Run

�Visual Studio Compilation
Continuing from the last chapter, the Hello World program is now 

complete and ready to be compiled and run. You can do this by going to 

the Debug menu and clicking Start Without Debugging (Ctrl+F5). Visual 

Studio then compiles and runs the application, which displays the text in a 

console window.

�Console Compilation
As an alternative to using an IDE, you can also compile source files from a 

terminal window as long as you have a C++ compiler.1 For example, on a Linux 

machine, you can use the GNU C++ compiler, which is available on virtually 

all UNIX systems, including Linux and the BSD family, as part of the GNU 

Compiler Collection (GCC). This compiler can also be installed on Windows 

by downloading MinGW or on the Mac as part of the Xcode development 

environment.

1�www.stroustrup.com/compilers.html

https://doi.org/10.1007/978-1-4842-5995-5_2#DOI
http://www.stroustrup.com/compilers.html
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To use the GNU compiler, you type its name g++ in a terminal window 

and give it the input and output file names as arguments. It then produces 

an executable file, which when run gives the same result as the one 

compiled in Visual Studio.

g++ MyApp.cpp -o MyApp

./MyApp

Hello World

�Comments
Comments are used to insert notes into the source code. They have no 

effect on the end program and are meant only to enhance the readability 

of the code, both for you and for other developers. C++ has two kinds of 

comment notations: single-line and multiline. The single-line comment 

starts with // and extends to the end of the line.

// single-line comment

The multiline comment may span more than one line and is delimited 

by /* and */.

/* multi-line

comment */

Keep in mind that whitespace characters—such as spaces and tabs—are 

generally ignored by the compiler. This gives you a lot of freedom in how to 

format your code.

Chapter 2  Compile and Run
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CHAPTER 3

Variables 
Variables are used for storing data in memory during program execution.

�Data Types
Depending on the type of data you need to store, there are several kinds 

of built-in data types. These are often called fundamental data types or 

primitives. The integer (whole number) types are short, int, long, and 

long long. The float, double, and long double types are floating-point 

(real number) types. The char type holds a single character, and the bool 

type contains either a true or false value.

Data Type Size (Byte) Description

char 1 Integer or character

short 2 Integer

int 4 Integer

Long 4 or 8 Integer

long long 8 Integer

float 4 Single-precision floating number

double 8 Double-precision floating number

long double 8 or 16 Floating-point number

bool 1 Boolean value

https://doi.org/10.1007/978-1-4842-5995-5_3#DOI
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In C++, the exact size and range of primitive data types are not defined 

by the standard. Instead, they are dependent on the system for which the 

program is compiled. The sizes shown in the previous table are found 

on most 32-bit systems and are given in C++ bytes. A byte in C++ is the 

minimum addressable unit of memory which is guaranteed to be at least 8 

bits, but might also be 16 or 32 bits depending on the system. By definition, 

a char in C++ is 1 byte in size. Furthermore, the int type will be 32 bits in 

size on 32-bit and 64-bit systems. Each integer type in the table must be 

at least as large as the one preceding it. The same applies to floating-point 

types, where each one must provide at least as much precision as the 

preceding one.

�Declaring Variables
To declare (create) a variable, you start with the data type you want the 

variable to hold followed by an identifier, which is the name of the variable. 

The name can consist of letters, numbers, and underscores, but it cannot 

start with a number. It also cannot contain spaces or special characters and 

must not be a reserved keyword.

int myInt;  // correct

int 32Int;  // incorrect (starts with number)

int Int 32; // incorrect (contains space)

int Int@32; // incorrect (contains special character)

int new;    // incorrect (reserved keyword)

�Assigning Variables
To assign a value to a declared variable, you use an equals sign, which is 

called the assignment operator (=).

myInt = 50;
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9

The declaration and assignment can be combined into a single 

statement. When a variable is assigned a value, it then becomes defined.

int myInt = 50;

At the same time that the variable is declared, there are two alternative 

ways of assigning, or initializing, it by enclosing the value in either 

parentheses or braces. These examples are equivalent to the previous 

statement.

int myInt2(50); // direct initialization

int myInt3{50}; // uniform initialization

If you need to create more than one variable of the same type, there is a 

shorthand way of doing this using the comma operator (,).

int x = 1, y = 2, z;

Once a variable has been defined (declared and assigned), you can use 

it by simply referencing the variable’s name, for example, to print it. Note 

the use of the endl stream manipulator token here to add a line break to 

the output stream.

cout << x << y << endl; // "12"

�Variable Scope
The scope of a variable refers to the region of code within which it is possible 

to use that variable. Variables in C++ may be declared both globally and 

locally. A global variable is declared outside of any code blocks and is 

accessible from anywhere after it has been declared. A local variable, on 

the other hand, is declared inside of a function and will only be accessible 

within that function after it has been declared. The lifetime of a local variable 

is also limited. A global variable will remain allocated for the duration of 

the program, while a local variable will be destroyed when its function has 

finished executing.
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int globalVar; // global variable

int main() { int localVar; } // local variable

The default values for these variables are also different. Global variables 

are automatically initialized to zero by the compiler, whereas local variables 

are not initialized at all. Uninitialized local variables will therefore contain 

whatever garbage is already present in that memory location.

int globalVar; // initialized to 0

int main()

{

  int localVar; // uninitialized

}

Using uninitialized variables is a common programming mistake that 

can produce unexpected results. It is therefore a good idea to always give 

your local variables an initial value when they are declared.

int main()

{

  int localVar = 0; // initialized to 0

}

�Integer Types
There are four integer types you can use depending on how large a number 

you need the variable to hold.

char myChar = 0;   // -128 to +127

short myShort = 0; // -32768 to +32767

int myInt = 0;     // -2^31  to +2^31-1

long myLong = 0;   // -2^31  to +2^31-1
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C++11 standardized a fifth integer type, long long, which is guaranteed 

to be at least 64 bits large. Many compilers started to support this data type 

well before the C++11 standard was complete, including the Microsoft C++ 

compiler.

long long myL2 = 0; // -2^63 to +2^63-1

To determine the exact size of a data type, you can use the sizeof 

operator. This operator returns the number of bytes that a data type 

occupies in the system you are compiling for.

cout << sizeof(myChar)  // 1 byte (per definition)

     << sizeof(myShort) // 2

     << sizeof(myInt)   // 4

     << sizeof(myLong)  // 4

     << sizeof(myL2);   // 8

Fixed-sized integer types were added in C++11. These types belong 

to the std namespace and can be included through the cstdint standard 

library header.

#include <cstdint>

using namespace std;

int8_t myInt8 = 0;   // 8 bits

int16_t myInt16 = 0; // 16 bits

int32_t myInt32 = 0; // 32 bits

int64_t myInt64 = 0; // 64 bits

�Signed and Unsigned Integers
By default, all integer types are signed and may therefore contain both 

positive and negative values. To explicitly declare a variable as signed, use 

the signed keyword.
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signed char myChar = 0;  // -128 to +127
signed short myShort = 0;  // -32768 to +32767
signed int myInt = 0;   // -2^31 to +2^31-1
signed long myLong = 0;    // -2^31 to +2^31-1
signed long long myL2 = 0;  // -2^63 to +2^63-1

If you only need to store positive values, you can declare integer types 
as unsigned to double their upper range.

unsigned char myChar  = 0;   // 0 to 255
unsigned short myShort = 0;  // 0 to 65535
unsigned int myInt = 0;      // 0 to 2^32-1
unsigned long myLong = 0;    // 0 to 2^32-1
unsigned long long myL2 = 0; // 0 to 2^64-1

The signed and unsigned keywords may be used as stand-alone types, 
which are short for signed int and unsigned int.

unsigned uInt; // unsigned int
signed sInt;   // signed int

Similarly, the short and long data types are abbreviations of short 
int and long int.

short myShort; // short int
long myLong;   // long int

�Numeric Literals
In addition to standard decimal notation, integers can also be assigned 
by using octal or hexadecimal notation. Octal literals use the prefix 0 and 
hexadecimal literals start with 0x. Both numbers shown here represent the 
same number, which in decimal notation is 50.

int myOct = 062;  // octal notation (0)

int myHex = 0x32; // hexadecimal notation (0x)
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As of C++14, there is a binary notation as well, which uses 0b as its prefix. 

This version of the standard also added a digit separator ('), which can make 

it easier to read long numbers. The following binary number represents 50 in 

decimal notation.

int myBin = 0b0011'0010; // binary notation (0b)

�Floating-Point Types
The floating-point types can store real numbers with different levels of 

precision.

float myFloat;    // ~7 digits

double myDouble;  // ~15 digits

long double myLD; // typically same as double

The precision shown here refers to the total number of digits in the 

number. A float can accurately represent about 7 digits, whereas a double 

can handle around 15. Trying to assign more than seven digits to a float 

means that the least significant digits will get rounded off.

myFloat = 12345.678; // rounded to 12345.68

Floats and doubles can be assigned by using either decimal or exponential 

notation. Exponential (scientific) notation is used by adding E or e followed by 

the decimal exponent.

myFloat = 3e2; // 3*10^2 = 300

As of C++17, the base may be specified as a hexadecimal value using 

the 0x prefix. For such a number, the exponent part may use p instead of e 

to have the significant be scaled to the power of 2 rather than 10.

myFloat = 0xFp2; // 15*2^2 = 60
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�Literal Suffixes
An integer literal (constant) is normally treated as an int by the compiler, 

or a larger type if needed to fit the value. Suffixes can be added to the literal 

to change this evaluation. With integers, the suffix can be a combination of 

U and L, for unsigned and long, respectively. C++11 also added the LL suffix 

for the long long type. The order and casing of these letters do not matter.

int i = 10;

long l = 10L;

unsigned long ul = 10UL;

A floating-point literal is treated as a double unless otherwise 

specified. The F or f suffix can be used to specify that a literal is of the float 

type instead. Likewise, the L or l suffix specifies the long double type.

float f = 1.23F;

double d = 1.23;

long double ld = 1.23L;

The compiler implicitly converts literals to whichever type is 

necessary, so this type distinction for literals is usually not necessary. If 

the F suffix is left out when assigning to a float variable, the compiler may 

give a warning since the conversion from double to float involves a loss of 

precision.

�Char Type
The char type is commonly used to represent ASCII characters. Such 

character constants are enclosed in single quotes and can be stored in a 

variable of char type.

char c = 'x'; // assigns 120 (ASCII for 'x')
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The conversion between the number stored in the char and the 

character shown when the char is printed occurs automatically.

cout << c; // prints 'x'

For another integer type to be displayed as a character, it has to be 

explicitly cast to char. The recommended way of doing this is to use a 

static_cast as illustrated in the following, where the desired type is placed 

within angle brackets. Another way to perform the type cast is to use the 

legacy C-style cast, by placing the desired data type in parentheses before 

the variable or constant that is to be converted.

int i = c; // assigns 120

cout << i; // prints 120

// Prints 'x'

cout << static_cast<char>(i); // C++ new-style cast

cout << (char)i; // C-style cast

There are many ways to represent a character. Typically, ASCII 

encoding is used by most C++ compilers. In cases where code portability 

is important, this encoding can be assured by placing a u8 prefix before 

the char literal. This prefix was added in C++17 and denotes the UTF-8 

(Unicode) encoding, of which ASCII is a subset (the first 128 characters).

char ascii = u8'x'; // use UTF-8 encoding

UTF-16 and UTF-32 encodings can be represented using the char16_t and 

char32_t types, respectively, which were added in C++11. For completeness, 

C++20 added the char8_t type as well, which is used to represent a UTF-8 

character and behaves the same as an unsigned char. The prefix U denotes a 

UTF-32 character and the u prefix a UTF-16 character.
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char8_t c8 = 'A'; // UTF-8 character

char16_t c16 = u'€'; // UTF-16 character

char32_t c32 = U' '; // UTF-32 character

�Bool Type
The bool type can store a Boolean value, which is a value that can only 

be either true or false. These values are specified with the true and false 

keywords.

bool b = false;

When used in an integer context, the Boolean value false is converted 

to zero and true is converted to one. Conversely, any value other than zero 

will be evaluated as true in a Boolean context. Note that the following int to 

bool conversion is made explicit, as the truncation would otherwise give a 

compiler warning.

int i = false; // 0

int j = true; // 1

bool b = static_cast<bool>(32); // true
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CHAPTER 4

Operators
Operators are special symbols used to operate on values. The operators 

that deal specifically with numbers can be grouped into five types: 

arithmetic, assignment, comparison, logical, and bitwise operators.

�Arithmetic Operators
The arithmetic operators include the four basic arithmetic operations, 

as well as the modulus operator (%), which is used to obtain the division 

remainder.

int i = 3 + 2; // 5, addition

    i = 3 - 2; // 1, subtraction

    i = 3 * 2; // 6, multiplication

    i = 3 / 2; // 1, division

    i = 3 % 2; // 1, modulus (division remainder)

Notice that the division operator gives an incorrect result. This is 

because it operates on two integer values and will therefore truncate the 

result and return an integer. To get the correct value, one of the numbers 

must be explicitly converted to a floating-point number in one of the 

following ways.

float f1 = 3 / 2.0f; // specify as floating-point number

float f2 = 3 / static_cast<float>(2); // C++ new-style cast

float f3 = 3 / (float)2; // C-style cast
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�Assignment Operators
The next group is the assignment operators. Most important is the 

assignment operator (=) itself, which assigns a value to a variable.

int i = 0; // assignment

A common use of the assignment and arithmetic operators is to 

operate on a variable and then save the result back into that same variable. 

These operations can be shortened with the combined assignment 

operators.

i += 5; // i = i+5;

i -= 5; // i = i-5;

i *= 5; // i = i*5;

i /= 5; // i = i/5;

i %= 5; // i = i%5;

�Increment and Decrement Operators
Another common operation is to increment or decrement a variable by 

one. This can be simplified with the increment (++) and decrement (--) 

operators.

i++; // i = i+1;

i--; // i = i-1;

Both of these can be used either before or after a variable.

i++; // post-increment

i--; // post-decrement

++i; // pre-increment

--i; // pre-decrement
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The result on the variable is the same whichever is used. The difference 

is that the post operator returns the original value before it changes the 

variable, while the pre operator changes the variable first and then returns 

the value.

int x, y;

x = 5; y = x++; // y=5, x=6

x = 5; y = ++x; // y=6, x=6

�Comparison Operators
The comparison operators compare two values and return true or false. 

They are mainly used to specify conditions, which are expressions that 

evaluate to true or false.

bool b = (2 == 3); // equal to (false)

     b = (2 != 3); // not equal to (true)

     b = (2 > 3);  // greater than (false)

     b = (2 < 3);  // less than (true)

     b = (2 >= 3); // greater than or equal to (false)

     b = (2 <= 3); // less than or equal to (true)

�Logical Operators
The logical operators are often used together with the comparison 

operators. “Logical and” (&&) evaluates to true if both the left and right 

sides are true, and “logical or” (||) is true if either the left or right side is 

true. For inverting a Boolean result, there is the logical not (!) operator. 

Note that for both “logical and” and “logical or,” the right side will not be 

evaluated if the result is already determined by the left side. This behavior 

is called short-circuiting.
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bool b = (true && false); // logical and (false)

b = (true || false);      // logical or (true)

     b = !(true);         // logical not (false)

�Bitwise Operators
The bitwise operators can manipulate individual bits inside an integer. For 

example, the “bitwise or” operator (|) makes the resulting bit 1 if the bits 

are set on either side of the operator.

int i = 5 & 4;  // 101 & 100 = 100 (4)       // and

i = 5 | 4;      // 101 | 100 = 101 (5)       // or

i = 5 ^ 4;      // 101 ^ 100 = 001 (1)       // xor

i = 4 << 1;     // 100 << 1  =1000 (8)       // left shift

i = 4 >> 1;     // 100 >> 1  =  10 (2)       // right shift

i = ~4;         // ~00000100 = 11111011 (-5) // invert

The bitwise operators also have combined assignment operators.

int i=5; i &= 4; // 101 & 100 = 100 (4) // and

    i=5; i |= 4; // 101 | 100 = 101 (5) // or

    i=5; i ^= 4; // 101 ^ 100 = 001 (1) // xor

    i=5; i <<= 1;// 101 << 1  =1010 (10)// left shift

    i=5; i >>= 1;// 101 >> 1  =  10 (2) // right shift

�Operator Precedence
In C++, expressions are normally evaluated from left to right. However, 

when an expression contains multiple operators, the precedence of those 

operators decides the order in which they are evaluated. The order of 

precedence can be seen in the following table, where the operator with 

the lowest precedence will be evaluated first. This same basic order also 

applies to many other languages, such as C, Java, and C#.
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Pre Operator Pre Operator

1 :: 10 == !=

2 ( ) [ ] . -> x++ x-- 11 &

3 ! ~ ++x --x *x &x (type) sizeof  

co_await new new[ ] delete delete[ ]

12 ^

4 .* ->* 13 |

5 * / % 14 &&

6 + - 15 ||

7 << >> 16 ?: = op= throw 

co_yield

8 <=> 17 ,

9 < <= > >=

To give an example, “logical and” (&&) binds weaker than relational 

operators, which in turn bind weaker than arithmetic operators.

bool b = 2+3 > 1*4 && 5/5 == 1; // true

To make things clearer, parentheses can be used to specify which part 

of the expression will be evaluated first. As seen in the table, parentheses 

are among the operators with the greatest precedence.

bool b = ((2+3) > (1*4)) && ((5/5) == 1); // true
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CHAPTER 5

Pointers
A pointer is a variable that contains the memory address of another 

variable, function, or object, called the pointee.

�Creating Pointers
Pointers are declared as any other variable, except that an asterisk (*) is 

placed between the data type and the pointer’s name. The data type used 

determines what type of memory it will point to. More than one pointer 

can be created in the same statement using the comma operator. The 

asterisk must then be placed before each identifier and not after the type.

int* p; // pointer to an integer

int *q; // alternative syntax

int *a, *b, *c; // multiple pointers

A pointer can point to a variable of the same type by prefixing that 

variable with an ampersand, in order to retrieve its address and assign it to 

the pointer. The ampersand is known as the address-of operator (&).

int i = 10;

p = &i; // address of i assigned to p
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�Dereferencing Pointers
The pointer now contains the memory address to the integer variable. 

Referencing the pointer will retrieve this address. To obtain the actual 

value stored in that address, the pointer must be prefixed with an asterisk, 

known as the dereference operator (*).

#include <iostream>

using namespace std;

int main()

{

  int i = 10;

  int* p = &i;

  cout << "Address of i: " << p << endl; // ex. 0017FF1C

  cout << "Value of i: " << *p << endl; // 10

}

When writing to the pointer, the same method is used. Without the 

asterisk, the pointer is assigned a new memory address, and with the 

asterisk the actual value of the variable pointed to will be updated.

p = &i;  // address of i assigned to p

*p = 20; // value of i changed through p

If a second pointer is created and assigned the value of the first pointer, 

it will then get a copy of the first pointer’s memory address.

int* p2 = p; // copy of p (copies address stored in p)
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�Pointing to a Pointer
Sometimes it can be useful to have a pointer that can point to another 

pointer. This is done by declaring a pointer with two asterisks and then 

assigning it the address of the pointer that it will reference. This way, when 

the address stored in the first pointer changes, the second pointer can 

follow that change.

int** r = &p; // pointer to p (assigns address of p)

Referencing the second pointer now gives the address of the first 

pointer. Dereferencing the second pointer gives the address of the variable, 

and dereferencing it again gives the value of the variable.

cout << "Address of p: " << r << endl; // ex. 0017FF28

cout << "Address of i: " << *r << endl; // ex. 0017FF1C

cout << "Value of i: "   << **r << endl; // 20

�Dynamic Allocation
One of the main usages of pointers is to allocate memory during runtime—

so-called dynamic allocation. In the examples so far, the programs have 

only had as much memory available as was declared for the variables at 

compile time. This is referred to as static allocation, and those variables 

are stored on the so-called stack. If any additional memory is needed at 

runtime, the new operator has to be used. This operator allows for dynamic 

allocation of memory, which can only be accessed through pointers and is 

stored on the so-called heap. The new operator takes either a primitive data 

type or an object type as its argument, and it will return a pointer to the 

allocated memory as long as there is sufficient memory available.

int* d = new int; // dynamic allocation
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An important thing to know about dynamic allocation is that the 

allocated memory will not be released like the rest of the program memory 

when it is no longer required. Instead, it has to be manually released 

with the delete keyword. This allows you to control the lifetime of a 

dynamically allocated object, but it also means that you are responsible for 

deleting it once it is no longer needed. Forgetting to delete memory that 

has been allocated with the new keyword will give the program memory 

leaks, because that memory will stay allocated until the program shuts 

down.

delete d; // release allocated memory

In modern C++, the use of the so-called smart pointers is preferred 

over regular pointers as they remove the need for manually deleting 

dynamically allocated memory. These pointers will be covered in a later 

chapter.

