

BIRMINGHAM—MUMBAI

Cross-Platform Development with Qt 6
and Modern C++
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Group Product Manager: Aaron Lazar

Publishing Product Manager: Kushal Dave

Senior Editor: Storm Mann

Content Development Editor: Nithya Sadanandan

Technical Editor: Gaurav Gala

Copy Editor: Safis Editing

Project Coordinator: Deeksha Thakkar

Proofreader: Safis Editing

Indexer: Vinayak Purushotham

Production Designer: Aparna Bhagat

First published: May 2021

Production reference: 1280521

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80020-458-4

www.packt.com

http://www.packt.com/

To my mother for believing in my dreams and to my father for his
sacrifices and supporting me through my ups and downs.

To my childhood English teacher Mr. Harendra Das, who laid the
foundation and honed my English communication skills, and my
Science teacher Mr. Jayanta Kumar Das, who introduced me to
computer and used to say “You will write a book one day”!

– Nibedit Dey

Contributors

About the author
Nibedit Dey is a software engineer turned serial entrepreneur with over a
decade of experience in building complex software-based products with
amazing user interfaces. Before starting his entrepreneurial journey, he
worked for Larsen & Toubro and Tektronix in different R&D roles. He
holds a bachelor's degree in biomedical engineering and a master's degree
in digital design and embedded systems. Specializing in Qt and embedded
technologies, his current role involves end-to-end ownership of products
right from architecture to delivery. Currently, he manages two technology-
driven product start-ups named ibrum technologies and AIDIA Health. He
is a tech-savvy developer who is passionate about embracing new
technologies.

About the reviewers
Andrey Gavrilin is a senior software engineer in an international company
that provides treasury management cloud solutions. He has an MSc degree
in engineering (industrial automation) and has worked in different areas
such as accounting and staffing, road data banks, web and Linux
distribution development, and fintech. His interests include mathematics,
electronics, embedded systems, full-stack web development, retro gaming,
and retro programming.

Syed Aftab has a bachelor's degree in engineering with a focus on
electronics and communications. He has around 16 years of experience in
software product development. Syed is skilled in software development
using C and C++ technologies on various platforms such as Unix, Linux,
Windows, and embedded platforms.

Programming, sharing his programming experience, and mentoring juniors
are his passions. You can get in touch with him at
https://www.linkedin.com/in/syed-aftab-a06a1943/

https://www.linkedin.com/in/syed-aftab-a06a1943/

Table of Contents

Preface

Section 1: The Basics

Chapter 1: Introduction to Qt 6

Technical requirements

Introducing Qt

Reasons for using Qt

Downloading and installing Qt

Downloading Qt

Installing Qt on Windows

Installing Qt on Linux

Installing Qt on macOS

Updating or removing Qt

Building Qt 6 from source

Installing Qt on Windows from source

Installing Qt on Linux from source

Installing Qt on macOS from source

Summary

Chapter 2: Introduction to Qt Creator

Technical requirements

Exploring the Qt Creator UI

Building a simple Qt application

Understanding advanced options

Managing kits

Qt Versions

Environment

Keyboard shortcuts

Text Editor

Splitting the coding window

Build options

Qt Assistant

Summary

Chapter 3: GUI Design Using Qt Widgets

Technical requirements

Introducing Qt widgets

Creating a UI with Qt Designer

Managing layouts

QVBoxLayout

QHBoxLayout

QGridLayout

Creating custom widgets

Creating Qt Style Sheets and custom themes

Using a QSS file

Exploring custom styles

Creating a custom style

Using a custom style

Using widgets, windows, and dialogs

Summary

Chapter 4: t Quick and QML

Technical requirements

Getting started with QML and Qt Quick

Understanding the QML type system

Understanding Qt Quick Controls

Styling Qt Quick Controls

Creating a simple Qt Quick application

Designing a UI with Qt Quick Designer

Positioners and layouts in QML

Manual positioning

Positioning with anchors

Positioners

Repeater

Qt Quick Layouts

Integrating QML with C++

Embedding C++ objects into QML with context
properties

Registering a C++ class with the QML engine

Creating a QML extension plugin

Invoking QML methods inside a C++ class

Exposing a QML object pointer to C++

Integrating QML with JS

Importing a directory in QML

Handling mouse and touch events

MouseArea

MultiPointTouchArea

TapHandler

SwipeView

Summary

Section 2: Cross-Platform Development

Chapter 5: Cross-Platform Development

Technical requirements

Understanding cross-platform development

Understanding compilers

Adding custom compilers

Building with qmake

Qt Project (.pro) fi les

Understanding differences between .pro and
.pri fi les

Understanding build settings

Platform-specific settings

Using Qt with Microsoft Visual Studio

Running a Qt application on Linux

Running a Qt application on macOS and iOS

Configuring Qt Creator for iOS

Configuring Qt Creator for Android

Other Qt-supported platforms

Porting from Qt 5 into Qt 6

Summary

Section 3: Advanced Programming,
Debugging, and Deployment

Chapter 6: Signals and Slots

Technical requirements

Understanding Qt signals and slots

Understanding syntax

Declaring signals and slots

Connecting the signal to the slot

Connecting a single signal to multiple slots

Connecting multiple signals to a single slot

Connecting a signal to another signal

The working mechanism of Qt signals and slots

Qt's meta-object system

MOC generated code

Getting to know Qt's property system

Reading and writing properties with the Meta-
Object System

Using signals and slots in Qt Designer

Understanding signals and the handler event
system in QML

Adding a signal in QML

Connecting a signal to a function

Connecting a signal to a signal

Defining property attributes and understanding
property binding

Integrating signals and slots between C++ and
QML

Understanding events and the event loop

Managing events with an event fi lter

Drag and drop

Drag and drop in Qt Widgets

Drag and drop in QML

Summary

Chapter 7: Model View Programming

Technical requirements

Understanding the M/V architecture

Model

Delegate

Views in Qt Widgets

Creating a simple Qt Widgets application using
the M/V pattern

Understanding Models and Views in QML

Views in Qt Quick

Models in Qt Quick

Using C++ Models with QML

Creating a simple M/V application with Qt Quick

Summary

Chapter 8: Graphics and Animations

Technical requirements

Understanding Qt's graphics framework

QPainter and 2D graphics

Understanding the paint system

Using the coordinate system

Drawing and fil l ing

Drawing with QPainter

Introducing the Graphics View framework

Understanding the Qt OpenGL module

Qt OpenGL and Qt Widgets

Graphics in Qt Quick

Qt OpenGL and Qt Quick

Custom Qt Quick items using QPainter

Understanding the Qt Quick scene graph

Qt Quick scene graph structure

Rendering using a scene graph

Using a scene graph with the Native Graphics

3D graphics with Qt Quick 3D

Shader effects

Using the Canvas QML type

Understanding particle simulations

Animation in Qt Widgets

Animation and transitions in Qt Quick

Controlling animations

States, state machine, and transitions in Qt
Quick

The state machine in Qt Widgets

Summary

Chapter 9: Testing and Debugging

Technical requirements

Debugging in Qt

Debuggers supported by Qt

Debugging strategies

Debugging a C++ application

Debugging a Qt Quick application

Testing in Qt

Unit testing in Qt

Integrating with Google's C++ testing
framework

Testing Qt Quick applications

GUI testing tools

The Linux Desktop Testing Project (LDTP)

GammaRay

Squish

Summary

Chapter 10: Deploying Qt Applications

Technical requirements

Understanding the need for deployment

Choosing between static and dynamic libraries

Deploying on desktop platforms

Deploying on Windows

Windows deployment tool

Deploying on Linux

Deploying on macOS

Using the Qt Installer Framework

Deploying on Android

Other installation tools

Summary

Chapter 11: Internationalization

Technical requirements

Understanding internationalization and Qt
Linguist

Writing source code for translation

Loading translations in a Qt application

Switching languages dynamically

Internationalization with Qt Widgets

Adding dynamic translation to a Qt Widgets
application

Internationalization with Qt Quick

Translating dynamically in a Qt Quick
application

Deploying translations

Summary

Chapter 12: Performance Considerations

Technical requirements

Understanding performance optimization

Optimizing C++ code

Using concurrency, parallelism, and
multithreading

Profiling a Qt Quick application using QML
Profiler and Flame Graph

Other Qt Creator analysis tools

Optimizing graphical performance

Creating benchmarks

Different analysis tools and optimization
strategies

Memory profiling and analysis tools

Optimizing during linking

Building a Qt application faster

Performance considerations for Qt Widgets

Learning best practices of QML coding

Summary

Why subscribe?

Other Books You May Enjoy

Preface
Qt is a cross-platform application development framework designed to
create great software applications with amazing user interfaces for desktop,
embedded, and mobile platforms. It provides developers with a great set of
tools for designing and building great applications without having to worry
about platform dependency.

In this book, we will focus on Qt 6, the latest version of the Qt framework.
This book will help you with creating user-friendly and functional graphical
user interfaces. You will also gain an advantage over competitors by
providing better-looking applications with a consistent look and feel across
different platforms.

Developers who want to build a cross-platform application with an
interactive GUI will be able to put their knowledge to work with this
practical guide. The book provides a hands-on approach to implementing
the concepts and associated mechanism that will have your application up-
and-running in no time. You will also be provided explanation for essential
concepts with examples to give you a complete learning experience.

You will begin by exploring the Qt framework across different platforms.
You will learn how to configure Qt on different platforms, understand
different Qt modules, learn core concepts, and learn how they can be used
to build efficient GUI applications. You will be able to build, run, test, and
deploy applications across different platforms. You will also learn to
customize the look and feel of the application and develop a translation
aware application. Apart from learning the complete application process,

the book will also help you in identifying the bottlenecks and how to
address them in order to enhance the performance of your application.

By the end of this book, you will be able to build and deploy your own Qt
applications on different platforms.

Who this book is for
This book is intended for developers and programmers who want to build
GUI-based applications. It is also intended for software engineers who have
coded in C++ before. The entry barrier isn't that high, so if you understand
basics C++ and OOPS concepts, then you can embark on this journey.

In addition, this book can help intermediate-level Qt developers, who want
to build and deploy in other platforms. Working professionals or students,
who want to get started with Qt programming, as well as programmers who
are new to Qt, will find this book useful.

What this book covers
Chapter 1, Introduction to Qt 6, will introduce you to Qt and describe how
to set it up on a machine. By the end of the chapter, readers will be able to
build Qt from source code and get started on their platform of choice.

Chapter 2, Introduction to Qt Creator, introduces you to the Qt Creator IDE
and its user interface. This chapter will also teach you how to create and
manage projects in Qt Creator. You will learn to develop a simple Hello
World application using Qt Creator and learn about different shortcuts, and
practical tips.

Chapter 3, GUI Design Using Qt Widgets, explores the Qt Widgets module.
Here, you will learn the various kinds of widgets that are available for
creating GUIs. You will also be introduced to Layouts, Qt Designer, and
learn how to create your own custom controls. This chapter will help you in
developing your first GUI application using Qt.

Chapter 4, Qt Quick and QML, covers fundamentals of Qt Quick and QML,
Qt Quick Controls, Qt Quick Designer, Qt Quick Layouts, and Basic QML
Scripting. In this chapter, you will learn to use Qt Quick controls and how
to integrate C++ code with QML. By the end of this chapter, you will be
able to create a modern application with fluid UI using QML.

Chapter 5, Cross-Platform Development, explores cross-platform
development using Qt. You will learn about different settings in Qt Creator.
In this chapter, you will be able to run sample applications on your favorite
desktop and mobile platforms.

Chapter 6, Signals and Slots, covers the signals and slots mechanism in
depth. You will be able to communicate between different C++ classes and
between C++ and QML. You will also learn about events, event filters and
event loop.

Chapter 7, Model View Programming, introduces you to the Model/View
architecture in Qt and its core concepts. Here, you will be able to write
custom models and delegates . You can use these to display required
information on your Qt Widget-based or Qt Quick-based GUI application.

Chapter 8, Graphics and Animations, introduces the concepts of 2D
graphics and animations. You will learn how to use painter APIs to draw
different shapes on the screen. We will further discuss the possibility of
graphics data representation using Qt's Graphics View framework and
Scene Graph. This chapter will guide you towards creating an attention-
grabbing user interface with animations. The chapter also touches upon the
state machine framework.

Chapter 9, Testing and Debugging, explores different debugging techniques
for a Qt application. You will learn about unit testing and the Qt Test
framework in this chapter. We will also discuss how to use the Google Test
framework with Qt Test, as well as learn about the available Qt tooling and
GUI specific testing techniques.

Chapter 10, Deploying Qt Applications, discusses the importance of
software deployment. You will learn to deploy a Qt application on various
platforms, including desktop and mobile platforms. You will learn about the
available deployment tools and steps to create an installer package.

Chapter 11, Internationalization, introduces you to internationalization. Qt
provides excellent support for translating Qt Widgets and Qt Quick
applications into local languages. In this chapter, you will learn how to
make an application with multi-lingual support. You will also learn about
inbuilt tools and various considerations for making a translation-aware
application.

Chapter 12, Performance Considerations, introduces you to performance
optimization techniques and how to apply them in the context of Qt
programming. Here, we will discuss different profiling tools to diagnose
performance problems, concentrating specifically on the tools available on
Windows. In this chapter, you will learn how to profile performance with
QML Profiler and benchmark your code. The chapter will also help you
write high-performance optimized QML code.

To get the most out of this book
We will only use open source software, so you will not need to purchase
any license. We will go over the installation procedures and detail as we
progress through each chapter. To install the required software, you will
require a functional internet connection and a desktop PC or laptop. Apart
from that, there is no particular software requirement before you begin this
book.

IMPORTANT NOTES
For Android setup, you will need the following:

OpenJDK 8 (JDK-8.0.275.1)

Android SDK 4.0

NDK r21 (21.3.6528147)

Clang toolchain

Android OpenSSL

If you are using the digital version of this book, we advise you to type the code yourself or
access the code via the GitHub repository (link available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

All code examples have been tested using Qt 6 on the Windows platform.
You may see failures if you use Qt 5. However, they should work with

future version releases too. Please make sure that the version you're
installing to your computer is at least Qt 6.0.0 or later so that the code is
compatible with the book.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-
6-and-Modern-Cpp. Additionally, you can find some bonus examples with
C++17 features in the aforementioned mentioned GitHub link. In case
there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the
screenshots/diagrams used in this book. You can download it here:
https://static.packt-cdn.com/downloads/9781800204584_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp
https://github.com/PacktPublishing/
file:///tmp/calibre_4.99.5_tmp_7m_w667s/ru4hb35s_pdf_out/OEBPS/_ColorImages.pdf

and Twitter handles. Here is an example: "Typically, the exec () method is
used to show a dialog."

A block of code is set as follows:

 QMessageBox messageBox;

 messageBox.setText("This is a simple QMessageBox.");

 messageBox.exec();

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 QMessageBox messageBox;

 messageBox.setText("This is a simple QMessageBox.");

 messageBox.exec();

Any command-line input or output is written as follows:

> lrelease *.ts

Bold: Indicates a new term, an important word, or words that you see
onscreen. For example, words in menus or dialog boxes appear in the text
like this. Here is an example: "The last step is to build and run the
application. Hit the Run button in Qt Creator."

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on
the Internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions, we at
Packt can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
http://packt.com/

Section 1: The Basics
In this section, you will learn the basics and evolution of the framework and
how to install Qt on different platforms. Throughout this section, you will
learn more about the evolution of Qt. Then, we'll proceed to build our first
example program using the latest version of Qt, which is Qt 6. You will be
learning about the usage of the Qt Creator IDE. This section will introduce
you to Qt Widgets, Qt Designer, and creating custom controls. You will
learn about style sheets, QSS files, and theming. This section will also
introduce you to Qt Quick and QML.

This section includes the following chapters:

Chapter 1, Introduction to Qt 6

Chapter 2, Introduction to Qt Creator

Chapter 3, GUI Design Using Qt Widgets

Chapter 4, Qt Quick and QML

Chapter 1: Introduction to Qt 6
Qt (pronounced cute, not que-tee) is a cross-platform application
development framework designed to create great software applications with
uniform user interfaces (UIs) for desktop, embedded, and mobile
platforms. It provides developers with a great set of tools to design and
build great applications without worrying about platform dependency. In
this chapter, you will learn the basics about the framework, its history, and
how to install Qt on different platforms. You will learn what Qt is and why
it is beneficial to use it. By the end of the chapter, you will be able to install
Qt and get started on your platform of choice.

In this chapter, we're going to cover the following main topics:

Introducing Qt

Reasons for using Qt

Downloading and installing Qt

Building Qt 6 from source

Technical requirements
To get started, you should have a desktop or laptop running on Windows,
Linux, or macOS. Please use the updated Windows 10 or Ubuntu 20.04
long-term support (LTS). Alternatively, use the latest version of macOS
(newer than macOS 10.14), such as macOS Catalina.

For your integrated development environment (IDE) to run smoothly,
your system should have at least an Intel Core i5 processor along with a
minimum of 4 gigabytes (GB) of random-access memory (RAM).

You will need an active internet connection to download and install Qt. As a
prerequisite, you should also be familiar with C++ as Qt requires C++
programming knowledge.

Introducing Qt
Qt is a cross-platform software development framework for desktop,
embedded, and mobile platforms. It follows the philosophy of code less,
create more, and deploy everywhere. It supports platforms such as
Windows, Linux, macOS, VxWorks, QNX, Android, iOS, and so on. The
software also supports several microcontroller units (MCUs) from NXP,
Renesas, and STMicroelectronics running on bare metal or FreeRTOS.

Qt was born as an attempt to provide a uniform graphical user interface
(GUI) with the same look, feel, and functionality across different platforms.
Qt accomplishes that by providing a framework to write code once and
ensure that it runs on other platforms with minimal or no modifications. It is
not a programming language, but rather a framework written in C++. The
Qt framework and tools are dual-licensed under open source and
commercial licenses.

Qt uses a modular approach to group related functionalities together. Qt
Essentials are the foundation of Qt on all platforms. These modules are
general and useful for most Qt-based applications. Essential modules are
available for open source usage. Examples of Qt Essentials modules are Qt

Core, Qt GUI, Qt QML, Qt Widgets, and so on. There are also special-
purpose add-on modules that provide specific functionalities and come with
certain license obligations. Examples of add-on modules are Qt 3D, Qt
Bluetooth, Qt Charts, Qt Data Visualization, and more. As well as this,
there are value-added modules such as Qt Automotive Suite, Qt for Device
Creation, and Qt for MCUs, among others available under the commercial
license.

To find out more about different Qt modules, visit https://doc.qt.io/qt-
6/qtmodules.html.

Qt was released for public use in 1995. Since then, there have been many
improvements and major changes. Qt 6 is the new major version of Qt. Its
main goals are to remain prepared for the requirements coming in 2020 and
beyond, remove obsolete modules, and be more maintainable. With this
focus, there are architectural changes in Qt 6 that may break some level of
backward compatibility with earlier versions.

Some essential modifications in Qt 6 are outlined here:

Introduction of strong typing

JavaScript as an optional feature of Qt Modeling Language (QML)

Removal of QML versioning

Removal of the duplicate data structures between QObject and QML

Avoidance of the creation of runtime data structures

Compilation of QML into efficient C++ and native code

Support for hiding implementation details

https://doc.qt.io/qt-6/qtmodules.html

Better integration of tools

Now that we've covered the basics, let's look at the main reasons for using
Qt…

Reasons for using Qt
Qt is a modular, cross-platform application development framework. The
biggest misunderstanding about Qt is that many people consider it as a GUI
framework. However, Qt is much more than a GUI framework. It not only
comprises a GUI module, but also a set of modules to make application
development faster and easier to scale on various platforms. The biggest
benefit of using Qt is its ability to provide portability to various platforms.
Here are some advantages of using Qt for developers:

You can create incredible user experiences for your customers and boost
your company brand using Qt.

Cross-platform development saves both time and money. You can target
multiple platforms with the same code base.

Qt is known for making C++ easy and accessible. With Qt, developers
can easily create high-performance, scalable applications with a fluid
UI.

Due to the open source model, the framework is future-proof, along
with a great ecosystem.

It further supports different programming languages and is a very
flexible and reliable framework. Consequently, there are great
companies such as Adobe, Microsoft, Samsung, AMD, HP, Philips, and

MathWorks using Qt for their applications. Many open source projects
such as VLC (previously known as VideoLAN Client), Open
Broadcaster Software (OBS), and WPS Office (where WPS stands for
Writer, Presentation, and Spreadsheets) are also built on Qt.

The core values of Qt are outlined as follows:

Cross-platform nature

Highly scalable

Very easy to use

Built-in with world-class application programming interfaces (APIs),
tools, and documentation

Maintainable, stable, and compatible

A large community of users

Whether you are a hobbyist, a student, or working for a company, Qt
provides great flexibility to use its modules as per your requirement. Many
universities are using Qt as one of their coursework subjects. So, Qt is a
great choice for programmers to start building new applications with ready-
made features. Let's start by downloading and installing Qt 6 on your
machine.

Downloading and install ing Qt
There are different ways to install the Qt framework and tools on your
system. You can download an online or offline installer from the Qt
website, or you can build the source packages yourself. Qt recommends

using the online installer for first-time installations and the Qt
Maintenance Tool for modifying the installation later.

The installers allow you to download and install the following components:

Qt libraries

Qt Creator IDE

Documentation and examples

Qt source code

Add-On modules

The online installer allows you to select open source or commercial
versions of Qt, tools, and Add-On modules to install based on the chosen
license. The online installer doesn't contain the Qt components, but it is a
downloader client to download all the relevant files. You can install once
the download is complete. You will require a Qt account to download and
install Qt. An evaluation version for the commercial Qt gives you free trial-
period access, with all commercial packages and access to official Qt
support. The installer requires you to sign in with your Qt account. If you
don't have a Qt account, you can sign up during the installation process. The
installer fetches the license attached to the account from the Qt server and
lists down modules according to your license. If you are new to Qt, then we
recommend that you start with the open source version.

The offline installer is a platform-specific package that includes all Qt
modules and add-ons relevant for the platform. Due to the official policy
changes, open source offline installers are not available any more since Qt
5.15. If you have a commercial license, then you can provide the credentials

during the installation process. You can locate your license key in your Qt
account web portal.

You can download them from the following links:

Open source: https://www.qt.io/download-open-source

Commercial: https://www.qt.io/download

Offline: https://www.qt.io/offline-installers

IMPORTANT NOTE
The Qt Company provides users with a dual-licensing option. As a beginner, you can
get started with an open source license to explore Qt. If you are working for a company,
then discuss with your manager or Information Technology (IT) or legal team to
procure a commercial license or to understand legal obligations. You can learn more
about Qt licensing at https://www.qt.io/licensing/.

Downloading Qt

Let's start by downloading Qt onto your machine, as follows:

1. To begin, visit the https://www.qt.io/download download page.

2. Click on the Download. Try. Buy. button in the top-right corner. You
will see different download options here.

3. If you want to try the commercial version, then click on Try Qt section.
If you already have a Qt account, then you can log in into the account
under the Existing customers section.

4. Considering that you are new to Qt, we will begin with the open source
version. Click on the Go open source button, as shown in the following
screenshot:

https://www.qt.io/download-open-source
https://www.qt.io/download
https://www.qt.io/offline-installers
https://www.qt.io/licensing/
https://www.qt.io/download

Figure 1.1 – Qt website download options

5. On the next screen, you will find Download the Qt Online Installer
button. Click on it to proceed to the download link.

6. The web page will automatically detect the underlying platform details
from the browser and will show you the Download button. You can also
select your intended installer by choosing the other options: you can
select 32-bit or 64-bit or download for a different platform.

You will see a Thank you page after you click on the download option.
At this stage, you can find the installer in your download folder.

Next, let's begin with the installation process on the Windows platform.

Install ing Qt on Windows

Now, let's start the installation process on Windows! Proceed as follows:

1. You will find a file with the name qt-unified-windows-x86-
%VERSION%-online.exe inside your download folder. Double-click
on the executable, and you will see a Welcome screen.

2. Click the Next button, and a credentials screen will appear, asking you
to log in with your Qt account. If you don't have one, then you can sign
up on the same page, as shown in the following screenshot:

Figure 1.2 – Login screen of the installer

3. In the next screen, you will be presented with the open source usage
obligations agreement. You won't get this screen if you are installing
using a commercial license. Click on the first checkbox, saying I have
read and approve the obligations of using Open Source Qt, and
acknowledge that you are not using Qt for commercial purposes. Make

sure you read the terms and conditions mentioned in the agreement!
Then, click on the Next button.

4. The next screen will provide you with options related to tracking and
sharing pseudonymous data in Qt Creator. You may allow or disable
these options based on your preferences. Then, click on the Next button
to proceed to the next screen.

5. In the next screen, you can specify the installation path. You may
continue with the default path, or you can change it to any other path if
you don't have enough space on the default drive. You can also choose
whether you want to associate common file types with Qt Creator by
selecting the checkbox option at the bottom. Click on the Next button.

6. Next, you will be presented with a list where you can select the
version(s) of Qt you need to install on your system. You may simply
proceed with the default options. If you don't need some of the
components, then you can unselect them to reduce the size of the
download. You can update the Qt components using the Maintenance
Tool anytime later. To complete the installation process, click on the
Next button. The component selection screen can be seen here:

Figure 1.3 – Component selection screen of the installer

7. In the next screen, you will be presented with the license agreement.
Click on the first radio button, which says I have read and agree to the
terms contained in the license agreements. Again, make sure you read
the terms and conditions mentioned in the license agreement, and then
click on the Next button.

8. On the next screen, you can create Start menu shortcuts on Windows.
This screen will not be available for other platforms. Once you have
finished doing this, click on the Next button.

9. Now, Qt is ready to be installed in your system. Make sure you have a
working internet connection and data balance. Click on the Install
button to begin the installation. The download process will take time,
depending on your internet speed. Once the required files are
downloaded, the installer will automatically install them in the
previously selected path.

10. Once the installation is finished, the installer will make an entry for the
Maintenance Tool, which will help you later to make changes to the
libraries. Click on the Next button to move to the last screen of the
installer.

11. In order to complete the installation process, click on the Finish button.
If you have left the Launch Qt Creator checkbox checked, then Qt
Creator will be launched. We will discuss this in more detail in the next
chapter. Now, Qt is ready to be used on your Windows machine. Click
on the Finish button to exit the wizard.

Install ing Qt on Linux

Now, let's install the Qt framework on the latest LTS version of Linux,
such as Ubuntu 20.04, CentOS 8.1, or openSUSE 15.1. We will be focusing
on the most popular Linux distribution, Ubuntu. You can follow the same
steps as mentioned previously to download the online installer from the Qt
website.

On Ubuntu, you will get an installer file such as qt-unified-linux-x64-
%VERSION%-online.run, where %VERSION% is the latest version—
for example: qt-unified-linux-x86-4.0.1-1-online.run.

1. You may have to give write permissions to the downloaded file before
executing it. To do that, open the terminal and run the following
command:

$ chmod +x qt-unified-linux-x64-%VERSION%-online.run

2. You can start the install process by double-clicking the downloaded
installer file. The installation requires superuser access. You may have
to add a password in the authorization dialog during the installation.
You can also run the installer from the terminal, as follows:

$./qt-unified-linux-x64-%VERSION%-online.run

3. You will see similar screens to those shown for the Windows platform.
Apart from the operating system (OS)-specific title bar changes, all the
screens remain the same for installation in Ubuntu or similar Linux
flavors.

At the time of writing the book, there was no Ubuntu or Debian package
available for Qt 6 as the respective maintainers have stepped down. Hence,
you may not get the Qt 6 package from the terminal.

Install ing Qt on macOS

If you are a macOS user, then you can also install the same way as
discussed for the earlier platforms. You can follow the same steps
mentioned previously to download the online installer from the Qt website.

You will get an installer file such as qt-unified-mac-x64-%VERSION%-
online.dmg, where %VERSION% is the latest version (such as qt-
unified-mac-x64-4.0.1-1-online.dmg).

Qt has a dependency on Xcode. To install Qt on your Mac, you will need
Xcode installed on your machine, otherwise, it will refuse to install. If you
are an Apple developer, then your Mac may have Xcode installed. If you
don't have Xcode installed on your machine, then you may proceed to
install Xcode's Command Line Tools instead of Xcode. This will save time
and storage space on your machine:

1. To begin, type the following command on the terminal:

$ xcode-select --install

2. If the terminal shows the following output, then your system is ready for
the next steps:

xcode-select: error: command line tools are already installed,

use

"Software Update" to install updates

3. The next step is to install the Qt framework. Double-click on the
installer file to launch the installation interface.

4. If the installer still complains that Xcode is not installed, then keep
clicking OK until the message goes away permanently. Remember the
installation path. Once the installation is finished, you are ready to use
Qt on your machine.

Further instructions on Qt for macOS can be found at the following link:

https://doc.qt.io/qt-6/macos.html

https://doc.qt.io/qt-6/macos.html

Updating or removing Qt

Once Qt is installed, you can modify the components—including updating,
adding, and removing components—using the Maintenance Tool under the
installation directory. The directory structure remains the same for all
desktop platforms. The installation directory contains folders and files, as
shown in the following screenshot (on Windows):

Figure 1.4 – The Maintenance Tool inside the installed folder

Let's begin with the maintenance process! You can add, remove, and update
modules using the Maintenance Tool. Proceed as follows:

1. Click on the MaintenanceTool.exe executable to launch the
maintenance interface. Click on the Next button, and a credentials
screen will appear, asking you to log in with your Qt account. The login
details will be prefilled from your last login session. You can click Next
to add or update components or select the Uninstall only checkbox to
remove Qt from your system. The following screenshot shows what the
credentials screen looks like:

Figure 1.5 – Welcome screen of the Maintenance Tool

2. Once you are logged in, the tool will present you with options to add or
remove or update the components, as shown in the following
screenshot. Click on the Next button to proceed further:

Figure 1.6 – Setup screen of the Maintenance Tool

3. On the next screen, you can select new components from the latest
releases or the archived version. You can click on the Filter button to
filter versions as per your requirement. You can also add new platform-
specific components such as Android from the component list. If the
component is existing and you uncheck it, then it will be removed from

your desktop during the update. Once you have selected the
components, click on the Next button. The following screenshot shows
what the component selection screen looks like:

Figure 1.7 – Component selection screen

4. You will then come across the update screen. This screen will tell you
how much storage space is required for the installation. If you are
running out of storage space, then you may go back and remove some
existing components. Click on the Update button to begin the process,
as illustrated in the following screenshot:

Figure 1.8 – The Ready to Update screen of the Maintenance Tool

5. You can abort the update installation process by clicking on the Cancel
button. Qt will warn you and ask you for confirmation before aborting
the installation process, as illustrated in the following screenshot. Once
the process is aborted, click on the Next button to exit the wizard:

Figure 1.9 – The cancel dialog

6. Launch the Maintenance Tool again to update existing components
from the latest releases. You can click on the Quit button to exit the
Maintenance Tool. Please wait while the installer fetches the meta-
information from the remote repository. Click on the Next button to see
the available components. The update option is illustrated in the
following screenshot:

Figure 1.10 – The Update option in the Maintenance Tool

7. Next, you can select which components to update from the checkboxes.
You can choose to update all or you can update selectively. The installer
will show how much storage space will be required for the update, as
illustrated in the following screenshot. You can click Next to go to the
update screen and begin the update. Then, on the next screen, click on
the Update button to download the update packages:

Figure 1.11 – Components available for update

8. Once the installation is finished, the installer makes entries for the
Maintenance Tool, which will help you make changes to the libraries
later. This is illustrated in the following screenshot. Click on the Next
button to move to the last screen of the installer:

Figure 1.12 – The Update finished screen in the Maintenance Tool

9. In the last screen, you will see Restart and Finish buttons. Click on the
Finish button to exit the Qt wizard.

10. Similarly, you can restart or launch the Maintenance Tool and select
the Remove all components radio button. Click on the Next button to

begin the uninstallation process, as illustrated in the following
screenshot:

Figure 1.13 – The Remove option in the Maintenance Tool

Please note that on clicking the Uninstall button, all the Qt components will
be removed from your system; you will have to reinstall Qt if you want to

use them again. Click on Cancel if you don't intend to remove the Qt
components from your system, as illustrated in the following screenshot. If
you intend to remove the existing version and use a newer version of Qt,
then select the Add or remove components option, as discussed earlier.
This will remove older Qt modules and free up your disk space:

Figure 1.14 – The Uninstall screen in the Maintenance Tool

In this section, we learned about modifying an existing Qt installation
through the Maintenance Tool. Now, let's learn how to build and install Qt
from the source code.

Building Qt 6 from source
If you want to build the framework and tools yourself or experiment with
the latest unreleased code, then you can build Qt from the source code. If
you're going to develop a specific Qt version from the source, then you can
download the Qt 6 source code from the official releases link, as shown
here: https://download.qt.io/official_releases/qt/6.0/.

If you are a commercial customer, then you can download the Source
Packages from your Qt account portal. Platform-specific building
instructions are discussed in the upcoming subsections.

You can also clone from the GitHub repository, and check out the desired
branch. At the time of authoring this book, the Qt 6 branch remained inside
the Qt 5 super module. You can clone the repository from the following
link: git://code.qt.io/qt/qt5.git.

The qt5.git repository may get renamed to qt.git in the future for
maintainability. Please refer to the QTQAINFRA-4200 Qt ticket. Detailed
instructions on how to build Qt from Git can be found at the following link:
https://wiki.qt.io/Building_Qt_6_from_Git.

Ensure that you install the latest versions of Git, Perl, and Python on your
machine. Make sure there is a working C++ compiler before proceeding to
the platform-specific instructions in the next section.

https://download.qt.io/official_releases/qt/6.0/
https://wiki.qt.io/Building_Qt_6_from_Git

Install ing Qt on Windows from source

To install Qt 6 on Windows from source code, follow these next steps:

1. First of all, download the source code from Git or from the open source
download link mentioned earlier. You will get a compressed file as qt-
everywhere-src--%VERSION%.zip, where %VERSION% is the
latest version (such as qt-everywhere-src-6.0.3.zip). Please note that
suffixes such as -everywhere-src- may get removed in the future.

2. Once you have downloaded the source archive, extract it to a desired
directory—for example, C:\Qt6\src.

3. In the next step, configure the build environment with a supported
compiler and the required build tools.

4. Then, add the respective installation directories of CMake, ninja, Perl,
and Python to your PATH environment variable.

5. The next step is to build the Qt library. To configure the Qt library for
your machine type, run the configure.bat script in the source directory.

6. In this step, build Qt by typing the following command in Command
Prompt:

>cmake --build . –parallel

7. Next, enter the following command in Command Prompt to install Qt
on your machine:

>cmake --install .

Your Windows machine is now ready to use Qt.

To understand more about the configure options, visit the following link:

https://doc.qt.io/qt-6/configure-options.html

Detailed build instructions can be found at the following link:

https://doc.qt.io/qt-6/windows-building.html

Install ing Qt on Linux from source

To build the source package on Linux distributions, run the following set of
instructions on your terminal:

1. First of all, download the source code from Git or from the open source
download link mentioned earlier. You will get a compressed file as qt-
everywhere-src--%VERSION%.tar.xz, where %VERSION% is the
latest version (such as qt-everywhere-src-6.0.3.tar.xz). Please note that
suffixes such as -everywhere-src- may get removed in the future.

2. Once you have downloaded the source archive, uncompress the archive
and unpack it to a desired directory—for example, /qt6, as illustrated in
the following code snippet:

$ cd /qt6

$ tar xvf qt-everywhere-opensource-src-%VERSION%.tar.xz

$ cd /qt6/qt-everywhere-opensource-src-%VERSION%

3. To configure the Qt library for your machine, run the ./configure script
in the source directory, as illustrated in the following code snippet:

$./configure

4. To create the library and compile all the examples, tools, and tutorials,
type the following commands:

https://doc.qt.io/qt-6/configure-options.html
https://doc.qt.io/qt-6/windows-building.html

$ cmake --build . --parallel

$ cmake --install .

5. The next step is to set the environment variables. In .profile (if your
shell is bash, ksh, zsh, or sh), add the following lines of code:

PATH=/usr/local/Qt-%VERSION%/bin:$PATH

export PATH

In .login (if your shell is csh or tcsh), add the following line of code:

setenv PATH /usr/local/Qt-%VERSION%/bin:$PATH

If you use a different shell, modify your environment variables accordingly.
Qt is now ready to be used on your Linux machine.

Detailed building instructions for Linux/X11 can be found at the following
link:

https://doc.qt.io/qt-6/linux-building.html

Install ing Qt on macOS from source

Qt has a dependency on Xcode. To install Qt on your Mac, you will need
Xcode installed on your machine. If you don't have Xcode installed on your
machine, then you may proceed to install Xcode's Command Line Tools:

1. To begin, type the following command on the terminal:

$ xcode-select --install

2. If the terminal shows the following output, then your system is ready for
the next steps:

https://doc.qt.io/qt-6/linux-building.html

xcode-select: error: command line tools are already installed,

use

"Software Update" to install updates

3. To build the source package, run the following set of instructions on
your terminal:

$ cd /qt6

$ tar xvf qt-everywhere-opensource-src-%VERSION%.tar

$ cd /qt6/qt-everywhere-opensource-src-%VERSION%

4. To configure the Qt library for your Mac, run the ./configure script in
the source directory, as illustrated in the following code snippet:

$./configure

5. To create a library, run the make command, as follows:

$ make

6. If -prefix is outside the build directory, then type the following lines to
install the library:

$ sudo make -j1 install

7. The next step is to set the environment variables. In .profile (if your
shell is bash), add the following lines of code:

PATH=/usr/local/Qt-%VERSION%/bin:$PATH

export PATH

In .login (if your shell is csh or tcsh), add the following line of code:

setenv PATH /usr/local/Qt-%VERSION%/bin:$PATH

Your machine is now ready for Qt programming.

Detailed building instructions for macOS can be found here:

https://doc.qt.io/qt-6/macos-building.html

In this section, we learned how to install Qt from source on your favorite
platform. Now, let's summarize our learning.

Summary
This chapter explained the basics of the Qt framework and what it can be
used for. Here, we discussed the history, different modules, and advantages
of using Qt. We also learned about different methods of installation with
license obligations, giving step-by-step installation procedures for Qt on
different desktop platforms. Now, your machine is ready to explore Qt.

In the next chapter, we will discuss the Qt Creator IDE. You will learn
about the UI of the IDE, different configurations, and how to use it for your
Qt project.

https://doc.qt.io/qt-6/macos-building.html

Chapter 2: Introduction to Qt Creator
Qt Creator is Qt's own Integrated Development Environment (IDE) for
cross-platform application development. In this chapter, you will learn the
basics of the Qt Creator IDE as well as covering the user interface (UI) of
the IDE. We will also look at how to create and manage projects in Qt
Creator. This module of Qt covers developing a simple Qt application using
Qt Creator, shortcuts, and practical tips for developers.

More specifically, we're going to cover the following main topics:

Basics of Qt Creator

Configuring the IDE and managing projects

User interfaces

Writing a sample application

Advanced options

Qt Creator can make your Qt learning easier with many useful tools and
examples. You will need minimal IDE knowledge to get started. By the end
of this chapter, you will be familiar with the use of Qt Creator. You will also
be able to build and run your first Qt application on your favorite desktop
platform, as well as being aware of the advanced options available in the
IDE, which you will be able to customize in line with your preferences.

Technical requirements

The technical requirements for this chapter are the same as Chapter 1,
Introduction to Qt 6. You will need the latest Qt version, namely Qt 6.0.0
MinGW 64-bit, Qt Creator 4.13.0 or higher, and Windows 10, Ubuntu
20.04 LTS, or the latest version of macOS (higher than macOS 10.13 at a
minimum) such as macOS Catalina. Qt supports earlier versions of
operating systems such as Windows 8.1 or Ubuntu 18.04. However, we
recommend you upgrade to the latest version of your preferred operating
system to ensure smooth functioning. In this chapter, we have used
screenshots from the Windows 10 platform.

Exploring the Qt Creator UI
Qt Creator is an IDE produced by the Qt Company. It integrates multiple
tools including a code editor, a Graphical UI (GUI) designer, a compiler, a
debugger, Qt Designer, Qt Quick Designer, and Qt Assistant, among others.

Qt Designer helps in designing widget-based GUIs whereas Qt Quick
Designer provides a UI to create and edit QML-based GUIs in Design
Mode. Qt Assistant is an integrated documentation viewer that opens
contents related to a given Qt class or function with the press of the F1 key.

Let's begin by launching Qt Creator. The binary can be found inside
Qt\Tools\QtCreator\bin. You will see a screen like that shown in Figure
2.1:

Figure 2.1 – Qt Creator interface

You can see the following GUI sections in the UI:

1. IDE menu bar: This provides the user with a standard place in the
window to find the majority of application-specific functions. These
functions include creating a project, opening and closing files,
development tools, analysis options, help contents, and a way to exit the
program.

2. Mode selector: This section provides different modes depending on the
active task. The Welcome button gives options to open examples,
tutorials, recent sessions, and projects. The Edit button opens the code
window and helps in navigating the project. The Design button opens
Qt Designer or Qt Quick Designer based on the type of UI file. Debug
provides options to analyze your application. The Projects button helps
in managing project settings, and the Help button is for browsing help
contents.

3. Kit selector: This helps in selecting the active project configuration and
changing the kit settings.

4. Run button: This button runs the active project after building it.

5. Debug button: This helps in debugging the active project using a
debugger.

6. Build button: This button is for building the active project.

7. Locator: This is used to open a file from any open project.

8. Output pane: This includes several windows to display project
information such as compilation and application output. It also shows

build issues, console messages, and test and search results.

9. Progress indicator: This control shows the progress related to running
tasks.

You can also benefit from an interactive UI tour when you launch Qt
Creator for the first time. You can also launch it from the Help | UI Tour
option from the menu bar as shown in Figure 2.2:

Figure 2.2 – Qt Creator UI Tour menu choice

NOTE
If you press the Alt key, then you will see the underlined mnemonic letter in the menu title.
Press the corresponding key to open the respective context menu.

In this section, we learned about various sections in the IDE. In the next
section, we will build a simple Qt application using the Qt Creator IDE.

Building a simple Qt application
Let's start with a simple Hello World project. A Hello World program is a
very simple program that displays Hello World! and checks that the SDK
configuration is free from errors. These projects use the most basic, very
minimal code. For this project, we will use a project skeleton created by Qt
Creator.

Follow these steps to build your first Qt application:

1. To create a new project in Qt, click on the File menu option on the
menu bar or hit Ctrl + N. Alternatively, you can also click on the + New
button located at the welcome screen to create a new project, as shown
in Figure 2.3:

Figure 2.3 – New project interface

2. Next, you can select a template for the project. You can create different
types of applications, including a console application or GUI
application. You can also create non-Qt projects as well as library
projects. In the upper-right section, you will see a dropdown to filter
templates specific to the desired target platform. Select the Qt Widgets
Application template and then click on the Choose... button:

Figure 2.4 – The project template interface

3. In the next step, you will be asked to choose the project name and
project location. You can navigate to the desired project location by
clicking the Browse… button. Then click on the Next button to proceed
to the next screen:

Figure 2.5 – New project location screen

4. You can now select the build system. By default, Qt's own build system
qmake will be selected. We will discuss qmake more later in Chapter 6,
Signals and Slots. Click on the Next button to proceed to the next
screen:

Figure 2.6 – Build system selection screen

5. Next, you can specify the class information and the base class to be
used to automatically generate the project skeleton. If you need a
desktop application with features of MainWindow such as menubar,
toolbar, and statusbar, then select QMainWindow as the base class.
We will discuss more on QMainWindow in Chapter 3, GUI Design
Using Qt Widgets. Click on the Next button to proceed to the next
screen:

Figure 2.7 – Source code skeleton generation screen

6. In this next step, you can specify the language for translation. Qt
Creator comes with the Qt Linguist tool, which allows you to translate
your application into different languages. You may skip this step for
now. We will discuss Internationalization (i18n) in Chapter 11,
Internationalization. Click on the Next button to proceed to the next
screen:

Figure 2.8 – Translation File creation screen

7. In the next step, you can select a kit to build and run your project. To
build and run the project, at least one kit must be active and selectable.
If your desired kit is shown as grayed out, then you may have some kit
configuration issues. When you install Qt for a target platform, the build
and run settings for the development targets usually get configured
automatically. Click on the checkbox to select one of the desktop kits
such as Desktop Qt 6.0.0 MinGW 64-bit. Click on the Next button to
proceed to the next screen:

Figure 2.9 – Kit Selection screen

8. Version control allows you or your team to submit code changes to a
centralized system so that each and every team member can obtain the
same code without passing files around manually. You can add your
project into the installed version control system on your machine. Qt
has support for several version control systems within the Qt Creator
IDE. You may skip version control for this project by selecting <None>.
Click on the Finish button to complete the project creation:

Figure 2.10 – Project management screen

9. Now you will see the generated files on the left side of the editor
window. Click on any file to open it in the coding window, the most
used component of the Qt Creator. The code editor is used in Edit
mode. You can write, edit, refactor, and beautify your code in this
window. You can also modify the fonts, font size, colors, and
indentation. We will learn more about these in the Understanding
advanced options section later in this chapter:

Figure 2.11 – Generated files and the code editor window

10. You can now see a .pro file inside your project folder. In the current
project, the HelloWorld.pro file is the project file. This contains all the
information required by qmake to build the application. This file is
autogenerated during the project creation and contains the relevant

details in a structured fashion. You can specify files, resources, and
target platforms in this file. You need to run qmake again if you make
any modifications to the .pro file contents, as shown in Figure 2.12.
Let's skip modifying the contents for this project:

Figure 2.12 – The contents of the project file

11. You can find a form file with the .ui extension in the left side of the
editor window. Let's open the mainwindow.ui file by double-clicking it.
Here, you can see the file opens under a different interface: Qt Designer.
You can see that the mode selection panel has switched to Design mode.
We will discuss Qt Designer more in the next chapter.

12. Now drag the Label control listed under the Display Widgets category
to the center of the form on the right side, as shown in Figure 2.13.

13. Next, double-click on the item you dragged in, and type Hello World!.
Hit the Enter key on your keyboard or click with the mouse anywhere
outside the control to save the text:

Figure 2.13 – The designer screen

14. The final step is to press the Run button present below the kit selector
button. The project will build automatically once the reader hits the
Run button. Qt Creator is intelligent enough to figure out that the
project needs to be built first. You can build and run the application
separately. After a few seconds of compiling, you will see a window
with text reading Hello World!:

Figure 2.14 – The display output of the sample GUI application

Congratulations, you have created your first Qt-based GUI application!
Now let's explore the different advanced options available in Qt Creator.

Understanding advanced options

When you install Qt Creator, it gets installed with the default configuration.
You can customize the IDE and configure its look and feel or set your
favorite coding style.

Go to the top menu bar and click on the Tools option, then select
Options…. You will see a list of categories available on the left sidebar.
Each category provides a set of options to customize Qt Creator. As a
beginner, you may not need to change the settings at all, but let's get
familiar with the different options available. We will start by looking at
managing kits.

Managing kits

Qt Creator can automatically detect the installed Qt versions and available
compilers. It groups the configurations used for building and running
projects to make them cross-platform compatible. This set of configurations
are stored as a kit. Each kit contains a set of parameters that describe the
environment, such as the target platform, compiler, and Qt version.

Start by clicking on the Kits option in the left sidebar. This will autodetect
and list the available kits as shown in Figure 2.15. If any kit is shown with a
yellow or red warning mark, then it signifies a fault in the configuration. In
that case, you may have to select the right compiler and Qt version. You can
also create a customized kit by clicking on the Add button. If you want to
use a new kit, then don't forget to click on the Apply button. We will
proceed with the default desktop configuration shown as follows:

Figure 2.15 – The Kits configuration screen

Now let's proceed to the Qt Versions tab under the Kits section.

Qt Versions

In this tab, you can see the Qt versions available on your system. Ideally,
the version gets detected automatically. If it is not detected, then click on
the Add… button and browse to the path of qmake to add the desired Qt
version. Qt uses a defined numbering scheme for its releases. For example,
Qt 6.0.0 signifies the first patch release of Qt 6.0 and 6 as the major Qt
version. Each release has limitations on the acceptable amount of changes
to ensure a stable API. Qt tries to maintain compatibility between versions.
However, this is not always possible due to code clean-ups and architectural
changes in major versions:

Figure 2.16 – Available Qt versions

IMPORTANT NOTE
Qt software versions use the versioning format of Major.Minor.Patch. Major releases may
break backward compatibility for both the binary and source, although source compatibility

may be maintained. Minor releases have binary and source backward compatibility. Patch
releases have both backward and forward compatibility for the binary and the source.

We won't be discussing all of the tabs under the Kits section as the other
tabs require knowledge about compilers, debuggers, and build systems. If
you are an experienced developer, you may explore the tabs and make
changes as required. Let's proceed to the Environment category in the left
sidebar.

Environment

This option allows the user to choose their preferred language and theme.
By default, Qt Creator uses the system language. It doesn't support many
languages, but most of the popular languages are available. If you change to
a different language, then click on the Apply button and restart Qt Creator
to see the changes. Please note that these Environment options are
different from the build environment. You will see an interface similar to
Figure 2.17 shown as follows:

Figure 2.17 – Options for the Environment settings

You will also see a checkbox saying Enable high DPI scaling. Qt Creator
handles high Dots-Per-Inch (DPI) scaling differently on different operating

systems, as follows:

On Windows, Qt Creator detects the default scaling factor and uses it
accordingly.

On Linux, Qt Creator leaves the decision of whether or not to enable
high DPI scaling up to the user. This is done because there are many
Linux flavors and windowing systems.

On macOS, Qt Creator forces Qt to use the system scaling factor for the
Qt Creator scaling factor.

To override the default approach, you may toggle the checkbox option and
click the Apply button. The changes will be reflected after you restart the
IDE. Now let's have a look at the Keyboard tab.

Keyboard shortcuts

The Keyboard section allows users to explore existing keyboard shortcuts
and create new ones. Qt Creator has many built-in keyboard shortcuts,
which are very useful for developers. You can also create your own
shortcuts if your favorite shortcut is missing. You can additionally specify
your own keyboard shortcuts for the functions that do not appear in the list,
such as, for example, selecting words or lines in a text editor.

Some of the commonly used shortcuts for everyday development are listed
as follows:

Figure 2.18 – Some of the commonly used keyboard shortcuts

The shortcuts are grouped by category. To find a keyboard shortcut in the
list, enter a function name or shortcut in the Filter field. In Figure 2.19, we
have searched for the available shortcuts related to new:

Figure 2.19 – Keyboard shortcut options

The preceding screenshot shows a list of available shortcuts for the
keyword new. You can see Ctrl + N is used for creating a new file or

project. You can also import or export keyboard mapping schemes files in
.kms format.

IMPORTANT NOTE
There are many more in-built Qt shortcuts than we discussed here. You can read more
about shortcuts in the following articles:

https://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html

https://wiki.qt.io/Qt_Creator_Keyboard_Shortcuts

https://shortcutworld.com/Qt-Creator/win/Qt-Creator_Shortcuts

There is a possibility of conflict between a Qt Creator keyboard shortcut
and a window manager shortcut. In this case, the window manager shortcut
will override the Qt Creator shortcut. You can also configure the keyboard
shortcuts in the window manager. If this is restricted, then you can change
the Qt Creator shortcuts instead. Now, let's proceed to the next sidebar
category.

Text Editor

The next category in the left sidebar is Text Editor. Here, you can choose
the color scheme, font, and font size in the first tab. The next tab lists
different behavior in Text Editor. As you can see in Figure 2.20, Qt uses
space indentation for the Tab key on the keyboard:

https://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html
https://wiki.qt.io/Qt_Creator_Keyboard_Shortcuts
https://shortcutworld.com/Qt-Creator/win/Qt-Creator_Shortcuts

Figure 2.20 – Text Editor Behavior tab

Some developers prefer tab indentation over space indentation. You can
change the indentation behavior in the C++ and Qt Quick settings. Since

there are dedicated settings as a different sidebar category, this section in
Text Editor may be deprecated in future releases.

You can find the file encoding of the current file in the File Encodings
group. To modify the file encoding, select New Encoding from the
dropdown. To view the file with the new encoding, click on the Apply
button.

We won't be discussing all of the sidebar categories as those are very
advanced options. You can explore them later once you learn the basics. In
the next section, we will discuss managing the coding window.

Splitt ing the coding window

You can split the coding window and view multiple files on the same screen
or on an external screen. You can view multiple files simultaneously in a
selection of different ways (the options are available under the Window
option in the menu bar):

Figure 2.21– A screenshot showing the spilt screen options

Now let's discuss various ways to split a coding window and remove a split
window:

To split the coding window into top and bottom views, press Ctrl + E
and then 2, or select the Window option in the menu bar and then click
on the Split option. This will create an additional coding window below
the currently active window.

To split the coding window into adjacent views, select Split Side by
Side or press Ctrl + E and then 3. A side-by-side split creates views to
the right of the currently active coding window.

To open the coding window in a detached window, press Ctrl + E, and
4, or select Open in New Window. You can drag the window to an
external monitor for convenience.

To move between split views and detached editor windows, select Next
Split or press Ctrl + E, and then O.

To remove a split view, click on the window you want to remove and
select Remove Current Split, or press Ctrl + E, and then 0.

To remove all split coding windows, select Remove All Splits or press
Ctrl + E, and then 1.

In this section, you learned about splitting the coding editor window. This
helps when referring to multiple code files at once while coding. In the next
section, we will discuss the Build menu present in the IDE's menu bar.

Build options

In the menu bar, you can see the Build option. If you click that, then you
will see various build options as shown in Figure 2.22. Here, you can build,
rebuild, or clean your projects. In complex projects, you may have more
than one subproject. You can build subprojects individually to reduce total
build time:

Figure 2.22 – Build menu options

Qt Creator project wizards allow you to choose the build system, including
qmake, CMake, and Qbs, while creating a new project. It gives developers
the freedom to use Qt Creator as a code editor and to have control of the
steps or commands used in building a project. By default, qmake is installed
and configured for your new project. You can learn more about using other
build systems at the following link: https://doc.qt.io/qtcreator/creator-
project-other.html.

Now let's discuss where and how to look for the framework's
documentation.

Qt Assistant

Qt Creator also includes a built-in documentation viewer called Qt
Assistant. This is really handy since you can look for an explanation of a
certain Qt class or function by simply hovering the mouse cursor over the
class name in your source code and pressing the F1 key. Qt Assistant will
then be opened and will show you the documentation related to that Qt class
or function:

https://doc.qt.io/qtcreator/creator-project-other.html

Figure 2.23 – Integrated help interface

Qt Assistant also provides support for interactive help and enables you to
create help documentation for your Qt application.

NOTE
On the Windows platform, Qt Assistant is available as a menu option on the Qt Creator
menu bar. On Linux distributions, you can open Terminal, type assistant, and press Enter.
On macOS, it is installed in the /Developer/Applications/Qt directory.

In this section, we learned about Qt Assistant and the help documentation.
Now, let's summarize our takeaways from this chapter.

Summary
This chapter explained the fundamentals of the Qt Creator IDE and what it
can be used for. Qt Creator is an IDE with a great set of tools. It helps you
to easily create great GUI applications for multiple platforms. Developers
don't need to write lengthy code just to create a simple button or change a
lot of code just to align a text label – Qt Designer automatically generates
code for us when we design our GUI. We created a GUI application with
just a few clicks, and we also learned about the various advanced options
available in the IDE, including how to manage kits and shortcuts. The built-
in Qt Assistant provides great help with useful examples and can help us
with our own documentation.

In the next chapter, we will discuss GUI design using Qt Widgets. Here,
you will learn about different widgets, how to create your own GUI
element, and how to create a custom GUI application.

