Cross-Platform
Development with
Qt 6 and Modern C++

Design and build applications with modern graphical user
interfaces without worrying about platform dependency

e

Nibedit Dey

2

Packt

BIRMINGHAM—MUMBAI

Cross-Platform Development with Qt 6
and Modern C++

Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of

this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Kushal Dave
Senior Editor: Storm Mann

Content Development Editor: Nithya Sadanandan
Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing

Indexer: Vinayak Purushotham

Production Designer: Aparna Bhagat

First published: May 2021

Production reference: 1280521

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-458-4

www.packt.com

http://www.packt.com/

To my mother for believing in my dreams and to my father for his

sacrifices and supporting me through my ups and downs.

To my childhood English teacher Mr. Harendra Das, who laid the
foundation and honed my English communication skills, and my
Science teacher Mr. Jayanta Kumar Das, who introduced me to

computer and used to say “You will write a book one day”!

— Nibedit Dey

Contributors

About the author

Nibedit Dey is a software engineer turned serial entrepreneur with over a
decade of experience in building complex software-based products with
amazing user interfaces. Before starting his entrepreneurial journey, he
worked for Larsen & Toubro and Tektronix in different R&D roles. He
holds a bachelor's degree in biomedical engineering and a master's degree
in digital design and embedded systems. Specializing in Qt and embedded
technologies, his current role involves end-to-end ownership of products
right from architecture to delivery. Currently, he manages two technology-
driven product start-ups named ibrum technologies and AIDIA Health. He
is a tech-savvy developer who is passionate about embracing new

technologies.

About the reviewers

Andrey Gavrilin is a senior software engineer in an international company
that provides treasury management cloud solutions. He has an MSc degree
in engineering (industrial automation) and has worked in different areas
such as accounting and staffing, road data banks, web and Linux
distribution development, and fintech. His interests include mathematics,
electronics, embedded systems, full-stack web development, retro gaming,

and retro programming.

Syed Aftab has a bachelor's degree in engineering with a focus on
electronics and communications. He has around 16 years of experience in
software product development. Syed is skilled in software development
using C and C++ technologies on various platforms such as Unix, Linux,

Windows, and embedded platforms.

Programming, sharing his programming experience, and mentoring juniors
are his passions. You can get in touch with him at

https://www.linkedin.com/in/syed-aftab-a06a1943/

https://www.linkedin.com/in/syed-aftab-a06a1943/

Table of Contents

Preface

Section 1: The Basics

Chapter 1: Introduction to Qt 6

Technical requirements

Introducing_Qt

Reasons for using_Qt

Downloading_and installing_Qt

Downloading_Qt

Installing Qt on Windows

Installing Qt on Linux

Installing Qt on macOS

Updating or removing_Qt

Building_Qt 6 from source

Installing Qt on Windows from source

Installing Qt on Linux from source

Installing_ Qt on macOS from source

Summary

Chapter 2: Introduction to Qt Creator

Technical requirements

Exploring_the Qt Creator Ul

Building_a simple Qt application

Understanding advanced options

Managing_Kits

Qt Versions

Environment

Keyboard shortcuts
Text Editor
Splitting the coding window

Build options
Qt Assistant

Summary

Chapter 3. GUI Design Using_Qt Widgets

Technical requirements

Introducing_Qt widgets

Creating a Ul with Qt Designher

Managing_layouts
QVBoxLayout
QHBoxLayout
QGridLayout

Creating custom widgets

Creating Qt Style Sheets and custom themes
Using_a QSS file

Exploring_custom styles

Creating_a custom style

Using a custom style

Using_widgets, windows, and dialogs

Summary

Chapter 4.t Quick and QML

Technical requirements
Getting_started with QML and Qt Quick
Understanding the QML type system

Understanding Qt Quick Controls
Styling Qt Quick Controls

Creating_a simple Qt Quick application

Designing_a Ul with Qt Quick Designer

Positioners and layouts in QML

Manual positioning

Positioning with anchors

Positioners

Repeater
Qt Quick Layouts
Integrating QML with C++

Embedding C++ objects into QML with context
properties

Registering_a C++ class with the QML engine

Creating_a QML extension plugin

Invoking QML methods inside a C++ class

Exposing a QML object pointer to C++

Integrating QML with JS

Importing_a directory in QML

Handling_ mouse and touch events

MouseArea

MultiPointTouchArea

TapHandler

SwipeView

Summary

Section 2: Cross-Platform Development

Chapter 5. Cross-Platform Development

Technical requirements

Understanding_cross-platform development

Understanding_compilers

Adding_custom compilers

Building_with qmake

Qt Project (.pro) files

Understanding _differences between .pro and
.pri files

Understanding_build settings

Platform-specific settings

Using_Qt with Microsoft Visual Studio

Running_a Qt application on Linux

Running a Qt application on macOS and iOS

Configuring_Qt Creator for iOS

Configuring_Qt Creator for Android

Other Qt-supported platforms
Porting_from Qt 5 into Qt 6

Summary

Section 3: Advanced Programming,,
Debugging,_ and Deployment

Chapter 6: Signals and Slots

Technical requirements

Understanding_Qt signals and slots

Understanding_syntax

Declaring_signals and slots

Connecting_the signal to the slot

Connecting_a single signal to multiple slots

Connecting_multiple sighals to a single slot

Connecting_a signal to another signal

The working_mechanism of Qt signals and slots

Qt's meta-object system

MOC generated code

Getting to know Qt's property system

Reading_and writing_properties with the Meta-
Object System

Using_signals and slots in Qt Designer

Understanding_signals and the handler event
system in QML

Adding_a signhal in QML

Connecting_a signhal to a function

Connecting_a signal to a signal

Defining_property attributes and understanding,
property binding

Integrating_sighals and slots between C++ and
QML

Understanding_events and the event loop

Managing _events with an event filter

Drag_and drop

Drag_and drop_in Qt Widgets
Drag_and drop in QML

Summary

Chapter 7: Model View Programming

Technical requirements

Understanding the M/V architecture
Model

Delegate

Views in Qt Widgets

Creating_a simple Qt Widgets application using
the M/V pattern

Understanding Models and Views in QML

Views in Qt Quick

Models in Qt Quick

Using_C++ Models with QML

Creating_a simple M/V application with Qt Quick

Summary

Chapter 8. Graphics and Animations

Technical requirements

Understanding_Qt's graphics framework

QPainter and 2D graphics

Understanding_the paint system

Using_ the coordinate system

Drawing_and filling

Drawing with QPainter

Introducing_the Graphics View framework

Understanding the Qt OpenGL module
Qt OpenGL and Qt Widgets

Graphics in Qt Quick

Qt OpenGL and Qt Quick

Custom Qt Quick items using_QPainter

Understanding the Qt Quick scene graph

Qt Quick scene graph structure

Rendering using a scene graph

Using a scene graph with the Native Graphics
3D graphics with Qt Quick 3D
Shader effects

Using_the Canvas QML type

Understanding_particle simulations

Animation in Qt Widgets

Animation and transitions in Qt Quick

Controlling animations

States, state machine, and transitions in Qt
Quick

The state machine in Qt Widgets

Summary

Chapter 9: Testing_and Debugging

Technical requirements

Debugging_in Qt

Debuggers supported by Qt

Debugging_strategies

Debugging_a C++ application

Debugging_a Qt Quick application

Testing_in Qt

Unit testing_in Qt

Integrating with Google's C++ testing
framework

Testing Qt Quick applications

GUI testing_tools
The Linux Desktop Testing_Project (LDTP).

GammaRay

Squish

Summary

Chapter 10: Deploying_Qt Applications

Technical requirements

Understanding the need for deployment

Choosing_between static and dynamic libraries

Deploying on desktop platforms

Deploying on Windows

Windows deployment tool

Deploying on Linux

Deploying on macOS

Using_the Qt Installer Framework

Deploying on Android

Other installation tools

Summary

Chapter 11: Internationalization

Technical requirements

Understanding_internationalization and Qt
Linguist

Writing_source code for translation

Loading translations ih a Qt application

Switching languages dynamically

Internationalization with Qt Widgets

Adding_ dynamic translation to a Qt Widgets
application

Internationalization with Qt Quick

Translating dynamically in a Qt Quick
application

Deploying_translations

Summary

Chapter 12: Performance Considerations

Technical requirements

Understanding_performance optimization

Optimizing C++ code

Using_concurrency, parallelism, and
multithreading

Profiling a Qt Quick application using QML
Profiler and Flame Graph

Other Qt Creator analysis tools

Optimizing_graphical performance

Creating benchmarks

Different analysis tools and optimization
strategies

Memory profiling and analysis tools

Optimizing_during_linking

Building_a Qt application faster

Performance considerations for Qt Widgets

Learning best practices of QML coding

Summary
Why subscribe?

Other Books You May Enjoy

Preface

Qt is a cross-platform application development framework designed to

create great software applications with amazing user interfaces for desktop,
embedded, and mobile platforms. It provides developers with a great set of
tools for designing and building great applications without having to worry

about platform dependency.

In this book, we will focus on Qt 6, the latest version of the Qt framework.
This book will help you with creating user-friendly and functional graphical
user interfaces. You will also gain an advantage over competitors by
providing better-looking applications with a consistent look and feel across

different platforms.

Developers who want to build a cross-platform application with an
interactive GUI will be able to put their knowledge to work with this
practical guide. The book provides a hands-on approach to implementing
the concepts and associated mechanism that will have your application up-
and-running in no time. You will also be provided explanation for essential

concepts with examples to give you a complete learning experience.

You will begin by exploring the Qt framework across different platforms.
You will learn how to configure Qt on different platforms, understand
different Qt modules, learn core concepts, and learn how they can be used
to build efficient GUI applications. You will be able to build, run, test, and
deploy applications across different platforms. You will also learn to
customize the look and feel of the application and develop a translation

aware application. Apart from learning the complete application process,

the book will also help you in identifying the bottlenecks and how to

address them in order to enhance the performance of your application.

By the end of this book, you will be able to build and deploy your own Qt

applications on different platforms.

Who this book is for

This book is intended for developers and programmers who want to build
GUI-based applications. It is also intended for software engineers who have
coded in C++ before. The entry barrier isn't that high, so if you understand

basics C++ and OOPS concepts, then you can embark on this journey.

In addition, this book can help intermediate-level Qt developers, who want
to build and deploy in other platforms. Working professionals or students,
who want to get started with Qt programming, as well as programmers who

are new to Qt, will find this book useful.

What this book covers

Chapter 1, Introduction to Qt 6, will introduce you to Qt and describe how
to set it up on a machine. By the end of the chapter, readers will be able to

build Qt from source code and get started on their platform of choice.

Chapter 2, Introduction to Qt Creator, introduces you to the Qt Creator IDE
and its user interface. This chapter will also teach you how to create and
manage projects in Qt Creator. You will learn to develop a simple Hello
World application using Qt Creator and learn about different shortcuts, and

practical tips.

Chapter 3, GUI Design Using Qt Widgets, explores the Qt Widgets module.
Here, you will learn the various kinds of widgets that are available for
creating GUIs. You will also be introduced to Layouts, Qt Designer, and
learn how to create your own custom controls. This chapter will help you in

developing your first GUI application using Qt.

Chapter 4, Qt Quick and QML, covers fundamentals of Qt Quick and QML,
Qt Quick Controls, Qt Quick Designer, Qt Quick Layouts, and Basic QML
Scripting. In this chapter, you will learn to use Qt Quick controls and how
to integrate C++ code with QML. By the end of this chapter, you will be
able to create a modern application with fluid UI using QML.

Chapter 5, Cross-Platform Development, explores cross-platform
development using Qt. You will learn about different settings in Qt Creator.
In this chapter, you will be able to run sample applications on your favorite

desktop and mobile platforms.

Chapter 6, Signals and Slots, covers the signals and slots mechanism in
depth. You will be able to communicate between different C++ classes and
between C++ and QML. You will also learn about events, event filters and

event loop.

Chapter 7, Model View Programming, introduces you to the Model/View
architecture in Qt and its core concepts. Here, you will be able to write
custom models and delegates . You can use these to display required

information on your Qt Widget-based or Qt Quick-based GUI application.

Chapter 8, Graphics and Animations, introduces the concepts of 2D
graphics and animations. You will learn how to use painter APIs to draw
different shapes on the screen. We will further discuss the possibility of
graphics data representation using Qt's Graphics View framework and
Scene Graph. This chapter will guide you towards creating an attention-
grabbing user interface with animations. The chapter also touches upon the

state machine framework.

Chapter 9, Testing and Debugging, explores different debugging techniques
for a Qt application. You will learn about unit testing and the Qt Test
framework in this chapter. We will also discuss how to use the Google Test
framework with Qt Test, as well as learn about the available Qt tooling and

GUI specific testing techniques.

Chapter 10, Deploying Qt Applications, discusses the importance of
software deployment. You will learn to deploy a Qt application on various
platforms, including desktop and mobile platforms. You will learn about the

available deployment tools and steps to create an installer package.

Chapter 11, Internationalization, introduces you to internationalization. Qt
provides excellent support for translating Qt Widgets and Qt Quick
applications into local languages. In this chapter, you will learn how to
make an application with multi-lingual support. You will also learn about
inbuilt tools and various considerations for making a translation-aware

application.

Chapter 12, Performance Considerations, introduces you to performance
optimization techniques and how to apply them in the context of Qt
programming. Here, we will discuss different profiling tools to diagnose
performance problems, concentrating specifically on the tools available on
Windows. In this chapter, you will learn how to profile performance with
QML Profiler and benchmark your code. The chapter will also help you

write high-performance optimized QML code.

To get the most out of this book

We will only use open source software, so you will not need to purchase
any license. We will go over the installation procedures and detail as we
progress through each chapter. To install the required software, you will
require a functional internet connection and a desktop PC or laptop. Apart
from that, there is no particular software requirement before you begin this
book.

Main equirementsfor the book

(06 Requirements

Qt6.0. o higher.Prefraby Qt 6.1

Windorws 10 or Ubuntu 20.04 or macO§
10,14, Android 9 or above

QtCreator 414 0orhigher

Compﬂers s as MinGW or MSVC
(CCor LLVM

IMPORTANT NOTES

For Android setup, you will need the following:

OpenJDK 8 (JDK-8.0.275.1)
Android SDK 4.0

NDK r21 (21.3.6528147)
Clang toolchain

Android OpenSSL

If you are using the digital version of this book, we advise you to type the code yourself or
access the code via the GitHub repository (link available in the next section). Doing so will

help you avoid any potential errors related to the copying and pasting of code.

All code examples have been tested using Qt 6 on the Windows platform.

You may see failures if you use Qt 5. However, they should work with

future version releases too. Please make sure that the version you're
installing to your computer is at least Qt 6.0.0 or later so that the code is

compatible with the book.

Download the example code files

You can download the example code files for this book from GitHub at

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-

6-and-Modern-Cpp. Additionally, you can find some bonus examples with

C++17 features in the aforementioned mentioned GitHub link. In case
there's an update to the code, it will be updated on the existing GitHub

repository.

We also have other code bundles from our rich catalog of books and videos

available at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://static.packt-cdn.com/downloads/9781800204584 ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder

names, filenames, file extensions, pathnames, dummy URLSs, user input,

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp
https://github.com/PacktPublishing/
file:///tmp/calibre_4.99.5_tmp_7m_w667s/ru4hb35s_pdf_out/OEBPS/_ColorImages.pdf

and Twitter handles. Here is an example: "Typically, the exec () method is

used to show a dialog."

A block of code is set as follows:

QMessageBox messageBox;
messageBox.setText("This is a simple QMessageBox.");

messageBox.exec();

When we wish to draw your attention to a particular part of a code block,

the relevant lines or items are set in bold:

QMessageBox messageBox;
messageBox.setText("This is a simple QMessageBox.");

messageBox.exec();

Any command-line input or output is written as follows:

> lrelease *.ts

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "The last step is to build and run the

application. Hit the Run button in Qt Creator."

TIPS OR IMPORTANT NOTES

Appear like this.

Get Iin touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at

customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit

www.packtpub.com/support/errata, selecting your book, clicking on the

Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a

link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a

book, please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors

can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
http://packt.com/

Section 1: The Basics

In this section, you will learn the basics and evolution of the framework and
how to install Qt on different platforms. Throughout this section, you will
learn more about the evolution of Qt. Then, we'll proceed to build our first
example program using the latest version of Qt, which is Qt 6. You will be
learning about the usage of the Qt Creator IDE. This section will introduce
you to Qt Widgets, Qt Designer, and creating custom controls. You will
learn about style sheets, QSS files, and theming. This section will also

introduce you to Qt Quick and QML.

This section includes the following chapters:
e Chapter 1, Introduction to Qt 6
e Chapter 2, Introduction to Qt Creator
e Chapter 3, GUI Design Using Qt Widgets

e Chapter 4, Qt Quick and QML

Chapter 1: Introduction to Qt 6

Qt (pronounced cute, not que-tee) is a cross-platform application
development framework designed to create great software applications with
uniform user interfaces (Uls) for desktop, embedded, and mobile
platforms. It provides developers with a great set of tools to design and
build great applications without worrying about platform dependency. In
this chapter, you will learn the basics about the framework, its history, and
how to install Qt on different platforms. You will learn what Qt is and why
it is beneficial to use it. By the end of the chapter, you will be able to install

Qt and get started on your platform of choice.

In this chapter, we're going to cover the following main topics:
e Introducing Qt
e Reasons for using Qt
e Downloading and installing Qt

e Building Qt 6 from source

Technical requirements

To get started, you should have a desktop or laptop running on Windows,
Linux, or macOS. Please use the updated Windows 10 or Ubuntu 20.04
long-term support (LTS). Alternatively, use the latest version of macOS

(newer than macOS 10.14), such as macOS Catalina.

For your integrated development environment (IDE) to run smoothly,
your system should have at least an Intel Core i5 processor along with a

minimum of 4 gigabytes (GB) of random-access memory (RAM).

You will need an active internet connection to download and install Qt. As a
prerequisite, you should also be familiar with C++ as Qt requires C++

programming knowledge.

Introducing Qt

Qt is a cross-platform software development framework for desktop,
embedded, and mobile platforms. It follows the philosophy of code less,
create more, and deploy everywhere. It supports platforms such as
Windows, Linux, macOS, VxWorks, QNX, Android, iOS, and so on. The
software also supports several microcontroller units (MCUs) from NXP,

Renesas, and STMicroelectronics running on bare metal or FreeRTOS.

Qt was born as an attempt to provide a uniform graphical user interface
(GUI) with the same look, feel, and functionality across different platforms.
Qt accomplishes that by providing a framework to write code once and
ensure that it runs on other platforms with minimal or no modifications. It is
not a programming language, but rather a framework written in C++. The
Qt framework and tools are dual-licensed under open source and

commercial licenses.

Qt uses a modular approach to group related functionalities together. Qt
Essentials are the foundation of Qt on all platforms. These modules are
general and useful for most Qt-based applications. Essential modules are

available for open source usage. Examples of Qt Essentials modules are Qt

Core, Qt GUI, Qt QML, Qt Widgets, and so on. There are also special-
purpose add-on modules that provide specific functionalities and come with
certain license obligations. Examples of add-on modules are Qt 3D, Qt
Bluetooth, Qt Charts, Qt Data Visualization, and more. As well as this,
there are value-added modules such as Qt Automotive Suite, Qt for Device
Creation, and Qt for MCUs, among others available under the commercial

license.

To find out more about different Qt modules, visit https://doc.qt.io/qt-

6/qtmodules.html.

Qt was released for public use in 1995. Since then, there have been many
improvements and major changes. Qt 6 is the new major version of Qt. Its
main goals are to remain prepared for the requirements coming in 2020 and
beyond, remove obsolete modules, and be more maintainable. With this
focus, there are architectural changes in Qt 6 that may break some level of

backward compatibility with earlier versions.

Some essential modifications in Qt 6 are outlined here:
e Introduction of strong typing
» JavaScript as an optional feature of Qt Modeling Language (QML)
e Removal of QML versioning
e Removal of the duplicate data structures between QObject and QML
e Avoidance of the creation of runtime data structures
e Compilation of QML into efficient C++ and native code

e Support for hiding implementation details

https://doc.qt.io/qt-6/qtmodules.html

Better integration of tools

Now that we've covered the basics, let's look at the main reasons for using

Qt...

Reasons for using Qt

Qt is a modular, cross-platform application development framework. The

biggest misunderstanding about Qt is that many people consider it as a GUI

framework. However, Qt is much more than a GUI framework. It not only

comprises a GUI module, but also a set of modules to make application

development faster and easier to scale on various platforms. The biggest

benefit of using Qt is its ability to provide portability to various platforms.

Here are some advantages of using Qt for developers:

You can create incredible user experiences for your customers and boost

your company brand using Qt.

Cross-platform development saves both time and money. You can target

multiple platforms with the same code base.

Qt is known for making C++ easy and accessible. With Qt, developers
can easily create high-performance, scalable applications with a fluid
UL

Due to the open source model, the framework is future-proof, along

with a great ecosystem.

It further supports different programming languages and is a very
flexible and reliable framework. Consequently, there are great

companies such as Adobe, Microsoft, Samsung, AMD, HP, Philips, and

MathWorks using Qt for their applications. Many open source projects
such as VLC (previously known as VideoLAN Client), Open
Broadcaster Software (OBS), and WPS Office (where WPS stands for

Writer, Presentation, and Spreadsheets) are also built on Qt.

The core values of Qt are outlined as follows:

Cross-platform nature
Highly scalable
Very easy to use

Built-in with world-class application programming interfaces (APIs),

tools, and documentation
Maintainable, stable, and compatible

A large community of users

Whether you are a hobbyist, a student, or working for a company, Qt

provides great flexibility to use its modules as per your requirement. Many

universities are using Qt as one of their coursework subjects. So, Qt is a

great choice for programmers to start building new applications with ready-

made features. Let's start by downloading and installing Qt 6 on your

machine.

Downloading and installing Qt

There are different ways to install the Qt framework and tools on your

system. You can download an online or offline installer from the Qt

website, or you can build the source packages yourself. Qt recommends

using the online installer for first-time installations and the Qt

Maintenance Tool for modifying the installation later.
The installers allow you to download and install the following components:

e Qt libraries

Qt Creator IDE

Documentation and examples

Qt source code

Add-On modules

The online installer allows you to select open source or commercial
versions of Qt, tools, and Add-On modules to install based on the chosen
license. The online installer doesn't contain the Qt components, but it is a
downloader client to download all the relevant files. You can install once
the download is complete. You will require a Qt account to download and
install Qt. An evaluation version for the commercial Qt gives you free trial-
period access, with all commercial packages and access to official Qt
support. The installer requires you to sign in with your Qt account. If you
don't have a Qt account, you can sign up during the installation process. The
installer fetches the license attached to the account from the Qt server and
lists down modules according to your license. If you are new to Qt, then we

recommend that you start with the open source version.

The offline installer is a platform-specific package that includes all Qt
modules and add-ons relevant for the platform. Due to the official policy
changes, open source offline installers are not available any more since Qt

5.15. If you have a commercial license, then you can provide the credentials

during the installation process. You can locate your license key in your Qt

account web portal.

You can download them from the following links:

Open source: https://www.qt.io/download-open-source
Commercial: https://www.qt.io/download

Offline: https://www.qt.io/offline-installers

IMPORTANT NOTE

The Qt Company provides users with a dual-licensing option. As a beginner, you can
get started with an open source license to explore Qt. If you are working for a company,
then discuss with your manager or Information Technology (IT) or legal team to
procure a commercial license or to understand legal obligations. You can learn more
about Qt licensing at https.//www.qt.io/licensing/.

Downloading Qt

Let's start by downloading Qt onto your machine, as follows:

1.

2.

To begin, visit the https:/www.qt.io/download download page.

Click on the Download. Try. Buy. button in the top-right corner. You

will see different download options here.

. If you want to try the commercial version, then click on Try Qt section.

If you already have a Qt account, then you can log in into the account

under the Existing customers section.

. Considering that you are new to Qt, we will begin with the open source

version. Click on the Go open source button, as shown in the following

screenshot:

https://www.qt.io/download-open-source
https://www.qt.io/download
https://www.qt.io/offline-installers
https://www.qt.io/licensing/
https://www.qt.io/download

Design ~ Develop Deploy Product ~ WhyQt? Resources Q ()N Download. Ty, Buy.

Buy Qt Ty Qt

(et the full Gt experience with a icensing plan designed to New to Qt and want to try before you buy? Download a
support your business goals plus access to the offcil Qt free trial of the Qt framework, tools for desktop and
Support Helpdesk and a close strategic relationship with embedded development, plus other enterprise add-ons.

The Qt Company,
Download Qt Now

Existing customers Downloads for open
Find themin the Qt account liensing portal or through the SOUrCe USers

Maintenance toolin your Qt installztion directory.

Find out how you can use Qt under the (LJGPL and

Loginto Qt Account contribute to the Qt project.

Visit Qt Resource Center (View Qt product map J

Figure 1.1 — Qt website download options

5. On the next screen, you will find Download the Qt Online Installer

button. Click on it to proceed to the download link.

6. The web page will automatically detect the underlying platform details
from the browser and will show you the Download button. You can also
select your intended installer by choosing the other options: you can

select 32-bit or 64-bit or download for a different platform.
You will see a Thank you page after you click on the download option.

At this stage, you can find the installer in your download folder.

Next, let's begin with the installation process on the Windows platform.

Installing Qt on Windows

Now, let's start the installation process on Windows! Proceed as follows:

1. You will find a file with the name qt-unified-windows-x86-
% VERSION %-online.exe inside your download folder. Double-click

on the executable, and you will see a Welcome screen.

2. Click the Next button, and a credentials screen will appear, asking you
to log in with your Qt account. If you don't have one, then you can sign

up on the same page, as shown in the following screenshot:

(t Setup X

Welcome to the Qt online installer

Welcome Please log in to Ot Account

Jelect Lomponents

Don't have Qt account?

Figure 1.2 — Login screen of the installer

3. In the next screen, you will be presented with the open source usage
obligations agreement. You won't get this screen if you are installing
using a commercial license. Click on the first checkbox, saying I have
read and approve the obligations of using Open Source Qt, and

acknowledge that you are not using Qt for commercial purposes. Make

sure you read the terms and conditions mentioned in the agreement!

Then, click on the Next button.

. The next screen will provide you with options related to tracking and
sharing pseudonymous data in Qt Creator. You may allow or disable
these options based on your preferences. Then, click on the Next button

to proceed to the next screen.

. In the next screen, you can specify the installation path. You may
continue with the default path, or you can change it to any other path if
you don't have enough space on the default drive. You can also choose
whether you want to associate common file types with Qt Creator by

selecting the checkbox option at the bottom. Click on the Next button.

. Next, you will be presented with a list where you can select the
version(s) of Qt you need to install on your system. You may simply
proceed with the default options. If you don't need some of the
components, then you can unselect them to reduce the size of the
download. You can update the Qt components using the Maintenance
Tool anytime later. To complete the installation process, click on the

Next button. The component selection screen can be seen here:

Qt Setup X

Select Components

Please select the components you want to install,

Welcome Default Select Al Deselect Al

an Chrrra inatinne
Open Source Obligations Select Categaris b T

Setup - (t . b Additional libraries
0 Archive i
Installation Folder v
LTS *

Latest Qt and related

160

=
=

B,
MSVC 2019 64-bit

MinGW 8.1.0 64-bit
Android

Sources

(Ot Quick 3D

Qt 5 Compatibility Module
()t Shader Tools

(t Debug Information Files
@ Qf Quick Timeline

» 0 Q5152

v 0 Q515
B ———

Select Components

Latest releases

Praview

v
v
v
v
4
v
4
v

.

Figure 1.3 — Component selection screen of the installer

7. In the next screen, you will be presented with the license agreement.
Click on the first radio button, which says I have read and agree to the
terms contained in the license agreements. Again, make sure you read
the terms and conditions mentioned in the license agreement, and then

click on the Next button.

10.

11.

. On the next screen, you can create Start menu shortcuts on Windows.

This screen will not be available for other platforms. Once you have

finished doing this, click on the Next button.

. Now, Qt is ready to be installed in your system. Make sure you have a

working internet connection and data balance. Click on the Install
button to begin the installation. The download process will take time,
depending on your internet speed. Once the required files are
downloaded, the installer will automatically install them in the

previously selected path.

Once the installation is finished, the installer will make an entry for the
Maintenance Tool, which will help you later to make changes to the
libraries. Click on the Next button to move to the last screen of the

installer.

In order to complete the installation process, click on the Finish button.
If you have left the Launch Qt Creator checkbox checked, then Qt
Creator will be launched. We will discuss this in more detail in the next
chapter. Now, Qt is ready to be used on your Windows machine. Click

on the Finish button to exit the wizard.

Installing Qt on Linux

Now, let's install the Qt framework on the latest LTS version of Linux,
such as Ubuntu 20.04, CentOS 8.1, or openSUSE 15.1. We will be focusing

on the most popular Linux distribution, Ubuntu. You can follow the same

steps as mentioned previously to download the online installer from the Qt

website.

On Ubuntu, you will get an installer file such as qt-unified-linux-x64-
% VERSION %-online.run, where % VERSION % is the latest version—

for example: qt-unified-linux-x86-4.0.1-1-online.run.

1. You may have to give write permissions to the downloaded file before
executing it. To do that, open the terminal and run the following
command:

$ chmod +x qt-unified-linux-x64-%VERSION%-online.run

2. You can start the install process by double-clicking the downloaded
installer file. The installation requires superuser access. You may have
to add a password in the authorization dialog during the installation.

You can also run the installer from the terminal, as follows:

$./qt-unified-1linux-x64-%VERSION%-online.run

3. You will see similar screens to those shown for the Windows platform.
Apart from the operating system (OS)-specific title bar changes, all the
screens remain the same for installation in Ubuntu or similar Linux

flavors.

At the time of writing the book, there was no Ubuntu or Debian package
available for Qt 6 as the respective maintainers have stepped down. Hence,

you may not get the Qt 6 package from the terminal.

Installing Qt on macOS

If you are a macOS user, then you can also install the same way as
discussed for the earlier platforms. You can follow the same steps

mentioned previously to download the online installer from the Qt website.

You will get an installer file such as qt-unified-mac-x64-% VERSION %-
online.dmg, where % VERSION % is the latest version (such as qt-

unified-mac-x64-4.0.1-1-online.dmg).

Qt has a dependency on Xcode. To install Qt on your Mac, you will need
Xcode installed on your machine, otherwise, it will refuse to install. If you
are an Apple developer, then your Mac may have Xcode installed. If you
don't have Xcode installed on your machine, then you may proceed to
install Xcode's Command Line Tools instead of Xcode. This will save time

and storage space on your machine:

1. To begin, type the following command on the terminal:

$ xcode-select --install

2. If the terminal shows the following output, then your system is ready for

the next steps:

xcode-select: error: command line tools are already installed,
use

"Software Update" to install updates

3. The next step is to install the Qt framework. Double-click on the

installer file to launch the installation interface.

4. If the installer still complains that Xcode is not installed, then keep
clicking OK until the message goes away permanently. Remember the
installation path. Once the installation is finished, you are ready to use

Qt on your machine.

Further instructions on Qt for macOS can be found at the following link:

https://doc.qt.io/qt-6/macos.html

https://doc.qt.io/qt-6/macos.html

Updating or removing Qt

Once Qt is installed, you can modify the components—including updating,
adding, and removing components—using the Maintenance Tool under the
installation directory. The directory structure remains the same for all
desktop platforms. The installation directory contains folders and files, as

shown in the following screenshot (on Windows):

S S S
L y L
6.0.0 dist Docs Examples installerResource Licenses

S B
L
Tools veredist componentsxml InstallationLog.tx installer.dat MaintenanceTool
t dat
= "
MaintenanceTool ~ MaintenanceTool networkxml
£xe ni

Figure 1.4 — The Maintenance Tool inside the installed folder

Let's begin with the maintenance process! You can add, remove, and update

modules using the Maintenance Tool. Proceed as follows:

1. Click on the MaintenanceTool.exe executable to launch the
maintenance interface. Click on the Next button, and a credentials
screen will appear, asking you to log in with your Qt account. The login
details will be prefilled from your last login session. You can click Next
to add or update components or select the Uninstall only checkbox to
remove Qt from your system. The following screenshot shows what the

credentials screen looks like:

Maintain Ot X

Welcome to Qt Maintenance Tool

Welcome Please log in fo Qt Account
Setup - Ot

LOMponents

Don't have Qt account?

O Uningtall only

Figure 1.5 — Welcome screen of the Maintenance Tool

2. Once you are logged in, the tool will present you with options to add or
remove or update the components, as shown in the following

screenshot. Click on the Next button to proceed further:

Maintain Qt X

Welcome to open source Qt setup.
Welcome

Setup - Qt @® Add or remove companents

Select Companents O Update components

ment O Remove all components

Figure 1.6 — Setup screen of the Maintenance Tool

3. On the next screen, you can select new components from the latest
releases or the archived version. You can click on the Filter button to
filter versions as per your requirement. You can also add new platform-
specific components such as Android from the component list. If the

component is existing and you uncheck it, then it will be removed from

your desktop during the update. Once you have selected the
components, click on the Next button. The following screenshot shows
what the component selection screen looks like:

Maintain Ot X

Select Components

Select the components to install. Deselect installed companents to uninstall them. Any components already installed will not be updated.

Welcome

s
etup - Ut Select Categories) Latest Ot and relted
Component Name Intallly “atcst Wtand reiaie

package preview
b i 101 snapshots

Select Components
O Archive
0 s * Additional libraries
v (Ot
% Latedt releases b BGi3D
+ O QtImage Formats
+ O Qt Network Authorization
v (0t
Fitte v B Q600
" 0 MSVC 2019 64-bit
@ MinGW 8.1.0 64-bit
0 Andraid Thi-s. curlwpclﬁeptu_'aill
i 2 occupy approximately
9 Sources 0.00-00 567.21 MB on your
0 Ot Quick: hard disk drive.
O

D Preview

Figure 1.7 — Component selection screen

4. You will then come across the update screen. This screen will tell you
how much storage space is required for the installation. If you are
running out of storage space, then you may go back and remove some
existing components. Click on the Update button to begin the process,

as illustrated in the following screenshot:

Maintain Qt X

Ready to Update Packages

Setup is now ready to begin updating your installation. Installation will use 345.73 MB of disk space.

Welcome

Setup - Ot

Select Components
License Agreement
Ready to Update
Updating

Finished

Cancel

Figure 1.8 — The Ready to Update screen of the Maintenance Tool

5. You can abort the update installation process by clicking on the Cancel
button. Qt will warn you and ask you for confirmation before aborting
the installation process, as illustrated in the following screenshot. Once

the process is aborted, click on the Next button to exit the wizard:

Updating components of Qt

| 109%
Welcome

2 : Downloading archive "5.0.0-0-202012081148qt3d-everywhare-src-6.0.0.72" for component Qt 30 6.0.0.
Setup - Ot

Select Components Ot Question X

License Agreement

Ready to Update Do you want to cancel the installation process?

Updating

Yos o r companent Conan 1.30.
) Iponent Conan 1.30,

1.72.shal" for component (t 30 6.
Luwniuguing arenive 0uU.UmU- 202U LZUE LLHEYLIU-EVETYWIETE-5T o072 for CUmpUﬂEﬂt UT J

Figure 1.9 — The cancel dialog

6. Launch the Maintenance Tool again to update existing components
from the latest releases. You can click on the Quit button to exit the
Maintenance Tool. Please wait while the installer fetches the meta-
information from the remote repository. Click on the Next button to see
the available components. The update option is illustrated in the

following screenshot:

Maintain Qt X

Welcome to apen source Qt setup.
Welcome

Setup - Qt O Add or remove companents

@® Update components

O Remove all components

Figure 1.10 — The Update option in the Maintenance Tool

7. Next, you can select which components to update from the checkboxes.
You can choose to update all or you can update selectively. The installer
will show how much storage space will be required for the update, as
illustrated in the following screenshot. You can click Next to go to the
update screen and begin the update. Then, on the next screen, click on

the Update button to download the update packages:

Maintain Qt X

Select Components

Please select the components you want to update.

Welcome

Setup - Qt

(t Design Studio is a UI design and
developmert environment for creating
animated Uls and previewing them on the
desktop or on Android and embedded Linux
devices. Tt provides you with tools for
accomplishing you throughout the
whole process, from design to production.

Component Name Installed Version

Select Components

munity 1.6.

This companent will occupy approximately
.79 MB on your hard disk drive.

Figure 1.11 — Components available for update

8. Once the installation is finished, the installer makes entries for the
Maintenance Tool, which will help you make changes to the libraries
later. This is illustrated in the following screenshot. Click on the Next

button to move to the last screen of the installer:

Maintain Ot X

Creating Maintenance Tool

Welcome

Update finished!
Setup - Ot

Select Comporents All downloads finished.
License Agreement

Ready to Update

Updating Btracting "2.0.0-0-202012180502design_studio_extra_qt_docs.7z"

Btracting "2, 80502designstudio_base.7z"

Bracting "2, 80302plugin-telemetry.7z"

Btracting "2, 02012180502qt5_design_studio_reduced_version.7z"

Btracting "2.0.0-0-202012180502qtcreator. 72"

Btracting "2.0.0-0-202012180502qtcreat ool

Maoving file "D:\Q QT
Maoving file "D:\Q o\ QtDesig .

Moving file "D:\Qt\README.be" to "D:\QtY

Dong

Update finished!

Figure 1.12 — The Update finished screen in the Maintenance Tool

9. In the last screen, you will see Restart and Finish buttons. Click on the

Finish button to exit the Qt wizard.

10. Similarly, you can restart or launch the Maintenance Tool and select

the Remove all components radio button. Click on the Next button to

begin the uninstallation process, as illustrated in the following
screenshot:

Maintain Qt

Welcome to apen source Qt setup.
Welcome

Setup - Qt

O Add or remove components

Select Compaonents

LC 5 Q' Update components

@® Remove all components

Figure 1.13 — The Remove option in the Maintenance Tool

Please note that on clicking the Uninstall button, all the Qt components will

be removed from your system; you will have to reinstall Qt if you want to

use them again. Click on Cancel if you don't intend to remove the Qt
components from your system, as illustrated in the following screenshot. If
you intend to remove the existing version and use a newer version of Qt,
then select the Add or remove components option, as discussed earlier.

This will remove older Qt modules and free up your disk space:

Maintain Qt X

Ready to Uninstall

Setup is now ready to begin removing Qt from your computer.
Welcome , including all content in that directory!

Setup - Qt

Select Components
License Agreement
Ready to Uninstall

Uninstalling

Uninstall

Figure 1.14 — The Uninstall screen in the Maintenance Tool

In this section, we learned about modifying an existing Qt installation
through the Maintenance Tool. Now, let's learn how to build and install Qt

from the source code.

Building Qt 6 from source

If you want to build the framework and tools yourself or experiment with
the latest unreleased code, then you can build Qt from the source code. If
you're going to develop a specific Qt version from the source, then you can
download the Qt 6 source code from the official releases link, as shown

here: https://download.qt.io/official releases/qt/6.0/.

If you are a commercial customer, then you can download the Source
Packages from your Qt account portal. Platform-specific building

instructions are discussed in the upcoming subsections.

You can also clone from the GitHub repository, and check out the desired
branch. At the time of authoring this book, the Qt 6 branch remained inside
the Qt 5 super module. You can clone the repository from the following

link: git://code.qt.io/qt/qt5.git.

The qt5.git repository may get renamed to qt.git in the future for
maintainability. Please refer to the QTQAINFRA-4200 Qt ticket. Detailed
instructions on how to build Qt from Git can be found at the following link:

https://wiki.qt.io/Building_ Qt 6 from Git.

Ensure that you install the latest versions of Git, Perl, and Python on your
machine. Make sure there is a working C++ compiler before proceeding to

the platform-specific instructions in the next section.

https://download.qt.io/official_releases/qt/6.0/
https://wiki.qt.io/Building_Qt_6_from_Git

Installing Qt on Windows from source

To install Qt 6 on Windows from source code, follow these next steps:

1. First of all, download the source code from Git or from the open source
download link mentioned earlier. You will get a compressed file as qt-
everywhere-src--% VERSION %.zip, where % VERSION % is the
latest version (such as qt-everywhere-src-6.0.3.zip). Please note that

suffixes such as -everywhere-src- may get removed in the future.

2. Once you have downloaded the source archive, extract it to a desired

directory—for example, C:\Qt6\src.

3. In the next step, configure the build environment with a supported

compiler and the required build tools.

4. Then, add the respective installation directories of CMake, ninja, Perl,

and Python to your PATH environment variable.

5. The next step is to build the Qt library. To configure the Qt library for

your machine type, run the configure.bat script in the source directory.

6. In this step, build Qt by typing the following command in Command
Prompt:

>cmake --build . -parallel

7. Next, enter the following command in Command Prompt to install Qt

on your machine:

>cmake --install .

Your Windows machine is now ready to use Qt.

To understand more about the configure options, visit the following link:

https://doc.qt.io/qt-6/configure-options.html

Detailed build instructions can be found at the following link:

https://doc.qt.io/qt-6/windows-building.html

Installing Qt on Linux from source

To build the source package on Linux distributions, run the following set of

instructions on your terminal:

1. First of all, download the source code from Git or from the open source
download link mentioned earlier. You will get a compressed file as qt-
everywhere-src--% VERSION %.tar.xz, where % VERSION % is the
latest version (such as qt-everywhere-src-6.0.3.tar.xz). Please note that

suffixes such as -everywhere-src- may get removed in the future.

2. Once you have downloaded the source archive, uncompress the archive
and unpack it to a desired directory—for example, /qt6, as illustrated in
the following code snippet:
$ cd /qté6
$ tar xvf qt-everywhere-opensource-src-%VERSION%. tar.xz

$ cd /qt6/qt-everywhere-opensource-src-%VERSION%

3. To configure the Qt library for your machine, run the ./configure script

in the source directory, as illustrated in the following code snippet:

$./configure

4. To create the library and compile all the examples, tools, and tutorials,

type the following commands:

https://doc.qt.io/qt-6/configure-options.html
https://doc.qt.io/qt-6/windows-building.html

$ cmake --build . --parallel

$ cmake --install .

5. The next step is to set the environment variables. In .profile (if your

shell is bash, ksh, zsh, or sh), add the following lines of code:
PATH=/usr/local/Qt-%VERSION%/bin:$PATH

export PATH
In .Jogin (if your shell is csh or tcsh), add the following line of code:
setenv PATH /usr/local/Qt-%VERSION%/bin:$PATH

If you use a different shell, modify your environment variables accordingly.

Qt is now ready to be used on your Linux machine.

Detailed building instructions for Linux/X11 can be found at the following
link:

https://doc.qt.io/qt-6/linux-building.html

Installing Qt on macOS from source

Qt has a dependency on Xcode. To install Qt on your Mac, you will need
Xcode installed on your machine. If you don't have Xcode installed on your

machine, then you may proceed to install Xcode's Command Line Tools:

1. To begin, type the following command on the terminal:

$ xcode-select --install

2. If the terminal shows the following output, then your system is ready for

the next steps:

https://doc.qt.io/qt-6/linux-building.html

xcode-select: error: command line tools are already installed,
use

"Software Update" to install updates

3. To build the source package, run the following set of instructions on

your terminal:
$ cd /qté6
$ tar xvf qt-everywhere-opensource-src-%VERSION%.tar

$ cd /qt6/qt-everywhere-opensource-src-%VERSION%

4. To configure the Qt library for your Mac, run the ./configure script in
the source directory, as illustrated in the following code snippet:

$./configure

5. To create a library, run the make command, as follows:

$ make

6. If -prefix is outside the build directory, then type the following lines to
install the library:

$ sudo make -ji1 install

7. The next step is to set the environment variables. In .profile (if your
shell is bash), add the following lines of code:
PATH=/usr/local/Qt -%VERSION%/bin: $PATH

export PATH
In .login (if your shell is csh or tcsh), add the following line of code:
setenv PATH /usr/local/Qt-%VERSION%/bin:$PATH

Your machine is now ready for Qt programming.

Detailed building instructions for macOS can be found here:

https://doc.qt.io/qt-6/macos-building.html

In this section, we learned how to install Qt from source on your favorite

platform. Now, let's summarize our learning.

Summary

This chapter explained the basics of the Qt framework and what it can be
used for. Here, we discussed the history, different modules, and advantages
of using Qt. We also learned about different methods of installation with
license obligations, giving step-by-step installation procedures for Qt on

different desktop platforms. Now, your machine is ready to explore Qt.

In the next chapter, we will discuss the Qt Creator IDE. You will learn
about the UI of the IDE, different configurations, and how to use it for your

Qt project.

https://doc.qt.io/qt-6/macos-building.html

Chapter 2: Introduction to Qt Creator

Qt Creator is Qt's own Integrated Development Environment (IDE) for
cross-platform application development. In this chapter, you will learn the
basics of the Qt Creator IDE as well as covering the user interface (UI) of
the IDE. We will also look at how to create and manage projects in Qt
Creator. This module of Qt covers developing a simple Qt application using

Qt Creator, shortcuts, and practical tips for developers.
More specifically, we're going to cover the following main topics:

¢ Basics of Qt Creator

Configuring the IDE and managing projects

User interfaces

Writing a sample application

Advanced options

Qt Creator can make your Qt learning easier with many useful tools and
examples. You will need minimal IDE knowledge to get started. By the end
of this chapter, you will be familiar with the use of Qt Creator. You will also
be able to build and run your first Qt application on your favorite desktop
platform, as well as being aware of the advanced options available in the

IDE, which you will be able to customize in line with your preferences.

Technical requirements

The technical requirements for this chapter are the same as Chapter 1,
Introduction to Qt 6. You will need the latest Qt version, namely Qt 6.0.0
MinGW 64-bit, Qt Creator 4.13.0 or higher, and Windows 10, Ubuntu
20.04 LTS, or the latest version of macOS (higher than macOS 10.13 at a
minimum) such as macOS Catalina. Qt supports earlier versions of
operating systems such as Windows 8.1 or Ubuntu 18.04. However, we
recommend you upgrade to the latest version of your preferred operating
system to ensure smooth functioning. In this chapter, we have used

screenshots from the Windows 10 platform.

Exploring the Qt Creator Ul

Qt Creator is an IDE produced by the Qt Company. It integrates multiple
tools including a code editor, a Graphical UI (GUI) designer, a compiler, a

debugger, Qt Designer, Qt Quick Designer, and Qt Assistant, among others.

Qt Designer helps in designing widget-based GUIs whereas Qt Quick
Designer provides a Ul to create and edit QML-based GUIs in Design
Mode. Qt Assistant is an integrated documentation viewer that opens

contents related to a given Qt class or function with the press of the F1 key.

Let's begin by launching Qt Creator. The binary can be found inside
Qt\Tools\QtCreator\bin. You will see a screen like that shown in Figure
2.1:

(@ Ot Creator -

File Edit View Euld Debug Analyze Tools Window Hel 1

I—H_LLI

Welcome

Sessions &t Manage Projecs | + New | | @ Open

Fampes 1@ defautt (current session) i

Clone | = | De

Tutorials

Marketplace

New to QF

Leam how to develop
your own appications znd
explare Q Creatar,

Get Started Now

L otret

. Online Commurity

/N ooz

PRTIOIVECHGUEN |1 [ucs 2 SearchR.. 3 Applicetio.. 4 Compie 0. 5 OM_Debu.. 6 General M... § TestResults + =

Figure 2.1 — Qt Creator interface

You can see the following GUI sections in the UI:

1. IDE menu bar: This provides the user with a standard place in the
window to find the majority of application-specific functions. These
functions include creating a project, opening and closing files,
development tools, analysis options, help contents, and a way to exit the

program.

2. Mode selector: This section provides different modes depending on the
active task. The Welcome button gives options to open examples,
tutorials, recent sessions, and projects. The Edit button opens the code
window and helps in navigating the project. The Design button opens
Qt Designer or Qt Quick Designer based on the type of Ul file. Debug
provides options to analyze your application. The Projects button helps
in managing project settings, and the Help button is for browsing help

contents.

3. Kit selector: This helps in selecting the active project configuration and

changing the kit settings.
4. Run button: This button runs the active project after building it.

5. Debug button: This helps in debugging the active project using a
debugger.

6. Build button: This button is for building the active project.
7. Locator: This is used to open a file from any open project.

8. Output pane: This includes several windows to display project

information such as compilation and application output. It also shows

build issues, console messages, and test and search results.

9. Progress indicator: This control shows the progress related to running

tasks.

You can also benefit from an interactive UI tour when you launch Qt
Creator for the first time. You can also launch it from the Help | UI Tour

option from the menu bar as shown in Figure 2.2:

(@ Qt Creator

Fle Edit View %uld Detug Anaze Toos Winow [y

Open Documents

Projects *TEEE il

Mi: o

Contents

Index

Context Help F
Ul Tour

Technical Support..

Open a document

[Project (Ciri+0)

General |'~"|EE?SEQES

(I . Type to locate (Chrl+

1 Issies 2 SearchR.,

Report Bug..
System Information..
Ciri+K) and
About Ot Creator.. "Efm any “FE“ project o
: <pattern> 10 jump to a cass defintion
Aoout Plugins.. ><patterns {0 jump to a function definfion
Check for Updtes > £11enane> f0 0pen fil from fie system
e gther fiters for jumping to 2 location
» Drag and drop fies here

3 Applicatio... 4 Compile .

5 QMLDeb.. 6 General.. & TestRest..

Figure 2.2 — Qt Creator Ul Tour menu choice

NOTE

If you press the Alt key, then you will see the underlined mnemonic letter in the menu title.
Press the corresponding key to open the respective context menu.
In this section, we learned about various sections in the IDE. In the next

section, we will build a simple Qt application using the Qt Creator IDE.

Building a simple Qt application

Let's start with a simple Hello World project. A Hello World program is a
very simple program that displays Hello World! and checks that the SDK
configuration is free from errors. These projects use the most basic, very
minimal code. For this project, we will use a project skeleton created by Qt

Creator.
Follow these steps to build your first Qt application:

1. To create a new project in Qt, click on the File menu option on the
menu bar or hit Ctrl + N. Alternatively, you can also click on the + New
button located at the welcome screen to create a new project, as shown

in Figure 2.3:

(0 maincpp @ HelloWorld - Ot Creator - 0 X

Edit View Buld Debug Analyze Tools Window Help

Welcome Sessions | Manage Projects & Open
E Examols 1@ default {current session)
Edit i
Tutoriak

T Marketphce
Debug

Projects
R v to QY
0 Leam how to develop

Help your awn appications and
explore Qf Creatar,

(Get Started Now

Hellowarld

g ; 1 Qt Account

Debug
. Onin Cammurity

> ﬁ Bogs
k& 9 User Guice

PRIIOIVECHGEN | les 2 Scach. 3 Aplcaio.. 4 CompleD.. 5 QMLDebu.. 6 General M., 8 TestResuls

Figure 2.3 — New project interface

2. Next, you can select a template for the project. You can create different
types of applications, including a console application or GUI
application. You can also create non-Qt projects as well as library
projects. In the upper-right section, you will see a dropdown to filter
templates specific to the desired target platform. Select the Qt Widgets
Application template and then click on the Choeose... button:

(i New File or Project - Qt Creator X

Choose a template:

Projects _ o Desktop Templates
Application (Qf) m Qt Widgets Application mcludhﬂeﬁ’?ss"'mﬂhly Runtime Templtes
Application (Qt Quick) =
Application (Gt for Python) Gt Console Application Preselects a desktop Qt for building the
Library application if available.

Other Project Supported Platforms: Dzsktop
Non-Qt PI’OjECT WebAssenbly Runtime
Import Project

Files and Classes
C/C++
Modeling
Qt
GLSL
General
Java
Pythan

Choosa... Cancel

Figure 2.4 — The project template interface

3. In the next step, you will be asked to choose the project name and
project location. You can navigate to the desired project location by
clicking the Browse... button. Then click on the Next button to proceed

to the next screen:

(%] Ot Widgets Application

Project Location
E> Location
Build System This wizard generates a Qt Widgets Application project. The application derives by default from
Details (Application and includes an empty widget.
Tranglation
Kits
Summary

Name: ‘HelloWorld|

Create in: ‘D:\Qthject Browse...

[] Use as default project location

Next Cancel

Figure 2.5 — New project location screen

4. You can now select the build system. By default, Qt's own build system
gmake will be selected. We will discuss gqmake more later in Chapter 6,
Signals and Slots. Click on the Next button to proceed to the next

screen:

& [3 Qt Widgets Application

Define Build System

Location

E> Build System Build system: | gmake
Details

Translation
Kits

Summary

Mext Cancel

Figure 2.6 — Build system selection screen

5. Next, you can specify the class information and the base class to be
used to automatically generate the project skeleton. If you need a
desktop application with features of MainWindow such as menubar,
toolbar, and statusbar, then select QMainWindow as the base class.
We will discuss more on QMainWindow in Chapter 3, GUI Design
Using Qt Widgets. Click on the Next button to proceed to the next

screen.

& [¥ Qt Widgets Application

Class Information

Location
Build System
Y Specify basic information abaut the classes for which you want to generate skeleton source
E> Details code files.
Translation
Kits Class name: ‘M}rMainWindow
Summary

Base class: QMainWindow

Header file: ‘mymainwindow.h

Source file: ‘mymainwindow.cpp

Generate form

Form file: ‘mymainwindow.uﬂ

Next

Figure 2.7 — Source code skeleton generation screen

6. In this next step, you can specify the language for translation. Qt

Cancel

Creator comes with the Qt Linguist tool, which allows you to translate

your application into different languages. You may skip this step for

now. We will discuss Internationalization (i18n) in Chapter 11,

Internationalization. Click on the Next button to proceed to the next

screen:

& [% QtWidgets Application

Translation File

Location
Build System If you plan to provide translations for your project's user interface via the Qt Linguist tool, please select a
Details language here. A corresponding translation (.ts) file will be generated for you.

B> Translation Language: English (United States) v
Kits Translation file: ‘HelloWorld_en_US ‘ s

Summary

Mext Cancel

Figure 2.8 — Translation File creation screen

7. In the next step, you can select a kit to build and run your project. To
build and run the project, at least one kit must be active and selectable.
If your desired kit is shown as grayed out, then you may have some kit
configuration issues. When you install Qt for a target platform, the build
and run settings for the development targets usually get configured
automatically. Click on the checkbox to select one of the desktop kits

such as Desktop Qt 6.0.0 MinGW 64-bit. Click on the Next button to

proceed to the next screen:

& [3] Qt Widgets Application

Kit Selection
Location
Build System The following kits can be used for project HelloWorld:
Details |T-,-'|Je to filter kits by name.
Transiation [] select all kits
B> Kits
Summary
D Desktop (x86-windows-msys-pe-64bit) Details *
Desktop Qt 6.0.0 MinGW 64-bit Details ¥

Mext Cancel

Figure 2.9 — Kit Selection screen

8. Version control allows you or your team to submit code changes to a
centralized system so that each and every team member can obtain the
same code without passing files around manually. You can add your
project into the installed version control system on your machine. Qt
has support for several version control systems within the Qt Creator
IDE. You may skip version control for this project by selecting <None>.

Click on the Finish button to complete the project creation:

& [¥] QtWidgets Application

Project Management

Location
Build System Add as a subproject to project: ' <None=
Details
) Add to version control: <Nones W
Translation e
Kits
E» Summary

Files to be added in

D:\QtProject\HelloWorld:

HelloWorld.pro
HelloWorld en U5S.ts3
main.cpp
mainwindow.cpp
mainwindow.h
mainwindow.ui

Finish

Figure 2.10 — Project management screen

Configure...

Cancel

9. Now you will see the generated files on the left side of the editor

window. Click on any file to open it in the coding window, the most

used component of the Qt Creator. The code editor is used in Edit

mode. You can write, edit, refactor, and beautify your code in this

window. You can also modify the fonts, font size, colors, and

indentation. We will learn more about these in the Understanding

advanced options section later in this chapter:

(@ main.cop @ HelloWorld - Qt Creator m 7

File Edit View Build Debug Analyze Tools Window Help

Projects c) v ¥ <Select Symbol> ~ » Line: 1, Col: 1 B+
LTI v o HelloWorld 1 #include "mainwindow.h"
(111 3 :
Welcome o HelloWorld.pro | o
v 1 Headers 3 #include <QApplication>
E nmainwindowh
CU L souces) ¥ int main(int arge, char *argv[])
“ maincpp " { o
FYEE—— QA[:lJpchahon a(arge, argv);
P : MainWindow w,
5 £
i, B : w. show()
Debug 4 maimindow.l return a.exec();
v b Other files]
/] HelloWorld_en_USs
Projects
Help
HelloWorld
G,
Debug
b
0 PRGN | s 25. 3Ap. 4C. 5QM. 6Ge. 8Tes.

Figure 2.11 — Generated files and the code editor window

10. You can now see a .pro file inside your project folder. In the current
project, the HelloWorld.pro file is the project file. This contains all the
information required by gmake to build the application. This file is

autogenerated during the project creation and contains the relevant

details in a structured fashion. You can specify files, resources, and
target platforms in this file. You need to run gmake again if you make
any modifications to the .pro file contents, as shown in Figure 2.12.

Let's skip modifying the contents for this project:

(@ Helloworld pro @ HelloWorld - Qt Creator - 0 X

File Edit View Build Debug Analyze Tools Window Help

Projects =T @ [He B Hellowarld pro v X Windows (CRLF) = Line:7,Col:13 B+
TV HelloWorld 1 QT = core gui 2
Wekcome ‘@ HelloWorld.pro
v Headers } greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
E 1 mainwindow.h -
* maincpp '
" 7 SOURCES += ||
= mainwindow.cpp . .
main.cpp \
el v/ forms : L
¥, S : mainwindow. cpp
Debug / mainwindow.ui I
v & Other files HEADERS += |
/.& s HelloWorld_en USts | 1 SRR
Projects .
(7] 4 FORMS += |
Help 15 mainwindow.ui
HelloWorld ;
|7 TRANSLATIONS += \
IJ J k: HelloWorld en US.ts
Debug
)0 # Default rules for deployment.
2 1 gnx: target.path = /tmp/$${TARGET}/bin
)2 else: unix:tandroid: target.path = Jopt/$${TARGET}/bin
hi 23 Yiskmpty(target.path): INSTALLS += target
[ERGRCICECHSUENN | ssues 2 Sea. 3 Ap.. 4C0. 5QM. 6Gen. 8 Tes.

Figure 2.12 — The contents of the project file

11.

12.

13.

You can find a form file with the .ui extension in the left side of the

editor window. Let's open the mainwindow.ui file by double-clicking it.
Here, you can see the file opens under a different interface: Qt Designer.
You can see that the mode selection panel has switched to Design mode.

We will discuss Qt Designer more in the next chapter.

Now drag the Label control listed under the Display Widgets category

to the center of the form on the right side, as shown in Figure 2.13.

Next, double-click on the item you dragged in, and type Hello World!.
Hit the Enter key on your keyboard or click with the mouse anywhere

outside the control to save the text:

(& mainwindow,ui @ HelloWorld - Qt Creator

Fle Edit View Buld Debug Analyze Tools Window Help

Filter

|

. M Input Widgets
E[omboﬂox
@ Font Combo Box
el Line Edit
A Tent it
Ol A piain Tt Ed
E]Spinﬂox
E] Double 5pin Box
(9 Time et
% Daekiit
0 DatefTme it
) FRE
= N = Horzontal Scroll Bar
Vertical Scrol Bar
{k Horizontal Slider
5P VertcalSder

v gy
0 Latel
@TextBrowser
‘fﬁ (iraphics View
L E[alendarWidget
18 L0 Number
i Progress Bar
S Horizontal Line
M Vertcal Line
177 OpentL. Widget
4] QQuickWidget

A Type Here

Name

{
Action Editor

-

P, Type to locate (Ctl+.

Figure 2.13 — The designer screen

Used

Mzl World!

Signals SlotsE..

Text

Filter

Shortcut

= 0 M
A |Fiter
Object (lass
v MainWindow ~ QMainWi
v % centralwidget QWidget
Iabel (1 abel
menubar QMenuBe
statushar (StatusB;
{)
Fitter n
[abe : QLabel
| Propery Ve A
ol QObject
- objectame [abe!
ey Qlidget
enabled
geometry [(190, 170),
sizefolicy [Preferred,P
minimumSize ~ 0x0
madmumsize 16777215 x
sizelncrement — 0x0
3| baseSize 00
l()

14. The final step is to press the Run button present below the kit selector
button. The project will build automatically once the reader hits the
Run button. Qt Creator is intelligent enough to figure out that the
project needs to be built first. You can build and run the application
separately. After a few seconds of compiling, you will see a window

with text reading Hello World!:

B | MainWindow = O X

Hello World!

Figure 2.14 — The display output of the sample GUI application

Congratulations, you have created your first Qt-based GUI application!

Now let's explore the different advanced options available in Qt Creator.

Understanding advanced options

When you install Qt Creator, it gets installed with the default configuration.
You can customize the IDE and configure its look and feel or set your

favorite coding style.

Go to the top menu bar and click on the Tools option, then select
Options.... You will see a list of categories available on the left sidebar.
Each category provides a set of options to customize Qt Creator. As a
beginner, you may not need to change the settings at all, but let's get
familiar with the different options available. We will start by looking at

managing Kkits.

Managing Kits

Qt Creator can automatically detect the installed Qt versions and available
compilers. It groups the configurations used for building and running
projects to make them cross-platform compatible. This set of configurations
are stored as a kit. Each kit contains a set of parameters that describe the

environment, such as the target platform, compiler, and Qt version.

Start by clicking on the Kits option in the left sidebar. This will autodetect
and list the available kits as shown in Figure 2.15. If any kit is shown with a
yellow or red warning mark, then it signifies a fault in the configuration. In
that case, you may have to select the right compiler and Qt version. You can
also create a customized kit by clicking on the Add button. If you want to
use a new Kit, then don't forget to click on the Apply button. We will

proceed with the default desktop configuration shown as follows:

Mk 4% T raatmr
@ upnons - Ut Lreato

Fiter | Kits
B Kits Kits QtVersions Compilers Debuggers CMake
(J Environment Name Add
B Text Editor v Auto-detected Clone
. Desktop Qt 6.0.0 MinGW 64-bit (default)
M FakE]'u"Im v Maﬂua| Remove
@ Help & Desktop (x86-windows-msys-pe-64bit) Make Default
{} Cos Settings Fiter...
1 0t Quice Default Seftings Filter...
2 Build & Run
B Qs Name: IDesktop Qt %{Qt:Version} MinGW 64-bit =
W Debuyyer File system name: ‘ ‘
. Device type: Desktop
/' Designer
Device: Local PC (default for Desktop) v | Manage...
& Python
5 Analyzer Sysroot: ‘ Browse...
; C: MinGW 8.1.0 64-bit for C v
B Version Control Compiler: Manage...
03 Dei C++: | MinGW 8.1.0 64-bit for C++ v
evices
No changes to apply. "
i Environment: Change...
E Code Pasting D Force UTF-8 MSVC compiler output !
& Language Client Debugger: GNU gdb 8.1 for MinGW 8.1.0 64-bit Manage...
I8 Testing Qt version: Qt 6.0.0 MinGWW 64-bit Manage...
0K Cancel Apply

Figure 2.15 — The Kits configuration screen

Now let's proceed to the Qt Versions tab under the Kits section.

Qt Versions

In this tab, you can see the Qt versions available on your system. Ideally,
the version gets detected automatically. If it is not detected, then click on
the Add... button and browse to the path of gmake to add the desired Qt
version. Qt uses a defined numbering scheme for its releases. For example,
Qt 6.0.0 signifies the first patch release of Qt 6.0 and 6 as the major Qt
version. Each release has limitations on the acceptable amount of changes
to ensure a stable API. Qt tries to maintain compatibility between versions.
However, this is not always possible due to code clean-ups and architectural

changes in major versions:

(i Options - Qt Creator X

Fiter | Kits
@ Kits Kits ~ QtVersions Compilers Debuggers ~ CMake
o
[J Environment Name qmake Location Add.
B Text Editor v Auto-detected Remove
_ Qt 6.0.0 MinGW 64-bit D:\Qt\6.0.0\ymingw81_64\bin\gmake.exe

¥ rfakeVim Manual
0 Help Link with Qt...
{} C++ Clean Up
4 Ot Quick
2 Build & Run
@ Qos
¥ Debugger Qt version 6.0.0 for Desktop Detals &
/' Designer Name: (t 6.0.0 MinGW 64-bit 4

ABL: x86-windows-msys-pe-64bit
@ Python Source: D:\QH6.0.0\mingw81_64
- mkspec: win32-g++
£ Analyzer qmake: D:\Qt\6.0.0\mingw81_64\bin\qmake.exe
B Version Control Version: 6.0.0

QMAKE SPEC win32-g++
O3 Devices QUAKE_VERSION 3.1

QMAKE XSPEC win32-g++
[Code Pasting QT_HOST BINS D:\0t6.0.0\mingw81 64\bin

HOST DATA : '
& Language Clet QT HOST | D:\0t16.0.0\mingwi81 64 o
I8 Testing Register documentation: Highest Version Only ~
0K Cancel Apply

Figure 2.16 — Available Qt versions

IMPORTANT NOTE

Qt software versions use the versioning format of Major.Minor.Patch. Major releases may
break backward compatibility for both the binary and source, although source compatibility

may be maintained. Minor releases have binary and source backward compatibility. Patch
releases have both backward and forward compatibility for the binary and the source.

We won't be discussing all of the tabs under the Kits section as the other
tabs require knowledge about compilers, debuggers, and build systems. If
you are an experienced developer, you may explore the tabs and make
changes as required. Let's proceed to the Environment category in the left

sidebar.

Environment

This option allows the user to choose their preferred language and theme.
By default, Qt Creator uses the system language. It doesn't support many
languages, but most of the popular languages are available. If you change to
a different language, then click on the Apply button and restart Qt Creator
to see the changes. Please note that these Environment options are
different from the build environment. You will see an interface similar to

Figure 2.17 shown as follows:

(i Options - Qt Creator X

Fiter | Environment

@ Kits Interface System Keyboard External Tools ~ MIMETypes Locator Update

D Environment User Interface

B Text Editor Color: Bl e
¥ FakeVim Theme: Flat ~ | Current theme: Flat
@ Help Language: <System Language> v
{} Cs+ Enable high DPI scaling
; Show keyboard shortcuts in context menus (default: an)
1 et Reset Warmings
2 Build & Run
M@ Qbs
{F Debugger
/" Designer
& Python

E Analyzer

B Version Control
(g Devices

[§ Code Pasting
& Language Client

J& Testing

0K Cancel Apply

Figure 2.17 — Options for the Environment settings

You will also see a checkbox saying Enable high DPI scaling. Qt Creator
handles high Dots-Per-Inch (DPI) scaling differently on different operating

systems, as follows:

¢ On Windows, Qt Creator detects the default scaling factor and uses it

accordingly.

e On Linux, Qt Creator leaves the decision of whether or not to enable
high DPI scaling up to the user. This is done because there are many

Linux flavors and windowing systems.

¢ On macOS, Qt Creator forces Qt to use the system scaling factor for the

Qt Creator scaling factor.

To override the default approach, you may toggle the checkbox option and
click the Apply button. The changes will be reflected after you restart the
IDE. Now let's have a look at the Keyboard tab.

Keyboard shortcuts

The Keyboard section allows users to explore existing keyboard shortcuts
and create new ones. Qt Creator has many built-in keyboard shortcuts,
which are very useful for developers. You can also create your own
shortcuts if your favorite shortcut is missing. You can additionally specify
your own keyboard shortcuts for the functions that do not appear in the list,

such as, for example, selecting words or lines in a text editor.

Some of the commonly used shortcuts for everyday development are listed

as follows:

New File or Project CTRL+N

Open File or Project (TRL+0

Save Current File CTRL+S

Save All CTRL+SHIFT +S
Close Current File CTRL+W

Close All CTRL+SHIFT + W
Quit Qt Creator CTRL+Q
Return to Edit mode ESCAPE

Switch Current File CTRL+TAB
Force Code Completion CTRL + SPACE
Start Debugging F5

Stop Debugging SHIFT + F5

Step Over F10

Step Into F11

Step Qut SHIFT + F11
Toggle Breakpoint Fg

Build Current Project CTRL+B

Run CTRL+R

Build Al CTRL+SHIFT +B
Locate CTRL+K

Figure 2.18 — Some of the commonly used keyboard shortcuts

The shortcuts are grouped by category. To find a keyboard shortcut in the
list, enter a function name or shortcut in the Filter field. In Figure 2.19, we

have searched for the available shortcuts related to new:

(@ Options - Qt Creator

\Filter \ Environment

@ it Interface System Keyboard Bxternal Tools ~ MIMETypes Locator Update

[Environment Keyboard Shartcuts

B Text Editor e 0

V. FakeVim Command Label Shortcut
ProjectExplorer

Hel

9 iep AddNewFil Add New.