�Null Pointer
A pointer should be set to null when it is not assigned to a valid address. 

Such a pointer is called a null pointer. Doing this will allow you to check 

whether the pointer can be safely dereferenced, because a valid pointer 

will never be null. In the early days before C++11, the constant NULL or the 

integer zero was used to symbolize the null pointer. The NULL constant 

is defined in the cstdio standard library file, which is included through 

iostream.

int* g = 0; // null pointer (unused pointer)

int* h = NULL; // null pointer

C++11 introduced the now preferred keyword nullptr to specify 

a null pointer, in order to distinguish between zero and a null pointer. 

The advantage of using nullptr is that unlike an integer zero, nullptr 
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will not implicitly convert to an integer type. The literal has its own type, 

std::nullptr_t, which can only be implicitly converted to pointer and bool 

types.

#include <iostream> // include nullptr_t type

int main()

{

  int* p = nullptr; // ok

  int i = nullptr; // error

  bool b = (bool) nullptr; // false

  std::nullptr_t mynull = nullptr; // ok

}

As seen earlier, a dynamically allocated object is accessed through a 

pointer and can be unallocated with the delete keyword. A point to keep 

in mind is that after deletion, the pointer will point to a now inaccessible 

memory location. Trying to dereference such a pointer will cause a 

runtime error.

int* m = new int; // allocate memory for object

delete m; // deallocate memory

*m = 5; // error: write access violation

To help prevent this, the deleted pointer should be set to null. Note 

that trying to delete an already deleted null pointer is safe. However, if the 

pointer has not been set to null, attempting to delete it again will cause 

memory corruption and possibly crash the program.

delete m;

m = nullptr; // mark as null pointer

delete m; // safe
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Since you may not always know whether a pointer is valid, a check 

should be made whenever a pointer is dereferenced to make sure that it is 

not null.

if (m != nullptr) { *m = 5; } // check for valid pointer

if (m) { *m = 5; } // alternative
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CHAPTER 6

References
References allow programmers to create new names for a variable. They 

provide a simpler and safer alternative to pointers that should be used in 

favor of pointers whenever possible.

�Creating References
A reference is declared in the same way as a regular variable, except that 

an ampersand is appended between the data type and the variable name. 

Furthermore, at the same time as the reference is declared, it must be 

initialized with a variable of the specified type.

int x = 5;

int& r = x; // r is an alias to x

int &s = x; // alternative syntax

int& t; // error: must be initialized

Once the reference has been assigned, or seated, it can never be 

reseated to another variable. The reference has in effect become an 

alias for the variable and can be used exactly as though it were the 

original variable.

r = 10; // assigns value to r/x

https://doi.org/10.1007/978-1-4842-5995-5_6#DOI


30

�References and Pointers
A reference is similar to a pointer that always points to the same thing. 

However, while a pointer is a variable that points to another variable or 

object, a reference is only an alias and does not have an address of its own.

int* ptr = &r; // ptr assigned address to x

�Reference and Pointer Guideline
Generally, whenever a pointer does not need to be reassigned, a reference 

should be used instead, because a reference is safer than a pointer since it 

must always refer to something. This means that there is no need to check 

if a reference refers to null, as should be done with pointers. It is possible 

for a reference to be invalid—for example, when a reference refers to a null 

pointer—but it is much easier to avoid this kind of mistake with references 

than it is with pointers.

int* ptr = nullptr; // null pointer

int& ref = *ptr;

ref = 10; // error: invalid memory access

�Rvalue Reference
With C++11 came a new kind of reference called an rvalue reference. 

This reference can bind and modify temporary objects (rvalues), such as 

literal values and function return values. An rvalue reference is formed by 

placing two ampersands after the type.

int&& ref = 1 + 2; // rvalue reference
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The rvalue reference extends the lifetime of the temporary object and 

allows it to be used like an ordinary variable.

ref += 3;

cout << ref; // "6"

The benefit of rvalue references is that they allow unnecessary 

copying to be avoided when dealing with temporary objects. This offers 

greater performance, particularly when handling larger types, such as 

strings and objects.
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CHAPTER 7

Arrays
An array is a data structure used for storing a collection of values that all 

have the same data type.

�Array Declaration and Allocation
To declare an array, you start as you would a normal variable declaration, 

but in addition you append a set of square brackets following the array’s 

name. The brackets contain the number of elements in the array.

int myArray[3]; // integer array with 3 elements

The default values for these elements are the same as for variables—

elements in global arrays are initialized to their default values and 

elements in local arrays remain uninitialized.

�Array Assignment
To assign values to the elements, you can reference them one at a time by 

placing the element’s index inside the square brackets, starting with zero.

myArray[0] = 1;

myArray[1] = 2;

myArray[2] = 3;
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Alternatively, you can assign values at the same time as the array is 

declared by enclosing the values in curly brackets. If the specified array 

length is larger than the number of values, the remaining values will be 

initialized to zero. The array length may optionally be left out to let the 

array size be decided by the number of values assigned.

int myArray[3] = { 1, 2, 3 };

int myArray[] = { 1, 2, 3 };

Once the array elements are initialized, they can be accessed by 

referencing the index of the element you want.

int x = myArray[0]; // 1

�Multidimensional Arrays
Arrays can be made multidimensional by adding more sets of square 

brackets. As with single-dimensional arrays, they can either be filled in one 

at a time or all at once during the declaration.

int myArray[2][2] = { { 0, 1 }, { 2, 3 } };

myArray[0][0] = 0;

myArray[0][1] = 1;

The extra curly brackets are optional, but including them is good 

practice since it makes the code easier to understand.

int myArray[2][2] = { 0, 1, 2, 3 }; // alternative
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�Dynamic Arrays
Because the previous arrays are made up of static (nondynamic) memory, 

their size must be determined before execution. Therefore, the size needs 

to be a constant value. In order to create an array with a size that is not 

known until runtime, you need to use dynamic memory, which is allocated 

with the new keyword and must be assigned to a pointer.

int* p = new int[3]; // dynamically allocated array

An array in C++ behaves as a constant pointer to the first element in 

the array. The referencing of array elements can therefore be made just 

as well with pointer arithmetic. By incrementing the pointer by one, you 

move to the next element in the array, because changes to a pointer’s 

address are implicitly multiplied by the size of the pointer’s data type.

*(p+1) = 10; // p[1] = 10;

�Array Size
Just as with any other pointer, it is possible to exceed the valid range of an 

array and thereby rewrite some adjacent memory. This should always be 

avoided since it can lead to unexpected results or crash the program.

int myArray[2] = { 1, 2 };
myArray[2] = 3; // error: out of bounds

To determine the length of a regular (statically allocated) array, you 

can use the std::size function.

#include <iostream> // std::size
int main()
{
  int myArray[2] = { 1, 2 };
  int length = std::size(myArray); // 2
}
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This method cannot be used for dynamically allocated arrays. The only 

way to determine the size of such an array is through the variable used in 

its allocation.

int size = 3;

int* p = new int[size]; // dynamically allocated array

When you are done using a dynamic array, you must remember to 

delete it. This is done using the delete keyword with an appended set of 

square brackets.

delete[] p; // release allocated array

p = nullptr; // mark pointer as unused

�Vector
A vector is a container class representing a resizable array. The element 

type of the vector is specified in angle brackets after the class name, 

because vector is a so-called template class.

#include <vector> // std::vector

using namespace std;

int main()

{

  vector<int> myVector;

}

Vectors are preferable to dynamic arrays as they have a number of 

advantages including the ability to grow and shrink automatically as 

needed. Vectors will also implicitly deallocate themselves when they go 

out of scope, so there is no need to manually delete them. The following 

example illustrates how to assign, change, and read elements of a vector.
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#include <vector>

using namespace std;

int main()

{

  vector<int> v;

  // Assign three elements with value two

  v.assign(3, 2); // [2, 2, 2]

  // Add 4 at last position

  v.push_back(4); // [2, 2, 2, 4]

  // Change first element

  v[0] = 1; // [1, 2, 2, 4]

  // Change second element (bound checked)

  v.at(2) = 3; // [1, 2, 3, 4]

  // Remove second element

  v.erase(v.begin()+1); // [1, 3, 4]

  // Remove last element

  v.pop_back(); // [1, 3]

  // Get vector length

  int len = v.size(); // 2

  // Print first and second elements

  cout << v.at(0) << v[1]; // "13"

}
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CHAPTER 8

Strings
The string class in C++ is used to store string values. Before a string can 

be declared, the string header must be included. The standard namespace 

can also be used since the string class is part of that namespace.

#include <string>

using namespace std;

Strings can then be declared like any other data type. To assign a string 

value to a string variable, delimit the literals by double quotes and assign 

them to the variable. The initial value can also be assigned through either 

direct or uniform initialization at the same time as the string is declared.

string h = "Hello";

string w ("Hi"); // direct initialization

string u {"Hey"}; // uniform initialization

�String Combining
The plus sign, known as the concatenation operator (+) in this context, is 

used to combine two strings. It has an accompanying assignment operator 

(+=) to append a string.

string a = "Hello";

string b = "World";

string c = a + " " + b; // Hello World

a += b; // HelloWorld
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The concatenation operator will work as long as one of the strings it 

operates on is a C++ string. A string literal is by default a C-style string 

which consists of an array of char elements. The letter s can be appended 

to a string literal to instead represent it as the std::string type.

string d = "Hello" + "World"; // error, no C++ string

string e = "Hello" + "World"s; // ok

string f = e + "Again"; // ok

String literals will also be implicitly combined if the plus sign is left off.

string g = "Hel" "lo"; // ok

�Escape Characters
A backslash notation is used to write special characters, such as the 

newline character \n.

string s = "Hello\nWorld";

These special characters are called escape characters, and they are 

described in the following table.

Character Meaning Character Meaning

\n Newline \f Form feed

\t Horizontal tab \a Alert sound

\v Vertical tab \' Single quote

\b Backspace \" Double quote

\r Carriage return \\ Backslash

\0 Null character
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Additionally, any one of the 128 ASCII characters can be expressed 

by writing a backslash followed by the ASCII code for that character, 

represented as either an octal or hexadecimal number.

string oct = "\053"; // octal '+'

string hex = "\x02B"; // hexadecimal '+'

As of C++11, escape characters can be ignored by adding an R before 

the string along with a set of parentheses within the double quotes. This is 

called a raw string literal and can be used, for instance, to make file paths 

more readable.

string escaped = "c:\\Windows\\System32\\cmd.exe";

string raw = R"(c:\Windows\System32\cmd.exe)";

�String Compare
The way to compare two strings is simply by using the equal to operator 

(==). This will not compare the memory addresses of the strings, as is the 

case with C strings.

string s = "Hello";

bool b = (s == "Hello"); // true

�String Functions
The string class has a lot of functions. Among the most useful ones are the 

length and size functions, which both return the number of characters in 

the string. Their return type is size_t, which is an unsigned data type used 

to hold the size of an object. This is simply an alias for one of the built-in 
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data types, but which one it is defined as varies between compilers. The 

alias is defined in the cstddef standard library header, which is included 

through iostream.

string s = "Hello";

size_t i = s.length(); // 5, length of string

i = s.size(); // 5, same as length()

Another useful function is substr (substring), which requires two 

parameters. The second parameter is the number of characters to return, 

starting from the position specified in the first parameter.

s.substr(0,2); // "He"

A single character from a string can also be extracted or changed by 

using the array notation.

char c = s[0]; // 'H'

�String Encodings
A string enclosed within double quotes produces an array of the char type, 

which can only hold 256 unique symbols. To support larger character sets, 

the wide character type wchar_t is provided. Its size can vary between 

compilers so it is not platform independent. String literals of this type are 

created by prepending the string with a capital L. The resulting array can 

be stored using the wstring class. This class works like the basic string 

class but uses the wchar_t character type instead.

wstring s1 = L"Hello";

wchar_t *s2 = L"Hello"; // C-style string
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Fixed-size character types were introduced in C++11, namely, 

char16_t and char32_t. These types provide definite representations of 

the UTF-16 and UTF-32 encodings, respectively. UTF-16 string literals 

are prefixed with u and can be stored using the u16string class. Likewise, 

UTF-32 string literals are prefixed with U and are stored in the u32string 

class. The prefix u8 was also added to represent a UTF-8 encoded string 

literal. A string consisting of UTF-8 literals can be stored in the u8string 

type added in C++20.

string s3 = "Compiler-defined encoding";

u8string s4 = u8"UTF-8 string";

u16string s5 = u"UTF-16 string";

u32string s6 = U"UTF-32 string";

Specific Unicode characters can be inserted into a string literal using 

the escape character \u followed by a hexadecimal number representing 

the character.

u8string s7 = u8"Asterisk: \u002A"; // "Asterisk: *"

�String Formatting
C++20 introduced the std::format function as a more convenient and 

type-safe way to format strings compared with legacy string formatting 

functions such as the printf family inherited from C. The first argument to 

this function is the string to be formatted. Curly brackets ({}) appearing in 

the string will be replaced by successive arguments to the function as seen 

here.

// "1 plus 2 equals 3"

string f = std::format("1 plus 2 equals {}", 1+2);
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The curly brackets can include a number to specify which argument it 

will be replaced by.

// "5 is more than zero"

string f = std::format("{1} is more than {0}", "zero", 5);
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CHAPTER 9

Conditionals
Conditional statements are used to execute different code blocks based on 

different conditions.

�If Statement
The if statement will execute only if the expression inside the parentheses 

is evaluated to true. In C++, this does not have to be a Boolean expression. 

It can be any expression that evaluates to a number, in which case zero is 

false and all other numbers are true.

if (x < 1) {

  cout << x << " < 1";

}

To test for other conditions, the if statement can be extended by any 

number of else if clauses.

else if (x > 1) {

  cout << x << " > 1";

}
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The if statement can have one else clause at the end, which will 

execute if all previous conditions are false.

else {

  cout << x << " == 1";

}

As for the curly brackets, they can be left out if only a single statement 

needs to be executed conditionally. However, it is considered good 

practice to include them since they improve readability.

if (x < 1)

  cout << x << " < 1";

else if (x > 1)

  cout << x << " > 1";

else

  cout << x << " == 1";

�Switch Statement
The switch statement checks for equality between an integer and a series 

of case labels and then passes execution to the matching case. It may 

contain any number of case clauses as well as a default label for handling 

all other cases.

switch (x)

{

  case 0: cout << x << " is 0"; break;

  case 1: cout << x << " is 1"; break;

  default: cout << x << " is not 0 or 1"; break;

}
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Note that the statements after each case label end with the break 

keyword to skip the rest of the switch. If the break is left out, execution will 

fall through to the next case, which can be useful if several cases need to be 

evaluated in the same way.

�Ternary Operator
In addition to the if and switch statements, there is the ternary operator 

(?:), which can replace a single if/else clause. This operator takes three 

expressions. If the first one is true, then the second expression is evaluated 

and returned, and if it is false, the third one is evaluated and returned.

x = (x < 0.5) ? 0 : 1; // ternary operator (?:)

C++ allows expressions to be used as stand-alone code statements. 

Because of this, the ternary operator cannot just be used as an expression, 

but also as a statement.

(x < 0.5) ? x = 0 : x = 1; // alternative syntax

The programming term expression refers to code that evaluates to a 

value, whereas a statement is a code segment that ends with a semicolon or 

a closing curly bracket.

�Initializers
It is preferable to keep the scope of a variable limited to the section of 

code where the variable is used. This way, the variable is prevented 

from cluttering up the namespace unnecessarily or causing potential 

name clashes later on in the code. To assist with this, C++17 introduced 

the ability to declare and initialize a locally scoped variable for an if 
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statement, by adding an initializer before the condition. This reduces the 

scope of the variable so that it is only visible within the body of the if 

statement and any accompanying else clauses.

int a = 2, b = 3;

// ...

if (int sum = a+b; sum == 5) {

  cout << sum << " is 5";

}

Switch statements may also use an initializer as of C++17. Like the if 

statement, this feature helps avoid potential name clashes by limiting the 

scope of the variable to within the switch statement.

switch (int sum = a+b; sum) {

  case 5: cout << sum << " is 5"; break;

}
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CHAPTER 10

Loops
There are three looping structures available in C++, all of which are used 

to execute a specific code block multiple times. Just as with the conditional 

if statement, the curly brackets for the loops can be left out if there is only 

one statement in the code block.

�While Loop
The while loop runs through the code block only if its condition is true 

and will continue looping for as long as the condition remains true. 

Bear in mind that the condition is only checked at the start of each 

iteration (loop).

int i = 0;

while (i < 10) {

  cout << i++; // 0-9

}
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�Do-while Loop
The do-while loop works in the same way as the while loop, except that 

it checks the condition after the code block. It will therefore always run 

through the code block at least once, in contrast with the while loop. 

Notice that this loop ends with a semicolon.

int j = 0;

do {

  cout << j++; // 0-9

} while (j < 10);

�For Loop
The for loop is used to run through a code block a set number of times. 

It uses three parameters. The first one initializes a counter and is always 

executed once before the loop. This counter variable is limited in scope 

to the for loop and is not accessible after the loop. The second parameter 

holds the condition for the loop and is checked before each iteration. 

Lastly, the third parameter contains the increment of the counter and is 

executed at the end of each loop.

for (int k = 0; k < 10; ++k) {

  cout << k; // 0-9

}

The for loop has several variations. For instance, the first and third 

parameters can be split into several statements by using the comma 

operator.

for (int k = 0, m = 0; k < 5; ++k, m--) {

  cout << k+m; // "00000"

}
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There is also the option of leaving out any one of the parameters. The 

following are a couple of examples of this.

for (;;) {

  // infinite loop

}

for (int i=0; i<10; ) {

  // increment i inside of loop

}

int counter = 0;

for (; counter<10; ++counter) {

  // ...

}

// make counter usable outside of loop

C++11 introduced a range-based for loop syntax for iterating through 

arrays and other container types. At each iteration, the next element in the 

array is bound to the specified variable, in this case a reference variable, 

and the loop continues until it has gone through the entire array.

int a[3] = {1, 2, 3};

for (int &i : a) {

  cout << i; // "123"

}

C++20 extended the range-based for loop by allowing it to include 

an initializer. This is useful for keeping scopes tight when iterating over a 

temporary container that is only needed for the duration of the loop.

for (int a[3] = {1, 2, 3}; int &i : a) {

  cout << i; // "123"

}
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�Break and Continue
There are two jump statements that can be used inside loops: break and 

continue. The break keyword ends the loop structure, and continue skips 

the rest of the current iteration and continues at the beginning of the next 

iteration.

for (int i = 0; i < 10; i++)

{

  if (i == 5) break; // end loop

  if (i == 3) continue; // start next iteration

  cout << i; // "0124"

}

�Goto Statement
A third jump statement that may be useful to know about is goto, which 

performs an unconditional jump to a specified label. This instruction is 

generally never used since it tends to make the flow of execution difficult 

to follow.

goto myLabel; // jump to label

myLabel: // label declaration
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CHAPTER 11

Functions
Functions are reusable code blocks that will only execute when called.