Chapter 3: GUI Design Using Qt Widgets
Qt Widgets is a module that offers a set of user interface (UI) elements for
building classic UIs. In this chapter, you will be introduced to the Qt
Widgets module and will learn about basic widgets. We will look at what
widgets are and the various kinds that are available for creating graphical
UIs (GUIs). In addition to this, you will be introduced to layouts with Qt
Designer, and you will also learn how to create your own custom controls.
We will take a close look into what Qt can offer us when it comes to
designing sleek-looking GUIs with ease. At the beginning of this chapter,
you will be introduced to the types of widgets provided by Qt and their
functionalities. After that, we will walk through a series of steps and design
our first form application using Qt. You will then learn about Style Sheets,
Qt Style Sheets (QSS files), and theming.

The following main topics will be covered in this chapter:

Introducing Qt widgets

Creating a UI with Qt Designer

Managing layouts

Creating custom widgets

Creating Qt Style Sheets and custom themes

Exploring custom styles

Using widgets, windows, and dialogs

By the end of this chapter, you will understand the basics of GUI elements
and their corresponding C++ classes, how to create your own UI without
writing a single line of code, and how to customize the look and feel of
your UI using Style Sheets.

Technical requirements
The technical requirements for this chapter include Qt 6.0.0 MinGW 64-bit,
Qt Creator 4.14.0, and Windows 10/Ubuntu 20.04/macOS 10.14. All the
code used in this chapter can be downloaded from the following GitHub
link: https://github.com/PacktPublishing/Cross-Platform-Development-
with-Qt-6-and-Modern-Cpp/tree/master/Chapter03.

NOTE
The screenshots used in this chapter are taken from a Windows environment. You will see
similar screens based on the underlying platforms in your machine.

Introducing Qt widgets
A widget is the basic element of a GUI. It is also known as a UI control. It
accepts different user events such as mouse and keyboard events (and other
events) from the underlying platform. We create UIs using different
widgets. There was a time when all GUI controls were written from scratch.
Qt widgets reduce time by developing a desktop GUI with ready-to-use
GUI controls, and Qt widely uses the concept of inheritance. All widgets
inherit from QObject. QWidget is a basic widget and is the base class of
all UI widgets. It contains most of the properties required to describe a
widget, along with properties such as geometry, color, mouse, keyboard

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter03

behavior, tooltips, and so on. Let's have a look at QWidget inheritance
hierarchy in the following diagram:

Figure 3.1 – QWidget class hierarchy

Most of the Qt widget names are self-explanatory and can be identified
easily as they start with Q. Some of them are listed here:

QPushButton is used to command an application to perform a certain
action.

QCheckBox allows the user to make a binary choice.

QRadioButton allows the user to make only one choice from a set of
mutually exclusive options.

QFrame displays a frame.

QLabel is used to display text or an image.

QLineEdit allows the user to enter and edit a single line of plain text.

QTabWidget is used to display pages related to each tab in a stack of
tabbed widgets.

One of the advantages of using Qt Widgets is its parenting system. Any
object that inherits from QObject has a parent-child relationship. This
relationship makes many things convenient for developers, such as the
following:

When a widget is destroyed, all its children are destroyed as well due to
the parent-children hierarchy. This avoids memory leaks.

You can find children of a given QWidget class by using findChild()
and findChildren().

Child widgets in a Qwidget automatically appear inside the parent
widget.

A typical C++ program terminates when the main returns, but in a GUI
application we can't do that, or the application will be unusable. Thus, we
will need the GUI to be present until the user closes the window. To
accomplish this, the program should run in a loop till this happens. The GUI
application waits for user input events.

Let's use QLabel to display a text with a simple GUI program, as follows:

#include <QApplication>

#include <QLabel>

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QLabel myLabel;

 myLabel.setText("Hello World!");

 myLabel.show();

 return app.exec();

}

Remember to add the following line to the helloworld.pro file to enable the
Qt Widgets module:

QT += widgets

You need to run qmake after you make changes to your .pro file. If you are
using the command line, then proceed with the following commands:

>qmake

>make

Now, hit the Run button to build and run the application. You will soon see
a UI with Hello World! displayed, as illustrated in the following
screenshot:

Figure 3.2 – Simple GUI application

You can also run the application from the command line on Windows, as
follows:

>helloworld.exe

You can run the application from the command line on Linux distributions,
as follows:

$./helloworld

In command-line mode, you may see a few error dialogs if the libraries are
not found in the application path. You can copy the Qt libraries and plugin
files to that binary folder to resolve the issue. To avoid these issues, we will
stick to Qt Creator to build and run our sample programs.

In this section, we learned how to create a simple GUI using the Qt Widgets
module. In the next section, we will explore the available widgets and
creating a UI with Qt Designer.

Creating a UI with Qt Designer
Let's get familiar with Qt Designer's interface before we start learning how
to design our own UI. The following screenshot shows different sections of
Qt Designer. We will gradually learn about these sections while designing
our UI:

Figure 3.3 – Qt Designer UI

The Qt Widgets module comes with ready-to-use widgets. All these widgets
can be found under the Widget Box section. Qt provides an option to create

a UI by a drag-and-drop method. Let's explore these widgets by simply
dragging them from the Widget Box area and dropping them into the Form
Editor area. You can do this by grabbing an item and then pressing and
releasing the mouse or trackpad over the intended region. Don't release your
mouse or trackpad until the item reaches the Form Editor area.

The following screenshot shows different types of widgets available in the
Widget Box section. We have added several ready-made widgets such as
Label, Push Button, Radio Button, Check Box, Combo Box, Progress
Bar, and Line Edit into the Form Editor area. These widgets are very
commonly used widgets. You can explore the widget-specific properties in
Property Editor:

Figure 3.4 – Different types of GUI widgets

You can preview your UI by selecting the Preview… option under the
Form menu, as shown in the following screenshot, or you can hit Ctrl + R.

You will see a window with the UI preview:

Figure 3.5 – Previewing your custom UI

You can find the created C++ code for your UI by selecting the View C++
Code… option under the Form menu, as shown in the following
screenshot. You will see a window with the generated code. You can reuse
the code while creating a dynamic UI:

Figure 3.6 – Option to view corresponding C++ code

In this section, we got familiar with the Qt Designer UI. You can also find
the same interface embedded in Qt Creator when you open a .ui file. In the
next section, you will learn about different types of layouts and how to use
them.

Managing layouts
Qt provides a set of convenient layout management classes to automatically
arrange child widgets within another widget to ensure that the UI remains
usable. The QLayout class is the base class of all layout managers. You can
also create your own layout manager by reimplementing the
setGeometry(), sizeHint(), addItem(), itemAt(), takeAt(), and
minimumSize() functions. Please note that once the layout manager is
deleted, the layout management will also stop.

The following list provides a brief description of the major layout classes:

QVBoxLayout lines up widgets vertically.

QHBoxLayout lines up widgets horizontally.

QGridLayout lays widgets out in a grid.

QFormLayout manages forms of input widgets and their associated
labels.

QStackedLayout provides a stack of widgets where only one widget is
visible at a time.

QLayout uses multiple inheritances by inheriting from QObject and
QLayoutItem. The subclasses of QLayout are QBoxLayout,
QGridLayout, QFormLayout, and QStackedLayout. QVBoxLayout and
QHBoxLayout are inherited from QBoxLayout with the addition of
orientation information.

Let's use the Qt Designer module to lay out a few QPushButtons.

QVBoxLayout

In the QVBoxLayout class, widgets are arranged vertically, and they are
aligned in the layout from top to bottom. At this point, you can do the
following:

1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the vertical layout button. You can find
this by hovering on the toolbar button that says Lay Out Vertically.

You can see the push buttons get arranged vertically in a top-down
manner in the following screenshot:

Figure 3.7 – Layout management with QVBoxLayout

You can also dynamically add a vertical layout through C++ code, as shown
in the following snippet:

 QWidget *widget = new QWidget;

 QPushButton *pushBtn1 = new QPushButton("Push Button

 1");

 QPushButton *pushBtn2 = new QPushButton("Push Button

 2");

 QPushButton *pushBtn3 = new QPushButton("Push Button

 3");

 QPushButton *pushBtn4 = new QPushButton("Push Button

 4");

 QVBoxLayout *verticalLayout = new QVBoxLayout(widget);

 verticalLayout->addWidget(pushBtn1);

 verticalLayout->addWidget(pushBtn2);

 verticalLayout->addWidget(pushBtn3);

 verticalLayout->addWidget(pushBtn4);

 widget->show ();

This program illustrates how to use a vertical layout object. Note that the
QWidget instance, widget, will become the main window of the
application. Here, the layout is set directly as the top-level layout. The first
push button added to the addWidget() method occupies the top of the
layout, while the last push button occupies the bottom of the layout. The
addWidget() method adds a widget to the end of the layout, with a stretch
factor and alignment.

If you don't set the parent window in the constructor, then you will have to
use QWidget::setLayout() later to install the layout and reparent to the
widget instance.

Next, we will look at the QHBoxLayout class.

QHBoxLayout

In the QHBoxLayout class, widgets are arranged horizontally, and they are
aligned from left to right.

We can now do the following:

1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the horizontal layout button. You can find
this by hovering on the toolbar button that says Lay Out Horizontally.

You can see the push buttons get arranged horizontally in a left-to-right
manner in this screenshot:

Figure 3.8 – Layout management with QHBoxLayout

You can also dynamically add a horizontal layout through C++ code, as
shown in the following snippet:

 QWidget *widget = new QWidget;

 QPushButton *pushBtn1 = new QPushButton("Push

 Button 1");

 QPushButton *pushBtn2 = new QPushButton("Push

 Button 2");

 QPushButton *pushBtn3 = new QPushButton("Push

 Button 3");

 QPushButton *pushBtn4 = new QPushButton("Push

 Button 4");

 QHBoxLayout *horizontalLayout = new QHBoxLayout(

 widget);

 horizontalLayout->addWidget(pushBtn1);

 horizontalLayout->addWidget(pushBtn2);

 horizontalLayout->addWidget(pushBtn3);

 horizontalLayout->addWidget(pushBtn4);

 widget->show ();

The preceding example demonstrates how to use a horizontal layout object.
Similar to the vertical layout example, the QWidget instance will become
the main window of the application. In this case, the layout is set directly as
the top-level layout. By default, the first push button added to the
addWidget() method occupies the leftmost side of the layout, while the last
push button occupies the rightmost side of the layout. You can change the
direction of growth when widgets are added to the layout by using the
setDirection() method.

In the next section, we will look at the QGridLayout class.

QGridLayout

In the QGridLayout class, widgets are arranged in a grid by specifying the
number of rows and columns. It resembles a grid-like structure with rows
and columns, and widgets are inserted as items.

Here, we should do the following:

1. Drag four push buttons onto the Form Editor.

2. Rename the push buttons and select the push buttons by pressing the
Ctrl key on your keyboard.

3. In the Form toolbar, click on the grid layout button. You can find this
by hovering on the toolbar button that says Lay Out in a Grid.

You can see the push buttons get arranged in a grid in the following
screenshot:

Figure 3.9 – Layout management with QGridLayout

You can also dynamically add grid layout through C++ code, as shown in
the following snippet:

 QWidget *widget = new QWidget;

 QPushButton *pushBtn1 = new QPushButton(

 "Push Button 1");

 QPushButton *pushBtn2 = new QPushButton(

 "Push Button 2");

 QPushButton *pushBtn3 = new QPushButton(

 "Push Button 3");

 QPushButton *pushBtn4 = new QPushButton(

 "Push Button 4");

 QGridLayout *gridLayout = new QGridLayout(widget);

 gridLayout->addWidget(pushBtn1);

 gridLayout->addWidget(pushBtn2);

 gridLayout->addWidget(pushBtn3);

 gridLayout->addWidget(pushBtn4);

 widget->show();

The preceding snippet explains how to use a grid layout object. The layout
concept remains the same as in the previous sections. You can explore
QFormLayout and QStackedLayout layouts from the Qt documentation.
Let's proceed to the next section on how to create your custom widget and
export it to the Qt Designer module.

Creating custom widgets
Qt provides ready-to-use essential GUI elements. Qt widgets were not
actively developed after Qt Modeling Language (QML) came into
existence, so you may require a more specific widget and may want to

make it available to others. A custom widget may be a combination of one
or more Qt widgets placed together or may be written from scratch. We will
create a simple label widget from QLabel as our first custom widget. A
custom widget collection can have multiple custom widgets.

Follow these steps to build your first Qt custom widgets library:

1. To create a new Qt custom widget project in Qt, click on the File menu
option on the menu bar or hit Ctrl + N. Alternatively, you can also click
on the New Project button located on the Welcome screen. Select the
Other Project template and then select Qt Custom Designer Widget,
as shown in the following screenshot:

Figure 3.10 – Creating a custom widget library project

2. In the next step, you will be asked to choose the project name and
project location. You can navigate to the desired project location by
clicking the Browse… button. Let's name our sample project
MyWidgets. Then, click on the Next button to proceed to the next
screen. The following screenshot illustrates this step:

Figure 3.11 – Creating custom controls library project

3. In the next step, you can select a kit from a set of kits to build and run
your project. To build and run the project, at least one kit must be active
and selectable. Select the default Desktop Qt 6.0.0 MinGW 64-bit kit.
Click on the Next button to proceed to the next screen. The following
screenshot illustrates this step:

Figure 3.12 – Kit selection screen

4. In this step, you can define your custom widget class name and
inheritance details. Let's create our own custom label with the class
name MyLabel. Click on the Next button to proceed to the next screen.
The following screenshot illustrates this step:

Figure 3.13 – Creating a custom widget from an existing widget's screen

5. In the next step, you can add more custom widgets to create a widget
collection. Let's create our own custom frame with the class name
MyFrame. You can add more information to the Description tab or can
modify it later. Click on the checkbox that says The widget is a
container to use the frame as a container. Click on the Next button to

proceed to the next screen. The following screenshot illustrates this
step:

Figure 3.14 – Creating a custom widget container

6. In this step, you can specify the collection class name and the plugin
information to automatically generate the project skeleton. Let's name
the collection class MyWidgetCollection. Click on the Next button to
proceed to the next screen. The following screenshot illustrates this
step:

Figure 3.15 – Option to specify plugin and collection class information

7. The next step is to add your custom widget project to the installed
version control system. You may skip version control for this project.
Click on the Finish button to create the project with the generated files.
The following screenshot illustrates this step:

Figure 3.16 – Project management screen

8. Expand the Project Explorer views and open the mylabel.h file. We
will modify the contents to extend the functionalities. Add a
QDESIGNER_WIDGET_EXPORT macro before the custom widget
class name to ensure the class is exported properly in the dynamic-link
library (DLL) or the shared library. Your custom widget may work
without this macro, but it is a good practice to add this macro. You will

have to add #include <QtDesigner> to the header file after you insert
the macro. The following screenshot illustrates this step:

Figure 3.17 – Modifying the custom widget from the created skeleton

IMPORTANT NOTE
On some platforms, the build system may remove the symbols required by Qt Designer
module to create new widgets, making them unusable. Using the
QDESIGNER_WIDGET_EXPORT macro ensures that the symbols are retained on
those platforms. This is important while creating a cross-platform library. There are no
side effects on other platforms.

9. Now, open the mylabelplugin.h file. You will find that the plugin class
is inherited from a new class named
QDesignerCustomWidgetInterface. This class allows Qt Designer to
access and create custom widgets. Please note that you must update the
header file as follows to avoid deprecated warnings:

#include <QtUiPlugin/QDesignerCustomWidgetInterface>

10. You will find several functions auto created in mylabelplugin.h. Don't
remove these functions. You can specify the values in the name(),
group(), and icon() functions that appear in the Qt Designer module.
Note that if you don't specify an icon path in icon(), then Qt Designer
will use the default Qt icon. The group() function is illustrated in the
following code snippet:

QString MyFramePlugin::group() const

{

 return QLatin1String("My Containers");

}

11. You can see in the following code snippet that isContainer() returns
false in MyLabel and true in MyFrame, since MyLabel is not

designed to hold other widgets. Qt Designer calls createWidget() to
obtain an instance of MyLabel or MyFrame:

bool MyFramePlugin::isContainer() const

{

 return true;

}

12. To create a widget with a defined geometry or any other properties, you
specify these in the domXML() method. The function returns an
Extensible Markup Language (XML) snippet that is used by the
widget factory to create a custom widget with the defined properties.
Let's specify the MyLabel width as 100 pixels (px) and height as 16 px,
as follows:

QString MyLabelPlugin::domXml() const

{

 return "<ui language=\"c++\"

 displayname=\"MyLabel\">\n"

 " <widget class=\"MyLabel\"

 name=\"myLabel\">\n"

 " <property name=\"geometry\">\n"

 " <rect>\n"

 " <x>0</x>\n"

 " <y>0</y>\n"

 " <width>100</width>\n"

 " <height>16</height>\n"

 " </rect>\n"

 " </property>\n"

 " <property name=\"text\">\n"

 " <string>MyLabel</string>\n"

 " </property>\n"

 " </widget>\n"

 "</ui>\n";

}

13. Now, let's have a look at the MyWidgets.pro file. It contains all the
information required by qmake to build the custom widget collection
library. You can see in the following code snippet that the project is a
library type and is configured to be used as a plugin:

CONFIG += plugin debug_and_release

CONFIG += c++17

TARGET = $$qtLibraryTarget(

 mywidgetcollectionplugin)

TEMPLATE = lib

HEADERS = mylabelplugin.h myframeplugin.h

mywidgetcollection.h

SOURCES = mylabelplugin.cpp myframeplugin.cpp \

 mywidgetcollection.cpp

RESOURCES = icons.qrc

LIBS += -L.

greaterThan(QT_MAJOR_VERSION, 4) {

 QT += designer

} else {

 CONFIG += designer

}

target.path = $$[QT_INSTALL_PLUGINS]/designer

INSTALLS += target

include(mylabel.pri)

include(myframe.pri)

14. We have gone through the custom widget creation process. Let's run
qmake and build the library in the Release mode. Right-click on the
project and click on the Build option, as shown in the following
screenshot. The project will be built within a few seconds and will be
available inside the inside release folder. On the Windows platform,
you can manually copy the mywidgetcollectionplugin.dll created
plugin library to the D:\Qt\6.0.0\mingw81_64\plugins\designer path.
This path and extension vary for different operating systems:

Figure 3.18 – Option to build your custom widget library

15. We have created our custom plugin. Now, close the plugin project and
click on the designer.exe file present inside
D:\Qt\6.0.0\mingw81_64\bin. You can see MyFrame under the
Custom Widgets section, as shown in the following screenshot. Click
on the Create button or use a widget template. You can also register
your own form as a template by doing platform-specific modifications.
Let's use the Qt Designer-provided widget template:

Figure 3.19 – Custom container in the new form screen

16. You can see our custom widgets in the left-side Widget Box section, at
the bottom. Drag the MyLabel widget to the form. You can find created
properties such as multiLine and fontCase along with QLabel
properties under Property Editor, as illustrated in the following
screenshot:

Figure 3.20 – Exported widgets available in Qt Designer

You can also find detailed instructions with examples in the following Qt
documentation link:

https://doc.qt.io/qt-6/designer-creating-custom-widgets.html

Congratulations! You have successfully created your custom widgets with
new properties. You can create complex custom widgets by combining
multiple widgets. In the next section, you will learn how to customize the
look and feel of widgets.

Creating Qt Style Sheets and custom
themes
In the last section, we created our custom widget, but the widget still has a
native look. Qt provides several ways to customize the look and feel of the
UI. A Qt Style Sheet is one of the simplest ways to change the look and
feel of widgets without doing much complex coding. Qt Style Sheet syntax
is identical to HyperText Markup Language/Cascading Style Sheets
(HTML/CSS) syntax. Style Sheets comprise a sequence of style rules. A
style rule consists of a selector and a declaration. The selector specifies
widgets that will be affected by the style rule, and the declaration specifies
the properties of the widget. The declaration portion of a style rule is a list
of properties as key-value pairs, enclosed inside {} and separated by
semicolons.

Let's have look at the simple QPushButton Style Sheet syntax, as follows:

QPushButton { color: green; background-color: rgb (193, 255, 216);}

https://doc.qt.io/qt-6/designer-creating-custom-widgets.html

You can also change the look and feel of widgets by applying Style Sheet in
Qt Designer with the stylesheet editor, as follows:

1. Open the Qt Designer module and create a new form. Drag and place a
push button on the form.

2. Then, right-click on the push button or anywhere in the form to get the
context menu.

3. Next, click on the Change styleSheet… option, as shown in the
following screenshot:

Figure 3.21 – Adding Style Sheet using Qt Designer

4. We have used the following Style sheet to create the previous look and
feel. You can also change a Style Sheet from the QWidget properties in
Property Editor:

QPushButton {

 background-color: rgb(193, 255, 216);

 border-width: 2px;

 border-radius: 6;

 border-color: lime;

 border-style: solid;

 padding: 2px;

 min-height: 2.5ex;

 min-width: 10ex;

}

QPushButton:hover {

 background-color: rgb(170, 255, 127);

}

QPushButton:pressed {

 background-color: rgb(170, 255, 127);

 font: bold;

}

In the preceding example, only Push Button will get the style described in
the Style Sheet, and all other widgets will have the native styling. You can
also create different styles for each push button and apply the styles to
respective push buttons by mentioning their object names in the Style
Sheet, as follows:

QPushButton#pushButtonID

IMPORTANT NOTE
To learn more about Style Sheet and their usage, read the documentation at the following
links:

https://doc.qt.io/qt-6/stylesheet-reference.html

https://doc.qt.io/qt-6/stylesheet-syntax.html

https://doc.qt.io/qt-6/stylesheet-customizing.html

Using a QSS file

You can combine all Style Sheet code in a defined .qss file. This helps in
ensuring the look and feel is maintained across the application in all
screens. QSS files are analogous to .css files, which contain the definitions
for the look and feel of GUI elements such as color, background color, font,
and mouse interaction behaviors. They can be created and edited with any
text editor. You can create a new Style Sheet file with the .qss file extension
and then add it to the resource file (.qrc). You may or may not have .ui files
for all projects. The GUI controls can be created dynamically through code.
You can apply a Style Sheet to a widget or to a whole application, as shown
in the following code snippet. This is how we do it for a custom widget or
form:

MyWidget::MyWidget(QWidget *parent)

 : QWidget(parent)

{

 setStyleSheet("QWidget { background-color: green }");

}

https://doc.qt.io/qt-6/stylesheet-reference.html
https://doc.qt.io/qt-6/stylesheet-syntax.html
https://doc.qt.io/qt-6/stylesheet-customizing.html

Here is how we apply it for the whole application:

#include "mywidget.h"

#include <QApplication>

#include <QFile>

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QFile file(":/qss/default.qss");

 file.open(QFile::ReadOnly);

 QString styleSheet = QLatin1String(file.readAll());

 app.setStyleSheet(styleSheet);

 Widget mywidget;

 mywidget.show();

 return app.exec();

}

The preceding program illustrates how to use a Style Sheet file for the
entire Qt GUI application. You need to add the .qss file into the resources.
Open the .qss file using QFile and pass the customized QSS rules as an
argument to the setStyleSheet() method on the QApplication object. You
will see all screens will have the Style Sheet applied to them.

In this section, you learned about customizing the look and feel of an
application using Style Sheets, but there are more ways to change an
application's look and feel. These approaches depend on your project need.
In the next section, you will learn about custom styles.

Exploring custom styles
Qt provides several QStyle subclasses that emulate the styles of the
different platforms supported by Qt. These styles are readily available with
the Qt GUI module. You can build your own custom styles and export
these as plugins. Qt uses QStyle for rendering the Qt widgets to ensure their
look and feel, as per native widgets.

On a Unix distribution, you can get a Windows-style UI for your
application by running the following command:

$./helloworld -style windows

You can set a style on an individual widget using the QWidget::setStyle()
method.

Creating a custom style

You can customize the look and feel of your GUI by creating a custom
style. There are two different approaches to creating a custom style. In a
static approach, you can subclass the QStyle class and reimplement virtual
functions to deliver the desired behavior, or rewrite the QStyle class from
scratch. QCommonStyle is generally used as a base class instead of
QStyle. In a dynamic approach, you can subclass QProxyStyle and modify
the behavior of your system style at runtime. You can also develop style-
aware custom widgets by using QStyle functions such as drawPrimitive(),
drawItemText(), and drawControl().

This section is an advanced Qt topic. You need to understand Qt in depth to
create your own style plugin. You can skip this section if you are a

beginner. You can learn about the QStyle classes and custom styles in the
Qt documentation at the following link:

https://doc.qt.io/qt-6/qstyle.html

Using a custom style

There are several ways to apply a custom style in a Qt application. The
easiest way is to call the QApplication::setStyle() static function before
creating a QApplication object, as follows:

#include "customstyle.h"

int main(int argc, char *argv[])

{

 QApplication::setStyle(new CustomStyle);

 QApplication app(argc, argv);

 Widget helloworld;

 helloworld.show();

 return app.exec();

}

You can also apply a custom style as a command-line argument, like so:

>./customstyledemo -style customstyle

Custom styles can be difficult to implement but can be faster and more
flexible. QSS is easy to learn and implement, but the performance may get
affected, especially at the application launch time, as the QSS parsing may
take time. You can choose the approach convenient to you or your
organization. We have learned how to customize the GUI. Now, let's

https://doc.qt.io/qt-6/qstyle.html

understand what widgets, windows, and dialogs are in the last section of
this chapter.

Using widgets, windows, and dialogs
A widget is a GUI element that can be displayed on the screen. This could
include labels, push buttons, list views, windows, dialogs, and so on. All
widgets display certain information to a user on the screen, and most of
them allow user interactions through the keyboard or mouse.

A window is a top-level widget that doesn't have another parent widget.
Generally, windows have a title bar and border unless any window flags are
specified. The window style and certain policies are determined by the
underlying windowing system. Some of the common window classes in Qt
are QMainWindow, QMessageBox, and QDialog. A main window usually
follows a predefined layout for desktop applications that comprises a menu
bar, a toolbar, a central widget area, and a status bar. QMainWindow
requires a central widget even if it is just a placeholder. Other components
can be removed in a main window. Figure 3.22 illustrates the layout
structure of QMainWindow. We typically call the show() method to
display a widget or main window.

QMenuBar is present at the top of QMainWindow. You can add menu
options such as File, Edit, View, and Help. In the following screenshot
showing QMenuBar, there is QToolBar. QDockWidget provides a widget
that can be docked inside QMainWindow or floated as a top-level window.
The central widget is the primary view area where you can add your form

or child widgets. Create your own view area with child widgets and then
call setCentralWidget():

Figure 3.22 – QMainWindow layout

IMPORTANT NOTE
QMainWindow shouldn't be confused with QWindow. QWindow is a convenient class that
represents a window in the underlying windowing system. Usually, applications use
QWidget or QMainWindow for their UI. However, it is possible to render directly to
QWindow, if you want to keep minimal dependencies.

Dialogs are temporary windows that are used to provide notifications or
receive user inputs and usually have OK and Cancel-type buttons.
QMessageBox is a type of dialog that is used to show information and
alerts or to ask a question to the user. Typically, the exec() method is used to
show a dialog. The dialog is shown as a modal dialog and is blocking in
nature until the user closes it. A simple message box can be created with the
following code snippet:

 QMessageBox messageBox;

 messageBox.setText("This is a simple QMessageBox.");

 messageBox.exec();

The takeaway is that all of these are widgets. Windows are the top-level
widgets, and dialogs are a special kind of window.

Summary
This chapter explained the fundamentals of the Qt Widgets module and how
to create a custom UI. Here, you learned to design and build GUIs with Qt
Designer. Traditional desktop applications are usually built with Qt
Designer. Features such as custom widget plugins allow you to create and
use your own widget collection with Qt Designer. We also discussed
customizing the look and feel of your application with style sheets and
styles, as well as looking at the uses of and differences between widgets,
windows, and dialogs. Now, you can create a GUI application with your
own custom widgets with extended functionalities and create your own
themes for your desktop application.

In the next chapter, we will discuss QtQuick and QML. Here, you will
learn about QtQuick controls, Qt Quick Designer, and how to build a
custom QML application. We will also discuss an alternate option of using
Qt Quick for GUI design rather than widgets.

Chapter 4: t Quick and QML
Qt consists of two different modules for developing a graphical user
interface (GUI) application. The first approach is to use Qt Widgets and
C++, which we learned about in the previous chapter. The second approach
is to use Qt Quick Controls and the Qt Modeling Language (QML), which
we will be covering in this chapter.

In this chapter, you will learn how to use Qt Quick Controls and the QML
scripting language. You will study how to use Qt Quick Layouts and
positioners and make a responsive GUI application. You will learn to
integrate your backend C++ code with frontend QML. You will learn the
fundamentals of Qt Quick and QML, and how to develop touch-friendly
and visual-oriented Qt applications. You will also learn about mouse and
touch events and how to develop a touch-aware application.

In this chapter, we're going to cover the following main topics:

Getting started with QML and Qt Quick

Understanding Qt Quick Controls

Creating a simple Qt Quick application

Designing a user interface (UI) with Qt Quick Designer

Positioners and layouts in QML

Integrating QML with C++

Integrating QML with JavaScript (JS)

Handling mouse and touch events

By the end of this chapter, you will understand the basics of QML,
integration with C++, and how to create your own fluid UI.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platforms such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter04.

IMPORTANT NOTE
The screenshots used in this chapter are taken from the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Getting started with QML and Qt Quick
QML is a UI markup language. It is a declarative language that is part of
the Qt framework. It enables the building of fluid and touch-friendly UIs
and came into existence with the evolution of touchscreen mobile devices.
It was created to be highly dynamic, where developers can easily create
fluid UIs with minimal coding. The Qt QML module implements the QML
architecture and provides a framework for developing applications. It
defines and implements the language and infrastructure, and provides
application programming interfaces (APIs) to integrate the QML
language with JS and C++.

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter04

Qt Quick provides a library of types and functionality for QML. It
comprises interactive types, visual types, animations, models, views, and
graphics effects. It is used for mobile applications where touch input, fluid
animations, and user experience are crucial. The Qt QML module provides
the language and infrastructure for QML applications, whereas the Qt
Quick module provides many visual elements, animation, and many more
modules to develop touch-oriented and visually appealing applications.
Instead of using Qt Widgets for UI design, you can use QML and Qt Quick
Controls. Qt Quick supports several platforms, such as Windows, Linux,
Mac, iOS, and Android. You can create a custom class in C++ and port it
over to Qt Quick to extend its functionality. Furthermore, the language
provides a smooth integration with C++ and JS.

Understanding the QML type system

Let's get familiar with the QML type system and various QML types. The
types in a QML file can originate from various sources. The different types
used in a QML file are outlined here:

Basic types provided natively by QML such as int, bool, real, and list

JS types such as var, Date, and Array

QML object types such as Item, Rectangle, Image, and Component

Types registered via C++ by QML modules such as BackendLogic

Types provided as a QML file, such as MyPushButton

A basic type can contain a simple value such as an int or a bool type. In
addition to the native basic types, the Qt Quick module also provides
additional basic types. The QML engine also supports JS objects and arrays.
Any standard JS type can be created and stored using the generic var type.
Please note that the variant type is obsolete and exists only to support older
applications. A QML object type is a type from which a QML object can be
created. Custom QML object types can be defined by creating a .qml file
that defines the type. QML object types can have properties, methods,
signals, and so on.

To use the basic QML types inside your QML file, import the QtQml
module with the following line of code: import QtQml

Item is the base type for all visual elements in Qt Quick. All visual items in
Qt Quick are inherited from Item, which is a transparent visual element that
can be used as a container. Qt Quick provides Rectangle as a visual type to
draw rectangles, and an Image type to display images. Item provides a
common set of properties for the visual elements. We will explore the usage
of these types throughout the book.

You can learn more about QML types at the following link:

https://doc.qt.io/qt-6/qmltypes.html

In this section, we learned the basics of QML and Qt Quick. In the next
section, we will discuss Qt Quick Controls.

Understanding Qt Quick Controls

https://doc.qt.io/qt-6/qmltypes.html

Qt Quick Controls provides a set of UI elements that can be used to build
a fluid UI using Qt Quick. To avoid ambiguity with widgets, we will use
the term controls for UI elements. Qt Quick Controls 1 was originally
designed to support desktop platforms. With the evolution of mobile
devices and embedded systems, the module required changes to meet
performance expectations. Hence, Qt Quick Controls 2 was born, and it
further enhanced support for mobile platforms. Qt Quick Controls 1 has
been deprecated since Qt 5.11 and has been removed from Qt 6.0. Qt Quick
Controls 2 is now simply known as Qt Quick Controls.

The QML types can be imported into your application using the following
import statement in your .qml file:

import QtQuick.Controls

IMPORTANT NOTE
In Qt 6, there are certain changes in the QML import and versioning system. The version
numbers have been kept optional. If you import a module without specifying the version
number, then the latest version of the module is imported automatically. If you import a
module with only the major version number, then the module is imported with a specified
major version and the latest minor version. Qt 6 introduced an auto imports functionality,
which is written as import <module> auto. This ensures the imported module and
importing module have the same version number.

Changes to Qt Quick Controls in Qt 6 can be found at the following link:

https://doc.qt.io/qt-6/qtquickcontrols-changes-qt6.html

Qt Quick Controls offers QML types for creating UIs. Example of Qt Quick
Controls are given here:

ApplicationWindow: Styled top-level window with support for a
header and footer

https://doc.qt.io/qt-6/qtquickcontrols-changes-qt6.html

BusyIndicator: Indicates background activity—for instance, while
content is being loaded

Button: Push button that can be clicked to perform a command or
answer a question

CheckBox: Check button that can be toggled on or off

ComboBox: Combined button and pop-up list for selecting options

Dial: Circular dial that is rotated to set a value

Dialog: Pop-up dialog with standard buttons and a title

Label: Styled text label with inherited font

Popup: Base type of pop-up-like UI controls

ProgressBar: Indicates the progress of an operation

RadioButton: Exclusive radio button that can be toggled on or off

ScrollBar: Vertical or horizontal interactive scroll bar

ScrollView: Scrollable view

Slider: Used to select a value by sliding a handle along a track

SpinBox: Allows the user to select from a set of preset values

Switch: Button that can be toggled on or off

TextArea: Multiline text-input area

TextField: Single-line text input field

ToolTip: Provides tool tips for any control

Tumbler: Spinnable wheel of items that can be selected

To configure the Qt Quick Controls module for building with qmake, add
the following line to the project's .pro file:

QT += quickcontrols2

In this section, we learned about the different types of UI elements available
with Qt Quick. In the next section, we will discuss the different styles
provided by Qt Quick and how to apply them.

Styling Qt Quick Controls

Qt Quick Controls comes with a standard set of styles. They are listed here:

Basic

Fusion

Imagine

Material

Universal

There are two ways to apply styles in Qt Quick Controls, as follows:

Compile time

Runtime

You can apply a compile-time style by importing the corresponding style
module, as shown here:

import QtQuick.Controls.Universal

You can apply a runtime style by using one of the following approaches:

Figure 4.1 – Different ways to apply a style at runtime

In this section, we learned about the available styles in Qt Quick. In the
next section, we will create our first Qt Quick GUI application.

Creating a simple Qt Quick application
Let's create our first Qt Quick application using Qt 6. A Hello World
program is a very simple program that displays Hello World!. The project
uses minimal—and the most basic—code. For this project, we will use the
project skeleton created by Qt Creator. So, let's begin! Proceed as follows:

1. To create a new Qt Quick application, click on the File menu option on
the menu bar or hit Ctrl + N. Alternatively, you can also click on the
New Project button located on the welcome screen. Then, a window
will pop up for you to choose a project template. Select Qt Quick
Application - Empty and click the Choose... button, as shown in the
following screenshot:

Figure 4.2 – New Qt Quick application wizard

2. In the next step, you will be asked to choose a project name and a
project location. You can navigate to the desired project location by
clicking the Browse… button. Let's name our sample project
SimpleQtQuickApp. Then, click on the Next button to proceed to the
next screen, as shown in the following screenshot:

Figure 4.3 – Project location selection screen

3. In the next step, you can select a kit from a set of kits to build and run
your project. To build and run a project, at least one kit must be active
and selectable. Select the default Desktop Qt 6.0.0 MinGW 64-bit kit.
Click on the Next button to proceed to the next screen. This can be seen
in the following screenshot:

Figure 4.4 – Kit selection screen

4. The next step is to add your Qt Quick project to the installed version
control system (VCS). You may skip version control for this project.
Click on the Finish button to create a project with the generated files, as
shown in the following screenshot:

Figure 4.5 – Project management screen

5. Once a project has been created, Qt Creator will automatically open up
a file from your project, called main.qml. You will see a type of script
that is very different from your usual C/C++ projects, as shown in the
following screenshot:

Figure 4.6 – Code editor screen showing the main.qml file

The QML runtime is implemented in C++ in the QtQml module. It
contains a QML engine that is responsible for the execution of QML. It
also holds the contexts and properties that will be accessible for the
QML elements. Qt provides a QQmlEngine class for instantiating the

QML components. You can also use the QQmlApplicationEngine
class to load the application with a single QML file in a convenient way,
as shown here:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;

 const QUrl url(QStringLiteral("qrc:/main.qml"));

 engine.load(url);

 return app.exec();

}

You can also use the QQuickView class, which provides a window for
displaying a Qt Quick UI. This approach is little old.
QQmlApplicationEngine has a convenient central application
functionality with QML, whereas QQuickView is normally controlled
from C++. The following code snippet shows how to use QQuickView
to load a .qml file:

#include <QGuiApplication>

#include <QQuickView>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQuickView view;

 view.setResizeMode(

 QQuickView::SizeRootObjectToView);

 view.setSource(QUrl("qrc:/main.qml"));

 view.show();

 return app.exec();

}

QQuickView doesn't support using Window as a root item. If you want
to create your root window from QML, then opt for
QQmlApplicationEngine. While using QQuickView, you can directly
use any Qt Quick element, as shown in the following code snippet:

import QtQuick

Item {

 width: 400

 height: 400

 Text {

 anchors.centerIn: parent

 text: "Hello World!"

 }

}

6. Next, you can build and run the Qt Quick project by clicking on the
green arrow button located at the bottom-left corner of the integrated
development environment (IDE), as shown in the following
screenshot:

Figure 4.7 – The build and run option in Qt Creator

7. Now, hit the Run button to build and run the application. Soon, you will
see a UI with Hello World!, as shown in the following screenshot:

Figure 4.8 – Output of the Hello World UI

You can run the application from the command line on Windows, as
follows:

>SimpleQtQuickApp.exe

You can also run the application from the command line on Linux
distributions, as follows:

$./SimpleQtQuickApp

In command-line mode, you may see a few error dialogs if the libraries are
not found in the application path. You can copy the Qt libraries and plugin
files to that binary folder to resolve the issue. To avoid these issues, we will
stick to Qt Creator to build and run our sample programs. You can switch
between different kits by going to the project interface and selecting a kit
based on your preferences. Please remember that you need to run qmake
after you make changes to your .pro file. If you are using the command
line, then proceed with the following commands:

>qmake

>make

You can also create a Qt Quick 2 UI project with a QML entry point
without using any C++ code. To use it, you need to have a QML runtime
environment such as qmlscene set up. Qt Creator uses .qmlproject to
handle QML-only projects:

1. To create a Qt Quick 2 UI project, select Qt Quick 2 UI Prototype
from the new project template screen, as shown in the following
screenshot:

Figure 4.9 – Qt Quick UI Prototype wizard

2. Continue clicking the Next button to see the Project Details, Kit
Selection, and Project Management screens. These screens are the
same as for the Qt quick application project discussed earlier. Click on
the Finish button to create a project with a skeleton. Now, have a look
at the contents of the QtQuickUIPrototype.qmlproject and
QtQuickUIPrototype.qml Qt Creator-generated files.

3. Let's modify the contents of QtQuickUIPrototype.qml to add a Text
element and display Hello World!, as illustrated in the following

screenshot:

Figure 4.10 – Sample contents of Qt Quick UI Prototype project

4. Now, hit the Run button to build and run the application. Soon, you will
see a UI with Hello World!.

You can also run the application from the command line, as follows:

>qmlscene QtQuickUIPrototype.qml

You may have to mention qmlscene and the qml file path in the command
line. Use this only if you are prototyping. You cannot create a full
application with this. Consider using a Qt Quick application project instead
for a full application.

In this section, we learned how to create a simple GUI using the Qt Quick
module. In the next section, we will learn how to design a custom UI using
the Qt Quick Designer UI.

Designing a UI with Qt Quick Designer
In this section, you will learn how to use Qt Quick Designer to design your
UI. Similar to the .ui file in Qt Widgets, you can also create a UI file in
QML. The file has a .ui.qml file extension. There are two types of QML
file: one with a .qml extension and another with a .ui.qml extension. The
QML engine treats it as a standard .qml file, but it prohibits the logical
implementation inside it. It creates a reusable UI definition for multiple
.qml files. Through the separation of UI definition and logical
implementation, it enhances the maintainability of QML code.

Let's get familiar with Qt Quick Designer's interface before we start
learning how to design our own UI. The following screenshot shows

different sections of Qt Quick Designer. We will gradually learn about these
sections while designing our UI:

Figure 4.11 – Sections of Qt Quick Designer's UI

Qt Quick Designer's UI consists of the following major sections:

Navigator: This lists the items in the current QML file as a tree
structure. It's similar to the Object Operator window in Qt Designer
that we learned about in the last chapter.

Control Library: This window shows all the Qt Quick controls
available in QML. You can drag and drop the controls to the canvas
window to modify your UI.

Resources: This displays all the resources in a list that can then be used
for the UI design.

Import Browser: The Import Browser facilitates the importing of
different QML modules into the current QML file, to add new
functionality to your QML project. You can also create your own
custom QML module and import in from here.

Text Editor: This has six tool buttons, each for a specific action, such
as copy and paste.

Property Editor: This is similar to the property editor of Qt Designer.
The Properties section in Qt Quick Designer displays the properties of
the selected item. You can also change the properties of the items in the
Text Editor.

Form Editor: The Form Editor is a canvas where you design a UI for
your Qt Quick application.

State Editor: This window lists the different states in a QML project,
and describes UI definitions and their behavior.

Connection Editor: This section is similar to the Signal/Slot Editor in
Qt Designer. Here, you can define the signals and slots mechanism for

your QML component.

You are now familiar with the Qt Quick Designer UI. Let's create a Qt
Quick UI file and explore the Qt Quick controls, as follows:

1. To create a Qt Quick UI, select QtQuick UI File from the New File
template screen, as shown in the following screenshot. Proceed through
the next screens to create a Qt Quick form with a .ui.qml file extension.
By default, Qt Creator will open up Qt Quick Designer. You can switch
to code-editing mode by clicking the Edit button on the left-side panel:

Figure 4.12 – QtQuick UI File wizard

2. Let's add a few QML elements to the Form Editor by grabbing a
control by a mouse press and dropping it onto the canvas area by a
mouse release, as shown in the following screenshot. This action is
known as drag and drop (DnD). You can find several basic QML
types, such as Item, Rectangle, Image, Text, and so on. Item is a
transparent UI element that can be used as a container:

Figure 4.13 – Qt Quick Designer showing basic QML types

3. By default, the library contains only a few basic QML types. You can
import Qt Quick modules to Qt Quick Designer through the QML
Import Browser. Let's import any of the QtQuick.Controls packages,
as shown in the next screenshot:

Figure 4.14 – Qt Quick Designer showing the QML module import option

4. Once the module is imported, you can see a section with Qt Quick -
Controls 2 in the library, as illustrated in the following screenshot:

Figure 4.15 – Qt Quick Designer showing Qt Quick Controls

In this section, we got familiar with Qt Quick Designer's interfaces. In the
next section, you will learn about different positioners and layouts.

Positioners and layouts in QML

There are different ways to position items in QML. You can manually
position a control by mentioning x and y coordinates or by using anchors,
positioners, or layouts. Let's discuss how to position a control through the
aforementioned methods.

Manual positioning

A control can be positioned at specific x and y coordinates by setting their
corresponding x and y properties. As per the visual coordinate system rules,
this will position the controls relative to the top-left corner of their parent.

The following code snippet shows how to place a Rectangle item at
position (50,50):

import QtQuick

Rectangle {

 // Manually positioned at 50,50

 x: 50 // x position

 y: 50 // y position

 width: 100; height: 80

 color: "blue"

}

When you run the preceding code, you will see a blue rectangle created at
the (50,50) position. Change the x and y values and you will see how the
position is changed relative to the top-left corner. Qt allows you to write
multiple properties in a single line separated by a semicolon. You can write
x and y positions in the same line, separated by a semicolon.

In this section, you learned how to position a visual item by specifying its
coordinates. In the next section, we will discuss the use of anchors.

Positioning with anchors

Qt Quick provides a way to anchor a control to another control. There are
seven invisible anchor lines for each item: left, right, top, bottom,
baseline, horizontalCenter, and verticalCenter. You can set margins or
different margins for each side. If there are multiple anchors for a specific
item, they can then be grouped.

Let's have a look at the following example:

import QtQuick

import QtQuick.Window

Window {

 width: 400; height: 400

 visible: true

 title: qsTr("Anchoring Demo")

 Rectangle {

 id: blueRect

 anchors {

 left: parent.left; leftMargin:10

 right: parent.right; rightMargin: 40

 top: parent.top; topMargin: 50

 bottom: parent.bottom; bottomMargin: 100

 }

 color: "blue"

 Rectangle {

 id: redRect

 anchors.centerIn: blueRect

 color:"red"

 width: 150; height: 100

 }

 }

}

If you run this example, you will see a red rectangle inside a blue rectangle
with different margins in the output window, as shown next:

Figure 4.16 – Anchor positioning a control inside a window

In this section, you learned how to position a visual item by using anchors.
In the next section, we will discuss the use of positioners.

Positioners

Positioners are containers that manage the positions of visual elements in a
declarative UI. Positioners behave in a similar way to layout managers in
Qt widgets.

A standard set of positioners is provided in a basic set of Qt Quick
elements. They are outlined as follows:

Column positions its children in a column.

Row positions its children in a row.

Grid positions its children in a grid.

Flow positions its children like words on a page.

Let's have a look how to use them in Qt Quick Designer. First, create three
Rectangle items with different colors and then position them inside a Row
element, as illustrated in the following screenshot:

Figure 4.17 – Rectangles inside a Row positioner

You can also write code to position the controls inside a positioner. Qt
Creator automatically generates code if you use Qt Quick Designer. The
generated code can be viewed and modified through the Text Editor tab
next to Form Editor. The code is shown in the following snippet:

Row {

 id: row

 Rectangle {

 id: yellowRect

 width: 150; height: 100

 color: "yellow"

 border.color: "black"

 }

 Rectangle {

 id: redRect

 width: 150; height: 100

 color: "red"

 border.color: "black"

 }

 Rectangle {

 id: greenRect

 width: 150; height: 100

 color: "green"

 border.color: "black"

 }

}

In this section, we learned about different positioners. In the next section,
we will discuss the use of repeaters and models, along with positioners.

Repeater

A repeater creates a number of visual elements using a provided model, as
well as elements from a template to use with a positioner, and uses data
from a model. A repeater is placed inside a positioner, and creates visual
elements that follow the defined positioner arrangement. When there are
many similar items, then a positioner with a repeater makes it easier to
maintain when arranged in a regular layout.

Let's create five rectangles positioned in a row using Repeater, as follows:

import QtQuick

import QtQuick.Window

Window {

 width: 400; height: 200

 visible: true

 title: qsTr("Repeater Demo")

 Row {

 anchors.centerIn: parent

 spacing: 10

 Repeater {

 model: 5

 Rectangle {

 width: 60; height: 40

 border{ width: 1; color: "black";}

 color: "green"

 }

 }

 }

}

When you run the preceding example, you will see five rectangles arranged
in a row, as shown next:

Figure 4.18 – Rectangles inside a Row positioner

In this section, we learned about the use of repeaters with positioners. In the
next section, we will look into Qt Quick Layouts.

Qt Quick Layouts

Qt Quick Layouts are a set of QML types that can be used to arrange visual
elements in a UI. Qt Quick Layouts can resize their children, hence they are
used for resizable UIs. The basic difference between positioners and layouts
is that layouts can resize their children on window resize.

Qt Quick Layouts can be imported into your QML file by using the
following import statement:

import QtQuick.Layouts

There are five different type of layouts in QML, as outlined here:

RowLayout: This arranges elements in a row. It is similar to
GridLayout but only has one row.

ColumnLayout: This arranges elements in a column. It is similar to
GridLayout but only has one column.

GridLayout: This allows elements to be arranged dynamically in a
grid.

Layout: This provides attached properties for items pushed onto a
ColumnLayout, RowLayout, or GridLayout layout type.

StackLayout: This arranges elements in a stack-like manner where only
one element is visible at a time.

Let's look at the following RowLayout example:

import QtQuick

import QtQuick.Window

import QtQuick.Layouts

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("Layout Demo")

 RowLayout {

 id: layout

 anchors.fill: parent

 spacing: 6

 Rectangle {

 color: 'yellow'

 Layout.fillWidth: true

 Layout.minimumWidth: 50

 Layout.preferredWidth: 150

 Layout.maximumWidth: 200

 Layout.minimumHeight: 100

 Layout.margins: 10

 }

 Rectangle {

 color: 'red'

 Layout.fillWidth: true

 Layout.minimumWidth: 50

 Layout.preferredWidth: 100

 Layout.preferredHeight: 80

 Layout.margins: 10

 }

 }

}

Please note that a Row type is a positioner, while a RowLayout type is a
layout. When to use them depends mainly on your goal, as usual. Let's
move on to the next section to see how to integrate QML with C++.

Integrating QML with C++
QML applications often need to handle more advanced and performance-
intensive tasks in C++. The most common and quickest way to do this is to
expose the C++ class to the QML runtime, provided the C++
implementation is derived from QObject.

QML can be easily integrated with C++ code. QML objects can be loaded
and manipulated from C++. QML integration with Qt's meta-object system
allows C++ functionality to be invoked from QML. This helps in building

hybrid applications with a mixture of C++, QML, and JS. To expose C++
data or properties or methods to QML, it should be derived from a QObject
class. This is possible because all QML object types are implemented using
QObject-derived classes, allowing the QML engine to load and inspect
objects through the Qt meta-object system.

You can integrate QML with C++ in the following ways:

Embedding C++ objects into QML with context properties

Registering the type with the QML engine

Creating a QML extension plugin

Let's discuss each approach one by one in the following sections.

IMPORTANT NOTE
To quickly determine which integration method is appropriate for your project, have a look at
the flowchart illustrated in the Qt documentation at the following link:

https://doc.qt.io/qt-6/qtqml-cppintegration-overview.html

Embedding C++ objects into QML with
context properties

You can expose C++ objects into a QML environment by using context
properties. Context properties are suitable for simple applications. They
export your object as a global object. Contexts are exposed to the QML
environment after being instantiated by the QML engine.

Let's have a look at the following example, where we have exported radius
to the QML environment. You can also export C++ models in a similar

https://doc.qt.io/qt-6/qtqml-cppintegration-overview.html

way:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlContext>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;

 engine.rootContext()->setContextProperty("radius", 50);

 const QUrl url(QStringLiteral("qrc:/main.qml"));

 engine.load(url);

 return app.exec();

}

You can use the exported value directly in the QML file, as follows:

import QtQuick

import QtQuick.Window

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("QML CPP integration")

 Text {

 anchors.centerIn: parent

 text: "C++ Context Property Value: "+ radius

 }

}

You can also register your C++ class and instantiate it inside the QML
environment. Let's learn how to achieve that in the next section.

Registering a C++ class with the QML
engine

Registering QML types permits a developer to control the life cycle of a
C++ object from the QML environment. This can't be achieved with context
properties and also doesn't populate the global namespace. Still, all types
need to be registered first and by this, all libraries need to be linked on
application start, which in most cases is not really a problem.

The methods can be public slots or public methods flagged with
Q_INVOKABLE. Now, let's import the C++ class into the QML file. Have
a look at the following C++ class:

#ifndef BACKENDLOGIC_H

#define BACKENDLOGIC_H

#include <QObject>

class BackendLogic : public QObject

{

 Q_OBJECT

public:

 explicit BackendLogic(QObject *parent = nullptr) {

 Q_UNUSED(parent);}

 Q_INVOKABLE int getData() {return mValue; }

private:

 int mValue = 100;

};

#endif // BACKENDLOGIC_H

You need to register the C++ class in the main.cpp file as a module using
qmlRegisterType(), as shown here:

qmlRegisterType<BackendLogic>("backend.logic", 1,

0,"BackendLogic");

Any Qobject-derived C++ class can be registered as a QML object type.
Once a class is registered with the QML type system, the class can be used
like any other QML type. Now, the C++ class is ready to be instantiated
inside your .qml file. You have to import the module and create an object,
as illustrated in the following code snippet:

import QtQuick

import QtQuick.Window

import backend.logic

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("QML CPP integration")

 BackendLogic {

 id: backend

 }

 Text {

 anchors.centerIn: parent

 text: "From Backend Logic : "+ backend.getData()

 }

}

When you run the preceding program, you can see that the program is
fetching data from the backend C++ class and displaying it in the UI.

You can also expose a C++ class as a QML singleton by using
qmlRegisterSingletonType(). By using a QML singleton, you can prevent
duplicate objects in the global namespace. Let's skip this part as it requires
an understanding of design patterns. Detailed documentation can be found
at the following link:

https://doc.qt.io/qt-6/qqmlengine.html#qmlRegisterSingletonType

In Qt 6, you can achieve C++ integration by using a QML_ELEMENT
macro. This macro declares the enclosing type as available in QML, using
its class or namespace name as the QML element name. To use this macro
in your C++ header file, you will have to include the qml.h header file as
#include <QtQml>.

Let's have a look at the following example:

#ifndef USINGELEMENT_H

#define USINGELEMENT_H

#include <QObject>

#include <QtQml>

class UsingElements : public QObject

{

 Q_OBJECT

 QML_ELEMENT

public:

 explicit UsingElements(QObject *parent = nullptr) {

https://doc.qt.io/qt-6/qqmlengine.html#qmlRegisterSingletonType%20

 Q_UNUSED(parent);}

 Q_INVOKABLE int readValue() {return mValue; }

private:

 int mValue = 500;

};

#endif // USINGELEMENT_H

In the .pro file, you have to add the qmltypes option to the CONFIG
variable and QML_IMPORT_NAME and
QML_IMPORT_MAJOR_VERSION are to be mentioned, as illustrated
in the following code snippet:

CONFIG += qmltypes

QML_IMPORT_NAME = backend.element

QML_IMPORT_MAJOR_VERSION = 1

Your C++ class is now ready to be instantiated inside your .qml file. You
have to import the module and create an object, as illustrated in the
following code snippet:

import QtQuick

import QtQuick.Window

import backend.element

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("QML CPP integration")

 UsingElements {

 id: backendElement

 }

 Text {

 anchors.centerIn: parent

 text: "From Backend Element : "+

 backendElement.readValue()

 }

}

In this section, you learned how to export your C++ class into the QML
environment and access its functions from QML. In this example, the data
is retrieved only when the method is called. You can also get notified when
the data is changed inside C++ by adding a Q_PROPERTY() macro with a
NOTIFY signal. You need to know about the signals and slots mechanism
before using it. So, we will skip this part and discuss it further in Chapter 6,
Signals and Slots. In the next section, we will discuss how to create a QML
extension plugin.

Creating a QML extension plugin

A QML extension plugin provides the most flexible way to integrate with
C++. It allows you to register types in a plugin that is loaded when the first
QML file calls the import identifier. You can use plugins across projects,
which is very convenient when building complex projects.