{} C++ AddNewSubproject New Subproject...

4t Quick NewProject New Project.. Ctrl+Shift+N
QtCreator

2 Build &Run New New File or Project.. Ctrl+N

@ Qbs SplitNewWindow Open in New Window Ctrl+E 4
TextEditor

ik Debugger GuluNexILineWilhSelec., Go l Next Line wilh Selecion

/' Designer GotoPreviousLineWithS... Go to Previous Line with Selection

@ Python

F Analyzer

B Version Control

[d Devices

Code Pastin Reset Al Reset Import... Export...

E g

& Language Client - b

12 Testing

0K Cancel Apply

Figure 2.19 — Keyboard shortcut options

The preceding screenshot shows a list of available shortcuts for the

keyword new. You can see Ctrl + N is used for creating a new file or

project. You can also import or export keyboard mapping schemes files in

Jkms format.

IMPORTANT NOTE

There are many more in-built Qt shortcuts than we discussed here. You can read more
about shortcuts in the following articles:

https.//doc.qt.io/qtcreator/creator-keyboard-shortcuts.html

https.//wiki.qt.io/Qt Creator Keyboard Shortcuts

https.//shortcutworld. com/Qt-Creator/win/Qt-Creator Shortcuts

There is a possibility of conflict between a Qt Creator keyboard shortcut
and a window manager shortcut. In this case, the window manager shortcut
will override the Qt Creator shortcut. You can also configure the keyboard
shortcuts in the window manager. If this is restricted, then you can change
the Qt Creator shortcuts instead. Now, let's proceed to the next sidebar

category.

Text Editor

The next category in the left sidebar is Text Editor. Here, you can choose
the color scheme, font, and font size in the first tab. The next tab lists
different behavior in Text Editor. As you can see in Figure 2.20, Qt uses

space indentation for the Tab key on the keyboard:

https://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html
https://wiki.qt.io/Qt_Creator_Keyboard_Shortcuts
https://shortcutworld.com/Qt-Creator/win/Qt-Creator_Shortcuts

(@ Options - Qt Creator

Fiter

g Kits

[Environment
B Text Editor

¥ FakeVim

@ Help

{} C++

4 Qt Quick

/2 Build & Run
@ Qbs

1 Debugger

/' Designer

@ Python

E Analyzer

B Version Control
[Devices

(B Code Pasting
& Language Client

JE Testing

| Text Editor

Font & Colors ~ Behavior Display

Tabs And Indentation

Code indentation is configured in G+
and Qt Quick settings.

Tab policy:
Spaces Only v

Tab size: Indent size:

Align continuation lines:

With Spaces v

Typing
Enable automatic indentation
Backspace indentation:

None ¥
Tab key performs auto-indent;

Mever 4

Generic Highlighter ~ Snippets

Cleanups Upon Saving

Clean whitespace
[] n entire document

Clean indentation

Macros

Completion

Skip clean whitespace for file types:

Ensure newline at end of file

File Encodings

Default encoding: |UTF-8
UTF-8 BOM:

Default line endings: |Windows (CRLF)

Mouse and Keyboard

Hide mouse cursor while typing
Enable mouse navigation

Enable scroll wheel zooming

Enable built-in camel case navigation

Enable smart selection changing

Keep If Already Present

W

[] show help toottips using keyboard shortcut (Al

Show help tooltips using the mouse:

On Mouseover %

0K

Figure 2.20 — Text Editor Behavior tab

Cancel

Apply

Some developers prefer tab indentation over space indentation. You can

change the indentation behavior in the C++ and Qt Quick settings. Since

there are dedicated settings as a different sidebar category, this section in

Text Editor may be deprecated in future releases.

You can find the file encoding of the current file in the File Encodings
group. To modify the file encoding, select New Encoding from the
dropdown. To view the file with the new encoding, click on the Apply

button.

We won't be discussing all of the sidebar categories as those are very
advanced options. You can explore them later once you learn the basics. In

the next section, we will discuss managing the coding window.

Splitting the coding window

You can split the coding window and view multiple files on the same screen
or on an external screen. You can view multiple files simultaneously in a
selection of different ways (the options are available under the Window

option in the menu bar):

(B maincpp @ HelloWorld - O Creator - 0 X

File Edit View Build Debug Analyze Tools RYTL6TN Help

Pojets T V@ BQ ¢ e Full Screen Ctrl+Shift+F11 ‘a- main.cpp X <. v ool 12,CH @
v 5 HelloWorld L gt) #include "maimwindow.h" i
2 HelloWorld pro '
t P T+ Split Side by Side (trl+£, 3 . o
v i Headers i _ _ #include <QApplication
T Open in New Window (trl+E 4
i mainwindowh _
- f Remave Current Split (trl+E, 0 it main(int arge, char +argv[])
_ { Remave All Splits (trl+E 1 {
“ maincpp .
ER Go to Previous Split or Window Cirl+E, | QApplication a(argc, argv);
“ mainwindow.cpp oo g ! 4
(o to Next Split or Window (trl+£, 0 Mainkindow w;
3 v/ Forms
+ mainwindow | Go Back Alt+eft i Sl
Debug bl return a.exec();
} et iETi
: 12 Go to Last Edit
i Presious Open Documentin Hisory ~ CtisTab e X 4. vl 12 CB B
9 Next Open Document in History Ctrl+Shift+Tab | #include "mainwindow,h" i
e v maincpp @ HelloWorld , .
#include <QApplication>
5 ¥ int main(int arge, char #argv[])
0 {
QApplication a(argc, argy),
Mainkindow w;
w.show();
eturn a.exec();
i return a.exec();
B
Debug
4 }
D EAIPECINET G | [ssics 2 SearchRe.. 3 Appicatio.. 4 Comple0.. 5 QMLDebu.. § GeneralM.. 8 TestResufs ¢

Figure 2.21— A screenshot showing the spilt screen options

Now let's discuss various ways to split a coding window and remove a split

window:

To split the coding window into top and bottom views, press Ctrl + E
and then 2, or select the Window option in the menu bar and then click
on the Split option. This will create an additional coding window below

the currently active window.

To split the coding window into adjacent views, select Split Side by
Side or press Ctrl + E and then 3. A side-by-side split creates views to

the right of the currently active coding window.

To open the coding window in a detached window, press Ctrl + E, and
4, or select Open in New Window. You can drag the window to an

external monitor for convenience.

To move between split views and detached editor windows, select Next

Split or press Ctrl + E, and then O.

To remove a split view, click on the window you want to remove and

select Remove Current Split, or press Ctrl + E, and then 0.

To remove all split coding windows, select Remove All Splits or press
Ctrl + E, and then 1.

In this section, you learned about splitting the coding editor window. This

helps when referring to multiple code files at once while coding. In the next

section, we will discuss the Build menu present in the IDE's menu bar.

Build options

In the menu bar, you can see the Build option. If you click that, then you
will see various build options as shown in Figure 2.22. Here, you can build,
rebuild, or clean your projects. In complex projects, you may have more
than one subproject. You can build subprojects individually to reduce total

build time:

(& main.pp @ HelloWorld - Ot Creator - 0 X

File Edit View WIGN Debug Analyze Tools Window Help
el /' Build All Projects CtrleShift+B RORIEST v Windows (RLF) v [Line:12, Col:1 B+
v g H 2 Build All Projects for All Configurations
o/ Build Project *HelloWorld" (trl+B
"7 Build Project "HelloWorld" for All Confiqurations
Y) wildforRun Configuration ‘HelloWorld"

Generate Compilation Database for "HelloWorld® oreit])
Run gmake argy)’
" BildFie “main.cpp’ (trl+Alt+B
¥, Deploy Al Projects
Debug Deploy Project "HelloWorld"
b R Rebuild AllProjects
Projects R Rebuild All Projects for All Configurations
9 Rebuild Project “HelloWorld*
Help Rebuild Project “HelloWorld" for All Configurations
&5 CleanAll Projects
1

1 Clean All Projects for Al Configurations
Clean Project "HelloWorld"
Clean Project “HelloWorld" for All Configurations

L Ctrl+R
Helloorl Run Without Deployment
I: ; Open Build and Run Kit Selector..
Debug QML Preview Iy: New Search
Export QML
’ Searchfor:‘ ‘

('] Case sensiive [| Whale words only [] Use regular expressions

File pattern: | * v v

[EACROINECGUEN | [ssics 2 SerchR.. 3 Applcetio.. 4 Compie 0. 5 QMLDebu.. 6 GeneralM.. 8 TestResults +

Figure 2.22 — Build menu options

Qt Creator project wizards allow you to choose the build system, including
gmake, CMake, and Qbs, while creating a new project. It gives developers
the freedom to use Qt Creator as a code editor and to have control of the
steps or commands used in building a project. By default, gmake is installed
and configured for your new project. You can learn more about using other

build systems at the following link: https://doc.qt.io/gtcreator/creator-

project-other.html.

Now let's discuss where and how to look for the framework's

documentation.

Qt Assistant

Qt Creator also includes a built-in documentation viewer called Qt
Assistant. This is really handy since you can look for an explanation of a
certain Qt class or function by simply hovering the mouse cursor over the
class name in your source code and pressing the F1 key. Qt Assistant will
then be opened and will show you the documentation related to that Qt class

or function:

https://doc.qt.io/qtcreator/creator-project-other.html

(@ maincop @ Helloorld - Ct Creator S
file Edit View Buld Debug Analyze Tools Window Help

v BEW N & QMainWindow Class | Gt Widgets 6.0.0
Look for: [l
0 Q160

<CiCborCommonz:Basehd A

<QtChorCommansBasebdur ot W|dget5

<QiCoorComman:Bigfloat o C++ Classes
<QtCborCommon>;COSE_Encrypt

QitboCommon-:C0SE Fnenpt | @ QMainWindow

<(iCborCommon==COSE Mac .
QoComman 0% Nl ¢(216.0.0 Reference Documentation

Il
I
1
Il
. Il
B (1ChorCommon>:COSE Sign Contents
1
Il
Il
I
1

v Unfittered

L < (tCborCommans:COSE Sign
y’ <QtChorCommons:DateTimeSti Public Types

<0iCborCommonz:Decimal ,
<CiCborCommon::EncodedChor Propertles

0 <QiCho Commonx:ExpectedBa;e A Public Functions

Projects

Help S

Open Pages PUb“C S|0tS

(MainWindo...gets 6.0.0 Slgn als
Reimplemented Protected Functions
Detailed Description

Qt Main Window Framework
Creating Main Window Components
Storing State

HelloWorld

3,

Debug

QMainWindow Class

PRIERCIVECHGUEN | ssucs 2 SearchR.. 3 Applicafio.. 4 Comple0.. 5 QMLDebu.. 6 GeneralM.. 8 TestResuts +

Figure 2.23 — Integrated help interface

Qt Assistant also provides support for interactive help and enables you to

create help documentation for your Qt application.

NOTE

On the Windows platform, Qt Assistant is available as a menu option on the Qt Creator
menu bar. On Linux distributions, you can open Terminal, type assistant, and press Enter.
On macOS, it is installed in the /Developer/Applications/Qt directory.

In this section, we learned about Qt Assistant and the help documentation.

Now, let's summarize our takeaways from this chapter.

Summary

This chapter explained the fundamentals of the Qt Creator IDE and what it
can be used for. Qt Creator is an IDE with a great set of tools. It helps you
to easily create great GUI applications for multiple platforms. Developers
don't need to write lengthy code just to create a simple button or change a
lot of code just to align a text label — Qt Designer automatically generates
code for us when we design our GUI. We created a GUI application with
just a few clicks, and we also learned about the various advanced options
available in the IDE, including how to manage kits and shortcuts. The built-
in Qt Assistant provides great help with useful examples and can help us

with our own documentation.

In the next chapter, we will discuss GUI design using Qt Widgets. Here,
you will learn about different widgets, how to create your own GUI

element, and how to create a custom GUI application.

Chapter 3. GUI Design Using Qt Widgets

Qt Widgets is a module that offers a set of user interface (UI) elements for
building classic Uls. In this chapter, you will be introduced to the Qt
Widgets module and will learn about basic widgets. We will look at what
widgets are and the various kinds that are available for creating graphical
Uls (GUlIs). In addition to this, you will be introduced to layouts with Qt
Designer, and you will also learn how to create your own custom controls.
We will take a close look into what Qt can offer us when it comes to
designing sleek-looking GUIs with ease. At the beginning of this chapter,
you will be introduced to the types of widgets provided by Qt and their
functionalities. After that, we will walk through a series of steps and design
our first form application using Qt. You will then learn about Style Sheets,
Qt Style Sheets (QSS files), and theming.

The following main topics will be covered in this chapter:
e Introducing Qt widgets
e Creating a UI with Qt Designer
e Managing layouts
e Creating custom widgets
e Creating Qt Style Sheets and custom themes
e Exploring custom styles

e Using widgets, windows, and dialogs

By the end of this chapter, you will understand the basics of GUI elements
and their corresponding C++ classes, how to create your own Ul without
writing a single line of code, and how to customize the look and feel of

your UI using Style Sheets.

Technical requirements

The technical requirements for this chapter include Qt 6.0.0 MinGW 64-bit,
Qt Creator 4.14.0, and Windows 10/Ubuntu 20.04/macOS 10.14. All the
code used in this chapter can be downloaded from the following GitHub

link: https://github.com/PacktPublishing/Cross-Platform-Development-

with-Qt-6-and-Modern-Cpp/tree/master/Chapter03.
NOTE

The screenshots used in this chapter are taken from a Windows environment. You will see
similar screens based on the underlying platforms in your machine.

Introducing Qt widgets

A widget is the basic element of a GUL. It is also known as a UI control. It
accepts different user events such as mouse and keyboard events (and other
events) from the underlying platform. We create Uls using different
widgets. There was a time when all GUI controls were written from scratch.
Qt widgets reduce time by developing a desktop GUI with ready-to-use
GUI controls, and Qt widely uses the concept of inheritance. All widgets
inherit from QObject. QWidget is a basic widget and is the base class of
all UI widgets. It contains most of the properties required to describe a

widget, along with properties such as geometry, color, mouse, keyboard

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter03

behavior, tooltips, and so on. Let's have a look at QWidget inheritance

hierarchy in the following diagram:

/’m

QObject

QPaintDevice

~

QWidget

QlineEdit

QFrame

QAbstractButton

QTabWidget

QDialog

QMainWindow

QRadioButton

[}

QroolButton

QPushButton

(CheckBox

OMessageBox

Figure 3.1 — QWidget class hierarchy

Most of the Qt widget names are self-explanatory and can be identified

easily as they start with Q. Some of them are listed here:

QPushButton is used to command an application to perform a certain

action.

QCheckBox allows the user to make a binary choice.

QRadioButton allows the user to make only one choice from a set of

mutually exclusive options.

QFrame displays a frame.

QLabel is used to display text or an image.

QLineEdit allows the user to enter and edit a single line of plain text.

QTabWidget is used to display pages related to each tab in a stack of

tabbed widgets.

One of the advantages of using Qt Widgets is its parenting system. Any
object that inherits from QObject has a parent-child relationship. This
relationship makes many things convenient for developers, such as the

following:

e When a widget is destroyed, all its children are destroyed as well due to

the parent-children hierarchy. This avoids memory leaks.

e You can find children of a given QWidget class by using findChild()
and findChildren().

e Child widgets in a Qwidget automatically appear inside the parent
widget.

A typical C++ program terminates when the main returns, but in a GUI
application we can't do that, or the application will be unusable. Thus, we
will need the GUI to be present until the user closes the window. To
accomplish this, the program should run in a loop till this happens. The GUI

application waits for user input events.

Let's use QLabel to display a text with a simple GUI program, as follows:
#include <QApplication>
#include <QLabel>
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QLabel myLabel;
myLabel.setText("Hello World!");

myLabel.show();

return app.exec();
¥

Remember to add the following line to the helloworld.pro file to enable the

Qt Widgets module:

QT += widgets

You need to run gmake after you make changes to your .pro file. If you are
using the command line, then proceed with the following commands:

>qmake

>make

Now, hit the Run button to build and run the application. You will soon see
a Ul with Hello World! displayed, as illustrated in the following

screenshot:

@ main.cpp @ HelloWorld - Qt Creator A i T

File Edit View Build Debug Analyze Tools Window Help

Projects *TEBR | E Helloworld.pro X Windows (CRLF) ~ + Line:4,Col:1 B+ @&
LT v ¢ HelloWorld 1|QT += widgets A
Welcome o HelloWorld.pro) |
v o Sources)| SOURCES += ma1in.cpp
E 4 main.cpp
Edt v X <No Symbols> v o Line: 12, Col: 1 B+ B
#include <QApplication>
#include <QLabel>
k) 417 int main(int argc, char *argv[])
Debug | g
F ' QApplication app(argc, argv);
Projects i Ol ahel myl abel;
: myLabel.setText("Hello World!");
9 .' myLabel.show();
By I return app.exec();
11 '}
12

Application Output &1

Helloworld ()

HelloWorld 22:37:59: Starting D:\QtProject\Chapter3\build-HelloWorld-
Desktop_Qt_6_0_0_MinGW_64_bit-Debug\debug\HelloWorld.exe ...

0,

Debug Bl HelloWorld - O X

> Hello World!

k

1N ° Type to locate (Ctrl+.. 1 Issues 2 Sea.. 3 Appl.. 4 Com.. 5QML.. 6 Gen.. 8 Test.

Figure 3.2 — Simple GUI application

You can also run the application from the command line on Windows, as

follows:

>helloworld.exe

You can run the application from the command line on Linux distributions,

as follows:

$./helloworld

In command-line mode, you may see a few error dialogs if the libraries are
not found in the application path. You can copy the Qt libraries and plugin
files to that binary folder to resolve the issue. To avoid these issues, we will

stick to Qt Creator to build and run our sample programs.

In this section, we learned how to create a simple GUI using the Qt Widgets
module. In the next section, we will explore the available widgets and

creating a UI with Qt Designer.

Creating a Ul with Qt Designer

Let's get familiar with Qt Designer's interface before we start learning how

to design our own UI. The following screenshot shows different sections of
Qt Designer. We will gradually learn about these sections while designing

our UI:

D Qt Designer

File Edit Form View Settings Window Help

00 BEBE 0

’ x: m - hello.ul

Bl

Widget Box
Filter
v Layouts A

= Vertical Layout

ﬂﬂﬂ Horizontal Layout

43 Grid Layout
& fom Layout

X Spacers
B Horizontal Spacer
! Vertical Spacer

M Buttons

E Push Button

@ Tool Button

@ Radio Button

W CheckBox

e Command ..k Button

Dialog Button Box

¥ [tem Views..del-Based)
List View
'E Tree View

= Table View

v

Editor

Figure 3.3 — Qt Designer Ul

Form
Toolbar

8 X
Filter
Object Class A
glhmu'.wdget

Inspector 7T p.n QPushButton y
} Fiter QI;: '
BRI Y T

LS R S e s s o QWidget

Property

A

QObject
QWidget
enabled ¥ %
¢)
Signal/Slot Editor g X
Hin =
; Sender 5/ .
Signals & Y Action Resource
Sots > Editor Browser

Signal/Slot... Adtio..

Resourc‘e B..

The Qt Widgets module comes with ready-to-use widgets. All these widgets

can be found under the Widget Box section. Qt provides an option to create

a Ul by a drag-and-drop method. Let's explore these widgets by simply
dragging them from the Widget Box area and dropping them into the Form
Editor area. You can do this by grabbing an item and then pressing and
releasing the mouse or trackpad over the intended region. Don't release your

mouse or trackpad until the item reaches the Form Editor area.

The following screenshot shows different types of widgets available in the
Widget Box section. We have added several ready-made widgets such as
Label, Push Button, Radio Button, Check Box, Combo Box, Progress
Bar, and Line Edit into the Form Editor area. These widgets are very
commonly used widgets. You can explore the widget-specific properties in

Property Editor:

(0 Qi Designer

File Edit Form View Settings Window Help

J¢g ot Eﬁa@l

Widget Box

ﬁ I:Ilﬂ ﬂll =F]
uuu uu E@

X

Filter

1] idge
(5 voiares

] Dock e

v Input Widgets

(Combo Box

E Font Combo Box
Line Edit

Al T
Al Pain T it
@ Spin Box
Dauble Spin Box

%mmm:

9 vl
) Horzonial Seroll Bar
EJ Vertical Scroll Bar

* 110 ot Widgets - untitled”

Umm

Combo Box B

ol

‘ZIZPUShBU“O"]ﬁ]]]]ﬁ]ﬁ""””'””'”"'

- Qtadobitn

COoew N

4

b w

>

- 0 X

Object Inspector g x
Filter
Object ~ Class i
v ﬁ Form QWidget

t.X QCheckBox

c.X QComboBox

dial QDial v
Property Editor g x

Filter

Form: QWidget

ol s

Figure 3.4 — Different types of GUI widgets

Property Value il
acceptDrops 0
) windowTitle Different Widgets ~ |#
Resource Browser g X
/@ e
<TRSOUTCE 00t>
| Signal/SlotFe.. ActionFd.. Resource Brow..

You can preview your UI by selecting the Preview... option under the

Form menu, as shown in the following screenshot, or you can hit Ctrl + R.

You will see a window with the UI preview:

i Qt Designer - X
Fle Edt Fom Vew Setings Wirdow Hep
74 |l Lay Out Horizontally v = @@ m =
' @ = Lay Out Vertically Ctrl+2 i
Wioge o ¥ Lay Out Horizontally in Splitter Ctrl+3 X Object npector X |
il ¥ Lay Out Vertically in Splitter s R R R S AR i |
L 1yoniacid ais | ot G :
= Vertica B Lay Outin a Form Layout cis | v % Form QWidget
[IHH LU 5 Break Layout Ctrl+0 T Sr p-n QPushButton v
EDEEE Grd L3) pgiust Sze Ct+) N | 3%l
LR 1 @ Form - [Preview] - Qt Designer X

N S

b Horizo

Preview in

Push B

Form Settings.
Tool Bu

EVertica View C+4 Code..
Y B ViewPython Code..

® Radio Button
¥ CoeckBor
e Command ..k Button

Dialog Button Box

¥ [tem Views..del-Based)

List View

'Q’EIE Tree View
E Table View v

Hello!

Preview current form

Figure 3.5 — Previewing your custom Ul

You can find the created C++ code for your Ul by selecting the View C++
Code... option under the Form menu, as shown in the following
screenshot. You will see a window with the generated code. You can reuse

the code while creating a dynamic UI:

[Ot Designer m—

B Form - [C++ Code] - Qt Designer

File Edit Form View Settings Windo
i D ﬁﬂ)l Lay Out Horizontally Ctrl+1 {

o = Lay Out Vertically Ctrl+2
Widget Box
W Lay Out Horizontally in Splitter Ctrl+3 ore/QVariant>
Filt ! o
% LyOutVericalyinSpiter Cul+4 Jidgets/Qhpplication>
hf L o S idgets/QPushButton>
= Vertica 2 e LIk idgets/QWidget>
o [FT] :
4 LayOutin a Form Layout Ctr+6
ggg ks % Break Layout Cr+0 MESPACE
248 0ndLa) agjust ize Ctit+)
EE
93 Foml Simplify Grid Layout
. 5
W Hoiio Previewin Y 1 *pushButton;
Preview.. Ctrl+R
E Vertica View G+ Code.. (QWidget *Form)
v B oo '
PUSh B o e objectNamel)isEmpty()
Form Settings.. s_etObjectName[QString‘.:fromUth("Form -
&\ 1ol — size(362, 30}

pushButton = new QPushButton(Form);
pushButton->setObjectName(QString::fromUtf("pushButton”));
pushButton->setGeometry(QRect(130, 140, 75, 24));

(& Radio Button

W Checkox

6 Command ..k Button

Dialog Button Box

v [tem Views..del-Based)

retranslateUi(Form);

(QMetaObject:connectSlotsByName(Form);

g 3 }// setupUi
List View
"’*;B Tree View void retranslateUiQWidget *Form)
_ {
% Table View V[« Form->setWindowTitle(()CoreApplication:translate("Form”, "Farm’, nullptr]);
pushButton->setText(QCoreApplication::translate("Form’, "Hello!", nullptr));
b/ retranslateli

Close

Figure 3.6 — Option to view corresponding C++ code

In this section, we got familiar with the Qt Designer UI. You can also find
the same interface embedded in Qt Creator when you open a .ui file. In the
next section, you will learn about different types of layouts and how to use

them.

Managing layouts

Qt provides a set of convenient layout management classes to automatically
arrange child widgets within another widget to ensure that the UI remains
usable. The QLayout class is the base class of all layout managers. You can
also create your own layout manager by reimplementing the
setGeometry(), sizeHint(), addItem(), itemAt(), takeAt(), and
minimumSize() functions. Please note that once the layout manager is

deleted, the layout management will also stop.

The following list provides a brief description of the major layout classes:
e QVBoxLayout lines up widgets vertically.
e QHBoxLayout lines up widgets horizontally.
¢ QGridLayout lays widgets out in a grid.

e QFormLayout manages forms of input widgets and their associated
labels.

e QStackedLayout provides a stack of widgets where only one widget is

visible at a time.

QLayout uses multiple inheritances by inheriting from QObject and
QLayoutItem. The subclasses of QLayout are QBoxLayout,
QGridLayout, QFormLayout, and QStackedLayout. QVBoxLayout and
QHBoxLayout are inherited from QBoxLayout with the addition of

orientation information.

Let's use the Qt Designer module to lay out a few QPushButtons.

QVBoxLayout

In the QVBoxLayout class, widgets are arranged vertically, and they are
aligned in the layout from top to bottom. At this point, you can do the

following:
1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the vertical layout button. You can find

this by hovering on the toolbar button that says Lay Out Vertically.

You can see the push buttons get arranged vertically in a top-down

manner in the following screenshot:

3 Qt Designer

File Edit Form View Se’rtings Window Help

PILEE

Illiﬂ FlF| CI:I
IJI]EI i
oad G

Widget Box
button ﬂ
v Buttons
Push Button e
TooIButton N ,,P”?“,B?‘F“?",', - [
® RadioButton Push Button 2
e Command Link Button
Dialog Button Box P ——
Push Button 4

Push Button 3

- 0 X
Object Inspector 8 X
Filter
Object Class 8
¥ l Form QWidget
v E 5 QBoxayout

.. (QPushButton

... QPushButton A
Property Editor B X

Filter Hii — f
|

Form: QWidget

Property Valee %
QObject
v
{ }
Resource Browser 8 X
/’ ¢ e
<[ESOUICE 10...

SignalfSl.. Acti. Resource.

Figure 3.7 — Layout management with QVBoxLayout

You can also dynamically add a vertical layout through C++ code, as shown

in the following snippet:

Qwidget *widget = new Qwidget;

QPushButton *pushBtnl

new QPushButton("Push Button
1");

QPushButton *pushBtn2 new QPushButton('"Push Button

2");

QPushButton *pushBtn3

new QPushButton("Push Button

3");

QPushButton *pushBtn4 new QPushButton('"Push Button
a");
QVBoxLayout *verticallLayout = new QVBoxLayout(widget);
verticallLayout->addwidget(pushBtnl);
verticallayout->addwidget (pushBtn2);
verticallayout->addwidget (pushBtn3);
verticallLayout->addwidget(pushBtn4);

widget->show ();

This program illustrates how to use a vertical layout object. Note that the
QWidget instance, widget, will become the main window of the
application. Here, the layout is set directly as the top-level layout. The first
push button added to the addWidget() method occupies the top of the
layout, while the last push button occupies the bottom of the layout. The
addWidget() method adds a widget to the end of the layout, with a stretch

factor and alignment.

If you don't set the parent window in the constructor, then you will have to
use QWidget::setLayout() later to install the layout and reparent to the

widget instance.

Next, we will look at the QHBoxLayout class.

QHBoxLayout

In the QHBoxLayout class, widgets are arranged horizontally, and they are

aligned from left to right.
We can now do the following:
1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the horizontal layout button. You can find

this by hovering on the toolbar button that says Lay Out Horizontally.

You can see the push buttons get arranged horizontally in a left-to-right

manner in this screenshot:

(@ 0t Designer

File Edit Form View Setings Window Help

lyB no Eﬁa%l L

Widget Box

ﬁ Iiliﬂ EE = m
r uuu uu Gﬁ

button

¥ Buttons

Push Button
Toal Button

(§ Radio Bution
6 Command Link Button

Dialog Button Box

>

all o« QHBoxlayout - untitled® m

| Push Button 1 ‘Push Button 2 Push Button 3, Push Buttond)

L=<

Object Inspector g X
Filter
Object Class 4
v ﬁ Form QWidget
vl HBodayout —
.. QPushButton
. QPushButton Y
Property Editor 8 X

Filter Hii = f’

Form : QWidget

/ Value ki
{Tracking [
. m
¢)
Resource Browser fx
/ ¢ e

<TESOUICE 10...

SignalfSl.. Acii.. Resource.

Figure 3.8 — Layout management with QHBoxLayout

You can also dynamically add a horizontal layout through C++ code, as

shown in the following snippet:

Qwidget *widget = new Qwidget;

QPushButton *pushBtnl

new QPushButton('"Push

Button 1");

QPushButton *pushBtn2 new QPushButton("Push

Button 2");

QPushButton *pushBtn3 new QPushButton('"Push
Button 3");

QPushButton *pushBtn4

new QPushButton("Push
Button 4");
QHBoxLayout *horizontallLayout = new QHBoxLayout (
widget);

horizontallLayout->addwidget(pushBtnl);
horizontallLayout->addwWidget (pushBtn2);
horizontallLayout->addwidget (pushBtn3);
horizontallLayout->addwidget (pushBtn4);

widget->show ();

The preceding example demonstrates how to use a horizontal layout object.
Similar to the vertical layout example, the QWidget instance will become
the main window of the application. In this case, the layout is set directly as
the top-level layout. By default, the first push button added to the
addWidget() method occupies the leftmost side of the layout, while the last
push button occupies the rightmost side of the layout. You can change the
direction of growth when widgets are added to the layout by using the

setDirection() method.

In the next section, we will look at the QGridLayout class.

QGridLayout

In the QGridLayout class, widgets are arranged in a grid by specifying the
number of rows and columns. It resembles a grid-like structure with rows

and columns, and widgets are inserted as items.
Here, we should do the following:
1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the grid layout button. You can find this
by hovering on the toolbar button that says Lay Out in a Grid.

You can see the push buttons get arranged in a grid in the following

screenshot:

(3 Qt Designer

File Edt Form View Setfings Window Help

Jpa o EJ%I =R

Widget Box

Illﬂ EE L

o o E@

button

¥ Buttons

Push Button
Tool Button

(8 Radio Button
e Command Link Button

Dialog Button Box

ﬁﬂ QGridLayout - untitled*

=R

j]?PushBurtonBQfPushButton4 B

-3

Object Inspector 8 X
Filter
Object Class 2
v i Form QWidget
vl B ocidaot
... QPushButton
.. QPushBution i
Property Editor 8 X

e %:ﬂ

Form: QWidget

/ Value

extMenuPalicy DefaultContext. Y

p—
{)
Resource Browser 8 X
/e Fiter

<[ESOUICE 10...

SignalfSl.. Acti. Resource.

Figure 3.9 — Layout management with QGridLayout

You can also dynamically add grid layout through C++ code, as shown in

the following snippet:

Qwidget *widget = new Qwidget;

QPushButton *pushBtnl

new QPushButton(

"Push Button 1");

QPushButton *pushBtn2 new QPushButton(

"Push Button 2");

QPushButton *pushBtn3 new QPushButton(
"Push Button 3");

QPushButton *pushBtn4 new QPushButton(

"Push Button 4");
QGridLayout *gridLayout = new QGridLayout(widget);
gridLayout->addwidget (pushBtnl);
gridLayout->addwidget (pushBtn2);
gridLayout->addwidget (pushBtn3);
gridLayout->addwidget(pushBtn4);

widget->show();

The preceding snippet explains how to use a grid layout object. The layout
concept remains the same as in the previous sections. You can explore

QFormLayout and QStackedLayout layouts from the Qt documentation.
Let's proceed to the next section on how to create your custom widget and

export it to the Qt Designer module.

Creating custom widgets

Qt provides ready-to-use essential GUI elements. Qt widgets were not
actively developed after Qt Modeling L.anguage (QML) came into

existence, so you may require a more specific widget and may want to

make it available to others. A custom widget may be a combination of one
or more Qt widgets placed together or may be written from scratch. We will
create a simple label widget from QLabel as our first custom widget. A

custom widget collection can have multiple custom widgets.
Follow these steps to build your first Qt custom widgets library:

1. To create a new Qt custom widget project in Qt, click on the File menu
option on the menu bar or hit Ctrl + N. Alternatively, you can also click
on the New Project button located on the Welcome screen. Select the
Other Project template and then select Qt Custom Designer Widget,

as shown in the following screenshot:

(8 New File or Project - Qt Creator X

Choose a template: All Templates v

Projects . .
T (Ot Custom Designer Widget Creates a Qt Custom Designer Widget or a
Application (Qf) m - - Custom Widget Collection.

Application (Qt Quick)
Application (Qt for Python)

Library v —
Other Project Auto Test Project

Non-Qt Project

Import Project k | Subdirs Project

Files and Classes

C/C++ b | Empty gmake Project
Modeling

Ot] .
Code Snippet
GLSL o

General

Supported Platforms:

#7/4| Qt Quick Ul Prototype
: * Desktop

Java

Python

Choose... Cancel

Figure 3.10 — Creating a custom widget library project

2. In the next step, you will be asked to choose the project name and
project location. You can navigate to the desired project location by
clicking the Browse... button. Let's name our sample project
MyWidgets. Then, click on the Next button to proceed to the next

screen. The following screenshot illustrates this step:

(¥ Qt Custom Designer Widget

| Introduction and Project Location
E» Location

Kits This wizard generates a Qt Designer Custom Widget or a Qt Designer Custom Widget Collection project.
Custom Widgets
Flugin Details

Summary

Name: ‘M}rWidgets

Create in: ‘D:\QtPro]ect Browse...

[] use as default project location

Next Cancel

Figure 3.11 — Creating custom controls library project

3. In the next step, you can select a kit from a set of kits to build and run
your project. To build and run the project, at least one kit must be active
and selectable. Select the default Desktop Qt 6.0.0 MinGW 64-bit kit.
Click on the Next button to proceed to the next screen. The following

screenshot illustrates this step:

& [¥] Qt Custom Designer Widget

Kit Selection
Location
E> Kits The following kits can be used for project MyWidgets:
Custom Widgets |T:.-'pe to filter kits by name...
Flugin Details (8] Select all kits
Summary
A
Desktop (x86-windows-msys-pe-64bit) Details *
Desktop Qt 6.0.0 MinGW 64-bit Details ¥
v
Mext Cancel

Figure 3.12 — Kit selection screen

4. In this step, you can define your custom widget class name and
inheritance details. Let's create our own custom label with the class
name MyLabel. Click on the Next button to proceed to the next screen.

The following screenshot illustrates this step:

& [Qt Custom Designer Widget

Custom Widget List
Location
Kits Specify the list of custom widgets and their properties.
E» Custom Widgets
Plugin Detals Widget Classes: - Sources Descripion Property defaults
Summary Mylabel () Link library
y Create skeleton
<New class> @ Include project

Widget library: mylabel

Widget project file: ‘mylabel.pri

Widget header file: ‘mylahel.h

Widget source file: ‘mylabel.cpp

Plugin class name: ‘MyLaheIPlugin

Plugin header file: ‘mylabelplugin.h

|
|
|
Widget base class: QLabEI ‘
|
|
|

Plugin source file: ‘mylahelplugin.cpp

Icon file: ‘ Browse...

Next Cancel

Figure 3.13 — Creating a custom widget from an existing widget's screen

5. In the next step, you can add more custom widgets to create a widget
collection. Let's create our own custom frame with the class name
MyFrame. You can add more information to the Description tab or can
modify it later. Click on the checkbox that says The widget is a

container to use the frame as a container. Click on the Next button to

proceed to the next screen. The following screenshot illustrates this

step:

& [T Qt Custom Designer Widget

| Custom Widget List
Location
Kits Specify the list of custom widgets and their properties.
E» Custom Widgets
Plugin Details Widget Classes: r Sources Description Property defaults
Summary MyLabel
MyFrame
<New class> Growp: | |

Tooltip: ‘ ‘

What's this:

The widget is a container

Mext Cancel

Figure 3.14 — Creating a custom widget container

6. In this step, you can specify the collection class name and the plugin
information to automatically generate the project skeleton. Let's name
the collection class MyWidgetCollection. Click on the Next button to
proceed to the next screen. The following screenshot illustrates this

step:

& [% Qt Custom Designer Widget

Plugin and Collection Class Information

Location
Kits Specify the properties of the plugin library and the collection class.
Custom Widgets
2 Plugin Details Collection class: |M',rWidgetCnIIectinn|
Summary Collection header file: |mwﬂdgetcn|lecti0n.h

Plugin name: |mWJidgetcn|Iecti0n|:|Iugin

|
|
Collection source file: |mwﬂdgetcn|lecti0n.cpp |
|
|

Resource file: |icnns.qrc

Next Cancel

Figure 3.15 — Option to specify plugin and collection class information

7. The next step is to add your custom widget project to the installed
version control system. You may skip version control for this project.
Click on the Finish button to create the project with the generated files.

The following screenshot illustrates this step:

& [3 Qt Custom Designer Widget

Project Management

Location
Kits Add as a subproject to project: | <Hone=
Custom Widgets
; ; Add to version control: <None= e Configure...
Flugin Details
E» Summary

Files to be added in

D:\QtProject\MyWidgets:

icons.grc
myframe.cpp
myframe.h
myframe.pri
myframeplugin. cpp
myframeplugin.h
mylabel.cpp
mylabel.h
mylabel.pri
mylabelplugin. cpp
mylabelplugin.h
mywidgetcollection. cpp
mywidgetcollection.h
MyWidgets.pro

Finish Cancel

Figure 3.16 — Project management screen

8. Expand the Project Explorer views and open the mylabel.h file. We
will modify the contents to extend the functionalities. Add a
QDESIGNER_WIDGET_EXPORT macro before the custom widget
class name to ensure the class is exported properly in the dynamic-link
library (DLL) or the shared library. Your custom widget may work

without this macro, but it is a good practice to add this macro. You will

have to add #include <QtDesigner> to the header file after you insert

the macro. The following screenshot illustrates this step:

(5 mylbelh @ MyWidgets - Ot Creator - 0 X

File Edit View Buld Debug Analyze Tools Window Help

Pojects " V& RO (nmylahe\.h v X <Select Symbal> v Windows (CRLF) » Lne:5,cob 22 B
TR 5 MyWidgets | #ifndef MYLABEL_H
Wekime = MyWidgetspro) #define MYLABEL_H
v By myframe |
= 3 myframepi 4 #include <QLabel>
Edit v |, Heaers 5| #include <QtDes1'gner>|
" myfiamef | .
o L | Elass ODESIGNER_WIDGET_EXPORT MyLabel : public QLabel
¥ i TR 0OBJECT
Y AMEE 0 pROPERTY(bool multiLine READ multiLine WRITE setlultiLine)
p aMBEAPT | 4| PROPERTY(QFont: :Capitalization fontCase READ fontCase WRITE setFontCase)
v v Headers
i Vmidh | bl
9 v ¢ Sources MyLabel(Quidget #parent = nullptr);
Help « mylabelepp | L
v s Headers void setMultiline(hool isMultiline);
b myfamepluginh| - bool multiline() const { return m_isMultiline; };
h mylabelpluginh . : ww g :
. . void setFontCase(QFont::Capitalization caselptions);
i mywidgetcollect R
QFont::Capitalization fontCase() {return m_fontCase; }
Y v o Sources
g : o myframeplugln‘t orivate:
Release mylepgnep bool m_isMultiline = false;
= mpwidgetcolecti) QFont::Capitalization m_fontCase = QFont::MixedCase;
’ & Resources LA
E)7 dendif [/ NYLABEL.H
¢ il

[PRROIECHGIEN | s 2 Searchfe. 3 Applcation., 4 Compie0.. 5 OMLDebu.. 6 GeneralM.. 8 TestResufs +

10.

11.

Figure 3.17 — Modifying the custom widget from the created skeleton

IMPORTANT NOTE

On some platforms, the build system may remove the symbols required by Qt Designer
module to create new widgets, making them unusable. Using the
QDESIGNER_WIDGET_EXPORT macro ensures that the symbols are retained on
those platforms. This is important while creating a cross-platform library. There are no
side effects on other platforms.

. Now, open the mylabelplugin.h file. You will find that the plugin class

is inherited from a new class named
QDesignerCustomWidgetInterface. This class allows Qt Designer to
access and create custom widgets. Please note that you must update the

header file as follows to avoid deprecated warnings:
#include <QtUiPlugin/QDesignerCustomWidgetInterface>

You will find several functions auto created in mylabelplugin.h. Don't
remove these functions. You can specify the values in the name(),
group(), and icon() functions that appear in the Qt Designer module.
Note that if you don't specify an icon path in icon(), then Qt Designer
will use the default Qt icon. The group() function is illustrated in the
following code snippet:

QString MyFramePlugin::group() const

{

return QLatiniString("My Containers");
}

You can see in the following code snippet that isContainer() returns

false in MyLabel and true in MyFrame, since MyLabel is not

12.

designed to hold other widgets. Qt Designer calls createWidget() to

obtain an instance of MyLabel or MyFrame:
bool MyFramePlugin::isContainer() const

{

return true;

}

To create a widget with a defined geometry or any other properties, you
specify these in the domXML() method. The function returns an
Extensible Markup Language (XML) snippet that is used by the
widget factory to create a custom widget with the defined properties.
Let's specify the MyLabel width as 100 pixels (px) and height as 16 px,

as follows:

QString MyLabelPlugin::domXml() const

{

return "<ui language=\"c++\"
displayname=\"MyLabel\">\n"
" <widget class=\"MyLabel\"
name=\"myLabel\">\n"

" <property name=\"geometry\">\n"
" <rect>\n"
" <x>0</x>\n"
" <y>0</y>\n"
" <width>100</width>\n"
" <height>16</height>\n"

" </rect>\n"

" </property>\n"

" <property name=\"text\">\n"
" <string>MyLabel</string>\n"
" </property>\n"

" </widget>\n"

"</ui>\n",;

}

13. Now, let's have a look at the MyWidgets.pro file. It contains all the
information required by gmake to build the custom widget collection
library. You can see in the following code snippet that the project is a

library type and is configured to be used as a plugin:

CONFIG += plugin debug_and_release
CONFIG += Cc++17
TARGET = $$gtLibraryTarget(

mywidgetcollectionplugin)

TEMPLATE 1lib

HEADERS
mywidgetcollection.h

mylabelplugin.h myframeplugin.h

SOURCES = mylabelplugin.cpp myframeplugin.cpp \
mywidgetcollection.cpp

RESOURCES = icons.qgrc

LIBS += -L.

greaterThan(QT_MAJOR_VERSION, 4) {
QT += designer

} else {

14.

CONFIG += designer

}

target.path = $$[QT_INSTALL_PLUGINS]/designer
INSTALLS += target

include(mylabel.pri)

include(myframe.pri)

We have gone through the custom widget creation process. Let's run
gmake and build the library in the Release mode. Right-click on the
project and click on the Build option, as shown in the following
screenshot. The project will be built within a few seconds and will be
available inside the inside release folder. On the Windows platform,
you can manually copy the mywidgetcollectionplugin.dll created
plugin library to the D:\Qt\6.0.0\mingw81_64\plugins\designer path.

This path and extension vary for different operating systems:

(@ MyWidgets ro @ MyWidgets - Qt Creator - 0 X

file Edit View Buld Debug Analyze Tools Window Help

Pojects v VO BE (B Vyidgets ro Windows (CRLF) v Line: 5, Cal: 27 B+
Welcome s MWidgetspro Run gqmake
& myframe Deply yTarget (mywidgetcollectionplugin)
N . & mylabel % Tin
Edit - mylabelpi gin.h myframeplugin.h mywidgetcollection.h
v I Headers Rebuild gin.cpp myfraneplugin.cpp
b mabeh Clean 11ection.cpp
e v & Sources
¥, & Add New..
Debi mylabel A ising Fls.
v Headers \dd Existing Proie STON, 4) {
‘)
.)‘ b myframepg Adg isting Directory..
i b mylabelplugi e Syhooiec
] " mpwidgetcol A itray.
v o Sources Find i Ths Directoy..
= myfiameplug Close Al Files in Poject "MyWidgets' .
= mylabelplugi— Close Project “MyWidgets' L RIATRS | csagmer
“ mywidgetcol
i Expand
Resources
. Collapse All
MyWidgets i Al
] :
Release

it B

[EAICOCCHEE | sics 2 Searchfe.. 3 Applcaon.. 4 Compie0.. 5 QMLDebu.. 6 GeneralM.. 8 TestRess + = I

Figure 3.18 — Option to build your custom widget library

15. We have created our custom plugin. Now, close the plugin project and
click on the designer.exe file present inside
D:\Qt\6.0.0\mingw81_64\bin. You can see MyFrame under the
Custom Widgets section, as shown in the following screenshot. Click
on the Create button or use a widget template. You can also register
your own form as a template by doing platform-specific modifications.

Let's use the Qt Designer-provided widget template:

&) New Form - Qt Designer X

bt templates\forms
Dialog with Buttons Bottom
Dialog with Buttons Right
Dialog without Buttons
Main Window
Widget

2 Widgets

A Custom Widiets

Embedded Design

Device: Mone

Screen Size: | Default size '

Show this Dialog on Startup

Create Open... Recent ~ Close

Figure 3.19 — Custom container in the new form screen

16. You can see our custom widgets in the left-side Widget Box section, at
the bottom. Drag the MyLabel widget to the form. You can find created
properties such as multiLine and fontCase along with QLabel
properties under Property Editor, as illustrated in the following

screenshot:

1 Ot Designer
File Edit Form View Settings Window Help

vA

Widget Box 8 X

Rter |

[F T I
i e

A S (] R e

[l Horizontal Spacer SR

E Vertical Spacer [N

> Buttons el el
1

v Item Views..del-Based) B | I

I Llst View

m Column View

Undo View

v ltem Widg...em-Based)

List Widget

QEIE Tree Widget

] b et

) (ontainers

> Input Widgets l

> Display W}dgetsl

v My Widgetsf

(1Y myLabel

v My Containers

m MyFrame Vv

I@\I%M

min rlF
aun FlY a
[r(r wIr

Object Inspector g X
Filter
Object Class e
v s Form QWidget

mylabel Mylabel y
Property Editor g X
Fiter F=/

HTree‘u'lew -y

mylabel : Mylabel

Bl evesn W1 - - - -

Property
QWidget
QFrame
QLabel

MyLabel
multiLine []

fontCase MixedCase

Signal/Slot Editor

g X

=

Sen\aer Signal Receiver Slot

Signal/Slot Editor ~ Action Editor

Resource Browser

Figure 3.20 — Exported widgets available in Qt Designer

You can also find detailed instructions with examples in the following Qt

documentation link:

https://doc.qt.io/qt-6/designer-creating-custom-widgets.html

Congratulations! You have successfully created your custom widgets with
new properties. You can create complex custom widgets by combining
multiple widgets. In the next section, you will learn how to customize the

look and feel of widgets.

Creating Qt Style Sheets and custom
themes

In the last section, we created our custom widget, but the widget still has a
native look. Qt provides several ways to customize the look and feel of the
UL A Qt Style Sheet is one of the simplest ways to change the look and
feel of widgets without doing much complex coding. Qt Style Sheet syntax
is identical to HyperText Markup Language/Cascading Style Sheets
(HTML/CSS) syntax. Style Sheets comprise a sequence of style rules. A
style rule consists of a selector and a declaration. The selector specifies
widgets that will be affected by the style rule, and the declaration specifies
the properties of the widget. The declaration portion of a style rule is a list
of properties as key-value pairs, enclosed inside {} and separated by

semicolons.
Let's have look at the simple QPushButton Style Sheet syntax, as follows:

QPushButton { color: green; background-color: rgb (193, 255, 216);}

https://doc.qt.io/qt-6/designer-creating-custom-widgets.html

You can also change the look and feel of widgets by applying Style Sheet in
Qt Designer with the stylesheet editor, as follows:

1. Open the Qt Designer module and create a new form. Drag and place a

push button on the form.

2. Then, right-click on the push button or anywhere in the form to get the

context menu.

3. Next, click on the Change styleSheet... option, as shown in the

following screenshot:

@ Qt Designer 2 0 *
File Edit Form View Seftings Window Help
NeAl ' = T g
0pB 00 BS8E 15HEBEE
WidgetBox & X ol ™ Object Inspector g X
push 0 Filter
v Buttons Object Clas 2
Push Button " ' Fom Qlidget
p.n QPushButton
L
Property Editor g X
el 2
| el Value &

' |me Fom i

Size Constraints 4)
Promoted widgets.. OWSEr g X
Change signals/slas... Filter
& G Ctlek oo
) Copy (ireC
5; Paste Ctrl+V
Select All (trl+A
Delete
Lay out 4
-
y | SignafSiot.. Action.. ResourceB..

Figure 3.21 — Adding Style Sheet using Qt Designer

4. We have used the following Style sheet to create the previous look and
feel. You can also change a Style Sheet from the QWidget properties in
Property Editor:

QPushButton {
background-color: rgb(193, 255, 216);
border-width: 2px;
border-radius: 6;
border-color: lime;
border-style: solid;
padding: 2px;
min-height: 2.5ex;
min-width: 10ex;
}
QPushButton:hover {
background-color: rgbh(170, 255, 127);
}
QPushButton:pressed {
background-color: rgb(170, 255, 127);

font: bold;

In the preceding example, only Push Button will get the style described in
the Style Sheet, and all other widgets will have the native styling. You can
also create different styles for each push button and apply the styles to
respective push buttons by mentioning their object names in the Style

Sheet, as follows:

QPushButton#pushButtonID

IMPORTANT NOTE

To learn more about Style Sheet and their usage, read the documentation at the following
links:

https.//doc.qt.io/qt-6/stylesheet-reference.html

https.//doc.qt.io/qt-6/stylesheet-syntax.html

https.//doc.qt.io/qt-6/stylesheet-customizing.html

Using a QSS file

You can combine all Style Sheet code in a defined .gss file. This helps in
ensuring the look and feel is maintained across the application in all
screens. QSS files are analogous to .css files, which contain the definitions
for the look and feel of GUI elements such as color, background color, font,
and mouse interaction behaviors. They can be created and edited with any
text editor. You can create a new Style Sheet file with the .gss file extension
and then add it to the resource file (.grc). You may or may not have .ui files
for all projects. The GUI controls can be created dynamically through code.
You can apply a Style Sheet to a widget or to a whole application, as shown
in the following code snippet. This is how we do it for a custom widget or
form:

Mywidget: :MyWidget (Qwidget *parent)

: Qwidget(parent)

setStyleSheet("Qwidget { background-color: green }");

https://doc.qt.io/qt-6/stylesheet-reference.html
https://doc.qt.io/qt-6/stylesheet-syntax.html
https://doc.qt.io/qt-6/stylesheet-customizing.html

Here is how we apply it for the whole application:
#include "mywidget.h"
#include <QApplication>
#include <QFile>
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QFile file(":/qss/default.qss");
file.open(QFile: :ReadOnly);
QString styleSheet = QLatinilString(file.readAll());
app.setStyleSheet(styleSheet);
wWidget mywidget;
mywidget.show();

return app.exec();

}

The preceding program illustrates how to use a Style Sheet file for the
entire Qt GUI application. You need to add the .gss file into the resources.
Open the .gss file using QFile and pass the customized QSS rules as an
argument to the setStyleSheet() method on the QApplication object. You

will see all screens will have the Style Sheet applied to them.

In this section, you learned about customizing the look and feel of an
application using Style Sheets, but there are more ways to change an
application's look and feel. These approaches depend on your project need.

In the next section, you will learn about custom styles.

Exploring custom styles

Qt provides several QStyle subclasses that emulate the styles of the
different platforms supported by Qt. These styles are readily available with
the Qt GUI module. You can build your own custom styles and export
these as plugins. Qt uses QStyle for rendering the Qt widgets to ensure their

look and feel, as per native widgets.

On a Unix distribution, you can get a Windows-style UI for your

application by running the following command:

$./helloworld -style windows

You can set a style on an individual widget using the QWidget::setStyle()
method.

Creating a custom style

You can customize the look and feel of your GUI by creating a custom
style. There are two different approaches to creating a custom style. In a
static approach, you can subclass the QStyle class and reimplement virtual
functions to deliver the desired behavior, or rewrite the QStyle class from
scratch. QCommonStyle is generally used as a base class instead of
QStyle. In a dynamic approach, you can subclass QProxyStyle and modify
the behavior of your system style at runtime. You can also develop style-
aware custom widgets by using QStyle functions such as drawPrimitive(),

drawltemText(), and drawControl().

This section is an advanced Qt topic. You need to understand Qt in depth to

create your own style plugin. You can skip this section if you are a

beginner. You can learn about the QStyle classes and custom styles in the

Qt documentation at the following link:

https://doc.qt.io/qt-6/qstyle.html

Using a custom style

There are several ways to apply a custom style in a Qt application. The
easiest way is to call the QApplication::setStyle() static function before

creating a QApplication object, as follows:
#include "customstyle.h"

int main(int argc, char *argv[])

{
QApplication::setStyle(new CustomStyle);
QApplication app(argc, argv);
wWidget helloworld;
helloworld.show();
return app.exec();
¥

You can also apply a custom style as a command-line argument, like so:

>./customstyledemo -style customstyle

Custom styles can be difficult to implement but can be faster and more
flexible. QSS is easy to learn and implement, but the performance may get
affected, especially at the application launch time, as the QSS parsing may
take time. You can choose the approach convenient to you or your

organization. We have learned how to customize the GUI. Now, let's

https://doc.qt.io/qt-6/qstyle.html

understand what widgets, windows, and dialogs are in the last section of

this chapter.

Using widgets, windows, and dialogs

A widget is a GUI element that can be displayed on the screen. This could
include labels, push buttons, list views, windows, dialogs, and so on. All
widgets display certain information to a user on the screen, and most of

them allow user interactions through the keyboard or mouse.

A window is a top-level widget that doesn't have another parent widget.
Generally, windows have a title bar and border unless any window flags are
specified. The window style and certain policies are determined by the
underlying windowing system. Some of the common window classes in Qt
are QMainWindow, QMessageBox, and QDialog. A main window usually
follows a predefined layout for desktop applications that comprises a menu
bar, a toolbar, a central widget area, and a status bar. QMainWindow
requires a central widget even if it is just a placeholder. Other components
can be removed in a main window. Figure 3.22 illustrates the layout
structure of QMainWindow. We typically call the show() method to

display a widget or main window.

QMenuBar is present at the top of QMainWindow. You can add menu
options such as File, Edit, View, and Help. In the following screenshot
showing QMenuBar, there is QToolBar. QDockWidget provides a widget
that can be docked inside QMainWindow or floated as a top-level window.

The central widget is the primary view area where you can add your form

or child widgets. Create your own view area with child widgets and then

call setCentralWidget():

Toolbars

Dock Widgets

Central Widget

Figure 3.22 — QMainWindow layout

IMPORTANT NOTE

QMainWindow shouldn't be confused with QWindow. QWindow is a convenient class that
represents a window in the underlying windowing system. Usually, applications use
QWidget or QMainWindow for their Ul. However, it is possible to render directly to
QWindow, if you want to keep minimal dependencies.

Dialogs are temporary windows that are used to provide notifications or
receive user inputs and usually have OK and Cancel-type buttons.
QMaessageBox is a type of dialog that is used to show information and
alerts or to ask a question to the user. Typically, the exec() method is used to
show a dialog. The dialog is shown as a modal dialog and is blocking in
nature until the user closes it. A simple message box can be created with the

following code snippet:

QMessageBox messageBox;
messageBox.setText("This is a simple QMessageBox.");

messageBox.exec();

The takeaway is that all of these are widgets. Windows are the top-level

widgets, and dialogs are a special kind of window.

Summary

This chapter explained the fundamentals of the Qt Widgets module and how
to create a custom UI. Here, you learned to design and build GUIs with Qt
Designer. Traditional desktop applications are usually built with Qt
Designer. Features such as custom widget plugins allow you to create and
use your own widget collection with Qt Designer. We also discussed
customizing the look and feel of your application with style sheets and
styles, as well as looking at the uses of and differences between widgets,
windows, and dialogs. Now, you can create a GUI application with your
own custom widgets with extended functionalities and create your own

themes for your desktop application.

In the next chapter, we will discuss QtQuick and QML. Here, you will
learn about QtQuick controls, Qt Quick Designer, and how to build a
custom QML application. We will also discuss an alternate option of using

Qt Quick for GUI design rather than widgets.

Chapter 4. t Quick and QML

Qt consists of two different modules for developing a graphical user
interface (GUI) application. The first approach is to use Qt Widgets and
C++, which we learned about in the previous chapter. The second approach
is to use Qt Quick Controls and the Qt Modeling L.anguage (QML), which

we will be covering in this chapter.

In this chapter, you will learn how to use Qt Quick Controls and the QML
scripting language. You will study how to use Qt Quick Layouts and
positioners and make a responsive GUI application. You will learn to
integrate your backend C++ code with frontend QML. You will learn the
fundamentals of Qt Quick and QML, and how to develop touch-friendly
and visual-oriented Qt applications. You will also learn about mouse and

touch events and how to develop a touch-aware application.
In this chapter, we're going to cover the following main topics:
e Getting started with QML and Qt Quick
e Understanding Qt Quick Controls
e Creating a simple Qt Quick application
e Designing a user interface (UI) with Qt Quick Designer
e Positioners and layouts in QML
e Integrating QML with C++
e Integrating QML with JavaScript (JS)

e Handling mouse and touch events

By the end of this chapter, you will understand the basics of QML,

integration with C++, and how to create your own fluid UI.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platforms such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https:/github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter04.

IMPORTANT NOTE

The screenshots used in this chapter are taken from the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Getting started with QML and Qt Quick

QML is a UI markup language. It is a declarative language that is part of
the Qt framework. It enables the building of fluid and touch-friendly Uls
and came into existence with the evolution of touchscreen mobile devices.
It was created to be highly dynamic, where developers can easily create
fluid Uls with minimal coding. The Qt QML module implements the QML
architecture and provides a framework for developing applications. It
defines and implements the language and infrastructure, and provides
application programming interfaces (APIs) to integrate the QML
language with JS and C++.

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter04

Qt Quick provides a library of types and functionality for QML. It
comprises interactive types, visual types, animations, models, views, and
graphics effects. It is used for mobile applications where touch input, fluid
animations, and user experience are crucial. The Qt QML module provides
the language and infrastructure for QML applications, whereas the Qt
Quick module provides many visual elements, animation, and many more
modules to develop touch-oriented and visually appealing applications.
Instead of using Qt Widgets for UI design, you can use QML and Qt Quick
Controls. Qt Quick supports several platforms, such as Windows, Linux,
Mac, iOS, and Android. You can create a custom class in C++ and port it
over to Qt Quick to extend its functionality. Furthermore, the language

provides a smooth integration with C++ and JS.

Understanding the QML type system

Let's get familiar with the QML type system and various QML types. The
types in a QML file can originate from various sources. The different types

used in a QML file are outlined here:

e Basic types provided natively by QML such as int, bool, real, and list

JS types such as var, Date, and Array

QML object types such as Item, Rectangle, Image, and Component

Types registered via C++ by QML modules such as BackendLogic

Types provided as a QML file, such as MyPushButton

A basic type can contain a simple value such as an int or a bool type. In
addition to the native basic types, the Qt Quick module also provides
additional basic types. The QML engine also supports JS objects and arrays.
Any standard JS type can be created and stored using the generic var type.
Please note that the variant type is obsolete and exists only to support older
applications. A QML object type is a type from which a QML object can be
created. Custom QML object types can be defined by creating a .qml file
that defines the type. QML object types can have properties, methods,

signals, and so on.

To use the basic QML types inside your QML file, import the QtQml

module with the following line of code: import QtQml

Item is the base type for all visual elements in Qt Quick. All visual items in
Qt Quick are inherited from Item, which is a transparent visual element that
can be used as a container. Qt Quick provides Rectangle as a visual type to
draw rectangles, and an Image type to display images. Item provides a
common set of properties for the visual elements. We will explore the usage

of these types throughout the book.
You can learn more about QML types at the following link:

https://doc.qt.io/qt-6/qmltypes.html

In this section, we learned the basics of QML and Qt Quick. In the next

section, we will discuss Qt Quick Controls.

Understanding Qt Quick Controls

https://doc.qt.io/qt-6/qmltypes.html

Qt Quick Controls provides a set of Ul elements that can be used to build
a fluid UI using Qt Quick. To avoid ambiguity with widgets, we will use
the term controls for UI elements. Qt Quick Controls 1 was originally
designed to support desktop platforms. With the evolution of mobile
devices and embedded systems, the module required changes to meet
performance expectations. Hence, Qt Quick Controls 2 was born, and it
further enhanced support for mobile platforms. Qt Quick Controls 1 has
been deprecated since Qt 5.11 and has been removed from Qt 6.0. Qt Quick

Controls 2 is now simply known as Qt Quick Controls.

The QML types can be imported into your application using the following

import statement in your .qml file:

import QtQuick.Controls

IMPORTANT NOTE

In Qt 6, there are certain changes in the QML import and versioning system. The version
numbers have been kept optional. If you import a module without specifying the version
number, then the latest version of the module is imported automatically. If you import a
module with only the major version number, then the module is imported with a specified
major version and the latest minor version. Qt 6 introduced an auto imports functionality,
which is written as import <module> auto. This ensures the imported module and
importing module have the same version number.

Changes to Qt Quick Controls in Qt 6 can be found at the following link:

https.//doc.qt.io/qt-6/qtquickcontrols-changes-qt6.html

Qt Quick Controls offers QML types for creating Uls. Example of Qt Quick

Controls are given here:

o ApplicationWindow: Styled top-level window with support for a

header and footer

https://doc.qt.io/qt-6/qtquickcontrols-changes-qt6.html

BusylIndicator: Indicates background activity—for instance, while

content is being loaded

Button: Push button that can be clicked to perform a command or

answer a question

CheckBox: Check button that can be toggled on or off
ComboBox: Combined button and pop-up list for selecting options
Dial: Circular dial that is rotated to set a value

Dialog: Pop-up dialog with standard buttons and a title

Label: Styled text label with inherited font

Popup: Base type of pop-up-like UI controls

ProgressBar: Indicates the progress of an operation
RadioButton: Exclusive radio button that can be toggled on or off
ScrollBar: Vertical or horizontal interactive scroll bar
ScrollView: Scrollable view

Slider: Used to select a value by sliding a handle along a track
SpinBox: Allows the user to select from a set of preset values
Switch: Button that can be toggled on or off

TextArea: Multiline text-input area

TextField: Single-line text input field

ToolTip: Provides tool tips for any control

Tumbler: Spinnable wheel of items that can be selected

To configure the Qt Quick Controls module for building with gmake, add

the following line to the project's .pro file:
QT += quickcontrols2

In this section, we learned about the different types of UI elements available
with Qt Quick. In the next section, we will discuss the different styles

provided by Qt Quick and how to apply them.

Styling Qt Quick Controls

Qt Quick Controls comes with a standard set of styles. They are listed here:
e Basic
e Fusion
e Imagine

Material

Universal

There are two ways to apply styles in Qt Quick Controls, as follows:
e Compile time
e Runtime
You can apply a compile-time style by importing the corresponding style
module, as shown here:
import QtQuick.Controls.Universal

You can apply a runtime style by using one of the following approaches:

QQuickStyle::setStyle() QQuickStyle::setStyle("Universal");
-style command line argument ./application -style universal
Environment variable QT_QUICK CONTROLS_STYLE=
QT_QUICK_CONTROLS STYLE universal ./application
qtquickcontrols2.conf configuration file [Controls]

Style=Universal

Figure 4.1 — Different ways to apply a style at runtime

In this section, we learned about the available styles in Qt Quick. In the

next section, we will create our first Qt Quick GUI application.

Creating a simple Qt Quick application

Let's create our first Qt Quick application using Qt 6. A Hello World
program is a very simple program that displays Hello World!. The project
uses minimal—and the most basic—code. For this project, we will use the

project skeleton created by Qt Creator. So, let's begin! Proceed as follows:

1. To create a new Qt Quick application, click on the File menu option on
the menu bar or hit Ctrl + N. Alternatively, you can also click on the
New Project button located on the welcome screen. Then, a window
will pop up for you to choose a project template. Select Qt Quick
Application - Empty and click the Choose... button, as shown in the

following screenshot:

New File or Project - Qt Creator X

Choose a template: ‘AII Templates v ‘

Projects
Application (Qf)
Application (Qt Quick)
Application (Qt for Python)
Library
Other Project
Non-Qt Project
Import Project 4 M | Qt Quick Application - Swipe
Files and Classes
C/C++
Modeling
Qt
GLSL
General

Qt Quick Application - Empty Creatgs a Qt Quick application that
contains an empty window.

(Qt Quick Application - Scroll SePvrE Mtk

Qt Quick Application - Stack

Java

Python

Choose... Cancel

Figure 4.2 — New Qt Quick application wizard

2. In the next step, you will be asked to choose a project name and a
project location. You can navigate to the desired project location by
clicking the Browse... button. Let's name our sample project
SimpleQtQuickApp. Then, click on the Next button to proceed to the

next screen, as shown in the following screenshot:

D] Qt Quick Application - Empty

B Location PmJECt Location

Build System Creates a Qt Quick application that contains an empty window.
Details

Translation

Kits

Summary

Name: ‘SimpIthQuiclﬁﬁpp

Create in: ’tﬂook‘\Packt\-Qt—ﬁrand-C-Modern-Cruss—PIatforrn-development‘xchapterﬂ‘q” Browse...

Use as default project location

Next Cancel

Figure 4.3 — Project location selection screen

3. In the next step, you can select a kit from a set of kits to build and run
your project. To build and run a project, at least one kit must be active
and selectable. Select the default Desktop Qt 6.0.0 MinGW 64-bit kit.
Click on the Next button to proceed to the next screen. This can be seen

in the following screenshot:

.- [D Qt Quick Application - Empty

Kit Selection
Location
Build System The following kits can be used for project SimpleQtQuickApp:
Details ‘T}rpe to filter kits by name...
Translation (8] Select all kts
B Kits
A
Summary
Desktop (x86-windows-msvc2017-pe-64bit) Details ¥
Desktop (x86-windows-msys-pe-64bit) Details ¥
" Desktop Qt 6.0.0 MinGW 64-bit Details ¥
v

Figure 4.4 — Kit selection screen

4. The next step is to add your Qt Quick project to the installed version
control system (VCS). You may skip version control for this project.
Click on the Finish button to create a project with the generated files, as

shown in the following screenshot:

& [0 t Quick Application - Empty

Project Management
Location

Build System Add as a subproject to project: | <None>
Details

'

Translation

Add to version control: ‘Gii v

Kits
B> Summary
Files to be added in

Configure...