�Defining Functions
A function can be created by typing void followed by the function’s name, 

a set of parentheses, and a code block. The void keyword means that 

the function will not return a value. A common naming convention for 

functions is to name them in the same way as variables—a descriptive 

name with each word initially capitalized, except for the first one.

#include <iostream>

using namespace std;

void myFunction()

{

  cout << "Hello World";

}

�Calling Functions
The previous function will simply print out a text message when it is called. 

To invoke it from the main function, specify the function’s name followed 

by a set of parentheses.
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int main()

{

  myFunction(); // "Hello World"

}

�Function Parameters
The parentheses that follow the function name are used to pass arguments 

to the function. To do this, you must first add the corresponding 

parameters to the function declaration in the form of a comma-separated 

list.

void myFunction(string a, string b)

{

  cout << a << " " << b;

}

A function can be defined to take any number of parameters, and those 

parameters can have any data types. Just ensure that the function is called 

with the same types and number of arguments.

myFunction("Hello", "World"); // "Hello World"

To be precise, parameters appear in function definitions, while 

arguments appear in function calls. However, the two terms are sometimes 

wrongly used.

�Default Parameter Values
It is possible to specify default values for parameters by assigning them a 

value inside the parameter list.
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void myFunction(string a, string b = "Earth")

{

  cout << a << " " << b;

}

Then, if that argument is unspecified when the function is called, the 

default value will be used instead. For this to work, it is important that the 

parameters with default values are to the right of those without default 

values.

myFunction("Hello"); // "Hello Earth"

�Function Overloading
A function in C++ can be defined multiple times with different parameters. 

This is a powerful feature called function overloading, and it allows 

a function to handle a variety of arguments without the programmer 

needing to be aware of using different functions.

void myFunction(string a, string b) { cout << a << " " << b; }

void myFunction(string a) { cout << a; }

void myFunction(int a) { cout << a; }

�Return Statement
A function can return a value. The void keyword is then replaced with the 

data type the function will return, and the return keyword must be added 

to the function’s body followed by an argument of the specified return 

type. Keep in mind that all branches in the function must return a value.

int getSum(int a, int b)

{

  return a + b;

}
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Return is a jump statement that causes the function to exit and 

return the specified value to the place where the function was called. For 

example, the previously defined function can be used with the output 

stream since the function evaluates to an integer.

cout << getSum(5, 10); // "15"

The return statement can also be used in void functions to exit before 

the end of the function block is reached.

void dummy() { return; }

Note that although the main function is set to return an integer type, it 

does not have to explicitly return a value. This is because the compiler will 

automatically add a return 0 statement to the end of the main function.

int main() { return 0; }

�Forward Declaration
An important point to keep in mind in C++ is that functions must be 

declared before they can be called. This does not mean that the function 

has to be implemented before it is called. It only means that the function’s 

header needs to be specified at the beginning of the source file, so that the 

compiler knows that the function exists. This kind of forward declaration is 

known as a prototype.

void myFunction(int a); // prototype

int main()

{

  myFunction(0);

}

void myFunction(int a) {} // definition
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The parameter names in the prototype do not need to be included. 

Only the data types must be specified. However, including the names 

serves as a kind of documentation, and they will also show up in 

IntelliSense, so it is a good practice to include them.

void myFunction(int);

�Pass by Value
In C++, variables of both primitive and object data types are by default 

passed by value. This means that only a copy of the value or object is 

passed to the function. Therefore, changing the parameter in any way will 

not affect the original, and passing a large object will be slow.

#include <iostream>

#include <vector>

using namespace std;

void change(int i) { i = 10; }

void change(vector<int> a) { a.at(0) = 5; }

int main()

{

  int x = 0; // value type

  change(x); // copy of x is passed

  cout << x; // "0"

  vector<int> v { 3 }; // reference type

  change(v); // object copy is passed

  cout << v.at(0); // "3"

}
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�Pass by Reference
Alternatively, to instead pass a variable by reference, you just need to add 

an ampersand before the parameter’s name in the function’s definition. 

When arguments are passed by reference, both primitive and object data 

types can be changed, and the changes will affect the original variable.

void change(int& i) { i = 10; }

int main()

{

  int x = 0; // value type

  change(x); // reference is passed

  cout << x; // "10"

}

�Pass by Address
As an alternative to passing by reference, arguments may also be passed by 

address using pointers. This passing technique serves the same purpose as 

passing by reference, but uses pointer syntax instead.

void change(int* i) { *i = 10; }

int main()

{

  int x = 0;  // value type

  change(&x); // address is passed

  cout << x;  // 10

}

One difference is that pointers can be null, whereas references cannot. 

So if the function should not allow null arguments, it is preferable to use 

pass by reference.
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�Return by Value, Reference, or Address
In addition to passing variables by value, reference, or address, a variable 

may also be returned in one of these ways. Normally, a function returns by 

value, in which case a copy of the value is returned to the caller.

int byVal(int i) { return i + 1; }

int main()

{

  int a = 10;

  cout << byVal(a); // "11"

}

To return by reference instead, an ampersand is placed after the 

function’s return type. The function must then return a variable and may 

not return an expression or literal, as can be done when using return by 

value. The variable returned should never be a local variable, because the 

memory to these variables is released when the function ends. Instead, 

return by reference is commonly used to return an argument that has also 

been passed to the function by reference.

int& byRef(int& i) { return i; }

int main()

{

  int a = 10;

  cout << byRef(a); // "10"

}

To return by address, you append the dereference operator (*) to the 

function’s return type. This return technique has the same two restrictions 

as when returning by reference—the address of a variable must be 

returned and the returned variable must not be local to the function.
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int* byAdr(int* i) { return i; }

int main()

{

  int a = 10;

  cout << *byAdr(&a); // "10"

}

If a function returns a pointer, it may not be clear whether the function 

has allocated some memory dynamically and where this memory should 

be deallocated. For this reason, it is preferable to return by reference 

instead or to use smart pointers which are covered in a later chapter.

�Inline Functions
A point to keep in mind when using functions is that every time a function 

is called, a small performance overhead occurs. To potentially remove 

this overhead, you can recommend that the compiler inline the calls to a 

specific function by using the inline function modifier. This keyword is 

best suited to small functions that are called inside loops. It should not be 

used on larger functions since inlining these can severely increase the size 

of the code, which will instead decrease performance.

inline int myInc(int i) { return ++i; }

Note that the inline keyword is only a recommendation. The 

compiler may, in its attempts to optimize the code, choose to ignore 

this recommendation, and it may also inline functions that do not have 

the inline modifier. Modern compilers are very good at automatically 

determining which functions to inline.
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�Auto and Decltype
Two keywords were introduced in C++11: auto and decltype. Both of 

these keywords are used for type deduction during compilation. The auto 

keyword works as a placeholder for a type and instructs the compiler to 

automatically deduce the type of the variable based on its initializer.

auto i = 5;     // int

auto d = 3.14;  // double

auto b = false; // bool

The auto keyword translates to the core type of the initializer, which 

means that any reference and constant specifiers are dropped.

const int& iRef = i;

auto myAuto = iRef; // int

Dropped specifiers can be manually reapplied as needed. The 

ampersand here creates a regular (lvalue) reference.

const auto& myRef = iRef; // const int&

Alternatively, two ampersands can be used. This normally designates 

an rvalue reference, but in the case of auto, it makes the compiler 

automatically deduce either an rvalue or an lvalue reference, based on 

the given initializer.

int i = 1;

auto&& a = i; // int& (lvalue reference)

auto&& b = 2; // int&& (rvalue reference)

The auto specifier may be used anywhere a variable is declared and 

initialized. For instance, the type of the following for loop iterator is set to 

auto, since the compiler can easily deduce the type. Note that the iterator is 

specified as a reference. This gives better performance as it prevents copies 

from being made when looping over elements of a potentially large object.
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#include <iostream>

#include <vector>

using namespace std;

// ...

vector<int> myVector { 1, 2, 3 };

for (auto& x : myVector) { cout << x; } // "123"

Prior to C++11 there was no range-based for loop or auto specifier. 

Iterating over a vector then required a more verbose syntax, such as the 

one shown here.

for(vector<int>::size_type i = 0; i != myVector.size(); i++) {

    cout << myVector[i]; // "123"

}

The decltype specifier works similar to auto, except that it deduces 

the exact declared type of a given expression, including references. This 

expression is specified in parentheses.

int i = 1;

int& myRef = i;

auto a = myRef; // int

decltype(myRef) b = myRef; // int&

In C++14, auto may be used as the expression for decltype. The 

keyword auto is then replaced with the initializing expression, allowing the 

exact type of the initializer to be deduced.

decltype(auto) c = myRef; // int&

Using auto is often the simpler choice when an initializer is available. 

decltype is mainly used to forward function return types, without having 

to consider whether it is a reference or value type.

decltype(5) getFive() { return 5; } // int
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C++11 added a trailing return type syntax, which allows a function’s 

return value to be specified after the parameter list, following an arrow  

(->). This enables the parameters to be used when deducing the return 

type with decltype. The use of auto in this context just means that the 

trailing return type syntax is being used.

auto getValue(int x) -> decltype(x) { return x; } // int

The ability to use auto for return type deduction was added in C++14. 

This enabled the core return type to be deduced directly from the return 

statement.

auto getValue(int x) { return x; } // int

Moreover, auto can be used together with decltype to deduce the 

exact type following the rules of decltype. This is mainly useful in the 

context of generic programming with templates, when there are types that 

are not known until runtime.

decltype(auto) getRef(int& x) { return x; } // int&

The main use for type deduction is to reduce the verbosity of the code 

and improve readability, particularly when declaring complicated types 

where the type is either difficult to know or difficult to write. Keep in mind 

that in modern IDEs, you can hover the mouse cursor over a variable to 

check its type, even if the type has been automatically deduced.

�Returning Multiple Values
A convenient way to return multiple values from a function is to use a 

tuple. Tuples are objects that pack elements of different types into a single 

object.
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#include <tuple>

#include <iostream>

using namespace std;

tuple<int, double, char> getTuple()

{

  return tuple<int, double, char>(5, 1.2, 'b');

}

The function can be simplified using the auto keyword and the 

std::make_tuple function. This function automatically deduces the types 

based on the provided arguments and returns a tuple.

auto getTuple()

{

  return make_tuple(5, 1.2, 'b');

}

Individual tuple elements can be extracted with the std::get function. 

Angle brackets (<>) are used to specify the index for the element to be 

retrieved. Alternatively, the type name can be used to retrieve the element 

if there is only one element of that type.

int main()

{

  auto mytuple = getTuple();

  cout << get<0>(mytuple) // "5"

       << get<char>(mytuple); // "b"

}

Another way to unpack a tuple is with the std::tie function, which 

will bind one or more tuple elements to the provided arguments. The 

std::ignore placeholder can be used to skip certain elements of the tuple.
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int main()

{

  int i;

  double d;

  // Unpack tuple into variables

  tie(i, d, ignore) = getTuple();

  cout << i << " " << d; // "5 1.2"

}

A feature called structured bindings was added in C++17, providing 

special language support for packing and unpacking tuple-like objects. 

With this introduction, the std::make_tuple function is replaced with the 

following more concise code.

auto getTuple()

{

  return tuple(5, 1.2, 'b');

}

Unpacking the elements is likewise simplified and no longer requires 

the std::tie function. Note that the variables are declared automatically.

int main()

{

  auto [i, d, c] = getTuple();

  cout << i; // "5"

}
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�Lambda Functions
C++11 adds the ability to create lambda functions, which are unnamed 

function objects. This provides a compact way to define functions at their 

point of use, without having to create a named function or function object 

somewhere else. The following example creates a lambda that accepts two 

int arguments and returns their sum.

auto sum = [](int x, int y) -> int

{

  return x + y;

};

cout << sum(2, 3); // "5"

Including the return type is optional if the compiler can deduce the 

return value from the lambda. In C++11, this required the lambda to 

contain just a single return statement, whereas C++14 extended return 

type deduction to any lambda function. Note that the arrow (->) is also 

omitted when leaving out the return type.

auto sum = [](int x, int y) { return x + y; };

C++11 requires lambda parameters to be declared with concrete types. 

This requirement was relaxed in C++14, allowing lambdas to use auto type 

deduction. These are called generic lambda expressions.

auto sum = [](auto x, auto y) { return x + y; };

Lambdas are typically used for specifying simple functions that are 

only referenced once, often by passing the function object as an argument 

to another function. This can be done using a function wrapper with a 

matching parameter list and return type, as in the following example.
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#include <iostream>

#include <functional>

using namespace std;

void call(int arg, function<void(int)> func) {

  func(arg);

}

int main() {

 auto printSquare = [](int x) { cout << x*x; };

 call(2, printSquare); // "4"

}

All lambdas start with a set of square brackets, called the capture 

clause. This clause specifies variables from the surrounding scope that 

can be used within the lambda body. This effectively passes additional 

arguments to the lambda, without the need to specify these in the 

parameter list of the function wrapper. The previous example can therefore 

be rewritten in the following way.

void call(function<void()> func) { func(); }

int main() {

 int i = 2;

 auto printSquare = [i]() { cout << i*i; };

 call(printSquare); // "4"

}

The variable here is captured by value, and so a copy is used within 

the lambda. Variables can also be captured by reference using the familiar 

ampersand prefix. Note that the lambda here is defined and called in the 

same statement.
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int a = 1;

[&a](int x) { a += x; }(2);

cout << a; // "3"

It is possible to specify a default capture mode at the start of the 

capture clause, to indicate how any unspecified variable used inside the 

lambda is to be captured. A [=] means that such variables are captured 

by value and [&] captures them by reference. Variables captured by value 

are normally constant, but the mutable specifier can be used to allow such 

variables to be modified.

int a = 1, b = 1;

[&, b]() mutable { b++; a += b; }();

cout << a << b; // "31"

As of C++14, variables may also be initialized inside the lambda 

capture clause. Such variables will be type deduced as if they were 

declared with auto. Note that the parameter list following the capture 

clause may be omitted, as done here, provided that it is empty and the 

mutable specifier is not used.

int a = 1;

[&, b = 2] { a += b; }();

cout << a; // "3"

A lambda that does not capture any variables is called stateless. C++20 

added the ability to make stateless lambdas default constructible and 

assignable, making the following example valid.

auto x = [] { return 3; };

// Default construct new lambda of same type

decltype(x) y;  // valid in C++20
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// Make copy of lambda

auto copy = x;

// Assign copy to x since they have same type

x = copy; // valid in C++20

Another feature introduced in C++20 was the ability to use lambdas 

in unevaluated contexts, most notably as the expression for a decltype 

specifier.

// Default construct inlined lambda

decltype([]{ return 3; }) a; // valid in C++20
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CHAPTER 12

Classes
A class is a template used to create objects. To define a class, you use the 

keyword class followed by a name, a code block, and a semicolon.  

A common naming convention for classes is to use mixed case, meaning 

that each word is initially capitalized.

class MyRectangle {};

Class members can be declared inside the class; the two main kinds 

are fields and methods. Fields are variables and they hold the state of the 

object. Methods are functions and they define what the object can do.

class MyRectangle

{

  int x, y;

};

�Class Methods
A method belonging to a class is normally declared as a prototype 

inside of the class, and the actual implementation is placed after the 

class’s definition. The method’s name outside the class then needs to be 

prefixed with the class name and the scope resolution operator in order to 

designate to which class the method definition belongs.
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class MyRectangle

{

  int x, y;

  int getArea();

};

int MyRectangle::getArea() { return x * y; }

�Inline Methods
If the method is short and you want to recommend to the compiler that the 

method’s code should be inserted (inlined) into the caller’s code, one way 

to do this is to include the inline keyword in the method’s definition.

inline int MyRectangle::getArea() { return x * y; }

A more convenient way is to simply define the method inside of the 

class. This will implicitly recommend to the compiler that the method 

should be inlined.

class MyRectangle

{

  int x, y;

  int getArea() { return x * y; }

};

�Object Creation
The class definition is now complete. In order to use it, you first have to 

create an object of the class, also called an instance. This can be done in 

the same way that variables are declared.
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int main()

{

  MyRectangle r; // object creation

}

�Accessing Object Members
Before the members that this object contains can be accessed, they need to 

be declared as public in the class definition, by using the public keyword 

followed by a colon. Without this keyword, the members will have private 

access by default, making them inaccessible outside of the class definition.

class MyRectangle

{

 public:

  int x, y;

  int getArea() { return x * y; }

};

The members of this object can now be reached using the dot operator 

(.) after the instance name.

r.x = 10;

r.y = 5;

int z = r.getArea(); // 50 (5*10)

Any number of objects can be created based on a class, and each one 

of them will have its own set of fields and methods.

MyRectangle r2; // another instance of MyRectangle

r2.x = 25; // not same as r.x
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When using an object pointer, the arrow operator (->) allows access to 

the object’s members. This operator behaves like the dot operator, except 

that it dereferences the pointer first. It is used exclusively with pointers to 

objects.

MyRectangle r;

MyRectangle *p = &r; // object pointer

r.x = 2;

r.y = 3;

p->getArea(); // 6 (2*3)

(*p).getArea(); // alternative syntax

�Forward Declaration
Classes, just like functions, must be declared before they can be 

referenced. If a class definition does not appear before the first reference to 

that class, a class prototype can be specified above the reference instead.

class MyClass; // class prototype

This forward declaration allows the class to be referenced in any 

context that does not require the class to be fully defined.

class MyClass; // class prototype

// ...

MyClass* p; // allowed

MyClass f(MyClass&); // allowed

MyClass o; // error, definition required

sizeof(MyClass); // error, definition required

Note that even with a prototype, you still cannot create an object of a 

class before it has been defined.
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CHAPTER 13

Constructors
In addition to fields and methods, a class can contain a constructor. This 

is a special kind of method used to construct, or instantiate, the object. It 

always has the same name as the class and does not have a return type. To 

be accessible from another class, the constructor needs to be declared in a 

section marked with the public access modifier.

class MyRectangle

{

 public:

  int x, y;

  MyRectangle();

};

MyRectangle::MyRectangle() { x = 10; y = 5; }

When a new instance of this class is created, the constructor method 

will be called, which in this case assigns default values to the fields.

int main()

{

  MyRectangle s;

}
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�Constructor Overloading
As with any other function or method, the constructor can be overloaded. 

This will allow an object to be created with different argument lists.

class MyRectangle

{

 public:

  int x, y;

  MyRectangle();

  MyRectangle(int, int);

};

MyRectangle::MyRectangle() { x = 10; y = 5; }

MyRectangle::MyRectangle(int a, int b) { x = a; y = b; }

With the two constructors defined here, the object can be initialized 

either with no arguments or with two arguments used to assign the fields.

// Calls parameterless constructor

MyRectangle r;

// Calls constructor accepting two integers

MyRectangle t(2,3);

C++11 added the ability for constructors to call other constructors. 

Using this feature, called constructor delegation, the parameterless 

constructor created earlier is redefined here to call the second constructor.

MyRectangle::MyRectangle() : MyRectangle(10, 5) {}
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�This Keyword
Inside the constructor, as well as in any other methods belonging to the 

object—so-called instance methods—a special keyword called this can be 

used. This is a pointer to the current instance of the class. It can be useful 

if, for example, the constructor’s parameter names are the same as the field 

names. The fields can then still be accessed by using the this pointer, even 

though they are overshadowed by the parameters.

MyRectangle::MyRectangle(int x, int y)

{

  this->x = x;

  this->y = y;

}

�Field Initialization
As an alternative to assigning fields inside the constructor, fields may also 

be assigned by using the constructor initializer list. This list starts with a 

colon after the constructor parameters, followed by calls to the field’s own 

constructors.