Qt Creator has a wizard to create a Qt Quick 2 QML Extension Plugin.
Select a template, as shown in the following screenshot, and proceed with
the screens that follow. The wizard will create a basic skeleton for the QML
Extension Plugin project. The plugin class has to be derived from

QqmlExtensionPlugin and should implement the registerTypes()
function. A Q_PLUGIN_METADATA macro is required to identify the
plugin as a QML extension plugin:

Figure 4.19 – Qt Quick 2 QML Extension Plugin wizard

This section is an advanced Qt topic. You need to understand Qt in depth to
create your own QML extension plugin. You can skip this section if you are
a beginner, but you can learn more about the QML extension plugin in the
Qt documentation at the following link:

https://doc.qt.io/qt-6/qtqml-modules-cppplugins.html

https://doc.qt.io/qt-6/qtqml-modules-cppplugins.html

Let's move on to the next section to discover how to invoke a QML method
inside a C++ class.

Invoking QML methods inside a C++
class

All QML methods are exposed to the meta-object system and can be called
from C++ using QMetaObject::invokeMethod(). You can specify types
for the parameters and the return value after the colon character, as shown
in the next code snippet. This can be useful when you want to connect a
signal in C++ with a certain signature to a QML-defined method, for
example. If you omit the types, the C++ signature will use QVariant.

Let's look at an application that calls a QML method using
QMetaObject::invokeMethod().

In the QML file, let's add a method called qmlMethod(), as follows:

import QtQuick

Item {

 function qmlMethod(msg: string) : string {

 console.log("Received message:", msg)

 return "Success"

 }

 Component.onCompleted: {

 console.log("Component created successfully.")

 }

}

In the main.cpp file, call QMetaObject::invokeMethod() as per the
following code snippet:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlComponent>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;

 QQmlComponent component(&engine,

 "qrc:/CustomItem.qml");

 QObject *myObject = component.create();

 QString retValue = "";

 QString msg = "Message from C++";

 QMetaObject::invokeMethod(myObject, "qmlMethod",

 Q_RETURN_ARG(QString,

 retValue),

 Q_ARG(QString, msg));

 qDebug() << "QML method returned:" << retValue;

 delete myObject;

 return app.exec();

}

Please note that the parameter and return type have to be specified. Both
basic types and object types are allowed as type names. If the type is not
mentioned in the QML type system, then you must declare QVariant as a

type with Q_RETURN_ARG() and Q_ARG() when calling
QMetaObject::invokeMethod. Alternatively, you can call
invokeMethod() with only two parameters if you don't need any return
values, as shown here:

QMetaObject::invokeMethod(myObject, "qmlMethod");

In this section, you learned to receive data from a QML method. In the next
section, you will learn how to access a QML object pointer inside C++.

Exposing a QML object pointer to C++

Sometimes, you may want to modify the properties of a QML object
through C++, such as modifying the text of a control, changing the visibility
of a control, or changing a custom property. The QML engine permits you
to register your QML objects to C++ types, which automatically exposes
the QML object's properties.

Let's have a look at the following example, where we have exported a QML
object to the C++ environment:

#ifndef CUSTOMOBJECT_H

#define CUSTOMOBJECT_H

#include <QObject>

#include <QVariant>

class CustomObject : public QObject

{

 Q_OBJECT

public:

 explicit CustomObject(QObject *parent = nullptr);

 Q_INVOKABLE void setObject(QObject* object)

 {

 object->setProperty("text", QVariant("Clicked!"));

 }

};

#endif // CUSTOMOBJECT_H

In the QML file, you need to create an instance of the C++ class and call
the C++ method. As you can see in the following code snippet, the property
is manipulated inside the C++ class:

import QtQuick

import QtQuick.Window

import QtQuick.Controls

import MyCustomObject

Window {

 width: 640; height: 480;

 visible: true

 title: qsTr("QML Object in C++")

 CustomObject{

 id: customObject

 }

 Button {

 id: button

 anchors.centerIn: parent

 text: qsTr("Click Me!")

 onClicked: {

 customObject.setObject(button);

 }

 }

}

IMPORTANT NOTE
The Qt QML module provides several macros for registering non-instantiable types.
QML_ANONYMOUS registers a C++ type that is not instantiable and cannot be referred to
from QML. QML_INTERFACE registers an existing Qt interface type. The type is not
instantiable from QML, and you cannot declare QML properties with it.
QML_UNCREATABLE registers a named C++ type that is not instantiable but should be
identifiable as a type to the QML type system. QML_SINGLETON registers a singleton type
that can be imported from QML.

Congratulations! You have learned how to integrate QML and C++. In the
next section, we will discuss how to use JS with QML.

Integrating QML with JS
QML has a good integration with JS and uses JavaScript Object Notation
(JSON)-like syntaxes, allowing expressions and methods to be defined as
JS functions. It also permits developers to import JS files and use the
existing functionality. The QML engine provides a JS environment that has
some limitations compared to the JS environment provided by a web
browser. The logic for a Qt Quick application can be defined in the JS. The
JS code can be written inline inside the QML file, or in a separate JS file.

Let's look at how to use inline JS inside a QML document. The following
example demonstrates the btnClicked() inline JS function. The method is

called when the Button control is clicked:

import QtQuick

import QtQuick.Window

import QtQuick.Controls

Window {

 width: 640; height: 480;

 visible: true

 title: qsTr("QML JS integration")

 function btnClicked(controlName) {

 controlName.text = "JS called!"

 }

 Column {

 anchors.centerIn: parent

 Button {

 text:"Call JS!"

 onClicked: btnClicked(displayText)

 }

 Text {

 id: displayText

 }

 }

}

The preceding example shows how to integrate JS code with QML. We
have used the btnClicked() inline JS function. When you run the
application, you will get a message saying JS called!.

If your logic is very long or has uses in multiple QML documents, then use
a separate JS file. You can import a JS file as follows:

import "<JavaScriptFile>" as <Identifier>

For example, you could run the following line of code:

import "constants.js" as Constants

In the previous example, we are importing constants.js into the QML
environment. Constants is an identifier for our JS file.

You can also create a shared JS library. You just have to include the
following line of code at the beginning of the JS file:

.pragma library

IMPORTANT NOTE
If the script is a single expression, then writing it inline is recommended. If the script is a few
lines long, then use a block. If the script is more than several lines long or is required by
different objects, then create a function and call it as needed. For long scripts, create a JS
file and import it inside the QML file. Avoid using Qt.include() as it is deprecated and will be
removed from future versions of Qt.

To learn more about importing JS in QML, read the following
documentation:

https://doc.qt.io/qt-6/qtqml-javascript-imports.html

In this section, you learned how to integrate JS with QML. In the next
section, we will discuss how to import a directory in QML.

Importing a directory in QML

https://doc.qt.io/qt-6/qtqml-javascript-imports.html

You can import a local directory with QML files directly inside another
QML file without adding in resources. You can use the directory's absolute
or relative filesystem paths to do this, providing a convenient way for QML
types to be arranged as reusable directories on the filesystem.

The common form of a directory import is shown here:

import "<DirectoryPath>" [as <Qualifier>]

For example, if your directory name is customqmlelements, then you can
import it as follows:

import "../customqmlelements"

It is also possible to import the directory as a qualified local namespace, as
shown in the following code snippet:

import "../customqmlelements" as CustomQMLElements

You can also import a file from the resource path, as follows:

import "qrc:/qml/customqmlelements"

You can also import a directory of QML files from a remote server. There
are two different types of qmldir files: a QML directory listing file and a
QML module definition file. Here, we are discussing the use of the qmldir
QML directory listing file. The directory can be imported using the
Uniform Resource Locator (URL) of the remote location. Please note that
while importing over a network, only QML and JS files specified in the
qmldir file can be accessed. To avoid malicious code, you have to be
careful with the network files.

The following documentation provides further information about the
qmldir QML directory listing file:

https://doc.qt.io/qt-6/qtqml-syntax-directoryimports.html

You can learn more about the different types of qmldir files at the
following link:

https://doc.qt.io/qt-6/qtqml-modules-qmldir.html

In this section, you learned how to import a directory in QML. In the next
section, we will discuss how to handle mouse and touch events in QML.

Handling mouse and touch events
QML provides excellent support for mouse and touch events through input
handlers that let QML applications handle mouse and touch events. QML
types such as MouseArea, MultiPointTouchArea, and TapHandler are
used to detect mouse and touch events. We will have a look at these QML
types in the following section.

MouseArea

MouseArea is an invisible item that is used with a visible item such as
Item or Rectangle in order to provide mouse and touch handling events for
that item. MouseArea receives mouse events within the defined area of
Item. You can define this area by anchoring MouseArea to its parent's area
using the anchors.fill property. If you set the visible property to false, then
the mouse area becomes transparent to mouse events.

https://doc.qt.io/qt-6/qtqml-syntax-directoryimports.html
https://doc.qt.io/qt-6/qtqml-modules-qmldir.html

Let's look at how to use MouseArea in the following example:

import QtQuick

import QtQuick.Window

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("Mouse Area Demo")

 Rectangle {

 anchors.centerIn: parent

 width: 100; height: 100

 color: "green"

 MouseArea {

 anchors.fill: parent

 onClicked: { parent.color = 'red' }

 }

 }

}

In the preceding example, you can see that only the rectangle area received
the mouse event. Other parts of window didn't get the mouse events. You
can perform actions accordingly based on the mouse events. MouseArea
also provides convenient signals that give us information about mouse
events such as mouse hover, mouse press, press and hold, mouse exit, and
mouse release events. Write the corresponding signal handlers and
experiment with the entered(), exited(), pressed(), and released() signals.

You can also detect which mouse button was pressed and execute a
corresponding action.

MultiPointTouchArea

The MultiPointTouchArea QML type enables handling of multiple touch
points in a multi-touch screen. Just as with MouseArea,
MultiPointTouchArea is an invisible item. You can track multiple touch
points and process the gesture accordingly. When it is disabled, the touch
area becomes transparent to both touch and mouse events. In a
MultiPointTouchArea type, a mouse event is handled as a single touch
point. You can set the mouseEnabled property to false to stop processing
the mouse events.

Let's look at the following example, where we have two rectangles that
follow our touch points:

import QtQuick

import QtQuick.Window

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("Multitouch Example")

 MultiPointTouchArea {

 anchors.fill: parent

 touchPoints: [

 TouchPoint { id: tp1 },

 TouchPoint { id: tp2 }

]

 }

 Rectangle {

 width: 100; height: 100

 color: "blue"

 x: tp1.x; y: tp1.y

 }

 Rectangle {

 width: 100; height: 100

 color: "red"

 x: tp2.x; y: tp2.y

 }

}

In a MultiPointTouchArea type, TouchPoint defines a touch point. It
contains details about the touch point, such as the pressure, current position,
and area. Now, run the application on your mobile device and verify it!

In this section, you learned about the use of MouseArea and
MultiPointTouchArea to handle mouse and touch events. Let's learn about
TapHandler in the next section.

TapHandler

TapHandler is a handler for click events on a mouse and tap events on a
touchscreen. You can use TapHandler to react to taps and touch gestures,
and it allows you to handle events in multiple nested items simultaneously.

Recognition of a valid tap gesture depends on gesturePolicy. The default
value of gesturePolicy is TapHandler.DragThreshold, for which the event
point must not move significantly. If gesturePolicy is set to
TapHandler.WithinBounds, then TapHandler takes an exclusive grab on
the press event, but releases the grab as soon as the event point leaves the
boundary of the parent item. Similarly, if gesturePolicy is set to
TapHandler.ReleaseWithinBounds, then TapHandler takes an exclusive
grab on the press and retains it until release in order to detect this gesture.

Let's create a TapHandler type that recognizes different mouse button
events and stylus taps, as follows:

import QtQuick

import QtQuick.Window

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("Hello World")

 Item {

 anchors.fill:parent

 TapHandler {

 acceptedButtons: Qt.LeftButton

 onTapped: console.log("Left Button Clicked!")

 }

 TapHandler {

 acceptedButtons: Qt.MiddleButton

 onTapped: console.log("Middle Button Clicked!")

 }

 TapHandler {

 acceptedButtons: Qt.RightButton

 onTapped: console.log("Right Button Clicked!")

 }

 TapHandler {

 acceptedDevices: PointerDevice.Stylus

 onTapped: console.log("Stylus Tap!")

 }

 }

}

You can use input handlers to handle touch events and gestures as a
substitute for MouseArea. Input handlers make the formation of complex
touch interactions simpler, which is difficult to achieve with either
MouseArea or TouchArea.

Qt provides some ready-made controls to handle generic gestures such as
pinch, flick, and swipe. PinchArea is a convenient QML type to handle
simple pinch gestures. It is an invisible item that is used with another
visible item. Flickable is another convenient QML type that provides a
surface for a flick gesture. Explore the related documentation and examples
to understand more about these QML elements.

Let's look at SwipeView in the next section.

SwipeView

A swipe is another common gesture in touch-based devices. You can use
SwipeView to navigate pages by swiping sideways. It uses a swipe-based
navigation model and provides a simplified way for horizontal-paged
scrolling. You can add a page indicator at the bottom to display the current
active page.

Let's look at a simple example, as follows:

import QtQuick

import QtQuick.Window

import QtQuick.Controls

Window {

 width: 640; height: 480

 visible: true

 title: qsTr("Swipe Demo")

 SwipeView {

 id: swipeView

 currentIndex: 0

 anchors.fill: parent

 Rectangle { id: page1; color: "red" }

 Rectangle { id: page2; color: "green"}

 Rectangle { id: page3; color: "blue" }

 }

 PageIndicator {

 id: pageIndicator

 count: swipeView.count

 currentIndex: swipeView.currentIndex

 anchors {

 bottom: swipeView.bottom

 horizontalCenter: parent.horizontalCenter

 }

 }

}

As you can see, we just have to add child items to SwipeView. You can set
the SwipeView current index as the PageIndicator current index.
SwipeView is one of the navigation models, which also include StackView
and Drawer. You can explore these QML types to experience gestures on
your mobile devices.

In this section, you learned about the use of various QML types to handle
mouse, touch, and gesture events. Next, we will summarize what we
learned in this chapter.

Summary
This chapter explained the fundamentals of the Qt Quick module and how
to create a custom UI. You learned to design and build GUIs with Qt Quick
Designer and learned about Qt Quick Controls, and how to build a custom
Qt Quick application. You also learned how to integrate QML with C++
and JS. You should now understand the similarities and differences between
Qt Widgets and Qt Quick and be able to choose the most suitable
framework for your project. In this chapter, we have learned about Qt Quick
and how to create an application using QML. You also learned how to
integrate QML with JS and learned about mouse and touch events.

In the next chapter, we will discuss cross-platform development using Qt
Creator. You will learn to configure and build applications on Windows,
Linux, Android, and macOS operating systems (OSes). We are going to
learn how to port our Qt application to different platforms without too many
challenges. Let's go!

Section 2: Cross-Platform Development
This section will introduce you to cross-platform development. The idea of
cross-platform development is that a software application should work well
on more than one platform without significant code change. This saves time
in porting and maintaining the code base. This follows the Qt philosophy of
"code less, create more, and deploy everywhere." In this section, you will
learn about the Qt Creator IDE, its usage, and how you can develop and run
the same application on different platforms.

This section includes the following chapter:

Chapter 5, Cross-Platform Development

Chapter 5: Cross-Platform Development
Qt has been well known for its cross-platform capability since its initial
release—it was the primary vision behind creating this framework. You can
use Qt Creator on your favorite desktop platforms such as Windows, Linux,
and macOS, and create fluid, modern, touch-friendly graphical user
interfaces (GUIs) and desktop, mobile, or embedded applications with the
same code base or with a little modification. You can easily modify your
code and deploy it on a target platform. Qt has several built-in tools to
analyze your application and its performance on various supported
platforms. Furthermore, it's easy to use and has an intuitive user interface
(UI), unlike with other cross-platform frameworks.

In this chapter, you will learn cross-platform development essentials and
how to build applications on different platforms. With this, you will be able
to run sample applications on your favorite desktop and mobile platforms.

In this chapter, we're going to cover the following main topics:

Understanding cross-platform development

Understanding compilers

Building with qmake

Qt project (.pro) files

Understanding build settings

Platform-specific settings

Using Qt with Microsoft Visual Studio

Running a Qt application on Linux

Running a Qt application on macOS and iOS

Other Qt-supported platforms

Porting from Qt 5 into Qt 6

By the end of this chapter, you will understand Qt project files, essential
settings, and how to run your Qt application on a mobile device. Let's get
started!

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on a latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-
6-and-Modern-Cpp/tree/master/Chapter05/HelloWorld

IMPORTANT NOTE
The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Understanding cross-platform
development

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter05/HelloWorld

There are several cross-platform frameworks available on the market, but
Qt is a better option to select owing to its maturity and available community
support. It's easy for a traditional C++ developer to adapt to Qt faster and
develop high-quality applications. The Qt framework allows developers to
develop applications that are compatible with multiple platforms such as
Windows, Linux, macOS, QNX (originally known as Quick Unix
[Qunix]), iOS, and Android. It facilitates faster application development
with better code quality, with its ability to code once and its deploy-
anywhere philosophy. Qt handles platform-specific implementations
internally, and also enables you to build amazing ultra-lightweight
applications with an impressive GUI on microcontroller-powered devices.

To develop applications using Qt for embedded platforms, you will require
a commercial license to use Qt for Device Creation. Qt also supports some
of the microcontroller unit (MCU) platforms such as Renesas, STM32,
and NXP. At the time of writing this book, Qt for MCUs 1.8 was launched,
which provides ultra-lightweight modules with a small memory footprint.

Some advantages of cross-platform development using the Qt framework
are listed here:

Cost efficiency with reduced cost of development

Better code reusability

Convenience

Faster time to market (TTM)

Wider market reach

Delivers a near-native experience

High on performance

There are also some disadvantages, such as these:

Unavailability of platform-specific features and access to all platform
application programming interfaces (APIs)

Communication challenges between native and non-native components

Certain device-specific features and hardware-compatibility challenges

Delayed platform updates

In this section, you got a basic idea of the cross-platform nature of Qt and
learned about the pros and cons of cross-platform development. Before you
can run an application on any platform, you will need a compiler to compile
an application for a target platform. In the next section, we will learn about
compilers supported by the Qt framework.

Understanding compilers
In this section, you will learn what a compiler is and how to use it for cross-
platform development. A compiler is a piece of software that transforms
your program into machine code or low-level instructions that can be read
and executed by a computer. These low-level machine instructions vary
from platform to platform. You can compile Qt applications with different
compilers such as the GNU Compiler Collection (GCC), or you can use a
vendor-supplied one. In Qt Creator, you can find a compiler supported for a
kit under the Kits tab, along with other essential tools for building an
application on a particular platform such as Windows, Linux, or macOS.

Not all supported compilers are provided with the Qt installer, but you can
find the most widely used compilers automatically listed in the
recommended kit. Qt may drop support for certain kit configurations or
replace them with the latest version.

Currently, Qt supports the following compilers:

GCC

Minimalist GNU for Windows (MinGW)

Microsoft Visual C++ (MSVC)

Low Level Virtual Machine (LLVM)

Intel C++ Compiler (ICC)

Clang and clang-cl

Nim

QCC

Additionally, the Qt Creator Bare Metal Device plugin offers provision
for the following compilers:

IAR Embedded Workbench (IAREW)

KEIL

Small Device C Compiler (SDCC)

Apart from the preceding compilers, Qt uses specific built-in compilers
while building a Qt project. These are listed here:

Meta-Object Compiler (moc)

User Interface Compiler (uic)

Resource Compiler (rcc)

You can use the aforementioned compilers to build applications for a target
platform or to add a custom compiler configuration. In the next section, you
will learn how to create a custom compiler configuration.

Adding custom compilers

To add a compiler that is not automatically detected by Qt Creator or is
unavailable, use the Custom option. You can specify the compiler and
toolchain paths to the directories and configure these accordingly.

To add a custom compiler configuration, follow these steps:

1. To create a new compiler configuration in Qt, click on the Tools menu
on the menu bar and then select the Kits tab from the left-side pane.

2. Then, click on the Compilers tab and select Custom from the Add
dropdown. You will see C and C++ options in the context menu. Select
the type as per your requirement. You can see an overview of this in the
following screenshot:

Figure 5.1 – Custom compiler option

3. In the next step, complete the Name field with a customized name for
the compiler.

4. Next, in the Compiler path field, select a path to the directory where
the compiler is located.

5. Next, in the Make path field, browse a path to the directory where the
make tool is located.

6. In the next step, specify the application binary interface (ABI) version
in the ABI field.

You can see an overview of this in the following screenshot:

Figure 5.2 – Required fields for a custom compiler

7. Next, you can specify the default required macros in the Predefined
macros field. Specify each macro on separate lines in the following
format: MACRO[=value].

8. In the next step, specify in the Header paths field the paths to
directories that the compiler checks for headers.

9. Next, in the C++11 flags field, specify the flags that turn on C++11
support.

10. In the next step, specify the location of mkspecs (a set of compilation
rules) in the Qt mkspecs field.

11. Next, in the Error parser field, select a suitable error parser.

12. Click on the Apply button to save the configuration.

In this section, you learned about supported compilers and how to create a
new compiler configuration in Qt Creator, but to build and run a project we
need more tools than just a compiler. Qt provides qmake as a built-in build
tool for our convenience. In the next section, we will discuss what qmake
is.

Building with qmake
Make is a build tool that reads project configuration file called a Makefile
and builds executable programs and libraries. qmake is a Qt-provided build
tool that simplifies the build process for development projects across
multiple platforms. It expands the information in each project file to a
Makefile that executes the necessary commands for compiling and linking.
It can also be used for non-Qt projects. qmake generates a Makefile based

on the information in a project file, and contains supplementary features to
support development with Qt, automatically including build rules for moc
and uic. qmake can also create projects for Microsoft Visual Studio without
requiring the developer to change the project file.

Being a community-driven framework, Qt is really flexible toward
developers and gives them the freedom to choose the most suitable tools for
their project, without forcing them to use its own build system. Qt supports
the following types of build systems:

qmake

CMake

Qbs

Meson

Incredibuild

You can run qmake from the Qt Creator UI or from the command line. You
should run qmake every time you make changes to your project files. Here
is the syntax to run qmake from the command line:

>qmake [mode] [options] files

qmake provisions two different modes of operation. In the default mode,
qmake uses the information in a project file to generate a Makefile, but it
can also generate project files. The modes are listed as follows:

-makefile

-project

In Makefile mode, qmake will generate a Makefile that is used to build the
project. The syntax to run qmake in Makefile mode is shown here:

>qmake -makefile [options] files

In project mode, qmake will generate a project file. The syntax to run
qmake in project mode is shown here:

>qmake -project [options] files

If you use Visual Studio as an Integrated Development Environment
(IDE), then you can import an existing qmake project into Visual Studio.
qmake can create a Visual Studio project that contains all the essential
information required by the development environment. It can recursively
generate .vcproj files in subdirectories and a .sln file in the main directory,
with the following command:

>qmake -tp vc -r

For example, you can generate a Visual Studio project for your HelloWorld
project by running this command:

>qmake -tp vc HelloWorld.pro

Please note that every time you modify your project file, you need to run
qmake to generate an updated Visual Studio project.

You can find more details about qmake at the following link:

https://doc.qt.io/qt-6/qmake-manual.html

Most qmake project files define the source and header files used by a
project, using a list of name = value and name += value definitions, but
there are additional advanced features in qmake that use other operators,
functions, platform scope, and conditions to create a cross-platform

https://doc.qt.io/qt-6/qmake-manual.html

application. Further details of the qmake language can be found at the
following link: https://doc.qt.io/qt-6/qmake-language.html.

The Qt team has put a lot of effort into Qt 6 to make it future-proof by
moving to a broadly adopted, popular build tool: CMake. There were
changes implemented to make Qt more modular by using Conan as a
package manager for some of the add-ons. Some of the Qt modules in Qt 6
are no longer available as binary packages in the Qt online installer but are
available as Conan recipes. You can learn more about the build system
changes and the addition of CMake as the default build tool at the following
link: https://doc.qt.io/qt-6/qt6-buildsystem.html.

IMPORTANT NOTE
In Qt 5, the build system was made on top of qmake, but in Qt 6, CMake is the build system
for building Qt from the source code. This change only affects developers who want to build
Qt from sources. You can still use qmake as a build tool for your Qt applications.

In this section, you learned about qmake. We are skipping advanced
qmake topics for self-exploration. In the next section, we will discuss Qt
project files, which are parsed by qmake.

Qt Project (.pro) fi les
The .pro files created by Qt Creator in the earlier examples are actually Qt
project files. A .pro file contains all the information required by qmake to
build an application, a library, or a plugin. A project file supports both
simple and complex build systems. A simple project file may use
straightforward declarations, defining standard variables to indicate the
source and header files that are used in a project. Complex projects may use

https://doc.qt.io/qt-6/qmake-language.html
https://doc.qt.io/qt-6/qt6-buildsystem.html

multiple flow structures to optimize the build process. A project file
contains a series of declarations to specify resources, such as links to the
source and header files, libraries required by a project, custom-build
processes for different platforms, and so on.

A Qt project file has several sections and uses certain predefined qmake
variables. Let's have a look here at our earlier HelloWorld example .pro
file:

QT += core gui

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

CONFIG += c++17

You can make your code fail to compile if it uses

deprecated APIs.

In order to do so, uncomment the following line.

#DEFINES += QT_DISABLE_DEPRECATED_BEFORE=0x060000

disables all the APIs deprecated before Qt 6.0.0

SOURCES += \

 main.cpp \

 widget.cpp

HEADERS += \

 widget.h

FORMS += \

 widget.ui

Default rules for deployment.

qnx: target.path = /tmp/$${TARGET}/bin

else: unix:!android: target.path = /opt/$${TARGET}/bin

!isEmpty(target.path): INSTALLS += target

The project file simply tells qmake what the required Qt modules in the
project are, as well as the name of the executable program. It also links to
the header files, source files, form files, and resource files that need to be
included in the project. All of this information is crucial in order for qmake
to create the configuration files and build the application. For a more
complex project, you may configure your project file differently for
different operating systems.

The following list describes the most frequently used variables and
describes their purpose:

QT: A list of Qt modules used in a project

CONFIG: General project configuration options

DESTDIR: The directory in which the executable or binary file will be
placed

FORMS: A list of UI files to be processed by the UI compiler (uic)

HEADERS: A list of filenames of header (.h) files used when building
a project

RESOURCES: A list of resource (.qrc) files to be included in the final
project

SOURCES: A list of source code (.cpp) files to be used when building
a project

TEMPLATE: The template to use for a project

You can add different Qt modules, configurations, and definitions to your
project. Let's take a look at how we can accomplish this. To add additional
modules, you simply add the module keyword after QT +=, as shown here:

QT += core gui sql

You can also add a condition in front to determine when to add a specific
module to your project, as follows:

greaterThan(QT_MAJOR_VERSION, 4): QT += widgets

You can also add configuration settings to your project. For example, if you
want to specify c++17 specifications while compiling a project, then add
the following line to your .pro file:

CONFIG += c++17

You can add a comment to a project file, starting with the hash symbol (#),
and the build system will ignore the corresponding line of text. Now, let's
have a look at the TEMPLATE variable. This determines whether the
output of the build process will be an application, a library, or a plugin.
There are different variables available to outline the type of file qmake will
generate. These are listed as follows:

app is used to build an application.

lib is used to build a library.

aux is used to build nothing. Use this if no compiler needs to be
invoked to create a target—for instance, because your project is written
in an interpreted language.

subdirs is used for the subdirectories specified using the SUBDIRS
variable. Each subdirectory must contain its own project file.

vcapp is used to create a Visual Studio project file to build an
application.

vclib is used to create a Visual Studio project file to build a library.

vcsubdirs is used to create a Visual Studio solution file to build projects
in subdirectories.

Qt project files sometimes need to depend on the include feature. In a Qt
project file, you can also define two significant variables: INCLUDEPATH
and DEPENDPATH. You can use the SUBDIRS variable to compile a set
of dependent libraries or modules.

Now, let's discuss what a .pri file is.

Understanding differences between .pro
and .pri f i les

You can create a .pri file to include project files in a complex project. This
improves readability and segregates different modules. A .pri file is usually
called a project include file or a qmake include file, and its format is
similar to that of a .pro file. The main difference is in the intent of use; a
.pro file is what we expect to run qmake on directly, while a .pri file is
included by a .pro file. You can add common configurations such as source
files, header files, .ui files, and .qrc files into .pri files and include them
from multiple .pro files as per your project needs.

You can include a .pri file inside a .pro file, as illustrated here:

include($$PWD/common.pri)

In this section, you learned about what a Qt project file is, as well as the
different variables used in it. In the next section, we will discuss different
build settings.

Understanding build settings
Before a project is compiled or built, the compiler requires certain details,
which are known as the build settings. This is a very important part of the
compilation process. In this section, you will learn about build settings and
how to configure them in a proper way. You can have multiple build
configurations for the same project. Usually, Qt Creator creates debug,
release, and profile build configurations automatically. A debug build
contains additional debug symbols required for debugging an application,
whereas the release version is an optimized version without such symbols.
Generally, developers use a debug configuration for testing and a release
configuration for creating the final binaries. A profile build is an optimized
release build that is delivered with separate debug information and is best
suited to analyzing applications.

Build settings can be specified in the Projects mode. You may find that the
Projects button is disabled if there are no projects opened in the IDE. You
can add a new build configuration by clicking the Add drop-down button
and then selecting the type of configuration you would like to add. The
options may depend on the build system selected for the project. You can
add multiple build configurations as per your requirement. You can click on

the Clone… button to add a build configuration based on the current build
configuration, or click on the Rename… button to rename the currently
selected build configuration. Click on the Remove button to remove a build
configuration.

You can see an overview of this in the following screenshot:

Figure 5.3 – Build settings and Qt Quick Compiler option

Normally, Qt Creator builds projects in a different directory from the source
directory, known as shadow builds. This segregates the files generated for
each build and run kit. If you want to only build and run with a single kit,
then you can deselect the Shadow build checkbox. The Qt Creator project
wizard creates a Qt Quick project that can be compiled to use the Qt
Resource System. To use the default settings, select Leave at Default. To
compile Qt Quick code, select Enable in the Qt Quick Compiler field, as
shown in Figure 5.3.

You can read more about different build configurations at the following
link:

https://doc.qt.io/qtcreator/creator-build-settings.html

In this section, we discussed build settings. While building a cross-platform
application, it is important to add platform-specific configurations to the
project file. In the next section, we will learn about platform-specific
settings.

Platform-specific settings
You can define different configurations for different platforms, since not
every configuration can fit all use cases. For example, if you want to
include different header paths for different operating systems, you can add
the following lines of code to your .pro file:

win32: INCLUDEPATH += "C:/mylibs/windows_headers"

unix:INCLUDEPATH += "/home/user/linux_headers"

In the preceding code snippet, we have added some Windows-specific and
Linux-specific header files. You can also put configurations such as if

https://doc.qt.io/qtcreator/creator-build-settings.html

statements in C++, as shown here:

win32 {

 SOURCES += windows_code.cpp

}

The preceding code is intended only for Windows platforms, which is why
we have added a win32 keyword before it. If your target platform is based
on Linux, then you can add a unix keyword to add Linux-specific
configurations.

To set a custom icon for your application on the Windows platform, you
should add the following line of code to your project (.pro) file:

RC_ICONS = myapplication.ico

To set a custom icon for your application on macOS, you should add the
following line of code to your project (.pro) file:

ICON = myapplication.icns

Note that the icon format is different for Windows and macOS. For Linux
distributions, there is a different approach to making the desktop entry for
each flavor.

In this section, we discussed some of the platform-specific settings. In the
next section, we will learn about the use of Visual Studio with Qt VS Tools.

Using Qt with Microsoft Visual Studio
Some developers choose Visual Studio as their preferred IDE. So, if your
favorite IDE is Visual Studio, then you can integrate Qt VS Tools with
Microsoft Visual Studio. This will allow you to use the standard Windows

development environment without having to worry about Qt-related build
steps or tools. You can install and update Qt VS Tools directly from
Microsoft Visual Studio.

You can find Qt Visual Studio Tools from Visual Studio Marketplace for the
corresponding versions. For Visual Studio 2019, you can download the tool
from the following link: https://marketplace.visualstudio.com/items?
itemName=TheQtCompany.QtVisualStudioTools2019. You can also
download the VS add-in from the following Qt download link:
https://download.qt.io/official_releases/vsaddin/.

These are some of the important features of Qt VS Tools:

Wizards to create new projects and classes

Automated build setup for moc, uic, and rcc compilers

Import and export of .pro and .pri files

Automatic conversion of a Qt VS Tools project to a qmake project

Integrated Qt resource management

Ability to create Qt translation files and integration with Qt Linguist

Integrated Qt Designer

Integrated Qt documentation

Debugging extensions for Qt data types

To start using the features in the Visual Studio environment, you must set
the Qt version. Select the appropriate version from Options and restart the
IDE. Visual Studio and Qt use different file formats to save projects. You

https://marketplace.visualstudio.com/items?itemName=TheQtCompany.QtVisualStudioTools2019
https://download.qt.io/official_releases/vsaddin/

may use .pro files with qmake or .vcproj files with Visual Studio to build
your project. Since Visual Studio is used for Windows-specific
development, it is recommended to use Qt Creator as the IDE for cross-
platform development.

If you don't have a .vcproj file, then you can generate one from a .pro file
through the command line or through VS Tools. We have already discussed
the command-line instruction in the Building with qmake section. You can
also convert your .pro file to a .vcproj file by using the Open option in VS
Tools. Please note that the generated .vcproj file only contains Windows-
specific settings.

In this section, we discussed the VS add-in. In the next section, we will
learn how to run a sample application on Linux. We will skip a discussion
on building and running a Qt application on Windows as we have already
discussed this in earlier chapters.

Running a Qt application on Linux
Building and running a Qt application on Linux is similar to running it on
Windows, but Linux has many distributions and thus it is difficult to build
an application that flawlessly runs on all Linux variants. In most
distributions, the application will run smoothly. We will focus on Ubuntu
20.04 as our target platform. When you install Qt on Ubuntu, it will
automatically detect the kit and configurations automatically. You can also
configure a kit with the appropriate compiler and Qt version, as illustrated
in the following screenshot:

Figure 5.4 – Desktop kit configuration on Ubuntu

Let's run our HelloWorld example on Ubuntu. Hit the Run button on the
left-side pane. A UI showing Hello World! will appear in no time, as
illustrated in the following screenshot:

Figure 5.5 – Application running on Ubuntu

You can also run the application from the command line, as shown in the
following code snippet:

$./HelloWorld

In this section, we discussed how to run our application on Linux
distributions. In the next section, we will learn about running a Qt
application on macOS and iOS.

Running a Qt application on macOS and
iOS
We have already discussed how to build and run applications on Windows
and Linux platforms in earlier chapters. Let's move on to learn how to run
our applications on platforms such as macOS and iOS. To build a Qt
application on macOS and iOS, you will need Xcode from the App Store.
Xcode is the IDE for macOS, comprising a suite of software development
tools for developing applications in macOS and iOS. If you have already
installed Xcode, Qt Creator will detect its existence and will automatically
detect the suitable kits. As for the kit selection, Qt for macOS supports kits
for Android, clang 64-bit, iOS, and iOS Simulator.

You can see a sample desktop kit configuration on macOS in the following
screenshot:

Figure 5.6 – Desktop kit configuration on macOS

You can also manually add a debugger in the Debuggers tab if you don't
want to use the Auto-detected debugger, as illustrated in the following
screenshot:

Figure 5.7 – Debugger option on macOS

Running an application on macOS is similar to running it on Windows. Just
hit the Run button and you will see the application running in no time.

Mobile platforms hold equal importance to desktop platforms such as
Windows, Linux, and macOS. Let's explore how to set up an environment
for running applications on iOS.

Configuring Qt Creator for iOS

Running Qt applications on iOS is really simple. You can connect your iOS
device and select a suitable device type from the device selection list. You
can select Device type from the Kits selection screen. You can also run the
application on iOS Simulator, as illustrated in the following screenshot:

Figure 5.8 – iOS Simulator option on macOS

After configuring the kit, just plug in your iPhone and hit the Run button.
You can see a sample output in the following screenshot:

Figure 5.9 – Qt Creator running an application on an iPhone

It is relatively easy to build and run an application on the iOS platform.
However, distributing the application is not easy as the App Store is a very
closed ecosystem. You should have an Apple ID and will need to sign in

your iOS applications before you can distribute them to your users. You
can't avoid these steps, but let's skip the deployment part for now.

You can learn more about App Store submissions at the following link:

https://developer.apple.com/app-store/submissions

In this section, we learned about running an application on macOS and iOS.
In the next section, we will learn how to configure and build an application
for the Android platform.

Configuring Qt Creator for Android

Android is the most popular mobile platform today, hence developers want
to build applications for Android. Although Android is a Linux-based
operating system, it is very different from other Linux distributions. In
order to use it, you have to configure Qt Creator and install certain
packages.

For smooth functioning of your Qt Creator configuration for Android, use
OpenJDK 8, NDK r21 with clang toolchain. You can run sdkmanager from
the ANDROID_SDK_ROOT\cmdline-tools\latest\bin with required
arguments to configure with required dependencies.

You can learn more about android specific requirements and instructions in
the following link:

https://doc.qt.io/qt-6/android-getting-started.html

Let's get started with configuring your machine for Android by following
these next steps:

https://developer.apple.com/app-store/submissions
https://doc.qt.io/qt-6/android-getting-started.html

1. To build a Qt application on Android, you have to install the Android
software development kit (SDK), the Android native development kit
(NDK), the Java Development Kit (JDK), and OpenSSL to your
development PC, irrespective of your desktop platform. You will find
the download option with a globe icon or Download button next to each
corresponding field, to download from the respective package's page.

2. After all the required packages are installed, restart Qt Creator. Qt
Creator should be able to detect the build and platform tools
automatically.

3. However, you may have to configure further to fix errors in Android
settings. You may find the SDK manager, the platform SDK, and
essential packages missing, as shown in the following screenshot:

Figure 5.10 – Android Settings screen

4. Select the correct SDK and NDK path under Android Settings. Click
on the Apply button to save the changes.

5. Click on the SDK Manager tab and click on the Update Installed
button. You may see a message box prompting you to install missing
packages, as illustrated in the following screenshot. Click on the Yes
button to install the packages:

Figure 5.11 – Information message showing missing Android packages

6. You may get another message warning of Android SDK changes, listing
missing essential packages, as illustrated in the following screenshot.
Click on the OK button:

Figure 5.12 – Warning about missing Android packages

7. Click on the Advanced Options... button to launch the SDK Manager
Arguments screen, type –-verbose, and click on the OK button. You
can see an overview of this in the following screenshot:

Figure 5.13 – Android SDK Manager tool

8. Once the issues are resolved, you will see that all Android settings have
been properly configured, as shown in the following screenshot:

Figure 5.14 – Proper Android configuration in Qt Creator

9. If the issues are still not resolved or if you want to install a specific
platform, you can enter the appropriate command, as shown in the

following screenshot. You may also install the required packages from
the command line. Qt will automatically detect the build tools and
platforms available in the SDK location:

Figure 5.15 – Android SDK Manager tool

10. Once the Android settings are properly configured, you can see the
Android kit is ready for development, as illustrated in the following
screenshot:

Figure 5.16 – Properly configured Android kit

11. Select an Android kit from the Kit selection option, as illustrated in the
following screenshot:

Figure 5.17 – Android Kit selection option

12. In this step, you can select a target Android version and configure your
Android application by creating a AndroidManifest.xml file with Qt
Creator. You can set the package name, version code, SDK version,
application icon, permissions, and so on. The settings can be seen in the
following screenshot:

Figure 5.18 – Android manifest option in build settings

13. Your machine is now ready for Android development. However, your
Android hardware requires developer options to be enabled or the
Android emulator to be used. To enable the Developer mode, go to
Settings, tap on System, and then on About phone.

14. Then, tap on Software info and find the build number. Keep tapping
Builder number until you see Developer mode activated. It may take
seven taps to activate the Developer mode. Now, go back to the
Settings pane, where you will now find Developer options as an entry.

15. Your Android device is ready to run the Android application. Click on
the Run button and select a device from the Compatible device list
screen.

16. Next, tap Allow on the Allow USB Debugging prompt on the Android
device. You will see the Hello World! message running on your
Android device. You can find the .apk file generated inside the build
folder.

Congratulations! You have successfully developed your Android
application. Unlike iOS, Android is an open system. You can copy or
distribute the .apk file into other Android devices running on the same
Android version, and then install it. However, if you want to distribute your
apps on Google Play Store, then you will have to register as a Google Play
developer and sign the package.

In this section, we learned how to configure and build for an Android
platform. In the next section, we will discuss other platforms supported by
Qt 6 at the time this book was authored.

Other Qt-supported platforms
Qt 5 had support for a great range of platforms, from desktop and mobile
platforms to embedded and web platforms. Qt 6 is yet to support all
platforms that were supported in Qt 5, but the platforms will be gradually
supported as Qt 6 matures. Currently, only embedded Linux is supported in
the latest release of Qt 6 under the commercial license. You may have to
wait some time to port your application to Qt 6 on a different embedded
platform. Otherwise, if you want to migrate to Qt 6 immediately for your

favorite embedded platform, you have to build from the source code and do
the necessary modifications.

The following link provides a snapshot of embedded Linux support in Qt
6.2: https://doc-snapshots.qt.io/qt6-dev/embedded-linux.html. This link may
get updated as Qt moves to the next release.

Qt also provides a Boot to Qt software stack for embedded Linux systems
under commercial licenses. It is a lightweight, Qt-optimized complete
software stack that is installed on the target system. The conventional
embedded Linux kernel is used in the Boot to Qt software stack, which is
designed with the Poky and Yocto packages.

Explore more about Boot to Qt at the following link:

https://doc.qt.io/QtForDeviceCreation/b2qt-index.html

Qt for WebAssembly allows you to build Qt applications for web
platforms. It does not necessarily require any client-side installations, and
saves server resources. It is a platform plugin that lets you build Qt
applications that can be embedded into web pages. It is not yet available to
open source developers in Qt 6. Commercial license holders may get early
access to use this plugin.

You can learn more about the Qt for WebAssembly plugin at the following
link:

https://wiki.qt.io/Qt_for_WebAssembly

In this section, we learned about other platforms supported in Qt 6. In the
next section, we will discuss how to port your application from Qt 5 to Qt 6.

https://doc-snapshots.qt.io/qt6-dev/embedded-linux.html
https://doc.qt.io/QtForDeviceCreation/b2qt-index.html
https://wiki.qt.io/Qt_for_WebAssembly

Porting from Qt 5 into Qt 6
Qt 6 is a major change to the Qt framework, therefore it breaks some of the
backward compatibility. So, before upgrading to Qt 6, make sure that your
Qt 5 application is updated to Qt 5.15. Porting will be easier from Qt 5.15
to Qt 6, with the fewest number of changes. However, APIs marked as
deprecated or obsolete in Qt 5.15 may have been removed from Qt 6.0.

The CMake APIs in Qt 5 and Qt 6 are almost identical in terms of
semantics. As a result, Qt 5.15 introduced versionless targets and
commands, allowing CMake code to be written that is completely
independent of Qt versions. Versionless imported targets are most useful for
projects that require both Qt 5 and Qt 6 compilation. It is not recommended
to use them by default because of the missing target properties. You can
read more on this at the following link: https://doc.qt.io/qt-6/cmake-qt5-
and-qt6-compatibility.html.

Some of the classes and modules have been removed in Qt 6, but these are
kept in Qt5Compat for ease of porting. Apart from build system changes,
you may need to fix up the includes directives of obsolete classes—for
example, classes such as QLinkedList, QRegExp, and QTextCodec are
replaced in Qt6 with new classes. But for ease of porting, you need to add
core5compat into your .pro file, as shown here:

QT += core5compat

There are also changes with respect to the drawing mechanism. If you were
using OpenGL-style OpenGL Shading Language (GLSL) in your project,
then you would have to switch to Vulkan-style GLSL. As per new changes,
you can write shaders in Vulkan-compatible GLSL and use the qsb tool.

https://doc.qt.io/qt-6/cmake-qt5-and-qt6-compatibility.html

Your shader code should be compiled into Standard Portable
Intermediate Representation-Vulkan (SPIR-V) format. We will discuss
graphics in detail in Chapter 8, Graphics and Animations. Further details
can be found at the following link: https://doc.qt.io/qt-6/qtshadertools-
index.html.

There are also some changes to Qt Modeling Language (QML). The Qt
Quick Extras module has merged with Qt Quick Controls. Modules such as
QtGraphicalEffects have been removed from Qt 6 and will be available
with a different license. Qt Quick MultiEffect is available in the Qt
Marketplace and provides better performance. You might also consider
updating your earlier signal connections in QML to use a JavaScript
function declaration, as shown in the following code snippet:

Connections {

 target: targetElement

 function onSignalName() {//Do Something}

}

The Qt State Machine module is largely source-compatible with the Qt 5
version, so you should be able to continue working on their projects with no
—or only slight—changes. To use the State Machine module's classes, add
the following line of code to your Qt project (.pro) file:

QT += statemachine

To import the State Machine module inside the QML file, use the following
import statement:

import QtQml.StateMachine

https://doc.qt.io/qt-6/qtshadertools-index.html

Qt provides detailed porting guidelines. Have a look at the following
documentation if you are looking to port your Qt 5 applications to Qt 6:

https://doc.qt.io/qt-6/portingguide.html

https://www.qt.io/blog/porting-from-qt-5-to-qt-6-using-qt5compat-library

https://doc.qt.io/qt-6/porting-to-qt6-using-clazy.html

In this section, you learned how to port your application from Qt 5 to Qt 6.
In the next section, we will summarize what we learned in this chapter.

Summary
This chapter explained cross-platform development using Qt Creator. You
learned about various compilers, build tools, and build- and platform-
specific settings. In this chapter, you learned to configure and build
applications on desktop and mobile platforms and how to run applications
on iPhone and Android devices. We discussed how to port your Qt project
to different platforms without too many challenges.

In the next chapter, you will learn about the signal and slots mechanism, the
Qt meta object system, and event handling. Let's continue!

https://doc.qt.io/qt-6/portingguide.html
https://www.qt.io/blog/porting-from-qt-5-to-qt-6-using-qt5compat-library
https://doc.qt.io/qt-6/porting-to-qt6-using-clazy.html

Section 3: Advanced Programming,
Debugging, and Deployment
In this section, you will learn about advanced programming and
development methodologies. You will learn about debugging, testing, and
deploying Qt applications on various platforms. You will also learn about
internationalization and how to build high-performance applications.

In this section, there are the following chapters:

Chapter 6, Signals and Slots

Chapter 7, Model View Programming

Chapter 8, Graphics and Animations

Chapter 9, Testing and Debugging

Chapter 10, Deploying Qt Applications

Chapter 11, Internationalization

Chapter 12, Performance Considerations

Chapter 6: Signals and Slots
In the previous chapters, we learned how to create GUI applications with Qt
Widgets and Qt Quick. But to make our applications usable, we need to add
a communication mechanism. The signals and slots mechanism is one of
the distinct features of Qt and makes it unique from other frameworks.
Signals and slots are implemented through Qt's meta-object system.

In this chapter, you will learn about signals and slots in depth and how they
work internally. You will be able to receive notifications from different
classes and take the corresponding action.

In this chapter, we will discuss the following topics:

Understanding Qt signals and slots

The working mechanism of Qt signals and slots

Getting to know Qt's property system

Understanding signals and the handler event system

Understanding events and the event loop

Managing events with an event filter

Drag and drop

By the end of this chapter, you will be able to communicate between C++
classes with QML and between QML components.

Technical requirements

The technical requirements for this chapter include having the minimum
versions of Qt (6.0.0) and Qt Creator (4.14.0) installed on the latest desktop
platform available, such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code in this chapter can be downloaded from the following GitHub
link:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-
6-and-Modern-Cpp/tree/master/Chapter06

IMPORTANT NOTE
The screenshots in this chapter were taken on a Windows machine. You will see similar
screens based on the underlying platforms on your machine.

Understanding Qt signals and slots
In GUI programming, when a user performs any action with any UI
element, another element should get updated, or a certain task should be
done. To achieve this, we want communication between objects. For
example, if a user clicks the Close button on the Title bar, it is expected that
the window closes. Different frameworks use different approaches to
achieve this kind of communication. A callback is one of the most
commonly used approaches. A callback is a function that's passed as an
argument to another function. Callbacks can have multiple drawbacks and
may suffer from complications in ensuring the type-correctness of callback
arguments.

In the Qt framework, we have a substitute for this callback technique
known as signals and slots. A signal is a message that is passed to
communicate that the state of an object has changed. This signal may carry

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter06

information about the change that has occurred. A slot is a special function
that is invoked in response to a specific signal. Since slots are functions,
they contain logic to perform a certain action. Qt Widgets have many
predefined signals, but you can always extend your classes and add your
own signals to them. Similarly, you can also add your own slots to handle
the intended signal. Signals and slots make it easy to implement the
observer pattern while avoiding boilerplate code.

To be able to communicate, you must connect the corresponding signals and
slots. Let's understand the connection mechanism and syntaxes of a signal
and slot connection.

Understanding syntax

To connect a signal to a slot, we can use QObject::connect(). This is a
thread-safe function. The standard syntax is as follows:

QMetaObject::Connection QObject::connect(

 const QObject *senderObject, const char *signalName,

 const QObject *receiverObject, const char *slotName,

 Qt::ConnectionType type = Qt::AutoConnection)

In the preceding connection, the first argument is the sender object, while
the next argument is the signal from the sender. The third argument is the
receiver object, while the fourth is the slot method. The last argument is
optional and describes the type of connection to be established. It
determines whether the notification will be delivered to the slot
immediately or queued for later. There are six different types of connections
that can be made in Qt 6. Let's have a look at the connection types:

Qt::AutoConnection: This is the default type of connection. This
connection type is determined when the signal is emitted. If both the
sender and receiver are in the same thread, then Qt::DirectConnection
is used; otherwise, Qt::QueuedConnection is used.

Qt::DirectConnection: In this case, both the signal and slot live in the
same thread. The slot is called immediately after the signal is emitted.

Qt::QueuedConnection: In this case, the slot lives in another thread.
The slot is called once control returns to the event loop of the receiver's
thread.

Qt::BlockingQueuedConnection: This is similar to
Qt::QueuedConnection, except that the signaling thread blocks until
the slot returns. This connection must not be used if both the sender and
receiver are in the same thread to avoid deadlock.

Qt::UniqueConnection: This can be combined with any one of the
aforementioned connection types, using a bitwise OR. This is used to
avoid duplicate connections. The connection will fail if the connection
already exists.

Qt::SingleShotConnection: In this case, the slot is called only once
and the connection is disconnected once the signal is emitted. This can
be also used with other connection types. This connection type was
introduced in Qt 6.0.

IMPORTANT NOTE
You must be careful while using Qt::BlockingQueuedConnection to avoid deadlocks.
You are sending an event to the same thread and then locking the thread, waiting for
the event to be processed. Since the thread is blocked, the event will never be

processed, and the thread will be blocked forever, causing a deadlock. Use this
connection type if you know what you are doing. You must know the implementation
details of both threads before using this connection type.

There are several ways to connect signals and slots. You must use the
SIGNAL() and SLOT() macros when specifying the signal and the slot
function, respectively. The most commonly used syntax is as follows:

QObject::connect(this, SIGNAL(signalName()),

 this, SLOT(slotName()));

This is the original syntax that has been around since the beginning of Qt.
However, its implementation has changed quite a few times. New features
have been added without breaking the basic Application Programming
Interface (API). It is recommended to use the new function pointer syntax,
as shown here:

connect(sender, &MyClass::signalName, this,

 &MyClass::slotName);

There are pros and cons to both syntaxes. You can learn more about the
differences between string-based and functor-based connections at

https://doc.qt.io/qt-6/signalsandslots-syntaxes.html

If a connection fails, then the preceding statement returns false. You can
also connect to functors or C++11 lambdas, as follows:

connect(sender, &MyClass::signalName, this, [=]()

 { sender->doSomething(); });

You can check the return value to verify whether the signal connected to the
slot successfully. The connection can fail if the signatures aren't compatible,
or the signal and slot are missing.

https://doc.qt.io/qt-6/signalsandslots-syntaxes.html

IMPORTANT NOTE
Qt::UniqueConnection does not work for lambdas, non-member functions, and functors; it
can only be used to connect to member functions.

The signatures of signals and slots may contain arguments, and these
arguments may have default values. You can connect a signal to a slot if the
signal has at least as many arguments as the slot, as well as if there is a
possible implicit conversion between the types of the corresponding
arguments. Let's look at feasible connections with varying numbers of
arguments:

connect(sender, SIGNAL(signalName(int)), this,

 SLOT(slotName(int)));

connect(sender, SIGNAL(signalName(int)), this,

 SLOT(slotName()));

connect(sender, SIGNAL(signalName()), this,

 SLOT(slotName()));

However, the following one won't work as the slot has more arguments than
the signal:

connect(sender, SIGNAL(signalName()), this,

 SLOT(slotName(int)));

Every connection you make emits a signal, so duplicate connections emit
two signals. You can break a connection using disconnect().

You can also use Qt with a third-party signal/slot mechanism. If you want to
use both mechanisms for the same project, then add the following
configuration to your Qt project (.pro) file:

CONFIG += no_keywords

Let's create an example with a simple signal and slot connection.

Declaring signals and slots

To create a signal and slot, you must declare the signal and slot inside your
custom class. The header file of the class will look like this:

#ifndef MYCLASS_H

#define MYCLASS_H

#include <QObject>

class MyClass : public QObject

{

 Q_OBJECT

public:

 explicit MyClass(QObject *parent = nullptr);

signals:

 void signalName();

public slots:

 void slotName();

};

#endif // MYCLASS_H

As you can see, we have added Q_OBJECT to the class to facilitate the
signals and slots mechanism. You can declare a signal with the signals
keyword in your header file, as shown in the previous snippet. Similarly,
slots can be declared with the slots keyword. Both signals and slots can
have arguments. In this example, we used the same object for the sender

and receiver to make this explanation simpler. In most cases, signals and
slots will be located in different classes.

Next, we will discuss how to connect the signal to the slot.

Connecting the signal to the slot

Previously, we declared a custom signal and slot. Now, let's look at how to
connect them. You can define a signal and slot connection and emit the
signal inside MyClass, as follows:

#include "myclass.h"

#include <QDebug>

MyClass::MyClass(QObject *parent) : QObject(parent)

{

 QObject::connect(this, SIGNAL(signalName()),

 this, SLOT(slotName()));

 emit signalName();

}

void MyClass::slotName()

{

 qDebug()<< "Slot called!";

}

You need to emit the signal after the connection to invoke the slot. In the
preceding example, we used the traditional way of signal and slot
declaration. You can replace the connection with the latest syntax, as shown
here:

connect(this, &MyClass::signalName, this,

 &MyClass::slotName);

It is not only possible to connect one signal to one slot, but also to connect
many slots and signals. Similarly, many signals can be connected to one
slot. We will learn how to do that in the next section.

Connecting a single signal to multiple
slots

You can connect the same signal to multiple slots. These slots will be called
in the same order as the connections are made. Let's consider that a signal
named signalX() is connected to three slots called slotA(), slotB(), and
slotC(). When signalA() is emitted, all three slots will be invoked.

Let's look at the traditional way of making connections:

 QObject::connect(this, SIGNAL(signalX()),this,

 SLOT(slotA()));

 QObject::connect(this, SIGNAL(signalX()),this,

 SLOT(slotB()));

 QObject::connect(this, SIGNAL(signalX()),this,

 SLOT(slotC()));

You can also create connections as per the new syntax, as follows:

connect(this, &MyClass:: signalX, this, &MyClass:: slotA);

connect(this, &MyClass:: signalX, this, &MyClass:: slotB);

connect(this, &MyClass:: signalX, this, &MyClass:: slotC);

In the next section, we will learn how to connect multiple signals to a single
slot.