D:\QtBook\Packt\-Qt-6-and-C-Modern-Cross-Platform-development\Chapter04\Sim

.gitignore

main.cpp

main.gml

qul.gre
SimpleQtQuickApp.pro

{

Finish

Cancel

Figure 4.5 — Project management screen

5. Once a project has been created, Qt Creator will automatically open up

a file from your project, called main.qml. You will see a type of script

that is very different from your usual C/C++ projects, as shown in the

following screenshot:

(@ maingml @ SimpleQtQuickApp [master] - Qt Creator = B &

File Edit View Buld Debug Analyze Tools Window Help

Projects @B () o [SmpleQtuickpppro X Windows (CRLF) v Line: 1, Col: 27
ST V¢ SimpleQtQuickApp [master] 1|QT += quick quickcontrols? i
) o SimpleQiQuickApp.pro 2
‘) o Sources 3 CONFIG += c++1l
v g Resources 4
/ vi/ j main.cpp
Design o maingml :
& RESOURCES += gml.qrc "
o 1
" { }
Lo) o B maingml X Window Line: 14, Col: 2 B+ =
} 1| import QtQuick i
Projects 2l import QtQuick.Window
e 3| import QtQuick.Controls
a 5 ¥ Window {

6 width: 640

Sim..Ap 7 height: 480
[;]' 8 visible: true
Debug 9 title: gsTr("Hello World")
10 Text {
11 anchors.centerIn: parent
12 text: "Hello World:"
R '

[PATSOICICHOUENN | lssues 2 Searc.. 3 Applic.. 4 Compi.. 5 QML.. 6 Gener. BTed.. *
Figure 4.6 — Code editor screen showing the main.gml file

The QML runtime is implemented in C++ in the QtQml module. It
contains a QML engine that is responsible for the execution of QML. It
also holds the contexts and properties that will be accessible for the

QML elements. Qt provides a QQmlEngine class for instantiating the

QML components. You can also use the QQmlApplicationEngine
class to load the application with a single QML file in a convenient way,

as shown here:
#include <QGuiApplication>
#include <QQmlApplicationEngine>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QQmlApplicationEngine engine;
const QUrl url(QStringLiteral("qrc:/main.gml"));
engine.load(url);
return app.exec();

}

You can also use the QQuickView class, which provides a window for
displaying a Qt Quick UI. This approach is little old.
QQmlApplicationEngine has a convenient central application
functionality with QML, whereas QQuickView is normally controlled
from C++. The following code snippet shows how to use QQuickView
to load a .qml file:
#include <QGuiApplication>
#include <QQuickView>
int main(int argc, char *argv[])
{

QGuiApplication app(argc, argv);

QQuickView view;

view.setResizeMode(

QQuickView: :SizeRootObjectToView);
view.setSource(QUrl("grc:/main.qgml"));
view.show();

return app.exec();

}

QQuickView doesn't support using Window as a root item. If you want
to create your root window from QML, then opt for
QQmlApplicationEngine. While using QQuickView, you can directly

use any Qt Quick element, as shown in the following code snippet:

import QtQuick

Item {
width: 400
height: 400
Text {
anchors.centerIn: parent
text: "Hello World!"
}
3

. Next, you can build and run the Qt Quick project by clicking on the
green arrow button located at the bottom-left corner of the integrated
development environment (IDE), as shown in the following

screenshot:

LN £, Type to locate (Ctrl+...

Figure 4.7 — The build and run option in Qt Creator

7. Now, hit the Run button to build and run the application. Soon, you will

see a UI with Hello World!, as shown in the following screenshot:

B | Hello World = O X

Hallo World!

Figure 4.8 — Output of the Hello World Ul

You can run the application from the command line on Windows, as
follows:

>SimpleQtQuickApp.exe

You can also run the application from the command line on Linux

distributions, as follows:

$./SimpleQtQuickApp

In command-line mode, you may see a few error dialogs if the libraries are
not found in the application path. You can copy the Qt libraries and plugin
files to that binary folder to resolve the issue. To avoid these issues, we will
stick to Qt Creator to build and run our sample programs. You can switch
between different kits by going to the project interface and selecting a kit
based on your preferences. Please remember that you need to run gqmake
after you make changes to your .pro file. If you are using the command
line, then proceed with the following commands:

>qmake

>make

You can also create a Qt Quick 2 UI project with a QML entry point
without using any C++ code. To use it, you need to have a QML runtime
environment such as gqmlscene set up. Qt Creator uses .qmlproject to

handle QML-only projects:

1. To create a Qt Quick 2 UI project, select Qt Quick 2 UI Prototype
from the new project template screen, as shown in the following

screenshot:

i New File or Project - Qt Creator X

Choose a template: All Templates v ‘
Projects : o
T m Qt Custom Designer Widget Creates a Qt Quick 2 Ul project with a QML
Application (Gf) entry point. To use it, you need to have a

QML runtime environment such as
gmlscene set up.

Application (Qt Quick)

Application (Qt for Python) 4711 Qt Quick Ul Prototype

Library Use this only if you are pllrotpt‘,rpin.g. Yqu

; ¥ —) cannot create a full application with this.
Other Project ; = Auto Test Project Consider using a Qt Quick Application
Non-Qt Project project instead.
Import Project Y | Subdirs Project Supported Platforms:
Files and Classes * Deskiop
C/C++ b | Empty gmake Project
Modeling
Qt :

Code Snippet
GLSL] i
General
Java
Python
Choose... Cancel

Figure 4.9 — Qt Quick Ul Prototype wizard

2. Continue clicking the Next button to see the Project Details, Kit
Selection, and Project Management screens. These screens are the
same as for the Qt quick application project discussed earlier. Click on
the Finish button to create a project with a skeleton. Now, have a look
at the contents of the QtQuickUIPrototype.qmlproject and
QtQuickUIPrototype.qml Qt Creator-generated files.

3. Let's modify the contents of QtQuickUIPrototype.qml to add a Text
element and display Hello World!, as illustrated in the following

screenshot:

(I QQuickUIPrototype.qml @ QtQuickUIPrototype [master] - Ot Creator = H X

file Edit View Buld Debug Analyze Tools Window Help

Projects T V@ Bl X & CtuickUPrototype.gmprojet + X Line: 6, Cal: 23 B+ &
O < QtQuickU[Prototype [master] 1 import QmlProject 1.1 i
w;l;mp) QtQuickUIPrototypeqmipraject | 2 ¥ Project {
. -« QiuickUIPrototype.qmi 3 mainFile: "QtQuickUIPrototype.qml"
4 [Include .gml, .js, and image files from current directory :
Edit 57 (nlFiles {
y 6 } directory: "."
Design i R
8 JavaScriptFiles {
¥, directory: "."
Debug 10 }
y’ 1Y ImageFiles {
] 12 directory: "."
Projects .
13 }
9] .
Help b

v Line: 12, Cal: 31 B+ @

1| import QtQuick A
2l import QtQuick.Window
3| import QtQuick.Controls

57 Window {
- o width: 649

Q 1 height: 486

4 visible: true

5 title: gsTr("Hello World")
10[v Text {
11 anchors.centerIn: parent
12 text: "Hello Horld!|
i 13 }

[0 A Type to locate (Ctl.

Figure 4.10 — Sample contents of Qt Quick Ul Prototype project

4. Now, hit the Run button to build and run the application. Soon, you will
see a UI with Hello World!.

You can also run the application from the command line, as follows:

>gmlscene QtQuickUIPrototype.qml

You may have to mention gmlscene and the gml file path in the command
line. Use this only if you are prototyping. You cannot create a full
application with this. Consider using a Qt Quick application project instead

for a full application.

In this section, we learned how to create a simple GUI using the Qt Quick
module. In the next section, we will learn how to design a custom UI using

the Qt Quick Designer UI.

Designing a Ul with Qt Quick Designer

In this section, you will learn how to use Qt Quick Designer to design your
UL Similar to the .ui file in Qt Widgets, you can also create a Ul file in
QML. The file has a .ui.qml file extension. There are two types of QML
file: one with a .qml extension and another with a .ui.qml extension. The
QML engine treats it as a standard .qml file, but it prohibits the logical
implementation inside it. It creates a reusable Ul definition for multiple
.qml files. Through the separation of UI definition and logical

implementation, it enhances the maintainability of QML code.

Let's get familiar with Qt Quick Designer's interface before we start

learning how to design our own UI. The following screenshot shows

different sections of Qt Quick Designer. We will gradually learn about these

sections while designing our UI:

(@ QtQuickControlsDemoFormuigml [master] - Qt Creator

file Edit View Buld Debug Analyze Tools Window Help

L 00! omuigrl * X © 100% -

Welcome OLIRETCE Assets QML Impor

&

Edit Action Animation

Import
* Ot Quick - Basic

Browser
i |

Animated aﬁrder Flickable
Image Image

r.n
0
L o

Design

",
Debug S
Area

Image Iem

m 551
Tet TextEdt TextInput

* Qt Quick - Positioner

I n
11 (11

File.. ~ Open Doc..

Navigator X

Navigator

Form Editor RISl

Control btor

Library

Opacity

Form
Editor

State
Editor

Connaction
Editor

base state Default

Essentials

v [svisible
100

Layout

Signal Handler

o] Type to locate (Ctrl+.. 1 lssues 2 SearchR.. 3 Applicati.. 4 Compile.. 5 QMLDeb.. 6 General.. 8 TestRes..

Figure 4.11 — Sections of Qt Quick Designer's Ul

Qt Quick Designer's Ul consists of the following major sections:

Clip

Advang

Navigator: This lists the items in the current QML file as a tree
structure. It's similar to the Object Operator window in Qt Designer

that we learned about in the last chapter.

Control Library: This window shows all the Qt Quick controls
available in QML. You can drag and drop the controls to the canvas

window to modify your UI.

Resources: This displays all the resources in a list that can then be used

for the UI design.

Import Browser: The Import Browser facilitates the importing of
different QML modules into the current QML file, to add new
functionality to your QML project. You can also create your own

custom QML module and import in from here.

Text Editor: This has six tool buttons, each for a specific action, such

as copy and paste.

Property Editor: This is similar to the property editor of Qt Designer.
The Properties section in Qt Quick Designer displays the properties of
the selected item. You can also change the properties of the items in the

Text Editor.

Form Editor: The Form Editor is a canvas where you design a UI for

your Qt Quick application.

State Editor: This window lists the different states in a QML project,

and describes UI definitions and their behavior.

Connection Editor: This section is similar to the Signal/Slot Editor in

Qt Designer. Here, you can define the signals and slots mechanism for

your QML component.

You are now familiar with the Qt Quick Designer UI. Let's create a Qt

Quick UI file and explore the Qt Quick controls, as follows:

1. To create a Qt Quick UI, select QtQuick Ul File from the New File
template screen, as shown in the following screenshot. Proceed through
the next screens to create a Qt Quick form with a .ui.qml file extension.
By default, Qt Creator will open up Qt Quick Designer. You can switch
to code-editing mode by clicking the Edit button on the left-side panel:

Choose a template: ‘A[[Templates v ‘
Projects [L |
- Qt ltem Model Creates a Qt Quick Designer UT form along with a
Application (Qf) matching QML file for implementation purposes. You
can add the form and file to an existing Qt Quick

Application (Qt Quick)

i B Desianer Form € Project.
Application (Qt for Python) i Qt Designer Form Class
Library :‘ Supported Platforms:
Other Project | QtDesigner Form * Android Device
Non-Qt Project — * Desktop
: M
Import Project Ot Resource File
Files and Classes L
(/C B
o QML File (Qt Quick2)
Modeling ||
Qt A
| (QtQuick Ul File
GLSL uiqni|
General [
| ISFile
Java B
Python

Choose... Cancel

Figure 4.12 — QtQuick Ul File wizard

2. Let's add a few QML elements to the Form Editor by grabbing a
control by a mouse press and dropping it onto the canvas area by a
mouse release, as shown in the following screenshot. This action is
known as drag and drop (DnD). You can find several basic QML
types, such as Item, Rectangle, Image, Text, and so on. Item is a

transparent Ul element that can be used as a container:

Welcome

Design

Animited
Image

l.' y Image

Detiug

B (tQuickControlsDemororm.uig..* * X

(LIRVIEY Assets QMLImpor - [[

R 1008
Scape
o
Mouse

F?F_cl':r\n]
Ared z

©100% -

N (verride Width

i
1 Y

100 %

¥

Essentials

Tent Editor

" Type
Type
id reciange

Rectangle

Custo...

* Geomelry
Posfion X
See W
v Visibility

Tet TetEdit Text Input

Visiilty v Isvisible Clip

Opacity 100
* (Ot Quick - ¢ «itioner
ﬁQI H i Layout

Advang

111 |

Colmn Flow Grid

Fle.. Open Dac..

Connection View X

W Bindings Properties

base state

Navigator X

D
i textinput
1 rectangle
T teatt

0 item!

Signal Handler

A Type to locate (Ctl+...

1 Tssues 2 SearchR.. 3 Applicati.. 4 Compile.. 5 QMLDeb.. 6 General.. 8
Figure 4.13 — Qt Quick Designer showing basic QML types

3. By default, the library contains only a few basic QML types. You can
import Qt Quick modules to Qt Quick Designer through the QML

Import Browser. Let's import any of the QtQuick.Controls packages,
as shown in the next screenshot:

& QtouickControlDemoFormuig..* + X © 100% Eegentizls

m X | Text Edtor Properties
1] o o e ;
wecome HLTypes Assels (RLRUIE | BRI) v rice Vit) 100%

None or muiple itams selected.

QtQuick 24
Design
L

T

Fle.. OpenDoc..

Connection View

(0000 Bindings Properties

€IUAT E
Ll - I -

base state T

A

PR IVAON CHOUTT | lssues 2 SearchR.. 3 Applicati., 4 Compile.. 5 QMLDeb.. 6 General.. 8 TestRes. 7

Figure 4.14 — Qt Quick Designer showing the QML module import option

4. Once the module is imported, you can see a section with Qt Quick -

Controls 2 in the library, as illustrated in the following screenshot:

& (tQuickControlsDemoForm.uig..* +

Wolcome Il Aosets QML Impor 7 [[- K 0% - 100

E Layout Advanc
Tumbler

Visible...

Ted TetEdit TextInput

* Qt Quick - Controls 2 X
y — Current
Design : Wrap
me
i Busy e | heek
) Dl 200 Ceckbox Delegats Control

by ™ o @ B Enabled v/ true

Combo Box

[:Jelat; i Frame Focus ... TabFocus

B 3 Hover v true

[tem Spating

Delegate
F;aqe :) Progress Radio

ndtor °° B Buton Font MS Shell Dig 2

Group Box Label Page

Fle.. Opan Doc. i ¢ i ponz
Fonts. B |

Enant » Mivadsea

basa state Dafault

A, Type to locate (Ctrl+.. 1 sues 2 SearchR.. 3 Applicati.. 4 Compile.. 5 QMLDeb.. 66

Figure 4.15 — Qt Quick Designer showing Qt Quick Controls

In this section, we got familiar with Qt Quick Designer's interfaces. In the

next section, you will learn about different positioners and layouts.

Positioners and layouts in QML

There are different ways to position items in QML. You can manually
position a control by mentioning x and y coordinates or by using anchors,
positioners, or layouts. Let's discuss how to position a control through the

aforementioned methods.

Manual positioning

A control can be positioned at specific x and y coordinates by setting their
corresponding x and y properties. As per the visual coordinate system rules,

this will position the controls relative to the top-left corner of their parent.

The following code snippet shows how to place a Rectangle item at
position (50,50):
import QtQuick
Rectangle {
// Manually positioned at 50,50
X: 50 // x position
y: 50 // y position
width: 100; height: 80
color: "blue"

}

When you run the preceding code, you will see a blue rectangle created at
the (50,50) position. Change the x and y values and you will see how the
position is changed relative to the top-left corner. Qt allows you to write
multiple properties in a single line separated by a semicolon. You can write

x and y positions in the same line, separated by a semicolon.

In this section, you learned how to position a visual item by specifying its

coordinates. In the next section, we will discuss the use of anchors.

Positioning with anchors

Qt Quick provides a way to anchor a control to another control. There are
seven invisible anchor lines for each item: left, right, top, bottom,

baseline, horizontalCenter, and verticalCenter. You can set margins or
different margins for each side. If there are multiple anchors for a specific

item, they can then be grouped.

Let's have a look at the following example:
import QtQuick
import QtQuick.window
window {
width: 400; height: 400
visible: true
title: gsTr("Anchoring Demo")
Rectangle {
id: blueRect
anchors {
left: parent.left; leftMargin:10
right: parent.right; rightMargin: 40
top: parent.top; topMargin: 50

bottom: parent.bottom; bottomMargin: 100

color: "blue"

Rectangle {
id: redRect
anchors.centerIn: blueRect
color:"red"

width: 150; height: 100

}

If you run this example, you will see a red rectangle inside a blue rectangle

with different margins in the output window, as shown next:

B! Anchoring Demo — O W

Figure 4.16 — Anchor positioning a control inside a window

In this section, you learned how to position a visual item by using anchors.

In the next section, we will discuss the use of positioners.

Positioners

Positioners are containers that manage the positions of visual elements in a
declarative UI. Positioners behave in a similar way to layout managers in

Qt widgets.

A standard set of positioners is provided in a basic set of Qt Quick

elements. They are outlined as follows:
e Column positions its children in a column.
e Row positions its children in a row.
e Grid positions its children in a grid.
e Flow positions its children like words on a page.
Let's have a look how to use them in Qt Quick Designer. First, create three

Rectangle items with different colors and then position them inside a Row

element, as illustrated in the following screenshot:

Library X | X Text Editor

DL MR Assets QML Imports [la [Override Width ~ Override Height

b Qt Quick - Animation
 Qt Quick - Basic

Animated Border _ Focus) Mause
)) Flickable .~ Image Tem i
Image Image Scope § Area

Rectangle Tedt TextEdit Text Input

* Qt Quick - Positioner

Column Flow Grid Row

v Qt Quick - Views

Grid View List View Path View

EIGio e Projects File System Open Documents
SRR
Item
v = oW
yellowRect
redRect

greenRect

Figure 4.17 — Rectangles inside a Row positioner

You can also write code to position the controls inside a positioner. Qt
Creator automatically generates code if you use Qt Quick Designer. The
generated code can be viewed and modified through the Text Editor tab
next to Form Editor. The code is shown in the following snippet:

Row {

id: row

Rectangle {
id: yellowRect
width: 150; height: 100
color: "yellow"
border.color: "black"

}

Rectangle {
id: redRect
width: 150; height: 100
color: "red"
border.color: "black"

}

Rectangle {
id: greenRect
width: 150; height: 100
color: "green"

border.color: "black"

}

In this section, we learned about different positioners. In the next section,

we will discuss the use of repeaters and models, along with positioners.

Repeater

A repeater creates a number of visual elements using a provided model, as
well as elements from a template to use with a positioner, and uses data
from a model. A repeater is placed inside a positioner, and creates visual
elements that follow the defined positioner arrangement. When there are
many similar items, then a positioner with a repeater makes it easier to

maintain when arranged in a regular layout.

Let's create five rectangles positioned in a row using Repeater, as follows:
import QtQuick
import QtQuick.Window
Window {
width: 400; height: 200
visible: true
title: gsTr("Repeater Demo")
Row {
anchors.centerIn: parent
spacing: 10
Repeater {
model: 5
Rectangle {
width: 60; height: 40
border{ width: 1; color: "black";}

color: "green"

}

When you run the preceding example, you will see five rectangles arranged

in a row, as shown next:

[B | Repeater Demo

Figure 4.18 — Rectangles inside a Row positioner

In this section, we learned about the use of repeaters with positioners. In the

next section, we will look into Qt Quick Layouts.

Qt Quick Layouts

Qt Quick Layouts are a set of QML types that can be used to arrange visual
elements in a UI. Qt Quick Layouts can resize their children, hence they are
used for resizable Uls. The basic difference between positioners and layouts

is that layouts can resize their children on window resize.

Qt Quick Layouts can be imported into your QML file by using the

following import statement:
import QtQuick.Layouts
There are five different type of layouts in QML, as outlined here:

e RowLayout: This arranges elements in a row. It is similar to

GridLayout but only has one row.

e ColumnLayout: This arranges elements in a column. It is similar to

GridLayout but only has one column.

e GridLayout: This allows elements to be arranged dynamically in a

grid.

e Layout: This provides attached properties for items pushed onto a

ColumnLayout, RowLayout, or GridLayout layout type.

e StackLayout: This arranges elements in a stack-like manner where only

one element is visible at a time.

Let's look at the following RowLayout example:
import QtQuick
import QtQuick.window
import QtQuick.Layouts
Window {
width: 640; height: 480
visible: true
title: gsTr("Layout Demo")
RowLayout {
id: layout
anchors.fill: parent
spacing: 6
Rectangle {
color: 'yellow'
Layout.fillwidth: true
Layout.minimumwWidth: 50
Layout.preferredwidth: 150

Layout.maximumwidth: 200

Layout.minimumHeight: 100
Layout.margins: 10

3

Rectangle {
color: 'red'
Layout.fillwidth: true
Layout.minimumwidth: 50
Layout.preferredwidth: 100
Layout.preferredHeight: 80

Layout.margins: 10

}

Please note that a Row type is a positioner, while a RowLayout type is a
layout. When to use them depends mainly on your goal, as usual. Let's

move on to the next section to see how to integrate QML with C++.

Integrating QML with C++

QML applications often need to handle more advanced and performance-
intensive tasks in C++. The most common and quickest way to do this is to
expose the C++ class to the QML runtime, provided the C++

implementation is derived from QObject.

QML can be easily integrated with C++ code. QML objects can be loaded
and manipulated from C++. QML integration with Qt's meta-object system

allows C++ functionality to be invoked from QML. This helps in building

hybrid applications with a mixture of C++, QML, and JS. To expose C++
data or properties or methods to QML, it should be derived from a QObject
class. This is possible because all QML object types are implemented using
QODbject-derived classes, allowing the QML engine to load and inspect
objects through the Qt meta-object system.

You can integrate QML with C++ in the following ways:
e Embedding C++ objects into QML with context properties
e Registering the type with the QML engine

e Creating a QML extension plugin

Let's discuss each approach one by one in the following sections.

IMPORTANT NOTE

To quickly determine which integration method is appropriate for your project, have a look at
the flowchart illustrated in the Qt documentation at the following link:

https.//doc.qt.io/qt-6/qtgmli-cppintegration-overview.htm|

Embedding C++ objects into QML with
context properties

You can expose C++ objects into a QML environment by using context
properties. Context properties are suitable for simple applications. They
export your object as a global object. Contexts are exposed to the QML

environment after being instantiated by the QML engine.

Let's have a look at the following example, where we have exported radius

to the QML environment. You can also export C++ models in a similar

https://doc.qt.io/qt-6/qtqml-cppintegration-overview.html

way:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlContext>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QQmlApplicationEngine engine;
engine.rootContext()->setContextProperty("radius", 50);
const QUrl url(QStringLiteral("qrc:/main.gml"));
engine.load(url);

return app.exec();

}

You can use the exported value directly in the QML file, as follows:
import QtQuick
import QtQuick.Window
Window {

width: 640; height: 480

visible: true

title: gsTr("QML CPP integration")

Text {

anchors.centerIn: parent

text: "C++ Context Property Value: "+ radius

You can also register your C++ class and instantiate it inside the QML

environment. Let's learn how to achieve that in the next section.

Registering a C++ class with the QML
engine

Registering QML types permits a developer to control the life cycle of a
C++ object from the QML environment. This can't be achieved with context
properties and also doesn't populate the global namespace. Still, all types
need to be registered first and by this, all libraries need to be linked on

application start, which in most cases is not really a problem.

The methods can be public slots or public methods flagged with
Q_INVOKABLE. Now, let's import the C++ class into the QML file. Have

a look at the following C++ class:
#ifndef BACKENDLOGIC_H

#define BACKENDLOGIC_H
#include <QObject>

class BackendLogic : public QObject

{
Q_OBJECT
public:
explicit BackendLogic(QObject *parent = nullptr) {
Q_UNUSED(parent);}
Q_INVOKABLE int getData() {return mvalue; }
private:

int mvalue = 100;

+;

#endif // BACKENDLOGIC_H

You need to register the C++ class in the main.cpp file as a module using

gmlRegisterType(), as shown here:

gmlRegisterType<BackendLogic>("backend.logic", 1,
0, "BackendLogic");

Any Qobject-derived C++ class can be registered as a QML object type.
Once a class is registered with the QML type system, the class can be used
like any other QML type. Now, the C++ class is ready to be instantiated
inside your .qml file. You have to import the module and create an object,

as illustrated in the following code snippet:
import QtQuick
import QtQuick.window
import backend.logic
Window {
width: 640; height: 480
visible: true
title: gsTr("QML CPP integration")
BackendLogic {
id: backend
}
Text {
anchors.centerIn: parent

text: "From Backend Logic : "+ backend.getData()

}

When you run the preceding program, you can see that the program is

fetching data from the backend C++ class and displaying it in the UI.

You can also expose a C++ class as a QML singleton by using
gmlRegisterSingletonType(). By using a QML singleton, you can prevent
duplicate objects in the global namespace. Let's skip this part as it requires
an understanding of design patterns. Detailed documentation can be found

at the following link:

https://doc.qt.io/qt-6/qgmlengine.html#gmlRegisterSingletonType

In Qt 6, you can achieve C++ integration by using a QML_ELEMENT
macro. This macro declares the enclosing type as available in QML, using
its class or namespace name as the QML element name. To use this macro
in your C++ header file, you will have to include the gml.h header file as
#include <QtQml>.

Let's have a look at the following example:
#ifndef USINGELEMENT_H

#define USINGELEMENT_H

#include <QObject>

#include <QtQml>

class UsingElements : public QObject

{
Q_OBJECT
QML_ELEMENT
public:

explicit UsingElements(QObject *parent = nullptr) {

https://doc.qt.io/qt-6/qqmlengine.html#qmlRegisterSingletonType%20

Q_UNUSED(parent);}
Q_INVOKABLE int readvValue() {return mvalue; }
private:
int mvalue = 500;
i

#endif // USINGELEMENT_H

In the .pro file, you have to add the gmltypes option to the CONFIG
variable and QML_IMPORT_NAME and
QML_IMPORT_MAJOR_VERSION are to be mentioned, as illustrated
in the following code snippet:

CONFIG += gmltypes

QML_IMPORT_NAME = backend.element

QML_IMPORT_MAJOR_VERSION = 1

Your C++ class is now ready to be instantiated inside your .qml file. You
have to import the module and create an object, as illustrated in the
following code snippet:
import QtQuick
import QtQuick.Window
import backend.element
Window {
width: 640; height: 480
visible: true
title: gsTr("QML CPP integration")
UsingElements {

id: backendElement

}

Text {
anchors.centerIn: parent
text: "From Backend Element : "+

backendElement.readValue()

}

In this section, you learned how to export your C++ class into the QML
environment and access its functions from QML. In this example, the data
is retrieved only when the method is called. You can also get notified when
the data is changed inside C++ by adding a Q_PROPERTY() macro with a
NOTIFY signal. You need to know about the signals and slots mechanism
before using it. So, we will skip this part and discuss it further in Chapter 6,
Signals and Slots. In the next section, we will discuss how to create a QML

extension plugin.

Creating a QML extension plugin

A QML extension plugin provides the most flexible way to integrate with
C++. It allows you to register types in a plugin that is loaded when the first
QML file calls the import identifier. You can use plugins across projects,

which is very convenient when building complex projects.

Qt Creator has a wizard to create a Qt Quick 2 QML Extension Plugin.
Select a template, as shown in the following screenshot, and proceed with
the screens that follow. The wizard will create a basic skeleton for the QML

Extension Plugin project. The plugin class has to be derived from

QgmlExtensionPlugin and should implement the registerTypes()

function. A Q_PLUGIN_METADATA macro is required to identify the

plugin as a QML extension plugin:

New File or Project - Qt Creator

Choose a template:

All Templates

Projects

Application (Qt)
Application (Gt Quick)
Application (Gt for Python)
Library

Other Project

Non-Qt Project

Import Project

Files and Classes

C/C++
Modeling
Qt

GLSL
General
Java

Python

B <0

C++ Library

Qt Quick 2 Extension Plugin

(t Creator Plugin

Creates a C++ plugin to load Qt Quick
extensions dynamically into applications
using the QQmiEngine class.

Supported Platforms:

* Android Device
Dasktop

Choose... Cancel

Figure 4.19 — Qt Quick 2 QML Extension Plugin wizard

This section is an advanced Qt topic. You need to understand Qt in depth to

create your own QML extension plugin. You can skip this section if you are

a beginner, but you can learn more about the QML extension plugin in the

Qt documentation at the following link:

https://doc.qt.io/qt-6/qtqml-modules-cppplugins.html

Let's move on to the next section to discover how to invoke a QML method

inside a C++ class.

Invoking QML methods inside a C++
class

All QML methods are exposed to the meta-object system and can be called
from C++ using QMetaObject::invokeMethod(). You can specify types
for the parameters and the return value after the colon character, as shown
in the next code snippet. This can be useful when you want to connect a
signal in C++ with a certain signature to a QML-defined method, for

example. If you omit the types, the C++ signature will use QVariant.

Let's look at an application that calls a QML method using
QMetaObject::invokeMethod().

In the QML file, let's add a method called qmlMethod(), as follows:
import QtQuick
Item {
function gmlMethod(msg: string) : string {
console.log("Received message:", msg)
return "Success"
b
Component.onCompleted: {

console.log("Component created successfully.")

In the main.cpp file, call QMetaObject::invokeMethod() as per the
following code snippet:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlComponent>

int main(int argc, char *argv[])

{

QGuiApplication app(argc, argv);

QQmlApplicationEngine engine;

QQmlComponent component(&engine,

"qgrc:/CustomItem.gml");

QObject *myObject = component.create();

QString retvalue = "";

QString msg = "Message from C++";

QMetaObject: :invokeMethod(myObject, "gmlMethod",
Q_RETURN_ARG(QString,
retValue),
Q_ARG(QString, msg));

gDebug() << "QML method returned:" << retValue;

delete myObject;

return app.exec();

}

Please note that the parameter and return type have to be specified. Both
basic types and object types are allowed as type names. If the type is not

mentioned in the QML type system, then you must declare QVariant as a

type with Q_RETURN_ARG() and Q_ARG() when calling
QMetaObject::invokeMethod. Alternatively, you can call
invokeMethod() with only two parameters if you don't need any return

values, as shown here:
QMetaObject::invokeMethod(myObject, "qmlMethod");

In this section, you learned to receive data from a QML method. In the next

section, you will learn how to access a QML object pointer inside C++.

Exposing a QML object pointer to C++

Sometimes, you may want to modify the properties of a QML object
through C++, such as modifying the text of a control, changing the visibility
of a control, or changing a custom property. The QML engine permits you
to register your QML objects to C++ types, which automatically exposes

the QML object's properties.

Let's have a look at the following example, where we have exported a QML

object to the C++ environment:
#ifndef CUSTOMOBJECT_H
#define CUSTOMOBJECT_H
#include <QObject>
#include <QvVariant>
class CustomObject : public QObject
{
Q_OBJECT

public:

explicit CustomObject(QObject *parent = nullptr);
Q_INVOKABLE void setObject(QObject* object)

{

object->setProperty("text", Qvariant("Clicked!"));

+;

#endif // CUSTOMOBJECT_H

In the QML file, you need to create an instance of the C++ class and call
the C++ method. As you can see in the following code snippet, the property

is manipulated inside the C++ class:
import QtQuick
import QtQuick.wWindow
import QtQuick.Controls
import MyCustomObject
Window {
width: 640; height: 480;
visible: true
title: gsTr("QML Object in C++")
CustomObject{
id: customObject
}
Button {
id: button
anchors.centerIn: parent

text: gsTr("Click Me!")

onClicked: {

customObject.setObject(button);

}
IMPORTANT NOTE

The Qt QML module provides several macros for registering non-instantiable types.
QML_ANONYMOUS registers a C++ type that is not instantiable and cannot be referred to
from QML. QML_INTERFACE registers an existing Qt interface type. The type is not
instantiable from QML, and you cannot declare QML properties with it.
QML_UNCREATABLE registers a named C++ type that is not instantiable but should be
identifiable as a type to the QML type system. QML_SINGLETON registers a singleton type
that can be imported from QML.

Congratulations! You have learned how to integrate QML and C++. In the

next section, we will discuss how to use JS with QML.

Integrating QML with JS

QML has a good integration with JS and uses JavaScript Object Notation
(JSON)-like syntaxes, allowing expressions and methods to be defined as
JS functions. It also permits developers to import JS files and use the
existing functionality. The QML engine provides a JS environment that has
some limitations compared to the JS environment provided by a web
browser. The logic for a Qt Quick application can be defined in the JS. The

JS code can be written inline inside the QML file, or in a separate JS file.

Let's look at how to use inline JS inside a QML document. The following

example demonstrates the btnClicked() inline JS function. The method is

called when the Button control is clicked:
import QtQuick
import QtQuick.window
import QtQuick.Controls
Window {
width: 640; height: 480;
visible: true
title: gsTr("QML JS integration")
function btnClicked(controlName) {
controlName.text = "JS called!"
}
Column {
anchors.centerIn: parent
Button {
text:"Call Js!"
onClicked: btnClicked(displayText)
¥
Text {

id: displayText

}

The preceding example shows how to integrate JS code with QML. We
have used the btnClicked() inline JS function. When you run the

application, you will get a message saying JS called!.

If your logic is very long or has uses in multiple QML documents, then use

a separate JS file. You can import a JS file as follows:
import "<JavaScriptFile>" as <Identifier>

For example, you could run the following line of code:
import "constants.js" as Constants

In the previous example, we are importing constants.js into the QML

environment. Constants is an identifier for our JS file.

You can also create a shared JS library. You just have to include the

following line of code at the beginning of the JS file:
.pragma library

IMPORTANT NOTE

If the script is a single expression, then writing it inline is recommended. If the script is a few
lines long, then use a block. If the script is more than several lines long or is required by
different objects, then create a function and call it as needed. For long scripts, create a JS
file and import it inside the QML file. Avoid using Qt.include() as it is deprecated and will be
removed from future versions of Qt.

To learn more about importing JS in QML, read the following

documentation:

In this section, you learned how to integrate JS with QML. In the next

section, we will discuss how to import a directory in QML.

Importing a directory in QML

https://doc.qt.io/qt-6/qtqml-javascript-imports.html

You can import a local directory with QML files directly inside another
QML file without adding in resources. You can use the directory's absolute
or relative filesystem paths to do this, providing a convenient way for QML

types to be arranged as reusable directories on the filesystem.
The common form of a directory import is shown here:
import "<DirectoryPath>" [as <Qualifier>]

For example, if your directory name is customgmlelements, then you can

import it as follows:
import "../customgmlelements”

It is also possible to import the directory as a qualified local namespace, as

shown in the following code snippet:

import "../customgmlelements" as CustomQMLElements
You can also import a file from the resource path, as follows:
import "qrc:/qml/customgmlelements”

You can also import a directory of QML files from a remote server. There
are two different types of qmldir files: a QML directory listing file and a
QML module definition file. Here, we are discussing the use of the gmldir
QML directory listing file. The directory can be imported using the
Uniform Resource Locator (URL) of the remote location. Please note that
while importing over a network, only QML and JS files specified in the
gmldir file can be accessed. To avoid malicious code, you have to be

careful with the network files.

The following documentation provides further information about the

gmldir QML directory listing file:

https://doc.qt.io/qt-6/qtqml-syntax-directoryimports.html

You can learn more about the different types of gmldir files at the

following link:

In this section, you learned how to import a directory in QML. In the next

section, we will discuss how to handle mouse and touch events in QML.

Handling mouse and touch events

QML provides excellent support for mouse and touch events through input
handlers that let QML applications handle mouse and touch events. QML
types such as MouseArea, MultiPointTouchArea, and TapHandler are
used to detect mouse and touch events. We will have a look at these QML

types in the following section.

MouseArea

MouseArea is an invisible item that is used with a visible item such as
Item or Rectangle in order to provide mouse and touch handling events for
that item. MouseArea receives mouse events within the defined area of
Item. You can define this area by anchoring MouseArea to its parent's area
using the anchors.fill property. If you set the visible property to false, then

the mouse area becomes transparent to mouse events.

https://doc.qt.io/qt-6/qtqml-syntax-directoryimports.html
https://doc.qt.io/qt-6/qtqml-modules-qmldir.html

Let's look at how to use MouseArea in the following example:
import QtQuick
import QtQuick.window
window {
width: 640; height: 480
visible: true
title: gsTr("Mouse Area Demo")
Rectangle {
anchors.centerIn: parent
width: 100; height: 100
color: "green"
MouseArea {
anchors.fill: parent

onClicked: { parent.color = 'red' }

}

In the preceding example, you can see that only the rectangle area received
the mouse event. Other parts of window didn't get the mouse events. You
can perform actions accordingly based on the mouse events. MouseArea
also provides convenient signals that give us information about mouse
events such as mouse hover, mouse press, press and hold, mouse exit, and
mouse release events. Write the corresponding signal handlers and

experiment with the entered(), exited(), pressed(), and released() signals.

You can also detect which mouse button was pressed and execute a

corresponding action.

MultiPointTouchArea

The MultiPointTouchArea QML type enables handling of multiple touch
points in a multi-touch screen. Just as with MouseArea,
MultiPointTouchArea is an invisible item. You can track multiple touch
points and process the gesture accordingly. When it is disabled, the touch
area becomes transparent to both touch and mouse events. In a
MultiPointTouchArea type, a mouse event is handled as a single touch
point. You can set the mouseEnabled property to false to stop processing

the mouse events.

Let's look at the following example, where we have two rectangles that

follow our touch points:
import QtQuick
import QtQuick.window
window {
width: 640; height: 480
visible: true
title: gsTr("Multitouch Example")
MultiPointTouchArea {
anchors.fill: parent
touchPoints: [
TouchPoint { id: tpl },

TouchPoint { id: tp2 }

}

Rectangle {
width: 100; height: 100
color: "blue"
x: tpl.x; y: tpl.y

}

Rectangle {
width: 100; height: 100
color: "red"

X: tp2.x; y: tp2.y

}

In a MultiPointTouchArea type, TouchPoint defines a touch point. It
contains details about the touch point, such as the pressure, current position,

and area. Now, run the application on your mobile device and verify it!

In this section, you learned about the use of MouseArea and
MultiPointTouchArea to handle mouse and touch events. Let's learn about

TapHandler in the next section.

TapHandler

TapHandler is a handler for click events on a mouse and tap events on a
touchscreen. You can use TapHandler to react to taps and touch gestures,

and it allows you to handle events in multiple nested items simultaneously.

Recognition of a valid tap gesture depends on gesturePolicy. The default
value of gesturePolicy is TapHandler.DragThreshold, for which the event
point must not move significantly. If gesturePolicy is set to
TapHandler.WithinBounds, then TapHandler takes an exclusive grab on
the press event, but releases the grab as soon as the event point leaves the
boundary of the parent item. Similarly, if gesturePolicy is set to
TapHandler.ReleaseWithinBounds, then TapHandler takes an exclusive

grab on the press and retains it until release in order to detect this gesture.

Let's create a TapHandler type that recognizes different mouse button

events and stylus taps, as follows:
import QtQuick
import QtQuick.Window
Window {
width: 640; height: 480
visible: true
title: gsTr("Hello World")
Item {
anchors.fill:parent
TapHandler {
acceptedButtons: Qt.LeftButton

onTapped: console.log("Left Button Clicked!")

}

TapHandler {
acceptedButtons: Qt.MiddleButton

onTapped: console.log("Middle Button Clicked!")

}

TapHandler {

acceptedButtons: Qt.RightButton

onTapped: console.log("Right Button Clicked!")
¥
TapHandler {

acceptedDevices: PointerDevice.Stylus

onTapped: console.log("Stylus Tap!")

}

You can use input handlers to handle touch events and gestures as a
substitute for MouseArea. Input handlers make the formation of complex
touch interactions simpler, which is difficult to achieve with either

MouseArea or TouchArea.

Qt provides some ready-made controls to handle generic gestures such as
pinch, flick, and swipe. PinchArea is a convenient QML type to handle
simple pinch gestures. It is an invisible item that is used with another
visible item. Flickable is another convenient QML type that provides a
surface for a flick gesture. Explore the related documentation and examples

to understand more about these QML elements.

Let's look at SwipeView in the next section.

SwipeView

A swipe is another common gesture in touch-based devices. You can use
SwipeView to navigate pages by swiping sideways. It uses a swipe-based
navigation model and provides a simplified way for horizontal-paged
scrolling. You can add a page indicator at the bottom to display the current
active page.
Let's look at a simple example, as follows:
import QtQuick
import QtQuick.Window
import QtQuick.Controls
Window {
width: 640; height: 480
visible: true
title: gsTr("Swipe Demo")
SwipeView {
id: swipeView
currentIndex: O
anchors.fill: parent
Rectangle { id: pagel; color: "red" }
Rectangle { id: page2; color: '"green"}
Rectangle { id: page3; color: "blue" }
}
PageIndicator {
id: pagelIndicator
count: swipeView.count

currentIndex: swipeView.currentIndex

anchors {
bottom: swipeView.bottom

horizontalCenter: parent.horizontalCenter

}

As you can see, we just have to add child items to SwipeView. You can set
the SwipeView current index as the PageIlndicator current index.
SwipeView is one of the navigation models, which also include StackView
and Drawer. You can explore these QML types to experience gestures on

your mobile devices.

In this section, you learned about the use of various QML types to handle
mouse, touch, and gesture events. Next, we will summarize what we

learned in this chapter.

Summary

This chapter explained the fundamentals of the Qt Quick module and how
to create a custom UI. You learned to design and build GUIs with Qt Quick
Designer and learned about Qt Quick Controls, and how to build a custom
Qt Quick application. You also learned how to integrate QML with C++
and JS. You should now understand the similarities and differences between
Qt Widgets and Qt Quick and be able to choose the most suitable
framework for your project. In this chapter, we have learned about Qt Quick
and how to create an application using QML. You also learned how to

integrate QML with JS and learned about mouse and touch events.

In the next chapter, we will discuss cross-platform development using Qt
Creator. You will learn to configure and build applications on Windows,
Linux, Android, and macOS operating systems (OSes). We are going to
learn how to port our Qt application to different platforms without too many

challenges. Let's go!

Section 2: Cross-Platform Development

This section will introduce you to cross-platform development. The idea of
cross-platform development is that a software application should work well
on more than one platform without significant code change. This saves time
in porting and maintaining the code base. This follows the Qt philosophy of
"code less, create more, and deploy everywhere." In this section, you will
learn about the Qt Creator IDE, its usage, and how you can develop and run

the same application on different platforms.
This section includes the following chapter:

e Chapter 5, Cross-Platform Development

Chapter 5. Cross-Platform Development

Qt has been well known for its cross-platform capability since its initial
release—it was the primary vision behind creating this framework. You can
use Qt Creator on your favorite desktop platforms such as Windows, Linux,
and macOS, and create fluid, modern, touch-friendly graphical user
interfaces (GUIs) and desktop, mobile, or embedded applications with the
same code base or with a little modification. You can easily modify your
code and deploy it on a target platform. Qt has several built-in tools to
analyze your application and its performance on various supported
platforms. Furthermore, it's easy to use and has an intuitive user interface

(UI), unlike with other cross-platform frameworks.

In this chapter, you will learn cross-platform development essentials and
how to build applications on different platforms. With this, you will be able

to run sample applications on your favorite desktop and mobile platforms.
In this chapter, we're going to cover the following main topics:

e Understanding cross-platform development

e Understanding compilers

e Building with gmake

e Qt project (.pro) files

e Understanding build settings

» Platform-specific settings

e Using Qt with Microsoft Visual Studio

Running a Qt application on Linux

Running a Qt application on macOS and iOS

Other Qt-supported platforms

Porting from Qt 5 into Qt 6

By the end of this chapter, you will understand Qt project files, essential
settings, and how to run your Qt application on a mobile device. Let's get

started!

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on a latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-
6-and-Modern-Cpp/tree/master/Chapter05/HelloWorld

IMPORTANT NOTE

The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Understanding cross-platform
development

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter05/HelloWorld

There are several cross-platform frameworks available on the market, but
Qt is a better option to select owing to its maturity and available community
support. It's easy for a traditional C++ developer to adapt to Qt faster and
develop high-quality applications. The Qt framework allows developers to
develop applications that are compatible with multiple platforms such as
Windows, Linux, macOS, QNX (originally known as Quick Unix
[Qunix]), iOS, and Android. It facilitates faster application development
with better code quality, with its ability to code once and its deploy-
anywhere philosophy. Qt handles platform-specific implementations
internally, and also enables you to build amazing ultra-lightweight

applications with an impressive GUI on microcontroller-powered devices.

To develop applications using Qt for embedded platforms, you will require
a commercial license to use Qt for Device Creation. Qt also supports some
of the microcontroller unit (MCU) platforms such as Renesas, STM32,
and NXP. At the time of writing this book, Qt for MCUs 1.8 was launched,

which provides ultra-lightweight modules with a small memory footprint.

Some advantages of cross-platform development using the Qt framework

are listed here:

e Cost efficiency with reduced cost of development

Better code reusability

Convenience

Faster time to market (TTM)

Wider market reach

Delivers a near-native experience

e High on performance

There are also some disadvantages, such as these:

e Unavailability of platform-specific features and access to all platform

application programming interfaces (APIs)
e Communication challenges between native and non-native components
e Certain device-specific features and hardware-compatibility challenges

e Delayed platform updates

In this section, you got a basic idea of the cross-platform nature of Qt and
learned about the pros and cons of cross-platform development. Before you
can run an application on any platform, you will need a compiler to compile
an application for a target platform. In the next section, we will learn about

compilers supported by the Qt framework.

Understanding compilers

In this section, you will learn what a compiler is and how to use it for cross-
platform development. A compiler is a piece of software that transforms
your program into machine code or low-level instructions that can be read
and executed by a computer. These low-level machine instructions vary
from platform to platform. You can compile Qt applications with different
compilers such as the GNU Compiler Collection (GCC), or you can use a
vendor-supplied one. In Qt Creator, you can find a compiler supported for a
kit under the Kits tab, along with other essential tools for building an

application on a particular platform such as Windows, Linux, or macOS.

Not all supported compilers are provided with the Qt installer, but you can
find the most widely used compilers automatically listed in the
recommended kit. Qt may drop support for certain kit configurations or

replace them with the latest version.
Currently, Qt supports the following compilers:

e GCC

e Minimalist GNU for Windows (MinGW)

e Microsoft Visual C++ (MSVC)

e Low Level Virtual Machine (LLVM)

e Intel C++ Compiler (ICC)

e Clang and clang-cl

e Nim

e QCC
Additionally, the Qt Creator Bare Metal Device plugin offers provision
for the following compilers:

e TAR Embedded Workbench (IAREW)

o KEIL

e Small Device C Compiler (SDCC)
Apart from the preceding compilers, Qt uses specific built-in compilers
while building a Qt project. These are listed here:

¢ Meta-Object Compiler (moc)

e User Interface Compiler (uic)

¢ Resource Compiler (rcc)

You can use the aforementioned compilers to build applications for a target
platform or to add a custom compiler configuration. In the next section, you

will learn how to create a custom compiler configuration.

Adding custom compilers

To add a compiler that is not automatically detected by Qt Creator or is
unavailable, use the Custom option. You can specify the compiler and

toolchain paths to the directories and configure these accordingly.
To add a custom compiler configuration, follow these steps:

1. To create a new compiler configuration in Qt, click on the Tools menu

on the menu bar and then select the Kits tab from the left-side pane.

2. Then, click on the Compilers tab and select Custom from the Add
dropdown. You will see C and C++ options in the context menu. Select
the type as per your requirement. You can see an overview of this in the

following screenshot:

Fiter

Kits

D Environment
B Text Editor
¥ Fakelim

0 Hep

{} G

A4 0 Quick

A Build & Run
@ Obs

1 Debugger

/ Designer

& Python

F Analyzer

ﬁj Version Control
G] Devices

@ Code Pasting
§ Language Client

J& Testing

| Kits

Kits ~QtVersons Compilers = Debuggers (CMake

Name Type Add v
v Auto-detected .
MinGW j
v
: ; : GeC ¥
MinGW 81,0 64-bit for C MinGW :I
Clang (C, x86 64bit in D:AQt\Tools\CtCreator\bin'\clang\bin) Clang Clang ¥
Custom Android Clang (C, aarch6d, NDK 2136528147) Android Clang - C
Custom Android Clang (C, arm, NDK 21.3.6528147) Android Clang c) -
Custom Android Clang (C, 686, NDK 21.3.6528147) Android Clang -

Custom Android Clang (C, x86_64 NDK 21.3.6528147) Android Clang - -

v oo
MinGW 8.1.0 64-bit for C++ MinGW
Customn Android Clang (C++, aarchfd, NDK 21.3.6528147) Android Clang
Custom Android Clang (C++, arm, NDK 21.3.6528147) Android Clang
Custom Android Clang (C++, 686, NDK 21.3.6528147) Android Clang
Customn Android Clang (C++, x86.64, NDK 21.3.6528147) Android Clang

» Manual
Name: Custom Android Clang (C, aarchg4, NDK 21.3.6528147)
Compiler path: kindk\21.3.6528147\toolchains\Ivm\prebuilt\windows-x86_64\

Platform codegen flags: -target aarchfd-linuwx-android
Platform linker flags: ~ -target aarch64-linux-android

ABL: ‘ann—linux VHann VHIinux V‘-‘andruid V‘-@

O Cancel | Aply |

Figure 5.1 — Custom compiler option

3. In the next step, complete the Name field with a customized name for

the compiler.

4. Next, in the Compiler path field, select a path to the directory where

the compiler is located.

5. Next, in the Make path field, browse a path to the directory where the

make tool is located.

6. In the next step, specify the application binary interface (ABI) version
in the ABI field.

You can see an overview of this in the following screenshot:

s

g s

D Environment
B Tet Editor
¥ Fakelim

0 Hep

{} G

4 ik

/¥ Buld&Run
& Qbs

1 Debugger

/ Designer

& Dython

F Analyzer

ﬁj Version Cantrol
E Devices

@ Code Pasting
Lanquage Client

J& Testing

Kis QtVersions Compilers Debuggers (Make

Name Type
v(
MinGW 81,0 64-bit for C MinGW
Clang (€, %86 64bit in D:\Qt\Tools\ Gt Creator\bin\clang\bin) Clang
Custom Android Clang (C, aarchtd, NDK 2136528147} Android Clang
Custom Android Clang (C, arm, NDK 213.6528147) Android Clang
Custom Andraid Clang (C, i636, NDK 21.3.6528147) Android Clang
Custom Android Clang (C, x86_64, NDK 21.3.6528147) Android Clang
v (et
MinGW 8.1.0 64-bit for C++ MinGW
Custom Android Clang (C++, aarchf4, NDK 21.3.6328147) Andraid Clang
Custom Andraid Clang (C++, arm, NDK 21.3.6528147) Android Clang
Custom Android Clang (C++, i686, NDK 21.3.6528147) Android Clang
Custom Android Clang (C++, x86_64 NDK 21.3.6528147) Android Clang
¥ Manual

Clone

move All

Auto-detection Settings..

¥ C
v (et
Custom MinGW
L
A
Name: ‘Custom ‘
Compiler path: ‘D:\Qt\Tools\minnglU_M\bm\g++.exe H Browse... ‘
Make path: ‘ H Browsa... ‘
ATL W v-uindows vomSQU9 vipe voGt v
Predefined macros: Empty Defals ¥
Header paths: Empty Details ¥
C+H11 flags: ‘ ‘
Qt mkspecs: ‘ ‘
Error parser:
L

o | col [mwh

Figure 5.2 — Required fields for a custom compiler

7. Next, you can specify the default required macros in the Predefined
macros field. Specify each macro on separate lines in the following
format: MACRO[=value].

8. In the next step, specify in the Header paths field the paths to

directories that the compiler checks for headers.

9. Next, in the C++11 flags field, specify the flags that turn on C++11
support.

10. In the next step, specify the location of mkspecs (a set of compilation

rules) in the Qt mkspecs field.
11. Next, in the Error parser field, select a suitable error parser.

12. Click on the Apply button to save the configuration.

In this section, you learned about supported compilers and how to create a
new compiler configuration in Qt Creator, but to build and run a project we
need more tools than just a compiler. Qt provides gmake as a built-in build
tool for our convenience. In the next section, we will discuss what gmake

is.

Building with gmake

Make is a build tool that reads project configuration file called a Makefile
and builds executable programs and libraries. gmake is a Qt-provided build
tool that simplifies the build process for development projects across
multiple platforms. It expands the information in each project file to a
Makefile that executes the necessary commands for compiling and linking.

It can also be used for non-Qt projects. qmake generates a Makefile based

on the information in a project file, and contains supplementary features to
support development with Qt, automatically including build rules for moc
and uic. gmake can also create projects for Microsoft Visual Studio without

requiring the developer to change the project file.

Being a community-driven framework, Qt is really flexible toward
developers and gives them the freedom to choose the most suitable tools for
their project, without forcing them to use its own build system. Qt supports

the following types of build systems:

e gmake

CMake
e Qbs
e Meson

Incredibuild

You can run gmake from the Qt Creator UI or from the command line. You
should run gmake every time you make changes to your project files. Here
is the syntax to run qmake from the command line:

>qmake [mode] [options] files

gmake provisions two different modes of operation. In the default mode,

gmake uses the information in a project file to generate a Makefile, but it

can also generate project files. The modes are listed as follows:
e -makefile

e -project

In Makefile mode, gmake will generate a Makefile that is used to build the

project. The syntax to run gmake in Makefile mode is shown here:

>gmake -makefile [options] files

In project mode, qmake will generate a project file. The syntax to run

gmake in project mode is shown here:

>gmake -project [options] files

If you use Visual Studio as an Integrated Development Environment
(IDE), then you can import an existing qmake project into Visual Studio.
gmake can create a Visual Studio project that contains all the essential
information required by the development environment. It can recursively
generate .vcproj files in subdirectories and a .sln file in the main directory,
with the following command:

>gmake -tp vc -r

For example, you can generate a Visual Studio project for your HelloWorld

project by running this command:

>gmake -tp vc HelloWorld.pro

Please note that every time you modify your project file, you need to run

gmake to generate an updated Visual Studio project.

You can find more details about gmake at the following link:

Most qmake project files define the source and header files used by a
project, using a list of name = value and name += value definitions, but
there are additional advanced features in gmake that use other operators,

functions, platform scope, and conditions to create a cross-platform

https://doc.qt.io/qt-6/qmake-manual.html

application. Further details of the gmake language can be found at the

following link: https://doc.qt.io/qt-6/qmake-language.html.

The Qt team has put a lot of effort into Qt 6 to make it future-proof by
moving to a broadly adopted, popular build tool: CMake. There were
changes implemented to make Qt more modular by using Conan as a
package manager for some of the add-ons. Some of the Qt modules in Qt 6
are no longer available as binary packages in the Qt online installer but are
available as Conan recipes. You can learn more about the build system
changes and the addition of CMake as the default build tool at the following
link:_https://doc.qt.io/qt-6/qt6-buildsystem.html.

IMPORTANT NOTE

In Qt 5, the build system was made on top of gqmake, but in Qt 6, CMake is the build system
for building Qt from the source code. This change only affects developers who want to build
Qt from sources. You can still use gmake as a build tool for your Qt applications.

In this section, you learned about gmake. We are skipping advanced
gmake topics for self-exploration. In the next section, we will discuss Qt

project files, which are parsed by qmake.

Qt Project (.pro) files

The .pro files created by Qt Creator in the earlier examples are actually Qt
project files. A .pro file contains all the information required by gmake to
build an application, a library, or a plugin. A project file supports both
simple and complex build systems. A simple project file may use
straightforward declarations, defining standard variables to indicate the

source and header files that are used in a project. Complex projects may use

https://doc.qt.io/qt-6/qmake-language.html
https://doc.qt.io/qt-6/qt6-buildsystem.html

multiple flow structures to optimize the build process. A project file
contains a series of declarations to specify resources, such as links to the
source and header files, libraries required by a project, custom-build

processes for different platforms, and so on.

A Qt project file has several sections and uses certain predefined qmake
variables. Let's have a look here at our earlier HelloWorld example .pro
file:
QT += core gui
greaterThan(QT_MAJOR_VERSION, 4): QT += widgets
CONFIG += c++17
You can make your code fail to compile if it uses
deprecated APIs.
In order to do so, uncomment the following line.
#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000
disables all the APIs deprecated before Qt 6.0.0
SOURCES += \
main.cpp \
widget.cpp
HEADERS += \
widget.h
FORMS += \
widget.ui
Default rules for deployment.
gnx: target.path = /tmp/$${TARGET}/bin

else: unix:'android: target.path = /opt/$${TARGET}/bin

lisEmpty(target.path): INSTALLS += target

The project file simply tells gqmake what the required Qt modules in the

project are, as well as the name of the executable program. It also links to

the header files, source files, form files, and resource files that need to be

included in the project. All of this information is crucial in order for gmake

to create the configuration files and build the application. For a more

complex project, you may configure your project file differently for

different operating systems.

The following list describes the most frequently used variables and

describes their purpose:

QT: A list of Qt modules used in a project
CONFIG: General project configuration options

DESTDIR: The directory in which the executable or binary file will be
placed

FORMS: A list of Ul files to be processed by the UI compiler (uic)

HEADERS: A list of filenames of header (.h) files used when building
a project

RESOURCES: A list of resource (.qrc) files to be included in the final
project

SOURCES: A list of source code (.cpp) files to be used when building
a project

TEMPLATE: The template to use for a project

You can add different Qt modules, configurations, and definitions to your
project. Let's take a look at how we can accomplish this. To add additional

modules, you simply add the module keyword after QT +=, as shown here:
QT += core gui sql

You can also add a condition in front to determine when to add a specific
module to your project, as follows:

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

You can also add configuration settings to your project. For example, if you
want to specify c++17 specifications while compiling a project, then add

the following line to your .pro file:
CONFIG += c++17

You can add a comment to a project file, starting with the hash symbol (#),
and the build system will ignore the corresponding line of text. Now, let's
have a look at the TEMPLATE variable. This determines whether the
output of the build process will be an application, a library, or a plugin.
There are different variables available to outline the type of file gqmake will

generate. These are listed as follows:
e app is used to build an application.
e lib is used to build a library.

e aux is used to build nothing. Use this if no compiler needs to be
invoked to create a target—for instance, because your project is written

in an interpreted language.

 subdirs is used for the subdirectories specified using the SUBDIRS

variable. Each subdirectory must contain its own project file.

e vcapp is used to create a Visual Studio project file to build an

application.
¢ vclib is used to create a Visual Studio project file to build a library.

e vcsubdirs is used to create a Visual Studio solution file to build projects

in subdirectories.

Qt project files sometimes need to depend on the include feature. In a Qt
project file, you can also define two significant variables: INCLUDEPATH
and DEPENDPATH. You can use the SUBDIRS variable to compile a set

of dependent libraries or modules.

Now, let's discuss what a .pri file is.

Understanding differences between .pro
and .pri files

You can create a .pri file to include project files in a complex project. This
improves readability and segregates different modules. A .pri file is usually
called a project include file or a gmake include file, and its format is
similar to that of a .pro file. The main difference is in the intent of use; a
.pro file is what we expect to run gmake on directly, while a .pri file is
included by a .pro file. You can add common configurations such as source
files, header files, .ui files, and .qrc files into .pri files and include them

from multiple .pro files as per your project needs.

You can include a .pri file inside a .pro file, as illustrated here:
include($$PWD/common.pri)

In this section, you learned about what a Qt project file is, as well as the
different variables used in it. In the next section, we will discuss different

build settings.

Understanding build settings

Before a project is compiled or built, the compiler requires certain details,
which are known as the build settings. This is a very important part of the
compilation process. In this section, you will learn about build settings and
how to configure them in a proper way. You can have multiple build
configurations for the same project. Usually, Qt Creator creates debug,
release, and profile build configurations automatically. A debug build
contains additional debug symbols required for debugging an application,
whereas the release version is an optimized version without such symbols.
Generally, developers use a debug configuration for testing and a release
configuration for creating the final binaries. A profile build is an optimized
release build that is delivered with separate debug information and is best

suited to analyzing applications.

Build settings can be specified in the Projects mode. You may find that the
Projects button is disabled if there are no projects opened in the IDE. You
can add a new build configuration by clicking the Add drop-down button
and then selecting the type of configuration you would like to add. The
options may depend on the build system selected for the project. You can

add multiple build configurations as per your requirement. You can click on

the Clone... button to add a build configuration based on the current build
configuration, or click on the Rename... button to rename the currently
selected build configuration. Click on the Remove button to remove a build

configuration.

You can see an overview of this in the following screenshot:

Build Settings
Edit build configuration: |I}ehug V| | Add v| ‘ Remove | | Rename... | | Clone...
General
Shadow build: %
Build directory: Desktop_Qt_6_0_2_MinGW_64_bit-Debug | | Browse...
Separate debug info: |Lea\re at Default v|
QML debugging and profiling: |Enahle V|

{4 Might make your application vulnerable.
Only use in a safe environment.

Qt Quick Compiler: Leave at Default ~

gmake system() behavior when parsing: |Disable
Leave at Default

Build Steps
qmake: gmake.exe QtQuickCompilerDemo.pro Details *
Make: mingw32-make.exe -i8 in D:\QtBook\Packt\-Qt-6-and-C-Mod: Details ~
Override D:\Qt\Tools\mingw810_64\bin\mingw32-make.exe: | | | Browse... |

Make arguments: | |

Parallel jobs: [] Override MAKEFLAGS

Disable in subdirectories:]

Figure 5.3 — Build settings and Qt Quick Compiler option

Normally, Qt Creator builds projects in a different directory from the source
directory, known as shadow builds. This segregates the files generated for
each build and run kit. If you want to only build and run with a single kit,
then you can deselect the Shadow build checkbox. The Qt Creator project
wizard creates a Qt Quick project that can be compiled to use the Qt
Resource System. To use the default settings, select Leave at Default. To
compile Qt Quick code, select Enable in the Qt Quick Compiler field, as

shown in Figure 5.3.

You can read more about different build configurations at the following
link:

In this section, we discussed build settings. While building a cross-platform
application, it is important to add platform-specific configurations to the
project file. In the next section, we will learn about platform-specific

settings.

Platform-specific settings

You can define different configurations for different platforms, since not
every configuration can fit all use cases. For example, if you want to
include different header paths for different operating systems, you can add
the following lines of code to your .pro file:

win32: INCLUDEPATH += "C:/mylibs/windows_headers"

unix:INCLUDEPATH += "/home/user/linux_headers"

In the preceding code snippet, we have added some Windows-specific and

Linux-specific header files. You can also put configurations such as if

https://doc.qt.io/qtcreator/creator-build-settings.html

statements in C++, as shown here:
win32 {
SOURCES += windows_code.cpp

}
The preceding code is intended only for Windows platforms, which is why
we have added a win32 keyword before it. If your target platform is based

on Linux, then you can add a unix keyword to add Linux-specific

configurations.

To set a custom icon for your application on the Windows platform, you

should add the following line of code to your project (.pro) file:
RC_ICONS = myapplication.ico

To set a custom icon for your application on macOS, you should add the

following line of code to your project (.pro) file:
ICON = myapplication.icns

Note that the icon format is different for Windows and macOS. For Linux
distributions, there is a different approach to making the desktop entry for

each flavor.

In this section, we discussed some of the platform-specific settings. In the

next section, we will learn about the use of Visual Studio with Qt VS Tools.

Using Qt with Microsoft Visual Studio

Some developers choose Visual Studio as their preferred IDE. So, if your
favorite IDE is Visual Studio, then you can integrate Qt VS Tools with

Microsoft Visual Studio. This will allow you to use the standard Windows

development environment without having to worry about Qt-related build
steps or tools. You can install and update Qt VS Tools directly from

Microsoft Visual Studio.

You can find Qt Visual Studio Tools from Visual Studio Marketplace for the
corresponding versions. For Visual Studio 2019, you can download the tool

from the following link: https://marketplace.visualstudio.com/items?

itemName=TheQtCompany.QtVisualStudioTools2019. You can also

download the VS add-in from the following Qt download link:

https://download.qt.io/official releases/vsaddin/.

These are some of the important features of Qt VS Tools:
* Wizards to create new projects and classes
e Automated build setup for moc, uic, and rcc compilers
e Import and export of .pro and .pri files
e Automatic conversion of a Qt VS Tools project to a gmake project
 Integrated Qt resource management
e Ability to create Qt translation files and integration with Qt Linguist
e Integrated Qt Designer
e Integrated Qt documentation
e Debugging extensions for Qt data types
To start using the features in the Visual Studio environment, you must set

the Qt version. Select the appropriate version from Options and restart the

IDE. Visual Studio and Qt use different file formats to save projects. You

https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStudioTools2019
https://download.qt.io/official_releases/vsaddin/

may use .pro files with gqmake or .vcproj files with Visual Studio to build
your project. Since Visual Studio is used for Windows-specific
development, it is recommended to use Qt Creator as the IDE for cross-

platform development.

If you don't have a .vcproj file, then you can generate one from a .pro file
through the command line or through VS Tools. We have already discussed
the command-line instruction in the Building with gmake section. You can
also convert your .pro file to a .vcproj file by using the Open option in VS
Tools. Please note that the generated .vcproj file only contains Windows-

specific settings.

In this section, we discussed the VS add-in. In the next section, we will
learn how to run a sample application on Linux. We will skip a discussion
on building and running a Qt application on Windows as we have already

discussed this in earlier chapters.

Running a Qt application on Linux

Building and running a Qt application on Linux is similar to running it on
Windows, but Linux has many distributions and thus it is difficult to build
an application that flawlessly runs on all Linux variants. In most
distributions, the application will run smoothly. We will focus on Ubuntu
20.04 as our target platform. When you install Qt on Ubuntu, it will
automatically detect the kit and configurations automatically. You can also
configure a kit with the appropriate compiler and Qt version, as illustrated

in the following screenshot:

X Options — Qt Creator

Filter Kits

m Kits Qt Versions Compilers Debuggers CMake

[J Environment Desktop Qt 6.0.0 GCC 64bit (default

Manual Settings Filter...

B TEAREA Default Settings Filter...
V. FakeVim : -
o Name: Desktop Qt %{Qt:Version} GCC 64bit)
0 Help

File system name:
{} C++ .

Device type:
4 Qt Quick

Device: Local PC (default for Dasktop) * | Manage...
2 Build & Run

Sysroot: Browse...
@ Qbs

C. |GCC(C, xB6 64bit in /usr/bin) -
ik Debugger Compiler: Manage...
/ Des C++: |GCC (C++, xB6 64bit in /usr/bin)
esigner

& Pyt Environment: No changes to apply. Change...
R Python
F fnalyzer Debugger: System GDB at /usr/bin/gdb v Manage...
I Version Control i anee.
[d Devices fallat
% Code Pasting Additional Qbs Profile Settings: Change...
& Language Client CMake Tool: System CMake at /usr/bin/cmake v Manage...
1X Testing (Make generator: <none> - Ninja, Platform: <none>, Toolset: <none> Change...

J hpply | % Cancel | /0K

Figure 5.4 — Desktop kit configuration on Ubuntu

Let's run our HelloWorld example on Ubuntu. Hit the Run button on the
left-side pane. A Ul showing Hello World! will appear in no time, as

illustrated in the following screenshot:

File Edit View Build Debug Analyze Tools Window Help

Projects + T e8a (B main.qml verticalAlignment + Line: 16, Col: 1 3¢

* o HelloWorld ‘ import Qtluick .
= HelloWorld.pro inport QtQuick. Window

' @ Sourees " Window {) - ¢« Hello World
i Resources width: 649
g quqrc height: 480
. visible: true
title: gsTr("Hello World")
‘ & main.qml ¢ et]
e anchors, fill: parent
& text: gsTr{"Hello World!")
“ ‘ horizontalAlignnent; Text.AligniCenter
Debug | verticalAligment: Text.AligmiCenter
1
)«

!
Projects

16 Hello World!

Open Documents + & &
main.qml :

HelloWarld

np

Debug

)

[ERERONCIGIEI | 1ssues 2 Search Results 3 Application Out... 4 Compile Output 5 QML Debugger... 8 TestResults ¢ = 1

Figure 5.5 — Application running on Ubuntu

You can also run the application from the command line, as shown in the

following code snippet:

$./Helloworld

In this section, we discussed how to run our application on Linux
distributions. In the next section, we will learn about running a Qt

application on macOS and iOS.

Running a Qt application on macOS and
1I0S

We have already discussed how to build and run applications on Windows
and Linux platforms in earlier chapters. Let's move on to learn how to run
our applications on platforms such as macOS and iOS. To build a Qt
application on macOS and iOS, you will need Xcode from the App Store.
Xcode is the IDE for macOS, comprising a suite of software development
tools for developing applications in macOS and iOS. If you have already
installed Xcode, Qt Creator will detect its existence and will automatically
detect the suitable kits. As for the kit selection, Qt for macOS supports kits
for Android, clang 64-bit, iOS, and iOS Simulator.