MyRectangle::MyRectangle(int a, int b) : x(a), y(b) {}

Fields can also be assigned an initial value in their class definition, a 

convenient feature that was added in C++11. This is the recommended way 

of assigning default values to fields. The value is automatically assigned 

when a new instance is created, before the constructor is run. As such, this 

assignment can be used to specify a default value for a field that may be 

overridden in the constructor.
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class MyRectangle

{

 public:

  int x = 10;

  int y = 5;

};

Recall that a reference must be set at the same time as it is declared. 

Therefore, a reference field cannot be set in the body of the constructor, 

but must be initialized either in the class definition or in the constructor 

initializer list.

class Foo

{

 public:

  int x;

  int& ref1 = x;

  int& ref2;

  Foo();

};

Foo::Foo() : ref2(x) {}

�Default Constructor
If no constructors are defined for a class, the compiler will automatically 

create a default parameterless constructor when the program compiles. 

Because of this, a class can be instantiated even if no constructor has been 

implemented. The default constructor will only allocate memory for the 

object. It will not initialize the fields. In contrast to global variables, fields 

in C++ are not automatically initialized to their default values. The fields 

will contain whatever garbage is left in their memory locations until they 

are explicitly assigned values.
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�Destructor
In addition to constructors, a class can also have an explicitly defined 

destructor. The is used to release any resources allocated by the object. It is 

called automatically before an object is destroyed, either when the object 

passes out of scope or when it is explicitly deleted for objects created with 

the new operator. The name of the destructor is the same as the class name, 

but preceded by a tilde (~). A class may only have one destructor, and it 

never takes any arguments or returns anything.

class Semaphore

{

  bool *sem;

 public:

  Semaphore()  { sem = new bool; }

  ~Semaphore() { delete sem; }

};

�Special Member Functions
The default constructor and the destructor are both special member 

functions that the compiler will automatically provide for any class that 

does not explicitly define them. Four other special functions are the move 

constructor, the move assignment operator, the copy constructor, and 

the copy assignment operator. With the C++11 standard came ways of 

controlling whether to allow these special member functions through the 

delete and default specifiers. The delete specifier forbids the calling of a 

function, whereas the default specifier explicitly states that the compiler-

generated default will be used.
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class A

{

 public:

  // Explicitly include default constructor

  A() = default;

  // Explicitly include default destructor

  ~A() = default;

  // Disable move constructor

  A(A&&) noexcept = delete;

  // Disable move assignment operator

  A& operator=(A&&) noexcept = delete;

  // Disable copy constructor

  A(const A&) = delete;

  // Disable copy assignment operator

  A& operator=(const A&) = delete;

};

�Object Initialization
C++ provides a number of different ways to create objects and initialize 

their fields. The following class will be used to illustrate these methods.

class MyClass

{

 public:

  int i;

  MyClass() = default;

  MyClass(int x) : i(x) {}

};
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�Direct Initialization
The object creation syntax that has been used so far is called direct 

initialization. This syntax can include a set of parentheses that are used 

to pass arguments to a constructor in the class. If the parameterless 

constructor is used, the parentheses are left off.

// Direct initialization

MyClass a(5);

MyClass b;

�Value Initialization
An object can also be value initialized. The object is then created by using 

the class name followed by a set of parentheses. The parentheses can 

supply constructor arguments or remain empty to construct the object 

using the parameterless constructor. A value initialization creates only 

a temporary object, which is destroyed at the end of the statement. To 

preserve the object, it must either be copied to another object or assigned 

to a reference. Assigning the temporary object to a reference will maintain 

the object until that reference goes out of scope.

// Value initialization

const MyClass& a = MyClass();

MyClass&& b = MyClass(); // alternative

A value-initialized object is almost identical to one created by using 

default initialization. A minor difference is that non-static fields will 

in some cases be initialized to their default values when using value 

initialization.
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�Copy Initialization
If an existing object is assigned to an object of the same type when it is 

declared, the new object will be copy initialized. This means that each 

member of the existing object will be copied to the new object.

// Copy initialization

MyClass a = MyClass(); // copy temporary object to a

MyClass b = a; // copy object a to b

This works because of the implicit copy constructor that the compiler 

provides, which is called for these kinds of assignments. The copy 

constructor takes a single argument, usually a const reference of its own 

type, and then constructs a copy of the specified object. Note that this 

behavior is different from many other languages, such as Java and C#. 

In those languages, initializing an object with another object will only 

copy the object’s reference and not create a new object copy. The copy 

constructor can be user defined, allowing the developer to decide how the 

object members should be copied.

�New Initialization
An object can be initialized through dynamic memory allocation by using 

the new keyword. Dynamically allocated memory must be used through a 

pointer or reference. The new operator returns a pointer, so to assign it to a 

reference, it needs to be dereferenced first. Keep in mind that dynamically 

allocated memory must be explicitly freed once it is no longer needed.

// New initialization

MyClass* a = new MyClass(); // object pointer

MyClass& b = *new MyClass(); // object reference

// ...

delete a;

delete &b;
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�Aggregate Initialization
There is a syntactical shortcut available when initializing an object called 

aggregate initialization. This syntax allows fields to be set by using a curly 

bracket–enclosed list of initializers, in the same way as can be done with 

arrays. Aggregate initialization can only be used when the class type does 

not include any constructors, virtual functions, or base classes. The fields 

must also be public, unless they are declared as static. Each field will be set 

in the order they appear in the class.

// Aggregate initialization

MyClass a = { 2 }; // i is 2

�Uniform Initialization
The uniform initialization was introduced in C++11 to provide a consistent 

way to initialize types that work the same for any type. This syntax looks 

the same as aggregate initialization, without the use of the equals sign.

// Uniform initialization

MyClass a { 3 }; // i is 3

This initialization syntax works not just for classes but for any type, 

including primitives, strings, arrays, and standard library containers such 

as vector.

#include <string>

#include <vector>

using namespace std;

int main()

{

  int i { 1 };

  string s { "Hello" };
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  int a[] { 1, 2 };

  int *p = new int [2] { 1, 2 };

  vector<string> box { "one", "two" };

}

Uniform initialization can be used to call a constructor. This is done 

automatically by passing along the proper arguments for that constructor 

within the curly brackets.

// Call parameterless constructor

MyClass b {};

// Call copy constructor

MyClass c { b };

A class can define an initializer-list constructor. This constructor is 

called during uniform initialization and takes priority over other forms of 

construction, provided that the type specified for the initializer_list 

template matches the type of the curly bracket–enclosed list of arguments. 

The argument list can be any length, but all elements must be of the same 

type. In the following example, the type of initializer_list is int, and so the 

integer list used to construct this object is passed to the constructor. These 

integers are then displayed using a range-based for loop.

#include <iostream>

using namespace std;

class NewClass

{

 public:

  NewClass(initializer_list<int>);

};
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NewClass::NewClass(initializer_list<int> args)

{

  for (auto x : args)

    cout << x << " ";

}

int main()

{

  NewClass a { 1, 2, 3 }; // "1 2 3"

}

�Designated Initializers
The C++20 standard introduced designated initializers, allowing any non-

static field to be assigned by name in a brace-enclosed initialization list. 

Fields that are left unspecified will be assigned their default value, as seen 

in the following example.

class TestClass

{

 public:

  int a = 1;

  int b = 2;

};

int main()

{

  TestClass o1 { .a = 3, .b = 4 }; // ok, a = 3, b = 4

  TestClass o2 { .a = 5 }; // ok, a = 5, b = 2

  TestClass o3 { .b = 6 }; // ok, a = 1, b = 6

}
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Designated initializers can be used together with both uniform and 

aggregate initialization. All designated fields must appear in the order of 

their declaration in the class, and mixing designated and nondesignated 

initializers is not allowed.

int main()

{

  TestClass o4 { .b = 0, .a = 1 }; // error, out of order

  TestClass o5 { .a = 5, 3 }; // �error, designated and non-

designated

}

Chapter 13  Constructors



87© Mikael Olsson 2020 
M. Olsson, C++20 Quick Syntax Reference, https://doi.org/10.1007/978-1-4842-5995-5_14

CHAPTER 14

Inheritance
Inheritance allows a class to acquire the members of another class. In the 

following example, Square inherits from Rectangle. This is specified after 

the class name by using a colon followed by the public keyword and the 

name of the class to inherit from.

class Rectangle

{

 public:

  int x, y;

  int getArea() { return x * y; }

};

class Square : public Rectangle {};

Rectangle here becomes a base class of Square, which in turn 

becomes a derived class of Rectangle. In addition to its own members, 

Square gains all accessible members in Rectangle, except for its 

constructors and destructor.

�Upcasting
An object can be upcast to its base class, because it contains everything 

that the base class contains. An upcast is performed by assigning the object 

to either a reference or a pointer of its base class type. In the following 

example, a Square object is upcast to Rectangle. When using Rectangle’s 
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interface, the Square object will be viewed as a Rectangle, so only 

Rectangle’s members can be accessed.

Square s;

Rectangle& r = s;  // reference upcast

Rectangle* p = &s; // pointer upcast

A derived class can be used anywhere a base class is expected.  

For example, a Square object can be passed as an argument to a function 

that expects a Rectangle object. The derived object will then implicitly be 

upcast to its base type.

void setXY(Rectangle& r)

{

  r.x = 2;

  r.y = 3;

}

int main()

{

  Square s;

  setXY(s);

}

�Downcasting
A Rectangle reference or pointer that points to a Square object can be 

downcast back to a Square object. This downcast has to be made explicit 

since downcasting an actual Rectangle to a Square is not allowed and may 

crash the program at runtime.

Square& a = static_cast<Square&>(r); // reference downcast

Square* b = static_cast<Square*>(p); // pointer downcast
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�Constructor Inheritance
To make sure the fields in the base class are properly initialized, the 

parameterless constructor of the base class is automatically called when 

an object of the derived class is created.

#include <iostream>

using namespace std;

class B1

{

 public:

  int x;

  B1() : x(5) {}

};

class D1 : public B1 {};

int main()

{

  D1 d; // calls parameterless constructors of D1 and B1

  cout << d.x; // "5"

}

If there is no default constructor in the base class, the derived class 

must call an appropriate base class constructor. The call to the base 

constructor can be made explicitly from the derived constructor, by 

placing it in the constructor’s initializer list. This allows arguments to be 

passed along to the base constructor.

class B2

{

 public:

  int x;

  B2(int a) : x(a) {}

};
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class D2 : public B2

{

 public:

  D2(int i) : B2(i) {} // call base constructor

};

An alternative solution in this case is to inherit the constructor. As of 

C++11, this can be done through a using statement.

class D2 : public B2

{

 public:

  using B2::B2; // inherit all constructors from B2

  int y { 0 };

};

int main()

{

  D2 d(3); // call inherited B2 constructor

  cout << d.x; // "3"

}

Note that the base class constructor cannot initialize fields defined in 

the derived class. Therefore, any fields declared in the derived class should 

initialize themselves. This is done here using the uniform notation.

�Multiple Inheritance
C++ allows a derived class to inherit from more than one base class. This 

is called multiple inheritance. The base classes are then specified in a 

comma-separated list.
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class Person {};

class Employee {};

class Teacher: public Person, public Employee {};

Multiple inheritance is not commonly used since most real-world 

relationships can be better described by single inheritance. It also tends to 

significantly increase the complexity of the code.
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CHAPTER 15

Overriding
A new method in a derived class can redefine a method in a base class in 

order to give it a new implementation.

�Hiding Derived Members
In the following example, Rectangle’s getArea method is redeclared in 

Triangle with the same signature. The signature includes the name, 

parameter list, and return type of the method.

class Rectangle

{

 public:

  int x, y;

  Rectangle(int x, int y) : x(x), y(y) {}

  double getArea() { return x * y; }

};

class Triangle : public Rectangle

{

 public:

  Triangle(int a, int b) : Rectangle(a,b) {}

  double getArea() { return x * y / 2; }

};
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If a Triangle object is created and the getArea method is invoked, 

then Triangle’s version of the method will get called.

Triangle t { 2,3 }; // uniform initialization

t.getArea(); // 3 (2*3/2) calls Triangle's version

However, if the Triangle is upcast to a Rectangle, then Rectangle’s 

version will get called instead.

Rectangle& r = t; // upcast

r.getArea(); // 6 (2*3) calls Rectangle's version

That is because the redefined method has only hidden the inherited 

method. This means that Triangle’s implementation is redefined 

downward in the class hierarchy to any child classes of Triangle, but not 

upward to the base class.

�Overriding Derived Members
In order to redefine a method upward in the class hierarchy—what is 

called overriding—the method needs to be declared with the virtual 

modifier in the base class. This modifier allows the method to be 

overridden in derived classes.

class Rectangle

{

 public:

  int x, y;

  virtual int getArea() { return x * y; }

};

Calling the getArea method from Rectangle’s interface will now 

invoke Triangle’s implementation. This is called polymorphism—when 

a method call causes a different method to be executed depending on the 
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type of object that invokes the method. Note that polymorphism requires 

the use of references or pointers.

Triangle t { 2,3 };

Rectangle& r = t;

r.getArea(); // 3 (2*3/2) calls Triangle's version

C++11 added the override specifier, which indicates that a method is 

intended to replace an inherited method. Using this specifier allows the 

compiler to check that there is a virtual method with that same signature. 

This prevents the possibility of accidentally creating a new virtual method 

in a derived class. It is recommended to always include this specifier when 

overriding methods.

class Triangle : public Rectangle

{

 public:

  virtual double getArea() override { return x * y / 2; }

};

Another specifier introduced in C++11 is final. This specifier prevents 

a virtual method from being overridden in derived classes. It also prevents 

derived classes from using that same method signature.

class Base

{

  virtual void foo() final {}

};

class Derived : public Base

{

  void foo() {} // error: Base::foo marked as final

};
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The final specifier can also be applied to a class to prevent any class 

from inheriting it.

class B final {};

class D : B {}; // error: B marked as final

�Base Class Scoping
It is still possible to access a redefined method from a derived class by 

typing the class name followed by the scope resolution operator. This 

is called base class scoping and can be used to allow access to redefined 

methods that are any number of levels deep in the class hierarchy.

class Triangle : public Rectangle

{

 public:

  Triangle(int a, int b) { x = a; y = b; }

  int getArea() override { return Rectangle::getArea() / 2; }

};

�Pure Virtual Functions
Sometimes a base class knows that all derived classes must implement 

a certain method, but the base class cannot provide a default 

implementation for that method. The base class can then declare the 

method as a pure virtual function, by assigning it the value zero, in order to 

force deriving classes to implement this method.

class Shape

{

 public:

  virtual double getArea() = 0; // pure virtual function

};
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A class with one or more pure virtual functions is called an abstract 

class since it is incomplete and therefore cannot be instantiated. Abstract 

classes are mainly used for upcasting, so that deriving classes can use its 

interface through a pointer or reference type.

#include <iostream>

class Rectangle : public Shape

{

 public:

  int x = 1, y = 2;

  virtual int getArea() override { return x * y; }

};

void printArea(Shape& s) {

  std::cout << s.getArea();

}

int main()

{

  Rectangle r;

  printArea(); // "2"

}

A class consisting of only pure virtual functions is known as an 

interface. Such a class is functionally the same as an interface in other 

languages such as C# or Java.
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CHAPTER 16

Access Levels
Every class member has an accessibility level that determines where the 

member will be visible. There are three of them available in C++: public, 

protected, and private. The default access level for class members is 

private. To change the access level for a section of a class, an access 

modifier is used, followed by a colon. Every field or method that comes 

after this label will have the specified access level, until another access 

level is set or the class declaration ends.

class MyClass

{

 int myPrivate;

public:

 int myPublic;

 void publicMethod();

};

�Private Access
All members regardless of their access level are accessible in the class in 

which they are declared, which is called the enclosing class. This is the 

only place where private members can be accessed.
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class MyClass

{

  // Unrestricted access

  public: int myPublic;

  // Defining or derived class only

  protected: int myProtected;

  // Defining class only

  private: int myPrivate;

 void test()

 {

  myPublic = 0; // allowed

  myProtected = 0; // allowed

  myPrivate = 0; // allowed

 }

};

�Protected Access
A protected member can also be accessed from inside a derived class, but 

it cannot be reached from an unrelated class.

class MyChild : public MyClass

{

  void test()

  {

    myPublic = 0; // allowed

    myProtected = 0; // allowed

    myPrivate = 0; // inaccessible

  }

};

Chapter 16  Access Levels



101

�Public Access
Public access gives unrestricted access from anywhere in the code.

class OtherClass

{

  void test(MyClass& c)

  {

    c.myPublic = 0; // allowed

    c.myProtected = 0; // inaccessible

    c.myPrivate = 0; // inaccessible

  }

};

�Access Level Guideline
As a guideline, when choosing an access level, it is generally best to use the 

most restrictive level possible. This is because the more places a member 

can be accessed, the more places it can be accessed incorrectly, which 

makes the code harder to debug. Using restrictive access levels will also 

make it easier to modify the class without breaking the code for any other 

programmers using that class.

When coding in the real world, fields should always be private and 

only exposed through public or protected getter and setter methods. This 

makes it easier to ensure that fields are accessed correctly, as the setter 

can check that the assigned value is valid for the specific field. By leaving 

out either the getter or setter method, a field may also be restricted to only 

write or read access from outside the class.
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class Person

{

 private:

  int age;

 public:

  // Setter

  void setAge(int a)

  {

    if (age > 200) age = 200;

    else if (age < 0) age = 0;

    else age = a;

  }

  // Getter

  int getAge()

  {

    return age;

  }

};

�Friend Classes and Functions
A class can be allowed to access the private and protected members of 

another class by declaring that class a friend. This is done by using the 

friend modifier. The friend is allowed to access all members in the class 

where the friend is defined, but not the other way around.

class MyClass

{

  int myPrivate;
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  // Give OtherClass access

  friend class OtherClass;

};

class OtherClass

{

  void test(MyClass& c) {

    c.myPrivate = 0; // allowed

  }

};

Likewise, a method of another class may be marked as a friend to allow 

it to access all members in the defining class.

class MyClass;

class OtherClass

{

 public:

  void test(MyClass& c);

  void test2(MyClass& c);

};

class MyClass

{

  int myPrivate;

  friend void OtherClass::test(MyClass&);

};

void OtherClass::test(MyClass& c) {

  c.myPrivate = 0; // allowed

}

void OtherClass::test2(MyClass& c) {

  c.myPrivate = 0; // not allowed

}

Chapter 16  Access Levels



104

A global function can also be declared as a friend to a class in order to 

gain the same level of access.

class MyClass

{

  int myPrivate;

  // Give myFriend access

  friend void myFriend(MyClass& c);

};

void myFriend(MyClass& c) {

  c.myPrivate = 0; // allowed

}

�Public, Protected, and Private Inheritance
When a class is inherited in C++, it is possible to change the access level 

of the inherited members. Public inheritance allows all members to keep 

their original access level. Protected inheritance reduces the access of 

public members to protected. Private inheritance restricts all inherited 

members to private access.

class MyChild : private MyClass

{

  // myPublic is private

  // myProtected is private

  // myPrivate is private

};

Private is the default inheritance level, although public inheritance is 

the one that is nearly always used.
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CHAPTER 17

Static
The static keyword is used to create class members that exist in only 

one copy, which belongs to the class itself. These members are shared 

among all instances of the class. This is different from instance (non-static) 

members, which are created as new copies for each new object.