Connecting multiple signals to a single
slot

In the previous section, you learned how to create a connection between a
single signal and multiple slots. Now, let's look at the following code to
understand how to connect multiple signals to a single slot:

 QObject::connect(this, SIGNAL(signalX()),this,

 SLOT(slotX()));

 QObject::connect(this, SIGNAL(signalY()),this,

 SLOT(slotX()));

 QObject::connect(this, SIGNAL(signalZ()),this,

 SLOT(slotX()));

Here, we have used three different signals called signalX(), signalY(), and
signalZ(), but there is a single slot defined as slotX(). When any of these
signals are emitted, that slot is called.

In the next section, we will learn how to connect one signal to another
signal.

Connecting a signal to another signal

Sometimes, you may have to forward a signal instead of directly connecting
to a slot. You can connect one signal to another signal as follows:

connect(sender, SIGNAL(signalA()),forwarder,

 SIGNAL(signalB())));

You can also create connections as per the new syntax, as follows:

connect(sender,&ClassName::signalA,forwarder,&ClassName::

 signalB);

In the preceding line, we have connected signalA() to signalB(). Hence,
when signalA() is emitted, signalB() will also be emitted and the
corresponding slot connected to signalB() will be invoked. Let's consider
that we have a button in our GUI, and we want to forward the button click
as a different signal. The following code snippet shows how to forward a
signal:

#include <QWidget>

class QPushButton;

class MyClass : public QWidget

{

 Q_OBJECT

public:

 MyClass(QWidget *parent = nullptr);

 ~MyClass();

signals:

 void signalName();

private:

 QPushButton *myButton;

};

MyClass::MyClass(QWidget *parent)

 : QWidget(parent)

{

 myButton = new QPushButton(this);

 connect(myButton, &QPushButton::clicked,

 this, &MyClass::signalName);

}

In the preceding example, we forwarded the button click signal to our
custom signal. We can call the slot that is connected to the custom signal as
discussed earlier.

In this section, we learned how connections are made and how to use
signals and slots. Now, you can communicate between different classes and
share information. In the next section, we will learn about the working
mechanism behind signals and slots.

The working mechanism of Qt signals
and slots
In the previous sections, we learned about signal and slot syntaxes and how
to connect them. Now, we will understand how it works.

While creating a connection, Qt looks for the index of the signal and the
slot. Qt uses a lookup string table to find the corresponding indexes. Then, a
QObjectPrivate::Connection object is created and added to the internal
linked lists. Since one signal can be connected to multiple slots, each signal
can have a list of the connected slots. Each connection contains the
receiver's name and the index of the slot. Each object has a connection
vector that associates with each signal in a linked list of
QObjectPrivate::Connection.

The following diagram illustrates how ConnectionList creates connections
between sender and receiver objects:

Figure 6.1 – Illustration of the connection mechanism between the sender and receiver

ConnectionList is a singly linked list that contains all the connections from
and to an object. signalVector contains the lists of connections for a given
signal. Each Connection is also part of a senders linked list. Linked lists
are used because they permit faster addition and removal of objects. Each
object also has a reversed list of connections the object is connected to for
automatic deletion. For detailed internal implementation, look at the latest
qobject_p.h.

There are quite a few articles on how signals and slots work on the woboq
website. You can also explore the Qt source code on the woboq website. Go
to the following link if you need further information:

https://woboq.com/blog/how-qt-signals-slots-work.html.

Now, let's learn about Qt's meta-object system.

Qt's meta-object system

Qt's meta-object system is the core mechanism behind the signals and
slots mechanism. It provides features such as inter-object communication, a
dynamic property system, and runtime type information.

The meta-object system is implemented with a three-part mechanism. These
mechanisms are as follows:

QObject

Q_OBJECT macro

Meta-Object Compiler

The QObject class is the base class of all Qt objects. It is a very powerful
mechanism that facilitates the signals and slots mechanism. The QObject
class provides a base class for objects that can take advantage of the meta-
object system. QObject derived classes arrange themselves in an object
tree. This creates the parent-children relationship between classes. When
you create a QObject derived class with another QObject derived class as
a parent, the object will be automatically added to the parent's children()
list. The parent takes ownership of the object. GUI programming requires

https://woboq.com/blog/how-qt-signals-slots-work.html

both runtime efficiency and a high level of flexibility. Qt achieved this by
combining the speed of C++ with the flexibility of the Qt Object Model. Qt
provides the required features by implementing standard C++ techniques
based on the inheritance from QObject.

You can learn more about the Qt Object Model at the following link:

https://doc.qt.io/qt-6/object.html.

The Q_OBJECT macro appears inside the private section of the class
declaration. It is used to enable signals, slots, and other services provided
by Qt's meta-object system.

Meta-Object Compiler (moc) generates additional code for QObject
derived classes to implement meta-object features. It provides the capability
to introspect the objects at runtime. By default, C++ does not have
introspection support. Hence, Qt created moc. It is a code-generating
program that handles Qt's C++ extensions. The tool reads the C++ header
files and if it locates the Q_OBJECT macro, then it creates another C++
source file with the meta-object code. That generated file contains the code
required for the introspection. Both files are compiled and linked together.
In addition to providing the signals and slots mechanism for communication
between objects, the meta-object code offers several additional features to
find the class name and inheritance details, and also helps with setting
properties at runtime. Qt's moc provides a clean way to go beyond the
compiled language's facilities.

You can perform type casts by using qobject_cast() on QObject derived
classes. The qobject_cast() function acts similar to the standard C++
dynamic_cast(). The advantage is that it doesn't require runtime type

https://doc.qt.io/qt-6/object.html

identification (RTTI) and it works across dynamic library boundaries. You
can derive a class from QObject, but if you don't add the Q_OBJECT
macro, then the signals and slots and the other meta-object system features
will not be available. A QObject derived class without meta code is
equivalent to its closest ancestor containing meta-object code. There is also
a lighter version of the Q_OBJECT macro, known as Q_GADGET, that
can be used to utilize some of the capabilities provided by QMetaObject.
A class that uses Q_GADGET doesn't have signals or slots.

We have seen a few new keywords here, such as Q_OBJECT, signals,
slots, emit, SIGNAL, and SLOT. These are known as the Qt extensions of
C++. They are very simple macros meant to be seen by moc, defined in
qobjectdefs.h. Out of these, emit is an empty macro that is not parsed by
moc. It is kept just to give the developer hints.

You can learn about why Qt uses moc for signals and slots at
https://doc.qt.io/qt-6/why-moc.html.

In this section, we learned about Qt's meta-object system. In the next
section, we will discuss the moc generated code and discuss some of the
underlying implementations.

MOC generated code

In this section, we will have a look at the code generated by moc in Qt6.
When you build the earlier signal and slot example, you will see the
generated files under the build directory: moc_myclass.cpp and
moc_predefs.h. Let's open the moc_myclass.cpp file with a text editor:

#include <memory>

https://doc.qt.io/qt-6/why-moc.html

#include "../../SignalSlotDemo/myclass.h"

#include <QtCore/qbytearray.h>

#include <QtCore/qmetatype.h>

#if !defined(Q_MOC_OUTPUT_REVISION)

#error "The header file 'myclass.h' doesn't include

 <QObject>."

#elif Q_MOC_OUTPUT_REVISION != 68

#error "This file was generated using the moc from 6.0.2.

 It"

#error "cannot be used with the include files from this

 version of Qt."

#error "(The moc has changed too much.)"

#endif

You can see that the information about the Qt Meta-Object Compiler
version at the top of the file. Please note that all the changes that are made
in this file will be lost on recompiling the project. So, don't modify anything
in this file. We are looking at the file to understand the working mechanism.

Let's look at the integer data of QMetaObject. As you can see, there are
two columns; the first column is the count, while the second column is the
index in this array:

static const uint qt_meta_data_MyClass[] = {

// content:

 9, // revision

 0, // classname

 0, 0, // classinfo

 2, 14, // methods

 0, 0, // properties

 0, 0, // enums/sets

 0, 0, // constructors

 0, // flags

 1, // signalCount

// signals: name, argc, parameters, tag, flags, initial

// metatype offsets

 1, 0, 26, 2, 0x06, 0 /* Public */,

// slots: name, argc, parameters, tag, flags, initial

// metatype offsets

 3, 0, 27, 2, 0x0a, 1 /* Public */,

// signals: parameters

 QMetaType::Void,

// slots: parameters

 QMetaType::Void,

 0 // eod

};

In this case, we have one method, and the description of the method starts at
index 14. You can find the number of available signals in signalCount. For
each function, moc also saves the return type of each parameter, their type,
and their index to the name. In each meta-object, the methods are given an
index, beginning with 0. They are arranged as signals, then slots, and then
as other functions. These indexes are relative indexes and exclude the
indexes of parent objects.

When you look further into the code, you will find the
MyClass::metaObject() function. This function returns QObject::d_ptr-
>dynamicMetaObject() for dynamic meta-objects. The metaObject()
function normally returns the class' staticMetaObject:

const QMetaObject *MyClass::metaObject() const

{

 return QObject::d_ptr->metaObject

? QObject::d_ptr->dynamicMetaObject()

: &staticMetaObject;

}

When the incoming string data matches the current class, you must convert
this pointer into a void pointer and pass it to the outside world. If it is not
the current class, then qt_metacast() of the parent class is called to
continue the query:

void *MyClass::qt_metacast(const char *_clname)

{

 if (!_clname) return nullptr;

 if (!strcmp(_clname,

 qt_meta_stringdata_MyClass.stringdata0))

 return static_cast<void*>(this);

 return QObject::qt_metacast(_clname);

}

Qt's meta-object system uses the qt_metacall() function to access the meta-
information for a particular QObject object. When we emit a signal,
qt_metacall() is called and then calls the real signal function:

int MyClass::qt_metacall(QMetaObject::Call _c, int _id, void **_a)

{

 _id = QObject::qt_metacall(_c, _id, _a);

 if (_id < 0)

 return _id;

 if (_c == QMetaObject::InvokeMetaMethod) {

 if (_id < 2)

 qt_static_metacall(this, _c, _id, _a);

 _id -= 2;

 } else if (_c == QMetaObject::

 RegisterMethodArgumentMetaType) {

 if (_id < 2)

 *reinterpret_cast<QMetaType *>(_a[0]) =

 QMetaType();

 _id -= 2;

 }

 return _id;

}

When you call a signal, it calls the moc generated code, which internally
calls QMetaObject::activate(), as shown in the following snippet. Then,
QMetaObject::activate() looks into the internal data structures to find out
about the slots that are connected to that signal.

You can find the detailed implementation of this function inside
qobject.cpp:

void MyClass::signalName()

{

 QMetaObject::activate(this, &staticMetaObject, 0,

 nullptr);

}

By doing this, you can explore the complete generated code and look at the
symbols further. Now, let's look at the moc generated code where the slot is
called. The slot is called by its index in the qt_static_metacall function, as
shown here:

void MyClass::qt_static_metacall(QObject *_o,

 QMetaObject::Call _c, int _id, void **_a)

{

 if (_c == QMetaObject::InvokeMetaMethod) {

 auto *_t = static_cast<MyClass *>(_o);

 (void)_t;

 switch (_id) {

 case 0: _t->signalName(); break;

 case 1: _t->slotName(); break;

 default: ;

 }

 } else if (_c == QMetaObject::IndexOfMethod) {

 int *result = reinterpret_cast<int *>(_a[0]);

 {

 using _t = void (MyClass::*)();

 if (*reinterpret_cast<_t *>(_a[1]) ==

 static_cast<_t>(&MyClass::signalName)) {

 *result = 0;

 return;

 }

 }

 }

 (void)_a;

}

The array pointers to the argument are in the same format as the signal.
_a[0] is not touched because everything here returns void:

bool QObject::isSignalConnected(const QMetaMethod &signal) const

This returns true if the signal is connected to at least one receiver;
otherwise, it returns false.

When an object is destroyed, an QObjectPrivate::senders list is iterated,
and all Connection::receiver are set to 0. Also, Connection::receiver-
>connectionLists->dirty is set to true. Each
QObjectPrivate::connectionLists is also iterated to remove the
connection in the senders lists.

In this section, we went through some sections of the moc generated code
and understood the working mechanism behind signals and slots. In the
next section, we will learn about Qt's property system.

Getting to know Qt's property system
Qt's property system is similar to some other compiler vendors. However, it
provides a cross-platform advantage and works with standard compilers

supported by Qt on different platforms. To add a property, you must add the
Q_PROPERTY() macro to the QObject derived class. This property acts
like a class data member, but it provides extra features that are available
through the Meta-Object System. A simple syntax looks as follows:

Q_PROPERTY(type variableName READ getterFunction

 WRITE setterFunction NOTIFY signalName)

In the preceding syntax, we used some of the most common parameters.
But there are more parameters that are supported in the syntax. You can find
out more by reading the Qt documentation. Let's have a look at the
following code snippet, which uses the MEMBER parameter:

 Q_PROPERTY(QString text MEMBER m_text NOTIFY

 textChanged)

signals:

 void textChanged(const QString &newText);

private:

 QString m_text;

In the preceding snippet, we exported a member variable as a Qt property
using the MEMBER keyword. The type here is QString, and the NOTIFY
signal is used to implement QML property binding.

Now, let's explore how to read and write properties with the Meta-Object
System.

Reading and writing properties with the
Meta-Object System

Let's create a class named MyClass, which is a subclass of QWidget. Let's
add the Q_OBJECT macro to its private section to enable the property
system. In this example, we want to create a property in MyClass to keep
track of a version's value. The name of the property will be version, and its
type will be QString, which is defined in MyClass. Let's look at the
following code snippet:

class MyClass : public QWidget

{

 Q_OBJECT

 Q_PROPERTY(QString version READ version WRITE

 setVersion NOTIFY versionChanged)

public:

 MyClass(QWidget *parent = nullptr);

 ~MyClass();

 void setVersion(QString version)

 {

 m_version = version;

 emit versionChanged(version);

 }

 QString version() const { return m_version; }

 signals:

 void versionChanged(QString version);

 private:

 QString m_version;

};

To get the property changed notification, you have to emit
versionChanged() after the version value is changed.

Let's have a look at the main.cpp file for the preceding example:

int main(int argc, char *argv[])

{

 QApplication a(argc, argv);

 MyClass myClass;

 myClass.setVersion("v1.0");

 myClass.show();

 return a.exec();

}

In the preceding code snippet, the property is set by invoking setVersion().
You can see that versionChanged() signal is emitted every time the version
is changed.

You can also read a property using QObject::property() and write it using
QObject::setProperty(). You can also query dynamic properties using
QObject::property(), similar to compile time Q_PROPERTY()
declarations.

You can also set the property like so:

QObject *object = &myClass;

object->setProperty("version", "v1.0");

In this section, we discussed the property system. In the next section, we
will learn about signals and slots in Qt Designer.

Using signals and slots in Qt Designer
If you are using the Qt Widgets module, then you can use Qt Designer to
edit signal and slot connections in the form. Qt default widgets come with
many signals and slots. Let's see how we can implement signals and slots in
Qt Designer without writing any code.

You can drag a Dial control and a Slider control onto the form. You can add
connections via Signals and Slots Editor at the bottom tab, as shown in the
following screenshot:

Figure 6.2 – Creating signals and slots connections using Qt Designer

Alternatively, you can press F4 or select the Edit Signals/Slots button from
the top toolbar. Then, you can select the control and create a connection by
dragging the connection to the receiver. If you have custom signals or slots
defined for your custom class, they will be automatically displayed in
Signals and Slots Editor. However, most developers prefer to define
connections inside C++ source files.

In this section, we discussed using Qt Designer to implement signals and
slots in Qt Widgets. Now, let's look at how signals are handled in QML.

Understanding signals and the handler
event system in QML
Previously, we learned how to connect signals and slots inside C++ source
files and use them with the Qt Widgets module. Now, let's look at how we
can communicate in QML. QML has a signal and handler mechanism,
similar to signals and slots. In a QML document, a signal is an event, and
the signal is responded to through a signal handler. Like a slot in C++, a
signal handler is invoked when a signal is emitted in QML. In Qt
terminology, the method is a slot that is connected to the signal; all the
methods defined in QML are created as Qt slots. Hence, there is no separate
declaration for slots in QML. A signal is a notification from an object that
some event has occurred. You can place logic inside JavaScript or a method
to respond to the signal.

Let's look at how to write a signal handler. You can declare a signal handler
as follows:

onSignalName : {

//Logic

}

Here, signalName is the name of the signal. The first letter of the signal's
name is capitalized while writing a handler. So, the signal handler here is
named onSignalName. The signal and signal handler should be defined
inside the same object. The logic inside the signal handler is a block of
JavaScript code.

For example, when the user clicks within the mouse area, the clicked()
signal is emitted. To handle the clicked() signal, we must add the
onClicked:{…} signal handler.

Signal handlers are simple functions that are invoked by the QML engine
when an associated signal is emitted. When you add a signal to a QML
object, Qt automatically adds a corresponding signal handler to the object
definition.

Let's start by adding a custom signal to a QML document.

Adding a signal in QML

To add a signal inside your QML class, you must use the signal keyword.
The syntax for defining a new signal is as follows:

signal <name>[([<type> <parameter name>[...]])]

The following is an example of this:

signal composeMessage(string message)

A signal can be declared with or without any parameters. If no parameter is
declared for the signal, then you can leave () brackets. You can emit a signal

by invoking it as a function:

Rectangle {

 id: mailBox

 signal composeMessage(string message)

 anchors.fill: parent

 Button {

 id:sendButton

 anchors.centerIn: parent

 width: 100

 height: 50

 text: "Send"

 onClicked: mailBox.composeMessage("Hello World!")

 }

 onComposeMessage: {

 console.log("Message Received",message)

 }

}

In the preceding example, we added a custom signal composeMessage() to
the QML file. We used the corresponding signal handler; that is,
onComposeMessage(). Then, we added a button that emits the
composeMessage() signal when it is clicked. When you run this example,
you will see that the signal handler is called automatically when the button
is clicked.

In this section, you learned how to declare a signal and how to implement
the corresponding signal handler. In the next section, we will connect the

signal to a function.

Connecting a signal to a function

You can connect a signal to any function defined inside your QML
document. You can use connect() to connect a signal either to a function or
another signal. When a signal is connected to a function, that function is
automatically invoked whenever the signal is emitted. This mechanism
enables a signal to be received by a function instead of a signal handler.

In the following snippet, the composeMessage() signal is connected to the
transmitMessage() function using the connect() function:

Rectangle {

 id: mailBox

 signal composeMessage(string message)

 anchors.fill: parent

 Text {

 id: textElement

 anchors {

 top: parent.top

 left: parent.left

 right:parent.right

 }

 width: 100

 height:50

 text: ""

 horizontalAlignment: Text.AlignHCenter

 }

 Component.onCompleted: {

 mailBox.composeMessage.connect(transmitMessage)

 mailBox.composeMessage("Hello World!")

 }

 function transmitMessage(message) {

 console.log("Received message: " + message)

 textElement.text = message

 }

}

In QML, signal handling is implemented using the following syntax:

sender.signalName.connect(receiver.slotName)

You can also remove a connection using the disconnect() function. You can
disconnect the connection like so:

sender.signalName.disconnect(receiver.slotName)

Now, let's explore how to forward a signal in QML.

Connecting a signal to a signal

You can connect a signal to another signal in QML. You can achieve this
using the connect() function.

Let's explore how we can do this by looking at the following example:

Rectangle {

 id: mailBox

 signal forwardButtonClick()

 anchors.fill: parent

 Button {

 id:sendButton

 anchors.centerIn: parent

 width: 100

 height: 50

 text: "Send"

 }

 onForwardButtonClick: {

 console.log("Fordwarded Button Click Signal!")

 }

 Component.onCompleted: {

 sendButton.clicked.connect(forwardButtonClick)

 }

}

In the preceding example, we connected the clicked() signal to the
forwardButtonClick() signal. You can implement the necessary logic at
the root level inside the onForwardButtonClick() signal handler. You can
also emit the signal from the button click handler, as follows:

onClicked: {

 mailBox.forwardButtonClick()

}

In this section, we discussed how to connect two signals and handle them.
In the next section, we will discuss how to communicate between the C++

class and QML using signals and slots.

Defining property attributes and
understanding property binding

Previously, we learned how to define a type in C++ by registering the
Q_PROPERTY of a class, which is then registered with the QML type
system. It is also possible to create custom properties in a QML document.
Property binding is a core feature of QML that allows us to create
relationships between various object properties. You can declare a property
in a QML document with the following syntax:

[default] property <propertyType> <propertyName> : <value>

In this way, you can expose a particular parameter to outside objects or
maintain internal states more efficiently. Let's look at the following property
declaration:

property string version: "v1.0"

When you declare a custom property, Qt implicitly creates a property-
change signal for that property. The associated signal handler is
on<PropertyName>Changed, where <PropertyName> is the name of the
property, with the first letter capitalized. For the previously declared
property, the associated signal handler is onVersionChanged, as shown
here:

onVersionChanged:{…}

If the property is assigned a static value, then it remains constant until it is
explicitly assigned a new value. To update these values dynamically, you

should use property binding inside your QML document. We used simple
property binding earlier, as shown in the following snippet:

width: parent.width

However, we can combine this with the property that's exposed by the
backend C++ class, as shown here:

property string version: myClass.version

In the previous line, myClass is the backend C++ object that's registered
with the QML engine. In this case, whenever the versionChanged() change
signal is emitted from the C++ side, the QML version property gets
updated automatically.

Next, we'll discuss how to integrate signals and slots between C++ and
QML.

Integrating signals and slots between
C++ and QML

In C++, to interact with the QML layer, you can use signals, slots, and
Q_INVOKABLE functions. You can also create properties using the
Q_PROPERTY macro. To respond to signals from objects, you can use the
Connections QML type. When a property changes inside a C++ file,
Q_PROPERTY automatically updates the values. If the property has a
binding with any QML property, it will automatically update the property
values inside QML. In this case, the signal slot mechanism is established
automatically.

Let's look at the following example, which uses the aforementioned
mechanism:

class CPPBackend : public QObject

{

 Q_OBJECT

 Q_PROPERTY(int counter READ counter WRITE setCounter

 NOTIFY counterChanged)

public:

 explicit CPPBackend(QObject *parent = nullptr);

 Q_INVOKABLE void receiveFromQml();

 int counter() const;

 void setCounter(int counter);

signals:

 void sendToQml(int);

 void counterChanged(int counter);

private:

 int m_counter = 0;

};

In the preceding code, we declared a Q_PROPERTY-based notification. We
can get the new counter value when the counterChanged() signal is
emitted. However, we used the receiveFromQml() function as a
Q_INVOKABLE function so that we can call it directly inside the QML
document. We are emitting sendToQml(), which is handled inside
main.qml:

void CPPBackend::setCounter(int counter)

{

 if (m_counter == counter)

 return;

 m_counter = counter;

 emit counterChanged(m_counter);

}

void CPPBackend::receiveFromQml()

{

 // We increase the counter and send a signal with new

 // value

 ++m_counter;

 emit sendToQml(m_counter);

}

Now, let's have a look at the QML implementation:

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("C++ QML Signals & Slots Demo")

 property int count: cppBackend.counter

 onCountChanged:{

 console.log("property is notified. Updated value

 is:",count)

 }

 Connections {

 target: cppBackend

 onSendToQml: {

 labelCount.text ="Fetched value is "

 +cppBackend.counter

 }

 }

 Row{

 anchors.centerIn: parent

 spacing: 20

 Text {

 id: labelCount

 text: "Fetched value is " + cppBackend.counter

 }

 Button {

 text: qsTr("Fetch")

 width: 100 ;height: 20

 onClicked: {

 cppBackend.receiveFromQml()

 }

 }

 }

}

In the preceding example, we used Connections to connect to the C++
signal. On button click, we are calling the receiveFromQml() C++
function, where we are emitting the signal. We have also declared the count

property, which also listens to counterChanged(). We handled the data
inside the associated signal handler; that is, onCountChanged. We can also
update the labelCount data based on the notification:

Figure 6.3 – The mechanism that was used in this example

The preceding diagram illustrates the communication mechanism in this
example. For explanation purposes, we have kept multiple approaches in
the same example to explain the communication mechanism between C++
and QML.

In this section, you learned about the signals and slots mechanism through
examples. In the next section, we will learn about events and the event loop
in Qt.

Understanding events and the event loop
Qt is an event-based system, and all GUI applications are event-driven. In
an event-driven application, there is usually a main loop that listens for
events and then triggers a callback function when one of those events is
detected. Events can be spontaneous or synthetic. Spontaneous events come
from the outside environment. Synthetic events are custom events generated
by the application. An event in Qt is a notification that represents something
that has happened. Qt events are value types, derived from QEvent, which
offers a type enumeration for each event. All events that arise inside a Qt
application are encapsulated in objects that inherit from the QEvent class.
All QObject derived classes can override the QObject::event() function in
order to handle events targeted by their instances. Events can come from
both inside and outside the application.

When an event occurs, Qt produces an event object by constructing an
appropriate QEvent subclass instance, which it then delivers to the specific
instance of QObject by calling its event() function. Unlike the signals and
slots mechanism, where the slots connected to the signal are usually
executed immediately, an event must wait for its turn, until the event loop
dispatches all the events that arrived earlier. You must select the right
mechanism as per your intended implementation. The following diagram
illustrates how events are created and managed in event-driven applications:

Figure 6.4 – Illustration of an event-driven application using the event loop

We can enter Qt's main event loop by calling QCoreApplication::exec().
The application keeps running until QCoreApplication::exit() or
QCoreApplication::quit() are called, which terminates the loop.
QCoreApplication can process each event in the GUI thread and forward
events to QObjects. Please note that the events are not delivered
immediately; instead, they're queued up in an event queue and processed
later, one after another. The event dispatcher loops through this queue,
converts them into QEvent objects, and then dispatches the events to the
target QObject.

A simplified event loop dispatcher may look as follows:

while(true)

{

 dispatchEventsFromQueue();

 waitForEvents();

}

Some of the important Qt classes related to the event loop are as follows:

QAbstractEventDispatcher is subclassed to manage Qt's event queue.

QEventLoop provides a local event loop.

QCoreApplication provides an event loop for non-GUI based
applications.

QGuiApplication contains the main event loop for GUI-based
applications.

QThread is used to create custom threads and manage threads.

QSocketNotifier is used to monitor activity on a file descriptor.

QTimer is used to create a timer in any thread with an event loop.

You can read about these classes in the Qt documentation. The following
link provides further insight into the event system:

https://wiki.qt.io/Threads_Events_QObjects.

In this section, we discussed events and Qt's event loop. In the next section,
we will learn how to filter events with an event filter.

Managing events with an event fi lter
In this section, you will learn how to manage events and how to filter a
specific event and perform a task. You can achieve event filtering by
reimplementing event handlers and installing event filters. You can redefine

https://wiki.qt.io/Threads_Events_QObjects

what an event handler should do by subclassing the widget of interest and
reimplementing that event handler.

Qt provides five different approaches for event processing, as follows:

Reimplementing a specific event handler, such as paintEvent()

Reimplementing the QObject::event() function

Installing an event filter on the QObject instance

Installing an event filter on the QApplication instance

Subclassing QApplication and reimplementing notify()

The following code handles the left mouse button click on a custom widget
while passing all other button clicks to the base QWidget class:

void MyClass::mousePressEvent(QMouseEvent *event)

{

 if (event->button() == Qt::LeftButton)

 {

 // Handle left mouse button here

 }

 else

 {

 QWidget::mousePressEvent(event);

 }

}

In the previous example, we filtered only the left button press event. You
can add the required action inside the respective block. The following

diagram illustrates the high-level event processing mechanism:

Figure 6.5 – Illustration of the event filter mechanism

An event filter can be installed either on an application instance or a local
object. If the event filter is installed in an QCoreApplication object, then
all the events will go through this event filter. If it is installed in a QObject
derived class, then the events that have been sent to that object will go
through the event filter. Sometimes, there may not be any suitable Qt event
type available for a specific action. In that case, you can create a custom
event by creating a subclass from QEvent. You can reimplement
QObject::event() to filter the intended event, as shown here:

#include <QWidget>

#include <QEvent>

class MyCustomEvent : public QEvent

{

public:

 static const QEvent::Type MyEvent

 = QEvent::Type(QEvent::User + 1);

};

class MyClass : public QWidget

{

 Q_OBJECT

public:

 MyClass(QWidget *parent = nullptr);

 ~MyClass();

protected:

 bool event(QEvent *event);

};

Here, we have created a custom event class named MyCustomEvent and
created a custom type.

Now, let's filter these events by reimplementing event():

bool MyClass::event(QEvent *event)

{

 if (event->type() == QEvent::KeyPress)

 {

 QKeyEvent *keyEvent= static_cast<QKeyEvent

 *>(event);

 if (keyEvent->key() == Qt::Key_Enter)

 {

 // Handle Enter event event

 return true;

 }

 }

 else if (event->type() == MyCustomEvent::MyEvent)

 {

 MyCustomEvent *myEvent = static_cast<MyCustomEvent

 *>(event);

 // Handle custom event

 return true;

 }

 return QWidget::event(event);

}

As you can see, we have passed the other events to QWidget::event() for
further processing. If you want to prevent the event from propagating
further, then return true; otherwise, return false.

An event filter is an object that receives all the events that are sent to an
object. The filter can either stop the event or forward it to the object. It
screens the events if an object has been installed as an event filter for the
watched object. It is also possible to monitor another object for events by
using an event filter and performing the necessary tasks. The following
example shows how to reimplement one of the most commonly used events
– a keypress event – using the event filter approach.

Let's have a look at the following code snippet:

#include <QMainWindow>

class QTextEdit;

class MainWindow : public QMainWindow

{

 Q_OBJECT

public:

 MainWindow(QWidget *parent = nullptr);

 ~MainWindow();

protected:

 bool eventFilter(QObject *obj, QEvent *event) override;

private:

 QTextEdit *textEdit;

};

In the preceding code, we created a class called MainWindow and
overridden eventFilter(). Let's install the filter on textEdit using
installEventFilter(). You can install multiple event filters on an object.
However, if multiple event filters are installed on a single object, the filter
that was installed last will be activated first. You can also remove an event
filter by calling removeEventFilter():

#include "mainwindow.h"

#include <QTextEdit>

#include <QKeyEvent>

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

{

 textEdit = new QTextEdit;

 setCentralWidget(textEdit);

 textEdit->installEventFilter(this);

}

In the preceding code, we installed an eventFilter on the textEdit object.
Now, let's have a look at the eventFilter() function:

bool MainWindow::eventFilter(QObject *monitoredObj, QEvent *event)

{

 if (monitoredObj == textEdit)

 {

 if (event->type() == QEvent::KeyPress)

 {

 QKeyEvent *keyEvent = static_cast<QKeyEvent*>

 (event);

 qDebug() << "Key Press detected: " <<

 keyEvent->text();

 return true;

 }

 else

 {

 return false;

 }

 }

 else

 {

 return QMainWindow::eventFilter(monitoredObj,

 event);

 }

}

Here, textEdit is the monitored object. Every time you press a key and if
the textEdit is in focus, the event is captured. Since there may more objects
that are children and QMainWindow may require the events, don't forget to
pass the unhandled events to the base class for further event processing.

IMPORTANT NOTE
Once you've consumed the event in the eventFilter() function, make sure to return true. If
the receiver object is deleted and you return false, then it can result in an application crash.

You can also combine the signals and slots mechanism with the event. You
can achieve this by filtering the event and emitting a signal that corresponds
to that event. I hope that you have understood the event handling
mechanism in Qt. Now, let's look at drag and drop.

Drag and drop
In this section, we will learn about drag and drop (DnD). In a GUI
application, DnD is a pointing device gesture in which the user selects a
virtual object by grabbing it and then releasing it on another virtual object.
The drag and drop operation starts when the user makes some gesture that is
recognized as a signal to start a drag action.

Let's discuss how we can implement drag and drop using Qt Widgets.

Drag and drop in Qt Widgets

In Qt Widgets-based GUI applications, where drag and drop is used, the
user starts dragging from a particular widget and drops the dragged object
onto another widget. This requires us to reimplement several functions and
it handles the corresponding events. The most common functions that need
to be reimplemented to achieve drag and drop are as follows:

void dragEnterEvent(QDragEnterEvent *event) override;

void dragMoveEvent(QDragMoveEvent *event) override;

void dropEvent(QDropEvent *event) override;

void mousePressEvent(QMouseEvent *event) override;

Once you've reimplemented the preceding functions, enable dropping on
the target widget with the following statement:

setAcceptDrops(true);

To begin a drag, create a QDrag object and pass a pointer to the widget that
begins the drag. The drag and drop operation is handled by a QDrag object.
This operation requires the attached data description to be of the
Multipurpose Internet Mail Extensions (MIME) type:

QMimeData *mimeData = new QMimeData;

mimeData->setData("text/csv", csvData);

QDrag *dragObject = new QDrag(event->widget());

dragObject->setMimeData(mimeData);

dragObject->exec();

The preceding code shows how to create a drag object and set a custom
MIME type. Here, we used text/csv as the MIME type. You can supply
more than one type of MIME-encoded data with a drag and drop operation.

To intercept drag and drop events, you can reimplement dragEnterEvent().
This event handler is called when a drag is in progress and the mouse enters
the widget.

You can find several relevant examples in the examples section in Qt
Creator. Since Qt Widgets aren't very popular these days, we are skipping
the drag and drop example using widgets. In the next section, we will
discuss drag and drop in QML.

Drag and drop in QML

In the previous section, we discussed drag and drop using widgets. Since
QML is used to create modern and touch-friendly applications, drag and
drop is a very important feature. Qt provides several convenient QML types
for implementing drag and drop. Internally, the corresponding events are
handled similarly. These functions are declared in the QQuickItem class.

For example, dragEnterEvent() is also available in QQuickItem, and is
used to intercept drag and drop events, as described here:

void QQuickItem::dragEnterEvent(QDragEnterEvent *event)

Let's discuss how to implement this using the available QML types. Using
the Drag attached property, any Item can be made a source of drag and
drop events within a QML scene. A DropArea is an invisible item that can
receive events when an item is dragged over it. When a drag action is active
on an item, any change that's made to its position will generate a drag event
that will be sent to any intersecting DropArea. The DragEvent QML type
provides information about a drag event.

The following code snippet shows a simple drag and drop operation in
QML:

Rectangle {

 id: dragItem

 property point beginDrag

 property bool caught: false

 x: 125; y: 275

 z: mouseArea.drag.active || mouseArea.pressed ? 2 : 1

 width: 50; height: 50

 color: "red"

 Drag.active: mouseArea.drag.active

 Drag.hotSpot.x: 10 ; Drag.hotSpot.y: 10

 MouseArea {

 id: mouseArea

 anchors.fill: parent

 drag.target: parent

 onPressed: dragItem.beginDrag = Qt.point(dragItem.x,

 dragItem.y)

 onReleased: {

 if(!dragItem.caught) {

 dragItem.x = dragItem.beginDrag.x

 dragItem.y = dragItem.beginDrag.y

 }

 }

 }

}

In the preceding code, we created a draggable item with an ID of dragItem.
It contains a MouseArea to capture the mouse press event. Dragging is not
limited to mouse drags. A drag action can be triggered by anything that can
generate a drag event. A drag can be canceled by calling Drag.cancel() or
by setting the Drag.active state to false.

The drop action can be completed with a drop event by calling
Drag.drop(). Let's add a DropArea:

Rectangle {

 x: parent.width/2

 width: parent.width/2 ; height:parent.height

 color: "lightblue"

 DropArea {

 anchors.fill: parent

 onEntered: drag.source.caught = true

 onExited: drag.source.caught = false

 }

}

In the preceding snippet, we used a light blue rectangle to distinguish it as a
DropArea on the screen. We are catching dragItem when it enters the
DropArea region. When dragItem is leaving the DropArea region, the
drop action is disabled. Therefore, when the drop is unsuccessful, the item
will go back to its original position.

In this section, we learned about drag and drop actions and their
corresponding events. We discussed how to implement them using the Qt

Widgets module, as well as in QML. Now, let's summarize what we learned
in this chapter.

Summary
In this chapter, we looked at the core concepts of signals and slots in Qt. We
discussed different ways of connecting signals and slots. We also learned
how to connect one signal to multiple slots and multiple signals to a single
slot. Then, we looked at how to use them with Qt Widgets, as well as in
QML, as well as the mechanism behind the signal and slot connection.
After that, you learned how to communicate between C++ and QML using
signals and slots.

This chapter also discussed events and event loops in Qt. We explored how
to use events instead of the signal-slot mechanism. After doing this, we
created a sample program with a custom event handler to capture events
and filter them.

After learning about events, we implemented a simple drag and drop
example. Now, you can communicate between classes, between C++ and
QML, and implement the necessary actions based on events.

In the next chapter, we will learn about Model View programming and how
to create custom models.

Chapter 7: Model View Programming
Model/View programming is used to separate data from Views in Qt to
handle datasets. The Model/View (M/V) architecture differentiates the
functionalities that give freedom to the developers to modify and present
the information on the User Interface (UI) in multiple ways. We will
discuss each component of the architecture,the related convenience classes
offered by Qt, and how to use them with practical examples. Throughout
this chapter, we will be discussing the Model View pattern and understand
the underlying core concepts.

In this chapter, we will discuss the following topics:

Fundamentals of the M/V architecture

Using Models and Views

Creating custom Models and delegates

Displaying information using M/V in Qt Widgets

Displaying information using M/V in QML

Using C++ Models with QML

By the end of this chapter, you will be able to create a data model and
display information on a customized UI. You will be able to write your
custom models and delegates. You will also learn to represent the
information in a UI through Qt Widgets and QML.

Technical requirements

The technical requirements for this chapter include the minimum versions
of Qt 6.0.0 and Qt Creator 4.14.0 installed on one of the latest desktop
platforms, such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter07.

IMPORTANT NOTE
The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Understanding the M/V architecture
Traditionally, the Model-View-Controller (MVC) design pattern is often
used when building UIs. As the name suggests, it consists of three terms:
Model, View, and Controller. The Model is an independent component with
a dynamic data structure and logic, the View is the visual element, and the
Controller decides how the UI responds to the user inputs. Before MVC
came into existence, developers used to put these components together. It is
not always possible to decouple the Controller from other components
although developers want to keep them as distinct from each other as
possible. MVC design decouples the components to increase flexibility and
reuse. The following figure illustrates the components of a traditional MVC
pattern:

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter07

Figure 7.1 – Traditional MVC design pattern

In the MVC pattern, a user sees the View and interacts with a Controller.
The Controller sends data to the Model and the Model updates the View. If
the View and the Controller components are combined, then it results in the
M/V architecture. It provides a more versatile architecture. It is based on
the same principle but makes the implementation much simpler. The
modified architecture allows us to display the same data in several different
Views. The developer can implement new types of Views without changing
the underlying data structures. To bring this flexibility to our handling of
the user inputs, Qt introduced the concept of delegate. Instead of having a
Controller, the View receives the data that is updated via a delegate. It has
two primary purposes:

To help the View render each value

To help the View when the user wants to make some changes

So, in a certain way, the Controller has combined with the View and the
View also performs some of the Controller's work through the delegate. The
benefit of having a delegate is that it provides the means by which data
elements are rendered and modified.

Let's understand the M/V implementation and its components with a
diagram:

Figure 7.2 – The Qt Model-View-Delegate Framework

As illustrated in Figure 7.2, the M/V components are separated into the
three sections of Model, View, and Delegate. The Model interacts with a
database and works as an interface for the architecture's other components.
The purpose of the communication is determined by the data source and the
model's implementation. The View attains the references to items of data
known as a model index. The View can retrieve the individual item data
from the data model by using this model index. In standard Views, a
delegate renders the items of data. When an item is modified, the Delegate
notifies the Model by using the model index.

Figure 7.3 illustrates how a Model delivers data to the View, which is
displayed on the individual delegates:

Figure 7.3 – Model-View-Delegate implementation illustration

The Qt framework provides a set of standard classes that implement the
M/V architecture to manage the relationship between data and how the user
sees it. By decoupling the functionalities, the architecture provides
flexibility to customize the presentation of data and allows the combining of
an extensive range of data sources with the Views.

The Model, View, and Delegate use a signal and slot mechanism to
communicate with each other. The Model emits a signal to notify about the
data change that occurred in the data source. When a user interacts with the
View, then a signal from the View is emitted to notify about the user action.
The Delegate emits a signal to notify the Model and View about the edited
state.

Now, you have learned the fundamentals of the M/V architecture. The
following sections explain how to use the M/V pattern in Qt. We will start
with the standard classes provided by the Qt framework and then we will
discuss the use of M/V in Qt Widgets. You will learn how to create new
components as per the M/V architecture. Let's go ahead!

Model

M/V removes the data consistency challenges that may happen with the
standard widgets. It makes it easier to use more than one View for the same
data, as one Model can be passed to multiple Views. Qt provides several
abstract classes for M/V implementation with common interfaces and
certain feature implementations. You can subclass the abstract classes and
add the intended functionalities expected by other components.In the M/V
implementation, the model provides a standard interface used by the View
and delegate to access the data.

Qt offers some ready-made Model classes such as QStandardItemModel,
QFileSystemModel, and QSqlTableModel. QAbstractItemModel is the
standard interface defined by Qt. The subclasses of QAbstractItemModel

represent the data in a hierarchical structure. Figure 7.4 illustrates the
hierarchy of Model classes:

Figure 7.4 – The hierarchy of Model classes in the Qt

Views use this approach to access individual data items in the Model, but
they are not restricted in the way that they present this information to the
user. The data passed through a Model can be held in a data structure or a
database, or some other application component. All item Models are based
on the QAbstractItemModel class.

Figure 7.5 shows how data is arranged in different types of Models:

Figure 7.5 – Different types of models and arrangements of data

The data is represented through Models either in a tabular representation in
the form of rows and columns, or using a hierarchical representation of the
data. In the M/V pattern, widgets do not store data behind the individual
cells. They directly use the data. You may have to create a wrapper to make
your data compatible with the QAbstractItemModel interface. Views use
this interface to read and write the data. Any class that is derived from
QAbstractItemModel is known as a Model. It provides an interface to
handle Views that represent data in the forms of lists, tables, and trees. To
implement a custom Model for a list or a table-like data structure, you can
derive from QAbstractListModel and QAbstractTableModel to use the
available features. The subclasses provide Models that are suitable for
specialized lists and tables.

The Qt framework provides two standard types of Models. They are as
follows:

QStandardItemModel

QFileSystemModel

The QStandardItemModel is a multi-purpose Model where custom data
can be stored. Each element refers to an item. It can be used to display a
variety of data structures needed by lists, tables, and tree Views. It provides
a traditional item-based approach to dealing with the Model.
QStandardItem provides the items used in a QStandardItemModel.

QFileSystemModel is a Model that keeps information about the contents of
a directory. It simply represents files and directories on the local filing
system and doesn't hold any items of data. It provides a ready-to-use Model
to create a sample application and you can manipulate the data using Model
indexes. Now, let's discuss what a delegate is.

Delegate

Delegates provide control over the presentation of items displayed in the
View. The M/V pattern, unlike the MVC pattern, does not have an entirely
different component for handling user interaction. The View is primarily in
charge of displaying the Model data to the user and allowing them to
interact with it. To add some flexibility to how the user action is obtained,
the delegates handle the interactions. It empowers certain widgets to be
used as editors for editable items in the Model. Delegates are used to
provide interaction capabilities and rendering individual fields in the Views.
The QAbstractItemDelegate class defines the basic interface for managing
delegates. There are a few ready-made delegate classes provided by Qt to
use with built-in widgets to modify a particular data type.

To understand it better, we will have a look at the hierarchy of delegate
classes in the Qt framework (see Figure 7.6):

Figure 7.6 – The hierarchy of delegate classes in the Qt framework

As we can see in the preceding diagram, QAbstractItemDelegate is the
abstract base class for delegates. The default delegate implementation is
provided by QStyledItemDelegate. Qt's standard Views use it as the
default delegate. Other options for painting and creating editors for items in
Views are QStyledItemDelegate and QItemDelegate. You can use
QItemDelegate to customize display features and editor widgets for an
item. The difference between these two classes is that, unlike
QItemDelegate, QStyledItemDelegate uses the current style to paint its
items. QStyledItemDelegate can handle the most common data types such
as int and QString. It is recommended to subclass QStyledItemDelegate
while creating new delegates or while working with Qt Style Sheets. By
writing a custom delegate, you can use a custom data type or customize the
rendering.

In this section, we discussed the different types of Models and delegates.
Let's discuss the View classes provided by Qt Widgets.

Views in Qt Widgets

Several convenience classes are derived from the standard View classes to
implement the M/V pattern. Examples of such convenience classes are
QListWidget, QTableWidget, and QTreeWidget. As per the Qt
documentation, these classes are less adaptable than View classes, and they
can't be used for random Models. Based on your project requirements, you
have to choose suitable widget classes for implementing the M/V pattern.

If you want to use an item-based interface and take advantage of the M/V
pattern, then it is recommended to use the following View classes with
QStandardItemModel:

QListView displays a list of items.

QTableView displays data from a Model in a table.

QTreeView shows Model items of data in a hierarchical list.

The hierarchy of View classes in the Qt framework is as follows:

Figure 7.7 – The hierarchy of View classes in the Qt framework

QAbstractItemView is the abstract base class of the aforementioned
classes. These classes can be derived to have specialized Views, even
though they provide ready-to-use implementations. The most appropriate
Views to use for QFileSystemModel are QListView and QTreeView. Each
of these Views has its unique way of representing the data items. For
example, QTreeView displays a tree hierarchy as a horizontal series of lists.
All these Views must have a Model associated with them. There are several
predefined Models provided by Qt. You can add your own customized
Model if the ready-made Models don't meet your criteria.

Unlike the View classes (for which the class name ends with View), the
convenience widgets (for which the class name ends with Widget) do not
need to be backed by a Model and can be used directly. The main advantage

of using convenience widgets is that they require the least amount of effort
to work with them.

Let's look at the different View classes in the Qt Widgets module and which
readymade Models can be used with them:

Figure 7.8 – Different types of Qt widgets used as the View in the M/V pattern

The delegate is used to display individual field data in QListView,
QTableView, or QTreeView. When a user starts interacting with an item,
the delegate provides an editor widget for editing to take place.

You can find a comparative overview of the aforementioned classes and
learn about the uses of the corresponding widgets at the following link:

https://doc.qt.io/qt-6/modelview.html

In this section, you learned about the M/V architecture and got familiar with
the terms used. Let's implement M/V with a simple GUI application using

https://doc.qt.io/qt-6/modelview.html

Qt Widgets.

Creating a simple Qt Widgets application
using the M/V pattern
It is time for us to create a simple example using Qt Widgets. The example
in this section illustrates how a predefined QFileSystemModel is used in
association with the built-in QListView and QTreeView widgets.
Delegation is automatically taken care of when the Views are double-
clicked.

Follow these steps to create a simple application that implements the M/V
pattern:

1. Create a new project using Qt Creator, selecting the Qt Widgets
template from the project creation wizard. It will generate a project with
a predefined project skeleton.

2. Once the application skeleton is created, open the .ui form and add
QListView and QTreeView to the form. You may add two labels to
distinguish the Views as shown here:

Figure 7.9 – Create a UI with QListView and QTreeView using Qt Designer

3. Open the mainwindow.cpp file and add the following contents:

#include "mainwindow.h"

#include "ui_mainwindow.h"

#include <QFileSystemModel>

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

 , ui(new Ui::MainWindow)

{

 ui->setupUi(this);

 QFileSystemModel *model = new QFileSystemModel;

 model->setRootPath(QDir::currentPath());

 ui->treeView->setModel(model);

 ui->treeView->setRootIndex(

 model->index(QDir::currentPath()));

 ui->listView->setModel(model);

 ui->listView->setRootIndex(

 model->index(QDir::currentPath()));

}

In the preceding C++ implementation, we have used a predefined
QFileSystemModel as the Model for the Views.

4. Next, hit the Run button in the left pane. You will see a window as
shown in Figure 7.10 once you hit the Run button:

Figure 7.10 – Output of the sample application showing QListView and QTreeView

5. Let's modify the existing application to use a custom Model derived
from QAbstractItemModel. In the following example, we have created
a simple ContactListModel custom class derived from
QAbstractItemModel:

void ContactListModel::addContact(QAbstractItemModel *model,

const QString &name,const QString &phoneno, const QString

&emailid)

{

 model->insertRow(0);

 model->setData(model->index(0, 0), name);

 model->setData(model->index(0, 1), phoneno);

 model->setData(model->index(0, 2), emailid);

}

QAbstractItemModel* ContactListModel::

 getContactListModel()

{

 QStandardItemModel *model = new

 QStandardItemModel(0, 3, this);

 model->setHeaderData(0,Qt::Horizontal,

 QObject::tr("Name"));

 model->setHeaderData(1,Qt::Horizontal,

 QObject::tr("Phone No"));

 model->setHeaderData(2,Qt::Horizontal,

 QObject::tr("Email ID"));

 addContact(model,"John","+1

 1234567890","john@abc.com");

 addContact(model,"Michael","+44

 213243546","michael@abc.com");

 addContact(model,"Robert","+61

 5678912345","robert@xyz.com");

 addContact(model,"Kayla","+91

 9876554321","kayla@xyz.com");

 return model;

}

6. Next, modify the UI form to implement a QTableView and set the
contact list Model to it as shown in the following snippet:

ContactListModel *contactModel = new ContactListModel;

ui->tableView->setModel(

 contactModel->getContactListModel());

ui->tableView->horizontalHeader()->setStretchLastSection(true);

7. You can add QStringListModel to the QListView to use a simple list
Model:

 QStringListModel *model = new QStringListModel(this);

 QStringList List;

 List << "Item 1" << "Item 2" << "Item 3" <<"Item 4";

 model->setStringList(List);

 ui->listView->setModel(model);

8. Next, hit the Run button in the left pane. You will see a window as
shown in Figure 7.11:

Figure 7.11 – Output of the application using custom models in QListView and

QTableView

Congratulations! You have learned how to use M/V for your Qt widgets
project.

IMPORTANT NOTE
For more implementations of convenience classes such as QTableWidget or
QtTreeWidget, explore the relevant examples on the Qt Creator welcome screen and this
chapter's source code.

You can also create your own custom delegate class. To create a custom
delegate, you need to subclass QAbstractItemDelegate or any of the
convenience classes such as QStyledItemDelegate or QItemDelegate. A
custom delegate class may look like the following code snippet:

class CustomDelegate: public QStyledItemDelegate

{

 Q_OBJECT

public:

 CustomDelegate(QObject* parent = nullptr);

 void paint(QPainter* painter,

 const QStylestyleOptionViewItem& styleOption,

 const QModelIndex& modelIndex) const override;

 QSize sizeHint(const QStylestyleOptionViewItem& styleOption,

 const QModelIndex& modelIndex) const override;

 void setModelData(QWidget* editor, QAbstractItemModel* model,

 const QModelIndex& modelIndex)

 const override;

 QWidget *createEditor(QWidget* parent,

 const QStylestyleOptionViewItem& styleOption,

 const QModelIndex & modelIndex)

 const override;

 void setEditorData(QWidget* editor,

 const QModelIndex& modelIndex)

 const override;

 void updateEditorGeometry(QWidget* editor,

 const QStylestyleOptionViewItem& styleOption,

 const QModelIndex& modelIndex)

 const override;

};

You have to override the virtual methods and add respective logic as per
your project needs. You can learn more about the custom delegates and
examples at the following link:

https://doc.qt.io/qt-6/model-View-programming.html

In this section, we learned how to create a GUI application that uses the
M/V pattern. In the next section, we will discuss how it is implemented in
QML.

Understanding Models and Views in QML
Just like Qt Widgets, Qt Quick also implements Models, Views, and
delegates to display data. The implementation modularizes the visualization
of data to empower developers to manage that data. You can change one
View with another with minimal changes to the data.

https://doc.qt.io/qt-6/model-View-programming.html

To visualize data, bind the View's model property to a Model and the
delegate property to a component or another compatible type.

Let's discuss the QML types available for implementing the M/V pattern in
a Qt Quick application.

Views in Qt Quick

Views are containers that display data and are used for collections of items.
These containers are feature-rich and can be customized to meet specific
style or behavior requirements.

There is a set of standard Views provided in the basic set of Qt Quick
graphical types:

ListView: Lays out items in a horizontal or vertical list

GridView: Lays out items in a grid manner

TableView: Lays out items in a tabular form

PathView: Lays out items on a path

ListView, GridView, and TableView inherit from the Flickable QML
type. PathView inherits Item. The TreeView QML type is obsolete. Let's
have a look at the inheritance of these QML types:

Figure 7.12 – The hierarchy of View classes in Qt Quick

The properties and behaviors are different for each QML type. They are
used based on the GUI requirement. If you would like to know more about
QML types, you can refer to their respective documentation. Let's explore
Models in Qt Quick in the next section.

Models in Qt Quick

Qt provides several convenience QML types to implement the M/V pattern.
The modules provide very simple Models without requiring the creation of
custom Model classes in C++. Examples of such convenience classes are
ListModel, TableModel, and XmlListModel.

The QtQml.Models module provides the following QML types for
defining data Models:

ListModel defines a free-form list data source.

ListElement defines a data item in a ListModel.

DelegateModel encapsulates a Model and delegate.

DelegateModelGroup encapsulates a filtered set of visual data items.

ItemSelectionModel inherits QItemSelectionModel and it keeps track
of a View's selected items.

ObjectModel defines a set of items to be used as a Model.

Instantiator dynamically instantiates objects.

Package describes a collection of named items.

To use the aforementioned QML types in your Qt Quick application, import
the module with the following line:

import QtQml.Models

Let's discuss the readymade Models available in Qt Quick. ListModel is a
simple container of ListElement definitions that contain data roles. It is
used with ListView. Qt.labs.qmlmodels provides experimental QML types
for models. These Models can be used for quick prototyping and displaying
very simple data. The TableModel type stores JavaScript/JSON objects as
data for a table Model and uses it with TableView. You can use these
experimental types by importing the module as follows:

import Qt.labs.qmlmodels

If you want to create a Model from XML data, then you can use
XmlListModel. It can be used as a Model with Views such as ListView,
PathView, and GridView. To use this Model, you have to import the
module as follows:

import QtQuick.XmlListModel

You can use ListModel and XmlListModel with TableView to create one
column in TableView. To handle multiple rows and columns, you can use
TableModel or you can create a custom C++ Model by subclassing
QAbstractItemModel.

You can also use Repeater with Models. An integer can be used as a Model
that defines the number of items. In that case, the Model does not have any
data roles. Let's create a simple example that uses ListView and a Text item
as delegate components:

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Simple M/V Demo")

 ListView {

 anchors.fill: parent

 model: 10

 delegate: itemDelegate

 }

 Component {

 id: itemDelegate

 Text { text: " Item : " + index }

 }

}

In the preceding example, we have used an integer-based model. We
created a simple delegate, which is a text element. For a simpler
explanation, we have not used a complex delegate component. You can also
directly use Text as a delegate without using a component.

Now, let's explore how to use ListModel with ListView. ListModel is a
simple hierarchy of types specified in QML. The available roles are
specified by the ListElement properties. Let's create a simple application
using ListModel with ListView.

Let's say you want to create a simple address book application. You may
need a few fields for a contact. In the following code snippet, we have used
a ListModel that contains the names, phone numbers, and email addresses
of some contacts:

ListModel {

 id: contactListModel

 ListElement {

 name: "John" ; phone: "+1 1234567890" ;

 email: "john@abc.com"

 }

 ListElement {

 name: "Michael" ; phone: "+44 213243546" ;

 email: "michael@abc.com"

 }

 ListElement {

 name: "Robert" ; phone: "+61 5678912345" ;

 email: "robert@xyz.com"

 }

 ListElement {

 name: "Kayla" ; phone: "+91 9876554321" ;

 email: "kayla@xyz.com"

 }

}

We have now created the Model. Next, we have to display it using a
delegate. So, let's modify the delegate component we created earlier with
three Text elements. Based on your need you can create complex delegate
types with icons, texts, or custom types. You can add a highlighted item and
update the background based on focus. You need to provide a delegate to a
View to visually represent an item in a list:

Component {

 id: contactDelegate

 Row {

 id: contact

 spacing: 20

 Text { text: " Name: " + name; }

 Text { text: " Phone no: " + phone }

 Text { text: " Email ID: " + email }

 }

}

ListView {

 anchors.fill: parent

 model: contactListModel

 delegate: contactDelegate

}

In the preceding example, we used ListElement with ListModel. The View
displays each item as per the template defined by the delegate. Items in a
Model can be accessed through the index property or through the item's
properties.