You can see a sample desktop kit configuration on macOS in the following

screenshot:

(Bl) Preferences

Fite Kits
3 QtVersions | Complers | Debuggers | Chlke
) Eniomen Name "
Auto-detected
g Tet il [Deskop Gt 6.0.1clng 64t (defaul] Clone
Manua
Y Faelim
Help
b Settings Fiter..
(} C Default Settings Fier..
Qt Quick ' '
1 Name: op Qt %{QtNersion clang 64bit QV
/) Buld &R
File system name;
& Qbs
Device type:

i Debugger

Apoly Cancel O

Figure 5.6 — Desktop kit configuration on macOS

You can also manually add a debugger in the Debuggers tab if you don't
want to use the Auto-detected debugger, as illustrated in the following

screenshot:

[NON | Preferences

Filter Kits

@ kits | Kits ~ Qt Versions Compilers I@Mﬂ Qbs CMake |

(] Environment Name Add |
v Auto-detected

B Text Editor System LLDB at /Applications/Xcode.app/Contents/Develop Clone

Syﬁtem LLDB ﬂtfusrfbin,mdb Remave
¥ FakeVim Miidial

0 Hepp

{} Cs+

4 at Quick
/" Build & Run

fF Debugger

/ Designer

| Apply | | Cancel |

Figure 5.7 — Debugger option on macOS

Running an application on macOS is similar to running it on Windows. Just

hit the Run button and you will see the application running in no time.

Mobile platforms hold equal importance to desktop platforms such as
Windows, Linux, and macOS. Let's explore how to set up an environment

for running applications on iOS.

Configuring Qt Creator for iOS

Running Qt applications on iOS is really simple. You can connect your iOS
device and select a suitable device type from the device selection list. You
can select Device type from the Kits selection screen. You can also run the

application on iOS Simulator, as illustrated in the following screenshot:

(8]) Preferences

Fitr Kits
ﬂ it QtVersions | Complers | Debuggers | Chiake
Settings Filtr..
D Environment ' |
Default Settings Filtr..
B TextEdtor
Name; 10
¥ Fakeyim
Fle system name;
9 e
Device type: 108 Smulator
{} O
4 o Quik Device: | 08 Simulator (deaut for i Mange.
/N Buid & Run Sysroot Choose..
b
0% ¢ Cang (6068
ﬁ Debugger Compiler Manage...
Co Clng (Cra86600

Apply Cancel

Figure 5.8 — iOS Simulator option on macOS

After configuring the Kkit, just plug in your iPhone and hit the Run button.

You can see a sample output in the following screenshot:

m
1
(1T

Welcame

Edit

\

/

Design

i

Debug

}l

Projacts

0

Help

HelloWorld

|

Dabug

)
h

Projects AT @B (¢ ﬁl minqml

¥ | HelloWorld
o HelloWorld pro
b [Sources
v | Resources
Y g omlare
vE/

o Maingml

[£ Type to locate (K)

-

Line: 14, Cal: 39

import: QtQuick
import: QtQuick Window

Window {
visible: true
width: 640
‘ hetgnt: 480
§ title: gsTr("Hello World")
9

10 Text{

11 anchors. fill: parent
1l text: "Hello Horld!®
13 horizontalALigment: Text,AlignHCenter
verticalAlignent; Text AlignVCenter
15 }
I |
17
Application Output | |+ - A B

Run on Tast iPhone

17:00:52: Starting remote process.
(ML debugging is enabled. Only use this in a safe enviromment.
stale focus object (Object(@d) , doing manual update

1 lssues 2 Search Results 3 Apolication Out.. 4 Compile Output & OMLDebugger... 6 General Messag.. 8 TestResuts = * [

Figure 5.9 — Qt Creator running an application on an iPhone

It is relatively easy to build and run an application on the iOS platform.

However, distributing the application is not easy as the App Store is a very

closed ecosystem. You should have an Apple ID and will need to sign in

B

your iOS applications before you can distribute them to your users. You

can't avoid these steps, but let's skip the deployment part for now.

You can learn more about App Store submissions at the following link:

In this section, we learned about running an application on macOS and iOS.
In the next section, we will learn how to configure and build an application

for the Android platform.

Configuring Qt Creator for Android

Android is the most popular mobile platform today, hence developers want
to build applications for Android. Although Android is a Linux-based
operating system, it is very different from other Linux distributions. In
order to use it, you have to configure Qt Creator and install certain

packages.

For smooth functioning of your Qt Creator configuration for Android, use
OpenJDK 8, NDK r21 with clang toolchain. You can run sdkmanager from
the ANDROID_SDK_ROOT\cmdline-tools\latest\bin with required

arguments to configure with required dependencies.

You can learn more about android specific requirements and instructions in

the following link:

https://doc.qt.io/qt-6/android-getting-started.html

Let's get started with configuring your machine for Android by following

these next steps:

https://developer.apple.com/app-store/submissions
https://doc.qt.io/qt-6/android-getting-started.html

1. To build a Qt application on Android, you have to install the Android
software development kit (SDK), the Android native development kit
(NDK), the Java Development Kit (JDK), and OpenSSL to your
development PC, irrespective of your desktop platform. You will find
the download option with a globe icon or Download button next to each

corresponding field, to download from the respective package's page.

2. After all the required packages are installed, restart Qt Creator. Qt
Creator should be able to detect the build and platform tools

automatically.

3. However, you may have to configure further to fix errors in Android
settings. You may find the SDK manager, the platform SDK, and

essential packages missing, as shown in the following screenshot:

Options - Ot Creztor X

Ae | Devies

ﬂ kit Devices Android QNX 55
Java Settings d
D Environment
10K location: ‘C:‘Program Fles\AdoptOpenIDKYjk-8.0. 275, L-hotspot H Brawse. . ‘
B Terttditor
+ Java Settings are OK, Detals &
FakeVi ‘
¥ fatclim ¥ T pathexists.
0 Hep ¥ 10K pathis a valid J0K root folder,
{} G Android Settings
1 (t Quick Android SDK location: ‘C:‘1leersWibedit‘lAppDaia\Loml\,mdroid\Sdk H Browse. . ‘ ‘ Set Up 5K ‘
¥ Build & Run Andraid NDIlist: o' C/Users/Nivedit/AppData/Local/Android/Sdk/ndk/21.3.6528147 Add...
3 o
¥ Debugger
) Anchroid settings have errors, Details &
/ Designer
¥ Android SDK path exists,
@ Dython ¥ Antroid SDK path writzbe,
|: ¥ 50K tools instzlled,
= Arclper ¥ Platform tools installed.
ﬁj Version Cartral ¥ Buid tools instaled.
X SDK manager runs (SDK Tools versians <= 26.x require exactly Java L.8),
Cd) Devices X Platform SOK instaled,
X j i i jons.
@ CodePsting Al essential packages installed for al installed Qt versions
g Language Clent Andreid OpendSL. settings (Optionl)
né Testing Opensal binaries location: ‘C:‘quersWibedit‘u‘-&ppDaE\Loal\Pﬂdroidﬁdk‘android_openssl H Browse... HDomoad[merﬁSL‘
+ Opensa. Settings are OK, Details ¥
oy v

ERIEREE

Figure 5.10 — Android Settings screen

4. Select the correct SDK and NDK path under Android Settings. Click
on the Apply button to save the changes.

5. Click on the SDK Manager tab and click on the Update Installed
button. You may see a message box prompting you to install missing
packages, as illustrated in the following screenshot. Click on the Yes

button to install the packages:

@ Missing Android SDK Packages - Ot Creator >

Android SDK installation is missing necessary packages. Do you want to install
the missing packages?

Figure 5.11 — Information message showing missing Android packages

6. You may get another message warning of Android SDK changes, listing
missing essential packages, as illustrated in the following screenshot.
Click on the OK button:

(if Android SDK Changes - Gt Creator x

Ot Creator couldn't find the following essential packages: "build-tools;30.0.2%,
! "ndk;21.3.6528147", "platform-tocls”, "platferms;andreid-30", "cmdline-

toolslatest”, "extras:googleiush_driver”,

Install thern manually after the current operation is done.

Figure 5.12 — Warning about missing Android packages

7. Click on the Advanced Options... button to launch the SDK Manager
Arguments screen, type —verbose, and click on the OK button. You

can see an overview of this in the following screenshot:

(¥ SDK Manager Arguments - Gt Creator >

SDK manager arguments: | —uerbnsel

Available arguments;

--sdk_root=<sdkRootPath=: Use the specified SDK root instead of the SDK.
containing this tool

—channel=<channelld>: Indude packages in channels up to <channelld=.
Common channels are:
0 (5table), 1 (Beta), 2 (Dev), and 3 (Canary).
—include_obsolete: With —ist, show obsolete packages in the
package listing. With —update, update obsolete
packages as well as non-obsolete,
--no_https: Force all connections to use http rather than https.
—proxy=<http | socks>: Connect via a proxy of the given type,
—proxy_host=<IP or DNS address=: IP or DNS address of the proxy to use.
-—-proxy_port=<port #>: Proxy port to connect to.

--verbose: Enable verbose output.

*If the env var REPO_0S_OVERRIDE is set to “windows®,
"macosx”, or Tinux”, packages will be downloaded for that 05,

Cancel

Figure 5.13 — Android SDK Manager tool

8. Once the issues are resolved, you will see that all Android settings have

been properly configured, as shown in the following screenshot:

(i Options - Ot Creator

Filter Devices
@ i Devices Android QNX 55H
D Environment
] + Android settings are QK. (SDK Version: 3.0, NDK Version: 21,3.6528147)
E Text Editor
+ Android SDK path exists.
& FakeVim + Android SDK path writable,
0 Help + 5D tools installed,
+ Platform tools installed.
{} Ces ¥ Buid tools installed.
. + SDK manager runs (50K Tools versions <= 26.x require exactly Java 1.8).
1 i Platform SDK nstale.
) Build & Run + Bl essential packages installed for al installed Qt versions,
B Obs Android Open35L settings (Optional)
i Debugger Open3aL binaries location: ‘C:'lJJsersWibedit'lﬁppData'||Loca|‘l,ﬁ.ndroid‘l,’idk‘lﬁndroid_openssl Browse...
/l Designer + Open&Sl Settings are OK,
& Dython
e Automatically create kits for Android tool chains
|E Analyzer AVDManager 50K Manager
ﬁj Version Control [
Package APl Revision #
L Devices % Tk
" .
@ Code Pasting SOK Patch Applier v 1
¥ Google USB Driver 13
§ Language Client ¥ NDK (Side by side) 2136328147 21365281
n . + Android SDK Platform-Tools 3005
A g 7 Android SDK Build-Tools 30.02 002
¥ Android SDK Build-Tools 29.0.3 2003 v
{ b

Figure 5.14 — Proper Android configuration in Qt Creator

Details &

\Download Opensal

Details ¥

Update Installed
Apply
Show Packages

() Avalable
() Instaled
®al

Advanced Options, .,

Cancel

Apply

9. If the issues are still not resolved or if you want to install a specific

platform, you can enter the appropriate command, as shown in the

following screenshot. You may also install the required packages from
the command line. Qt will automatically detect the build tools and

platforms available in the SDK location:

({8 SDK Manager Arguments - Ot Creator >

SDK manager arguments: |sdkmanager “platforms;android-307

Available arguments:

—sdk_root=<sdkRootPath=: Use the specified SDK root instead of the SDK
containing this tool

—channel=<channelld >: Indude packages in channels up to <channelld:=.
Common channels are:
0 (5table), 1 (Beta), 2 (Dev), and 3 {Canary).
--include_obsolete: With -ist, show obsolete packages in the
package listing. With —update, update cbsolete
packages as well a5 non-obsalete,
—no_https: Force all connections to use http rather than https.
—proxy=<http | socks>: Connect via a proxy of the given type.
--proxy_host=<IF or DMS address:: IF or DMS address of the proxy to use,
—proxy_port=<port #>: Proxy port to connect to.

—verbose: Enable verbose output.

*If the env var REPO_0S5_OVERRIDE is set to “windows",
"macosx”, or Tinux”, packages will be downloaded for that OS.

Cancel

Figure 5.15 — Android SDK Manager tool

10. Once the Android settings are properly configured, you can see the
Android kit is ready for development, as illustrated in the following

screenshot:

(i Options - Ot Creator

Fter

B «is

D Environment
B TextEditor
¥ Falelim
© Hep

{} G+

A4 otQuick
Z Build & Run
@ abs

1 Debugger
/' Designer
@& Python

I Analyzer
Version Contral
G] Devices

@ Code Pasting

Language Client

M Testing

| Kits

Kits QtVersions Compiers Debuggers — CMake

Name

v Auto-detected
Andraid Qt 5.15.2 Clang Mult-Abi
H Android gt 6.0.2 Clang armb4-véa (default)
E Android Qt 6.0.2 Clang armeabi-v7a
H Android Ot 6.0.2 Clang x86
W Android Ot 6.0.2 Clang x85._64
& Desktop Qt 5,15.2 MinGW 64-4it
Desktop Qt 6.0.2 MSVC2019 64bit

1

Remove
Make Default

Settings Filter. .

I

Default Settings Filter...

Name: ‘Android Qt %{Qt:Version} Clang arma4-v8a

=

File system name: ‘

Device type: Android Device v
Device: Run on Android (default for Android) © | Manage...
Sysroot: ‘ ‘ ‘ Browse ‘
s C: | Custom Android Clang (C, aarched, NDK 21.3.6523147) v
C++: | Custom Android Clang (C++, aarche4, NDK 21.3.6528147) v
No changes to apply.
s (] Force UTF-8 MSVC compier output
Debugger: ‘Android Debugger (arm64-v3a, NDK 21.3.6528147) v ‘ ‘ Manage. . ‘
Qt version; Qt6.0.2 for Android ARM&4-v8a v
Qt mkspec: ‘ ‘
Aditional Qbs Profile Settings:
CMake Tool: v
CMake generator; <none: - <none:, Platform; <nonez, Toolset: <none» Change...
CMake Configuration: CMAKE_CXX_COMPILER:STRING =%{Compiler:Executable:Ci}; CMAKE_C_COMPILER: .. | Change...

>

v

oK

G || gy

Figure 5.16 — Properly configured Android kit

following screenshot:

11. Select an Android kit from the Kit selection option, as illustrated in the

Project: HelloWorld
Deploy: Deploy to Android Device
Run: HelloWorld

HeloWord Kit Build

> Android Qt 6.0.2 Clang arm64-v8a | Debug

Desktop Qt 6.0.2 MinGW &4-bit Profile

> Release

Figure 5.17 — Android Kit selection option

12. In this step, you can select a target Android version and configure your
Android application by creating a AndroidManifest.xml file with Qt
Creator. You can set the package name, version code, SDK version,

application icon, permissions, and so on. The settings can be seen in the

following screenshot:

Build Android APK @ Details &

Application Signature

I{e*,rstore:‘ H Browse... ‘ ‘ Cregte... ‘
[sign package

Certificate alias: | V‘
Application
Android build SDK: ‘android-,?l) V‘
Android customization: ‘ Create Templates

| Create an Android package for Custom Java code, assets, and Gradle configurations, i

Advanced Actions

& Open package location after build
[Verbose output
/| Add debug server

Additional Libraries

[Include prebuilt OpenSSL libraries

Remove

Tenoe

Figure 5.18 — Android manifest option in build settings

13. Your machine is now ready for Android development. However, your
Android hardware requires developer options to be enabled or the
Android emulator to be used. To enable the Developer mode, go to

Settings, tap on System, and then on About phone.

14. Then, tap on Software info and find the build number. Keep tapping
Builder number until you see Developer mode activated. It may take
seven taps to activate the Developer mode. Now, go back to the

Settings pane, where you will now find Developer options as an entry.

15. Your Android device is ready to run the Android application. Click on
the Run button and select a device from the Compatible device list

screen.

16. Next, tap Allow on the Allow USB Debugging prompt on the Android
device. You will see the Hello World! message running on your
Android device. You can find the .apk file generated inside the build
folder.

Congratulations! You have successfully developed your Android
application. Unlike iOS, Android is an open system. You can copy or
distribute the .apk file into other Android devices running on the same
Android version, and then install it. However, if you want to distribute your
apps on Google Play Store, then you will have to register as a Google Play

developer and sign the package.

In this section, we learned how to configure and build for an Android
platform. In the next section, we will discuss other platforms supported by

Qt 6 at the time this book was authored.

Other Qt-supported platforms

Qt 5 had support for a great range of platforms, from desktop and mobile
platforms to embedded and web platforms. Qt 6 is yet to support all
platforms that were supported in Qt 5, but the platforms will be gradually
supported as Qt 6 matures. Currently, only embedded Linux is supported in
the latest release of Qt 6 under the commercial license. You may have to
wait some time to port your application to Qt 6 on a different embedded

platform. Otherwise, if you want to migrate to Qt 6 immediately for your

favorite embedded platform, you have to build from the source code and do

the necessary modifications.

The following link provides a snapshot of embedded Linux support in Qt
6.2: https://doc-snapshots.qt.io/qt6-dev/embedded-linux.html. This link may

get updated as Qt moves to the next release.

Qt also provides a Boot to Qt software stack for embedded Linux systems
under commercial licenses. It is a lightweight, Qt-optimized complete
software stack that is installed on the target system. The conventional
embedded Linux kernel is used in the Boot to Qt software stack, which is

designed with the Poky and Yocto packages.
Explore more about Boot to Qt at the following link:

https://doc.qt.io/QtForDeviceCreation/b2qt-index.html

Qt for WebAssembly allows you to build Qt applications for web
platforms. It does not necessarily require any client-side installations, and
saves server resources. It is a platform plugin that lets you build Qt
applications that can be embedded into web pages. It is not yet available to
open source developers in Qt 6. Commercial license holders may get early

access to use this plugin.

You can learn more about the Qt for WebAssembly plugin at the following
link:

https://wiki.qt.io/Qt for WebAssembly

In this section, we learned about other platforms supported in Qt 6. In the

next section, we will discuss how to port your application from Qt 5 to Qt 6.

https://doc-snapshots.qt.io/qt6-dev/embedded-linux.html
https://doc.qt.io/QtForDeviceCreation/b2qt-index.html
https://wiki.qt.io/Qt_for_WebAssembly

Porting from Qt 5 into Qt 6

Qt 6 is a major change to the Qt framework, therefore it breaks some of the
backward compatibility. So, before upgrading to Qt 6, make sure that your
Qt 5 application is updated to Qt 5.15. Porting will be easier from Qt 5.15
to Qt 6, with the fewest number of changes. However, APIs marked as

deprecated or obsolete in Qt 5.15 may have been removed from Qt 6.0.

The CMake APIs in Qt 5 and Qt 6 are almost identical in terms of
semantics. As a result, Qt 5.15 introduced versionless targets and
commands, allowing CMake code to be written that is completely
independent of Qt versions. Versionless imported targets are most useful for
projects that require both Qt 5 and Qt 6 compilation. It is not recommended
to use them by default because of the missing target properties. You can

and-qt6-compatibility.html.

Some of the classes and modules have been removed in Qt 6, but these are
kept in Qt5Compat for ease of porting. Apart from build system changes,
you may need to fix up the includes directives of obsolete classes—for
example, classes such as QLinkedList, QRegExp, and QTextCodec are
replaced in Qt6 with new classes. But for ease of porting, you need to add

core5compat into your .pro file, as shown here:

QT += coreScompat

There are also changes with respect to the drawing mechanism. If you were
using OpenGL-style OpenGL Shading L.anguage (GLSL) in your project,
then you would have to switch to Vulkan-style GLSL. As per new changes,

you can write shaders in Vulkan-compatible GLSL and use the gsb tool.

https://doc.qt.io/qt-6/cmake-qt5-and-qt6-compatibility.html

Your shader code should be compiled into Standard Portable
Intermediate Representation-Vulkan (SPIR-V) format. We will discuss
graphics in detail in Chapter 8, Graphics and Animations. Further details

can be found at the following link: https://doc.qt.io/qt-6/qtshadertools-

index.html.

There are also some changes to Qt Modeling L.anguage (QML). The Qt
Quick Extras module has merged with Qt Quick Controls. Modules such as
QtGraphicalEffects have been removed from Qt 6 and will be available
with a different license. Qt Quick MultiEffect is available in the Qt
Marketplace and provides better performance. You might also consider
updating your earlier signal connections in QML to use a JavaScript
function declaration, as shown in the following code snippet:
Connections {

target: targetElement

function onSignalName() {//Do Something}

}

The Qt State Machine module is largely source-compatible with the Qt 5
version, so you should be able to continue working on their projects with no
—or only slight—changes. To use the State Machine module's classes, add

the following line of code to your Qt project (.pro) file:

QT += statemachine

To import the State Machine module inside the QML file, use the following

import statement:

import QtQml.StateMachine

https://doc.qt.io/qt-6/qtshadertools-index.html

Qt provides detailed porting guidelines. Have a look at the following

documentation if you are looking to port your Qt 5 applications to Qt 6:

https://doc.qt.io/qt-6/portingguide.html

https://doc.qt.io/qt-6/porting-to-qt6-using-clazy.html

In this section, you learned how to port your application from Qt 5 to Qt 6.

In the next section, we will summarize what we learned in this chapter.

Summary

This chapter explained cross-platform development using Qt Creator. You
learned about various compilers, build tools, and build- and platform-
specific settings. In this chapter, you learned to configure and build
applications on desktop and mobile platforms and how to run applications
on iPhone and Android devices. We discussed how to port your Qt project

to different platforms without too many challenges.

In the next chapter, you will learn about the signal and slots mechanism, the

Qt meta object system, and event handling. Let's continue!

https://doc.qt.io/qt-6/portingguide.html
https://www.qt.io/blog/porting-from-qt-5-to-qt-6-using-qt5compat-library
https://doc.qt.io/qt-6/porting-to-qt6-using-clazy.html

Section 3: Advanced Programming,
Debugging, and Deployment

In this section, you will learn about advanced programming and
development methodologies. You will learn about debugging, testing, and
deploying Qt applications on various platforms. You will also learn about

internationalization and how to build high-performance applications.
In this section, there are the following chapters:

e Chapter 6, Signals and Slots

e Chapter 7, Model View Programming

e Chapter 8, Graphics and Animations

e Chapter 9, Testing and Debugging

e Chapter 10, Deploying Qt Applications

e Chapter 11, Internationalization

e Chapter 12, Performance Considerations

Chapter 6. Signals and Slots

In the previous chapters, we learned how to create GUI applications with Qt

Widgets and Qt Quick. But to make our applications usable, we need to add

a communication mechanism. The signals and slots mechanism is one of

the distinct features of Qt and makes it unique from other frameworks.

Signals and slots are implemented through Qt's meta-object system.

In this chapter, you will learn about signals and slots in depth and how they

work internally. You will be able to receive notifications from different

classes and take the corresponding action.

In this chapter, we will discuss the following topics:

Understanding Qt signals and slots

The working mechanism of Qt signals and slots
Getting to know Qt's property system
Understanding signals and the handler event system
Understanding events and the event loop

Managing events with an event filter

Drag and drop

By the end of this chapter, you will be able to communicate between C++

classes with QML and between QML components.

Technical requirements

The technical requirements for this chapter include having the minimum
versions of Qt (6.0.0) and Qt Creator (4.14.0) installed on the latest desktop
platform available, such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code in this chapter can be downloaded from the following GitHub
link:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-

6-and-Modern-Cpp/tree/master/Chapter06
IMPORTANT NOTE

The screenshots in this chapter were taken on a Windows machine. You will see similar
screens based on the underlying platforms on your machine.

Understanding Qt signals and slots

In GUI programming, when a user performs any action with any Ul
element, another element should get updated, or a certain task should be
done. To achieve this, we want communication between objects. For
example, if a user clicks the Close button on the Title bar, it is expected that
the window closes. Different frameworks use different approaches to
achieve this kind of communication. A callback is one of the most
commonly used approaches. A callback is a function that's passed as an
argument to another function. Callbacks can have multiple drawbacks and
may suffer from complications in ensuring the type-correctness of callback

arguments.

In the Qt framework, we have a substitute for this callback technique
known as signals and slots. A signal is a message that is passed to

communicate that the state of an object has changed. This signal may carry

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter06

information about the change that has occurred. A slot is a special function
that is invoked in response to a specific signal. Since slots are functions,
they contain logic to perform a certain action. Qt Widgets have many
predefined signals, but you can always extend your classes and add your
own signals to them. Similarly, you can also add your own slots to handle
the intended signal. Signals and slots make it easy to implement the

observer pattern while avoiding boilerplate code.

To be able to communicate, you must connect the corresponding signals and
slots. Let's understand the connection mechanism and syntaxes of a signal

and slot connection.

Understanding syntax

To connect a signal to a slot, we can use QObject::connect(). This is a
thread-safe function. The standard syntax is as follows:
QMetaObject::Connection QObject: :connect(
const QObject *senderObject, const char *signalName,
const QObject *receiverObject, const char *slotName,

Qt::ConnectionType type = Qt::AutoConnection)

In the preceding connection, the first argument is the sender object, while
the next argument is the signal from the sender. The third argument is the
receiver object, while the fourth is the slot method. The last argument is
optional and describes the type of connection to be established. It
determines whether the notification will be delivered to the slot
immediately or queued for later. There are six different types of connections

that can be made in Qt 6. Let's have a look at the connection types:

Qt::AutoConnection: This is the default type of connection. This
connection type is determined when the signal is emitted. If both the
sender and receiver are in the same thread, then Qt::DirectConnection

is used; otherwise, Qt::QueuedConnection is used.

Qt::DirectConnection: In this case, both the signal and slot live in the

same thread. The slot is called immediately after the signal is emitted.

Qt::QueuedConnection: In this case, the slot lives in another thread.
The slot is called once control returns to the event loop of the receiver's

thread.

Qt::BlockingQueuedConnection: This is similar to
Qt::QueuedConnection, except that the signaling thread blocks until
the slot returns. This connection must not be used if both the sender and

receiver are in the same thread to avoid deadlock.

Qt::UniqueConnection: This can be combined with any one of the
aforementioned connection types, using a bitwise OR. This is used to
avoid duplicate connections. The connection will fail if the connection

already exists.

Qt::SingleShotConnection: In this case, the slot is called only once
and the connection is disconnected once the signal is emitted. This can
be also used with other connection types. This connection type was

introduced in Qt 6.0.

IMPORTANT NOTE

You must be careful while using Qt::BlockingQueuedConnection to avoid deadlocks.
You are sending an event to the same thread and then locking the thread, waiting for
the event to be processed. Since the thread is blocked, the event will never be

processed, and the thread will be blocked forever, causing a deadlock. Use this
connection type if you know what you are doing. You must know the implementation
details of both threads before using this connection type.

There are several ways to connect signals and slots. You must use the
SIGNAL() and SLOT() macros when specifying the signal and the slot
function, respectively. The most commonly used syntax is as follows:
QObject::connect(this, SIGNAL(signalName()),

this, SLOT(slotName()));

This is the original syntax that has been around since the beginning of Qt.
However, its implementation has changed quite a few times. New features
have been added without breaking the basic Application Programming
Interface (API). It is recommended to use the new function pointer syntax,
as shown here:

connect(sender, &MyClass::signalName, this,

&MyClass::slotName);

There are pros and cons to both syntaxes. You can learn more about the

differences between string-based and functor-based connections at

https://doc.qt.io/qt-6/signalsandslots-syntaxes.html

If a connection fails, then the preceding statement returns false. You can

also connect to functors or C++11 lambdas, as follows:
connect(sender, &MyClass::signalName, this, [=]()

{ sender->doSomething(); });

You can check the return value to verify whether the signal connected to the
slot successfully. The connection can fail if the signatures aren't compatible,

or the signal and slot are missing.

https://doc.qt.io/qt-6/signalsandslots-syntaxes.html

IMPORTANT NOTE

Qt::UniqueConnection does not work for lambdas, non-member functions, and functors; it
can only be used to connect to member functions.

The signatures of signals and slots may contain arguments, and these

arguments may have default values. You can connect a signal to a slot if the

signal has at least as many arguments as the slot, as well as if there is a

possible implicit conversion between the types of the corresponding

arguments. Let's look at feasible connections with varying numbers of

arguments:

connect(sender, SIGNAL(signalName(int)), this,
SLOT(slotName(int)));

connect(sender, SIGNAL(signalName(int)), this,
SLOT(slotName()));

connect(sender, SIGNAL(signalName()), this,

SLOT(slotName()));

However, the following one won't work as the slot has more arguments than

the signal:
connect(sender, SIGNAL(signalName()), this,

SLOT(slotName(int)));

Every connection you make emits a signal, so duplicate connections emit

two signals. You can break a connection using disconnect().

You can also use Qt with a third-party signal/slot mechanism. If you want to
use both mechanisms for the same project, then add the following
configuration to your Qt project (.pro) file:

CONFIG += no_keywords

Let's create an example with a simple signal and slot connection.

Declaring signals and slots

To create a signal and slot, you must declare the signal and slot inside your

custom class. The header file of the class will look like this:
#ifndef MYCLASS_H
#define MYCLASS_H
#include <QObject>
class MyClass : public QObject
{
Q_OBJECT
public:
explicit MyClass(QObject *parent = nullptr);
signals:
void signalName();
public slots:
void slotName();
i

#endif // MYCLASS_H

As you can see, we have added Q_OBJECT to the class to facilitate the
signals and slots mechanism. You can declare a signal with the signals
keyword in your header file, as shown in the previous snippet. Similarly,
slots can be declared with the slots keyword. Both signals and slots can

have arguments. In this example, we used the same object for the sender

and receiver to make this explanation simpler. In most cases, signals and

slots will be located in different classes.

Next, we will discuss how to connect the signal to the slot.

Connecting the signal to the slot

Previously, we declared a custom signal and slot. Now, let's look at how to
connect them. You can define a signal and slot connection and emit the

signal inside MyClass, as follows:
#include "myclass.h"
#include <QDebug>
MyClass::MyClass(QObject *parent) : QObject(parent)
{
QObject::connect(this, SIGNAL(signalName()),
this, SLOT(slotName()));

emit signalName();

¥
void MyClass::slotName()
{
gDebug()<< "Slot called!";
¥

You need to emit the signal after the connection to invoke the slot. In the
preceding example, we used the traditional way of signal and slot
declaration. You can replace the connection with the latest syntax, as shown

here:

connect(this, &MyClass::signalName, this,

&MyClass: :slotName);

It is not only possible to connect one signal to one slot, but also to connect
many slots and signals. Similarly, many signals can be connected to one

slot. We will learn how to do that in the next section.

Connecting a single signal to multiple
slots

You can connect the same signal to multiple slots. These slots will be called
in the same order as the connections are made. Let's consider that a signal
named signalX() is connected to three slots called slotA(), slotB(), and
slotC(). When signalA() is emitted, all three slots will be invoked.

Let's look at the traditional way of making connections:
QObject::connect(this, SIGNAL(signalX()), this,
SLOT(slotA()));
QObject::connect(this, SIGNAL(signalX()), this,
SLOT(slotB()));
QObject::connect(this, SIGNAL(signalX()), this,

SLOT(slotC()));

You can also create connections as per the new syntax, as follows:
connect(this, &MyClass:: signalX, this, &MyClass:: slotA);
connect(this, &MyClass:: signalX, this, &MyClass:: slotB);

connect(this, &MyClass:: signalX, this, &MyClass:: slotC);

In the next section, we will learn how to connect multiple signals to a single

slot.

Connecting multiple signals to a single
slot

In the previous section, you learned how to create a connection between a
single signal and multiple slots. Now, let's look at the following code to

understand how to connect multiple signals to a single slot:
QObject::connect(this, SIGNAL(signalX()), this,
SLOT(slotX()));
QObject::connect(this, SIGNAL(signalY()), this,
SLOT(slotX()));
QObject::connect(this, SIGNAL(signalz()), this,

SLOT(slotX()));

Here, we have used three different signals called signalX(), signalY(), and
signalZ(), but there is a single slot defined as slotX(). When any of these

signals are emitted, that slot is called.

In the next section, we will learn how to connect one signal to another

signal.

Connecting a signal to another signal

Sometimes, you may have to forward a signal instead of directly connecting

to a slot. You can connect one signal to another signal as follows:

connect(sender, SIGNAL(signalA()),forwarder,

SIGNAL(signalB())));

You can also create connections as per the new syntax, as follows:
connect(sender,&ClassName: :signalA, forwarder,&ClassName: :

signalB);

In the preceding line, we have connected signalA() to signalB(). Hence,
when signalA() is emitted, signalB() will also be emitted and the
corresponding slot connected to signalB() will be invoked. Let's consider
that we have a button in our GUI, and we want to forward the button click
as a different signal. The following code snippet shows how to forward a
signal:

#include <Qwidget>

class QPushButton;

class MyClass : public Qwidget

{
Q_OBJECT
public:
MyClass(Qwidget *parent = nullptr);
~MyClass();
signals:
void signalName();
private:
QPushButton *myButton;
3

MyClass::MyClass(Qwidget *parent)

: Qwidget(parent)

myButton = new QPushButton(this);
connect(myButton, &QPushButton::clicked,

this, &MyClass::signalName);
b

In the preceding example, we forwarded the button click signal to our
custom signal. We can call the slot that is connected to the custom signal as

discussed earlier.

In this section, we learned how connections are made and how to use
signals and slots. Now, you can communicate between different classes and
share information. In the next section, we will learn about the working

mechanism behind signals and slots.

The working mechanism of Qt signals
and slots

In the previous sections, we learned about signal and slot syntaxes and how

to connect them. Now, we will understand how it works.

While creating a connection, Qt looks for the index of the signal and the
slot. Qt uses a lookup string table to find the corresponding indexes. Then, a
QObjectPrivate::Connection object is created and added to the internal
linked lists. Since one signal can be connected to multiple slots, each signal
can have a list of the connected slots. Each connection contains the
receiver's name and the index of the slot. Each object has a connection
vector that associates with each signal in a linked list of

QObjectPrivate::Connection.

The following diagram illustrates how ConnectionList creates connections

between sender and receiver objects:

Sender QObjectConnectionListVector
ConnectionList » 1) 3 4

Receiver

SendersList + > ‘ »

Figure 6.1 — lllustration of the connection mechanism between the sender and receiver

ConnectionList is a singly linked list that contains all the connections from
and to an object. signalVector contains the lists of connections for a given
signal. Each Connection is also part of a senders linked list. Linked lists
are used because they permit faster addition and removal of objects. Each
object also has a reversed list of connections the object is connected to for
automatic deletion. For detailed internal implementation, look at the latest

gobject_p.h.

There are quite a few articles on how signals and slots work on the wobog
website. You can also explore the Qt source code on the woboqg website. Go

to the following link if you need further information:

https://woboq.com/blog/how-qt-signals-slots-work.html.

Now, let's learn about Qt's meta-object system.

Qt's meta-object system

Qt's meta-object system is the core mechanism behind the signals and
slots mechanism. It provides features such as inter-object communication, a

dynamic property system, and runtime type information.

The meta-object system is implemented with a three-part mechanism. These

mechanisms are as follows:
e QObject
e Q OBJECT macro

e Meta-Object Compiler

The QObject class is the base class of all Qt objects. It is a very powerful
mechanism that facilitates the signals and slots mechanism. The QObject
class provides a base class for objects that can take advantage of the meta-
object system. QObject derived classes arrange themselves in an object
tree. This creates the parent-children relationship between classes. When
you create a QObject derived class with another QObject derived class as
a parent, the object will be automatically added to the parent's children()

list. The parent takes ownership of the object. GUI programming requires

https://woboq.com/blog/how-qt-signals-slots-work.html

both runtime efficiency and a high level of flexibility. Qt achieved this by
combining the speed of C++ with the flexibility of the Qt Object Model. Qt
provides the required features by implementing standard C++ techniques

based on the inheritance from QObject.
You can learn more about the Qt Object Model at the following link:

https://doc.qt.io/qt-6/object.html.

The Q_OBJECT macro appears inside the private section of the class
declaration. It is used to enable signals, slots, and other services provided

by Qt's meta-object system.

Meta-Object Compiler (moc) generates additional code for QObject
derived classes to implement meta-object features. It provides the capability
to introspect the objects at runtime. By default, C++ does not have
introspection support. Hence, Qt created moc. It is a code-generating
program that handles Qt's C++ extensions. The tool reads the C++ header
files and if it locates the Q_OBJECT macro, then it creates another C++
source file with the meta-object code. That generated file contains the code
required for the introspection. Both files are compiled and linked together.
In addition to providing the signals and slots mechanism for communication
between objects, the meta-object code offers several additional features to
find the class name and inheritance details, and also helps with setting
properties at runtime. Qt's moc provides a clean way to go beyond the

compiled language's facilities.

You can perform type casts by using qobject_cast() on QObject derived
classes. The qobject_cast() function acts similar to the standard C++

dynamic_cast(). The advantage is that it doesn't require runtime type

https://doc.qt.io/qt-6/object.html

identification (RTTI) and it works across dynamic library boundaries. You
can derive a class from QObject, but if you don't add the Q_OBJECT
macro, then the signals and slots and the other meta-object system features
will not be available. A QObject derived class without meta code is
equivalent to its closest ancestor containing meta-object code. There is also
a lighter version of the Q_OBJECT macro, known as Q_GADGET, that
can be used to utilize some of the capabilities provided by QMetaObject.
A class that uses Q_GADGET doesn't have signals or slots.

We have seen a few new keywords here, such as Q_OBJECT, signals,
slots, emit, SIGNAL, and SLOT. These are known as the Qt extensions of
C++. They are very simple macros meant to be seen by moc, defined in
gobjectdefs.h. Out of these, emit is an empty macro that is not parsed by

moc. It is kept just to give the developer hints.

You can learn about why Qt uses moc for signals and slots at

https://doc.qt.io/qt-6/why-moc.html.

In this section, we learned about Qt's meta-object system. In the next
section, we will discuss the moc generated code and discuss some of the

underlying implementations.

MOC generated code

In this section, we will have a look at the code generated by moc in Qt6.
When you build the earlier signal and slot example, you will see the
generated files under the build directory: moc_myclass.cpp and
moc_predefs.h. Let's open the moc_myclass.cpp file with a text editor:

#include <memory>

https://doc.qt.io/qt-6/why-moc.html

#include "../../SignalSlotDemo/myclass.h"

#include <QtCore/gbytearray.h>

#include <QtCore/gmetatype.h>

#if 1defined(Q_MOC_OUTPUT_REVISION)

#error "The header file 'myclass.h' doesn't include
<QObject>."

#elif Q_MOC_OUTPUT_REVISION != 68

#error "This file was generated using the moc from 6.0.2.
It"

#error "cannot be used with the include files from this
version of Qt."

#error "(The moc has changed too much.)"

#endif

You can see that the information about the Qt Meta-Object Compiler
version at the top of the file. Please note that all the changes that are made
in this file will be lost on recompiling the project. So, don't modify anything

in this file. We are looking at the file to understand the working mechanism.

Let's look at the integer data of QMetaObject. As you can see, there are
two columns; the first column is the count, while the second column is the

index in this array:

static const uint gt_meta_data_MyClass[] = {

// content:
9, // revision
o, // classname

Q, 0, // classinfo

//

//

//
//

//

//

+;

In this case, we have one method, and the description of the method starts at
index 14. You can find the number of available signals in signalCount. For
each function, moc also saves the return type of each parameter, their type,
and their index to the name. In each meta-object, the methods are given an
index, beginning with 0. They are arranged as signals, then slots, and then

as other functions. These indexes are relative indexes and exclude the

2, 14, // methods

0, 0, // properties

0, @, // enums/sets
0, 0, // constructors
0, // flags

1, // signalCount

signals: name, argc, parameters, tag, flags, initial

metatype offsets
1, 0, 26,

slots: name, argc,

metatype offsets

3, 0, 27,

signals: parameters

QMetaType: :Void,
slots: parameters

QMetaType: :Void,

0 // eod

2, 0x06, 0 /* Public */,

parameters, tag, flags, initial

2, Ox0a, 1 /* Public */,

indexes of parent objects.

When you look further into the code, you will find the
MyClass::metaObject() function. This function returns QObject::d_ptr-
>dynamicMetaObject() for dynamic meta-objects. The metaObject()
function normally returns the class' staticMetaObject:
const QMetaObject *MyClass::metaObject() const
{

return QObject::d_ptr->metaObject
? QObject::d_ptr->dynamicMetaObject()
. &staticMetaObject;

}

When the incoming string data matches the current class, you must convert
this pointer into a void pointer and pass it to the outside world. If it is not
the current class, then qt_metacast() of the parent class is called to

continue the query:

void *MyClass::qt_metacast(const char *_clname)

{
if (!_clname) return nullptr;
if (!strcmp(_clname,
gt_meta_stringdata_MyClass.stringdata0))
return static_cast<void*>(this);
return QObject::qt_metacast(_clname);
¥

Qt's meta-object system uses the qt_metacall() function to access the meta-
information for a particular QObject object. When we emit a signal,

qt_metacall() is called and then calls the real signal function:

int MyClass::qt_metacall(QMetaObject::Call _c, int _id, void **_a)
{
_id = QObject::gqt_metacall(_c, _id, _a);
if (_id < 0)
return _id;
if (_c == QMetaObject::InvokeMetaMethod) {
if (_id < 2)
qt_static_metacall(this, _c, _id, _a);
_id -= 2;
} else if (_c == QMetaObject::
RegisterMethodArgumentMetaType) {
if (_id < 2)
*reinterpret_cast<QMetaType *>(_a[0]) =
QMetaType();
_id -= 2;
}
return _id;

}

When you call a signal, it calls the moc generated code, which internally
calls QMetaObject::activate(), as shown in the following snippet. Then,
QMetaObject::activate() looks into the internal data structures to find out

about the slots that are connected to that signal.

You can find the detailed implementation of this function inside
qgobject.cpp:

void MyClass::signalName()

QMetaObject::activate(this, &staticMetaObject, O,

nullptr);
3

By doing this, you can explore the complete generated code and look at the
symbols further. Now, let's look at the moc generated code where the slot is
called. The slot is called by its index in the qt_static_metacall function, as

shown here:
void MyClass::qt_static_metacall(QObject *_o,

QMetaObject::Call _c, int _id, void **_a)

if (_c == QMetaObject::InvokeMetaMethod) {
auto *_t = static_cast<MyClass *>(_0);
(void)_t;
switch (_id) {
case 0: _t->signalName(); break;
case 1: _t->slotName(); break;
default: ;
3
} else if (_c == QMetaObject::IndexOfMethod) {
int *result = reinterpret_cast<int *>(_a[0]);
{
using _t = void (MyClass::*)();
if (*reinterpret_cast<_t *>(_a[1]) ==

static_cast<_t>(&MyClass::signalName)) {

*result = 0;

return;

}

(void)_a;
}

The array pointers to the argument are in the same format as the signal.
_a[0] is not touched because everything here returns void:

bool QObject::isSignalConnected(const QMetaMethod &signal) const

This returns true if the signal is connected to at least one receiver;

otherwise, it returns false.

When an object is destroyed, an QObjectPrivate::senders list is iterated,
and all Connection::receiver are set to 0. Also, Connection::receiver-
>connectionLists->dirty is set to true. Each
QObjectPrivate::connectionLists is also iterated to remove the

connection in the senders lists.

In this section, we went through some sections of the moc generated code
and understood the working mechanism behind signals and slots. In the

next section, we will learn about Qt's property system.

Getting to know Qt's property system

Qt's property system is similar to some other compiler vendors. However, it

provides a cross-platform advantage and works with standard compilers

supported by Qt on different platforms. To add a property, you must add the
Q_PROPERTY() macro to the QObject derived class. This property acts
like a class data member, but it provides extra features that are available

through the Meta-Object System. A simple syntax looks as follows:
Q_PROPERTY (type variableName READ getterFunction

WRITE setterFunction NOTIFY signalName)

In the preceding syntax, we used some of the most common parameters.
But there are more parameters that are supported in the syntax. You can find
out more by reading the Qt documentation. Let's have a look at the

following code snippet, which uses the MEMBER parameter:
Q_PROPERTY(QString text MEMBER m_text NOTIFY
textChanged)
signals:
void textChanged(const QString &newText);
private:

QString m_text;

In the preceding snippet, we exported a member variable as a Qt property
using the MEMBER keyword. The type here is QString, and the NOTIFY
signal is used to implement QML property binding.

Now, let's explore how to read and write properties with the Meta-Object

System.

Reading and writing properties with the
Meta-Object System

Let's create a class named MyClass, which is a subclass of QWidget. Let's
add the Q_OBJECT macro to its private section to enable the property
system. In this example, we want to create a property in MyClass to keep
track of a version's value. The name of the property will be version, and its
type will be QString, which is defined in MyClass. Let's look at the
following code snippet:

class MyClass : public Qwidget

{
Q_OBJECT
Q_PROPERTY(QString version READ version WRITE
setVersion NOTIFY versionChanged)
public:

MyClass(Qwidget *parent = nullptr);
~MyClass();
void setVersion(QString version)
{
m_version = version;
emit versionChanged(version);
}
QString version() const { return m_version; }
signals:
void versionChanged(QString version);
private:
QString m_version;

+;

To get the property changed notification, you have to emit

versionChanged() after the version value is changed.

Let's have a look at the main.cpp file for the preceding example:

int main(int argc, char *argv[])

{
QApplication a(argc, argv);
MyClass myClass;
myClass.setVersion("v1.0");
myClass.show();
return a.exec();

by

In the preceding code snippet, the property is set by invoking setVersion().
You can see that versionChanged() signal is emitted every time the version

is changed.

You can also read a property using QObject::property() and write it using
QObject::setProperty(). You can also query dynamic properties using
QObject::property(), similar to compile time Q_PROPERTY()

declarations.

You can also set the property like so:
QObject *object = &myClass;

object->setProperty("version", "v1.0");

In this section, we discussed the property system. In the next section, we

will learn about signals and slots in Qt Designer.

Using signals and slots in Qt Designer

If you are using the Qt Widgets module, then you can use Qt Designer to
edit signal and slot connections in the form. Qt default widgets come with
many signals and slots. Let's see how we can implement signals and slots in

Qt Designer without writing any code.

You can drag a Dial control and a Slider control onto the form. You can add
connections via Signals and Slots Editor at the bottom tab, as shown in the

following screenshot:

)

5 Bk L

‘B&

Input Widgets

Combo Box

m Font Combo Box

fel) Line Edit <j

Text Edit

[k
—

Plain Text Edit

=) (=]

Spin Box

Double Spin Box

Time Edit
Date Edit

EHECD

(1) Date/Time Edit

g il <:|

amn Horizontal Scroll Bar
@ Vertical Scroll Bar

wu= Horizontal Slider <j

P Vetical Sider

pel) Key Sequence Edit

v Display Widgets

R Label <::|

A[| Text Browser

—

", :
J Graphics View

FIE Calendar Widget

[82] LcD Number
] Progress Bar
E Horizontal Line
|||| Vertical Line
/7] Open6L Widget

] QQuickWidget

! 4§ et Signal/sots o : !

=
Bl —=
5 !*s
n s 86 .
NVARE
¢ 2
£ 54
8]
Entered value is: setText(QString
[| - !

Sender Signal Receiver Slot
lingkdit textChanged(QString) displ...Label setText(QString)
dial valueChanged(int) slider setValue(int)

Y

Action Editor Signals and Sluls Editor

Figure 6.2 — Creating signals and slots connections using Qt Designer

Alternatively, you can press F4 or select the Edit Signals/Slots button from
the top toolbar. Then, you can select the control and create a connection by
dragging the connection to the receiver. If you have custom signals or slots
defined for your custom class, they will be automatically displayed in
Signals and Slots Editor. However, most developers prefer to define

connections inside C++ source files.

In this section, we discussed using Qt Designer to implement signals and

slots in Qt Widgets. Now, let's look at how signals are handled in QML.

Understanding signals and the handler
event system in QML

Previously, we learned how to connect signals and slots inside C++ source
files and use them with the Qt Widgets module. Now, let's look at how we
can communicate in QML. QML has a signal and handler mechanism,
similar to signals and slots. In a QML document, a signal is an event, and
the signal is responded to through a signal handler. Like a slot in C++, a
signal handler is invoked when a signal is emitted in QML. In Qt
terminology, the method is a slot that is connected to the signal; all the
methods defined in QML are created as Qt slots. Hence, there is no separate
declaration for slots in QML. A signal is a notification from an object that
some event has occurred. You can place logic inside JavaScript or a method

to respond to the signal.

Let's look at how to write a signal handler. You can declare a signal handler

as follows:

onSignalName : {

//Logic
¥

Here, signalName is the name of the signal. The first letter of the signal's
name is capitalized while writing a handler. So, the signal handler here is
named onSignalName. The signal and signal handler should be defined
inside the same object. The logic inside the signal handler is a block of

JavaScript code.

For example, when the user clicks within the mouse area, the clicked()
signal is emitted. To handle the clicked() signal, we must add the
onClicked:{...} signal handler.

Signal handlers are simple functions that are invoked by the QML engine
when an associated signal is emitted. When you add a signal to a QML
object, Qt automatically adds a corresponding signal handler to the object

definition.

Let's start by adding a custom signal to a QML document.

Adding a signal in QML

To add a signal inside your QML class, you must use the signal keyword.

The syntax for defining a new signal is as follows:

signal <name>[([<type> <parameter name>[...]])]

The following is an example of this:

signal composeMessage(string message)

A signal can be declared with or without any parameters. If no parameter is

declared for the signal, then you can leave () brackets. You can emit a signal

by invoking it as a function:
Rectangle {
id: mailBox
signal composeMessage(string message)
anchors.fill: parent
Button {
id:sendButton

anchors.centerIn: parent

width: 100
height: 50
text: "Send"

onClicked: mailBox.composeMessage('"Hello World!")

}

onComposeMessage: {

console.log("Message Received",message)

}

In the preceding example, we added a custom signal composeMessage() to
the QML file. We used the corresponding signal handler; that is,
onComposeMessage(). Then, we added a button that emits the
composeMessage() signal when it is clicked. When you run this example,
you will see that the signal handler is called automatically when the button

is clicked.

In this section, you learned how to declare a signal and how to implement

the corresponding signal handler. In the next section, we will connect the

signal to a function.

Connecting a signal to a function

You can connect a signal to any function defined inside your QML
document. You can use connect() to connect a signal either to a function or
another signal. When a signal is connected to a function, that function is
automatically invoked whenever the signal is emitted. This mechanism

enables a signal to be received by a function instead of a signal handler.

In the following snippet, the composeMessage() signal is connected to the

transmitMessage() function using the connect() function:
Rectangle {
id: mailBox
signal composeMessage(string message)
anchors.fill: parent
Text {
id: textElement
anchors {
top: parent.top
left: parent.left

right:parent.right

}
width: 100
height:50

text: ""

horizontalAlignment: Text.AlignHCenter

}

Component.onCompleted: {
mailBox.composeMessage.connect(transmitMessage)

mailBox.composeMessage('"Hello World!")

}

function transmitMessage(message) {
console.log("Received message: " + message)

textElement.text = message

}

In QML, signal handling is implemented using the following syntax:

sender.signalName.connect(receiver.slotName)

You can also remove a connection using the disconnect() function. You can
disconnect the connection like so:

sender.signalName.disconnect(receiver.slotName)

Now, let's explore how to forward a signal in QML.

Connecting a signal to a signal

You can connect a signal to another signal in QML. You can achieve this

using the connect() function.

Let's explore how we can do this by looking at the following example:
Rectangle {

id: mailBox

signal forwardButtonClick()
anchors.fill: parent
Button {

id:sendButton

anchors.centerIn: parent

width: 100
height: 50
text: "Send"

}

onForwardButtonClick: {

console.log("Fordwarded Button Click Signal!")
}
Component.onCompleted: {

sendButton.clicked.connect(forwardButtonClick)

}

In the preceding example, we connected the clicked() signal to the
forwardButtonClick() signal. You can implement the necessary logic at
the root level inside the onForwardButtonClick() signal handler. You can
also emit the signal from the button click handler, as follows:

onClicked: {

mailBox.forwardButtonClick()
¥

In this section, we discussed how to connect two signals and handle them.

In the next section, we will discuss how to communicate between the C++

class and QML using signals and slots.

Defining property attributes and
understanding property binding

Previously, we learned how to define a type in C++ by registering the
Q_PROPERTY of a class, which is then registered with the QML type
system. It is also possible to create custom properties in a QML document.
Property binding is a core feature of QML that allows us to create
relationships between various object properties. You can declare a property

in a QML document with the following syntax:

[default] property <propertyType> <propertyName> : <value>

In this way, you can expose a particular parameter to outside objects or
maintain internal states more efficiently. Let's look at the following property
declaration:

property string version: "v1.0"

When you declare a custom property, Qt implicitly creates a property-
change signal for that property. The associated signal handler is
on<PropertyName>Changed, where <PropertyName> is the name of the
property, with the first letter capitalized. For the previously declared
property, the associated signal handler is onVersionChanged, as shown

here:

onVersionChanged:{..}

If the property is assigned a static value, then it remains constant until it is

explicitly assigned a new value. To update these values dynamically, you

should use property binding inside your QML document. We used simple

property binding earlier, as shown in the following snippet:

width: parent.width

However, we can combine this with the property that's exposed by the
backend C++ class, as shown here:

property string version: myClass.version

In the previous line, myClass is the backend C++ object that's registered
with the QML engine. In this case, whenever the versionChanged() change
signal is emitted from the C++ side, the QML version property gets

updated automatically.

Next, we'll discuss how to integrate signals and slots between C++ and
QML.

Integrating signals and slots between
C++ and QML

In C++, to interact with the QML layer, you can use signals, slots, and
Q_INVOKABLE functions. You can also create properties using the
Q_PROPERTY macro. To respond to signals from objects, you can use the
Connections QML type. When a property changes inside a C++ file,
Q_PROPERTY automatically updates the values. If the property has a
binding with any QML property, it will automatically update the property
values inside QML. In this case, the signal slot mechanism is established

automatically.

Let's look at the following example, which uses the aforementioned
mechanism:

class CPPBackend : public QObject

{
Q_OBJECT
Q_PROPERTY(int counter READ counter WRITE setCounter
NOTIFY counterChanged)
public:
explicit CPPBackend(QObject *parent = nullptr);
Q_INVOKABLE void receiveFromQml();
int counter() const;
void setCounter(int counter);
signals:
void sendToQml(int);
void counterChanged(int counter);
private:
int m_counter = 0;
i

In the preceding code, we declared a Q_PROPERTY-based notification. We
can get the new counter value when the counterChanged() signal is
emitted. However, we used the receiveFromQml() function as a
Q_INVOKABLE function so that we can call it directly inside the QML
document. We are emitting sendToQml(), which is handled inside
main.gml:

void CPPBackend::setCounter(int counter)

if (m_counter == counter)
return;
m_counter = counter;

emit counterChanged(m_counter);

by
void CPPBackend: :receiveFromQml()
{
// We increase the counter and send a signal with new
// value
++m_counter;
emit sendToQml(m_counter);
¥

Now, let's have a look at the QML implementation:

Window {
width: 640
height: 480

visible: true
title: gsTr("C++ QML Signals & Slots Demo")
property int count: cppBackend.counter
onCountChanged: {
console.log("property is notified. Updated value
is:",count)

}

Connections {

target: cppBackend
onSendToQml: {
labelCount.text ="Fetched value is "

+cppBackend.counter

¥
}
Row{
anchors.centerIn: parent
spacing: 20
Text {
id: labelCount
text: "Fetched value is " + cppBackend.counter
¥
Button {
text: qsTr("Fetch")
width: 100 ;height: 20
onClicked: {
cppBackend.receiveFromQml()
}
3
}

}

In the preceding example, we used Connections to connect to the C++
signal. On button click, we are calling the receiveFromQml() C++

function, where we are emitting the signal. We have also declared the count

property, which also listens to counterChanged(). We handled the data
inside the associated signal handler; that is, onCountChanged. We can also

update the labelCount data based on the notification:

(++ Backend QMLFile
Signal

|

counterChanged()

Property hinding

Signal

|

sendToQml()

Connections

Q_INVOKABLE method

Figure 6.3 — The mechanism that was used in this example

The preceding diagram illustrates the communication mechanism in this
example. For explanation purposes, we have kept multiple approaches in
the same example to explain the communication mechanism between C++
and QML.

In this section, you learned about the signals and slots mechanism through

examples. In the next section, we will learn about events and the event loop

in Qt.

Understanding events and the event loop

Qt is an event-based system, and all GUI applications are event-driven. In
an event-driven application, there is usually a main loop that listens for
events and then triggers a callback function when one of those events is
detected. Events can be spontaneous or synthetic. Spontaneous events come
from the outside environment. Synthetic events are custom events generated
by the application. An event in Qt is a notification that represents something
that has happened. Qt events are value types, derived from QEvent, which
offers a type enumeration for each event. All events that arise inside a Qt
application are encapsulated in objects that inherit from the QEvent class.
All QObject derived classes can override the QObject::event() function in
order to handle events targeted by their instances. Events can come from

both inside and outside the application.

When an event occurs, Qt produces an event object by constructing an
appropriate QEvent subclass instance, which it then delivers to the specific
instance of QObject by calling its event() function. Unlike the signals and
slots mechanism, where the slots connected to the signal are usually
executed immediately, an event must wait for its turn, until the event loop
dispatches all the events that arrived earlier. You must select the right
mechanism as per your intended implementation. The following diagram

illustrates how events are created and managed in event-driven applications:

Event Emitters
—
- Event
Event Loop Handlers
Event Queue
e

Figure 6.4 — lllustration of an event-driven application using the event loop

We can enter Qt's main event loop by calling QCoreApplication::exec().
The application keeps running until QCoreApplication::exit() or
QCoreApplication::quit() are called, which terminates the loop.
QCoreApplication can process each event in the GUI thread and forward
events to QObjects. Please note that the events are not delivered
immediately; instead, they're queued up in an event queue and processed
later, one after another. The event dispatcher loops through this queue,
converts them into QEvent objects, and then dispatches the events to the
target QObject.

A simplified event loop dispatcher may look as follows:
while(true)
{

dispatchEventsFromQueue();

waitForEvents();

}

Some of the important Qt classes related to the event loop are as follows:
e QAbstractEventDispatcher is subclassed to manage Qt's event queue.
* QEventLoop provides a local event loop.

¢ QCoreApplication provides an event loop for non-GUI based

applications.

¢ QGuiApplication contains the main event loop for GUI-based

applications.
e QThread is used to create custom threads and manage threads.
* QSocketNotifier is used to monitor activity on a file descriptor.
e QTimer is used to create a timer in any thread with an event loop.
You can read about these classes in the Qt documentation. The following
link provides further insight into the event system:

https://wiki.qt.io/Threads Events QODbjects.

In this section, we discussed events and Qt's event loop. In the next section,

we will learn how to filter events with an event filter.

Managing events with an event filter

In this section, you will learn how to manage events and how to filter a
specific event and perform a task. You can achieve event filtering by

reimplementing event handlers and installing event filters. You can redefine

https://wiki.qt.io/Threads_Events_QObjects

what an event handler should do by subclassing the widget of interest and

reimplementing that event handler.
Qt provides five different approaches for event processing, as follows:

» Reimplementing a specific event handler, such as paintEvent()

Reimplementing the QObject::event() function

Installing an event filter on the QObject instance

Installing an event filter on the QApplication instance

Subclassing QApplication and reimplementing notify()

The following code handles the left mouse button click on a custom widget

while passing all other button clicks to the base QWidget class:

void MyClass::mousePressEvent(QMouseEvent *event)

{
if (event->button() == Qt::LeftButton)
{
// Handle left mouse button here
}
else
{
Qwidget: :mousePressEvent(event);
}
b

In the previous example, we filtered only the left button press event. You

can add the required action inside the respective block. The following

diagram illustrates the high-level event processing mechanism:

[Platform-specific event dispatcher }

|

[QCoreApplication::eventFilter() J

|

[QObject::eventFilter() J

|

[QObject::event() J

Figure 6.5 — Illustration of the event filter mechanism

An event filter can be installed either on an application instance or a local
object. If the event filter is installed in an QCoreApplication object, then
all the events will go through this event filter. If it is installed in a QObject
derived class, then the events that have been sent to that object will go
through the event filter. Sometimes, there may not be any suitable Qt event
type available for a specific action. In that case, you can create a custom
event by creating a subclass from QEvent. You can reimplement
QObject::event() to filter the intended event, as shown here:

#include <Qwidget>

#include <QEvent>

class MyCustomEvent : public QEvent

{

public:
static const QEvent::Type MyEvent

= QEvent::Type(QEvent::User + 1);

i
class MyClass : public Qwidget
{
Q_OBJECT
public:
MyClass(Qwidget *parent = nullptr);
~MyClass();
protected:
bool event(QEvent *event);
i

Here, we have created a custom event class named MyCustomEvent and

created a custom type.

Now, let's filter these events by reimplementing event():
bool MyClass::event(QEvent *event)
{
if (event->type() == QEvent::KeyPress)
{
QKeyEvent *keyEvent= static_cast<QKeyEvent
*>(event);
if (keyEvent->key() == Qt::Key_Enter)
{

// Handle Enter event event

return true;

}

else if (event->type() == MyCustomEvent::MyEvent)
{
MyCustomEvent *myEvent = static_cast<MyCustomEvent
*>(event);
// Handle custom event
return true;

}

return Qwidget::event(event);

}

As you can see, we have passed the other events to QWidget::event() for
further processing. If you want to prevent the event from propagating

further, then return true; otherwise, return false.

An event filter is an object that receives all the events that are sent to an
object. The filter can either stop the event or forward it to the object. It
screens the events if an object has been installed as an event filter for the
watched object. It is also possible to monitor another object for events by
using an event filter and performing the necessary tasks. The following
example shows how to reimplement one of the most commonly used events

— a keypress event — using the event filter approach.

Let's have a look at the following code snippet:
#include <QMainWindow>

class QTextEdit;

class MainwWindow : public QMainWindow

{
Q_OBJECT
public:
MainwWindow(Qwidget *parent = nullptr);
~MainwWindow() ;
protected:
bool eventFilter(QObject *obj, QEvent *event) override;
private:
QTextEdit *textEdit;
iy

In the preceding code, we created a class called MainWindow and
overridden eventFilter(). Let's install the filter on textEdit using
installEventFilter(). You can install multiple event filters on an object.
However, if multiple event filters are installed on a single object, the filter
that was installed last will be activated first. You can also remove an event
filter by calling removeEventFilter():

#include "mainwindow.h"

#include <QTextEdit>

#include <QKeyEvent>

MainWindow: :MainWindow(QWidget *parent)

: QMainWindow(parent)

textEdit = new QTextEdit;

setCentralwWidget (textEdit);

textEdit->installEventFilter(this);
¥
In the preceding code, we installed an eventFilter on the textEdit object.
Now, let's have a look at the eventFilter() function:

bool MainWindow::eventFilter(QObject *monitoredObj, QEvent *event)

{

if (monitoredObj == textEdit)

{
if (event->type() == QEvent: :KeyPress)
{
QKeyEvent *keyEvent = static_cast<QKeyEvent*>
(event);
gDebug() << "Key Press detected: " <<
keyEvent->text();
return true;
3
else
{
return false;
3
}
else
{

return QMainwindow: :eventFilter(monitoredObj,

event);

}

Here, textEdit is the monitored object. Every time you press a key and if
the textEdit is in focus, the event is captured. Since there may more objects
that are children and QMainWindow may require the events, don't forget to

pass the unhandled events to the base class for further event processing.

IMPORTANT NOTE

Once you've consumed the event in the eventFilter() function, make sure to return true. If
the receiver object is deleted and you return false, then it can result in an application crash.
You can also combine the signals and slots mechanism with the event. You
can achieve this by filtering the event and emitting a signal that corresponds
to that event. I hope that you have understood the event handling

mechanism in Qt. Now, let's look at drag and drop.

Drag and drop

In this section, we will learn about drag and drop (DnD). In a GUI
application, DnD is a pointing device gesture in which the user selects a
virtual object by grabbing it and then releasing it on another virtual object.
The drag and drop operation starts when the user makes some gesture that is

recognized as a signal to start a drag action.

Let's discuss how we can implement drag and drop using Qt Widgets.

Drag and drop in Qt Widgets

In Qt Widgets-based GUI applications, where drag and drop is used, the
user starts dragging from a particular widget and drops the dragged object
onto another widget. This requires us to reimplement several functions and
it handles the corresponding events. The most common functions that need

to be reimplemented to achieve drag and drop are as follows:
void dragEnterEvent(QDragEnterEvent *event) override;
void dragMoveEvent(QDragMoveEvent *event) override;
void dropEvent(QDropEvent *event) override;

void mousePressEvent(QMouseEvent *event) override;

Once you've reimplemented the preceding functions, enable dropping on

the target widget with the following statement:

setAcceptDrops(true);

To begin a drag, create a QDrag object and pass a pointer to the widget that
begins the drag. The drag and drop operation is handled by a QDrag object.
This operation requires the attached data description to be of the
Multipurpose Internet Mail Extensions (MIME) type:

QMimeData *mimeData = new QMimeData;

mimeData->setData("text/csv", csvData);

QDrag *dragObject = new QDrag(event->widget());
dragObject->setMimeData(mimeData);

dragObject->exec();

The preceding code shows how to create a drag object and set a custom
MIME type. Here, we used text/csv as the MIME type. You can supply
more than one type of MIME-encoded data with a drag and drop operation.

To intercept drag and drop events, you can reimplement dragEnterEvent().
This event handler is called when a drag is in progress and the mouse enters

the widget.

You can find several relevant examples in the examples section in Qt
Creator. Since Qt Widgets aren't very popular these days, we are skipping
the drag and drop example using widgets. In the next section, we will

discuss drag and drop in QML.

Drag and drop in QML

In the previous section, we discussed drag and drop using widgets. Since
QML is used to create modern and touch-friendly applications, drag and
drop is a very important feature. Qt provides several convenient QML types
for implementing drag and drop. Internally, the corresponding events are

handled similarly. These functions are declared in the QQuickItem class.

For example, dragEnterEvent() is also available in QQuickItem, and is
used to intercept drag and drop events, as described here:

void QQuickItem::dragEnterEvent(QDragEnterEvent *event)

Let's discuss how to implement this using the available QML types. Using
the Drag attached property, any Item can be made a source of drag and
drop events within a QML scene. A DropArea is an invisible item that can
receive events when an item is dragged over it. When a drag action is active
on an item, any change that's made to its position will generate a drag event
that will be sent to any intersecting DropArea. The DragEvent QML type

provides information about a drag event.

The following code snippet shows a simple drag and drop operation in
QML:
Rectangle {
id: dragItem
property point beginDrag
property bool caught: false
x: 125; y: 275
Zz: mouseArea.drag.active || mouseArea.pressed ? 2 : 1
width: 50; height: 50
color: "red"
Drag.active: mouseArea.drag.active
Drag.hotSpot.x: 10 ; Drag.hotSpot.y: 10
MouseArea {
id: mouseArea
anchors.fill: parent
drag.target: parent
onPressed: dragItem.beginDrag = Qt.point(dragItem.Xx,
dragItem.y)
onReleased: {
if(!'dragItem.caught) {

dragItem.x = dragItem.beginDrag.x

dragItem.y = dragItem.beginDrag.y

}

In the preceding code, we created a draggable item with an ID of dragltem.
It contains a MouseArea to capture the mouse press event. Dragging is not

limited to mouse drags. A drag action can be triggered by anything that can
generate a drag event. A drag can be canceled by calling Drag.cancel() or

by setting the Drag.active state to false.

The drop action can be completed with a drop event by calling
Drag.drop(). Let's add a DropArea:
Rectangle {

X: parent.width/2

width: parent.width/2 ; height:parent.height

color: "lightblue"

DropArea {

anchors.fill: parent

onEntered: drag.source.caught = true

onExited: drag.source.caught = false

}
b

In the preceding snippet, we used a light blue rectangle to distinguish it as a
DropArea on the screen. We are catching dragltem when it enters the
DropArea region. When dragltem is leaving the DropArea region, the
drop action is disabled. Therefore, when the drop is unsuccessful, the item

will go back to its original position.

In this section, we learned about drag and drop actions and their

corresponding events. We discussed how to implement them using the Qt

Widgets module, as well as in QML. Now, let's summarize what we learned

in this chapter.

Summary

In this chapter, we looked at the core concepts of signals and slots in Qt. We
discussed different ways of connecting signals and slots. We also learned
how to connect one signal to multiple slots and multiple signals to a single
slot. Then, we looked at how to use them with Qt Widgets, as well as in
QML, as well as the mechanism behind the signal and slot connection.
After that, you learned how to communicate between C++ and QML using

signals and slots.

This chapter also discussed events and event loops in Qt. We explored how
to use events instead of the signal-slot mechanism. After doing this, we
created a sample program with a custom event handler to capture events

and filter them.

After learning about events, we implemented a simple drag and drop
example. Now, you can communicate between classes, between C++ and

QML, and implement the necessary actions based on events.

In the next chapter, we will learn about Model View programming and how

to create custom models.