�Static Fields
A static field (class field) is initialized outside of the class declaration. This 

initialization will take place only once, and the static field will then remain 

initialized throughout the life of the application.

class MyCircle

{

 public:

  double r; // instance field (one per object)

  static double pi; // static field (only one copy)

};

double MyCircle::pi = 3.14159;

To access a static member from outside the class, the name of the class 

is used followed by the scope resolution operator and the static member’s 

name. This means that there is no need to create an instance of a class in 

order to access its static members.
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int main()

{

  double p = MyCircle::pi;

}

There are two exceptions to the rule that all fields must be initialized 

outside of the class. First exception is if the static field is of an integral 

or enum type and it is declared as a constant, using the const modifier. 

Second exception is if the field uses the inline modifier, a feature which 

was introduced in C++17.

class MyClass

{

  static inline double myDouble = 1.23;

  static const int myInt = 1;

};

�Static Methods
In addition to fields, methods can also be declared as static, in which 

case they can also be called without having to create an instance of the 

class. However, because a static method is not part of any instance, it 

cannot use instance members as it does not have an implicit this pointer. 

Methods should therefore only be declared static if they perform a 

generic function that is independent of any instance variables. Instance 

methods, in contrast to static methods, can use both static and instance 

members.

class MyCircle

{

 public:

  double r;

  static inline double pi = 3.14159;
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  double getArea() { return pi * r * r; }

  static double newArea(double a) { return pi * a * a; }

};

int main()

{

  double a = MyCircle::newArea(1);

}

�Static Local Variables
Local variables inside a function can be declared as static to make the 

function remember the variable for the lifetime of the application. A static 

local variable is only initialized once when execution first reaches the 

declaration, and that declaration is then ignored every subsequent time 

the execution passes through.

void myFunc()

{

  static int count = 0; // holds # of calls to function

  count++;

}

�Static Global Variables
One last place where the static keyword can be applied is to global 

variables. This will limit the accessibility of the variable to only the current 

source file and can therefore be used to help avoid naming conflicts.

// Only visible within this source file

static int myGlobal;
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This application of static is seldom used. The preferred way to limit 

code entities to a single source file is to enclose them in an unnamed 

namespace.

namespace

{

  // Only visible within this source file

  int myGlobal;

}
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CHAPTER 18

Enum Types
An enum is a user-defined type consisting of a fixed list of named 

constants. In the following example, the enumeration type is called Color, 

and it contains three constants: red, green, and blue.

enum class Color { red, green, blue };

The Color type can be used to create variables that may hold one of 

these constant values. Enum class constants must be prefixed with the 

enum name as seen here.

int main()

{

  Color c = Color::red;

}

�Enum Example
The switch statement provides a good example of when enumerations can 

be useful. Compared to using ordinary constants, the enumeration has the 

advantage in that it allows the programmer to clearly specify what values a 

variable should be allowed to contain.
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switch(c)

{

  case Color::red:   break;

  case Color::green: break;

  case Color::blue:  break;

}

�Enum Constant Values
Usually, there is no need to know the underlying values that the constants 

represent, but in some cases, it can be useful. By default, the first constant 

in the enum list has the value zero, and each successive constant is one 

value higher.

enum class Color

{

  red,   // 0

  green, // 1

  blue   // 2

};

These default values can be overridden by assigning values to the 

constants. The values can be computed and do not have to be unique. A 

constant that is not assigned a value will have a value one higher than the 

previous assigned enum value.

enum class Color

{

  red = 5, // 5

  green = red, // 5

  blue  = green + 2, // 7

  yellow // 8

};
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�Enum Scope
An enum does not have to be declared globally. It can also be placed 

within a class as a class member or locally within a function.

class MyClass

{

  enum class Color { red, green, blue };

};

void myFunction()

{

  enum class Color { red, green, blue };

}

�Weakly Typed Enums
The enum class type described so far was introduced in C++11 to provide 

a safer alternative to the weakly typed enum inherited from C. This legacy 

enum is defined in the same way as the enum class, but without the class 

keyword.

// Weakly typed enum

enum Speed

{

 fast,

 normal,

 slow

};

With this weakly typed enum, the specified constants do not belong 

within the scope of the enum name. Such an enum constant can therefore 

be referenced even without qualifying it with the enum name.
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Speed s1 = fast;

Speed s2 = Speed::normal;

It is preferable to use enum classes rather than weakly typed enums 

because of their type safety and because their constants are scoped to the 

enum name. Since enum classes are strongly typed, they will not implicitly 

convert to integer types.

// Weakly typed enum

enum Speed { fast, normal, slow };

Speed s = fast;

if (s == fast) {} // ok

if (s == 0) {} // ok

// Strongly typed enum

enum class Color { red, green, blue };

Color c = Color::red;

if (c == Color::red) {} // ok

if (c == 0) {} // error

C++20 added the ability to import an enum class into the local scope 

with a using statement. This avoids needless repetition of the enum class 

name, by making the enum class members accessible like regular enum 

members within a specific scope. Be sure not to import enums into a too 

large scope, else the main advantage of using strongly typed enums is lost.

#include <iostream>

using namespace std;

enum class Color { red, green, blue };

void colorPrint(Color c)

{

  // Import enum members to local scope

  using enum Color;

  switch (c)
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  {

    case red: cout << "red";

    case green: cout << "green";

    case blue: cout << "blue";

  }

}

�Enum Constant Type
The underlying integer type of the regular enum is not defined by the 

standard and may vary between implementations. In contrast, an enum 

class always uses the int type by default. For both types of enums, the type 

can be overridden to another integer type, as in the following example.

// Enum with constant type set to unsigned short

enum class MyEnum : unsigned short {};
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CHAPTER 19

Structs and Unions
�Structs
A struct in C++ is equivalent to a class, except that members of a struct 

default to public access, instead of private access as in classes. By 

convention, structs are used instead of classes to represent simple data 

structures that mainly contain public fields.

struct Point

{

  int x, y; // public

};

class Point

{

  int x, y; // private

};

�Struct Initialization
To declare objects of a struct, you use the normal declaration syntax.

Point p, q; // object declarations
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Another alternative syntax sometimes used with structs (and classes) 

is to declare the objects when the struct is defined by placing the object 

names before the final semicolon. This position is known as the declarator 

list and can contain a comma-separated sequence of declarators.

struct Point

{

  int x, y;

} r, s; // object declarations

When using object declarations, the name of the struct may optionally 

be omitted. This is called an anonymous struct.

struct

{

  int x, y;

} r, s;

Aggregate initialization is also commonly used with structs, since this 

syntactical shortcut only works for the aggregate types: array, class, struct, 

and union. For this initialization to work, the type must not include any 

private or protected non-static fields.

int main()

{

  // Aggregate initialization

  Point p = { 2, 3 };

}

For compilers supporting C++11 or later versions, the uniform 

initialization syntax is preferred, as it removes the distinction between 

initialization of aggregate and non-aggregate types.
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int main()

{

  // Uniform initialization

  Point q { 2, 3 };

}

�Union
Although similar to struct, the union type is different in that all fields share 

the same memory position. Therefore, the size of a union is the size of 

the largest field it contains. For example, in the following case, this is the 

integer field, which is four bytes large.

union Mix

{

  char c;  // 1 byte

  short s; // 2 bytes

  int i;   // 4 bytes

} m;

This means that the union type can be used to store only one value at a 

time, because changing one field will overwrite the values of the others.

int main()

{

  m.c = 0xFF; // set first 8 bits

  m.s = 0; // reset first 16 bits

}

The benefit of a union, in addition to efficient memory usage, is that 

it provides multiple ways of viewing the same memory location. For 

example, the following union has three data members that allow access to 

the same group of four bytes in multiple ways.
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union Mix

{

  char c[4];                  // 4 bytes

  struct { short hi, lo; } s; // 4 bytes

  int i;                      // 4 bytes

} m;

The integer field will access all four bytes at once. With the struct, two 

bytes can be viewed at a time, and by using the char array, each byte can 

be referenced individually.

int main()

{

  // Set i = 11111111 00000000 11110000 00001111

  m.i=0xFF00F00F;

  m.s.lo; // 11111111 00000000

  m.s.hi; //                   11110000 00001111

  m.c[3]; // 11111111

  m.c[2]; //          00000000

  m.c[1]; //                   11110000

  m.c[0]; //                            00001111

}

�Anonymous Union
A union type can be declared without a name for the type or the object. 

This is called an anonymous union and defines an unnamed object whose 

members can be accessed directly from the scope where the object is 

declared. Unlike regular unions, an anonymous union cannot contain 

methods or nonpublic members.
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int main()

{

  union { short s; }; // defines an unnamed union object

  s = 15;

}

An anonymous union that is declared globally must be made static.

static union {};
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CHAPTER 20

Operator Overloading
Operator overloading allows operators to be redefined and used where 

one or both of the operands are of a user-defined class. When it’s done 

correctly, this can simplify the code and make user-defined types as easy to 

use as the primitive types.

In the following example, there is a class called MyNum with an integer 

field and a constructor for setting that field. The class also has a method 

that adds two MyNum objects and returns the result as a new object.

class MyNum

{

  int val;

 public:

  MyNum(int i) : val(i) {}

  MyNum add(const MyNum &a) const {

    return MyNum( val + a.val );

  }

};

As seen here, two MyNum instances can be added together using this 

method.

MyNum a = MyNum(10),

      b = MyNum(5);

MyNum c = a.add(b);
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�Binary Operator Overloading
What operator overloading does is simplify this syntax and thereby provide 

a more intuitive interface for the class. To convert the add method to an 

overload for the addition sign, replace the name of the method with the 

operator keyword followed by the operator that is to be overloaded. The 

whitespace between the keyword and the operator can optionally be left 

out.

MyNum operator + (const MyNum &a) const {

  return MyNum( val + a.val );

}

Since the class now overloads the addition sign, this operator can be 

used to perform the needed calculation.

MyNum c = a + b;

Keep in mind that the operator is simply an alternative syntax for 

calling the actual method.

MyNum d = a.operator+(b);

�Unary Operator Overloading
Addition is a binary operator, because it takes two operands. The first 

operand is the object from which the method is called, and the second 

operand is that which is passed to the method. When overloading a unary 

operator, such as prefix increment (++), there is no need for a method 

parameter since these operators only affect the object from which they are 

called. With unary operators, a reference of the same type as the object 

should always be returned. This is because, when using a unary operator 

on an object, programmers expect the result to return the same object 

and not just a copy. On the other hand, when using a binary operator, 
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programmers expect a copy of the result to be returned, and therefore 

return by value should be used.

// Increment prefix

MyNum& operator++()

{

  ++val;

  return *this;

}

Not all unary operators should return by reference. The two postfix 

operators—post-increment and post-decrement—should instead return 

by value, because the postfix operations are expected to return the state of 

the object before the increment or decrement occurs. Note that the postfix 

operators have an unused int parameter specified. This parameter is used 

to distinguish them from the prefix operators.

// Increment postfix

MyNum operator++(int)

{

  MyNum t = MyNum(val);

  ++val;

  return t;

}

�Comparison Operator Overloading
The three-way comparison operator (<=>) was added in C++20 to provide 

a simple way to overload the four comparison operators <, >, <=, and >=. 

When used on a whole number type, as in the following example, the 

operator returns an object representing either equal, less, or greater.
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#include <compare> // std::strong_ordering

class Length

{

 public:

  int i;

  std::strong_ordering operator<=>(const Length& right) const {

    return i <=> right.i;

  }

};

With this operator defined, the compiler automatically generates all 

four comparison operators based on this method.

int main()

{

  Length n1 { 1 }, n2 { 2 };

  bool b = n1 < n2; // true

}

The following example illustrates how the resulting object from the 

three-way comparison operator can be used.

#include <compare>

#include <iostream>

int main()

{

  int x = 5;

  auto result = x <=> 0;

  if (result > 0) { // true

    cout << "5 > 0";

  }

}
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Another feature of C++20 is that the compiler will generate the 

inequality operator (!=) if the equality operator (==) is defined. As to 

be expected, the inequality operator returns the inverse of the equality 

operator.

class Length

{

 public:

  int i;

  bool operator==(const Length& other) const {

    return i == other.i;

  }

};

int main()

{

  Length m1 { 1 }, m2 { 2 };

  bool b1 = m1 == m2; // false

  bool b2 = m1 != m2; // true

}

Any of the four comparison operators (<, >, <=, and >=), as well as equal 

to (==) and the three-way comparison operator (<=>), can be explicitly 

defaulted. This will make the compiler automatically implement the 

specified comparison method, which will compare the fields of the class 

in the order in which they are defined, stopping early when a non-equal 

result is found. The return type, the type of ordering, is automatically 

deduced based on the return type of the three-way comparison operator. 

If the operator is defaulted, as seen in the following, the compiler will 

generate all six of the comparison operators (<, >, <=, >=, ==, and !=).
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#include <compare>

class Point

{

  int x, y;

 public:

  auto operator<=>(const Point&) const = default;

};

int main()

{

  Point p1 { 1, 10 }, p2 { 2, 0 };

  bool b = p1 < p2; // true (p1.x < p2.x)

}

�Overloadable Operators
C++ allows overloading almost all operators in the language. As can be 

seen in the following table, most operators are of the binary type. Only a 

few of them are unary, and some special operators cannot be categorized 

as either. There are also some operators that cannot be overloaded at all.

Binary Operators Unary Operators

+ - * / % + - ! ~ & * ++ --

= += -= *= /= %= Special operators

&= ^= |= <<= >>= ( ) [ ] delete new

== != > < >= <= <=> Not overloadable

& | ^ << >> && || . .* :: ?: # ## sizeof typeid alignof 

noexcept

–> –>* ,
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CHAPTER 21

Custom Conversions
Custom type conversions can be defined to allow an object to be 

constructed from or converted to another type. In the following example, 

there is a class called MyNum with a single integer field. With conversion 

constructors, it is possible to allow integer types to be implicitly converted 

to this object’s type.

class MyNum

{

  int value;

};

�Implicit Conversion Constructor
For this type of conversion to work, a constructor needs to be added that 

takes a single parameter of the desired type, in this case an int.

class MyNum

{

 public:

  MyNum(int i) : value(i) {}

 private:

  int value;

};
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When an integer is assigned to an object of MyNum type, this 

constructor will implicitly be called to perform the type conversion.

MyNum a = 5; // implicit conversion

This means that any constructor that takes exactly one argument can 

be used both for constructing objects and for performing implicit type 

conversions to that object type.

MyNum b(5); // object construction

MyNum c = 5; // implicit conversion

These conversions will work not only for the specific parameter type 

but also for any type that can be implicitly converted to it. For example, a 

char can be implicitly converted to an int and can therefore be implicitly 

changed into a MyNum object as well.

MyNum d = 'H'; // implicit conversion (char->int->MyNum)

When using braced initializers, even constructors with multiple 

parameters can be converting constructors. In the following example, an 

integer list is implicitly converted to a Point.

class Point

{

 public:

  Point(int x, int y) : x(x), y(y) {}

 private:

  int x, y;

};

int main()

{

  Point p = { 1,2 };

}
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�Explicit Conversion Constructor
To help prevent potentially unintended object type conversions, it is 

possible to disable the implicit use of converting constructors. The 

explicit constructor modifier is then applied, which specifies that the 

constructor may only be used for object construction and not for type 

conversion.

class MyNum

{

 public:

  int value;

  explicit MyNum(int i) { value = i; }

};

The explicit constructor syntax or an explicit conversion must be used 

when creating an object of this type.

MyNum a = 5; // error

MyNum b(5); // allowed

MyNum c = MyNum(5); // allowed

MyNum d = static_cast<MyNum>(5); // allowed

�Conversion Operators
Custom conversion operators allow conversions to be specified in the 

other direction: from the object’s type to another type. The operator 

keyword is then used, followed by the target type, a set of parentheses, 

and a method body. The body returns a value of the target type, in this 

case int.
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class MyNum

{

 public:

  int value;

  operator int() { return value; }

};

When objects of this class are evaluated in an int context, this 

conversion operator will be called to perform the type conversion.

MyNum a { 5 };

int i = a; // 5

�Explicit Conversion Operators
The C++11 standard added explicit conversion operators to the language. 

Similar to explicit constructors, the inclusion of the explicit keyword 

prevents the conversion operator from being implicitly called.

class True

{

 public:

  explicit operator bool() const {

    return true;

  }

};

This class provides a Boolean value that prevents its objects from 

mistakenly being used in a mathematical context through the bool 

conversion operator. In the next example, the first comparison results in a 

compilation error since the bool conversion operator cannot be implicitly 

called. The second comparison is allowed because the conversion 

operator is explicitly called through the type cast.
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True a, b;

if (a == b) {} // error

if (static_cast<bool>(a) == static_cast<bool>(b)) {} // allowed

Bear in mind that contexts requiring a bool value, such as the 

condition for an if statement, count as explicit conversions.

if (a) {} // allowed
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CHAPTER 22

Namespaces
Namespaces are used to avoid naming conflicts by allowing entities, such 

as classes and functions, to be grouped under a separate scope. In the 

following code, there are two classes that belong to the global scope. Since 

both classes share the same name and scope, the code will not compile.

class Table {};

class Table {}; // error: class type redefinition

One way to solve this problem is to rename one of the conflicting 

classes. Another solution is to group one or both of them under a different 

namespace by enclosing each in a namespace block. The classes then 

belong to different scopes and so will no longer cause a naming conflict.

namespace furniture

{

  class Table {};

}

namespace html

{

  class Table {};

}
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�Accessing Namespace Members
To access a member of a namespace from outside that namespace, you 

must specify the member’s fully qualified name. This means that the 

member name has to be prefixed with the namespace it belongs to, 

followed by the scope resolution operator.

int main()

{

  furniture::Table fTable;

  html::Table hTable;

}

�Nesting Namespaces
It is possible to nest namespaces any number of levels deep to further 

structure code entities.

namespace furniture

{

  namespace wood { class Table {}; }

}

As of C++17, the nesting of namespaces can be shortened in the 

following manner.

namespace furniture::wood { class Table {}; }

Ensure that the nested namespace members are qualified with the full 

namespace hierarchy when using them from another namespace.

furniture::wood::Table fTable;
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�Importing Namespaces
To avoid having to specify the namespace every time one of its members is 

used, the namespace can be imported into the global or local scope with 

the help of a using directive. This directive includes the using namespace 

keywords followed by the namespace to be imported. It can be placed 

either locally or globally. Locally, the directive will only be in scope until 

the end of the code block, while at the global scope, it will apply to the 

whole source file following its declaration.

using namespace html; // global namespace import

int main()

{

  using namespace html; // local namespace import

}

Keep in mind that importing a namespace into the global scope 

defeats the main purpose of using namespaces, which is to avoid naming 

conflicts. Such conflicts, however, are mainly an issue in projects that use 

several independently developed code libraries.

�Namespace Member Import
If you want to avoid both typing the fully qualified name and importing 

the whole namespace, there is a third alternative available. That is to only 

import the specific members that are needed from the namespace. This 

is done by declaring one member at a time in a using declaration, which 

consists of the using keyword followed by the fully qualified namespace 

member to be imported.

using html::Table; // import a single namespace member

Chapter 22  Namespaces



136

�Namespace Alias
Another way to shorten the fully qualified name is to create a namespace 

alias. The namespace keyword is then used followed by an alias name, to 

which the fully qualified namespace is assigned.

namespace myAlias = furniture::wood; // namespace alias

This alias can then be used instead of the namespace qualifier that it 

represents.

myAlias::Table fTable;

Note that namespace aliases, as well as using directives and using 

declarations, may be declared either globally or locally.

�Type Alias
Aliases can also be created for types. A type alias is defined with a using 

statement. With this syntax, the keyword using is followed by the alias 

name and then assigned the type.

using MyType = furniture::wood::Table;

The alias can then be used as a synonym for the specified type.

MyType t;

Before using statements were introduced in C++11, type aliases 

were defined with typedef. In such a statement, the typedef keyword is 

followed by the type name and then the alias name. Both methods for 

declaring aliases are equivalent, but the using statement is preferred as it is 

considered easier to read than the typedef statement.

typedef furniture::wood::Table MyType;
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Aliases should be used with care since they may obfuscate the code. 