You can learn more about different types of Models and how to manipulate
Model data at the following link:

https://doc.qt.io/qt-6/qtquick-modelviewsdata-modelview.html

In this section, you learned about M/V in QML. You can experiment with
the custom Models and delegates and create a personalized View. Have a
look at your phone book or recent call list on your cellphone and try to
implement it. In the next section, you will learn how to integrate the QML
frontend with a C++ Model.

Using C++ Models with QML
So far, we have discussed how to use Models and Views in Qt Widgets and
QML. But in most modern applications, you will require Models written in
C++ and a frontend written in QML. Qt allows us to define Models in C++
and then access them inside QML. This is convenient for exposing existing
C++ data Models or otherwise complex datasets to QML. Native C++ is
always the right choice for complex logical operations. It can outperform
logic written in QML with JavaScript.

There are many reasons why you should create a C++ Model. C++ is type-
safe and compiled into object code. It increases the stability of your

https://doc.qt.io/qt-6/qtquick-modelviewsdata-modelview.html

application and reduces the number of bugs. It is flexible and can offer
more features than the QML types. You can integrate with your existing
code or with a third-party library that is written in C++.

You can define a C++ Model using the following classes:

QStringList

QVariantList

QObjectList

QAbstractItemModel

The first three classes are beneficial for exposing simpler datasets.
QAbstractItemModel offers a more flexible solution to create complex
Models. QStringList contains a list of QString instances and provides the
contents of the list via the modelData role. Similarly, QVariantList
contains a list of QVariant types and provides the contents of the list via
the modelData role. If a QVariantList changes, then you must reset the
Model. QObjectList embeds a list of QObject* that provides the
properties of the objects in the list as roles. The QObject* is accessible as
the modelData property. For convenience, the properties of the object can
be accessed directly in the delegate's context.

Qt also provides C++ classes to handle SQL data Model such as
QSqlQueryModel, QSqlTableModel, and QSqlRelationalTableModel.
QSqlQueryModel offers a read-only Model based on an SQL query. These
classes reduce the need to run SQL queries for basic SQL operations such
as insert, create, or update. These classes are derived from

QAbstractTableModel and make it easy to present data from a database in
a View class.

You can learn more about different types of C++ Models by visiting the
following link:

https://doc.qt.io/qt-6/qtquick-modelviewsdata-cppmodels.html

In this section, we discussed C++ Models and why to use them. Now, you
can fetch data from a C++ backend and present it in a UI developed in
QML. In the next section, we will create a simple Qt Quick application
using the aforementioned concept and explain how to use them inside
QML.

Creating a simple M/V application with Qt
Quick
In earlier sections, we discussed Qt's Model-View-Delegate framework.
You learned how to create a custom Model and delegate and how to use a
C++ Model. But you must be wondering how to integrate with our QML
frontend. In this section, we will create a C++ Model and expose it to the
QML engine. We will also discuss how to register a custom Model as a
QML type.

Let's create an application that fetches a Model from the C++ code and
displays it in a Qt Quick-based application:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlContext>

https://doc.qt.io/qt-6/qtquick-modelviewsdata-cppmodels.html

#include <QStringListModel>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;

 QStringList stringList;

 stringList << "Item 1" << "Item 2" << "Item 3"

 <<"Item 4";

 engine.rootContext()->setContextProperty("myModel",

 QVariant::fromValue(stringList));

 const QUrl url(QStringLiteral("qrc:/main.qml"));

 engine.load(url);

 return app.exec();

}

In the preceding code snippet, we have created a simple Model based on
QStringList. The string list contains four different strings. We have
exposed the Model to the QML engine using setContextProperty(). Now,
let's use the Model inside our QML file:

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("QML CPP M/V Demo")

 ListView {

 id: listview

 width: 120

 height: 200

 model: myModel

 delegate: Text { text: modelData }

 }

}

The preceding example uses QQmlContext::setContextProperty() to set
Model values directly in a QML component. An alternative to this is to
register the C++ Model class as a QML type as follows:

qmlRegisterType<MyModel>("MyModel",1,0,"MyModel");

The preceding line will allow the Model classes to be created directly as
QML types within QML files. The first field is the C++ class name, then
comes the desired package name, then the version number, and the last
parameter is the type name in QML. You can import it into your QML file
with the following line:

Import MyModel 1.0

Let's create an instance of MyModel inside our QML file as shown here:

MyModel {

 id: myModel

}

ListView {

 width: 120

 height: 200

 model: myModel

 delegate: Text { text: modelData }

}

You can also use Models with QQuickView using setInitialProperties() as
shown in the following code:

QQuickView view;

view.setResizeMode(QQuickView::SizeRootObjectToView);

view.setInitialProperties({

 {"myModel",QVariant::fromValue(myModel)}});

view.setSource(QUrl("qrc:/main.qml"));

view.show();

In the preceding code snippet, we used QQuickView to create a UI and
passed a custom C++ Model to the QML environment.

In this section, we learned how to integrate a simple C++ Model with QML.
You can add signals and properties to extend the functionalities of your
custom classes. Next, let's summarize our learnings in this chapter.

Summary
In this chapter, we took a look at the core concepts of the Model-View-
Delegate pattern in Qt. We explained how it is different from the traditional
MVC pattern. We discussed different ways of using M/V and the
convenience classes available in Qt. We learned how to apply the M/V
concept in Qt Widgets as well as in Qt Quick. We discussed how to
integrate a C++ Model with QML Views. We also created a few examples

and implemented the concepts in our Qt application. You can now create
your own Model, delegate, and Views. I hope you have understood the
importance of the framework and the solid reasons for using it to meet your
requirements.

In Chapter 8, Graphics and Animations, we will learn about the graphics
framework and how to add animations to your Qt Quick project.

Chapter 8: Graphics and Animations
In this chapter, you will learn the fundamentals of Qt's graphics framework
and how to render graphics on a screen. You will understand how general
drawing is done in Qt. We will begin by discussing 2D graphics using
QPainter. We will explore how to draw different shapes using a painter.
Then you will learn about the Graphics View architecture used by
QGraphicsView and QGraphicsScene. Later, we will discuss the Scene
Graph mechanism used by Qt Quick. In this chapter, you will also learn
how to make the user interface more interesting by adding animations and
states.

In this chapter, we will discuss the following:

Understanding Qt's graphics framework

QPainter and 2D graphics

The Graphics View framework

OpenGL implementation

Qt Quick scene graph

Animation in QML

State machines in Qt

By the end of this chapter, you will understand the graphics framework used
by Qt. You will be able to draw onscreen and add animations to your UI
elements.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest version of a desktop
platform such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter08.

IMPORTANT NOTE
The screenshots used in this chapter are taken from the Windows platform. You will see
similar screens based on the underlying platforms on your machine.

Understanding Qt's graphics framework
Qt is one of the most popular frameworks for GUI applications. Developers
can build awesome cross-platform GUI applications using Qt without
worrying about the underlying graphics implementation. The Qt Rendering
Hardware Interface (RHI) interprets graphics instructions from Qt
applications to the available graphics APIs on the target platform.

RHI is the abstract interface for hardware-accelerated graphics APIs. The
most important class in the rhi module is QRhi. The QRhi instance is
supported by a backend for the specific graphics API. The selection of the
backend occurs at runtime and is decided by the application or library that
creates the QRhi instance. You can add the module by adding the following
line into your project file:

QT += rhi

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter08

Different types of graphics APIs supported by RHI are as follows:

OpenGL

OpenGL ES

Vulkan

Direct3D

Metal

Figure 8.1 shows the major layers of the graphics stack in the Qt graphics
framework:

Figure 8.1 – Major layers of the Qt 6 graphics stack

Let's get familiar with the graphics APIs shown in the preceding diagram.
OpenGL is the most popular graphics API with cross-language and cross-
platform application support. It is used to interact with the GPU, to achieve

hardware-accelerated rendering. OpenGL ES is a flavor of the OpenGL
API intended for embedded devices. It allows the rendering of advanced 2D
and 3D graphics on embedded and mobile devices. OpenGL ES on iOS
devices is also known as EAGL. OpenGL ES is also available on web
platforms as WebGL. OpenGL and OpenGL ES are developed and
maintained by the Khronos Group, a consortium of technology hardware
and software companies. You can learn more about OpenGL at the
following link:

https://www.opengl.org/about/

Vulkan is a new-generation graphics API that helps in creating cross-
platform and high-performance applications for modern GPUs. It was
created by the Khronos Group. Vulkan's explicit API design allows efficient
implementations on a wide range of desktop, embedded, and mobile
platforms. Qt 6 provides support for the Vulkan API. To use Vulkan, Qt
applications require the LunarG Vulkan SDK. Explore more about Vulkan
at the following link:

https://www.lunarg.com/vulkan-sdk/

Direct3D is a Microsoft proprietary graphics API that provides functions to
render 2D and 3D graphics by utilizing underlying GPU capabilities.
Microsoft Corporation created it for use on the Windows platform. It is a
low-level API that can be used to draw primitives with the rendering
pipeline or to perform parallel operations with the compute shader.

Direct3D exposes the advanced graphics capabilities of 3D graphics
hardware, including stencil buffering, W-buffering, Z-buffering,
perspective-correct texture mapping, spatial anti-aliasing, programmable

HLSL shaders, and effects. Direct3D's integration with other DirectX
technologies allows it to provide several features comprising video
mapping, hardware 3D rendering in 2D overlay planes, and even sprites and
allowing the use of 2D and 3D graphics in interactive media ties. Direct3D
is intended to virtualize 3D hardware interfaces in general. In contrast,
OpenGL is intended to be a 3D hardware-accelerated rendering system that
can be emulated in software. These two APIs are fundamentally designed in
two distinct ways. The following link provides further insight into
Direct3D:

https://docs.microsoft.com/en-in/windows/win32/getting-started-with-
direct3d

Metal is Apple's low-level computer graphics API, which offers near-direct
access to the graphics processing unit (GPU), allowing you to optimize
the graphics and compute capacity of your iOS, macOS, and tvOS apps. It
also has a low-overhead architecture that includes pre-compiled GPU
shaders, fine-grained resource management, and multithreading support.
Before the announcement of Metal, Apple provided OpenGL for macOS
and OpenGL ES for iOS, but there was a performance issue due to the
highly abstracted hardware. Metal, on the other hand, has better
performance than OpenGL thanks to its Apple-specific API. Metal enables
a whole new generation of professional graphics output by supporting up to
100 times more draw calls than OpenGL. You can read more about Metal at
the following link:

https://developer.apple.com/documentation/metal

In this section, we got familiar with Qt's graphics framework and RHI. You
now have a basic understanding of this framework. In the next section, we
will go further and discuss 2D graphics using QPainter.

QPainter and 2D graphics
Qt comes with an advanced windowing, painting, and typography system.
The most important classes in the Qt GUI module are QWindow and
QGuiApplication. This module includes classes for 2D graphics, imaging,
fonts, and advanced typography. Additionally, the GUI module comes with
classes for integrating windowing systems, OpenGL integration, event
handling, 2D graphics, basic imaging, fonts, and text. Qt's user interface
technologies use these classes internally, but they can directly be used to
write applications that use low-level OpenGL graphics APIs.

Depending on the platform, the QWindow class supports rendering with
OpenGL and OpenGL ES. Qt includes the QOpenGLPaintDevice class,
which allows the use of OpenGL accelerated QPainter rendering and
several convenience classes. These convenience classes simplify writing
code in OpenGL by hiding the complexities of extension handling and the
differences between OpenGL ES 2.0 and desktop OpenGL.
QOpenGLFunctions is a convenience class that provides cross-platform
access to the OpenGL ES 2.0 functions on desktop OpenGL without the
need to manually resolve the OpenGL function pointers.

To make use of these APIs and classes on a qmake-based application, you
have to include the gui module in your project file (.pro) as follows:

QT += gui

If you are using a Cmake-based build system, then add the following to the
CMakeLists.txt file:

find_package(Qt6 COMPONENTS Gui REQUIRED)

target_link_libraries(mytarget PRIVATE Qt6::Gui)

The QPainter class, primarily used for drawing operations, provides an
API for various tasks such as drawing vector graphics, text, and images
onto different surfaces, or QPaintDevice instances, including QImage,
QOpenGLPaintDevice, QWidget, and QPrinter. For Qt Widgets user
interfaces, Qt uses a software renderer.

The following are Qt GUI's high-level drawing APIs:

Paint system

Coordinate system

Drawing and filling

We will explore these APIs in the following sections.

Understanding the paint system

Qt's paint system provides several convenience classes for drawing on the
screen. The most important classes used are QPainter, QPaintDevice, and
QPaintEngine. You can use QPainter to paint on widgets and other paint
devices. This class can be used to draw things from simple lines to complex
shapes such as pies and chords. It is also used to draw pixmaps and texts.
If the paint device is a widget, then use QPainter inside the paintEvent()
function or inside a function invoked by a function called by paintEvent().

QPaintDevice is the base class of the objects that allow 2D drawing by
using a QPainter instance. QPaintEngine provides the interface that
defines how QPainter paints to a specified device on a specified platform.
The QPaintEngine class is an abstract class that is used internally by
QPainter and QPaintDevice.

Let's have a look at the hierarchy of painting-related classes to get a better
idea of how to choose the right classes while using the paint system.

Figure 8.2 – The hierarchy of paint classes in Qt

The preceding hierarchical approach illustrates that all drawing approaches
follow the same mechanism. So, it is easy to add provisions for new
features and provide default implementations for unsupported ones.

Let's discuss the coordinate system in the next section.

Using the coordinate system

The QPainter class controls the coordinate system. It forms the basis of
Qt's painting system along with the QPaintDevice and QPaintEngine
classes. The default coordinate system of a paint device has its origin in the
top-left corner. The primary function of QPainter is to perform drawing
operations. While the QPaintDevice class is an abstraction of a two-
dimensional space, which can be painted on using QPainter, the
QPaintEngine class offers a painter with the interface to draw on different
types of devices. The QPaintDevice class is the base class of objects that
can be painted, which inherits its drawing capabilities from the QWidget,
QImage, QPixmap, QPicture, and QOpenGLPaintDevice classes.

You can learn more about the coordinate system in the following
documentation:

https://doc.qt.io/qt-6/coordsys.html

Drawing and fi l l ing

QPainter provides a painter with highly optimized functions for most of
the drawing requirements on the GUI. It can draw various types of shapes
ranging from simple graphical primitives (such as QPoint, QLine, QRect,

QRegion, and QPolygon classes) to complex shapes such as vector paths.
The vector paths are represented by the QPainterPath class.
QPainterPath works as a container for painting operations, allowing
graphical shapes to be constructed and reused. It can be used for filling,
outlining, and clipping. QPainter can also draw aligned text and pixmaps.
To fill the shapes drawn by QPainter, you can use the QBrush class. It has
color, style, texture, and gradient attributes and is defined with color and
style.

In the next section, we will use the APIs discussed so far to draw using
QPainter.

Drawing with QPainter

QPainter has several convenience functions to draw most primitive shapes,
such as drawLine(), drawRect(), drawEllipse(), drawArc(), drawPie(),
and drawPolygon(). You can fill the shapes using the fillRect() function.
The QBrush class describes the fill pattern of shapes drawn by QPainter.
A brush can be used to define the style, color, gradient, and texture.

Let's look at the following paintEvent() function where we have used
QPainter to draw text and different shapes:

void PaintWindow::paintEvent(QPaintEvent *event)

{

 QPainter painter;

 painter.begin(this);

 //draws a line

 painter.drawLine(QPoint(50, 50), QPoint(200, 50));

 //draws a text

 painter.drawText(QPoint(50, 100), "Text");

 //draws an ellipse

 painter.drawEllipse(QPoint(100,150),50,20);

 //draws an arc

 QRectF drawingRect(50, 200, 100, 50);

 int startAngle = 90 * 16;

 int spanAngle = 180 * 16;

 painter.drawArc(drawingRect, startAngle, spanAngle);

 //draws a pie

 QRectF drawingRectPie(150, 200, 100, 50);

 startAngle = 60 * 16;

 spanAngle = 70 * 16;

 painter.drawPie(drawingRectPie, startAngle, spanAngle);

 painter.end();

 QWidget::paintEvent(event);

}

In the preceding example, we have created a QPainter instance and painted
a line, text, ellipse, arc, and pie using the available default drawing
functions. When you add the preceding code into your custom class and run
the project, you will see the following output:

Figure 8.3 – Output of drawing with QPainter example

Qt provides several offscreen drawing classes, each with its own set of
advantages and disadvantages. QImage, QBitmap, QPixmap, and
QPicture are the classes involved. In most cases, you must choose between
QImage and QPixmap.

The QImage class in Qt allows for easy image reading, writing, and
manipulation. QImage is the class to use if you're working with resources,
combining multiple images, and doing some drawing:

QImage image(128, 128, QImage::Format_ARGB32);

QPainter painter(&image);

The first line creates an image that's 128 pixels square, encoding each pixel
a 32-bit integer – 8 bits for each channel of opacity, red, green, and blue.
The second line creates a QPainter instance that can draw on the QImage
instance. Next, we perform the drawing you just saw in the previous

section, and when we're done, we write the image to a PNG file, with the
following line:

image.save("image.png");

QImage supports several image formats, including PNG and JPEG.
QImage also has a load method, where you can load an image from a file
or resource.

The QBitmap class is a monochromatic offscreen paint device that
provides a pixmap with a depth of 1 bit. The QPixmap class provides an
offscreen paint device. The QPicture class is a paint device that serializes
QPainter commands.

You can also use the QImageReader and QImageWriter classes to have
more fine-grained control over how images are loaded and saved. To add
support for image formats other than those provided by Qt, image format
plugins can be created using QImageIOHandler and QImageIOPlugin.
The QPainterPath class helps in drawing different graphical shapes that
can be created and reused. The following code snippet demonstrates how to
use QPainterPath:

void MyWidget:: paintEvent(QPaintEvent *event)

{

 QPainter painter(this);

 QPolygon polygon;

 polygon << QPoint(100, 185) << QPoint(175, 175)

 << QPoint(200, 110) << QPoint(225, 175)

 << QPoint(300, 185) << QPoint(250, 225)

 << QPoint(260, 290) << QPoint(200, 250)

 << QPoint(140, 290) << QPoint(150, 225)

 << QPoint(100, 185);

 QBrush brush;

 brush.setColor(Qt::yellow);

 brush.setStyle(Qt::SolidPattern);

 QPen pen(Qt::black, 3, Qt::DashDotDotLine,

 Qt::RoundCap, Qt::RoundJoin);

 painter.setPen(pen);

 QPainterPath path;

 path.addPolygon(polygon);

 painter.drawPolygon(polygon);

 painter.fillPath(path, brush);

 QWidget:: paintEvent(event);

}

In the preceding code, we have created a custom-drawn polygonal object
with the desired painter path.

NOTE
Please note that while doing a paint operation, ensure that there is no delay between
painting the background and painting the content. Otherwise, you will notice flickering on
the screen if the delay is more than 16 milliseconds. You can avoid this by rendering the
background into a pixmap, then painting the content onto that pixmap. Finally, you can draw
that pixmap onto the widget. This approach is known as double buffering.

In this section, we have learned not only how to draw an image on the
screen, but also how to draw it off the screen and save it as an image file. In
the next section, we will learn about the basics of the Graphics View
framework.

Introducing the Graphics View framework
The Graphics View framework is a powerful graphics engine that allows
you to visualize and interact with a large number of custom-made 2D
graphical items. If you are an experienced programmer, you can use the
graphics view framework to draw your GUI and have it animated
completely manually. To draw hundreds or thousands of relatively
lightweight customized items at once, Qt provides a separate view
framework, the Graphics View framework. You can make use of the
Graphics View framework if you are creating your own widget set from
scratch, or if you have a large number of items to display on the screen at
once, each with its own position and data. This is especially important for
applications that process and display a large amount of data, such as
geographic information systems or computer-aided design software.

Graphics View offers a surface for managing as well as interacting with a
multitude of custom-created 2D graphical items, and a view widget for
visualizing the items, with zooming and rotation support. The framework
consists of an event propagation architecture that enables interaction
capabilities for the scene's items. These items respond to key events; mouse
press, move, release, and double-click events; as well as tracking mouse
movement. Graphics View employs a Binary Space Partitioning (BSP)
tree to provide very fast item discovery, allowing it to visualize large scenes
in real time, even when there are millions of items.

The framework follows an item-based approach to model/view
programming. It comprises three components, scene, view, and item.
Multiple views can use the same scene and the scene can contain multiple
items. The convenience classes provided by Qt to implement the Graphics

View framework are QGraphicsScene, QGraphicsView, and
QGraphicsItem.

QGraphicsItem exposes an interface that your subclass can override to
manage mouse and keyboard events, drag and drop, interface hierarchies,
and collision detection. Each item has its own local coordinate system, and
helper functions allow you to quickly transform an item's coordinates to the
scene's coordinates. The Graphics View framework displays the contents of
a QGraphicsScene class using one or more QGraphicsView instances. To
see different parts of the scene, you can attach multiple views to the same
scene, each with its own translation and rotation. Because the
QGraphicsView widget is a scroll area, you can also attach scroll bars to
the view and allow the user to scroll around it. The view receives keyboard
and mouse input, generates scene events for the scene, and dispatches those
scene events to the scene, which then dispatches those same events to the
scene's items. Previously, the framework was preferred for games
development.

IMPORTANT NOTE
We will skip the details about the usages of the framework and examples as it lost its
popularity after Qt Quick 2 came into existence. Qt Quick 2 comes with the Scene Graph
API, which provides most of the functionalities that were earlier offered by the Graphics
View framework. If you'd still like to learn more about the Graphics View framework, you can
read the following documentation:

https://doc.qt.io/qt-6/graphicsview.html

In this section, we discussed Qt's Graphics View framework. In the next
section, we will learn about OpenGL integration with Qt.

Understanding the Qt OpenGL module
Qt Quick and Qt Widgets are the two main approaches to user interface
(UI) development in Qt. They exist to support various types of UIs and are
built on separate graphics engines that have been optimized for each of
these. It is possible to combine OpenGL graphics API code with both of
these UI types in Qt. This is useful when the application contains its own
OpenGL-dependent code or when integrating with a third-party OpenGL-
based renderer. The OpenGL/OpenGL ES XML API Registry is used to
generate the OpenGL header.

The Qt OpenGL module is intended for use with applications that require
OpenGL access. The convenience classes in the Qt OpenGL module help
developers build applications more easily and faster. This module is
responsible for maintaining compatibility with Qt 5 applications and Qt
GUI. QOpenGLWidget is a widget that can add OpenGL scenes to UIs
that use QWidget.

With the introduction of Qt RHI as the rendering foundation in Qt, most
classes denoted by QOpenGL have been moved to the Qt OpenGL module
in Qt 6. The classes are still usable and fully supported for applications that
rely solely on OpenGL. They are no longer considered essential because Qt
has been extended to support other graphics APIs, such as Direct3D, Metal,
and Vulkan, in its foundation.

Existing application code will mostly continue to work, but it should now
include Qt OpenGL in project files, as well as the headers if they were
previously included indirectly via Qt GUI.

Qt 6 no longer directly employs OpenGL-compatible GLSL source
snippets. Shaders are instead written in Vulkan-style GLSL, reflected and
translated to other shading languages, and packaged into a serializable
QShader object that QRhi can consume.

The shader preparation pipeline in Qt 6 is the following:

Figure 8.4 – Illustration of the shader preparation pipeline as described in the Qt blog

With Qt 6.1, Qt Data Visualization supports only the OpenGL RHI
backend. It requires the setting of the environment variable
QSG_RHI_BACKEND to opengl. You can do this at the system level, or
define it in main() as follows:

qputenv("QSG_RHI_BACKEND","opengl");

Let's discuss how the framework is used with Qt Widgets in the next
section.

Qt OpenGL and Qt Widgets

Qt Widgets is typically rendered by a highly optimized and accurate
software rasterizer, with the final content being displayed on the screen
using a method appropriate for the platform on which the application is
running. However, Qt Widgets and OpenGL can be combined. The
QOpenGLWidget class is the primary entry point for this. This class can
be used to enable OpenGL rendering for a specific part of the widget tree,
and the Qt OpenGL module's classes can be used to help with any
application-side OpenGL code.

IMPORTANT NOTE
ANGLE, a third-party OpenGL ES to Direct3D translator, is no longer included with Qt 6 on
Windows. For QWindow or QWidget based applications with OpenGL implementations,
there are no other options but to directly call the OpenGL APIs at runtime. For Qt Quick and
Qt Quick 3D applications, Qt 6 introduced support for Direct3D 11, Vulkan, and Metal, in
addition to OpenGL. On Windows, the default choice remains Direct3D, therefore the
removal of ANGLE is eased by having support for graphics APIs other than OpenGL as
well.

In this section, we learned how to use Qt's Open GL module. Let's move on
to the next section, where we'll discuss graphics in Qt Quick in detail.

Graphics in Qt Quick
Qt Quick is designed to take advantage of hardware-accelerated rendering.
It will be built by default on the low-level graphics API that is most

appropriate for the target platform. On Windows, for example, it will
default to Direct3D, whereas on macOS, it will default to Metal. For
rendering, Qt Quick applications make use of a scene graph. The scene
graph renderer can make more efficient graphics calls, which improves
performance. The scene graph has an accessible API that allows you to
create complex but fast graphics. The Qt Quick 2D Renderer can also be
used to render Qt Quick. This raster paint engine allows Qt Quick
applications to be rendered on platforms that do not support OpenGL.

Qt uses the most appropriate graphics API on the target platform by default.
However, it is possible to configure Qt's rendering path to use a specific
API. In many cases, selecting a specific API improves performance and
allows developers to deploy on platforms that support a specific graphics
API. To change the render path in QQuickWindow, you can use the QRhi
interface.

In the following sections, we will have a look at some functionalities that
will further enhance your graphics-related skills in Qt Quick. Let's begin by
discussing how we can use OpenGL in Qt Quick.

Qt OpenGL and Qt Quick

On platforms that support OpenGL, it is possible to manually select it as the
active graphics API. In order to use this functionality when working with Qt
Quick, the application should manually set the rendering backend to
OpenGL in addition to adjusting project files and including headers.

With Qt 6, there is no direct way of OpenGL rendering using Qt Quick. The
QRhi-based rendering path of the Qt Quick scene graph is now the new

default. Aside from the defaults, the methods for configuring which QRhi
backend and thus which graphics API to use remain largely unchanged
from Qt 5.15. One key difference in Qt 6 is improved API naming. Now,
you can set the RHI backend by calling the
QQuickWindow::setGraphicsApi() function, whereas earlier this was
achieved by calling the QQuickWindow::setSceneGraphBackend()
function.

You can learn more about the changes in the following article:

https://www.qt.io/blog/graphics-in-qt-6.0-qrhi-qt-quick-qt-quick-3d

Custom Qt Quick items using QPainter

You can also make use of QPainter in your Qt Quick application. This can
be done by subclassing QQuickPaintedItem. With the help of this
subclass, you can render content using a QPainter instance. To render its
content, the QQuickPaintedItem subclass uses an indirect 2D surface by
either using software rasterization or using an OpenGL Framebuffer
Object (FBO). Rendering is a two-step operation. The paint surface is
rasterized before drawing. However, drawing using a scene graph is
significantly faster than this rasterization approach.

Let's explore the scene graph mechanism used by Qt Quick.

Understanding the Qt Quick scene graph
Qt Quick 2 employs a dedicated scene graph that is traversed and rendered
using a graphics API, including OpenGL, OpenGL ES, Metal, Vulkan, or

Direct 3D. Using a scene graph for graphics instead of traditional
imperative painting systems (QPainter and similar), allows the scene to be
rendered to be retained between frames and the entire set of primitives to
render to be known before rendering begins. This allows for a variety of
optimizations, including batch rendering to reduce state changes and
discarding obscured primitives.

Let's assume a GUI comprises a list of 10 elements and each one has a
different background color, text, and icon. This would give us 30 draw calls
and an identical number of state changes using traditional drawing
techniques. Contrarily, a scene graph reorganizes the primitives to render so
that one call can draw all backgrounds, icons, and text, dropping the total
number of draw calls to three. This type of batching and state change
reduction can significantly improve performance on some hardware.

The scene graph is inextricably linked to Qt Quick 2 and cannot be used
independently. The QQuickWindow class manages and renders the scene
graph, and custom Item types can add their graphical primitives to the
scene graph by calling QQuickItem::updatePaintNode().

The scene graph represents an Item scene graphically and is a self-
contained structure that has enough information to render all of the items.
Once configured, it can be manipulated and rendered regardless of the state
of the items. On several platforms, the scene graph is even rendered on a
separate render thread while the GUI thread prepares the state for the next
frame.

In the following sections, we will dive deeper to improve our understanding
of the scene graph structure and then learn the rendering mechanism.

Further, we will be mixing the scene graph and the Native Graphics API
while using Qt Quick 3D.

Qt Quick scene graph structure

The scene graph is made up of a variety of predefined node types, each of
which serves a specific purpose. Although we call it a scene graph, a node
tree is a more precise definition. The tree is constructed from QQuickItem
types in the QML scene, and the scene is then internally processed by a
renderer, which draws the scene. There is no active drawing code in the
nodes themselves.

Although the node tree is mostly built internally by the existing Qt Quick
QML types, users can add complete subtrees with their own content,
including subtrees that represent 3D models.

Node

Material

QSGGeometryNode is the most important node for users. It creates
customized graphics by specifying their geometry and material. The
QSGGeometry class describes the shape or mesh of the graphical primitive
and is used to define the geometry. It can define everything, be it a line, a
rectangle, a polygon, a collection of disconnected rectangles, or a complex
3D mesh. The material defines how the pixels for a specific shape are filled.
There can be multiple children for a node. The geometry nodes are rendered
as per the child order and the parent nodes can be found behind their
children.

The material describes how a geometry's interior in QSGGeometryNode is
filled. It encapsulates graphics shaders for the vertex and fragment stages of
the graphics pipeline and provides a great deal of flexibility in what can be
done, even though the majority of Qt Quick items only use very basic
materials such as solid color and texture fills.

The scene graph API is low-level and prioritizes performance over
convenience. Creating the most basic custom geometries and materials from
scratch requires a significant amount of code input. As a result, the API
includes a few convenience classes that make the most commonly used
custom nodes easily accessible.

In the next section, we will discuss how the rendering is done in a scene
graph.

Rendering using a scene graph

A scene graph is internally rendered in the QQuickWindow class, and
there is no public API to access it. However, there are a few points in the
rendering pipeline where the user can insert application code. These points
can be used for adding custom scene graph content or for inserting arbitrary
rendering commands by calling the scene graph's graphics API (OpenGL,
Vulkan, Metal, and so on) directly. The render loop determines the
integration points.

There are two types of render loops in a scene graph:

basic is a single-threaded renderer.

threaded is a multithread renderer that renders on a different thread.

Qt tries to select an appropriate render loop based on the platform and
underlying graphics capabilities. When this is not sufficient, or during
testing, the environment variable QSG_RENDER_LOOP can be used to
force the use of a specific type of renderer loop. You can find the type of
render loop in use by enabling the qt.scenegraph.general logging category.

In most applications that use a scene graph, the rendering takes place on a
separate render thread. This is done to improve multi-core processor
parallelism and make better use of stall times such as waiting for a blocking
swap buffer call. This provides significant performance improvements, but
it limits where and when interactions with the scene graph can occur.

The following diagram depicts how a frame is rendered using the threaded
render loop and OpenGL. Apart from the OpenGL context specifics, the
steps are the same for other graphics APIs as well:

Figure 8.5 – Rendering sequence followed in a threaded render loop

Currently, the threaded renderer is used by default on Windows with
Direct3D 11 or higher. You can force the use of the threaded renderer by
setting QSG_RENDER_LOOP to threaded in the environment. However,
the threaded render loop depends on the graphics API implementation for
throttling. When building with Xcode 10 or later on macOS and OpenGL,
the threaded render loop is not supported. For Metal, there are no such
limitations.

If your system is not capable of providing Vsync-based throttling, then use
the basic render loop by setting the environment variable
QSG_RENDER_LOOP to basic. The following steps describe how a
frame is rendered in a basic or non-threaded render loop:

Figure 8.6 – Rendering sequence followed in a non-threaded render loop

When the platform's standard OpenGL library is not used, then by default
the non-threaded render loop is used on OpenGL-enabled platforms. This is
primarily a preventive strategy for the latter because not all the
combinations of OpenGL drivers and windowing systems have been
verified. You may consider writing your code as if you are using the
threaded renderer even if you are using the non-threaded render loop
because otherwise, your code won't be portable.

To find further information on the workings of the scene graph renderer,
you may visit the following link:

https://doc-snapshots.qt.io/qt6-dev/qtquick-visualcanvas-scenegraph.html

In this section, you got to know about the rendering mechanism behind the
scene graph. In the next section, we will discuss how to mix a scene graph
with the Native Graphics API.

Using a scene graph with the Native
Graphics

The scene graph provides two methods for mixing the scene graph with the
Native Graphics APIs. The first approach is by directly issuing commands
to the underlying graphics engine, and the second approach is by generating
a textured node in the scene graph. Applications can make OpenGL calls
directly into the same context as the scene graph by connecting to the
QQuickWindow::beforeRendering() and
QQuickWindow::afterRendering() signals. Applications using APIs such

as Metal or Vulkan can request native objects, such as the scene graph's
command buffer, through QSGRendererInterface. Then the user can
render content either within or outside of the Qt Quick scene. The
advantage of mixing the two is that no additional framebuffer or memory is
required to execute the rendering, and a potentially costly texturing step is
avoided. The disadvantage is that Qt Quick chooses when to invoke the
signals. The OpenGL engine is only allowed to draw during that time.

Beginning with Qt 6.0, direct use of the Native Graphics API must be
invoked before the calls to the
QQuickWindow::beginExternalCommands() and
QQuickWindow::endExternalCommands() functions. This approach is
identical to QPainter::beginNativePainting(), and it serves the same
purpose. It allows the scene graph to identify any cached state or
assumptions about the state inside the presently recorded render pass. If
anything exists, then it becomes invalid as the code may have changed it by
interacting directly with the Native Graphics API.

IMPORTANT NOTE
When combining OpenGL content with scene graph rendering, it is crucial that the
application doesn't leave the OpenGL context with buffers bound, attributes enabled, or
specific values in the stencil buffer, or something similar. If you forget this, then you will see
unexpected behavior. The custom rendering code must be thread-aware.

The scene graph also provides support with several logging categories.
These are useful in finding the root cause of performance issues and bugs.
The scene graph features an adaptation layer in addition to the public API.
The layer allows you to implement certain hardware-specific adaptations. It

has an internal and proprietary plugin API that allows hardware adaption
teams to get the most out of their hardware.

IMPORTANT NOTE
If you are observing graphics-related issues or to find which type of rendering loop or
graphics API is currently used, start the application by setting the environment variable
QSG_INFO to 1 or by enabling at least qt.scenegraph.general and qt.rhi.*. During
initialization, this will print some crucial information required to debug the graphics issues.

3D graphics with Qt Quick 3D

Qt Quick 3D is a Qt Quick add-on that provides a high-level API for
creating 3D content and 3D user interfaces. It extends the Qt Quick scene
graph, allowing you to integrate 3D content into 2D Qt Quick applications.
Qt Quick 3D is a high-level API for creating 3D content and 3D user
interfaces on the Qt Quick platform. Rather than relying on an external
engine, which introduces syncing issues and additional layers of
abstraction, we provide spatial content extensions to the existing Qt Quick
scene graph, as well as a renderer for that extended scene graph. It is also
possible to mix Qt Quick 2D and 3D content when using the spatial scene
graph.

The following import statement in your .qml file can be used to import the
QML types into your application:

import QtQuick3D

In addition to the base Qt Quick 3D model, additional functionality is
provided by the following module imports:

import QtQuick3D.Effects

import QtQuick3D.Helpers

Qt Quick 3D is available for purchase under a commercial license. When
building from source, make sure the modules and tools from the
qtdeclarative and qtshadertools repositories are built first, as Qt Quick 3D
cannot be used without them.

Let's discuss shader tools and shader effects in the next section.

Shader effects
For importing shaders into 3D scenes, Qt Quick 3D has its own framework.
Shader effects enable the full, raw power of a graphics processing unit to
be directly utilized via vertex and fragment shaders. Too many shader
effects can result in increased power consumption and sometimes slow
performance, but when used sparingly and carefully, a shader can allow
complex and visually appealing effects to be applied to a visual object.

Both shaders are bound to the vertexShader and fragmentShader
properties. Every shader's code requires a main(){…} function, which is
executed by the GPU. A variable with the prefix qt_ is provided by Qt. To
understand the variables in shader code, have a look at the OpenGL API
reference document.

When working with ShaderEffect or subclassing QSGMaterialShader in
QML applications using Qt Quick, the application must provide a baked
shader pack in the form of a .qsb file. The Qt Shader Tools module includes
a command-line tool called qsb. It incorporates third-party libraries such as
glslang and SPIRV-Cross, as well as external tools such as fxc and spirv-
opt, and generates .qsb files. The ShaderEffect QML type and

QSGMaterial subclasses, in particular, can make use of qsb output. It can
also be used to inspect the contents of a .qsb package. The input file
extension is used to determine the type of shader. As a result, the extension
has to be one of the following:

.vert – Vertex shaders

.frag – Fragment shaders

.comp – Compute shaders

The example assumes myeffect.vert and myeffect.frag contain Vulkan-
style GLSL code, processed by the qsb tool in order to generate the .qsb
files. Now we convert that Vulkan-Style shader with qsb via the following
command:

>qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -o <Output_File.qsb>

<Input_File.frag>

You can see an example of using the preceding syntax in the following
command:

>C:\Qt\6.0.2\mingw81_64\bin>qsb --glsl 100es,120,150 --hlsl 50 --

msl 12 -o myeffect.frag.qsb myeffect.frag

It is not necessary to specify both vertexShader and fragmentShader.
Many ShaderEffect implementations will only provide a fragment shader
in practice, instead of relying on the built-in vertex shader.

You can learn more about the shader tools at the following link:

https://doc.qt.io/qt-6/qtshadertools-qsb.html

Let's use shader effects in an example:

import QtQuick

import QtQuick.Window

Window {

 width: 512

 height: 512

 visible: true

 title: qsTr("Shader Effects Demo")

 Row {

 anchors.centerIn: parent

 width: 300

 spacing: 20

 Image {

 id: originalImage

 width: 128; height: 94

 source: "qrc:/logo.png"

 }

 ShaderEffect {

 width: 160; height: width

 property variant source: originalImage

 vertexShader: "grayeffect.vert.qsb"

 fragmentShader: "grayeffect.frag.qsb"

 }

 }

}

In the preceding example, we arranged two images in a row. The first one is
the original image and the second one is the image with the shader effect.

In this section, you learned about different types of shader effects in Qt
Quick and how to use the qsb tool to create compatible fragment files. In
the next section, you will learn how to draw using Canvas.

Using the Canvas QML type
Canvas allows you to draw straight and curved lines, simple and complex
shapes, graphs, and graphic images that have been referenced. Text, colors,
shadows, gradients, and patterns can also be added, as well as low-level
pixel operations. You can save a Canvas output as an image. It provides a
2D canvas that uses a Context2D object for drawing and implements a
paint signal handler.

Let's have a look at the following example:

import QtQuick

import QtQuick.Window

Window {

 width: 512

 height: 512

 visible: true

 title: qsTr("Canvas Demo")

 Canvas {

 id: canvas

 anchors.fill: parent

 onPaint: {

 var context = getContext("2d")

 context.lineWidth = 2

 context.strokeStyle = "red"

 context.beginPath()

 context.moveTo(100,100)

 context.lineTo(250,100)

 context.lineTo(250,150)

 context.lineTo(100,150)

 context.closePath()

 context.stroke()

 }

 }

}

In the preceding example, first, we got the context from getContext("2d").
Then we drew a rectangle with a red border. The output looks as follows:

Figure 8.7 – Output of sample application using Canvas to draw a rectangle

In this section, you got familiar with drawing using Canvas. In the next
section, we will discuss particle systems in Qt Quick.

Understanding particle simulations

Using particle systems, you can simulate effects such as explosions,
fireworks, smoke, fog, and wind. Qt Quick includes a particle system that
enables these types of complex, 2D simulations, including support for
environmental effects such as gravity and turbulence. Particles are most
commonly used in games to add subtle and visually appealing effects to
currently selected items in lists or activity notifiers.

ParticleSystem, Painters, Emitters, and Affectors are the four main QML
types in this particle system. The ParticleSystem system includes painter,
emitter, and affector types. The ParticleSystem type connects all of these
types and manages the shared timeline. They must all share the same
ParticleSystem in order to interact. Subject to this constraint, you may
have as many particle systems as you want, so the logical separation is to
have one ParticleSystem type for all the types with which you want to
interact, or just one if the number of types is small and easily controlled.

To use ParticleSystem, import the module with the following line:

import QtQuick.Particles

The emitter produces particles. The emitter can no longer change a particle
after it has been emitted. You can use affectors type to influence particles
after they have been emitted.

Each type of affector affects particles differently:

Age: Modifies the particle's lifespan

Attractor: Draws particles towards a certain location

Friction: Slows movement proportionate to the particle's present
velocity

Gravity: Sets acceleration at an angle

Turbulence: Liquid-like behavior based on a noise image

Wander: Changes the route randomly

GroupGoal: Changes the state of a particle group

SpriteGoal: Changes the state of a sprite particle

Let's understand the use of ParticleSystem with the following example:

 ParticleSystem {

 id: particleSystem

 anchors.fill: parent

 Image {

 source: "qrc:/logo.png"

 anchors.centerIn: parent

 }

 ImageParticle {

 system: particleSystem

 source: "qrc:/particle.png"

 colorVariation: 0.5

 color: "#00000000"

 }

 Emitter {

 id: emitter

 system: particleSystem

 enabled: true

 x: parent.width/2; y: parent.height/2

 maximumEmitted: 8000; emitRate: 6000

 size: 4 ; endSize: 24

 sizeVariation: 4

 acceleration: AngleDirection {

 angleVariation: 360; magnitude: 360;

 }

 }

 }

In the preceding code, we have used the Qt logo, which is emitting particles
around it. We have created an instance of ImageParticle that creates
particles that are emitted by Emitter. The AngleDirection type is used to
decide the angle and direction of particle emission. Since we want the
particles to be emitted around the logo, we have used 360 for both
attributes. The output of the preceding example is shown in Figure 8.8:

Figure 8.8 – Output of the above particle system example

You can explore more about these QML types on the following website:

https://qmlbook.github.io/

In this section, we discussed different types of drawing mechanisms and
components in Qt Quick. In the next section, we will learn how to do
animation in Qt Widgets.

Animation in Qt Widgets
The animation framework simplifies the process of animating a GUI
element by allowing its properties to be animated. Easing curves are used
to control the animations. Easing curves describe a function that controls
the animation's speed, resulting in various acceleration and deceleration
patterns. Qt supports linear, quadratic, cubic, quartic, sine, exponential,

circular, and elastic easing curves. The property animation class provided
by Qt, known as the QPropertyAnimation class, is one of the more
common ways to animate a GUI element. This class is part of the animation
framework, and it uses Qt's timer system to change the properties of a GUI
element over a specified time period.

To create animations for our GUI application, Qt provides us with several
subsystems, including a timer, timeline, animation framework, state
machine framework, and the Graphics View framework.

Let's discuss how to use property animation with QPushButton in the
following code:

QPropertyAnimation *animatateButtonA = new

QPropertyAnimation(ui->pushButtonA, "geometry");

animatateButtonA->setDuration(2000);

animatateButtonA->setStartValue(ui->pushButtonA->geometry());

animatateButtonA->setEndValue(QRect(100, 150, 200, 300));

In the preceding code snippet, we animated a push button from one position
to another position and changed the button size. You can add easing curve
to control the animation simply by adding it to the property animation
before calling the start() function. You can also experiment with different
types of easing curves to see which one works best for you.

Property animations and animation groups are both inherited from the
QAbstractAnimator class. Hence, you can add one animation group to
another to create a more complex, nested animation group. Qt currently
provides two types of animation group classes, QParallelAnimationGroup
and QSequentialAnimationGroup.

Let's use the QSequentialAnimationGroup group to manage the states of
the animations within it:

QSequentialAnimationGroup *group = new QSequentialAnimationGroup;

group->addAnimation(animatateButtonA);

group->addAnimation(animatateButtonB);

group->addAnimation(animatateButtonC);

You can explore more about Qt's animation framework at the following
link:

https://doc.qt.io/qt-6/animation-overview.html

In this section, we discussed animation in Qt Widgets. In the next section,
you will learn how to do animation in Qt Quick.

Animation and transitions in Qt Quick
In this section, you will learn how to create animation and add transitions in
Qt Quick. To create an animation, you need to choose a proper animation
type for the type of the property that is to be animated and then apply the
animation for the required behavior.

Qt Quick has different types of animations, such as the following:

Animator: It is a special type of animation that operates directly on Qt
Quick's scene graph.

AnchorAnimation: It is used for animating an anchor change.

ParallelAnimation: It runs animations in parallel.

ParentAnimation: It is used for animating a parent change.

PathAnimation: It animates an item along a path.

PauseAnimation: It enables pauses during animations.

PropertyAnimation: It animates changes in property values.

SequentialAnimation: It runs animations sequentially.

ScriptAction: During an animation, it allows JavaScript to be executed.

PropertyAction: It can change a property immediately during an
animation, without the need to animate a property change.

Figure 8.9 shows the hierarchy of animation classes:

Figure 8.9 – The hierarchy of animation classes in Qt Quick

PropertyAnimation provides a way to animate changes to a property's
value. Different subclasses of PropertyAnimation are as follows:

ColorAnimation: Animates changes in color values

NumberAnimation: Animates changes in qreal-type values

RotationAnimation: Animates changes in rotation values

Vector3dAnimation: Animates changes in QVector3d values

It can be used to define animations in several ways:

In a Transition

In a Behavior

As a property

In a signal handler

Standalone

Property values are animated by applying animation types to them. To
create smooth transitions, animation types will interpolate property values.
State transitions can also assign animations to state changes:

SmoothedAnimation: It is a specialized NumberAnimation subclass.
In animation, when the target value is changed, SmoothAnimation
ensures smooth changes.

SpringAnimation: With its specialized attributes including mass,
damping, and epsilon, it provides a spring-like animation.

Animation can be set for an object in different ways:

Direct property animation

Predefined targets and properties

Animation as behaviors

Transitions during state changes

Animations are created by applying animation objects to property values in
order to change the properties gradually over time. Smooth movements are
used in these property animations by interpolating values between property

value changes. Property animations allow for different interpolations and
timing controls via easing curves.

The following code snippet demonstrates two PropertyAnimation objects
using predefined properties:

Rectangle {

 id: rect

 width: 100; height: 100

 color: "green"

 PropertyAnimation on x { to: 200 }

 PropertyAnimation on y { to: 200 }

}

In the preceding example, the animation will begin as soon as the
Rectangle is loaded and is applied to its x and y values automatically. Here,
we have used the <AnimationType> on <Property> syntax. Hence, it is
not required to set the target and the property values to x and y.

Animations may be shown sequentially or parallelly. While sequential
animations play a group of animations serially, parallel animations play a
group of animations at the same time. Therefore, when animations are
grouped inside a SequentialAnimation or a ParallelAnimation, they will
be played sequentially or parallelly. SequentialAnimation can also be used
for playing Transition animations since transition animations are
automatically played in parallel. You can group the animations to ensure
that all animations within a group are applied to the same property.

Let's use SequentialAnimation to animate the rectangle's color in the
following example:

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Sequential Animation Demo")

 Rectangle {

 anchors.centerIn: parent

 width: 100; height: 100

 radius: 50

 color: "red"

 SequentialAnimation on color {

 ColorAnimation { to: "red"; duration: 1000 }

 ColorAnimation { to: "yellow"; duration: 1000 }

 ColorAnimation { to: "green"; duration: 1000 }

 running:true

 loops: Animation.Infinite

 }

 }

}

In the preceding example, we have used SequentialAnimation on the color
property using the <AnimationType> on <Property> syntax. As a result,
the child ColorAnimation objects are automatically added to this property,
and no target or property animation values are needed.

You can use Behavior animations to set the default property animations.
Animations specified in Behavior types are applied to the property and
animate any property value changes. To intentionally enable or disable the
behavior animations, you can use the enabled property. You can use several
methods to assign behavior animations to properties. One of the methods is
the Behavior on <property> declaration. It conveniently assigns a
behavior animation onto a property.

Animator types are distinct from normal Animation types. Let's create a
simple example where we rotate an image using an Animator:

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Animation Demo")

 Image {

 anchors.centerIn: parent

 source: "qrc:/logo.png"

 RotationAnimator on rotation {

 from: 0; to: 360;

 duration: 1000

 running:true

 loops: Animation.Infinite

 }

 }

}

In the preceding example, we have used the RotationAnimator type,
which is used to animate the rotation of an Image QML type.

In this section, we discussed different types of animations in Qt Quick and
created several examples. In the next section, we will discuss how to
control animations.

Controll ing animations

Controlling animations can be done in a variety of ways. The Animation
type is the ancestor of all animation types. This type does not allow the
creation of Animation objects. It equips a user with the necessary
properties and methods to use animation types. All animation types consist
of start(), stop(), resume(), pause(), restart(), and complete(), and they
control how animations are executed.

The animation's interpolation between the start and end values is defined by
the easing curves. Different easing curves may extend beyond the defined
interpolation range. The easing curves make it easier to create animation
effects such as bounce, acceleration, deceleration, and cyclical animations.

In a QML object, each property animation may have a distinct easing curve.
The curve can be controlled with various parameters and some of these
parameters are unique to a particular curve. Visit the easing documentation
for more information on easing curves.

In this section, you learned about the way to control animations in Qt
Quick. In the next section, you will learn how to use states and transitions.

States, state machine, and transitions in
Qt Quick
Qt Quick states are property configurations in which a property's value can
change to reflect different states. State changes cause abrupt changes in
property; animations smooth transitions to create visually appealing state
changes. Types for creating and executing state graphs in QML are
provided by the Declarative State Machine Framework. Consider using the
QML states and transitions for user interfaces with multiple visual states
that are independent of the application's logical state.

You can import the state machine module and the QML types into your
application by adding the following statement:

import QtQml.StateMachine

Please note that there are two ways to define the states in QML. One is
provided by QtQuick and the other by the QtQml.StateMachine module.

IMPORTANT NOTE
While using QtQuick and QtQml.StateMachine in a single QML file, make sure to import
QtQml.StateMachine after QtQuick. In this approach, the State type is provided by the
Declarative State Machine Framework, not by QtQuick. To avoid any ambiguity with
QtQuick's State item, you can import QtQml.StateMachine into a different namespace.

To interpolate property changes caused by state changes, the Transition
type can include animation types. Bind the transition to the transitions
property to assign it to an object.

A button can have two states: pressed and released. For each state, we can
assign a different property configuration. A transition would animate the
transition from pressed to released. Similarly, there would be animation
when switching from the released to the pressed state.

Let's have a look at the following example.

Create a circular LED using the Rectangle QML type and add a
MouseArea to it. Assign the default state as OFF and the color as green.
On mouse press, we want to change the LED color to red and once the
mouse is released, the LED becomes green again:

Rectangle {

 id:led

 anchors.centerIn: parent

 width: 100

 height: 100

 radius: 50

 color: "green"

 state: "OFF"

 MouseArea {

 anchors.fill: parent

 onPressed: led.state = "ON"

 onReleased: led.state = "OFF"

 }

}

Next, define the states. In this example, we have two states, ON and OFF.
Here, we are manipulating the color property based on the state change:

states: [

 State {

 name: "ON"

 PropertyChanges { target: led; color: "red"}

 },

 State {

 name: "OFF"

 PropertyChanges { target: led; color: "green"}

 }

]

You can add an animation to the transitions. Let's add ColorAnimation to
the transition to make it smooth and attractive:

transitions: [

 Transition {

 from: "ON"

 to: "OFF"

 ColorAnimation { target: led; duration: 100}

 },

 Transition {

 from: "OFF"

 to: "ON"

 ColorAnimation { target: led; duration: 100}

 }

]

In the preceding example, we have used two states, ON and OFF. We have
used MouseArea to change the states based on mouse press and release
events. When the state is ON, the rectangle color changes to red, and when
it is OFF, the color changes to green. Here, we have also used Transition
to switch between the states.

When the to and from properties are bound to the state's name, the
transition will be associated with the state change. For simple or symmetric
transitions, setting the to property to the wild card symbol "*" implies that
the transition applies to any state change:

transitions: Transition {

 to: "*"

 ColorAnimation { target: led; duration: 100 }

}

You can explore more about the State Machine QML API at the following
link:

https://doc.qt.io/qt-6/qmlstatemachine-qml-guide.html

In this section, you learned about the state machine in Qt Quick. In the next
section, you will learn how to use the state machine in Qt Widgets.

The state machine in Qt Widgets
Classes in the State Machine framework are available for creating and
executing state graphs. The State Machine framework provides an API and
execution model for effectively embedding state chart elements and

semantics in Qt applications. The framework is tightly integrated with Qt's
meta-object system.

There was a major change to the State Machine framework in Qt 6. The
APIs were missing from the Qt 6.0.x core module. With Qt 6.1, the module
was restored as the statemachine module. So, you won't be able to run it in
Qt 6.0.x versions and you will have to add statemachine to the .pro file to
use the framework.

If you are using a qmake based build system, then add the following line to
your .pro file:

QT += statemachine

If you are using a CMake based build system, then add the following to
CMakeLists.txt:

find_package(Qt6 COMPONENTS StateMachine REQUIRED)

target_link_libraries(mytarget PRIVATE Qt6::StateMachine)

You will need the following headers inside your C++ source file:

#include <QStateMachine>

#include <QState>

Let's create a simple Qt Widgets application that implements the state-
machine. Modify the UI form by adding QLabel and QPushButton:

1. Add the following code to the constructor of your custom C++ class:

QState *green = new QState();

green->assignProperty(ui->pushButton, "text", "Green");

green->assignProperty(ui->led,

"styleSheet","background-color: rgb(0, 190, 0);");

green->setObjectName("GREEN");

2. In the preceding code, we created a state to show the green-colored
LED. Next, we will create another state for the red-colored LED:

QState *red = new QState();

red->setObjectName("RED");

red->assignProperty(ui->pushButton, "text", "Red");

red->assignProperty(ui->led, "styleSheet", "background-color:

rgb(255, 0, 0);");

3. Add transitions for the state change events when the button is toggled:

green->addTransition(ui->pushButton,

&QAbstractButton::clicked,red);

red->addTransition(ui->pushButton,

&QAbstractButton::clicked,green);

4. Now create a state machine instance and add the states to it:

QStateMachine *machine = new QStateMachine(this);

machine->addState(green);

machine->addState(red);

machine->setInitialState(green);

5. The last step is to start the state machine:

machine->start();

6. When you run the previous example, you will see an output window
like the following:

Figure 8.10 – Output of the application using the state machine in Qt Widgets

The preceding diagram reinforces that in a parent state machine, only the
states of the child state machine can be specified as transition targets. States
of the parent state machine, on the other hand, cannot be specified as targets
of transitions in the child state machine.