Chapter 7. Model View Programming

Model/View programming is used to separate data from Views in Qt to
handle datasets. The Model/View (M/V) architecture differentiates the
functionalities that give freedom to the developers to modify and present
the information on the User Interface (UI) in multiple ways. We will
discuss each component of the architecture,the related convenience classes
offered by Qt, and how to use them with practical examples. Throughout
this chapter, we will be discussing the Model View pattern and understand

the underlying core concepts.
In this chapter, we will discuss the following topics:
e Fundamentals of the M/V architecture
e Using Models and Views
e Creating custom Models and delegates
e Displaying information using M/V in Qt Widgets
e Displaying information using M/V in QML
e Using C++ Models with QML
By the end of this chapter, you will be able to create a data model and
display information on a customized UI. You will be able to write your

custom models and delegates. You will also learn to represent the

information in a UI through Qt Widgets and QML.

Technical requirements

The technical requirements for this chapter include the minimum versions
of Qt 6.0.0 and Qt Creator 4.14.0 installed on one of the latest desktop
platforms, such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https://github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-Cpp/tree/master/ChapterQ7.
IMPORTANT NOTE

The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Understanding the M/V architecture

Traditionally, the Model-View-Controller (MVC) design pattern is often
used when building Uls. As the name suggests, it consists of three terms:
Model, View, and Controller. The Model is an independent component with
a dynamic data structure and logic, the View is the visual element, and the
Controller decides how the UI responds to the user inputs. Before MVC
came into existence, developers used to put these components together. It is
not always possible to decouple the Controller from other components
although developers want to keep them as distinct from each other as
possible. MV C design decouples the components to increase flexibility and
reuse. The following figure illustrates the components of a traditional MVC

pattern:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter07

Updates Manipulates

Controller

Interacts

Figure 7.1 — Traditional MVC design pattern

In the MVC pattern, a user sees the View and interacts with a Controller.
The Controller sends data to the Model and the Model updates the View. If
the View and the Controller components are combined, then it results in the
M/V architecture. It provides a more versatile architecture. It is based on
the same principle but makes the implementation much simpler. The
modified architecture allows us to display the same data in several different
Views. The developer can implement new types of Views without changing
the underlying data structures. To bring this flexibility to our handling of
the user inputs, Qt introduced the concept of delegate. Instead of having a
Controller, the View receives the data that is updated via a delegate. It has

two primary purposes:
e To help the View render each value

e To help the View when the user wants to make some changes

So, in a certain way, the Controller has combined with the View and the
View also performs some of the Controller's work through the delegate. The
benefit of having a delegate is that it provides the means by which data

elements are rendered and modified.

Let's understand the M/V implementation and its components with a

Con

diagram:

Adaptor
. Manipulates
Model
Updates [Delegate]

T -
Updates

Figure 7.2 — The Qt Model-View-Delegate Framework

As illustrated in Figure 7.2, the M/V components are separated into the
three sections of Model, View, and Delegate. The Model interacts with a
database and works as an interface for the architecture's other components.
The purpose of the communication is determined by the data source and the
model's implementation. The View attains the references to items of data
known as a model index. The View can retrieve the individual item data
from the data model by using this model index. In standard Views, a
delegate renders the items of data. When an item is modified, the Delegate

notifies the Model by using the model index.

Figure 7.3 illustrates how a Model delivers data to the View, which is

displayed on the individual delegates:

— \iew

Delegate

Data

Data

Figure 7.3 — Model-View-Delegate implementation illustration

The Qt framework provides a set of standard classes that implement the
M/V architecture to manage the relationship between data and how the user
sees it. By decoupling the functionalities, the architecture provides
flexibility to customize the presentation of data and allows the combining of

an extensive range of data sources with the Views.

The Model, View, and Delegate use a signal and slot mechanism to
communicate with each other. The Model emits a signal to notify about the
data change that occurred in the data source. When a user interacts with the
View, then a signal from the View is emitted to notify about the user action.
The Delegate emits a signal to notify the Model and View about the edited

state.

Now, you have learned the fundamentals of the M/V architecture. The
following sections explain how to use the M/V pattern in Qt. We will start
with the standard classes provided by the Qt framework and then we will
discuss the use of M/V in Qt Widgets. You will learn how to create new

components as per the M/V architecture. Let's go ahead!

Model

M/V removes the data consistency challenges that may happen with the
standard widgets. It makes it easier to use more than one View for the same
data, as one Model can be passed to multiple Views. Qt provides several
abstract classes for M/V implementation with common interfaces and
certain feature implementations. You can subclass the abstract classes and
add the intended functionalities expected by other components.In the M/V
implementation, the model provides a standard interface used by the View

and delegate to access the data.

Qt offers some ready-made Model classes such as QStandardItemModel,
QFileSystemModel, and QSqlTableModel. QAbstractIltemModel is the
standard interface defined by Qt. The subclasses of QAbstractitemModel

represent the data in a hierarchical structure. Figure 7.4 illustrates the

hierarchy of Model classes:

QStandardltemModel
00000

QFileSystemMade!

R —

'] B i A i A

OAbstractlisthodel — #—— Q5tringListModel #— QHelpindexModel

i \ & B i ™
QAbstractitemMedel }'— OpbstractTableModel f=— QSoiQueryModel ~ — QSafTableModel ’—[QSqIReIationaITableModel}

— OAbstractProxyModel M—— QSertFilterProxyModel

— QHelpContentModel QdentityProxyModel
-

P A
ConcatenateTablesP
| | QConcatenateTablesProx _[QransposeProryModel }

yModel

Figure 7.4 — The hierarchy of Model classes in the Qt

Views use this approach to access individual data items in the Model, but
they are not restricted in the way that they present this information to the
user. The data passed through a Model can be held in a data structure or a
database, or some other application component. All item Models are based

on the QAbstractitemModel class.

Figure 7.5 shows how data is arranged in different types of Models:

' Root ltem | ' Root Item

. ! Rootltem _ ! 122

Ll L 4 Row 0
- Row 0 oWl
= { Row 1
|| Row 1 ,: Row 0
— , + Row 2
— Row 2 i : ; Row 1
Oy 6
O o © Row 1
083]
=2 3 :ﬂ Row 2
O B M §
List Model Table Model Tree Model

Figure 7.5 — Different types of models and arrangements of data

The data is represented through Models either in a tabular representation in
the form of rows and columns, or using a hierarchical representation of the
data. In the M/V pattern, widgets do not store data behind the individual
cells. They directly use the data. You may have to create a wrapper to make
your data compatible with the QAbstractItemModel interface. Views use
this interface to read and write the data. Any class that is derived from
QAbstractItemModel is known as a Model. It provides an interface to
handle Views that represent data in the forms of lists, tables, and trees. To
implement a custom Model for a list or a table-like data structure, you can
derive from QAbstractListModel and QAbstractTableModel to use the
available features. The subclasses provide Models that are suitable for

specialized lists and tables.

The Qt framework provides two standard types of Models. They are as

follows:

¢ QStandardItemModel

e QFileSystemModel

The QStandardItemModel is a multi-purpose Model where custom data
can be stored. Each element refers to an item. It can be used to display a
variety of data structures needed by lists, tables, and tree Views. It provides
a traditional item-based approach to dealing with the Model.
QStandardItem provides the items used in a QStandardItemModel.

QFileSystemModel is a Model that keeps information about the contents of
a directory. It simply represents files and directories on the local filing

system and doesn't hold any items of data. It provides a ready-to-use Model
to create a sample application and you can manipulate the data using Model

indexes. Now, let's discuss what a delegate is.

Delegate

Delegates provide control over the presentation of items displayed in the
View. The M/V pattern, unlike the MV C pattern, does not have an entirely
different component for handling user interaction. The View is primarily in
charge of displaying the Model data to the user and allowing them to
interact with it. To add some flexibility to how the user action is obtained,
the delegates handle the interactions. It empowers certain widgets to be
used as editors for editable items in the Model. Delegates are used to
provide interaction capabilities and rendering individual fields in the Views.
The QAbstractItemDelegate class defines the basic interface for managing
delegates. There are a few ready-made delegate classes provided by Qt to

use with built-in widgets to modify a particular data type.

To understand it better, we will have a look at the hierarchy of delegate

classes in the Qt framework (see Figure 7.6):

i ™
QltemDelegate
e "
CAbstractitemDelegate
i ™
Q5tyleditemDelegate '—[Q5glRelationalDelegate }
e "

Figure 7.6 — The hierarchy of delegate classes in the Qt framework

As we can see in the preceding diagram, QAbstractItemDelegate is the
abstract base class for delegates. The default delegate implementation is
provided by QStyledItemDelegate. Qt's standard Views use it as the
default delegate. Other options for painting and creating editors for items in
Views are QStyledItemDelegate and QItemDelegate. You can use
QItemDelegate to customize display features and editor widgets for an
item. The difference between these two classes is that, unlike
QItemDelegate, QStyledItemDelegate uses the current style to paint its
items. QStyledItemDelegate can handle the most common data types such
as int and QString. It is recommended to subclass QStyledItemDelegate
while creating new delegates or while working with Qt Style Sheets. By
writing a custom delegate, you can use a custom data type or customize the

rendering.

In this section, we discussed the different types of Models and delegates.

Let's discuss the View classes provided by Qt Widgets.

Views in Qt Widgets

Several convenience classes are derived from the standard View classes to
implement the M/V pattern. Examples of such convenience classes are
QListWidget, QTableWidget, and QTreeWidget. As per the Qt
documentation, these classes are less adaptable than View classes, and they
can't be used for random Models. Based on your project requirements, you

have to choose suitable widget classes for implementing the M/V pattern.

If you want to use an item-based interface and take advantage of the M/V
pattern, then it is recommended to use the following View classes with
QStandardItemModel:

e QListView displays a list of items.
e QTableView displays data from a Model in a table.

¢ QTreeView shows Model items of data in a hierarchical list.

The hierarchy of View classes in the Qt framework is as follows:

QHelpContentWidget

b A

i ™y ' R
— OTreeView = OTreeWidget

LN A Y A

i ™y ' R
— QTableView * QTablewidget

LN A Y A

i ™y ' R
QAbstractitemView QListView ot QListWidget

LN A Y A

s A f A
— QHeaderView — QUndoView

. A . Iy

' B ' R

—] QColumnView — QHelpindexWidget

Figure 7.7 — The hierarchy of View classes in the Qt framework

QAbstractItemView is the abstract base class of the aforementioned
classes. These classes can be derived to have specialized Views, even
though they provide ready-to-use implementations. The most appropriate
Views to use for QFileSystemModel are QListView and QTreeView. Each
of these Views has its unique way of representing the data items. For
example, QTreeView displays a tree hierarchy as a horizontal series of lists.
All these Views must have a Model associated with them. There are several
predefined Models provided by Qt. You can add your own customized

Model if the ready-made Models don't meet your criteria.

Unlike the View classes (for which the class name ends with View), the
convenience widgets (for which the class name ends with Widget) do not

need to be backed by a Model and can be used directly. The main advantage

of using convenience widgets is that they require the least amount of effort

to work with them.

Let's look at the different View classes in the Qt Widgets module and which

readymade Models can be used with them:

QListWidget

Have their own built in models and can be

QOTableWidget used directly.

QTreeWidget

Needs supporting models to work with such

e N

QStringListModel
s QStandardlitemModel
Q?a'lhglt;ﬁ:rw QHelpContentModel
QS5q|TableModel

OTreeView

e o7

Figure 7.8 — Different types of Qt widgets used as the View in the M/V pattern

The delegate is used to display individual field data in QListView,
QTableView, or QTreeView. When a user starts interacting with an item,

the delegate provides an editor widget for editing to take place.

You can find a comparative overview of the aforementioned classes and

learn about the uses of the corresponding widgets at the following link:

https://doc.qt.io/qt-6/modelview.html

In this section, you learned about the M/V architecture and got familiar with

the terms used. Let's implement M/V with a simple GUI application using

https://doc.qt.io/qt-6/modelview.html

Qt Widgets.

Creating a simple Qt Widgets application
using the M/V pattern

It is time for us to create a simple example using Qt Widgets. The example
in this section illustrates how a predefined QFileSystemModel is used in
association with the built-in QListView and QTreeView widgets.
Delegation is automatically taken care of when the Views are double-
clicked.

Follow these steps to create a simple application that implements the M/V

pattern:

1. Create a new project using Qt Creator, selecting the Qt Widgets
template from the project creation wizard. It will generate a project with

a predefined project skeleton.

2. Once the application skeleton is created, open the .ui form and add
QListView and QTreeView to the form. You may add two labels to

distinguish the Views as shown here:

Figure 7.9 — Create a Ul with QListView and QTreeView using Qt Designer

3. Open the mainwindow.cpp file and add the following contents:
#include "mainwindow.h"
#include "ui_mainwindow.h"

#include <QFileSystemModel>

MainWindow: :MainwWindow(QwWidget *parent)
: QMainwindow(parent)

, ui(new Ui::MainWindow)

ui->setupUi(this);
QFileSystemModel *model = new QFileSystemModel;
model->setRootPath(QDir: :currentPath());
ui->treeView->setModel(model);
ui->treeView->setRootIndex(
model->index(QDir::currentPath()));
ui->listView->setModel(model);
ui->listView->setRootIndex(

model->index(QDir::currentPath()));
}

In the preceding C++ implementation, we have used a predefined
QFileSystemModel as the Model for the Views.

4. Next, hit the Run button in the left pane. You will see a window as

shown in Figure 7.10 once you hit the Run button:

i SimpleMVDemo

QListView

debug

release

gmake stash
Makefile
Makefile.Debug
Makefile Release
ui_mainwindow.h

- a X
(QlreeView
Name Size Type
v debug File Folder
main.o 89744 KiB object code
mainwin... 112 MiB ohject code
Moc_Mma... 2.62 KiB C++ source code
mac_ma... 829.16 KIB object code
moc_pr... 15.26 KiB C header
Simple... 258 MiB DOS/Windows ...
release File Folder
.gmake.stash 1,003 bytes plain text docu...
Makefile 18.99 KIB Makefile build file
Makefile.De.. 37.62 KiB Makefile build file
MakefileRel... 3171 KiB Makefile build file
ui_mainwin... 2060 KIB C header
< y

Figure 7.10 — Output of the sample application showing QListView and QTreeView

5. Let's modify the existing application to use a custom Model derived

from QAbstractitemModel. In the following example, we have created

a simple ContactListModel custom class derived from

QAbstractitemModel:

void ContactListModel: :addContact(QAbstractItemModel *model,

const QString &name,const QString &phoneno, const QString

&emailid)

{

}

model->insertRow(0);
model->setData(model->index(0, 0), name);
model->setData(model->index(0, 1), phoneno);

model->setData(model->index (0, 2), emailid);

QAbstractItemModel* ContactListModel::

getContactListModel()

QStandardItemModel *model = new
QStandardItemModel (0, 3, this);
model->setHeaderData(0,Qt::Horizontal,
QObject::tr("Name"));
model->setHeaderData(1,Qt::Horizontal,
QObject::tr("Phone No"));
model->setHeaderData(2,Qt::Horizontal,
QObject::tr("Email ID"));
addContact(model, "John", "+1
1234567890", "john@abc.com");
addContact(model, "Michael", "+44
213243546", "michael@abc.com");
addContact(model, "Robert", "+61
5678912345", "robert@xyz.com");
addContact(model, "Kayla", "+91
9876554321", "kayla@xyz.com");

return model;

¥

6. Next, modify the UI form to implement a QTableView and set the

contact list Model to it as shown in the following snippet:

ContactListModel *contactModel = new ContactListModel;

ui->tableView->setModel (

ui->tableView->horizontalHeader()->setStretchLastSection(true);

7. You can add QStringListModel to the QListView to use a simple list
Model:

contactModel->getContactListModel());

QStringListModel *model = new QStringListModel(this);

QStringList List;

List << "Item 1" << "Item 2" << "Item 3" <<"Item 4";

model->setStringlList(List);

ui->listView->setModel(model);

8. Next, hit the Run button in the left pane. You will see a window as

shown in Figure 7.11:

[B{ CustomModelWidgetDemo 5 | >

QListView CTableView

ltem 1 Name Phone Mo Email ID

I Kayl 919876554321 kayla@®

Heim 2 1 kayla + / ayla@uyz.com

ftem 4 2 Robert +615678912345 robert@xyz.com
3 Michael +44 213243546 michael@abc.com
4 John +11234567880 john@abc.com

Figure 7.11 — Output of the application using custom models in QListView and
QTableView

Congratulations! You have learned how to use M/V for your Qt widgets

project.

IMPORTANT NOTE

For more implementations of convenience classes such as QTableWidget or
QtTreeWidget, explore the relevant examples on the Qt Creator welcome screen and this
chapter's source code.

You can also create your own custom delegate class. To create a custom
delegate, you need to subclass QAbstractitemDelegate or any of the
convenience classes such as QStyledItemDelegate or QItemDelegate. A

custom delegate class may look like the following code snippet:
class CustomDelegate: public QStyledItemDelegate
{
Q_OBJECT
public:
CustomDelegate(QObject* parent = nullptr);
void paint(QPainter* painter,
const QStylestyleOptionViewItem& styleOption,
const QModelIndex& modelIndex) const override;
QSize sizeHint(const QStylestyleOptionViewItem& styleOption,
const QModelIndex& modelIndex) const override;
void setModelData(Qwidget* editor, QAbstractItemModel* model,

const QModelIndex& modelIndex)
const override;

Qwidget *createEditor(Qwidget* parent,

const QStylestyleOptionViewItem& styleOption,

const QModelIndex & modelIndex)
const override;

void setEditorData(Qwidget* editor,

const QModelIndex& modelIndex)
const override;

void updateEditorGeometry(Qwidget* editor,
const QStylestyleOptionViewItem& styleOption,

const QModelIndex& modelIndex)
const override;

+;

You have to override the virtual methods and add respective logic as per
your project needs. You can learn more about the custom delegates and

examples at the following link:

https://doc.qt.io/qt-6/model-View-programming.html

In this section, we learned how to create a GUI application that uses the
M/V pattern. In the next section, we will discuss how it is implemented in
QML.

Understanding Models and Views in QML

Just like Qt Widgets, Qt Quick also implements Models, Views, and
delegates to display data. The implementation modularizes the visualization
of data to empower developers to manage that data. You can change one

View with another with minimal changes to the data.

https://doc.qt.io/qt-6/model-View-programming.html

To visualize data, bind the View's model property to a Model and the

delegate property to a component or another compatible type.

Let's discuss the QML types available for implementing the M/V pattern in
a Qt Quick application.

Views in Qt Quick

Views are containers that display data and are used for collections of items.
These containers are feature-rich and can be customized to meet specific

style or behavior requirements.

There is a set of standard Views provided in the basic set of Qt Quick

graphical types:

ListView: Lays out items in a horizontal or vertical list

GridView: Lays out items in a grid manner

TableView: Lays out items in a tabular form

PathView: Lays out items on a path

ListView, GridView, and TableView inherit from the Flickable QML
type. PathView inherits Item. The TreeView QML type is obsolete. Let's
have a look at the inheritance of these QML types:

| |
PathView Flickable

3

|
ListView TableView

Figure 7.12 — The hierarchy of View classes in Qt Quick

The properties and behaviors are different for each QML type. They are
used based on the GUI requirement. If you would like to know more about
QML types, you can refer to their respective documentation. Let's explore

Models in Qt Quick in the next section.

Models in Qt Quick

Qt provides several convenience QML types to implement the M/V pattern.
The modules provide very simple Models without requiring the creation of
custom Model classes in C++. Examples of such convenience classes are
ListModel, TableModel, and XmlListModel.

The QtQml.Models module provides the following QML types for
defining data Models:

e ListModel defines a free-form list data source.
e ListElement defines a data item in a ListModel.

e DelegateModel encapsulates a Model and delegate.

e DelegateModelGroup encapsulates a filtered set of visual data items.

e ItemSelectionModel inherits QItemSelectionModel and it keeps track

of a View's selected items.
e ObjectModel defines a set of items to be used as a Model.
e Instantiator dynamically instantiates objects.

e Package describes a collection of named items.

To use the aforementioned QML types in your Qt Quick application, import

the module with the following line:
import QtQml.Models

Let's discuss the readymade Models available in Qt Quick. ListModel is a
simple container of ListElement definitions that contain data roles. It is
used with ListView. Qt.labs.qmlmodels provides experimental QML types
for models. These Models can be used for quick prototyping and displaying
very simple data. The TableModel type stores JavaScript/JSON objects as
data for a table Model and uses it with TableView. You can use these

experimental types by importing the module as follows:
import Qt.labs.qmlmodels

If you want to create a Model from XML data, then you can use
XmlListModel. It can be used as a Model with Views such as ListView,
PathView, and GridView. To use this Model, you have to import the

module as follows:

import QtQuick.XmlListModel

You can use ListModel and XmlListModel with TableView to create one
column in TableView. To handle multiple rows and columns, you can use
TableModel or you can create a custom C++ Model by subclassing
QAbstractitemModel.

You can also use Repeater with Models. An integer can be used as a Model
that defines the number of items. In that case, the Model does not have any
data roles. Let's create a simple example that uses ListView and a Text item
as delegate components:

import QtQuick

import QtQuick.Window

Window {
width: 640
height: 480

visible: true
title: gsTr("Simple M/V Demo")
ListView {
anchors.fill: parent
model: 10
delegate: itemDelegate
}
Component {
id: itemDelegate

Text { text: " Item : " + index }

In the preceding example, we have used an integer-based model. We
created a simple delegate, which is a text element. For a simpler
explanation, we have not used a complex delegate component. You can also

directly use Text as a delegate without using a component.

Now, let's explore how to use ListModel with ListView. ListModel is a
simple hierarchy of types specified in QML. The available roles are
specified by the ListElement properties. Let's create a simple application

using ListModel with ListView.

Let's say you want to create a simple address book application. You may
need a few fields for a contact. In the following code snippet, we have used
a ListModel that contains the names, phone numbers, and email addresses

of some contacts:
ListModel {
id: contactListModel
ListElement {
name: '"John" ; phone: "+1 1234567890" ;
email: "john@abc.com"
}
ListElement {
name: "Michael" ; phone: "+44 213243546" ;
email: "michael@abc.com"
}
ListElement {
name: "Robert" ; phone: "+61 5678912345" ;

email: "robert@xyz.com"

}

ListElement {
name: "Kayla" ; phone: "+91 9876554321" ;

email: "kayla@xyz.com"

}

We have now created the Model. Next, we have to display it using a
delegate. So, let's modify the delegate component we created earlier with
three Text elements. Based on your need you can create complex delegate
types with icons, texts, or custom types. You can add a highlighted item and
update the background based on focus. You need to provide a delegate to a
View to visually represent an item in a list:
Component {

id: contactDelegate

Row {

id: contact

spacing: 20
Text { text: " Name: " + name; }
Text { text: " Phone no: " + phone }

Text { text: " Email ID: " + email }

¥
ListView {
anchors.fill: parent

model: contactListModel

delegate: contactDelegate
¥

In the preceding example, we used ListElement with ListModel. The View
displays each item as per the template defined by the delegate. Items in a
Model can be accessed through the index property or through the item's

properties.

You can learn more about different types of Models and how to manipulate

Model data at the following link:

https://doc.qt.io/qt-6/qtquick-modelviewsdata-modelview.html

In this section, you learned about M/V in QML. You can experiment with
the custom Models and delegates and create a personalized View. Have a
look at your phone book or recent call list on your cellphone and try to
implement it. In the next section, you will learn how to integrate the QML

frontend with a C++ Model.

Using C++ Models with QML

So far, we have discussed how to use Models and Views in Qt Widgets and
QML. But in most modern applications, you will require Models written in
C++ and a frontend written in QML. Qt allows us to define Models in C++
and then access them inside QML. This is convenient for exposing existing
C++ data Models or otherwise complex datasets to QML. Native C++ is
always the right choice for complex logical operations. It can outperform

logic written in QML with JavaScript.

There are many reasons why you should create a C++ Model. C++ is type-

safe and compiled into object code. It increases the stability of your

https://doc.qt.io/qt-6/qtquick-modelviewsdata-modelview.html

application and reduces the number of bugs. It is flexible and can offer
more features than the QML types. You can integrate with your existing

code or with a third-party library that is written in C++.
You can define a C++ Model using the following classes:
e QStringList
e QVariantList
¢ QObjectList

¢ QAbstractitemModel

The first three classes are beneficial for exposing simpler datasets.
QAbstractItemModel offers a more flexible solution to create complex
Models. QStringList contains a list of QString instances and provides the
contents of the list via the modelData role. Similarly, QVariantList
contains a list of QVariant types and provides the contents of the list via
the modelData role. If a QVariantList changes, then you must reset the
Model. QObjectList embeds a list of QObject* that provides the
properties of the objects in the list as roles. The QObject* is accessible as
the modelData property. For convenience, the properties of the object can

be accessed directly in the delegate's context.

Qt also provides C++ classes to handle SQL data Model such as
QSglQueryModel, QSqlTableModel, and QSqlRelationalTableModel.
QSqglQueryModel offers a read-only Model based on an SQL query. These
classes reduce the need to run SQL queries for basic SQL operations such

as insert, create, or update. These classes are derived from

QAbstractTableModel and make it easy to present data from a database in

a View class.

You can learn more about different types of C++ Models by visiting the

following link:

https://doc.qt.io/qt-6/qtquick-modelviewsdata-cppmodels.html

In this section, we discussed C++ Models and why to use them. Now, you
can fetch data from a C++ backend and present it in a UI developed in
QML. In the next section, we will create a simple Qt Quick application
using the aforementioned concept and explain how to use them inside
QML.

Creating a simple M/V application with Qt
Quick

In earlier sections, we discussed Qt's Model-View-Delegate framework.
You learned how to create a custom Model and delegate and how to use a
C++ Model. But you must be wondering how to integrate with our QML
frontend. In this section, we will create a C++ Model and expose it to the
QML engine. We will also discuss how to register a custom Model as a
QML type.

Let's create an application that fetches a Model from the C++ code and
displays it in a Qt Quick-based application:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlContext>

https://doc.qt.io/qt-6/qtquick-modelviewsdata-cppmodels.html

#include <QStringListModel>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QQmlApplicationEngine engine;
QStringlList stringlList;
stringList << "Item 1" << "Item 2" << "Item 3"

<<"Item 4";
engine.rootContext()->setContextProperty("myModel",
Qvariant::fromvValue(stringlList));

const QUrl url(QStringLiteral("qrc:/main.gml"));
engine.load(url);

return app.exec();
¥

In the preceding code snippet, we have created a simple Model based on
QStringList. The string list contains four different strings. We have
exposed the Model to the QML engine using setContextProperty(). Now,
let's use the Model inside our QML file:

import QtQuick

import QtQuick.Window

Window {
width: 640
height: 480

visible: true

title: qgsTr("QML CPP M/V Demo")

ListView {
id: listview
width: 120
height: 200
model: myModel

delegate: Text { text: modelData }

}

The preceding example uses QQmlContext::setContextProperty() to set
Model values directly in a QML component. An alternative to this is to

register the C++ Model class as a QML type as follows:
gmlRegisterType<MyModel>("MyModel",1,0,"MyModel");

The preceding line will allow the Model classes to be created directly as
QML types within QML files. The first field is the C++ class name, then
comes the desired package name, then the version number, and the last
parameter is the type name in QML. You can import it into your QML file

with the following line:
Import MyModel 1.0

Let's create an instance of MyModel inside our QML file as shown here:
MyModel {
id: myModel
}
ListView {

width: 120

height: 200
model: myModel

delegate: Text { text: modelData }

}

You can also use Models with QQuickView using setInitialProperties() as
shown in the following code:
QQuickView view;
view.setResizeMode(QQuickView: :SizeRootObjectToView);
view.setInitialProperties({

{"myModel", Qvariant: :fromValue(myModel)}});
view.setSource(QUrl("qrc:/main.qml"));

view.show();

In the preceding code snippet, we used QQuickView to create a Ul and

passed a custom C++ Model to the QML environment.

In this section, we learned how to integrate a simple C++ Model with QML.
You can add signals and properties to extend the functionalities of your

custom classes. Next, let's summarize our learnings in this chapter.

Summary

In this chapter, we took a look at the core concepts of the Model-View-
Delegate pattern in Qt. We explained how it is different from the traditional
MVC pattern. We discussed different ways of using M/V and the
convenience classes available in Qt. We learned how to apply the M/V
concept in Qt Widgets as well as in Qt Quick. We discussed how to

integrate a C++ Model with QML Views. We also created a few examples

and implemented the concepts in our Qt application. You can now create
your own Model, delegate, and Views. I hope you have understood the
importance of the framework and the solid reasons for using it to meet your

requirements.

In Chapter 8, Graphics and Animations, we will learn about the graphics

framework and how to add animations to your Qt Quick project.

Chapter 8. Graphics and Animations

In this chapter, you will learn the fundamentals of Qt's graphics framework
and how to render graphics on a screen. You will understand how general
drawing is done in Qt. We will begin by discussing 2D graphics using
QPainter. We will explore how to draw different shapes using a painter.
Then you will learn about the Graphics View architecture used by
QGraphicsView and QGraphicsScene. Later, we will discuss the Scene
Graph mechanism used by Qt Quick. In this chapter, you will also learn
how to make the user interface more interesting by adding animations and

states.
In this chapter, we will discuss the following:
e Understanding Qt's graphics framework
e QPainter and 2D graphics
e The Graphics View framework
e OpenGL implementation
e Qt Quick scene graph
e Animation in QML
e State machines in Qt
By the end of this chapter, you will understand the graphics framework used

by Qt. You will be able to draw onscreen and add animations to your Ul

elements.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest version of a desktop
platform such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https:/github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter08.

IMPORTANT NOTE

The screenshots used in this chapter are taken from the Windows platform. You will see

similar screens based on the underlying platforms on your machine.

Understanding Qt's graphics framework

Qt is one of the most popular frameworks for GUI applications. Developers
can build awesome cross-platform GUI applications using Qt without
worrying about the underlying graphics implementation. The Qt Rendering
Hardware Interface (RHI) interprets graphics instructions from Qt

applications to the available graphics APIs on the target platform.

RHI is the abstract interface for hardware-accelerated graphics APIs. The
most important class in the rhi module is QRhi. The QRbhi instance is
supported by a backend for the specific graphics API. The selection of the
backend occurs at runtime and is decided by the application or library that
creates the QRhi instance. You can add the module by adding the following
line into your project file:

QT += rhi

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter08

Different types of graphics APIs supported by RHI are as follows:

e OpenGL

OpenGL ES

Vulkan

Direct3D

Metal

Figure 8.1 shows the major layers of the graphics stack in the Qt graphics

OpenGL / .
OpenGLES Vulkan Direct3D Metal
4@
QRhi
Qt Shader tools

Figure 8.1 — Major layers of the Qt 6 graphics stack

framework:

Let's get familiar with the graphics APIs shown in the preceding diagram.
OpenGL is the most popular graphics API with cross-language and cross-

platform application support. It is used to interact with the GPU, to achieve

hardware-accelerated rendering. OpenGL ES is a flavor of the OpenGL
API intended for embedded devices. It allows the rendering of advanced 2D
and 3D graphics on embedded and mobile devices. OpenGL ES on iOS
devices is also known as EAGL. OpenGL ES is also available on web
platforms as WebGL. OpenGL and OpenGL ES are developed and
maintained by the Khronos Group, a consortium of technology hardware
and software companies. You can learn more about OpenGL at the

following link:
https://www.opengl.org/about/

Vulkan is a new-generation graphics API that helps in creating cross-
platform and high-performance applications for modern GPUs. It was
created by the Khronos Group. Vulkan's explicit API design allows efficient
implementations on a wide range of desktop, embedded, and mobile
platforms. Qt 6 provides support for the Vulkan API. To use Vulkan, Qt
applications require the LunarG Vulkan SDK. Explore more about Vulkan
at the following link:

https://www.lunarg.com/vulkan-sdk/

Direct3D is a Microsoft proprietary graphics API that provides functions to
render 2D and 3D graphics by utilizing underlying GPU capabilities.
Microsoft Corporation created it for use on the Windows platform. It is a
low-level API that can be used to draw primitives with the rendering

pipeline or to perform parallel operations with the compute shader.

Direct3D exposes the advanced graphics capabilities of 3D graphics
hardware, including stencil buffering, W-buffering, Z-buffering,

perspective-correct texture mapping, spatial anti-aliasing, programmable

HLSL shaders, and effects. Direct3D's integration with other DirectX
technologies allows it to provide several features comprising video
mapping, hardware 3D rendering in 2D overlay planes, and even sprites and
allowing the use of 2D and 3D graphics in interactive media ties. Direct3D
is intended to virtualize 3D hardware interfaces in general. In contrast,
OpenGL is intended to be a 3D hardware-accelerated rendering system that
can be emulated in software. These two APIs are fundamentally designed in
two distinct ways. The following link provides further insight into
Direct3D:

https://docs.microsoft.com/en-in/windows/win32/getting-started-with-
direct3d

Metal is Apple's low-level computer graphics API, which offers near-direct
access to the graphics processing unit (GPU), allowing you to optimize
the graphics and compute capacity of your iOS, macOS, and tvOS apps. It
also has a low-overhead architecture that includes pre-compiled GPU
shaders, fine-grained resource management, and multithreading support.
Before the announcement of Metal, Apple provided OpenGL for macOS
and OpenGL ES for iOS, but there was a performance issue due to the
highly abstracted hardware. Metal, on the other hand, has better
performance than OpenGL thanks to its Apple-specific API. Metal enables
a whole new generation of professional graphics output by supporting up to
100 times more draw calls than OpenGL. You can read more about Metal at

the following link:

https://developer.apple.com/documentation/metal

In this section, we got familiar with Qt's graphics framework and RHI. You
now have a basic understanding of this framework. In the next section, we

will go further and discuss 2D graphics using QPainter.

QPainter and 2D graphics

Qt comes with an advanced windowing, painting, and typography system.
The most important classes in the Qt GUI module are QWindow and
QGuiApplication. This module includes classes for 2D graphics, imaging,
fonts, and advanced typography. Additionally, the GUI module comes with
classes for integrating windowing systems, OpenGL integration, event
handling, 2D graphics, basic imaging, fonts, and text. Qt's user interface
technologies use these classes internally, but they can directly be used to

write applications that use low-level OpenGL graphics APIs.

Depending on the platform, the QWindow class supports rendering with
OpenGL and OpenGL ES. Qt includes the QOpenGLPaintDevice class,
which allows the use of OpenGL accelerated QPainter rendering and
several convenience classes. These convenience classes simplify writing
code in OpenGL by hiding the complexities of extension handling and the
differences between OpenGL ES 2.0 and desktop OpenGL.
QOpenGLFunctions is a convenience class that provides cross-platform
access to the OpenGL ES 2.0 functions on desktop OpenGL without the

need to manually resolve the OpenGL function pointers.

To make use of these APIs and classes on a gmake-based application, you

have to include the gui module in your project file (.pro) as follows:

QT += gui

If you are using a Cmake-based build system, then add the following to the
CMakeLists.txt file:

find_package(Qt6 COMPONENTS Gui REQUIRED)

target_link_libraries(mytarget PRIVATE Qt6::Gui)

The QPainter class, primarily used for drawing operations, provides an
API for various tasks such as drawing vector graphics, text, and images
onto different surfaces, or QPaintDevice instances, including QImage,
QOpenGLPaintDevice, QWidget, and QPrinter. For Qt Widgets user

interfaces, Qt uses a software renderer.

The following are Qt GUI's high-level drawing APIs:
e Paint system
e Coordinate system

e Drawing and filling

We will explore these APIs in the following sections.

Understanding the paint system

Qt's paint system provides several convenience classes for drawing on the
screen. The most important classes used are QPainter, QPaintDevice, and
QPaintEngine. You can use QPainter to paint on widgets and other paint
devices. This class can be used to draw things from simple lines to complex
shapes such as pies and chords. It is also used to draw pixmaps and texts.
If the paint device is a widget, then use QPainter inside the paintEvent()

function or inside a function invoked by a function called by paintEvent().

QPaintDevice is the base class of the objects that allow 2D drawing by

using a QPainter instance. QPaintEngine provides the interface that

defines how QPainter paints to a specified device on a specified platform.

The QPaintEngine class is an abstract class that is used internally by

QPainter and QPaintDevice.

Let's have a look at the hierarchy of painting-related classes to get a better

idea of how to choose the right classes while using the paint system.

—{ OWindcw

7

QPainter

L

QPaintDeviceWindow i+

B i

QOpenGLWindow }

A L

-

|

T

QStylePainter

i

Qlmage

QRasterWindow }

7

|

[(QObject] [QPaintDevice

}7

[QPaintEngine

i

(Q0penGLPaintDevice

4[

7

(PagedPaintDevice }——-—: QPdfWriter :
QPicture : : QPrinter :
QPixmap : : (QBitmap :

(QSveGenerator :
QWidget :'—| (Qt Widgets) }

Figure 8.2 — The hierarchy of paint classes in Qt

The preceding hierarchical approach illustrates that all drawing approaches
follow the same mechanism. So, it is easy to add provisions for new

features and provide default implementations for unsupported ones.

Let's discuss the coordinate system in the next section.

Using the coordinate system

The QPainter class controls the coordinate system. It forms the basis of
Qt's painting system along with the QPaintDevice and QPaintEngine
classes. The default coordinate system of a paint device has its origin in the
top-left corner. The primary function of QPainter is to perform drawing
operations. While the QPaintDevice class is an abstraction of a two-
dimensional space, which can be painted on using QPainter, the
QPaintEngine class offers a painter with the interface to draw on different
types of devices. The QPaintDevice class is the base class of objects that
can be painted, which inherits its drawing capabilities from the QWidget,

QImage, QPixmap, QPicture, and QOpenGLPaintDevice classes.

You can learn more about the coordinate system in the following

documentation:

https://doc.qt.io/qt-6/coordsys.html

Drawing and filling

QPainter provides a painter with highly optimized functions for most of
the drawing requirements on the GUI. It can draw various types of shapes

ranging from simple graphical primitives (such as QPoint, QLine, QRect,

QRegion, and QPolygon classes) to complex shapes such as vector paths.
The vector paths are represented by the QPainterPath class.
QPainterPath works as a container for painting operations, allowing
graphical shapes to be constructed and reused. It can be used for filling,
outlining, and clipping. QPainter can also draw aligned text and pixmaps.
To fill the shapes drawn by QPainter, you can use the QBrush class. It has
color, style, texture, and gradient attributes and is defined with color and

style.

In the next section, we will use the APIs discussed so far to draw using

QPainter.

Drawing with QPainter

QPainter has several convenience functions to draw most primitive shapes,
such as drawLine(), drawRect(), drawEllipse(), drawArc(), drawPie(),
and drawPolygon(). You can fill the shapes using the fillRect() function.
The QBrush class describes the fill pattern of shapes drawn by QPainter.

A brush can be used to define the style, color, gradient, and texture.

Let's look at the following paintEvent() function where we have used

QPainter to draw text and different shapes:
void PaintWindow: :paintEvent(QPaintEvent *event)
{

QPainter painter;

painter.begin(this);

//draws a line

painter.drawLine(QPoint (50, 50), QPoint(200, 50));

//draws a text

painter.drawText(QPoint (50, 100), "Text");

//draws an ellipse
painter.drawEllipse(QPoint(100,150),50,20);

//draws an arc

QRectF drawingRect (50, 200, 100, 50);

int startAngle = 90 * 16;

int spanAngle = 180 * 16;
painter.drawArc(drawingRect, startAngle, spanAngle);
//draws a pie

QRectF drawingRectPie(150, 200, 100, 50);

startAngle = 60 * 16;

spanAngle = 70 * 16;

painter.drawPie(drawingRectPie, startAngle, spanAngle);
painter.end();

Qwidget: :paintEvent(event);

}

In the preceding example, we have created a QPainter instance and painted
a line, text, ellipse, arc, and pie using the available default drawing
functions. When you add the preceding code into your custom class and run

the project, you will see the following output:

[B1 PainterDeme — O X

Text

O
C<

Figure 8.3 — Output of drawing with QPainter example

Qt provides several offscreen drawing classes, each with its own set of
advantages and disadvantages. QImage, QBitmap, QPixmap, and
QPicture are the classes involved. In most cases, you must choose between

QImage and QPixmap.

The QImage class in Qt allows for easy image reading, writing, and
manipulation. QImage is the class to use if you're working with resources,
combining multiple images, and doing some drawing:

QImage image(128, 128, QImage::Format_ARGB32);

QPainter painter(&image);

The first line creates an image that's 128 pixels square, encoding each pixel
a 32-bit integer — 8 bits for each channel of opacity, red, green, and blue.
The second line creates a QPainter instance that can draw on the QImage

instance. Next, we perform the drawing you just saw in the previous

section, and when we're done, we write the image to a PNG file, with the

following line:

image.save("image.png");

QImage supports several image formats, including PNG and JPEG.
QImage also has a load method, where you can load an image from a file

Or resource.

The QBitmap class is a monochromatic offscreen paint device that
provides a pixmap with a depth of 1 bit. The QPixmap class provides an
offscreen paint device. The QPicture class is a paint device that serializes

QPainter commands.

You can also use the QImageReader and QImageWriter classes to have
more fine-grained control over how images are loaded and saved. To add
support for image formats other than those provided by Qt, image format
plugins can be created using QImageIlOHandler and QImagelOPlugin.
The QPainterPath class helps in drawing different graphical shapes that
can be created and reused. The following code snippet demonstrates how to
use QPainterPath:
void MywWidget:: paintEvent(QPaintEvent *event)
{
QPainter painter(this);
QPolygon polygon;
polygon << QPoint(100, 185) << QPoint(175, 175)
<< QP0int (200, 110) << QPoint (225, 175)
<< QPoint (300, 185) << QPoint(250, 225)

<< QPoint(260, 290) << QPoint (200, 250)

<< QPoint (140, 290) << QPoint (150, 225)
<< QPoint(100, 185);
QBrush brush;
brush.setColor(Qt::yellow);
brush.setStyle(Qt::SolidPattern);
QPen pen(Qt::black, 3, Qt::DashDotDotLine,
Qt::RoundCap, Qt::RoundJoin);
painter.setPen(pen);
QPainterPath path;
path.addPolygon(polygon);
painter.drawPolygon(polygon);
painter.fillPath(path, brush);
Qwidget:: paintEvent(event);

}

In the preceding code, we have created a custom-drawn polygonal object

with the desired painter path.

NOTE

Please note that while doing a paint operation, ensure that there is no delay between
painting the background and painting the content. Otherwise, you will notice flickering on
the screen if the delay is more than 16 milliseconds. You can avoid this by rendering the
background into a pixmap, then painting the content onto that pixmap. Finally, you can draw
that pixmap onto the widget. This approach is known as double buffering.

In this section, we have learned not only how to draw an image on the
screen, but also how to draw it off the screen and save it as an image file. In
the next section, we will learn about the basics of the Graphics View

framework.

Introducing the Graphics View framework

The Graphics View framework is a powerful graphics engine that allows
you to visualize and interact with a large number of custom-made 2D
graphical items. If you are an experienced programmer, you can use the
graphics view framework to draw your GUI and have it animated
completely manually. To draw hundreds or thousands of relatively
lightweight customized items at once, Qt provides a separate view
framework, the Graphics View framework. You can make use of the
Graphics View framework if you are creating your own widget set from
scratch, or if you have a large number of items to display on the screen at
once, each with its own position and data. This is especially important for
applications that process and display a large amount of data, such as

geographic information systems or computer-aided design software.

Graphics View offers a surface for managing as well as interacting with a
multitude of custom-created 2D graphical items, and a view widget for
visualizing the items, with zooming and rotation support. The framework
consists of an event propagation architecture that enables interaction
capabilities for the scene's items. These items respond to key events; mouse
press, move, release, and double-click events; as well as tracking mouse
movement. Graphics View employs a Binary Space Partitioning (BSP)
tree to provide very fast item discovery, allowing it to visualize large scenes

in real time, even when there are millions of items.

The framework follows an item-based approach to model/view
programming. It comprises three components, scene, view, and item.
Multiple views can use the same scene and the scene can contain multiple

items. The convenience classes provided by Qt to implement the Graphics

View framework are QGraphicsScene, QGraphicsView, and

QGraphicsItem.

QGraphicsItem exposes an interface that your subclass can override to
manage mouse and keyboard events, drag and drop, interface hierarchies,
and collision detection. Each item has its own local coordinate system, and
helper functions allow you to quickly transform an item's coordinates to the
scene's coordinates. The Graphics View framework displays the contents of
a QGraphicsScene class using one or more QGraphicsView instances. To
see different parts of the scene, you can attach multiple views to the same
scene, each with its own translation and rotation. Because the
QGraphicsView widget is a scroll area, you can also attach scroll bars to
the view and allow the user to scroll around it. The view receives keyboard
and mouse input, generates scene events for the scene, and dispatches those
scene events to the scene, which then dispatches those same events to the
scene's items. Previously, the framework was preferred for games

development.

IMPORTANT NOTE

We wiill skip the details about the usages of the framework and examples as it lost its
popularity after Qt Quick 2 came into existence. Qt Quick 2 comes with the Scene Graph
API, which provides most of the functionalities that were earlier offered by the Graphics
View framework. If you'd still like to learn more about the Graphics View framework, you can
read the following documentation:

https://doc.qt.io/qt-6/graphicsview.html

In this section, we discussed Qt's Graphics View framework. In the next

section, we will learn about OpenGL integration with Qt.

Understanding the Qt OpenGL module

Qt Quick and Qt Widgets are the two main approaches to user interface
(UI) development in Qt. They exist to support various types of Uls and are
built on separate graphics engines that have been optimized for each of
these. It is possible to combine OpenGL graphics API code with both of
these UI types in Qt. This is useful when the application contains its own
OpenGL-dependent code or when integrating with a third-party OpenGL-
based renderer. The OpenGL/OpenGL ES XML API Registry is used to
generate the OpenGL header.

The Qt OpenGL module is intended for use with applications that require
OpenGL access. The convenience classes in the Qt OpenGL module help
developers build applications more easily and faster. This module is
responsible for maintaining compatibility with Qt 5 applications and Qt
GUIL QOpenGLWidget is a widget that can add OpenGL scenes to Uls
that use QWidget.

With the introduction of Qt RHI as the rendering foundation in Qt, most

classes denoted by QOpenGL have been moved to the Qt OpenGL module
in Qt 6. The classes are still usable and fully supported for applications that
rely solely on OpenGL. They are no longer considered essential because Qt
has been extended to support other graphics APIs, such as Direct3D, Metal,

and Vulkan, in its foundation.

Existing application code will mostly continue to work, but it should now
include Qt OpenGL in project files, as well as the headers if they were

previously included indirectly via Qt GUI.

Qt 6 no longer directly employs OpenGL-compatible GLSL source
snippets. Shaders are instead written in Vulkan-style GLSL, reflected and
translated to other shading languages, and packaged into a serializable
QShader object that QRhi can consume.

The shader preparation pipeline in Qt 6 is the following:

' B
Vulkan GLSL code
\ J
r
' N\
Compile to SPIR-V Create batchable variant
(glsllang) for vertex shaders
4
¥
Generate reflection
metadata (SPIRV-Cross)
s J
r
Translate to
GLSL/HLSL/MSL
(SPIRV-Cross)

Strip variable names and} { Invoke fxc and replace } [Invoke Mets! tools and } [Invoke spirv-opt and }

Optional Steps replace MSL with
{ 50 on from SPIR-Y HLSL with DXBC P replace SPIR-V binary
.metallib content

r

Pack the resulting

artifacts together and
store package to disk

Figure 8.4 — lllustration of the shader preparation pipeline as described in the Qt blog

With Qt 6.1, Qt Data Visualization supports only the OpenGL RHI
backend. It requires the setting of the environment variable
QSG_RHI_BACKEND to opengl. You can do this at the system level, or

define it in main() as follows:

gputenv("QSG_RHI_BACKEND", "opengl");

Let's discuss how the framework is used with Qt Widgets in the next

section.

Qt OpenGL and Qt Widgets

Qt Widgets is typically rendered by a highly optimized and accurate
software rasterizer, with the final content being displayed on the screen
using a method appropriate for the platform on which the application is
running. However, Qt Widgets and OpenGL can be combined. The
QOpenGLWidget class is the primary entry point for this. This class can
be used to enable OpenGL rendering for a specific part of the widget tree,
and the Qt OpenGL module's classes can be used to help with any
application-side OpenGL code.

IMPORTANT NOTE

ANGLE, a third-party OpenGL ES to Direct3D translator, is no longer included with Qt 6 on
Windows. For QWindow or QWidget based applications with OpenGL implementations,
there are no other options but to directly call the OpenGL APIs at runtime. For Qt Quick and
Qt Quick 3D applications, Qt 6 introduced support for Direct3D 11, Vulkan, and Metal, in
addition to OpenGL. On Windows, the default choice remains Direct3D, therefore the
removal of ANGLE is eased by having support for graphics APIs other than OpenGL as
well.

In this section, we learned how to use Qt's Open GL module. Let's move on

to the next section, where we'll discuss graphics in Qt Quick in detail.

Graphics in Qt Quick

Qt Quick is designed to take advantage of hardware-accelerated rendering.

It will be built by default on the low-level graphics API that is most

appropriate for the target platform. On Windows, for example, it will
default to Direct3D, whereas on macOS, it will default to Metal. For
rendering, Qt Quick applications make use of a scene graph. The scene
graph renderer can make more efficient graphics calls, which improves
performance. The scene graph has an accessible API that allows you to
create complex but fast graphics. The Qt Quick 2D Renderer can also be
used to render Qt Quick. This raster paint engine allows Qt Quick

applications to be rendered on platforms that do not support OpenGL.

Qt uses the most appropriate graphics API on the target platform by default.
However, it is possible to configure Qt's rendering path to use a specific
API. In many cases, selecting a specific API improves performance and
allows developers to deploy on platforms that support a specific graphics
API. To change the render path in QQuickWindow, you can use the QRhi

interface.

In the following sections, we will have a look at some functionalities that
will further enhance your graphics-related skills in Qt Quick. Let's begin by

discussing how we can use OpenGL in Qt Quick.

Qt OpenGL and Qt Quick

On platforms that support OpenGL, it is possible to manually select it as the
active graphics API. In order to use this functionality when working with Qt
Quick, the application should manually set the rendering backend to

OpenGL in addition to adjusting project files and including headers.

With Qt 6, there is no direct way of OpenGL rendering using Qt Quick. The
QRhi-based rendering path of the Qt Quick scene graph is now the new

default. Aside from the defaults, the methods for configuring which QRhi
backend and thus which graphics API to use remain largely unchanged
from Qt 5.15. One key difference in Qt 6 is improved API naming. Now,
you can set the RHI backend by calling the
QQuickWindow::setGraphicsApi() function, whereas earlier this was
achieved by calling the QQuickWindow::setSceneGraphBackend()

function.
You can learn more about the changes in the following article:

https://www.qt.io/blog/graphics-in-qt-6.0-grhi-qt-quick-qt-quick-3d

Custom Qt Quick items using QPainter

You can also make use of QPainter in your Qt Quick application. This can
be done by subclassing QQuickPaintedItem. With the help of this
subclass, you can render content using a QPainter instance. To render its
content, the QQuickPaintedItem subclass uses an indirect 2D surface by
either using software rasterization or using an OpenGL Framebuffer
Object (FBO). Rendering is a two-step operation. The paint surface is
rasterized before drawing. However, drawing using a scene graph is

significantly faster than this rasterization approach.

Let's explore the scene graph mechanism used by Qt Quick.

Understanding the Qt Quick scene graph

Qt Quick 2 employs a dedicated scene graph that is traversed and rendered

using a graphics API, including OpenGL, OpenGL ES, Metal, Vulkan, or

Direct 3D. Using a scene graph for graphics instead of traditional
imperative painting systems (QPainter and similar), allows the scene to be
rendered to be retained between frames and the entire set of primitives to
render to be known before rendering begins. This allows for a variety of
optimizations, including batch rendering to reduce state changes and

discarding obscured primitives.

Let's assume a GUI comprises a list of 10 elements and each one has a
different background color, text, and icon. This would give us 30 draw calls
and an identical number of state changes using traditional drawing
techniques. Contrarily, a scene graph reorganizes the primitives to render so
that one call can draw all backgrounds, icons, and text, dropping the total
number of draw calls to three. This type of batching and state change

reduction can significantly improve performance on some hardware.

The scene graph is inextricably linked to Qt Quick 2 and cannot be used
independently. The QQuickWindow class manages and renders the scene
graph, and custom Item types can add their graphical primitives to the

scene graph by calling QQuickItem::updatePaintNode().

The scene graph represents an Item scene graphically and is a self-
contained structure that has enough information to render all of the items.
Once configured, it can be manipulated and rendered regardless of the state
of the items. On several platforms, the scene graph is even rendered on a
separate render thread while the GUI thread prepares the state for the next

frame.

In the following sections, we will dive deeper to improve our understanding

of the scene graph structure and then learn the rendering mechanism.

Further, we will be mixing the scene graph and the Native Graphics API
while using Qt Quick 3D.

Qt Quick scene graph structure

The scene graph is made up of a variety of predefined node types, each of
which serves a specific purpose. Although we call it a scene graph, a node
tree is a more precise definition. The tree is constructed from QQuickItem
types in the QML scene, and the scene is then internally processed by a
renderer, which draws the scene. There is no active drawing code in the

nodes themselves.

Although the node tree is mostly built internally by the existing Qt Quick
QML types, users can add complete subtrees with their own content,

including subtrees that represent 3D models.
e Node

e Material

QSGGeometryNode is the most important node for users. It creates
customized graphics by specifying their geometry and material. The
QSGGeometry class describes the shape or mesh of the graphical primitive
and is used to define the geometry. It can define everything, be it a line, a
rectangle, a polygon, a collection of disconnected rectangles, or a complex
3D mesh. The material defines how the pixels for a specific shape are filled.
There can be multiple children for a node. The geometry nodes are rendered
as per the child order and the parent nodes can be found behind their

children.

The material describes how a geometry's interior in QSGGeometryNode is
filled. It encapsulates graphics shaders for the vertex and fragment stages of
the graphics pipeline and provides a great deal of flexibility in what can be
done, even though the majority of Qt Quick items only use very basic

materials such as solid color and texture fills.

The scene graph API is low-level and prioritizes performance over
convenience. Creating the most basic custom geometries and materials from
scratch requires a significant amount of code input. As a result, the API
includes a few convenience classes that make the most commonly used

custom nodes easily accessible.

In the next section, we will discuss how the rendering is done in a scene

graph.

Rendering using a scene graph

A scene graph is internally rendered in the QQuickWindow class, and
there is no public API to access it. However, there are a few points in the
rendering pipeline where the user can insert application code. These points
can be used for adding custom scene graph content or for inserting arbitrary
rendering commands by calling the scene graph's graphics API (OpenGL,
Vulkan, Metal, and so on) directly. The render loop determines the

integration points.
There are two types of render loops in a scene graph:
e basic is a single-threaded renderer.

¢ threaded is a multithread renderer that renders on a different thread.

Qt tries to select an appropriate render loop based on the platform and
underlying graphics capabilities. When this is not sufficient, or during
testing, the environment variable QSG_RENDER_LOOQOP can be used to
force the use of a specific type of renderer loop. You can find the type of

render loop in use by enabling the qt.scenegraph.general logging category.

In most applications that use a scene graph, the rendering takes place on a
separate render thread. This is done to improve multi-core processor
parallelism and make better use of stall times such as waiting for a blocking
swap buffer call. This provides significant performance improvements, but

it limits where and when interactions with the scene graph can occur.

The following diagram depicts how a frame is rendered using the threaded
render loop and OpenGL. Apart from the OpenGL context specifics, the

steps are the same for other graphics APIs as well:

GUI Thread Scene Graph Thread

A change occurred in the QML scene
invokes
event
QQuickltem::update() » Start a new frame generation
invokes
Block GUI
QQuickltem::updatePolish() + Begin synchronization
emits
QQuickWindow::beforeSynchronizing()
invokes 1
QQuickltem::updatePaintNode()
GUI is free to advance animations, process Unblock GUI e
4 End Synchronization
events, and 50 on
Scene Graph is rendered
Frame is complete and displayed

Figure 8.5 — Rendering sequence followed in a threaded render loop

Currently, the threaded renderer is used by default on Windows with
Direct3D 11 or higher. You can force the use of the threaded renderer by
setting QSG_RENDER_LOQOP to threaded in the environment. However,
the threaded render loop depends on the graphics API implementation for
throttling. When building with Xcode 10 or later on macOS and OpenGL,
the threaded render loop is not supported. For Metal, there are no such

limitations.

If your system is not capable of providing Vsync-based throttling, then use
the basic render loop by setting the environment variable
QSG_RENDER_LOQOP to basic. The following steps describe how a

frame is rendered in a basic or non-threaded render loop:

GUI Thread

A change occurred in the QML scene

invokes
h 4

QQuickltem::update()

invokes

¥

QQuickltem::updatePolish()

k4

Start a new frame generation

emits i

QQuickwWindow::beforeSynchronizing()

invokes l

QQuickltem::updatePaintNode()

emits

h

QQuickWindow::beforeRendering()

v

Scene graph is rendered

!

QQuickWindow::afterRendering()

¥

Frameswap request sent to graphics API

emits

¥

QQuickwWindow::frameSwapped()

!

Frame is complete and displayed

L 4

Advance animations, events, and so on

Figure 8.6 — Rendering sequence followed in a non-threaded render loop

When the platform's standard OpenGL library is not used, then by default
the non-threaded render loop is used on OpenGL-enabled platforms. This is
primarily a preventive strategy for the latter because not all the
combinations of OpenGL drivers and windowing systems have been
verified. You may consider writing your code as if you are using the
threaded renderer even if you are using the non-threaded render loop

because otherwise, your code won't be portable.

To find further information on the workings of the scene graph renderer,

you may visit the following link:
https://doc-snapshots.qt.io/qt6-dev/qtquick-visualcanvas-scenegraph.html

In this section, you got to know about the rendering mechanism behind the
scene graph. In the next section, we will discuss how to mix a scene graph

with the Native Graphics API.

Using a scene graph with the Native
Graphics

The scene graph provides two methods for mixing the scene graph with the
Native Graphics APIs. The first approach is by directly issuing commands
to the underlying graphics engine, and the second approach is by generating
a textured node in the scene graph. Applications can make OpenGL calls
directly into the same context as the scene graph by connecting to the
QQuickWindow::beforeRendering() and
QQuickWindow::afterRendering() signals. Applications using APIs such

as Metal or Vulkan can request native objects, such as the scene graph's
command buffer, through QSGRendererInterface. Then the user can
render content either within or outside of the Qt Quick scene. The
advantage of mixing the two is that no additional framebuffer or memory is
required to execute the rendering, and a potentially costly texturing step is
avoided. The disadvantage is that Qt Quick chooses when to invoke the

signals. The OpenGL engine is only allowed to draw during that time.

Beginning with Qt 6.0, direct use of the Native Graphics API must be
invoked before the calls to the

QQuickWindow::beginExternal Commands() and
QQuickWindow::endExternal Commands() functions. This approach is
identical to QPainter::beginNativePainting(), and it serves the same
purpose. It allows the scene graph to identify any cached state or
assumptions about the state inside the presently recorded render pass. If
anything exists, then it becomes invalid as the code may have changed it by

interacting directly with the Native Graphics API.

IMPORTANT NOTE

When combining OpenGL content with scene graph rendering, it is crucial that the
application doesn't leave the OpenGL context with buffers bound, attributes enabled, or
specific values in the stencil buffer, or something similar. If you forget this, then you will see
unexpected behavior. The custom rendering code must be thread-aware.

The scene graph also provides support with several logging categories.
These are useful in finding the root cause of performance issues and bugs.
The scene graph features an adaptation layer in addition to the public API.

The layer allows you to implement certain hardware-specific adaptations. It

has an internal and proprietary plugin API that allows hardware adaption

teams to get the most out of their hardware.

IMPORTANT NOTE

If you are observing graphics-related issues or to find which type of rendering loop or
graphics APl is currently used, start the application by setting the environment variable
QSG_INFO to 1 or by enabling at least qt.scenegraph.general and qt.rhi.*. During
initialization, this will print some crucial information required to debug the graphics issues.

3D graphics with Qt Quick 3D

Qt Quick 3D is a Qt Quick add-on that provides a high-level API for
creating 3D content and 3D user interfaces. It extends the Qt Quick scene
graph, allowing you to integrate 3D content into 2D Qt Quick applications.
Qt Quick 3D is a high-level API for creating 3D content and 3D user
interfaces on the Qt Quick platform. Rather than relying on an external
engine, which introduces syncing issues and additional layers of
abstraction, we provide spatial content extensions to the existing Qt Quick
scene graph, as well as a renderer for that extended scene graph. It is also
possible to mix Qt Quick 2D and 3D content when using the spatial scene
graph.

The following import statement in your .qml file can be used to import the

QML types into your application:

import QtQuick3D

In addition to the base Qt Quick 3D model, additional functionality is
provided by the following module imports:

import QtQuick3D.Effects

import QtQuick3D.Helpers

Qt Quick 3D is available for purchase under a commercial license. When
building from source, make sure the modules and tools from the
gqtdeclarative and gtshadertools repositories are built first, as Qt Quick 3D

cannot be used without them.

Let's discuss shader tools and shader effects in the next section.

Shader effects

For importing shaders into 3D scenes, Qt Quick 3D has its own framework.
Shader effects enable the full, raw power of a graphics processing unit to
be directly utilized via vertex and fragment shaders. Too many shader
effects can result in increased power consumption and sometimes slow
performance, but when used sparingly and carefully, a shader can allow

complex and visually appealing effects to be applied to a visual object.

Both shaders are bound to the vertexShader and fragmentShader
properties. Every shader's code requires a main(){...} function, which is
executed by the GPU. A variable with the prefix qt_ is provided by Qt. To
understand the variables in shader code, have a look at the OpenGL API

reference document.

When working with ShaderEffect or subclassing QSGMaterialShader in
QML applications using Qt Quick, the application must provide a baked
shader pack in the form of a .gsb file. The Qt Shader Tools module includes
a command-line tool called gsb. It incorporates third-party libraries such as
glslang and SPIRV-Creoss, as well as external tools such as fxc and spirv-

opt, and generates .qsb files. The ShaderEffect QML type and

QSGMaterial subclasses, in particular, can make use of qsb output. It can
also be used to inspect the contents of a .qsb package. The input file
extension is used to determine the type of shader. As a result, the extension

has to be one of the following:
e .vert — Vertex shaders
o .frag — Fragment shaders

e .comp — Compute shaders

The example assumes myeffect.vert and myeffect.frag contain Vulkan-
style GLSL code, processed by the gsb tool in order to generate the .qsb
files. Now we convert that Vulkan-Style shader with gsb via the following

command:
>qsb --glsl 100es, 120,150 --hlsl 50 --msl 12 -0 <Output_File.qsb>
<Input_File.frag>

You can see an example of using the preceding syntax in the following

command:

>C:\Qt\6.0.2\mingw81_64\bin>qsb --glsl 100es,120,150 --hlsl 50 --
msl 12 -o myeffect.frag.gsb myeffect.frag

It is not necessary to specify both vertexShader and fragmentShader.
Many ShaderEffect implementations will only provide a fragment shader

in practice, instead of relying on the built-in vertex shader.
You can learn more about the shader tools at the following link:
https://doc.qt.io/qt-6/qtshadertools-gsb.html

Let's use shader effects in an example:

import QtQuick

import QtQuick.Window

Window {
width: 512
height: 512

visible: true
title: gsTr("Shader Effects Demo")
Row {

anchors.centerIn: parent

width: 300
spacing: 20
Image {

id: originalImage
width: 128; height: 94
source: "qrc:/logo.png"
3
ShaderEffect {
width: 160; height: width
property variant source: originalImage
vertexShader: "grayeffect.vert.qsb"

fragmentShader: "grayeffect.frag.qsb"

}

In the preceding example, we arranged two images in a row. The first one is

the original image and the second one is the image with the shader effect.

In this section, you learned about different types of shader effects in Qt
Quick and how to use the gsb tool to create compatible fragment files. In

the next section, you will learn how to draw using Canvas.

Using the Canvas QML type

Canvas allows you to draw straight and curved lines, simple and complex
shapes, graphs, and graphic images that have been referenced. Text, colors,
shadows, gradients, and patterns can also be added, as well as low-level
pixel operations. You can save a Canvas output as an image. It provides a
2D canvas that uses a Context2D object for drawing and implements a

paint signal handler.

Let's have a look at the following example:
import QtQuick

import QtQuick.Window

Window {
width: 512
height: 512

visible: true
title: gsTr("Canvas Demo")
Canvas {
id: canvas
anchors.fill: parent
onPaint: {
var context = getContext("2d")

context.linewidth = 2

context.strokeStyle = "red"
context.beginPath()
context.moveTo(100,100)
context.lineTo(250,100)
context.lineTo(250,150)
context.lineTo(100,150)
context.closePath()

context.stroke()

}

In the preceding example, first, we got the context from getContext("2d").

Then we drew a rectangle with a red border. The output looks as follows:

[B1 Canvas Demo - O >

Figure 8.7 — Output of sample application using Canvas to draw a rectangle

In this section, you got familiar with drawing using Canvas. In the next

section, we will discuss particle systems in Qt Quick.

Understanding particle simulations

Using particle systems, you can simulate effects such as explosions,
fireworks, smoke, fog, and wind. Qt Quick includes a particle system that
enables these types of complex, 2D simulations, including support for
environmental effects such as gravity and turbulence. Particles are most
commonly used in games to add subtle and visually appealing effects to

currently selected items in lists or activity notifiers.

ParticleSystem, Painters, Emitters, and Affectors are the four main QML
types in this particle system. The ParticleSystem system includes painter,
emitter, and affector types. The ParticleSystem type connects all of these
types and manages the shared timeline. They must all share the same
ParticleSystem in order to interact. Subject to this constraint, you may
have as many particle systems as you want, so the logical separation is to
have one ParticleSystem type for all the types with which you want to

interact, or just one if the number of types is small and easily controlled.

To use ParticleSystem, import the module with the following line:

import QtQuick.Particles

The emitter produces particles. The emitter can no longer change a particle
after it has been emitted. You can use affectors type to influence particles

after they have been emitted.
Each type of affector affects particles differently:
e Age: Modifies the particle's lifespan
e Attractor: Draws particles towards a certain location

e Friction: Slows movement proportionate to the particle's present

velocity

Gravity: Sets acceleration at an angle

Turbulence: Liquid-like behavior based on a noise image

Wander: Changes the route randomly

GroupGoal: Changes the state of a particle group

SpriteGoal: Changes the state of a sprite particle

Let's understand the use of ParticleSystem with the following example:
ParticleSystem {

id: particleSystem

anchors.fill: parent

Image {
source: '"qrc:/logo.png"
anchors.centerIn: parent

by

ImageParticle {
system: particleSystem
source: '"qrc:/particle.png"
colorvariation: 0.5
color: "#00000000"

3

Emitter {
id: emitter
system: particleSystem
enabled: true

X: parent.width/2; y: parent.height/2

maximumEmitted: 8000; emitRate: 6000
size: 4 ; endSize: 24

sizevVariation: 4

acceleration: AngleDirection {

anglevariation: 360; magnitude: 360;

}

In the preceding code, we have used the Qt logo, which is emitting particles
around it. We have created an instance of ImageParticle that creates
particles that are emitted by Emitter. The AngleDirection type is used to
decide the angle and direction of particle emission. Since we want the
particles to be emitted around the logo, we have used 360 for both

attributes. The output of the preceding example is shown in Figure 8.8:

Figure 8.8 — Output of the above particle system example
You can explore more about these QML types on the following website:
https://gmlbook.github.io/

In this section, we discussed different types of drawing mechanisms and
components in Qt Quick. In the next section, we will learn how to do

animation in Qt Widgets.

Animation in Qt Widgets

The animation framework simplifies the process of animating a GUI
element by allowing its properties to be animated. Easing curves are used
to control the animations. Easing curves describe a function that controls
the animation's speed, resulting in various acceleration and deceleration

patterns. Qt supports linear, quadratic, cubic, quartic, sine, exponential,

circular, and elastic easing curves. The property animation class provided
by Qt, known as the QPropertyAnimation class, is one of the more
common ways to animate a GUI element. This class is part of the animation
framework, and it uses Qt's timer system to change the properties of a GUI

element over a specified time period.

To create animations for our GUI application, Qt provides us with several
subsystems, including a timer, timeline, animation framework, state

machine framework, and the Graphics View framework.