However, if used properly, a type alias can simplify a long or confusing type 

name. Another function they provide is the ability to change the definition 

of a type from a single location.

�Including Namespace Members
Keep in mind that in C++ merely importing a namespace does not provide 

access to the members included in that namespace. In order to access the 

namespace members, the prototypes also have to be made available, for 

example, by using the appropriate #include directives.

// Include input/output prototypes

#include <iostream>

// Import standard library namespace to global scope

using namespace std;
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CHAPTER 23

Constants
A constant is a variable that has a value that cannot be changed once the 

constant has been assigned. This allows the compiler to enforce that the 

variable’s value is not changed anywhere in the code by mistake.

�Constant Variables
A variable can be made into a constant by adding the const keyword 

either before or after the data type. This modifier means that the variable 

becomes read-only, and it must therefore be assigned a value at the same 

time as it is declared. Attempting to change the value anywhere else results 

in a compile-time error.

const int var = 5;

int const var2 = 10; // alternative order

�Constant Pointers
When it comes to pointers, const can be used in two ways. First, the 

pointer can be made constant, which means that it cannot be changed to 

point to another location.

int myPointee;

int* const p = &myPointee; // pointer constant
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Second, the pointee can be declared constant. This means that the 

variable pointed to cannot be modified through this pointer.

const int* q = &myPointee; // pointee constant

It is possible to declare both the pointer and the pointee as constant 

to make them both read-only. Reading the type from right to left makes it 

easier to understand, so in this case: r is a const pointer to a const int.

const int* const r = &myPointee; // pointer & pointee constant

Note that constant variables may not be pointed to by a non-constant 

pointer. This prevents programmers from accidentally rewriting a constant 

variable using a pointer.

const int myConst = 3;

int* s = &myConst; // error: const to non-const assignment

�Constant References
References can be declared constant in the same way as pointers. However, 

since reseating a reference is never allowed, declaring the reference as 

const would be redundant. It only makes sense to protect the referee from 

changing.

const int& y = myPointee; // referee constant

�Constant Objects
Just as with variables, pointers, and references, objects can also be 

declared constant. Take the following class as an example.
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class MyClass

{

 public:

  int x;

  void setX(int a) { x = a; }

};

A constant object of this class cannot be reassigned to another 

instance. The const-ness of an object also affects its fields and prevents 

them from being changed.

const MyClass a, b;

a = b;    // error: object is const

a.x = 10; // error: object field is const

�Constant Methods
Because of this last restriction, a non-constant method cannot be called on 

a constant object since such methods are allowed to change the object’s 

fields.

a.setX(2); // error: cannot call non-const method

They may only call constant methods, which are methods that are 

marked with the const modifier before the method body.

int getX() const { return x; } // constant method

This const modifier means that the method is not allowed to modify 

the state of the object and can therefore safely be called from a constant 

object of the class. More specifically, the const modifier applies to the this 

pointer that is implicitly passed to the method. This effectively restricts 

the method from modifying the object’s fields or calling any non-constant 

methods in the class.
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�Constant Return Type and Parameters
In addition to making a method constant, the return type and method 

parameters may also be made read-only. For example, if a field is returned 

by reference instead of by value from a constant method, it is important 

that it is returned as a constant in order to maintain the const-ness of the 

object. Not all C++ compilers will be able to catch this subtle mistake.

const int& getX() const { return x; }

Objects should always be passed to and returned from functions and 

methods by const reference. This improves performance as it prevents 

unnecessary copies from being made.

�Constant Fields
Both static and instance fields in a class can be declared constant. A 

constant instance field must be assigned its value using either in-class 

initializers or the constructor initialization list.

class MyClass

{

 public:

  int a;

  const int b;

  const int c = 3;

  MyClass() : a(1), b(2) {}

};

A constant static field has to be defined outside of the class declaration, in 

the same way as non-constant static fields. The exception to this is when the 

constant static field is either inline or of an integer data type. Such a field may 

also be initialized within the class at the same time as the field is declared.
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class MyClass

{

 public:

  const static double c1;

  const inline static double c2 = 1.23;

  const static int c3 = 5;

};

const double MyClass::c1 = 1.23;

�Constant Expressions
The keyword constexpr was introduced in C++11 to indicate a constant 

expression. Like const it can be applied to variables to make them 

constant, causing a compilation error if any code attempts to modify the 

value.

constexpr int myConst = 5;

myConst = 3; // error: variable is const

Unlike const variables, which may be assigned at runtime, a constant 

expression variable will always be computed at compile time. Such a 

variable can therefore be used whenever a compile-time constant is 

needed, such as in array or enum declarations. Prior to C++11, this was 

only allowed for constant integer and enumeration types.

int myArray[myConst + 1]; // allowed

Functions and class constructors may also be defined as constant 

expressions, which is not allowed with const. Using constexpr on a 

function limits what the function is allowed to do. In short, the function 

can only reference other constexpr functions and global constexpr 

variables.
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constexpr int getDefaultSize(int multiplier)

{

  return 3 * multiplier;

}

The return value for a constexpr function is guaranteed to be 

evaluated at compile time only when its arguments are constant 

expressions, and the return value is used where a compile-time constant is 

necessary.

// Compile-time evaluation

int myArray[getDefaultSize(10)];

If the function is called without constant arguments, it returns a value 

at runtime just like a regular function.

// Runtime evaluation

int mul = 10;

int size = getDefaultSize(mul);

As of C++17, a lambda expression is implicitly constexpr if it satisfies 

the conditions of a constexpr function. Such a lambda may therefore also 

be used in a compile-time context.

auto answer = [](int i) { return 10+i; };

constexpr int reply = answer(32); // "42"

Constructors can be declared with constexpr, to construct a constant 

expression object. Such a constructor must be trivial.

class Circle

{

 public:

  int r;

  constexpr Circle(int x) : r(x) {}

};
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When called with a constant expression argument, the result will be 

a compile-time generated object with read-only fields. With any other 

arguments, it will behave as an ordinary constructor.

// Compile-time object

constexpr Circle c1(5);

// Runtime object

int x = 5;

Circle c2(x);

One additional use for constexpr was added in C++17: the ability 

to evaluate conditional statements at compile time. This feature allows 

branches of an if statement to be discarded at compile time based on a 

constant condition, potentially reducing compilation time as well as the 

size of the compiled file.

constexpr int debug = 0;

if constexpr(debug) {

  // Discarded if condition is false

}

Up until C++17, virtual functions could not be defined as constexpr. 

This restriction was lifted in C++20, allowing such virtual functions to be 

called within a constant expression. Note that a constexpr virtual function 

can override a non-constexpr virtual function, as seen in the following 

example.

struct Parent {

  virtual int num() const = 0;

};

struct Child: public Parent {

  constexpr virtual int num() const { return 3; }

};
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constexpr Child c;

static_assert( c.num() == 3, "num is not 3" );

The static_assert declaration seen here is used to make an assertion at 

compile time. If the assertion fails, which occurs when the condition evaluates 

to false, the compiler halts compilation and displays the error message.

�Immediate Functions
As mentioned previously, the return value of a constexpr function is not 

always required to be evaluated at compile time. For such a purpose, 

C++20 introduced immediate functions. An immediate function is defined 

using the consteval keyword, which designates that the function must 

always return a compile-time constant. Such a function can be used in a 

context requiring a constant expression, as seen in the following example.

consteval int doubleIt(int i) {

  return 2*i;

}

constexpr int a = doubleIt(10);  // ok

int x = 10;

int b = doubleIt(x);  // error: call does not produce a constant

�Constant Guideline
In general, it is a good idea to always declare variables as constants if 

they do not need to be modified. This ensures that the variables are not 

changed anywhere in the program by mistake, which in turn will help 

prevent bugs. There is also a performance gain by allowing the compiler 

the opportunity to hard-code constant expressions into the compiled 

program. This allows the expression to be evaluated only once—during 

compilation—rather than every time the program runs.
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CHAPTER 24

Preprocessor
The preprocessor is a text substitution tool that modifies the source code 

before the compilation takes place. This modification is done according to the 

preprocessor directives that are included in the source files. The directives are 

easily distinguished from other programming code in that they start with a 

hash sign (#). They must always appear as the first non-whitespace character 

on a line, and they do not end with a semicolon. The following table shows 

the preprocessor directives available in C++ along with their functions.

Directive Description

#include File include

#define Macro definition

#undef Macro undefined

#ifdef If macro defined

#ifndef If macro not defined

#if If

#elif Else if

#else Else

#endif End if

#line Set line number

#error Abort compilation

#pragma Set compiler option
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�Including Source Files
The #include directive inserts the contents of a file into the current source 

file. Its most common use is to include header files, both user-defined and 

library ones. Library header files are enclosed between angle brackets (<>). 

This tells the preprocessor to search for the header in the default directory 

where it is configured to look for standard header files.

#include <iostream> // search library directory

Header files that you create for your own program are enclosed 

within double quotes (""). The preprocessor will then search for the file 

in the same directory as the current file. If the header is not found there, 

the preprocessor will then search in the directories where it has been 

configured to look for header files, and after that it will look in the default 

folder for standard header files.

#include "MyFile.h" // search current, configured and default 

directories

The double-quoted form can also be used to specify an absolute or 

relative path to the file, although specifying paths like this is discouraged.

#include "C:\MyFile.h" // absolute path

#include "..\MyFile.h" // relative path

�Define
Another important directive is #define, which is used to create compile-

time constants, also called macros. After this directive, the name of the 

constant is specified followed by what it will be replaced by.

#define PI 3.14 // macro definition
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The preprocessor will go through and change any occurrences of this 

constant with whatever comes after it in its definition until the end of the 

line.

double d = PI; // d = 3.14

By convention, macros are named using uppercase letters with each 

word separated by an underscore. That way they are easy to spot when 

reading the source code.

�Undefine
A #define directive should not be used to directly override a previously 

defined macro. Doing so will produce a compiler warning. In order to 

change a macro, it first needs to be undefined using the #undef directive. 

Attempting to undefine a macro that is not currently defined will not 

generate a warning.

#undef PI // undefine

#undef PI // allowed

�Predefined Macros
There are a number of macros that are predefined by the compiler. To 

distinguish them from user-defined macros, their names typically begin 

and end with two underscores. The following table lists some of the more 

useful predefined macros.
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Directive Description

__FILE__ Name and path of the current source file

__LINE__ Current line number

__DATE__ Compilation date in MMM DD YYYY format

__TIME__ Compilation time in HH:MM:SS format

__func__ Name of the current function; added in C++11

A common use for predefined macros is to provide debugging 

information. To give an example, the following error message includes the 

file name and line number where the message occurs.

cout << "Error in " << __FILE__ << " at line " << __LINE__;

�Macro Functions
Macros can be made to take arguments. This allows them to define 

compile-time functions. For example, the following macro function gives 

the square of its argument.

#define SQUARE(x) ((x)*(x))

The macro function is called just as if it were a regular C++ function. 

Keep in mind that for this kind of function to work, the arguments must be 

known at compile time.

int x = SQUARE(2); // 4

Note the extra parentheses in the macro definition. They are used to 

avoid problems with operator precedence. Without the parentheses, the 

following example would give an incorrect result, as the multiplication 

would then be carried out before the addition.
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#define SQUARE(x) x*x

int main()

{

  int x = SQUARE(1+1); // 1+1*1+1 = 3

}

To break a macro function across several lines, you use the backslash 

character. This will escape the newline character that marks the end of a 

preprocessor directive. For this to work, there must not be any whitespace 

after the backslash.

#define MAX(a,b) \

(a)>(b) ? \

(a): (b)

Although macros can be powerful, they tend to make the code more 

difficult to read and debug. Macros should therefore only be used when 

they are absolutely necessary and should always be kept short. C++ code—

such as constant variables, enum classes, and constexpr functions—can 

often accomplish the same goal more efficiently and safely than #define 

directives can.

#define DEBUG 0

const bool debug = 0;

#define FORWARD 1

#define STOP 0

#define BACKWARD -1

enum class dir { forward = 1, stop = 0, backward = -1 };

#define MAX(a,b) (a)>(b) ? (a): (b)

constexpr int max(int a, int b) { return a>b ? a:b; }
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�Conditional Compilation
The directives used for conditional compilation can include or exclude 

part of the source code if a certain condition is met. First, there is the #if 

and #endif directives, which specify a section of code that will be included 

only if the condition after the #if directive is true. Note that this condition 

must evaluate to a constant expression.

#define DEBUG_LEVEL 3

#if DEBUG_LEVEL > 2

 // ...

#endif

Just as with the C++ if statement, any number of #elif (else if ) 

directives and one final #else directive can be included.

#if DEBUG_LEVEL > 2

 // ...

#elif DEBUG_LEVEL == 2

 // ...

#else

 // ...

#endif

Conditional compilation also provides a useful means of temporarily 

commenting out large blocks of code for testing purposes. This often 

cannot be done with the regular multiline comment since they cannot be 

nested.

#if 0

 /* Removed from compilation */

#endif
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�Compile if Defined
Sometimes, a section of code should be compiled only if a certain macro 

has been defined, irrespective of its value. For this purpose, two special 

operators can be used: defined and !defined (not defined).

#define DEBUG

#if defined DEBUG

 // ...

#elif !defined DEBUG

 // ...

#endif

The same effect can also be achieved using the directives #ifdef and 

#ifndef, respectively. For instance, the #ifdef section is compiled only 

if the specified macro has been previously defined. Note that a macro is 

considered defined even if it has not been given a value.

#ifdef DEBUG

 // ...

#endif

#ifndef DEBUG

 // ...

#endif

�Error
When the #error directive is encountered, the compilation is aborted. This 

directive can be useful to determine whether a certain line of code is being 

compiled. It can optionally take a parameter that specifies the description 

of the generated compilation error.

#error Compilation aborted

Chapter 24  Preprocessor



154

�Line
A less commonly used directive is #line, which can change the line 

number that is displayed when an error occurs during compilation. 

Following this directive, the line number will as usual be increased by 

one for each successive line. The directive can take an optional string 

parameter that sets the file name that will be shown when an error occurs.

#line 5 "myapp.cpp"

�Pragma
The last standard directive is #pragma, or pragmatic information. This 

directive is used to specify options to the compiler, and as such, they are 

vendor specific. To give an example, #pragma message can be used with 

many compilers to output a string to the build window. Another common 

argument for this directive is warning, which changes how the compiler 

handles warnings.

// Show compiler message

#pragma message("Hello Compiler")

// Disable warning 4507

#pragma warning(disable : 4507)

�Attributes
A new standardized syntax was introduced in C++11 for providing 

compiler-specific information in the source code, so-called attributes. 

Attributes are placed within double square brackets and may, depending 

on the attribute, be applied to any code entities. To give an example, a 
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standard attribute added in C++14 is [[deprecated]], which indicates that 

the use of a code entity has become discouraged.

// Mark as deprecated

[[deprecated]] void foo() {}

This attribute allows the compiler to emit a warning whenever such an 

entity is used. A message can be included in this warning to describe why 

the entity has been deprecated.

[[deprecated("foo() is unsafe, use bar() instead")]]

void foo() {}

Another example is the [[noreturn]] attribute, which specifies to the 

compiler that a function will not return to the calling function. This may 

be the case for functions that loop forever, throw exceptions, or exit the 

application.

[[noreturn]] void f()

{

  exit(0); // terminate program

}

The compiler may use this attribute for making optimizations as well 

as providing a warning that any statement following a call to this function 

will be unreachable.
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CHAPTER 25

Exception Handling
Exception handling allows developers to deal with unexpected situations 

that may occur in a program.

�Throwing Exceptions
When a function encounters a situation that it cannot recover from, it can 

generate an exception to signal the caller that the function has failed. This 

is done using the throw keyword followed by whatever it is the function 

wants to signal. When this statement is reached, the function will stop 

executing and the exception will propagate up to the caller where it can be 

caught, using a try-catch statement.

double divide(double x, double y)

{

  if (y == 0) throw 0;

  return x / y;

}

�Try-Catch Statement
The try-catch statement consists of a try block containing code that 

may cause exceptions and one or more catch clauses to handle them. 

In the previous case, an integer is thrown so a catch block needs to be 

included that handles this type of exception. The thrown exception will 
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get passed as an argument to this exception handler, where it can be used 

to determine what has gone wrong with the function. Note that when the 

exception has been handled, the execution will then continue running 

after the try-catch blocks and not after the throw statement.

try {

  divide(10,0);

}

catch(const int& e) {

  cout << "Error code: " << e;

}

An exception handler can catch a thrown expression by value, by 

reference, or by pointer. However, catching by value should be avoided 

since this causes an extra copy to be made. Catching by const reference 

is generally preferable. If the code in the try block can throw more types 

of exceptions, then more catch clauses need to be added to handle them 

as well. Keep in mind that only the handler that matches the thrown 

expression will be executed, and the handlers are tried in the order they 

appear in the code.

catch(const char& e) {

  cout << "Error char: " << e;

}

To catch all types of exceptions, an ellipsis (...) can be used as the 

parameter of catch. This default handler must be placed as the last catch 

statement since no handler placed after it will ever be executed.

catch(...) { cout << "Error"; }
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�Rethrowing Exceptions
If an exception handler cannot recover from an exception, it can be 

rethrown by using the throw keyword with no argument specified. This 

will pass the exception up the call stack until another try-catch block is 

encountered. Be careful however, because if an exception is never caught, 

the program will terminate with a runtime error.

int main()

{

  try {

    try { throw 0; }

    catch(...) { throw; } // rethrow exception

  }

  catch(...) { throw; } // runtime error

}

�Noexcept Specifier
The noexcept specifier indicates that a function is intended not to throw 

any exceptions. The main benefit of using noexcept is that it enables 

certain compiler optimizations, because the specifier allows the program 

to terminate without unwinding the call stack if for any reason an 

exception still occurs.

void foo() noexcept {} // must not throw exceptions

void bar() {} // may throw exceptions

Since C++11, the noexcept specifier may also be used as a compile-

time operator to check if a function is declared to not throw any 

exceptions. Note that as of C++17, the exception specification has become 

a part of the type system, so the noexcept property needs to be included 

when binding a function pointer to such a function.
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void(*pFunc)() noexcept = foo; // function pointer

pFunc(); // call function through pointer

cout << noexcept(pFunc); // "1" (true)

In this example, pFunc is a pointer to a function that takes zero 

arguments and returns void.

�Exception Class
As previously mentioned, any data type can be thrown in C++. However, 

the standard library does provide a base class called exception, which 

is specifically designed to declare objects to be thrown. More specific 

exceptions can be created by deriving from this base class or from other 

exception classes available in the standard library. The exception class 

is defined in the exception header file and is located under the std 

namespace. As seen in the following code, the class can be constructed 

with a string that becomes the exception’s description.

#include <exception>

using namespace std;

void makeError()

{

  throw exception("My Error Description");

}

When catching this exception, the object’s function called what can be 

used to retrieve the description.

try {

  makeError();

}

catch (const exception& e) {

  cout << e.what(); // "My Error Description"

}
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CHAPTER 26

Type Conversions
Converting an expression from one type to another is known as type 

conversion. This can be done implicitly or explicitly.

�Implicit Conversions
An implicit conversion is performed automatically by the compiler when 

an expression needs to be converted into one of its compatible types. For 

example, any conversions between the primitive data types can be done 

implicitly.

long a = 5; // int implicitly converted to long

double b = a; // long implicitly converted to double

These implicit primitive conversions can be further grouped into two 

kinds: promotion and demotion. Promotion occurs when an expression 

gets implicitly converted into a larger type, and demotion occurs when 

converting an expression to a smaller type. Because a demotion can result 

in the loss of precision, these conversions will generate a warning on most 

compilers. If the potential information loss is intentional, the warning can 

be suppressed by using an explicit cast.