The following article nicely captures the performance considerations while
using a state machine:

https://www.embedded.com/how-to-ensure-the-best-qt-state-machine-
performance/

In this section, we learned about state machines and their usage in Qt
Widgets. We discussed how to implement state machines in both Qt
Widgets and Qt Quick. Let's summarize what we learned in this chapter.

Summary

In this chapter, we discussed different graphics APIs and we learned how to
use the QPainter class to draw graphics both on and off the screen. We also
looked into the Graphics View framework and scene graph rendering
mechanism. We saw how Qt provides the QPaintDevice interface and the
QPainter class to perform graphics operations throughout this chapter. We
also discussed the Graphics View classes, OpenGL framework, and shader
tools. At the end of the chapter, we explored the animation and state
machine framework in both Qt Widgets and Qt Quick.

In Chapter 9, Testing and Debugging, we will learn about debugging and
testing in Qt. It will help you to find the root cause of issues and fix defects.

Chapter 9: Testing and Debugging
Debugging and testing are essential parts of software development. In this
chapter, you will learn how to debug Qt projects, about different debugging
techniques, and about debuggers supported by Qt. Debugging is the process
of discovering the root cause of an error or undesired behavior and
resolving it. We will also discuss unit testing using the Qt Test framework.
Qt Test is a unit testing framework for Qt-based applications and libraries.
It has all of the features that most unit testing frameworks provide.
Additionally, it provides support for testing Graphical User Interfaces
(GUIs). This module helps in writing unit tests for Qt-based applications
and libraries in a convenient way. You will also learn techniques to test a
GUI using different GUI testing tools.

Specifically, we will discuss the following topics:

Debugging in Qt

Debugging strategies

Debugging a C++ application

Debugging a Qt Quick application

Testing in Qt

Integrating with Google's C++ testing framework

Testing Qt Quick applications

GUI testing tools

By the end of this chapter, you will be familiar with debugging and testing
techniques for your Qt application.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest version of a desktop
platform such as Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter09.

IMPORTANT NOTE
The screenshots used in this chapter are taken from the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Debugging in Qt
In software development, technical problems arise often. To address these
issues, we must first identify and resolve all of them before releasing our
application to the public to maintain quality and our reputation. Debugging
is a technique for locating these underlying technological issues.

In the coming sections, we will discuss popular debugging techniques used
by software engineers to ensure their software's stability and quality.

Debuggers supported by Qt

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter09

Qt supports several different types of debuggers. The debugger you use can
vary depending on the platform and compiler you're using for your project.
The following is a list of debuggers that are widely used with Qt:

GNU Symbolic Debugger (GDB) is a cross-platform debugger
developed by the GNU Project.

Microsoft Console Debugger (CDB) is a debugger from Microsoft for
Windows.

Low Level Virtual Machine Debugger (LLDB) is a cross-platform
debugger developed by the LLVM Developer group.

QML/JavaScript Debugger is a QML and JavaScript debugger
provided by the Qt company.

If you're using the MinGW compiler on Windows, you won't need to do any
manual setup with GDB because it's typically included with your Qt
installation. If you're using a different operating system, such as Linux, you
may need to manually install it before linking it to Qt Creator. Qt Creator
automatically detects the presence of the GDB and adds it to its debugger
list.

You can also use Valgrind to debug your application. You can activate the
Valgrind gdbserver by specifying either --vgdb=yes or --vgdb=full. You
can specify --vgdb-error=number to activate gdbserver after a certain
number of errors are displayed. If you set the value to 0, then gdbserver
will be active at initialization, allowing you to set breakpoints before the
application launches. It's worth noting that vgdb is included in the Valgrind
distribution. It does not need to be installed separately.

If your favorite platform is Windows, you can install CDB on your
machine. By default, the built-in debugger of Visual Studio won't be
available. Therefore, you must install the CDB debugger separately by
choosing debugging tools for Windows as an optional component when
installing the Windows SDK. Qt Creator usually recognizes the existence of
CDB and adds it to the debugger list under Options.

Android debugging is a little more challenging than debugging on a regular
desktop environment. Different packages, such as JDK, Android SDK, and
Android NDK, are required for Android development. On the desktop
platform, you will need the Android Debug Bridge (ADB) driver to allow
USB debugging. You must enable developer mode and accept USB
debugging on the Android device to proceed.

The debugger used on macOS and iOS is LLDB. It is included with Xcode
by default. Qt Creator will automatically detect its presence and link it with
a kit. If you're familiar with debuggers and know what you're doing, you
can also add non-GDB debuggers to your favorite IDE.

The debugger plugin determines a suitable native debugger for each
package based on what's available on your machine. You can overcome this
preference by adding new debuggers. You can find the available debuggers
in the Debuggers tab present under the Kits settings under the Options
menu as shown in Figure 9.1:

Figure 9.1 – The Debuggers tab under the Kits selection screen showing the Add button

In the Debuggers tab, you can see Add, Clone, and Remove buttons on the
right side. You can clone an existing debugger configuration and modify it
to suit your requirements. Alternatively, if you are aware of the debugger's
details and configuration, then you can create a new debugger configuration

using the Add button. You can also remove a faulty or obsolete debugger
configuration by clicking the Remove button. Don't forget to click the
Apply button to save your changes. Please note that you can't modify auto-
detected debugger configurations.

In this section, we learned about various supported debuggers. In the next
section, we will discuss how to debug an application.

Debugging strategies
There are different debugging strategies to find the root cause of an issue.
Before attempting to locate a bug in the application, it is critical to
thoroughly understand the program or library. You can't find mistakes if you
don't know what you're doing. Only if you have a thorough understanding
of the system and how it operates will you be able to identify bugs in the
application. Previous experience can aid in the detection of similar types of
bugs as well as the resolution of bugs. The individual expert's knowledge
determines how easily the developer can locate the bug. You can add debug
print statements and breakpoints to analyze the flow of the program. You
can do forward analysis or backward analysis to track the bug's location.

When debugging, the following steps are used to find the root cause and
resolve it:

1. Identify the issue.

2. Locate the issue.

3. Analyze the issue.

4. Resolve the issue.

5. Fix the side effects.

Regardless of the programming language or platform, the most important
thing to know when debugging your application is which section of your
code is causing the problem. You can find the faulty code in a number of
ways.

If the defect is raised by your QA team or a user, then inquire when the
issue occurred. Look at the log files or any error messages. Comment out
the suspected section of the code, then build and run the application again
to see if the issue persists. If the issue is reproducible, do forward and
backward analysis by printing messages and commenting out lines of code
before you find the one that's causing the issue.

You can also set a breakpoint in the built-in debugger to search for variable
changes within your targeted feature. If one of the variables has updated to
an unexpected value or an object pointer has become an invalid pointer,
then you can easily identify it. Inspect all of the modules you used in the
installer and ensure that you and your users have the same version number
of the application. If you are using a different version or different branch,
then check out the branch with the specified version tag, then debug the
code.

In the next section, we will discuss how to debug your C++ code by
printing debug messages and adding breakpoints.

Debugging a C++ application

The QDebug class can be used to print the value of a variable to the
application output window. QDebug is similar to std::cout in the standard
library, but it has the benefit of being part of Qt, which means it supports Qt
classes out of the box and can display its value without the need for
conversion.

To enable debugging messages, we must include the QDebug header as
follows:

#include <QDebug>

Qt provides several global macros for generating different types of debug
messages. They can be used for different purposes, mentioned as follows:

qDebug() provides a custom debug message.

qInfo() provides informational messages.

qWarning() reports warnings and recoverable errors.

qCritical() provides critical error messages and reports system errors.

qFatal() provides fatal error messages before exiting.

You can see if your feature is working correctly by using qDebug(). After
you've finished looking for the error, remove the line of code that contains
qDebug() to avoid unwanted console logs. Let's look at how to use
qDebug() to print out variables to the output pane with an example. Create
a sample QWidget application and add a function, setValue(int value), and
add the following code inside the function definition:

int value = 500;

qDebug() << "The value is : " << value;

The preceding code will show the following output in the output window
present at the bottom of Qt Creator:

The value is : 500

You can figure out whether the value was changed by another function by
looking at how many times the function is used and called inside the
application. If the debug message is printed multiple times, then it is
invoked from multiple places. Check if the correct value is sent to all
calling functions. To eliminate unnecessary console logs in the output
console window, remove the line of code that contains qDebug() once you
have finished looking for the issue. Alternatively, you may implement
conditional compilation.

Let's look further into debugging and debugging options in Qt Creator:

1. You can see a Debug menu in the menu bar. When you click on it, you
will see a context menu with submenus as shown in Figure 9.2:

Figure 9.2 – Debug menu in Qt Creator

2. To start debugging, press F5 or click on the start Debug button at the
bottom left of Qt Creator as shown here:

Figure 9.3 – The Start debugging button in Qt Creator

3. If Qt Creator complains about the debugger with an error message, then
check to see if your project package has a debugger.

4. If the error persists, close Qt Creator and go to your project folder,
where you can delete the .pro.user file.

5. Then reload the project in Qt Creator. Your project will be reconfigured
by Qt Creator, and the debug mode should now be functional.

A great way to debug your application is to set a breakpoint:

1. You will see a pop-up menu of three choices when you right-click on
the line number of your script in Qt Creator.

2. You can also click on the line number to add a breakpoint. Click on the
line number to set a breakpoint. You will see a red dot appearing on the
line number.

3. Next, press the F5 key on the keyboard or click on the start Debug
button. Once you run the application in debug mode, you will notice a
yellow arrow appearing on top of the first red dot:

Figure 9.4 – Qt Creator showing debugging windows and breakpoints

4. The debugger has come to a halt at the first breakpoint. The variable,
along with its meaning and type, will now be displayed in the Locals
and Expression windows on the right-hand side of your Qt Creator.

5. This approach can be used to quickly examine the application. To
remove a breakpoint, just click on the red dot icon once more or from
the right-click context menu:

Figure 9.5 – Context menu showing right-click options on a breakpoint marking

It's important to remember that you must run your application in debug
mode. This is because when you compile in debug mode, your application
or library will have additional debugging symbols that allow your debugger
to access information from the binary's source code, such as the names of
identifiers, variables, and functions. This is the reason the application or
library binaries are larger in file size when compiled in debug mode.

You can learn about more features and their usage in the following
documentation:

https://doc.qt.io/qt-6/debug.html

IMPORTANT NOTE
Some anti virus applications prevent debuggers from retrieving information. One such anti
virus is Avira. If it is installed on a production PC, the launching of the debugger could fail
on the Windows platform.

In the next section, we will discuss how to debug a Qt Quick application
and locate issues inside a QML file.

https://doc.qt.io/qt-6/debug.html%20

Debugging a Qt Quick application
In the last section, we discussed how to debug your C++ code. But you are
probably still wondering how to debug code written in QML. Qt also has a
provision to debug your QML code. When you are developing a Qt Quick
application, there are a lot of options to troubleshoot issues. In this section,
we will discuss various debugging techniques related to QML and how to
use them.

Just like the QDebug class, there are different console APIs that are
available for debugging in QML. They are as follows:

Log: This is used to print general messages.

Assert: This is used to verify an expression.

Timer: This is used to measure the time spent between calls.

Trace: This is used to print a stack trace of a JavaScript execution.

Count: This is used to find the number of calls made to a function.

Profile: This is used to profile QML and JavaScript code.

Exception: It is used to print error messages.

The Console API provides several convenient functions to print different
types of debug messages such as console.log(), console.debug(),
console.info(), console.warn(), and console.error(). You can print a
message with the value of a parameter as follows:

console.log("Value is:", value)

You can also check the creation of a component by adding the message
inside Components.onCompleted:{…}:

Components.onCompleted: {

 console.log("Component created")

}

To verify that an expression is true, you can use console.assert(), such as
the following, for example:

console.assert(value == 100, "Reached the maximum limit");

You will find the time spent between calls is logged by console.time() and
console.timeEnd(). The stack trace of the JavaScript execution at the stage
where it was called is printed by console.trace(). The function name,
filename, line number, and column number are all included in the stack
trace details.

console.count() returns the current number of times a piece of code has
been executed, as well as a message. The QML and JavaScript profiling are
activated when you use console.profile() and deactivated when
console.profileEnd() is called. You can use console.exception() to print an
error message along with the stack trace of the JavaScript execution.

You can add a breakpoint in the same way we discussed in an earlier
section, as follows:

To step into the code in the stack, click on the Step Into button on the
toolbar or press F11.

To step out, press Shift + F11. To hit the breakpoint, add a breakpoint at
the end of the method and click Continue.

Open the QML debugger console output pane to run JavaScript
commands in the current context.

You can find the issues and watch the values while running your Qt Quick
application. It will help you to find the portion of the code that is causing
unexpected behavior and requires modification.

In this section, we learned about debugging in a QML environment. In the
next section, we will discuss the testing framework in Qt.

Testing in Qt
Unit testing is a way of testing a simple application, class, or function
using an automated tool. We will discuss what it is and why we would like
to do it before going over how to incorporate it into our approach using Qt
Test. Unit testing is the process of breaking down an application into its
smallest functional units and then testing each unit with real-world
situations within the initiative's framework. A unit is the smallest
component of an application that can be tested. A unit test in procedural
programming usually focuses on a function or process.

A unit in object-oriented programming is usually an interface, a class, or a
single function. Unit testing identifies issues early in the implementation
process. This covers glitches in the programmer's implementation as well as
defects in or incomplete portions of the unit's specification. During the
creation process, a unit test is a short code fragment developed by the
developer of the unit to be tested. There are many unit testing tools to test
your C++ code. Let's explore the benefits and features of Qt's testing
framework.

Unit testing in Qt

Qt Test is a unit testing platform for Qt-based applications and libraries. Qt
Test includes all of the features present in traditional unit testing
applications, as well as plugins for testing graphical user interfaces. It helps
make writing unit tests for Qt-based programs and libraries even easier.
Figure 9.6 shows the Testing section under Options:

Figure 9.6 – Screenshot showing Qt Test preferences under the Qt Creator Options

menu

Previously, unit testing may have been done manually, especially for GUI
testing, but now there is a tool that allows you to write code to validate code
automatically, which might seem counterintuitive at first, but it works
properly. Qt Test is a specialized testing framework for unit testing based on
Qt.

You have to add testlib in your project file (.pro) to use Qt's built-in unit
testing module:

QT += core testlib

Next, run qmake to add the module available for your project. In order for
the test system to find and implement it, you must use the QTest header and
declare the test functions as private slots. The QTest header contains all
functions and statements related to Qt Test. To use the QTest features,
simply add the following line to your C++ file:

#include <QTest>

You should write test cases for every possible scenario, and then run the
tests every time your baseline code changes to ensure that the system
continues to behave as intended. It is an extremely useful tool for ensuring
that any programming updates made don't break existing features.

Let's create a simple test application using Qt Creator's built-in wizard.
Select Auto Test Project from the New Project menu as shown in Figure
9.7:

Figure 9.7 – New auto test project option in the project wizard

Once the test project skeleton is generated, you can modify the generated
files to suit your needs. Open the .pro file of your test project and add the
following lines of code:

QT += testlib

QT -= gui

CONFIG += qt console warn_on depend_includepath testcase

CONFIG -= app_bundle

TEMPLATE = app

SOURCES += tst_testclass.cpp

Let's create a C++ class named TestClass. We will add our test functions to
this class. This class must be derived from QObject. Let's have a look at
tst_testclass.cpp:

#include <QtTest>

class TestClass : public QObject

{

 Q_OBJECT

public:

 TestClass() {}

 ~TestClass(){}

private slots:

 void initTestCase(){}

 void cleanupTestCase() {}

 void test_compareStrings();

 void test_compareValues();

};

In the preceding code, we have declared two test functions to test sample
strings and values. You need to implement the test functions with a test
scenario for the declared test cases. Let's compare two strings and do a
simple arithmetic operation. You can use macros such as QCOMPARE and
QVERIFY to test the values:

void TestClass::test_compareStrings()

{

 QString string1 = QLatin1String("Apple");

 QString string2 = QLatin1String("Orange");

 QCOMPARE(string1.localeAwareCompare(string2), 0);

}

void TestClass::test_compareValues()

{

 int a = 10;

 int b = 20;

 int result = a + b;

 QCOMPARE(result,30);

}

To execute all the test cases, you have to add macros such as
QTEST_MAIN() at the bottom of the file. The QTEST_MAIN() macro
expands to a simple main() method that runs all the test functions. The
QTEST_APPLESS_MAIN() macro is useful for simple standalone non-
GUI tests where the QApplication object is not used. Use
QTEST_GUILESS_MAIN() if the GUI is not required but an event loop
is required:

QTEST_APPLESS_MAIN(TestClass)

#include "tst_testclass.moc"

To make the test case a standalone executable, we have added the
QTEST_APPLESS_MAIN() macro and the moc generated file for the
class. You may use a number of other macros to test the application. For
further information, please visit the following link:

http://doc.qt.io/qt-6/qtest.html#macros

When you run the preceding example, you will see the output with the test
results as shown here:

http://doc.qt.io/qt-6/qtest.html#macros%20

********* Start testing of TestClass *********

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

64bit HCBT_CREATEWND event start

PASS : TestClass::initTestCase()

FAIL! : TestClass::test_compareStrings() Compared values are not

the same

 Actual (string1.localeAwareCompare(string2)): -1

 Expected (0) : 0

..\TestProject\tst_testclass.cpp(26) : failure location

PASS : TestClass::test_compareValues()

PASS : TestClass::cleanupTestCase()

Totals: 3 passed, 1 failed, 0 skipped, 0 blacklisted, 7ms

********* Finished testing of TestClass *********

You can see that one test case failed as it did not meet the test criteria.
Similarly, you can add more test cases and fetch parameters from another
class to test the functionality. You can also run all tests with the Run All
Tests option from the Tests context menu from the Qt Creator menu bar as
shown in Figure 9.8:

Figure 9.8 – Tests option under the Tools menu

You can also view all test cases in the left side project explorer view. Select
Tests from the project explorer dropdown. You can enable or disable certain
test cases in this window. Figure 9.9 displays the two test cases we wrote
earlier. You can also see that we are not using other test frameworks for this
test project:

Figure 9.9 – Tests explorer option in the project explorer dropdown

You can use several QTest convenient functions to simulate GUI events
such as keyboard or mouse events. Let's look at their usage with a simple
code snippet:

QTest::keyClicks(testLineEdit, "Enter");

QCOMPARE(testLineEdit->text(), QString("Enter"));

In the preceding code, the test code simulates a keyboard text Enter event
on a lineedit control and then verifies the entered text. You can also
simulate mouse-click events using QTest::mouseClick(). You can use it as
follows:

QTest::mouseClick(testPushBtn, Qt::LeftButton);

Qt's Test framework is also useful in test-driven development (TDD). In
TDD, you write a test first, then code the actual logic. The test will initially
fail as there is no implementation. You then write the bare minimum code
required to pass the test before moving on to the next test. This is how you
iteratively develop a feature before you have implemented the necessary
functionality.

In this section, we learned how to create test cases and simulate GUI
interaction events. In the next section, you will learn how to use Google's
C++ testing framework.

Integrating with Google's C++ testing
framework
GoogleTest is a testing and mocking framework developed by Google. The
GoogleMock project has been merged into GoogleTest. GoogleTest
requires a compiler that supports at least C++11 standards. It is a cross-

platform test framework and it supports major desktop platforms such as
Windows, Linux, and macOS. It helps you write better C++ tests with
advanced features such as mocking. You can integrate Qt Test with
GoogleTest to get the best of both frameworks. If you intend to use both
testing framework features, then you should use GoogleTest as the primary
testing framework and inside the test cases, you can use Qt Test's features.

Qt Creator has built-in support for GoogleTest. You can find the Google
Test tab in the Testing section on the Options screen and set your global
GoogleTest preferences as shown in Figure 9.10:

Figure 9.10 – The Google Test tab in the Testing section under the Options menu

You can download the GoogleTest source code from the following link:

https://github.com/google/googletest

https://github.com/google/googletest%20

You can learn more about features and their usage in the following
documentation:

https://google.github.io/googletest/primer.html

After you download the source code, build the libraries before creating a
sample application. You can also build the unified GoogleTest source code
along with your test project. Once you generate the libraries, follow these
steps to run your GoogleTest application:

1. To create a simple GoogleTest application using Qt Creator's built-in
wizard, select Auto Test Project from the New Project menu. Then
follow through the screens until you come across Project and Test
Information.

2. On the Project and Test Information screen, select Google Test for
Test framework. Then add information for the Test suite name and
Test case name fields as shown in Figure 9.11:

https://google.github.io/googletest/primer.html%20

Figure 9.11 – Google Test option in the project creation wizard

3. In the next step, you can fill in the Googletest source directory field or
you can add it later by editing the .pro file.

Figure 9.12 – Option to add the GoogleTest source directory in the project creation

wizard

4. Click Next and follow the instructions to generate the skeleton of the
project.

5. To use GoogleTest, you have to add the header file into your test
project:

#include "gtest/gtest.h"

6. You can see the main function has already been created by the wizard:

#include "tst_calculations.h"

#include "gtest/gtest.h"

int main(int argc,char *argv[])

{

 ::testing::InitGoogleTest(&argc,argv);

 return RUN_ALL_TESTS();

}

7. You can create a simple test case with the following syntax:

TEST(TestCaseName, TestName) { //test logic }

8. GoogleTest also provides macros such as ASSERT_* and EXPECT_*
to check conditions and values:

ASSERT_TRUE(condition)

ASSERT_EQ(expected,actual)

ASSERT_FLOAT_EQ(expected,actual)

EXPECT_DOUBLE_EQ (expected, actual)

In most cases, it is a standard procedure to do some custom initialization
work before running multiple tests. If you want to evaluate a test's
time/memory footprint, you'll have to write some test-specific code.
Test fixtures help in setting up specific testing requirements. The
fixture class is derived from the ::testing::Test class. Please note that
instead of TEST, the TEST_F macro is used. You can allocate
resources and do initializations in the constructor or in the SetUp()
function. Similarly, you can deallocate in the destructor or in the
TearDown() function. A test function inside a text fixture is defined as
follows:

TEST_F(TestFixtureName, TestName) { //test logic }

9. To create and use a test fixture, create a class derived from the
::testing::Test class as follows:

class PushButtonTests: public ::testing::Test

{

protected:

 virtual void SetUp()

 {

 pushButton = new MyPushButton(0);

 pushButton ->setText("My button");

 }

};

TEST_F(PushButtonTests, sizeConstraints)

{

 EXPECT_EQ(40, pushButton->height());

 EXPECT_EQ(200, pushButton->width());

 pushButton->resize(300,300);

 EXPECT_EQ(40, pushButton->height());

 EXPECT_EQ(200, pushButton->width());

}

TEST_F(PushButtonTests, enterKeyPressed)

{

 QSignalSpy spy(pushButton, SIGNAL(clicked()));

 QTest::keyClick(pushButton, Qt::Key_Enter);

 EXPECT_EQ(spy.count(), 1);

}

In the preceding code, we created a custom push button inside the
SetUp() function. Then we tested two test functions to test the size and
Enter key handling.

10. When you run the preceding test, you will see the test results in the
output window.

GoogleTest builds a new test fixture at runtime for each test specified with
TEST_F(). It instantly initializes by calling the SetUp() function and runs
the test. Then it calls TearDown() to do the cleanup, and removes the test
fixture. It is important to note that different tests within the same test suite
can have different test fixture objects. Before building the next test fixture,
GoogleTest always deletes the previous one. It does not reuse test fixtures
for multiple tests. Any modifications done to the fixture by one test have no
effect on the other tests.

We discussed how to create a GoogleTest project with a simple test case and
how to design a test fixture or test suite. Now you can create test cases for
your existing C++ application. GoogleTest is a very mature test framework.
It also integrates the mocking mechanism that was earlier available under
GoogleMock. Explore different features and experiment with test cases.

There is also a ready-made GUI tool that integrates both test frameworks to
test your Qt application. GTest Runner is a Qt-based automated test runner
and GUI with powerful features for Windows and Linux platforms.
However, the code is not actively maintained and is not upgraded to Qt 6.
You can learn more about features and usages of GTest Runner at the
following link:

https://github.com/nholthaus/gtest-runner

In this section, you learned how to use QTest and GoogleTest together. You
have seen the features of both testing frameworks. You can create mock
objects using the GoogleMock feature of the GoogleTest framework. Now

https://github.com/nholthaus/gtest-runner%20

you can write your own test fixtures for a custom C++ class or custom
widget. In the next section, we will discuss testing in Qt Quick.

Testing Qt Quick applications
Qt Quick Test is a framework created for the unit testing of Qt Quick
applications. Test cases are written in JavaScript and use the TestCase
QML type. Functions with names beginning with test_ are identified as test
cases that need to be executed. The test harness recursively searches for the
required source directory for tst_ *.qml files. You can keep all test .qml
files under one directory and define the QUICK_TEST_SOURCE_DIR.
If it is not defined, then only .qml files available in the current directory
will be included during test execution. Qt doesn't ensure binary
compatibility for the Qt Quick Test module. You have to use the appropriate
version of the module.

You have to add QUICK_TEST_MAIN() to the C++ file to begin the
execution of the test cases, as shown next:

#include <QtQuickTest>

QUICK_TEST_MAIN(testqml)

You need to add the qmltest module to enable Qt Quick Test. Add the
following lines of code to the .pro file:

QT += qmltest

TEMPLATE = app

TARGET = tst_calculations

CONFIG += qmltestcase

SOURCES += testqml.cpp

Let's see a demo of a basic arithmetic calculation to see how the module
works. We will do some calculations such as addition, subtraction, and
multiplication and intentionally make some mistakes so that test cases will
fail:

import QtQuick

import QtTest

TestCase {

 name: "Logic Tests"

 function test_addition() {

 compare(4 + 4, 8, "Logic: 4 + 4 = 8")

 }

 function test_subtraction() {

 compare(9 - 5, 4, "Logic: 9 - 5 = 4")

 }

 function test_multiplication() {

 compare(3 * 3, 6, "Logic: 3 * 3 = 6")

 }

}

When you run the preceding example, you will see the output with the test
results as follows:

********* Start testing of testqml *********

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testqml::Logic Tests::initTestCase()

PASS : testqml::Logic Tests::test_addition()

FAIL! : testqml::Logic Tests::test_multiplication()Logic: 3 * 3 =

6

 Actual (): 9

 Expected (): 6

C:\Qt6Book\Chapter09\QMLTestDemo\tst_calculations.qml(15) : failure

location

PASS : testqml::Logic Tests::test_subtraction()

PASS : testqml::Logic Tests::cleanupTestCase()

Totals: 4 passed, 1 failed, 0 skipped, 0 blacklisted, 3ms

********* Finished testing of testqml *********

Please note that cleanupTestCase() is called right after the test execution
has been completed. This function can be used to clean up before
everything is destructed.

You can also perform data-driven tests as shown here:

import QtQuick

import QtTest

TestCase {

 name: "DataDrivenTests"

 function test_table_data() {

 return [

 {tag: "10 + 20 = 30", a: 10, b: 20, result: 30

},

 {tag: "30 + 60 = 90", a: 30, b: 60, result: 90

},

 {tag: "50 + 50 = 100", a: 50, b: 50, result: 50

},

]

 }

 function test_table(data) {

 compare(data.a + data.b, data.result)

 }

}

Please note that the table data can be provided to a test using a function
name that ends with _data. When you run the preceding example, you will
see the output with the test results as follows:

********* Start testing of main *********

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : main::DataDrivenTests::initTestCase()

PASS : main::DataDrivenTests::test_table(10 + 20 = 30)

PASS : main::DataDrivenTests::test_table(30 + 60 = 90)

FAIL! : main::DataDrivenTests::test_table(50 + 50 = 100) Compared

values are not the same

 Actual (): 100

 Expected (): 50

C:\Qt6Book\Chapter09\QMLDataDrivenTestDemo\tst_datadriventests.qml(

14) : failure location

PASS : main::DataDrivenTests::cleanupTestCase()

Totals: 4 passed, 1 failed, 0 skipped, 0 blacklisted, 3ms

********* Finished testing of main *********

You can also run benchmark tests in QML. The Qt benchmark framework
will run functions with names that begin with benchmark_ several times,
with an average timing value recorded for the runs. It is similar to the
QBENCHMARK macro in the C++ version of QTestLib. You can prefix
the test function name with benchmark_once_ to get the effect of the
QBENCHMARK_ONCE macro. Let's have a look at the following
benchmarking example:

import QtQuick

import QtTest

TestCase {

 id: testObject

 name: "BenchmarkingMyItem"

 function benchmark_once_create_component() {

 var component = Qt.createComponent("MyItem.qml")

 var testObject = component.createObject(testObject)

 testObject.destroy()

 component.destroy()

 }

}

In the preceding example, we are creating a custom QML element. We want
to measure how much time it takes to create the element. Hence, we wrote
the preceding benchmark code. A normal benchmark test runs multiple
times and shows the duration of the operation. Here, we have benchmarked
the creation once. This technique is very useful in evaluating the
performance of your QML code.

When you run the preceding example, you will see the output with the test
results as follows:

********* Start testing of testqml *********

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testqml::BenchmarkingMyItem::initTestCase()

PASS :

testqml::BenchmarkingMyItem::benchmark_once_create_component()

PASS :

testqml::BenchmarkingMyItem::benchmark_once_create_component()

RESULT : testqml::benchmark_once_create_component:

 0 msecs per iteration (total: 0, iterations: 1)

PASS : testqml::BenchmarkingMyItem::cleanupTestCase()

QWARN : testqml::UnknownTestFunc()

QQmlEngine::setContextForObject(): Object already has a QQmlContext

Totals: 4 passed, 0 failed, 0 skipped, 0 blacklisted, 5ms

********* Finished testing of testqml *********

To run the benchmark multiple times, you can remove the once keyword
from the test case as follows: function benchmark_create_component()
{...}. You can also test dynamically created objects using
Qt.createQmlObject().

There is also a benchmarking tool named qmlbench for benchmarking the
overall performance of a Qt application. It is a feature-rich benchmarking
tool available under qt-labs. The tool also helps in measuring the refresh
rate of the user interface. You can explore more about this tool at the
following link:

https://github.com/qt-labs/qmlbench

Like a C++ implementation, you can also simulate keyboard events such as
keyPress(), keyRelease(), and keyClick() in QML. The events are
delivered to the QML object that is currently being focused on. Let's have a
look at the following example:

import QtQuick

import QtTest

MouseArea {

 width: 100; height: 100

 TestCase {

 name: "TestRightKeyPress"

 when: windowShown

 function test_key_click() {

 keyClick(Qt.Key_Right)

 }

 }

}

In the preceding example, the keyboard event is delivered after the QML
viewing window has been displayed. Attempts to deliver events before that
will be unsuccessful. To keep track of when the window is shown, the when
and windowShown properties are used.

When you run the preceding example, you will see the output with the test
results as follows:

********* Start testing of testqml *********

https://github.com/qt-labs/qmlbench%20

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testqml::TestRightKeyPress::initTestCase()

QWARN : testqml::TestRightKeyPress::test_key_click()

QQmlEngine::setContextForObject(): Object already has a QQmlContext

PASS : testqml::TestRightKeyPress::test_key_click()

PASS : testqml::TestRightKeyPress::cleanupTestCase()

Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 25ms

********* Finished testing of testqml *********

You can use SignalSpy to watch signal emission. In the following example,
we have used SignalSpy to detect the clicked signal on a Button. When the
signal is emitted, the clickSpy count is increased:

import QtQuick

import QtQuick.Controls

import QtTest

Button {

 id: pushButton

 SignalSpy {

 id: clickSpy

 target: pushButton

 signalName: "clicked"

 }

 TestCase {

 name: "PushButton"

 function test_click() {

 compare(clickSpy.count, 0)

 pushButton.clicked();

 compare(clickSpy.count, 1)

 }

 }

}

When you run the preceding example, you will see the output with the test
results as follows:

********* Start testing of testqml *********

Config: Using QtTest library 6.1.0, Qt 6.1.0 (x86_64-little_endian-

llp64 shared (dynamic) release build; by GCC 8.1.0), windows 10

PASS : testqml::PushButton::initTestCase()

PASS : testqml::PushButton::test_click()

PASS : testqml::PushButton::cleanupTestCase()

Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 5ms

********* Finished testing of testqml *********

The QUICK_TEST_MAIN_WITH_SETUP macro is used to execute
C++ code before any of the QML tests are run. This can be useful for
setting context properties on the QML engine. A test application can
include several TestCase instances. The application terminates after
running all test cases. You can enable or disable test cases from the Tests
explorer:

Figure 9.13 – The Tests explorer showing Quick Test with the available test cases

In this section, we discussed different testing approaches to test a QML
object. In the next section, we will get familiar with GUI testing and learn
about a few popular tools.

GUI testing tools
You can easily evaluate one or more classes as unit tests, but we have to
manually write all of the test cases. GUI testing is an especially challenging
task. How can we document user interactions such as mouse clicks without
coding them in C++ or QML? This question has baffled developers. There
are a number of GUI testing tools available on the market that help us do
this. Some of them are expensive, some of them are open source. We will
discuss a few such tools in this section.

However, you may not need a complete GUI testing framework. Some
issues can be figured out with simple tricks. For example, while working
with the GUI, you may also have to inspect different properties such as the
alignment and boundaries of visual elements. One of the easiest ways is to
add a Rectangle to inspect the boundary as shown in the next code:

Rectangle {

 id: container

 anchors {

 left: parent.left

 leftMargin: 100

 right: parent.right

 top: parent.top

 bottom: parent.bottom

 }

 Rectangle {

 anchors.fill : parent

 color: "transparent"

 border.color: "blue" }

 Text {

 text: " Sample text"

 anchors.centerIn: parent

 Rectangle {

 anchors.fill : parent

 color: "transparent"

 border.color: "red"

 }

 }

}

When you run the preceding code snippet, you will see the GUI with
element boundaries in colors as shown in the next screenshot:

Figure 9.14 – Output of the visual boundaries of GUI elements using Rectangle

In the preceding example, you can see that the text element is placed
centrally inside the rectangle with a blue border. Without the blue border,
you might have wondered why it was not centrally placed in the GUI. You
can also see the boundaries and margins of each element. When the text
element width is less than the font width, then you will observe clipping.
You can also find whether there are any overlapping regions between user
interface elements. In this way, you can find issues in a specific element of
the GUI without using the SG_VISUALIZE environment variable.

Let's discuss a few GUI testing tools.

The Linux Desktop Testing Project
(LDTP)

The Linux Desktop Testing Project (LDTP) provides a high-quality test
automation infrastructure and cutting-edge tools for testing and improving
Linux desktop platforms. LDTP is a GUI testing framework that runs on all

platforms. It pokes around in the application's user interface using the
accessibility libraries. The framework also includes tools for recording test
cases depending on how the user interacts with the GUI.

To click on a push button, use the following syntax:

click('<window name>','<button name>')

To get the current slider value of the given object, use the following code:

getslidervalue('<window name>','<slider name>')

To use LDTP for your GUI application, you must add an accessible name to
all your QML objects. You can use object names as the accessible names as
follows:

Button {

 id: quitButton

 objectName: "quitButton"

 Accessible.name: objectName

}

In the preceding code, we have added an accessible name to the QML
control so that the LDTP tool can find this button. The LDTP requires the
window name of the user interface to locate the child control. Let's say the
window name is Example, then to generate a click event, use the following
command on the LDTP script:

>click('Example','quitButton')

The preceding LDTP command locates the quitButton and generates a
button-click event.

You can learn more about its features and uses at the following link:

https://ldtp.freedesktop.org/user-doc/

GammaRay

KDAB developed a software introspection tool named GammaRay to
inspect Qt applications. You can observe and manipulate your application at
runtime using the QObject introspection mechanism. This works on a local
machine as well as a remote embedded target. It extends the capabilities of
the instruction-level debugger while adhering to the same standards as the
underlying frameworks. This is particularly useful for complex projects that
use frameworks such as scene graphs, model/view, state machine, and so
on. There are several tools available to inspect the objects and their
properties. However, it stands out from other tools with its in-depth
association with Qt's complex framework.

You can download GammaRay from the following link:

https://github.com/KDAB/GammaRay/wiki/Getting-GammaRay

You can learn more about its features and uses at the following link:

https://www.kdab.com/development-resources/qt-tools/gammaray/

Squish

Squish is a cross-platform GUI test automation tool for desktop, mobile,
embedded, and web applications. You can automate GUI testing for your
cross-platform application written with Qt Widgets or Qt Quick. Squish is

https://ldtp.freedesktop.org/user-doc/%20
https://github.com/KDAB/GammaRay/wiki/Getting-GammaRay%20
https://www.kdab.com/development-resources/qt-tools/gammaray/%20

used by thousands of organizations around the world to test their GUI with
functional regression tests and system tests.

You can learn more about the tool at the following link:

https://www.froglogic.com/squish/

In this section, we discussed various GUI testing tools. Explore them and
try them with your project. Let's summarize our learning in this chapter.

Summary
In this chapter, we have learned what debugging is and how to use different
debugging techniques to identify technical issues in a Qt application. Apart
from that, we've looked at the various debuggers that Qt supports on various
operating systems. Finally, we learned how to use unit testing to simplify
some of the debugging measures. We discussed unit testing, and you
learned how to use the Qt Test framework. You saw how to debug a Qt
Quick application. We also discussed various other testing frameworks and
tools supported by Qt. Now you can write unit tests for your custom classes.
The unit tests will fail and automatically alert if someone accidentally
modifies some specific logic.

In Chapter 10, Deploying Qt Applications, you will learn about deploying
Qt applications on various platforms. It will help you in creating installable
packages for your target platform.

https://www.froglogic.com/squish/%20

Chapter 10: Deploying Qt Applications
In earlier chapters, you learned how to develop and test an application using
Qt 6. Your application is ready and running on your desktop, but it is not
standalone. You must follow certain steps to ship your application so that it
can be used by end customers. This process is known as deployment.
Generally, your end users want a single file that they can double-click to
launch your software. Software deployment comprises different steps and
activities that are required to make software available to its intended users
who may not have any technical knowledge.

In this chapter, you will learn to deploy a Qt project on different platforms.
Throughout, you will learn about the available deployment tools and
important points to consider when creating a deployment package.

In this chapter, we will cover the following topics:

Deployment strategies

Static versus dynamic builds

Deploying on desktop platforms

Qt Installer framework

Other installation tools

Deploying on Android

By the end of this chapter, you will be able to create a deployable package
and share it with others.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform, such as
Windows 10 or Ubuntu 20.04 or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-
Cpp/tree/master/Chapter10/HelloWorld.

IMPORTANT NOTE
The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Understanding the need for deployment
The process of making software work on a target device, whether it's a test
server, a production environment, a user's desktop, or mobile device, is
known as software deployment. Typically, end users want a single file that
they can open to access your application. The user will not want to go
through several processes to obtain various alien files. Usually, users look
for software that they can launch with a double click or tap. The user will
not want to go through a series of steps to obtain a number of unknown
files. In this chapter, we will discuss the steps and things to consider while
deploying a Qt application. We will discuss deploying the application on
Windows, Mac, Linux, and Android platforms.

We've just been running debug versions of the applications we've built so
far. You should make release binaries for generating deployment packages.

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter10/HelloWorld

The difference between these two alternatives is that the debug version
includes information about the code you write, making it much easier to
debug if you encounter issues. However, you do not want to send multiple
files to users because this is useless for them. Users just want to run your
application. That is why you must provide them with your application's
release version. So, to ship the app, we'll create it in release mode, which
will give us a release binary that we can deliver to our users. Once you've
got the binaries, you'll need to create separate packages depending on which
platform you want to deploy your application. If you want to deploy on
Windows, you're going to take a specific approach, and the same will apply
to Linux, macOS, or Android.

A standard Qt deployment package consists of a single executable file, but
it requires the presence of additional files in order to run. Aside from the
executable file, the following files will be required:

Dynamic libraries

Third-party libraries

Add-on modules

Distributable files

Qt plugins

Translation files

Help files

Licenses

When we start a Qt project in Qt Creator, it is set to use dynamic linking by
default. Therefore, our app will require the Qt dynamic link libraries. We
will also require C++ runtime of your favorite compiler
(MinGW/MSVC/Clang/GCC) and standard library implementations. These
are usually available as .dll file on Windows, .so file on Linux and .so, or
.dylib file on macOS. If your project is a large complex project, you may
have multiple libraries. Your application package may also require third-
party libraries such as opengl, libstdc++, libwinpthread, and openssl.

If your application is based on Qt Quick, then you will also require standard
modules such as QtQuick, QtQml, QtStateMachine, QtCharts, and Qt3D.
They are supplied as dynamic libraries, with some extra files providing
QML module metadata, or as pure QML files. Unfortunately, the dynamic
libraries that implement Qt's C++ and QML APIs are insufficient to allow
our executable to run. Qt also uses plugins to enable extensions, as well as
for fairly standard GUI capabilities such as image file loading and display.
Similarly, some plugins encapsulate the platform on which Qt runs.

If you are using Qt's translation support, then you will also require the
translation files to be deployed. We will discuss translation more in Chapter
11, Internationalization. You may also need to deploy the documentation
files if you are using the Qt Help framework or even simple PDF manuals.
You may also need to deploy some icons or script or license agreements for
your application. You also have to ensure that the Qt libraries can locate the
platform plugins, documentation, and translations, as well as the intended
executable file, by themselves.

Choosing between static and dynamic
libraries

You can build your Qt application using static linking or dynamic linking.
When you build an application, the linker makes copies of all used library
functions to the executable file using either of these two approaches. We
assume that you are already aware of these two methods. In this section, we
will discuss when to use static linking and when to use dynamic linking for
your Qt application.

Static Library, or statically linked library, originates from the linker
putting all required library functions to the executable file. Static linking
generates bigger binary files that require more storage and main memory
space. Static libraries are represented by the .a file extension in Linux and
the .lib file extension in Windows.

Dynamic Library, or dynamically linked shared library, does not need
the code to be transferred. Instead, the name of the library is simply
included in the binary file. When an application is launched, both the binary
file and the library are loaded into memory. Dynamic libraries are linked at
runtime. They are represented by the .so file extension in Linux and the .dll
file extension in Windows.

A static build consists of a single executable file. But in a dynamic build,
you must take care of the dynamic libraries. Static builds are simpler as
they may already have the Qt plugins and QML imports in the executable.
The static build also facilitates link time optimization (LTO), which can
improve the overall application performance. Since it avoids the burden of
downloading the Qt libraries and ensuring that they are located in the

default search path for libraries on the target system, static linking is
frequently the safest and easiest approach to publish an application.
However, static linking is not very useful unless Qt was built from a source
with the -static configuration option specified. This mode of Qt application
deployment is available only with a commercial license. You should avoid
linking your application statically if you are an open source developer.
Since we are using an open source Qt version in this book, we won't go
through static builds in any more detail. Instead, we'll stick to the regular
dynamic builds and deployments.

You can learn more about deploying a Qt application with the
aforementioned approaches at the following link:

https://doc.qt.io/qt-6/deployment.html.

In the following sections, we are going to be focusing on the leading
desktop and mobile platforms. We're not going to discuss embedded
platforms as this is beyond the scope of this book.

Deploying on desktop platforms
You have seen that there's a lot to consider when deploying a Qt
application. Fortunately, Qt provides a tool that can assist us in this process
by scanning the generated application binary, identifying all dependencies,
and copying them to the deployment directory. We will deploy our
application on various platforms to achieve different objectives, but the
concepts will remain the same. Once we have our binary built, the first
thing we need to do is add the dependencies so that the user can execute the
application without difficulties.

https://doc.qt.io/qt-6/deployment.html

There are two ways in which we may load the dependencies. We can do it
manually or use certain tools that are provided by the Qt framework or by a
third party. On Windows, we can use windeployqt to load our
dependencies. On macOS, we can use macdeployqt to load our
dependencies for our binary. There is also another tool called
linuxdeployqt that you can use to add the dependencies to your binary.
linuxdeployqt works well for our needs, and we're going to discuss it in
this chapter. However, this Linux deploy utility tool is not official and is not
supported by Qt. Once you have your binary generated, you need to find
and add in the dependencies. You can do that manually or use one of these
tools, depending on where you are, to deploy your application.

In this chapter, we will use a simple HelloWorld example to discuss how to
deploy applications on different platforms. We will find the dependencies
and create a standalone package. Let's begin with Windows deployment.

Deploying on Windows

Most of the desktop applications that are built for Windows are usually
delivered in two approaches. First, the application comes as a standalone
application without any need for installation. In this approach, the
application usually come as an executable file (.exe) with all dependent
libraries inside the same directory. This type of application is known as a
portable application. The application doesn't make an entry into the
installed application list. So, you won't find an option in the add or remove
program list. This is useful when you don't have permission to install a new
application on the Windows desktop. The second type of application

usually comes in .exe or .msi format. You will learn to create an installable
.exe file. In this section, we will discuss how to create standalone
deployment packages with both approaches.

Follow these steps to create a portable application:

1. First, create a simple Qt application. You can choose Qt Widget or a Qt
Quick-based application. Here we will discuss the Qt Widget-based
application. The procedure is the same for both types of applications.

2. Once you created the sample application, you can optionally add your
application name, version, organization name, and domain by adding
the few lines of code inside your main.cpp file, as shown here:

QApplication app (argc, argv);

app.setOrganizationName("Awesome Company");

app.setOrganizationDomain("www.abc.com");

app.setApplicationName("Deployment Demo");

app.setApplicationVersion("1.0.0");

3. Once you created the application, build it in Release mode. You can
change the Build mode in the build settings. Release mode creates a
smaller binary as it eliminates the debug symbols. You can quickly
change the build mode from the kit selector section by clicking on it and
then selecting the Release option, as shown in Figure 10.1:

Figure 10.1 – Release option in Qt Creator

4. You can see that the binaries are created inside the Release directory. In
this example, we are using shadow build. You can also change the
release directory from the General section under the Build Settings
screen:

Figure 10.2 – Directory with release binaries

5. Now, create a deployment directory and copy the executable from the
Release directory.

6. Now, double-click on the executable file. You will notice that the
application failed to launch and that several error dialogs appear. The
error dialogs will mention which library is missing. If you don't see
these errors, then you might have already added the library path in the
system environment. You can try it on a clean system where Qt libraries
are not installed:

Figure 10.3 – Error showing Qt library dependency

7. The next step is to find the missing Qt libraries that are required to run
your application independently outside the IDE.

8. Since we are using an open source version of Qt and the dynamic
linking approach here, you will notice that the missing libraries will
have a .dll extension. Here, we saw that the missing library is
Qt6Core.dll.

9. The number of errors will depend on the number of modules used in the
program. You can find the Qt dependent libraries from the
QTDIR/6.x.x/<CompilerName>/bin directory. Here, QTDIR is where
Qt 6 is installed. In our example, we have used Qt 6.1.0 as the version
and mingw81_64 as the compiler, hence the path is
D:/Qt/6.1.0/mingw81_64/bin. This path can vary as per your Qt
installation path, Qt version, and chosen compiler. The following
screenshot shows the presence of the dynamic libraries under the bin
directory:

Figure 10.4 – Required Qt libraries inside the bin directory

10. As illustrated in Figure 10.4, copy the missing .dll files to the recently
created deployment directory.

11. Repeat the process until you have copied all the missing libraries
mentioned in the error messages to the deployment directory. You may

also have to deploy compiler-specific libraries along with your
application. You can also find the dependent libraries by using the
Dependency Walker (depends.exe) tool. This tool is a free tool
specific to Windows. It provides a list of dependent libraries. However,
in recent versions, the tool has not been very useful and often fails to
provide the required information. There are few more tools you can
experiment with such as PeStudio, MiTeC EXE Explorer, and CFF
Explorer. Please note that I haven't explored these tools.

12. Once you have copied all the missing libraries, try to run the application
again. This time, you will notice that a new error pops up. On this
occasion, the message relates to the platform plugin:

Figure 10.5 – Error dialog indicating a missing Qt platform plugin

13. Create a directory called platforms inside the deployment directory:

Figure 10.6 – Directory showing the Qt windows platform plugin

14. Then, copy the qwindows.dll file from C:\Qt\6.x.x\
<compiler_name>\plugins\platforms to the new platforms
subdirectory. Figure 10.7 illustrates the organization of the files in the
deployment directory:

Figure 10.7 – Copy platforms plugin inside the release directory

15. Now, double-click on the HelloWorld.exe file. You will observe that
the HelloWorld! GUI appears in no time. Now, the Qt Widgets

application can be launched on a Windows platform that doesn't have Qt
6 installed:

Figure 10.8 – Standalone application running with resolved dependencies

16. The next and final step is to zip the folder and share it with your friends.

Congratulations! You have successfully deployed your first standalone
application. However, this approach doesn't work well for a large project
where we have many dependent files. Qt provides several handy tools for
dealing with such challenges and creating an installation package easily. In
the next section, we will discuss the Windows deployment tool and how it
can help us deal with these challenges.

Windows deployment tool

The Windows deployment tool comes with the Qt 6.x installation package.
You can find it under <QTDIR>/bin/ as windeployqt.exe. You can run this
tool from the Qt command prompt and pass the executable file as the
argument, or with a directory as the parameter. If you are building a Qt

Quick application, you will have to additionally add the directory path of
the .qml files.

Let's have a look at some of the important command-line options available
in windeployqt. Explore some of the useful options in the following list:

-? or -h or --help displays help on command-line options.

--help-all displays help including Qt-specific options.

--libdir <path> copies dependent libraries to the path.

--plugindir <path> copies dependent plugins to the path.

--no-patchqt instructs not to patch the Qt6Core library.

--no-plugins instructs to skip plugin deployment.

--no-libraries instructs to skip library deployment.

--qmldir <directory> scans the QML imports from the source
directory.

--qmlimport <directory> adds the given path to the QML module
search locations.

--no-quick-import instructs to skip deployment of Qt Quick imports.

--no-system-d3d-compiler instructs to skip deployment of the D3D
compiler.

--compiler-runtime deploys the compiler runtime on the desktop.

--no-compiler-runtime prevents deployment of the compiler runtime
on the desktop.

--no-opengl-sw prevents deployment of the software rasterizer library.

You can find the windeployqt tool inside the bin folder, as shown in the
following screenshot:

Figure 10.9 – The windeployqt tool inside the bin directory

The easiest way to use windeployqt is to add its path to the Path variable.
To add it to Path, open System Properties on your Windows machine and
then click on Advance system settings. You will find that the System
Properties window appears. At the bottom of the System Properties
window, you will see the Environment Variables… button. Click it and
select the Path variable, as shown in the following screenshot. Then, click
on the Edit… button. Add the path of the Qt bin directory and hit the OK
button:

Figure 10.10 – Adding the bin directory to the system environment path

Close the System Properties screen and launch the Qt command prompt.
Then you can use the following syntax to create a deployment package for
your Qt Widget-based application:

>windeployqt <your-executable-path>

If you are using Qt Quick, follow the next syntax:

>windeployqt --qmldir <qmlfiles-path> <your-executable-path>

Afterward, the tool will copy the identified dependencies to the deployment
directory, ensuring that we have all of the required components in one
location. It will also build the subdirectory structure for plugins and other
Qt resources that you'd expect. If ICU and other files are not in the bin
directory, they must be added to the Path variable before running the tool.

Let's begin with the same HelloWorld example. To create a deployment of
the example using windeployqt, perform the following steps:

1. Create a deployment directory and copy the HelloWorld.exe file to the
deployment directory.

2. Now you can invoke the deployment tool, as shown here:

D:\Chapter10\HelloWorld\deployment>windeployqt HelloWorld.exe

3. Once you enter the command, the tool will start gathering information
about the dependencies:

>D:\Chapter10\HelloWorld\deployment\HelloWorld.exe 64 bit,

release executable

Adding Qt6Svg for qsvgicon.dll

Direct dependencies: Qt6Core Qt6Widgets

All dependencies : Qt6Core Qt6Gui Qt6Widgets

To be deployed : Qt6Core Qt6Gui Qt6Svg Qt6Widgets

4. You will observe that the tool not only listed the dependencies but also
copied the required files to the destination directory.

5. Open the deployment directory and you will find that multiple files and
directories have been added:

Figure 10.11 – windeployqt copied all required files to the deployment directory

6. In the previous section, we had to identify and copy all the
dependencies ourselves, but that task is now delegated to the
windeployqt tool.

7. If you are using a Qt Quick application, run the following command:

>D:\Chapter10\qmldeployment>windeployqt.exe --qmldir

D:\Chapter10\HelloWorld D:\Chapter10\qmldeployment

8. You can see that the tool has gathered the dependencies and copied the
required files to the deployment directory:

D:\Chapter10\qmldeployment\HelloWorld.exe 64 bit, release

executable [QML]

Scanning D:\Chapter10\HelloWorld:

QML imports:

 'QtQuick' D:\Qt\6.1.0\mingw81_64\qml\QtQuick

 'QtQuick.Window' D:\Qt\6.1.0\mingw81_64\qml\QtQuick\Window

 'QtQml' D:\Qt\6.1.0\mingw81_64\qml\QtQml

 'QtQml.Models' D:\Qt\6.1.0\mingw81_64\qml\QtQml\Models

 'QtQml.WorkerScript'

D:\Qt\6.1.0\mingw81_64\qml\QtQml\WorkerScript

Adding Qt6Svg for qsvgicon.dll

Direct dependencies: Qt6Core Qt6Gui Qt6Qml

All dependencies : Qt6Core Qt6Gui Qt6Network Qt6OpenGL Qt6Qml

Qt6Quick Qt6QuickParticles Qt6Sql

To be deployed : Qt6Core Qt6Gui Qt6Network Qt6OpenGL Qt6Qml

Qt6Quick Qt6QuickParticles Qt6Sql Qt6Svg

9. You can now double-click to launch your standalone application.

10. The next step is to zip the folder and share it with your friends.

The command-line options for the Windows deployment tool can be used to
fine-tune the identification and copy process. The essential instructions may
be found at the following links:

https://doc.qt.io/qt-6/windows-deployment.html.

https://wiki.qt.io/Deploy_an_Application_on_Windows.

Cheers! You have learned to deploy a Qt application using the Windows
deployment tool. However, there is still a lot of work to be done. The Qt
Installer Framework provides several handy tools for dealing with such
challenges and creating installable packages easily. In the next section, we
will discuss the Linux deployment tool and how to use it to create a
standalone application.

https://doc.qt.io/qt-6/windows-deployment.html
https://wiki.qt.io/Deploy_an_Application_on_Windows

Deploying on Linux

In Linux distributions, we have multiple options to deploy our application.
You can use an installer, but you can also have an option such as an app
bundle. There is a technology called app image that makes the deployment
process very easy. You can also package your application to be used by the
package manager. You can go through options such as apt on Debian,
Ubuntu, or Fedora and your application can be used through this approach.
However, you can choose a much simpler approach, like the app image
option, which is going to provide you with one file. You can give that file to
your users and they can just double-click to run the application.

Qt documentation provides certain instructions to deploy on Linux. You can
have a look at the following link:

https://doc.qt.io/qt-6/linux-deployment.html.

Qt doesn't provide any ready-made tool similar to windeployqt for Linux
distributions. This may be due to a large number of Linux flavors. However,
there is an unofficial open source Linux deployment tool named
linuxdeployqt. This takes an application as input and turns it into a self-
contained package by replicating the project's resources into a bundle. Users
can get the generated bundle as an AppDir or an AppImage, or it may be
included in cross-distribution packages. With systems such as CMake,
qmake, and make, it may be used as part of the build process to deploy
applications written in C, C++, and other compiled languages. It can
package specific libraries and components required to run the Qt-based
application.

You can download linuxdeployqt from the following link:

https://doc.qt.io/qt-6/linux-deployment.html

https://github.com/probonopd/linuxdeployqt/releases.

You will get linuxdeployqt-x86_64.AppImage after the download and do
chmod a+x before running it.