Let's discuss how to use property animation with QPushButton in the
following code:

QPropertyAnimation *animatateButtonA = new
QPropertyAnimation(ui->pushButtonA, "geometry");
animatateButtonA->setDuration(2000);
animatateButtonA->setStartValue(ui->pushButtonA->geometry());

animatateButtonA->setEndvValue(QRect (100, 150, 200, 300));

In the preceding code snippet, we animated a push button from one position
to another position and changed the button size. You can add easing curve
to control the animation simply by adding it to the property animation
before calling the start() function. You can also experiment with different

types of easing curves to see which one works best for you.

Property animations and animation groups are both inherited from the
QAbstractAnimator class. Hence, you can add one animation group to
another to create a more complex, nested animation group. Qt currently
provides two types of animation group classes, QParallelAnimationGroup

and QSequentialAnimationGroup.

Let's use the QSequential AnimationGroup group to manage the states of

the animations within it:

QSequentialAnimationGroup *group = new QSequentialAnimationGroup;
group->addAnimation(animatateButtonA);
group->addAnimation(animatateButtonB);

group->addAnimation(animatateButtonC);

You can explore more about Qt's animation framework at the following
link:

https://doc.qt.io/qt-6/animation-overview.html

In this section, we discussed animation in Qt Widgets. In the next section,

you will learn how to do animation in Qt Quick.

Animation and transitions in Qt Quick

In this section, you will learn how to create animation and add transitions in
Qt Quick. To create an animation, you need to choose a proper animation
type for the type of the property that is to be animated and then apply the

animation for the required behavior.
Qt Quick has different types of animations, such as the following:

e Animator: It is a special type of animation that operates directly on Qt

Quick's scene graph.
e AnchorAnimation: It is used for animating an anchor change.
e ParallelAnimation: It runs animations in parallel.

e ParentAnimation: It is used for animating a parent change.

e PathAnimation: It animates an item along a path.

e PauseAnimation: It enables pauses during animations.

e PropertyAnimation: It animates changes in property values.

e Sequential Animation: It runs animations sequentially.

e ScriptAction: During an animation, it allows JavaScript to be executed.
e PropertyAction: It can change a property immediately during an

animation, without the need to animate a property change.

Figure 8.9 shows the hierarchy of animation classes:

— Animator + OpacityAnimator
—: AnchorAnimation : : RotationAnimator :
—: ParallelAnimation J ScaleAnimator
—r ParentAnimation 1 r UniformAnimator 1
—: PathAnimation r XAnimator

[Animation }-—r PauseAnimation 1 r YAnimator \
—: PropertyAnimation r ColorAnimation 1
—: SequentialAnimation: NumberAnimation
—r ScriptAction 1 RotationAnimation
— PropertyAction ‘ Vector3dAnimation

Figure 8.9 — The hierarchy of animation classes in Qt Quick

PropertyAnimation provides a way to animate changes to a property's

value. Different subclasses of PropertyAnimation are as follows:
e ColorAnimation: Animates changes in color values
e NumberAnimation: Animates changes in greal-type values
e RotationAnimation: Animates changes in rotation values

e Vector3dAnimation: Animates changes in QVector3d values

It can be used to define animations in several ways:

In a Transition

In a Behavior

As a property

In a signal handler

Standalone

Property values are animated by applying animation types to them. To
create smooth transitions, animation types will interpolate property values.

State transitions can also assign animations to state changes:

e SmoothedAnimation: It is a specialized NumberAnimation subclass.
In animation, when the target value is changed, SmoothAnimation

ensures smooth changes.
e SpringAnimation: With its specialized attributes including mass,
damping, and epsilon, it provides a spring-like animation.
Animation can be set for an object in different ways:
e Direct property animation
e Predefined targets and properties
e Animation as behaviors
e Transitions during state changes
Animations are created by applying animation objects to property values in

order to change the properties gradually over time. Smooth movements are

used in these property animations by interpolating values between property

value changes. Property animations allow for different interpolations and

timing controls via easing curves.

The following code snippet demonstrates two PropertyAnimation objects
using predefined properties:
Rectangle {

id: rect

width: 100; height: 100

color: "green"

PropertyAnimation on x { to: 200 }

PropertyAnimation on y { to: 200 }

}

In the preceding example, the animation will begin as soon as the
Rectangle is loaded and is applied to its x and y values automatically. Here,
we have used the <AnimationType> on <Property> syntax. Hence, it is

not required to set the target and the property values to x and y.

Animations may be shown sequentially or parallelly. While sequential
animations play a group of animations serially, parallel animations play a
group of animations at the same time. Therefore, when animations are
grouped inside a Sequential Animation or a ParallelAnimation, they will
be played sequentially or parallelly. Sequential Animation can also be used
for playing Transition animations since transition animations are
automatically played in parallel. You can group the animations to ensure

that all animations within a group are applied to the same property.

Let's use Sequential Animation to animate the rectangle's color in the

following example:

import QtQuick

import QtQuick.wWindow

Window {
width: 640
height: 480

visible: true
title: gsTr("Sequential Animation Demo")
Rectangle {
anchors.centerIn: parent
width: 100; height: 100
radius: 50
color: "red"
SequentialAnimation on color {
ColorAnimation { to: "red"; duration: 1000 }
ColorAnimation { to: "yellow"; duration: 1000 }
ColorAnimation { to: "green"; duration: 1000 }
running:true

loops: Animation.Infinite

}

In the preceding example, we have used Sequential Animation on the color
property using the <AnimationType> on <Property> syntax. As a result,
the child ColorAnimation objects are automatically added to this property,

and no target or property animation values are needed.

You can use Behavior animations to set the default property animations.
Animations specified in Behavior types are applied to the property and
animate any property value changes. To intentionally enable or disable the
behavior animations, you can use the enabled property. You can use several
methods to assign behavior animations to properties. One of the methods is
the Behavior on <property> declaration. It conveniently assigns a

behavior animation onto a property.

Animator types are distinct from normal Animation types. Let's create a
simple example where we rotate an image using an Animator:
import QtQuick

import QtQuick.Window

Window {
width: 640
height: 480

visible: true
title: gsTr("Animation Demo")
Image {
anchors.centerIn: parent
source: '"qrc:/logo.png"
RotationAnimator on rotation {
from: 0; to: 360;
duration: 1000
running:true

loops: Animation.Infinite

}

In the preceding example, we have used the RotationAnimator type,

which is used to animate the rotation of an Image QML type.

In this section, we discussed different types of animations in Qt Quick and
created several examples. In the next section, we will discuss how to

control animations.

Controlling animations

Controlling animations can be done in a variety of ways. The Animation
type is the ancestor of all animation types. This type does not allow the
creation of Animation objects. It equips a user with the necessary
properties and methods to use animation types. All animation types consist
of start(), stop(), resume(), pause(), restart(), and complete(), and they

control how animations are executed.

The animation's interpolation between the start and end values is defined by
the easing curves. Different easing curves may extend beyond the defined
interpolation range. The easing curves make it easier to create animation

effects such as bounce, acceleration, deceleration, and cyclical animations.

In a QML object, each property animation may have a distinct easing curve.
The curve can be controlled with various parameters and some of these
parameters are unique to a particular curve. Visit the easing documentation

for more information on easing curves.

In this section, you learned about the way to control animations in Qt

Quick. In the next section, you will learn how to use states and transitions.

States, state machine, and transitions in
Qt Quick

Qt Quick states are property configurations in which a property's value can
change to reflect different states. State changes cause abrupt changes in
property; animations smooth transitions to create visually appealing state
changes. Types for creating and executing state graphs in QML are
provided by the Declarative State Machine Framework. Consider using the
QML states and transitions for user interfaces with multiple visual states

that are independent of the application's logical state.

You can import the state machine module and the QML types into your

application by adding the following statement:

import QtQml.StateMachine

Please note that there are two ways to define the states in QML. One is

provided by QtQuick and the other by the QtQml.StateMachine module.
IMPORTANT NOTE

While using QtQuick and QtQml.StateMachine in a single QML file, make sure to import
QtQml.StateMachine after QtQuick. In this approach, the State type is provided by the
Declarative State Machine Framework, not by QtQuick. To avoid any ambiguity with
QtQuick's State item, you can import QtQml.StateMachine into a different namespace.
To interpolate property changes caused by state changes, the Transition
type can include animation types. Bind the transition to the transitions

property to assign it to an object.

A button can have two states: pressed and released. For each state, we can
assign a different property configuration. A transition would animate the
transition from pressed to released. Similarly, there would be animation

when switching from the released to the pressed state.
Let's have a look at the following example.

Create a circular LED using the Rectangle QML type and add a
MouseArea to it. Assign the default state as OFF and the color as green.
On mouse press, we want to change the LED color to red and once the

mouse is released, the LED becomes green again:
Rectangle {
id:1led
anchors.centerIn: parent
width: 100
height: 100
radius: 50
color: '"green"
state: "OFF"
MouseArea {
anchors.fill: parent
onPressed: led.state = "ON"

onReleased: led.state = "OFF"

}

Next, define the states. In this example, we have two states, ON and OFF.

Here, we are manipulating the color property based on the state change:

states: [
State {
name: "ON"

PropertyChanges { target: led; color: "red"}

3
State {

name: "OFF"

PropertyChanges { target: led; color: '"green"}
}

]

You can add an animation to the transitions. Let's add ColorAnimation to

the transition to make it smooth and attractive:
transitions: [
Transition {
from: "ON"
to: "OFF"

ColorAnimation { target: led; duration: 100}

3

Transition {
from: "OFF"
to: "ON"

ColorAnimation { target: led; duration: 100}

In the preceding example, we have used two states, ON and OFF. We have
used MouseArea to change the states based on mouse press and release
events. When the state is ON, the rectangle color changes to red, and when
it is OFF, the color changes to green. Here, we have also used Transition

to switch between the states.

When the to and from properties are bound to the state's name, the
transition will be associated with the state change. For simple or symmetric
transitions, setting the to property to the wild card symbol "*" implies that
the transition applies to any state change:
transitions: Transition {

to: "x"

ColorAnimation { target: led; duration: 100 }

}

You can explore more about the State Machine QML API at the following
link:

https://doc.qt.io/qt-6/gmlstatemachine-gml-guide.html

In this section, you learned about the state machine in Qt Quick. In the next

section, you will learn how to use the state machine in Qt Widgets.

The state machine in Qt Widgets

Classes in the State Machine framework are available for creating and
executing state graphs. The State Machine framework provides an API and

execution model for effectively embedding state chart elements and

semantics in Qt applications. The framework is tightly integrated with Qt's

meta-object system.

There was a major change to the State Machine framework in Qt 6. The
APIs were missing from the Qt 6.0.x core module. With Qt 6.1, the module
was restored as the statemachine module. So, you won't be able to run it in
Qt 6.0.x versions and you will have to add statemachine to the .pro file to

use the framework.

If you are using a qmake based build system, then add the following line to
your .pro file:

QT += statemachine

If you are using a CMake based build system, then add the following to
CMakeLists.txt:

find_package(Qt6 COMPONENTS StateMachine REQUIRED)

target_link_libraries(mytarget PRIVATE Qt6::StateMachine)

You will need the following headers inside your C++ source file:
#include <QStateMachine>

#include <QState>

Let's create a simple Qt Widgets application that implements the state-
machine. Modify the UI form by adding QLabel and QPushButton:

1. Add the following code to the constructor of your custom C++ class:
QState *green = new QState();
green->assignProperty(ui->pushButton, "text", "Green");
green->assignProperty(ui->led,

"styleSheet", "background-color: rgb(0, 190, 0);");

green->setObjectName("GREEN");

. In the preceding code, we created a state to show the green-colored

LED. Next, we will create another state for the red-colored LED:
QState *red = new QState();

red->setObjectName("RED");

red->assignProperty(ui->pushButton, "text", "Red");
red->assignProperty(ui->led, "styleSheet", "background-color:
rgb(255, 0, 0);");

. Add transitions for the state change events when the button is toggled:
green->addTransition(ui->pushButton,
&QAbstractButton::clicked, red);
red->addTransition(ui->pushButton,

&QAbstractButton::clicked, green);

. Now create a state machine instance and add the states to it:
QStateMachine *machine = new QStateMachine(this);
machine->addState(green);

machine->addState(red);

machine->setInitialState(green);

. The last step is to start the state machine:

machine->start();

. When you run the previous example, you will see an output window

like the following:

B | State Machine Demo - O X B | State Machine Demo — O pd

Figure 8.10 — Output of the application using the state machine in Qt Widgets

The preceding diagram reinforces that in a parent state machine, only the
states of the child state machine can be specified as transition targets. States
of the parent state machine, on the other hand, cannot be specified as targets

of transitions in the child state machine.

The following article nicely captures the performance considerations while

using a state machine:

https://www.embedded.com/how-to-ensure-the-best-qt-state-machine-

performance/

In this section, we learned about state machines and their usage in Qt
Widgets. We discussed how to implement state machines in both Qt

Widgets and Qt Quick. Let's summarize what we learned in this chapter.

Summary

In this chapter, we discussed different graphics APIs and we learned how to
use the QPainter class to draw graphics both on and off the screen. We also
looked into the Graphics View framework and scene graph rendering
mechanism. We saw how Qt provides the QPaintDevice interface and the
QPainter class to perform graphics operations throughout this chapter. We
also discussed the Graphics View classes, OpenGL framework, and shader
tools. At the end of the chapter, we explored the animation and state

machine framework in both Qt Widgets and Qt Quick.

In Chapter 9, Testing and Debugging, we will learn about debugging and

testing in Qt. It will help you to find the root cause of issues and fix defects.

Chapter 9. Testing and Debugging

Debugging and testing are essential parts of software development. In this
chapter, you will learn how to debug Qt projects, about different debugging
techniques, and about debuggers supported by Qt. Debugging is the process
of discovering the root cause of an error or undesired behavior and
resolving it. We will also discuss unit testing using the Qt Test framework.
Qt Test is a unit testing framework for Qt-based applications and libraries.
It has all of the features that most unit testing frameworks provide.
Additionally, it provides support for testing Graphical User Interfaces
(GUISs). This module helps in writing unit tests for Qt-based applications
and libraries in a convenient way. You will also learn techniques to test a

GUI using different GUI testing tools.
Specifically, we will discuss the following topics:
e Debugging in Qt
e Debugging strategies
e Debugging a C++ application
e Debugging a Qt Quick application
e Testing in Qt
 Integrating with Google's C++ testing framework
e Testing Qt Quick applications

e GUI testing tools

By the end of this chapter, you will be familiar with debugging and testing

techniques for your Qt application.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest version of a desktop
platform such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https:/github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter09.

IMPORTANT NOTE

The screenshots used in this chapter are taken from the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Debugging in Qt

In software development, technical problems arise often. To address these
issues, we must first identify and resolve all of them before releasing our
application to the public to maintain quality and our reputation. Debugging

is a technique for locating these underlying technological issues.

In the coming sections, we will discuss popular debugging techniques used

by software engineers to ensure their software's stability and quality.

Debuggers supported by Qt

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter09

Qt supports several different types of debuggers. The debugger you use can
vary depending on the platform and compiler you're using for your project.

The following is a list of debuggers that are widely used with Qt:

e GNU Symbolic Debugger (GDB) is a cross-platform debugger
developed by the GNU Project.

e Microsoft Console Debugger (CDB) is a debugger from Microsoft for

Windows.

e Low Level Virtual Machine Debugger (LLDB) is a cross-platform
debugger developed by the LLVM Developer group.

e QML/JavaScript Debugger is a QML and JavaScript debugger
provided by the Qt company.

If you're using the MinGW compiler on Windows, you won't need to do any
manual setup with GDB because it's typically included with your Qt
installation. If you're using a different operating system, such as Linux, you
may need to manually install it before linking it to Qt Creator. Qt Creator
automatically detects the presence of the GDB and adds it to its debugger
list.

You can also use Valgrind to debug your application. You can activate the
Valgrind gdbserver by specifying either --vgdb=yes or --vgdb=full. You
can specify --vgdb-error=number to activate gdbserver after a certain
number of errors are displayed. If you set the value to 0, then gdbserver
will be active at initialization, allowing you to set breakpoints before the
application launches. It's worth noting that vgdb is included in the Valgrind

distribution. It does not need to be installed separately.

If your favorite platform is Windows, you can install CDB on your
machine. By default, the built-in debugger of Visual Studio won't be
available. Therefore, you must install the CDB debugger separately by
choosing debugging tools for Windows as an optional component when
installing the Windows SDK. Qt Creator usually recognizes the existence of

CDB and adds it to the debugger list under Options.

Android debugging is a little more challenging than debugging on a regular
desktop environment. Different packages, such as JDK, Android SDK, and
Android NDK, are required for Android development. On the desktop
platform, you will need the Android Debug Bridge (ADB) driver to allow
USB debugging. You must enable developer mode and accept USB
debugging on the Android device to proceed.

The debugger used on macOS and iOS is LLDB. It is included with Xcode
by default. Qt Creator will automatically detect its presence and link it with
a kit. If you're familiar with debuggers and know what you're doing, you

can also add non-GDB debuggers to your favorite IDE.

The debugger plugin determines a suitable native debugger for each
package based on what's available on your machine. You can overcome this
preference by adding new debuggers. You can find the available debuggers
in the Debuggers tab present under the Kits settings under the Options

menu as shown in Figure 9.1:

(£ options - Qt Creator

|?"|KE:'

B Kits

D Envirenment
B TextEditor
¥ Fakelim
© Help

{} C++

4 Gt Quick
/" Build & Run
f Qbs

A Debugger

/' Designer

& Python

T Analyzer
Version Control
E Devices

EE Code Pasting

@ Language Client

Kits

Kits Ot Versions

Compiers ~ Debuggers CMake

MName
v fut

o-detected

GMNU gdb 8.1 for MinGW 8.1.0 64-bit

Auto-detected CDB at C:\Program Files (x86)\Windows Kits\10\Debuggers'\x 36\ cdb.exe
Auto-detected CDB at C\Program Files\Windows Kits\10\Debuggers\x64\cdb.exe
Custom Android Debugger (x36_64, NDK 21.3.6528147)

Custom Android Debugger (arm, NDK 21.3.6528147)

Custom Android Debugger (1636, NDK 21.3.6528147)

Custom Android Debugger (aarchfd, MDK 21.3.6528147)

Android Debugger (x86_64, NDK 21.3.6528147)

Android Debugger (armeabi-v7a, NDK 21.3.6328147)

Android Debugger (x86, NDK 21.3.6528147)

Android Debugger (armfd-vBa, NDK 21.3.6328147)

Android Debugger (Multi-Abi, NDK 21.3.6328147)

Manual
{ >
Mame: GHU gdb 8.1 for MinGW 8. 1.0 64-bit
Path: D:\Qt{Tools'mingwd10_64'bin\gdb. exe Browse..,
Type: GDE
ABIs: wBE-windows-msys-pe-64bit
Version: 8.1.0
Working directory: Browse...
e

Add
Clone

Remove

Apply

Figure 9.1 — The Debuggers tab under the Kits selection screen showing the Add button

In the Debuggers tab, you can see Add, Clone, and Remove buttons on the

right side. You can clone an existing debugger configuration and modify it

to suit your requirements. Alternatively, if you are aware of the debugger's

details and configuration, then you can create a new debugger configuration

using the Add button. You can also remove a faulty or obsolete debugger
configuration by clicking the Remove button. Don't forget to click the
Apply button to save your changes. Please note that you can't modify auto-

detected debugger configurations.

In this section, we learned about various supported debuggers. In the next

section, we will discuss how to debug an application.

Debugging strategies

There are different debugging strategies to find the root cause of an issue.
Before attempting to locate a bug in the application, it is critical to
thoroughly understand the program or library. You can't find mistakes if you
don't know what you're doing. Only if you have a thorough understanding
of the system and how it operates will you be able to identify bugs in the
application. Previous experience can aid in the detection of similar types of
bugs as well as the resolution of bugs. The individual expert's knowledge
determines how easily the developer can locate the bug. You can add debug
print statements and breakpoints to analyze the flow of the program. You

can do forward analysis or backward analysis to track the bug's location.

When debugging, the following steps are used to find the root cause and

resolve it:
1. Identify the issue.
2. Locate the issue.
3. Analyze the issue.

4. Resolve the issue.

5. Fix the side effects.

Regardless of the programming language or platform, the most important
thing to know when debugging your application is which section of your
code is causing the problem. You can find the faulty code in a number of

ways.

If the defect is raised by your QA team or a user, then inquire when the
issue occurred. Look at the log files or any error messages. Comment out
the suspected section of the code, then build and run the application again
to see if the issue persists. If the issue is reproducible, do forward and
backward analysis by printing messages and commenting out lines of code

before you find the one that's causing the issue.

You can also set a breakpoint in the built-in debugger to search for variable
changes within your targeted feature. If one of the variables has updated to
an unexpected value or an object pointer has become an invalid pointer,
then you can easily identify it. Inspect all of the modules you used in the
installer and ensure that you and your users have the same version number
of the application. If you are using a different version or different branch,
then check out the branch with the specified version tag, then debug the

code.

In the next section, we will discuss how to debug your C++ code by

printing debug messages and adding breakpoints.

Debugging a C++ application

The QDebug class can be used to print the value of a variable to the
application output window. QDebug is similar to std::cout in the standard
library, but it has the benefit of being part of Qt, which means it supports Qt
classes out of the box and can display its value without the need for

conversion.

To enable debugging messages, we must include the QDebug header as

follows:

#include <QDebug>

Qt provides several global macros for generating different types of debug

messages. They can be used for different purposes, mentioned as follows:

e gDebug() provides a custom debug message.

gInfo() provides informational messages.

gWarning() reports warnings and recoverable errors.

gCritical() provides critical error messages and reports system errors.

gFatal() provides fatal error messages before exiting.

You can see if your feature is working correctly by using qDebug(). After
you've finished looking for the error, remove the line of code that contains
gDebug() to avoid unwanted console logs. Let's look at how to use
gDebug() to print out variables to the output pane with an example. Create
a sample QWidget application and add a function, setValue(int value), and
add the following code inside the function definition:

int value = 500;

gbDebug() << "The value is : " << value;

The preceding code will show the following output in the output window
present at the bottom of Qt Creator:

The value is : 500

You can figure out whether the value was changed by another function by
looking at how many times the function is used and called inside the
application. If the debug message is printed multiple times, then it is
invoked from multiple places. Check if the correct value is sent to all
calling functions. To eliminate unnecessary console logs in the output
console window, remove the line of code that contains gDebug() once you
have finished looking for the issue. Alternatively, you may implement

conditional compilation.
Let's look further into debugging and debugging options in Qt Creator:

1. You can see a Debug menu in the menu bar. When you click on it, you

will see a context menu with submenus as shown in Figure 9.2:

(& main.cpp @ QDebugDemo - Qt Creator
Fle Edit View Build Analyze Tools Window Help

Projects Start Debugging b Start debugging of startup project F3
PP |25 (Debu Detach Deb Start Debugging Without Deployment
L] =
(11} | .1 0
Welcome S S i Attach to Running Application...
h Hea
Attach to Unstarted Application...
¥ | Sou o
o r Start and Debug External Application...
K Load Core File...
v 4 F_or Attach to Running Debug Server...

4l Sataled oal F1'FI' Attach to Remote CDB 5ession..,

Attach to OML Port...

Toggle Breakpoint Fa

Figure 9.2 — Debug menu in Qt Creator

2. To start debugging, press F5 or click on the start Debug button at the

bottom left of Qt Creator as shown here:

QDebugDemo

.

2

Start debugaing of startup pru:njectl_
[N °. Typeto locate (Ctrl

Figure 9.3 — The Start debugging button in Qt Creator

3. If Qt Creator complains about the debugger with an error message, then

check to see if your project package has a debugger.

4. If the error persists, close Qt Creator and go to your project folder,

where you can delete the .pro.user file.

5. Then reload the project in Qt Creator. Your project will be reconfigured

by Qt Creator, and the debug mode should now be functional.

A great way to debug your application is to set a breakpoint:

1. You will see a pop-up menu of three choices when you right-click on

the line number of your script in Qt Creator.

2. You can also click on the line number to add a breakpoint. Click on the
line number to set a breakpoint. You will see a red dot appearing on the

line number.

3. Next, press the F5 key on the keyboard or click on the start Debug
button. Once you run the application in debug mode, you will notice a

yellow arrow appearing on top of the first red dot:

Debugger ¥ GA for ‘Qebuglemo” ¥ [}

Level Function File Line
P 1 WidgetesetValue widget.cop)
2 Widget:Widget widget.cpp 10
3 gMain main.cpp 8

4 WinMain gtentrypoint win.cpp - 97

L

Address

(xd01783
(xd016b1
(xd013%
(403174

hE Threads: = #1

Application Output

(DedugDemo @
11:14:28: Debugging starts

section .gnu_debuglink not found in D

64bit HCBT_CREATEWND event start
64b1t HCBT_CREATEWND event start
G4bit [ICOT_CRCATOWND event start
64bit HCBT_CREATEWND event start

\
\
\
\

\
\
t16.1.6
\

\
\
\
\

] p,T-;petclc-:eteiCtrI-k: | Ismies 2 Search.. 3 Appicati. 4 Comple.. 5 QMLDe.

mingwBl_64

\
\
\
\

mies * V& BT ¢ ﬂ wdgetap T X 4T »Lne 20,6 B LS Value Type
¥ i (DebugDemo 8 { AV this Widget
[[5 (DebugDemo pro ui-»setuplli(this); E}}W\dg&t] gmgzP g
v I e setlalue(100); e il
b Headers [parent] (0 (0bject
b widgeth ! [chiliren) <] itemss Oliste Q0bject *
” ? . ; [properties] <atleast) tems»
B0 137 Widget::~Hidget() mehods] <Ditemes
) main.cpp 4 { [eatra]
o vidgetcpp | delete ui; stlatitMetaObject QlMetaOhject
v [Fams 5} Ui UirWidget
T value 100 int
14 vidgei E|* void Widget: setValue(int value) - Vlie -
18] { n
20 qDebug() <<"Value 1s:" <<value;
4]}
o ¥
{ H

T Stopped atbreakpoint Linthresd 1 Views 3

3 Line

Demotwidget.cpp 20

section .gnu_debuglink not found in D:\0t\6.1.8\mingw81_64\bin\Qt6Core.debug
section .gnu_debuglink not found in D:\Qt\6.1.0%\minguBl_64\bin\Qtelidzets. debug
0
0

bin\Qtehui . debug

section .gnu_debuglink not found in D:\Qt\6.1.0%mingwBl_64\plugins\platfarms|quindows. debug

6 Generd .. 7 Version .. 8 TestRe..

Figure 9.4 — Qt Creator showing debugging windows and breakpoints

4. The debugger has come to a halt at the first breakpoint. The variable,

along with its meaning and type, will now be displayed in the Locals

and Expression windows on the right-hand side of your Qt Creator.

5. This approach can be used to quickly examine the application. To
remove a breakpoint, just click on the red dot icon once more or from

the right-click context menu:

* void Widget::setValue(int wvalue)
£
l <"WValue is:" <<value;
i Rernove Breakpoint

I Disable Breakpoint
Edit Breakpoint...

~ | Start debugging of startup project

Toggle Bookmark B

Debugger Preset

Figure 9.5 — Context menu showing right-click options on a breakpoint marking

It's important to remember that you must run your application in debug
mode. This is because when you compile in debug mode, your application
or library will have additional debugging symbols that allow your debugger
to access information from the binary's source code, such as the names of
identifiers, variables, and functions. This is the reason the application or

library binaries are larger in file size when compiled in debug mode.

You can learn about more features and their usage in the following

documentation:

IMPORTANT NOTE

Some anti virus applications prevent debuggers from retrieving information. One such anti
virus is Avira. If it is installed on a production PC, the launching of the debugger could fail
on the Windows platform.

In the next section, we will discuss how to debug a Qt Quick application

and locate issues inside a QML file.

https://doc.qt.io/qt-6/debug.html%20

Debugging a Qt Quick application

In the last section, we discussed how to debug your C++ code. But you are
probably still wondering how to debug code written in QML. Qt also has a
provision to debug your QML code. When you are developing a Qt Quick
application, there are a lot of options to troubleshoot issues. In this section,
we will discuss various debugging techniques related to QML and how to

use them.

Just like the QDebug class, there are different console APIs that are
available for debugging in QML. They are as follows:

e Log: This is used to print general messages.

Assert: This is used to verify an expression.

Timer: This is used to measure the time spent between calls.

Trace: This is used to print a stack trace of a JavaScript execution.

Count: This is used to find the number of calls made to a function.

Profile: This is used to profile QML and JavaScript code.

Exception: It is used to print error messages.

The Console API provides several convenient functions to print different
types of debug messages such as console.log(), console.debug(),
console.info(), console.warn(), and console.error(). You can print a

message with the value of a parameter as follows:

console.log("Value 1is:", value)

You can also check the creation of a component by adding the message

inside Components.onCompleted:{...}:

Components.onCompleted: {

console.log("Component created")
}

To verify that an expression is true, you can use console.assert(), such as
the following, for example:

console.assert(value == 100, "Reached the maximum limit");

You will find the time spent between calls is logged by console.time() and
console.timeEnd(). The stack trace of the JavaScript execution at the stage
where it was called is printed by console.trace(). The function name,
filename, line number, and column number are all included in the stack

trace details.

console.count() returns the current number of times a piece of code has
been executed, as well as a message. The QML and JavaScript profiling are
activated when you use console.profile() and deactivated when
console.profileEnd() is called. You can use console.exception() to print an

error message along with the stack trace of the JavaScript execution.

You can add a breakpoint in the same way we discussed in an earlier

section, as follows:

e To step into the code in the stack, click on the Step Into button on the
toolbar or press F11.

e To step out, press Shift + F11. To hit the breakpoint, add a breakpoint at

the end of the method and click Continue.

e Open the QML debugger console output pane to run JavaScript

commands in the current context.

You can find the issues and watch the values while running your Qt Quick
application. It will help you to find the portion of the code that is causing

unexpected behavior and requires modification.

In this section, we learned about debugging in a QML environment. In the

next section, we will discuss the testing framework in Qt.

Testing in Qt

Unit testing is a way of testing a simple application, class, or function
using an automated tool. We will discuss what it is and why we would like
to do it before going over how to incorporate it into our approach using Qt
Test. Unit testing is the process of breaking down an application into its
smallest functional units and then testing each unit with real-world
situations within the initiative's framework. A unit is the smallest
component of an application that can be tested. A unit test in procedural

programming usually focuses on a function or process.

A unit in object-oriented programming is usually an interface, a class, or a
single function. Unit testing identifies issues early in the implementation
process. This covers glitches in the programmer's implementation as well as
defects in or incomplete portions of the unit's specification. During the
creation process, a unit test is a short code fragment developed by the
developer of the unit to be tested. There are many unit testing tools to test
your C++ code. Let's explore the benefits and features of Qt's testing

framework.

Unit testing in Qt

Qt Test is a unit testing platform for Qt-based applications and libraries. Qt
Test includes all of the features present in traditional unit testing
applications, as well as plugins for testing graphical user interfaces. It helps
make writing unit tests for Qt-based programs and libraries even easier.

Figure 9.6 shows the Testing section under Options:

(¥ options - Qt Creator >
[Filter | Testing
o L General QtTest Google Test Boost Test Catch Test
|:| Environment
Disable crash handler while debugging
B Text Editor Use ¥ML output
y A e Verbose benchmarks
ake
Log signals and slots
@ Hel P Benchmark Metrics
I} C+s (®) walltime
Tick counter

4 ot Quick O

O Ewvent counter
/" Build & Run Callgrind
E th F'EI"F
A¥ Debugger
/" Designer
€ Python
| Analyzer
ﬁ Yersion Control
|__|:|] Devices
EE Code Pasting
ﬁ Language Client
A Testing 7

Goncel | [ool

Figure 9.6 — Screenshot showing Qt Test preferences under the Qt Creator Options
menu
Previously, unit testing may have been done manually, especially for GUI
testing, but now there is a tool that allows you to write code to validate code
automatically, which might seem counterintuitive at first, but it works

properly. Qt Test is a specialized testing framework for unit testing based on

Qt.

You have to add testlib in your project file (.pro) to use Qt's built-in unit

testing module:

QT += core testlib

Next, run gqmake to add the module available for your project. In order for
the test system to find and implement it, you must use the QTest header and
declare the test functions as private slots. The QTest header contains all
functions and statements related to Qt Test. To use the QTest features,
simply add the following line to your C++ file:

#include <QTest>

You should write test cases for every possible scenario, and then run the
tests every time your baseline code changes to ensure that the system
continues to behave as intended. It is an extremely useful tool for ensuring

that any programming updates made don't break existing features.

Let's create a simple test application using Qt Creator's built-in wizard.
Select Auto Test Project from the New Project menu as shown in Figure
9.7

(£ New File or Project - Qt Creator

Choose a template: All Templates

LTSS : 3 Creates a new unit test project, Unit tests allow

Application (Gf) (Ot Custom Designer Widget you to verify that the code is fit for use and that
there are no regressions,

Application (Gt Quick) —

{ i Supported Platforms:
Application (Ot for Python) : Ot Quick Ul Prototype

* Deskiop

Library

Other Project Auto Test Project
Mon-Ct Project
Import Project Subdirs Project
Files and Classes
C/Ces Empty gmake Project
Madeling

Gt
GLSL

,I i i ™A
» nd B | | |

Code Snippet

General

Java

Python

Figure 9.7 — New auto test project option in the project wizard

Once the test project skeleton is generated, you can modify the generated
files to suit your needs. Open the .pro file of your test project and add the

following lines of code:

QT += testlib

QT -= gui

CONFIG += gt console warn_on depend_includepath testcase
CONFIG -= app_bundle

TEMPLATE = app

SOURCES += tst_testclass.cpp

Let's create a C++ class named TestClass. We will add our test functions to
this class. This class must be derived from QObject. Let's have a look at
tst_testclass.cpp:
#include <QtTest>
class TestClass : public QObject
{
Q_OBJECT
public:
TestClass() {}
~TestClass(){}
private slots:
void initTestCase(){}
void cleanupTestCase() {}
void test_compareStrings();

void test_compareValues();
3

In the preceding code, we have declared two test functions to test sample
strings and values. You need to implement the test functions with a test
scenario for the declared test cases. Let's compare two strings and do a
simple arithmetic operation. You can use macros such as QCOMPARE and

QVERIFY to test the values:

void TestClass::test_compareStrings()

{

QString stringl = QLatiniString("Apple");

QString string2 QLatiniString("Orange");

QCOMPARE(stringl.localeAwareCompare(string2), 0);

by
void TestClass::test_comparevValues()
{
int a = 10;
int b = 20;
int result = a + b;
QCOMPARE(result, 30);
¥

To execute all the test cases, you have to add macros such as
QTEST_MAIN() at the bottom of the file. The QTEST_MAIN() macro
expands to a simple main() method that runs all the test functions. The
QTEST_APPLESS_MAIN() macro is useful for simple standalone non-
GUI tests where the QApplication object is not used. Use
QTEST_GUILESS_MAIN)() if the GUI is not required but an event loop
is required:

QTEST_APPLESS_MAIN(TestClass)

#include "tst_testclass.moc"

To make the test case a standalone executable, we have added the
QTEST_APPLESS_MAIN() macro and the moc generated file for the
class. You may use a number of other macros to test the application. For

further information, please visit the following link:

http://doc.qt.io/qt-6/qtest.html#macros

When you run the preceding example, you will see the output with the test

results as shown here:

http://doc.qt.io/qt-6/qtest.html#macros%20

FrExxxAkxF Start testing of TestClass *******x=*x

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

64bit HCBT_CREATEWND event start

PASS : TestClass::initTestCase()
FAIL! : TestClass::test_compareStrings() Compared values are not
the same

Actual (stringl.localeAwareCompare(string2)): -1
Expected (0) 10
..\TestProject\tst_testclass.cpp(26) : failure location
PASS : TestClass::test_compareValues()
PASS : TestClass::cleanupTestCase()
Totals: 3 passed, 1 failed, © skipped, 0 blacklisted, 7ms

FAxFxxAx* Finished testing of TestClass ****x****

You can see that one test case failed as it did not meet the test criteria.
Similarly, you can add more test cases and fetch parameters from another
class to test the functionality. You can also run all tests with the Run All
Tests option from the Tests context menu from the Qt Creator menu bar as

shown in Figure 9.8:

IOLIN Window Help
I P locate..
C++
aML/Js
Tests
Code Pasting
Bookmarks
Git
Text Editing Macros
Form Editor
Parse Build Output..
External
Diff

Options...

Ctrl+K

4

b
¥ RunAll Tests

Y} RunSelected Tests
}

' = Run Tests for Current File

Rescan Tests

Alt+5hift+T, Alt+A
Alt+Shift+T, Alt+R

Alt+Shift+T, Alt+C
Alt+Shift+T, Alt+S

Figure 9.8 — Tests option under the Tools menu

You can also view all test cases in the left side project explorer view. Select
Tests from the project explorer dropdown. You can enable or disable certain
test cases in this window. Figure 9.9 displays the two test cases we wrote

earlier. You can also see that we are not using other test frameworks for this

test project:

File Edit

Welcome

View Build

Debug

Analyze

v ¢ TestClass
<& test_compareStrings
=) test_compareValues

Cuick Test (none)
Google Test (none)
Boost Test (none)
Catch Test (none)

Tools

Win

Figure 9.9 — Tests explorer option in the project explorer dropdown

You can use several QTest convenient functions to simulate GUI events
such as keyboard or mouse events. Let's look at their usage with a simple
code snippet:

QTest: :keyClicks(testLineEdit, "Enter");

QCOMPARE (testLineEdit->text(), QString("Enter"));

In the preceding code, the test code simulates a keyboard text Enter event
on a lineedit control and then verifies the entered text. You can also
simulate mouse-click events using QTest::mouseClick(). You can use it as
follows:

QTest: :mouseClick(testPushBtn, Qt::LeftButton);

Qt's Test framework is also useful in test-driven development (TDD). In
TDD, you write a test first, then code the actual logic. The test will initially
fail as there is no implementation. You then write the bare minimum code
required to pass the test before moving on to the next test. This is how you
iteratively develop a feature before you have implemented the necessary

functionality.

In this section, we learned how to create test cases and simulate GUI
interaction events. In the next section, you will learn how to use Google's

C++ testing framework.

Integrating with Google's C++ testing
framework

GoogleTest is a testing and mocking framework developed by Google. The
GoogleMock project has been merged into GoogleTest. GoogleTest

requires a compiler that supports at least C++11 standards. It is a cross-

platform test framework and it supports major desktop platforms such as
Windows, Linux, and macOS. It helps you write better C++ tests with
advanced features such as mocking. You can integrate Qt Test with
GoogleTest to get the best of both frameworks. If you intend to use both
testing framework features, then you should use GoogleTest as the primary

testing framework and inside the test cases, you can use Qt Test's features.

Qt Creator has built-in support for GoogleTest. You can find the Google
Test tab in the Testing section on the Options screen and set your global

GoogleTest preferences as shown in Figure 9.10:

(E options - Qt Creator

[Filter | Testing

o " General Qt Test Google Test Boost Test Catch Test

|:| Environment
[] Run disabled tests

B TextEditor Break on failure while debugging

M. FakeVim [] Repeat tests Iterations: 1 &

9 Help] shuffle tests Seed:] e
[] Throw on failure

{ } Lo Group mode: Directory w

A4t Quick Active filter:

/" Build & Run

A Cbs

AF Deb ugger

/" Desi gner

!?,.—F"J' Python

= Analyzer

Version Control

|__|:|] Devices

@ Code Pasting

r_ﬁ Language Client

A Testing .

Cancel Apply

Figure 9.10 — The Google Test tab in the Testing section under the Options menu

You can download the GoogleTest source code from the following link:

https://github.com/google/googletest

https://github.com/google/googletest%20

You can learn more about features and their usage in the following

documentation:

https://google.github.io/googletest/primer.html

After you download the source code, build the libraries before creating a
sample application. You can also build the unified GoogleTest source code
along with your test project. Once you generate the libraries, follow these

steps to run your GoogleTest application:

1. To create a simple GoogleTest application using Qt Creator's built-in
wizard, select Auto Test Project from the New Project menu. Then
follow through the screens until you come across Project and Test

Information.

2. On the Project and Test Information screen, select Google Test for
Test framework. Then add information for the Test suite name and

Test case name fields as shown in Figure 9.11:

https://google.github.io/googletest/primer.html%20

€ [Auto Test Project

Project and Test Information

Location
E'j} Details Test framework: Google Test W
Kits : i :
Test suite name; ‘Algon’dﬁmTestSulte |
Surmnmary
Test case name: ‘BasicCaIu:uIaﬁons |

Enable C++11

Googletest source directory (optional): ‘ Browse...

Build system: gmake W

Figure 9.11 — Google Test option in the project creation wizard

3. In the next step, you can fill in the Googletest source directory field or

you can add it later by editing the .pro file.

& 8 AutoTest Project

Project and Test Information
Location

Efy Detsils Test framework: Google Test v
Kits ! ; E
Test suite name: ‘AIgon’dﬂmTestSmte |
Summary
Test case name: ‘BasicCalculaﬁons |
Enable C++11

Googletest source directory (optional): L;nngletest—release-l.ID.D'nguugletest-release-l.ID.DKgoogletest‘qindude\gtest|| Browse... |

Build system; gmake v

Next Cancel

Figure 9.12 — Option to add the GoogleTest source directory in the project creation
wizard

. Click Next and follow the instructions to generate the skeleton of the

project.

. To use GoogleTest, you have to add the header file into your test
project:

#include '"gtest/gtest.h"

. You can see the main function has already been created by the wizard:
#include "tst_calculations.h"

#include '"gtest/gtest.h"

int main(int argc,char *argv([])

{

::testing::InitGoogleTest(&argc,argv);

return RUN_ALL_TESTS();

}

7. You can create a simple test case with the following syntax:

TEST(TestCaseName, TestName) { //test logic }

8. GoogleTest also provides macros such as ASSERT_* and EXPECT_*
to check conditions and values:
ASSERT_TRUE(condition)
ASSERT_EQ(expected, actual)
ASSERT_FLOAT_EQ(expected, actual)

EXPECT_DOUBLE_EQ (expected, actual)

In most cases, it is a standard procedure to do some custom initialization
work before running multiple tests. If you want to evaluate a test's
time/memory footprint, you'll have to write some test-specific code.
Test fixtures help in setting up specific testing requirements. The
fixture class is derived from the ::testing::Test class. Please note that
instead of TEST, the TEST_F macro is used. You can allocate
resources and do initializations in the constructor or in the SetUp()
function. Similarly, you can deallocate in the destructor or in the
TearDown() function. A test function inside a text fixture is defined as

follows:

TEST_F(TestFixtureName, TestName) { //test logic }

9. To create and use a test fixture, create a class derived from the

::testing:: Test class as follows:

class PushButtonTests: public ::testing::Test

{

protected:

virtual void SetUp()

{
pushButton = new MyPushButton(0);
pushButton ->setText("My button");
3
3
TEST_F(PushButtonTests, sizeConstraints)
{
EXPECT_EQ(40, pushButton->height());
EXPECT_EQ(200, pushButton->width());
pushButton->resize(300,300);
EXPECT_EQ(40, pushButton->height());
EXPECT_EQ(200, pushButton->width());
}
TEST_F(PushButtonTests, enterKeyPressed)
{
QSignalSpy spy(pushButton, SIGNAL(clicked()));
QTest: :keyClick(pushButton, Qt::Key_Enter);
EXPECT_EQ(spy.count(), 1);
}

In the preceding code, we created a custom push button inside the
SetUp() function. Then we tested two test functions to test the size and

Enter key handling.

10. When you run the preceding test, you will see the test results in the

output window.

GoogleTest builds a new test fixture at runtime for each test specified with
TEST_F(). It instantly initializes by calling the SetUp() function and runs
the test. Then it calls TearDown() to do the cleanup, and removes the test
fixture. It is important to note that different tests within the same test suite
can have different test fixture objects. Before building the next test fixture,
GoogleTest always deletes the previous one. It does not reuse test fixtures
for multiple tests. Any modifications done to the fixture by one test have no

effect on the other tests.

We discussed how to create a GoogleTest project with a simple test case and
how to design a test fixture or test suite. Now you can create test cases for
your existing C++ application. GoogleTest is a very mature test framework.
It also integrates the mocking mechanism that was earlier available under

GoogleMock. Explore different features and experiment with test cases.

There is also a ready-made GUI tool that integrates both test frameworks to
test your Qt application. GTest Runner is a Qt-based automated test runner
and GUI with powerful features for Windows and Linux platforms.
However, the code is not actively maintained and is not upgraded to Qt 6.
You can learn more about features and usages of GTest Runner at the

following link:

https://github.com/nholthaus/gtest-runner

In this section, you learned how to use QTest and GoogleTest together. You
have seen the features of both testing frameworks. You can create mock

objects using the GoogleMock feature of the GoogleTest framework. Now

https://github.com/nholthaus/gtest-runner%20

you can write your own test fixtures for a custom C++ class or custom

widget. In the next section, we will discuss testing in Qt Quick.

Testing Qt Quick applications

Qt Quick Test is a framework created for the unit testing of Qt Quick
applications. Test cases are written in JavaScript and use the TestCase
QML type. Functions with names beginning with test_ are identified as test
cases that need to be executed. The test harness recursively searches for the
required source directory for tst_ *.qml files. You can keep all test .qml
files under one directory and define the QUICK_TEST_SOURCE_DIR.
If it is not defined, then only .qml files available in the current directory
will be included during test execution. Qt doesn't ensure binary
compatibility for the Qt Quick Test module. You have to use the appropriate

version of the module.

You have to add QUICK_TEST_MAIN() to the C++ file to begin the

execution of the test cases, as shown next:
#include <QtQuickTest>

QUICK_TEST_MAIN(testgml)

You need to add the gmltest module to enable Qt Quick Test. Add the

following lines of code to the .pro file:
QT += gmltest

TEMPLATE = app

TARGET = tst_calculations

CONFIG += gmltestcase

SOURCES += testgml.cpp

Let's see a demo of a basic arithmetic calculation to see how the module
works. We will do some calculations such as addition, subtraction, and
multiplication and intentionally make some mistakes so that test cases will
fail:
import QtQuick
import QtTest
TestCase {

name: "Logic Tests"

function test_addition() {

compare(4 + 4, 8, "Logic: 4 + 4 = 8")
}
function test_subtraction() {

compare(9 - 5, 4, "Logic: 9 - 5 = 4")

}

function test_multiplication() {

compare(3 * 3, 6, "Logic: 3 * 3 = 6")

}

When you run the preceding example, you will see the output with the test

results as follows:
FrExkxkx*k Start testing of testgml FrFEFEFEXF

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testgml::Logic Tests::initTestCase()

PASS : testgml::Logic Tests::test_addition()

FAIL! : testgml::Logic Tests::test_multiplication()Logic: 3 * 3
6

Actual (): 9
Expected (): 6

C:\Qt6éBook\Chapter@9\QMLTestDemo\tst_calculations.gml(15) : failure
location

PASS : testgml::Logic Tests::test_subtraction()
PASS : testgml::Logic Tests::cleanupTestCase()
Totals: 4 passed, 1 failed, © skipped, 0 blacklisted, 3ms

FARxxxxAx* Finished testing of testgml ***x***x*x

Please note that cleanupTestCase() is called right after the test execution
has been completed. This function can be used to clean up before

everything is destructed.

You can also perform data-driven tests as shown here:
import QtQuick
import QtTest
TestCase {
name: "DataDrivenTests"
function test_table_data() {
return [

{tag: "10 + 20

30", a: 10, b: 20, result: 30

I
{tag: "30 + 60

90", a: 30, b: 60, result: 90

i

{tag: "50 + 50

100", a: 50, b: 50, result: 50

iy

}

function test_table(data) {

compare(data.a + data.b, data.result)

}

Please note that the table data can be provided to a test using a function
name that ends with _data. When you run the preceding example, you will
see the output with the test results as follows:

kkkkkkkk*x Start teStlng of maln kkkkhkkk k%

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : main::DataDrivenTests::initTestCase()

PASS : main::DataDrivenTests::test_table(10 + 20 = 30)

PASS : main::DataDrivenTests::test_table(30 + 60 = 90)

FAIL! : main::DataDrivenTests::test_table(50 + 50 = 100) Compared

values are not the same
Actual (): 100
Expected (): 50

C:\Qt6Book\Chapter0o9\QMLDataDrivenTestDemo\tst_datadriventests.qgml(
14) : failure location

PASS : main::DataDrivenTests::cleanupTestCase()
Totals: 4 passed, 1 failed, © skipped, 0 blacklisted, 3ms

FARxxxxAx* Finished testing of main ******x**

You can also run benchmark tests in QML. The Qt benchmark framework
will run functions with names that begin with benchmark_ several times,
with an average timing value recorded for the runs. It is similar to the
QBENCHMARK macro in the C++ version of QTestLib. You can prefix
the test function name with benchmark_once_ to get the effect of the
QBENCHMARK_ONCE macro. Let's have a look at the following
benchmarking example:
import QtQuick
import QtTest
TestCase {
id: testObject
name: "BenchmarkingMyItem"
function benchmark_once_create_component() {
var component = Qt.createComponent("MyItem.qgml")
var testObject = component.createObject(testObject)
testObject.destroy()

component.destroy()

}

In the preceding example, we are creating a custom QML element. We want
to measure how much time it takes to create the element. Hence, we wrote
the preceding benchmark code. A normal benchmark test runs multiple
times and shows the duration of the operation. Here, we have benchmarked
the creation once. This technique is very useful in evaluating the

performance of your QML code.

When you run the preceding example, you will see the output with the test
results as follows:
FrAxxAkxxE Start testing of testgml FrEFxEFxA

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testgml::BenchmarkingMyItem::initTestCase()

PASS
testgml: :BenchmarkingMyItem: :benchmark_once_create_component()

PASS
testgml: :BenchmarkingMyItem: :benchmark_once_create_component()

RESULT : testgml::benchmark_once_create_component:
O msecs per iteration (total: O, iterations: 1)
PASS : testgml::BenchmarkingMyItem: :cleanupTestCase()

QWARN : testgml::UnknownTestFunc()
QQmlEngine::setContextForObject(): Object already has a QQmlContext

Totals: 4 passed, 0 failed, © skipped, 0 blacklisted, 5ms

FARxxxxAx* Finished testing of testgml ***x***x*x

To run the benchmark multiple times, you can remove the once keyword
from the test case as follows: function benchmark_create_component()
{...}. You can also test dynamically created objects using
Qt.createQmlObject().

There is also a benchmarking tool named gqmlbench for benchmarking the
overall performance of a Qt application. It is a feature-rich benchmarking
tool available under qt-labs. The tool also helps in measuring the refresh
rate of the user interface. You can explore more about this tool at the

following link:

https://github.com/qt-labs/gmlbench

Like a C++ implementation, you can also simulate keyboard events such as
keyPress(), keyRelease(), and keyClick() in QML. The events are
delivered to the QML object that is currently being focused on. Let's have a
look at the following example:
import QtQuick
import QtTest
MouseArea {
width: 100; height: 100
TestCase {
name: "TestRightKeyPress"
when: windowShown
function test_key_click() {

keyClick(Qt.Key_Right)

}

In the preceding example, the keyboard event is delivered after the QML
viewing window has been displayed. Attempts to deliver events before that
will be unsuccessful. To keep track of when the window is shown, the when

and windowShown properties are used.

When you run the preceding example, you will see the output with the test
results as follows:

FrExkxkx*F Start testing of testqgml *rFEFEFEF

https://github.com/qt-labs/qmlbench%20

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testgml::TestRightKeyPress::initTestCase()

QWARN : testgml::TestRightKeyPress::test_key_click()
QQmlEngine::setContextForObject(): Object already has a QQmlContext

PASS : testgml::TestRightKeyPress: :test_key_click()
PASS : testgml::TestRightKeyPress: :cleanupTestCase()
Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 25ms

Frxxxxxx* Finished testing of testgml ********x*

You can use SignalSpy to watch signal emission. In the following example,
we have used SignalSpy to detect the clicked signal on a Button. When the

signal is emitted, the clickSpy count is increased:
import QtQuick
import QtQuick.Controls
import QtTest
Button {
id: pushButton
SignalSpy {
id: clickSpy
target: pushButton
signalName: "clicked"
}
TestCase {
name: "PushButton"
function test_click() {

compare(clickSpy.count, 0)

pushButton.clicked();

compare(clickSpy.count, 1)

}

When you run the preceding example, you will see the output with the test
results as follows:
FRxAAFxAX Start testing of testgml FFrEAFxEA

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-1little_endian-
11p64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testgml::PushButton::initTestCase()
PASS : testgml::PushButton::test_click()
PASS : testgml::PushButton::cleanupTestCase()

Totals: 3 passed, 0 failed, O skipped, 0 blacklisted, 5ms

FrkxxAkxx* Finished testing of testgml ****x**xx*

The QUICK_TEST_MAIN_WITH_SETUP macro is used to execute
C++ code before any of the QML tests are run. This can be useful for
setting context properties on the QML engine. A test application can
include several TestCase instances. The application terminates after
running all test cases. You can enable or disable test cases from the Tests

explorer:

~ T ¢ @ @ B+ A&

[1 Ot Test (none)
HH v Quick Test
Welcome hd T¢ PushButton
95 test click
E] Google Test (none)
[] Boost Test (none)
[Catch Test (none)

Figure 9.13 — The Tests explorer showing Quick Test with the available test cases

In this section, we discussed different testing approaches to test a QML
object. In the next section, we will get familiar with GUI testing and learn

about a few popular tools.

GUI testing tools

You can easily evaluate one or more classes as unit tests, but we have to
manually write all of the test cases. GUI testing is an especially challenging
task. How can we document user interactions such as mouse clicks without
coding them in C++ or QML? This question has baffled developers. There
are a number of GUI testing tools available on the market that help us do
this. Some of them are expensive, some of them are open source. We will

discuss a few such tools in this section.

However, you may not need a complete GUI testing framework. Some
issues can be figured out with simple tricks. For example, while working
with the GUI, you may also have to inspect different properties such as the
alignment and boundaries of visual elements. One of the easiest ways is to

add a Rectangle to inspect the boundary as shown in the next code:

Rectangle {
id: container
anchors {
left: parent.left
leftMargin: 100
right: parent.right
top: parent.top
bottom: parent.bottom
}
Rectangle {
anchors.fill : parent
color: "transparent"
border.color: "blue" }
Text {
text: " Sample text"
anchors.centerIn: parent
Rectangle {
anchors.fill : parent
color: "transparent"

border.color: "red"

}

When you run the preceding code snippet, you will see the GUI with

element boundaries in colors as shown in the next screenshot:

B Visual Inspection Demo — | ot

Figure 9.14 — Output of the visual boundaries of GUI elements using Rectangle

In the preceding example, you can see that the text element is placed
centrally inside the rectangle with a blue border. Without the blue border,
you might have wondered why it was not centrally placed in the GUI. You
can also see the boundaries and margins of each element. When the text
element width is less than the font width, then you will observe clipping.
You can also find whether there are any overlapping regions between user
interface elements. In this way, you can find issues in a specific element of
the GUI without using the SG_VISUALIZE environment variable.

Let's discuss a few GUI testing tools.

The Linux Desktop Testing Project
(LDTP)

The Linux Desktop Testing Project (LDTP) provides a high-quality test
automation infrastructure and cutting-edge tools for testing and improving

Linux desktop platforms. LDTP is a GUI testing framework that runs on all

platforms. It pokes around in the application's user interface using the
accessibility libraries. The framework also includes tools for recording test

cases depending on how the user interacts with the GUI.

To click on a push button, use the following syntax:

click('<window name>', '<button name>')

To get the current slider value of the given object, use the following code:

getslidervalue('<window name>', '<slider name>"')

To use LDTP for your GUI application, you must add an accessible name to
all your QML objects. You can use object names as the accessible names as

follows:

Button {
id: quitButton
objectName: "quitButton"

Accessible.name: objectName

}

In the preceding code, we have added an accessible name to the QML
control so that the LDTP tool can find this button. The LDTP requires the
window name of the user interface to locate the child control. Let's say the
window name is Example, then to generate a click event, use the following
command on the LDTP script:

>click('Example', 'quitButton')

The preceding LDTP command locates the quitButton and generates a

button-click event.

You can learn more about its features and uses at the following link:

https://1dtp.freedesktop.org/user-doc/

GammaRay

KDAB developed a software introspection tool named GammaRay to
inspect Qt applications. You can observe and manipulate your application at
runtime using the QObject introspection mechanism. This works on a local
machine as well as a remote embedded target. It extends the capabilities of
the instruction-level debugger while adhering to the same standards as the
underlying frameworks. This is particularly useful for complex projects that
use frameworks such as scene graphs, model/view, state machine, and so
on. There are several tools available to inspect the objects and their
properties. However, it stands out from other tools with its in-depth

association with Qt's complex framework.
You can download GammaRay from the following link:

https://github.com/KDAB/GammaRay/wiki/Getting-GammaRay;

You can learn more about its features and uses at the following link:

https://www.kdab.com/development-resources/qt-tools/gammaray/

Squish

Squish is a cross-platform GUI test automation tool for desktop, mobile,
embedded, and web applications. You can automate GUI testing for your

cross-platform application written with Qt Widgets or Qt Quick. Squish is

https://ldtp.freedesktop.org/user-doc/%20
https://github.com/KDAB/GammaRay/wiki/Getting-GammaRay%20
https://www.kdab.com/development-resources/qt-tools/gammaray/%20

used by thousands of organizations around the world to test their GUI with

functional regression tests and system tests.
You can learn more about the tool at the following link:

https://www.froglogic.com/squish/

In this section, we discussed various GUI testing tools. Explore them and

try them with your project. Let's summarize our learning in this chapter.

Summary

In this chapter, we have learned what debugging is and how to use different
debugging techniques to identify technical issues in a Qt application. Apart
from that, we've looked at the various debuggers that Qt supports on various
operating systems. Finally, we learned how to use unit testing to simplify
some of the debugging measures. We discussed unit testing, and you
learned how to use the Qt Test framework. You saw how to debug a Qt
Quick application. We also discussed various other testing frameworks and
tools supported by Qt. Now you can write unit tests for your custom classes.
The unit tests will fail and automatically alert if someone accidentally

modifies some specific logic.

In Chapter 10, Deploying Qt Applications, you will learn about deploying
Qt applications on various platforms. It will help you in creating installable

packages for your target platform.

https://www.froglogic.com/squish/%20

Chapter 10: Deploying Qt Applications

In earlier chapters, you learned how to develop and test an application using
Qt 6. Your application is ready and running on your desktop, but it is not
standalone. You must follow certain steps to ship your application so that it
can be used by end customers. This process is known as deployment.
Generally, your end users want a single file that they can double-click to
launch your software. Software deployment comprises different steps and
activities that are required to make software available to its intended users

who may not have any technical knowledge.

In this chapter, you will learn to deploy a Qt project on different platforms.
Throughout, you will learn about the available deployment tools and

important points to consider when creating a deployment package.
In this chapter, we will cover the following topics:

e Deployment strategies

e Static versus dynamic builds

e Deploying on desktop platforms

¢ Qt Installer framework

e Other installation tools

e Deploying on Android

By the end of this chapter, you will be able to create a deployable package

and share it with others.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform, such as
Windows 10 or Ubuntu 20.04 or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https:/github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-

Cpp/tree/master/Chapter10/HelloWorld.
IMPORTANT NOTE

The screenshots used in this chapter are taken on the Windows platform. You will see

similar screens based on the underlying platforms in your machine.

Understanding the need for deployment

The process of making software work on a target device, whether it's a test
server, a production environment, a user's desktop, or mobile device, is
known as software deployment. Typically, end users want a single file that
they can open to access your application. The user will not want to go
through several processes to obtain various alien files. Usually, users look
for software that they can launch with a double click or tap. The user will
not want to go through a series of steps to obtain a number of unknown
files. In this chapter, we will discuss the steps and things to consider while
deploying a Qt application. We will discuss deploying the application on

Windows, Mac, Linux, and Android platforms.

We've just been running debug versions of the applications we've built so

far. You should make release binaries for generating deployment packages.

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter10/HelloWorld

The difference between these two alternatives is that the debug version
includes information about the code you write, making it much easier to
debug if you encounter issues. However, you do not want to send multiple
files to users because this is useless for them. Users just want to run your
application. That is why you must provide them with your application's
release version. So, to ship the app, we'll create it in release mode, which
will give us a release binary that we can deliver to our users. Once you've
got the binaries, you'll need to create separate packages depending on which
platform you want to deploy your application. If you want to deploy on
Windows, you're going to take a specific approach, and the same will apply

to Linux, macOS, or Android.

A standard Qt deployment package consists of a single executable file, but
it requires the presence of additional files in order to run. Aside from the

executable file, the following files will be required:
e Dynamic libraries
e Third-party libraries
e Add-on modules
e Distributable files
e Qt plugins
e Translation files
e Help files

e Licenses

When we start a Qt project in Qt Creator, it is set to use dynamic linking by
default. Therefore, our app will require the Qt dynamic link libraries. We
will also require C++ runtime of your favorite compiler
(MinGW/MSVC/Clang/GCC) and standard library implementations. These
are usually available as .dll file on Windows, .so file on Linux and .se, or
.dylib file on macOS. If your project is a large complex project, you may
have multiple libraries. Your application package may also require third-

party libraries such as opengl, libstdc++, libwinpthread, and openssl.

If your application is based on Qt Quick, then you will also require standard
modules such as QtQuick, QtQml, QtStateMachine, QtCharts, and Qt3D.
They are supplied as dynamic libraries, with some extra files providing
QML module metadata, or as pure QML files. Unfortunately, the dynamic
libraries that implement Qt's C++ and QML APIs are insufficient to allow
our executable to run. Qt also uses plugins to enable extensions, as well as
for fairly standard GUI capabilities such as image file loading and display.

Similarly, some plugins encapsulate the platform on which Qt runs.

If you are using Qt's translation support, then you will also require the
translation files to be deployed. We will discuss translation more in Chapter
11, Internationalization. You may also need to deploy the documentation
files if you are using the Qt Help framework or even simple PDF manuals.
You may also need to deploy some icons or script or license agreements for
your application. You also have to ensure that the Qt libraries can locate the
platform plugins, documentation, and translations, as well as the intended

executable file, by themselves.

Choosing between static and dynamic
libraries

You can build your Qt application using static linking or dynamic linking.
When you build an application, the linker makes copies of all used library
functions to the executable file using either of these two approaches. We
assume that you are already aware of these two methods. In this section, we
will discuss when to use static linking and when to use dynamic linking for

your Qt application.

Static Library, or statically linked library, originates from the linker
putting all required library functions to the executable file. Static linking
generates bigger binary files that require more storage and main memory
space. Static libraries are represented by the .a file extension in Linux and

the .lib file extension in Windows.

Dynamic Library, or dynamically linked shared library, does not need
the code to be transferred. Instead, the name of the library is simply
included in the binary file. When an application is launched, both the binary
file and the library are loaded into memory. Dynamic libraries are linked at
runtime. They are represented by the .so file extension in Linux and the .dll

file extension in Windows.

A static build consists of a single executable file. But in a dynamic build,
you must take care of the dynamic libraries. Static builds are simpler as
they may already have the Qt plugins and QML imports in the executable.
The static build also facilitates link time optimization (LTO), which can
improve the overall application performance. Since it avoids the burden of

downloading the Qt libraries and ensuring that they are located in the

default search path for libraries on the target system, static linking is
frequently the safest and easiest approach to publish an application.
However, static linking is not very useful unless Qt was built from a source
with the -static configuration option specified. This mode of Qt application
deployment is available only with a commercial license. You should avoid
linking your application statically if you are an open source developer.
Since we are using an open source Qt version in this book, we won't go
through static builds in any more detail. Instead, we'll stick to the regular

dynamic builds and deployments.

You can learn more about deploying a Qt application with the

aforementioned approaches at the following link:

In the following sections, we are going to be focusing on the leading
desktop and mobile platforms. We're not going to discuss embedded

platforms as this is beyond the scope of this book.

Deploying on desktop platforms

You have seen that there's a lot to consider when deploying a Qt
application. Fortunately, Qt provides a tool that can assist us in this process
by scanning the generated application binary, identifying all dependencies,
and copying them to the deployment directory. We will deploy our
application on various platforms to achieve different objectives, but the
concepts will remain the same. Once we have our binary built, the first
thing we need to do is add the dependencies so that the user can execute the

application without difficulties.

https://doc.qt.io/qt-6/deployment.html

There are two ways in which we may load the dependencies. We can do it
manually or use certain tools that are provided by the Qt framework or by a
third party. On Windows, we can use windeployqt to load our
dependencies. On macOS, we can use macdeployqt to load our
dependencies for our binary. There is also another tool called
linuxdeployqt that you can use to add the dependencies to your binary.
linuxdeployqt works well for our needs, and we're going to discuss it in
this chapter. However, this Linux deploy utility tool is not official and is not
supported by Qt. Once you have your binary generated, you need to find
and add in the dependencies. You can do that manually or use one of these

tools, depending on where you are, to deploy your application.

In this chapter, we will use a simple HelloWorld example to discuss how to
deploy applications on different platforms. We will find the dependencies

and create a standalone package. Let's begin with Windows deployment.

Deploying on Windows

Most of the desktop applications that are built for Windows are usually
delivered in two approaches. First, the application comes as a standalone
application without any need for installation. In this approach, the
application usually come as an executable file (.exe) with all dependent
libraries inside the same directory. This type of application is known as a
portable application. The application doesn't make an entry into the
installed application list. So, you won't find an option in the add or remove
program list. This is useful when you don't have permission to install a new

application on the Windows desktop. The second type of application

usually comes in .exe or .msi format. You will learn to create an installable
.exe file. In this section, we will discuss how to create standalone

deployment packages with both approaches.
Follow these steps to create a portable application:

1. First, create a simple Qt application. You can choose Qt Widget or a Qt
Quick-based application. Here we will discuss the Qt Widget-based

application. The procedure is the same for both types of applications.

2. Once you created the sample application, you can optionally add your
application name, version, organization name, and domain by adding

the few lines of code inside your main.cpp file, as shown here:
QApplication app (argc, argv);
app.setOrganizationName("Awesome Company'");
app.setOrganizationbDomain("www.abc.com");
app.setApplicationName("Deployment Demo");

app.setApplicationVersion("1.0.0");

3. Once you created the application, build it in Release mode. You can
change the Build mode in the build settings. Release mode creates a
smaller binary as it eliminates the debug symbols. You can quickly
change the build mode from the kit selector section by clicking on it and

then selecting the Release option, as shown in Figure 10.1:

; Project: HelloWorld

Kit selector yit: Desktop Qt 6.1.0 MinGW 64-bit
Deploy: Deploy Configuration
Run: HelloWorld

HeloWorld Build

[3 , Debug

Release Profie

» Release
h

. Typeto locate (Ctrl+K)

Figure 10.1 — Release option in Qt Creator

4. You can see that the binaries are created inside the Release directory. In
this example, we are using shadow build. You can also change the
release directory from the General section under the Build Settings

screen:

s

[J] 2 Search release

MName Date modified Type Size

(5] HelloWorld.exe 18-05-2021 22:59 Application 24KB
D main.o 18-05-2021 22:59 0O File 2 KB
|k] moc_predefs.h 18-05-2021 22:59 C++ Header file 16 KB
[+ moc_widget.cpp 18-05-2021 22:59 C++ Source file 3KB
D moc_widget.o 18-05-2021 22:59 0 File 9 KB
D widget.o 18-05-2021 22:59 O File 4KB

Figure 10.2 — Directory with release binaries

5. Now, create a deployment directory and copy the executable from the

Release directory.

6. Now, double-click on the executable file. You will notice that the
application failed to launch and that several error dialogs appear. The
error dialogs will mention which library is missing. If you don't see
these errors, then you might have already added the library path in the
system environment. You can try it on a clean system where Qt libraries

are not installed:

HelloWorld.exe - System Error

, 1 The code execution cannot proceed because CteCore.dll was
' not found. Reinstalling the program may fix this problem.

Ok

Figure 10.3 — Error showing Qt library dependency

7. The next step is to find the missing Qt libraries that are required to run

your application independently outside the IDE.

8. Since we are using an open source version of Qt and the dynamic

linking approach here, you will notice that the missing libraries will
have a .dll extension. Here, we saw that the missing library is
Qt6Core.dll.