// Promotion

long a = 5; // int promoted to long

double b = a; // long promoted to double
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// Demotion

int  c = 10.5; // warning: possible loss of data

bool d = c; // warning: possible loss of data

�Explicit Conversions
The first explicit cast is the one inherited from C, commonly called the 

C-style cast. The desired data type is simply placed in parentheses to the 

left of the expression that needs to be converted. This cast should be 

avoided in modern C++ code.

int c = (int)10.5; // double demoted to int

char d = (char)c; // int demoted to char

�C++ Casts
The C-style cast is suitable for most conversions between the primitive 

data types. However, when it comes to conversions between objects and 

pointers, it can be too powerful. In order to get greater control over the 

different types of conversions possible, C++ introduced four new casts, 

called named casts or new-style casts. These casts are static, reinterpret, 

const, and dynamic cast.

static_cast<new_type> (expression)

reinterpret_cast<new_type> (expression)

const_cast<new_type> (expression)

dynamic_cast<new_type> (expression)

As seen here, their format is to include the cast’s name with the 

new type enclosed in angle brackets followed by the expression to be 

converted in parentheses. These casts allow more precise control over 

how a conversion should be performed, which in turn makes it easier 
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for the compiler to catch conversion errors. In contrast, the C-style cast 

includes the static, reinterpret, and const cast in one operation. That 

cast is therefore more likely to execute subtle conversion errors if used 

incorrectly.

�Static Cast
The static cast performs conversions between compatible types. It is 

similar to the C-style cast, but more restrictive. For example, the C-style 

cast would allow an integer pointer to point to a char.

char c = 10; // 1 byte

int *p = (int*)&c; // 4 bytes

Since this results in a four-byte pointer pointing to one byte of 

allocated memory, writing to this pointer will either cause a runtime error 

or overwrite some adjacent memory.

*p = 5; // runtime error: stack corruption

In contrast to the C-style cast, the static cast will allow the compiler 

to check that the pointer and pointee data types are compatible, which 

allows the programmer to catch this incorrect pointer assignment during 

compilation.

int *q = static_cast<int*>(&c); // compile-time error

�Reinterpret Cast
To force the pointer conversion, in the same way as the C-style cast does in 

the background, the reinterpret cast would be used instead.

int *r = reinterpret_cast<int*>(&c); // forced conversion
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This cast handles conversions between certain unrelated types, such as 

from one pointer type to another incompatible pointer type. It will simply 

perform a binary copy of the data without altering the underlying bit 

pattern. Note that the result of such a low-level operation is system specific 

and therefore not portable. It should be used with caution if it cannot be 

avoided altogether.

�Const Cast
The third C++ cast is the const cast. This one is primarily used to add or 

remove the const modifier of a variable.

const int myConst = 5;

int *nonConst = const_cast<int*>(&myConst); // removes const

Although the const cast allows the value of a constant to be changed, 

doing so is still invalid code that may cause a runtime error. This could 

occur, for example, if the constant was located in a section of read-only 

memory.

*nonConst = 10; // potential runtime error

Const cast is instead used mainly when there is a function that takes 

a non-constant pointer argument, even though it does not modify the 

pointee.

void print(int *p) { std::cout << *p; }

The function can then be passed a constant variable by using a const 

cast.

print(&myConst); // error: cannot convert const int* to int*

print(nonConst); // allowed
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�C-Style and New-Style Casts
Keep in mind that the C-style cast can also remove the const modifier, but 

again since it does this conversion behind the scenes, the C++ casts are 

preferable. Another reason to use the C++ casts is that they are easier to 

find in the source code than the C-style casts. This is important because 

casting errors can be difficult to discover. A third reason for using the 

C++ casts is that they are unpleasant to write. Since explicit conversions 

in many cases can be avoided, this was done intentionally so that 

programmers would look for a different solution.

�Dynamic Cast
The fourth and final C++ cast is the dynamic cast. This cast is only used 

to convert object pointers and object references into other pointers or 

reference types in the inheritance hierarchy. It is the only cast that makes 

sure that the object pointed to can be converted, by performing a runtime 

check that the pointer refers to a complete object of the destination type. 

For this runtime check to be possible, the object must be polymorphic. 

That is, the class must define or inherit at least one virtual function. 

This is because the compiler will only generate the needed runtime type 

information for such objects.

In the following code segment, a MyChild pointer is converted into 

a MyBase pointer using a dynamic cast. This derived-to-base conversion 

succeeds, because the Child object includes a complete Base object.

class MyBase { public: virtual void test() {} };

class MyChild : public MyBase {};

int main()

{

  MyChild *child = new MyChild();
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  MyBase  *base = dynamic_cast<MyBase*>(child); // ok

  // ...

  delete child;

}

The next example attempts to convert a MyBase pointer into a MyChild 

pointer. Since the MyBase object does not contain a complete MyChild 

object, this pointer conversion will fail. To indicate this, the dynamic cast 

returns a null pointer. This gives programmers a convenient way to check 

whether a conversion has succeeded during runtime.

MyBase *base = new MyBase();

MyChild *child = dynamic_cast<MyChild*>(base);

if (child == nullptr) cout << "Null pointer returned";

delete base;

If a reference is converted instead of a pointer, the dynamic cast will 

then fail by throwing a bad_cast exception. This needs to be handled using 

a try-catch statement.

#include <exception>

#include <iostream>

using namespace std;

class MyBase { public: virtual void test() {} };

class MyChild : public MyBase {};

int main()

{

  MyBase *base = new MyBase();

  try {

    MyChild &child = dynamic_cast<MyChild&>(*base);

  }
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  catch(const bad_cast &e) {

  cout << e.what(); // "bad dynamic_cast"

  }

  delete base;

}

�Dynamic or Static Cast
The advantage of using a dynamic cast is that it allows the programmer 

to check whether a conversion has succeeded during runtime. The 

disadvantage is that there is a performance overhead associated with 

doing this check. For this reason, using a static cast would have been 

preferable in the first example, because a derived-to-base conversion will 

never fail.

MyBase *base = static_cast<MyBase*>(child); // ok

However, in the second example, the conversion may either succeed 

or fail. It will fail if the MyBase object contains a MyBase instance, and it will 

succeed if it contains a MyChild instance. In some situations, this may not 

be known until runtime. When this is the case, a dynamic cast is a better 

choice than a static cast.

// Succeeds for a MyChild object

MyChild *child = dynamic_cast<MyChild*>(base);

If the base-to-derived conversion had been performed using a static 

cast instead of a dynamic cast, the conversion would not have failed. 

It would have returned a pointer that referred to an incomplete object. 

Dereferencing such a pointer can lead to runtime errors.

// Allowed, but invalid

MyChild *child = static_cast<MyChild*>(base);
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CHAPTER 27

Smart Pointers
Several smart pointer classes were added in C++11 for managing 

dynamically allocated memory and resources in general. By using these 

container classes, instead of raw pointers, it is no longer necessary to 

manually delete objects created with the new keyword. This simplifies 

coding by helping to prevent memory leaks.

�Unique Pointer
The first smart pointer that we look at is the unique pointer (std::unique_

ptr), which simply acts as a container for a raw pointer. It replaces another 

deprecated smart pointer named auto_ptr, which was removed in C++17. 

Consider the following example on how to use a unique pointer.

#include <memory> // include smart pointers

#include <iostream>

using namespace std;

struct Foo

{

  int val;

  Foo() { cout << "1"; }

  ~Foo() { cout << "3"; }

};
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int main()

{

  unique_ptr<Foo> p(new Foo()); // "1"

  p->val = 2;

  cout << p->val; // "2"

} // "3"

The output of this code is "123" as the pointer is created, used, and 

then destroyed automatically when it goes out of scope. Note that the 

smart pointer is created not through assignment but instead by passing a 

raw pointer to its constructor. Once created, however, the smart pointer is 

used just as a regular pointer, in this case with the arrow operator (->) to 

dereference the pointer and access the member of the object in a single 

operation.

As the name implies, a unique pointer has exclusive ownership of the 

object it points to and therefore cannot be copied. It can, however, transfer 

ownership to another unique pointer using the std::move function. After 

completing such a transfer, the original pointer will automatically be set to 

nullptr.

unique_ptr<Foo> u1(new Foo());

unique_ptr<Foo> u2 = u1; // compile-time error

unique_ptr<Foo> u3 = move(u1); // transfers ownership

�Shared Pointer
In cases where shared ownership of a dynamically allocated object is 

necessary, there is the shared pointer (std::shared_ptr). Unlike the 

unique pointer, a shared pointer can be copied. The memory to the object 

will not be deallocated until the last remaining shared pointer owning the 

object is destroyed, either by going out of scope or by resetting the pointer 

to nullptr manually.

Chapter 27  Smart Pointers



171

shared_ptr<Foo> s1(new Foo());

shared_ptr<Foo> s2 = s1; // extends ownership

s1 = nullptr; // reset pointer

s2 = nullptr; // reset last pointer and delete memory

As of C++14, the use of the new keyword is discouraged in most 

circumstances. Instead, the std::make_unique and std::make_shared 

functions are recommended when allocating dynamic memory.

unique_ptr<Foo> u = make_unique<Foo>();

shared_ptr<int> s = make_shared<int>(10);

Both of these helper methods perform value initialization. Since C++20 

there are also methods available for doing default initialization. This 

avoids unnecessary initialization in situations where the initial value is not 

needed. Type deduction is used here to avoid having to type the type twice.

auto u2 = make_unique_for_overwrite<Foo>();

auto s2 = make_shared_for_overwrite<int>(10);

�Weak Shared Pointer
A weak shared pointer (std::weak_ptr) can be created from a shared 

pointer. Unlike the shared pointer, a weak shared pointer is non-owning, 

meaning that the object will be cleaned up when all shared pointers go 

out of scope, regardless of any weak shared pointers. In order to access 

the referenced object, a weak shared pointer must first be converted into a 

shared pointer using the lock method. Here is an example to illustrate.

#include <memory>

#include <iostream>

using namespace std;

void observe(weak_ptr<int> weak)
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{

  shared_ptr<int> s = weak.lock();

  if (s != nullptr) {

    cout << "Pointer is " << *s << endl;

  }

  else {

    cout << "Pointer has expired" << endl;

  }

}

int main()

{

  shared_ptr<int> s = make_shared<int>(5);

  weak_ptr<int> w = s; // copy pointer without ownership

  observe(w); // "Pointer is 5"

  s = nullptr; // delete managed object

  observe(w); // "Pointer has expired"

}
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CHAPTER 28

Templates
Templates provide a way to make a class, function, or variable operate with 

different data types without having to rewrite the code for each type.

�Function Templates
This example shows a function that swaps two integer arguments.

void swap(int& a, int& b)

{

  int tmp = a;

  a = b;

  b = tmp;

}

To convert this method into a function template that can work with 

any type, the first step is to add a template parameter declaration before 

the function. This declaration includes the template keyword followed by 

the keyword typename and the name of the template type parameter, both 

enclosed between angle brackets. The name of the template parameter 

may be anything, but it is common to name it with a capital T.

template<typename T>
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Alternatively, the keyword class can be used instead of typename. 

They are equivalent in this context.

template<class T>

The second step in creating a function template is to replace the data 

type that will be made generic with the template type parameter.

template<class T>

void swap(T& a, T& b)

{

  T tmp = a;

  a = b;

  b = tmp;

}

�Calling Function Templates
The function template is now complete. To use it, you can call swap as if it 

were a regular function, but with the desired template argument specified 

in angle brackets before the function arguments. Behind the scenes, the 

compiler will instantiate a new function with this template parameter filled 

in, and it is this generated function that will be called from this line.

int a = 1, b = 2;

swap<int>(a,b); // calls int version of swap

Every time the function template is called with a new type, the 

compiler will instantiate another function using the template.

bool c = true, d = false;

swap<bool>(c,d); // calls bool version of swap
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In this example, the swap function template may also be called 

without specifying the template parameter. This is because the compiler 

can automatically determine the type, because the function template’s 

arguments use the template type. However, if this is not the case, or if 

there is a need to force the compiler to select a specific instantiation of 

the function template, the template parameter would then need to be 

explicitly specified within angle brackets.

int e = 1, f = 2;

swap(e,f); // calls int version of swap

�Multiple Template Parameters
Templates can be defined to accept more than one template parameter by 

adding them between the angle brackets separated by commas.

template<class T, class U>

void swap(T& a, U& b)

{

  T tmp = a;

  a = b;

  b = tmp;

}

The second template parameter in this example allows swap to be 

called with two arguments of different types.

int main()

{

  int a = 1;

  long b = 2;

  swap<int, long>(a,b);

  swap(a,b); // alternative

}
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�Class Templates
Class templates allow class members to use template parameters as types. 

They are created in the same way as function templates.

template<class T>

class MyBox

{

 public:

  T a, b;

  MyBox(const T& x, const T& y) : a(x), b(y) {}

};

The compiler can deduce the template type parameters if they are 

based on the arguments passed to a constructor of the class.

int main()

{

  // Without type deduction

  MyBox<int> box(1, 2); // MyBox<int>

  // With type deduction

  MyBox box(2.1, 3.2); // MyBox<double>

}

Another point to remember when using class templates is that if a 

method is defined outside of the class template, that definition must also 

be preceded by the template declaration.

template<class T>

class MyBox

{

 public:

  T a, b;

  void swap();

};
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template<class T>

void MyBox<T>::swap()

{

  T tmp = a;

  a = b;

  b = tmp;

}

Notice that the template parameter is included in the swap template 

function definition after the class name qualifier. This specifies that the 

function’s template parameter is the same as the template parameter of 

the class.

�Non-type Parameters
In addition to type parameters, both class and function templates can also 

have regular function-like parameters. As an example, the unsigned int 

template parameter is used to specify the size of an array.

template<class T, unsigned int N>

class MyBox

{

 public:

  T store[N];

};

When this class template is instantiated, both a type and an integer 

have to be included.

MyBox<int, 5> box;
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�Default Types and Values
Class and function template parameters can be given default values and 

types.

template<class T = int, int N = 5>

To use these defaults, the angle brackets just need to be left empty 

when instantiating the class template.

MyBox<> box;

�Class Template Specialization
If there is a need to define a different implementation for a template 

when a specific type is passed as the template parameter, a template 

specialization can be declared. For example, in the following class 

template, there is a print method that outputs the value of a class template 

field.

#include <iostream>

template<class T>

class MyBox

{

 public:

  T a;

  void print() { std::cout << a; }

};

When the template parameter is a bool, the method should print 

out “true” or “false” instead of “1” or “0”. One way to do this is to create a 

class template specialization. A reimplementation of the class template is 

then created where the template parameter list is empty. Instead, a bool 
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specialization parameter is placed after the class template’s name, and 

this data type is used instead of the template parameter throughout the 

implementation.

template<>

class MyBox<bool>

{

 public:

  bool a;

  void print() { std::cout << (a ? "true" : "false"); }

};

When this class template is instantiated with a bool template type, this 

template specialization will be used instead of the standard one.

int main()

{

  MyBox<bool> box { true };

  box.print(); // "true"

}

Note that there is no inheritance of members from the standard 

template to the specialized template. The whole class will have to be 

redefined.

�Function Template Specialization
Since there is only one function that is different between the templates in 

the previous example, a better alternative is to create a function template 

specialization. This kind of specialization looks very similar to the class 

template specialization, but is only applied to a single function instead of 

the whole class.
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#include <iostream>

template<class T>

class MyBox

{

 public:

  T a;

  template<class T> void print() {

    std::cout << a;

  }

  template<> void print<bool>() {

    std::cout << (a ? "true" : "false");

  }

};

This way, only the print method has to be redefined and not the whole 

class.

int main()

{

  MyBox<bool> box = { true };

  box.print<bool>(); // "true"

}

Notice that the template parameter has to be specified when the 

specialized function is invoked. This is not the case with the class template 

specialization.

�Variable Templates
In addition to function and class templates, C++14 allows variables to be 

templated. This is achieved using the regular template syntax.

template<class T>

constexpr T pi = T(3.1415926535897932384626433L);
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Together with the constexpr specifier, this template allows the value 

of the variable to be computed at compile time for a given type, without 

having to type cast the value.

int i = pi<int>; // 3

float f = pi<float>; // 3.14...

�Variadic Templates
C++11 allows template definitions to take a variable number of type 

arguments. To illustrate, consider the following function, which returns the 

sum of any number of ints passed to it.

#include <iostream>

#include <initializer_list>

using namespace std;

int sum(initializer_list<int> numbers)

{

  int total = 0;

  for(auto& i : numbers) { total += i; }

  return total;

}

The initializer_list type indicates that the function accepts a 

brace-enclosed list as its argument, so the function must be called in this 

manner.

int main()

{

  cout << sum( { 1, 2, 3 } ); // "6"

}
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The next example changes this function into a variadic template 

function. Such a function is traversed recursively rather than iteratively, so 

once the first argument has been handled, the function calls itself with the 

remaining arguments.

The variadic template parameter is specified using the ellipsis (...) 

operator, followed by a name. This defines a so-called parameter pack. 

The parameter pack is bound to a parameter in the function (... rest) 

and then unpacked into separate arguments (rest ...) when the function 

calls itself recursively.

int sum() { return 0; } // end condition

template<class T0, class ... Ts>

decltype(auto) sum(T0 first, Ts ... rest)

{

  return first + sum(rest ...);

}

This variadic template function can be called as a regular function, 

with any number of arguments. In contrast to the previously defined 

variadic function, this template function accepts arguments of any type.

int main()

{

  cout << sum(1, 1.5, true); // "3.5"

}

�Fold Expressions
C++17 introduced fold expressions, which make it possible to apply a 

binary operator to all elements of a parameter pack in one statement. 

This allows the previous variadic template function to be written more 

concisely and without the use of recursion.
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template<class... T>

decltype(auto) sum(T... args)

{

  // Unpacks to: a1 + (a2 + (a3 + a4))...

  return (args + ...);

}

A unary right fold is here performed in the return statement, 

expanding the parameter pack starting from the left and applying the 

binary operator to all arguments before returning the result. Parameter 

packs may also be unpacked from right to left, by placing the ellipsis to the 

left of the parameter pack, as shown in the following example using the 

subtraction operator.

#include <iostream>

using namespace std;

template<class... T>

decltype(auto) difference(T... args)

{

  // Unpacks to: ...(a1 - a2) - a3

  return (... - args);

}

int main()

{

  cout << difference(5, 2, 1); // "2" (5-2-1)

}
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�Concepts
A concept is a named set of constraints that limit what template arguments 

may be used with a template. They were introduced in C++20 to allow 

template arguments to be type-checked at compile time. The following 

example defines a concept named MyIntegral which requires the type to 

be convertible to a whole number type. The is_integral_v class template 

used here is part of the standard library, and it is evaluated as true if T is an 

integral type.

#include <concepts>

#include <type_traits>

// Concept declaration

template <class T>

concept MyIntegral = std::is_integral_v<T>;

This concept can be applied to constrain template arguments, such 

as for the following function template. Any template argument used 

to initialize this function template must satisfy the requirement of the 

concept, or else the compilation will fail.

template<MyIntegral T>

bool is_positive(T a)

{

  return a > 0;

}

int main()

{

  is_positive(5); // ok, int satisfies MyIntegral

  is_positive("Hi"); // error, string does not satisfy MyIntegral

}
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The standard library includes a number of predefined concepts that 

should be used in favor of user-defined ones whenever possible. In this 

example, the standard concept std::integral performs the same function 

as “MyIntegral,” so the preceding function template can be redefined as 

follows.