You can read the complete documentation and find the source code at
https://github.com/probonopd/linuxdeployqt.

If you want a single application package easily, then run linuxdeployqt
with the -appimage flag.

There are also few more deployment tools such as Snap and Flatpak to
package an application and its dependencies runs across multiple Linux
distributions without making any modification.

You can read on how to create a snap in the following link:
https://snapcraft.io/docs/creating-a-snap

You can explore more about Flatpak by visiting the following link:
https://docs.flatpak.org/en/latest/qt.html

In the next section, we will discuss the macOS deployment tool and how to
use it to create a standalone application for your Mac users.

Deploying on macOS

You can go through a similar process as discussed in previous sections to
generate an installer file for the macOS. We will discuss the steps that you
can follow to generate an app bundle. You can test the package on your
macOS and send it to your Mac users. The process is pretty much the same

https://github.com/probonopd/linuxdeployqt/releases
https://github.com/probonopd/linuxdeployqt
https://snapcraft.io/docs/creating-a-snap%20
https://docs.flatpak.org/en/latest/qt.html%20

as on Linux. After all, macOS is based on Unix. Therefore, you can create
installers, which we call a bundle on the macOS.

You can find the macOS deployment tool inside QTDIR/bin/macdeployqt.
It is designed to automate the process of creating a deployable application
bundle that contains the Qt libraries as private frameworks. The Mac
deployment tool also deploys the Qt plugins unless you specify the -no-
plugins option. By default, Qt plugins such as platform, image format, print
support, and accessibility are always deployed. SQL driver and SVG
plugins are deployed only if it is used by the application. The designer
plugins are not deployed. If you want to include a third-party library in the
application bundle, you must manually copy the library into the bundle after
it has been built.

A couple of years back, Apple launched a new filesystem called Apple File
System (APFS). Older versions of macOS cannot read APFS-formatted
.dmg files. For compatibility with all versions of macOS currently
supported by Qt, macdeployqt uses the older HFS+ filesystem by default.
To choose a different filesystem, use the -fs option.

You can find detailed instructions at the following link: https://doc.qt.io/qt-
6/macos-deployment.html.

In the next section, we will discuss the Qt Installer Framework and how to
use it to create a complete installation package for your users.

Using the Qt Installer Framework
The Qt Installer Framework (QIFW) is a collection of cross-platform
tools and utilities for creating installers for the supported desktop Qt

https://doc.qt.io/qt-6/macos-deployment.html

platforms, which include Linux, Windows, and macOS. It allows you to
distribute your application across all supported desktop Qt platforms
without having to rewrite the source code. The Qt Installer Framework tools
create installers that include a collection of pages that help users through
the installation, update, and removal processes. You provide the installable
contents as well as information about it, such as the product name, the
installer, and the legal agreement.

You may personalize the installers by adding widgets to the pre-defined
pages or adding entire pages to give consumers more options. You may add
operations to the installer by writing scripts. Depending on your use cases,
you can give end customers an offline or online installation, or both. It
works well on Windows, Linux, and Mac. We will use it to create installers
for our application and we're going to see how this works in detail on
Windows. The process followed for Linux and macOS is similar to
Windows. So, we will only discuss the Windows platform. You can try
similar steps on your favorite platform.

You can learn more about the predefined pages at the following link:
https://doc.qt.io/qtinstallerframework/ifw-use-cases-install.html.

Before starting the journey, confirm that Qt Installer Framework is installed
on your machine. If it is not present, launch Qt Maintenance Tool and
install it from the Select Components page, as shown in the following
screenshot:

https://doc.qt.io/qtinstallerframework/ifw-use-cases-install.html

Figure 10.12 – The Qt Installer Framework download option in the Qt maintenance tool

Once you have installed the application successfully, you will find the
installation files under QTDIR\Tools\QtInstallerFramework\:

Figure 10.13 – Tools inside the Qt Installer Framework directory on Windows

You can see that there are five executables created inside the Qt Installer
Framework directory:

The archivegen tool is used to package files and directories into 7zip
archives.

The binarycreator tool is used to create online and offline installers.

devtool is used to update an existing installer with a new installer base.

The installerbase tool is the core installer that packs all data and meta
information.

The repogen tool is used to generate online repositories.

In this section, we will use the binarycreator tool to create the installer for
our Qt application. This tool may be used to produce both offline and online
installers. Some choices have default values, so you may leave them out.

To create an offline installer on your Windows machine, you can enter the
following command to your Qt command prompt:

><location-of-ifw>\binarycreator.exe -t <location-of-

ifw>\installerbase.exe -p <package_directory> -c

<config_directory>\<config_file> <installer_name>

Similarly, to create an offline installer on your Linux or Mac machine, you
can enter the following command to your Qt command prompt:

><location-of-ifw>/binarycreator -t <location-of-ifw>/installerbase

-p <package_directory> -c <config_directory>/<config_file>

<installer_name>

For example, to create an offline installer, execute the following command:

>binarycreator.exe --offline-only -c installer-config\config.xml -p

packages-directory -t installerbase.exe SDKInstaller.exe

The preceding instruction will create an offline installer for the SDK,
containing all dependencies.

To create an online-only installer, you may use --online-only, which defines
all the packages to install from an online repository on a web server. For
example, to create an online installer, execute the following command:

>binarycreator.exe -c installer-config\config.xml -p packages-

directory -e org.qt-project.sdk.qt,org.qt-project.qtcreator -t

installerbase.exe SDKInstaller.exe

You can learn more about binarycreator and the different options at the
following page: https://doc.qt.io/qtinstallerframework/ifw-
tools.html#binarycreator.

The easiest way to use binarycreator is to add its path to the Path variable.
To add it to Path, open System Properties on your Windows machine and
then click on Advance system settings. You will find that the System
Properties window appears. At the bottom of the System Properties
window, you will see the Environment Variables… button. Click it and
select the Path variable, as shown in the following screenshot. Then, click

https://doc.qt.io/qtinstallerframework/ifw-tools.html#binarycreator

on the Edit… button. Add the path of the QIFW bin directory and hit the
OK button. The following screenshot illustrates how to do this:

Figure 10.14 – Adding the QIFW bin directory to the system environment path

Close the System Properties screen and launch the Qt command prompt.

Let's proceed to deploy our sample HelloWorld application. We're going to
create one installable package for our users so that they can double-click

and install it:

1. Create a directory structure that matches the installer's design and
allows it to be extended in the future. The config and packages
subdirectories must be present in the directory. It doesn't matter where
you put the directory for QIFW deployment; all that matters is that it
has this structure.

2. Make a configuration file with instructions for building the installer
binaries and online repositories. Create a file called config.xml in the
config directory with the following content:

<?xml version="1.0" encoding="UTF-8"?>

<Installer>

 <Name>Deployment Example </Name>

 <Version>1.0.0</Version>

 <Title>Deployment Example</Title>

 <Publisher>Packt</Publisher>

 <StartMenuDir>Qt6 HelloWorld</StartMenuDir>

 <TargetDir>@HomeDir@/HelloWorld</TargetDir>

</Installer>

The Title tag gives the name of the installer that appears in the title bar.
The application name is added to the page name and introductory text
using the Name tag. The software version number is specified by the
Version tag. The Publisher tag defines the software's publisher. The
name of the default program group for the product in the Windows Start
menu is specified by the StartMenuDir tag. The default destination
directory presented to users is InstallationDirectory in the current

user's home directory, as specified by the TargetDir tag. You can read
about more tags in the documentation.

You can also specify the app bundle icon in config.xml. On Windows, it
is extended with .ico and can be used as the application icon for the .exe
file. On Linux, you can specify the icon with a .png extension and this
can be used as the window icon. On macOS, you can specify the icon
with .icns and this can be used as the icon for the newly produced
bundle.

3. Now create a subdirectory inside the packages directory. This will be
your component name. You can use your organization's name and
application name or your organization domain as the component such
as CompanyName.ApplicationName. The directory name functions as
a domain-like identifier, identifying all components.

4. Make a package information file with details about the components that
may be installed. In this simple example, the installer just has to deal
with one component. Let’s create a package information file called
package.xml inside the packages\{component}\meta directory.

5. Add the file in side the meta-directory with the following content to
provide information about the component to the installater.

Let's create package.xml and add the following content to it:

<?xml version="1.0"?>

<Package>

 <DisplayName>Hello World</DisplayName>

 <Description>This is a simple deployment example.

 </Description>

 <Version>1.0.1</Version>

 <ReleaseDate>2021-05-19</ReleaseDate>

</Package>

The information from the following elements is displayed on the
component selection page during installation:

The DisplayName tag specifies the name of the component in
the list of components.

The Description tag specifies the text that is displayed when
the component is selected.

The Version tag enables you to promote updates to users when
they become available.

The Default tag specifies whether the component is selected by
default. The value true sets the component as selected.

You can add licensing information to your installer. The name
of the file that includes the text for the licensing agreement that
is shown on the licensing check page is specified by the
License tag.

6. You can copy the required content inside the data subdirectory under
the package directory. Copy all the files and directories to the data
subdirectory, which were earlier created with windeployqt. The
following screenshot shows the content copied inside the data
subdirectory:

Figure 10.15 – Contents generated by windeployqt copied inside the data

subdirectory

7. The next step is to use the binarycreator tool to create the installer.
Enter the following instruction to the Qt command prompt:

>binarycreator.exe -c config/config.xml -p packages

HelloWorld.exe

8. You can see that an installer file got generated inside our deployment
directory:

Figure 10.16 – Installer package created inside the deployment directory

You can also follow the same steps and run the following command to
generate an installer file on Linux or macOS:

$./binarycreator -c config/config.xml -p packages HelloWorld

9. We have got the desired result. Now, let's run the installer to verify that
the deployment package has been created properly.

10. Double-click on the installer file to begin the installation. You will see a
nice setup wizard appear on screen:

Figure 10.17 – Setup wizard running a deployment example

11. Proceed through the pages to complete the installation. Exit the setup
wizard.

12. Now, launch the application from the Windows Start menu. You should
see the HelloWorld user interface appear in no time.

13. You can also find the installed application in Add/Remove Programs:

Figure 10.18 – Deployment example entry in the Windows program list

14. You may use the maintenance tool installed along with the installation
package to update, uninstall, and add components to the application.
You can find the tool inside your installation directory, as shown in the
following screenshot:

Figure 10.19 – Maintenance tool in the installation directory

Congratulations! You have created an installer package for your sample
application. Now you can ship your developed Qt application to your users
and friends.

You can also provide further customization with customized setup wizard
pages. You can find the complete list of templates with installers that can be
used with the QIFW at the following link:

https://doc.qt.io/qtinstallerframework/ifw-customizing-installers.html

https://doc.qt.io/qtinstallerframework/qtifwexamples.html.

https://doc.qt.io/qtinstallerframework/ifw-customizing-installers.html
https://doc.qt.io/qtinstallerframework/qtifwexamples.html

You can explore more features of the framework here:
https://doc.qt.io/qtinstallerframework/ifw-overview.html.

In this section, we created an installable package to ship to our end users. In
the next section, we will learn to deploy on the Android platform.

Deploying on Android
In addition to desktop platforms such as Windows, Linux, and macOS,
mobile platforms are equally important due to the massive number of users.
Many developers want to make their applications available on mobile
platforms. Let's have a look at how that's done. We will briefly discuss
deployment considerations on Android.

In Chapter 5, Cross-Platform Development, you have learned how to create
an .apk file, which is the deployment package for the Android platform. So,
we won't be discussing the steps again. In this section, we will discuss a few
necessary changes before uploading to the play store:

1. Create a simple HelloWorld application using the Android Kit from the
kit selection screen.

2. Change the build mode to Release mode.

3. Open the build settings of your project. You will find several options on
the screen:

https://doc.qt.io/qtinstallerframework/ifw-overview.html

Figure 10.20 – A screenshot showing the Android manifest option in build settings

4. You can see the Keystore field under the Application Signature
section. Click on the Browse… button to select your existing keystore
file or use the Create… button to create a new keystore file. It can
protect key material from unauthorized use. This is an optional step and
only required for signing your deployment binary.

5. When you click the Create… button, then you will see a dialog with
several fields. Fill in the related fields and click on the Save button.
Figure 10.21 shows the keystore creation dialog:

Figure 10.21 – A screenshot showing the keystore creation screen

6. Save the keystore file anywhere, making sure to end the filename with
.keystore.

The next step is to sign the application package. This is also an optional
step and is only required for play store publication. You can learn more
about application signing in the official documentation available at
https://developer.android.com/studio/publish/app-signing.

7. You can select the target Android version and configure your Android
app by creating the AndroidManifect.xml file with Qt Creator. To do

https://developer.android.com/studio/publish/app-signing

that, click on the Create Templates button on the Build Android APK
screen. You will see a dialog appear, as shown in the following
screenshot:

Figure 10.22 – A screenshot showing the manifest file creation wizard

8. Open the manifest file. You will see several options for your Android
application.

9. You can set the package name, version code, SDK version, application
icon, permissions, and so on. If you add a unique icon, then the default
Android icon for your app won't appear on the device. It will make your
application unique and easily discoverable on screen.

10. Let's add HelloWorld as the application name and add the Qt icon as our
application icon, as shown in the following screenshot:

Figure 10.23 – Android manifest file showing different available options

11. Add additional libraries if you are using any third-party libraries such as
OpenSSL.

12. Click on the Run button in the bottom-left corner of Qt Creator to build
and run the application on an Android device. You can also hit the
Deployment button below the Run button to create the deployment
binaries.

13. You will see a new dialog appear on the screen. This dialog allows you
to choose between your physical Android hardware or the software-
emulated virtual device.

14. Connect your Android device and click on the Refresh Device List
button. Don't forget to enable Developer options from your Android
device settings. Allow USB Debugging when your Android device
prompts you:

Figure 10.24 – Android device selection dialog

15. If you want to use a virtual device, click on the Create Android
Virtual Device button. You will see the following screen appear:

Figure 10.25 – Android virtual device creation screen

16. If the screen warns you about a failure to create a new AVD, then
update the Android platform tools and system images from the Android
SDK manager. You can update these from the command line as follows:

>sdkmanager "platform-tools" "platforms;android-30"

>sdkmanager "system-images;android-30;google_apis;x86"

>sdkmanager --licenses

17. Then, run the following command to run avdmanager:

>avdmanager create avd -n Android30 -k "system-images;android-

30;google_apis;x86"

18. The final step is to click on the Run button on the Qt Creator. You will
see that the Android deployment package was created with the .apk
extension inside the build folder:

Figure 10.26 – Android installer file generated inside the build directory

19. Internally, Qt runs the androiddeployqt utility. Sometimes, the tool
may fail to create the package with the following error:

error: aidl.exe …Failed to GetFullPathName

In that case, put your application with a shorter file path and ensure that
no directory in your file path has whitespaces. Then, build the
application.

20. You can distribute the .apk files to your friends or users. Users have to
accept an option saying Install from Unknown Sources in their
Android mobile or tablets. To avoid this, you should publish your
application on the play store.

21. However, if you want to distribute your apps on the Google Play Store,
then you have to register as a Google Play developer and sign the
package. Google charges a small one-off amount to allow developers to
publish their applications.

22. Please note that Qt considers Android apps as a closed source. So, you
will require a commercial Qt license if you want to keep your Android
app code private.

Congratulations! You have successfully generated a deployable Android
application. Unlike iOS, Android is an open system. You can copy or

distribute the .apk file into other Android devices running on the same
Android version and install it.

In this section, we created an installable package for our Android device. In
the next section, we will learn about a few more installation tools.

Other installation tools
In this section, we will discuss some additional tools you can use to create
an installer. Note that we won't be discussing these tools in detail. I have not
verified these installation frameworks with Qt 6. You may visit the
respective tool website and learn from their documentation. In addition to
the installation framework and tools provided by Qt, you can use the
following tools on your Windows machine:

CQtDeployer is an application to extract all the dependent libraries of
executables and create a launch script for your application. The tool
claims to deploy applications faster and provides flexible infrastructure.
It supports both Windows and Linux platforms. You can learn more
about this tool at the following link:
https://github.com/QuasarApp/CQtDeployer.

Nullsoft Scriptable Install System (NSIS) is a script-driven
installation authoring tool from Nullsoft, the same company that created
Winamp. It has become a popular alternative to proprietary commercial
tools such as InstallShield. The current version of NSIS has a modern
graphical user interface, LZMA compression, multilingual support, and
a simple plugin system. You can explore more about the tool at
https://nsis.sourceforge.io/Main_Page.

https://github.com/QuasarApp/CQtDeployer
https://nsis.sourceforge.io/Main_Page

InstallShield is a proprietary software application that allows you to
create installers and software bundles. InstallShield is generally used to
install the software on Windows Platform desktop and server systems,
but it may also be used to manage software applications and packages
on a wide range of portable and mobile devices. Have a look at its
features and play with the trial version. You can download the trial and
read more about it at
https://www.revenera.com/install/products/installshield.html.

Inno Setup is a free software script-driven installation system created
in Delphi. It was first released in 1997, yet still competes with many
commercial installers thanks to its excellent feature set and stability.
Learn more about this installer at the following link:
https://jrsoftware.org/isinfo.php.

You can select any of the installation frameworks and deploy your
application. In the end, it should meet your installation goal.

In this section, we discussed a few more installation tools that may be
beneficial for your needs. Let's now summarize our takeaways from this
chapter.

Summary
We began the chapter by discussing the application deployment problem
and learning the difference between static and dynamic libraries. Then we
discussed the different deployment tools in Qt and the specific case of
Windows deployment and installation. Armed with this knowledge, we
deployed a sample app on Windows and created an installer using the Qt

https://www.revenera.com/install/products/installshield.html
https://jrsoftware.org/isinfo.php

Installer Framework. In addition, we discovered deploying applications on
Linux and macOS and honed our skills for deploying applications on
various platforms. Later, we explained some of the important points to be
considered before publishing a Qt-based Android application to the play
store.

Finally, we looked at some third-party installer utilities. To summarize, you
have learned to develop, test, and deploy a Qt application on various
platforms. With this knowledge, you should be able to create your
installation packages and share them with the world.

In Chapter 11, Internationalization, we will learn about developing a
translation-aware Qt application.

Chapter 11: Internationalization
In earlier chapters, we learned how to create GUI applications with Qt
Widgets or Qt Quick. To make our applications usable across the world, we
need to add translations to the application.

The process of making your application translation-aware is known as
internationalization. It makes it easy to localize content for viewers from
different cultures, regions, or languages. Translating Qt Widgets and Qt
Quick apps into local languages is very easy with Qt. These processes of
adapting an application to different languages with the geographical and
technical standards of a target market are known as internationalization.

You will learn how to make an application with multilingual support.
Throughout the chapter, we will explore different tools and processes to
make a translation-aware application. In this chapter, we will discuss the
following:

Basics of internationalization

Writing source code for translation

Loading translation files

Internationalization with Qt Widgets

Internationalization with Qt Quick

Deploying translations

By the end of this chapter, you will be able to create a translation-aware
application using Qt Widgets and Qt Quick.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter11.

IMPORTANT NOTE
The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platform on your machine.

Understanding internationalization and
Qt Linguist
The processes of adjusting an application to different languages,
geographical variations, and technological specifications of a target market
are known as internationalization and localization. Internationalization
refers to the process of creating a software application that can be translated
into a variety of languages and for different regions without requiring
significant technical changes. Internationalization is often abbreviated to
i18n, with 18 being the number of letters between the letters i and n in the
English word. The ease with which a product can be localized is greatly
influenced by its internationalization. Creating a linguistically and
culturally focused application for a global market is a much more complex
and time-consuming process. Hence, companies focus on creating i18n-

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter11

aware applications for global markets from the beginning of product
development.

For internationalization, you should design your application in such a
manner that it avoids roadblocks for localization or global deployment later.
This covers aspects such as allowing Unicode or maintaining careful
handling of legacy character encodings where appropriate, taking caution of
string concatenation, preventing code dependencies on user interface string
values, and so on. You should provide support for features such as
identifying translatable strings and system language that may be required
for internationalization later.

Your application should be aware of local languages, date and time formats,
numeral systems, or cultural preferences. The modification of a product,
application, or document's content to fulfill the language, cultural, and other
preferences of a particular target market is known as localization.
Localization is often written in English as l10n, where 10 is the number of
letters between l and n. Localization entails incorporating region-specific
requirements and translating applications for a specific region or language.
Localizable features should be separated from the source code, allowing
adaptation as per the user's cultural preferences.

Qt Linguist is a tool that enables users to create translations of your Qt
applications. Qt Linguist can be launched from the installation directory or
the IDE. The tool comes with two integrated programs, known as lupdate
and lrelease. These programs can be used with a qmake project or directly
with the filesystem.

The lupdate tool locates translatable strings in the project's source, header,
and .ui or .qml files. Then it creates or updates the translation files (.ts
files). You can specify the files to be processed on the command line or in a
.pro file as arguments. .ts files use Document Type Definition (DTD)
format, described at the following link:

https://doc.qt.io/qt-6/linguist-ts-file-format.html

Qt provides excellent support for internationalization. Qt has built-in
support for many languages in all user interface elements. However, when
writing source code for your application, you have to follow certain
practices. This includes marking translatable strings, avoiding ambiguous
strings, using numbered arguments (%n) as placeholders, and loading the
right translation file. You can use both C++ and user interface files, and you
can also have translatable strings in both sources. The tool locates and adds
the strings from all sources into a single .ts file with corresponding
contexts.

The translation files with .ts extension are used during application
development. These files can be compiled into a compact binary format.
The compiled translation files are encoded in the QM format and have the
.qm file extension. While running an application, the Qt runtime makes use
of .qm files instead of .ts files. You can convert .ts to .qm files using the
lrelease tool. A .qm file is a lightweight binary file. It allows lightning-fast
translation lookups. You can specify .ts files on the command line or in a
.pro project file to be processed by lrelease. This tool is used every time an
application is released, from the test version to the final production version.
If the .qm files aren't available, then the application will still work fine and
use the original texts from the source files.

https://doc.qt.io/qt-6/linguist-ts-file-format.html

For the selection of languages, Qt Linguist and lrelease use certain internal
rules. You can find details about these rules at the following link:

https://doc.qt.io/qt-6/i18n-plural-rules.html

Let's have a look at the Qt Linguist user interface. You can launch Qt
Linguist from the Qt installation directory by double-clicking the Linguist
executable or selecting it from the command prompt. You will see the
following user interface appear on your screen:

Figure 11.1 – Qt Linguist user interface

In the preceding figure, you can see multiple sections and there are a few
disabled buttons in the toolbar. You can open a .ts file from the File menu.

https://doc.qt.io/qt-6/i18n-plural-rules.html

We will discuss these sections while discussing an example in a later
section of this chapter.

You can learn more about Qt Linguist and the GUI interface at the
following web page:

https://doc.qt.io/qt-6/linguist-translators.html

In this section, you got familiar with terms related to internationalization
and tools provided by the Qt framework. With a good understanding of the
basics, we are ready to write a translation-aware application in the next
section.

Writing source code for translation
In this section, we will discuss how to mark strings as translatable strings
and how to use the tools provided by Qt. Wherever your application uses a
quoted string that is visible to the user, make sure the
QCoreApplication::translate() method processes it. To do this, simply use
the tr() method to mark the strings as translatable that are meant for display
purposes. This feature is used to show which text strings are translatable
inside your C++ source files.

For example, if you want to use a QLabel to show text on a user interface,
then embed the text inside the tr() method as follows:

QLabel *label = new QLabel(tr("Welcome"));

The class name is the translation context for the QObject and its derived
classes. To override the context, QObject-derived classes must use the

https://doc.qt.io/qt-6/linguist-translators.html

Q_OBJECT macro in their class definition. This macro sets the context for
the derived classes.

Qt provides several convenience macros and methods for
internationalization. A few of the most common macros used for translation
are as follows:

tr() returns a translated string if translation is available in a C++ source
file.

qsTr() returns a translated string if translation is available in a QML
file.

qtTrId() finds and returns a translated string identified by an ID in a
C++ file.

qsTrId() finds and returns a translated string identified by an ID in a
QML file.

QT_TR_NOOP() tells lupdate to collect the string in the current
context for translating later.

QT_TRID_NOOP() marks an ID for dynamic translation.

QCoreApplication::translate() provides the translation by querying
the installed translation files.

qsTranslate() provides a translated version for a given context in a
QML file.

QQmlEngine::retranslate() updates all binding expressions with
strings marked for translation.

Translatable strings in C++ files are marked using tr(), and in QML files
qsTr() is used. We will discuss these macros and methods throughout this
chapter.

All the translatable strings are fetched by the lupdate tool and updated in a
Translation Source (TS). A TS file is an XML file. Usually, TS files
follow the following naming convention:

ApplicationName>_<LanguageCode>_<CountryCode>.ts

In this convention, LanguageCode is an ISO 639 language code in
lowercase and CountryCode is an ISO 3166 two-letter country code in
uppercase. You can create translations for the same language but targeting a
different country by using the specific country code. You can create a
default translation file with a language code and country code while
creating a Qt application through Qt Creator's new project wizard.

Once you create the .ts files, you can run lupdate to update the .ts files with
all the user-visible strings. You can run lupdate from the command line as
well as from Qt Creator and the Visual Studio add-in. Let's use Qt's
command prompt to run the following command for the HelloWorld
application:

>lupdate HelloWorld.pro

lupdate fetches the translatable strings from different source files such as
.cpp, .h, .qml, and .ui. For lupdate to work effectively, you should specify
the translation files in the application's .pro file under the
TRANSLATIONS variable. Look at the following .pro file section where
we have added six translation source files:

TRANSLATIONS = \

 HelloWorld_de_DE.ts \

 HelloWorld_fi_FI \

 HelloWorld_es_ES.ts \

 HelloWorld_zh_CN.ts \

 HelloWorld_zh_TW.ts \

 HelloWorld_ru_RU.ts

You can also add wildcard-based translation file selections with *.ts.

To translate a Qt Quick application, use the qsTr() method to mark the
strings inside the .qml files. You can create a translation file for a single
QML file as follows:

>lupdate main.qml -ts HelloWorld_de_DE.ts

You can create multiple translation files for different languages and put
them inside a .qrc file:

RESOURCES += translations.qrc

You can process all QML files in a .qrc file using lupdate as follows:

>lupdate qml.qrc -ts HelloWorld_de_DE.ts

To process all QML files without using a .qrc file, type the following into
Qt's command prompt:

>lupdate -extensions qml -ts HelloWorld_de_DE.ts

You can also pass a C++ source file as an argument along with the resource
file. It is optional to mention translation files in the .pro file. You can do it
by specifying the translation file on the command line as follows:

>lupdate qml.qrc messages.cpp -ts HelloWorld_de_DE.ts HelloWorld

_es_ES.ts

lrelease integrates translations that are marked as finished. If a string is
missing translations and is marked as unfinished, then the original text is
used. Translators or developers can modify the TS file contents and mark it
as finished with the following steps:

1. Launch Qt Linguist and open the .ts file from the File menu.
Alternatively, right-click on the .ts file in the project structure and open
with Qt Linguist, as shown here:

Figure 11.2 – The Open With Qt Linguist option in Qt Creator

2. Then click on any of the contexts in the Context view to see the
translatable strings for that context in the Strings view.

3. In the Source text view, enter the translation of the current string. You
can find existing translations and similar phrases in the Phrases and
Guesses view.

4. The translator may enter a comment in the Translator comments field.

5. To finish the translation, press Ctrl + Enter and select the tick icon from
the toolbar. You will see a green tick mark for translated strings.

6. Finally, save the file and exit the Qt Linguist tool.

You can run lrelease without specifying a .pro file. When you run lrelease
to read the .ts files, then it generates .qm files that are used by the
application at runtime:

>lrelease *.ts

Once the .qm files are generated, add them to a .qrc file. Your application
is now ready for translation.

You can also use a text ID-based translation mechanism. In this approach,
every translatable string in the application is assigned a unique identifier.
These unique text identifiers are directly used in the source code as a
replacement for actual strings. The user interface developers would need to
put more effort into this but it is much easier to maintain if your application
contains huge numbers of translated strings.

In some applications, certain classes may not use QObject as the base class
or use the Q_OBJECT macro in their class definition. But these classes
may contain some strings that may require translation. To solve this issue,
Qt provides certain macros to add translation support.

You can use Q_DECLARE_TR_FUNCTIONS(ClassName) as follows to
enable translation for your non-Qt classes:

class CustomClass

{

 Q_DECLARE_TR_FUNCTIONS(CustomClass)

public:

 CustomClass();

 ...

};

This macro is defined inside qcoreapplication.h. When you add this
macro, Qt adds the following function to your class to enable translation:

static inline QString tr(const char *sourceString, const char

*disambiguation = nullptr, int n = -1)

{

 return QCoreApplication::translate(#className, sourceString,

disambiguation, n);

}

From the preceding code, you can notice that Qt calls
QCoreApplication::translate() with the class name as the context.

You can also have translatable strings outside a class or method;
QT_TR_NOOP() and QT_TRANSLATE_NOOP() are used to mark
these strings as translatable. There are different macros and functions
available for text ID-based translation. You can use qsTrId() instead of
qsTr(), and QT_TRID_NOOP() instead of QT_TR_NOOP(). You can use
the same text IDs as user interface strings instead of plain strings in the user
interface.

In Qt Linguist, multiple translation files can be loaded and edited
simultaneously. You can also use phrase books to reuse existing
translations. Phrase books are standard XML files that contain typical

phrases and their translations. These files are created and updated by Qt
Linguist and can be used by any number of projects and applications. If you
would like to translate source strings that are available in a phrase book, Qt
Linguist's Batch Translation function can be used. Select Batch
Translation to specify which phrase books to use and in what order during
the batch translation process. Only entries with no current translation should
be considered, and batch-translated entries should be marked as Accepted.
You can also create a new phrase book from the New Phrase Book option.

IMPORTANT NOTE
lupdate requires all source code to be encoded in UTF-8 by default. Files that feature a
Byte Order Mark (BOM) can also be encoded in UTF-16 or UTF-32. You have to set the
CODECFORSRC qmake variable to UTF-16 to parse files without a BOM as UTF-16. By
default, certain editors such as Visual Studio use a separate encoding. You can avoid
encoding problems by limiting source code to ASCII and using escape sequences for
translatable strings.

In this section, we discussed how to use lupdate and lrelease to create and
update translation files. Next, we will learn how to install a translator and
load a translation file in your Qt application.

Loading translations in a Qt application
In the previous section, we created translation files and understood the uses
of the tools. To look up translations in a TS file, QTranslator functions are
used. The translator must be instantiated before the application's GUI
objects.

Let's have a look at how to load these translation files using QTranslator in
the following code snippet:

QTranslator translator;

if(translator.load(QLocale(),QLatin1String("MyApplication")

 , QLatin1String("_"), QLatin1String(":/i18n")))

 {

 application.installTranslator(&translator);

 }

 else

 {

 qDebug() << "Failed to load. "

 << QLocale::system().name();

 }

In the preceding code, you can see that we have created a translator object
and loaded the corresponding translation file. QLocale is used to fetch the
underlying system language. You can also use QLocale for localizing
numbers, the date, the time, and currency strings.

Alternatively, you can load a translation file as follows:

QString fileName = ":/i18n/MyApplication_"+QLocale::

 system().name()

+".qm";

translator.load(fileName);

Here, we are looking into the system language and loading the
corresponding translation files. The preceding approach works well when
you want to use the system language as your application language.
However, some users may like to use a regional language that is different

from the system language. In that case, we can change the language as per
user choice. We will learn how to do that in the next section.

Switching languages dynamically
So far, you have learned how to use the system language or a default
language for your Qt application. In most applications, you can just detect
the language in main() and load an appropriate .qm file. Sometimes, your
application must be able to support changes to the user's language settings
while still running. An application that is used by multiple people in shifts
may need to switch languages without requiring a restart.

To achieve this in a Qt Widgets-based application, you can override
QWidget::changeEvent(). Then, you have to check whether the event is of
the QEvent::LanguageChange type. You can retranslate the user interface
accordingly.

The following code snippet explains how to achieve dynamic translation in
a Qt Widgets-based GUI:

void CustomWidget::changeEvent(QEvent *event)

{

 if (QEvent::LanguageChange == event->type())

 {

 ui->retranslateUi(this);

 }

 QWidget::changeEvent(event);

}

QEvent::LocaleChange can cause the list of installed translators to switch.
You can create an application with a user interface that provides users with
the option to change the current application language. When the
QEvent::LanguageChange event occurs, the default event handler for
QWidget subclasses will call this method. If you are using the
QCoreApplication::installTranslator() function to install a new
translation, you will get a LanguageChange event. In addition, by sending
LanguageChange events to other widgets, the GUI will force them to
update. Any other events can be passed to the base class for further
processing.

To enable dynamic translation, you can provide an option in the command
line or over a GUI. By default, Qt puts all of the translatable strings in the
.ui file inside retranslateUi(). You have to call this function whenever the
language is changed. You can also create and call your custom method to
retranslate the strings created through C++ code based on the
QEvent::LanguageChange event.

In this section, we discussed how to achieve dynamic translation in the
application runtime. In the next section, we will create a translation-aware
application using Qt Widgets.

Internationalization with Qt Widgets
In the previous sections, we discussed how to create translation files and
how to use QTranslator to load a translation file. Let's create a simple
example using Qt Widgets and implement our learning.

Follow the subsequent steps to create the sample application:

1. Create a Qt Widgets-based application using Qt Creator's new project
creation wizard and follow through the screens as discussed in earlier
chapters.

2. On the Translation File screen, choose German (Germany) as the
language option, or any preferred language.

3. Finish the project creation. You will see that
Simplei18nDemo_de_DE.ts is created in your project structure.

4. Next, you add a QLabel to the .ui file and add Welcome text.

5. Next, run lupdate. You can run lupdate from the command line as well
as from the Qt Creator interface, as shown in Figure 11.3:

Figure 11.3 – Qt Linguist options in Qt Creator

6. When you run lupdate, you will see the following output in the console
window:

C:\Qt6Book\Chapter11\Simplei18nDemo>lupdate Simplei18nDemo.pro

Info: creating stash file

C:\Qt6Book\Chapter11\Simplei18nDemo\.qmake.stash

Updating 'Simplei18nDemo_de_DE.ts'...

 Found 2 source text(s) (2 new and 0 already existing)

7. Now, the .ts file is updated with strings. Open
Simplei18nDemo_de_DE.ts with a plain text editor. You should see the
following content:

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE TS>

<TS version="2.1" language="de_DE">

<context>

 <name>CustomWidget</name>

 <message>

 <location filename="customwidget.ui"

 line="14"/>

 <source>Simple i18n Demo</source>

 <translation type="unfinished"></translation>

 </message>

 <message>

 <location filename="customwidget.ui"

 line="25"/>

 <source>Welcome</source>

 <translation type="unfinished"></translation>

 </message>

</context>

</TS>

You can see that the user interface strings are updated inside the .ts file
and the language is defined for the translation at the top of the file. You
can create respective translation files by modifying this field in the
code:

<TS version="2.1" language="de_DE">

You will also see that the translation status is unfinished.

8. So, let's open the file with Qt Linguist and complete the translation:

Figure 11.4 – Example showing different sections of the Qt Linguist interface

9. You will see six different sections in the user interface. Select a context
in the Context view to load the corresponding strings.

10. Add a translation in the Source text view. You can use Google Translate
to translate the string into the desired language. Here we have translated
the strings to the German language using Google Translate.

NOTE
There are multiple translations used. Please ignore if the strings don't have the exact
meaning. I am not familiar with the German language. I have used this for
demonstration purposes. Hence, I have added a translator's comments.

11. To complete the translation, press Ctrl + Enter or click on the green tick
icon on the toolbar.

12. The next step is to save the translation. Repeat this for all translatable
strings listed in the context.

13. Run lrelease from Qt's command prompt or the IDE's option. You will
see that the .qm file is generated:

C:\Qt6Book\Chapter11\Simplei18nDemo>lrelease *.ts

Updating 'Simplei18nDemo_de_DE.qm'...

 Generated 2 translation(s) (2 finished and 0 unfinished)

14. Let's add the translator to main.cpp and load the translation file:

#include "customwidget.h"

#include <QApplication>

#include <QTranslator>

#include <QDebug>

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 QTranslator translator;

 if(translator.load(":/translations

 /Simplei18nDemo_de_DE.qm"))

 {

 app.installTranslator(&translator);

 qDebug()<<"Loaded successfully!";

 }

 else

 {

 qWarning()<<"Loading failed.";

 }

 CustomWidget customUI;

 customUI.show();

 return app.exec();

}

15. The final step is to run qmake and build the application. Then, hit the
Run button in the bottom-left corner.

16. We have successfully translated our GUI into German. You will see the
following output:

Figure 11.5 – Output of the translation example using Qt Widgets

Congratulations! You learned how to translate your application into a
different language. You can now translate your Qt application to a local
language and share it with your friends and colleagues.

In this section, we discussed how to create a translation-aware application
using Qt Widgets. In the next section, we will add dynamic translation
capability to the Qt Widgets application.

Adding dynamic translation to a Qt
Widgets application

In the previous section, you learned how to create a Qt Widgets-based
application and change the language to a preferred language. However, like
most global applications, you may need to provide more translations and
allow users to change the language on the fly.

Let's modify the example from the preceding section with some additional
implementations:

1. Add a combo box to the .ui file and add three languages to it. For
explanation purposes, we have used English, German, and Spanish. We
have added a message at the center and added a language-switching
option in a dropdown:

Figure 11.6 – A form in Qt Designer showing layouts used in the example

2. Add the new translation files to the project file as follows:

TRANSLATIONS += \

 WidgetTranslationDemo_en_US.ts \

 WidgetTranslationDemo_de_DE.ts \

 WidgetTranslationDemo_es_ES.ts

3. Let's modify the CustomWidget class and add the following methods
for dynamic translation:

#ifndef CUSTOMWIDGET_H

#define CUSTOMWIDGET_H

#include <QWidget>

#include <QTranslator>

QT_BEGIN_NAMESPACE

namespace Ui { class CustomWidget; }

QT_END_NAMESPACE

class CustomWidget : public QWidget

{

 Q_OBJECT

public:

 CustomWidget(QWidget *parent = nullptr);

 ~CustomWidget();

 public slots:

 void languageChanged(int index);

 void switchTranslator(const QString& filename);

 void changeEvent(QEvent *event);

private:

 Ui::CustomWidget *ui;

 QTranslator m_translator;

};

#endif // CUSTOMWIDGET_H

4. The next step is to connect the signal and slot. We have created the
connections in the constructor:

CustomWidget::CustomWidget(QWidget *parent)

 : QWidget(parent), ui(new Ui::CustomWidget)

{

 ui->setupUi(this);

 connect(ui->languageSelectorCmbBox,

 SIGNAL(currentIndexChanged(int)),this,

 SLOT(languageChanged(int)));

 qApp->installTranslator(&m_translator);

}

5. Let's add the following code to the slot definition:

void CustomWidget::languageChanged(int index)

{

 switch(index)

 {

 case 0: //English

 switchTranslator(":/i18n/

 WidgetTranslationDemo_en_US.qm");

 break;

 case 1: //German

 switchTranslator(":/i18n/

 WidgetTranslationDemo_de_DE.qm");

 break;

 case 2: //Spanish

 switchTranslator(":/i18n/

 WidgetTranslationDemo_es_ES.qm");

 break;

 }

}

Here, we are receiving the language choice from the user interface
through the combo box index change signal.

6. The next step is to install a new translator:

void CustomWidget::switchTranslator(const QString& filename)

{

 qApp->removeTranslator(&m_translator);

 if(m_translator.load(filename))

 {

 qApp->installTranslator(&m_translator);

 }

}

7. The last step is to reimplement changeEvent():

void CustomWidget::changeEvent(QEvent *event)

{

 if (event->type() == QEvent::LanguageChange)

 {

 ui->retranslateUi(this);

 }

 QWidget::changeEvent(event);

}

8. Run qmake and hit the Run button on the IDE.

The following screen will appear:

Figure 11.7 – Example showing the output when the English language is selected

9. Change the language from the language selection dropdown. Let's select
German as the new language. You will see the entire GUI changed with
German strings:

Figure 11.8 – Example showing the output when the German language is selected

10. Again, switch the language to Spanish. You will see the GUI text
changed to Spanish:

Figure 11.9 – Example showing the output when the Spanish language is selected

Congratulations! You have successfully created a multilingual Qt Widgets
application.

In this section, you learned how to translate your Qt Widgets-based GUI at
runtime. In the next section, we will create a translation-aware application
using Qt Quick.

Internationalization with Qt Quick
In the previous section, we discussed internationalization in Qt Widgets. In
this section, we will discuss different aspects of internationalizing your Qt
Quick application. The underlying localization scheme in Qt Quick
applications is similar to Qt Widgets applications. The same set of tools
described in the Qt Linguist Manual are also used in Qt Quick. You can
translate an application that uses both C++ and QML.

In a Qt project file, the SOURCES variable is used for C++ source files. If
you list QML or JavaScript files under this variable, the compiler will
attempt to use the files considering them as C++ files. As a workaround,

you can use a lupdate_only {...} conditional declaration to make the QML
files visible to the lupdate tool but invisible to the C++ compiler.

Consider the following example. The application's .pro file snippet lists two
QML files:

lupdate_only {

SOURCES = main.qml \

 HomeScreen.qml

}

You may also use a wildcard match to specify the QML source files. Since
the search is not recursive, you must list each directory in which user
interface strings can be found in the source code:

lupdate_only{

SOURCES = *.qml \

 *.js

}

Let's create an example with a simple translation. We will create a similar
screen as we created in the Qt Widgets application. Follow these steps:

1. Create a Qt Quick-based application using Qt Creator's new project
creation wizard and follow through the screens as discussed in earlier
chapters.

2. On the Translation File screen, choose German (Germany) as the
language option or any preferred language.

3. Finish the project creation. You will see that
QMLTranslationDemo_de_DE.ts is created in your project structure.

4. Next, you add a Text to the .qml file and add Welcome text:

import QtQuick

import QtQuick.Window

Window {

 width: 512

 height: 512

 visible: true

 title: qsTr("QML Translation Demo")

 Text {

 id: textElement

 anchors.centerIn: parent

 text: qsTr("Welcome")

 }

}

5. Add the following lines of code to main.cpp:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QTranslator>

#include <QDebug>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QTranslator translator;

 if(translator.load(":/translations/

 QMLTranslationDemo_de_DE.qm"))

 {

 app.installTranslator(&translator);

 qDebug()<<"Loaded successfully!";

 }

 else

 {

 qWarning()<<"Loading failed.";

 }

 QQmlApplicationEngine engine;

 const QUrl url(QStringLiteral("qrc:/main.qml"));

 QObject::connect(&engine,

 &QQmlApplicationEngine::objectCreated,

 &app, [url](QObject *obj, const QUrl

 &objUrl)

 {

 if (!obj && url == objUrl)

 QCoreApplication::exit(-1);

 }, Qt::QueuedConnection);

 engine.load(url);

 return app.exec();

}

6. The steps are similar to the Qt Widgets example. Next, run lupdate.

7. Follow the same steps to update the translation in the .ts files using Qt
Linguist.

8. Run lrelease from Qt's command prompt or from the IDE's option. You
will see that the .qm file is generated.

9. Add the .qm files to the resources (.qrc) file and run qmake.

10. The last step is to build and run the application. Hit the Run button in
Qt Creator.

11. You will see the identical output as we have seen in the Qt Widgets
example:

Figure 11.10 – Output of the translation example using Qt Quick

In the preceding example, we translated our Qt Quick application to
German.

In this section, we discussed how to create a translation-aware application
using Qt Quick. In the next section, we will add dynamic translation
capability to the Qt Quick application.

Translating dynamically in a Qt Quick
application

In the previous section, you learned how to create a Qt Quick-based
application and how to change the language to a preferred language. Just
like the Qt Widgets example, you can also add dynamic translations to your
Qt Quick application.

Let's modify the previous example with some additional implementations:

1. Create an i18n support class named TranslationSupport and add the
following lines:

#ifndef TRANSLATIONSUPPORT_H

#define TRANSLATIONSUPPORT_H

#include <QObject>

#include <QTranslator>

class TranslationSupport : public QObject

{

 Q_OBJECT

public:

 explicit TranslationSupport(QObject *parent =

 nullptr);

public slots:

 void languageChanged(int index);

 void switchTranslator(const QString& filename);

signals:

 void updateGUI();

private:

 QTranslator m_translator;

};

#endif // TRANSLATIONSUPPORT_H

The preceding code is a helper class that supports the translation feature
in QML. It is used to update the translation files in the translator.

2. In the next step, add the following code to switch the translator:

void TranslationSupport::switchTranslator(const QString&

filename)

{

 qApp->removeTranslator(&m_translator);

 if(m_translator.load(filename))

 {

 qApp->installTranslator(&m_translator);

 emit updateGUI();

 }

}

3. Then, add the following code to the QML INVOKABLE method
definition:

void TranslationSupport::languageChanged(int index)

{

 switch(index)

 {

 case 0: //English

 switchTranslator(":/i18n/

 QMLDynamicTranslation_en_US.qm");

 break;

 case 1: //German

 switchTranslator(":/i18n/

 QMLDynamicTranslation_de_DE.qm");

 break;

 case 2: //Spanish

 switchTranslator(":/i18n/

 QMLDynamicTranslation_es_ES.qm");

 break;

 }

}

4. In the main.cpp file, add the following code. Please note that we have
exposed the TranslationSupport instance to the QML engine:

#include <QGuiApplication>

#include <QQmlApplicationEngine>

#include <QQmlContext>

#include "translationsupport.h"

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 TranslationSupport i18nSupport;

 QQmlApplicationEngine engine;

 engine.rootContext()->setContextProperty(

 "i18nSupport", &i18nSupport);

 const QUrl url(QStringLiteral("qrc:/main.qml"));

 QObject::connect(&i18nSupport,

 &TranslationSupport::updateGUI, &engine,

 &QQmlApplicationEngine::retranslate);

 engine.load(url);

 return app.exec();

}

5. Then add the updateGUI() signal with the
QQmlApplicationEngine::retranslate() method.

6. Let's have a look at the main.qml file. We have added a combo box to
the .qml file and added three languages to it. For explanation purposes,
we have used English, German, and Spanish:

Text {

 id: textElement

 anchors.centerIn: parent

 text: qsTr("Welcome!")

}

Row {

 anchors {

 top: parent.top; topMargin: 10 ;

 right: parent.right; rightMargin: 10;

 }

 spacing: 10

 Text{

 text: qsTr("Select language")

 verticalAlignment: Text.AlignVCenter

 height: 20

 }

 ComboBox {

 height: 20

 model: ListModel {

 id: model

 ListElement { text: qsTr("English")}

 ListElement { text: qsTr("German")}

 ListElement { text: qsTr("Spanish")}

 }

 onCurrentIndexChanged: {

 i18nSupport.languageChanged(currentIndex)

 }

 }

}

7. Run lupdate and proceed with the translation process.

8. Follow the same steps to update the translation in .ts files using Qt
Linguist.

9. Run lrelease from Qt's command prompt or from the IDE's option. You
will see that the .qm file is generated.

10. Add the .qm files to the resources (.qrc) file and run qmake.

11. The last step is to build and run the application. Hit the Run button in
Qt Creator.

The following screen will appear:

Figure 11.11 – Qt Quick example showing the output when the English language is

selected

12. Change the language from the language selection dropdown. Let's select
German as the new language. You will see the entire GUI changed with
German strings:

Figure 11.12 – Qt Quick example showing the output when the German language is

selected

13. Again, switch the language to Spanish. You will see the GUI text
changed to Spanish:

Figure 11.13 – Qt Quick example showing the output when the Spanish language is

selected

Congratulations! You have successfully created a multilingual Qt Quick
application.

In this section, you learned how to translate your Qt Quick-based GUI at
runtime. In the next section, we will discuss how to deploy translation files.

Deploying translations
In previous sections, we learned how to create translation-aware
applications using both Qt Widgets and QML. You don't have to ship the .ts
files with your application. To deploy translations, your release team must
use the updated .qm files and ship them with the application package. The
.qm files required for the application should be placed in a location where
QTranslator can locate them. Typically, this is done by embedding qm
files in a resource (.qrc) file or specifying a path that contain the .qm files
relative to QCoreApplication::applicationDirPath(). The rcc tool is used

to embed the translation files into a Qt application during the build process.
It works by producing a corresponding C++ file containing specified data.

You can automate the generation of .qm files by adding a script to your
.pro file. You do it by following these steps:

1. To begin, use the language codes to declare the languages under the
LANGUAGES variable in your Qt project (.pro) file.

2. Add lrelease and embed_translations to the CONFIG variable.

3. Then add a function to generate the .ts files for the intended languages.

4. Finally, define the TRANSLATIONS_FILES variable, use lrelease to
create the .qm files, and embed them in the application resources.

The preceding steps will run the lrelease automatically and generate the
.qm files. The lrelease tool processes the translation files listed under the
TRANSLATIONS and EXTRA_TRANSLATIONS. Unlike the
TRANSLATIONS variable, files listed under EXTRA_TRANSLATIONS
are only processed by lrelease tool, not by the lupdate. You need to embed
the .qm files into your resource or ship the .qm files with your deployment
package.

You can learn more about automating generation of QM files here:
https://wiki.qt.io/Automating_generation_of_qm_files.

In this section, you learned how to deploy your translation files. In the next
section, we will summarize our takeaways from this chapter.

Summary

https://wiki.qt.io/Automating_generation_of_qm_files

In this chapter, we took a look at the core concepts of internationalization
and localization in Qt. We discussed different tools provided by Qt for
internationalization. We learned how to use Qt Linguist. We also looked at
how to translate a Qt Widgets application into a different language. Then,
we learned how to translate dynamically.

In the latter part of the chapter, we discussed translating a Qt Quick
application. Afterward, we learned how to switch languages dynamically in
a Qt Quick application. Now you can create an application with multiple
languages and share it with your clients or friends in a different
geographical region.

In Chapter 12, Performance Considerations, we will learn about tools and
tricks to optimize performance in a Qt application.

Chapter 12: Performance Considerations
In this chapter, we will give you an overview of performance optimization
techniques and how you can apply them in the context of Qt-based
application development. Performance is a very important factor in the
success of your application. Performance failures can result in business
failures, poor customer relationships, a reduction in competitiveness, and
revenue loss. Delaying performance optimization can have a huge cost in
terms of your reputation and organizational image. Therefore, it is
important to do performance tuning.

You will also learn about performance bottlenecks and how to overcome
them. We will discuss different profiling tools to diagnose performance
problems, focusing specifically on some popular tools. Then, you will learn
how to profile and benchmark performance. The chapter also introduces Qt
Modeling Language (QML) Profiler and Flame Graph to find underlying
bottlenecks in your Qt Quick application. You will also learn about some
best practices that you should follow while developing your Qt application.

We will discuss the following topics:

Understanding performance optimization

Optimizing C++ code

Using concurrency, parallelism, and multithreading

Profiling a Qt Quick application using QML Profiler and Flame Graph

Other Qt Creator analysis tools

Optimizing graphical performance

Creating benchmarks

Different analysis tools and optimization strategies

Performance considerations for Qt Widgets

Learning best practices of QML coding

By the end of the chapter, you will have learned to write high-performance
optimized code for both C++- and QML-based applications.

Technical requirements
The technical requirements for this chapter include minimum versions of Qt
6.0.0 and Qt Creator 4.14.0 installed on the latest desktop platform such as
Windows 10, Ubuntu 20.04, or macOS 10.14.

All the code used in this chapter can be downloaded from the following
GitHub link: https://github.com/PacktPublishing/Cross-Platform-
Development-with-Qt-6-and-Modern-
Cpp/tree/master/Chapter12/QMLPerformanceDemo.

IMPORTANT NOTE
The screenshots used in this chapter are taken on the Windows platform. You will see
similar screens based on the underlying platforms in your machine.

Understanding performance optimization
Performance optimization is done to improve an application's performance.
You may be wondering why this is necessary. There are many reasons why

https://github.com/PacktPublishing/Cross-Platform-Development-with-Qt-6-and-Modern-Cpp/tree/master/Chapter12/QMLPerformanceDemo

an application requires performance optimization. When there is a
performance problem reported by your users or the quality assurance
(QA) team, the developers may discover something affecting the overall
application performance. This may occur due to underlying hardware
limitations, poor implementation of code, or scalability challenges.

Optimization is part of the application development process. This can
involve optimizing code for performance or optimization for memory
usage. Optimization aims to optimize an application's behavior so that it
satisfies the product requirements for speed, memory footprint, power
usage, and so on. As a result, optimization is almost as crucial as coding
functionality in the production phase. Customers may report performance
problems as glitches, slow response, and missing functionalities. A faster
application executes more efficiently while consuming fewer resources and
can handle more tasks in the same amount of time as a slower application.
In today's competitive world, faster software means a competitive
advantage over rivals. Performance matters a lot on embedded and mobile
platforms, with factors such as speed, memory, and power consumption
being prevalent.

In a Waterfall process, performance improvement is carried out after
application development, during the integration and verification phase.
However, in today's Agile world, code performance should be evaluated
every couple of sprints for overall application performance. Performance
optimization is a continuous process, whereas defect fixing is a one-time
task. It is an iterative process in which you will always find something to
improve and there will be always scope for improvement in your
application. According to the Theory of Constraints (TOC), there is

typically one problem in a complex application that restricts the application
from achieving its optimal performance. Such constraints are known as
bottlenecks. An application's top performance is limited by bottlenecks,
hence you should consider performance optimization during your
application development life cycle. If ignored, your new product may
become a complete disaster and may even ruin your reputation.

Before you jump into optimization, you should define a goal. Then, you
should identify the bottleneck or the constraint. After that, think about how
you can fix the constraint. You can improve your code and re-evaluate the
performance. If it doesn't meet the set goal, you need to repeat the process.
However, remember that premature optimization can be the root of all evil.
You should implement the primary functionalities first before validating
your product and implementing early users' feedback. Remember to make
the application run first, then make its functionalities right, and then make it
faster.

When you set a performance goal, you need to choose the right technique.
There can be multiple goals, such as faster launch time, a smaller
application binary, or less random-access memory (RAM) usage. One
goal can impact another goal, so you have to find a balance based on the
expected criteria—for example, optimizing the code for performance may
impact memory optimization. There may be different ways to improve
overall performance; however, you should also follow the organizational
coding guidelines and best practices. If you are contributing to an open
source project or are a freelance application developer, you should follow
standard coding practices to maintain overall code quality.

Some of the important tricks we will be following for performance
improvement are listed as follows:

Using better algorithms and libraries

Using optimal data structures

Allocating memory responsibly and optimizing memory

Avoiding unnecessary copying

Removing repeated computation

Increasing concurrency

Using compiler binary optimization flags

In the following sections, we will discuss opportunities to improve overall
application performance in our C++ code.

Optimizing C++ code
In most Qt applications, a significant part of the coding is done in C++,
hence you should be aware of C++ optimization tricks. This section is about
implementing some of the best practices while writing C++ code. When
C++ implementations are written without optimization, they run slowly and
consume a lot of resources. Better optimization of your C++ code also
offers better control over memory management and copying. There are
many opportunities to improve algorithms, ranging from small logical
blocks to using Standard Template Libraries (STLs), to writing better
data structures and libraries. There are several excellent books and articles

on this topic. We will be discussing a few important points for running code
faster and using fewer resources.

Some of the important C++ optimization techniques are listed here:

Focus on algorithms, not on micro-optimization

Don't construct objects and copy unnecessarily

Use C++11 features such as move constructor, lambdas, and the
constexpr functions

Choose static linking and position-dependent code

Prefer 64-bit code and 32-bit data

Minimize array writes and prefer array indexing to pointers

Prefer regular memory access patterns

Reduce control flow

Avoid data dependencies

Use optimal algorithms and data structures

Use caching

Use precomputed tables to avoid repeated computation

Prefer buffering and batching

Since this book requires previous knowledge of C++, we expect that you
will be aware of these best practices. As a C++ programmer, always stay
updated with the latest C++ standards such as C++17 and C++20. These
will help you in writing efficient code with great features. We won't be

discussing these in detail in this section, but will leave this for your self-
exploration.