. The number of errors will depend on the number of modules used in the

program. You can find the Qt dependent libraries from the
QTDIR/6.x.x/<CompilerName>/bin directory. Here, QTDIR is where
Qt 6 is installed. In our example, we have used Qt 6.1.0 as the version
and mingw81_64 as the compiler, hence the path is
D:/Qt/6.1.0/mingw81_64/bin. This path can vary as per your Qt
installation path, Qt version, and chosen compiler. The following

screenshot shows the presence of the dynamic libraries under the bin

directory:

« 610 » mingw81 64 » bin v | 0 2 Search bin

MName Date modified Type : Size

|J CteConcurrent.dll 26-04-2021 21:07 Application extension 36 KB
d CteCore.dll 26-04-2021 21:07 Application extension £,006 KB
|J CteCore3Compat.dll 27-04-2021 14:25 Application extension 815KE
d OteDBus.dll 26-04-2021 21:07 Application extension 736 KB
|_'| CtEDesigner.dl 27-04-2021 1447 Application extension 5257 KB
|J CteDesignerCompenents.dil 27-04-2021 14:47 Application extension 2880 KB
|J CteGuidil 26-04-2021 21:07 Application extension 8,869 KB

Figure 10.4 — Required Qt libraries inside the bin directory

10. As illustrated in Figure 10.4, copy the missing .dll files to the recently

11.

created deployment directory.

Repeat the process until you have copied all the missing libraries

mentioned in the error messages to the deployment directory. You may

also have to deploy compiler-specific libraries along with your
application. You can also find the dependent libraries by using the
Dependency Walker (depends.exe) tool. This tool is a free tool
specific to Windows. It provides a list of dependent libraries. However,
in recent versions, the tool has not been very useful and often fails to
provide the required information. There are few more tools you can
experiment with such as PeStudio, MiTeC EXE Explorer, and CFF

Explorer. Please note that I haven't explored these tools.

12. Once you have copied all the missing libraries, try to run the application
again. This time, you will notice that a new error pops up. On this

occasion, the message relates to the platform plugin:

HelloWarld X

% This application failed to start because no Ot platform plugin
L f.-' could be initialized. Reinstalling the application may fix this

b problem.,

Figure 10.5 — Error dialog indicating a missing Qt platform plugin

13. Create a directory called platforms inside the deployment directory:

« 61.0 » mingwd1 &4 » plugins * platforms

Mame

D gwindows.dll
|j goffscreen.dll
] qminimal.dil
4] gdirect2d.dll
|:| gwindows.debug
I:] gdirect2d.debug
i:l geffscreen.debug

| | gminimal.debug

~ [ate modified

26-04-2021 21:08
26-04-2021 21:08
26-04-2021 21:08
26-04-2021 21:08
26-04-2021 21:00
26-04-2021 20:58
26-04-2021 20:58
26-04-2021 20:58

Type

Application extension
Application extension
Application extension
Application extension
DEEBUG File
DEBUG File
DEBUG File
DEBUG File

Search platforms

Size

975 KB
83 KB

42 KB
1,064 KB
68,848 KB
78,123 KB
5,090 KB
3,533 KB

Figure 10.6 — Directory showing the Qt windows platform plugin

14. Then, copy the qwindows.dll file from C:\Qt\6.x.x\
<compiler_name>\plugins\platforms to the new platforms
subdirectory. Figure 10.7 illustrates the organization of the files in the

deployment directory:

« release » deployment w & L Search deployment
Marme " Date modified Type Size
platforms 18-05-2021 22:53 File folder

[HelloWorld.exe 18-05-2021 22:39 Application 24 KB
D libgce_s_seh-1.dll 12-05-2018 11:41 Application exten... 75 KB
|j libstdc++-6.dll 2-05-2013 11:41 Application exten... 1,384 KB
D libwinpthread-1.dll 2-05-2018 11:41 Application exten... 51 KB
D CtECore.dll 26-04-2021 21:07 Application exten... 6,006 KB
Ij CtEGui.dll 26-04-2021 21:07 Application exten... 8,369 KB
|:] CtEWidgets.dll 26-04-2021 21:07 Application exten... 6,219 KB

Figure 10.7 — Copy platforms plugin inside the release directory

15. Now, double-click on the HelloWorld.exe file. You will observe that
the HelloWorld! GUI appears in no time. Now, the Qt Widgets

application can be launched on a Windows platform that doesn't have Qt

6 installed:

W3 Deployment Example = O X

HelloWorld!

Figure 10.8 — Standalone application running with resolved dependencies

16. The next and final step is to zip the folder and share it with your friends.

Congratulations! You have successfully deployed your first standalone
application. However, this approach doesn't work well for a large project
where we have many dependent files. Qt provides several handy tools for
dealing with such challenges and creating an installation package easily. In
the next section, we will discuss the Windows deployment tool and how it

can help us deal with these challenges.

Windows deployment tool

The Windows deployment tool comes with the Qt 6.x installation package.
You can find it under <QTDIR>/bin/ as windeployqt.exe. You can run this
tool from the Qt command prompt and pass the executable file as the

argument, or with a directory as the parameter. If you are building a Qt

Quick application, you will have to additionally add the directory path of
the .qml files.

Let's have a look at some of the important command-line options available

in windeployqt. Explore some of the useful options in the following list:
e -? or -h or --help displays help on command-line options.
e --help-all displays help including Qt-specific options.
 --libdir <path> copies dependent libraries to the path.
e --plugindir <path> copies dependent plugins to the path.
e --no-patchgqt instructs not to patch the Qt6Core library.
e --no-plugins instructs to skip plugin deployment.
e --no-libraries instructs to skip library deployment.

e --gmldir <directory> scans the QML imports from the source

directory.

e --gmlimport <directory> adds the given path to the QML module

search locations.
e --no-quick-import instructs to skip deployment of Qt Quick imports.

e --no-system-d3d-compiler instructs to skip deployment of the D3D

compiler.
e --compiler-runtime deploys the compiler runtime on the desktop.

e --no-compiler-runtime prevents deployment of the compiler runtime

on the desktop.

e --no-opengl-sw prevents deployment of the software rasterizer library.

You can find the windeployqt tool inside the bin folder, as shown in the

following screenshot:

« Ot » 610 » mingw81_64 » bin v] 2 Search bin

Mame Date modified Type ’ Size

(] windeploygt.exe 27-04-2021 14:49 Application 225 KB
(5] vic.exe 26-04-2021 21:08 Application 570 KB
[tracegen.exe 26-04-2021 21:08 Application 1,573 KB
[5] shadergen.exe 27-04-2021 14:52 Application 262 KB
(] rec.exe 26-04-2021 21:08 Application 1,795 KB
[qvkgen.exe 26-04-2021 21:08 Application 7T KB
[#] gtplugininfo.exe 27-04-2021 14:49 Application 41KE
(] gtpaths.exe 27-04-2021 14:48 Application 70 KB

Figure 10.9 — The windeployqt tool inside the bin directory

The easiest way to use windeployqt is to add its path to the Path variable.
To add it to Path, open System Properties on your Windows machine and
then click on Advance system settings. You will find that the System
Properties window appears. At the bottom of the System Properties
window, you will see the Environment Variables... button. Click it and
select the Path variable, as shown in the following screenshot. Then, click
on the Edit... button. Add the path of the Qt bin directory and hit the OK

button:

Edit environment variable X

m
=
=]
=]
T
L
m

%USERPROFILE®:\AppDatatLocal\Microsoft\WindowsApps Mew
User variables for Mibedit & eyl Sl dn
DACHNE.] D\mingw81_B4\bin Edit
Vanable
OneDrive 2 Browse..,
Path | 1
TEMP Delete
TP
Move Up
Move Down
System variables Edit text...
Variable
ComSpec
DriverData
JAVA_HOME
MUMBER_OF_PROCESSORS
Onlineservices
s 3 QK Cancel
Path [
New.. || Edt. || Delete
4 oK Cancel

Figure 10.10 — Adding the bin directory to the system environment path

Close the System Properties screen and launch the Qt command prompt.
Then you can use the following syntax to create a deployment package for

your Qt Widget-based application:

>windeployqt <your-executable-path>

If you are using Qt Quick, follow the next syntax:

>windeployqt --gmldir <gmlfiles-path> <your-executable-path>

Afterward, the tool will copy the identified dependencies to the deployment
directory, ensuring that we have all of the required components in one
location. It will also build the subdirectory structure for plugins and other
Qt resources that you'd expect. If ICU and other files are not in the bin

directory, they must be added to the Path variable before running the tool.

Let's begin with the same HelloWorld example. To create a deployment of

the example using windeployqt, perform the following steps:

1. Create a deployment directory and copy the HelloWorld.exe file to the

deployment directory.

2. Now you can invoke the deployment tool, as shown here:

D:\Chapter10\Helloworld\deployment>windeployqt HelloWorld.exe

3. Once you enter the command, the tool will start gathering information

about the dependencies:

>D:\Chapter10\HelloWorld\deployment\HelloWorld.exe 64 bit,
release executable

Adding QtéSvg for qgsvgicon.dll
Direct dependencies: Qt6Core Qté6Widgets
All dependencies : Qt6Core Qt6Gui Qt6Widgets

To be deployed : Qt6Core Qt6Gui Qt6Svg Qtéwidgets

4. You will observe that the tool not only listed the dependencies but also

copied the required files to the destination directory.

5. Open the deployment directory and you will find that multiple files and

directories have been added:

Mame Date modified Type Size

iconengines 19-05-2021 00:23 File folder

imageformats 19-05-2021 00:25 File folder

platforms 19-05-2021 00:23 File folder

styles 19-05-2021 00:25 File folder

translations 19-05-2021 00:23 File folder
D3Dcompiler_47.dIl 11-03-2014 16:24 Application extension 4077 KB
(8 HelloWorld.exe 18-05-2021 22:39 Application 24 KB
libgee_s_seh-1.dll 12-05-2018 11:41 Application extension T3 KB
libstdec++-6.dll 12-05-2018 11:41 Application extension 1,384 KB
libwinpthread-1.dll 12-05-208 11:41 Application extension 51KB
opengl32sw.dIl 04-06-2020 13:20 Application extension 20,150 KB
Qt6Core.dll 26-04-2021 21:07 Application extension 6,006 KB
Qt6Guidll 26-04-2021 21:07 Application extension 8,869 KB
CitBSvg.dil 27-04-2021 10:59 Application extension 350 KB
CtbWidgets.dll 26-04-2021 21:.07 Application extension 6,219 KB

Figure 10.11 — windeployqt copied all required files to the deployment directory

6. In the previous section, we had to identify and copy all the
dependencies ourselves, but that task is now delegated to the

windeployqt tool.

7. If you are using a Qt Quick application, run the following command:

>D:\Chapter10\gmldeployment>windeployqt.exe --qmldir
D:\Chapter10\HelloWorld D:\Chapter10\gmldeployment

8. You can see that the tool has gathered the dependencies and copied the

required files to the deployment directory:

D:\Chapter10\gmldeployment\HellowWorld.exe 64 bit, release
executable [QML]

Scanning D:\Chapter10\HelloWorld:
QML imports:

'QtQuick' D:\Qt\6.1.0\mingw81_64\gml\QtQuick

'QtQuick.wWindow' D:\Qt\6.1.0\mingw81_64\gml\QtQuick\Window
'QtQml' D:\Qt\6.1.0\mingw81_64\qml\QtQml
'QtQml.Models' D:\Qt\6.1.0\mingw81_64\gml\QtQml\Models

'QtQml.workerScript'
D:\Qt\6.1.0\mingw81_64\gml\QtQml\WorkerScript

Adding Qt6Svg for gsvgicon.dll
Direct dependencies: Qt6Core Qt6Gui Qt6Qml

All dependencies : Qt6Core Qt6Gui Qt6Network Qt60penGL Qt6Qml
Qt6Quick Qt6QuickParticles Qt6Sql

To be deployed : Qt6Core Qt6Gui Qt6Network Qt60penGL Qt6Qml
Qt6Quick QtéQuickParticles Qt6Sgl Qt6Svg

9. You can now double-click to launch your standalone application.
10. The next step is to zip the folder and share it with your friends.
The command-line options for the Windows deployment tool can be used to

fine-tune the identification and copy process. The essential instructions may

be found at the following links:

https://doc.qt.io/qt-6/windows-deployment.html.

https://wiki.qt.io/Deploy_an Application on Windows.

Cheers! You have learned to deploy a Qt application using the Windows
deployment tool. However, there is still a lot of work to be done. The Qt
Installer Framework provides several handy tools for dealing with such
challenges and creating installable packages easily. In the next section, we
will discuss the Linux deployment tool and how to use it to create a

standalone application.

https://doc.qt.io/qt-6/windows-deployment.html
https://wiki.qt.io/Deploy_an_Application_on_Windows

Deploying on Linux

In Linux distributions, we have multiple options to deploy our application.
You can use an installer, but you can also have an option such as an app
bundle. There is a technology called app image that makes the deployment
process very easy. You can also package your application to be used by the
package manager. You can go through options such as apt on Debian,
Ubuntu, or Fedora and your application can be used through this approach.
However, you can choose a much simpler approach, like the app image
option, which is going to provide you with one file. You can give that file to

your users and they can just double-click to run the application.

Qt documentation provides certain instructions to deploy on Linux. You can

have a look at the following link:

https://doc.qt.io/qt-6/linux-deployment.html.

Qt doesn't provide any ready-made tool similar to windeployqt for Linux
distributions. This may be due to a large number of Linux flavors. However,
there is an unofficial open source Linux deployment tool named
linuxdeployqt. This takes an application as input and turns it into a self-
contained package by replicating the project's resources into a bundle. Users
can get the generated bundle as an AppDir or an AppIlmage, or it may be
included in cross-distribution packages. With systems such as CMake,
gmake, and make, it may be used as part of the build process to deploy
applications written in C, C++, and other compiled languages. It can
package specific libraries and components required to run the Qt-based

application.

You can download linuxdeployqt from the following link:

https://doc.qt.io/qt-6/linux-deployment.html

https://github.com/probonopd/linuxdeployqt/releases.

You will get linuxdeployqt-x86_64.AppImage after the download and do

chmod a+x before running it.

You can read the complete documentation and find the source code at

https://github.com/probonopd/linuxdeploydt.
If you want a single application package easily, then run linuxdeployqt
with the -appimage flag.

There are also few more deployment tools such as Snap and Flatpak to
package an application and its dependencies runs across multiple Linux

distributions without making any modification.

You can read on how to create a snap in the following link:

https://snapcraft.io/docs/creating-a-snap

You can explore more about Flatpak by visiting the following link:

In the next section, we will discuss the macOS deployment tool and how to

use it to create a standalone application for your Mac users.

Deploying on macOS

You can go through a similar process as discussed in previous sections to
generate an installer file for the macOS. We will discuss the steps that you
can follow to generate an app bundle. You can test the package on your

macOS and send it to your Mac users. The process is pretty much the same

https://github.com/probonopd/linuxdeployqt/releases
https://github.com/probonopd/linuxdeployqt
https://snapcraft.io/docs/creating-a-snap%20
https://docs.flatpak.org/en/latest/qt.html%20

as on Linux. After all, macOS is based on Unix. Therefore, you can create

installers, which we call a bundle on the macOS.

You can find the macOS deployment tool inside QTDIR/bin/macdeployqt.
It is designed to automate the process of creating a deployable application
bundle that contains the Qt libraries as private frameworks. The Mac
deployment tool also deploys the Qt plugins unless you specify the -no-
plugins option. By default, Qt plugins such as platform, image format, print
support, and accessibility are always deployed. SQL driver and SVG
plugins are deployed only if it is used by the application. The designer
plugins are not deployed. If you want to include a third-party library in the
application bundle, you must manually copy the library into the bundle after

it has been built.

A couple of years back, Apple launched a new filesystem called Apple File
System (APFS). Older versions of macOS cannot read APFS-formatted
.dmg files. For compatibility with all versions of macOS currently
supported by Qt, macdeployqt uses the older HFS+ filesystem by default.

To choose a different filesystem, use the -fs option.

You can find detailed instructions at the following link: https://doc.qt.io/qt-

6/macos-deployment.html.

In the next section, we will discuss the Qt Installer Framework and how to

use it to create a complete installation package for your users.

Using the Qt Installer Framework

The Qt Installer Framework (QIFW) is a collection of cross-platform

tools and utilities for creating installers for the supported desktop Qt

https://doc.qt.io/qt-6/macos-deployment.html

platforms, which include Linux, Windows, and macOS. It allows you to
distribute your application across all supported desktop Qt platforms
without having to rewrite the source code. The Qt Installer Framework tools
create installers that include a collection of pages that help users through
the installation, update, and removal processes. You provide the installable
contents as well as information about it, such as the product name, the

installer, and the legal agreement.

You may personalize the installers by adding widgets to the pre-defined
pages or adding entire pages to give consumers more options. You may add
operations to the installer by writing scripts. Depending on your use cases,
you can give end customers an offline or online installation, or both. It
works well on Windows, Linux, and Mac. We will use it to create installers
for our application and we're going to see how this works in detail on
Windows. The process followed for Linux and macOS is similar to
Windows. So, we will only discuss the Windows platform. You can try

similar steps on your favorite platform.

You can learn more about the predefined pages at the following link:

https://doc.qt.io/qtinstallerframework/ifw-use-cases-install.html.

Before starting the journey, confirm that Qt Installer Framework is installed
on your machine. If it is not present, launch Qt Maintenance Tool and
install it from the Select Components page, as shown in the following

screenshot:

https://doc.qt.io/qtinstallerframework/ifw-use-cases-install.html

Maintain Qt X

Select Components

Select the components to instal, Deselect installed components to uninstal them, Any components already installed wil not be updated.

Welcome
Select Categories

Setup- (t Companent Name

of tools and u
% MinGW 6.1.0 64-bi the supparted

0 Ardhive
0 s

¥ Latest releases

Select Components
License Agreement

Update
i 8 Preview
ing 0 0t 30 Studio OpenGL Runtim

Fiiched O 0t 30 Studio OpenGL Runtim
inished

8.2 32-bit
832-bit

8 Ot Installer Framework 4.1
L1 Chake 3.19.2 32-bit

O CMake 3.19.2 64-bit

0 Conan133

O Ninja 1.100

@ OpenSSL1.1.1) Toalkit

0 0Ot Installer Framewaork 3.2

Figure 10.12 — The Qt Installer Framework download option in the Qt maintenance tool

Once you have installed the application successfully, you will find the
installation files under QTDIR\Tools\QtInstallerFramework\:

Mame Date modified Type Size

[archivegen.exe 10-03-2020 15:28 Application 19,604 KB
binarycreator.exe 10-03-2020 15:28 Application 20,303 KB
devtool.exe 10-03-2020 15:29 Application 20,151 KB
L) installerbase.exe 10-03-2020 15:28 Application 21,034 KB
(55 repogen.exe 10-03-2020 15:28 Application 20,078 KB

Figure 10.13 — Tools inside the Qt Installer Framework directory on Windows

You can see that there are five executables created inside the Qt Installer

Framework directory:

e The archivegen tool is used to package files and directories into 7zip

archives.
e The binarycreator tool is used to create online and offline installers.
e devtool is used to update an existing installer with a new installer base.

e The installerbase tool is the core installer that packs all data and meta

information.

e The repogen tool is used to generate online repositories.

In this section, we will use the binarycreator tool to create the installer for
our Qt application. This tool may be used to produce both offline and online

installers. Some choices have default values, so you may leave them out.

To create an offline installer on your Windows machine, you can enter the

following command to your Qt command prompt:

><location-of-ifw>\binarycreator.exe -t <location-of-
ifw>\installerbase.exe -p <package_directory> -c
<config_directory>\<config_file> <installer_name>

Similarly, to create an offline installer on your Linux or Mac machine, you
can enter the following command to your Qt command prompt:

><]ocation-of-ifw>/binarycreator -t <location-of-ifw>/installerbase
-p <package_directory> -c <config_directory>/<config_file>
<installer_name>

For example, to create an offline installer, execute the following command:
>pinarycreator.exe --offline-only -c installer-config\config.xml -p
packages-directory -t installerbase.exe SDKInstaller.exe

The preceding instruction will create an offline installer for the SDK,

containing all dependencies.

To create an online-only installer, you may use --online-only, which defines
all the packages to install from an online repository on a web server. For

example, to create an online installer, execute the following command:

>pinarycreator.exe -c installer-config\config.xml -p packages-
directory -e org.qt-project.sdk.qt,org.gt-project.qtcreator -t
installerbase.exe SDKInstaller.exe

You can learn more about binarycreator and the different options at the

following page: https://doc.qt.io/qtinstallerframework/ifw-

tools.html#binarycreator.

The easiest way to use binarycreator is to add its path to the Path variable.
To add it to Path, open System Properties on your Windows machine and
then click on Advance system settings. You will find that the System
Properties window appears. At the bottom of the System Properties
window, you will see the Environment Variables... button. Click it and

select the Path variable, as shown in the following screenshot. Then, click

https://doc.qt.io/qtinstallerframework/ifw-tools.html#binarycreator

on the Edit... button. Add the path of the QIFW bin directory and hit the

OK button. The following screenshot illustrates how to do this:

_ Edit environment variable >
Environment Variables
%USERPROFILE®S\AppDatatLocal\Microsoft\ Wind owsApps Mew
Uzer variables for Mibedit C:\Program Files\CMake\bin
DG . Dumingwd1_Bd\bin Edit
Variable OOt Tools\CtInstallerFramework! 4. 1 bin
Onelrive Browse...
Path
TEMP Delete
THMP
Move Up
Move Down
Systemn variables Edit text...
Variable
ComSpec
DriverData
JavA HOME
MUMBER_OF_PROCESS
OnlingServices
03 0] 4 Cancel
Path
I 1] . 1]] |
Mew... Edit... Delete
QK Cancel

Figure 10.14 — Adding the QIFW bin directory to the system environment path

Close the System Properties screen and launch the Qt command prompt.

Let's proceed to deploy our sample HelloWorld application. We're going to

create one installable package for our users so that they can double-click

and install it:

1. Create a directory structure that matches the installer's design and
allows it to be extended in the future. The config and packages
subdirectories must be present in the directory. It doesn't matter where
you put the directory for QIFW deployment; all that matters is that it

has this structure.

2. Make a configuration file with instructions for building the installer
binaries and online repositories. Create a file called config.xml in the
config directory with the following content:
<?xml version="1.0" encoding="UTF-8"?>
<Installer>

<Name>Deployment Example </Name>
<Version>1.0.0</Version>

<Title>Deployment Example</Title>
<Publisher>Packt</Publisher>
<StartMenuDir>Qt6 HelloWorld</StartMenuDir>
<TargetDir>@HomeDir@/HelloWorld</TargetDir>

</Installer>

The Title tag gives the name of the installer that appears in the title bar.
The application name is added to the page name and introductory text
using the Name tag. The software version number is specified by the
Version tag. The Publisher tag defines the software's publisher. The
name of the default program group for the product in the Windows Start
menu is specified by the StartMenuDir tag. The default destination

directory presented to users is InstallationDirectory in the current

user's home directory, as specified by the TargetDir tag. You can read

about more tags in the documentation.

You can also specify the app bundle icon in config.xml. On Windows, it
is extended with .ico and can be used as the application icon for the .exe
file. On Linux, you can specify the icon with a .png extension and this
can be used as the window icon. On macOS, you can specify the icon
with .icns and this can be used as the icon for the newly produced
bundle.

. Now create a subdirectory inside the packages directory. This will be
your component name. You can use your organization's name and
application name or your organization domain as the component such
as CompanyName.ApplicationName. The directory name functions as

a domain-like identifier, identifying all components.

. Make a package information file with details about the components that
may be installed. In this simple example, the installer just has to deal
with one component. Let’s create a package information file called

package.xml inside the packages\{component}\meta directory.

. Add the file in side the meta-directory with the following content to

provide information about the component to the installater.

Let's create package.xml and add the following content to it:
<?xml version="1.0"?>
<Package>
<DisplayName>Hello World</DisplayName>
<Description>This is a simple deployment example.

</Description>

<Version>1.0.1</Version>

<ReleaseDate>2021-05-19</ReleaseDate>

</Package>

The information from the following elements is displayed on the

component selection page during installation:

The DisplayName tag specifies the name of the component in

the list of components.

The Description tag specifies the text that is displayed when

the component is selected.

The Version tag enables you to promote updates to users when

they become available.

The Default tag specifies whether the component is selected by

default. The value true sets the component as selected.

You can add licensing information to your installer. The name
of the file that includes the text for the licensing agreement that
is shown on the licensing check page is specified by the

License tag.

6. You can copy the required content inside the data subdirectory under

the package directory. Copy all the files and directories to the data

subdirectory, which were earlier created with windeployqt. The

following screenshot shows the content copied inside the data

subdirectory:

Mame

iconengines

imageformats

platforms

styles

translations
D3Dcompiler_47.dll
[55] HelloWorld.exe
libgce_s_seh-1.dll
libstdc++-6.dll
libwinpthread-1.dIl
opengl32sw.dll
Ot6Coreddll
Ot6Gui.dil
Qt6Svq.dll
Qt6Widgets.dll

Date modified

19-05-2021 00:25
19-05-2021 00:25
19-05-2021 00:25
19-05-2021 00:25
19-05-2021 00:25
11-03-2014 16:24
18-05-2021 22:39
12-05-2018 11:41
12-05-2018 11:41
12-05-2018 11:41
04-06-2020 13:20
26-04-2021 21:07
26-04-2021 21:.07
27-04-2021 10:59
26-04-2021 21:07

Type

File folder

File folder

File folder

File folder

File folder
Application extension
Application
Application extension
Application extension
Application extension
Application extension
Application extension
Application extension
Application extension

Application extension

Size

4,077 KB
24 KB

75 KB
1,334 KB
51 KB
20,150 KB
6,006 KB
,860 KB
350 KB
6,219 KB

Figure 10.15 — Contents generated by windeployqt copied inside the data

subdirectory

7. The next step is to use the binarycreator tool to create the installer.

Enter the following instruction to the Qt command prompt:

>binarycreator.exe -c config/config.xml -p packages

HelloWorld.exe

8. You can see that an installer file got generated inside our deployment

directory:

1 « build-HelloWorld-Desktop_Ct_6_1_0_MinGW_84_bit-Release » deployment

MName

config

packages

B Heloworldexe «— INstaller

v Date modified

19-03-2021 00:40

Type
File folder

File folder
Application

Size

Figure 10.16 — Installer package created inside the deployment directory

You can also follow the same steps and run the following command to

generate an installer file on Linux or macOS:

$./binarycreator -c config/config.xml -p packages HelloWorld

9. We have got the desired result. Now, let's run the installer to verify that

the deployment package has been created properly.

10. Double-click on the installer file to begin the installation. You will see a

nice setup wizard appear on screen:

Deployment Example Setup

Setup - Deployment Example

Setup - Deployment Example
P el P Welcome to the Deployment Example Setup Wizard.

Installation Folder
Select Components
License Agreement
Start Menu shortcuts

Ready to Install

MNext Quit

Figure 10.17 — Setup wizard running a deployment example

11. Proceed through the pages to complete the installation. Exit the setup

wizard.

12. Now, launch the application from the Windows Start menu. You should

see the HelloWorld user interface appear in no time.

13. You can also find the installed application in Add/Remove Programs:

Settings

@ Home Apps & features
Find a setting o Apps & features
Apps Optional features

App execution aliases

Apps & features
Search, sort, and filter by drive. If you would like to uninstall or move an

app, select it from the list.

i1 Default apps
Search this list jo;

[Offline maps
Sort by: Install date Filter by: All drives

[0 Apps for websites 198 apps found

¥ Video playback Deployment Example . 3253234;
100

& Startup

Modify Uninstall

Figure 10.18 — Deployment example entry in the Windows program list

14. You may use the maintenance tool installed along with the installation
package to update, uninstall, and add components to the application.
You can find the tool inside your installation directory, as shown in the

following screenshot:

Marne Date modified Type Size

iconengines 19-05-2021 00:44 File folder

imageformats 19-05-2021 00:44 File folder

installerResources 19-05-2021 00:44 File folder

platforms 19-05-2021 00:44 File folder

styles 19-05-2021 00:44 File folder

translations 19-05-2021 00:44 File folder
D components.xml 19-05-2021 00:44 AML Document 1 KB
D3Dcompiler_47.dll 11-03-2014 16:24 Application extension 4077 KB
[85] HelloWorld.exe 18-05-2021 22:39 Application 24 KB
InstallationLog bt 19-05-2021 00:44 Text Document 3 KB
£, installer.dat 19-05-2021 00:44 DAT File 1 KB
libgee_s_seh-1.dll 12-05-2013 11:41 Application extension 75 KB
libstdc++-6.dll 12-05-2018 11:41 Application extension 1384 KB
libwinpthread-1.dll 12-053-2018 11:41 Application extension 51 KB
a'.é maintenancetool.dat 19-05-2021 00:44 DAT File 5KB
) maintenancetool.exe 19-05-2021 00:44 Application 21,512 KB
@ maintenancetocolini 19-05-2021 00:44 Configuration settings 5KB
D network.xml 19-05-2021 00:44 AML Document 1 KB
opengl32sw.dil 04-06-2020 13:20 Application extension 20,150 KB
QteCore.dll 26-04-2021 21:07 Application extension E,006 KB
CteGui.dil 26-04-2021 21:07 Application extension 8,869 KB
CtbSvg.dll 27-04-2021 10:59 Application extension 350 KB
CtEWidgets.dll 26-04-2021 21:07 Application extension 6,219 KB

Figure 10.19 — Maintenance tool in the installation directory

Congratulations! You have created an installer package for your sample
application. Now you can ship your developed Qt application to your users

and friends.

You can also provide further customization with customized setup wizard
pages. You can find the complete list of templates with installers that can be
used with the QIFW at the following link:

https://doc.qt.io/qtinstallerframework/ifw-customizing-installers.html

https://doc.qt.io/qtinstallerframework/qtifwexamples.html.

https://doc.qt.io/qtinstallerframework/ifw-customizing-installers.html
https://doc.qt.io/qtinstallerframework/qtifwexamples.html

You can explore more features of the framework here:

https://doc.qt.io/qtinstallerframework/ifw-overview.html.

In this section, we created an installable package to ship to our end users. In

the next section, we will learn to deploy on the Android platform.

Deploying on Android

In addition to desktop platforms such as Windows, Linux, and macQOS,
mobile platforms are equally important due to the massive number of users.
Many developers want to make their applications available on mobile
platforms. Let's have a look at how that's done. We will briefly discuss

deployment considerations on Android.

In Chapter 5, Cross-Platform Development, you have learned how to create
an .apk file, which is the deployment package for the Android platform. So,
we won't be discussing the steps again. In this section, we will discuss a few

necessary changes before uploading to the play store:

1. Create a simple HelloWorld application using the Android Kit from the

kit selection screen.
2. Change the build mode to Release mode.

3. Open the build settings of your project. You will find several options on

the screen:

https://doc.qt.io/qtinstallerframework/ifw-overview.html

Build Android APK @ Details «

Application Signature

Ke'_,rstore:| | Browse... | | Create...

[Sign package

Certificate alias:

Application
Android build SDK: android-30 v
Android customization: Create Templates
| Create an Android package for Custom Java code, assets, and Gradle configurations,
Advanced Actions

Open package location after build
[Verbose output

Add debug server
Additional Libraries

[Include prebuilt OpenSSL libraries

Add...

Remove

Figure 10.20 — A screenshot showing the Android manifest option in build settings

4. You can see the Keystore field under the Application Signature
section. Click on the Browse... button to select your existing keystore
file or use the Create... button to create a new keystore file. It can
protect key material from unauthorized use. This is an optional step and

only required for signing your deployment binary.

5. When you click the Create... button, then you will see a dialog with
several fields. Fill in the related fields and click on the Save button.

Figure 10.21 shows the keystore creation dialog:

¥ Create a keystore and a certificate - Ot Creator X

Keystore Certficate
Alias name: | |
Keysi=: | 2048 2
Vaiidity (days): |10000 2]
— |
— |

Retype password: | |

Retype password: |

|:| Show password

I:'UEKE‘}"StOI‘EpaﬂﬂWI‘d I:'Shnwpaﬁﬂmrd

Certificate Distinguished Names

First and lzst name:

Orrganizational unit {2.g. Necessitas):

Organization (e.g. KDE):

City or locality:

State or province:

Two-letter country code for this unit (=.g. RO):

Figure 10.21 — A screenshot showing the keystore creation screen

6. Save the keystore file anywhere, making sure to end the filename with

keystore.

The next step is to sign the application package. This is also an optional
step and is only required for play store publication. You can learn more

about application signing in the official documentation available at

7. You can select the target Android version and configure your Android

app by creating the AndroidManifect.xml file with Qt Creator. To do

https://developer.android.com/studio/publish/app-signing

that, click on the Create Templates button on the Build Android APK
screen. You will see a dialog appear, as shown in the following

screenshot:

Create Android Template Files Wizard

IEf;} Select the Android package source directory.
The files in the Android package source directory are copied to the build directory's
&ndroid directory and the default files are overvwrittan.

Android package source directory: P.,Chapterlﬂ‘.,Helln‘.‘JnrH‘.,and roid Browse...

Copy the Gradle files to Android directory

s

Figure 10.22 — A screenshot showing the manifest file creation wizard

8. Open the manifest file. You will see several options for your Android

application.

9. You can set the package name, version code, SDK version, application
icon, permissions, and so on. If you add a unique icon, then the default
Android icon for your app won't appear on the device. It will make your

application unique and easily discoverable on screen.

10. Let's add HelloWorld as the application name and add the Qt icon as our

application icon, as shown in the following screenshot:

B AndroidManifest.ml v X General XML Source

Package Application
Package name: ‘org.qtproject.example ‘ Application name: ‘HelloWorld ‘
Versoncode: |~ %KNSERT_VERSION CODEvg | ACHY Tame: - UANSERT AP AMERY - |
e |ME | |~ HSRTISERT APP_LIB_NAME4% V]
Minimum required SDK: ot set - Stle exracton: ‘defauﬂ "‘
Target SDK: Hot set | Screen orientation:‘unspeciﬁed v‘
Permissions
Include default permissions for Qt modules.
Indude default featuras for Qt modules,
androd permisson ACCESS_CHECKIN_PROPERTEES ol i
Remave

Advanced
Application icon ~ Android services Splash screen
Master icon LDFTicon MDPT icon HOFTicon AHDPTicon XXHDPL icon XXKHOPT icon

X

x
X
A
o @

(Click to select... | Click to select... Click to select... Clickto select.. Clickto slect... (Click to select... Click to select...

Figure 10.23 — Android manifest file showing different available options

11. Add additional libraries if you are using any third-party libraries such as
OpenSSL.

12. Click on the Run button in the bottom-left corner of Qt Creator to build
and run the application on an Android device. You can also hit the
Deployment button below the Run button to create the deployment

binaries.

13. You will see a new dialog appear on the screen. This dialog allows you
to choose between your physical Android hardware or the software-

emulated virtual device.

14. Connect your Android device and click on the Refresh Device List
button. Don't forget to enable Developer options from your Android
device settings. Allow USB Debugging when your Android device

prompts you:

(E Select Android Device - Ot Creator >

Compatible devices

e SM-NTTOF RESMOIAKMWN

Android 11 ABLarmBd-via armeabi-via armeabi

My device is missin

|:| Always use this device for this project

Refresh Device List| |Creste Android Virtuasl Dev'u:\el

OK Cancel

Figure 10.24 — Android device selection dialog

15. If you want to use a virtual device, click on the Create Android

Virtual Device button. You will see the following screen appear:

EE Create new AVD - Gt Creator b4
Name: TestDevice

Device definition: Phone | | Nesxus 10 W
Architecturs (ABI): | arméd-vEa v
Target API:

Cannct create a new AVD. No suitsble Android system image is installed.
Install 3 system image of at least API version 0 from the SDK Manager tab.

5D card size: 512 MiE ¢

D Overwrite existing AVD name

Figure 10.25 — Android virtual device creation screen

16. If the screen warns you about a failure to create a new AVD, then
update the Android platform tools and system images from the Android

SDK manager. You can update these from the command line as follows:
>sdkmanager "platform-tools" "platforms;android-30"
>sdkmanager "system-images;android-30;google_apis;x86"

>sdkmanager --licenses

17. Then, run the following command to run avdmanager:
>avdmanager create avd -n Android30 -k "system-images;android-
30;google_apis;x86"

18. The final step is to click on the Run button on the Qt Creator. You will
see that the Android deployment package was created with the .apk

extension inside the build folder:

19.

20.

21.

22.

Chapterl) » HelloWorld »| android-build » build » outputs » apk » debug

Fad

Name Date modified Type Size
'] android-build-debug.apk +—— 2 p‘(21-05-2021 01:57 APK File 15,456 KB
: output.jsen 21-05-2021 01:57 J50N File 1KB

Figure 10.26 — Android installer file generated inside the build directory

Internally, Qt runs the androiddeployqt utility. Sometimes, the tool
may fail to create the package with the following error:

error: aidl.exe ..Failed to GetFullPathName

In that case, put your application with a shorter file path and ensure that
no directory in your file path has whitespaces. Then, build the

application.

You can distribute the .apk files to your friends or users. Users have to
accept an option saying Install from Unknown Sources in their
Android mobile or tablets. To avoid this, you should publish your

application on the play store.

However, if you want to distribute your apps on the Google Play Store,
then you have to register as a Google Play developer and sign the
package. Google charges a small one-off amount to allow developers to

publish their applications.

Please note that Qt considers Android apps as a closed source. So, you
will require a commercial Qt license if you want to keep your Android

app code private.

Congratulations! You have successfully generated a deployable Android

application. Unlike iOS, Android is an open system. You can copy or

distribute the .apk file into other Android devices running on the same

Android version and install it.

In this section, we created an installable package for our Android device. In

the next section, we will learn about a few more installation tools.

Other installation tools

In this section, we will discuss some additional tools you can use to create
an installer. Note that we won't be discussing these tools in detail. I have not
verified these installation frameworks with Qt 6. You may visit the
respective tool website and learn from their documentation. In addition to
the installation framework and tools provided by Qt, you can use the

following tools on your Windows machine:

e CQtDeployer is an application to extract all the dependent libraries of
executables and create a launch script for your application. The tool
claims to deploy applications faster and provides flexible infrastructure.
It supports both Windows and Linux platforms. You can learn more
about this tool at the following link:
https://github.com/QuasarApp/CQtDeployer.

e Nullsoft Scriptable Install System (NSIS) is a script-driven
installation authoring tool from Nullsoft, the same company that created
Winamp. It has become a popular alternative to proprietary commercial
tools such as InstallShield. The current version of NSIS has a modern
graphical user interface, LZMA compression, multilingual support, and
a simple plugin system. You can explore more about the tool at

https://nsis.sourceforge.io/Main Page.

https://github.com/QuasarApp/CQtDeployer
https://nsis.sourceforge.io/Main_Page

e InstallShield is a proprietary software application that allows you to
create installers and software bundles. InstallShield is generally used to
install the software on Windows Platform desktop and server systems,
but it may also be used to manage software applications and packages
on a wide range of portable and mobile devices. Have a look at its
features and play with the trial version. You can download the trial and
read more about it at

https://www.revenera.com/install/products/installshield.html.

e Inno Setup is a free software script-driven installation system created
in Delphi. It was first released in 1997, yet still competes with many
commercial installers thanks to its excellent feature set and stability.
Learn more about this installer at the following link:

https://jrsoftware.org/isinfo.php.

You can select any of the installation frameworks and deploy your

application. In the end, it should meet your installation goal.

In this section, we discussed a few more installation tools that may be
beneficial for your needs. Let's now summarize our takeaways from this

chapter.

Summary

We began the chapter by discussing the application deployment problem
and learning the difference between static and dynamic libraries. Then we
discussed the different deployment tools in Qt and the specific case of
Windows deployment and installation. Armed with this knowledge, we

deployed a sample app on Windows and created an installer using the Qt

https://www.revenera.com/install/products/installshield.html
https://jrsoftware.org/isinfo.php

Installer Framework. In addition, we discovered deploying applications on
Linux and macOS and honed our skills for deploying applications on
various platforms. Later, we explained some of the important points to be
considered before publishing a Qt-based Android application to the play

store.

Finally, we looked at some third-party installer utilities. To summarize, you
have learned to develop, test, and deploy a Qt application on various
platforms. With this knowledge, you should be able to create your

installation packages and share them with the world.

In Chapter 11, Internationalization, we will learn about developing a

translation-aware Qt application.

Chapter 11: Internationalization

In earlier chapters, we learned how to create GUI applications with Qt
Widgets or Qt Quick. To make our applications usable across the world, we

need to add translations to the application.

The process of making your application translation-aware is known as
internationalization. It makes it easy to localize content for viewers from
different cultures, regions, or languages. Translating Qt Widgets and Qt
Quick apps into local languages is very easy with Qt. These processes of
adapting an application to different languages with the geographical and

technical standards of a target market are known as internationalization.

You will learn how to make an application with multilingual support.
Throughout the chapter, we will explore different tools and processes to
make a translation-aware application. In this chapter, we will discuss the

following:
e Basics of internationalization
e Writing source code for translation
e Loading translation files
 Internationalization with Qt Widgets
e Internationalization with Qt Quick
e Deploying translations

By the end of this chapter, you will be able to create a translation-aware

application using Qt Widgets and Qt Quick.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following

GitHub link: https:/github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapteril.

IMPORTANT NOTE

The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Understanding internationalization and
Qt Linguist

The processes of adjusting an application to different languages,
geographical variations, and technological specifications of a target market
are known as internationalization and localization. Internationalization
refers to the process of creating a software application that can be translated
into a variety of languages and for different regions without requiring
significant technical changes. Internationalization is often abbreviated to
i18n, with 18 being the number of letters between the letters i and n in the
English word. The ease with which a product can be localized is greatly
influenced by its internationalization. Creating a linguistically and
culturally focused application for a global market is a much more complex

and time-consuming process. Hence, companies focus on creating i18n-

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter11

aware applications for global markets from the beginning of product

development.

For internationalization, you should design your application in such a
manner that it avoids roadblocks for localization or global deployment later.
This covers aspects such as allowing Unicode or maintaining careful
handling of legacy character encodings where appropriate, taking caution of
string concatenation, preventing code dependencies on user interface string
values, and so on. You should provide support for features such as
identifying translatable strings and system language that may be required

for internationalization later.

Your application should be aware of local languages, date and time formats,
numeral systems, or cultural preferences. The modification of a product,
application, or document's content to fulfill the language, cultural, and other
preferences of a particular target market is known as localization.
Localization is often written in English as 110n, where 10 is the number of
letters between I and n. Localization entails incorporating region-specific
requirements and translating applications for a specific region or language.
Localizable features should be separated from the source code, allowing

adaptation as per the user's cultural preferences.

Qt Linguist is a tool that enables users to create translations of your Qt

applications. Qt Linguist can be launched from the installation directory or
the IDE. The tool comes with two integrated programs, known as lupdate
and Irelease. These programs can be used with a gmake project or directly

with the filesystem.

The lupdate tool locates translatable strings in the project's source, header,
and .ui or .qml files. Then it creates or updates the translation files (.ts
files). You can specify the files to be processed on the command line or in a
.pro file as arguments. .ts files use Document Type Definition (DTD)

format, described at the following link:

https://doc.qt.io/qt-6/linguist-ts-file-format.html

Qt provides excellent support for internationalization. Qt has built-in
support for many languages in all user interface elements. However, when
writing source code for your application, you have to follow certain
practices. This includes marking translatable strings, avoiding ambiguous
strings, using numbered arguments (%n) as placeholders, and loading the
right translation file. You can use both C++ and user interface files, and you
can also have translatable strings in both sources. The tool locates and adds
the strings from all sources into a single .ts file with corresponding

contexts.

The translation files with .ts extension are used during application
development. These files can be compiled into a compact binary format.
The compiled translation files are encoded in the QM format and have the
.qm file extension. While running an application, the Qt runtime makes use
of .gm files instead of .ts files. You can convert .ts to .qm files using the
Irelease tool. A .qm file is a lightweight binary file. It allows lightning-fast
translation lookups. You can specify .ts files on the command line or in a
.pro project file to be processed by lrelease. This tool is used every time an
application is released, from the test version to the final production version.
If the .gm files aren't available, then the application will still work fine and

use the original texts from the source files.

https://doc.qt.io/qt-6/linguist-ts-file-format.html

For the selection of languages, Qt Linguist and Irelease use certain internal

rules. You can find details about these rules at the following link:

https://doc.qt.io/qt-6/i18n-plural-rules.html

Let's have a look at the Qt Linguist user interface. You can launch Qt
Linguist from the Qt installation directory by double-clicking the Linguist
executable or selecting it from the command prompt. You will see the

following user interface appear on your screen:

Ot Linguist 5 g X
File Edit Translation Validation Phrases View Help
2 LR | @ D L D 1 B A2 &
W | &= (EP) r h'{-r" g E/) E’ﬁ) & A 39 L':‘) '.’:i,p/
Context @ X Strings 8 X Sources and Forms g X
Context lterns || Source text Source code not available
Phrases and guesses @ X Warnings g X
Source phrase Translation Defini
< >

Figure 11.1 — Qt Linguist user interface

In the preceding figure, you can see multiple sections and there are a few

disabled buttons in the toolbar. You can open a .ts file from the File menu.

https://doc.qt.io/qt-6/i18n-plural-rules.html

We will discuss these sections while discussing an example in a later

section of this chapter.

You can learn more about Qt Linguist and the GUI interface at the

following web page:

In this section, you got familiar with terms related to internationalization
and tools provided by the Qt framework. With a good understanding of the
basics, we are ready to write a translation-aware application in the next

section.

Writing source code for translation

In this section, we will discuss how to mark strings as translatable strings
and how to use the tools provided by Qt. Wherever your application uses a
quoted string that is visible to the user, make sure the
QCoreApplication::translate() method processes it. To do this, simply use
the tr() method to mark the strings as translatable that are meant for display
purposes. This feature is used to show which text strings are translatable

inside your C++ source files.

For example, if you want to use a QLabel to show text on a user interface,

then embed the text inside the tr() method as follows:
QLabel *label = new QLabel(tr(" Welcome"));

The class name is the translation context for the QObject and its derived

classes. To override the context, QObject-derived classes must use the

https://doc.qt.io/qt-6/linguist-translators.html

Q_OBJECT macro in their class definition. This macro sets the context for

the derived classes.

Qt provides several convenience macros and methods for
internationalization. A few of the most common macros used for translation

are as follows:

e tr() returns a translated string if translation is available in a C++ source
file.

e gsTr() returns a translated string if translation is available in a QML
file.

e qtTrId() finds and returns a translated string identified by an ID in a
C++ file.

e gsTrld() finds and returns a translated string identified by an ID in a
QML file.

e QT_TR_NOOP() tells lupdate to collect the string in the current

context for translating later.
e QT_TRID_NOOP() marks an ID for dynamic translation.

¢ QCoreApplication::translate() provides the translation by querying

the installed translation files.

o gsTranslate() provides a translated version for a given context in a
QML file.

* QQmlIEngine::retranslate() updates all binding expressions with

strings marked for translation.

Translatable strings in C++ files are marked using tr(), and in QML files
gsTr() is used. We will discuss these macros and methods throughout this

chapter.

All the translatable strings are fetched by the lupdate tool and updated in a
Translation Source (TS). A TS file is an XML file. Usually, TS files

follow the following naming convention:
ApplicationName>_<LanguageCode>_<CountryCode>.ts

In this convention, LanguageCode is an ISO 639 language code in
lowercase and CountryCode is an ISO 3166 two-letter country code in
uppercase. You can create translations for the same language but targeting a
different country by using the specific country code. You can create a
default translation file with a language code and country code while

creating a Qt application through Qt Creator's new project wizard.

Once you create the .ts files, you can run lupdate to update the .ts files with
all the user-visible strings. You can run lupdate from the command line as
well as from Qt Creator and the Visual Studio add-in. Let's use Qt's
command prompt to run the following command for the HelloWorld
application:

>lupdate HelloWorld.pro

lupdate fetches the translatable strings from different source files such as
.Cpp, -h, .qml, and .ui. For lupdate to work effectively, you should specify
the translation files in the application's .pro file under the
TRANSLATIONS variable. Look at the following .pro file section where

we have added six translation source files:

TRANSLATIONS = \

HelloWorld_de DE.ts \
HelloWorld fi FI \

Helloworld_es_ES.ts \
HelloWorld_zh_CN.ts \
HelloWorld_zh_TW.ts \

Helloworld ru RU.ts
You can also add wildcard-based translation file selections with *.ts.

To translate a Qt Quick application, use the gsTr() method to mark the
strings inside the .qml files. You can create a translation file for a single
QML file as follows:

>lupdate main.gml -ts HellowWorld_de_DE.ts

You can create multiple translation files for different languages and put

them inside a .qrc file:

RESOURCES += translations.qgrc

You can process all QML files in a .qrc file using lupdate as follows:

>lupdate gml.grc -ts HelloWorld_de_DE.ts

To process all QML files without using a .qrc file, type the following into

Qt's command prompt:

>lupdate -extensions gml -ts HelloWorld_de DE.ts

You can also pass a C++ source file as an argument along with the resource
file. It is optional to mention translation files in the .pro file. You can do it

by specifying the translation file on the command line as follows:

>lupdate gml.grc messages.cpp -ts HelloWorld_de DE.ts HelloWorld
_es_ES.ts

Irelease integrates translations that are marked as finished. If a string is
missing translations and is marked as unfinished, then the original text is
used. Translators or developers can modify the TS file contents and mark it

as finished with the following steps:

1. Launch Qt Linguist and open the .ts file from the File menu.
Alternatively, right-click on the .ts file in the project structure and open

with Qt Linguist, as shown here:

Translat]
Open File
Translat

Translat Show in Explorer
Open Command Prompt Here

Open Command Prompt With 4

Open With r Plain Text Editor
Find in This Directory... Binary Editor
Properties... Qt Linguist

Rernove... Del Systern Editor

Duplicate File...

Rename..,

Build

Expand
Collapse All
Expand All

Figure 11.2 — The Open With Qt Linguist option in Qt Creator

2. Then click on any of the contexts in the Context view to see the

translatable strings for that context in the Strings view.

3. In the Source text view, enter the translation of the current string. You
can find existing translations and similar phrases in the Phrases and

Guesses view.

4. The translator may enter a comment in the Translator comments field.

5. To finish the translation, press Ctrl + Enter and select the tick icon from

the toolbar. You will see a green tick mark for translated strings.

6. Finally, save the file and exit the Qt Linguist tool.

You can run Irelease without specifying a .pro file. When you run lrelease
to read the .ts files, then it generates .qm files that are used by the
application at runtime:

>lrelease *.ts

Once the .qm files are generated, add them to a .gqrc file. Your application

is now ready for translation.

You can also use a text ID-based translation mechanism. In this approach,
every translatable string in the application is assigned a unique identifier.
These unique text identifiers are directly used in the source code as a
replacement for actual strings. The user interface developers would need to
put more effort into this but it is much easier to maintain if your application

contains huge numbers of translated strings.

In some applications, certain classes may not use QObject as the base class
or use the Q_OBJECT macro in their class definition. But these classes
may contain some strings that may require translation. To solve this issue,

Qt provides certain macros to add translation support.

You can use Q_DECLARE_TR_FUNCTIONS(ClassName) as follows to

enable translation for your non-Qt classes:

class CustomClass

{

Q_DECLARE_TR_FUNCTIONS(CustomClass)
public:

CustomClass();

i
This macro is defined inside qcoreapplication.h. When you add this
macro, Qt adds the following function to your class to enable translation:
static inline QString tr(const char *sourceString, const char
*disambiguation = nullptr, int n = -1)
{

return QCoreApplication::translate(#className, sourceString,
disambiguation, n);

}

From the preceding code, you can notice that Qt calls

QCoreApplication::translate() with the class name as the context.

You can also have translatable strings outside a class or method;
QT_TR_NOOP() and QT_TRANSLATE_NOOP() are used to mark
these strings as translatable. There are different macros and functions
available for text ID-based translation. You can use qsTrId() instead of
gsTr(), and QT_TRID_NOOP() instead of QT_TR_NOOP(). You can use
the same text IDs as user interface strings instead of plain strings in the user

interface.

In Qt Linguist, multiple translation files can be loaded and edited
simultaneously. You can also use phrase books to reuse existing

translations. Phrase books are standard XML files that contain typical

phrases and their translations. These files are created and updated by Qt
Linguist and can be used by any number of projects and applications. If you
would like to translate source strings that are available in a phrase book, Qt
Linguist's Batch Translation function can be used. Select Batch
Translation to specify which phrase books to use and in what order during
the batch translation process. Only entries with no current translation should
be considered, and batch-translated entries should be marked as Accepted.

You can also create a new phrase book from the New Phrase Book option.

IMPORTANT NOTE

lupdate requires all source code to be encoded in UTF-8 by default. Files that feature a
Byte Order Mark (BOM) can also be encoded in UTF-16 or UTF-32. You have to set the
CODECFORSRC gmake variable to UTF-16 to parse files without a BOM as UTF-16. By
default, certain editors such as Visual Studio use a separate encoding. You can avoid
encoding problems by limiting source code to ASCII and using escape sequences for
translatable strings.

In this section, we discussed how to use lupdate and lrelease to create and
update translation files. Next, we will learn how to install a translator and

load a translation file in your Qt application.

Loading translations in a Qt application

In the previous section, we created translation files and understood the uses
of the tools. To look up translations in a TS file, QTranslator functions are
used. The translator must be instantiated before the application's GUI

objects.

Let's have a look at how to load these translation files using QTranslator in

the following code snippet:

QTranslator translator;
if(translator.load(QLocale(),QLatin1String("MyApplication")

, QLatiniString("_"), QLatinlString(":/i18n")))

{
application.installTranslator(&translator);
}
else
{
gbebug() << "Failed to load. "
<< QLocale::system().name();
}

In the preceding code, you can see that we have created a translator object
and loaded the corresponding translation file. QLocale is used to fetch the
underlying system language. You can also use QLocale for localizing

numbers, the date, the time, and currency strings.

Alternatively, you can load a translation file as follows:
QString fileName = ":/i18n/MyApplication_"+QLocale::
system().name()

+'.qm™;

translator.load(fileName);

Here, we are looking into the system language and loading the
corresponding translation files. The preceding approach works well when
you want to use the system language as your application language.

However, some users may like to use a regional language that is different

from the system language. In that case, we can change the language as per

user choice. We will learn how to do that in the next section.

Switching languages dynamically

So far, you have learned how to use the system language or a default

language for your Qt application. In most applications, you can just detect
the language in main() and load an appropriate .qm file. Sometimes, your
application must be able to support changes to the user's language settings
while still running. An application that is used by multiple people in shifts

may need to switch languages without requiring a restart.

To achieve this in a Qt Widgets-based application, you can override
QWidget::changeEvent(). Then, you have to check whether the event is of
the QEvent::LanguageChange type. You can retranslate the user interface

accordingly.

The following code snippet explains how to achieve dynamic translation in
a Qt Widgets-based GUI:

void Customwidget::changeEvent(QEvent *event)

{
if (QEvent::LanguageChange == event->type())
{
ui->retranslateUi(this);
}

Qwidget::changeEvent(event);

QEvent::LocaleChange can cause the list of installed translators to switch.
You can create an application with a user interface that provides users with
the option to change the current application language. When the
QEvent::LanguageChange event occurs, the default event handler for
QWidget subclasses will call this method. If you are using the
QCoreApplication::installTranslator() function to install a new
translation, you will get a LanguageChange event. In addition, by sending
LanguageChange events to other widgets, the GUI will force them to
update. Any other events can be passed to the base class for further

processing.

To enable dynamic translation, you can provide an option in the command
line or over a GUI. By default, Qt puts all of the translatable strings in the
.ui file inside retranslateUi(). You have to call this function whenever the
language is changed. You can also create and call your custom method to
retranslate the strings created through C++ code based on the

QEvent::LanguageChange event.

In this section, we discussed how to achieve dynamic translation in the
application runtime. In the next section, we will create a translation-aware

application using Qt Widgets.

Internationalization with Qt Widgets

In the previous sections, we discussed how to create translation files and
how to use QTranslator to load a translation file. Let's create a simple

example using Qt Widgets and implement our learning.

Follow the subsequent steps to create the sample application:

. Create a Qt Widgets-based application using Qt Creator's new project
creation wizard and follow through the screens as discussed in earlier

chapters.

. On the Translation File screen, choose German (Germany) as the

language option, or any preferred language.

. Finish the project creation. You will see that

Simpleil8nDemo_de_DE.ts is created in your project structure.
. Next, you add a QLabel to the .ui file and add Welcome text.

. Next, run lupdate. You can run lupdate from the command line as well

as from the Qt Creator interface, as shown in Figure 11.3:

¥ customwidgeth @ Simplei18nDemo [master] - Ot Creator
Fle Edt View Buid Debug Anclyze [REEEg Window Help

Projects MAMICREE © Locate.. Ctrl+K X | 2 Customiidget
TR V& Simpleil8nDemo [master] Cet b IET H
HEE I
- o Simpleil8nDema.pro aMuss y |ET_H
Welcome P VR
" Tests b
E n o custormwidgeth
Code Pasting 4
te Sources
[o
/ Foms tenkmarks == CustomWidget; }
@ Resources Git b
B Otherfiles
! public QWidget
Form Editor b
Parse Build Output...

External 4 Linguist * Update Translations (lupdate)
Diff ¥ Ot Quick * Release Translations (|release)
Text 4
Optiens.. =
private. Configure...

Ui::CustomWid
void changeEvent(QEvent te);
he

#endif [/ CUSTOMWIDGET_H

Figure 11.3 — Qt Linguist options in Qt Creator

6. When you run lupdate, you will see the following output in the console

window:
C:\Qt6Book\Chapter11\Simpleil8nDemo>lupdate Simpleil8nDemo.pro

Info: creating stash file
C:\Qt6Book\Chapter1i\Simpleil8nDemo\.gmake.stash

Updating 'Simpleil8nDemo_de DE.ts'...

Found 2 source text(s) (2 new and 0 already existing)

7. Now, the .ts file is updated with strings. Open
Simpleil8nDemo_de_DE.ts with a plain text editor. You should see the

following content:
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS>
<TS version="2.1" language="de_ DE">
<context>
<name>Customwidget</name>
<message>
<location filename="customwidget.ui"
line="14"/>
<source>Simple i18n Demo</source>
<translation type="unfinished"></translation>
</message>
<message>
<location filename="customwidget.ui"

line="25"/>

<source>Welcome</source>
<translation type="unfinished"></translation>
</message>
</context>

</TS>

You can see that the user interface strings are updated inside the .ts file
and the language is defined for the translation at the top of the file. You
can create respective translation files by modifying this field in the

code:
<TS version="2.1" language="de_DE">
You will also see that the translation status is unfinished.

8. So, let's open the file with Qt Linguist and complete the translation:

9 simplei1anDemo_de DEs* - Qt Linguist - 0O X

File Edit Translation Validation Phrases View Help

VAL L ¢oNRYA BARYD

o B X Strings 2 B X Markitem as done and mave to the next unfinished item | s
of Context ltems || ¢ Sourcetext ; |
1 CustomWidget 172 ¢ Simpleilén Demo :
I Welcome
Herzlich willkommen
Source text 4
Welcome

Translation to Deutsch {Deutschland)

Herzlichwillkommen

Translator comments for Deutsch (Deutschland)

Translated by Google

‘Phrasesand quesses 5 8 x||Warnings 6 8 xl

Source phrase Translation Definition

12 MOD

Figure 11.4 — Example showing different sections of the Qt Linguist interface

9. You will see six different sections in the user interface. Select a context

in the Context view to load the corresponding strings.

10. Add a translation in the Source text view. You can use Google Translate
to translate the string into the desired language. Here we have translated

the strings to the German language using Google Translate.

11.

12.

13.

14.

NOTE

There are multiple translations used. Please ignore if the strings don't have the exact
meaning. | am not familiar with the German language. | have used this for
demonstration purposes. Hence, | have added a translator's comments.

To complete the translation, press Ctrl + Enter or click on the green tick

icon on the toolbar.

The next step is to save the translation. Repeat this for all translatable

strings listed in the context.

Run Irelease from Qt's command prompt or the IDE's option. You will
see that the .qm file is generated:
C:\Qt6Book\Chapter1i\Simpleil8nDemo>lrelease *.ts

Updating 'Simpleil8nDemo_de_DE.qm'...

Generated 2 translation(s) (2 finished and 0 unfinished)

Let's add the translator to main.cpp and load the translation file:
#include '"customwidget.h"
#include <QApplication>
#include <QTranslator>
#include <QDebug>
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
QTranslator translator;
if(translator.load(":/translations

/Simpleil8nDemo_de_DE.gm"))

app.installTranslator(&translator);

gDebug()<<"Loaded successfully!";

else

gwarning()<<"Loading failed.";

}

Customwidget customUI;
customUI.show();

return app.exec();
}

15. The final step is to run gmake and build the application. Then, hit the

Run button in the bottom-left corner.

16. We have successfully translated our GUI into German. You will see the

following output:

B Einfache i18n Demo — O)4

Herzlich willkommen

Figure 11.5 — Output of the translation example using Qt Widgets

Congratulations! You learned how to translate your application into a
different language. You can now translate your Qt application to a local

language and share it with your friends and colleagues.

In this section, we discussed how to create a translation-aware application
using Qt Widgets. In the next section, we will add dynamic translation

capability to the Qt Widgets application.

Adding dynamic translation to a Qt
Widgets application

In the previous section, you learned how to create a Qt Widgets-based
application and change the language to a preferred language. However, like
most global applications, you may need to provide more translations and

allow users to change the language on the fly.

Let's modify the example from the preceding section with some additional

implementations:

1. Add a combo box to the .ui file and add three languages to it. For
explanation purposes, we have used English, German, and Spanish. We
have added a message at the center and added a language-switching

option in a dropdown:

Figure 11.6 — A form in Qt Designer showing layouts used in the example

2. Add the new translation files to the project file as follows:
TRANSLATIONS += \
widgetTranslationDemo_en_US.ts \
wWidgetTranslationDemo_de_DE.ts \

widgetTranslationDemo_es_ES.ts

3. Let's modify the CustomWidget class and add the following methods
for dynamic translation:
#ifndef CUSTOMWIDGET_H
#define CUSTOMWIDGET_H
#include <Qwidget>
#include <QTranslator>
QT_BEGIN_NAMESPACE
namespace Ui { class Customwidget; }
QT_END_NAMESPACE
class Customwidget : public Qwidget
{
Q_OBJECT
public:
Customwidget(Qwidget *parent = nullptr);
~Customwidget();
public slots:
void languageChanged(int index);
void switchTranslator(const QString& filename);
void changeEvent(QEvent *event);
private:
Ui::Customwidget *ui;
QTranslator m_translator;
¥

#endif // CUSTOMWIDGET_H

4. The next step is to connect the signal and slot. We have created the

connections in the constructor:
Customwidget::Customwidget (Qwidget *parent)

: Qwidget(parent), ui(new Ui::Customwidget)

{
ui->setupUi(this);
connect(ui->languageSelectorCmbBox,
SIGNAL (currentIndexChanged(int)), this,
SLOT(languageChanged(int)));
gApp->installTranslator (&m_translator);
}

5. Let's add the following code to the slot definition:
void Customwidget::languageChanged(int index)
{

switch(index)
{
case 0: //English
switchTranslator(":/1i18n/
wWidgetTranslationDemo_en_US.qm");
break;
case 1: //German
switchTranslator(":/1i18n/
wWidgetTranslationDemo_de_DE.qm");
break;

case 2: //Spanish

switchTranslator(":/1i18n/
wWidgetTranslationDemo_es_ES.qgm");

break;

}

Here, we are receiving the language choice from the user interface

through the combo box index change signal.

6. The next step is to install a new translator:

void Customwidget::switchTranslator(const QString& filename)

{

gApp->removeTranslator(&m_translator);

if(m_translator.load(filename))

{

gApp->installTranslator(&m_translator);

}

7. The last step is to reimplement changeEvent():

void CustomwWidget::changeEvent(QEvent *event)

{
if (event->type() == QEvent::LanguageChange)

{

ui->retranslateUi(this);

}

Qwidget: :changeEvent(event);

8. Run gmake and hit the Run button on the IDE.

The following screen will appear:

B widget Translation Demo — g hd

Select language English

Welcome!

Figure 11.7 — Example showing the output when the English language is selected

9. Change the language from the language selection dropdown. Let's select
German as the new language. You will see the entire GUI changed with

German strings:

| Widget-Ubersetzungs-Demo i d >

Sprache auswdhlen |Deutsche -

Herzlich willkommen!

Figure 11.8 — Example showing the output when the German language is selected

10. Again, switch the language to Spanish. You will see the GUI text
changed to Spanish:

B Demostracion de traduccion de widgets = d x

Seleccione el idioma | Espafiol

iBienvenidos!

Figure 11.9 — Example showing the output when the Spanish language is selected

Congratulations! You have successfully created a multilingual Qt Widgets

application.

In this section, you learned how to translate your Qt Widgets-based GUI at
runtime. In the next section, we will create a translation-aware application

using Qt Quick.

Internationalization with Qt Quick

In the previous section, we discussed internationalization in Qt Widgets. In
this section, we will discuss different aspects of internationalizing your Qt
Quick application. The underlying localization scheme in Qt Quick
applications is similar to Qt Widgets applications. The same set of tools
described in the Qt Linguist Manual are also used in Qt Quick. You can

translate an application that uses both C++ and QML.

In a Qt project file, the SOURCES variable is used for C++ source files. If
you list QML or JavaScript files under this variable, the compiler will

attempt to use the files considering them as C++ files. As a workaround,

you can use a lupdate_only {...} conditional declaration to make the QML

files visible to the lupdate tool but invisible to the C++ compiler.

Consider the following example. The application's .pro file snippet lists two
QML files:

lupdate_only {
SOURCES = main.gml \

HomeScreen.qgml

}

You may also use a wildcard match to specify the QML source files. Since
the search is not recursive, you must list each directory in which user
interface strings can be found in the source code:
lupdate_only{
SOURCES = *.gml \

% qs
}

Let's create an example with a simple translation. We will create a similar

screen as we created in the Qt Widgets application. Follow these steps:

1. Create a Qt Quick-based application using Qt Creator's new project
creation wizard and follow through the screens as discussed in earlier

chapters.

2. On the Translation File screen, choose German (Germany) as the

language option or any preferred language.

3. Finish the project creation. You will see that

QMLTranslationDemo_de_DE.ts is created in your project structure.

4. Next, you add a Text to the .qml file and add Welcome text:
import QtQuick

import QtQuick.wWindow

wWindow {
width: 512
height: 512

visible: true
title: qgsTr("QML Translation Demo")
Text {
id: textElement
anchors.centerIn: parent

text: gsTr("Welcome")

}

5. Add the following lines of code to main.cpp:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QTranslator>

#include <QDebug>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QTranslator translator;
if(translator.load(":/translations/

QMLTranslationDemo_de_DE.qgm"))

app.installTranslator(&translator);

gDebug()<<"Loaded successfully!";

else

gwarning()<<"Loading failed.";
3
QQmlApplicationEngine engine;
const QUrl url(QStringLiteral("qrc:/main.qgml"));
QObject: :connect(&engine,
&QQmlApplicationEngine: :objectCreated,
&app, [url](QObject *obj, const QUrl

&objurl)

if ('obj && url == objurl)
QCoreApplication::exit(-1);
}, Qt::QueuedConnection);
engine.load(url);
return app.exec();

}

6. The steps are similar to the Qt Widgets example. Next, run lupdate.

7. Follow the same steps to update the translation in the .ts files using Qt

Linguist.

8. Run lrelease from Qt's command prompt or from the IDE's option. You

will see that the .qm file is generated.
9. Add the .gm files to the resources (.qrc) file and run gmake.

10. The last step is to build and run the application. Hit the Run button in
Qt Creator.

11. You will see the identical output as we have seen in the Qt Widgets

example:

' QML-Ubersetzungsdemo e O *

Herzlich willkommen

Figure 11.10 — Output of the translation example using Qt Quick

In the preceding example, we translated our Qt Quick application to

German.

In this section, we discussed how to create a translation-aware application
using Qt Quick. In the next section, we will add dynamic translation

capability to the Qt Quick application.

Translating dynamically in a Qt Quick
application

In the previous section, you learned how to create a Qt Quick-based
application and how to change the language to a preferred language. Just
like the Qt Widgets example, you can also add dynamic translations to your

Qt Quick application.
Let's modify the previous example with some additional implementations:

1. Create an i18n support class named TranslationSupport and add the
following lines:
#ifndef TRANSLATIONSUPPORT_H
#define TRANSLATIONSUPPORT_H
#include <QObject>
#include <QTranslator>
class TranslationSupport : public QObject
{
Q_OBJECT
public:
explicit TranslationSupport(QObject *parent =
nullptr);
public slots:
void languageChanged(int index);
void switchTranslator(const QString& filename);
signals:
void updateGUI();
private:

QTranslator m_translator;

+

#endif // TRANSLATIONSUPPORT_H

The preceding code is a helper class that supports the translation feature

in QML. It is used to update the translation files in the translator.