#include <concepts>

template<std::integral T>

bool is_positive(T a)

{

  return a > 0;

}

There are two ways to express a concept. The first way is in the form of 

a conditional expression, which was the form used for the integral concept 

defined earlier. The following example makes use of the integral concept 

and also adds a second constraint to make sure the type is signed and not 

unsigned. Note that this constraint makes use of the fact that constructing 

an unsigned type with a negative value returns a positive value, because 

the unsigned type cannot represent the negative value.

template <class T>

concept Signed_Integral = std::integral<T> && T{-1} < T{0};

The second way to define a concept is to use a requires clause. This 

clause defines objects of the types to be tested and then a list of one 

or more constraints. Each constraint consists of an expression in curly 

brackets followed by the expected return type. If all constraints are true, 

the compiler will allow the type. For instance, the following concept 

declares that the type must implement both the equal to and not equal to 

operators and that the result of these operations must be convertible to a 

bool.

Chapter 28  Templates



186

template<class T>

concept Equal = requires(T a, T b)

{

  { a == b } -> bool;

  { a != b } -> bool;

};

template<Equal T>

bool areEqual(T x, T y)

{

  return x == y;

}

int main()

{

  areEqual(1, 1); // true

}

�Abbreviated Function Templates
Function templates can be abbreviated as of C++20 by using the auto 

placeholder type. When auto appears in the parameter list, the function 

automatically becomes a function template and the auto parameter 

becomes its template parameter. Applying a concept to such a function is 

done by adding the name of the concept before the type in the parameter 

list. Bear in mind that abbreviated function templates are not supported in 

Visual Studio 2019 as of version 16.3.

#include <concepts>

bool is_positive(std::integral auto a)

{

  return a > 0;

}
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int main()

{

  is_positive(2); // calls int version

  is_positive(3L); // calls long version

}

�Template Lambdas
With C++14 generic lambdas were introduced, which meant that 

parameters declared as auto became template parameters. The following 

example defines a generic lambda that returns the size of a vector.

#include <iostream>

#include <vector>

using namespace std;

int main()

{

  vector<int> v { 1, 2, 3 };

  auto get_size = [](const auto& v) { return size(v); };

  cout << get_size(v); // 3

}

It would be preferable to restrict this lambda to only work with vector 

types. This ability was added in C++20 by allowing full use of template 

parameters in lambdas.

auto get_size = []<typename T>(vector<T> const& v) { return 

size(v); };
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CHAPTER 29

Headers
When a project grows, it is common to split the code up into different source 

files. When this happens, the interface and implementation are generally 

separated. The interface is placed in a header file, which commonly has 

the same name as the source file and an .h file extension. This header file 

contains forward declarations for the source file entities that need to be 

accessible to other compilation units in the project. A compilation unit 

consists of a source file (.cpp) and any included header files (.h or .hpp).

�Why Use Headers
C++ requires everything to be declared before it can be used. It is not 

enough to simply compile the source files in the same project. For 

example, if a function is placed in MyFunc.cpp, and a second file named 

MyApp.cpp in the same project tries to call it, the compiler will report that it 

cannot find the function.

// MyFunc.cpp

void myFunc() {}

// MyApp.cpp

int main()

{

  myFunc(); // error: myFunc identifier not found

}
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To make this work, the function’s prototype has to be included in 

MyApp.cpp.

// MyApp.cpp

void myFunc(); // prototype

int main()

{

  myFunc(); // ok

}

�Using Headers
This can be made more convenient if the prototype is placed in a header 

file named MyFunc.h, and this header is included in MyApp.cpp through the 

use of the #include directive. This way if any changes are made to MyFunc.

cpp or MyFunc.h, there is no need to update the prototypes in MyApp.cpp. 

Furthermore, any source file that wants to use the shared code in MyFunc.

cpp can just include this one header.

// MyFunc.h

void myFunc(); // prototype

// MyApp.cpp

#include "MyFunc.h"

�What to Include in Headers
As far as the compiler is concerned, there is no difference between a 

header file and a source file. The distinction is only conceptual. The key 

idea is that the header should contain the interface of the implementation 

file—that is, the code that other source files will need to use. This may 

include, for instance, shared constants, macros, and type aliases. Headers 
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should not include using namespace directives, because that would force 

the namespace inclusion upon everyone using the header.

// MyApp.h - Interface

#define DEBUG 0

const double E = 2.72;

using ulong = unsigned long;

As already mentioned, the header can contain prototypes of the shared 

functions defined in the source file.

void myFunc(); // prototype

Additionally, shared classes are typically specified in the header, while 

their methods are implemented in the source file.

// MyApp.h

class MyClass

{

 public:

  void myMethod();

};

// MyApp.cpp

void MyClass::myMethod() {}

As with functions, it is necessary to forward declare global variables 

before they can be referenced in a compilation unit outside the one 

containing their definition. This is done by placing the shared variable 

in the header and marking it with the keyword extern. This keyword 

indicates that the variable is initialized in another compilation unit. 

Functions are extern by default, so function prototypes do not need to 

include this specifier. Keep in mind that global variables and functions 

may be declared externally multiple times in a program, but they may be 

defined only once.
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// MyApp.h

extern int myGlobal;

// MyApp.cpp

int myGlobal = 0;

It should be noted that the use of shared global variables is 

discouraged. This is because the larger a program becomes, the more 

difficult it is to keep track of which functions access and modify these 

variables. The preferred method is to instead pass variables to functions 

only as needed, in order to minimize the scope of those variables.

The header should not include any executable statements, with two 

exceptions. First, if a shared class method or global function is declared as 

inline, that function must be defined in the header. Otherwise, calling the 

inline function from another source file will give an unresolved external 

error. Note that the inline modifier suppresses the single definition rule 

that normally applies to code entities.

// MyApp.h

inline void inlineFunc() {}

class MyClass

{

 public:

  void inlineMethod() {}

};

The second exception is shared templates. When encountering 

a template instantiation, the compiler needs to have access to the 

implementation of that template, in order to create an instance of it with 

the type arguments filled in. The declaration and implementation of 

templates are therefore generally put into the header file all together.
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// MyApp.h

template<class T>

class MyTemp { /* ... */ };

// MyApp.cpp

MyTemp<int> o;

Instantiating a template with the same type in many compilation units 

leads to significant redundant work done by the compiler and linker. To 

prevent this, C++11 introduced extern template declarations. A template 

instantiation marked as extern signals to the compiler not to instantiate 

the template in this compilation unit.

// MyApp.cpp

MyTemp<int> b; // instantiation is done here

// MyFunc.cpp

extern MyTemp<int> a; // suppress redundant instantiation

If a header requires other headers, it is common to include those files 

as well, to make the header stand-alone. This ensures that everything 

needed is included in the correct order, solving potential dependency 

problems for every source file that requires the header.

// MyApp.h

#include <stddef.h> // include size_t

void mySize(std::size_t);

Note that since headers mainly contain declarations, any extra headers 

included should not affect the size of the program, although they may slow 

down compilation.
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�Inline Variables
As of C++17, variables may be specified as inline, in addition to functions 

and methods. This allows constant and static variables to be defined in 

a header file, because the inline modifier removes the single definition 

rule that would normally prevent this. Once an inline variable has been 

defined, all compilation units referencing that header will use the same 

definition.

// MyApp.h

struct MyStruct

{

  static const int a;

  inline static const int b = 10; // alternative

};

inline int const MyStruct::a = 10;

The constexpr keyword implies inline, so a variable declared as 

constexpr may also be initialized in a header file. However, such a variable 

must be initialized to a compile-time constant.

struct MyStruct {

  static constexpr int a = 10;

};

An inline variable is not restricted to only constant expressions, as 

seen in the following example where the inline variable is initialized to a 

random value between 1 and 6. This value is guaranteed to be the same 

for all compilation units using this header, even though the value is not set 

until runtime.
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#include <cstdlib> // rand, srand

#include <ctime> // time

struct MyStruct {

  static const int die;

};

inline const int MyStruct::die =

  (srand((unsigned)time(0)), rand()%6+1); // 1-6

Note the use of the comma operator here, which evaluates the left 

expression first and then evaluates and returns the right expression. The 

left expression uses the current time to seed the random number generator 

with the srand function. The right expression retrieves a random integer 

with the rand function and formats the integer into the 1–6 range.

�Include Guards
An important point to bear in mind when using header files is that a 

shared code entity may only be defined once. Consequently, including the 

same header file more than once will likely result in compilation errors. A 

common way to prevent this is to use a so-called include guard. An include 

guard is created by enclosing the whole header in an #ifndef section that 

checks for a macro specific to that header file. Only when the macro is not 

defined is the file included. The macro is then defined, which effectively 

prevents the file from being included again.

// MyApp.h

#ifndef MYAPP_H

#define MYAPP_H

// ...

#endif // MYAPP_H
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Most compilers also support the nonstandard #pragma once directive, 

which serves the same purpose as include guards but with less code. Just 

place the directive in the header file to make sure it can only be included 

once.

#pragma once

Before including a header file, it may also be a good idea to check if 

it exists. For this purpose, C++17 added the __has_include preprocessor 

expression, which evaluates to true if the header file is found.

#if __has_include("myapp.h")

#include "myapp.h"

#endif

�Modules
A module is a set of one or more source code files that are compiled 

independently and can then be imported into another compilation unit. 

They were introduced in C++20 to remove common issues associated with 

using header files, such as header-order dependencies, naming collisions, 

and multiple inclusions of the same header file. Furthermore, as modules 

only need to be compiled once, they can reduce compilation times, 

especially for large projects.

To enable experimental support for modules in Visual Studio 2019 

(version 16.3), right-click the project in the Solution Explorer and choose 

Properties. From there, select All Configurations from the Configuration 

drop-down list and then enable module support under Configuration 

Properties ➤ C/C++ ➤ Language ➤ Enable C++ Modules (experimental). 

Next, add a new file called ModInterface.ixx to the project by right-clicking 

the Source Files folder in the Solution Explorer and going to Add ➤ New 

item.

Chapter 29  Headers



197

The ixx file extension is required for module interface units in Visual 

Studio. Some other compilers, such as GCC (GNU Compiler Collection), 

use a cppm file extension instead. An export module declaration is placed 

in the file to specify the name of the module.

// ModInterface.ixx

export module mymodule; // declare module name

Only code entities explicitly marked with export will be visible to 

source files using the module, which in the following example is the 

getValue function. All other code entities will be internal to the module 

and will not influence source code outside the module. This is a big 

advantage compared with header files, as headers may include code that 

inadvertently affect other parts of the code.

// ModInterface.ixx

export module mymodule;

#define VALUE 5

int hidden() { return VALUE; }

export int getValue() { return hidden(); }

Optionally, the implementation of the module can be separated from 

the interface unit into one or more module implementation units. Such an 

implementation file cannot export any names. Any code entities it declares 

will be visible across the entire module, but not outside the module to 

which it belongs. The implementation file itself may use any file extension.

// ModInterface.ixx

export module mymodule;

export int getValue();

// ModImplementation.cpp

module mymodule; // unit belongs to mymodule
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#define VALUE 5

int hidden() { return VALUE; }

int getValue() { return hidden(); }

To get the ixx file to compile, right-click the file in the Solution Explorer 

and click Properties. From the Properties window, change the Item Type of 

the file to C/C++ Compiler and click OK. You will then be able to manually 

compile the file by right-clicking it and selecting Compile in the Solution 

Explorer.

With the module ready and compiled, it can be imported into any 

source file to make use of its functionality. The import declaration must 

appear at the global scope of the file importing the module.

// MyApp.cpp

import mymodule; // import module

#include <iostream>

using namespace std;

int main()

{

  cout << getValue() << endl; // "5"

}

Some standard library headers, such as iostream and vector, can be 

imported as if they were modules. This is not supported in Visual Studio 

2019 (version 16.3). Keep in mind that an import declaration ends with a 

semicolon, unlike the include directive.

import <iostream>;

import <vector>;
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Index

A
Access levels

class declaration, 99
friend classes and  

functions, 102–104
global function, 104
guidelines, 101
inheritance (public, protected/

private), 104
private members, 99
protected member, 100
public access, 101

Aggregate  
initialization, 83, 116

Arithmetic operators, 17
Arrays, 33

assignment, 33
declaration/ 

allocation, 33
delete keyword, 36
dynamic memory, 35
multi/single-dimensional 

arrays, 34
std::size function, 35–36
vector, 36–37

Assignment operator  
(+=), 18, 39

B
Base class scoping, 96
Binary operator  

overloading, 122
Bitwise operator (|), 20
Booleantype, 16

C
Classes

access object  
members, 73–74

definition, 71
forward declaration, 74
inline keyword, 72
instance, 72
methods, 71
object creation, 72

Comments, 6
Comparison operators  

(<, >, <=/>=), 19, 123–126
Concatenation operator (+), 39
Conditional statements

if statement, 45
initializers, 48
switch statement, 46
ternary operator, 47
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Console compilation, 5
Constants

expressions
compilation error, 143
conditional statements, 145
functions and class 

constructors, 143
integer and enumeration 

types, 143
lambda expression, 144
object, 144
return value, 144
runtime evaluation, 144
static_assert declaration, 146
virtual functions, 145

fields, 142
guideline, 146
immediate function, 146
methods, 141
objects, 140
pointers, 139–140
references, 140
return type and method 

parameters, 142
variables, 139

Constructors
aggregate initialization, 83
copy, 82
declaration, 75
default parameter, 78
default values, 75
designated initializers, 85
destructor, 79
direct initialization, 81

field initialization, 77–78
inheritance, 89–90
instance methods, 77
new initialization, 82
object initialization, 80
overloading, 76
special member functions, 79
this keyword, 77
uniform initialization, 83–84
value object, 81

Conversions
explicit constructor, 129
implicit constructor, 128–129
MyNum class, 127
operators

explicit constructors, 130–131
object declaration, 129–130

Copy initialization, 82

D
Data types/primitives, 7–8
Decltype keywords, 61–63
Designated initializers, 85–86
Direct initialization, 81
Downcasting, 88
Dynamic arrays, 35

E
Enumeration (enum)

constants, 109
constant values, 110
integer type, 113
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scope, 111
switch statement, 109
weakly typed enum, 111–113

Escape characters, 40–41
Exception handling, 157

exception class, 160
noexcept specifier, 159
rethrown, 159
throw keyword, 157
try-catch statement, 157–158

F
Floating-point types, 13
Fold expressions, 182
Functions

auto keyword, 61–63
calling, 53
capture clause, 67
decltype, 62–64
default values, 55
definition, 53
forward declaration, 56–57
inline function, 60
lambda function, 66–69
multiple values, 63–65
overloading, 55
parameters, 54
pass by address, 58
pass by reference, 58
pass by value, 57
prototype, 56
returns by value/reference/

address, 59

return statement, 55–56
structured bindings, 65

G
Generic lambdas, 187
GNU Compiler Collection  

(GCC), 5, 197

H
Header files (.h/.hpp), 189

constexpr keyword, 194
getValue function, 197
global variables and  

functions, 191
guards, 195–196
inline variables, 194–195
modules, 196–198
namespace directives, 191
shared functions/ 

templates, 191–192
template instantiation, 193

Hello World
header, resource/source files, 2
integrated development 

environment, 1
IntelliSense, 4
language standard selection, 2
project creation, 2
scope resolution operator, 3
source file, 3–4
standard namespace, 4

Hiding derived members, 93–94
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I, J, K
Increment (++)/decrement (--) 

operators, 18
Inequality operator (!=), 125
Inheritance

access levels, 104
constructor, 89–90
downcasting, 88
multiple inheritance, 91
public keyword, 87
upcasting, 87–88

Instantiate, see Constructors
int x = 1, y = 2, z, 9
Integrated Development 

Environment (IDE), 1

L
Lambda function

capture clause, 67–68
decltype specifier, 69
generic lambda  

expressions, 66
int arguments/returns, 66
parameter list and return  

type, 66–67
stateless, 68

Logical operators (&&, ||/!), 19
Looping structures

break/continue keyword, 52
do-while, 50
for, 50
goto statement, 52
while loop, 49

M
Multiple inheritance, 91

N
Namespaces

access members, 134
aliases, 136
classes and functions, 133
importing, 135
member import, 135
nesting, 134
prototypes, 137
scopes, 133
type alias, 136

Nested namespace members, 134
NetBeans/Eclipse CDT, 1
NULL pointer, 26–28, 30

O
Octal/hexadecimal notation, 12
Noexcept specifier, 159
Operator overloading

binary, 122
comparison operator, 123–126
MyNum objects and returns, 121
overloadable operators, 126
postfix operators, 123
unary operators, 122–123
user-defined types, 121

Operators
increment (++)/ 

decrement (--), 18
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assignment(=), 18
bitwise (|), 20
arithmetic operators, 17
comparison, 19
logical operators, 19
precedence, 20–21
types, 17

Overriding
base class scoping, 96
derived classes, 94–96
getArea method, 94
hiding derived members, 93–94
polymorphism, 94
pure virtual functions, 96

P, Q
Perfix/postfix  

operators, 123
Pointers

asterisk (*), 23
dereference operator (*), 24
constants, 139, 140
dynamic allocation, 25–26
NULL constant, 26–28
pass by address, 58
pointee, 23
point-pointer, 25
references, 30
static allocation, 25

Preprocessor
attributes, 155
conditional compilation, 152
directives, 147

error message/directive, 150, 153
defined/!defined 

(#ifdef/#ifndef), 153
line number, 154
macro functions, 148, 150–151
pragma, 154
predefined macros, 149
source file, 148
undefine directive, 149

R
References

declaration, 29
pointer, 30
rvalue, 30–31

Rethrown exceptions, 159

S
Signed and unsigned integers, 12–13
Single-line comment, 6
Smart pointers

classes, 169
pointers (see Pointers)
shared pointer  

(std::shared_ptr), 170–171
unique pointer  

(std::unique ptr), 169–170
weak shared pointer  

(std::weak_ptr), 171–172
Source file (.cpp), see Header  

files (.h/.hpp)
Static keyword
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field (class field), 105–106
global variables, 107
local variables, 107
methods, 106–107

std::get function, 64
std::make_tuple function, 64–65
std::tie function, 64–65
Strings

combining string, 39–40
compare option, 41
declaration, 39
direct/uniform initialization, 39
encoding, 42
escape characters, 40–41
length and size functions, 41
size_t/cstddef header, 41–42
substr (substring), 42
std::format function, 43

Structs
aggregate initialization, 116
anonymous, 116
data structure, 115
declaration syntax, 115
initialization, 115–116
uniform initialization, 116

T
Templates, 173

abbreviated function  
templates, 186

calling function, 174
class templates, 176–177

concepts, 184–186
default values and types, 178
fold expressions, 182
function, 173
generic lambdas, 187
multiple parameters, 175
non-type parameters, 177
parameter declaration, 173
specialization

class template, 178–179
function, 179–180

swap function, 175
type parameters, 174
variables, 180–181
variadic templates, 181–182

Ternary operator, 47
Throwing exceptions, 157
Try-catch statement, 157–158
Type conversions

casts, 162
const cast, 164
C-style/new-style casts, 165
dynamic cast, 165–167
explicit cast, 162
implicit conversion, 161
named cast/new-style  

casts, 162
polymorphic, 165
promotion and  

demotion, 161
reinterpret cast, 163
static cast, 163
static/dynamic cast, 167
try-catch statement, 166

Static keyword (cont.)
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U
Unary operators, 122–123
Unicode characters, 43
Uniform initialization, 83–84
Union type

anonymous, 118
benefit of, 117
integer field, 117–118

Unique pointer (std::unique ptr), 
169–170

V
Value initialization, 81
Variables

assignment operator (=), 8
bool type, 16
char type, 14

data types, 7
declaration, 8
direct/uniform initialization, 9
floating-point types, 13
integer types, 10–11
literal suffixes, 14
numeric literals, 12
scope of, 9–10
signed and unsigned  

keywords, 12–13
Variadic template, 181–182
Vectors, 36–37
Visual Studio, 1, 5

W, X, Y, Z
Weak shared pointer  

(std::weak_ptr), 171–172
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