You can read more about C++ core guidelines at the following link:
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

You can learn more about optimizing C++ code at the following link:
https://www.agner.org/optimize/.

Go through the listed approaches to improve your C++ code. Next, we will
discuss how to improve application performance with concurrency and
multithreading in the next section.

Using concurrency, parallelism, and
multithreading
Since you are already a C++ developer, you might be aware of these terms,
which may be used interchangeably. However, there are differences in these
terms. Let's revisit these terms here:

Concurrency is the execution of multiple programs at the same time
(concurrent).

Parallelism is the simultaneous running of a portion of your program in
parallel, utilizing the multiple cores in a multi-core processor.

Multithreading is the capability of a central processing unit (CPU) to
run multiple threads for the same program, concurrently supported by
the operating system.

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.agner.org/optimize/

For example, you may launch multiple instances of a Portable Document
Format (PDF) reader and Qt Creator. Qt Creator can run multiple tools by
itself. Your system Task Manager can show you all the processes running
simultaneously. This is known as concurrency. It is also commonly known
as multitasking.

But if you use parallel computing techniques to process your data, then this
is called parallelism. Complex applications with huge data processing
requirements use this technique. Note that parallel computing on a single-
core processor is an illusion.

A thread is the smallest executable unit of a process. There can be several
threads in a process, but there is only one main thread. Multithreading is
concurrency within the same process. Only one core is used by a
conventional single-threaded application. A program with multiple threads
can be distributed to multiple cores, allowing true concurrency. As a result,
a multithreaded application provides better performance on multi-core
hardware.

Let's discuss a few important classes in Qt that provide concurrency and
multithreading, as follows:

QThread is used to manage one thread of control within a program.

QThreadPool is used to manage and recycle individual QThread
objects to help reduce thread creation costs in a multithreaded
application.

QRunnable is an interface class for representing a task or piece of code
that needs to be executed.

QtConcurrent offers high-level application programming interfaces
(APIs) that help in writing multithreaded programs without using low-
level threading primitives.

QFuture permits threads to be synchronized against multiple
computational results that will be available at a later point in time.

QFutureWatcher provides information and notifications about a
QFuture object using signals and slots.

QFutureSynchronizer is a convenience class that simplifies the
synchronization of one or more QFuture objects.

Threads are primarily used in two scenarios, as follows:

To make use of multi-core CPUs to speed up processing

Offload long-running processing or blocking calls to other threads to
keep the graphical user interface (GUI) thread or other time-critical
threads responsive

Let's briefly discuss the most basic concurrency concept known as a
thread. The QThread class offers a thread abstraction in Qt with
convenience methods. You can start a new custom thread by subclassing the
QThread class, as follows:

class CustomThread : public QThread

{

 public:

 void run(){…}

};

You can create a new instance of this class and invoke its start() function.
This will create a new thread and then call the run() function in the context
of this new thread. Another approach is to directly create a QThread object
and invoke the start() function, which will start an event loop. In
comparison to a conventional C++ thread class, QThread supports thread
interruption, which isn't supported in C++11 and later. You may wonder
why we can't just use the C++ standard thread class. This is because you
can use the signals and slots mechanism with QThread in a multithread-
safe way.

You can also use the multithreading mechanism in QML using
WorkerScript. JavaScript code can execute in parallel with the GUI thread
using the WorkerScript QML type. To enable the use of threads in a Qt
Quick application, import the module as follows:

import QtQml.WorkerScript

One JavaScript can be attached to each WorkerScript object. The script
will run in a different thread and QML context when
WorkerScript.sendMessage() is called. When the script is finished, it can
send a response to the GUI thread, invoking the
WorkerScript.onMessage() signal handler. You can exchange data
between threads by using signals and signal handlers. Let's have a look at a
simple WorkerScript usage, as follows:

WorkerScript {

 id: messagingThread

 source: "messaging.mjs"

 onMessage: (messageObject)=> textElement.text =

 messageObject.reply

}

The preceding code snippet uses a JavaScript file, messaging.mjs, which
performs the operations in a new thread. Let's look at the sample script, as
follows:

WorkerScript.onMessage = function(message) {

 //Perform complex operations here

 WorkerScript.sendMessage({ 'reply': 'Message '+

 message})

}

You can send a message from the click of a button or based on some user
action. It will invoke the sendMessage(jsobject message) method, where
your complex messaging operations will take place. You can read more
about different threading mechanisms and use cases at the following link:
https://doc.qt.io/qt-6/threads-technologies.html.

Since this book is written for experienced C++ developers, it is expected
that you will be familiar with terms such as mutex, semaphore, read-write
lock, and so on. Qt provides convenience classes to use these mechanisms
while implementing a multithreading application. We won't deep dive into
these Qt classes with examples. You can learn more about the use of
QMutex, QSemaPhore, QReadWriteLock, and QWaitCondition at the
following link: https://doc.qt.io/qt-6/threads-synchronizing.html.

In this section, we learned how concurrency mechanisms can be used to
improve overall application performance. Don't implement it unnecessarily
for simple tasks as this may result in degraded performance. In the next

https://doc.qt.io/qt-6/threads-technologies.html
https://doc.qt.io/qt-6/threads-synchronizing.html

section, we will discuss the use of the QML Profiler tool for profiling a Qt
Quick application.

Profil ing a Qt Quick application using
QML Profiler and Flame Graph
QML in Qt 6 takes advantage of graphics processing units (GPUs) and
uses hardware acceleration for rendering. This feature makes QML superior
to Qt Widgets in terms of performance. However, there can be bottlenecks
in your QML code that may impact overall application performance. In this
section, we will focus on using the built-in tool to find these bottlenecks. Qt
Creator provides seamless integration with multiple tools. The most
important tool is QML Profiler. It is provided by Qt and works on all Qt-
supported platforms. Other than QML Profiler, Qt Creator also provides
third-party tools such as Valgrind, Heob, and Performance Analyzer. You
can enable new plugins or remove some plugins from About Plugins…,
available under the Help menu.

Let's discuss QML Profiler, which you will be using most of the time to
find the bottlenecks in your QML code. The goal of QML Profiler is to help
you identify bottlenecks by providing you with details such as the time
taken by a code block to do a certain operation, after which you can decide
to reimplement the code with suitable GUI elements or better data
structures or algorithms.

Follow these steps to start profiling and optimizing your Qt Quick
application:

1. Open an existing Qt Quick project or create a new Qt Quick application
using Qt Creator's New Project creation wizard.

2. Once the project is created, add some code to it. Then, select QML
Profiler under the Analyze menu to run the QML Profiler tool. The
Analyze context menu can differ from platform to platform based on
installed plugins. The following screenshot shows the QML Profiler
option in the Windows platform. In Linux, you may see a few more
options, such as Valgrind Memory Analyzer, Valgrind Memory
Analyzer with GDB, and Valgrind Function Profiler:

Figure 12.1 – QML Profiler option in Qt Creator integrated development environment

(IDE)

3. When you hit the QML Profiler option, your Qt Quick application will
run by QML Profiler. You will see the QML Profiler window appear
below the code editor. You may also see the following message:

Figure 12.2 – QML Profiler retry message

4. If you get this popup, just hit Retry. You will notice that the profiling
will begin and you will also notice the output screen. In the sample
application, we are creating new rectangles on a mouse click, as
illustrated in the following screenshot:

Figure 12.3 – Output of sample Qt Quick application

5. On the user interface (UI), perform some user interactions—such as
click a button—to do a certain operation. Then, click the Stop button
located on the title bar of the profiler window. You will also see two
more buttons on both sides of the Stop button. If you hover your mouse
over them, you will see their functionalities, such as Start QML
Profiler analysis and Disable Profiling.

An overview of the QML Profiler window is shown in the following
screenshot:

Figure 12.4 – QML Profiler window showing Stop button and tabbed
views

Figure 12.4 – QML Profiler window showing Stop button and tabbed views

6. Once you stop the profiler, you will see the QML Profiler window is
updated with some views. You will notice that there are three tabs under
the profiler window—namely Timeline, Flame Graph, and Statistics.

7. Let's look at the first tab on QML Profiler—click on the Timeline tab.
The following screenshot shows a sample view of the output:

Figure 12.5 – QML Profiler showing timeline details

Figure 12.5 – QML Profiler showing timeline details

You will notice that there are six different sections under the timeline
display: Scene Graph, Memory Usage, Compiling, Creating,
Binding, and JavaScript. These sections give us an overview of the
different stages of application processing such as compilation,
component creation, and logical execution.

8. You can find colorful bars on the timeline. You can use the mouse wheel
to zoom in and zoom out on specific timeline sections. You can also
move the timeline by pressing the left mouse button at the bottom
region of the timeline and move in either direction to locate an area of
interest.

The different sections of the Timeline tab are illustrated in the
following screenshot:

Figure 12.6 – Timeline tab showing different sections

Figure 12.6 – Timeline tab showing different sections

9. You can click on the Expand button to see further details under each
section, as illustrated in the following screenshot:

Figure 12.7 – Timeline tab showing different subsections under Scene
Graph and profiling options

Figure 12.7 – Timeline tab showing different subsections under Scene Graph and

profiling options

10. If you click on one of the bars under the Creating section, you can find
component details such as the QtQuick/Rectangle type, total duration
taken for creating an object, and the location of code displayed on a
pop-up window, over the QML Profiler window. You can use the
yellow arrows in the top-left corner to jump to previous or next events.
This section is illustrated in the following screenshot:

Figure 12.8 – Details of an object under the Creating section

Figure 12.8 – Details of an object under the Creating section

11. You can switch between different tabs at the bottom of the QML
Profiler window. Once you have explored the Timeline tab, let's open
up the Flame Graph tab. Under this tab, you will find a visualization of
the Total Time, Memory, and Allocations of your application as a
percentage. You can switch between these views by clicking on the
dropdown located in the top-right corner of the QML Profiler window,
as shown in the following screenshot:

Figure 12.9 – Flame Graph showing Allocations view

Figure 12.9 – Flame Graph showing Allocations view

12. The Flame Graph view provides a more compact statistics summary.
The horizontal bars depict one aspect of the samples gathered for a
certain function in comparison to the same aspect of all samples
combined. The nesting indicates a call tree that shows, for example,
which functions call the other function.

13. As seen in the following screenshot, you can also see the percentage
value displayed on the left side of the code editor. Based on which
component is consuming more time, you can tweak your code:

Figure 12.10 – QML Profiler showing percentage time spent for a
specific portion of the code

Figure 12.10 – QML Profiler showing percentage time spent for a specific portion of

the code

14. Since data collection takes time, you may notice a little lag before the
data is displayed. When you click the Enable Profiling button, data is
transferred to QML Profiler, therefore don't terminate the application
immediately.

15. To disable the automatic start of data collection when an application is
launched, select the Disable Profiling button. When you toggle the
button, data collection will start again.

16. Let's move to the next tab: the QML Profiler window. This tab reveals
statistical details about the processes in a table structure. The following
screenshot illustrates the statistics of the code execution for our sample
code:

Figure 12.11 – QML Profiler showing statistics of code execution

Figure 12.11 – QML Profiler showing statistics of code execution

17. You can also attach QML Profiler to an externally started application
through QML Profiler (Attach to Waiting Application) under the
Analyze menu. Once you select the option, you will see the following
dialog:

Figure 12.12 – QML Profiler showing remote execution option

Figure 12.12 – QML Profiler showing remote execution option

18. To save all of the data collected, right-click on any QML Profiler view
and select Save QML Trace in the context menu. You can select Load
QML Trace to see the saved data. You can also send the saved data to
others for review or load data that they have saved.

In this section, we discussed different options available in QML Profiler. By
using this tool, you can easily find code that is causing performance issues.
More details are available at this link: https://doc.qt.io/qtcreator/creator-
qml-performance-monitor.html.

In the next section, we will discuss further how to use other analytical tools
to optimize your Qt code.

Other Qt Creator analysis tools
In the earlier section, we discussed QML Profiler, but you may need to
analyze your C++ and Qt Widgets code. Qt Creator provides integration
with some of the famous analysis tools to help you analyze your Qt
application. Some of the tools that come with Qt Creator are listed here:

https://doc.qt.io/qtcreator/creator-qml-performance-monitor.html

Heob

Performance Analyzer

Valgrind

Clang Tools: Clang-Tidy and Clazy

Cppcheck

Chrome Trace Format (CTF) visualizer

Let's briefly discuss these tools and become familiar with them before
getting into their documentation.

To use Heob, you first need to download and install it. Buffer overruns and
memory leaks can be easily detected with Heob. It works by overriding the
caller process's heap functions. An access violation is raised when a buffer
overrun occurs, and stack traces of the offending code and buffer allocation
are noted. You will find the stack traces when the application exits
normally. It doesn't require any recompilation or relinking of the target
application.

You can read about its usage on the official documentation link
athttps://doc.qt.io/qtcreator/creator-heob.html.

You can download the binary from SourceForge.net or build it from the
source code. The source code of Heob can be found at the following link:
https://github.com/ssbssa/heob.

The Linux Performance Analyzer tool is integrated with Qt Creator and can
be used to analyze an application's CPU and memory utilization on Linux
desktop or Linux-based embedded systems. The perf tool takes periodic

https://doc.qt.io/qtcreator/creator-heob.html
http://sourceforge.net/
https://github.com/ssbssa/heob

snapshots of an application's call tree and visualizes them in a timeline view
or as a flame graph, using the utility included with the Linux kernel. You
can launch it on your Linux machine from the Performance Analyzer
option under the Analyze menu, as illustrated in the following screenshot:

Figure 12.13 – Qt Creator showing Performance Analyzer option

Figure 12.13 – Qt Creator showing Performance Analyzer option

Please note that the Performance Analyzer doesn't work on the Windows
platform. Even on Linux distributions, if it can't locate the perf utility, you
will get an equivalent warning dialog, as shown in the next screenshot:

Figure 12.14 – Qt Creator showing Performance Analyzer warning dialog

Figure 12.14 – Qt Creator showing Performance Analyzer warning dialog

Use the following command to install the perf tool on your Ubuntu
machine:

$sudo apt install linux-tools-common

If you are using a different Linux distribution, you can use the
corresponding command. perf may fail for the specific Linux kernel, with a
warning about the kernel version. In that case, type the following command
with the appropriate kernel version:

$sudo apt install linux-tools-5.8.0-53-generic

Once the perf setup is done, you can see the predefined events in the
command prompt with the following command:

$perf list

Next, launch Qt Creator and open a Qt project. Select Performance
Analyzer from the Analyze menu. Performance Analyzer will start
collecting data as soon as you start examining an application, and the
Recorded field will show the duration details. Since the data is processed
through the perf tool and an additional assistance program is included with
Qt Creator, it may appear in Qt Creator several seconds after it was created.
The Processing delay field contains an estimate for this delay. The data
collection continues until you click the Stop collecting profile data button
or close the application.

You can also load perf.data and analyze an application from Performance
Analyzer Options under the Analyze menu, as shown here:

Figure 12.15 – Context menu showing Performance Analyzer options

Figure 12.15 – Context menu showing Performance Analyzer options

You can read more about usage of Performance Analyzer at the following
link: https://doc.qt.io/qtcreator/creator-cpu-usage-analyzer.html.

On macOS, there is an equivalent tool called Instructions; however, this is
not integrated with Qt Creator. You can launch it separately and look at the
Time Profiler section.

On Linux and macOS, Valgrind is the tool of choice for debugging a wide
range of problems. Individual techniques, such as profiling and memory
checking, are used for specialized analysis. The Analyze menu in Qt
Creator combines Valgrind and allows memory testing and profiling from
within the IDE. To use Valgrind, it must be installed. It isn't available on
Windows. However, since memory problems aren't often platform-specific,
you can do analysis on Linux or macOS. KCachegrind is the visualizer for

https://doc.qt.io/qtcreator/creator-cpu-usage-analyzer.html

Valgrind profiling results. When you run Valgrind, you will notice the
profiler window open with memcheck. You can change this to callgrind
from the profiler drop-down option.

You can learn more about Valgrind at the following link:
https://doc.qt.io/qtcreator/creator-valgrind-overview.html.

The next tool available in Qt Creator is Clang-Tidy and Clazy…. These
tools can be used to locate issues in your C++ code through static analysis.
Clang-Tidy provides diagnostics and fixes for common programming
errors such as style violations or interface misuse. On the other hand, Clazy
highlights Qt-related compiler errors, such as wasteful memory allocation
and API usage, and suggests refactoring activities to remedy some of the
problems. Clang-Tidy includes the Clang static analyzer capabilities. You
do not need to set up Clang tools individually because they are distributed
and integrated with Qt Creator. When you run Clang-Tidy and Clazy…, as
illustrated in the following screenshot, you will see the analysis details
under the Profiler window and the progress under the Application Output
window below the code editor:

Figure 12.16 – Context menu showing the Clang-Tidy and Clazy…
option

Figure 12.16 – Context menu showing the Clang-Tidy and Clazy… option

Let's run the tool on an existing Qt example. In the application window, you
will see the analysis running, and in the profiler window, you will see the
results.

You can explore the documentation further at the following link:
https://doc.qt.io/qtcreator/creator-clang-tools.html.

https://doc.qt.io/qtcreator/creator-valgrind-overview.html
https://doc.qt.io/qtcreator/creator-clang-tools.html

Qt Creator also includes another tool called cppcheck. This tool has
experimental integration with Qt Creator. You can enable it from About
Plugins…, available under the Help menu. You can use this to detect
undefined behavior and dangerous coding constructs. The tool provides
options to check warnings, style, performance, portability, and information.

The last analysis tool integrated with Qt Creator is the CTF visualizer. You
can use this along with QML Profiler. Tracing information might provide
you further insight into the data that QML Profiler collects. You can find
why a simple binding is taking so long, such as being possibly impacted by
the C++ code or by slow disk operation. Full stack tracing may be used to
trace from the top-level QML or JavaScript down to C++ and all the way
down to the kernel area. This allows you to assess an application's
performance and determine if poor performance is caused by the CPU or
other programs on the same system. Tracing provides insight into what the
system is doing and why an application is behaving in an undesired way. To
see Chrome trace events, utilize the CTF visualizer.

You can learn more about the CTF visualizer at the following link:
https://doc.qt.io/qtcreator/creator-ctf-visualizer.html.

In this section, we have discussed different analysis tools available in Qt
Creator. In the next section, we will discuss further how to optimize and
locate graphical performance issues.

Optimizing graphical performance
We discussed graphics and animation in Chapter 8, Graphics and
Animations. In this section, we will explore factors that impact performance

https://doc.qt.io/qtcreator/creator-ctf-visualizer.html

in graphics and animation. Graphics performance is essential in any
application. If your application is poorly implemented, then users may see
flickering in the UI or the UI may not update as expected. As a developer,
you must make every effort to ensure that the rendering engine maintains a
60 frames-per-second (FPS) refresh rate. There are only 16 milliseconds
(ms) between each frame in which processing should be done at 60 FPS,
which includes the processing necessary to upload the draw primitives to
the graphics hardware.

To avoid any glitch in graphical performance, you should use asynchronous,
event-driven programming wherever possible. If your application has huge
data processing requirements and complex calculations, then use worker
threads to do the processing. You should never manually spin an event loop.
Don't spend more than a few ms per frame in blocking functions. If you
don't follow these points, the users will see the GUI flickering or freezing,
resulting in a bad user experience (UX). When it comes to generating
graphics and animations on the UI the QML engine is very efficient and
powerful. However, there are a few tricks you can use to make things even
go faster. Instead of writing your own, utilize Qt 6's built-in capabilities.

While drawing graphics, you should choose opaque primitives if possible.
Opaque primitives are faster to render by the renderer and to draw on the
GPU. Hence, between Portable Network Graphics (PNG) and Joint
Photographic Experts Group (JPEG) files, rendering JPEG formats is
faster. You should be using QImage::Format_RGB32 when passing
photos to a QQuickImageProvider. Please note that overlapping
compound items cannot be batched. Avoid clipping if possible as it breaks
batching. Instead of clipping an image, use QQuickImageProvider to

generate a cropped image. Applications that require a monochromatic
background should use QQuickWindow::setColor() rather than a top-level
Rectangle element. QQuickWindow::setColor() invokes glClear(), which
is faster.

While using Image, make use of the sourceSize property. The sourceSize
property enables Qt to downsize the image before loading it into memory,
ensuring that huge images consume no more memory than is required.
When the smooth attribute is set to true, Qt filters the image to make it
look smoother when it is scaled or changed from its original size. If the
image is rendered at the same size as its sourceSize property, this makes no
difference. On some older hardware, this property will influence the
performance of your application. The antialiasing property directs Qt to
smooth down aliasing artifacts around the edges of the image. This property
will affect your program's performance.

Better graphical performance can be achieved by effective batching. The
renderer can provide statistics on how well the batching runs, how many
batches are utilized, which batches are kept, which are opaque, and which
are not. To enable this, add an environment variable such as
QSG_RENDERER_DEBUG and set the value to render. Unless an image
is too huge, a texture atlas is used by the Image and BorderImage QML
types. If you are creating textures using C++, then call
QQuickWindow::createTexture() and pass
QQuickWindow::TextureCanUseAtlas. You can use another environment
variable, QSG_ATLAS_OVERLAY, to colorize the atlas textures, which
helps in identifying them easily.

To visualize the various aspects of the scene graph's default renderer, the
QSG_VISUALIZE environment variable can be set to one of the values.
You can do this in Qt Creator by going to the Projects tab, expanding the
Build Environment section, clicking Add, then entering the variable name
as QSG_VISUALIZE and setting the value for that variable, as follows:

QSG_VISUALIZE = overdraw

QSG_VISUALIZE = batches

QSG_VISUALIZE = clip

QSG_VISUALIZE = changes

When QSG_VISUALIZE is set to overdraw, overdraw is visualized in the
renderer. To highlight overdraws, all elements are visualized in three
dimensions (3D). To some extent, this mode may also be used to identify
geometry outside the viewport. Translucent items are shown with a red tint,
whereas opaque items are shown with a green tint. The viewport's bounding
box is shown in blue. Don't use Rectangle just to draw a white background,
as Window also has a white background. In this case, using an Item
property instead of Rectangle can improve performance.

Setting QSG_VISUALIZE to batches causes batches to be visualized in
the renderer. Unmerged batches are drawn with a diagonal line pattern,
whereas merged batches are drawn with a solid color. A small number of
distinct colors indicates effective batching. Unmerged batches are
undesirable if they contain a large number of individual nodes.

All QML components that derive from Item have a property called clip. By
default, the clip value is set to false. This property informs the scene graph

not to render any child elements that extend beyond the boundaries of their
parent. When QSG_VISUALIZE is set to clip, red spots appear on top of
the scene to indicate clipping. Because Qt Quick Items do not clip by
default, clipping is often not shown. Clipping prevents the ability to batch
multiple components together, which impacts graphical performance.

When QSG_VISUALIZE is set to changes, changes in the renderer are
shown. A flashing overlay of random color is used to highlight changes in
the scene graph. Modifications to a primitive are shown by a solid color, but
changes to an ancestor— such as changes to the matrix or opacity—are
shown by a pattern.

Experiment with these environment variables in your Qt Quick application.
You can learn more about these rendering flags at the following link:
https://doc.qt.io/qt-6/qtquick-visualcanvas-scenegraph-renderer.html.

Qt Quick helps in building great applications with a fluid UI and dynamic
transitions. However, you should consider some of the factors to avoid
performance implications. When you add an animation to a property, all
bindings are impacted and re-evaluated, which references the property. To
avoid performance issues, you may remove the binding before running the
animation and then reassign it after the animation is complete. During the
animation, avoid using JavaScript. Script animations should be used with
caution because they run in the main thread.

You can use Qt Quick particles to create a nice particle effect. However, its
performance depends on underlying hardware capabilities. To render more
particles, you will need faster graphics hardware. Your graphics hardware
should be capable to draw at or above 60 FPS. You can learn more about

https://doc.qt.io/qt-6/qtquick-visualcanvas-scenegraph-renderer.html

optimizing particle performance at the following link: https://doc.qt.io/qt-
6/qtquick-particles-performance.html.

In this section, we discussed different considerations to optimize graphical
performance. In the next section, we will discuss further how to benchmark
your application.

Creating benchmarks
We have learned about benchmarking in Chapter 9, Testing and Debugging.
Let's look at some aspects of benchmarking to evaluate performance issues.
We've already talked about Qt Test's support for benchmarking, which is a
calculation of the average time required by a particular task. The
QBENCHMARK macro is used to benchmark a function.

The following code snippet shows benchmarking key clicks on a line edit:

void LineEditTest::testClicks()

{

 auto tstLineEdit = ui->lineEdit;

 QBENCHMARK {QTest::keyClicks(tstLineEdit, "Some

 Inputs");}

}

You can also benchmark convenience functions provided by Qt. The
following code benchmarks the QString::localeAwareCompare()
function. Let's look at the sample code here:

void TestQStringBenchmark::simpleBenchmark()

{

https://doc.qt.io/qt-6/qtquick-particles-performance.html

 QString string1 = QLatin1String("Test string");

 QString string2 = QLatin1String("Test string");

 QBENCHMARK {string1.localeAwareCompare(string2);}

}

You can also run benchmark tests in QML. The Qt benchmark framework
will run functions with names that begin with benchmark_ several times,
with an average timing value recorded for the runs. It is similar to the
QBENCHMARK macro in the C++ version of QTestLib. You can prefix
the test function name with benchmark_once_ to get the effect of the
QBENCHMARK_ONCE macro.

You can also use the qmlbench tool provided by Qt Labs. This is a
benchmarking tool that evaluates your Qt application as a single stack
rather than in isolation, and the benchmarks give a lot of insight into the
overall performance of your Qt application. It has several readymade shells
that come with built-in benchmarking logic. You can do two different types
of benchmarking with qmlbench, such as plain Benchmark or
CreationBenchmark. It also allows you to perform both automated and
manual benchmarking. Automated tests can be used for regression testing,
whereas manual tests can be done to understand the capabilities of new
hardware. It comes with built-in features such as the FPS counter, which is
very important for GUI applications. You can find the frame rate by running
the following command:

>qmlbench --shell frame-count

You can also run all the automated tests with a simple command, as
follows:

>qmlbench benchmarks/auto/

To explore more about the tool and look at the examples, please refer to the
following link: https://github.com/qt-labs/qmlbench.

We have seen benchmarking object creation in Qt Widgets and QML and
we also benchmarked a Qt function. You can also analyze without using any
macros. You can simply use QTime or QElapsedTimer to measure the
time taken by a portion of a code or a function, as illustrated in the
following code snippet:

QTime* time = new QTime;

time->start();

int lastElapsedTime = 0;

qDebug()<<"Start:"<<(time->elapsed()-

 lastElapsedTime)<<"msec";

//Do some operation or call a function

qDebug()<<"End:"<<(time->elapsed()-

 lastElapsedTime)<<"msec";

In the preceding code snippet, we have used elapsed() to measure the time
taken for a code segment. The difference is that you can evaluate a few
lines inside a function—you don't have to write a separate test project. It's a
quick way to find performance issues without evaluating a whole project.

You can also benchmark your Qt Quick 3D application. Here's an article on
how to do it: https://www.qt.io/blog/introducing-qtquick3d-benchmarking-
application.

In this section, we discussed benchmarking techniques. In the next section,
we will discuss more profiling tools.

https://github.com/qt-labs/qmlbench
https://www.qt.io/blog/introducing-qtquick3d-benchmarking-application

Different analysis tools and optimization
strategies
You can optimize your application at multiple levels other than just at a
code level. Optimization can also be done at a memory or binary. You can
modify your application to make it work more efficiently by using fewer
resources. However, there can be a trade-off between memory and
performance. Based on your hardware configuration, you can decide a
strategy as to whether memory usage or processing time is important. In
some embedded platforms with memory limitations, you can allow the
processing time to be a little longer to use less memory and keep the
application responsive. You can also delegate some part of the optimization
task to the compiler.

Let's have a look at different strategies we can use to build, analyze, and
deploy faster.

Memory profil ing and analysis tools

In this section, we will discuss some additional tools you can use to analyze
your application. Note that we won't be discussing these tools in detail. You
can visit the respective tool website and learn from their documentation. In
addition to the available tools in Qt Creator, you can use the following tools
on your Windows machine.

Let's have a look at the list of tools, as follows:

AddressSanitizer (ASan) is an address monitoring tool built by Google
and part of Sanitizers.

AQTime Pro finds issues and memory leaks with application runtime
analysis and performance profiling.

Deleaker is a tool for C++ developers who want to find all possible
known leaks in their projects. It can detect memory leaks, Graphics
Device Interface (GDI) leaks, and other leaks.

Intel Inspector XE is a memory and thread debugger from Intel.

PurifyPlus is a runtime analysis tool suite that monitors your program
as it runs and reports on key aspects of its behavior.

Visual Leak Detector is a free, robust, open-source memory leak
detection system for Visual C++.

Very Sleepy is a CPU profiler based on sampling.

Visual Studio Profiler (VSTS) can be used for CPU sampling,
instrumentation, and memory allocation.

MTuner utilizes a novel approach to memory profiling and analysis,
keeping an entire time-based history of memory operations.

Memory Leak Detection Tool is a high-performance memory leak
detection tool.

Heob detects buffer overruns and memory leaks. Integrated into Qt
Creator.

Process Explorer can query and visualize several systems and
performance counters for each process, and I regularly use it for
preliminary investigations.

System Explorer shows all system calls issued by any running
processes in a long list and supports filters to select processes we'd like
to observe.

RAMMap examines a system's global memory usage, which requires
quite a bit of Windows internal knowledge.

VMMap shows detailed information on a single application's memory
usage.

Coreinfo gives detailed information about the processor, information
you might need when doing low-level optimization work.

Bloaty performs a deep analysis of the binary. It aims to accurately
attribute every byte of the binary to a symbol or compile the unit that
produced it.

In this section, we briefed you about some of the third-party profiling tools.
In the next section, we will discuss how to optimize your binary during
linking.

Optimizing during linking

In earlier sections, we discussed how to find bottlenecks and optimize a
code segment that is impacting an application's performance. Fortunately,
most compilers now include a mechanism that allows you to do such
optimizations while maintaining the modularity and cleanliness of your
code. This is referred to as link-time code generation (LTCG) or link-
time optimization (LTO). LTO is the optimization of a program during the
linking process. The linker collects all object files and integrates them into a

single program. Because the linker can view the entire program, it can do
whole-program analysis and optimization. However, the linker generally
only sees the program after it has been translated into machine code. Rather
than converting each source file to machine code one by one, we postpone
the code-generation procedure until the very end—linking time. Code
generation at linking time enables not just smart inlining of code but also
does optimizations such as devirtualizing functions and better elimination
of redundant code. This technique can be used to improve application
launch time.

To enable this mechanism in Qt, you have to build from the source code. At
the configure step, add -ltcg to the command-line options. Compiling all of
your source code at once during the compilation stage will provide you all
of the optimization benefits of full LTO. You can optimize your application
launch time at a toolchain, platform, and application level.

Learn more about these performance tips at the following link:
https://wiki.qt.io/Performance_Tip_Startup_Time.

You can delegate the optimization task to the compiler at times. When you
enable optimization flags, the compiler will try to boost the performance
and optimize the code block, at the cost of compilation time and—probably
—debugging capability. You can enable compiler-level optimization flags
for your desired compilers such as GNU Compiler Collection (GCC) or
Clang.

Look at GCC optimization options for available C++ compilers at the
following link: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

https://wiki.qt.io/Performance_Tip_Startup_Time
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

You can learn about different flags in Clang at the following link:
https://clang.llvm.org/docs/CommandGuide/clang.html.

In this section, you learned about link-time optimization. In the next
section, we will discuss how to build your Qt application faster.

Building a Qt application faster

In a large complex project, the time spent on building a project is
increasingly becoming valuable. In general, the longer the build time, the
more time you lose every day. If you multiply that by the time for a
complete team, you lose a lot of time just waiting for the build to finish.
While having to wait hours for each small change to be rebuilt might make
you more careful about details and drive you to think about each step in
depth, it may also limit a more Agile process or collaboration. In this
section, we will provide a short guide for dealing with optimization in C++
using Qt.

Please note the following points you should follow to speed up your build
process:

Use parallel building flags

Make use of a precompiled header (pch)

Remove redundant targets from makefile

Use forward declarations in classes

The most effective way while building a large project is to use a parallel-
build approach. A parallel build can be enabled by passing an additional

https://clang.llvm.org/docs/CommandGuide/clang.html

parameter. In Qt Creator, you can enable Parallel Build under Build
Settings. You can find the editable fields starting with the Make and
Details buttons under Build Steps. Click on the Details button, and in the
Make arguments field, enter -j8. You can instruct your compiler to build in
a parallel way through the following command-line statement:

>make -j8

The last number depends on your hardware. -j8 instructs to run eight
threads in parallel. Based on your machine configuration, you may use -j4.

You can also enable a parallel build for the Microsoft Visual C++ (MSVC)
compiler by enabling the -MP flag. You can instruct cl to run parallel by
adding the following flag in the .pro file:

msvc {

 QMAKE_CXXFLAGS += -MP

}

A precompiled header is an excellent technique to drastically minimize a
compiler's load. When a compiler parses a file, it must parse the entire code,
along with the standard headers and other third-party sources. pch allows
you to define which files are frequently used so that the compiler may
precompile them before starting a build and utilize the results while
building each .cpp file.

To use a precompiled header file, add the following lines of code to the .pro
file:

PRECOMPILED_HEADER = ../pch/your_precompiled_header.h

CONFIG += precompile_header

If you use the Q_OBJECT macro, the meta-object compiler generates
additional files. Don't use the Q_OBJECT macro unnecessarily, unless you
require relevant features such as the signals and slots mechanism or
translation. When you add the Q_OBJECT macro, moc will generate a
moc_<ClassName>.cpp file, which adds to the compilation complexity.

You can include this file at the end of your .cpp file, as follows:

#include "moc_<ClassName>.cpp"

You can also lower the dependencies of each .cpp file by using forward
declarations for small projects and a forward header in large projects.
Forwarding classes will shorten the duration of a partial build during
standard work. Most classes can contain forward declarations in the
forwards.h file. By having such a file, you may drastically minimize the
number of includes in header files, usually by including forwards.h.

As a result, qmake will notice this and remove this file from the list of
targets. This will reduce the load on the compiler.

In this section, you learned how to reduce the application build time. In the
next section, we will discuss some of the best practices in the Qt Widgets-
based application.

Performance considerations for Qt
Widgets
The Qt Widgets module renders widgets utilizing the raster engine, a
software renders using CPU rather than GPU. In most cases, it can provide
the desired performance. However, the Qt Widgets module is very old and

lacks the latest capabilities. Since QML is entirely hardware-accelerated,
you should consider adopting it for your application's UI.

If your widgets don't need mouseTracking, tabletTracking, or similar
event capturing, turn it off. Your application will use more CPU time as a
result of this tracking. Maintain a smaller style sheet and keep it all in one
style sheet instead of applying it to individual widgets. A large style sheet
will take longer for Qt to process the information into the rendering system,
which may affect the application's performance. Use custom styles instead
of a style sheet as this can provide you better performance.

Don't create screens unnecessarily and keep them hidden. Create a screen
only when it is required. While using QStackedWidget, avoid adding too
many pages and populating them with many widgets. It requires Qt to
discover them all recursively during the rendering and event handling
stages, causing the program to run slowly.

Use asynchronous methods wherever feasible for huge operations, to avoid
blocking the main process, and keep your software running smoothly.
Multithreading is extremely useful for parallelizing several processes in
event loops. However, if not done correctly, such as by repeatedly creating
and removing threads or by poorly implemented inter-thread
communications, it may result in undesired outcome.

Different C++ containers yield different speeds. Qt's vector container is
slightly slower than the one in the STL. Overall, the old C++ array is still
the fastest, but it lacks sorting capabilities. Use what is most appropriate for
your needs.

In this section, you learned about best practices while using the Qt Widgets
module. In the next section, we will discuss best practices in QML.

Learning best practices of QML coding
It is important to follow certain best practices while coding in QML. You
should keep the file under a certain line limit and should have consistent
indentation and structural attributes, as well as following a standard naming
convention.

You can structure your QML object attributes in the following order:

Rectangle {

// id of the object

// property declarations

// signal declarations

// javascript functions

// object properties

// child objects

// states

// transitions

}

If you are using multiple properties from a group of properties, then use
group notation, as shown next:

Rectangle {

 anchors {

 left: parent.left; top: parent.top

 right: parent.right; leftMargin: 20

 }

}

Treating groups of properties as a block can ease confusion and help relate
the properties with other properties.

QML and JavaScript do not enforce private properties like C++ does. There
is a need to hide these private properties—for example, when the properties
are part of the implementation. To effectively gain private properties in a
QML item, you can embed inside a QtObject{...} to hide the properties.
This prevents the properties from being accessed outside of the QML file
and JavaScript. To minimize the impact on performance, try to group all
private properties into the same QtObject scope.

The following code snippet illustrates the use of QtObject:

Item {

 id: component

 width: 40; height: 40

 QtObject {

 id: privateObject

 property real area: width * height //private

 //property

 }

}

It takes time for property resolution. While the result of a lookup can
sometimes be cached and reused, it is generally preferable to avoid doing

extra work if at all feasible. You should try to use the common base just
once in a loop.

If any of the properties change, the property binding expression is re-
evaluated. If you have a loop where you do some processing but only the
result matters, then it is better to create a temporary accumulator then assign
it to the property you want to update, rather than incrementally updating the
property itself, to prevent triggering re-evaluation of binding expressions.

To prevent a continuous overhead of leaving items that are invisible
because they are children of a non-visible active element, they should be
initialized lazily and destroyed when no longer in use. An object loaded
using a Loader element may be released by resetting the source or
sourceComponent property of Loader, but other items can be explicitly
destroyed. It may be required to keep the item active in some situations, in
which case it should be made invisible.

In general, opaque content is much faster to draw than translucent content.
The reason for this is that translucent content requires blending, and the
renderer may be able to better optimize opaque content. Even if an image
has only one translucent pixel, it is viewed as totally transparent. The same
may be said for a BorderImage element with translucent edges.

Avoid doing long logical calculations in QML. Use C++ for implementing
business logic. If you still need to use JavaScript-based implementation for
doing some complex operation or processing, then use WorkerScript.

The Qt Quick Compiler lets you compile QML source code into a final
binary. The application's launch time can be greatly reduced by enabling
this. You do not have to deploy the .qml files along with the application.

You can enable Qt Quick Compiler by adding the following line to your Qt
project (.pro) file:

CONFIG += qtquickcompiler

To learn more about Qt Quick best practices, read the documentation at the
following link: https://doc.qt.io/qt-6/qtquick-bestpractices.html.

You can also explore more about Qt Quick performance in the
documentation found at the following link: https://doc.qt.io/qt-6/qtquick-
performance.html.

In this section, we learned some of the best practices while coding in QML.
We will now summarize our learning in this chapter.

Summary
In this chapter, we discussed performance considerations and how to
improve your overall application performance. We started with improving
C++ code. Then, we explained how concurrency techniques can help in
making your application faster. You learned about QML Profiler and other
profiling tools. You also understood the importance of using best practices
while coding in Qt. Now, you can use these techniques in everyday coding.
You don't have to be an extraordinary application developer to do
performance optimization. If you follow best practices, design patterns, and
write better algorithms, then your application will have fewer defects and
fewer customer complaints. It is a continuous process, and you will
gradually become better at it.

Congratulations! You have learned the basics of performance optimization.
If you are curious to know more, then you can read more books specifically

https://doc.qt.io/qt-6/qtquick-bestpractices.html
https://doc.qt.io/qt-6/qtquick-performance.html

written for performance tuning. Happy coding in Qt. Remember—writing
better and high-performant code can reduce the CPU cycle, which in turn
reduces the carbon footprint, hence effectively, if you code better, you can
save the planet and fight climate change!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version

at packt.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interest ed in these other books by
Packt:

Hands-On Embedded Programming with QT

John Werner

ISBN: 978-1-78995-206-3

Understand how to develop Qt applications using Qt Creator on Linux

http://packt.com/
mailto:customercare@packtpub.com
http://www.packt.com/
https://www.packtpub.com/product/hands-on-embedded-programming-with-qt/9781789952063

Explore various Qt GUI technologies to build resourceful and
interactive applications

Understand Qt's threading model to maintain a responsive UI

Get to grips with remote target load and debug using Qt Creator

Become adept at writing IoT code using Qt

Learn a variety of software best practices to ensure that your code is
efficient

Hands-On High Performance Programming with Qt 5

Marek Krajewski

ISBN: 978-1-78953-124-4

Understand classic performance best practices

Get to grips with modern hardware architecture and its performance
impact

https://www.packtpub.com/product/hands-on-high-performance-programming-with-qt-5/9781789531244

Implement tools and procedures used in performance optimization

Grasp Qt-specific work techniques for graphical user interface (GUI)
and platform programming

Make Transmission Control Protocol (TCP) and Hypertext Transfer
Protocol (HTTP) performant and use the relevant Qt classes

Discover the improvements Qt 5.9 (and the upcoming versions) holds in
store

Explore Qt's graphic engine architecture, strengths, and weaknesses

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on
the site that you bought it from. If you purchased the book from Amazon,
please leave us an honest review on this book's Amazon page. This is vital
so that other potential readers can see and use your unbiased opinion to
make purchasing decisions, we can understand what our customers think

http://authors.packtpub.com/

about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of
your time, but is valuable to other potential customers, our authors, and
Packt. Thank you!

Contents

1. Cross-Platform Development with Qt 6 and Modern C++
2. Contributors
3. About the author
4. About the reviewers
5. Preface

1. Who this book is for
2. What this book covers
3. To get the most out of this book
4. Download the example code files
5. Download the color images
6. Conventions used
7. Get in touch
8. Reviews

6. Section 1: The Basics
7. Chapter 1: Introduction to Qt 6

1. Technical requirements
2. Introducing Qt
3. Reasons for using Qt
4. Downloading and installing Qt

1. Downloading Qt
2. Installing Qt on Windows
3. Installing Qt on Linux
4. Installing Qt on macOS
5. Updating or removing Qt

5. Building Qt 6 from source
1. Installing Qt on Windows from source
2. Installing Qt on Linux from source
3. Installing Qt on macOS from source

6. Summary
8. Chapter 2: Introduction to Qt Creator

1. Technical requirements
2. Exploring the Qt Creator UI
3. Building a simple Qt application
4. Understanding advanced options

1. Managing kits
2. Qt Versions
3. Environment
4. Keyboard shortcuts
5. Text Editor
6. Splitting the coding window
7. Build options
8. Qt Assistant

5. Summary
9. Chapter 3: GUI Design Using Qt Widgets

1. Technical requirements
2. Introducing Qt widgets
3. Creating a UI with Qt Designer
4. Managing layouts

1. QVBoxLayout
2. QHBoxLayout
3. QGridLayout

5. Creating custom widgets
6. Creating Qt Style Sheets and custom themes

1. Using a QSS file
7. Exploring custom styles

1. Creating a custom style
2. Using a custom style

8. Using widgets, windows, and dialogs
9. Summary

10. Chapter 4: t Quick and QML
1. Technical requirements
2. Getting started with QML and Qt Quick

1. Understanding the QML type system
3. Understanding Qt Quick Controls

1. Styling Qt Quick Controls
4. Creating a simple Qt Quick application
5. Designing a UI with Qt Quick Designer
6. Positioners and layouts in QML

1. Manual positioning
2. Positioning with anchors
3. Positioners

4. Repeater
5. Qt Quick Layouts

7. Integrating QML with C++
1. Embedding C++ objects into QML with context properties
2. Registering a C++ class with the QML engine
3. Creating a QML extension plugin
4. Invoking QML methods inside a C++ class
5. Exposing a QML object pointer to C++

8. Integrating QML with JS
1. Importing a directory in QML

9. Handling mouse and touch events
1. MouseArea
2. MultiPointTouchArea
3. TapHandler
4. SwipeView

10. Summary
11. Section 2: Cross-Platform Development
12. Chapter 5: Cross-Platform Development

1. Technical requirements
2. Understanding cross-platform development
3. Understanding compilers

1. Adding custom compilers
4. Building with qmake
5. Qt Project (.pro) files

1. Understanding differences between .pro and .pri files
6. Understanding build settings
7. Platform-specific settings
8. Using Qt with Microsoft Visual Studio
9. Running a Qt application on Linux

10. Running a Qt application on macOS and iOS
1. Configuring Qt Creator for iOS
2. Configuring Qt Creator for Android

11. Other Qt-supported platforms
12. Porting from Qt 5 into Qt 6
13. Summary

13. Section 3: Advanced Programming, Debugging, and Deployment
14. Chapter 6: Signals and Slots

1. Technical requirements
2. Understanding Qt signals and slots

1. Understanding syntax
2. Declaring signals and slots
3. Connecting the signal to the slot
4. Connecting a single signal to multiple slots
5. Connecting multiple signals to a single slot
6. Connecting a signal to another signal

3. The working mechanism of Qt signals and slots
1. Qt's meta-object system
2. MOC generated code

4. Getting to know Qt's property system
1. Reading and writing properties with the Meta-Object System

5. Using signals and slots in Qt Designer
6. Understanding signals and the handler event system in QML

1. Adding a signal in QML
2. Connecting a signal to a function
3. Connecting a signal to a signal
4. Defining property attributes and understanding property

binding
5. Integrating signals and slots between C++ and QML

7. Understanding events and the event loop
8. Managing events with an event filter
9. Drag and drop

1. Drag and drop in Qt Widgets
2. Drag and drop in QML

10. Summary
15. Chapter 7: Model View Programming

1. Technical requirements
2. Understanding the M/V architecture

1. Model
2. Delegate
3. Views in Qt Widgets

3. Creating a simple Qt Widgets application using the M/V pattern
4. Understanding Models and Views in QML

1. Views in Qt Quick
2. Models in Qt Quick

5. Using C++ Models with QML
6. Creating a simple M/V application with Qt Quick
7. Summary

16. Chapter 8: Graphics and Animations
1. Technical requirements
2. Understanding Qt's graphics framework
3. QPainter and 2D graphics

1. Understanding the paint system
2. Using the coordinate system
3. Drawing and filling
4. Drawing with QPainter

4. Introducing the Graphics View framework
5. Understanding the Qt OpenGL module

1. Qt OpenGL and Qt Widgets
6. Graphics in Qt Quick

1. Qt OpenGL and Qt Quick
2. Custom Qt Quick items using QPainter

7. Understanding the Qt Quick scene graph
1. Qt Quick scene graph structure
2. Rendering using a scene graph
3. Using a scene graph with the Native Graphics
4. 3D graphics with Qt Quick 3D

8. Shader effects
9. Using the Canvas QML type

10. Understanding particle simulations
11. Animation in Qt Widgets
12. Animation and transitions in Qt Quick

1. Controlling animations
13. States, state machine, and transitions in Qt Quick
14. The state machine in Qt Widgets
15. Summary

17. Chapter 9: Testing and Debugging
1. Technical requirements
2. Debugging in Qt

1. Debuggers supported by Qt
3. Debugging strategies
4. Debugging a C++ application

5. Debugging a Qt Quick application
6. Testing in Qt

1. Unit testing in Qt
7. Integrating with Google's C++ testing framework
8. Testing Qt Quick applications
9. GUI testing tools

1. The Linux Desktop Testing Project (LDTP)
2. GammaRay
3. Squish

10. Summary
18. Chapter 10: Deploying Qt Applications

1. Technical requirements
2. Understanding the need for deployment

1. Choosing between static and dynamic libraries
3. Deploying on desktop platforms

1. Deploying on Windows
2. Windows deployment tool
3. Deploying on Linux
4. Deploying on macOS

4. Using the Qt Installer Framework
5. Deploying on Android
6. Other installation tools
7. Summary

19. Chapter 11: Internationalization
1. Technical requirements
2. Understanding internationalization and Qt Linguist
3. Writing source code for translation
4. Loading translations in a Qt application
5. Switching languages dynamically
6. Internationalization with Qt Widgets

1. Adding dynamic translation to a Qt Widgets application
7. Internationalization with Qt Quick

1. Translating dynamically in a Qt Quick application
8. Deploying translations
9. Summary

20. Chapter 12: Performance Considerations
1. Technical requirements

2. Understanding performance optimization
3. Optimizing C++ code
4. Using concurrency, parallelism, and multithreading
5. Profiling a Qt Quick application using QML Profiler and Flame

Graph
6. Other Qt Creator analysis tools
7. Optimizing graphical performance
8. Creating benchmarks
9. Different analysis tools and optimization strategies

1. Memory profiling and analysis tools
2. Optimizing during linking
3. Building a Qt application faster

10. Performance considerations for Qt Widgets
11. Learning best practices of QML coding
12. Summary
13. Why subscribe?

21. Other Books You May Enjoy
1. Packt is searching for authors like you
2. Leave a review - let other readers know what you think

Landmarks

1. Cover

file:///tmp/calibre_4.99.5_tmp_7m_w667s/ru4hb35s_pdf_out/OEBPS/Images/cover.xhtml

	Cross-Platform Development with Qt 6 and Modern C++
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Reviews

	Section 1: The Basics
	Chapter 1: Introduction to Qt 6
	Technical requirements
	Introducing Qt
	Reasons for using Qt
	Downloading and installing Qt
	Downloading Qt
	Installing Qt on Windows
	Installing Qt on Linux
	Installing Qt on macOS
	Updating or removing Qt

	Building Qt 6 from source
	Installing Qt on Windows from source
	Installing Qt on Linux from source
	Installing Qt on macOS from source

	Summary

	Chapter 2: Introduction to Qt Creator
	Technical requirements
	Exploring the Qt Creator UI
	Building a simple Qt application
	Understanding advanced options
	Managing kits
	Qt Versions
	Environment
	Keyboard shortcuts
	Text Editor
	Splitting the coding window
	Build options
	Qt Assistant

	Summary

	Chapter 3: GUI Design Using Qt Widgets
	Technical requirements
	Introducing Qt widgets
	Creating a UI with Qt Designer
	Managing layouts
	QVBoxLayout
	QHBoxLayout
	QGridLayout

	Creating custom widgets
	Creating Qt Style Sheets and custom themes
	Using a QSS file

	Exploring custom styles
	Creating a custom style
	Using a custom style

	Using widgets, windows, and dialogs
	Summary

	Chapter 4: t Quick and QML
	Technical requirements
	Getting started with QML and Qt Quick
	Understanding the QML type system

	Understanding Qt Quick Controls
	Styling Qt Quick Controls

	Creating a simple Qt Quick application
	Designing a UI with Qt Quick Designer
	Positioners and layouts in QML
	Manual positioning
	Positioning with anchors
	Positioners
	Repeater
	Qt Quick Layouts

	Integrating QML with C++
	Embedding C++ objects into QML with context properties
	Registering a C++ class with the QML engine
	Creating a QML extension plugin
	Invoking QML methods inside a C++ class
	Exposing a QML object pointer to C++

	Integrating QML with JS
	Importing a directory in QML

	Handling mouse and touch events
	MouseArea
	MultiPointTouchArea
	TapHandler
	SwipeView

	Summary

	Section 2: Cross-Platform Development
	Chapter 5: Cross-Platform Development
	Technical requirements
	Understanding cross-platform development
	Understanding compilers
	Adding custom compilers

	Building with qmake
	Qt Project (.pro) files
	Understanding differences between .pro and .pri files

	Understanding build settings
	Platform-specific settings
	Using Qt with Microsoft Visual Studio
	Running a Qt application on Linux
	Running a Qt application on macOS and iOS
	Configuring Qt Creator for iOS
	Configuring Qt Creator for Android

	Other Qt-supported platforms
	Porting from Qt 5 into Qt 6
	Summary

	Section 3: Advanced Programming, Debugging, and Deployment
	Chapter 6: Signals and Slots
	Technical requirements
	Understanding Qt signals and slots
	Understanding syntax
	Declaring signals and slots
	Connecting the signal to the slot
	Connecting a single signal to multiple slots
	Connecting multiple signals to a single slot
	Connecting a signal to another signal

	The working mechanism of Qt signals and slots
	Qt's meta-object system
	MOC generated code

	Getting to know Qt's property system
	Reading and writing properties with the Meta-Object System

	Using signals and slots in Qt Designer
	Understanding signals and the handler event system in QML
	Adding a signal in QML
	Connecting a signal to a function
	Connecting a signal to a signal
	Defining property attributes and understanding property binding
	Integrating signals and slots between C++ and QML

	Understanding events and the event loop
	Managing events with an event filter
	Drag and drop
	Drag and drop in Qt Widgets
	Drag and drop in QML

	Summary

	Chapter 7: Model View Programming
	Technical requirements
	Understanding the M/V architecture
	Model
	Delegate
	Views in Qt Widgets

	Creating a simple Qt Widgets application using the M/V pattern
	Understanding Models and Views in QML
	Views in Qt Quick
	Models in Qt Quick

	Using C++ Models with QML
	Creating a simple M/V application with Qt Quick
	Summary

	Chapter 8: Graphics and Animations
	Technical requirements
	Understanding Qt's graphics framework
	QPainter and 2D graphics
	Understanding the paint system
	Using the coordinate system
	Drawing and filling
	Drawing with QPainter

	Introducing the Graphics View framework
	Understanding the Qt OpenGL module
	Qt OpenGL and Qt Widgets

	Graphics in Qt Quick
	Qt OpenGL and Qt Quick
	Custom Qt Quick items using QPainter

	Understanding the Qt Quick scene graph
	Qt Quick scene graph structure
	Rendering using a scene graph
	Using a scene graph with the Native Graphics
	3D graphics with Qt Quick 3D

	Shader effects
	Using the Canvas QML type
	Understanding particle simulations
	Animation in Qt Widgets
	Animation and transitions in Qt Quick
	Controlling animations

	States, state machine, and transitions in Qt Quick
	The state machine in Qt Widgets
	Summary

	Chapter 9: Testing and Debugging
	Technical requirements
	Debugging in Qt
	Debuggers supported by Qt

	Debugging strategies
	Debugging a C++ application
	Debugging a Qt Quick application
	Testing in Qt
	Unit testing in Qt

	Integrating with Google's C++ testing framework
	Testing Qt Quick applications
	GUI testing tools
	The Linux Desktop Testing Project (LDTP)
	GammaRay
	Squish

	Summary

	Chapter 10: Deploying Qt Applications
	Technical requirements
	Understanding the need for deployment
	Choosing between static and dynamic libraries

	Deploying on desktop platforms
	Deploying on Windows
	Windows deployment tool
	Deploying on Linux
	Deploying on macOS

	Using the Qt Installer Framework
	Deploying on Android
	Other installation tools
	Summary

	Chapter 11: Internationalization
	Technical requirements
	Understanding internationalization and Qt Linguist
	Writing source code for translation
	Loading translations in a Qt application
	Switching languages dynamically
	Internationalization with Qt Widgets
	Adding dynamic translation to a Qt Widgets application

	Internationalization with Qt Quick
	Translating dynamically in a Qt Quick application

	Deploying translations
	Summary

	Chapter 12: Performance Considerations
	Technical requirements
	Understanding performance optimization
	Optimizing C++ code
	Using concurrency, parallelism, and multithreading
	Profiling a Qt Quick application using QML Profiler and Flame Graph
	Other Qt Creator analysis tools
	Optimizing graphical performance
	Creating benchmarks
	Different analysis tools and optimization strategies
	Memory profiling and analysis tools
	Optimizing during linking
	Building a Qt application faster

	Performance considerations for Qt Widgets
	Learning best practices of QML coding
	Summary
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Leave a review - let other readers know what you think