2. In the next step, add the following code to switch the translator:

void TranslationSupport::switchTranslator(const QStringé&
filename)

{
gApp->removeTranslator(&m_translator);
if(m_translator.load(filename))
{
gApp->installTranslator(&m_translator);
emit updateGUI();
}
3

3. Then, add the following code to the QML INVOKABLE method
definition:
void TranslationSupport::languageChanged(int index)
{
switch(index)
{
case 0: //English
switchTranslator(":/i18n/
QMLDynamicTranslation_en_US.gm");
break;

case 1: //German

switchTranslator(":/1i18n/
QMLDynamicTranslation_de_DE.qgm");
break;
case 2: //Spanish
switchTranslator(":/1i18n/
QMLDynamicTranslation_es_ES.qgm");

break;

}

4. In the main.cpp file, add the following code. Please note that we have
exposed the TranslationSupport instance to the QML engine:
#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <QQmlContext>
#include "translationsupport.h"
int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
TranslationSupport il8nSupport;
QQmlApplicationEngine engine;
engine.rootContext()->setContextProperty(

"il18nSupport", &il8nSupport);

const QUrl url(QStringLiteral("qrc:/main.gml"));
QObject: :connect(&il8nSupport,

&TranslationSupport::updateGUI, &engine,

&QQmlApplicationEngine::retranslate);
engine.load(url);

return app.exec();

}

5. Then add the updateGUI() signal with the
QQmlApplicationEngine::retranslate() method.

6. Let's have a look at the main.gqml file. We have added a combo box to
the .qml file and added three languages to it. For explanation purposes,
we have used English, German, and Spanish:

Text {
id: textElement
anchors.centerIn: parent
text: gsTr("Welcome!")
}
Row {
anchors {
top: parent.top; topMargin: 10 ;
right: parent.right; rightMargin: 10;
3
spacing: 10
Text{
text: gsTr("Select language'")
verticalAlignment: Text.AlignVCenter

height: 20

10.

11.

ComboBox {

height: 20

model: ListModel {
id: model
ListElement { text: gsTr("English")}
ListElement { text: qsTr("German")}
ListElement { text: qsTr("Spanish")}

}

onCurrentIndexChanged: {

i18nSupport.languageChanged(currentIndex)

}

. Run lupdate and proceed with the translation process.

. Follow the same steps to update the translation in .ts files using Qt

Linguist.

. Run Irelease from Qt's command prompt or from the IDE's option. You

will see that the .qm file is generated.
Add the .gm files to the resources (.qrc) file and run gmake.

The last step is to build and run the application. Hit the Run button in
Qt Creator.

The following screen will appear:

B QML Translation Demo - O >

Welcome!

Figure 11.11 — Qt Quick example showing the output when the English language is
selected

12. Change the language from the language selection dropdown. Let's select
German as the new language. You will see the entire GUI changed with

German strings:

B OML-Ubersetzungs-Demo — O X

Sprache auswahlen |Deutsche w

Herzlich willkommen!

Figure 11.12 — Qt Quick example showing the output when the German language is
selected

13. Again, switch the language to Spanish. You will see the GUI text
changed to Spanish:

B Demostracion de traduccion de widgets o | X

iBienvenidos!

Figure 11.13 — Qt Quick example showing the output when the Spanish language is
selected
Congratulations! You have successfully created a multilingual Qt Quick

application.

In this section, you learned how to translate your Qt Quick-based GUT at

runtime. In the next section, we will discuss how to deploy translation files.

Deploying translations

In previous sections, we learned how to create translation-aware
applications using both Qt Widgets and QML. You don't have to ship the .ts
files with your application. To deploy translations, your release team must
use the updated .qm files and ship them with the application package. The
.qm files required for the application should be placed in a location where
QTranslator can locate them. Typically, this is done by embedding gqm
files in a resource (.qrc) file or specifying a path that contain the .qm files

relative to QCoreApplication::applicationDirPath(). The rcc tool is used

to embed the translation files into a Qt application during the build process.

It works by producing a corresponding C++ file containing specified data.

You can automate the generation of .qm files by adding a script to your

.pro file. You do it by following these steps:

1. To begin, use the language codes to declare the languages under the
LANGUAGES variable in your Qt project (.pro) file.

2. Add Irelease and embed_translations to the CONFIG variable.

3. Then add a function to generate the .ts files for the intended languages.

4. Finally, define the TRANSLATIONS_FILES variable, use lrelease to

create the .qm files, and embed them in the application resources.

The preceding steps will run the Irelease automatically and generate the
.qm files. The lrelease tool processes the translation files listed under the
TRANSLATIONS and EXTRA_TRANSLATIONS. Unlike the
TRANSLATIONS variable, files listed under EXTRA_TRANSLATIONS
are only processed by Irelease tool, not by the lupdate. You need to embed
the .qm files into your resource or ship the .qm files with your deployment

package.

You can learn more about automating generation of QM files here:

https://wiki.qt.io/Automating_generation of qm files.

In this section, you learned how to deploy your translation files. In the next

section, we will summarize our takeaways from this chapter.

Summary

https://wiki.qt.io/Automating_generation_of_qm_files

In this chapter, we took a look at the core concepts of internationalization
and localization in Qt. We discussed different tools provided by Qt for
internationalization. We learned how to use Qt Linguist. We also looked at
how to translate a Qt Widgets application into a different language. Then,

we learned how to translate dynamically.

In the latter part of the chapter, we discussed translating a Qt Quick
application. Afterward, we learned how to switch languages dynamically in
a Qt Quick application. Now you can create an application with multiple
languages and share it with your clients or friends in a different

geographical region.

In Chapter 12, Performance Considerations, we will learn about tools and

tricks to optimize performance in a Qt application.

Chapter 12: Performance Considerations

In this chapter, we will give you an overview of performance optimization
techniques and how you can apply them in the context of Qt-based
application development. Performance is a very important factor in the
success of your application. Performance failures can result in business
failures, poor customer relationships, a reduction in competitiveness, and
revenue loss. Delaying performance optimization can have a huge cost in
terms of your reputation and organizational image. Therefore, it is

important to do performance tuning.

You will also learn about performance bottlenecks and how to overcome
them. We will discuss different profiling tools to diagnose performance
problems, focusing specifically on some popular tools. Then, you will learn
how to profile and benchmark performance. The chapter also introduces Qt
Modeling Language (QML) Profiler and Flame Graph to find underlying
bottlenecks in your Qt Quick application. You will also learn about some

best practices that you should follow while developing your Qt application.
We will discuss the following topics:

¢ Understanding performance optimization

Optimizing C++ code

Using concurrency, parallelism, and multithreading

Profiling a Qt Quick application using QML Profiler and Flame Graph

Other Qt Creator analysis tools

Optimizing graphical performance

Creating benchmarks

Different analysis tools and optimization strategies

Performance considerations for Qt Widgets

Learning best practices of QML coding

By the end of the chapter, you will have learned to write high-performance

optimized code for both C++- and QML-based applications.

Technical requirements

The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-

Development-with-Qt-6-and-Modern-

Cpp/tree/master/Chapter12/QMI.PerformanceDemo.
IMPORTANT NOTE

The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Understanding performance optimization

Performance optimization is done to improve an application's performance.

You may be wondering why this is necessary. There are many reasons why

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter12/QMLPerformanceDemo

an application requires performance optimization. When there is a
performance problem reported by your users or the quality assurance
(QA) team, the developers may discover something affecting the overall
application performance. This may occur due to underlying hardware

limitations, poor implementation of code, or scalability challenges.

Optimization is part of the application development process. This can
involve optimizing code for performance or optimization for memory
usage. Optimization aims to optimize an application's behavior so that it
satisfies the product requirements for speed, memory footprint, power
usage, and so on. As a result, optimization is almost as crucial as coding
functionality in the production phase. Customers may report performance
problems as glitches, slow response, and missing functionalities. A faster
application executes more efficiently while consuming fewer resources and
can handle more tasks in the same amount of time as a slower application.
In today's competitive world, faster software means a competitive
advantage over rivals. Performance matters a lot on embedded and mobile
platforms, with factors such as speed, memory, and power consumption

being prevalent.

In a Waterfall process, performance improvement is carried out after
application development, during the integration and verification phase.
However, in today's Agile world, code performance should be evaluated
every couple of sprints for overall application performance. Performance
optimization is a continuous process, whereas defect fixing is a one-time
task. It is an iterative process in which you will always find something to
improve and there will be always scope for improvement in your

application. According to the Theory of Constraints (TOC), there is

typically one problem in a complex application that restricts the application
from achieving its optimal performance. Such constraints are known as
bottlenecks. An application's top performance is limited by bottlenecks,
hence you should consider performance optimization during your
application development life cycle. If ignored, your new product may

become a complete disaster and may even ruin your reputation.

Before you jump into optimization, you should define a goal. Then, you
should identify the bottleneck or the constraint. After that, think about how
you can fix the constraint. You can improve your code and re-evaluate the
performance. If it doesn't meet the set goal, you need to repeat the process.
However, remember that premature optimization can be the root of all evil.
You should implement the primary functionalities first before validating
your product and implementing early users' feedback. Remember to make
the application run first, then make its functionalities right, and then make it

faster.

When you set a performance goal, you need to choose the right technique.
There can be multiple goals, such as faster launch time, a smaller
application binary, or less random-access memory (RAM) usage. One
goal can impact another goal, so you have to find a balance based on the
expected criteria—for example, optimizing the code for performance may
impact memory optimization. There may be different ways to improve
overall performance; however, you should also follow the organizational
coding guidelines and best practices. If you are contributing to an open
source project or are a freelance application developer, you should follow

standard coding practices to maintain overall code quality.

Some of the important tricks we will be following for performance

improvement are listed as follows:

e Using better algorithms and libraries

Using optimal data structures

Allocating memory responsibly and optimizing memory

Avoiding unnecessary copying

Removing repeated computation

Increasing concurrency

Using compiler binary optimization flags

In the following sections, we will discuss opportunities to improve overall

application performance in our C++ code.

Optimizing C++ code

In most Qt applications, a significant part of the coding is done in C++,
hence you should be aware of C++ optimization tricks. This section is about
implementing some of the best practices while writing C++ code. When
C++ implementations are written without optimization, they run slowly and
consume a lot of resources. Better optimization of your C++ code also
offers better control over memory management and copying. There are
many opportunities to improve algorithms, ranging from small logical
blocks to using Standard Template Libraries (STLs), to writing better

data structures and libraries. There are several excellent books and articles

on this topic. We will be discussing a few important points for running code

faster and using fewer resources.

Some of the important C++ optimization techniques are listed here:
e Focus on algorithms, not on micro-optimization
e Don't construct objects and copy unnecessarily

e Use C++11 features such as move constructor, lambdas, and the

constexpr functions

e Choose static linking and position-dependent code

e Prefer 64-bit code and 32-bit data

e Minimize array writes and prefer array indexing to pointers

e Prefer regular memory access patterns

e Reduce control flow

e Avoid data dependencies

e Use optimal algorithms and data structures

e Use caching

e Use precomputed tables to avoid repeated computation

¢ Prefer buffering and batching
Since this book requires previous knowledge of C++, we expect that you
will be aware of these best practices. As a C++ programmer, always stay

updated with the latest C++ standards such as C++17 and C++20. These

will help you in writing efficient code with great features. We won't be

discussing these in detail in this section, but will leave this for your self-

exploration.

You can read more about C++ core guidelines at the following link:

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

You can learn more about optimizing C++ code at the following link:

https://www.agner.org/optimize/.

Go through the listed approaches to improve your C++ code. Next, we will
discuss how to improve application performance with concurrency and

multithreading in the next section.

Using concurrency, parallelism, and
multithreading

Since you are already a C++ developer, you might be aware of these terms,
which may be used interchangeably. However, there are differences in these

terms. Let's revisit these terms here:

e Concurrency is the execution of multiple programs at the same time

(concurrent).

e Parallelism is the simultaneous running of a portion of your program in

parallel, utilizing the multiple cores in a multi-core processor.

e Multithreading is the capability of a central processing unit (CPU) to
run multiple threads for the same program, concurrently supported by

the operating system.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.agner.org/optimize/

For example, you may launch multiple instances of a Portable Document
Format (PDF) reader and Qt Creator. Qt Creator can run multiple tools by
itself. Your system Task Manager can show you all the processes running

simultaneously. This is known as concurrency. It is also commonly known

as multitasking.

But if you use parallel computing techniques to process your data, then this
is called parallelism. Complex applications with huge data processing
requirements use this technique. Note that parallel computing on a single-

core processor is an illusion.

A thread is the smallest executable unit of a process. There can be several
threads in a process, but there is only one main thread. Multithreading is
concurrency within the same process. Only one core is used by a
conventional single-threaded application. A program with multiple threads
can be distributed to multiple cores, allowing true concurrency. As a result,
a multithreaded application provides better performance on multi-core

hardware.

Let's discuss a few important classes in Qt that provide concurrency and

multithreading, as follows:
e QThread is used to manage one thread of control within a program.

e QThreadPool is used to manage and recycle individual QThread
objects to help reduce thread creation costs in a multithreaded

application.

¢ QRunnable is an interface class for representing a task or piece of code

that needs to be executed.

¢ QtConcurrent offers high-level application programming interfaces
(APIs) that help in writing multithreaded programs without using low-

level threading primitives.

e QFuture permits threads to be synchronized against multiple

computational results that will be available at a later point in time.

¢ QFutureWatcher provides information and notifications about a

QFuture object using signals and slots.

e QFutureSynchronizer is a convenience class that simplifies the

synchronization of one or more QFuture objects.

Threads are primarily used in two scenarios, as follows:
¢ To make use of multi-core CPUs to speed up processing

¢ Offload long-running processing or blocking calls to other threads to
keep the graphical user interface (GUI) thread or other time-critical

threads responsive

Let's briefly discuss the most basic concurrency concept known as a
thread. The QThread class offers a thread abstraction in Qt with
convenience methods. You can start a new custom thread by subclassing the

QThread class, as follows:
class CustomThread : public QThread
{

public:

void run(){..}

+

You can create a new instance of this class and invoke its start() function.
This will create a new thread and then call the run() function in the context
of this new thread. Another approach is to directly create a QThread object
and invoke the start() function, which will start an event loop. In
comparison to a conventional C++ thread class, QThread supports thread
interruption, which isn't supported in C++11 and later. You may wonder
why we can't just use the C++ standard thread class. This is because you
can use the signals and slots mechanism with QThread in a multithread-

safe way.

You can also use the multithreading mechanism in QML using
WorkerScript. JavaScript code can execute in parallel with the GUI thread
using the WorkerScript QML type. To enable the use of threads in a Qt
Quick application, import the module as follows:

import QtQml.WorkerScript

One JavaScript can be attached to each WorkerScript object. The script
will run in a different thread and QML context when
WorkerScript.sendMessage() is called. When the script is finished, it can
send a response to the GUI thread, invoking the
WorkerScript.onMessage() signal handler. You can exchange data
between threads by using signals and signal handlers. Let's have a look at a
simple WorkerScript usage, as follows:
wWorkerScript {

id: messagingThread

source: "messaging.mjs"

onMessage: (messageObject)=> textElement.text =

messageObject.reply

}

The preceding code snippet uses a JavaScript file, messaging.mjs, which
performs the operations in a new thread. Let's look at the sample script, as
follows:
wWorkerScript.onMessage = function(message) {

//Perform complex operations here

WorkerScript.sendMessage({ 'reply': 'Message '+

message})

}

You can send a message from the click of a button or based on some user
action. It will invoke the sendMessage(jsobject message) method, where
your complex messaging operations will take place. You can read more

about different threading mechanisms and use cases at the following link:

https://doc.qt.io/qt-6/threads-technologies.html.

Since this book is written for experienced C++ developers, it is expected
that you will be familiar with terms such as mutex, semaphore, read-write
lock, and so on. Qt provides convenience classes to use these mechanisms
while implementing a multithreading application. We won't deep dive into
these Qt classes with examples. You can learn more about the use of
QMutex, QSemaPhore, QReadWriteLock, and QWaitCondition at the
following link: https://doc.qt.io/qt-6/threads-synchronizing.html.

In this section, we learned how concurrency mechanisms can be used to
improve overall application performance. Don't implement it unnecessarily

for simple tasks as this may result in degraded performance. In the next

https://doc.qt.io/qt-6/threads-technologies.html
https://doc.qt.io/qt-6/threads-synchronizing.html

section, we will discuss the use of the QML Profiler tool for profiling a Qt

Quick application.

Profiling a Qt Quick application using
QML Profiler and Flame Graph

QML in Qt 6 takes advantage of graphics processing units (GPUs) and
uses hardware acceleration for rendering. This feature makes QML superior
to Qt Widgets in terms of performance. However, there can be bottlenecks
in your QML code that may impact overall application performance. In this
section, we will focus on using the built-in tool to find these bottlenecks. Qt
Creator provides seamless integration with multiple tools. The most
important tool is QML Profiler. It is provided by Qt and works on all Qt-
supported platforms. Other than QML Profiler, Qt Creator also provides
third-party tools such as Valgrind, Heob, and Performance Analyzer. You
can enable new plugins or remove some plugins from About Plugins...,

available under the Help menu.

Let's discuss QML Profiler, which you will be using most of the time to
find the bottlenecks in your QML code. The goal of QML Profiler is to help
you identify bottlenecks by providing you with details such as the time
taken by a code block to do a certain operation, after which you can decide
to reimplement the code with suitable GUI elements or better data

structures or algorithms.

Follow these steps to start profiling and optimizing your Qt Quick

application:

1. Open an existing Qt Quick project or create a new Qt Quick application

using Qt Creator's New Project creation wizard.

2. Once the project is created, add some code to it. Then, select QML
Profiler under the Analyze menu to run the QML Profiler tool. The
Analyze context menu can differ from platform to platform based on
installed plugins. The following screenshot shows the QML Profiler
option in the Windows platform. In Linux, you may see a few more
options, such as Valgrind Memory Analyzer, Valgrind Memory

Analyzer with GDB, and Valgrind Function Profiler:

LYELA Tools Window Help
Clang-Tidy and Clazy...
Perforrmance Analyzer

Heob Ctrl+Alt+H
ML Profiler

Chrome Trace Format Viewer k
Valgrind Mermory Analyzer (External Application]

Valgrind Function Profiler (External Application)

QML Profiler (Attach to Waiting Application)

Performance Analyzer Options r
OML Profiler Options »

Figure 12.1 — QML Profiler option in Qt Creator integrated development environment
(IDE)
3. When you hit the QML Profiler option, your Qt Quick application will
run by QML Profiler. You will see the QML Profiler window appear

below the code editor. You may also see the following message:

it Creator >

Could not connect to the in-process QML profiler within 2 s.
Do you want to retry and wait 4 s?

[Rety | cCancel || Help |

Figure 12.2 — QML Profiler retry message

4. If you get this popup, just hit Retry. You will notice that the profiling
will begin and you will also notice the output screen. In the sample
application, we are creating new rectangles on a mouse click, as

illustrated in the following screenshot:

7 QML Profiling - | X

Figure 12.3 — Output of sample Qt Quick application

5. On the user interface (UI), perform some user interactions—such as
click a button—to do a certain operation. Then, click the Stop button
located on the title bar of the profiler window. You will also see two
more buttons on both sides of the Stop button. If you hover your mouse
over them, you will see their functionalities, such as Start QML

Profiler analysis and Disable Profiling.

An overview of the QML Profiler window is shown in the following

screenshot:

% Figure 12.4 — QML Profiler window showing Stop button and tabbed

views

Figure 12.4 — QML Profiler window showing Stop button and tabbed views

. Once you stop the profiler, you will see the QML Profiler window is
updated with some views. You will notice that there are three tabs under

the profiler window—namely Timeline, Flame Graph, and Statistics.

. Let's look at the first tab on QML Profiler—click on the Timeline tab.

The following screenshot shows a sample view of the output:

l"":‘Figulre 12.5 — QML Profiler showing timeline details

Figure 12.5 — QML Profiler showing timeline details

You will notice that there are six different sections under the timeline
display: Scene Graph, Memory Usage, Compiling, Creating,
Binding, and JavaScript. These sections give us an overview of the
different stages of application processing such as compilation,

component creation, and logical execution.

. You can find colorful bars on the timeline. You can use the mouse wheel
to zoom in and zoom out on specific timeline sections. You can also
move the timeline by pressing the left mouse button at the bottom
region of the timeline and move in either direction to locate an area of

interest.

The different sections of the Timeline tab are illustrated in the

following screenshot:

9.

10.

11.

l"":Figure 12.6 — Timeline tab showing different sections

Figure 12.6 — Timeline tab showing different sections

You can click on the Expand button to see further details under each

section, as illustrated in the following screenshot:

% Figure 12.7 — Timeline tab showing different subsections under Scene
Graph and profiling options
Figure 12.7 — Timeline tab showing different subsections under Scene Graph and
profiling options
If you click on one of the bars under the Creating section, you can find
component details such as the QtQuick/Rectangle type, total duration
taken for creating an object, and the location of code displayed on a
pop-up window, over the QML Profiler window. You can use the
yellow arrows in the top-left corner to jump to previous or next events.

This section is illustrated in the following screenshot:

L"":‘Fig.j,ure 12.8 — Details of an object under the Creating section

Figure 12.8 — Details of an object under the Creating section

You can switch between different tabs at the bottom of the QML
Profiler window. Once you have explored the Timeline tab, let's open
up the Flame Graph tab. Under this tab, you will find a visualization of
the Total Time, Memory, and Allocations of your application as a
percentage. You can switch between these views by clicking on the
dropdown located in the top-right corner of the QML Profiler window,

as shown in the following screenshot:

L"":'Figure 12.9 — Flame Graph showing Allocations view

12.

13.

14.

15.

16.

Figure 12.9 — Flame Graph showing Allocations view

The Flame Graph view provides a more compact statistics summary.
The horizontal bars depict one aspect of the samples gathered for a
certain function in comparison to the same aspect of all samples
combined. The nesting indicates a call tree that shows, for example,

which functions call the other function.

As seen in the following screenshot, you can also see the percentage
value displayed on the left side of the code editor. Based on which

component is consuming more time, you can tweak your code:

L

“< Figure 12.10 — QML Profiler showing percentage time spent for a

specific portion of the code

Figure 12.10 — QML Profiler showing percentage time spent for a specific portion of
the code
Since data collection takes time, you may notice a little lag before the
data is displayed. When you click the Enable Profiling button, data is
transferred to QML Profiler, therefore don't terminate the application

immediately.

To disable the automatic start of data collection when an application is
launched, select the Disable Profiling button. When you toggle the

button, data collection will start again.

Let's move to the next tab: the QML Profiler window. This tab reveals
statistical details about the processes in a table structure. The following
screenshot illustrates the statistics of the code execution for our sample

code:

l"":iFigure 12.11 — QML Profiler showing statistics of code execution

Figure 12.11 — QML Profiler showing statistics of code execution

17. You can also attach QML Profiler to an externally started application
through QML Profiler (Attach to Waiting Application) under the
Analyze menu. Once you select the option, you will see the following

dialog:

l"":Filc_j,ure 12.12 — QML Profiler showing remote execution option

Figure 12.12 — QML Profiler showing remote execution option

18. To save all of the data collected, right-click on any QML Profiler view
and select Save QML Trace in the context menu. You can select Load
QML Trace to see the saved data. You can also send the saved data to

others for review or load data that they have saved.

In this section, we discussed different options available in QML Profiler. By
using this tool, you can easily find code that is causing performance issues.

More details are available at this link: https://doc.qt.io/qtcreator/creator-

gml-performance-monitor.html.

In the next section, we will discuss further how to use other analytical tools

to optimize your Qt code.

Other Qt Creator analysis tools

In the earlier section, we discussed QML Profiler, but you may need to
analyze your C++ and Qt Widgets code. Qt Creator provides integration
with some of the famous analysis tools to help you analyze your Qt

application. Some of the tools that come with Qt Creator are listed here:

https://doc.qt.io/qtcreator/creator-qml-performance-monitor.html

e Heob

e Performance Analyzer

e Valgrind

e Clang Tools: Clang-Tidy and Clazy

e Cppcheck

e Chrome Trace Format (CTF) visualizer
Let's briefly discuss these tools and become familiar with them before
getting into their documentation.

To use Heob, you first need to download and install it. Buffer overruns and
memory leaks can be easily detected with Heob. It works by overriding the
caller process's heap functions. An access violation is raised when a buffer
overrun occurs, and stack traces of the offending code and buffer allocation
are noted. You will find the stack traces when the application exits
normally. It doesn't require any recompilation or relinking of the target

application.

You can read about its usage on the official documentation link

athttps://doc.qt.io/qtcreator/creator-heob.html.

You can download the binary from SourceForge.net or build it from the
source code. The source code of Heob can be found at the following link:

https://github.com/ssbssa/heab.

The Linux Performance Analyzer tool is integrated with Qt Creator and can
be used to analyze an application's CPU and memory utilization on Linux

desktop or Linux-based embedded systems. The perf tool takes periodic

https://doc.qt.io/qtcreator/creator-heob.html
http://sourceforge.net/
https://github.com/ssbssa/heob

snapshots of an application's call tree and visualizes them in a timeline view
or as a flame graph, using the utility included with the Linux kernel. You
can launch it on your Linux machine from the Performance Analyzer

option under the Analyze menu, as illustrated in the following screenshot:

l"":‘Figure 12.13 — Qt Creator showing Performance Analyzer option

Figure 12.13 — Qt Creator showing Performance Analyzer option

Please note that the Performance Analyzer doesn't work on the Windows
platform. Even on Linux distributions, if it can't locate the perf utility, you

will get an equivalent warning dialog, as shown in the next screenshot:

l"’:Figure 12.14 — Qt Creator showing Performance Analyzer warning dialog

Figure 12.14 — Qt Creator showing Performance Analyzer warning dialog

Use the following command to install the perf tool on your Ubuntu
machine:

$sudo apt install linux-tools-common

If you are using a different Linux distribution, you can use the
corresponding command. perf may fail for the specific Linux kernel, with a
warning about the kernel version. In that case, type the following command

with the appropriate kernel version:

$sudo apt install linux-tools-5.8.0-53-generic

Once the perf setup is done, you can see the predefined events in the
command prompt with the following command:

$perf list

Next, launch Qt Creator and open a Qt project. Select Performance
Analyzer from the Analyze menu. Performance Analyzer will start
collecting data as soon as you start examining an application, and the
Recorded field will show the duration details. Since the data is processed
through the perf tool and an additional assistance program is included with
Qt Creator, it may appear in Qt Creator several seconds after it was created.
The Processing delay field contains an estimate for this delay. The data
collection continues until you click the Stop collecting profile data button

or close the application.

You can also load perf.data and analyze an application from Performance

Analyzer Options under the Analyze menu, as shown here:

l"":‘Figulre 12.15 — Context menu showing Performance Analyzer options

Figure 12.15 — Context menu showing Performance Analyzer options

You can read more about usage of Performance Analyzer at the following

link: https://doc.qt.io/qtcreator/creator-cpu-usage-analyzer.html.

On macQOS, there is an equivalent tool called Instructions; however, this is
not integrated with Qt Creator. You can launch it separately and look at the

Time Profiler section.

On Linux and macOS, Valgrind is the tool of choice for debugging a wide
range of problems. Individual techniques, such as profiling and memory
checking, are used for specialized analysis. The Analyze menu in Qt
Creator combines Valgrind and allows memory testing and profiling from
within the IDE. To use Valgrind, it must be installed. It isn't available on
Windows. However, since memory problems aren't often platform-specific,

you can do analysis on Linux or macOS. KCachegrind is the visualizer for

https://doc.qt.io/qtcreator/creator-cpu-usage-analyzer.html

Valgrind profiling results. When you run Valgrind, you will notice the
profiler window open with memcheck. You can change this to callgrind

from the profiler drop-down option.

You can learn more about Valgrind at the following link:

https://doc.qt.io/qtcreator/creator-valgrind-overview.html.

The next tool available in Qt Creator is Clang-Tidy and Clazy.... These
tools can be used to locate issues in your C++ code through static analysis.
Clang-Tidy provides diagnostics and fixes for common programming
errors such as style violations or interface misuse. On the other hand, Clazy
highlights Qt-related compiler errors, such as wasteful memory allocation
and API usage, and suggests refactoring activities to remedy some of the
problems. Clang-Tidy includes the Clang static analyzer capabilities. You
do not need to set up Clang tools individually because they are distributed
and integrated with Qt Creator. When you run Clang-Tidy and Clazy..., as
illustrated in the following screenshot, you will see the analysis details
under the Profiler window and the progress under the Application Output

window below the code editor:

% Figure 12.16 — Context menu showing the Clang-Tidy and Clazy...

option

Figure 12.16 — Context menu showing the Clang-Tidy and Clazy... option

Let's run the tool on an existing Qt example. In the application window, you
will see the analysis running, and in the profiler window, you will see the

results.

You can explore the documentation further at the following link:

https://doc.qt.io/qtcreator/creator-clang-tools.html.

https://doc.qt.io/qtcreator/creator-valgrind-overview.html
https://doc.qt.io/qtcreator/creator-clang-tools.html

Qt Creator also includes another tool called cppcheck. This tool has
experimental integration with Qt Creator. You can enable it from About
Plugins..., available under the Help menu. You can use this to detect
undefined behavior and dangerous coding constructs. The tool provides

options to check warnings, style, performance, portability, and information.

The last analysis tool integrated with Qt Creator is the CTF visualizer. You
can use this along with QML Profiler. Tracing information might provide
you further insight into the data that QML Profiler collects. You can find
why a simple binding is taking so long, such as being possibly impacted by
the C++ code or by slow disk operation. Full stack tracing may be used to
trace from the top-level QML or JavaScript down to C++ and all the way
down to the kernel area. This allows you to assess an application's
performance and determine if poor performance is caused by the CPU or
other programs on the same system. Tracing provides insight into what the
system is doing and why an application is behaving in an undesired way. To

see Chrome trace events, utilize the CTF visualizer.

You can learn more about the CTF visualizer at the following link:

https://doc.qt.io/qtcreator/creator-ctf-visualizer.html.

In this section, we have discussed different analysis tools available in Qt
Creator. In the next section, we will discuss further how to optimize and

locate graphical performance issues.

Optimizing graphical performance

We discussed graphics and animation in Chapter 8, Graphics and

Animations. In this section, we will explore factors that impact performance

https://doc.qt.io/qtcreator/creator-ctf-visualizer.html

in graphics and animation. Graphics performance is essential in any
application. If your application is poorly implemented, then users may see
flickering in the UI or the UI may not update as expected. As a developer,
you must make every effort to ensure that the rendering engine maintains a
60 frames-per-second (FPS) refresh rate. There are only 16 milliseconds
(ms) between each frame in which processing should be done at 60 FPS,
which includes the processing necessary to upload the draw primitives to

the graphics hardware.

To avoid any glitch in graphical performance, you should use asynchronous,
event-driven programming wherever possible. If your application has huge
data processing requirements and complex calculations, then use worker
threads to do the processing. You should never manually spin an event loop.
Don't spend more than a few ms per frame in blocking functions. If you
don't follow these points, the users will see the GUI flickering or freezing,
resulting in a bad user experience (UX). When it comes to generating
graphics and animations on the UI the QML engine is very efficient and
powerful. However, there are a few tricks you can use to make things even

go faster. Instead of writing your own, utilize Qt 6's built-in capabilities.

While drawing graphics, you should choose opaque primitives if possible.
Opaque primitives are faster to render by the renderer and to draw on the
GPU. Hence, between Portable Network Graphics (PNG) and Joint
Photographic Experts Group (JPEG) files, rendering JPEG formats is
faster. You should be using QImage::Format_RGB32 when passing
photos to a QQuickImageProvider. Please note that overlapping
compound items cannot be batched. Avoid clipping if possible as it breaks

batching. Instead of clipping an image, use QQuickImageProvider to

generate a cropped image. Applications that require a monochromatic
background should use QQuickWindow::setColor() rather than a top-level
Rectangle element. QQuickWindow::setColor() invokes glClear(), which

is faster.

While using Image, make use of the sourceSize property. The sourceSize
property enables Qt to downsize the image before loading it into memory,
ensuring that huge images consume no more memory than is required.
When the smooth attribute is set to true, Qt filters the image to make it
look smoother when it is scaled or changed from its original size. If the
image is rendered at the same size as its sourceSize property, this makes no
difference. On some older hardware, this property will influence the
performance of your application. The antialiasing property directs Qt to
smooth down aliasing artifacts around the edges of the image. This property

will affect your program's performance.

Better graphical performance can be achieved by effective batching. The
renderer can provide statistics on how well the batching runs, how many
batches are utilized, which batches are kept, which are opaque, and which
are not. To enable this, add an environment variable such as
QSG_RENDERER_DEBUG and set the value to render. Unless an image
is too huge, a texture atlas is used by the Image and BorderImage QML
types. If you are creating textures using C++, then call
QQuickWindow::createTexture() and pass
QQuickWindow::TextureCanUseAtlas. You can use another environment
variable, QSG_ATLAS_OVERLAY, to colorize the atlas textures, which
helps in identifying them easily.

To visualize the various aspects of the scene graph's default renderer, the
QSG_VISUALIZE environment variable can be set to one of the values.
You can do this in Qt Creator by going to the Projects tab, expanding the
Build Environment section, clicking Add, then entering the variable name
as QSG_VISUALIZE and setting the value for that variable, as follows:

¢ QSG_VISUALIZE = overdraw
e QSG_VISUALIZE = batches
e QSG_VISUALIZE = clip

e QSG_VISUALIZE = changes

When QSG_VISUALIZE is set to overdraw, overdraw is visualized in the
renderer. To highlight overdraws, all elements are visualized in three
dimensions (3D). To some extent, this mode may also be used to identify
geometry outside the viewport. Translucent items are shown with a red tint,
whereas opaque items are shown with a green tint. The viewport's bounding
box is shown in blue. Don't use Rectangle just to draw a white background,
as Window also has a white background. In this case, using an Item

property instead of Rectangle can improve performance.

Setting QSG_VISUALIZE to batches causes batches to be visualized in
the renderer. Unmerged batches are drawn with a diagonal line pattern,
whereas merged batches are drawn with a solid color. A small number of
distinct colors indicates effective batching. Unmerged batches are

undesirable if they contain a large number of individual nodes.

All QML components that derive from Item have a property called clip. By

default, the clip value is set to false. This property informs the scene graph

not to render any child elements that extend beyond the boundaries of their
parent. When QSG_VISUALIZE is set to clip, red spots appear on top of
the scene to indicate clipping. Because Qt Quick Items do not clip by
default, clipping is often not shown. Clipping prevents the ability to batch

multiple components together, which impacts graphical performance.

When QSG_VISUALIZE is set to changes, changes in the renderer are
shown. A flashing overlay of random color is used to highlight changes in
the scene graph. Modifications to a primitive are shown by a solid color, but
changes to an ancestor— such as changes to the matrix or opacity—are

shown by a pattern.

Experiment with these environment variables in your Qt Quick application.
You can learn more about these rendering flags at the following link:

https://doc.qt.io/qt-6/qtquick-visualcanvas-scenegraph-renderer.html.

Qt Quick helps in building great applications with a fluid UI and dynamic
transitions. However, you should consider some of the factors to avoid
performance implications. When you add an animation to a property, all
bindings are impacted and re-evaluated, which references the property. To
avoid performance issues, you may remove the binding before running the
animation and then reassign it after the animation is complete. During the
animation, avoid using JavaScript. Script animations should be used with

caution because they run in the main thread.

You can use Qt Quick particles to create a nice particle effect. However, its
performance depends on underlying hardware capabilities. To render more
particles, you will need faster graphics hardware. Your graphics hardware

should be capable to draw at or above 60 FPS. You can learn more about

https://doc.qt.io/qt-6/qtquick-visualcanvas-scenegraph-renderer.html

optimizing particle performance at the following link: https://doc.qt.io/qt-

6/qtquick-particles-performance.html.

In this section, we discussed different considerations to optimize graphical
performance. In the next section, we will discuss further how to benchmark

your application.

Creating benchmarks

We have learned about benchmarking in Chapter 9, Testing and Debugging.
Let's look at some aspects of benchmarking to evaluate performance issues.
We've already talked about Qt Test's support for benchmarking, which is a
calculation of the average time required by a particular task. The
QBENCHMARK macro is used to benchmark a function.

The following code snippet shows benchmarking key clicks on a line edit:

void LineEditTest::testClicks()

{
auto tstLineEdit = ui->lineEdit;
QBENCHMARK {QTest::keyClicks(tstLineEdit, "Some
Inputs");}
by

You can also benchmark convenience functions provided by Qt. The
following code benchmarks the QString::localeAwareCompare()

function. Let's look at the sample code here:

void TestQStringBenchmark: :simpleBenchmark()

{

https://doc.qt.io/qt-6/qtquick-particles-performance.html

QString stringil QLatiniString("Test string");

QString string2 QLatiniString("Test string");

QBENCHMARK {stringl.localeAwareCompare(string2);}

}

You can also run benchmark tests in QML. The Qt benchmark framework
will run functions with names that begin with benchmark_ several times,
with an average timing value recorded for the runs. It is similar to the
QBENCHMARK macro in the C++ version of QTestLib. You can prefix
the test function name with benchmark_once_ to get the effect of the
QBENCHMARK_ONCE macro.

You can also use the gmlbench tool provided by Qt Labs. This is a
benchmarking tool that evaluates your Qt application as a single stack
rather than in isolation, and the benchmarks give a lot of insight into the
overall performance of your Qt application. It has several readymade shells
that come with built-in benchmarking logic. You can do two different types
of benchmarking with gmlbench, such as plain Benchmark or
CreationBenchmark. It also allows you to perform both automated and
manual benchmarking. Automated tests can be used for regression testing,
whereas manual tests can be done to understand the capabilities of new
hardware. It comes with built-in features such as the FPS counter, which is
very important for GUI applications. You can find the frame rate by running
the following command:

>qmlbench --shell frame-count

You can also run all the automated tests with a simple command, as

follows:

>gmlbench benchmarks/auto/

To explore more about the tool and look at the examples, please refer to the

following link: https://github.com/qt-labs/qmlbench.

We have seen benchmarking object creation in Qt Widgets and QML and
we also benchmarked a Qt function. You can also analyze without using any
macros. You can simply use QTime or QElapsedTimer to measure the
time taken by a portion of a code or a function, as illustrated in the
following code snippet:
QTime* time = new QTime;
time->start();
int lastElapsedTime = 0O;
gDebug()<<"Start:"<<(time->elapsed()-

lastElapsedTime)<<"msec";
//Do some operation or call a function
gbDebug()<<"End:"<<(time->elapsed()-

lastElapsedTime)<<"msec";

In the preceding code snippet, we have used elapsed() to measure the time
taken for a code segment. The difference is that you can evaluate a few
lines inside a function—you don't have to write a separate test project. It's a

quick way to find performance issues without evaluating a whole project.

You can also benchmark your Qt Quick 3D application. Here's an article on

how to do it: https://www.qt.io/blog/introducing-qtquick3d-benchmarking-

application.

In this section, we discussed benchmarking techniques. In the next section,

we will discuss more profiling tools.

https://github.com/qt-labs/qmlbench
https://www.qt.io/blog/introducing-qtquick3d-benchmarking-application

Different analysis tools and optimization
strategies

You can optimize your application at multiple levels other than just at a
code level. Optimization can also be done at a memory or binary. You can
modify your application to make it work more efficiently by using fewer
resources. However, there can be a trade-off between memory and
performance. Based on your hardware configuration, you can decide a
strategy as to whether memory usage or processing time is important. In
some embedded platforms with memory limitations, you can allow the
processing time to be a little longer to use less memory and keep the
application responsive. You can also delegate some part of the optimization

task to the compiler.

Let's have a look at different strategies we can use to build, analyze, and

deploy faster.

Memory profiling and analysis tools

In this section, we will discuss some additional tools you can use to analyze
your application. Note that we won't be discussing these tools in detail. You
can visit the respective tool website and learn from their documentation. In

addition to the available tools in Qt Creator, you can use the following tools

on your Windows machine.
Let's have a look at the list of tools, as follows:

¢ AddressSanitizer (ASan) is an address monitoring tool built by Google

and part of Sanitizers.

AQTime Pro finds issues and memory leaks with application runtime

analysis and performance profiling.

Deleaker is a tool for C++ developers who want to find all possible
known leaks in their projects. It can detect memory leaks, Graphics

Device Interface (GDI) leaks, and other leaks.
Intel Inspector XE is a memory and thread debugger from Intel.

PurifyPlus is a runtime analysis tool suite that monitors your program

as it runs and reports on key aspects of its behavior.

Visual Leak Detector is a free, robust, open-source memory leak

detection system for Visual C++.
Very Sleepy is a CPU profiler based on sampling.

Visual Studio Profiler (VSTS) can be used for CPU sampling,

instrumentation, and memory allocation.

MTuner utilizes a novel approach to memory profiling and analysis,

keeping an entire time-based history of memory operations.

Memory Leak Detection Tool is a high-performance memory leak

detection tool.

Heob detects buffer overruns and memory leaks. Integrated into Qt

Creator.

Process Explorer can query and visualize several systems and
performance counters for each process, and I regularly use it for

preliminary investigations.

e System Explorer shows all system calls issued by any running
processes in a long list and supports filters to select processes we'd like

to observe.

e RAMMap examines a system's global memory usage, which requires

quite a bit of Windows internal knowledge.

¢ VMMap shows detailed information on a single application's memory

usage.

e Coreinfo gives detailed information about the processor, information

you might need when doing low-level optimization work.

e Bloaty performs a deep analysis of the binary. It aims to accurately
attribute every byte of the binary to a symbol or compile the unit that

produced it.

In this section, we briefed you about some of the third-party profiling tools.
In the next section, we will discuss how to optimize your binary during

linking.

Optimizing during linking

In earlier sections, we discussed how to find bottlenecks and optimize a
code segment that is impacting an application's performance. Fortunately,
most compilers now include a mechanism that allows you to do such
optimizations while maintaining the modularity and cleanliness of your
code. This is referred to as link-time code generation (LTCG) or link-
time optimization (LTO). LTO is the optimization of a program during the

linking process. The linker collects all object files and integrates them into a

single program. Because the linker can view the entire program, it can do
whole-program analysis and optimization. However, the linker generally
only sees the program after it has been translated into machine code. Rather
than converting each source file to machine code one by one, we postpone
the code-generation procedure until the very end—linking time. Code
generation at linking time enables not just smart inlining of code but also
does optimizations such as devirtualizing functions and better elimination
of redundant code. This technique can be used to improve application

launch time.

To enable this mechanism in Qt, you have to build from the source code. At
the configure step, add -ltcg to the command-line options. Compiling all of
your source code at once during the compilation stage will provide you all

of the optimization benefits of full LTO. You can optimize your application

launch time at a toolchain, platform, and application level.

Learn more about these performance tips at the following link:

https://wiki.qt.io/Performance Tip Startup Time.

You can delegate the optimization task to the compiler at times. When you
enable optimization flags, the compiler will try to boost the performance
and optimize the code block, at the cost of compilation time and—probably
—debugging capability. You can enable compiler-level optimization flags
for your desired compilers such as GNU Compiler Collection (GCC) or
Clang.

Look at GCC optimization options for available C++ compilers at the

following link: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

https://wiki.qt.io/Performance_Tip_Startup_Time
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

You can learn about different flags in Clang at the following link:

https://clang.llvim.org/docs/CommandGuide/clang.html.

In this section, you learned about link-time optimization. In the next

section, we will discuss how to build your Qt application faster.

Building a Qt application faster

In a large complex project, the time spent on building a project is
increasingly becoming valuable. In general, the longer the build time, the
more time you lose every day. If you multiply that by the time for a
complete team, you lose a lot of time just waiting for the build to finish.
While having to wait hours for each small change to be rebuilt might make
you more careful about details and drive you to think about each step in
depth, it may also limit a more Agile process or collaboration. In this

section, we will provide a short guide for dealing with optimization in C++

using Qt.

Please note the following points you should follow to speed up your build

process:
e Use parallel building flags
e Make use of a precompiled header (pch)
¢ Remove redundant targets from makefile
e Use forward declarations in classes

The most effective way while building a large project is to use a parallel-

build approach. A parallel build can be enabled by passing an additional

https://clang.llvm.org/docs/CommandGuide/clang.html

parameter. In Qt Creator, you can enable Parallel Build under Build
Settings. You can find the editable fields starting with the Make and
Details buttons under Build Steps. Click on the Details button, and in the
Make arguments field, enter -j8. You can instruct your compiler to build in
a parallel way through the following command-line statement:

>make -j8

The last number depends on your hardware. -j8 instructs to run eight

threads in parallel. Based on your machine configuration, you may use -j4.

You can also enable a parallel build for the Microsoft Visual C++ (MSVC)
compiler by enabling the -MP flag. You can instruct cl to run parallel by
adding the following flag in the .pro file:
msve {

QMAKE_CXXFLAGS += -MP

}

A precompiled header is an excellent technique to drastically minimize a
compiler's load. When a compiler parses a file, it must parse the entire code,
along with the standard headers and other third-party sources. pch allows
you to define which files are frequently used so that the compiler may
precompile them before starting a build and utilize the results while

building each .cpp file.

To use a precompiled header file, add the following lines of code to the .pro
file:

PRECOMPILED_HEADER = ../pch/your_precompiled_header.h

CONFIG += precompile_header

If you use the Q_OBJECT macro, the meta-object compiler generates
additional files. Don't use the Q_OBJECT macro unnecessarily, unless you
require relevant features such as the signals and slots mechanism or
translation. When you add the Q_OBJECT macro, moc will generate a

moc_<ClassName>.cpp file, which adds to the compilation complexity.

You can include this file at the end of your .cpp file, as follows:

#include "moc_<ClassName>.cpp"

You can also lower the dependencies of each .cpp file by using forward
declarations for small projects and a forward header in large projects.
Forwarding classes will shorten the duration of a partial build during
standard work. Most classes can contain forward declarations in the
forwards.h file. By having such a file, you may drastically minimize the

number of includes in header files, usually by including forwards.h.

As a result, gqmake will notice this and remove this file from the list of

targets. This will reduce the load on the compiler.

In this section, you learned how to reduce the application build time. In the
next section, we will discuss some of the best practices in the Qt Widgets-

based application.

Performance considerations for Qt
Widgets

The Qt Widgets module renders widgets utilizing the raster engine, a
software renders using CPU rather than GPU. In most cases, it can provide

the desired performance. However, the Qt Widgets module is very old and

lacks the latest capabilities. Since QML is entirely hardware-accelerated,

you should consider adopting it for your application's UI.

If your widgets don't need mouseTracking, tabletTracking, or similar
event capturing, turn it off. Your application will use more CPU time as a
result of this tracking. Maintain a smaller style sheet and keep it all in one
style sheet instead of applying it to individual widgets. A large style sheet
will take longer for Qt to process the information into the rendering system,
which may affect the application's performance. Use custom styles instead

of a style sheet as this can provide you better performance.

Don't create screens unnecessarily and keep them hidden. Create a screen
only when it is required. While using QStackedWidget, avoid adding too
many pages and populating them with many widgets. It requires Qt to
discover them all recursively during the rendering and event handling

stages, causing the program to run slowly.

Use asynchronous methods wherever feasible for huge operations, to avoid
blocking the main process, and keep your software running smoothly.
Multithreading is extremely useful for parallelizing several processes in
event loops. However, if not done correctly, such as by repeatedly creating
and removing threads or by poorly implemented inter-thread

communications, it may result in undesired outcome.

Different C++ containers yield different speeds. Qt's vector container is
slightly slower than the one in the STL. Overall, the old C++ array is still
the fastest, but it lacks sorting capabilities. Use what is most appropriate for

your needs.

In this section, you learned about best practices while using the Qt Widgets

module. In the next section, we will discuss best practices in QML.

Learning best practices of QML coding

It is important to follow certain best practices while coding in QML. You
should keep the file under a certain line limit and should have consistent
indentation and structural attributes, as well as following a standard naming

convention.

You can structure your QML object attributes in the following order:
Rectangle {

// id of the object

// property declarations

// signal declarations

// javascript functions

// object properties

// child objects

// states

// transitions

}

If you are using multiple properties from a group of properties, then use

group notation, as shown next:
Rectangle {
anchors {

left: parent.left; top: parent.top

right: parent.right; leftMargin: 20

}

Treating groups of properties as a block can ease confusion and help relate

the properties with other properties.

QML and JavaScript do not enforce private properties like C++ does. There
is a need to hide these private properties—for example, when the properties
are part of the implementation. To effectively gain private properties in a
QML item, you can embed inside a QtObject{...} to hide the properties.
This prevents the properties from being accessed outside of the QML file
and JavaScript. To minimize the impact on performance, try to group all

private properties into the same QtObject scope.

The following code snippet illustrates the use of QtObject:
Item {
id: component
width: 40; height: 40
QtObject {
id: privateObject
property real area: width * height //private

//property

}

It takes time for property resolution. While the result of a lookup can

sometimes be cached and reused, it is generally preferable to avoid doing

extra work if at all feasible. You should try to use the common base just

once in a loop.

If any of the properties change, the property binding expression is re-
evaluated. If you have a loop where you do some processing but only the
result matters, then it is better to create a temporary accumulator then assign
it to the property you want to update, rather than incrementally updating the

property itself, to prevent triggering re-evaluation of binding expressions.

To prevent a continuous overhead of leaving items that are invisible
because they are children of a non-visible active element, they should be
initialized lazily and destroyed when no longer in use. An object loaded
using a Loader element may be released by resetting the source or
sourceComponent property of Loader, but other items can be explicitly
destroyed. It may be required to keep the item active in some situations, in

which case it should be made invisible.

In general, opaque content is much faster to draw than translucent content.
The reason for this is that translucent content requires blending, and the
renderer may be able to better optimize opaque content. Even if an image
has only one translucent pixel, it is viewed as totally transparent. The same

may be said for a BorderImage element with translucent edges.

Avoid doing long logical calculations in QML. Use C++ for implementing
business logic. If you still need to use JavaScript-based implementation for

doing some complex operation or processing, then use WorkerScript.

The Qt Quick Compiler lets you compile QML source code into a final
binary. The application's launch time can be greatly reduced by enabling

this. You do not have to deploy the .qml files along with the application.

You can enable Qt Quick Compiler by adding the following line to your Qt
project (.pro) file:

CONFIG += gtquickcompiler

To learn more about Qt Quick best practices, read the documentation at the

You can also explore more about Qt Quick performance in the

documentation found at the following link: https://doc.qt.io/qt-6/qtquick-

performance.html.

In this section, we learned some of the best practices while coding in QML.

We will now summarize our learning in this chapter.

Summary

In this chapter, we discussed performance considerations and how to
improve your overall application performance. We started with improving
C++ code. Then, we explained how concurrency techniques can help in
making your application faster. You learned about QML Profiler and other
profiling tools. You also understood the importance of using best practices
while coding in Qt. Now, you can use these techniques in everyday coding.
You don't have to be an extraordinary application developer to do
performance optimization. If you follow best practices, design patterns, and
write better algorithms, then your application will have fewer defects and
fewer customer complaints. It is a continuous process, and you will

gradually become better at it.

Congratulations! You have learned the basics of performance optimization.

If you are curious to know more, then you can read more books specifically

https://doc.qt.io/qt-6/qtquick-bestpractices.html
https://doc.qt.io/qt-6/qtquick-performance.html

written for performance tuning. Happy coding in Qt. Remember—writing
better and high-performant code can reduce the CPU cycle, which in turn
reduces the carbon footprint, hence effectively, if you code better, you can

save the planet and fight climate change!

Packth

Packt.com

Subscribe to our online digital library for full access to over 7,000 books

and videos, as well as industry leading tools to help you plan your personal

development and advance your career. For more information, please visit

our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks

and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,

with PDF and ePub files available? You can upgrade to the eBook version

at packt.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at customercare@packtpub.com for

more details.

At www.packt.com, you can also read a collection of free technical articles,

sign up for a range of free newsletters, and receive exclusive discounts and

offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interest ed in these other books by
Packt:

Embedded
Programming
with Qt

Devarion high parformance applications forembedded setems
with Cre ared 31 5

|' g

| ;

\

..c":'-’ ALV
W ey
.] \ \'}; ',--:'I"

Hands-On Embedded Programming with QT
John Werner
ISBN: 978-1-78995-206-3

e Understand how to develop Qt applications using Qt Creator on Linux

http://packt.com/
mailto:customercare@packtpub.com
http://www.packt.com/
https://www.packtpub.com/product/hands-on-embedded-programming-with-qt/9781789952063

e Explore various Qt GUI technologies to build resourceful and

interactive applications
e Understand Qt's threading model to maintain a responsive Ul
e Get to grips with remote target load and debug using Qt Creator
e Become adept at writing [oT code using Qt

e Learn a variety of software best practices to ensure that your code is

efficient

High Performance
Programming
with Qt5

Build cross-plationm appdications using concumency. parabel
[T e ATy (T M ST

CHE A = S

fmf e

-\j “ﬁ.-\,

FAurak: Heapansk

Hands-On High Performance Programming with Qt 5
Marek Krajewski
ISBN: 978-1-78953-124-4

e Understand classic performance best practices

e Get to grips with modern hardware architecture and its performance

impact

https://www.packtpub.com/product/hands-on-high-performance-programming-with-qt-5/9781789531244

e Implement tools and procedures used in performance optimization

e Grasp Qt-specific work techniques for graphical user interface (GUI)

and platform programming

e Make Transmission Control Protocol (TCP) and Hypertext Transfer

Protocol (HTTP) performant and use the relevant Qt classes

e Discover the improvements Qt 5.9 (and the upcoming versions) holds in

store

e Explore Qt's graphic engine architecture, strengths, and weaknesses

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit

authors.packtpub.com and apply today. We have worked with thousands of

developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author

for, or submit your own idea.

Leave a review - let other readers know
what you think

Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to

make purchasing decisions, we can understand what our customers think

http://authors.packtpub.com/

about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

Contents

1. Cross-Platform Development with Qt 6 and Modern C++
2. Contributors
3. About the author
4. About the reviewers
5. Preface
. Who this book is for
. What this book covers
. To get the most out of this book
. Download the example code files
. Download the color images
. Conventions used
. Get in touch
8. Reviews
6. Section 1: The Basics
7. Chapter 1: Introduction to Qt 6
1. Technical requirements
2. Introducing Qt
3. Reasons for using Qt
4. Downloading and installing Qt
1. Downloading Qt
2. Installing Qt on Windows
3. Installing Qt on Linux
4. Installing Qt on macOS
5. Updating or removing Qt
5. Building Qt 6 from source
1. Installing Qt on Windows from source
2. Installing Qt on Linux from source
3. Installing Qt on macOS from source
6. Summary
8. Chapter 2: Introduction to Qt Creator
. Technical requirements
. Exploring the Qt Creator Ul
. Building a simple Qt application
4. Understanding advanced options

[N

NO Utk WDN

N

. Managing Kits
. Qt Versions
. Environment
. Keyboard shortcuts
. Text Editor
. Splitting the coding window
. Build options
8. Qt Assistant
5. Summary

NO Uk WON -

1. Technical requirements
2. Introducing Qt widgets
3. Creating a Ul with Qt Designer
4. Managing layouts
1. QVBoxLayout
2. QHBoxI.ayout
3. QGridLayout
. Creating custom widgets
. Creating Qt Style Sheets and custom themes
1. Using a QSS file
7. Exploring custom styles
1. Creating a custom style
2. Using a custom style
. Using widgets, windows, and dialogs
. Summary,
pter 4: t Quick and QML
. Technical requirements
. Getting started with QML and Qt Quick

A Ul

o O 00

10. Ch

o el

W
-
=
o
D
—
192]
—t
|ab]
=
o
[—
)
I
Q
o
=
[—
@)
~
0
o
=
=
=)
[l
wn

[Op AN
1=
2 1
o =
=N =
5 JQ
00‘9:
Qo Jn

[w—py
S E
- |k
-
Q0

c
o [
E.W

[aB]
o:
7
£, |
ga |=.
r:DO
" js)

. Positioners and layouts in QML
1. Manual positioning
2. Positioning with anchors
3. Positioners

)}

4. Repeater
5. Qt Quick Layouts
7. Integrating QML with C++
1. Embedding C++ objects into QML with context properties
2. Registering a C++ class with the QML engine
3. Creating a QML extension plugin
4. Invoking QMI, methods inside a C++ class

9. Handling mouse and touch events
1. MouseArea
2. MultiPointTouchArea
3. TapHandler
4. SwipeView
10. Summary,
11. Section 2: Cross-Platform Development
12. Chapter 5: Cross-Platform Development
1. Technical requirements
2. Understanding cross-platform development
3. Understanding compilers
1. Adding custom compilers
4. Building with gmake

Ul
@)
(gmal
o
)—‘
(@]
[Sy
(D
(@]
—t+
f.'\
Qo
=
(@]
——
=
=
(D
[9p]

1. Understanding differences between .pro and .pri files
. Understanding build settings
. Platform-specific settings
. Using Qt with Microsoft Visual Studio
. Running a Qt application on Linux

. Running a Qt application on macOS and iOS
1. Configuring Qt Creator for iOS
2. Configuring Qt Creator for Android
11. Other Qt-supported platforms
12. Porting from Qt 5 into Qt 6
13. Summary,
13. Section 3: Advanced Programming, Debugging, and Deployment

14. Chapter 6: Signals and Slots

O OO JMN

1. Technical requirements

2. Understanding Qt signals and slots
1. Understanding syntax
2. Declaring signals and slots
3. Connecting the signal to the slot
4. Connecting a single signal to multiple slots
5. Connecting multiple signals to a single slot
6. Connecting a signal to another signal

3. The working mechanism of Qt signals and slots
1. Qt's meta-object system
2. MOC generated code

Ul
-
192
[py
=
aa
192
[py
aa
=
[ab]
[
9]
jab]
=
o
9]
et
o
—
9]
[S—py
=
)
—t
-/
g%
9]
i o
aa
s
D
—

1. Adding a signal in QML
2. Connecting a signal to a function
3. Connecting a signal to a signal
4.
binding
5. Integrating signals and slots between C++ and QML
. Understanding events and the event loop
. Managing events with an event filter
9. Drag and drop
1. Drag and drop in Qt Widgets
2. Drag and drop in QML
10. Summary;
15. Chapter 7: Model View Programming
1. Technical requirements
2. Understanding the M/V architecture
1. Model
2. Delegate
3. Views in Qt Widgets
3. Creating a simple Qt Widgets application using the M/V pattern
4. Understanding Models and Views in QML
1. Views in Qt Quick
2. Models in Qt Quick

o0 3

5.
6.
7.

Using C++ Models with QML

Summary

16. Chapter 8: Graphics and Animations

1.
2.
3.

Ul

8.
9.
10.
11.
12.

13.
14.
15.

Technical requirements
Understanding Qt's graphics framework
QPainter and 2D graphics

1. Understanding the paint system

2. Using the coordinate system

3. Drawing and filling

4. Drawing with QPainter

. Introducing the Graphics View framework
. Understanding the Qt OpenGL module

2. Rendering using a scene graph
3. Using a scene graph with the Native Graphics

Shader effects

Using the Canvas QML type

Understanding particle simulations

Animation in Qt Widgets

Animation and transitions in Qt Quick
1. Controlling animations

The state machine in Qt Widgets
Summary,

17. Chapter 9: Testing and Debugging

1.
2.

3.
4.

Technical requirements
Debugging in Qt

Debugging strategié_s o
Debugging a C++ application

ul
-,
D
-
[
ga
(0]
-
j=)
(0]
[aB]
)
—t
)
—
|—r
(@)
W‘
[aB]
o
e
[
[—
(@]
aB]
=t
e o
-
jus)

6. Testing in Qt
1. Unit testing in Qt
. Integrating with Google's C++ testing framework

~J

oo
#
192]
‘E’.
=3
ga
@)
—
@)
o
[—py
M
W‘
|ab]
O
o
—
@]
|ab]
.
o
o}
9]

9. GUI testing tools
1. The Linux Desktop Testing Project (LDTP)
2. GammaRay
3. Squish
10. Summary,
18. Chapter 10: Deploying Qt Applications
1. Technical requirements
2. Understanding the need for deployment
1. Choosing between static and dynamic libraries
3. Deploying on desktop platforms
1. Deploying_ on Windows
2. Windows deployment tool
3. Deploying on Linux
4. Deploying on macOS
4. Using the Qt Installer Framework
5. Deploying on Android
6
7

. Other installation tools
. Summary,
19. Chapter 11: Internationalization
. Technical requirements
. Understanding internationalization and Qt Linguist
. Writing source code for translation

. Internationalization with Qt Widgets
1. Adding dynamic translation to a Qt Widgets application
. Internationalization with Qt Quick

Oﬁp‘l-lkwwb—\l

~J

8. Deploying translations
9. Summary,

20. Chapter 12: Performance Considerations
1. Technical requirements

Uk~ W N

O 00

10.
11.
12.
13.
21. Othe

. Understanding performance optimization

. Optimizing C++ code

. Using concurrency, parallelism, and multithreading

. Profiling a Qt Quick application using QML Profiler and Flame

Graph

. Other Qt Creator analysis tools

. Optimizing graphical performance

. Creating benchmarks

. Different analysis tools and optimization strategies

2. Optimizing during linking

3. Building a Qt application faster
Performance considerations for Qt Widgets
Learning best practices of QML coding
Summary,
Why subscribe?

r Books You May Enjoy

1.
2.

Packt is searching for authors like you
Leave a review - let other readers know what you think

Landmarks

1. Cover

file:///tmp/calibre_4.99.5_tmp_7m_w667s/ru4hb35s_pdf_out/OEBPS/Images/cover.xhtml

	Cross-Platform Development with Qt 6 and Modern C++
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Section 1: The Basics
	Chapter 1: Introduction to Qt 6
	Technical requirements
	Introducing Qt
	Reasons for using Qt
	Downloading and installing Qt
	Downloading Qt
	Installing Qt on Windows
	Installing Qt on Linux
	Installing Qt on macOS
	Updating or removing Qt

	Building Qt 6 from source
	Installing Qt on Windows from source
	Installing Qt on Linux from source
	Installing Qt on macOS from source

	Summary

	Chapter 2: Introduction to Qt Creator
	Technical requirements
	Exploring the Qt Creator UI
	Building a simple Qt application
	Understanding advanced options
	Managing kits
	Qt Versions
	Environment
	Keyboard shortcuts
	Text Editor
	Splitting the coding window
	Build options
	Qt Assistant

	Summary

	Chapter 3: GUI Design Using Qt Widgets
	Technical requirements
	Introducing Qt widgets
	Creating a UI with Qt Designer
	Managing layouts
	QVBoxLayout
	QHBoxLayout
	QGridLayout

	Creating custom widgets
	Creating Qt Style Sheets and custom themes
	Using a QSS file

	Exploring custom styles
	Creating a custom style
	Using a custom style

	Using widgets, windows, and dialogs
	Summary

	Chapter 4: t Quick and QML
	Technical requirements
	Getting started with QML and Qt Quick
	Understanding the QML type system

	Understanding Qt Quick Controls
	Styling Qt Quick Controls

	Creating a simple Qt Quick application
	Designing a UI with Qt Quick Designer
	Positioners and layouts in QML
	Manual positioning
	Positioning with anchors
	Positioners
	Repeater
	Qt Quick Layouts

	Integrating QML with C++
	Embedding C++ objects into QML with context properties
	Registering a C++ class with the QML engine
	Creating a QML extension plugin
	Invoking QML methods inside a C++ class
	Exposing a QML object pointer to C++

	Integrating QML with JS
	Importing a directory in QML

	Handling mouse and touch events
	MouseArea
	MultiPointTouchArea
	TapHandler
	SwipeView

	Summary

	Section 2: Cross-Platform Development
	Chapter 5: Cross-Platform Development
	Technical requirements
	Understanding cross-platform development
	Understanding compilers
	Adding custom compilers

	Building with qmake
	Qt Project (.pro) files
	Understanding differences between .pro and .pri files

	Understanding build settings
	Platform-specific settings
	Using Qt with Microsoft Visual Studio
	Running a Qt application on Linux
	Running a Qt application on macOS and iOS
	Configuring Qt Creator for iOS
	Configuring Qt Creator for Android

	Other Qt-supported platforms
	Porting from Qt 5 into Qt 6
	Summary

	Section 3: Advanced Programming, Debugging, and Deployment
	Chapter 6: Signals and Slots
	Technical requirements
	Understanding Qt signals and slots
	Understanding syntax
	Declaring signals and slots
	Connecting the signal to the slot
	Connecting a single signal to multiple slots
	Connecting multiple signals to a single slot
	Connecting a signal to another signal

	The working mechanism of Qt signals and slots
	Qt's meta-object system
	MOC generated code

	Getting to know Qt's property system
	Reading and writing properties with the Meta-Object System

	Using signals and slots in Qt Designer
	Understanding signals and the handler event system in QML
	Adding a signal in QML
	Connecting a signal to a function
	Connecting a signal to a signal
	Defining property attributes and understanding property binding
	Integrating signals and slots between C++ and QML

	Understanding events and the event loop
	Managing events with an event filter
	Drag and drop
	Drag and drop in Qt Widgets
	Drag and drop in QML

	Summary

	Chapter 7: Model View Programming
	Technical requirements
	Understanding the M/V architecture
	Model
	Delegate
	Views in Qt Widgets

	Creating a simple Qt Widgets application using the M/V pattern
	Understanding Models and Views in QML
	Views in Qt Quick
	Models in Qt Quick

	Using C++ Models with QML
	Creating a simple M/V application with Qt Quick
	Summary

	Chapter 8: Graphics and Animations
	Technical requirements
	Understanding Qt's graphics framework
	QPainter and 2D graphics
	Understanding the paint system
	Using the coordinate system
	Drawing and filling
	Drawing with QPainter

	Introducing the Graphics View framework
	Understanding the Qt OpenGL module
	Qt OpenGL and Qt Widgets

	Graphics in Qt Quick
	Qt OpenGL and Qt Quick
	Custom Qt Quick items using QPainter

	Understanding the Qt Quick scene graph
	Qt Quick scene graph structure
	Rendering using a scene graph
	Using a scene graph with the Native Graphics
	3D graphics with Qt Quick 3D

	Shader effects
	Using the Canvas QML type
	Understanding particle simulations
	Animation in Qt Widgets
	Animation and transitions in Qt Quick
	Controlling animations

	States, state machine, and transitions in Qt Quick
	The state machine in Qt Widgets
	Summary

	Chapter 9: Testing and Debugging
	Technical requirements
	Debugging in Qt
	Debuggers supported by Qt

	Debugging strategies
	Debugging a C++ application
	Debugging a Qt Quick application
	Testing in Qt
	Unit testing in Qt

	Integrating with Google's C++ testing framework
	Testing Qt Quick applications
	GUI testing tools
	The Linux Desktop Testing Project (LDTP)
	GammaRay
	Squish

	Summary

	Chapter 10: Deploying Qt Applications
	Technical requirements
	Understanding the need for deployment
	Choosing between static and dynamic libraries

	Deploying on desktop platforms
	Deploying on Windows
	Windows deployment tool
	Deploying on Linux
	Deploying on macOS

	Using the Qt Installer Framework
	Deploying on Android
	Other installation tools
	Summary

	Chapter 11: Internationalization
	Technical requirements
	Understanding internationalization and Qt Linguist
	Writing source code for translation
	Loading translations in a Qt application
	Switching languages dynamically
	Internationalization with Qt Widgets
	Adding dynamic translation to a Qt Widgets application

	Internationalization with Qt Quick
	Translating dynamically in a Qt Quick application

	Deploying translations
	Summary

	Chapter 12: Performance Considerations
	Technical requirements
	Understanding performance optimization
	Optimizing C++ code
	Using concurrency, parallelism, and multithreading
	Profiling a Qt Quick application using QML Profiler and Flame Graph
	Other Qt Creator analysis tools
	Optimizing graphical performance
	Creating benchmarks
	Different analysis tools and optimization strategies
	Memory profiling and analysis tools
	Optimizing during linking
	Building a Qt application faster

	Performance considerations for Qt Widgets
	Learning best practices of QML coding
	Summary
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Leave a review - let other readers know what you think

